1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// \brief Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Converts alignment exponent (i.e. power of two (or zero)) to the 642 /// corresponding alignment to use. If alignment is too large, returns 643 /// a corresponding error code. 644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 647 648 Error parseComdatRecord(ArrayRef<uint64_t> Record); 649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 650 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 652 ArrayRef<uint64_t> Record); 653 654 Error parseAttributeBlock(); 655 Error parseAttributeGroupBlock(); 656 Error parseTypeTable(); 657 Error parseTypeTableBody(); 658 Error parseOperandBundleTags(); 659 Error parseSyncScopeNames(); 660 661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 662 unsigned NameIndex, Triple &TT); 663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 664 ArrayRef<uint64_t> Record); 665 Error parseValueSymbolTable(uint64_t Offset = 0); 666 Error parseGlobalValueSymbolTable(); 667 Error parseConstants(); 668 Error rememberAndSkipFunctionBodies(); 669 Error rememberAndSkipFunctionBody(); 670 /// Save the positions of the Metadata blocks and skip parsing the blocks. 671 Error rememberAndSkipMetadata(); 672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 673 Error parseFunctionBody(Function *F); 674 Error globalCleanup(); 675 Error resolveGlobalAndIndirectSymbolInits(); 676 Error parseUseLists(); 677 Error findFunctionInStream( 678 Function *F, 679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 680 681 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 682 }; 683 684 /// Class to manage reading and parsing function summary index bitcode 685 /// files/sections. 686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 687 /// The module index built during parsing. 688 ModuleSummaryIndex &TheIndex; 689 690 /// Indicates whether we have encountered a global value summary section 691 /// yet during parsing. 692 bool SeenGlobalValSummary = false; 693 694 /// Indicates whether we have already parsed the VST, used for error checking. 695 bool SeenValueSymbolTable = false; 696 697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 698 /// Used to enable on-demand parsing of the VST. 699 uint64_t VSTOffset = 0; 700 701 // Map to save ValueId to ValueInfo association that was recorded in the 702 // ValueSymbolTable. It is used after the VST is parsed to convert 703 // call graph edges read from the function summary from referencing 704 // callees by their ValueId to using the ValueInfo instead, which is how 705 // they are recorded in the summary index being built. 706 // We save a GUID which refers to the same global as the ValueInfo, but 707 // ignoring the linkage, i.e. for values other than local linkage they are 708 // identical. 709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 710 ValueIdToValueInfoMap; 711 712 /// Map populated during module path string table parsing, from the 713 /// module ID to a string reference owned by the index's module 714 /// path string table, used to correlate with combined index 715 /// summary records. 716 DenseMap<uint64_t, StringRef> ModuleIdMap; 717 718 /// Original source file name recorded in a bitcode record. 719 std::string SourceFileName; 720 721 /// The string identifier given to this module by the client, normally the 722 /// path to the bitcode file. 723 StringRef ModulePath; 724 725 /// For per-module summary indexes, the unique numerical identifier given to 726 /// this module by the client. 727 unsigned ModuleId; 728 729 public: 730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 731 ModuleSummaryIndex &TheIndex, 732 StringRef ModulePath, unsigned ModuleId); 733 734 Error parseModule(); 735 736 private: 737 void setValueGUID(uint64_t ValueID, StringRef ValueName, 738 GlobalValue::LinkageTypes Linkage, 739 StringRef SourceFileName); 740 Error parseValueSymbolTable( 741 uint64_t Offset, 742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 745 bool IsOldProfileFormat, 746 bool HasProfile); 747 Error parseEntireSummary(unsigned ID); 748 Error parseModuleStringTable(); 749 750 std::pair<ValueInfo, GlobalValue::GUID> 751 getValueInfoFromValueId(unsigned ValueId); 752 753 ModuleSummaryIndex::ModuleInfo *addThisModule(); 754 }; 755 756 } // end anonymous namespace 757 758 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 759 Error Err) { 760 if (Err) { 761 std::error_code EC; 762 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 763 EC = EIB.convertToErrorCode(); 764 Ctx.emitError(EIB.message()); 765 }); 766 return EC; 767 } 768 return std::error_code(); 769 } 770 771 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 772 StringRef ProducerIdentification, 773 LLVMContext &Context) 774 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 775 ValueList(Context) { 776 this->ProducerIdentification = ProducerIdentification; 777 } 778 779 Error BitcodeReader::materializeForwardReferencedFunctions() { 780 if (WillMaterializeAllForwardRefs) 781 return Error::success(); 782 783 // Prevent recursion. 784 WillMaterializeAllForwardRefs = true; 785 786 while (!BasicBlockFwdRefQueue.empty()) { 787 Function *F = BasicBlockFwdRefQueue.front(); 788 BasicBlockFwdRefQueue.pop_front(); 789 assert(F && "Expected valid function"); 790 if (!BasicBlockFwdRefs.count(F)) 791 // Already materialized. 792 continue; 793 794 // Check for a function that isn't materializable to prevent an infinite 795 // loop. When parsing a blockaddress stored in a global variable, there 796 // isn't a trivial way to check if a function will have a body without a 797 // linear search through FunctionsWithBodies, so just check it here. 798 if (!F->isMaterializable()) 799 return error("Never resolved function from blockaddress"); 800 801 // Try to materialize F. 802 if (Error Err = materialize(F)) 803 return Err; 804 } 805 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 806 807 // Reset state. 808 WillMaterializeAllForwardRefs = false; 809 return Error::success(); 810 } 811 812 //===----------------------------------------------------------------------===// 813 // Helper functions to implement forward reference resolution, etc. 814 //===----------------------------------------------------------------------===// 815 816 static bool hasImplicitComdat(size_t Val) { 817 switch (Val) { 818 default: 819 return false; 820 case 1: // Old WeakAnyLinkage 821 case 4: // Old LinkOnceAnyLinkage 822 case 10: // Old WeakODRLinkage 823 case 11: // Old LinkOnceODRLinkage 824 return true; 825 } 826 } 827 828 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 829 switch (Val) { 830 default: // Map unknown/new linkages to external 831 case 0: 832 return GlobalValue::ExternalLinkage; 833 case 2: 834 return GlobalValue::AppendingLinkage; 835 case 3: 836 return GlobalValue::InternalLinkage; 837 case 5: 838 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 839 case 6: 840 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 841 case 7: 842 return GlobalValue::ExternalWeakLinkage; 843 case 8: 844 return GlobalValue::CommonLinkage; 845 case 9: 846 return GlobalValue::PrivateLinkage; 847 case 12: 848 return GlobalValue::AvailableExternallyLinkage; 849 case 13: 850 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 851 case 14: 852 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 853 case 15: 854 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 855 case 1: // Old value with implicit comdat. 856 case 16: 857 return GlobalValue::WeakAnyLinkage; 858 case 10: // Old value with implicit comdat. 859 case 17: 860 return GlobalValue::WeakODRLinkage; 861 case 4: // Old value with implicit comdat. 862 case 18: 863 return GlobalValue::LinkOnceAnyLinkage; 864 case 11: // Old value with implicit comdat. 865 case 19: 866 return GlobalValue::LinkOnceODRLinkage; 867 } 868 } 869 870 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 871 FunctionSummary::FFlags Flags; 872 Flags.ReadNone = RawFlags & 0x1; 873 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 874 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 875 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 876 return Flags; 877 } 878 879 /// Decode the flags for GlobalValue in the summary. 880 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 881 uint64_t Version) { 882 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 883 // like getDecodedLinkage() above. Any future change to the linkage enum and 884 // to getDecodedLinkage() will need to be taken into account here as above. 885 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 886 RawFlags = RawFlags >> 4; 887 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 888 // The Live flag wasn't introduced until version 3. For dead stripping 889 // to work correctly on earlier versions, we must conservatively treat all 890 // values as live. 891 bool Live = (RawFlags & 0x2) || Version < 3; 892 bool Local = (RawFlags & 0x4); 893 894 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 895 } 896 897 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 898 switch (Val) { 899 default: // Map unknown visibilities to default. 900 case 0: return GlobalValue::DefaultVisibility; 901 case 1: return GlobalValue::HiddenVisibility; 902 case 2: return GlobalValue::ProtectedVisibility; 903 } 904 } 905 906 static GlobalValue::DLLStorageClassTypes 907 getDecodedDLLStorageClass(unsigned Val) { 908 switch (Val) { 909 default: // Map unknown values to default. 910 case 0: return GlobalValue::DefaultStorageClass; 911 case 1: return GlobalValue::DLLImportStorageClass; 912 case 2: return GlobalValue::DLLExportStorageClass; 913 } 914 } 915 916 static bool getDecodedDSOLocal(unsigned Val) { 917 switch(Val) { 918 default: // Map unknown values to preemptable. 919 case 0: return false; 920 case 1: return true; 921 } 922 } 923 924 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 925 switch (Val) { 926 case 0: return GlobalVariable::NotThreadLocal; 927 default: // Map unknown non-zero value to general dynamic. 928 case 1: return GlobalVariable::GeneralDynamicTLSModel; 929 case 2: return GlobalVariable::LocalDynamicTLSModel; 930 case 3: return GlobalVariable::InitialExecTLSModel; 931 case 4: return GlobalVariable::LocalExecTLSModel; 932 } 933 } 934 935 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 936 switch (Val) { 937 default: // Map unknown to UnnamedAddr::None. 938 case 0: return GlobalVariable::UnnamedAddr::None; 939 case 1: return GlobalVariable::UnnamedAddr::Global; 940 case 2: return GlobalVariable::UnnamedAddr::Local; 941 } 942 } 943 944 static int getDecodedCastOpcode(unsigned Val) { 945 switch (Val) { 946 default: return -1; 947 case bitc::CAST_TRUNC : return Instruction::Trunc; 948 case bitc::CAST_ZEXT : return Instruction::ZExt; 949 case bitc::CAST_SEXT : return Instruction::SExt; 950 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 951 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 952 case bitc::CAST_UITOFP : return Instruction::UIToFP; 953 case bitc::CAST_SITOFP : return Instruction::SIToFP; 954 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 955 case bitc::CAST_FPEXT : return Instruction::FPExt; 956 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 957 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 958 case bitc::CAST_BITCAST : return Instruction::BitCast; 959 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 960 } 961 } 962 963 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 964 bool IsFP = Ty->isFPOrFPVectorTy(); 965 // BinOps are only valid for int/fp or vector of int/fp types 966 if (!IsFP && !Ty->isIntOrIntVectorTy()) 967 return -1; 968 969 switch (Val) { 970 default: 971 return -1; 972 case bitc::BINOP_ADD: 973 return IsFP ? Instruction::FAdd : Instruction::Add; 974 case bitc::BINOP_SUB: 975 return IsFP ? Instruction::FSub : Instruction::Sub; 976 case bitc::BINOP_MUL: 977 return IsFP ? Instruction::FMul : Instruction::Mul; 978 case bitc::BINOP_UDIV: 979 return IsFP ? -1 : Instruction::UDiv; 980 case bitc::BINOP_SDIV: 981 return IsFP ? Instruction::FDiv : Instruction::SDiv; 982 case bitc::BINOP_UREM: 983 return IsFP ? -1 : Instruction::URem; 984 case bitc::BINOP_SREM: 985 return IsFP ? Instruction::FRem : Instruction::SRem; 986 case bitc::BINOP_SHL: 987 return IsFP ? -1 : Instruction::Shl; 988 case bitc::BINOP_LSHR: 989 return IsFP ? -1 : Instruction::LShr; 990 case bitc::BINOP_ASHR: 991 return IsFP ? -1 : Instruction::AShr; 992 case bitc::BINOP_AND: 993 return IsFP ? -1 : Instruction::And; 994 case bitc::BINOP_OR: 995 return IsFP ? -1 : Instruction::Or; 996 case bitc::BINOP_XOR: 997 return IsFP ? -1 : Instruction::Xor; 998 } 999 } 1000 1001 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1002 switch (Val) { 1003 default: return AtomicRMWInst::BAD_BINOP; 1004 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1005 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1006 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1007 case bitc::RMW_AND: return AtomicRMWInst::And; 1008 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1009 case bitc::RMW_OR: return AtomicRMWInst::Or; 1010 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1011 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1012 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1013 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1014 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1015 } 1016 } 1017 1018 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1019 switch (Val) { 1020 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1021 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1022 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1023 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1024 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1025 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1026 default: // Map unknown orderings to sequentially-consistent. 1027 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1028 } 1029 } 1030 1031 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1032 switch (Val) { 1033 default: // Map unknown selection kinds to any. 1034 case bitc::COMDAT_SELECTION_KIND_ANY: 1035 return Comdat::Any; 1036 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1037 return Comdat::ExactMatch; 1038 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1039 return Comdat::Largest; 1040 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1041 return Comdat::NoDuplicates; 1042 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1043 return Comdat::SameSize; 1044 } 1045 } 1046 1047 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1048 FastMathFlags FMF; 1049 if (0 != (Val & FastMathFlags::AllowReassoc)) 1050 FMF.setAllowReassoc(); 1051 if (0 != (Val & FastMathFlags::NoNaNs)) 1052 FMF.setNoNaNs(); 1053 if (0 != (Val & FastMathFlags::NoInfs)) 1054 FMF.setNoInfs(); 1055 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1056 FMF.setNoSignedZeros(); 1057 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1058 FMF.setAllowReciprocal(); 1059 if (0 != (Val & FastMathFlags::AllowContract)) 1060 FMF.setAllowContract(true); 1061 if (0 != (Val & FastMathFlags::ApproxFunc)) 1062 FMF.setApproxFunc(); 1063 return FMF; 1064 } 1065 1066 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1067 switch (Val) { 1068 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1069 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1070 } 1071 } 1072 1073 Type *BitcodeReader::getTypeByID(unsigned ID) { 1074 // The type table size is always specified correctly. 1075 if (ID >= TypeList.size()) 1076 return nullptr; 1077 1078 if (Type *Ty = TypeList[ID]) 1079 return Ty; 1080 1081 // If we have a forward reference, the only possible case is when it is to a 1082 // named struct. Just create a placeholder for now. 1083 return TypeList[ID] = createIdentifiedStructType(Context); 1084 } 1085 1086 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1087 StringRef Name) { 1088 auto *Ret = StructType::create(Context, Name); 1089 IdentifiedStructTypes.push_back(Ret); 1090 return Ret; 1091 } 1092 1093 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1094 auto *Ret = StructType::create(Context); 1095 IdentifiedStructTypes.push_back(Ret); 1096 return Ret; 1097 } 1098 1099 //===----------------------------------------------------------------------===// 1100 // Functions for parsing blocks from the bitcode file 1101 //===----------------------------------------------------------------------===// 1102 1103 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1104 switch (Val) { 1105 case Attribute::EndAttrKinds: 1106 llvm_unreachable("Synthetic enumerators which should never get here"); 1107 1108 case Attribute::None: return 0; 1109 case Attribute::ZExt: return 1 << 0; 1110 case Attribute::SExt: return 1 << 1; 1111 case Attribute::NoReturn: return 1 << 2; 1112 case Attribute::InReg: return 1 << 3; 1113 case Attribute::StructRet: return 1 << 4; 1114 case Attribute::NoUnwind: return 1 << 5; 1115 case Attribute::NoAlias: return 1 << 6; 1116 case Attribute::ByVal: return 1 << 7; 1117 case Attribute::Nest: return 1 << 8; 1118 case Attribute::ReadNone: return 1 << 9; 1119 case Attribute::ReadOnly: return 1 << 10; 1120 case Attribute::NoInline: return 1 << 11; 1121 case Attribute::AlwaysInline: return 1 << 12; 1122 case Attribute::OptimizeForSize: return 1 << 13; 1123 case Attribute::StackProtect: return 1 << 14; 1124 case Attribute::StackProtectReq: return 1 << 15; 1125 case Attribute::Alignment: return 31 << 16; 1126 case Attribute::NoCapture: return 1 << 21; 1127 case Attribute::NoRedZone: return 1 << 22; 1128 case Attribute::NoImplicitFloat: return 1 << 23; 1129 case Attribute::Naked: return 1 << 24; 1130 case Attribute::InlineHint: return 1 << 25; 1131 case Attribute::StackAlignment: return 7 << 26; 1132 case Attribute::ReturnsTwice: return 1 << 29; 1133 case Attribute::UWTable: return 1 << 30; 1134 case Attribute::NonLazyBind: return 1U << 31; 1135 case Attribute::SanitizeAddress: return 1ULL << 32; 1136 case Attribute::MinSize: return 1ULL << 33; 1137 case Attribute::NoDuplicate: return 1ULL << 34; 1138 case Attribute::StackProtectStrong: return 1ULL << 35; 1139 case Attribute::SanitizeThread: return 1ULL << 36; 1140 case Attribute::SanitizeMemory: return 1ULL << 37; 1141 case Attribute::NoBuiltin: return 1ULL << 38; 1142 case Attribute::Returned: return 1ULL << 39; 1143 case Attribute::Cold: return 1ULL << 40; 1144 case Attribute::Builtin: return 1ULL << 41; 1145 case Attribute::OptimizeNone: return 1ULL << 42; 1146 case Attribute::InAlloca: return 1ULL << 43; 1147 case Attribute::NonNull: return 1ULL << 44; 1148 case Attribute::JumpTable: return 1ULL << 45; 1149 case Attribute::Convergent: return 1ULL << 46; 1150 case Attribute::SafeStack: return 1ULL << 47; 1151 case Attribute::NoRecurse: return 1ULL << 48; 1152 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1153 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1154 case Attribute::SwiftSelf: return 1ULL << 51; 1155 case Attribute::SwiftError: return 1ULL << 52; 1156 case Attribute::WriteOnly: return 1ULL << 53; 1157 case Attribute::Speculatable: return 1ULL << 54; 1158 case Attribute::StrictFP: return 1ULL << 55; 1159 case Attribute::Dereferenceable: 1160 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1161 break; 1162 case Attribute::DereferenceableOrNull: 1163 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1164 "format"); 1165 break; 1166 case Attribute::ArgMemOnly: 1167 llvm_unreachable("argmemonly attribute not supported in raw format"); 1168 break; 1169 case Attribute::AllocSize: 1170 llvm_unreachable("allocsize not supported in raw format"); 1171 break; 1172 } 1173 llvm_unreachable("Unsupported attribute type"); 1174 } 1175 1176 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1177 if (!Val) return; 1178 1179 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1180 I = Attribute::AttrKind(I + 1)) { 1181 if (I == Attribute::Dereferenceable || 1182 I == Attribute::DereferenceableOrNull || 1183 I == Attribute::ArgMemOnly || 1184 I == Attribute::AllocSize) 1185 continue; 1186 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1187 if (I == Attribute::Alignment) 1188 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1189 else if (I == Attribute::StackAlignment) 1190 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1191 else 1192 B.addAttribute(I); 1193 } 1194 } 1195 } 1196 1197 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1198 /// been decoded from the given integer. This function must stay in sync with 1199 /// 'encodeLLVMAttributesForBitcode'. 1200 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1201 uint64_t EncodedAttrs) { 1202 // FIXME: Remove in 4.0. 1203 1204 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1205 // the bits above 31 down by 11 bits. 1206 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1207 assert((!Alignment || isPowerOf2_32(Alignment)) && 1208 "Alignment must be a power of two."); 1209 1210 if (Alignment) 1211 B.addAlignmentAttr(Alignment); 1212 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1213 (EncodedAttrs & 0xffff)); 1214 } 1215 1216 Error BitcodeReader::parseAttributeBlock() { 1217 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1218 return error("Invalid record"); 1219 1220 if (!MAttributes.empty()) 1221 return error("Invalid multiple blocks"); 1222 1223 SmallVector<uint64_t, 64> Record; 1224 1225 SmallVector<AttributeList, 8> Attrs; 1226 1227 // Read all the records. 1228 while (true) { 1229 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1230 1231 switch (Entry.Kind) { 1232 case BitstreamEntry::SubBlock: // Handled for us already. 1233 case BitstreamEntry::Error: 1234 return error("Malformed block"); 1235 case BitstreamEntry::EndBlock: 1236 return Error::success(); 1237 case BitstreamEntry::Record: 1238 // The interesting case. 1239 break; 1240 } 1241 1242 // Read a record. 1243 Record.clear(); 1244 switch (Stream.readRecord(Entry.ID, Record)) { 1245 default: // Default behavior: ignore. 1246 break; 1247 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1248 // FIXME: Remove in 4.0. 1249 if (Record.size() & 1) 1250 return error("Invalid record"); 1251 1252 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1253 AttrBuilder B; 1254 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1255 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1256 } 1257 1258 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1259 Attrs.clear(); 1260 break; 1261 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1262 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1263 Attrs.push_back(MAttributeGroups[Record[i]]); 1264 1265 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1266 Attrs.clear(); 1267 break; 1268 } 1269 } 1270 } 1271 1272 // Returns Attribute::None on unrecognized codes. 1273 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1274 switch (Code) { 1275 default: 1276 return Attribute::None; 1277 case bitc::ATTR_KIND_ALIGNMENT: 1278 return Attribute::Alignment; 1279 case bitc::ATTR_KIND_ALWAYS_INLINE: 1280 return Attribute::AlwaysInline; 1281 case bitc::ATTR_KIND_ARGMEMONLY: 1282 return Attribute::ArgMemOnly; 1283 case bitc::ATTR_KIND_BUILTIN: 1284 return Attribute::Builtin; 1285 case bitc::ATTR_KIND_BY_VAL: 1286 return Attribute::ByVal; 1287 case bitc::ATTR_KIND_IN_ALLOCA: 1288 return Attribute::InAlloca; 1289 case bitc::ATTR_KIND_COLD: 1290 return Attribute::Cold; 1291 case bitc::ATTR_KIND_CONVERGENT: 1292 return Attribute::Convergent; 1293 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1294 return Attribute::InaccessibleMemOnly; 1295 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1296 return Attribute::InaccessibleMemOrArgMemOnly; 1297 case bitc::ATTR_KIND_INLINE_HINT: 1298 return Attribute::InlineHint; 1299 case bitc::ATTR_KIND_IN_REG: 1300 return Attribute::InReg; 1301 case bitc::ATTR_KIND_JUMP_TABLE: 1302 return Attribute::JumpTable; 1303 case bitc::ATTR_KIND_MIN_SIZE: 1304 return Attribute::MinSize; 1305 case bitc::ATTR_KIND_NAKED: 1306 return Attribute::Naked; 1307 case bitc::ATTR_KIND_NEST: 1308 return Attribute::Nest; 1309 case bitc::ATTR_KIND_NO_ALIAS: 1310 return Attribute::NoAlias; 1311 case bitc::ATTR_KIND_NO_BUILTIN: 1312 return Attribute::NoBuiltin; 1313 case bitc::ATTR_KIND_NO_CAPTURE: 1314 return Attribute::NoCapture; 1315 case bitc::ATTR_KIND_NO_DUPLICATE: 1316 return Attribute::NoDuplicate; 1317 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1318 return Attribute::NoImplicitFloat; 1319 case bitc::ATTR_KIND_NO_INLINE: 1320 return Attribute::NoInline; 1321 case bitc::ATTR_KIND_NO_RECURSE: 1322 return Attribute::NoRecurse; 1323 case bitc::ATTR_KIND_NON_LAZY_BIND: 1324 return Attribute::NonLazyBind; 1325 case bitc::ATTR_KIND_NON_NULL: 1326 return Attribute::NonNull; 1327 case bitc::ATTR_KIND_DEREFERENCEABLE: 1328 return Attribute::Dereferenceable; 1329 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1330 return Attribute::DereferenceableOrNull; 1331 case bitc::ATTR_KIND_ALLOC_SIZE: 1332 return Attribute::AllocSize; 1333 case bitc::ATTR_KIND_NO_RED_ZONE: 1334 return Attribute::NoRedZone; 1335 case bitc::ATTR_KIND_NO_RETURN: 1336 return Attribute::NoReturn; 1337 case bitc::ATTR_KIND_NO_UNWIND: 1338 return Attribute::NoUnwind; 1339 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1340 return Attribute::OptimizeForSize; 1341 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1342 return Attribute::OptimizeNone; 1343 case bitc::ATTR_KIND_READ_NONE: 1344 return Attribute::ReadNone; 1345 case bitc::ATTR_KIND_READ_ONLY: 1346 return Attribute::ReadOnly; 1347 case bitc::ATTR_KIND_RETURNED: 1348 return Attribute::Returned; 1349 case bitc::ATTR_KIND_RETURNS_TWICE: 1350 return Attribute::ReturnsTwice; 1351 case bitc::ATTR_KIND_S_EXT: 1352 return Attribute::SExt; 1353 case bitc::ATTR_KIND_SPECULATABLE: 1354 return Attribute::Speculatable; 1355 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1356 return Attribute::StackAlignment; 1357 case bitc::ATTR_KIND_STACK_PROTECT: 1358 return Attribute::StackProtect; 1359 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1360 return Attribute::StackProtectReq; 1361 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1362 return Attribute::StackProtectStrong; 1363 case bitc::ATTR_KIND_SAFESTACK: 1364 return Attribute::SafeStack; 1365 case bitc::ATTR_KIND_STRICT_FP: 1366 return Attribute::StrictFP; 1367 case bitc::ATTR_KIND_STRUCT_RET: 1368 return Attribute::StructRet; 1369 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1370 return Attribute::SanitizeAddress; 1371 case bitc::ATTR_KIND_SANITIZE_THREAD: 1372 return Attribute::SanitizeThread; 1373 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1374 return Attribute::SanitizeMemory; 1375 case bitc::ATTR_KIND_SWIFT_ERROR: 1376 return Attribute::SwiftError; 1377 case bitc::ATTR_KIND_SWIFT_SELF: 1378 return Attribute::SwiftSelf; 1379 case bitc::ATTR_KIND_UW_TABLE: 1380 return Attribute::UWTable; 1381 case bitc::ATTR_KIND_WRITEONLY: 1382 return Attribute::WriteOnly; 1383 case bitc::ATTR_KIND_Z_EXT: 1384 return Attribute::ZExt; 1385 } 1386 } 1387 1388 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1389 unsigned &Alignment) { 1390 // Note: Alignment in bitcode files is incremented by 1, so that zero 1391 // can be used for default alignment. 1392 if (Exponent > Value::MaxAlignmentExponent + 1) 1393 return error("Invalid alignment value"); 1394 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1395 return Error::success(); 1396 } 1397 1398 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1399 *Kind = getAttrFromCode(Code); 1400 if (*Kind == Attribute::None) 1401 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1402 return Error::success(); 1403 } 1404 1405 Error BitcodeReader::parseAttributeGroupBlock() { 1406 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1407 return error("Invalid record"); 1408 1409 if (!MAttributeGroups.empty()) 1410 return error("Invalid multiple blocks"); 1411 1412 SmallVector<uint64_t, 64> Record; 1413 1414 // Read all the records. 1415 while (true) { 1416 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1417 1418 switch (Entry.Kind) { 1419 case BitstreamEntry::SubBlock: // Handled for us already. 1420 case BitstreamEntry::Error: 1421 return error("Malformed block"); 1422 case BitstreamEntry::EndBlock: 1423 return Error::success(); 1424 case BitstreamEntry::Record: 1425 // The interesting case. 1426 break; 1427 } 1428 1429 // Read a record. 1430 Record.clear(); 1431 switch (Stream.readRecord(Entry.ID, Record)) { 1432 default: // Default behavior: ignore. 1433 break; 1434 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1435 if (Record.size() < 3) 1436 return error("Invalid record"); 1437 1438 uint64_t GrpID = Record[0]; 1439 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1440 1441 AttrBuilder B; 1442 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1443 if (Record[i] == 0) { // Enum attribute 1444 Attribute::AttrKind Kind; 1445 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1446 return Err; 1447 1448 B.addAttribute(Kind); 1449 } else if (Record[i] == 1) { // Integer attribute 1450 Attribute::AttrKind Kind; 1451 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1452 return Err; 1453 if (Kind == Attribute::Alignment) 1454 B.addAlignmentAttr(Record[++i]); 1455 else if (Kind == Attribute::StackAlignment) 1456 B.addStackAlignmentAttr(Record[++i]); 1457 else if (Kind == Attribute::Dereferenceable) 1458 B.addDereferenceableAttr(Record[++i]); 1459 else if (Kind == Attribute::DereferenceableOrNull) 1460 B.addDereferenceableOrNullAttr(Record[++i]); 1461 else if (Kind == Attribute::AllocSize) 1462 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1463 } else { // String attribute 1464 assert((Record[i] == 3 || Record[i] == 4) && 1465 "Invalid attribute group entry"); 1466 bool HasValue = (Record[i++] == 4); 1467 SmallString<64> KindStr; 1468 SmallString<64> ValStr; 1469 1470 while (Record[i] != 0 && i != e) 1471 KindStr += Record[i++]; 1472 assert(Record[i] == 0 && "Kind string not null terminated"); 1473 1474 if (HasValue) { 1475 // Has a value associated with it. 1476 ++i; // Skip the '0' that terminates the "kind" string. 1477 while (Record[i] != 0 && i != e) 1478 ValStr += Record[i++]; 1479 assert(Record[i] == 0 && "Value string not null terminated"); 1480 } 1481 1482 B.addAttribute(KindStr.str(), ValStr.str()); 1483 } 1484 } 1485 1486 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1487 break; 1488 } 1489 } 1490 } 1491 } 1492 1493 Error BitcodeReader::parseTypeTable() { 1494 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1495 return error("Invalid record"); 1496 1497 return parseTypeTableBody(); 1498 } 1499 1500 Error BitcodeReader::parseTypeTableBody() { 1501 if (!TypeList.empty()) 1502 return error("Invalid multiple blocks"); 1503 1504 SmallVector<uint64_t, 64> Record; 1505 unsigned NumRecords = 0; 1506 1507 SmallString<64> TypeName; 1508 1509 // Read all the records for this type table. 1510 while (true) { 1511 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1512 1513 switch (Entry.Kind) { 1514 case BitstreamEntry::SubBlock: // Handled for us already. 1515 case BitstreamEntry::Error: 1516 return error("Malformed block"); 1517 case BitstreamEntry::EndBlock: 1518 if (NumRecords != TypeList.size()) 1519 return error("Malformed block"); 1520 return Error::success(); 1521 case BitstreamEntry::Record: 1522 // The interesting case. 1523 break; 1524 } 1525 1526 // Read a record. 1527 Record.clear(); 1528 Type *ResultTy = nullptr; 1529 switch (Stream.readRecord(Entry.ID, Record)) { 1530 default: 1531 return error("Invalid value"); 1532 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1533 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1534 // type list. This allows us to reserve space. 1535 if (Record.size() < 1) 1536 return error("Invalid record"); 1537 TypeList.resize(Record[0]); 1538 continue; 1539 case bitc::TYPE_CODE_VOID: // VOID 1540 ResultTy = Type::getVoidTy(Context); 1541 break; 1542 case bitc::TYPE_CODE_HALF: // HALF 1543 ResultTy = Type::getHalfTy(Context); 1544 break; 1545 case bitc::TYPE_CODE_FLOAT: // FLOAT 1546 ResultTy = Type::getFloatTy(Context); 1547 break; 1548 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1549 ResultTy = Type::getDoubleTy(Context); 1550 break; 1551 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1552 ResultTy = Type::getX86_FP80Ty(Context); 1553 break; 1554 case bitc::TYPE_CODE_FP128: // FP128 1555 ResultTy = Type::getFP128Ty(Context); 1556 break; 1557 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1558 ResultTy = Type::getPPC_FP128Ty(Context); 1559 break; 1560 case bitc::TYPE_CODE_LABEL: // LABEL 1561 ResultTy = Type::getLabelTy(Context); 1562 break; 1563 case bitc::TYPE_CODE_METADATA: // METADATA 1564 ResultTy = Type::getMetadataTy(Context); 1565 break; 1566 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1567 ResultTy = Type::getX86_MMXTy(Context); 1568 break; 1569 case bitc::TYPE_CODE_TOKEN: // TOKEN 1570 ResultTy = Type::getTokenTy(Context); 1571 break; 1572 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1573 if (Record.size() < 1) 1574 return error("Invalid record"); 1575 1576 uint64_t NumBits = Record[0]; 1577 if (NumBits < IntegerType::MIN_INT_BITS || 1578 NumBits > IntegerType::MAX_INT_BITS) 1579 return error("Bitwidth for integer type out of range"); 1580 ResultTy = IntegerType::get(Context, NumBits); 1581 break; 1582 } 1583 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1584 // [pointee type, address space] 1585 if (Record.size() < 1) 1586 return error("Invalid record"); 1587 unsigned AddressSpace = 0; 1588 if (Record.size() == 2) 1589 AddressSpace = Record[1]; 1590 ResultTy = getTypeByID(Record[0]); 1591 if (!ResultTy || 1592 !PointerType::isValidElementType(ResultTy)) 1593 return error("Invalid type"); 1594 ResultTy = PointerType::get(ResultTy, AddressSpace); 1595 break; 1596 } 1597 case bitc::TYPE_CODE_FUNCTION_OLD: { 1598 // FIXME: attrid is dead, remove it in LLVM 4.0 1599 // FUNCTION: [vararg, attrid, retty, paramty x N] 1600 if (Record.size() < 3) 1601 return error("Invalid record"); 1602 SmallVector<Type*, 8> ArgTys; 1603 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1604 if (Type *T = getTypeByID(Record[i])) 1605 ArgTys.push_back(T); 1606 else 1607 break; 1608 } 1609 1610 ResultTy = getTypeByID(Record[2]); 1611 if (!ResultTy || ArgTys.size() < Record.size()-3) 1612 return error("Invalid type"); 1613 1614 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1615 break; 1616 } 1617 case bitc::TYPE_CODE_FUNCTION: { 1618 // FUNCTION: [vararg, retty, paramty x N] 1619 if (Record.size() < 2) 1620 return error("Invalid record"); 1621 SmallVector<Type*, 8> ArgTys; 1622 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1623 if (Type *T = getTypeByID(Record[i])) { 1624 if (!FunctionType::isValidArgumentType(T)) 1625 return error("Invalid function argument type"); 1626 ArgTys.push_back(T); 1627 } 1628 else 1629 break; 1630 } 1631 1632 ResultTy = getTypeByID(Record[1]); 1633 if (!ResultTy || ArgTys.size() < Record.size()-2) 1634 return error("Invalid type"); 1635 1636 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1637 break; 1638 } 1639 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1640 if (Record.size() < 1) 1641 return error("Invalid record"); 1642 SmallVector<Type*, 8> EltTys; 1643 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1644 if (Type *T = getTypeByID(Record[i])) 1645 EltTys.push_back(T); 1646 else 1647 break; 1648 } 1649 if (EltTys.size() != Record.size()-1) 1650 return error("Invalid type"); 1651 ResultTy = StructType::get(Context, EltTys, Record[0]); 1652 break; 1653 } 1654 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1655 if (convertToString(Record, 0, TypeName)) 1656 return error("Invalid record"); 1657 continue; 1658 1659 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1660 if (Record.size() < 1) 1661 return error("Invalid record"); 1662 1663 if (NumRecords >= TypeList.size()) 1664 return error("Invalid TYPE table"); 1665 1666 // Check to see if this was forward referenced, if so fill in the temp. 1667 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1668 if (Res) { 1669 Res->setName(TypeName); 1670 TypeList[NumRecords] = nullptr; 1671 } else // Otherwise, create a new struct. 1672 Res = createIdentifiedStructType(Context, TypeName); 1673 TypeName.clear(); 1674 1675 SmallVector<Type*, 8> EltTys; 1676 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1677 if (Type *T = getTypeByID(Record[i])) 1678 EltTys.push_back(T); 1679 else 1680 break; 1681 } 1682 if (EltTys.size() != Record.size()-1) 1683 return error("Invalid record"); 1684 Res->setBody(EltTys, Record[0]); 1685 ResultTy = Res; 1686 break; 1687 } 1688 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1689 if (Record.size() != 1) 1690 return error("Invalid record"); 1691 1692 if (NumRecords >= TypeList.size()) 1693 return error("Invalid TYPE table"); 1694 1695 // Check to see if this was forward referenced, if so fill in the temp. 1696 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1697 if (Res) { 1698 Res->setName(TypeName); 1699 TypeList[NumRecords] = nullptr; 1700 } else // Otherwise, create a new struct with no body. 1701 Res = createIdentifiedStructType(Context, TypeName); 1702 TypeName.clear(); 1703 ResultTy = Res; 1704 break; 1705 } 1706 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1707 if (Record.size() < 2) 1708 return error("Invalid record"); 1709 ResultTy = getTypeByID(Record[1]); 1710 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1711 return error("Invalid type"); 1712 ResultTy = ArrayType::get(ResultTy, Record[0]); 1713 break; 1714 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1715 if (Record.size() < 2) 1716 return error("Invalid record"); 1717 if (Record[0] == 0) 1718 return error("Invalid vector length"); 1719 ResultTy = getTypeByID(Record[1]); 1720 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1721 return error("Invalid type"); 1722 ResultTy = VectorType::get(ResultTy, Record[0]); 1723 break; 1724 } 1725 1726 if (NumRecords >= TypeList.size()) 1727 return error("Invalid TYPE table"); 1728 if (TypeList[NumRecords]) 1729 return error( 1730 "Invalid TYPE table: Only named structs can be forward referenced"); 1731 assert(ResultTy && "Didn't read a type?"); 1732 TypeList[NumRecords++] = ResultTy; 1733 } 1734 } 1735 1736 Error BitcodeReader::parseOperandBundleTags() { 1737 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1738 return error("Invalid record"); 1739 1740 if (!BundleTags.empty()) 1741 return error("Invalid multiple blocks"); 1742 1743 SmallVector<uint64_t, 64> Record; 1744 1745 while (true) { 1746 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1747 1748 switch (Entry.Kind) { 1749 case BitstreamEntry::SubBlock: // Handled for us already. 1750 case BitstreamEntry::Error: 1751 return error("Malformed block"); 1752 case BitstreamEntry::EndBlock: 1753 return Error::success(); 1754 case BitstreamEntry::Record: 1755 // The interesting case. 1756 break; 1757 } 1758 1759 // Tags are implicitly mapped to integers by their order. 1760 1761 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1762 return error("Invalid record"); 1763 1764 // OPERAND_BUNDLE_TAG: [strchr x N] 1765 BundleTags.emplace_back(); 1766 if (convertToString(Record, 0, BundleTags.back())) 1767 return error("Invalid record"); 1768 Record.clear(); 1769 } 1770 } 1771 1772 Error BitcodeReader::parseSyncScopeNames() { 1773 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1774 return error("Invalid record"); 1775 1776 if (!SSIDs.empty()) 1777 return error("Invalid multiple synchronization scope names blocks"); 1778 1779 SmallVector<uint64_t, 64> Record; 1780 while (true) { 1781 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1782 switch (Entry.Kind) { 1783 case BitstreamEntry::SubBlock: // Handled for us already. 1784 case BitstreamEntry::Error: 1785 return error("Malformed block"); 1786 case BitstreamEntry::EndBlock: 1787 if (SSIDs.empty()) 1788 return error("Invalid empty synchronization scope names block"); 1789 return Error::success(); 1790 case BitstreamEntry::Record: 1791 // The interesting case. 1792 break; 1793 } 1794 1795 // Synchronization scope names are implicitly mapped to synchronization 1796 // scope IDs by their order. 1797 1798 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1799 return error("Invalid record"); 1800 1801 SmallString<16> SSN; 1802 if (convertToString(Record, 0, SSN)) 1803 return error("Invalid record"); 1804 1805 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1806 Record.clear(); 1807 } 1808 } 1809 1810 /// Associate a value with its name from the given index in the provided record. 1811 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1812 unsigned NameIndex, Triple &TT) { 1813 SmallString<128> ValueName; 1814 if (convertToString(Record, NameIndex, ValueName)) 1815 return error("Invalid record"); 1816 unsigned ValueID = Record[0]; 1817 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1818 return error("Invalid record"); 1819 Value *V = ValueList[ValueID]; 1820 1821 StringRef NameStr(ValueName.data(), ValueName.size()); 1822 if (NameStr.find_first_of(0) != StringRef::npos) 1823 return error("Invalid value name"); 1824 V->setName(NameStr); 1825 auto *GO = dyn_cast<GlobalObject>(V); 1826 if (GO) { 1827 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1828 if (TT.isOSBinFormatMachO()) 1829 GO->setComdat(nullptr); 1830 else 1831 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1832 } 1833 } 1834 return V; 1835 } 1836 1837 /// Helper to note and return the current location, and jump to the given 1838 /// offset. 1839 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1840 BitstreamCursor &Stream) { 1841 // Save the current parsing location so we can jump back at the end 1842 // of the VST read. 1843 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1844 Stream.JumpToBit(Offset * 32); 1845 #ifndef NDEBUG 1846 // Do some checking if we are in debug mode. 1847 BitstreamEntry Entry = Stream.advance(); 1848 assert(Entry.Kind == BitstreamEntry::SubBlock); 1849 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1850 #else 1851 // In NDEBUG mode ignore the output so we don't get an unused variable 1852 // warning. 1853 Stream.advance(); 1854 #endif 1855 return CurrentBit; 1856 } 1857 1858 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1859 Function *F, 1860 ArrayRef<uint64_t> Record) { 1861 // Note that we subtract 1 here because the offset is relative to one word 1862 // before the start of the identification or module block, which was 1863 // historically always the start of the regular bitcode header. 1864 uint64_t FuncWordOffset = Record[1] - 1; 1865 uint64_t FuncBitOffset = FuncWordOffset * 32; 1866 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1867 // Set the LastFunctionBlockBit to point to the last function block. 1868 // Later when parsing is resumed after function materialization, 1869 // we can simply skip that last function block. 1870 if (FuncBitOffset > LastFunctionBlockBit) 1871 LastFunctionBlockBit = FuncBitOffset; 1872 } 1873 1874 /// Read a new-style GlobalValue symbol table. 1875 Error BitcodeReader::parseGlobalValueSymbolTable() { 1876 unsigned FuncBitcodeOffsetDelta = 1877 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1878 1879 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1880 return error("Invalid record"); 1881 1882 SmallVector<uint64_t, 64> Record; 1883 while (true) { 1884 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1885 1886 switch (Entry.Kind) { 1887 case BitstreamEntry::SubBlock: 1888 case BitstreamEntry::Error: 1889 return error("Malformed block"); 1890 case BitstreamEntry::EndBlock: 1891 return Error::success(); 1892 case BitstreamEntry::Record: 1893 break; 1894 } 1895 1896 Record.clear(); 1897 switch (Stream.readRecord(Entry.ID, Record)) { 1898 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1899 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1900 cast<Function>(ValueList[Record[0]]), Record); 1901 break; 1902 } 1903 } 1904 } 1905 1906 /// Parse the value symbol table at either the current parsing location or 1907 /// at the given bit offset if provided. 1908 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1909 uint64_t CurrentBit; 1910 // Pass in the Offset to distinguish between calling for the module-level 1911 // VST (where we want to jump to the VST offset) and the function-level 1912 // VST (where we don't). 1913 if (Offset > 0) { 1914 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1915 // If this module uses a string table, read this as a module-level VST. 1916 if (UseStrtab) { 1917 if (Error Err = parseGlobalValueSymbolTable()) 1918 return Err; 1919 Stream.JumpToBit(CurrentBit); 1920 return Error::success(); 1921 } 1922 // Otherwise, the VST will be in a similar format to a function-level VST, 1923 // and will contain symbol names. 1924 } 1925 1926 // Compute the delta between the bitcode indices in the VST (the word offset 1927 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1928 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1929 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1930 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1931 // just before entering the VST subblock because: 1) the EnterSubBlock 1932 // changes the AbbrevID width; 2) the VST block is nested within the same 1933 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1934 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1935 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1936 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1937 unsigned FuncBitcodeOffsetDelta = 1938 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1939 1940 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1941 return error("Invalid record"); 1942 1943 SmallVector<uint64_t, 64> Record; 1944 1945 Triple TT(TheModule->getTargetTriple()); 1946 1947 // Read all the records for this value table. 1948 SmallString<128> ValueName; 1949 1950 while (true) { 1951 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1952 1953 switch (Entry.Kind) { 1954 case BitstreamEntry::SubBlock: // Handled for us already. 1955 case BitstreamEntry::Error: 1956 return error("Malformed block"); 1957 case BitstreamEntry::EndBlock: 1958 if (Offset > 0) 1959 Stream.JumpToBit(CurrentBit); 1960 return Error::success(); 1961 case BitstreamEntry::Record: 1962 // The interesting case. 1963 break; 1964 } 1965 1966 // Read a record. 1967 Record.clear(); 1968 switch (Stream.readRecord(Entry.ID, Record)) { 1969 default: // Default behavior: unknown type. 1970 break; 1971 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1972 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1973 if (Error Err = ValOrErr.takeError()) 1974 return Err; 1975 ValOrErr.get(); 1976 break; 1977 } 1978 case bitc::VST_CODE_FNENTRY: { 1979 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1980 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1981 if (Error Err = ValOrErr.takeError()) 1982 return Err; 1983 Value *V = ValOrErr.get(); 1984 1985 // Ignore function offsets emitted for aliases of functions in older 1986 // versions of LLVM. 1987 if (auto *F = dyn_cast<Function>(V)) 1988 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 1989 break; 1990 } 1991 case bitc::VST_CODE_BBENTRY: { 1992 if (convertToString(Record, 1, ValueName)) 1993 return error("Invalid record"); 1994 BasicBlock *BB = getBasicBlock(Record[0]); 1995 if (!BB) 1996 return error("Invalid record"); 1997 1998 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1999 ValueName.clear(); 2000 break; 2001 } 2002 } 2003 } 2004 } 2005 2006 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2007 /// encoding. 2008 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2009 if ((V & 1) == 0) 2010 return V >> 1; 2011 if (V != 1) 2012 return -(V >> 1); 2013 // There is no such thing as -0 with integers. "-0" really means MININT. 2014 return 1ULL << 63; 2015 } 2016 2017 /// Resolve all of the initializers for global values and aliases that we can. 2018 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2019 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2020 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2021 IndirectSymbolInitWorklist; 2022 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2023 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2024 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2025 2026 GlobalInitWorklist.swap(GlobalInits); 2027 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2028 FunctionPrefixWorklist.swap(FunctionPrefixes); 2029 FunctionPrologueWorklist.swap(FunctionPrologues); 2030 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2031 2032 while (!GlobalInitWorklist.empty()) { 2033 unsigned ValID = GlobalInitWorklist.back().second; 2034 if (ValID >= ValueList.size()) { 2035 // Not ready to resolve this yet, it requires something later in the file. 2036 GlobalInits.push_back(GlobalInitWorklist.back()); 2037 } else { 2038 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2039 GlobalInitWorklist.back().first->setInitializer(C); 2040 else 2041 return error("Expected a constant"); 2042 } 2043 GlobalInitWorklist.pop_back(); 2044 } 2045 2046 while (!IndirectSymbolInitWorklist.empty()) { 2047 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2048 if (ValID >= ValueList.size()) { 2049 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2050 } else { 2051 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2052 if (!C) 2053 return error("Expected a constant"); 2054 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2055 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2056 return error("Alias and aliasee types don't match"); 2057 GIS->setIndirectSymbol(C); 2058 } 2059 IndirectSymbolInitWorklist.pop_back(); 2060 } 2061 2062 while (!FunctionPrefixWorklist.empty()) { 2063 unsigned ValID = FunctionPrefixWorklist.back().second; 2064 if (ValID >= ValueList.size()) { 2065 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2066 } else { 2067 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2068 FunctionPrefixWorklist.back().first->setPrefixData(C); 2069 else 2070 return error("Expected a constant"); 2071 } 2072 FunctionPrefixWorklist.pop_back(); 2073 } 2074 2075 while (!FunctionPrologueWorklist.empty()) { 2076 unsigned ValID = FunctionPrologueWorklist.back().second; 2077 if (ValID >= ValueList.size()) { 2078 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2079 } else { 2080 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2081 FunctionPrologueWorklist.back().first->setPrologueData(C); 2082 else 2083 return error("Expected a constant"); 2084 } 2085 FunctionPrologueWorklist.pop_back(); 2086 } 2087 2088 while (!FunctionPersonalityFnWorklist.empty()) { 2089 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2090 if (ValID >= ValueList.size()) { 2091 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2092 } else { 2093 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2094 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2095 else 2096 return error("Expected a constant"); 2097 } 2098 FunctionPersonalityFnWorklist.pop_back(); 2099 } 2100 2101 return Error::success(); 2102 } 2103 2104 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2105 SmallVector<uint64_t, 8> Words(Vals.size()); 2106 transform(Vals, Words.begin(), 2107 BitcodeReader::decodeSignRotatedValue); 2108 2109 return APInt(TypeBits, Words); 2110 } 2111 2112 Error BitcodeReader::parseConstants() { 2113 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2114 return error("Invalid record"); 2115 2116 SmallVector<uint64_t, 64> Record; 2117 2118 // Read all the records for this value table. 2119 Type *CurTy = Type::getInt32Ty(Context); 2120 unsigned NextCstNo = ValueList.size(); 2121 2122 while (true) { 2123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2124 2125 switch (Entry.Kind) { 2126 case BitstreamEntry::SubBlock: // Handled for us already. 2127 case BitstreamEntry::Error: 2128 return error("Malformed block"); 2129 case BitstreamEntry::EndBlock: 2130 if (NextCstNo != ValueList.size()) 2131 return error("Invalid constant reference"); 2132 2133 // Once all the constants have been read, go through and resolve forward 2134 // references. 2135 ValueList.resolveConstantForwardRefs(); 2136 return Error::success(); 2137 case BitstreamEntry::Record: 2138 // The interesting case. 2139 break; 2140 } 2141 2142 // Read a record. 2143 Record.clear(); 2144 Type *VoidType = Type::getVoidTy(Context); 2145 Value *V = nullptr; 2146 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2147 switch (BitCode) { 2148 default: // Default behavior: unknown constant 2149 case bitc::CST_CODE_UNDEF: // UNDEF 2150 V = UndefValue::get(CurTy); 2151 break; 2152 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2153 if (Record.empty()) 2154 return error("Invalid record"); 2155 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2156 return error("Invalid record"); 2157 if (TypeList[Record[0]] == VoidType) 2158 return error("Invalid constant type"); 2159 CurTy = TypeList[Record[0]]; 2160 continue; // Skip the ValueList manipulation. 2161 case bitc::CST_CODE_NULL: // NULL 2162 V = Constant::getNullValue(CurTy); 2163 break; 2164 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2165 if (!CurTy->isIntegerTy() || Record.empty()) 2166 return error("Invalid record"); 2167 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2168 break; 2169 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2170 if (!CurTy->isIntegerTy() || Record.empty()) 2171 return error("Invalid record"); 2172 2173 APInt VInt = 2174 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2175 V = ConstantInt::get(Context, VInt); 2176 2177 break; 2178 } 2179 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2180 if (Record.empty()) 2181 return error("Invalid record"); 2182 if (CurTy->isHalfTy()) 2183 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2184 APInt(16, (uint16_t)Record[0]))); 2185 else if (CurTy->isFloatTy()) 2186 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2187 APInt(32, (uint32_t)Record[0]))); 2188 else if (CurTy->isDoubleTy()) 2189 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2190 APInt(64, Record[0]))); 2191 else if (CurTy->isX86_FP80Ty()) { 2192 // Bits are not stored the same way as a normal i80 APInt, compensate. 2193 uint64_t Rearrange[2]; 2194 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2195 Rearrange[1] = Record[0] >> 48; 2196 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2197 APInt(80, Rearrange))); 2198 } else if (CurTy->isFP128Ty()) 2199 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2200 APInt(128, Record))); 2201 else if (CurTy->isPPC_FP128Ty()) 2202 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2203 APInt(128, Record))); 2204 else 2205 V = UndefValue::get(CurTy); 2206 break; 2207 } 2208 2209 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2210 if (Record.empty()) 2211 return error("Invalid record"); 2212 2213 unsigned Size = Record.size(); 2214 SmallVector<Constant*, 16> Elts; 2215 2216 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2217 for (unsigned i = 0; i != Size; ++i) 2218 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2219 STy->getElementType(i))); 2220 V = ConstantStruct::get(STy, Elts); 2221 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2222 Type *EltTy = ATy->getElementType(); 2223 for (unsigned i = 0; i != Size; ++i) 2224 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2225 V = ConstantArray::get(ATy, Elts); 2226 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2227 Type *EltTy = VTy->getElementType(); 2228 for (unsigned i = 0; i != Size; ++i) 2229 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2230 V = ConstantVector::get(Elts); 2231 } else { 2232 V = UndefValue::get(CurTy); 2233 } 2234 break; 2235 } 2236 case bitc::CST_CODE_STRING: // STRING: [values] 2237 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2238 if (Record.empty()) 2239 return error("Invalid record"); 2240 2241 SmallString<16> Elts(Record.begin(), Record.end()); 2242 V = ConstantDataArray::getString(Context, Elts, 2243 BitCode == bitc::CST_CODE_CSTRING); 2244 break; 2245 } 2246 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2247 if (Record.empty()) 2248 return error("Invalid record"); 2249 2250 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2251 if (EltTy->isIntegerTy(8)) { 2252 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2253 if (isa<VectorType>(CurTy)) 2254 V = ConstantDataVector::get(Context, Elts); 2255 else 2256 V = ConstantDataArray::get(Context, Elts); 2257 } else if (EltTy->isIntegerTy(16)) { 2258 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2259 if (isa<VectorType>(CurTy)) 2260 V = ConstantDataVector::get(Context, Elts); 2261 else 2262 V = ConstantDataArray::get(Context, Elts); 2263 } else if (EltTy->isIntegerTy(32)) { 2264 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2265 if (isa<VectorType>(CurTy)) 2266 V = ConstantDataVector::get(Context, Elts); 2267 else 2268 V = ConstantDataArray::get(Context, Elts); 2269 } else if (EltTy->isIntegerTy(64)) { 2270 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2271 if (isa<VectorType>(CurTy)) 2272 V = ConstantDataVector::get(Context, Elts); 2273 else 2274 V = ConstantDataArray::get(Context, Elts); 2275 } else if (EltTy->isHalfTy()) { 2276 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2277 if (isa<VectorType>(CurTy)) 2278 V = ConstantDataVector::getFP(Context, Elts); 2279 else 2280 V = ConstantDataArray::getFP(Context, Elts); 2281 } else if (EltTy->isFloatTy()) { 2282 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2283 if (isa<VectorType>(CurTy)) 2284 V = ConstantDataVector::getFP(Context, Elts); 2285 else 2286 V = ConstantDataArray::getFP(Context, Elts); 2287 } else if (EltTy->isDoubleTy()) { 2288 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2289 if (isa<VectorType>(CurTy)) 2290 V = ConstantDataVector::getFP(Context, Elts); 2291 else 2292 V = ConstantDataArray::getFP(Context, Elts); 2293 } else { 2294 return error("Invalid type for value"); 2295 } 2296 break; 2297 } 2298 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2299 if (Record.size() < 3) 2300 return error("Invalid record"); 2301 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2302 if (Opc < 0) { 2303 V = UndefValue::get(CurTy); // Unknown binop. 2304 } else { 2305 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2306 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2307 unsigned Flags = 0; 2308 if (Record.size() >= 4) { 2309 if (Opc == Instruction::Add || 2310 Opc == Instruction::Sub || 2311 Opc == Instruction::Mul || 2312 Opc == Instruction::Shl) { 2313 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2314 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2315 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2316 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2317 } else if (Opc == Instruction::SDiv || 2318 Opc == Instruction::UDiv || 2319 Opc == Instruction::LShr || 2320 Opc == Instruction::AShr) { 2321 if (Record[3] & (1 << bitc::PEO_EXACT)) 2322 Flags |= SDivOperator::IsExact; 2323 } 2324 } 2325 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2326 } 2327 break; 2328 } 2329 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2330 if (Record.size() < 3) 2331 return error("Invalid record"); 2332 int Opc = getDecodedCastOpcode(Record[0]); 2333 if (Opc < 0) { 2334 V = UndefValue::get(CurTy); // Unknown cast. 2335 } else { 2336 Type *OpTy = getTypeByID(Record[1]); 2337 if (!OpTy) 2338 return error("Invalid record"); 2339 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2340 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2341 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2342 } 2343 break; 2344 } 2345 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2346 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2347 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2348 // operands] 2349 unsigned OpNum = 0; 2350 Type *PointeeType = nullptr; 2351 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2352 Record.size() % 2) 2353 PointeeType = getTypeByID(Record[OpNum++]); 2354 2355 bool InBounds = false; 2356 Optional<unsigned> InRangeIndex; 2357 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2358 uint64_t Op = Record[OpNum++]; 2359 InBounds = Op & 1; 2360 InRangeIndex = Op >> 1; 2361 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2362 InBounds = true; 2363 2364 SmallVector<Constant*, 16> Elts; 2365 while (OpNum != Record.size()) { 2366 Type *ElTy = getTypeByID(Record[OpNum++]); 2367 if (!ElTy) 2368 return error("Invalid record"); 2369 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2370 } 2371 2372 if (PointeeType && 2373 PointeeType != 2374 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2375 ->getElementType()) 2376 return error("Explicit gep operator type does not match pointee type " 2377 "of pointer operand"); 2378 2379 if (Elts.size() < 1) 2380 return error("Invalid gep with no operands"); 2381 2382 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2383 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2384 InBounds, InRangeIndex); 2385 break; 2386 } 2387 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2388 if (Record.size() < 3) 2389 return error("Invalid record"); 2390 2391 Type *SelectorTy = Type::getInt1Ty(Context); 2392 2393 // The selector might be an i1 or an <n x i1> 2394 // Get the type from the ValueList before getting a forward ref. 2395 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2396 if (Value *V = ValueList[Record[0]]) 2397 if (SelectorTy != V->getType()) 2398 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2399 2400 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2401 SelectorTy), 2402 ValueList.getConstantFwdRef(Record[1],CurTy), 2403 ValueList.getConstantFwdRef(Record[2],CurTy)); 2404 break; 2405 } 2406 case bitc::CST_CODE_CE_EXTRACTELT 2407 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2408 if (Record.size() < 3) 2409 return error("Invalid record"); 2410 VectorType *OpTy = 2411 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2412 if (!OpTy) 2413 return error("Invalid record"); 2414 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2415 Constant *Op1 = nullptr; 2416 if (Record.size() == 4) { 2417 Type *IdxTy = getTypeByID(Record[2]); 2418 if (!IdxTy) 2419 return error("Invalid record"); 2420 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2421 } else // TODO: Remove with llvm 4.0 2422 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2423 if (!Op1) 2424 return error("Invalid record"); 2425 V = ConstantExpr::getExtractElement(Op0, Op1); 2426 break; 2427 } 2428 case bitc::CST_CODE_CE_INSERTELT 2429 : { // CE_INSERTELT: [opval, opval, opty, opval] 2430 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2431 if (Record.size() < 3 || !OpTy) 2432 return error("Invalid record"); 2433 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2434 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2435 OpTy->getElementType()); 2436 Constant *Op2 = nullptr; 2437 if (Record.size() == 4) { 2438 Type *IdxTy = getTypeByID(Record[2]); 2439 if (!IdxTy) 2440 return error("Invalid record"); 2441 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2442 } else // TODO: Remove with llvm 4.0 2443 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2444 if (!Op2) 2445 return error("Invalid record"); 2446 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2447 break; 2448 } 2449 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2450 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2451 if (Record.size() < 3 || !OpTy) 2452 return error("Invalid record"); 2453 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2454 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2455 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2456 OpTy->getNumElements()); 2457 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2458 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2459 break; 2460 } 2461 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2462 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2463 VectorType *OpTy = 2464 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2465 if (Record.size() < 4 || !RTy || !OpTy) 2466 return error("Invalid record"); 2467 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2468 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2469 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2470 RTy->getNumElements()); 2471 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2472 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2473 break; 2474 } 2475 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2476 if (Record.size() < 4) 2477 return error("Invalid record"); 2478 Type *OpTy = getTypeByID(Record[0]); 2479 if (!OpTy) 2480 return error("Invalid record"); 2481 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2482 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2483 2484 if (OpTy->isFPOrFPVectorTy()) 2485 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2486 else 2487 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2488 break; 2489 } 2490 // This maintains backward compatibility, pre-asm dialect keywords. 2491 // FIXME: Remove with the 4.0 release. 2492 case bitc::CST_CODE_INLINEASM_OLD: { 2493 if (Record.size() < 2) 2494 return error("Invalid record"); 2495 std::string AsmStr, ConstrStr; 2496 bool HasSideEffects = Record[0] & 1; 2497 bool IsAlignStack = Record[0] >> 1; 2498 unsigned AsmStrSize = Record[1]; 2499 if (2+AsmStrSize >= Record.size()) 2500 return error("Invalid record"); 2501 unsigned ConstStrSize = Record[2+AsmStrSize]; 2502 if (3+AsmStrSize+ConstStrSize > Record.size()) 2503 return error("Invalid record"); 2504 2505 for (unsigned i = 0; i != AsmStrSize; ++i) 2506 AsmStr += (char)Record[2+i]; 2507 for (unsigned i = 0; i != ConstStrSize; ++i) 2508 ConstrStr += (char)Record[3+AsmStrSize+i]; 2509 PointerType *PTy = cast<PointerType>(CurTy); 2510 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2511 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2512 break; 2513 } 2514 // This version adds support for the asm dialect keywords (e.g., 2515 // inteldialect). 2516 case bitc::CST_CODE_INLINEASM: { 2517 if (Record.size() < 2) 2518 return error("Invalid record"); 2519 std::string AsmStr, ConstrStr; 2520 bool HasSideEffects = Record[0] & 1; 2521 bool IsAlignStack = (Record[0] >> 1) & 1; 2522 unsigned AsmDialect = Record[0] >> 2; 2523 unsigned AsmStrSize = Record[1]; 2524 if (2+AsmStrSize >= Record.size()) 2525 return error("Invalid record"); 2526 unsigned ConstStrSize = Record[2+AsmStrSize]; 2527 if (3+AsmStrSize+ConstStrSize > Record.size()) 2528 return error("Invalid record"); 2529 2530 for (unsigned i = 0; i != AsmStrSize; ++i) 2531 AsmStr += (char)Record[2+i]; 2532 for (unsigned i = 0; i != ConstStrSize; ++i) 2533 ConstrStr += (char)Record[3+AsmStrSize+i]; 2534 PointerType *PTy = cast<PointerType>(CurTy); 2535 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2536 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2537 InlineAsm::AsmDialect(AsmDialect)); 2538 break; 2539 } 2540 case bitc::CST_CODE_BLOCKADDRESS:{ 2541 if (Record.size() < 3) 2542 return error("Invalid record"); 2543 Type *FnTy = getTypeByID(Record[0]); 2544 if (!FnTy) 2545 return error("Invalid record"); 2546 Function *Fn = 2547 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2548 if (!Fn) 2549 return error("Invalid record"); 2550 2551 // If the function is already parsed we can insert the block address right 2552 // away. 2553 BasicBlock *BB; 2554 unsigned BBID = Record[2]; 2555 if (!BBID) 2556 // Invalid reference to entry block. 2557 return error("Invalid ID"); 2558 if (!Fn->empty()) { 2559 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2560 for (size_t I = 0, E = BBID; I != E; ++I) { 2561 if (BBI == BBE) 2562 return error("Invalid ID"); 2563 ++BBI; 2564 } 2565 BB = &*BBI; 2566 } else { 2567 // Otherwise insert a placeholder and remember it so it can be inserted 2568 // when the function is parsed. 2569 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2570 if (FwdBBs.empty()) 2571 BasicBlockFwdRefQueue.push_back(Fn); 2572 if (FwdBBs.size() < BBID + 1) 2573 FwdBBs.resize(BBID + 1); 2574 if (!FwdBBs[BBID]) 2575 FwdBBs[BBID] = BasicBlock::Create(Context); 2576 BB = FwdBBs[BBID]; 2577 } 2578 V = BlockAddress::get(Fn, BB); 2579 break; 2580 } 2581 } 2582 2583 ValueList.assignValue(V, NextCstNo); 2584 ++NextCstNo; 2585 } 2586 } 2587 2588 Error BitcodeReader::parseUseLists() { 2589 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2590 return error("Invalid record"); 2591 2592 // Read all the records. 2593 SmallVector<uint64_t, 64> Record; 2594 2595 while (true) { 2596 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2597 2598 switch (Entry.Kind) { 2599 case BitstreamEntry::SubBlock: // Handled for us already. 2600 case BitstreamEntry::Error: 2601 return error("Malformed block"); 2602 case BitstreamEntry::EndBlock: 2603 return Error::success(); 2604 case BitstreamEntry::Record: 2605 // The interesting case. 2606 break; 2607 } 2608 2609 // Read a use list record. 2610 Record.clear(); 2611 bool IsBB = false; 2612 switch (Stream.readRecord(Entry.ID, Record)) { 2613 default: // Default behavior: unknown type. 2614 break; 2615 case bitc::USELIST_CODE_BB: 2616 IsBB = true; 2617 LLVM_FALLTHROUGH; 2618 case bitc::USELIST_CODE_DEFAULT: { 2619 unsigned RecordLength = Record.size(); 2620 if (RecordLength < 3) 2621 // Records should have at least an ID and two indexes. 2622 return error("Invalid record"); 2623 unsigned ID = Record.back(); 2624 Record.pop_back(); 2625 2626 Value *V; 2627 if (IsBB) { 2628 assert(ID < FunctionBBs.size() && "Basic block not found"); 2629 V = FunctionBBs[ID]; 2630 } else 2631 V = ValueList[ID]; 2632 unsigned NumUses = 0; 2633 SmallDenseMap<const Use *, unsigned, 16> Order; 2634 for (const Use &U : V->materialized_uses()) { 2635 if (++NumUses > Record.size()) 2636 break; 2637 Order[&U] = Record[NumUses - 1]; 2638 } 2639 if (Order.size() != Record.size() || NumUses > Record.size()) 2640 // Mismatches can happen if the functions are being materialized lazily 2641 // (out-of-order), or a value has been upgraded. 2642 break; 2643 2644 V->sortUseList([&](const Use &L, const Use &R) { 2645 return Order.lookup(&L) < Order.lookup(&R); 2646 }); 2647 break; 2648 } 2649 } 2650 } 2651 } 2652 2653 /// When we see the block for metadata, remember where it is and then skip it. 2654 /// This lets us lazily deserialize the metadata. 2655 Error BitcodeReader::rememberAndSkipMetadata() { 2656 // Save the current stream state. 2657 uint64_t CurBit = Stream.GetCurrentBitNo(); 2658 DeferredMetadataInfo.push_back(CurBit); 2659 2660 // Skip over the block for now. 2661 if (Stream.SkipBlock()) 2662 return error("Invalid record"); 2663 return Error::success(); 2664 } 2665 2666 Error BitcodeReader::materializeMetadata() { 2667 for (uint64_t BitPos : DeferredMetadataInfo) { 2668 // Move the bit stream to the saved position. 2669 Stream.JumpToBit(BitPos); 2670 if (Error Err = MDLoader->parseModuleMetadata()) 2671 return Err; 2672 } 2673 2674 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2675 // metadata. 2676 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2677 NamedMDNode *LinkerOpts = 2678 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2679 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2680 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2681 } 2682 2683 DeferredMetadataInfo.clear(); 2684 return Error::success(); 2685 } 2686 2687 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2688 2689 /// When we see the block for a function body, remember where it is and then 2690 /// skip it. This lets us lazily deserialize the functions. 2691 Error BitcodeReader::rememberAndSkipFunctionBody() { 2692 // Get the function we are talking about. 2693 if (FunctionsWithBodies.empty()) 2694 return error("Insufficient function protos"); 2695 2696 Function *Fn = FunctionsWithBodies.back(); 2697 FunctionsWithBodies.pop_back(); 2698 2699 // Save the current stream state. 2700 uint64_t CurBit = Stream.GetCurrentBitNo(); 2701 assert( 2702 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2703 "Mismatch between VST and scanned function offsets"); 2704 DeferredFunctionInfo[Fn] = CurBit; 2705 2706 // Skip over the function block for now. 2707 if (Stream.SkipBlock()) 2708 return error("Invalid record"); 2709 return Error::success(); 2710 } 2711 2712 Error BitcodeReader::globalCleanup() { 2713 // Patch the initializers for globals and aliases up. 2714 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2715 return Err; 2716 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2717 return error("Malformed global initializer set"); 2718 2719 // Look for intrinsic functions which need to be upgraded at some point 2720 for (Function &F : *TheModule) { 2721 MDLoader->upgradeDebugIntrinsics(F); 2722 Function *NewFn; 2723 if (UpgradeIntrinsicFunction(&F, NewFn)) 2724 UpgradedIntrinsics[&F] = NewFn; 2725 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2726 // Some types could be renamed during loading if several modules are 2727 // loaded in the same LLVMContext (LTO scenario). In this case we should 2728 // remangle intrinsics names as well. 2729 RemangledIntrinsics[&F] = Remangled.getValue(); 2730 } 2731 2732 // Look for global variables which need to be renamed. 2733 for (GlobalVariable &GV : TheModule->globals()) 2734 UpgradeGlobalVariable(&GV); 2735 2736 // Force deallocation of memory for these vectors to favor the client that 2737 // want lazy deserialization. 2738 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2739 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2740 IndirectSymbolInits); 2741 return Error::success(); 2742 } 2743 2744 /// Support for lazy parsing of function bodies. This is required if we 2745 /// either have an old bitcode file without a VST forward declaration record, 2746 /// or if we have an anonymous function being materialized, since anonymous 2747 /// functions do not have a name and are therefore not in the VST. 2748 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2749 Stream.JumpToBit(NextUnreadBit); 2750 2751 if (Stream.AtEndOfStream()) 2752 return error("Could not find function in stream"); 2753 2754 if (!SeenFirstFunctionBody) 2755 return error("Trying to materialize functions before seeing function blocks"); 2756 2757 // An old bitcode file with the symbol table at the end would have 2758 // finished the parse greedily. 2759 assert(SeenValueSymbolTable); 2760 2761 SmallVector<uint64_t, 64> Record; 2762 2763 while (true) { 2764 BitstreamEntry Entry = Stream.advance(); 2765 switch (Entry.Kind) { 2766 default: 2767 return error("Expect SubBlock"); 2768 case BitstreamEntry::SubBlock: 2769 switch (Entry.ID) { 2770 default: 2771 return error("Expect function block"); 2772 case bitc::FUNCTION_BLOCK_ID: 2773 if (Error Err = rememberAndSkipFunctionBody()) 2774 return Err; 2775 NextUnreadBit = Stream.GetCurrentBitNo(); 2776 return Error::success(); 2777 } 2778 } 2779 } 2780 } 2781 2782 bool BitcodeReaderBase::readBlockInfo() { 2783 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2784 if (!NewBlockInfo) 2785 return true; 2786 BlockInfo = std::move(*NewBlockInfo); 2787 return false; 2788 } 2789 2790 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2791 // v1: [selection_kind, name] 2792 // v2: [strtab_offset, strtab_size, selection_kind] 2793 StringRef Name; 2794 std::tie(Name, Record) = readNameFromStrtab(Record); 2795 2796 if (Record.empty()) 2797 return error("Invalid record"); 2798 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2799 std::string OldFormatName; 2800 if (!UseStrtab) { 2801 if (Record.size() < 2) 2802 return error("Invalid record"); 2803 unsigned ComdatNameSize = Record[1]; 2804 OldFormatName.reserve(ComdatNameSize); 2805 for (unsigned i = 0; i != ComdatNameSize; ++i) 2806 OldFormatName += (char)Record[2 + i]; 2807 Name = OldFormatName; 2808 } 2809 Comdat *C = TheModule->getOrInsertComdat(Name); 2810 C->setSelectionKind(SK); 2811 ComdatList.push_back(C); 2812 return Error::success(); 2813 } 2814 2815 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2816 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2817 // visibility, threadlocal, unnamed_addr, externally_initialized, 2818 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2819 // v2: [strtab_offset, strtab_size, v1] 2820 StringRef Name; 2821 std::tie(Name, Record) = readNameFromStrtab(Record); 2822 2823 if (Record.size() < 6) 2824 return error("Invalid record"); 2825 Type *Ty = getTypeByID(Record[0]); 2826 if (!Ty) 2827 return error("Invalid record"); 2828 bool isConstant = Record[1] & 1; 2829 bool explicitType = Record[1] & 2; 2830 unsigned AddressSpace; 2831 if (explicitType) { 2832 AddressSpace = Record[1] >> 2; 2833 } else { 2834 if (!Ty->isPointerTy()) 2835 return error("Invalid type for value"); 2836 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2837 Ty = cast<PointerType>(Ty)->getElementType(); 2838 } 2839 2840 uint64_t RawLinkage = Record[3]; 2841 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2842 unsigned Alignment; 2843 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2844 return Err; 2845 std::string Section; 2846 if (Record[5]) { 2847 if (Record[5] - 1 >= SectionTable.size()) 2848 return error("Invalid ID"); 2849 Section = SectionTable[Record[5] - 1]; 2850 } 2851 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2852 // Local linkage must have default visibility. 2853 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2854 // FIXME: Change to an error if non-default in 4.0. 2855 Visibility = getDecodedVisibility(Record[6]); 2856 2857 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2858 if (Record.size() > 7) 2859 TLM = getDecodedThreadLocalMode(Record[7]); 2860 2861 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2862 if (Record.size() > 8) 2863 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2864 2865 bool ExternallyInitialized = false; 2866 if (Record.size() > 9) 2867 ExternallyInitialized = Record[9]; 2868 2869 GlobalVariable *NewGV = 2870 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2871 nullptr, TLM, AddressSpace, ExternallyInitialized); 2872 NewGV->setAlignment(Alignment); 2873 if (!Section.empty()) 2874 NewGV->setSection(Section); 2875 NewGV->setVisibility(Visibility); 2876 NewGV->setUnnamedAddr(UnnamedAddr); 2877 2878 if (Record.size() > 10) 2879 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2880 else 2881 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2882 2883 ValueList.push_back(NewGV); 2884 2885 // Remember which value to use for the global initializer. 2886 if (unsigned InitID = Record[2]) 2887 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2888 2889 if (Record.size() > 11) { 2890 if (unsigned ComdatID = Record[11]) { 2891 if (ComdatID > ComdatList.size()) 2892 return error("Invalid global variable comdat ID"); 2893 NewGV->setComdat(ComdatList[ComdatID - 1]); 2894 } 2895 } else if (hasImplicitComdat(RawLinkage)) { 2896 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2897 } 2898 2899 if (Record.size() > 12) { 2900 auto AS = getAttributes(Record[12]).getFnAttributes(); 2901 NewGV->setAttributes(AS); 2902 } 2903 2904 if (Record.size() > 13) { 2905 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2906 } 2907 2908 return Error::success(); 2909 } 2910 2911 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2912 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2913 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2914 // prefixdata, personalityfn, preemption specifier] (name in VST) 2915 // v2: [strtab_offset, strtab_size, v1] 2916 StringRef Name; 2917 std::tie(Name, Record) = readNameFromStrtab(Record); 2918 2919 if (Record.size() < 8) 2920 return error("Invalid record"); 2921 Type *Ty = getTypeByID(Record[0]); 2922 if (!Ty) 2923 return error("Invalid record"); 2924 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2925 Ty = PTy->getElementType(); 2926 auto *FTy = dyn_cast<FunctionType>(Ty); 2927 if (!FTy) 2928 return error("Invalid type for value"); 2929 auto CC = static_cast<CallingConv::ID>(Record[1]); 2930 if (CC & ~CallingConv::MaxID) 2931 return error("Invalid calling convention ID"); 2932 2933 Function *Func = 2934 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2935 2936 Func->setCallingConv(CC); 2937 bool isProto = Record[2]; 2938 uint64_t RawLinkage = Record[3]; 2939 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2940 Func->setAttributes(getAttributes(Record[4])); 2941 2942 unsigned Alignment; 2943 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2944 return Err; 2945 Func->setAlignment(Alignment); 2946 if (Record[6]) { 2947 if (Record[6] - 1 >= SectionTable.size()) 2948 return error("Invalid ID"); 2949 Func->setSection(SectionTable[Record[6] - 1]); 2950 } 2951 // Local linkage must have default visibility. 2952 if (!Func->hasLocalLinkage()) 2953 // FIXME: Change to an error if non-default in 4.0. 2954 Func->setVisibility(getDecodedVisibility(Record[7])); 2955 if (Record.size() > 8 && Record[8]) { 2956 if (Record[8] - 1 >= GCTable.size()) 2957 return error("Invalid ID"); 2958 Func->setGC(GCTable[Record[8] - 1]); 2959 } 2960 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2961 if (Record.size() > 9) 2962 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2963 Func->setUnnamedAddr(UnnamedAddr); 2964 if (Record.size() > 10 && Record[10] != 0) 2965 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2966 2967 if (Record.size() > 11) 2968 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2969 else 2970 upgradeDLLImportExportLinkage(Func, RawLinkage); 2971 2972 if (Record.size() > 12) { 2973 if (unsigned ComdatID = Record[12]) { 2974 if (ComdatID > ComdatList.size()) 2975 return error("Invalid function comdat ID"); 2976 Func->setComdat(ComdatList[ComdatID - 1]); 2977 } 2978 } else if (hasImplicitComdat(RawLinkage)) { 2979 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2980 } 2981 2982 if (Record.size() > 13 && Record[13] != 0) 2983 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2984 2985 if (Record.size() > 14 && Record[14] != 0) 2986 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2987 2988 if (Record.size() > 15) { 2989 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 2990 } 2991 2992 ValueList.push_back(Func); 2993 2994 // If this is a function with a body, remember the prototype we are 2995 // creating now, so that we can match up the body with them later. 2996 if (!isProto) { 2997 Func->setIsMaterializable(true); 2998 FunctionsWithBodies.push_back(Func); 2999 DeferredFunctionInfo[Func] = 0; 3000 } 3001 return Error::success(); 3002 } 3003 3004 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3005 unsigned BitCode, ArrayRef<uint64_t> Record) { 3006 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3007 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3008 // dllstorageclass, threadlocal, unnamed_addr, 3009 // preemption specifier] (name in VST) 3010 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3011 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3012 // preemption specifier] (name in VST) 3013 // v2: [strtab_offset, strtab_size, v1] 3014 StringRef Name; 3015 std::tie(Name, Record) = readNameFromStrtab(Record); 3016 3017 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3018 if (Record.size() < (3 + (unsigned)NewRecord)) 3019 return error("Invalid record"); 3020 unsigned OpNum = 0; 3021 Type *Ty = getTypeByID(Record[OpNum++]); 3022 if (!Ty) 3023 return error("Invalid record"); 3024 3025 unsigned AddrSpace; 3026 if (!NewRecord) { 3027 auto *PTy = dyn_cast<PointerType>(Ty); 3028 if (!PTy) 3029 return error("Invalid type for value"); 3030 Ty = PTy->getElementType(); 3031 AddrSpace = PTy->getAddressSpace(); 3032 } else { 3033 AddrSpace = Record[OpNum++]; 3034 } 3035 3036 auto Val = Record[OpNum++]; 3037 auto Linkage = Record[OpNum++]; 3038 GlobalIndirectSymbol *NewGA; 3039 if (BitCode == bitc::MODULE_CODE_ALIAS || 3040 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3041 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3042 TheModule); 3043 else 3044 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3045 nullptr, TheModule); 3046 // Old bitcode files didn't have visibility field. 3047 // Local linkage must have default visibility. 3048 if (OpNum != Record.size()) { 3049 auto VisInd = OpNum++; 3050 if (!NewGA->hasLocalLinkage()) 3051 // FIXME: Change to an error if non-default in 4.0. 3052 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3053 } 3054 if (OpNum != Record.size()) 3055 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3056 else 3057 upgradeDLLImportExportLinkage(NewGA, Linkage); 3058 if (OpNum != Record.size()) 3059 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3060 if (OpNum != Record.size()) 3061 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3062 if (OpNum != Record.size()) 3063 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3064 ValueList.push_back(NewGA); 3065 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3066 return Error::success(); 3067 } 3068 3069 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3070 bool ShouldLazyLoadMetadata) { 3071 if (ResumeBit) 3072 Stream.JumpToBit(ResumeBit); 3073 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3074 return error("Invalid record"); 3075 3076 SmallVector<uint64_t, 64> Record; 3077 3078 // Read all the records for this module. 3079 while (true) { 3080 BitstreamEntry Entry = Stream.advance(); 3081 3082 switch (Entry.Kind) { 3083 case BitstreamEntry::Error: 3084 return error("Malformed block"); 3085 case BitstreamEntry::EndBlock: 3086 return globalCleanup(); 3087 3088 case BitstreamEntry::SubBlock: 3089 switch (Entry.ID) { 3090 default: // Skip unknown content. 3091 if (Stream.SkipBlock()) 3092 return error("Invalid record"); 3093 break; 3094 case bitc::BLOCKINFO_BLOCK_ID: 3095 if (readBlockInfo()) 3096 return error("Malformed block"); 3097 break; 3098 case bitc::PARAMATTR_BLOCK_ID: 3099 if (Error Err = parseAttributeBlock()) 3100 return Err; 3101 break; 3102 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3103 if (Error Err = parseAttributeGroupBlock()) 3104 return Err; 3105 break; 3106 case bitc::TYPE_BLOCK_ID_NEW: 3107 if (Error Err = parseTypeTable()) 3108 return Err; 3109 break; 3110 case bitc::VALUE_SYMTAB_BLOCK_ID: 3111 if (!SeenValueSymbolTable) { 3112 // Either this is an old form VST without function index and an 3113 // associated VST forward declaration record (which would have caused 3114 // the VST to be jumped to and parsed before it was encountered 3115 // normally in the stream), or there were no function blocks to 3116 // trigger an earlier parsing of the VST. 3117 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3118 if (Error Err = parseValueSymbolTable()) 3119 return Err; 3120 SeenValueSymbolTable = true; 3121 } else { 3122 // We must have had a VST forward declaration record, which caused 3123 // the parser to jump to and parse the VST earlier. 3124 assert(VSTOffset > 0); 3125 if (Stream.SkipBlock()) 3126 return error("Invalid record"); 3127 } 3128 break; 3129 case bitc::CONSTANTS_BLOCK_ID: 3130 if (Error Err = parseConstants()) 3131 return Err; 3132 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3133 return Err; 3134 break; 3135 case bitc::METADATA_BLOCK_ID: 3136 if (ShouldLazyLoadMetadata) { 3137 if (Error Err = rememberAndSkipMetadata()) 3138 return Err; 3139 break; 3140 } 3141 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3142 if (Error Err = MDLoader->parseModuleMetadata()) 3143 return Err; 3144 break; 3145 case bitc::METADATA_KIND_BLOCK_ID: 3146 if (Error Err = MDLoader->parseMetadataKinds()) 3147 return Err; 3148 break; 3149 case bitc::FUNCTION_BLOCK_ID: 3150 // If this is the first function body we've seen, reverse the 3151 // FunctionsWithBodies list. 3152 if (!SeenFirstFunctionBody) { 3153 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3154 if (Error Err = globalCleanup()) 3155 return Err; 3156 SeenFirstFunctionBody = true; 3157 } 3158 3159 if (VSTOffset > 0) { 3160 // If we have a VST forward declaration record, make sure we 3161 // parse the VST now if we haven't already. It is needed to 3162 // set up the DeferredFunctionInfo vector for lazy reading. 3163 if (!SeenValueSymbolTable) { 3164 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3165 return Err; 3166 SeenValueSymbolTable = true; 3167 // Fall through so that we record the NextUnreadBit below. 3168 // This is necessary in case we have an anonymous function that 3169 // is later materialized. Since it will not have a VST entry we 3170 // need to fall back to the lazy parse to find its offset. 3171 } else { 3172 // If we have a VST forward declaration record, but have already 3173 // parsed the VST (just above, when the first function body was 3174 // encountered here), then we are resuming the parse after 3175 // materializing functions. The ResumeBit points to the 3176 // start of the last function block recorded in the 3177 // DeferredFunctionInfo map. Skip it. 3178 if (Stream.SkipBlock()) 3179 return error("Invalid record"); 3180 continue; 3181 } 3182 } 3183 3184 // Support older bitcode files that did not have the function 3185 // index in the VST, nor a VST forward declaration record, as 3186 // well as anonymous functions that do not have VST entries. 3187 // Build the DeferredFunctionInfo vector on the fly. 3188 if (Error Err = rememberAndSkipFunctionBody()) 3189 return Err; 3190 3191 // Suspend parsing when we reach the function bodies. Subsequent 3192 // materialization calls will resume it when necessary. If the bitcode 3193 // file is old, the symbol table will be at the end instead and will not 3194 // have been seen yet. In this case, just finish the parse now. 3195 if (SeenValueSymbolTable) { 3196 NextUnreadBit = Stream.GetCurrentBitNo(); 3197 // After the VST has been parsed, we need to make sure intrinsic name 3198 // are auto-upgraded. 3199 return globalCleanup(); 3200 } 3201 break; 3202 case bitc::USELIST_BLOCK_ID: 3203 if (Error Err = parseUseLists()) 3204 return Err; 3205 break; 3206 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3207 if (Error Err = parseOperandBundleTags()) 3208 return Err; 3209 break; 3210 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3211 if (Error Err = parseSyncScopeNames()) 3212 return Err; 3213 break; 3214 } 3215 continue; 3216 3217 case BitstreamEntry::Record: 3218 // The interesting case. 3219 break; 3220 } 3221 3222 // Read a record. 3223 auto BitCode = Stream.readRecord(Entry.ID, Record); 3224 switch (BitCode) { 3225 default: break; // Default behavior, ignore unknown content. 3226 case bitc::MODULE_CODE_VERSION: { 3227 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3228 if (!VersionOrErr) 3229 return VersionOrErr.takeError(); 3230 UseRelativeIDs = *VersionOrErr >= 1; 3231 break; 3232 } 3233 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3234 std::string S; 3235 if (convertToString(Record, 0, S)) 3236 return error("Invalid record"); 3237 TheModule->setTargetTriple(S); 3238 break; 3239 } 3240 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3241 std::string S; 3242 if (convertToString(Record, 0, S)) 3243 return error("Invalid record"); 3244 TheModule->setDataLayout(S); 3245 break; 3246 } 3247 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3248 std::string S; 3249 if (convertToString(Record, 0, S)) 3250 return error("Invalid record"); 3251 TheModule->setModuleInlineAsm(S); 3252 break; 3253 } 3254 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3255 // FIXME: Remove in 4.0. 3256 std::string S; 3257 if (convertToString(Record, 0, S)) 3258 return error("Invalid record"); 3259 // Ignore value. 3260 break; 3261 } 3262 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3263 std::string S; 3264 if (convertToString(Record, 0, S)) 3265 return error("Invalid record"); 3266 SectionTable.push_back(S); 3267 break; 3268 } 3269 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3270 std::string S; 3271 if (convertToString(Record, 0, S)) 3272 return error("Invalid record"); 3273 GCTable.push_back(S); 3274 break; 3275 } 3276 case bitc::MODULE_CODE_COMDAT: 3277 if (Error Err = parseComdatRecord(Record)) 3278 return Err; 3279 break; 3280 case bitc::MODULE_CODE_GLOBALVAR: 3281 if (Error Err = parseGlobalVarRecord(Record)) 3282 return Err; 3283 break; 3284 case bitc::MODULE_CODE_FUNCTION: 3285 if (Error Err = parseFunctionRecord(Record)) 3286 return Err; 3287 break; 3288 case bitc::MODULE_CODE_IFUNC: 3289 case bitc::MODULE_CODE_ALIAS: 3290 case bitc::MODULE_CODE_ALIAS_OLD: 3291 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3292 return Err; 3293 break; 3294 /// MODULE_CODE_VSTOFFSET: [offset] 3295 case bitc::MODULE_CODE_VSTOFFSET: 3296 if (Record.size() < 1) 3297 return error("Invalid record"); 3298 // Note that we subtract 1 here because the offset is relative to one word 3299 // before the start of the identification or module block, which was 3300 // historically always the start of the regular bitcode header. 3301 VSTOffset = Record[0] - 1; 3302 break; 3303 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3304 case bitc::MODULE_CODE_SOURCE_FILENAME: 3305 SmallString<128> ValueName; 3306 if (convertToString(Record, 0, ValueName)) 3307 return error("Invalid record"); 3308 TheModule->setSourceFileName(ValueName); 3309 break; 3310 } 3311 Record.clear(); 3312 } 3313 } 3314 3315 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3316 bool IsImporting) { 3317 TheModule = M; 3318 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3319 [&](unsigned ID) { return getTypeByID(ID); }); 3320 return parseModule(0, ShouldLazyLoadMetadata); 3321 } 3322 3323 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3324 if (!isa<PointerType>(PtrType)) 3325 return error("Load/Store operand is not a pointer type"); 3326 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3327 3328 if (ValType && ValType != ElemType) 3329 return error("Explicit load/store type does not match pointee " 3330 "type of pointer operand"); 3331 if (!PointerType::isLoadableOrStorableType(ElemType)) 3332 return error("Cannot load/store from pointer"); 3333 return Error::success(); 3334 } 3335 3336 /// Lazily parse the specified function body block. 3337 Error BitcodeReader::parseFunctionBody(Function *F) { 3338 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3339 return error("Invalid record"); 3340 3341 // Unexpected unresolved metadata when parsing function. 3342 if (MDLoader->hasFwdRefs()) 3343 return error("Invalid function metadata: incoming forward references"); 3344 3345 InstructionList.clear(); 3346 unsigned ModuleValueListSize = ValueList.size(); 3347 unsigned ModuleMDLoaderSize = MDLoader->size(); 3348 3349 // Add all the function arguments to the value table. 3350 for (Argument &I : F->args()) 3351 ValueList.push_back(&I); 3352 3353 unsigned NextValueNo = ValueList.size(); 3354 BasicBlock *CurBB = nullptr; 3355 unsigned CurBBNo = 0; 3356 3357 DebugLoc LastLoc; 3358 auto getLastInstruction = [&]() -> Instruction * { 3359 if (CurBB && !CurBB->empty()) 3360 return &CurBB->back(); 3361 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3362 !FunctionBBs[CurBBNo - 1]->empty()) 3363 return &FunctionBBs[CurBBNo - 1]->back(); 3364 return nullptr; 3365 }; 3366 3367 std::vector<OperandBundleDef> OperandBundles; 3368 3369 // Read all the records. 3370 SmallVector<uint64_t, 64> Record; 3371 3372 while (true) { 3373 BitstreamEntry Entry = Stream.advance(); 3374 3375 switch (Entry.Kind) { 3376 case BitstreamEntry::Error: 3377 return error("Malformed block"); 3378 case BitstreamEntry::EndBlock: 3379 goto OutOfRecordLoop; 3380 3381 case BitstreamEntry::SubBlock: 3382 switch (Entry.ID) { 3383 default: // Skip unknown content. 3384 if (Stream.SkipBlock()) 3385 return error("Invalid record"); 3386 break; 3387 case bitc::CONSTANTS_BLOCK_ID: 3388 if (Error Err = parseConstants()) 3389 return Err; 3390 NextValueNo = ValueList.size(); 3391 break; 3392 case bitc::VALUE_SYMTAB_BLOCK_ID: 3393 if (Error Err = parseValueSymbolTable()) 3394 return Err; 3395 break; 3396 case bitc::METADATA_ATTACHMENT_ID: 3397 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3398 return Err; 3399 break; 3400 case bitc::METADATA_BLOCK_ID: 3401 assert(DeferredMetadataInfo.empty() && 3402 "Must read all module-level metadata before function-level"); 3403 if (Error Err = MDLoader->parseFunctionMetadata()) 3404 return Err; 3405 break; 3406 case bitc::USELIST_BLOCK_ID: 3407 if (Error Err = parseUseLists()) 3408 return Err; 3409 break; 3410 } 3411 continue; 3412 3413 case BitstreamEntry::Record: 3414 // The interesting case. 3415 break; 3416 } 3417 3418 // Read a record. 3419 Record.clear(); 3420 Instruction *I = nullptr; 3421 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3422 switch (BitCode) { 3423 default: // Default behavior: reject 3424 return error("Invalid value"); 3425 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3426 if (Record.size() < 1 || Record[0] == 0) 3427 return error("Invalid record"); 3428 // Create all the basic blocks for the function. 3429 FunctionBBs.resize(Record[0]); 3430 3431 // See if anything took the address of blocks in this function. 3432 auto BBFRI = BasicBlockFwdRefs.find(F); 3433 if (BBFRI == BasicBlockFwdRefs.end()) { 3434 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3435 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3436 } else { 3437 auto &BBRefs = BBFRI->second; 3438 // Check for invalid basic block references. 3439 if (BBRefs.size() > FunctionBBs.size()) 3440 return error("Invalid ID"); 3441 assert(!BBRefs.empty() && "Unexpected empty array"); 3442 assert(!BBRefs.front() && "Invalid reference to entry block"); 3443 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3444 ++I) 3445 if (I < RE && BBRefs[I]) { 3446 BBRefs[I]->insertInto(F); 3447 FunctionBBs[I] = BBRefs[I]; 3448 } else { 3449 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3450 } 3451 3452 // Erase from the table. 3453 BasicBlockFwdRefs.erase(BBFRI); 3454 } 3455 3456 CurBB = FunctionBBs[0]; 3457 continue; 3458 } 3459 3460 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3461 // This record indicates that the last instruction is at the same 3462 // location as the previous instruction with a location. 3463 I = getLastInstruction(); 3464 3465 if (!I) 3466 return error("Invalid record"); 3467 I->setDebugLoc(LastLoc); 3468 I = nullptr; 3469 continue; 3470 3471 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3472 I = getLastInstruction(); 3473 if (!I || Record.size() < 4) 3474 return error("Invalid record"); 3475 3476 unsigned Line = Record[0], Col = Record[1]; 3477 unsigned ScopeID = Record[2], IAID = Record[3]; 3478 3479 MDNode *Scope = nullptr, *IA = nullptr; 3480 if (ScopeID) { 3481 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3482 if (!Scope) 3483 return error("Invalid record"); 3484 } 3485 if (IAID) { 3486 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3487 if (!IA) 3488 return error("Invalid record"); 3489 } 3490 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3491 I->setDebugLoc(LastLoc); 3492 I = nullptr; 3493 continue; 3494 } 3495 3496 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3497 unsigned OpNum = 0; 3498 Value *LHS, *RHS; 3499 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3500 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3501 OpNum+1 > Record.size()) 3502 return error("Invalid record"); 3503 3504 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3505 if (Opc == -1) 3506 return error("Invalid record"); 3507 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3508 InstructionList.push_back(I); 3509 if (OpNum < Record.size()) { 3510 if (Opc == Instruction::Add || 3511 Opc == Instruction::Sub || 3512 Opc == Instruction::Mul || 3513 Opc == Instruction::Shl) { 3514 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3515 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3516 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3517 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3518 } else if (Opc == Instruction::SDiv || 3519 Opc == Instruction::UDiv || 3520 Opc == Instruction::LShr || 3521 Opc == Instruction::AShr) { 3522 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3523 cast<BinaryOperator>(I)->setIsExact(true); 3524 } else if (isa<FPMathOperator>(I)) { 3525 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3526 if (FMF.any()) 3527 I->setFastMathFlags(FMF); 3528 } 3529 3530 } 3531 break; 3532 } 3533 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3534 unsigned OpNum = 0; 3535 Value *Op; 3536 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3537 OpNum+2 != Record.size()) 3538 return error("Invalid record"); 3539 3540 Type *ResTy = getTypeByID(Record[OpNum]); 3541 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3542 if (Opc == -1 || !ResTy) 3543 return error("Invalid record"); 3544 Instruction *Temp = nullptr; 3545 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3546 if (Temp) { 3547 InstructionList.push_back(Temp); 3548 CurBB->getInstList().push_back(Temp); 3549 } 3550 } else { 3551 auto CastOp = (Instruction::CastOps)Opc; 3552 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3553 return error("Invalid cast"); 3554 I = CastInst::Create(CastOp, Op, ResTy); 3555 } 3556 InstructionList.push_back(I); 3557 break; 3558 } 3559 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3560 case bitc::FUNC_CODE_INST_GEP_OLD: 3561 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3562 unsigned OpNum = 0; 3563 3564 Type *Ty; 3565 bool InBounds; 3566 3567 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3568 InBounds = Record[OpNum++]; 3569 Ty = getTypeByID(Record[OpNum++]); 3570 } else { 3571 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3572 Ty = nullptr; 3573 } 3574 3575 Value *BasePtr; 3576 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3577 return error("Invalid record"); 3578 3579 if (!Ty) 3580 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3581 ->getElementType(); 3582 else if (Ty != 3583 cast<PointerType>(BasePtr->getType()->getScalarType()) 3584 ->getElementType()) 3585 return error( 3586 "Explicit gep type does not match pointee type of pointer operand"); 3587 3588 SmallVector<Value*, 16> GEPIdx; 3589 while (OpNum != Record.size()) { 3590 Value *Op; 3591 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3592 return error("Invalid record"); 3593 GEPIdx.push_back(Op); 3594 } 3595 3596 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3597 3598 InstructionList.push_back(I); 3599 if (InBounds) 3600 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3601 break; 3602 } 3603 3604 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3605 // EXTRACTVAL: [opty, opval, n x indices] 3606 unsigned OpNum = 0; 3607 Value *Agg; 3608 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3609 return error("Invalid record"); 3610 3611 unsigned RecSize = Record.size(); 3612 if (OpNum == RecSize) 3613 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3614 3615 SmallVector<unsigned, 4> EXTRACTVALIdx; 3616 Type *CurTy = Agg->getType(); 3617 for (; OpNum != RecSize; ++OpNum) { 3618 bool IsArray = CurTy->isArrayTy(); 3619 bool IsStruct = CurTy->isStructTy(); 3620 uint64_t Index = Record[OpNum]; 3621 3622 if (!IsStruct && !IsArray) 3623 return error("EXTRACTVAL: Invalid type"); 3624 if ((unsigned)Index != Index) 3625 return error("Invalid value"); 3626 if (IsStruct && Index >= CurTy->subtypes().size()) 3627 return error("EXTRACTVAL: Invalid struct index"); 3628 if (IsArray && Index >= CurTy->getArrayNumElements()) 3629 return error("EXTRACTVAL: Invalid array index"); 3630 EXTRACTVALIdx.push_back((unsigned)Index); 3631 3632 if (IsStruct) 3633 CurTy = CurTy->subtypes()[Index]; 3634 else 3635 CurTy = CurTy->subtypes()[0]; 3636 } 3637 3638 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3639 InstructionList.push_back(I); 3640 break; 3641 } 3642 3643 case bitc::FUNC_CODE_INST_INSERTVAL: { 3644 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3645 unsigned OpNum = 0; 3646 Value *Agg; 3647 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3648 return error("Invalid record"); 3649 Value *Val; 3650 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3651 return error("Invalid record"); 3652 3653 unsigned RecSize = Record.size(); 3654 if (OpNum == RecSize) 3655 return error("INSERTVAL: Invalid instruction with 0 indices"); 3656 3657 SmallVector<unsigned, 4> INSERTVALIdx; 3658 Type *CurTy = Agg->getType(); 3659 for (; OpNum != RecSize; ++OpNum) { 3660 bool IsArray = CurTy->isArrayTy(); 3661 bool IsStruct = CurTy->isStructTy(); 3662 uint64_t Index = Record[OpNum]; 3663 3664 if (!IsStruct && !IsArray) 3665 return error("INSERTVAL: Invalid type"); 3666 if ((unsigned)Index != Index) 3667 return error("Invalid value"); 3668 if (IsStruct && Index >= CurTy->subtypes().size()) 3669 return error("INSERTVAL: Invalid struct index"); 3670 if (IsArray && Index >= CurTy->getArrayNumElements()) 3671 return error("INSERTVAL: Invalid array index"); 3672 3673 INSERTVALIdx.push_back((unsigned)Index); 3674 if (IsStruct) 3675 CurTy = CurTy->subtypes()[Index]; 3676 else 3677 CurTy = CurTy->subtypes()[0]; 3678 } 3679 3680 if (CurTy != Val->getType()) 3681 return error("Inserted value type doesn't match aggregate type"); 3682 3683 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3684 InstructionList.push_back(I); 3685 break; 3686 } 3687 3688 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3689 // obsolete form of select 3690 // handles select i1 ... in old bitcode 3691 unsigned OpNum = 0; 3692 Value *TrueVal, *FalseVal, *Cond; 3693 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3694 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3695 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3696 return error("Invalid record"); 3697 3698 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3699 InstructionList.push_back(I); 3700 break; 3701 } 3702 3703 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3704 // new form of select 3705 // handles select i1 or select [N x i1] 3706 unsigned OpNum = 0; 3707 Value *TrueVal, *FalseVal, *Cond; 3708 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3709 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3710 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3711 return error("Invalid record"); 3712 3713 // select condition can be either i1 or [N x i1] 3714 if (VectorType* vector_type = 3715 dyn_cast<VectorType>(Cond->getType())) { 3716 // expect <n x i1> 3717 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3718 return error("Invalid type for value"); 3719 } else { 3720 // expect i1 3721 if (Cond->getType() != Type::getInt1Ty(Context)) 3722 return error("Invalid type for value"); 3723 } 3724 3725 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3726 InstructionList.push_back(I); 3727 break; 3728 } 3729 3730 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3731 unsigned OpNum = 0; 3732 Value *Vec, *Idx; 3733 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3734 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3735 return error("Invalid record"); 3736 if (!Vec->getType()->isVectorTy()) 3737 return error("Invalid type for value"); 3738 I = ExtractElementInst::Create(Vec, Idx); 3739 InstructionList.push_back(I); 3740 break; 3741 } 3742 3743 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3744 unsigned OpNum = 0; 3745 Value *Vec, *Elt, *Idx; 3746 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3747 return error("Invalid record"); 3748 if (!Vec->getType()->isVectorTy()) 3749 return error("Invalid type for value"); 3750 if (popValue(Record, OpNum, NextValueNo, 3751 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3752 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3753 return error("Invalid record"); 3754 I = InsertElementInst::Create(Vec, Elt, Idx); 3755 InstructionList.push_back(I); 3756 break; 3757 } 3758 3759 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3760 unsigned OpNum = 0; 3761 Value *Vec1, *Vec2, *Mask; 3762 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3763 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3764 return error("Invalid record"); 3765 3766 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3767 return error("Invalid record"); 3768 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3769 return error("Invalid type for value"); 3770 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3771 InstructionList.push_back(I); 3772 break; 3773 } 3774 3775 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3776 // Old form of ICmp/FCmp returning bool 3777 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3778 // both legal on vectors but had different behaviour. 3779 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3780 // FCmp/ICmp returning bool or vector of bool 3781 3782 unsigned OpNum = 0; 3783 Value *LHS, *RHS; 3784 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3785 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3786 return error("Invalid record"); 3787 3788 unsigned PredVal = Record[OpNum]; 3789 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3790 FastMathFlags FMF; 3791 if (IsFP && Record.size() > OpNum+1) 3792 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3793 3794 if (OpNum+1 != Record.size()) 3795 return error("Invalid record"); 3796 3797 if (LHS->getType()->isFPOrFPVectorTy()) 3798 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3799 else 3800 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3801 3802 if (FMF.any()) 3803 I->setFastMathFlags(FMF); 3804 InstructionList.push_back(I); 3805 break; 3806 } 3807 3808 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3809 { 3810 unsigned Size = Record.size(); 3811 if (Size == 0) { 3812 I = ReturnInst::Create(Context); 3813 InstructionList.push_back(I); 3814 break; 3815 } 3816 3817 unsigned OpNum = 0; 3818 Value *Op = nullptr; 3819 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3820 return error("Invalid record"); 3821 if (OpNum != Record.size()) 3822 return error("Invalid record"); 3823 3824 I = ReturnInst::Create(Context, Op); 3825 InstructionList.push_back(I); 3826 break; 3827 } 3828 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3829 if (Record.size() != 1 && Record.size() != 3) 3830 return error("Invalid record"); 3831 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3832 if (!TrueDest) 3833 return error("Invalid record"); 3834 3835 if (Record.size() == 1) { 3836 I = BranchInst::Create(TrueDest); 3837 InstructionList.push_back(I); 3838 } 3839 else { 3840 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3841 Value *Cond = getValue(Record, 2, NextValueNo, 3842 Type::getInt1Ty(Context)); 3843 if (!FalseDest || !Cond) 3844 return error("Invalid record"); 3845 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3846 InstructionList.push_back(I); 3847 } 3848 break; 3849 } 3850 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3851 if (Record.size() != 1 && Record.size() != 2) 3852 return error("Invalid record"); 3853 unsigned Idx = 0; 3854 Value *CleanupPad = 3855 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3856 if (!CleanupPad) 3857 return error("Invalid record"); 3858 BasicBlock *UnwindDest = nullptr; 3859 if (Record.size() == 2) { 3860 UnwindDest = getBasicBlock(Record[Idx++]); 3861 if (!UnwindDest) 3862 return error("Invalid record"); 3863 } 3864 3865 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3866 InstructionList.push_back(I); 3867 break; 3868 } 3869 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3870 if (Record.size() != 2) 3871 return error("Invalid record"); 3872 unsigned Idx = 0; 3873 Value *CatchPad = 3874 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3875 if (!CatchPad) 3876 return error("Invalid record"); 3877 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3878 if (!BB) 3879 return error("Invalid record"); 3880 3881 I = CatchReturnInst::Create(CatchPad, BB); 3882 InstructionList.push_back(I); 3883 break; 3884 } 3885 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3886 // We must have, at minimum, the outer scope and the number of arguments. 3887 if (Record.size() < 2) 3888 return error("Invalid record"); 3889 3890 unsigned Idx = 0; 3891 3892 Value *ParentPad = 3893 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3894 3895 unsigned NumHandlers = Record[Idx++]; 3896 3897 SmallVector<BasicBlock *, 2> Handlers; 3898 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3899 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3900 if (!BB) 3901 return error("Invalid record"); 3902 Handlers.push_back(BB); 3903 } 3904 3905 BasicBlock *UnwindDest = nullptr; 3906 if (Idx + 1 == Record.size()) { 3907 UnwindDest = getBasicBlock(Record[Idx++]); 3908 if (!UnwindDest) 3909 return error("Invalid record"); 3910 } 3911 3912 if (Record.size() != Idx) 3913 return error("Invalid record"); 3914 3915 auto *CatchSwitch = 3916 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3917 for (BasicBlock *Handler : Handlers) 3918 CatchSwitch->addHandler(Handler); 3919 I = CatchSwitch; 3920 InstructionList.push_back(I); 3921 break; 3922 } 3923 case bitc::FUNC_CODE_INST_CATCHPAD: 3924 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3925 // We must have, at minimum, the outer scope and the number of arguments. 3926 if (Record.size() < 2) 3927 return error("Invalid record"); 3928 3929 unsigned Idx = 0; 3930 3931 Value *ParentPad = 3932 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3933 3934 unsigned NumArgOperands = Record[Idx++]; 3935 3936 SmallVector<Value *, 2> Args; 3937 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3938 Value *Val; 3939 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3940 return error("Invalid record"); 3941 Args.push_back(Val); 3942 } 3943 3944 if (Record.size() != Idx) 3945 return error("Invalid record"); 3946 3947 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3948 I = CleanupPadInst::Create(ParentPad, Args); 3949 else 3950 I = CatchPadInst::Create(ParentPad, Args); 3951 InstructionList.push_back(I); 3952 break; 3953 } 3954 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3955 // Check magic 3956 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3957 // "New" SwitchInst format with case ranges. The changes to write this 3958 // format were reverted but we still recognize bitcode that uses it. 3959 // Hopefully someday we will have support for case ranges and can use 3960 // this format again. 3961 3962 Type *OpTy = getTypeByID(Record[1]); 3963 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3964 3965 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3966 BasicBlock *Default = getBasicBlock(Record[3]); 3967 if (!OpTy || !Cond || !Default) 3968 return error("Invalid record"); 3969 3970 unsigned NumCases = Record[4]; 3971 3972 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3973 InstructionList.push_back(SI); 3974 3975 unsigned CurIdx = 5; 3976 for (unsigned i = 0; i != NumCases; ++i) { 3977 SmallVector<ConstantInt*, 1> CaseVals; 3978 unsigned NumItems = Record[CurIdx++]; 3979 for (unsigned ci = 0; ci != NumItems; ++ci) { 3980 bool isSingleNumber = Record[CurIdx++]; 3981 3982 APInt Low; 3983 unsigned ActiveWords = 1; 3984 if (ValueBitWidth > 64) 3985 ActiveWords = Record[CurIdx++]; 3986 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3987 ValueBitWidth); 3988 CurIdx += ActiveWords; 3989 3990 if (!isSingleNumber) { 3991 ActiveWords = 1; 3992 if (ValueBitWidth > 64) 3993 ActiveWords = Record[CurIdx++]; 3994 APInt High = readWideAPInt( 3995 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3996 CurIdx += ActiveWords; 3997 3998 // FIXME: It is not clear whether values in the range should be 3999 // compared as signed or unsigned values. The partially 4000 // implemented changes that used this format in the past used 4001 // unsigned comparisons. 4002 for ( ; Low.ule(High); ++Low) 4003 CaseVals.push_back(ConstantInt::get(Context, Low)); 4004 } else 4005 CaseVals.push_back(ConstantInt::get(Context, Low)); 4006 } 4007 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4008 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4009 cve = CaseVals.end(); cvi != cve; ++cvi) 4010 SI->addCase(*cvi, DestBB); 4011 } 4012 I = SI; 4013 break; 4014 } 4015 4016 // Old SwitchInst format without case ranges. 4017 4018 if (Record.size() < 3 || (Record.size() & 1) == 0) 4019 return error("Invalid record"); 4020 Type *OpTy = getTypeByID(Record[0]); 4021 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4022 BasicBlock *Default = getBasicBlock(Record[2]); 4023 if (!OpTy || !Cond || !Default) 4024 return error("Invalid record"); 4025 unsigned NumCases = (Record.size()-3)/2; 4026 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4027 InstructionList.push_back(SI); 4028 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4029 ConstantInt *CaseVal = 4030 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4031 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4032 if (!CaseVal || !DestBB) { 4033 delete SI; 4034 return error("Invalid record"); 4035 } 4036 SI->addCase(CaseVal, DestBB); 4037 } 4038 I = SI; 4039 break; 4040 } 4041 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4042 if (Record.size() < 2) 4043 return error("Invalid record"); 4044 Type *OpTy = getTypeByID(Record[0]); 4045 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4046 if (!OpTy || !Address) 4047 return error("Invalid record"); 4048 unsigned NumDests = Record.size()-2; 4049 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4050 InstructionList.push_back(IBI); 4051 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4052 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4053 IBI->addDestination(DestBB); 4054 } else { 4055 delete IBI; 4056 return error("Invalid record"); 4057 } 4058 } 4059 I = IBI; 4060 break; 4061 } 4062 4063 case bitc::FUNC_CODE_INST_INVOKE: { 4064 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4065 if (Record.size() < 4) 4066 return error("Invalid record"); 4067 unsigned OpNum = 0; 4068 AttributeList PAL = getAttributes(Record[OpNum++]); 4069 unsigned CCInfo = Record[OpNum++]; 4070 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4071 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4072 4073 FunctionType *FTy = nullptr; 4074 if (CCInfo >> 13 & 1 && 4075 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4076 return error("Explicit invoke type is not a function type"); 4077 4078 Value *Callee; 4079 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4080 return error("Invalid record"); 4081 4082 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4083 if (!CalleeTy) 4084 return error("Callee is not a pointer"); 4085 if (!FTy) { 4086 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4087 if (!FTy) 4088 return error("Callee is not of pointer to function type"); 4089 } else if (CalleeTy->getElementType() != FTy) 4090 return error("Explicit invoke type does not match pointee type of " 4091 "callee operand"); 4092 if (Record.size() < FTy->getNumParams() + OpNum) 4093 return error("Insufficient operands to call"); 4094 4095 SmallVector<Value*, 16> Ops; 4096 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4097 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4098 FTy->getParamType(i))); 4099 if (!Ops.back()) 4100 return error("Invalid record"); 4101 } 4102 4103 if (!FTy->isVarArg()) { 4104 if (Record.size() != OpNum) 4105 return error("Invalid record"); 4106 } else { 4107 // Read type/value pairs for varargs params. 4108 while (OpNum != Record.size()) { 4109 Value *Op; 4110 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4111 return error("Invalid record"); 4112 Ops.push_back(Op); 4113 } 4114 } 4115 4116 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4117 OperandBundles.clear(); 4118 InstructionList.push_back(I); 4119 cast<InvokeInst>(I)->setCallingConv( 4120 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4121 cast<InvokeInst>(I)->setAttributes(PAL); 4122 break; 4123 } 4124 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4125 unsigned Idx = 0; 4126 Value *Val = nullptr; 4127 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4128 return error("Invalid record"); 4129 I = ResumeInst::Create(Val); 4130 InstructionList.push_back(I); 4131 break; 4132 } 4133 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4134 I = new UnreachableInst(Context); 4135 InstructionList.push_back(I); 4136 break; 4137 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4138 if (Record.size() < 1 || ((Record.size()-1)&1)) 4139 return error("Invalid record"); 4140 Type *Ty = getTypeByID(Record[0]); 4141 if (!Ty) 4142 return error("Invalid record"); 4143 4144 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4145 InstructionList.push_back(PN); 4146 4147 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4148 Value *V; 4149 // With the new function encoding, it is possible that operands have 4150 // negative IDs (for forward references). Use a signed VBR 4151 // representation to keep the encoding small. 4152 if (UseRelativeIDs) 4153 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4154 else 4155 V = getValue(Record, 1+i, NextValueNo, Ty); 4156 BasicBlock *BB = getBasicBlock(Record[2+i]); 4157 if (!V || !BB) 4158 return error("Invalid record"); 4159 PN->addIncoming(V, BB); 4160 } 4161 I = PN; 4162 break; 4163 } 4164 4165 case bitc::FUNC_CODE_INST_LANDINGPAD: 4166 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4167 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4168 unsigned Idx = 0; 4169 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4170 if (Record.size() < 3) 4171 return error("Invalid record"); 4172 } else { 4173 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4174 if (Record.size() < 4) 4175 return error("Invalid record"); 4176 } 4177 Type *Ty = getTypeByID(Record[Idx++]); 4178 if (!Ty) 4179 return error("Invalid record"); 4180 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4181 Value *PersFn = nullptr; 4182 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4183 return error("Invalid record"); 4184 4185 if (!F->hasPersonalityFn()) 4186 F->setPersonalityFn(cast<Constant>(PersFn)); 4187 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4188 return error("Personality function mismatch"); 4189 } 4190 4191 bool IsCleanup = !!Record[Idx++]; 4192 unsigned NumClauses = Record[Idx++]; 4193 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4194 LP->setCleanup(IsCleanup); 4195 for (unsigned J = 0; J != NumClauses; ++J) { 4196 LandingPadInst::ClauseType CT = 4197 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4198 Value *Val; 4199 4200 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4201 delete LP; 4202 return error("Invalid record"); 4203 } 4204 4205 assert((CT != LandingPadInst::Catch || 4206 !isa<ArrayType>(Val->getType())) && 4207 "Catch clause has a invalid type!"); 4208 assert((CT != LandingPadInst::Filter || 4209 isa<ArrayType>(Val->getType())) && 4210 "Filter clause has invalid type!"); 4211 LP->addClause(cast<Constant>(Val)); 4212 } 4213 4214 I = LP; 4215 InstructionList.push_back(I); 4216 break; 4217 } 4218 4219 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4220 if (Record.size() != 4) 4221 return error("Invalid record"); 4222 uint64_t AlignRecord = Record[3]; 4223 const uint64_t InAllocaMask = uint64_t(1) << 5; 4224 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4225 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4226 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4227 SwiftErrorMask; 4228 bool InAlloca = AlignRecord & InAllocaMask; 4229 bool SwiftError = AlignRecord & SwiftErrorMask; 4230 Type *Ty = getTypeByID(Record[0]); 4231 if ((AlignRecord & ExplicitTypeMask) == 0) { 4232 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4233 if (!PTy) 4234 return error("Old-style alloca with a non-pointer type"); 4235 Ty = PTy->getElementType(); 4236 } 4237 Type *OpTy = getTypeByID(Record[1]); 4238 Value *Size = getFnValueByID(Record[2], OpTy); 4239 unsigned Align; 4240 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4241 return Err; 4242 } 4243 if (!Ty || !Size) 4244 return error("Invalid record"); 4245 4246 // FIXME: Make this an optional field. 4247 const DataLayout &DL = TheModule->getDataLayout(); 4248 unsigned AS = DL.getAllocaAddrSpace(); 4249 4250 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4251 AI->setUsedWithInAlloca(InAlloca); 4252 AI->setSwiftError(SwiftError); 4253 I = AI; 4254 InstructionList.push_back(I); 4255 break; 4256 } 4257 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4258 unsigned OpNum = 0; 4259 Value *Op; 4260 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4261 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4262 return error("Invalid record"); 4263 4264 Type *Ty = nullptr; 4265 if (OpNum + 3 == Record.size()) 4266 Ty = getTypeByID(Record[OpNum++]); 4267 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4268 return Err; 4269 if (!Ty) 4270 Ty = cast<PointerType>(Op->getType())->getElementType(); 4271 4272 unsigned Align; 4273 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4274 return Err; 4275 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4276 4277 InstructionList.push_back(I); 4278 break; 4279 } 4280 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4281 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4282 unsigned OpNum = 0; 4283 Value *Op; 4284 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4285 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4286 return error("Invalid record"); 4287 4288 Type *Ty = nullptr; 4289 if (OpNum + 5 == Record.size()) 4290 Ty = getTypeByID(Record[OpNum++]); 4291 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4292 return Err; 4293 if (!Ty) 4294 Ty = cast<PointerType>(Op->getType())->getElementType(); 4295 4296 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4297 if (Ordering == AtomicOrdering::NotAtomic || 4298 Ordering == AtomicOrdering::Release || 4299 Ordering == AtomicOrdering::AcquireRelease) 4300 return error("Invalid record"); 4301 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4302 return error("Invalid record"); 4303 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4304 4305 unsigned Align; 4306 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4307 return Err; 4308 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4309 4310 InstructionList.push_back(I); 4311 break; 4312 } 4313 case bitc::FUNC_CODE_INST_STORE: 4314 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4315 unsigned OpNum = 0; 4316 Value *Val, *Ptr; 4317 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4318 (BitCode == bitc::FUNC_CODE_INST_STORE 4319 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4320 : popValue(Record, OpNum, NextValueNo, 4321 cast<PointerType>(Ptr->getType())->getElementType(), 4322 Val)) || 4323 OpNum + 2 != Record.size()) 4324 return error("Invalid record"); 4325 4326 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4327 return Err; 4328 unsigned Align; 4329 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4330 return Err; 4331 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4332 InstructionList.push_back(I); 4333 break; 4334 } 4335 case bitc::FUNC_CODE_INST_STOREATOMIC: 4336 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4337 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4338 unsigned OpNum = 0; 4339 Value *Val, *Ptr; 4340 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4341 !isa<PointerType>(Ptr->getType()) || 4342 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4343 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4344 : popValue(Record, OpNum, NextValueNo, 4345 cast<PointerType>(Ptr->getType())->getElementType(), 4346 Val)) || 4347 OpNum + 4 != Record.size()) 4348 return error("Invalid record"); 4349 4350 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4351 return Err; 4352 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4353 if (Ordering == AtomicOrdering::NotAtomic || 4354 Ordering == AtomicOrdering::Acquire || 4355 Ordering == AtomicOrdering::AcquireRelease) 4356 return error("Invalid record"); 4357 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4358 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4359 return error("Invalid record"); 4360 4361 unsigned Align; 4362 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4363 return Err; 4364 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4365 InstructionList.push_back(I); 4366 break; 4367 } 4368 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4369 case bitc::FUNC_CODE_INST_CMPXCHG: { 4370 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4371 // failureordering?, isweak?] 4372 unsigned OpNum = 0; 4373 Value *Ptr, *Cmp, *New; 4374 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4375 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4376 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4377 : popValue(Record, OpNum, NextValueNo, 4378 cast<PointerType>(Ptr->getType())->getElementType(), 4379 Cmp)) || 4380 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4381 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4382 return error("Invalid record"); 4383 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4384 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4385 SuccessOrdering == AtomicOrdering::Unordered) 4386 return error("Invalid record"); 4387 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4388 4389 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4390 return Err; 4391 AtomicOrdering FailureOrdering; 4392 if (Record.size() < 7) 4393 FailureOrdering = 4394 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4395 else 4396 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4397 4398 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4399 SSID); 4400 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4401 4402 if (Record.size() < 8) { 4403 // Before weak cmpxchgs existed, the instruction simply returned the 4404 // value loaded from memory, so bitcode files from that era will be 4405 // expecting the first component of a modern cmpxchg. 4406 CurBB->getInstList().push_back(I); 4407 I = ExtractValueInst::Create(I, 0); 4408 } else { 4409 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4410 } 4411 4412 InstructionList.push_back(I); 4413 break; 4414 } 4415 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4416 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4417 unsigned OpNum = 0; 4418 Value *Ptr, *Val; 4419 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4420 !isa<PointerType>(Ptr->getType()) || 4421 popValue(Record, OpNum, NextValueNo, 4422 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4423 OpNum+4 != Record.size()) 4424 return error("Invalid record"); 4425 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4426 if (Operation < AtomicRMWInst::FIRST_BINOP || 4427 Operation > AtomicRMWInst::LAST_BINOP) 4428 return error("Invalid record"); 4429 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4430 if (Ordering == AtomicOrdering::NotAtomic || 4431 Ordering == AtomicOrdering::Unordered) 4432 return error("Invalid record"); 4433 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4434 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4435 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4436 InstructionList.push_back(I); 4437 break; 4438 } 4439 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4440 if (2 != Record.size()) 4441 return error("Invalid record"); 4442 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4443 if (Ordering == AtomicOrdering::NotAtomic || 4444 Ordering == AtomicOrdering::Unordered || 4445 Ordering == AtomicOrdering::Monotonic) 4446 return error("Invalid record"); 4447 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4448 I = new FenceInst(Context, Ordering, SSID); 4449 InstructionList.push_back(I); 4450 break; 4451 } 4452 case bitc::FUNC_CODE_INST_CALL: { 4453 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4454 if (Record.size() < 3) 4455 return error("Invalid record"); 4456 4457 unsigned OpNum = 0; 4458 AttributeList PAL = getAttributes(Record[OpNum++]); 4459 unsigned CCInfo = Record[OpNum++]; 4460 4461 FastMathFlags FMF; 4462 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4463 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4464 if (!FMF.any()) 4465 return error("Fast math flags indicator set for call with no FMF"); 4466 } 4467 4468 FunctionType *FTy = nullptr; 4469 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4470 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4471 return error("Explicit call type is not a function type"); 4472 4473 Value *Callee; 4474 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4475 return error("Invalid record"); 4476 4477 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4478 if (!OpTy) 4479 return error("Callee is not a pointer type"); 4480 if (!FTy) { 4481 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4482 if (!FTy) 4483 return error("Callee is not of pointer to function type"); 4484 } else if (OpTy->getElementType() != FTy) 4485 return error("Explicit call type does not match pointee type of " 4486 "callee operand"); 4487 if (Record.size() < FTy->getNumParams() + OpNum) 4488 return error("Insufficient operands to call"); 4489 4490 SmallVector<Value*, 16> Args; 4491 // Read the fixed params. 4492 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4493 if (FTy->getParamType(i)->isLabelTy()) 4494 Args.push_back(getBasicBlock(Record[OpNum])); 4495 else 4496 Args.push_back(getValue(Record, OpNum, NextValueNo, 4497 FTy->getParamType(i))); 4498 if (!Args.back()) 4499 return error("Invalid record"); 4500 } 4501 4502 // Read type/value pairs for varargs params. 4503 if (!FTy->isVarArg()) { 4504 if (OpNum != Record.size()) 4505 return error("Invalid record"); 4506 } else { 4507 while (OpNum != Record.size()) { 4508 Value *Op; 4509 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4510 return error("Invalid record"); 4511 Args.push_back(Op); 4512 } 4513 } 4514 4515 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4516 OperandBundles.clear(); 4517 InstructionList.push_back(I); 4518 cast<CallInst>(I)->setCallingConv( 4519 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4520 CallInst::TailCallKind TCK = CallInst::TCK_None; 4521 if (CCInfo & 1 << bitc::CALL_TAIL) 4522 TCK = CallInst::TCK_Tail; 4523 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4524 TCK = CallInst::TCK_MustTail; 4525 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4526 TCK = CallInst::TCK_NoTail; 4527 cast<CallInst>(I)->setTailCallKind(TCK); 4528 cast<CallInst>(I)->setAttributes(PAL); 4529 if (FMF.any()) { 4530 if (!isa<FPMathOperator>(I)) 4531 return error("Fast-math-flags specified for call without " 4532 "floating-point scalar or vector return type"); 4533 I->setFastMathFlags(FMF); 4534 } 4535 break; 4536 } 4537 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4538 if (Record.size() < 3) 4539 return error("Invalid record"); 4540 Type *OpTy = getTypeByID(Record[0]); 4541 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4542 Type *ResTy = getTypeByID(Record[2]); 4543 if (!OpTy || !Op || !ResTy) 4544 return error("Invalid record"); 4545 I = new VAArgInst(Op, ResTy); 4546 InstructionList.push_back(I); 4547 break; 4548 } 4549 4550 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4551 // A call or an invoke can be optionally prefixed with some variable 4552 // number of operand bundle blocks. These blocks are read into 4553 // OperandBundles and consumed at the next call or invoke instruction. 4554 4555 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4556 return error("Invalid record"); 4557 4558 std::vector<Value *> Inputs; 4559 4560 unsigned OpNum = 1; 4561 while (OpNum != Record.size()) { 4562 Value *Op; 4563 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4564 return error("Invalid record"); 4565 Inputs.push_back(Op); 4566 } 4567 4568 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4569 continue; 4570 } 4571 } 4572 4573 // Add instruction to end of current BB. If there is no current BB, reject 4574 // this file. 4575 if (!CurBB) { 4576 I->deleteValue(); 4577 return error("Invalid instruction with no BB"); 4578 } 4579 if (!OperandBundles.empty()) { 4580 I->deleteValue(); 4581 return error("Operand bundles found with no consumer"); 4582 } 4583 CurBB->getInstList().push_back(I); 4584 4585 // If this was a terminator instruction, move to the next block. 4586 if (isa<TerminatorInst>(I)) { 4587 ++CurBBNo; 4588 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4589 } 4590 4591 // Non-void values get registered in the value table for future use. 4592 if (I && !I->getType()->isVoidTy()) 4593 ValueList.assignValue(I, NextValueNo++); 4594 } 4595 4596 OutOfRecordLoop: 4597 4598 if (!OperandBundles.empty()) 4599 return error("Operand bundles found with no consumer"); 4600 4601 // Check the function list for unresolved values. 4602 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4603 if (!A->getParent()) { 4604 // We found at least one unresolved value. Nuke them all to avoid leaks. 4605 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4606 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4607 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4608 delete A; 4609 } 4610 } 4611 return error("Never resolved value found in function"); 4612 } 4613 } 4614 4615 // Unexpected unresolved metadata about to be dropped. 4616 if (MDLoader->hasFwdRefs()) 4617 return error("Invalid function metadata: outgoing forward refs"); 4618 4619 // Trim the value list down to the size it was before we parsed this function. 4620 ValueList.shrinkTo(ModuleValueListSize); 4621 MDLoader->shrinkTo(ModuleMDLoaderSize); 4622 std::vector<BasicBlock*>().swap(FunctionBBs); 4623 return Error::success(); 4624 } 4625 4626 /// Find the function body in the bitcode stream 4627 Error BitcodeReader::findFunctionInStream( 4628 Function *F, 4629 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4630 while (DeferredFunctionInfoIterator->second == 0) { 4631 // This is the fallback handling for the old format bitcode that 4632 // didn't contain the function index in the VST, or when we have 4633 // an anonymous function which would not have a VST entry. 4634 // Assert that we have one of those two cases. 4635 assert(VSTOffset == 0 || !F->hasName()); 4636 // Parse the next body in the stream and set its position in the 4637 // DeferredFunctionInfo map. 4638 if (Error Err = rememberAndSkipFunctionBodies()) 4639 return Err; 4640 } 4641 return Error::success(); 4642 } 4643 4644 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4645 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4646 return SyncScope::ID(Val); 4647 if (Val >= SSIDs.size()) 4648 return SyncScope::System; // Map unknown synchronization scopes to system. 4649 return SSIDs[Val]; 4650 } 4651 4652 //===----------------------------------------------------------------------===// 4653 // GVMaterializer implementation 4654 //===----------------------------------------------------------------------===// 4655 4656 Error BitcodeReader::materialize(GlobalValue *GV) { 4657 Function *F = dyn_cast<Function>(GV); 4658 // If it's not a function or is already material, ignore the request. 4659 if (!F || !F->isMaterializable()) 4660 return Error::success(); 4661 4662 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4663 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4664 // If its position is recorded as 0, its body is somewhere in the stream 4665 // but we haven't seen it yet. 4666 if (DFII->second == 0) 4667 if (Error Err = findFunctionInStream(F, DFII)) 4668 return Err; 4669 4670 // Materialize metadata before parsing any function bodies. 4671 if (Error Err = materializeMetadata()) 4672 return Err; 4673 4674 // Move the bit stream to the saved position of the deferred function body. 4675 Stream.JumpToBit(DFII->second); 4676 4677 if (Error Err = parseFunctionBody(F)) 4678 return Err; 4679 F->setIsMaterializable(false); 4680 4681 if (StripDebugInfo) 4682 stripDebugInfo(*F); 4683 4684 // Upgrade any old intrinsic calls in the function. 4685 for (auto &I : UpgradedIntrinsics) { 4686 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4687 UI != UE;) { 4688 User *U = *UI; 4689 ++UI; 4690 if (CallInst *CI = dyn_cast<CallInst>(U)) 4691 UpgradeIntrinsicCall(CI, I.second); 4692 } 4693 } 4694 4695 // Update calls to the remangled intrinsics 4696 for (auto &I : RemangledIntrinsics) 4697 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4698 UI != UE;) 4699 // Don't expect any other users than call sites 4700 CallSite(*UI++).setCalledFunction(I.second); 4701 4702 // Finish fn->subprogram upgrade for materialized functions. 4703 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4704 F->setSubprogram(SP); 4705 4706 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4707 if (!MDLoader->isStrippingTBAA()) { 4708 for (auto &I : instructions(F)) { 4709 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4710 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4711 continue; 4712 MDLoader->setStripTBAA(true); 4713 stripTBAA(F->getParent()); 4714 } 4715 } 4716 4717 // Bring in any functions that this function forward-referenced via 4718 // blockaddresses. 4719 return materializeForwardReferencedFunctions(); 4720 } 4721 4722 Error BitcodeReader::materializeModule() { 4723 if (Error Err = materializeMetadata()) 4724 return Err; 4725 4726 // Promise to materialize all forward references. 4727 WillMaterializeAllForwardRefs = true; 4728 4729 // Iterate over the module, deserializing any functions that are still on 4730 // disk. 4731 for (Function &F : *TheModule) { 4732 if (Error Err = materialize(&F)) 4733 return Err; 4734 } 4735 // At this point, if there are any function bodies, parse the rest of 4736 // the bits in the module past the last function block we have recorded 4737 // through either lazy scanning or the VST. 4738 if (LastFunctionBlockBit || NextUnreadBit) 4739 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4740 ? LastFunctionBlockBit 4741 : NextUnreadBit)) 4742 return Err; 4743 4744 // Check that all block address forward references got resolved (as we 4745 // promised above). 4746 if (!BasicBlockFwdRefs.empty()) 4747 return error("Never resolved function from blockaddress"); 4748 4749 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4750 // delete the old functions to clean up. We can't do this unless the entire 4751 // module is materialized because there could always be another function body 4752 // with calls to the old function. 4753 for (auto &I : UpgradedIntrinsics) { 4754 for (auto *U : I.first->users()) { 4755 if (CallInst *CI = dyn_cast<CallInst>(U)) 4756 UpgradeIntrinsicCall(CI, I.second); 4757 } 4758 if (!I.first->use_empty()) 4759 I.first->replaceAllUsesWith(I.second); 4760 I.first->eraseFromParent(); 4761 } 4762 UpgradedIntrinsics.clear(); 4763 // Do the same for remangled intrinsics 4764 for (auto &I : RemangledIntrinsics) { 4765 I.first->replaceAllUsesWith(I.second); 4766 I.first->eraseFromParent(); 4767 } 4768 RemangledIntrinsics.clear(); 4769 4770 UpgradeDebugInfo(*TheModule); 4771 4772 UpgradeModuleFlags(*TheModule); 4773 return Error::success(); 4774 } 4775 4776 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4777 return IdentifiedStructTypes; 4778 } 4779 4780 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4781 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4782 StringRef ModulePath, unsigned ModuleId) 4783 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4784 ModulePath(ModulePath), ModuleId(ModuleId) {} 4785 4786 ModuleSummaryIndex::ModuleInfo * 4787 ModuleSummaryIndexBitcodeReader::addThisModule() { 4788 return TheIndex.addModule(ModulePath, ModuleId); 4789 } 4790 4791 std::pair<ValueInfo, GlobalValue::GUID> 4792 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4793 auto VGI = ValueIdToValueInfoMap[ValueId]; 4794 assert(VGI.first); 4795 return VGI; 4796 } 4797 4798 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4799 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4800 StringRef SourceFileName) { 4801 std::string GlobalId = 4802 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4803 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4804 auto OriginalNameID = ValueGUID; 4805 if (GlobalValue::isLocalLinkage(Linkage)) 4806 OriginalNameID = GlobalValue::getGUID(ValueName); 4807 if (PrintSummaryGUIDs) 4808 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4809 << ValueName << "\n"; 4810 ValueIdToValueInfoMap[ValueID] = 4811 std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID); 4812 } 4813 4814 // Specialized value symbol table parser used when reading module index 4815 // blocks where we don't actually create global values. The parsed information 4816 // is saved in the bitcode reader for use when later parsing summaries. 4817 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4818 uint64_t Offset, 4819 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4820 // With a strtab the VST is not required to parse the summary. 4821 if (UseStrtab) 4822 return Error::success(); 4823 4824 assert(Offset > 0 && "Expected non-zero VST offset"); 4825 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4826 4827 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4828 return error("Invalid record"); 4829 4830 SmallVector<uint64_t, 64> Record; 4831 4832 // Read all the records for this value table. 4833 SmallString<128> ValueName; 4834 4835 while (true) { 4836 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4837 4838 switch (Entry.Kind) { 4839 case BitstreamEntry::SubBlock: // Handled for us already. 4840 case BitstreamEntry::Error: 4841 return error("Malformed block"); 4842 case BitstreamEntry::EndBlock: 4843 // Done parsing VST, jump back to wherever we came from. 4844 Stream.JumpToBit(CurrentBit); 4845 return Error::success(); 4846 case BitstreamEntry::Record: 4847 // The interesting case. 4848 break; 4849 } 4850 4851 // Read a record. 4852 Record.clear(); 4853 switch (Stream.readRecord(Entry.ID, Record)) { 4854 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4855 break; 4856 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4857 if (convertToString(Record, 1, ValueName)) 4858 return error("Invalid record"); 4859 unsigned ValueID = Record[0]; 4860 assert(!SourceFileName.empty()); 4861 auto VLI = ValueIdToLinkageMap.find(ValueID); 4862 assert(VLI != ValueIdToLinkageMap.end() && 4863 "No linkage found for VST entry?"); 4864 auto Linkage = VLI->second; 4865 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4866 ValueName.clear(); 4867 break; 4868 } 4869 case bitc::VST_CODE_FNENTRY: { 4870 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4871 if (convertToString(Record, 2, ValueName)) 4872 return error("Invalid record"); 4873 unsigned ValueID = Record[0]; 4874 assert(!SourceFileName.empty()); 4875 auto VLI = ValueIdToLinkageMap.find(ValueID); 4876 assert(VLI != ValueIdToLinkageMap.end() && 4877 "No linkage found for VST entry?"); 4878 auto Linkage = VLI->second; 4879 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4880 ValueName.clear(); 4881 break; 4882 } 4883 case bitc::VST_CODE_COMBINED_ENTRY: { 4884 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4885 unsigned ValueID = Record[0]; 4886 GlobalValue::GUID RefGUID = Record[1]; 4887 // The "original name", which is the second value of the pair will be 4888 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4889 ValueIdToValueInfoMap[ValueID] = 4890 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4891 break; 4892 } 4893 } 4894 } 4895 } 4896 4897 // Parse just the blocks needed for building the index out of the module. 4898 // At the end of this routine the module Index is populated with a map 4899 // from global value id to GlobalValueSummary objects. 4900 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4901 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4902 return error("Invalid record"); 4903 4904 SmallVector<uint64_t, 64> Record; 4905 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4906 unsigned ValueId = 0; 4907 4908 // Read the index for this module. 4909 while (true) { 4910 BitstreamEntry Entry = Stream.advance(); 4911 4912 switch (Entry.Kind) { 4913 case BitstreamEntry::Error: 4914 return error("Malformed block"); 4915 case BitstreamEntry::EndBlock: 4916 return Error::success(); 4917 4918 case BitstreamEntry::SubBlock: 4919 switch (Entry.ID) { 4920 default: // Skip unknown content. 4921 if (Stream.SkipBlock()) 4922 return error("Invalid record"); 4923 break; 4924 case bitc::BLOCKINFO_BLOCK_ID: 4925 // Need to parse these to get abbrev ids (e.g. for VST) 4926 if (readBlockInfo()) 4927 return error("Malformed block"); 4928 break; 4929 case bitc::VALUE_SYMTAB_BLOCK_ID: 4930 // Should have been parsed earlier via VSTOffset, unless there 4931 // is no summary section. 4932 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4933 !SeenGlobalValSummary) && 4934 "Expected early VST parse via VSTOffset record"); 4935 if (Stream.SkipBlock()) 4936 return error("Invalid record"); 4937 break; 4938 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4939 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4940 assert(!SeenValueSymbolTable && 4941 "Already read VST when parsing summary block?"); 4942 // We might not have a VST if there were no values in the 4943 // summary. An empty summary block generated when we are 4944 // performing ThinLTO compiles so we don't later invoke 4945 // the regular LTO process on them. 4946 if (VSTOffset > 0) { 4947 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4948 return Err; 4949 SeenValueSymbolTable = true; 4950 } 4951 SeenGlobalValSummary = true; 4952 if (Error Err = parseEntireSummary(Entry.ID)) 4953 return Err; 4954 break; 4955 case bitc::MODULE_STRTAB_BLOCK_ID: 4956 if (Error Err = parseModuleStringTable()) 4957 return Err; 4958 break; 4959 } 4960 continue; 4961 4962 case BitstreamEntry::Record: { 4963 Record.clear(); 4964 auto BitCode = Stream.readRecord(Entry.ID, Record); 4965 switch (BitCode) { 4966 default: 4967 break; // Default behavior, ignore unknown content. 4968 case bitc::MODULE_CODE_VERSION: { 4969 if (Error Err = parseVersionRecord(Record).takeError()) 4970 return Err; 4971 break; 4972 } 4973 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4974 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4975 SmallString<128> ValueName; 4976 if (convertToString(Record, 0, ValueName)) 4977 return error("Invalid record"); 4978 SourceFileName = ValueName.c_str(); 4979 break; 4980 } 4981 /// MODULE_CODE_HASH: [5*i32] 4982 case bitc::MODULE_CODE_HASH: { 4983 if (Record.size() != 5) 4984 return error("Invalid hash length " + Twine(Record.size()).str()); 4985 auto &Hash = addThisModule()->second.second; 4986 int Pos = 0; 4987 for (auto &Val : Record) { 4988 assert(!(Val >> 32) && "Unexpected high bits set"); 4989 Hash[Pos++] = Val; 4990 } 4991 break; 4992 } 4993 /// MODULE_CODE_VSTOFFSET: [offset] 4994 case bitc::MODULE_CODE_VSTOFFSET: 4995 if (Record.size() < 1) 4996 return error("Invalid record"); 4997 // Note that we subtract 1 here because the offset is relative to one 4998 // word before the start of the identification or module block, which 4999 // was historically always the start of the regular bitcode header. 5000 VSTOffset = Record[0] - 1; 5001 break; 5002 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5003 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5004 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5005 // v2: [strtab offset, strtab size, v1] 5006 case bitc::MODULE_CODE_GLOBALVAR: 5007 case bitc::MODULE_CODE_FUNCTION: 5008 case bitc::MODULE_CODE_ALIAS: { 5009 StringRef Name; 5010 ArrayRef<uint64_t> GVRecord; 5011 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5012 if (GVRecord.size() <= 3) 5013 return error("Invalid record"); 5014 uint64_t RawLinkage = GVRecord[3]; 5015 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5016 if (!UseStrtab) { 5017 ValueIdToLinkageMap[ValueId++] = Linkage; 5018 break; 5019 } 5020 5021 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5022 break; 5023 } 5024 } 5025 } 5026 continue; 5027 } 5028 } 5029 } 5030 5031 std::vector<ValueInfo> 5032 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5033 std::vector<ValueInfo> Ret; 5034 Ret.reserve(Record.size()); 5035 for (uint64_t RefValueId : Record) 5036 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5037 return Ret; 5038 } 5039 5040 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 5041 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 5042 std::vector<FunctionSummary::EdgeTy> Ret; 5043 Ret.reserve(Record.size()); 5044 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5045 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5046 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5047 if (IsOldProfileFormat) { 5048 I += 1; // Skip old callsitecount field 5049 if (HasProfile) 5050 I += 1; // Skip old profilecount field 5051 } else if (HasProfile) 5052 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5053 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}}); 5054 } 5055 return Ret; 5056 } 5057 5058 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5059 // objects in the index. 5060 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5061 if (Stream.EnterSubBlock(ID)) 5062 return error("Invalid record"); 5063 SmallVector<uint64_t, 64> Record; 5064 5065 // Parse version 5066 { 5067 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5068 if (Entry.Kind != BitstreamEntry::Record) 5069 return error("Invalid Summary Block: record for version expected"); 5070 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5071 return error("Invalid Summary Block: version expected"); 5072 } 5073 const uint64_t Version = Record[0]; 5074 const bool IsOldProfileFormat = Version == 1; 5075 if (Version < 1 || Version > 4) 5076 return error("Invalid summary version " + Twine(Version) + 5077 ", 1, 2, 3 or 4 expected"); 5078 Record.clear(); 5079 5080 // Keep around the last seen summary to be used when we see an optional 5081 // "OriginalName" attachement. 5082 GlobalValueSummary *LastSeenSummary = nullptr; 5083 GlobalValue::GUID LastSeenGUID = 0; 5084 5085 // We can expect to see any number of type ID information records before 5086 // each function summary records; these variables store the information 5087 // collected so far so that it can be used to create the summary object. 5088 std::vector<GlobalValue::GUID> PendingTypeTests; 5089 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5090 PendingTypeCheckedLoadVCalls; 5091 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5092 PendingTypeCheckedLoadConstVCalls; 5093 5094 while (true) { 5095 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5096 5097 switch (Entry.Kind) { 5098 case BitstreamEntry::SubBlock: // Handled for us already. 5099 case BitstreamEntry::Error: 5100 return error("Malformed block"); 5101 case BitstreamEntry::EndBlock: 5102 return Error::success(); 5103 case BitstreamEntry::Record: 5104 // The interesting case. 5105 break; 5106 } 5107 5108 // Read a record. The record format depends on whether this 5109 // is a per-module index or a combined index file. In the per-module 5110 // case the records contain the associated value's ID for correlation 5111 // with VST entries. In the combined index the correlation is done 5112 // via the bitcode offset of the summary records (which were saved 5113 // in the combined index VST entries). The records also contain 5114 // information used for ThinLTO renaming and importing. 5115 Record.clear(); 5116 auto BitCode = Stream.readRecord(Entry.ID, Record); 5117 switch (BitCode) { 5118 default: // Default behavior: ignore. 5119 break; 5120 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5121 uint64_t ValueID = Record[0]; 5122 GlobalValue::GUID RefGUID = Record[1]; 5123 ValueIdToValueInfoMap[ValueID] = 5124 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5125 break; 5126 } 5127 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5128 // numrefs x valueid, n x (valueid)] 5129 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5130 // numrefs x valueid, 5131 // n x (valueid, hotness)] 5132 case bitc::FS_PERMODULE: 5133 case bitc::FS_PERMODULE_PROFILE: { 5134 unsigned ValueID = Record[0]; 5135 uint64_t RawFlags = Record[1]; 5136 unsigned InstCount = Record[2]; 5137 uint64_t RawFunFlags = 0; 5138 unsigned NumRefs = Record[3]; 5139 int RefListStartIndex = 4; 5140 if (Version >= 4) { 5141 RawFunFlags = Record[3]; 5142 NumRefs = Record[4]; 5143 RefListStartIndex = 5; 5144 } 5145 5146 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5147 // The module path string ref set in the summary must be owned by the 5148 // index's module string table. Since we don't have a module path 5149 // string table section in the per-module index, we create a single 5150 // module path string table entry with an empty (0) ID to take 5151 // ownership. 5152 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5153 assert(Record.size() >= RefListStartIndex + NumRefs && 5154 "Record size inconsistent with number of references"); 5155 std::vector<ValueInfo> Refs = makeRefList( 5156 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5157 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5158 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5159 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5160 IsOldProfileFormat, HasProfile); 5161 auto FS = llvm::make_unique<FunctionSummary>( 5162 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5163 std::move(Calls), std::move(PendingTypeTests), 5164 std::move(PendingTypeTestAssumeVCalls), 5165 std::move(PendingTypeCheckedLoadVCalls), 5166 std::move(PendingTypeTestAssumeConstVCalls), 5167 std::move(PendingTypeCheckedLoadConstVCalls)); 5168 PendingTypeTests.clear(); 5169 PendingTypeTestAssumeVCalls.clear(); 5170 PendingTypeCheckedLoadVCalls.clear(); 5171 PendingTypeTestAssumeConstVCalls.clear(); 5172 PendingTypeCheckedLoadConstVCalls.clear(); 5173 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5174 FS->setModulePath(addThisModule()->first()); 5175 FS->setOriginalName(VIAndOriginalGUID.second); 5176 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5177 break; 5178 } 5179 // FS_ALIAS: [valueid, flags, valueid] 5180 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5181 // they expect all aliasee summaries to be available. 5182 case bitc::FS_ALIAS: { 5183 unsigned ValueID = Record[0]; 5184 uint64_t RawFlags = Record[1]; 5185 unsigned AliaseeID = Record[2]; 5186 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5187 auto AS = llvm::make_unique<AliasSummary>(Flags); 5188 // The module path string ref set in the summary must be owned by the 5189 // index's module string table. Since we don't have a module path 5190 // string table section in the per-module index, we create a single 5191 // module path string table entry with an empty (0) ID to take 5192 // ownership. 5193 AS->setModulePath(addThisModule()->first()); 5194 5195 GlobalValue::GUID AliaseeGUID = 5196 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5197 auto AliaseeInModule = 5198 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5199 if (!AliaseeInModule) 5200 return error("Alias expects aliasee summary to be parsed"); 5201 AS->setAliasee(AliaseeInModule); 5202 5203 auto GUID = getValueInfoFromValueId(ValueID); 5204 AS->setOriginalName(GUID.second); 5205 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5206 break; 5207 } 5208 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5209 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5210 unsigned ValueID = Record[0]; 5211 uint64_t RawFlags = Record[1]; 5212 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5213 std::vector<ValueInfo> Refs = 5214 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5215 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5216 FS->setModulePath(addThisModule()->first()); 5217 auto GUID = getValueInfoFromValueId(ValueID); 5218 FS->setOriginalName(GUID.second); 5219 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5220 break; 5221 } 5222 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5223 // numrefs x valueid, n x (valueid)] 5224 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5225 // numrefs x valueid, n x (valueid, hotness)] 5226 case bitc::FS_COMBINED: 5227 case bitc::FS_COMBINED_PROFILE: { 5228 unsigned ValueID = Record[0]; 5229 uint64_t ModuleId = Record[1]; 5230 uint64_t RawFlags = Record[2]; 5231 unsigned InstCount = Record[3]; 5232 uint64_t RawFunFlags = 0; 5233 unsigned NumRefs = Record[4]; 5234 int RefListStartIndex = 5; 5235 5236 if (Version >= 4) { 5237 RawFunFlags = Record[4]; 5238 NumRefs = Record[5]; 5239 RefListStartIndex = 6; 5240 } 5241 5242 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5243 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5244 assert(Record.size() >= RefListStartIndex + NumRefs && 5245 "Record size inconsistent with number of references"); 5246 std::vector<ValueInfo> Refs = makeRefList( 5247 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5248 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5249 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5250 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5251 IsOldProfileFormat, HasProfile); 5252 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5253 auto FS = llvm::make_unique<FunctionSummary>( 5254 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5255 std::move(Edges), std::move(PendingTypeTests), 5256 std::move(PendingTypeTestAssumeVCalls), 5257 std::move(PendingTypeCheckedLoadVCalls), 5258 std::move(PendingTypeTestAssumeConstVCalls), 5259 std::move(PendingTypeCheckedLoadConstVCalls)); 5260 PendingTypeTests.clear(); 5261 PendingTypeTestAssumeVCalls.clear(); 5262 PendingTypeCheckedLoadVCalls.clear(); 5263 PendingTypeTestAssumeConstVCalls.clear(); 5264 PendingTypeCheckedLoadConstVCalls.clear(); 5265 LastSeenSummary = FS.get(); 5266 LastSeenGUID = VI.getGUID(); 5267 FS->setModulePath(ModuleIdMap[ModuleId]); 5268 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5269 break; 5270 } 5271 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5272 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5273 // they expect all aliasee summaries to be available. 5274 case bitc::FS_COMBINED_ALIAS: { 5275 unsigned ValueID = Record[0]; 5276 uint64_t ModuleId = Record[1]; 5277 uint64_t RawFlags = Record[2]; 5278 unsigned AliaseeValueId = Record[3]; 5279 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5280 auto AS = llvm::make_unique<AliasSummary>(Flags); 5281 LastSeenSummary = AS.get(); 5282 AS->setModulePath(ModuleIdMap[ModuleId]); 5283 5284 auto AliaseeGUID = 5285 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5286 auto AliaseeInModule = 5287 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5288 if (!AliaseeInModule) 5289 return error("Alias expects aliasee summary to be parsed"); 5290 AS->setAliasee(AliaseeInModule); 5291 5292 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5293 LastSeenGUID = VI.getGUID(); 5294 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5295 break; 5296 } 5297 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5298 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5299 unsigned ValueID = Record[0]; 5300 uint64_t ModuleId = Record[1]; 5301 uint64_t RawFlags = Record[2]; 5302 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5303 std::vector<ValueInfo> Refs = 5304 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5305 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5306 LastSeenSummary = FS.get(); 5307 FS->setModulePath(ModuleIdMap[ModuleId]); 5308 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5309 LastSeenGUID = VI.getGUID(); 5310 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5311 break; 5312 } 5313 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5314 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5315 uint64_t OriginalName = Record[0]; 5316 if (!LastSeenSummary) 5317 return error("Name attachment that does not follow a combined record"); 5318 LastSeenSummary->setOriginalName(OriginalName); 5319 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5320 // Reset the LastSeenSummary 5321 LastSeenSummary = nullptr; 5322 LastSeenGUID = 0; 5323 break; 5324 } 5325 case bitc::FS_TYPE_TESTS: 5326 assert(PendingTypeTests.empty()); 5327 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5328 Record.end()); 5329 break; 5330 5331 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5332 assert(PendingTypeTestAssumeVCalls.empty()); 5333 for (unsigned I = 0; I != Record.size(); I += 2) 5334 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5335 break; 5336 5337 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5338 assert(PendingTypeCheckedLoadVCalls.empty()); 5339 for (unsigned I = 0; I != Record.size(); I += 2) 5340 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5341 break; 5342 5343 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5344 PendingTypeTestAssumeConstVCalls.push_back( 5345 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5346 break; 5347 5348 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5349 PendingTypeCheckedLoadConstVCalls.push_back( 5350 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5351 break; 5352 5353 case bitc::FS_CFI_FUNCTION_DEFS: { 5354 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5355 for (unsigned I = 0; I != Record.size(); I += 2) 5356 CfiFunctionDefs.insert( 5357 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5358 break; 5359 } 5360 case bitc::FS_CFI_FUNCTION_DECLS: { 5361 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5362 for (unsigned I = 0; I != Record.size(); I += 2) 5363 CfiFunctionDecls.insert( 5364 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5365 break; 5366 } 5367 } 5368 } 5369 llvm_unreachable("Exit infinite loop"); 5370 } 5371 5372 // Parse the module string table block into the Index. 5373 // This populates the ModulePathStringTable map in the index. 5374 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5375 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5376 return error("Invalid record"); 5377 5378 SmallVector<uint64_t, 64> Record; 5379 5380 SmallString<128> ModulePath; 5381 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5382 5383 while (true) { 5384 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5385 5386 switch (Entry.Kind) { 5387 case BitstreamEntry::SubBlock: // Handled for us already. 5388 case BitstreamEntry::Error: 5389 return error("Malformed block"); 5390 case BitstreamEntry::EndBlock: 5391 return Error::success(); 5392 case BitstreamEntry::Record: 5393 // The interesting case. 5394 break; 5395 } 5396 5397 Record.clear(); 5398 switch (Stream.readRecord(Entry.ID, Record)) { 5399 default: // Default behavior: ignore. 5400 break; 5401 case bitc::MST_CODE_ENTRY: { 5402 // MST_ENTRY: [modid, namechar x N] 5403 uint64_t ModuleId = Record[0]; 5404 5405 if (convertToString(Record, 1, ModulePath)) 5406 return error("Invalid record"); 5407 5408 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5409 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5410 5411 ModulePath.clear(); 5412 break; 5413 } 5414 /// MST_CODE_HASH: [5*i32] 5415 case bitc::MST_CODE_HASH: { 5416 if (Record.size() != 5) 5417 return error("Invalid hash length " + Twine(Record.size()).str()); 5418 if (!LastSeenModule) 5419 return error("Invalid hash that does not follow a module path"); 5420 int Pos = 0; 5421 for (auto &Val : Record) { 5422 assert(!(Val >> 32) && "Unexpected high bits set"); 5423 LastSeenModule->second.second[Pos++] = Val; 5424 } 5425 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5426 LastSeenModule = nullptr; 5427 break; 5428 } 5429 } 5430 } 5431 llvm_unreachable("Exit infinite loop"); 5432 } 5433 5434 namespace { 5435 5436 // FIXME: This class is only here to support the transition to llvm::Error. It 5437 // will be removed once this transition is complete. Clients should prefer to 5438 // deal with the Error value directly, rather than converting to error_code. 5439 class BitcodeErrorCategoryType : public std::error_category { 5440 const char *name() const noexcept override { 5441 return "llvm.bitcode"; 5442 } 5443 5444 std::string message(int IE) const override { 5445 BitcodeError E = static_cast<BitcodeError>(IE); 5446 switch (E) { 5447 case BitcodeError::CorruptedBitcode: 5448 return "Corrupted bitcode"; 5449 } 5450 llvm_unreachable("Unknown error type!"); 5451 } 5452 }; 5453 5454 } // end anonymous namespace 5455 5456 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5457 5458 const std::error_category &llvm::BitcodeErrorCategory() { 5459 return *ErrorCategory; 5460 } 5461 5462 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5463 unsigned Block, unsigned RecordID) { 5464 if (Stream.EnterSubBlock(Block)) 5465 return error("Invalid record"); 5466 5467 StringRef Strtab; 5468 while (true) { 5469 BitstreamEntry Entry = Stream.advance(); 5470 switch (Entry.Kind) { 5471 case BitstreamEntry::EndBlock: 5472 return Strtab; 5473 5474 case BitstreamEntry::Error: 5475 return error("Malformed block"); 5476 5477 case BitstreamEntry::SubBlock: 5478 if (Stream.SkipBlock()) 5479 return error("Malformed block"); 5480 break; 5481 5482 case BitstreamEntry::Record: 5483 StringRef Blob; 5484 SmallVector<uint64_t, 1> Record; 5485 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5486 Strtab = Blob; 5487 break; 5488 } 5489 } 5490 } 5491 5492 //===----------------------------------------------------------------------===// 5493 // External interface 5494 //===----------------------------------------------------------------------===// 5495 5496 Expected<std::vector<BitcodeModule>> 5497 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5498 auto FOrErr = getBitcodeFileContents(Buffer); 5499 if (!FOrErr) 5500 return FOrErr.takeError(); 5501 return std::move(FOrErr->Mods); 5502 } 5503 5504 Expected<BitcodeFileContents> 5505 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5506 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5507 if (!StreamOrErr) 5508 return StreamOrErr.takeError(); 5509 BitstreamCursor &Stream = *StreamOrErr; 5510 5511 BitcodeFileContents F; 5512 while (true) { 5513 uint64_t BCBegin = Stream.getCurrentByteNo(); 5514 5515 // We may be consuming bitcode from a client that leaves garbage at the end 5516 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5517 // the end that there cannot possibly be another module, stop looking. 5518 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5519 return F; 5520 5521 BitstreamEntry Entry = Stream.advance(); 5522 switch (Entry.Kind) { 5523 case BitstreamEntry::EndBlock: 5524 case BitstreamEntry::Error: 5525 return error("Malformed block"); 5526 5527 case BitstreamEntry::SubBlock: { 5528 uint64_t IdentificationBit = -1ull; 5529 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5530 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5531 if (Stream.SkipBlock()) 5532 return error("Malformed block"); 5533 5534 Entry = Stream.advance(); 5535 if (Entry.Kind != BitstreamEntry::SubBlock || 5536 Entry.ID != bitc::MODULE_BLOCK_ID) 5537 return error("Malformed block"); 5538 } 5539 5540 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5541 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5542 if (Stream.SkipBlock()) 5543 return error("Malformed block"); 5544 5545 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5546 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5547 Buffer.getBufferIdentifier(), IdentificationBit, 5548 ModuleBit}); 5549 continue; 5550 } 5551 5552 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5553 Expected<StringRef> Strtab = 5554 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5555 if (!Strtab) 5556 return Strtab.takeError(); 5557 // This string table is used by every preceding bitcode module that does 5558 // not have its own string table. A bitcode file may have multiple 5559 // string tables if it was created by binary concatenation, for example 5560 // with "llvm-cat -b". 5561 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5562 if (!I->Strtab.empty()) 5563 break; 5564 I->Strtab = *Strtab; 5565 } 5566 // Similarly, the string table is used by every preceding symbol table; 5567 // normally there will be just one unless the bitcode file was created 5568 // by binary concatenation. 5569 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5570 F.StrtabForSymtab = *Strtab; 5571 continue; 5572 } 5573 5574 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5575 Expected<StringRef> SymtabOrErr = 5576 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5577 if (!SymtabOrErr) 5578 return SymtabOrErr.takeError(); 5579 5580 // We can expect the bitcode file to have multiple symbol tables if it 5581 // was created by binary concatenation. In that case we silently 5582 // ignore any subsequent symbol tables, which is fine because this is a 5583 // low level function. The client is expected to notice that the number 5584 // of modules in the symbol table does not match the number of modules 5585 // in the input file and regenerate the symbol table. 5586 if (F.Symtab.empty()) 5587 F.Symtab = *SymtabOrErr; 5588 continue; 5589 } 5590 5591 if (Stream.SkipBlock()) 5592 return error("Malformed block"); 5593 continue; 5594 } 5595 case BitstreamEntry::Record: 5596 Stream.skipRecord(Entry.ID); 5597 continue; 5598 } 5599 } 5600 } 5601 5602 /// \brief Get a lazy one-at-time loading module from bitcode. 5603 /// 5604 /// This isn't always used in a lazy context. In particular, it's also used by 5605 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5606 /// in forward-referenced functions from block address references. 5607 /// 5608 /// \param[in] MaterializeAll Set to \c true if we should materialize 5609 /// everything. 5610 Expected<std::unique_ptr<Module>> 5611 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5612 bool ShouldLazyLoadMetadata, bool IsImporting) { 5613 BitstreamCursor Stream(Buffer); 5614 5615 std::string ProducerIdentification; 5616 if (IdentificationBit != -1ull) { 5617 Stream.JumpToBit(IdentificationBit); 5618 Expected<std::string> ProducerIdentificationOrErr = 5619 readIdentificationBlock(Stream); 5620 if (!ProducerIdentificationOrErr) 5621 return ProducerIdentificationOrErr.takeError(); 5622 5623 ProducerIdentification = *ProducerIdentificationOrErr; 5624 } 5625 5626 Stream.JumpToBit(ModuleBit); 5627 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5628 Context); 5629 5630 std::unique_ptr<Module> M = 5631 llvm::make_unique<Module>(ModuleIdentifier, Context); 5632 M->setMaterializer(R); 5633 5634 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5635 if (Error Err = 5636 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5637 return std::move(Err); 5638 5639 if (MaterializeAll) { 5640 // Read in the entire module, and destroy the BitcodeReader. 5641 if (Error Err = M->materializeAll()) 5642 return std::move(Err); 5643 } else { 5644 // Resolve forward references from blockaddresses. 5645 if (Error Err = R->materializeForwardReferencedFunctions()) 5646 return std::move(Err); 5647 } 5648 return std::move(M); 5649 } 5650 5651 Expected<std::unique_ptr<Module>> 5652 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5653 bool IsImporting) { 5654 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5655 } 5656 5657 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5658 // We don't use ModuleIdentifier here because the client may need to control the 5659 // module path used in the combined summary (e.g. when reading summaries for 5660 // regular LTO modules). 5661 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5662 StringRef ModulePath, uint64_t ModuleId) { 5663 BitstreamCursor Stream(Buffer); 5664 Stream.JumpToBit(ModuleBit); 5665 5666 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5667 ModulePath, ModuleId); 5668 return R.parseModule(); 5669 } 5670 5671 // Parse the specified bitcode buffer, returning the function info index. 5672 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5673 BitstreamCursor Stream(Buffer); 5674 Stream.JumpToBit(ModuleBit); 5675 5676 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5677 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5678 ModuleIdentifier, 0); 5679 5680 if (Error Err = R.parseModule()) 5681 return std::move(Err); 5682 5683 return std::move(Index); 5684 } 5685 5686 // Check if the given bitcode buffer contains a global value summary block. 5687 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5688 BitstreamCursor Stream(Buffer); 5689 Stream.JumpToBit(ModuleBit); 5690 5691 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5692 return error("Invalid record"); 5693 5694 while (true) { 5695 BitstreamEntry Entry = Stream.advance(); 5696 5697 switch (Entry.Kind) { 5698 case BitstreamEntry::Error: 5699 return error("Malformed block"); 5700 case BitstreamEntry::EndBlock: 5701 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5702 5703 case BitstreamEntry::SubBlock: 5704 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5705 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5706 5707 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5708 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5709 5710 // Ignore other sub-blocks. 5711 if (Stream.SkipBlock()) 5712 return error("Malformed block"); 5713 continue; 5714 5715 case BitstreamEntry::Record: 5716 Stream.skipRecord(Entry.ID); 5717 continue; 5718 } 5719 } 5720 } 5721 5722 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5723 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5724 if (!MsOrErr) 5725 return MsOrErr.takeError(); 5726 5727 if (MsOrErr->size() != 1) 5728 return error("Expected a single module"); 5729 5730 return (*MsOrErr)[0]; 5731 } 5732 5733 Expected<std::unique_ptr<Module>> 5734 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5735 bool ShouldLazyLoadMetadata, bool IsImporting) { 5736 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5737 if (!BM) 5738 return BM.takeError(); 5739 5740 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5741 } 5742 5743 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5744 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5745 bool ShouldLazyLoadMetadata, bool IsImporting) { 5746 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5747 IsImporting); 5748 if (MOrErr) 5749 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5750 return MOrErr; 5751 } 5752 5753 Expected<std::unique_ptr<Module>> 5754 BitcodeModule::parseModule(LLVMContext &Context) { 5755 return getModuleImpl(Context, true, false, false); 5756 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5757 // written. We must defer until the Module has been fully materialized. 5758 } 5759 5760 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5761 LLVMContext &Context) { 5762 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5763 if (!BM) 5764 return BM.takeError(); 5765 5766 return BM->parseModule(Context); 5767 } 5768 5769 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5770 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5771 if (!StreamOrErr) 5772 return StreamOrErr.takeError(); 5773 5774 return readTriple(*StreamOrErr); 5775 } 5776 5777 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5778 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5779 if (!StreamOrErr) 5780 return StreamOrErr.takeError(); 5781 5782 return hasObjCCategory(*StreamOrErr); 5783 } 5784 5785 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5786 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5787 if (!StreamOrErr) 5788 return StreamOrErr.takeError(); 5789 5790 return readIdentificationCode(*StreamOrErr); 5791 } 5792 5793 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5794 ModuleSummaryIndex &CombinedIndex, 5795 uint64_t ModuleId) { 5796 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5797 if (!BM) 5798 return BM.takeError(); 5799 5800 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5801 } 5802 5803 Expected<std::unique_ptr<ModuleSummaryIndex>> 5804 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5805 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5806 if (!BM) 5807 return BM.takeError(); 5808 5809 return BM->getSummary(); 5810 } 5811 5812 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5813 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5814 if (!BM) 5815 return BM.takeError(); 5816 5817 return BM->getLTOInfo(); 5818 } 5819 5820 Expected<std::unique_ptr<ModuleSummaryIndex>> 5821 llvm::getModuleSummaryIndexForFile(StringRef Path, 5822 bool IgnoreEmptyThinLTOIndexFile) { 5823 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5824 MemoryBuffer::getFileOrSTDIN(Path); 5825 if (!FileOrErr) 5826 return errorCodeToError(FileOrErr.getError()); 5827 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5828 return nullptr; 5829 return getModuleSummaryIndex(**FileOrErr); 5830 } 5831