1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/BitcodeReader.h"
11 #include "MetadataLoader.h"
12 #include "ValueList.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Bitcode/BitstreamReader.h"
25 #include "llvm/Bitcode/LLVMBitCodes.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 /// Helper to read the header common to all bitcode files.
109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
110   // Sniff for the signature.
111   if (!Stream.canSkipToPos(4) ||
112       Stream.Read(8) != 'B' ||
113       Stream.Read(8) != 'C' ||
114       Stream.Read(4) != 0x0 ||
115       Stream.Read(4) != 0xC ||
116       Stream.Read(4) != 0xE ||
117       Stream.Read(4) != 0xD)
118     return false;
119   return true;
120 }
121 
122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
123   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
124   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
125 
126   if (Buffer.getBufferSize() & 3)
127     return error("Invalid bitcode signature");
128 
129   // If we have a wrapper header, parse it and ignore the non-bc file contents.
130   // The magic number is 0x0B17C0DE stored in little endian.
131   if (isBitcodeWrapper(BufPtr, BufEnd))
132     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
133       return error("Invalid bitcode wrapper header");
134 
135   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
136   if (!hasValidBitcodeHeader(Stream))
137     return error("Invalid bitcode signature");
138 
139   return std::move(Stream);
140 }
141 
142 /// Convert a string from a record into an std::string, return true on failure.
143 template <typename StrTy>
144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
145                             StrTy &Result) {
146   if (Idx > Record.size())
147     return true;
148 
149   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
150     Result += (char)Record[i];
151   return false;
152 }
153 
154 // Strip all the TBAA attachment for the module.
155 static void stripTBAA(Module *M) {
156   for (auto &F : *M) {
157     if (F.isMaterializable())
158       continue;
159     for (auto &I : instructions(F))
160       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
161   }
162 }
163 
164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
165 /// "epoch" encoded in the bitcode, and return the producer name if any.
166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
167   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
168     return error("Invalid record");
169 
170   // Read all the records.
171   SmallVector<uint64_t, 64> Record;
172 
173   std::string ProducerIdentification;
174 
175   while (true) {
176     BitstreamEntry Entry = Stream.advance();
177 
178     switch (Entry.Kind) {
179     default:
180     case BitstreamEntry::Error:
181       return error("Malformed block");
182     case BitstreamEntry::EndBlock:
183       return ProducerIdentification;
184     case BitstreamEntry::Record:
185       // The interesting case.
186       break;
187     }
188 
189     // Read a record.
190     Record.clear();
191     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
192     switch (BitCode) {
193     default: // Default behavior: reject
194       return error("Invalid value");
195     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
196       convertToString(Record, 0, ProducerIdentification);
197       break;
198     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
199       unsigned epoch = (unsigned)Record[0];
200       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
201         return error(
202           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
203           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
204       }
205     }
206     }
207   }
208 }
209 
210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
211   // We expect a number of well-defined blocks, though we don't necessarily
212   // need to understand them all.
213   while (true) {
214     if (Stream.AtEndOfStream())
215       return "";
216 
217     BitstreamEntry Entry = Stream.advance();
218     switch (Entry.Kind) {
219     case BitstreamEntry::EndBlock:
220     case BitstreamEntry::Error:
221       return error("Malformed block");
222 
223     case BitstreamEntry::SubBlock:
224       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
225         return readIdentificationBlock(Stream);
226 
227       // Ignore other sub-blocks.
228       if (Stream.SkipBlock())
229         return error("Malformed block");
230       continue;
231     case BitstreamEntry::Record:
232       Stream.skipRecord(Entry.ID);
233       continue;
234     }
235   }
236 }
237 
238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
239   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
240     return error("Invalid record");
241 
242   SmallVector<uint64_t, 64> Record;
243   // Read all the records for this module.
244 
245   while (true) {
246     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
247 
248     switch (Entry.Kind) {
249     case BitstreamEntry::SubBlock: // Handled for us already.
250     case BitstreamEntry::Error:
251       return error("Malformed block");
252     case BitstreamEntry::EndBlock:
253       return false;
254     case BitstreamEntry::Record:
255       // The interesting case.
256       break;
257     }
258 
259     // Read a record.
260     switch (Stream.readRecord(Entry.ID, Record)) {
261     default:
262       break; // Default behavior, ignore unknown content.
263     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
264       std::string S;
265       if (convertToString(Record, 0, S))
266         return error("Invalid record");
267       // Check for the i386 and other (x86_64, ARM) conventions
268       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
269           S.find("__OBJC,__category") != std::string::npos)
270         return true;
271       break;
272     }
273     }
274     Record.clear();
275   }
276   llvm_unreachable("Exit infinite loop");
277 }
278 
279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
280   // We expect a number of well-defined blocks, though we don't necessarily
281   // need to understand them all.
282   while (true) {
283     BitstreamEntry Entry = Stream.advance();
284 
285     switch (Entry.Kind) {
286     case BitstreamEntry::Error:
287       return error("Malformed block");
288     case BitstreamEntry::EndBlock:
289       return false;
290 
291     case BitstreamEntry::SubBlock:
292       if (Entry.ID == bitc::MODULE_BLOCK_ID)
293         return hasObjCCategoryInModule(Stream);
294 
295       // Ignore other sub-blocks.
296       if (Stream.SkipBlock())
297         return error("Malformed block");
298       continue;
299 
300     case BitstreamEntry::Record:
301       Stream.skipRecord(Entry.ID);
302       continue;
303     }
304   }
305 }
306 
307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
308   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
309     return error("Invalid record");
310 
311   SmallVector<uint64_t, 64> Record;
312 
313   std::string Triple;
314 
315   // Read all the records for this module.
316   while (true) {
317     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
318 
319     switch (Entry.Kind) {
320     case BitstreamEntry::SubBlock: // Handled for us already.
321     case BitstreamEntry::Error:
322       return error("Malformed block");
323     case BitstreamEntry::EndBlock:
324       return Triple;
325     case BitstreamEntry::Record:
326       // The interesting case.
327       break;
328     }
329 
330     // Read a record.
331     switch (Stream.readRecord(Entry.ID, Record)) {
332     default: break;  // Default behavior, ignore unknown content.
333     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
334       std::string S;
335       if (convertToString(Record, 0, S))
336         return error("Invalid record");
337       Triple = S;
338       break;
339     }
340     }
341     Record.clear();
342   }
343   llvm_unreachable("Exit infinite loop");
344 }
345 
346 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
347   // We expect a number of well-defined blocks, though we don't necessarily
348   // need to understand them all.
349   while (true) {
350     BitstreamEntry Entry = Stream.advance();
351 
352     switch (Entry.Kind) {
353     case BitstreamEntry::Error:
354       return error("Malformed block");
355     case BitstreamEntry::EndBlock:
356       return "";
357 
358     case BitstreamEntry::SubBlock:
359       if (Entry.ID == bitc::MODULE_BLOCK_ID)
360         return readModuleTriple(Stream);
361 
362       // Ignore other sub-blocks.
363       if (Stream.SkipBlock())
364         return error("Malformed block");
365       continue;
366 
367     case BitstreamEntry::Record:
368       Stream.skipRecord(Entry.ID);
369       continue;
370     }
371   }
372 }
373 
374 namespace {
375 
376 class BitcodeReaderBase {
377 protected:
378   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
379       : Stream(std::move(Stream)), Strtab(Strtab) {
380     this->Stream.setBlockInfo(&BlockInfo);
381   }
382 
383   BitstreamBlockInfo BlockInfo;
384   BitstreamCursor Stream;
385   StringRef Strtab;
386 
387   /// In version 2 of the bitcode we store names of global values and comdats in
388   /// a string table rather than in the VST.
389   bool UseStrtab = false;
390 
391   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
392 
393   /// If this module uses a string table, pop the reference to the string table
394   /// and return the referenced string and the rest of the record. Otherwise
395   /// just return the record itself.
396   std::pair<StringRef, ArrayRef<uint64_t>>
397   readNameFromStrtab(ArrayRef<uint64_t> Record);
398 
399   bool readBlockInfo();
400 
401   // Contains an arbitrary and optional string identifying the bitcode producer
402   std::string ProducerIdentification;
403 
404   Error error(const Twine &Message);
405 };
406 
407 } // end anonymous namespace
408 
409 Error BitcodeReaderBase::error(const Twine &Message) {
410   std::string FullMsg = Message.str();
411   if (!ProducerIdentification.empty())
412     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
413                LLVM_VERSION_STRING "')";
414   return ::error(FullMsg);
415 }
416 
417 Expected<unsigned>
418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
419   if (Record.empty())
420     return error("Invalid record");
421   unsigned ModuleVersion = Record[0];
422   if (ModuleVersion > 2)
423     return error("Invalid value");
424   UseStrtab = ModuleVersion >= 2;
425   return ModuleVersion;
426 }
427 
428 std::pair<StringRef, ArrayRef<uint64_t>>
429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
430   if (!UseStrtab)
431     return {"", Record};
432   // Invalid reference. Let the caller complain about the record being empty.
433   if (Record[0] + Record[1] > Strtab.size())
434     return {"", {}};
435   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
436 }
437 
438 namespace {
439 
440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
441   LLVMContext &Context;
442   Module *TheModule = nullptr;
443   // Next offset to start scanning for lazy parsing of function bodies.
444   uint64_t NextUnreadBit = 0;
445   // Last function offset found in the VST.
446   uint64_t LastFunctionBlockBit = 0;
447   bool SeenValueSymbolTable = false;
448   uint64_t VSTOffset = 0;
449 
450   std::vector<std::string> SectionTable;
451   std::vector<std::string> GCTable;
452 
453   std::vector<Type*> TypeList;
454   BitcodeReaderValueList ValueList;
455   Optional<MetadataLoader> MDLoader;
456   std::vector<Comdat *> ComdatList;
457   SmallVector<Instruction *, 64> InstructionList;
458 
459   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
460   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
461   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
462   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
463   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
464 
465   /// The set of attributes by index.  Index zero in the file is for null, and
466   /// is thus not represented here.  As such all indices are off by one.
467   std::vector<AttributeList> MAttributes;
468 
469   /// The set of attribute groups.
470   std::map<unsigned, AttributeList> MAttributeGroups;
471 
472   /// While parsing a function body, this is a list of the basic blocks for the
473   /// function.
474   std::vector<BasicBlock*> FunctionBBs;
475 
476   // When reading the module header, this list is populated with functions that
477   // have bodies later in the file.
478   std::vector<Function*> FunctionsWithBodies;
479 
480   // When intrinsic functions are encountered which require upgrading they are
481   // stored here with their replacement function.
482   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
483   UpdatedIntrinsicMap UpgradedIntrinsics;
484   // Intrinsics which were remangled because of types rename
485   UpdatedIntrinsicMap RemangledIntrinsics;
486 
487   // Several operations happen after the module header has been read, but
488   // before function bodies are processed. This keeps track of whether
489   // we've done this yet.
490   bool SeenFirstFunctionBody = false;
491 
492   /// When function bodies are initially scanned, this map contains info about
493   /// where to find deferred function body in the stream.
494   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
495 
496   /// When Metadata block is initially scanned when parsing the module, we may
497   /// choose to defer parsing of the metadata. This vector contains info about
498   /// which Metadata blocks are deferred.
499   std::vector<uint64_t> DeferredMetadataInfo;
500 
501   /// These are basic blocks forward-referenced by block addresses.  They are
502   /// inserted lazily into functions when they're loaded.  The basic block ID is
503   /// its index into the vector.
504   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
505   std::deque<Function *> BasicBlockFwdRefQueue;
506 
507   /// Indicates that we are using a new encoding for instruction operands where
508   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
509   /// instruction number, for a more compact encoding.  Some instruction
510   /// operands are not relative to the instruction ID: basic block numbers, and
511   /// types. Once the old style function blocks have been phased out, we would
512   /// not need this flag.
513   bool UseRelativeIDs = false;
514 
515   /// True if all functions will be materialized, negating the need to process
516   /// (e.g.) blockaddress forward references.
517   bool WillMaterializeAllForwardRefs = false;
518 
519   bool StripDebugInfo = false;
520   TBAAVerifier TBAAVerifyHelper;
521 
522   std::vector<std::string> BundleTags;
523   SmallVector<SyncScope::ID, 8> SSIDs;
524 
525 public:
526   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
527                 StringRef ProducerIdentification, LLVMContext &Context);
528 
529   Error materializeForwardReferencedFunctions();
530 
531   Error materialize(GlobalValue *GV) override;
532   Error materializeModule() override;
533   std::vector<StructType *> getIdentifiedStructTypes() const override;
534 
535   /// \brief Main interface to parsing a bitcode buffer.
536   /// \returns true if an error occurred.
537   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
538                          bool IsImporting = false);
539 
540   static uint64_t decodeSignRotatedValue(uint64_t V);
541 
542   /// Materialize any deferred Metadata block.
543   Error materializeMetadata() override;
544 
545   void setStripDebugInfo() override;
546 
547 private:
548   std::vector<StructType *> IdentifiedStructTypes;
549   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
550   StructType *createIdentifiedStructType(LLVMContext &Context);
551 
552   Type *getTypeByID(unsigned ID);
553 
554   Value *getFnValueByID(unsigned ID, Type *Ty) {
555     if (Ty && Ty->isMetadataTy())
556       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
557     return ValueList.getValueFwdRef(ID, Ty);
558   }
559 
560   Metadata *getFnMetadataByID(unsigned ID) {
561     return MDLoader->getMetadataFwdRefOrLoad(ID);
562   }
563 
564   BasicBlock *getBasicBlock(unsigned ID) const {
565     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
566     return FunctionBBs[ID];
567   }
568 
569   AttributeList getAttributes(unsigned i) const {
570     if (i-1 < MAttributes.size())
571       return MAttributes[i-1];
572     return AttributeList();
573   }
574 
575   /// Read a value/type pair out of the specified record from slot 'Slot'.
576   /// Increment Slot past the number of slots used in the record. Return true on
577   /// failure.
578   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
579                         unsigned InstNum, Value *&ResVal) {
580     if (Slot == Record.size()) return true;
581     unsigned ValNo = (unsigned)Record[Slot++];
582     // Adjust the ValNo, if it was encoded relative to the InstNum.
583     if (UseRelativeIDs)
584       ValNo = InstNum - ValNo;
585     if (ValNo < InstNum) {
586       // If this is not a forward reference, just return the value we already
587       // have.
588       ResVal = getFnValueByID(ValNo, nullptr);
589       return ResVal == nullptr;
590     }
591     if (Slot == Record.size())
592       return true;
593 
594     unsigned TypeNo = (unsigned)Record[Slot++];
595     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
596     return ResVal == nullptr;
597   }
598 
599   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
600   /// past the number of slots used by the value in the record. Return true if
601   /// there is an error.
602   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
603                 unsigned InstNum, Type *Ty, Value *&ResVal) {
604     if (getValue(Record, Slot, InstNum, Ty, ResVal))
605       return true;
606     // All values currently take a single record slot.
607     ++Slot;
608     return false;
609   }
610 
611   /// Like popValue, but does not increment the Slot number.
612   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
613                 unsigned InstNum, Type *Ty, Value *&ResVal) {
614     ResVal = getValue(Record, Slot, InstNum, Ty);
615     return ResVal == nullptr;
616   }
617 
618   /// Version of getValue that returns ResVal directly, or 0 if there is an
619   /// error.
620   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
621                   unsigned InstNum, Type *Ty) {
622     if (Slot == Record.size()) return nullptr;
623     unsigned ValNo = (unsigned)Record[Slot];
624     // Adjust the ValNo, if it was encoded relative to the InstNum.
625     if (UseRelativeIDs)
626       ValNo = InstNum - ValNo;
627     return getFnValueByID(ValNo, Ty);
628   }
629 
630   /// Like getValue, but decodes signed VBRs.
631   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
632                         unsigned InstNum, Type *Ty) {
633     if (Slot == Record.size()) return nullptr;
634     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
635     // Adjust the ValNo, if it was encoded relative to the InstNum.
636     if (UseRelativeIDs)
637       ValNo = InstNum - ValNo;
638     return getFnValueByID(ValNo, Ty);
639   }
640 
641   /// Converts alignment exponent (i.e. power of two (or zero)) to the
642   /// corresponding alignment to use. If alignment is too large, returns
643   /// a corresponding error code.
644   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
645   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
646   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
647 
648   Error parseComdatRecord(ArrayRef<uint64_t> Record);
649   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
650   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
651   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
652                                         ArrayRef<uint64_t> Record);
653 
654   Error parseAttributeBlock();
655   Error parseAttributeGroupBlock();
656   Error parseTypeTable();
657   Error parseTypeTableBody();
658   Error parseOperandBundleTags();
659   Error parseSyncScopeNames();
660 
661   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
662                                 unsigned NameIndex, Triple &TT);
663   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
664                                ArrayRef<uint64_t> Record);
665   Error parseValueSymbolTable(uint64_t Offset = 0);
666   Error parseGlobalValueSymbolTable();
667   Error parseConstants();
668   Error rememberAndSkipFunctionBodies();
669   Error rememberAndSkipFunctionBody();
670   /// Save the positions of the Metadata blocks and skip parsing the blocks.
671   Error rememberAndSkipMetadata();
672   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
673   Error parseFunctionBody(Function *F);
674   Error globalCleanup();
675   Error resolveGlobalAndIndirectSymbolInits();
676   Error parseUseLists();
677   Error findFunctionInStream(
678       Function *F,
679       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
680 
681   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
682 };
683 
684 /// Class to manage reading and parsing function summary index bitcode
685 /// files/sections.
686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
687   /// The module index built during parsing.
688   ModuleSummaryIndex &TheIndex;
689 
690   /// Indicates whether we have encountered a global value summary section
691   /// yet during parsing.
692   bool SeenGlobalValSummary = false;
693 
694   /// Indicates whether we have already parsed the VST, used for error checking.
695   bool SeenValueSymbolTable = false;
696 
697   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
698   /// Used to enable on-demand parsing of the VST.
699   uint64_t VSTOffset = 0;
700 
701   // Map to save ValueId to ValueInfo association that was recorded in the
702   // ValueSymbolTable. It is used after the VST is parsed to convert
703   // call graph edges read from the function summary from referencing
704   // callees by their ValueId to using the ValueInfo instead, which is how
705   // they are recorded in the summary index being built.
706   // We save a GUID which refers to the same global as the ValueInfo, but
707   // ignoring the linkage, i.e. for values other than local linkage they are
708   // identical.
709   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
710       ValueIdToValueInfoMap;
711 
712   /// Map populated during module path string table parsing, from the
713   /// module ID to a string reference owned by the index's module
714   /// path string table, used to correlate with combined index
715   /// summary records.
716   DenseMap<uint64_t, StringRef> ModuleIdMap;
717 
718   /// Original source file name recorded in a bitcode record.
719   std::string SourceFileName;
720 
721   /// The string identifier given to this module by the client, normally the
722   /// path to the bitcode file.
723   StringRef ModulePath;
724 
725   /// For per-module summary indexes, the unique numerical identifier given to
726   /// this module by the client.
727   unsigned ModuleId;
728 
729 public:
730   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
731                                   ModuleSummaryIndex &TheIndex,
732                                   StringRef ModulePath, unsigned ModuleId);
733 
734   Error parseModule();
735 
736 private:
737   void setValueGUID(uint64_t ValueID, StringRef ValueName,
738                     GlobalValue::LinkageTypes Linkage,
739                     StringRef SourceFileName);
740   Error parseValueSymbolTable(
741       uint64_t Offset,
742       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
743   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
744   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
745                                                     bool IsOldProfileFormat,
746                                                     bool HasProfile);
747   Error parseEntireSummary(unsigned ID);
748   Error parseModuleStringTable();
749 
750   std::pair<ValueInfo, GlobalValue::GUID>
751   getValueInfoFromValueId(unsigned ValueId);
752 
753   ModuleSummaryIndex::ModuleInfo *addThisModule();
754 };
755 
756 } // end anonymous namespace
757 
758 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
759                                                     Error Err) {
760   if (Err) {
761     std::error_code EC;
762     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
763       EC = EIB.convertToErrorCode();
764       Ctx.emitError(EIB.message());
765     });
766     return EC;
767   }
768   return std::error_code();
769 }
770 
771 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
772                              StringRef ProducerIdentification,
773                              LLVMContext &Context)
774     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
775       ValueList(Context) {
776   this->ProducerIdentification = ProducerIdentification;
777 }
778 
779 Error BitcodeReader::materializeForwardReferencedFunctions() {
780   if (WillMaterializeAllForwardRefs)
781     return Error::success();
782 
783   // Prevent recursion.
784   WillMaterializeAllForwardRefs = true;
785 
786   while (!BasicBlockFwdRefQueue.empty()) {
787     Function *F = BasicBlockFwdRefQueue.front();
788     BasicBlockFwdRefQueue.pop_front();
789     assert(F && "Expected valid function");
790     if (!BasicBlockFwdRefs.count(F))
791       // Already materialized.
792       continue;
793 
794     // Check for a function that isn't materializable to prevent an infinite
795     // loop.  When parsing a blockaddress stored in a global variable, there
796     // isn't a trivial way to check if a function will have a body without a
797     // linear search through FunctionsWithBodies, so just check it here.
798     if (!F->isMaterializable())
799       return error("Never resolved function from blockaddress");
800 
801     // Try to materialize F.
802     if (Error Err = materialize(F))
803       return Err;
804   }
805   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
806 
807   // Reset state.
808   WillMaterializeAllForwardRefs = false;
809   return Error::success();
810 }
811 
812 //===----------------------------------------------------------------------===//
813 //  Helper functions to implement forward reference resolution, etc.
814 //===----------------------------------------------------------------------===//
815 
816 static bool hasImplicitComdat(size_t Val) {
817   switch (Val) {
818   default:
819     return false;
820   case 1:  // Old WeakAnyLinkage
821   case 4:  // Old LinkOnceAnyLinkage
822   case 10: // Old WeakODRLinkage
823   case 11: // Old LinkOnceODRLinkage
824     return true;
825   }
826 }
827 
828 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
829   switch (Val) {
830   default: // Map unknown/new linkages to external
831   case 0:
832     return GlobalValue::ExternalLinkage;
833   case 2:
834     return GlobalValue::AppendingLinkage;
835   case 3:
836     return GlobalValue::InternalLinkage;
837   case 5:
838     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
839   case 6:
840     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
841   case 7:
842     return GlobalValue::ExternalWeakLinkage;
843   case 8:
844     return GlobalValue::CommonLinkage;
845   case 9:
846     return GlobalValue::PrivateLinkage;
847   case 12:
848     return GlobalValue::AvailableExternallyLinkage;
849   case 13:
850     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
851   case 14:
852     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
853   case 15:
854     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
855   case 1: // Old value with implicit comdat.
856   case 16:
857     return GlobalValue::WeakAnyLinkage;
858   case 10: // Old value with implicit comdat.
859   case 17:
860     return GlobalValue::WeakODRLinkage;
861   case 4: // Old value with implicit comdat.
862   case 18:
863     return GlobalValue::LinkOnceAnyLinkage;
864   case 11: // Old value with implicit comdat.
865   case 19:
866     return GlobalValue::LinkOnceODRLinkage;
867   }
868 }
869 
870 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
871   FunctionSummary::FFlags Flags;
872   Flags.ReadNone = RawFlags & 0x1;
873   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
874   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
875   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
876   return Flags;
877 }
878 
879 /// Decode the flags for GlobalValue in the summary.
880 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
881                                                             uint64_t Version) {
882   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
883   // like getDecodedLinkage() above. Any future change to the linkage enum and
884   // to getDecodedLinkage() will need to be taken into account here as above.
885   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
886   RawFlags = RawFlags >> 4;
887   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
888   // The Live flag wasn't introduced until version 3. For dead stripping
889   // to work correctly on earlier versions, we must conservatively treat all
890   // values as live.
891   bool Live = (RawFlags & 0x2) || Version < 3;
892   bool Local = (RawFlags & 0x4);
893 
894   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local);
895 }
896 
897 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
898   switch (Val) {
899   default: // Map unknown visibilities to default.
900   case 0: return GlobalValue::DefaultVisibility;
901   case 1: return GlobalValue::HiddenVisibility;
902   case 2: return GlobalValue::ProtectedVisibility;
903   }
904 }
905 
906 static GlobalValue::DLLStorageClassTypes
907 getDecodedDLLStorageClass(unsigned Val) {
908   switch (Val) {
909   default: // Map unknown values to default.
910   case 0: return GlobalValue::DefaultStorageClass;
911   case 1: return GlobalValue::DLLImportStorageClass;
912   case 2: return GlobalValue::DLLExportStorageClass;
913   }
914 }
915 
916 static bool getDecodedDSOLocal(unsigned Val) {
917   switch(Val) {
918   default: // Map unknown values to preemptable.
919   case 0:  return false;
920   case 1:  return true;
921   }
922 }
923 
924 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
925   switch (Val) {
926     case 0: return GlobalVariable::NotThreadLocal;
927     default: // Map unknown non-zero value to general dynamic.
928     case 1: return GlobalVariable::GeneralDynamicTLSModel;
929     case 2: return GlobalVariable::LocalDynamicTLSModel;
930     case 3: return GlobalVariable::InitialExecTLSModel;
931     case 4: return GlobalVariable::LocalExecTLSModel;
932   }
933 }
934 
935 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
936   switch (Val) {
937     default: // Map unknown to UnnamedAddr::None.
938     case 0: return GlobalVariable::UnnamedAddr::None;
939     case 1: return GlobalVariable::UnnamedAddr::Global;
940     case 2: return GlobalVariable::UnnamedAddr::Local;
941   }
942 }
943 
944 static int getDecodedCastOpcode(unsigned Val) {
945   switch (Val) {
946   default: return -1;
947   case bitc::CAST_TRUNC   : return Instruction::Trunc;
948   case bitc::CAST_ZEXT    : return Instruction::ZExt;
949   case bitc::CAST_SEXT    : return Instruction::SExt;
950   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
951   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
952   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
953   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
954   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
955   case bitc::CAST_FPEXT   : return Instruction::FPExt;
956   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
957   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
958   case bitc::CAST_BITCAST : return Instruction::BitCast;
959   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
960   }
961 }
962 
963 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
964   bool IsFP = Ty->isFPOrFPVectorTy();
965   // BinOps are only valid for int/fp or vector of int/fp types
966   if (!IsFP && !Ty->isIntOrIntVectorTy())
967     return -1;
968 
969   switch (Val) {
970   default:
971     return -1;
972   case bitc::BINOP_ADD:
973     return IsFP ? Instruction::FAdd : Instruction::Add;
974   case bitc::BINOP_SUB:
975     return IsFP ? Instruction::FSub : Instruction::Sub;
976   case bitc::BINOP_MUL:
977     return IsFP ? Instruction::FMul : Instruction::Mul;
978   case bitc::BINOP_UDIV:
979     return IsFP ? -1 : Instruction::UDiv;
980   case bitc::BINOP_SDIV:
981     return IsFP ? Instruction::FDiv : Instruction::SDiv;
982   case bitc::BINOP_UREM:
983     return IsFP ? -1 : Instruction::URem;
984   case bitc::BINOP_SREM:
985     return IsFP ? Instruction::FRem : Instruction::SRem;
986   case bitc::BINOP_SHL:
987     return IsFP ? -1 : Instruction::Shl;
988   case bitc::BINOP_LSHR:
989     return IsFP ? -1 : Instruction::LShr;
990   case bitc::BINOP_ASHR:
991     return IsFP ? -1 : Instruction::AShr;
992   case bitc::BINOP_AND:
993     return IsFP ? -1 : Instruction::And;
994   case bitc::BINOP_OR:
995     return IsFP ? -1 : Instruction::Or;
996   case bitc::BINOP_XOR:
997     return IsFP ? -1 : Instruction::Xor;
998   }
999 }
1000 
1001 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1002   switch (Val) {
1003   default: return AtomicRMWInst::BAD_BINOP;
1004   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1005   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1006   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1007   case bitc::RMW_AND: return AtomicRMWInst::And;
1008   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1009   case bitc::RMW_OR: return AtomicRMWInst::Or;
1010   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1011   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1012   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1013   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1014   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1015   }
1016 }
1017 
1018 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1019   switch (Val) {
1020   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1021   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1022   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1023   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1024   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1025   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1026   default: // Map unknown orderings to sequentially-consistent.
1027   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1028   }
1029 }
1030 
1031 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1032   switch (Val) {
1033   default: // Map unknown selection kinds to any.
1034   case bitc::COMDAT_SELECTION_KIND_ANY:
1035     return Comdat::Any;
1036   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1037     return Comdat::ExactMatch;
1038   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1039     return Comdat::Largest;
1040   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1041     return Comdat::NoDuplicates;
1042   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1043     return Comdat::SameSize;
1044   }
1045 }
1046 
1047 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1048   FastMathFlags FMF;
1049   if (0 != (Val & FastMathFlags::AllowReassoc))
1050     FMF.setAllowReassoc();
1051   if (0 != (Val & FastMathFlags::NoNaNs))
1052     FMF.setNoNaNs();
1053   if (0 != (Val & FastMathFlags::NoInfs))
1054     FMF.setNoInfs();
1055   if (0 != (Val & FastMathFlags::NoSignedZeros))
1056     FMF.setNoSignedZeros();
1057   if (0 != (Val & FastMathFlags::AllowReciprocal))
1058     FMF.setAllowReciprocal();
1059   if (0 != (Val & FastMathFlags::AllowContract))
1060     FMF.setAllowContract(true);
1061   if (0 != (Val & FastMathFlags::ApproxFunc))
1062     FMF.setApproxFunc();
1063   return FMF;
1064 }
1065 
1066 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1067   switch (Val) {
1068   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1069   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1070   }
1071 }
1072 
1073 Type *BitcodeReader::getTypeByID(unsigned ID) {
1074   // The type table size is always specified correctly.
1075   if (ID >= TypeList.size())
1076     return nullptr;
1077 
1078   if (Type *Ty = TypeList[ID])
1079     return Ty;
1080 
1081   // If we have a forward reference, the only possible case is when it is to a
1082   // named struct.  Just create a placeholder for now.
1083   return TypeList[ID] = createIdentifiedStructType(Context);
1084 }
1085 
1086 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1087                                                       StringRef Name) {
1088   auto *Ret = StructType::create(Context, Name);
1089   IdentifiedStructTypes.push_back(Ret);
1090   return Ret;
1091 }
1092 
1093 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1094   auto *Ret = StructType::create(Context);
1095   IdentifiedStructTypes.push_back(Ret);
1096   return Ret;
1097 }
1098 
1099 //===----------------------------------------------------------------------===//
1100 //  Functions for parsing blocks from the bitcode file
1101 //===----------------------------------------------------------------------===//
1102 
1103 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1104   switch (Val) {
1105   case Attribute::EndAttrKinds:
1106     llvm_unreachable("Synthetic enumerators which should never get here");
1107 
1108   case Attribute::None:            return 0;
1109   case Attribute::ZExt:            return 1 << 0;
1110   case Attribute::SExt:            return 1 << 1;
1111   case Attribute::NoReturn:        return 1 << 2;
1112   case Attribute::InReg:           return 1 << 3;
1113   case Attribute::StructRet:       return 1 << 4;
1114   case Attribute::NoUnwind:        return 1 << 5;
1115   case Attribute::NoAlias:         return 1 << 6;
1116   case Attribute::ByVal:           return 1 << 7;
1117   case Attribute::Nest:            return 1 << 8;
1118   case Attribute::ReadNone:        return 1 << 9;
1119   case Attribute::ReadOnly:        return 1 << 10;
1120   case Attribute::NoInline:        return 1 << 11;
1121   case Attribute::AlwaysInline:    return 1 << 12;
1122   case Attribute::OptimizeForSize: return 1 << 13;
1123   case Attribute::StackProtect:    return 1 << 14;
1124   case Attribute::StackProtectReq: return 1 << 15;
1125   case Attribute::Alignment:       return 31 << 16;
1126   case Attribute::NoCapture:       return 1 << 21;
1127   case Attribute::NoRedZone:       return 1 << 22;
1128   case Attribute::NoImplicitFloat: return 1 << 23;
1129   case Attribute::Naked:           return 1 << 24;
1130   case Attribute::InlineHint:      return 1 << 25;
1131   case Attribute::StackAlignment:  return 7 << 26;
1132   case Attribute::ReturnsTwice:    return 1 << 29;
1133   case Attribute::UWTable:         return 1 << 30;
1134   case Attribute::NonLazyBind:     return 1U << 31;
1135   case Attribute::SanitizeAddress: return 1ULL << 32;
1136   case Attribute::MinSize:         return 1ULL << 33;
1137   case Attribute::NoDuplicate:     return 1ULL << 34;
1138   case Attribute::StackProtectStrong: return 1ULL << 35;
1139   case Attribute::SanitizeThread:  return 1ULL << 36;
1140   case Attribute::SanitizeMemory:  return 1ULL << 37;
1141   case Attribute::NoBuiltin:       return 1ULL << 38;
1142   case Attribute::Returned:        return 1ULL << 39;
1143   case Attribute::Cold:            return 1ULL << 40;
1144   case Attribute::Builtin:         return 1ULL << 41;
1145   case Attribute::OptimizeNone:    return 1ULL << 42;
1146   case Attribute::InAlloca:        return 1ULL << 43;
1147   case Attribute::NonNull:         return 1ULL << 44;
1148   case Attribute::JumpTable:       return 1ULL << 45;
1149   case Attribute::Convergent:      return 1ULL << 46;
1150   case Attribute::SafeStack:       return 1ULL << 47;
1151   case Attribute::NoRecurse:       return 1ULL << 48;
1152   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1153   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1154   case Attribute::SwiftSelf:       return 1ULL << 51;
1155   case Attribute::SwiftError:      return 1ULL << 52;
1156   case Attribute::WriteOnly:       return 1ULL << 53;
1157   case Attribute::Speculatable:    return 1ULL << 54;
1158   case Attribute::StrictFP:        return 1ULL << 55;
1159   case Attribute::Dereferenceable:
1160     llvm_unreachable("dereferenceable attribute not supported in raw format");
1161     break;
1162   case Attribute::DereferenceableOrNull:
1163     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1164                      "format");
1165     break;
1166   case Attribute::ArgMemOnly:
1167     llvm_unreachable("argmemonly attribute not supported in raw format");
1168     break;
1169   case Attribute::AllocSize:
1170     llvm_unreachable("allocsize not supported in raw format");
1171     break;
1172   }
1173   llvm_unreachable("Unsupported attribute type");
1174 }
1175 
1176 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1177   if (!Val) return;
1178 
1179   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1180        I = Attribute::AttrKind(I + 1)) {
1181     if (I == Attribute::Dereferenceable ||
1182         I == Attribute::DereferenceableOrNull ||
1183         I == Attribute::ArgMemOnly ||
1184         I == Attribute::AllocSize)
1185       continue;
1186     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1187       if (I == Attribute::Alignment)
1188         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1189       else if (I == Attribute::StackAlignment)
1190         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1191       else
1192         B.addAttribute(I);
1193     }
1194   }
1195 }
1196 
1197 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1198 /// been decoded from the given integer. This function must stay in sync with
1199 /// 'encodeLLVMAttributesForBitcode'.
1200 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1201                                            uint64_t EncodedAttrs) {
1202   // FIXME: Remove in 4.0.
1203 
1204   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1205   // the bits above 31 down by 11 bits.
1206   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1207   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1208          "Alignment must be a power of two.");
1209 
1210   if (Alignment)
1211     B.addAlignmentAttr(Alignment);
1212   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1213                           (EncodedAttrs & 0xffff));
1214 }
1215 
1216 Error BitcodeReader::parseAttributeBlock() {
1217   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1218     return error("Invalid record");
1219 
1220   if (!MAttributes.empty())
1221     return error("Invalid multiple blocks");
1222 
1223   SmallVector<uint64_t, 64> Record;
1224 
1225   SmallVector<AttributeList, 8> Attrs;
1226 
1227   // Read all the records.
1228   while (true) {
1229     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1230 
1231     switch (Entry.Kind) {
1232     case BitstreamEntry::SubBlock: // Handled for us already.
1233     case BitstreamEntry::Error:
1234       return error("Malformed block");
1235     case BitstreamEntry::EndBlock:
1236       return Error::success();
1237     case BitstreamEntry::Record:
1238       // The interesting case.
1239       break;
1240     }
1241 
1242     // Read a record.
1243     Record.clear();
1244     switch (Stream.readRecord(Entry.ID, Record)) {
1245     default:  // Default behavior: ignore.
1246       break;
1247     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1248       // FIXME: Remove in 4.0.
1249       if (Record.size() & 1)
1250         return error("Invalid record");
1251 
1252       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1253         AttrBuilder B;
1254         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1255         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1256       }
1257 
1258       MAttributes.push_back(AttributeList::get(Context, Attrs));
1259       Attrs.clear();
1260       break;
1261     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1262       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1263         Attrs.push_back(MAttributeGroups[Record[i]]);
1264 
1265       MAttributes.push_back(AttributeList::get(Context, Attrs));
1266       Attrs.clear();
1267       break;
1268     }
1269   }
1270 }
1271 
1272 // Returns Attribute::None on unrecognized codes.
1273 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1274   switch (Code) {
1275   default:
1276     return Attribute::None;
1277   case bitc::ATTR_KIND_ALIGNMENT:
1278     return Attribute::Alignment;
1279   case bitc::ATTR_KIND_ALWAYS_INLINE:
1280     return Attribute::AlwaysInline;
1281   case bitc::ATTR_KIND_ARGMEMONLY:
1282     return Attribute::ArgMemOnly;
1283   case bitc::ATTR_KIND_BUILTIN:
1284     return Attribute::Builtin;
1285   case bitc::ATTR_KIND_BY_VAL:
1286     return Attribute::ByVal;
1287   case bitc::ATTR_KIND_IN_ALLOCA:
1288     return Attribute::InAlloca;
1289   case bitc::ATTR_KIND_COLD:
1290     return Attribute::Cold;
1291   case bitc::ATTR_KIND_CONVERGENT:
1292     return Attribute::Convergent;
1293   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1294     return Attribute::InaccessibleMemOnly;
1295   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1296     return Attribute::InaccessibleMemOrArgMemOnly;
1297   case bitc::ATTR_KIND_INLINE_HINT:
1298     return Attribute::InlineHint;
1299   case bitc::ATTR_KIND_IN_REG:
1300     return Attribute::InReg;
1301   case bitc::ATTR_KIND_JUMP_TABLE:
1302     return Attribute::JumpTable;
1303   case bitc::ATTR_KIND_MIN_SIZE:
1304     return Attribute::MinSize;
1305   case bitc::ATTR_KIND_NAKED:
1306     return Attribute::Naked;
1307   case bitc::ATTR_KIND_NEST:
1308     return Attribute::Nest;
1309   case bitc::ATTR_KIND_NO_ALIAS:
1310     return Attribute::NoAlias;
1311   case bitc::ATTR_KIND_NO_BUILTIN:
1312     return Attribute::NoBuiltin;
1313   case bitc::ATTR_KIND_NO_CAPTURE:
1314     return Attribute::NoCapture;
1315   case bitc::ATTR_KIND_NO_DUPLICATE:
1316     return Attribute::NoDuplicate;
1317   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1318     return Attribute::NoImplicitFloat;
1319   case bitc::ATTR_KIND_NO_INLINE:
1320     return Attribute::NoInline;
1321   case bitc::ATTR_KIND_NO_RECURSE:
1322     return Attribute::NoRecurse;
1323   case bitc::ATTR_KIND_NON_LAZY_BIND:
1324     return Attribute::NonLazyBind;
1325   case bitc::ATTR_KIND_NON_NULL:
1326     return Attribute::NonNull;
1327   case bitc::ATTR_KIND_DEREFERENCEABLE:
1328     return Attribute::Dereferenceable;
1329   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1330     return Attribute::DereferenceableOrNull;
1331   case bitc::ATTR_KIND_ALLOC_SIZE:
1332     return Attribute::AllocSize;
1333   case bitc::ATTR_KIND_NO_RED_ZONE:
1334     return Attribute::NoRedZone;
1335   case bitc::ATTR_KIND_NO_RETURN:
1336     return Attribute::NoReturn;
1337   case bitc::ATTR_KIND_NO_UNWIND:
1338     return Attribute::NoUnwind;
1339   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1340     return Attribute::OptimizeForSize;
1341   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1342     return Attribute::OptimizeNone;
1343   case bitc::ATTR_KIND_READ_NONE:
1344     return Attribute::ReadNone;
1345   case bitc::ATTR_KIND_READ_ONLY:
1346     return Attribute::ReadOnly;
1347   case bitc::ATTR_KIND_RETURNED:
1348     return Attribute::Returned;
1349   case bitc::ATTR_KIND_RETURNS_TWICE:
1350     return Attribute::ReturnsTwice;
1351   case bitc::ATTR_KIND_S_EXT:
1352     return Attribute::SExt;
1353   case bitc::ATTR_KIND_SPECULATABLE:
1354     return Attribute::Speculatable;
1355   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1356     return Attribute::StackAlignment;
1357   case bitc::ATTR_KIND_STACK_PROTECT:
1358     return Attribute::StackProtect;
1359   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1360     return Attribute::StackProtectReq;
1361   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1362     return Attribute::StackProtectStrong;
1363   case bitc::ATTR_KIND_SAFESTACK:
1364     return Attribute::SafeStack;
1365   case bitc::ATTR_KIND_STRICT_FP:
1366     return Attribute::StrictFP;
1367   case bitc::ATTR_KIND_STRUCT_RET:
1368     return Attribute::StructRet;
1369   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1370     return Attribute::SanitizeAddress;
1371   case bitc::ATTR_KIND_SANITIZE_THREAD:
1372     return Attribute::SanitizeThread;
1373   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1374     return Attribute::SanitizeMemory;
1375   case bitc::ATTR_KIND_SWIFT_ERROR:
1376     return Attribute::SwiftError;
1377   case bitc::ATTR_KIND_SWIFT_SELF:
1378     return Attribute::SwiftSelf;
1379   case bitc::ATTR_KIND_UW_TABLE:
1380     return Attribute::UWTable;
1381   case bitc::ATTR_KIND_WRITEONLY:
1382     return Attribute::WriteOnly;
1383   case bitc::ATTR_KIND_Z_EXT:
1384     return Attribute::ZExt;
1385   }
1386 }
1387 
1388 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1389                                          unsigned &Alignment) {
1390   // Note: Alignment in bitcode files is incremented by 1, so that zero
1391   // can be used for default alignment.
1392   if (Exponent > Value::MaxAlignmentExponent + 1)
1393     return error("Invalid alignment value");
1394   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1395   return Error::success();
1396 }
1397 
1398 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1399   *Kind = getAttrFromCode(Code);
1400   if (*Kind == Attribute::None)
1401     return error("Unknown attribute kind (" + Twine(Code) + ")");
1402   return Error::success();
1403 }
1404 
1405 Error BitcodeReader::parseAttributeGroupBlock() {
1406   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1407     return error("Invalid record");
1408 
1409   if (!MAttributeGroups.empty())
1410     return error("Invalid multiple blocks");
1411 
1412   SmallVector<uint64_t, 64> Record;
1413 
1414   // Read all the records.
1415   while (true) {
1416     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1417 
1418     switch (Entry.Kind) {
1419     case BitstreamEntry::SubBlock: // Handled for us already.
1420     case BitstreamEntry::Error:
1421       return error("Malformed block");
1422     case BitstreamEntry::EndBlock:
1423       return Error::success();
1424     case BitstreamEntry::Record:
1425       // The interesting case.
1426       break;
1427     }
1428 
1429     // Read a record.
1430     Record.clear();
1431     switch (Stream.readRecord(Entry.ID, Record)) {
1432     default:  // Default behavior: ignore.
1433       break;
1434     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1435       if (Record.size() < 3)
1436         return error("Invalid record");
1437 
1438       uint64_t GrpID = Record[0];
1439       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1440 
1441       AttrBuilder B;
1442       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1443         if (Record[i] == 0) {        // Enum attribute
1444           Attribute::AttrKind Kind;
1445           if (Error Err = parseAttrKind(Record[++i], &Kind))
1446             return Err;
1447 
1448           B.addAttribute(Kind);
1449         } else if (Record[i] == 1) { // Integer attribute
1450           Attribute::AttrKind Kind;
1451           if (Error Err = parseAttrKind(Record[++i], &Kind))
1452             return Err;
1453           if (Kind == Attribute::Alignment)
1454             B.addAlignmentAttr(Record[++i]);
1455           else if (Kind == Attribute::StackAlignment)
1456             B.addStackAlignmentAttr(Record[++i]);
1457           else if (Kind == Attribute::Dereferenceable)
1458             B.addDereferenceableAttr(Record[++i]);
1459           else if (Kind == Attribute::DereferenceableOrNull)
1460             B.addDereferenceableOrNullAttr(Record[++i]);
1461           else if (Kind == Attribute::AllocSize)
1462             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1463         } else {                     // String attribute
1464           assert((Record[i] == 3 || Record[i] == 4) &&
1465                  "Invalid attribute group entry");
1466           bool HasValue = (Record[i++] == 4);
1467           SmallString<64> KindStr;
1468           SmallString<64> ValStr;
1469 
1470           while (Record[i] != 0 && i != e)
1471             KindStr += Record[i++];
1472           assert(Record[i] == 0 && "Kind string not null terminated");
1473 
1474           if (HasValue) {
1475             // Has a value associated with it.
1476             ++i; // Skip the '0' that terminates the "kind" string.
1477             while (Record[i] != 0 && i != e)
1478               ValStr += Record[i++];
1479             assert(Record[i] == 0 && "Value string not null terminated");
1480           }
1481 
1482           B.addAttribute(KindStr.str(), ValStr.str());
1483         }
1484       }
1485 
1486       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1487       break;
1488     }
1489     }
1490   }
1491 }
1492 
1493 Error BitcodeReader::parseTypeTable() {
1494   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1495     return error("Invalid record");
1496 
1497   return parseTypeTableBody();
1498 }
1499 
1500 Error BitcodeReader::parseTypeTableBody() {
1501   if (!TypeList.empty())
1502     return error("Invalid multiple blocks");
1503 
1504   SmallVector<uint64_t, 64> Record;
1505   unsigned NumRecords = 0;
1506 
1507   SmallString<64> TypeName;
1508 
1509   // Read all the records for this type table.
1510   while (true) {
1511     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1512 
1513     switch (Entry.Kind) {
1514     case BitstreamEntry::SubBlock: // Handled for us already.
1515     case BitstreamEntry::Error:
1516       return error("Malformed block");
1517     case BitstreamEntry::EndBlock:
1518       if (NumRecords != TypeList.size())
1519         return error("Malformed block");
1520       return Error::success();
1521     case BitstreamEntry::Record:
1522       // The interesting case.
1523       break;
1524     }
1525 
1526     // Read a record.
1527     Record.clear();
1528     Type *ResultTy = nullptr;
1529     switch (Stream.readRecord(Entry.ID, Record)) {
1530     default:
1531       return error("Invalid value");
1532     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1533       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1534       // type list.  This allows us to reserve space.
1535       if (Record.size() < 1)
1536         return error("Invalid record");
1537       TypeList.resize(Record[0]);
1538       continue;
1539     case bitc::TYPE_CODE_VOID:      // VOID
1540       ResultTy = Type::getVoidTy(Context);
1541       break;
1542     case bitc::TYPE_CODE_HALF:     // HALF
1543       ResultTy = Type::getHalfTy(Context);
1544       break;
1545     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1546       ResultTy = Type::getFloatTy(Context);
1547       break;
1548     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1549       ResultTy = Type::getDoubleTy(Context);
1550       break;
1551     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1552       ResultTy = Type::getX86_FP80Ty(Context);
1553       break;
1554     case bitc::TYPE_CODE_FP128:     // FP128
1555       ResultTy = Type::getFP128Ty(Context);
1556       break;
1557     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1558       ResultTy = Type::getPPC_FP128Ty(Context);
1559       break;
1560     case bitc::TYPE_CODE_LABEL:     // LABEL
1561       ResultTy = Type::getLabelTy(Context);
1562       break;
1563     case bitc::TYPE_CODE_METADATA:  // METADATA
1564       ResultTy = Type::getMetadataTy(Context);
1565       break;
1566     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1567       ResultTy = Type::getX86_MMXTy(Context);
1568       break;
1569     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1570       ResultTy = Type::getTokenTy(Context);
1571       break;
1572     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1573       if (Record.size() < 1)
1574         return error("Invalid record");
1575 
1576       uint64_t NumBits = Record[0];
1577       if (NumBits < IntegerType::MIN_INT_BITS ||
1578           NumBits > IntegerType::MAX_INT_BITS)
1579         return error("Bitwidth for integer type out of range");
1580       ResultTy = IntegerType::get(Context, NumBits);
1581       break;
1582     }
1583     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1584                                     //          [pointee type, address space]
1585       if (Record.size() < 1)
1586         return error("Invalid record");
1587       unsigned AddressSpace = 0;
1588       if (Record.size() == 2)
1589         AddressSpace = Record[1];
1590       ResultTy = getTypeByID(Record[0]);
1591       if (!ResultTy ||
1592           !PointerType::isValidElementType(ResultTy))
1593         return error("Invalid type");
1594       ResultTy = PointerType::get(ResultTy, AddressSpace);
1595       break;
1596     }
1597     case bitc::TYPE_CODE_FUNCTION_OLD: {
1598       // FIXME: attrid is dead, remove it in LLVM 4.0
1599       // FUNCTION: [vararg, attrid, retty, paramty x N]
1600       if (Record.size() < 3)
1601         return error("Invalid record");
1602       SmallVector<Type*, 8> ArgTys;
1603       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1604         if (Type *T = getTypeByID(Record[i]))
1605           ArgTys.push_back(T);
1606         else
1607           break;
1608       }
1609 
1610       ResultTy = getTypeByID(Record[2]);
1611       if (!ResultTy || ArgTys.size() < Record.size()-3)
1612         return error("Invalid type");
1613 
1614       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1615       break;
1616     }
1617     case bitc::TYPE_CODE_FUNCTION: {
1618       // FUNCTION: [vararg, retty, paramty x N]
1619       if (Record.size() < 2)
1620         return error("Invalid record");
1621       SmallVector<Type*, 8> ArgTys;
1622       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1623         if (Type *T = getTypeByID(Record[i])) {
1624           if (!FunctionType::isValidArgumentType(T))
1625             return error("Invalid function argument type");
1626           ArgTys.push_back(T);
1627         }
1628         else
1629           break;
1630       }
1631 
1632       ResultTy = getTypeByID(Record[1]);
1633       if (!ResultTy || ArgTys.size() < Record.size()-2)
1634         return error("Invalid type");
1635 
1636       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1637       break;
1638     }
1639     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1640       if (Record.size() < 1)
1641         return error("Invalid record");
1642       SmallVector<Type*, 8> EltTys;
1643       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1644         if (Type *T = getTypeByID(Record[i]))
1645           EltTys.push_back(T);
1646         else
1647           break;
1648       }
1649       if (EltTys.size() != Record.size()-1)
1650         return error("Invalid type");
1651       ResultTy = StructType::get(Context, EltTys, Record[0]);
1652       break;
1653     }
1654     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1655       if (convertToString(Record, 0, TypeName))
1656         return error("Invalid record");
1657       continue;
1658 
1659     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1660       if (Record.size() < 1)
1661         return error("Invalid record");
1662 
1663       if (NumRecords >= TypeList.size())
1664         return error("Invalid TYPE table");
1665 
1666       // Check to see if this was forward referenced, if so fill in the temp.
1667       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1668       if (Res) {
1669         Res->setName(TypeName);
1670         TypeList[NumRecords] = nullptr;
1671       } else  // Otherwise, create a new struct.
1672         Res = createIdentifiedStructType(Context, TypeName);
1673       TypeName.clear();
1674 
1675       SmallVector<Type*, 8> EltTys;
1676       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1677         if (Type *T = getTypeByID(Record[i]))
1678           EltTys.push_back(T);
1679         else
1680           break;
1681       }
1682       if (EltTys.size() != Record.size()-1)
1683         return error("Invalid record");
1684       Res->setBody(EltTys, Record[0]);
1685       ResultTy = Res;
1686       break;
1687     }
1688     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1689       if (Record.size() != 1)
1690         return error("Invalid record");
1691 
1692       if (NumRecords >= TypeList.size())
1693         return error("Invalid TYPE table");
1694 
1695       // Check to see if this was forward referenced, if so fill in the temp.
1696       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1697       if (Res) {
1698         Res->setName(TypeName);
1699         TypeList[NumRecords] = nullptr;
1700       } else  // Otherwise, create a new struct with no body.
1701         Res = createIdentifiedStructType(Context, TypeName);
1702       TypeName.clear();
1703       ResultTy = Res;
1704       break;
1705     }
1706     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1707       if (Record.size() < 2)
1708         return error("Invalid record");
1709       ResultTy = getTypeByID(Record[1]);
1710       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1711         return error("Invalid type");
1712       ResultTy = ArrayType::get(ResultTy, Record[0]);
1713       break;
1714     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1715       if (Record.size() < 2)
1716         return error("Invalid record");
1717       if (Record[0] == 0)
1718         return error("Invalid vector length");
1719       ResultTy = getTypeByID(Record[1]);
1720       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1721         return error("Invalid type");
1722       ResultTy = VectorType::get(ResultTy, Record[0]);
1723       break;
1724     }
1725 
1726     if (NumRecords >= TypeList.size())
1727       return error("Invalid TYPE table");
1728     if (TypeList[NumRecords])
1729       return error(
1730           "Invalid TYPE table: Only named structs can be forward referenced");
1731     assert(ResultTy && "Didn't read a type?");
1732     TypeList[NumRecords++] = ResultTy;
1733   }
1734 }
1735 
1736 Error BitcodeReader::parseOperandBundleTags() {
1737   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1738     return error("Invalid record");
1739 
1740   if (!BundleTags.empty())
1741     return error("Invalid multiple blocks");
1742 
1743   SmallVector<uint64_t, 64> Record;
1744 
1745   while (true) {
1746     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1747 
1748     switch (Entry.Kind) {
1749     case BitstreamEntry::SubBlock: // Handled for us already.
1750     case BitstreamEntry::Error:
1751       return error("Malformed block");
1752     case BitstreamEntry::EndBlock:
1753       return Error::success();
1754     case BitstreamEntry::Record:
1755       // The interesting case.
1756       break;
1757     }
1758 
1759     // Tags are implicitly mapped to integers by their order.
1760 
1761     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1762       return error("Invalid record");
1763 
1764     // OPERAND_BUNDLE_TAG: [strchr x N]
1765     BundleTags.emplace_back();
1766     if (convertToString(Record, 0, BundleTags.back()))
1767       return error("Invalid record");
1768     Record.clear();
1769   }
1770 }
1771 
1772 Error BitcodeReader::parseSyncScopeNames() {
1773   if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1774     return error("Invalid record");
1775 
1776   if (!SSIDs.empty())
1777     return error("Invalid multiple synchronization scope names blocks");
1778 
1779   SmallVector<uint64_t, 64> Record;
1780   while (true) {
1781     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1782     switch (Entry.Kind) {
1783     case BitstreamEntry::SubBlock: // Handled for us already.
1784     case BitstreamEntry::Error:
1785       return error("Malformed block");
1786     case BitstreamEntry::EndBlock:
1787       if (SSIDs.empty())
1788         return error("Invalid empty synchronization scope names block");
1789       return Error::success();
1790     case BitstreamEntry::Record:
1791       // The interesting case.
1792       break;
1793     }
1794 
1795     // Synchronization scope names are implicitly mapped to synchronization
1796     // scope IDs by their order.
1797 
1798     if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1799       return error("Invalid record");
1800 
1801     SmallString<16> SSN;
1802     if (convertToString(Record, 0, SSN))
1803       return error("Invalid record");
1804 
1805     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1806     Record.clear();
1807   }
1808 }
1809 
1810 /// Associate a value with its name from the given index in the provided record.
1811 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1812                                              unsigned NameIndex, Triple &TT) {
1813   SmallString<128> ValueName;
1814   if (convertToString(Record, NameIndex, ValueName))
1815     return error("Invalid record");
1816   unsigned ValueID = Record[0];
1817   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1818     return error("Invalid record");
1819   Value *V = ValueList[ValueID];
1820 
1821   StringRef NameStr(ValueName.data(), ValueName.size());
1822   if (NameStr.find_first_of(0) != StringRef::npos)
1823     return error("Invalid value name");
1824   V->setName(NameStr);
1825   auto *GO = dyn_cast<GlobalObject>(V);
1826   if (GO) {
1827     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1828       if (TT.isOSBinFormatMachO())
1829         GO->setComdat(nullptr);
1830       else
1831         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1832     }
1833   }
1834   return V;
1835 }
1836 
1837 /// Helper to note and return the current location, and jump to the given
1838 /// offset.
1839 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1840                                        BitstreamCursor &Stream) {
1841   // Save the current parsing location so we can jump back at the end
1842   // of the VST read.
1843   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1844   Stream.JumpToBit(Offset * 32);
1845 #ifndef NDEBUG
1846   // Do some checking if we are in debug mode.
1847   BitstreamEntry Entry = Stream.advance();
1848   assert(Entry.Kind == BitstreamEntry::SubBlock);
1849   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1850 #else
1851   // In NDEBUG mode ignore the output so we don't get an unused variable
1852   // warning.
1853   Stream.advance();
1854 #endif
1855   return CurrentBit;
1856 }
1857 
1858 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1859                                             Function *F,
1860                                             ArrayRef<uint64_t> Record) {
1861   // Note that we subtract 1 here because the offset is relative to one word
1862   // before the start of the identification or module block, which was
1863   // historically always the start of the regular bitcode header.
1864   uint64_t FuncWordOffset = Record[1] - 1;
1865   uint64_t FuncBitOffset = FuncWordOffset * 32;
1866   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1867   // Set the LastFunctionBlockBit to point to the last function block.
1868   // Later when parsing is resumed after function materialization,
1869   // we can simply skip that last function block.
1870   if (FuncBitOffset > LastFunctionBlockBit)
1871     LastFunctionBlockBit = FuncBitOffset;
1872 }
1873 
1874 /// Read a new-style GlobalValue symbol table.
1875 Error BitcodeReader::parseGlobalValueSymbolTable() {
1876   unsigned FuncBitcodeOffsetDelta =
1877       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1878 
1879   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1880     return error("Invalid record");
1881 
1882   SmallVector<uint64_t, 64> Record;
1883   while (true) {
1884     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1885 
1886     switch (Entry.Kind) {
1887     case BitstreamEntry::SubBlock:
1888     case BitstreamEntry::Error:
1889       return error("Malformed block");
1890     case BitstreamEntry::EndBlock:
1891       return Error::success();
1892     case BitstreamEntry::Record:
1893       break;
1894     }
1895 
1896     Record.clear();
1897     switch (Stream.readRecord(Entry.ID, Record)) {
1898     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1899       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1900                               cast<Function>(ValueList[Record[0]]), Record);
1901       break;
1902     }
1903   }
1904 }
1905 
1906 /// Parse the value symbol table at either the current parsing location or
1907 /// at the given bit offset if provided.
1908 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1909   uint64_t CurrentBit;
1910   // Pass in the Offset to distinguish between calling for the module-level
1911   // VST (where we want to jump to the VST offset) and the function-level
1912   // VST (where we don't).
1913   if (Offset > 0) {
1914     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1915     // If this module uses a string table, read this as a module-level VST.
1916     if (UseStrtab) {
1917       if (Error Err = parseGlobalValueSymbolTable())
1918         return Err;
1919       Stream.JumpToBit(CurrentBit);
1920       return Error::success();
1921     }
1922     // Otherwise, the VST will be in a similar format to a function-level VST,
1923     // and will contain symbol names.
1924   }
1925 
1926   // Compute the delta between the bitcode indices in the VST (the word offset
1927   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1928   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1929   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1930   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1931   // just before entering the VST subblock because: 1) the EnterSubBlock
1932   // changes the AbbrevID width; 2) the VST block is nested within the same
1933   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1934   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1935   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1936   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1937   unsigned FuncBitcodeOffsetDelta =
1938       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1939 
1940   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1941     return error("Invalid record");
1942 
1943   SmallVector<uint64_t, 64> Record;
1944 
1945   Triple TT(TheModule->getTargetTriple());
1946 
1947   // Read all the records for this value table.
1948   SmallString<128> ValueName;
1949 
1950   while (true) {
1951     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1952 
1953     switch (Entry.Kind) {
1954     case BitstreamEntry::SubBlock: // Handled for us already.
1955     case BitstreamEntry::Error:
1956       return error("Malformed block");
1957     case BitstreamEntry::EndBlock:
1958       if (Offset > 0)
1959         Stream.JumpToBit(CurrentBit);
1960       return Error::success();
1961     case BitstreamEntry::Record:
1962       // The interesting case.
1963       break;
1964     }
1965 
1966     // Read a record.
1967     Record.clear();
1968     switch (Stream.readRecord(Entry.ID, Record)) {
1969     default:  // Default behavior: unknown type.
1970       break;
1971     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1972       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
1973       if (Error Err = ValOrErr.takeError())
1974         return Err;
1975       ValOrErr.get();
1976       break;
1977     }
1978     case bitc::VST_CODE_FNENTRY: {
1979       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1980       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
1981       if (Error Err = ValOrErr.takeError())
1982         return Err;
1983       Value *V = ValOrErr.get();
1984 
1985       // Ignore function offsets emitted for aliases of functions in older
1986       // versions of LLVM.
1987       if (auto *F = dyn_cast<Function>(V))
1988         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
1989       break;
1990     }
1991     case bitc::VST_CODE_BBENTRY: {
1992       if (convertToString(Record, 1, ValueName))
1993         return error("Invalid record");
1994       BasicBlock *BB = getBasicBlock(Record[0]);
1995       if (!BB)
1996         return error("Invalid record");
1997 
1998       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1999       ValueName.clear();
2000       break;
2001     }
2002     }
2003   }
2004 }
2005 
2006 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2007 /// encoding.
2008 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2009   if ((V & 1) == 0)
2010     return V >> 1;
2011   if (V != 1)
2012     return -(V >> 1);
2013   // There is no such thing as -0 with integers.  "-0" really means MININT.
2014   return 1ULL << 63;
2015 }
2016 
2017 /// Resolve all of the initializers for global values and aliases that we can.
2018 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2019   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2020   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2021       IndirectSymbolInitWorklist;
2022   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2023   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2024   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2025 
2026   GlobalInitWorklist.swap(GlobalInits);
2027   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2028   FunctionPrefixWorklist.swap(FunctionPrefixes);
2029   FunctionPrologueWorklist.swap(FunctionPrologues);
2030   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2031 
2032   while (!GlobalInitWorklist.empty()) {
2033     unsigned ValID = GlobalInitWorklist.back().second;
2034     if (ValID >= ValueList.size()) {
2035       // Not ready to resolve this yet, it requires something later in the file.
2036       GlobalInits.push_back(GlobalInitWorklist.back());
2037     } else {
2038       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2039         GlobalInitWorklist.back().first->setInitializer(C);
2040       else
2041         return error("Expected a constant");
2042     }
2043     GlobalInitWorklist.pop_back();
2044   }
2045 
2046   while (!IndirectSymbolInitWorklist.empty()) {
2047     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2048     if (ValID >= ValueList.size()) {
2049       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2050     } else {
2051       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2052       if (!C)
2053         return error("Expected a constant");
2054       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2055       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2056         return error("Alias and aliasee types don't match");
2057       GIS->setIndirectSymbol(C);
2058     }
2059     IndirectSymbolInitWorklist.pop_back();
2060   }
2061 
2062   while (!FunctionPrefixWorklist.empty()) {
2063     unsigned ValID = FunctionPrefixWorklist.back().second;
2064     if (ValID >= ValueList.size()) {
2065       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2066     } else {
2067       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2068         FunctionPrefixWorklist.back().first->setPrefixData(C);
2069       else
2070         return error("Expected a constant");
2071     }
2072     FunctionPrefixWorklist.pop_back();
2073   }
2074 
2075   while (!FunctionPrologueWorklist.empty()) {
2076     unsigned ValID = FunctionPrologueWorklist.back().second;
2077     if (ValID >= ValueList.size()) {
2078       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2079     } else {
2080       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2081         FunctionPrologueWorklist.back().first->setPrologueData(C);
2082       else
2083         return error("Expected a constant");
2084     }
2085     FunctionPrologueWorklist.pop_back();
2086   }
2087 
2088   while (!FunctionPersonalityFnWorklist.empty()) {
2089     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2090     if (ValID >= ValueList.size()) {
2091       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2092     } else {
2093       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2094         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2095       else
2096         return error("Expected a constant");
2097     }
2098     FunctionPersonalityFnWorklist.pop_back();
2099   }
2100 
2101   return Error::success();
2102 }
2103 
2104 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2105   SmallVector<uint64_t, 8> Words(Vals.size());
2106   transform(Vals, Words.begin(),
2107                  BitcodeReader::decodeSignRotatedValue);
2108 
2109   return APInt(TypeBits, Words);
2110 }
2111 
2112 Error BitcodeReader::parseConstants() {
2113   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2114     return error("Invalid record");
2115 
2116   SmallVector<uint64_t, 64> Record;
2117 
2118   // Read all the records for this value table.
2119   Type *CurTy = Type::getInt32Ty(Context);
2120   unsigned NextCstNo = ValueList.size();
2121 
2122   while (true) {
2123     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2124 
2125     switch (Entry.Kind) {
2126     case BitstreamEntry::SubBlock: // Handled for us already.
2127     case BitstreamEntry::Error:
2128       return error("Malformed block");
2129     case BitstreamEntry::EndBlock:
2130       if (NextCstNo != ValueList.size())
2131         return error("Invalid constant reference");
2132 
2133       // Once all the constants have been read, go through and resolve forward
2134       // references.
2135       ValueList.resolveConstantForwardRefs();
2136       return Error::success();
2137     case BitstreamEntry::Record:
2138       // The interesting case.
2139       break;
2140     }
2141 
2142     // Read a record.
2143     Record.clear();
2144     Type *VoidType = Type::getVoidTy(Context);
2145     Value *V = nullptr;
2146     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2147     switch (BitCode) {
2148     default:  // Default behavior: unknown constant
2149     case bitc::CST_CODE_UNDEF:     // UNDEF
2150       V = UndefValue::get(CurTy);
2151       break;
2152     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2153       if (Record.empty())
2154         return error("Invalid record");
2155       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2156         return error("Invalid record");
2157       if (TypeList[Record[0]] == VoidType)
2158         return error("Invalid constant type");
2159       CurTy = TypeList[Record[0]];
2160       continue;  // Skip the ValueList manipulation.
2161     case bitc::CST_CODE_NULL:      // NULL
2162       V = Constant::getNullValue(CurTy);
2163       break;
2164     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2165       if (!CurTy->isIntegerTy() || Record.empty())
2166         return error("Invalid record");
2167       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2168       break;
2169     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2170       if (!CurTy->isIntegerTy() || Record.empty())
2171         return error("Invalid record");
2172 
2173       APInt VInt =
2174           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2175       V = ConstantInt::get(Context, VInt);
2176 
2177       break;
2178     }
2179     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2180       if (Record.empty())
2181         return error("Invalid record");
2182       if (CurTy->isHalfTy())
2183         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2184                                              APInt(16, (uint16_t)Record[0])));
2185       else if (CurTy->isFloatTy())
2186         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2187                                              APInt(32, (uint32_t)Record[0])));
2188       else if (CurTy->isDoubleTy())
2189         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2190                                              APInt(64, Record[0])));
2191       else if (CurTy->isX86_FP80Ty()) {
2192         // Bits are not stored the same way as a normal i80 APInt, compensate.
2193         uint64_t Rearrange[2];
2194         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2195         Rearrange[1] = Record[0] >> 48;
2196         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2197                                              APInt(80, Rearrange)));
2198       } else if (CurTy->isFP128Ty())
2199         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2200                                              APInt(128, Record)));
2201       else if (CurTy->isPPC_FP128Ty())
2202         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2203                                              APInt(128, Record)));
2204       else
2205         V = UndefValue::get(CurTy);
2206       break;
2207     }
2208 
2209     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2210       if (Record.empty())
2211         return error("Invalid record");
2212 
2213       unsigned Size = Record.size();
2214       SmallVector<Constant*, 16> Elts;
2215 
2216       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2217         for (unsigned i = 0; i != Size; ++i)
2218           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2219                                                      STy->getElementType(i)));
2220         V = ConstantStruct::get(STy, Elts);
2221       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2222         Type *EltTy = ATy->getElementType();
2223         for (unsigned i = 0; i != Size; ++i)
2224           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2225         V = ConstantArray::get(ATy, Elts);
2226       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2227         Type *EltTy = VTy->getElementType();
2228         for (unsigned i = 0; i != Size; ++i)
2229           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2230         V = ConstantVector::get(Elts);
2231       } else {
2232         V = UndefValue::get(CurTy);
2233       }
2234       break;
2235     }
2236     case bitc::CST_CODE_STRING:    // STRING: [values]
2237     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2238       if (Record.empty())
2239         return error("Invalid record");
2240 
2241       SmallString<16> Elts(Record.begin(), Record.end());
2242       V = ConstantDataArray::getString(Context, Elts,
2243                                        BitCode == bitc::CST_CODE_CSTRING);
2244       break;
2245     }
2246     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2247       if (Record.empty())
2248         return error("Invalid record");
2249 
2250       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2251       if (EltTy->isIntegerTy(8)) {
2252         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2253         if (isa<VectorType>(CurTy))
2254           V = ConstantDataVector::get(Context, Elts);
2255         else
2256           V = ConstantDataArray::get(Context, Elts);
2257       } else if (EltTy->isIntegerTy(16)) {
2258         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2259         if (isa<VectorType>(CurTy))
2260           V = ConstantDataVector::get(Context, Elts);
2261         else
2262           V = ConstantDataArray::get(Context, Elts);
2263       } else if (EltTy->isIntegerTy(32)) {
2264         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2265         if (isa<VectorType>(CurTy))
2266           V = ConstantDataVector::get(Context, Elts);
2267         else
2268           V = ConstantDataArray::get(Context, Elts);
2269       } else if (EltTy->isIntegerTy(64)) {
2270         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2271         if (isa<VectorType>(CurTy))
2272           V = ConstantDataVector::get(Context, Elts);
2273         else
2274           V = ConstantDataArray::get(Context, Elts);
2275       } else if (EltTy->isHalfTy()) {
2276         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2277         if (isa<VectorType>(CurTy))
2278           V = ConstantDataVector::getFP(Context, Elts);
2279         else
2280           V = ConstantDataArray::getFP(Context, Elts);
2281       } else if (EltTy->isFloatTy()) {
2282         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2283         if (isa<VectorType>(CurTy))
2284           V = ConstantDataVector::getFP(Context, Elts);
2285         else
2286           V = ConstantDataArray::getFP(Context, Elts);
2287       } else if (EltTy->isDoubleTy()) {
2288         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2289         if (isa<VectorType>(CurTy))
2290           V = ConstantDataVector::getFP(Context, Elts);
2291         else
2292           V = ConstantDataArray::getFP(Context, Elts);
2293       } else {
2294         return error("Invalid type for value");
2295       }
2296       break;
2297     }
2298     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2299       if (Record.size() < 3)
2300         return error("Invalid record");
2301       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2302       if (Opc < 0) {
2303         V = UndefValue::get(CurTy);  // Unknown binop.
2304       } else {
2305         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2306         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2307         unsigned Flags = 0;
2308         if (Record.size() >= 4) {
2309           if (Opc == Instruction::Add ||
2310               Opc == Instruction::Sub ||
2311               Opc == Instruction::Mul ||
2312               Opc == Instruction::Shl) {
2313             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2314               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2315             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2316               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2317           } else if (Opc == Instruction::SDiv ||
2318                      Opc == Instruction::UDiv ||
2319                      Opc == Instruction::LShr ||
2320                      Opc == Instruction::AShr) {
2321             if (Record[3] & (1 << bitc::PEO_EXACT))
2322               Flags |= SDivOperator::IsExact;
2323           }
2324         }
2325         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2326       }
2327       break;
2328     }
2329     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2330       if (Record.size() < 3)
2331         return error("Invalid record");
2332       int Opc = getDecodedCastOpcode(Record[0]);
2333       if (Opc < 0) {
2334         V = UndefValue::get(CurTy);  // Unknown cast.
2335       } else {
2336         Type *OpTy = getTypeByID(Record[1]);
2337         if (!OpTy)
2338           return error("Invalid record");
2339         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2340         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2341         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2342       }
2343       break;
2344     }
2345     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2346     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2347     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2348                                                      // operands]
2349       unsigned OpNum = 0;
2350       Type *PointeeType = nullptr;
2351       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2352           Record.size() % 2)
2353         PointeeType = getTypeByID(Record[OpNum++]);
2354 
2355       bool InBounds = false;
2356       Optional<unsigned> InRangeIndex;
2357       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2358         uint64_t Op = Record[OpNum++];
2359         InBounds = Op & 1;
2360         InRangeIndex = Op >> 1;
2361       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2362         InBounds = true;
2363 
2364       SmallVector<Constant*, 16> Elts;
2365       while (OpNum != Record.size()) {
2366         Type *ElTy = getTypeByID(Record[OpNum++]);
2367         if (!ElTy)
2368           return error("Invalid record");
2369         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2370       }
2371 
2372       if (PointeeType &&
2373           PointeeType !=
2374               cast<PointerType>(Elts[0]->getType()->getScalarType())
2375                   ->getElementType())
2376         return error("Explicit gep operator type does not match pointee type "
2377                      "of pointer operand");
2378 
2379       if (Elts.size() < 1)
2380         return error("Invalid gep with no operands");
2381 
2382       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2383       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2384                                          InBounds, InRangeIndex);
2385       break;
2386     }
2387     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2388       if (Record.size() < 3)
2389         return error("Invalid record");
2390 
2391       Type *SelectorTy = Type::getInt1Ty(Context);
2392 
2393       // The selector might be an i1 or an <n x i1>
2394       // Get the type from the ValueList before getting a forward ref.
2395       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2396         if (Value *V = ValueList[Record[0]])
2397           if (SelectorTy != V->getType())
2398             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2399 
2400       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2401                                                               SelectorTy),
2402                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2403                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2404       break;
2405     }
2406     case bitc::CST_CODE_CE_EXTRACTELT
2407         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2408       if (Record.size() < 3)
2409         return error("Invalid record");
2410       VectorType *OpTy =
2411         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2412       if (!OpTy)
2413         return error("Invalid record");
2414       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2415       Constant *Op1 = nullptr;
2416       if (Record.size() == 4) {
2417         Type *IdxTy = getTypeByID(Record[2]);
2418         if (!IdxTy)
2419           return error("Invalid record");
2420         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2421       } else // TODO: Remove with llvm 4.0
2422         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2423       if (!Op1)
2424         return error("Invalid record");
2425       V = ConstantExpr::getExtractElement(Op0, Op1);
2426       break;
2427     }
2428     case bitc::CST_CODE_CE_INSERTELT
2429         : { // CE_INSERTELT: [opval, opval, opty, opval]
2430       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2431       if (Record.size() < 3 || !OpTy)
2432         return error("Invalid record");
2433       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2434       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2435                                                   OpTy->getElementType());
2436       Constant *Op2 = nullptr;
2437       if (Record.size() == 4) {
2438         Type *IdxTy = getTypeByID(Record[2]);
2439         if (!IdxTy)
2440           return error("Invalid record");
2441         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2442       } else // TODO: Remove with llvm 4.0
2443         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2444       if (!Op2)
2445         return error("Invalid record");
2446       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2447       break;
2448     }
2449     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2450       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2451       if (Record.size() < 3 || !OpTy)
2452         return error("Invalid record");
2453       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2454       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2455       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2456                                                  OpTy->getNumElements());
2457       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2458       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2459       break;
2460     }
2461     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2462       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2463       VectorType *OpTy =
2464         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2465       if (Record.size() < 4 || !RTy || !OpTy)
2466         return error("Invalid record");
2467       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2468       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2469       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2470                                                  RTy->getNumElements());
2471       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2472       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2473       break;
2474     }
2475     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2476       if (Record.size() < 4)
2477         return error("Invalid record");
2478       Type *OpTy = getTypeByID(Record[0]);
2479       if (!OpTy)
2480         return error("Invalid record");
2481       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2482       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2483 
2484       if (OpTy->isFPOrFPVectorTy())
2485         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2486       else
2487         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2488       break;
2489     }
2490     // This maintains backward compatibility, pre-asm dialect keywords.
2491     // FIXME: Remove with the 4.0 release.
2492     case bitc::CST_CODE_INLINEASM_OLD: {
2493       if (Record.size() < 2)
2494         return error("Invalid record");
2495       std::string AsmStr, ConstrStr;
2496       bool HasSideEffects = Record[0] & 1;
2497       bool IsAlignStack = Record[0] >> 1;
2498       unsigned AsmStrSize = Record[1];
2499       if (2+AsmStrSize >= Record.size())
2500         return error("Invalid record");
2501       unsigned ConstStrSize = Record[2+AsmStrSize];
2502       if (3+AsmStrSize+ConstStrSize > Record.size())
2503         return error("Invalid record");
2504 
2505       for (unsigned i = 0; i != AsmStrSize; ++i)
2506         AsmStr += (char)Record[2+i];
2507       for (unsigned i = 0; i != ConstStrSize; ++i)
2508         ConstrStr += (char)Record[3+AsmStrSize+i];
2509       PointerType *PTy = cast<PointerType>(CurTy);
2510       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2511                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2512       break;
2513     }
2514     // This version adds support for the asm dialect keywords (e.g.,
2515     // inteldialect).
2516     case bitc::CST_CODE_INLINEASM: {
2517       if (Record.size() < 2)
2518         return error("Invalid record");
2519       std::string AsmStr, ConstrStr;
2520       bool HasSideEffects = Record[0] & 1;
2521       bool IsAlignStack = (Record[0] >> 1) & 1;
2522       unsigned AsmDialect = Record[0] >> 2;
2523       unsigned AsmStrSize = Record[1];
2524       if (2+AsmStrSize >= Record.size())
2525         return error("Invalid record");
2526       unsigned ConstStrSize = Record[2+AsmStrSize];
2527       if (3+AsmStrSize+ConstStrSize > Record.size())
2528         return error("Invalid record");
2529 
2530       for (unsigned i = 0; i != AsmStrSize; ++i)
2531         AsmStr += (char)Record[2+i];
2532       for (unsigned i = 0; i != ConstStrSize; ++i)
2533         ConstrStr += (char)Record[3+AsmStrSize+i];
2534       PointerType *PTy = cast<PointerType>(CurTy);
2535       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2536                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2537                          InlineAsm::AsmDialect(AsmDialect));
2538       break;
2539     }
2540     case bitc::CST_CODE_BLOCKADDRESS:{
2541       if (Record.size() < 3)
2542         return error("Invalid record");
2543       Type *FnTy = getTypeByID(Record[0]);
2544       if (!FnTy)
2545         return error("Invalid record");
2546       Function *Fn =
2547         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2548       if (!Fn)
2549         return error("Invalid record");
2550 
2551       // If the function is already parsed we can insert the block address right
2552       // away.
2553       BasicBlock *BB;
2554       unsigned BBID = Record[2];
2555       if (!BBID)
2556         // Invalid reference to entry block.
2557         return error("Invalid ID");
2558       if (!Fn->empty()) {
2559         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2560         for (size_t I = 0, E = BBID; I != E; ++I) {
2561           if (BBI == BBE)
2562             return error("Invalid ID");
2563           ++BBI;
2564         }
2565         BB = &*BBI;
2566       } else {
2567         // Otherwise insert a placeholder and remember it so it can be inserted
2568         // when the function is parsed.
2569         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2570         if (FwdBBs.empty())
2571           BasicBlockFwdRefQueue.push_back(Fn);
2572         if (FwdBBs.size() < BBID + 1)
2573           FwdBBs.resize(BBID + 1);
2574         if (!FwdBBs[BBID])
2575           FwdBBs[BBID] = BasicBlock::Create(Context);
2576         BB = FwdBBs[BBID];
2577       }
2578       V = BlockAddress::get(Fn, BB);
2579       break;
2580     }
2581     }
2582 
2583     ValueList.assignValue(V, NextCstNo);
2584     ++NextCstNo;
2585   }
2586 }
2587 
2588 Error BitcodeReader::parseUseLists() {
2589   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2590     return error("Invalid record");
2591 
2592   // Read all the records.
2593   SmallVector<uint64_t, 64> Record;
2594 
2595   while (true) {
2596     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2597 
2598     switch (Entry.Kind) {
2599     case BitstreamEntry::SubBlock: // Handled for us already.
2600     case BitstreamEntry::Error:
2601       return error("Malformed block");
2602     case BitstreamEntry::EndBlock:
2603       return Error::success();
2604     case BitstreamEntry::Record:
2605       // The interesting case.
2606       break;
2607     }
2608 
2609     // Read a use list record.
2610     Record.clear();
2611     bool IsBB = false;
2612     switch (Stream.readRecord(Entry.ID, Record)) {
2613     default:  // Default behavior: unknown type.
2614       break;
2615     case bitc::USELIST_CODE_BB:
2616       IsBB = true;
2617       LLVM_FALLTHROUGH;
2618     case bitc::USELIST_CODE_DEFAULT: {
2619       unsigned RecordLength = Record.size();
2620       if (RecordLength < 3)
2621         // Records should have at least an ID and two indexes.
2622         return error("Invalid record");
2623       unsigned ID = Record.back();
2624       Record.pop_back();
2625 
2626       Value *V;
2627       if (IsBB) {
2628         assert(ID < FunctionBBs.size() && "Basic block not found");
2629         V = FunctionBBs[ID];
2630       } else
2631         V = ValueList[ID];
2632       unsigned NumUses = 0;
2633       SmallDenseMap<const Use *, unsigned, 16> Order;
2634       for (const Use &U : V->materialized_uses()) {
2635         if (++NumUses > Record.size())
2636           break;
2637         Order[&U] = Record[NumUses - 1];
2638       }
2639       if (Order.size() != Record.size() || NumUses > Record.size())
2640         // Mismatches can happen if the functions are being materialized lazily
2641         // (out-of-order), or a value has been upgraded.
2642         break;
2643 
2644       V->sortUseList([&](const Use &L, const Use &R) {
2645         return Order.lookup(&L) < Order.lookup(&R);
2646       });
2647       break;
2648     }
2649     }
2650   }
2651 }
2652 
2653 /// When we see the block for metadata, remember where it is and then skip it.
2654 /// This lets us lazily deserialize the metadata.
2655 Error BitcodeReader::rememberAndSkipMetadata() {
2656   // Save the current stream state.
2657   uint64_t CurBit = Stream.GetCurrentBitNo();
2658   DeferredMetadataInfo.push_back(CurBit);
2659 
2660   // Skip over the block for now.
2661   if (Stream.SkipBlock())
2662     return error("Invalid record");
2663   return Error::success();
2664 }
2665 
2666 Error BitcodeReader::materializeMetadata() {
2667   for (uint64_t BitPos : DeferredMetadataInfo) {
2668     // Move the bit stream to the saved position.
2669     Stream.JumpToBit(BitPos);
2670     if (Error Err = MDLoader->parseModuleMetadata())
2671       return Err;
2672   }
2673 
2674   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2675   // metadata.
2676   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2677     NamedMDNode *LinkerOpts =
2678         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2679     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2680       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2681   }
2682 
2683   DeferredMetadataInfo.clear();
2684   return Error::success();
2685 }
2686 
2687 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2688 
2689 /// When we see the block for a function body, remember where it is and then
2690 /// skip it.  This lets us lazily deserialize the functions.
2691 Error BitcodeReader::rememberAndSkipFunctionBody() {
2692   // Get the function we are talking about.
2693   if (FunctionsWithBodies.empty())
2694     return error("Insufficient function protos");
2695 
2696   Function *Fn = FunctionsWithBodies.back();
2697   FunctionsWithBodies.pop_back();
2698 
2699   // Save the current stream state.
2700   uint64_t CurBit = Stream.GetCurrentBitNo();
2701   assert(
2702       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2703       "Mismatch between VST and scanned function offsets");
2704   DeferredFunctionInfo[Fn] = CurBit;
2705 
2706   // Skip over the function block for now.
2707   if (Stream.SkipBlock())
2708     return error("Invalid record");
2709   return Error::success();
2710 }
2711 
2712 Error BitcodeReader::globalCleanup() {
2713   // Patch the initializers for globals and aliases up.
2714   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2715     return Err;
2716   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2717     return error("Malformed global initializer set");
2718 
2719   // Look for intrinsic functions which need to be upgraded at some point
2720   for (Function &F : *TheModule) {
2721     MDLoader->upgradeDebugIntrinsics(F);
2722     Function *NewFn;
2723     if (UpgradeIntrinsicFunction(&F, NewFn))
2724       UpgradedIntrinsics[&F] = NewFn;
2725     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2726       // Some types could be renamed during loading if several modules are
2727       // loaded in the same LLVMContext (LTO scenario). In this case we should
2728       // remangle intrinsics names as well.
2729       RemangledIntrinsics[&F] = Remangled.getValue();
2730   }
2731 
2732   // Look for global variables which need to be renamed.
2733   for (GlobalVariable &GV : TheModule->globals())
2734     UpgradeGlobalVariable(&GV);
2735 
2736   // Force deallocation of memory for these vectors to favor the client that
2737   // want lazy deserialization.
2738   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2739   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2740       IndirectSymbolInits);
2741   return Error::success();
2742 }
2743 
2744 /// Support for lazy parsing of function bodies. This is required if we
2745 /// either have an old bitcode file without a VST forward declaration record,
2746 /// or if we have an anonymous function being materialized, since anonymous
2747 /// functions do not have a name and are therefore not in the VST.
2748 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2749   Stream.JumpToBit(NextUnreadBit);
2750 
2751   if (Stream.AtEndOfStream())
2752     return error("Could not find function in stream");
2753 
2754   if (!SeenFirstFunctionBody)
2755     return error("Trying to materialize functions before seeing function blocks");
2756 
2757   // An old bitcode file with the symbol table at the end would have
2758   // finished the parse greedily.
2759   assert(SeenValueSymbolTable);
2760 
2761   SmallVector<uint64_t, 64> Record;
2762 
2763   while (true) {
2764     BitstreamEntry Entry = Stream.advance();
2765     switch (Entry.Kind) {
2766     default:
2767       return error("Expect SubBlock");
2768     case BitstreamEntry::SubBlock:
2769       switch (Entry.ID) {
2770       default:
2771         return error("Expect function block");
2772       case bitc::FUNCTION_BLOCK_ID:
2773         if (Error Err = rememberAndSkipFunctionBody())
2774           return Err;
2775         NextUnreadBit = Stream.GetCurrentBitNo();
2776         return Error::success();
2777       }
2778     }
2779   }
2780 }
2781 
2782 bool BitcodeReaderBase::readBlockInfo() {
2783   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2784   if (!NewBlockInfo)
2785     return true;
2786   BlockInfo = std::move(*NewBlockInfo);
2787   return false;
2788 }
2789 
2790 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2791   // v1: [selection_kind, name]
2792   // v2: [strtab_offset, strtab_size, selection_kind]
2793   StringRef Name;
2794   std::tie(Name, Record) = readNameFromStrtab(Record);
2795 
2796   if (Record.empty())
2797     return error("Invalid record");
2798   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2799   std::string OldFormatName;
2800   if (!UseStrtab) {
2801     if (Record.size() < 2)
2802       return error("Invalid record");
2803     unsigned ComdatNameSize = Record[1];
2804     OldFormatName.reserve(ComdatNameSize);
2805     for (unsigned i = 0; i != ComdatNameSize; ++i)
2806       OldFormatName += (char)Record[2 + i];
2807     Name = OldFormatName;
2808   }
2809   Comdat *C = TheModule->getOrInsertComdat(Name);
2810   C->setSelectionKind(SK);
2811   ComdatList.push_back(C);
2812   return Error::success();
2813 }
2814 
2815 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2816   // v1: [pointer type, isconst, initid, linkage, alignment, section,
2817   // visibility, threadlocal, unnamed_addr, externally_initialized,
2818   // dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
2819   // v2: [strtab_offset, strtab_size, v1]
2820   StringRef Name;
2821   std::tie(Name, Record) = readNameFromStrtab(Record);
2822 
2823   if (Record.size() < 6)
2824     return error("Invalid record");
2825   Type *Ty = getTypeByID(Record[0]);
2826   if (!Ty)
2827     return error("Invalid record");
2828   bool isConstant = Record[1] & 1;
2829   bool explicitType = Record[1] & 2;
2830   unsigned AddressSpace;
2831   if (explicitType) {
2832     AddressSpace = Record[1] >> 2;
2833   } else {
2834     if (!Ty->isPointerTy())
2835       return error("Invalid type for value");
2836     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2837     Ty = cast<PointerType>(Ty)->getElementType();
2838   }
2839 
2840   uint64_t RawLinkage = Record[3];
2841   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2842   unsigned Alignment;
2843   if (Error Err = parseAlignmentValue(Record[4], Alignment))
2844     return Err;
2845   std::string Section;
2846   if (Record[5]) {
2847     if (Record[5] - 1 >= SectionTable.size())
2848       return error("Invalid ID");
2849     Section = SectionTable[Record[5] - 1];
2850   }
2851   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2852   // Local linkage must have default visibility.
2853   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2854     // FIXME: Change to an error if non-default in 4.0.
2855     Visibility = getDecodedVisibility(Record[6]);
2856 
2857   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2858   if (Record.size() > 7)
2859     TLM = getDecodedThreadLocalMode(Record[7]);
2860 
2861   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2862   if (Record.size() > 8)
2863     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2864 
2865   bool ExternallyInitialized = false;
2866   if (Record.size() > 9)
2867     ExternallyInitialized = Record[9];
2868 
2869   GlobalVariable *NewGV =
2870       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2871                          nullptr, TLM, AddressSpace, ExternallyInitialized);
2872   NewGV->setAlignment(Alignment);
2873   if (!Section.empty())
2874     NewGV->setSection(Section);
2875   NewGV->setVisibility(Visibility);
2876   NewGV->setUnnamedAddr(UnnamedAddr);
2877 
2878   if (Record.size() > 10)
2879     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2880   else
2881     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2882 
2883   ValueList.push_back(NewGV);
2884 
2885   // Remember which value to use for the global initializer.
2886   if (unsigned InitID = Record[2])
2887     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2888 
2889   if (Record.size() > 11) {
2890     if (unsigned ComdatID = Record[11]) {
2891       if (ComdatID > ComdatList.size())
2892         return error("Invalid global variable comdat ID");
2893       NewGV->setComdat(ComdatList[ComdatID - 1]);
2894     }
2895   } else if (hasImplicitComdat(RawLinkage)) {
2896     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2897   }
2898 
2899   if (Record.size() > 12) {
2900     auto AS = getAttributes(Record[12]).getFnAttributes();
2901     NewGV->setAttributes(AS);
2902   }
2903 
2904   if (Record.size() > 13) {
2905     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
2906   }
2907 
2908   return Error::success();
2909 }
2910 
2911 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2912   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2913   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2914   // prefixdata,  personalityfn, preemption specifier] (name in VST)
2915   // v2: [strtab_offset, strtab_size, v1]
2916   StringRef Name;
2917   std::tie(Name, Record) = readNameFromStrtab(Record);
2918 
2919   if (Record.size() < 8)
2920     return error("Invalid record");
2921   Type *Ty = getTypeByID(Record[0]);
2922   if (!Ty)
2923     return error("Invalid record");
2924   if (auto *PTy = dyn_cast<PointerType>(Ty))
2925     Ty = PTy->getElementType();
2926   auto *FTy = dyn_cast<FunctionType>(Ty);
2927   if (!FTy)
2928     return error("Invalid type for value");
2929   auto CC = static_cast<CallingConv::ID>(Record[1]);
2930   if (CC & ~CallingConv::MaxID)
2931     return error("Invalid calling convention ID");
2932 
2933   Function *Func =
2934       Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule);
2935 
2936   Func->setCallingConv(CC);
2937   bool isProto = Record[2];
2938   uint64_t RawLinkage = Record[3];
2939   Func->setLinkage(getDecodedLinkage(RawLinkage));
2940   Func->setAttributes(getAttributes(Record[4]));
2941 
2942   unsigned Alignment;
2943   if (Error Err = parseAlignmentValue(Record[5], Alignment))
2944     return Err;
2945   Func->setAlignment(Alignment);
2946   if (Record[6]) {
2947     if (Record[6] - 1 >= SectionTable.size())
2948       return error("Invalid ID");
2949     Func->setSection(SectionTable[Record[6] - 1]);
2950   }
2951   // Local linkage must have default visibility.
2952   if (!Func->hasLocalLinkage())
2953     // FIXME: Change to an error if non-default in 4.0.
2954     Func->setVisibility(getDecodedVisibility(Record[7]));
2955   if (Record.size() > 8 && Record[8]) {
2956     if (Record[8] - 1 >= GCTable.size())
2957       return error("Invalid ID");
2958     Func->setGC(GCTable[Record[8] - 1]);
2959   }
2960   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2961   if (Record.size() > 9)
2962     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2963   Func->setUnnamedAddr(UnnamedAddr);
2964   if (Record.size() > 10 && Record[10] != 0)
2965     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
2966 
2967   if (Record.size() > 11)
2968     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
2969   else
2970     upgradeDLLImportExportLinkage(Func, RawLinkage);
2971 
2972   if (Record.size() > 12) {
2973     if (unsigned ComdatID = Record[12]) {
2974       if (ComdatID > ComdatList.size())
2975         return error("Invalid function comdat ID");
2976       Func->setComdat(ComdatList[ComdatID - 1]);
2977     }
2978   } else if (hasImplicitComdat(RawLinkage)) {
2979     Func->setComdat(reinterpret_cast<Comdat *>(1));
2980   }
2981 
2982   if (Record.size() > 13 && Record[13] != 0)
2983     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
2984 
2985   if (Record.size() > 14 && Record[14] != 0)
2986     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
2987 
2988   if (Record.size() > 15) {
2989     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
2990   }
2991 
2992   ValueList.push_back(Func);
2993 
2994   // If this is a function with a body, remember the prototype we are
2995   // creating now, so that we can match up the body with them later.
2996   if (!isProto) {
2997     Func->setIsMaterializable(true);
2998     FunctionsWithBodies.push_back(Func);
2999     DeferredFunctionInfo[Func] = 0;
3000   }
3001   return Error::success();
3002 }
3003 
3004 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3005     unsigned BitCode, ArrayRef<uint64_t> Record) {
3006   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3007   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3008   // dllstorageclass, threadlocal, unnamed_addr,
3009   // preemption specifier] (name in VST)
3010   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3011   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3012   // preemption specifier] (name in VST)
3013   // v2: [strtab_offset, strtab_size, v1]
3014   StringRef Name;
3015   std::tie(Name, Record) = readNameFromStrtab(Record);
3016 
3017   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3018   if (Record.size() < (3 + (unsigned)NewRecord))
3019     return error("Invalid record");
3020   unsigned OpNum = 0;
3021   Type *Ty = getTypeByID(Record[OpNum++]);
3022   if (!Ty)
3023     return error("Invalid record");
3024 
3025   unsigned AddrSpace;
3026   if (!NewRecord) {
3027     auto *PTy = dyn_cast<PointerType>(Ty);
3028     if (!PTy)
3029       return error("Invalid type for value");
3030     Ty = PTy->getElementType();
3031     AddrSpace = PTy->getAddressSpace();
3032   } else {
3033     AddrSpace = Record[OpNum++];
3034   }
3035 
3036   auto Val = Record[OpNum++];
3037   auto Linkage = Record[OpNum++];
3038   GlobalIndirectSymbol *NewGA;
3039   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3040       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3041     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3042                                 TheModule);
3043   else
3044     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3045                                 nullptr, TheModule);
3046   // Old bitcode files didn't have visibility field.
3047   // Local linkage must have default visibility.
3048   if (OpNum != Record.size()) {
3049     auto VisInd = OpNum++;
3050     if (!NewGA->hasLocalLinkage())
3051       // FIXME: Change to an error if non-default in 4.0.
3052       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3053   }
3054   if (OpNum != Record.size())
3055     NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3056   else
3057     upgradeDLLImportExportLinkage(NewGA, Linkage);
3058   if (OpNum != Record.size())
3059     NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3060   if (OpNum != Record.size())
3061     NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3062   if (OpNum != Record.size())
3063     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3064   ValueList.push_back(NewGA);
3065   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3066   return Error::success();
3067 }
3068 
3069 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3070                                  bool ShouldLazyLoadMetadata) {
3071   if (ResumeBit)
3072     Stream.JumpToBit(ResumeBit);
3073   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3074     return error("Invalid record");
3075 
3076   SmallVector<uint64_t, 64> Record;
3077 
3078   // Read all the records for this module.
3079   while (true) {
3080     BitstreamEntry Entry = Stream.advance();
3081 
3082     switch (Entry.Kind) {
3083     case BitstreamEntry::Error:
3084       return error("Malformed block");
3085     case BitstreamEntry::EndBlock:
3086       return globalCleanup();
3087 
3088     case BitstreamEntry::SubBlock:
3089       switch (Entry.ID) {
3090       default:  // Skip unknown content.
3091         if (Stream.SkipBlock())
3092           return error("Invalid record");
3093         break;
3094       case bitc::BLOCKINFO_BLOCK_ID:
3095         if (readBlockInfo())
3096           return error("Malformed block");
3097         break;
3098       case bitc::PARAMATTR_BLOCK_ID:
3099         if (Error Err = parseAttributeBlock())
3100           return Err;
3101         break;
3102       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3103         if (Error Err = parseAttributeGroupBlock())
3104           return Err;
3105         break;
3106       case bitc::TYPE_BLOCK_ID_NEW:
3107         if (Error Err = parseTypeTable())
3108           return Err;
3109         break;
3110       case bitc::VALUE_SYMTAB_BLOCK_ID:
3111         if (!SeenValueSymbolTable) {
3112           // Either this is an old form VST without function index and an
3113           // associated VST forward declaration record (which would have caused
3114           // the VST to be jumped to and parsed before it was encountered
3115           // normally in the stream), or there were no function blocks to
3116           // trigger an earlier parsing of the VST.
3117           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3118           if (Error Err = parseValueSymbolTable())
3119             return Err;
3120           SeenValueSymbolTable = true;
3121         } else {
3122           // We must have had a VST forward declaration record, which caused
3123           // the parser to jump to and parse the VST earlier.
3124           assert(VSTOffset > 0);
3125           if (Stream.SkipBlock())
3126             return error("Invalid record");
3127         }
3128         break;
3129       case bitc::CONSTANTS_BLOCK_ID:
3130         if (Error Err = parseConstants())
3131           return Err;
3132         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3133           return Err;
3134         break;
3135       case bitc::METADATA_BLOCK_ID:
3136         if (ShouldLazyLoadMetadata) {
3137           if (Error Err = rememberAndSkipMetadata())
3138             return Err;
3139           break;
3140         }
3141         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3142         if (Error Err = MDLoader->parseModuleMetadata())
3143           return Err;
3144         break;
3145       case bitc::METADATA_KIND_BLOCK_ID:
3146         if (Error Err = MDLoader->parseMetadataKinds())
3147           return Err;
3148         break;
3149       case bitc::FUNCTION_BLOCK_ID:
3150         // If this is the first function body we've seen, reverse the
3151         // FunctionsWithBodies list.
3152         if (!SeenFirstFunctionBody) {
3153           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3154           if (Error Err = globalCleanup())
3155             return Err;
3156           SeenFirstFunctionBody = true;
3157         }
3158 
3159         if (VSTOffset > 0) {
3160           // If we have a VST forward declaration record, make sure we
3161           // parse the VST now if we haven't already. It is needed to
3162           // set up the DeferredFunctionInfo vector for lazy reading.
3163           if (!SeenValueSymbolTable) {
3164             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3165               return Err;
3166             SeenValueSymbolTable = true;
3167             // Fall through so that we record the NextUnreadBit below.
3168             // This is necessary in case we have an anonymous function that
3169             // is later materialized. Since it will not have a VST entry we
3170             // need to fall back to the lazy parse to find its offset.
3171           } else {
3172             // If we have a VST forward declaration record, but have already
3173             // parsed the VST (just above, when the first function body was
3174             // encountered here), then we are resuming the parse after
3175             // materializing functions. The ResumeBit points to the
3176             // start of the last function block recorded in the
3177             // DeferredFunctionInfo map. Skip it.
3178             if (Stream.SkipBlock())
3179               return error("Invalid record");
3180             continue;
3181           }
3182         }
3183 
3184         // Support older bitcode files that did not have the function
3185         // index in the VST, nor a VST forward declaration record, as
3186         // well as anonymous functions that do not have VST entries.
3187         // Build the DeferredFunctionInfo vector on the fly.
3188         if (Error Err = rememberAndSkipFunctionBody())
3189           return Err;
3190 
3191         // Suspend parsing when we reach the function bodies. Subsequent
3192         // materialization calls will resume it when necessary. If the bitcode
3193         // file is old, the symbol table will be at the end instead and will not
3194         // have been seen yet. In this case, just finish the parse now.
3195         if (SeenValueSymbolTable) {
3196           NextUnreadBit = Stream.GetCurrentBitNo();
3197           // After the VST has been parsed, we need to make sure intrinsic name
3198           // are auto-upgraded.
3199           return globalCleanup();
3200         }
3201         break;
3202       case bitc::USELIST_BLOCK_ID:
3203         if (Error Err = parseUseLists())
3204           return Err;
3205         break;
3206       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3207         if (Error Err = parseOperandBundleTags())
3208           return Err;
3209         break;
3210       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3211         if (Error Err = parseSyncScopeNames())
3212           return Err;
3213         break;
3214       }
3215       continue;
3216 
3217     case BitstreamEntry::Record:
3218       // The interesting case.
3219       break;
3220     }
3221 
3222     // Read a record.
3223     auto BitCode = Stream.readRecord(Entry.ID, Record);
3224     switch (BitCode) {
3225     default: break;  // Default behavior, ignore unknown content.
3226     case bitc::MODULE_CODE_VERSION: {
3227       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3228       if (!VersionOrErr)
3229         return VersionOrErr.takeError();
3230       UseRelativeIDs = *VersionOrErr >= 1;
3231       break;
3232     }
3233     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3234       std::string S;
3235       if (convertToString(Record, 0, S))
3236         return error("Invalid record");
3237       TheModule->setTargetTriple(S);
3238       break;
3239     }
3240     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3241       std::string S;
3242       if (convertToString(Record, 0, S))
3243         return error("Invalid record");
3244       TheModule->setDataLayout(S);
3245       break;
3246     }
3247     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3248       std::string S;
3249       if (convertToString(Record, 0, S))
3250         return error("Invalid record");
3251       TheModule->setModuleInlineAsm(S);
3252       break;
3253     }
3254     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3255       // FIXME: Remove in 4.0.
3256       std::string S;
3257       if (convertToString(Record, 0, S))
3258         return error("Invalid record");
3259       // Ignore value.
3260       break;
3261     }
3262     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3263       std::string S;
3264       if (convertToString(Record, 0, S))
3265         return error("Invalid record");
3266       SectionTable.push_back(S);
3267       break;
3268     }
3269     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3270       std::string S;
3271       if (convertToString(Record, 0, S))
3272         return error("Invalid record");
3273       GCTable.push_back(S);
3274       break;
3275     }
3276     case bitc::MODULE_CODE_COMDAT:
3277       if (Error Err = parseComdatRecord(Record))
3278         return Err;
3279       break;
3280     case bitc::MODULE_CODE_GLOBALVAR:
3281       if (Error Err = parseGlobalVarRecord(Record))
3282         return Err;
3283       break;
3284     case bitc::MODULE_CODE_FUNCTION:
3285       if (Error Err = parseFunctionRecord(Record))
3286         return Err;
3287       break;
3288     case bitc::MODULE_CODE_IFUNC:
3289     case bitc::MODULE_CODE_ALIAS:
3290     case bitc::MODULE_CODE_ALIAS_OLD:
3291       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3292         return Err;
3293       break;
3294     /// MODULE_CODE_VSTOFFSET: [offset]
3295     case bitc::MODULE_CODE_VSTOFFSET:
3296       if (Record.size() < 1)
3297         return error("Invalid record");
3298       // Note that we subtract 1 here because the offset is relative to one word
3299       // before the start of the identification or module block, which was
3300       // historically always the start of the regular bitcode header.
3301       VSTOffset = Record[0] - 1;
3302       break;
3303     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3304     case bitc::MODULE_CODE_SOURCE_FILENAME:
3305       SmallString<128> ValueName;
3306       if (convertToString(Record, 0, ValueName))
3307         return error("Invalid record");
3308       TheModule->setSourceFileName(ValueName);
3309       break;
3310     }
3311     Record.clear();
3312   }
3313 }
3314 
3315 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3316                                       bool IsImporting) {
3317   TheModule = M;
3318   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3319                             [&](unsigned ID) { return getTypeByID(ID); });
3320   return parseModule(0, ShouldLazyLoadMetadata);
3321 }
3322 
3323 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3324   if (!isa<PointerType>(PtrType))
3325     return error("Load/Store operand is not a pointer type");
3326   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3327 
3328   if (ValType && ValType != ElemType)
3329     return error("Explicit load/store type does not match pointee "
3330                  "type of pointer operand");
3331   if (!PointerType::isLoadableOrStorableType(ElemType))
3332     return error("Cannot load/store from pointer");
3333   return Error::success();
3334 }
3335 
3336 /// Lazily parse the specified function body block.
3337 Error BitcodeReader::parseFunctionBody(Function *F) {
3338   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3339     return error("Invalid record");
3340 
3341   // Unexpected unresolved metadata when parsing function.
3342   if (MDLoader->hasFwdRefs())
3343     return error("Invalid function metadata: incoming forward references");
3344 
3345   InstructionList.clear();
3346   unsigned ModuleValueListSize = ValueList.size();
3347   unsigned ModuleMDLoaderSize = MDLoader->size();
3348 
3349   // Add all the function arguments to the value table.
3350   for (Argument &I : F->args())
3351     ValueList.push_back(&I);
3352 
3353   unsigned NextValueNo = ValueList.size();
3354   BasicBlock *CurBB = nullptr;
3355   unsigned CurBBNo = 0;
3356 
3357   DebugLoc LastLoc;
3358   auto getLastInstruction = [&]() -> Instruction * {
3359     if (CurBB && !CurBB->empty())
3360       return &CurBB->back();
3361     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3362              !FunctionBBs[CurBBNo - 1]->empty())
3363       return &FunctionBBs[CurBBNo - 1]->back();
3364     return nullptr;
3365   };
3366 
3367   std::vector<OperandBundleDef> OperandBundles;
3368 
3369   // Read all the records.
3370   SmallVector<uint64_t, 64> Record;
3371 
3372   while (true) {
3373     BitstreamEntry Entry = Stream.advance();
3374 
3375     switch (Entry.Kind) {
3376     case BitstreamEntry::Error:
3377       return error("Malformed block");
3378     case BitstreamEntry::EndBlock:
3379       goto OutOfRecordLoop;
3380 
3381     case BitstreamEntry::SubBlock:
3382       switch (Entry.ID) {
3383       default:  // Skip unknown content.
3384         if (Stream.SkipBlock())
3385           return error("Invalid record");
3386         break;
3387       case bitc::CONSTANTS_BLOCK_ID:
3388         if (Error Err = parseConstants())
3389           return Err;
3390         NextValueNo = ValueList.size();
3391         break;
3392       case bitc::VALUE_SYMTAB_BLOCK_ID:
3393         if (Error Err = parseValueSymbolTable())
3394           return Err;
3395         break;
3396       case bitc::METADATA_ATTACHMENT_ID:
3397         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3398           return Err;
3399         break;
3400       case bitc::METADATA_BLOCK_ID:
3401         assert(DeferredMetadataInfo.empty() &&
3402                "Must read all module-level metadata before function-level");
3403         if (Error Err = MDLoader->parseFunctionMetadata())
3404           return Err;
3405         break;
3406       case bitc::USELIST_BLOCK_ID:
3407         if (Error Err = parseUseLists())
3408           return Err;
3409         break;
3410       }
3411       continue;
3412 
3413     case BitstreamEntry::Record:
3414       // The interesting case.
3415       break;
3416     }
3417 
3418     // Read a record.
3419     Record.clear();
3420     Instruction *I = nullptr;
3421     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3422     switch (BitCode) {
3423     default: // Default behavior: reject
3424       return error("Invalid value");
3425     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3426       if (Record.size() < 1 || Record[0] == 0)
3427         return error("Invalid record");
3428       // Create all the basic blocks for the function.
3429       FunctionBBs.resize(Record[0]);
3430 
3431       // See if anything took the address of blocks in this function.
3432       auto BBFRI = BasicBlockFwdRefs.find(F);
3433       if (BBFRI == BasicBlockFwdRefs.end()) {
3434         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3435           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3436       } else {
3437         auto &BBRefs = BBFRI->second;
3438         // Check for invalid basic block references.
3439         if (BBRefs.size() > FunctionBBs.size())
3440           return error("Invalid ID");
3441         assert(!BBRefs.empty() && "Unexpected empty array");
3442         assert(!BBRefs.front() && "Invalid reference to entry block");
3443         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3444              ++I)
3445           if (I < RE && BBRefs[I]) {
3446             BBRefs[I]->insertInto(F);
3447             FunctionBBs[I] = BBRefs[I];
3448           } else {
3449             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3450           }
3451 
3452         // Erase from the table.
3453         BasicBlockFwdRefs.erase(BBFRI);
3454       }
3455 
3456       CurBB = FunctionBBs[0];
3457       continue;
3458     }
3459 
3460     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3461       // This record indicates that the last instruction is at the same
3462       // location as the previous instruction with a location.
3463       I = getLastInstruction();
3464 
3465       if (!I)
3466         return error("Invalid record");
3467       I->setDebugLoc(LastLoc);
3468       I = nullptr;
3469       continue;
3470 
3471     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3472       I = getLastInstruction();
3473       if (!I || Record.size() < 4)
3474         return error("Invalid record");
3475 
3476       unsigned Line = Record[0], Col = Record[1];
3477       unsigned ScopeID = Record[2], IAID = Record[3];
3478 
3479       MDNode *Scope = nullptr, *IA = nullptr;
3480       if (ScopeID) {
3481         Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1);
3482         if (!Scope)
3483           return error("Invalid record");
3484       }
3485       if (IAID) {
3486         IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1);
3487         if (!IA)
3488           return error("Invalid record");
3489       }
3490       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
3491       I->setDebugLoc(LastLoc);
3492       I = nullptr;
3493       continue;
3494     }
3495 
3496     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3497       unsigned OpNum = 0;
3498       Value *LHS, *RHS;
3499       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3500           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3501           OpNum+1 > Record.size())
3502         return error("Invalid record");
3503 
3504       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3505       if (Opc == -1)
3506         return error("Invalid record");
3507       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3508       InstructionList.push_back(I);
3509       if (OpNum < Record.size()) {
3510         if (Opc == Instruction::Add ||
3511             Opc == Instruction::Sub ||
3512             Opc == Instruction::Mul ||
3513             Opc == Instruction::Shl) {
3514           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3515             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3516           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3517             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3518         } else if (Opc == Instruction::SDiv ||
3519                    Opc == Instruction::UDiv ||
3520                    Opc == Instruction::LShr ||
3521                    Opc == Instruction::AShr) {
3522           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3523             cast<BinaryOperator>(I)->setIsExact(true);
3524         } else if (isa<FPMathOperator>(I)) {
3525           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3526           if (FMF.any())
3527             I->setFastMathFlags(FMF);
3528         }
3529 
3530       }
3531       break;
3532     }
3533     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3534       unsigned OpNum = 0;
3535       Value *Op;
3536       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3537           OpNum+2 != Record.size())
3538         return error("Invalid record");
3539 
3540       Type *ResTy = getTypeByID(Record[OpNum]);
3541       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3542       if (Opc == -1 || !ResTy)
3543         return error("Invalid record");
3544       Instruction *Temp = nullptr;
3545       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3546         if (Temp) {
3547           InstructionList.push_back(Temp);
3548           CurBB->getInstList().push_back(Temp);
3549         }
3550       } else {
3551         auto CastOp = (Instruction::CastOps)Opc;
3552         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3553           return error("Invalid cast");
3554         I = CastInst::Create(CastOp, Op, ResTy);
3555       }
3556       InstructionList.push_back(I);
3557       break;
3558     }
3559     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3560     case bitc::FUNC_CODE_INST_GEP_OLD:
3561     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3562       unsigned OpNum = 0;
3563 
3564       Type *Ty;
3565       bool InBounds;
3566 
3567       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3568         InBounds = Record[OpNum++];
3569         Ty = getTypeByID(Record[OpNum++]);
3570       } else {
3571         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3572         Ty = nullptr;
3573       }
3574 
3575       Value *BasePtr;
3576       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3577         return error("Invalid record");
3578 
3579       if (!Ty)
3580         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3581                  ->getElementType();
3582       else if (Ty !=
3583                cast<PointerType>(BasePtr->getType()->getScalarType())
3584                    ->getElementType())
3585         return error(
3586             "Explicit gep type does not match pointee type of pointer operand");
3587 
3588       SmallVector<Value*, 16> GEPIdx;
3589       while (OpNum != Record.size()) {
3590         Value *Op;
3591         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3592           return error("Invalid record");
3593         GEPIdx.push_back(Op);
3594       }
3595 
3596       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3597 
3598       InstructionList.push_back(I);
3599       if (InBounds)
3600         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3601       break;
3602     }
3603 
3604     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3605                                        // EXTRACTVAL: [opty, opval, n x indices]
3606       unsigned OpNum = 0;
3607       Value *Agg;
3608       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3609         return error("Invalid record");
3610 
3611       unsigned RecSize = Record.size();
3612       if (OpNum == RecSize)
3613         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3614 
3615       SmallVector<unsigned, 4> EXTRACTVALIdx;
3616       Type *CurTy = Agg->getType();
3617       for (; OpNum != RecSize; ++OpNum) {
3618         bool IsArray = CurTy->isArrayTy();
3619         bool IsStruct = CurTy->isStructTy();
3620         uint64_t Index = Record[OpNum];
3621 
3622         if (!IsStruct && !IsArray)
3623           return error("EXTRACTVAL: Invalid type");
3624         if ((unsigned)Index != Index)
3625           return error("Invalid value");
3626         if (IsStruct && Index >= CurTy->subtypes().size())
3627           return error("EXTRACTVAL: Invalid struct index");
3628         if (IsArray && Index >= CurTy->getArrayNumElements())
3629           return error("EXTRACTVAL: Invalid array index");
3630         EXTRACTVALIdx.push_back((unsigned)Index);
3631 
3632         if (IsStruct)
3633           CurTy = CurTy->subtypes()[Index];
3634         else
3635           CurTy = CurTy->subtypes()[0];
3636       }
3637 
3638       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3639       InstructionList.push_back(I);
3640       break;
3641     }
3642 
3643     case bitc::FUNC_CODE_INST_INSERTVAL: {
3644                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3645       unsigned OpNum = 0;
3646       Value *Agg;
3647       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3648         return error("Invalid record");
3649       Value *Val;
3650       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3651         return error("Invalid record");
3652 
3653       unsigned RecSize = Record.size();
3654       if (OpNum == RecSize)
3655         return error("INSERTVAL: Invalid instruction with 0 indices");
3656 
3657       SmallVector<unsigned, 4> INSERTVALIdx;
3658       Type *CurTy = Agg->getType();
3659       for (; OpNum != RecSize; ++OpNum) {
3660         bool IsArray = CurTy->isArrayTy();
3661         bool IsStruct = CurTy->isStructTy();
3662         uint64_t Index = Record[OpNum];
3663 
3664         if (!IsStruct && !IsArray)
3665           return error("INSERTVAL: Invalid type");
3666         if ((unsigned)Index != Index)
3667           return error("Invalid value");
3668         if (IsStruct && Index >= CurTy->subtypes().size())
3669           return error("INSERTVAL: Invalid struct index");
3670         if (IsArray && Index >= CurTy->getArrayNumElements())
3671           return error("INSERTVAL: Invalid array index");
3672 
3673         INSERTVALIdx.push_back((unsigned)Index);
3674         if (IsStruct)
3675           CurTy = CurTy->subtypes()[Index];
3676         else
3677           CurTy = CurTy->subtypes()[0];
3678       }
3679 
3680       if (CurTy != Val->getType())
3681         return error("Inserted value type doesn't match aggregate type");
3682 
3683       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3684       InstructionList.push_back(I);
3685       break;
3686     }
3687 
3688     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3689       // obsolete form of select
3690       // handles select i1 ... in old bitcode
3691       unsigned OpNum = 0;
3692       Value *TrueVal, *FalseVal, *Cond;
3693       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3694           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3695           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3696         return error("Invalid record");
3697 
3698       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3699       InstructionList.push_back(I);
3700       break;
3701     }
3702 
3703     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3704       // new form of select
3705       // handles select i1 or select [N x i1]
3706       unsigned OpNum = 0;
3707       Value *TrueVal, *FalseVal, *Cond;
3708       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3709           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3710           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3711         return error("Invalid record");
3712 
3713       // select condition can be either i1 or [N x i1]
3714       if (VectorType* vector_type =
3715           dyn_cast<VectorType>(Cond->getType())) {
3716         // expect <n x i1>
3717         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3718           return error("Invalid type for value");
3719       } else {
3720         // expect i1
3721         if (Cond->getType() != Type::getInt1Ty(Context))
3722           return error("Invalid type for value");
3723       }
3724 
3725       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3726       InstructionList.push_back(I);
3727       break;
3728     }
3729 
3730     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3731       unsigned OpNum = 0;
3732       Value *Vec, *Idx;
3733       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3734           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3735         return error("Invalid record");
3736       if (!Vec->getType()->isVectorTy())
3737         return error("Invalid type for value");
3738       I = ExtractElementInst::Create(Vec, Idx);
3739       InstructionList.push_back(I);
3740       break;
3741     }
3742 
3743     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3744       unsigned OpNum = 0;
3745       Value *Vec, *Elt, *Idx;
3746       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3747         return error("Invalid record");
3748       if (!Vec->getType()->isVectorTy())
3749         return error("Invalid type for value");
3750       if (popValue(Record, OpNum, NextValueNo,
3751                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3752           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3753         return error("Invalid record");
3754       I = InsertElementInst::Create(Vec, Elt, Idx);
3755       InstructionList.push_back(I);
3756       break;
3757     }
3758 
3759     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3760       unsigned OpNum = 0;
3761       Value *Vec1, *Vec2, *Mask;
3762       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3763           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3764         return error("Invalid record");
3765 
3766       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3767         return error("Invalid record");
3768       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3769         return error("Invalid type for value");
3770       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3771       InstructionList.push_back(I);
3772       break;
3773     }
3774 
3775     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3776       // Old form of ICmp/FCmp returning bool
3777       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3778       // both legal on vectors but had different behaviour.
3779     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3780       // FCmp/ICmp returning bool or vector of bool
3781 
3782       unsigned OpNum = 0;
3783       Value *LHS, *RHS;
3784       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3785           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3786         return error("Invalid record");
3787 
3788       unsigned PredVal = Record[OpNum];
3789       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3790       FastMathFlags FMF;
3791       if (IsFP && Record.size() > OpNum+1)
3792         FMF = getDecodedFastMathFlags(Record[++OpNum]);
3793 
3794       if (OpNum+1 != Record.size())
3795         return error("Invalid record");
3796 
3797       if (LHS->getType()->isFPOrFPVectorTy())
3798         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3799       else
3800         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3801 
3802       if (FMF.any())
3803         I->setFastMathFlags(FMF);
3804       InstructionList.push_back(I);
3805       break;
3806     }
3807 
3808     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3809       {
3810         unsigned Size = Record.size();
3811         if (Size == 0) {
3812           I = ReturnInst::Create(Context);
3813           InstructionList.push_back(I);
3814           break;
3815         }
3816 
3817         unsigned OpNum = 0;
3818         Value *Op = nullptr;
3819         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3820           return error("Invalid record");
3821         if (OpNum != Record.size())
3822           return error("Invalid record");
3823 
3824         I = ReturnInst::Create(Context, Op);
3825         InstructionList.push_back(I);
3826         break;
3827       }
3828     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3829       if (Record.size() != 1 && Record.size() != 3)
3830         return error("Invalid record");
3831       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3832       if (!TrueDest)
3833         return error("Invalid record");
3834 
3835       if (Record.size() == 1) {
3836         I = BranchInst::Create(TrueDest);
3837         InstructionList.push_back(I);
3838       }
3839       else {
3840         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3841         Value *Cond = getValue(Record, 2, NextValueNo,
3842                                Type::getInt1Ty(Context));
3843         if (!FalseDest || !Cond)
3844           return error("Invalid record");
3845         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3846         InstructionList.push_back(I);
3847       }
3848       break;
3849     }
3850     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3851       if (Record.size() != 1 && Record.size() != 2)
3852         return error("Invalid record");
3853       unsigned Idx = 0;
3854       Value *CleanupPad =
3855           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3856       if (!CleanupPad)
3857         return error("Invalid record");
3858       BasicBlock *UnwindDest = nullptr;
3859       if (Record.size() == 2) {
3860         UnwindDest = getBasicBlock(Record[Idx++]);
3861         if (!UnwindDest)
3862           return error("Invalid record");
3863       }
3864 
3865       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3866       InstructionList.push_back(I);
3867       break;
3868     }
3869     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3870       if (Record.size() != 2)
3871         return error("Invalid record");
3872       unsigned Idx = 0;
3873       Value *CatchPad =
3874           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3875       if (!CatchPad)
3876         return error("Invalid record");
3877       BasicBlock *BB = getBasicBlock(Record[Idx++]);
3878       if (!BB)
3879         return error("Invalid record");
3880 
3881       I = CatchReturnInst::Create(CatchPad, BB);
3882       InstructionList.push_back(I);
3883       break;
3884     }
3885     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3886       // We must have, at minimum, the outer scope and the number of arguments.
3887       if (Record.size() < 2)
3888         return error("Invalid record");
3889 
3890       unsigned Idx = 0;
3891 
3892       Value *ParentPad =
3893           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3894 
3895       unsigned NumHandlers = Record[Idx++];
3896 
3897       SmallVector<BasicBlock *, 2> Handlers;
3898       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3899         BasicBlock *BB = getBasicBlock(Record[Idx++]);
3900         if (!BB)
3901           return error("Invalid record");
3902         Handlers.push_back(BB);
3903       }
3904 
3905       BasicBlock *UnwindDest = nullptr;
3906       if (Idx + 1 == Record.size()) {
3907         UnwindDest = getBasicBlock(Record[Idx++]);
3908         if (!UnwindDest)
3909           return error("Invalid record");
3910       }
3911 
3912       if (Record.size() != Idx)
3913         return error("Invalid record");
3914 
3915       auto *CatchSwitch =
3916           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
3917       for (BasicBlock *Handler : Handlers)
3918         CatchSwitch->addHandler(Handler);
3919       I = CatchSwitch;
3920       InstructionList.push_back(I);
3921       break;
3922     }
3923     case bitc::FUNC_CODE_INST_CATCHPAD:
3924     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
3925       // We must have, at minimum, the outer scope and the number of arguments.
3926       if (Record.size() < 2)
3927         return error("Invalid record");
3928 
3929       unsigned Idx = 0;
3930 
3931       Value *ParentPad =
3932           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3933 
3934       unsigned NumArgOperands = Record[Idx++];
3935 
3936       SmallVector<Value *, 2> Args;
3937       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
3938         Value *Val;
3939         if (getValueTypePair(Record, Idx, NextValueNo, Val))
3940           return error("Invalid record");
3941         Args.push_back(Val);
3942       }
3943 
3944       if (Record.size() != Idx)
3945         return error("Invalid record");
3946 
3947       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
3948         I = CleanupPadInst::Create(ParentPad, Args);
3949       else
3950         I = CatchPadInst::Create(ParentPad, Args);
3951       InstructionList.push_back(I);
3952       break;
3953     }
3954     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3955       // Check magic
3956       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
3957         // "New" SwitchInst format with case ranges. The changes to write this
3958         // format were reverted but we still recognize bitcode that uses it.
3959         // Hopefully someday we will have support for case ranges and can use
3960         // this format again.
3961 
3962         Type *OpTy = getTypeByID(Record[1]);
3963         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
3964 
3965         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
3966         BasicBlock *Default = getBasicBlock(Record[3]);
3967         if (!OpTy || !Cond || !Default)
3968           return error("Invalid record");
3969 
3970         unsigned NumCases = Record[4];
3971 
3972         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3973         InstructionList.push_back(SI);
3974 
3975         unsigned CurIdx = 5;
3976         for (unsigned i = 0; i != NumCases; ++i) {
3977           SmallVector<ConstantInt*, 1> CaseVals;
3978           unsigned NumItems = Record[CurIdx++];
3979           for (unsigned ci = 0; ci != NumItems; ++ci) {
3980             bool isSingleNumber = Record[CurIdx++];
3981 
3982             APInt Low;
3983             unsigned ActiveWords = 1;
3984             if (ValueBitWidth > 64)
3985               ActiveWords = Record[CurIdx++];
3986             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3987                                 ValueBitWidth);
3988             CurIdx += ActiveWords;
3989 
3990             if (!isSingleNumber) {
3991               ActiveWords = 1;
3992               if (ValueBitWidth > 64)
3993                 ActiveWords = Record[CurIdx++];
3994               APInt High = readWideAPInt(
3995                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
3996               CurIdx += ActiveWords;
3997 
3998               // FIXME: It is not clear whether values in the range should be
3999               // compared as signed or unsigned values. The partially
4000               // implemented changes that used this format in the past used
4001               // unsigned comparisons.
4002               for ( ; Low.ule(High); ++Low)
4003                 CaseVals.push_back(ConstantInt::get(Context, Low));
4004             } else
4005               CaseVals.push_back(ConstantInt::get(Context, Low));
4006           }
4007           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4008           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4009                  cve = CaseVals.end(); cvi != cve; ++cvi)
4010             SI->addCase(*cvi, DestBB);
4011         }
4012         I = SI;
4013         break;
4014       }
4015 
4016       // Old SwitchInst format without case ranges.
4017 
4018       if (Record.size() < 3 || (Record.size() & 1) == 0)
4019         return error("Invalid record");
4020       Type *OpTy = getTypeByID(Record[0]);
4021       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4022       BasicBlock *Default = getBasicBlock(Record[2]);
4023       if (!OpTy || !Cond || !Default)
4024         return error("Invalid record");
4025       unsigned NumCases = (Record.size()-3)/2;
4026       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4027       InstructionList.push_back(SI);
4028       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4029         ConstantInt *CaseVal =
4030           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4031         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4032         if (!CaseVal || !DestBB) {
4033           delete SI;
4034           return error("Invalid record");
4035         }
4036         SI->addCase(CaseVal, DestBB);
4037       }
4038       I = SI;
4039       break;
4040     }
4041     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4042       if (Record.size() < 2)
4043         return error("Invalid record");
4044       Type *OpTy = getTypeByID(Record[0]);
4045       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4046       if (!OpTy || !Address)
4047         return error("Invalid record");
4048       unsigned NumDests = Record.size()-2;
4049       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4050       InstructionList.push_back(IBI);
4051       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4052         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4053           IBI->addDestination(DestBB);
4054         } else {
4055           delete IBI;
4056           return error("Invalid record");
4057         }
4058       }
4059       I = IBI;
4060       break;
4061     }
4062 
4063     case bitc::FUNC_CODE_INST_INVOKE: {
4064       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4065       if (Record.size() < 4)
4066         return error("Invalid record");
4067       unsigned OpNum = 0;
4068       AttributeList PAL = getAttributes(Record[OpNum++]);
4069       unsigned CCInfo = Record[OpNum++];
4070       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4071       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4072 
4073       FunctionType *FTy = nullptr;
4074       if (CCInfo >> 13 & 1 &&
4075           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4076         return error("Explicit invoke type is not a function type");
4077 
4078       Value *Callee;
4079       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4080         return error("Invalid record");
4081 
4082       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4083       if (!CalleeTy)
4084         return error("Callee is not a pointer");
4085       if (!FTy) {
4086         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4087         if (!FTy)
4088           return error("Callee is not of pointer to function type");
4089       } else if (CalleeTy->getElementType() != FTy)
4090         return error("Explicit invoke type does not match pointee type of "
4091                      "callee operand");
4092       if (Record.size() < FTy->getNumParams() + OpNum)
4093         return error("Insufficient operands to call");
4094 
4095       SmallVector<Value*, 16> Ops;
4096       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4097         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4098                                FTy->getParamType(i)));
4099         if (!Ops.back())
4100           return error("Invalid record");
4101       }
4102 
4103       if (!FTy->isVarArg()) {
4104         if (Record.size() != OpNum)
4105           return error("Invalid record");
4106       } else {
4107         // Read type/value pairs for varargs params.
4108         while (OpNum != Record.size()) {
4109           Value *Op;
4110           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4111             return error("Invalid record");
4112           Ops.push_back(Op);
4113         }
4114       }
4115 
4116       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4117       OperandBundles.clear();
4118       InstructionList.push_back(I);
4119       cast<InvokeInst>(I)->setCallingConv(
4120           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4121       cast<InvokeInst>(I)->setAttributes(PAL);
4122       break;
4123     }
4124     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4125       unsigned Idx = 0;
4126       Value *Val = nullptr;
4127       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4128         return error("Invalid record");
4129       I = ResumeInst::Create(Val);
4130       InstructionList.push_back(I);
4131       break;
4132     }
4133     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4134       I = new UnreachableInst(Context);
4135       InstructionList.push_back(I);
4136       break;
4137     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4138       if (Record.size() < 1 || ((Record.size()-1)&1))
4139         return error("Invalid record");
4140       Type *Ty = getTypeByID(Record[0]);
4141       if (!Ty)
4142         return error("Invalid record");
4143 
4144       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4145       InstructionList.push_back(PN);
4146 
4147       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4148         Value *V;
4149         // With the new function encoding, it is possible that operands have
4150         // negative IDs (for forward references).  Use a signed VBR
4151         // representation to keep the encoding small.
4152         if (UseRelativeIDs)
4153           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4154         else
4155           V = getValue(Record, 1+i, NextValueNo, Ty);
4156         BasicBlock *BB = getBasicBlock(Record[2+i]);
4157         if (!V || !BB)
4158           return error("Invalid record");
4159         PN->addIncoming(V, BB);
4160       }
4161       I = PN;
4162       break;
4163     }
4164 
4165     case bitc::FUNC_CODE_INST_LANDINGPAD:
4166     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4167       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4168       unsigned Idx = 0;
4169       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4170         if (Record.size() < 3)
4171           return error("Invalid record");
4172       } else {
4173         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4174         if (Record.size() < 4)
4175           return error("Invalid record");
4176       }
4177       Type *Ty = getTypeByID(Record[Idx++]);
4178       if (!Ty)
4179         return error("Invalid record");
4180       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4181         Value *PersFn = nullptr;
4182         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4183           return error("Invalid record");
4184 
4185         if (!F->hasPersonalityFn())
4186           F->setPersonalityFn(cast<Constant>(PersFn));
4187         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4188           return error("Personality function mismatch");
4189       }
4190 
4191       bool IsCleanup = !!Record[Idx++];
4192       unsigned NumClauses = Record[Idx++];
4193       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4194       LP->setCleanup(IsCleanup);
4195       for (unsigned J = 0; J != NumClauses; ++J) {
4196         LandingPadInst::ClauseType CT =
4197           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4198         Value *Val;
4199 
4200         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4201           delete LP;
4202           return error("Invalid record");
4203         }
4204 
4205         assert((CT != LandingPadInst::Catch ||
4206                 !isa<ArrayType>(Val->getType())) &&
4207                "Catch clause has a invalid type!");
4208         assert((CT != LandingPadInst::Filter ||
4209                 isa<ArrayType>(Val->getType())) &&
4210                "Filter clause has invalid type!");
4211         LP->addClause(cast<Constant>(Val));
4212       }
4213 
4214       I = LP;
4215       InstructionList.push_back(I);
4216       break;
4217     }
4218 
4219     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4220       if (Record.size() != 4)
4221         return error("Invalid record");
4222       uint64_t AlignRecord = Record[3];
4223       const uint64_t InAllocaMask = uint64_t(1) << 5;
4224       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4225       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4226       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4227                                 SwiftErrorMask;
4228       bool InAlloca = AlignRecord & InAllocaMask;
4229       bool SwiftError = AlignRecord & SwiftErrorMask;
4230       Type *Ty = getTypeByID(Record[0]);
4231       if ((AlignRecord & ExplicitTypeMask) == 0) {
4232         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4233         if (!PTy)
4234           return error("Old-style alloca with a non-pointer type");
4235         Ty = PTy->getElementType();
4236       }
4237       Type *OpTy = getTypeByID(Record[1]);
4238       Value *Size = getFnValueByID(Record[2], OpTy);
4239       unsigned Align;
4240       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4241         return Err;
4242       }
4243       if (!Ty || !Size)
4244         return error("Invalid record");
4245 
4246       // FIXME: Make this an optional field.
4247       const DataLayout &DL = TheModule->getDataLayout();
4248       unsigned AS = DL.getAllocaAddrSpace();
4249 
4250       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4251       AI->setUsedWithInAlloca(InAlloca);
4252       AI->setSwiftError(SwiftError);
4253       I = AI;
4254       InstructionList.push_back(I);
4255       break;
4256     }
4257     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4258       unsigned OpNum = 0;
4259       Value *Op;
4260       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4261           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4262         return error("Invalid record");
4263 
4264       Type *Ty = nullptr;
4265       if (OpNum + 3 == Record.size())
4266         Ty = getTypeByID(Record[OpNum++]);
4267       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4268         return Err;
4269       if (!Ty)
4270         Ty = cast<PointerType>(Op->getType())->getElementType();
4271 
4272       unsigned Align;
4273       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4274         return Err;
4275       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4276 
4277       InstructionList.push_back(I);
4278       break;
4279     }
4280     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4281        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4282       unsigned OpNum = 0;
4283       Value *Op;
4284       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4285           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4286         return error("Invalid record");
4287 
4288       Type *Ty = nullptr;
4289       if (OpNum + 5 == Record.size())
4290         Ty = getTypeByID(Record[OpNum++]);
4291       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4292         return Err;
4293       if (!Ty)
4294         Ty = cast<PointerType>(Op->getType())->getElementType();
4295 
4296       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4297       if (Ordering == AtomicOrdering::NotAtomic ||
4298           Ordering == AtomicOrdering::Release ||
4299           Ordering == AtomicOrdering::AcquireRelease)
4300         return error("Invalid record");
4301       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4302         return error("Invalid record");
4303       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4304 
4305       unsigned Align;
4306       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4307         return Err;
4308       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID);
4309 
4310       InstructionList.push_back(I);
4311       break;
4312     }
4313     case bitc::FUNC_CODE_INST_STORE:
4314     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4315       unsigned OpNum = 0;
4316       Value *Val, *Ptr;
4317       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4318           (BitCode == bitc::FUNC_CODE_INST_STORE
4319                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4320                : popValue(Record, OpNum, NextValueNo,
4321                           cast<PointerType>(Ptr->getType())->getElementType(),
4322                           Val)) ||
4323           OpNum + 2 != Record.size())
4324         return error("Invalid record");
4325 
4326       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4327         return Err;
4328       unsigned Align;
4329       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4330         return Err;
4331       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4332       InstructionList.push_back(I);
4333       break;
4334     }
4335     case bitc::FUNC_CODE_INST_STOREATOMIC:
4336     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4337       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4338       unsigned OpNum = 0;
4339       Value *Val, *Ptr;
4340       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4341           !isa<PointerType>(Ptr->getType()) ||
4342           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4343                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4344                : popValue(Record, OpNum, NextValueNo,
4345                           cast<PointerType>(Ptr->getType())->getElementType(),
4346                           Val)) ||
4347           OpNum + 4 != Record.size())
4348         return error("Invalid record");
4349 
4350       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4351         return Err;
4352       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4353       if (Ordering == AtomicOrdering::NotAtomic ||
4354           Ordering == AtomicOrdering::Acquire ||
4355           Ordering == AtomicOrdering::AcquireRelease)
4356         return error("Invalid record");
4357       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4358       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4359         return error("Invalid record");
4360 
4361       unsigned Align;
4362       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4363         return Err;
4364       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4365       InstructionList.push_back(I);
4366       break;
4367     }
4368     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4369     case bitc::FUNC_CODE_INST_CMPXCHG: {
4370       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4371       //          failureordering?, isweak?]
4372       unsigned OpNum = 0;
4373       Value *Ptr, *Cmp, *New;
4374       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4375           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4376                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4377                : popValue(Record, OpNum, NextValueNo,
4378                           cast<PointerType>(Ptr->getType())->getElementType(),
4379                           Cmp)) ||
4380           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4381           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4382         return error("Invalid record");
4383       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4384       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4385           SuccessOrdering == AtomicOrdering::Unordered)
4386         return error("Invalid record");
4387       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4388 
4389       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4390         return Err;
4391       AtomicOrdering FailureOrdering;
4392       if (Record.size() < 7)
4393         FailureOrdering =
4394             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4395       else
4396         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4397 
4398       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4399                                 SSID);
4400       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4401 
4402       if (Record.size() < 8) {
4403         // Before weak cmpxchgs existed, the instruction simply returned the
4404         // value loaded from memory, so bitcode files from that era will be
4405         // expecting the first component of a modern cmpxchg.
4406         CurBB->getInstList().push_back(I);
4407         I = ExtractValueInst::Create(I, 0);
4408       } else {
4409         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4410       }
4411 
4412       InstructionList.push_back(I);
4413       break;
4414     }
4415     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4416       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4417       unsigned OpNum = 0;
4418       Value *Ptr, *Val;
4419       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4420           !isa<PointerType>(Ptr->getType()) ||
4421           popValue(Record, OpNum, NextValueNo,
4422                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4423           OpNum+4 != Record.size())
4424         return error("Invalid record");
4425       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4426       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4427           Operation > AtomicRMWInst::LAST_BINOP)
4428         return error("Invalid record");
4429       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4430       if (Ordering == AtomicOrdering::NotAtomic ||
4431           Ordering == AtomicOrdering::Unordered)
4432         return error("Invalid record");
4433       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4434       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4435       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4436       InstructionList.push_back(I);
4437       break;
4438     }
4439     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4440       if (2 != Record.size())
4441         return error("Invalid record");
4442       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4443       if (Ordering == AtomicOrdering::NotAtomic ||
4444           Ordering == AtomicOrdering::Unordered ||
4445           Ordering == AtomicOrdering::Monotonic)
4446         return error("Invalid record");
4447       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4448       I = new FenceInst(Context, Ordering, SSID);
4449       InstructionList.push_back(I);
4450       break;
4451     }
4452     case bitc::FUNC_CODE_INST_CALL: {
4453       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4454       if (Record.size() < 3)
4455         return error("Invalid record");
4456 
4457       unsigned OpNum = 0;
4458       AttributeList PAL = getAttributes(Record[OpNum++]);
4459       unsigned CCInfo = Record[OpNum++];
4460 
4461       FastMathFlags FMF;
4462       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4463         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4464         if (!FMF.any())
4465           return error("Fast math flags indicator set for call with no FMF");
4466       }
4467 
4468       FunctionType *FTy = nullptr;
4469       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4470           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4471         return error("Explicit call type is not a function type");
4472 
4473       Value *Callee;
4474       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4475         return error("Invalid record");
4476 
4477       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4478       if (!OpTy)
4479         return error("Callee is not a pointer type");
4480       if (!FTy) {
4481         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4482         if (!FTy)
4483           return error("Callee is not of pointer to function type");
4484       } else if (OpTy->getElementType() != FTy)
4485         return error("Explicit call type does not match pointee type of "
4486                      "callee operand");
4487       if (Record.size() < FTy->getNumParams() + OpNum)
4488         return error("Insufficient operands to call");
4489 
4490       SmallVector<Value*, 16> Args;
4491       // Read the fixed params.
4492       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4493         if (FTy->getParamType(i)->isLabelTy())
4494           Args.push_back(getBasicBlock(Record[OpNum]));
4495         else
4496           Args.push_back(getValue(Record, OpNum, NextValueNo,
4497                                   FTy->getParamType(i)));
4498         if (!Args.back())
4499           return error("Invalid record");
4500       }
4501 
4502       // Read type/value pairs for varargs params.
4503       if (!FTy->isVarArg()) {
4504         if (OpNum != Record.size())
4505           return error("Invalid record");
4506       } else {
4507         while (OpNum != Record.size()) {
4508           Value *Op;
4509           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4510             return error("Invalid record");
4511           Args.push_back(Op);
4512         }
4513       }
4514 
4515       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4516       OperandBundles.clear();
4517       InstructionList.push_back(I);
4518       cast<CallInst>(I)->setCallingConv(
4519           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4520       CallInst::TailCallKind TCK = CallInst::TCK_None;
4521       if (CCInfo & 1 << bitc::CALL_TAIL)
4522         TCK = CallInst::TCK_Tail;
4523       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4524         TCK = CallInst::TCK_MustTail;
4525       if (CCInfo & (1 << bitc::CALL_NOTAIL))
4526         TCK = CallInst::TCK_NoTail;
4527       cast<CallInst>(I)->setTailCallKind(TCK);
4528       cast<CallInst>(I)->setAttributes(PAL);
4529       if (FMF.any()) {
4530         if (!isa<FPMathOperator>(I))
4531           return error("Fast-math-flags specified for call without "
4532                        "floating-point scalar or vector return type");
4533         I->setFastMathFlags(FMF);
4534       }
4535       break;
4536     }
4537     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4538       if (Record.size() < 3)
4539         return error("Invalid record");
4540       Type *OpTy = getTypeByID(Record[0]);
4541       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4542       Type *ResTy = getTypeByID(Record[2]);
4543       if (!OpTy || !Op || !ResTy)
4544         return error("Invalid record");
4545       I = new VAArgInst(Op, ResTy);
4546       InstructionList.push_back(I);
4547       break;
4548     }
4549 
4550     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4551       // A call or an invoke can be optionally prefixed with some variable
4552       // number of operand bundle blocks.  These blocks are read into
4553       // OperandBundles and consumed at the next call or invoke instruction.
4554 
4555       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4556         return error("Invalid record");
4557 
4558       std::vector<Value *> Inputs;
4559 
4560       unsigned OpNum = 1;
4561       while (OpNum != Record.size()) {
4562         Value *Op;
4563         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4564           return error("Invalid record");
4565         Inputs.push_back(Op);
4566       }
4567 
4568       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4569       continue;
4570     }
4571     }
4572 
4573     // Add instruction to end of current BB.  If there is no current BB, reject
4574     // this file.
4575     if (!CurBB) {
4576       I->deleteValue();
4577       return error("Invalid instruction with no BB");
4578     }
4579     if (!OperandBundles.empty()) {
4580       I->deleteValue();
4581       return error("Operand bundles found with no consumer");
4582     }
4583     CurBB->getInstList().push_back(I);
4584 
4585     // If this was a terminator instruction, move to the next block.
4586     if (isa<TerminatorInst>(I)) {
4587       ++CurBBNo;
4588       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4589     }
4590 
4591     // Non-void values get registered in the value table for future use.
4592     if (I && !I->getType()->isVoidTy())
4593       ValueList.assignValue(I, NextValueNo++);
4594   }
4595 
4596 OutOfRecordLoop:
4597 
4598   if (!OperandBundles.empty())
4599     return error("Operand bundles found with no consumer");
4600 
4601   // Check the function list for unresolved values.
4602   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4603     if (!A->getParent()) {
4604       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4605       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4606         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4607           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4608           delete A;
4609         }
4610       }
4611       return error("Never resolved value found in function");
4612     }
4613   }
4614 
4615   // Unexpected unresolved metadata about to be dropped.
4616   if (MDLoader->hasFwdRefs())
4617     return error("Invalid function metadata: outgoing forward refs");
4618 
4619   // Trim the value list down to the size it was before we parsed this function.
4620   ValueList.shrinkTo(ModuleValueListSize);
4621   MDLoader->shrinkTo(ModuleMDLoaderSize);
4622   std::vector<BasicBlock*>().swap(FunctionBBs);
4623   return Error::success();
4624 }
4625 
4626 /// Find the function body in the bitcode stream
4627 Error BitcodeReader::findFunctionInStream(
4628     Function *F,
4629     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4630   while (DeferredFunctionInfoIterator->second == 0) {
4631     // This is the fallback handling for the old format bitcode that
4632     // didn't contain the function index in the VST, or when we have
4633     // an anonymous function which would not have a VST entry.
4634     // Assert that we have one of those two cases.
4635     assert(VSTOffset == 0 || !F->hasName());
4636     // Parse the next body in the stream and set its position in the
4637     // DeferredFunctionInfo map.
4638     if (Error Err = rememberAndSkipFunctionBodies())
4639       return Err;
4640   }
4641   return Error::success();
4642 }
4643 
4644 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4645   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4646     return SyncScope::ID(Val);
4647   if (Val >= SSIDs.size())
4648     return SyncScope::System; // Map unknown synchronization scopes to system.
4649   return SSIDs[Val];
4650 }
4651 
4652 //===----------------------------------------------------------------------===//
4653 // GVMaterializer implementation
4654 //===----------------------------------------------------------------------===//
4655 
4656 Error BitcodeReader::materialize(GlobalValue *GV) {
4657   Function *F = dyn_cast<Function>(GV);
4658   // If it's not a function or is already material, ignore the request.
4659   if (!F || !F->isMaterializable())
4660     return Error::success();
4661 
4662   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4663   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4664   // If its position is recorded as 0, its body is somewhere in the stream
4665   // but we haven't seen it yet.
4666   if (DFII->second == 0)
4667     if (Error Err = findFunctionInStream(F, DFII))
4668       return Err;
4669 
4670   // Materialize metadata before parsing any function bodies.
4671   if (Error Err = materializeMetadata())
4672     return Err;
4673 
4674   // Move the bit stream to the saved position of the deferred function body.
4675   Stream.JumpToBit(DFII->second);
4676 
4677   if (Error Err = parseFunctionBody(F))
4678     return Err;
4679   F->setIsMaterializable(false);
4680 
4681   if (StripDebugInfo)
4682     stripDebugInfo(*F);
4683 
4684   // Upgrade any old intrinsic calls in the function.
4685   for (auto &I : UpgradedIntrinsics) {
4686     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4687          UI != UE;) {
4688       User *U = *UI;
4689       ++UI;
4690       if (CallInst *CI = dyn_cast<CallInst>(U))
4691         UpgradeIntrinsicCall(CI, I.second);
4692     }
4693   }
4694 
4695   // Update calls to the remangled intrinsics
4696   for (auto &I : RemangledIntrinsics)
4697     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4698          UI != UE;)
4699       // Don't expect any other users than call sites
4700       CallSite(*UI++).setCalledFunction(I.second);
4701 
4702   // Finish fn->subprogram upgrade for materialized functions.
4703   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4704     F->setSubprogram(SP);
4705 
4706   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4707   if (!MDLoader->isStrippingTBAA()) {
4708     for (auto &I : instructions(F)) {
4709       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4710       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4711         continue;
4712       MDLoader->setStripTBAA(true);
4713       stripTBAA(F->getParent());
4714     }
4715   }
4716 
4717   // Bring in any functions that this function forward-referenced via
4718   // blockaddresses.
4719   return materializeForwardReferencedFunctions();
4720 }
4721 
4722 Error BitcodeReader::materializeModule() {
4723   if (Error Err = materializeMetadata())
4724     return Err;
4725 
4726   // Promise to materialize all forward references.
4727   WillMaterializeAllForwardRefs = true;
4728 
4729   // Iterate over the module, deserializing any functions that are still on
4730   // disk.
4731   for (Function &F : *TheModule) {
4732     if (Error Err = materialize(&F))
4733       return Err;
4734   }
4735   // At this point, if there are any function bodies, parse the rest of
4736   // the bits in the module past the last function block we have recorded
4737   // through either lazy scanning or the VST.
4738   if (LastFunctionBlockBit || NextUnreadBit)
4739     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4740                                     ? LastFunctionBlockBit
4741                                     : NextUnreadBit))
4742       return Err;
4743 
4744   // Check that all block address forward references got resolved (as we
4745   // promised above).
4746   if (!BasicBlockFwdRefs.empty())
4747     return error("Never resolved function from blockaddress");
4748 
4749   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4750   // delete the old functions to clean up. We can't do this unless the entire
4751   // module is materialized because there could always be another function body
4752   // with calls to the old function.
4753   for (auto &I : UpgradedIntrinsics) {
4754     for (auto *U : I.first->users()) {
4755       if (CallInst *CI = dyn_cast<CallInst>(U))
4756         UpgradeIntrinsicCall(CI, I.second);
4757     }
4758     if (!I.first->use_empty())
4759       I.first->replaceAllUsesWith(I.second);
4760     I.first->eraseFromParent();
4761   }
4762   UpgradedIntrinsics.clear();
4763   // Do the same for remangled intrinsics
4764   for (auto &I : RemangledIntrinsics) {
4765     I.first->replaceAllUsesWith(I.second);
4766     I.first->eraseFromParent();
4767   }
4768   RemangledIntrinsics.clear();
4769 
4770   UpgradeDebugInfo(*TheModule);
4771 
4772   UpgradeModuleFlags(*TheModule);
4773   return Error::success();
4774 }
4775 
4776 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4777   return IdentifiedStructTypes;
4778 }
4779 
4780 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4781     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4782     StringRef ModulePath, unsigned ModuleId)
4783     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4784       ModulePath(ModulePath), ModuleId(ModuleId) {}
4785 
4786 ModuleSummaryIndex::ModuleInfo *
4787 ModuleSummaryIndexBitcodeReader::addThisModule() {
4788   return TheIndex.addModule(ModulePath, ModuleId);
4789 }
4790 
4791 std::pair<ValueInfo, GlobalValue::GUID>
4792 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4793   auto VGI = ValueIdToValueInfoMap[ValueId];
4794   assert(VGI.first);
4795   return VGI;
4796 }
4797 
4798 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4799     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4800     StringRef SourceFileName) {
4801   std::string GlobalId =
4802       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4803   auto ValueGUID = GlobalValue::getGUID(GlobalId);
4804   auto OriginalNameID = ValueGUID;
4805   if (GlobalValue::isLocalLinkage(Linkage))
4806     OriginalNameID = GlobalValue::getGUID(ValueName);
4807   if (PrintSummaryGUIDs)
4808     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4809            << ValueName << "\n";
4810   ValueIdToValueInfoMap[ValueID] =
4811       std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID);
4812 }
4813 
4814 // Specialized value symbol table parser used when reading module index
4815 // blocks where we don't actually create global values. The parsed information
4816 // is saved in the bitcode reader for use when later parsing summaries.
4817 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4818     uint64_t Offset,
4819     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4820   // With a strtab the VST is not required to parse the summary.
4821   if (UseStrtab)
4822     return Error::success();
4823 
4824   assert(Offset > 0 && "Expected non-zero VST offset");
4825   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4826 
4827   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
4828     return error("Invalid record");
4829 
4830   SmallVector<uint64_t, 64> Record;
4831 
4832   // Read all the records for this value table.
4833   SmallString<128> ValueName;
4834 
4835   while (true) {
4836     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4837 
4838     switch (Entry.Kind) {
4839     case BitstreamEntry::SubBlock: // Handled for us already.
4840     case BitstreamEntry::Error:
4841       return error("Malformed block");
4842     case BitstreamEntry::EndBlock:
4843       // Done parsing VST, jump back to wherever we came from.
4844       Stream.JumpToBit(CurrentBit);
4845       return Error::success();
4846     case BitstreamEntry::Record:
4847       // The interesting case.
4848       break;
4849     }
4850 
4851     // Read a record.
4852     Record.clear();
4853     switch (Stream.readRecord(Entry.ID, Record)) {
4854     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4855       break;
4856     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4857       if (convertToString(Record, 1, ValueName))
4858         return error("Invalid record");
4859       unsigned ValueID = Record[0];
4860       assert(!SourceFileName.empty());
4861       auto VLI = ValueIdToLinkageMap.find(ValueID);
4862       assert(VLI != ValueIdToLinkageMap.end() &&
4863              "No linkage found for VST entry?");
4864       auto Linkage = VLI->second;
4865       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4866       ValueName.clear();
4867       break;
4868     }
4869     case bitc::VST_CODE_FNENTRY: {
4870       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4871       if (convertToString(Record, 2, ValueName))
4872         return error("Invalid record");
4873       unsigned ValueID = Record[0];
4874       assert(!SourceFileName.empty());
4875       auto VLI = ValueIdToLinkageMap.find(ValueID);
4876       assert(VLI != ValueIdToLinkageMap.end() &&
4877              "No linkage found for VST entry?");
4878       auto Linkage = VLI->second;
4879       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4880       ValueName.clear();
4881       break;
4882     }
4883     case bitc::VST_CODE_COMBINED_ENTRY: {
4884       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
4885       unsigned ValueID = Record[0];
4886       GlobalValue::GUID RefGUID = Record[1];
4887       // The "original name", which is the second value of the pair will be
4888       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
4889       ValueIdToValueInfoMap[ValueID] =
4890           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
4891       break;
4892     }
4893     }
4894   }
4895 }
4896 
4897 // Parse just the blocks needed for building the index out of the module.
4898 // At the end of this routine the module Index is populated with a map
4899 // from global value id to GlobalValueSummary objects.
4900 Error ModuleSummaryIndexBitcodeReader::parseModule() {
4901   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4902     return error("Invalid record");
4903 
4904   SmallVector<uint64_t, 64> Record;
4905   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
4906   unsigned ValueId = 0;
4907 
4908   // Read the index for this module.
4909   while (true) {
4910     BitstreamEntry Entry = Stream.advance();
4911 
4912     switch (Entry.Kind) {
4913     case BitstreamEntry::Error:
4914       return error("Malformed block");
4915     case BitstreamEntry::EndBlock:
4916       return Error::success();
4917 
4918     case BitstreamEntry::SubBlock:
4919       switch (Entry.ID) {
4920       default: // Skip unknown content.
4921         if (Stream.SkipBlock())
4922           return error("Invalid record");
4923         break;
4924       case bitc::BLOCKINFO_BLOCK_ID:
4925         // Need to parse these to get abbrev ids (e.g. for VST)
4926         if (readBlockInfo())
4927           return error("Malformed block");
4928         break;
4929       case bitc::VALUE_SYMTAB_BLOCK_ID:
4930         // Should have been parsed earlier via VSTOffset, unless there
4931         // is no summary section.
4932         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
4933                 !SeenGlobalValSummary) &&
4934                "Expected early VST parse via VSTOffset record");
4935         if (Stream.SkipBlock())
4936           return error("Invalid record");
4937         break;
4938       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
4939       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
4940         assert(!SeenValueSymbolTable &&
4941                "Already read VST when parsing summary block?");
4942         // We might not have a VST if there were no values in the
4943         // summary. An empty summary block generated when we are
4944         // performing ThinLTO compiles so we don't later invoke
4945         // the regular LTO process on them.
4946         if (VSTOffset > 0) {
4947           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
4948             return Err;
4949           SeenValueSymbolTable = true;
4950         }
4951         SeenGlobalValSummary = true;
4952         if (Error Err = parseEntireSummary(Entry.ID))
4953           return Err;
4954         break;
4955       case bitc::MODULE_STRTAB_BLOCK_ID:
4956         if (Error Err = parseModuleStringTable())
4957           return Err;
4958         break;
4959       }
4960       continue;
4961 
4962     case BitstreamEntry::Record: {
4963         Record.clear();
4964         auto BitCode = Stream.readRecord(Entry.ID, Record);
4965         switch (BitCode) {
4966         default:
4967           break; // Default behavior, ignore unknown content.
4968         case bitc::MODULE_CODE_VERSION: {
4969           if (Error Err = parseVersionRecord(Record).takeError())
4970             return Err;
4971           break;
4972         }
4973         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4974         case bitc::MODULE_CODE_SOURCE_FILENAME: {
4975           SmallString<128> ValueName;
4976           if (convertToString(Record, 0, ValueName))
4977             return error("Invalid record");
4978           SourceFileName = ValueName.c_str();
4979           break;
4980         }
4981         /// MODULE_CODE_HASH: [5*i32]
4982         case bitc::MODULE_CODE_HASH: {
4983           if (Record.size() != 5)
4984             return error("Invalid hash length " + Twine(Record.size()).str());
4985           auto &Hash = addThisModule()->second.second;
4986           int Pos = 0;
4987           for (auto &Val : Record) {
4988             assert(!(Val >> 32) && "Unexpected high bits set");
4989             Hash[Pos++] = Val;
4990           }
4991           break;
4992         }
4993         /// MODULE_CODE_VSTOFFSET: [offset]
4994         case bitc::MODULE_CODE_VSTOFFSET:
4995           if (Record.size() < 1)
4996             return error("Invalid record");
4997           // Note that we subtract 1 here because the offset is relative to one
4998           // word before the start of the identification or module block, which
4999           // was historically always the start of the regular bitcode header.
5000           VSTOffset = Record[0] - 1;
5001           break;
5002         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5003         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5004         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5005         // v2: [strtab offset, strtab size, v1]
5006         case bitc::MODULE_CODE_GLOBALVAR:
5007         case bitc::MODULE_CODE_FUNCTION:
5008         case bitc::MODULE_CODE_ALIAS: {
5009           StringRef Name;
5010           ArrayRef<uint64_t> GVRecord;
5011           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5012           if (GVRecord.size() <= 3)
5013             return error("Invalid record");
5014           uint64_t RawLinkage = GVRecord[3];
5015           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5016           if (!UseStrtab) {
5017             ValueIdToLinkageMap[ValueId++] = Linkage;
5018             break;
5019           }
5020 
5021           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5022           break;
5023         }
5024         }
5025       }
5026       continue;
5027     }
5028   }
5029 }
5030 
5031 std::vector<ValueInfo>
5032 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5033   std::vector<ValueInfo> Ret;
5034   Ret.reserve(Record.size());
5035   for (uint64_t RefValueId : Record)
5036     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5037   return Ret;
5038 }
5039 
5040 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList(
5041     ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) {
5042   std::vector<FunctionSummary::EdgeTy> Ret;
5043   Ret.reserve(Record.size());
5044   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5045     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5046     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5047     if (IsOldProfileFormat) {
5048       I += 1; // Skip old callsitecount field
5049       if (HasProfile)
5050         I += 1; // Skip old profilecount field
5051     } else if (HasProfile)
5052       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5053     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}});
5054   }
5055   return Ret;
5056 }
5057 
5058 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5059 // objects in the index.
5060 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5061   if (Stream.EnterSubBlock(ID))
5062     return error("Invalid record");
5063   SmallVector<uint64_t, 64> Record;
5064 
5065   // Parse version
5066   {
5067     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5068     if (Entry.Kind != BitstreamEntry::Record)
5069       return error("Invalid Summary Block: record for version expected");
5070     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5071       return error("Invalid Summary Block: version expected");
5072   }
5073   const uint64_t Version = Record[0];
5074   const bool IsOldProfileFormat = Version == 1;
5075   if (Version < 1 || Version > 4)
5076     return error("Invalid summary version " + Twine(Version) +
5077                  ", 1, 2, 3 or 4 expected");
5078   Record.clear();
5079 
5080   // Keep around the last seen summary to be used when we see an optional
5081   // "OriginalName" attachement.
5082   GlobalValueSummary *LastSeenSummary = nullptr;
5083   GlobalValue::GUID LastSeenGUID = 0;
5084 
5085   // We can expect to see any number of type ID information records before
5086   // each function summary records; these variables store the information
5087   // collected so far so that it can be used to create the summary object.
5088   std::vector<GlobalValue::GUID> PendingTypeTests;
5089   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5090       PendingTypeCheckedLoadVCalls;
5091   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5092       PendingTypeCheckedLoadConstVCalls;
5093 
5094   while (true) {
5095     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5096 
5097     switch (Entry.Kind) {
5098     case BitstreamEntry::SubBlock: // Handled for us already.
5099     case BitstreamEntry::Error:
5100       return error("Malformed block");
5101     case BitstreamEntry::EndBlock:
5102       return Error::success();
5103     case BitstreamEntry::Record:
5104       // The interesting case.
5105       break;
5106     }
5107 
5108     // Read a record. The record format depends on whether this
5109     // is a per-module index or a combined index file. In the per-module
5110     // case the records contain the associated value's ID for correlation
5111     // with VST entries. In the combined index the correlation is done
5112     // via the bitcode offset of the summary records (which were saved
5113     // in the combined index VST entries). The records also contain
5114     // information used for ThinLTO renaming and importing.
5115     Record.clear();
5116     auto BitCode = Stream.readRecord(Entry.ID, Record);
5117     switch (BitCode) {
5118     default: // Default behavior: ignore.
5119       break;
5120     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5121       uint64_t ValueID = Record[0];
5122       GlobalValue::GUID RefGUID = Record[1];
5123       ValueIdToValueInfoMap[ValueID] =
5124           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5125       break;
5126     }
5127     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5128     //                numrefs x valueid, n x (valueid)]
5129     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5130     //                        numrefs x valueid,
5131     //                        n x (valueid, hotness)]
5132     case bitc::FS_PERMODULE:
5133     case bitc::FS_PERMODULE_PROFILE: {
5134       unsigned ValueID = Record[0];
5135       uint64_t RawFlags = Record[1];
5136       unsigned InstCount = Record[2];
5137       uint64_t RawFunFlags = 0;
5138       unsigned NumRefs = Record[3];
5139       int RefListStartIndex = 4;
5140       if (Version >= 4) {
5141         RawFunFlags = Record[3];
5142         NumRefs = Record[4];
5143         RefListStartIndex = 5;
5144       }
5145 
5146       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5147       // The module path string ref set in the summary must be owned by the
5148       // index's module string table. Since we don't have a module path
5149       // string table section in the per-module index, we create a single
5150       // module path string table entry with an empty (0) ID to take
5151       // ownership.
5152       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5153       assert(Record.size() >= RefListStartIndex + NumRefs &&
5154              "Record size inconsistent with number of references");
5155       std::vector<ValueInfo> Refs = makeRefList(
5156           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5157       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5158       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5159           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5160           IsOldProfileFormat, HasProfile);
5161       auto FS = llvm::make_unique<FunctionSummary>(
5162           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5163           std::move(Calls), std::move(PendingTypeTests),
5164           std::move(PendingTypeTestAssumeVCalls),
5165           std::move(PendingTypeCheckedLoadVCalls),
5166           std::move(PendingTypeTestAssumeConstVCalls),
5167           std::move(PendingTypeCheckedLoadConstVCalls));
5168       PendingTypeTests.clear();
5169       PendingTypeTestAssumeVCalls.clear();
5170       PendingTypeCheckedLoadVCalls.clear();
5171       PendingTypeTestAssumeConstVCalls.clear();
5172       PendingTypeCheckedLoadConstVCalls.clear();
5173       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5174       FS->setModulePath(addThisModule()->first());
5175       FS->setOriginalName(VIAndOriginalGUID.second);
5176       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5177       break;
5178     }
5179     // FS_ALIAS: [valueid, flags, valueid]
5180     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5181     // they expect all aliasee summaries to be available.
5182     case bitc::FS_ALIAS: {
5183       unsigned ValueID = Record[0];
5184       uint64_t RawFlags = Record[1];
5185       unsigned AliaseeID = Record[2];
5186       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5187       auto AS = llvm::make_unique<AliasSummary>(Flags);
5188       // The module path string ref set in the summary must be owned by the
5189       // index's module string table. Since we don't have a module path
5190       // string table section in the per-module index, we create a single
5191       // module path string table entry with an empty (0) ID to take
5192       // ownership.
5193       AS->setModulePath(addThisModule()->first());
5194 
5195       GlobalValue::GUID AliaseeGUID =
5196           getValueInfoFromValueId(AliaseeID).first.getGUID();
5197       auto AliaseeInModule =
5198           TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5199       if (!AliaseeInModule)
5200         return error("Alias expects aliasee summary to be parsed");
5201       AS->setAliasee(AliaseeInModule);
5202 
5203       auto GUID = getValueInfoFromValueId(ValueID);
5204       AS->setOriginalName(GUID.second);
5205       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5206       break;
5207     }
5208     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
5209     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5210       unsigned ValueID = Record[0];
5211       uint64_t RawFlags = Record[1];
5212       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5213       std::vector<ValueInfo> Refs =
5214           makeRefList(ArrayRef<uint64_t>(Record).slice(2));
5215       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5216       FS->setModulePath(addThisModule()->first());
5217       auto GUID = getValueInfoFromValueId(ValueID);
5218       FS->setOriginalName(GUID.second);
5219       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5220       break;
5221     }
5222     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5223     //               numrefs x valueid, n x (valueid)]
5224     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5225     //                       numrefs x valueid, n x (valueid, hotness)]
5226     case bitc::FS_COMBINED:
5227     case bitc::FS_COMBINED_PROFILE: {
5228       unsigned ValueID = Record[0];
5229       uint64_t ModuleId = Record[1];
5230       uint64_t RawFlags = Record[2];
5231       unsigned InstCount = Record[3];
5232       uint64_t RawFunFlags = 0;
5233       unsigned NumRefs = Record[4];
5234       int RefListStartIndex = 5;
5235 
5236       if (Version >= 4) {
5237         RawFunFlags = Record[4];
5238         NumRefs = Record[5];
5239         RefListStartIndex = 6;
5240       }
5241 
5242       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5243       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5244       assert(Record.size() >= RefListStartIndex + NumRefs &&
5245              "Record size inconsistent with number of references");
5246       std::vector<ValueInfo> Refs = makeRefList(
5247           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5248       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5249       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5250           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5251           IsOldProfileFormat, HasProfile);
5252       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5253       auto FS = llvm::make_unique<FunctionSummary>(
5254           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5255           std::move(Edges), std::move(PendingTypeTests),
5256           std::move(PendingTypeTestAssumeVCalls),
5257           std::move(PendingTypeCheckedLoadVCalls),
5258           std::move(PendingTypeTestAssumeConstVCalls),
5259           std::move(PendingTypeCheckedLoadConstVCalls));
5260       PendingTypeTests.clear();
5261       PendingTypeTestAssumeVCalls.clear();
5262       PendingTypeCheckedLoadVCalls.clear();
5263       PendingTypeTestAssumeConstVCalls.clear();
5264       PendingTypeCheckedLoadConstVCalls.clear();
5265       LastSeenSummary = FS.get();
5266       LastSeenGUID = VI.getGUID();
5267       FS->setModulePath(ModuleIdMap[ModuleId]);
5268       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5269       break;
5270     }
5271     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5272     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5273     // they expect all aliasee summaries to be available.
5274     case bitc::FS_COMBINED_ALIAS: {
5275       unsigned ValueID = Record[0];
5276       uint64_t ModuleId = Record[1];
5277       uint64_t RawFlags = Record[2];
5278       unsigned AliaseeValueId = Record[3];
5279       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5280       auto AS = llvm::make_unique<AliasSummary>(Flags);
5281       LastSeenSummary = AS.get();
5282       AS->setModulePath(ModuleIdMap[ModuleId]);
5283 
5284       auto AliaseeGUID =
5285           getValueInfoFromValueId(AliaseeValueId).first.getGUID();
5286       auto AliaseeInModule =
5287           TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
5288       if (!AliaseeInModule)
5289         return error("Alias expects aliasee summary to be parsed");
5290       AS->setAliasee(AliaseeInModule);
5291 
5292       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5293       LastSeenGUID = VI.getGUID();
5294       TheIndex.addGlobalValueSummary(VI, std::move(AS));
5295       break;
5296     }
5297     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5298     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5299       unsigned ValueID = Record[0];
5300       uint64_t ModuleId = Record[1];
5301       uint64_t RawFlags = Record[2];
5302       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5303       std::vector<ValueInfo> Refs =
5304           makeRefList(ArrayRef<uint64_t>(Record).slice(3));
5305       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5306       LastSeenSummary = FS.get();
5307       FS->setModulePath(ModuleIdMap[ModuleId]);
5308       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5309       LastSeenGUID = VI.getGUID();
5310       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5311       break;
5312     }
5313     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5314     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5315       uint64_t OriginalName = Record[0];
5316       if (!LastSeenSummary)
5317         return error("Name attachment that does not follow a combined record");
5318       LastSeenSummary->setOriginalName(OriginalName);
5319       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5320       // Reset the LastSeenSummary
5321       LastSeenSummary = nullptr;
5322       LastSeenGUID = 0;
5323       break;
5324     }
5325     case bitc::FS_TYPE_TESTS:
5326       assert(PendingTypeTests.empty());
5327       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5328                               Record.end());
5329       break;
5330 
5331     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
5332       assert(PendingTypeTestAssumeVCalls.empty());
5333       for (unsigned I = 0; I != Record.size(); I += 2)
5334         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5335       break;
5336 
5337     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
5338       assert(PendingTypeCheckedLoadVCalls.empty());
5339       for (unsigned I = 0; I != Record.size(); I += 2)
5340         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5341       break;
5342 
5343     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
5344       PendingTypeTestAssumeConstVCalls.push_back(
5345           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5346       break;
5347 
5348     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
5349       PendingTypeCheckedLoadConstVCalls.push_back(
5350           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5351       break;
5352 
5353     case bitc::FS_CFI_FUNCTION_DEFS: {
5354       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5355       for (unsigned I = 0; I != Record.size(); I += 2)
5356         CfiFunctionDefs.insert(
5357             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5358       break;
5359     }
5360     case bitc::FS_CFI_FUNCTION_DECLS: {
5361       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5362       for (unsigned I = 0; I != Record.size(); I += 2)
5363         CfiFunctionDecls.insert(
5364             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5365       break;
5366     }
5367     }
5368   }
5369   llvm_unreachable("Exit infinite loop");
5370 }
5371 
5372 // Parse the  module string table block into the Index.
5373 // This populates the ModulePathStringTable map in the index.
5374 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5375   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5376     return error("Invalid record");
5377 
5378   SmallVector<uint64_t, 64> Record;
5379 
5380   SmallString<128> ModulePath;
5381   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5382 
5383   while (true) {
5384     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5385 
5386     switch (Entry.Kind) {
5387     case BitstreamEntry::SubBlock: // Handled for us already.
5388     case BitstreamEntry::Error:
5389       return error("Malformed block");
5390     case BitstreamEntry::EndBlock:
5391       return Error::success();
5392     case BitstreamEntry::Record:
5393       // The interesting case.
5394       break;
5395     }
5396 
5397     Record.clear();
5398     switch (Stream.readRecord(Entry.ID, Record)) {
5399     default: // Default behavior: ignore.
5400       break;
5401     case bitc::MST_CODE_ENTRY: {
5402       // MST_ENTRY: [modid, namechar x N]
5403       uint64_t ModuleId = Record[0];
5404 
5405       if (convertToString(Record, 1, ModulePath))
5406         return error("Invalid record");
5407 
5408       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5409       ModuleIdMap[ModuleId] = LastSeenModule->first();
5410 
5411       ModulePath.clear();
5412       break;
5413     }
5414     /// MST_CODE_HASH: [5*i32]
5415     case bitc::MST_CODE_HASH: {
5416       if (Record.size() != 5)
5417         return error("Invalid hash length " + Twine(Record.size()).str());
5418       if (!LastSeenModule)
5419         return error("Invalid hash that does not follow a module path");
5420       int Pos = 0;
5421       for (auto &Val : Record) {
5422         assert(!(Val >> 32) && "Unexpected high bits set");
5423         LastSeenModule->second.second[Pos++] = Val;
5424       }
5425       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5426       LastSeenModule = nullptr;
5427       break;
5428     }
5429     }
5430   }
5431   llvm_unreachable("Exit infinite loop");
5432 }
5433 
5434 namespace {
5435 
5436 // FIXME: This class is only here to support the transition to llvm::Error. It
5437 // will be removed once this transition is complete. Clients should prefer to
5438 // deal with the Error value directly, rather than converting to error_code.
5439 class BitcodeErrorCategoryType : public std::error_category {
5440   const char *name() const noexcept override {
5441     return "llvm.bitcode";
5442   }
5443 
5444   std::string message(int IE) const override {
5445     BitcodeError E = static_cast<BitcodeError>(IE);
5446     switch (E) {
5447     case BitcodeError::CorruptedBitcode:
5448       return "Corrupted bitcode";
5449     }
5450     llvm_unreachable("Unknown error type!");
5451   }
5452 };
5453 
5454 } // end anonymous namespace
5455 
5456 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5457 
5458 const std::error_category &llvm::BitcodeErrorCategory() {
5459   return *ErrorCategory;
5460 }
5461 
5462 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
5463                                             unsigned Block, unsigned RecordID) {
5464   if (Stream.EnterSubBlock(Block))
5465     return error("Invalid record");
5466 
5467   StringRef Strtab;
5468   while (true) {
5469     BitstreamEntry Entry = Stream.advance();
5470     switch (Entry.Kind) {
5471     case BitstreamEntry::EndBlock:
5472       return Strtab;
5473 
5474     case BitstreamEntry::Error:
5475       return error("Malformed block");
5476 
5477     case BitstreamEntry::SubBlock:
5478       if (Stream.SkipBlock())
5479         return error("Malformed block");
5480       break;
5481 
5482     case BitstreamEntry::Record:
5483       StringRef Blob;
5484       SmallVector<uint64_t, 1> Record;
5485       if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
5486         Strtab = Blob;
5487       break;
5488     }
5489   }
5490 }
5491 
5492 //===----------------------------------------------------------------------===//
5493 // External interface
5494 //===----------------------------------------------------------------------===//
5495 
5496 Expected<std::vector<BitcodeModule>>
5497 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5498   auto FOrErr = getBitcodeFileContents(Buffer);
5499   if (!FOrErr)
5500     return FOrErr.takeError();
5501   return std::move(FOrErr->Mods);
5502 }
5503 
5504 Expected<BitcodeFileContents>
5505 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
5506   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5507   if (!StreamOrErr)
5508     return StreamOrErr.takeError();
5509   BitstreamCursor &Stream = *StreamOrErr;
5510 
5511   BitcodeFileContents F;
5512   while (true) {
5513     uint64_t BCBegin = Stream.getCurrentByteNo();
5514 
5515     // We may be consuming bitcode from a client that leaves garbage at the end
5516     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5517     // the end that there cannot possibly be another module, stop looking.
5518     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5519       return F;
5520 
5521     BitstreamEntry Entry = Stream.advance();
5522     switch (Entry.Kind) {
5523     case BitstreamEntry::EndBlock:
5524     case BitstreamEntry::Error:
5525       return error("Malformed block");
5526 
5527     case BitstreamEntry::SubBlock: {
5528       uint64_t IdentificationBit = -1ull;
5529       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5530         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5531         if (Stream.SkipBlock())
5532           return error("Malformed block");
5533 
5534         Entry = Stream.advance();
5535         if (Entry.Kind != BitstreamEntry::SubBlock ||
5536             Entry.ID != bitc::MODULE_BLOCK_ID)
5537           return error("Malformed block");
5538       }
5539 
5540       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5541         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5542         if (Stream.SkipBlock())
5543           return error("Malformed block");
5544 
5545         F.Mods.push_back({Stream.getBitcodeBytes().slice(
5546                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
5547                           Buffer.getBufferIdentifier(), IdentificationBit,
5548                           ModuleBit});
5549         continue;
5550       }
5551 
5552       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
5553         Expected<StringRef> Strtab =
5554             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
5555         if (!Strtab)
5556           return Strtab.takeError();
5557         // This string table is used by every preceding bitcode module that does
5558         // not have its own string table. A bitcode file may have multiple
5559         // string tables if it was created by binary concatenation, for example
5560         // with "llvm-cat -b".
5561         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
5562           if (!I->Strtab.empty())
5563             break;
5564           I->Strtab = *Strtab;
5565         }
5566         // Similarly, the string table is used by every preceding symbol table;
5567         // normally there will be just one unless the bitcode file was created
5568         // by binary concatenation.
5569         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
5570           F.StrtabForSymtab = *Strtab;
5571         continue;
5572       }
5573 
5574       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
5575         Expected<StringRef> SymtabOrErr =
5576             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
5577         if (!SymtabOrErr)
5578           return SymtabOrErr.takeError();
5579 
5580         // We can expect the bitcode file to have multiple symbol tables if it
5581         // was created by binary concatenation. In that case we silently
5582         // ignore any subsequent symbol tables, which is fine because this is a
5583         // low level function. The client is expected to notice that the number
5584         // of modules in the symbol table does not match the number of modules
5585         // in the input file and regenerate the symbol table.
5586         if (F.Symtab.empty())
5587           F.Symtab = *SymtabOrErr;
5588         continue;
5589       }
5590 
5591       if (Stream.SkipBlock())
5592         return error("Malformed block");
5593       continue;
5594     }
5595     case BitstreamEntry::Record:
5596       Stream.skipRecord(Entry.ID);
5597       continue;
5598     }
5599   }
5600 }
5601 
5602 /// \brief Get a lazy one-at-time loading module from bitcode.
5603 ///
5604 /// This isn't always used in a lazy context.  In particular, it's also used by
5605 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
5606 /// in forward-referenced functions from block address references.
5607 ///
5608 /// \param[in] MaterializeAll Set to \c true if we should materialize
5609 /// everything.
5610 Expected<std::unique_ptr<Module>>
5611 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
5612                              bool ShouldLazyLoadMetadata, bool IsImporting) {
5613   BitstreamCursor Stream(Buffer);
5614 
5615   std::string ProducerIdentification;
5616   if (IdentificationBit != -1ull) {
5617     Stream.JumpToBit(IdentificationBit);
5618     Expected<std::string> ProducerIdentificationOrErr =
5619         readIdentificationBlock(Stream);
5620     if (!ProducerIdentificationOrErr)
5621       return ProducerIdentificationOrErr.takeError();
5622 
5623     ProducerIdentification = *ProducerIdentificationOrErr;
5624   }
5625 
5626   Stream.JumpToBit(ModuleBit);
5627   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
5628                               Context);
5629 
5630   std::unique_ptr<Module> M =
5631       llvm::make_unique<Module>(ModuleIdentifier, Context);
5632   M->setMaterializer(R);
5633 
5634   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5635   if (Error Err =
5636           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
5637     return std::move(Err);
5638 
5639   if (MaterializeAll) {
5640     // Read in the entire module, and destroy the BitcodeReader.
5641     if (Error Err = M->materializeAll())
5642       return std::move(Err);
5643   } else {
5644     // Resolve forward references from blockaddresses.
5645     if (Error Err = R->materializeForwardReferencedFunctions())
5646       return std::move(Err);
5647   }
5648   return std::move(M);
5649 }
5650 
5651 Expected<std::unique_ptr<Module>>
5652 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
5653                              bool IsImporting) {
5654   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
5655 }
5656 
5657 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
5658 // We don't use ModuleIdentifier here because the client may need to control the
5659 // module path used in the combined summary (e.g. when reading summaries for
5660 // regular LTO modules).
5661 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
5662                                  StringRef ModulePath, uint64_t ModuleId) {
5663   BitstreamCursor Stream(Buffer);
5664   Stream.JumpToBit(ModuleBit);
5665 
5666   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
5667                                     ModulePath, ModuleId);
5668   return R.parseModule();
5669 }
5670 
5671 // Parse the specified bitcode buffer, returning the function info index.
5672 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
5673   BitstreamCursor Stream(Buffer);
5674   Stream.JumpToBit(ModuleBit);
5675 
5676   auto Index = llvm::make_unique<ModuleSummaryIndex>();
5677   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
5678                                     ModuleIdentifier, 0);
5679 
5680   if (Error Err = R.parseModule())
5681     return std::move(Err);
5682 
5683   return std::move(Index);
5684 }
5685 
5686 // Check if the given bitcode buffer contains a global value summary block.
5687 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
5688   BitstreamCursor Stream(Buffer);
5689   Stream.JumpToBit(ModuleBit);
5690 
5691   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5692     return error("Invalid record");
5693 
5694   while (true) {
5695     BitstreamEntry Entry = Stream.advance();
5696 
5697     switch (Entry.Kind) {
5698     case BitstreamEntry::Error:
5699       return error("Malformed block");
5700     case BitstreamEntry::EndBlock:
5701       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false};
5702 
5703     case BitstreamEntry::SubBlock:
5704       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID)
5705         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true};
5706 
5707       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID)
5708         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true};
5709 
5710       // Ignore other sub-blocks.
5711       if (Stream.SkipBlock())
5712         return error("Malformed block");
5713       continue;
5714 
5715     case BitstreamEntry::Record:
5716       Stream.skipRecord(Entry.ID);
5717       continue;
5718     }
5719   }
5720 }
5721 
5722 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
5723   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
5724   if (!MsOrErr)
5725     return MsOrErr.takeError();
5726 
5727   if (MsOrErr->size() != 1)
5728     return error("Expected a single module");
5729 
5730   return (*MsOrErr)[0];
5731 }
5732 
5733 Expected<std::unique_ptr<Module>>
5734 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
5735                            bool ShouldLazyLoadMetadata, bool IsImporting) {
5736   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5737   if (!BM)
5738     return BM.takeError();
5739 
5740   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
5741 }
5742 
5743 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
5744     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
5745     bool ShouldLazyLoadMetadata, bool IsImporting) {
5746   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
5747                                      IsImporting);
5748   if (MOrErr)
5749     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
5750   return MOrErr;
5751 }
5752 
5753 Expected<std::unique_ptr<Module>>
5754 BitcodeModule::parseModule(LLVMContext &Context) {
5755   return getModuleImpl(Context, true, false, false);
5756   // TODO: Restore the use-lists to the in-memory state when the bitcode was
5757   // written.  We must defer until the Module has been fully materialized.
5758 }
5759 
5760 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
5761                                                          LLVMContext &Context) {
5762   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5763   if (!BM)
5764     return BM.takeError();
5765 
5766   return BM->parseModule(Context);
5767 }
5768 
5769 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
5770   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5771   if (!StreamOrErr)
5772     return StreamOrErr.takeError();
5773 
5774   return readTriple(*StreamOrErr);
5775 }
5776 
5777 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
5778   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5779   if (!StreamOrErr)
5780     return StreamOrErr.takeError();
5781 
5782   return hasObjCCategory(*StreamOrErr);
5783 }
5784 
5785 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
5786   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5787   if (!StreamOrErr)
5788     return StreamOrErr.takeError();
5789 
5790   return readIdentificationCode(*StreamOrErr);
5791 }
5792 
5793 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
5794                                    ModuleSummaryIndex &CombinedIndex,
5795                                    uint64_t ModuleId) {
5796   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5797   if (!BM)
5798     return BM.takeError();
5799 
5800   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
5801 }
5802 
5803 Expected<std::unique_ptr<ModuleSummaryIndex>>
5804 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
5805   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5806   if (!BM)
5807     return BM.takeError();
5808 
5809   return BM->getSummary();
5810 }
5811 
5812 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
5813   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5814   if (!BM)
5815     return BM.takeError();
5816 
5817   return BM->getLTOInfo();
5818 }
5819 
5820 Expected<std::unique_ptr<ModuleSummaryIndex>>
5821 llvm::getModuleSummaryIndexForFile(StringRef Path,
5822                                    bool IgnoreEmptyThinLTOIndexFile) {
5823   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
5824       MemoryBuffer::getFileOrSTDIN(Path);
5825   if (!FileOrErr)
5826     return errorCodeToError(FileOrErr.getError());
5827   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
5828     return nullptr;
5829   return getModuleSummaryIndex(**FileOrErr);
5830 }
5831