1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 Type *getTypeByID(unsigned ID); 597 598 Value *getFnValueByID(unsigned ID, Type *Ty) { 599 if (Ty && Ty->isMetadataTy()) 600 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 601 return ValueList.getValueFwdRef(ID, Ty); 602 } 603 604 Metadata *getFnMetadataByID(unsigned ID) { 605 return MDLoader->getMetadataFwdRefOrLoad(ID); 606 } 607 608 BasicBlock *getBasicBlock(unsigned ID) const { 609 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 610 return FunctionBBs[ID]; 611 } 612 613 AttributeList getAttributes(unsigned i) const { 614 if (i-1 < MAttributes.size()) 615 return MAttributes[i-1]; 616 return AttributeList(); 617 } 618 619 /// Read a value/type pair out of the specified record from slot 'Slot'. 620 /// Increment Slot past the number of slots used in the record. Return true on 621 /// failure. 622 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 623 unsigned InstNum, Value *&ResVal) { 624 if (Slot == Record.size()) return true; 625 unsigned ValNo = (unsigned)Record[Slot++]; 626 // Adjust the ValNo, if it was encoded relative to the InstNum. 627 if (UseRelativeIDs) 628 ValNo = InstNum - ValNo; 629 if (ValNo < InstNum) { 630 // If this is not a forward reference, just return the value we already 631 // have. 632 ResVal = getFnValueByID(ValNo, nullptr); 633 return ResVal == nullptr; 634 } 635 if (Slot == Record.size()) 636 return true; 637 638 unsigned TypeNo = (unsigned)Record[Slot++]; 639 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 640 return ResVal == nullptr; 641 } 642 643 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 644 /// past the number of slots used by the value in the record. Return true if 645 /// there is an error. 646 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 647 unsigned InstNum, Type *Ty, Value *&ResVal) { 648 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 649 return true; 650 // All values currently take a single record slot. 651 ++Slot; 652 return false; 653 } 654 655 /// Like popValue, but does not increment the Slot number. 656 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 657 unsigned InstNum, Type *Ty, Value *&ResVal) { 658 ResVal = getValue(Record, Slot, InstNum, Ty); 659 return ResVal == nullptr; 660 } 661 662 /// Version of getValue that returns ResVal directly, or 0 if there is an 663 /// error. 664 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 665 unsigned InstNum, Type *Ty) { 666 if (Slot == Record.size()) return nullptr; 667 unsigned ValNo = (unsigned)Record[Slot]; 668 // Adjust the ValNo, if it was encoded relative to the InstNum. 669 if (UseRelativeIDs) 670 ValNo = InstNum - ValNo; 671 return getFnValueByID(ValNo, Ty); 672 } 673 674 /// Like getValue, but decodes signed VBRs. 675 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 676 unsigned InstNum, Type *Ty) { 677 if (Slot == Record.size()) return nullptr; 678 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 679 // Adjust the ValNo, if it was encoded relative to the InstNum. 680 if (UseRelativeIDs) 681 ValNo = InstNum - ValNo; 682 return getFnValueByID(ValNo, Ty); 683 } 684 685 /// Upgrades old-style typeless byval or sret attributes by adding the 686 /// corresponding argument's pointee type. 687 void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 688 689 /// Converts alignment exponent (i.e. power of two (or zero)) to the 690 /// corresponding alignment to use. If alignment is too large, returns 691 /// a corresponding error code. 692 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 693 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 694 Error parseModule( 695 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 696 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 697 698 Error parseComdatRecord(ArrayRef<uint64_t> Record); 699 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 700 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 701 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 702 ArrayRef<uint64_t> Record); 703 704 Error parseAttributeBlock(); 705 Error parseAttributeGroupBlock(); 706 Error parseTypeTable(); 707 Error parseTypeTableBody(); 708 Error parseOperandBundleTags(); 709 Error parseSyncScopeNames(); 710 711 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 712 unsigned NameIndex, Triple &TT); 713 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 714 ArrayRef<uint64_t> Record); 715 Error parseValueSymbolTable(uint64_t Offset = 0); 716 Error parseGlobalValueSymbolTable(); 717 Error parseConstants(); 718 Error rememberAndSkipFunctionBodies(); 719 Error rememberAndSkipFunctionBody(); 720 /// Save the positions of the Metadata blocks and skip parsing the blocks. 721 Error rememberAndSkipMetadata(); 722 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 723 Error parseFunctionBody(Function *F); 724 Error globalCleanup(); 725 Error resolveGlobalAndIndirectSymbolInits(); 726 Error parseUseLists(); 727 Error findFunctionInStream( 728 Function *F, 729 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 730 731 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 732 }; 733 734 /// Class to manage reading and parsing function summary index bitcode 735 /// files/sections. 736 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 737 /// The module index built during parsing. 738 ModuleSummaryIndex &TheIndex; 739 740 /// Indicates whether we have encountered a global value summary section 741 /// yet during parsing. 742 bool SeenGlobalValSummary = false; 743 744 /// Indicates whether we have already parsed the VST, used for error checking. 745 bool SeenValueSymbolTable = false; 746 747 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 748 /// Used to enable on-demand parsing of the VST. 749 uint64_t VSTOffset = 0; 750 751 // Map to save ValueId to ValueInfo association that was recorded in the 752 // ValueSymbolTable. It is used after the VST is parsed to convert 753 // call graph edges read from the function summary from referencing 754 // callees by their ValueId to using the ValueInfo instead, which is how 755 // they are recorded in the summary index being built. 756 // We save a GUID which refers to the same global as the ValueInfo, but 757 // ignoring the linkage, i.e. for values other than local linkage they are 758 // identical. 759 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 760 ValueIdToValueInfoMap; 761 762 /// Map populated during module path string table parsing, from the 763 /// module ID to a string reference owned by the index's module 764 /// path string table, used to correlate with combined index 765 /// summary records. 766 DenseMap<uint64_t, StringRef> ModuleIdMap; 767 768 /// Original source file name recorded in a bitcode record. 769 std::string SourceFileName; 770 771 /// The string identifier given to this module by the client, normally the 772 /// path to the bitcode file. 773 StringRef ModulePath; 774 775 /// For per-module summary indexes, the unique numerical identifier given to 776 /// this module by the client. 777 unsigned ModuleId; 778 779 public: 780 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 781 ModuleSummaryIndex &TheIndex, 782 StringRef ModulePath, unsigned ModuleId); 783 784 Error parseModule(); 785 786 private: 787 void setValueGUID(uint64_t ValueID, StringRef ValueName, 788 GlobalValue::LinkageTypes Linkage, 789 StringRef SourceFileName); 790 Error parseValueSymbolTable( 791 uint64_t Offset, 792 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 793 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 794 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 795 bool IsOldProfileFormat, 796 bool HasProfile, 797 bool HasRelBF); 798 Error parseEntireSummary(unsigned ID); 799 Error parseModuleStringTable(); 800 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 801 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 802 TypeIdCompatibleVtableInfo &TypeId); 803 std::vector<FunctionSummary::ParamAccess> 804 parseParamAccesses(ArrayRef<uint64_t> Record); 805 806 std::pair<ValueInfo, GlobalValue::GUID> 807 getValueInfoFromValueId(unsigned ValueId); 808 809 void addThisModule(); 810 ModuleSummaryIndex::ModuleInfo *getThisModule(); 811 }; 812 813 } // end anonymous namespace 814 815 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 816 Error Err) { 817 if (Err) { 818 std::error_code EC; 819 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 820 EC = EIB.convertToErrorCode(); 821 Ctx.emitError(EIB.message()); 822 }); 823 return EC; 824 } 825 return std::error_code(); 826 } 827 828 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 829 StringRef ProducerIdentification, 830 LLVMContext &Context) 831 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 832 ValueList(Context, Stream.SizeInBytes()) { 833 this->ProducerIdentification = std::string(ProducerIdentification); 834 } 835 836 Error BitcodeReader::materializeForwardReferencedFunctions() { 837 if (WillMaterializeAllForwardRefs) 838 return Error::success(); 839 840 // Prevent recursion. 841 WillMaterializeAllForwardRefs = true; 842 843 while (!BasicBlockFwdRefQueue.empty()) { 844 Function *F = BasicBlockFwdRefQueue.front(); 845 BasicBlockFwdRefQueue.pop_front(); 846 assert(F && "Expected valid function"); 847 if (!BasicBlockFwdRefs.count(F)) 848 // Already materialized. 849 continue; 850 851 // Check for a function that isn't materializable to prevent an infinite 852 // loop. When parsing a blockaddress stored in a global variable, there 853 // isn't a trivial way to check if a function will have a body without a 854 // linear search through FunctionsWithBodies, so just check it here. 855 if (!F->isMaterializable()) 856 return error("Never resolved function from blockaddress"); 857 858 // Try to materialize F. 859 if (Error Err = materialize(F)) 860 return Err; 861 } 862 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 863 864 // Reset state. 865 WillMaterializeAllForwardRefs = false; 866 return Error::success(); 867 } 868 869 //===----------------------------------------------------------------------===// 870 // Helper functions to implement forward reference resolution, etc. 871 //===----------------------------------------------------------------------===// 872 873 static bool hasImplicitComdat(size_t Val) { 874 switch (Val) { 875 default: 876 return false; 877 case 1: // Old WeakAnyLinkage 878 case 4: // Old LinkOnceAnyLinkage 879 case 10: // Old WeakODRLinkage 880 case 11: // Old LinkOnceODRLinkage 881 return true; 882 } 883 } 884 885 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 886 switch (Val) { 887 default: // Map unknown/new linkages to external 888 case 0: 889 return GlobalValue::ExternalLinkage; 890 case 2: 891 return GlobalValue::AppendingLinkage; 892 case 3: 893 return GlobalValue::InternalLinkage; 894 case 5: 895 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 896 case 6: 897 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 898 case 7: 899 return GlobalValue::ExternalWeakLinkage; 900 case 8: 901 return GlobalValue::CommonLinkage; 902 case 9: 903 return GlobalValue::PrivateLinkage; 904 case 12: 905 return GlobalValue::AvailableExternallyLinkage; 906 case 13: 907 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 908 case 14: 909 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 910 case 15: 911 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 912 case 1: // Old value with implicit comdat. 913 case 16: 914 return GlobalValue::WeakAnyLinkage; 915 case 10: // Old value with implicit comdat. 916 case 17: 917 return GlobalValue::WeakODRLinkage; 918 case 4: // Old value with implicit comdat. 919 case 18: 920 return GlobalValue::LinkOnceAnyLinkage; 921 case 11: // Old value with implicit comdat. 922 case 19: 923 return GlobalValue::LinkOnceODRLinkage; 924 } 925 } 926 927 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 928 FunctionSummary::FFlags Flags; 929 Flags.ReadNone = RawFlags & 0x1; 930 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 931 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 932 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 933 Flags.NoInline = (RawFlags >> 4) & 0x1; 934 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 935 return Flags; 936 } 937 938 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 939 // 940 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 941 // visibility: [8, 10). 942 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 943 uint64_t Version) { 944 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 945 // like getDecodedLinkage() above. Any future change to the linkage enum and 946 // to getDecodedLinkage() will need to be taken into account here as above. 947 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 948 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 949 RawFlags = RawFlags >> 4; 950 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 951 // The Live flag wasn't introduced until version 3. For dead stripping 952 // to work correctly on earlier versions, we must conservatively treat all 953 // values as live. 954 bool Live = (RawFlags & 0x2) || Version < 3; 955 bool Local = (RawFlags & 0x4); 956 bool AutoHide = (RawFlags & 0x8); 957 958 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 959 Live, Local, AutoHide); 960 } 961 962 // Decode the flags for GlobalVariable in the summary 963 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 964 return GlobalVarSummary::GVarFlags( 965 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 966 (RawFlags & 0x4) ? true : false, 967 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 968 } 969 970 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 971 switch (Val) { 972 default: // Map unknown visibilities to default. 973 case 0: return GlobalValue::DefaultVisibility; 974 case 1: return GlobalValue::HiddenVisibility; 975 case 2: return GlobalValue::ProtectedVisibility; 976 } 977 } 978 979 static GlobalValue::DLLStorageClassTypes 980 getDecodedDLLStorageClass(unsigned Val) { 981 switch (Val) { 982 default: // Map unknown values to default. 983 case 0: return GlobalValue::DefaultStorageClass; 984 case 1: return GlobalValue::DLLImportStorageClass; 985 case 2: return GlobalValue::DLLExportStorageClass; 986 } 987 } 988 989 static bool getDecodedDSOLocal(unsigned Val) { 990 switch(Val) { 991 default: // Map unknown values to preemptable. 992 case 0: return false; 993 case 1: return true; 994 } 995 } 996 997 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 998 switch (Val) { 999 case 0: return GlobalVariable::NotThreadLocal; 1000 default: // Map unknown non-zero value to general dynamic. 1001 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1002 case 2: return GlobalVariable::LocalDynamicTLSModel; 1003 case 3: return GlobalVariable::InitialExecTLSModel; 1004 case 4: return GlobalVariable::LocalExecTLSModel; 1005 } 1006 } 1007 1008 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1009 switch (Val) { 1010 default: // Map unknown to UnnamedAddr::None. 1011 case 0: return GlobalVariable::UnnamedAddr::None; 1012 case 1: return GlobalVariable::UnnamedAddr::Global; 1013 case 2: return GlobalVariable::UnnamedAddr::Local; 1014 } 1015 } 1016 1017 static int getDecodedCastOpcode(unsigned Val) { 1018 switch (Val) { 1019 default: return -1; 1020 case bitc::CAST_TRUNC : return Instruction::Trunc; 1021 case bitc::CAST_ZEXT : return Instruction::ZExt; 1022 case bitc::CAST_SEXT : return Instruction::SExt; 1023 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1024 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1025 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1026 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1027 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1028 case bitc::CAST_FPEXT : return Instruction::FPExt; 1029 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1030 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1031 case bitc::CAST_BITCAST : return Instruction::BitCast; 1032 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1033 } 1034 } 1035 1036 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1037 bool IsFP = Ty->isFPOrFPVectorTy(); 1038 // UnOps are only valid for int/fp or vector of int/fp types 1039 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1040 return -1; 1041 1042 switch (Val) { 1043 default: 1044 return -1; 1045 case bitc::UNOP_FNEG: 1046 return IsFP ? Instruction::FNeg : -1; 1047 } 1048 } 1049 1050 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1051 bool IsFP = Ty->isFPOrFPVectorTy(); 1052 // BinOps are only valid for int/fp or vector of int/fp types 1053 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1054 return -1; 1055 1056 switch (Val) { 1057 default: 1058 return -1; 1059 case bitc::BINOP_ADD: 1060 return IsFP ? Instruction::FAdd : Instruction::Add; 1061 case bitc::BINOP_SUB: 1062 return IsFP ? Instruction::FSub : Instruction::Sub; 1063 case bitc::BINOP_MUL: 1064 return IsFP ? Instruction::FMul : Instruction::Mul; 1065 case bitc::BINOP_UDIV: 1066 return IsFP ? -1 : Instruction::UDiv; 1067 case bitc::BINOP_SDIV: 1068 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1069 case bitc::BINOP_UREM: 1070 return IsFP ? -1 : Instruction::URem; 1071 case bitc::BINOP_SREM: 1072 return IsFP ? Instruction::FRem : Instruction::SRem; 1073 case bitc::BINOP_SHL: 1074 return IsFP ? -1 : Instruction::Shl; 1075 case bitc::BINOP_LSHR: 1076 return IsFP ? -1 : Instruction::LShr; 1077 case bitc::BINOP_ASHR: 1078 return IsFP ? -1 : Instruction::AShr; 1079 case bitc::BINOP_AND: 1080 return IsFP ? -1 : Instruction::And; 1081 case bitc::BINOP_OR: 1082 return IsFP ? -1 : Instruction::Or; 1083 case bitc::BINOP_XOR: 1084 return IsFP ? -1 : Instruction::Xor; 1085 } 1086 } 1087 1088 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1089 switch (Val) { 1090 default: return AtomicRMWInst::BAD_BINOP; 1091 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1092 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1093 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1094 case bitc::RMW_AND: return AtomicRMWInst::And; 1095 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1096 case bitc::RMW_OR: return AtomicRMWInst::Or; 1097 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1098 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1099 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1100 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1101 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1102 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1103 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1104 } 1105 } 1106 1107 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1108 switch (Val) { 1109 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1110 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1111 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1112 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1113 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1114 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1115 default: // Map unknown orderings to sequentially-consistent. 1116 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1117 } 1118 } 1119 1120 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1121 switch (Val) { 1122 default: // Map unknown selection kinds to any. 1123 case bitc::COMDAT_SELECTION_KIND_ANY: 1124 return Comdat::Any; 1125 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1126 return Comdat::ExactMatch; 1127 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1128 return Comdat::Largest; 1129 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1130 return Comdat::NoDuplicates; 1131 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1132 return Comdat::SameSize; 1133 } 1134 } 1135 1136 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1137 FastMathFlags FMF; 1138 if (0 != (Val & bitc::UnsafeAlgebra)) 1139 FMF.setFast(); 1140 if (0 != (Val & bitc::AllowReassoc)) 1141 FMF.setAllowReassoc(); 1142 if (0 != (Val & bitc::NoNaNs)) 1143 FMF.setNoNaNs(); 1144 if (0 != (Val & bitc::NoInfs)) 1145 FMF.setNoInfs(); 1146 if (0 != (Val & bitc::NoSignedZeros)) 1147 FMF.setNoSignedZeros(); 1148 if (0 != (Val & bitc::AllowReciprocal)) 1149 FMF.setAllowReciprocal(); 1150 if (0 != (Val & bitc::AllowContract)) 1151 FMF.setAllowContract(true); 1152 if (0 != (Val & bitc::ApproxFunc)) 1153 FMF.setApproxFunc(); 1154 return FMF; 1155 } 1156 1157 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1158 switch (Val) { 1159 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1160 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1161 } 1162 } 1163 1164 Type *BitcodeReader::getTypeByID(unsigned ID) { 1165 // The type table size is always specified correctly. 1166 if (ID >= TypeList.size()) 1167 return nullptr; 1168 1169 if (Type *Ty = TypeList[ID]) 1170 return Ty; 1171 1172 // If we have a forward reference, the only possible case is when it is to a 1173 // named struct. Just create a placeholder for now. 1174 return TypeList[ID] = createIdentifiedStructType(Context); 1175 } 1176 1177 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1178 StringRef Name) { 1179 auto *Ret = StructType::create(Context, Name); 1180 IdentifiedStructTypes.push_back(Ret); 1181 return Ret; 1182 } 1183 1184 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1185 auto *Ret = StructType::create(Context); 1186 IdentifiedStructTypes.push_back(Ret); 1187 return Ret; 1188 } 1189 1190 //===----------------------------------------------------------------------===// 1191 // Functions for parsing blocks from the bitcode file 1192 //===----------------------------------------------------------------------===// 1193 1194 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1195 switch (Val) { 1196 case Attribute::EndAttrKinds: 1197 case Attribute::EmptyKey: 1198 case Attribute::TombstoneKey: 1199 llvm_unreachable("Synthetic enumerators which should never get here"); 1200 1201 case Attribute::None: return 0; 1202 case Attribute::ZExt: return 1 << 0; 1203 case Attribute::SExt: return 1 << 1; 1204 case Attribute::NoReturn: return 1 << 2; 1205 case Attribute::InReg: return 1 << 3; 1206 case Attribute::StructRet: return 1 << 4; 1207 case Attribute::NoUnwind: return 1 << 5; 1208 case Attribute::NoAlias: return 1 << 6; 1209 case Attribute::ByVal: return 1 << 7; 1210 case Attribute::Nest: return 1 << 8; 1211 case Attribute::ReadNone: return 1 << 9; 1212 case Attribute::ReadOnly: return 1 << 10; 1213 case Attribute::NoInline: return 1 << 11; 1214 case Attribute::AlwaysInline: return 1 << 12; 1215 case Attribute::OptimizeForSize: return 1 << 13; 1216 case Attribute::StackProtect: return 1 << 14; 1217 case Attribute::StackProtectReq: return 1 << 15; 1218 case Attribute::Alignment: return 31 << 16; 1219 case Attribute::NoCapture: return 1 << 21; 1220 case Attribute::NoRedZone: return 1 << 22; 1221 case Attribute::NoImplicitFloat: return 1 << 23; 1222 case Attribute::Naked: return 1 << 24; 1223 case Attribute::InlineHint: return 1 << 25; 1224 case Attribute::StackAlignment: return 7 << 26; 1225 case Attribute::ReturnsTwice: return 1 << 29; 1226 case Attribute::UWTable: return 1 << 30; 1227 case Attribute::NonLazyBind: return 1U << 31; 1228 case Attribute::SanitizeAddress: return 1ULL << 32; 1229 case Attribute::MinSize: return 1ULL << 33; 1230 case Attribute::NoDuplicate: return 1ULL << 34; 1231 case Attribute::StackProtectStrong: return 1ULL << 35; 1232 case Attribute::SanitizeThread: return 1ULL << 36; 1233 case Attribute::SanitizeMemory: return 1ULL << 37; 1234 case Attribute::NoBuiltin: return 1ULL << 38; 1235 case Attribute::Returned: return 1ULL << 39; 1236 case Attribute::Cold: return 1ULL << 40; 1237 case Attribute::Builtin: return 1ULL << 41; 1238 case Attribute::OptimizeNone: return 1ULL << 42; 1239 case Attribute::InAlloca: return 1ULL << 43; 1240 case Attribute::NonNull: return 1ULL << 44; 1241 case Attribute::JumpTable: return 1ULL << 45; 1242 case Attribute::Convergent: return 1ULL << 46; 1243 case Attribute::SafeStack: return 1ULL << 47; 1244 case Attribute::NoRecurse: return 1ULL << 48; 1245 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1246 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1247 case Attribute::SwiftSelf: return 1ULL << 51; 1248 case Attribute::SwiftError: return 1ULL << 52; 1249 case Attribute::WriteOnly: return 1ULL << 53; 1250 case Attribute::Speculatable: return 1ULL << 54; 1251 case Attribute::StrictFP: return 1ULL << 55; 1252 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1253 case Attribute::NoCfCheck: return 1ULL << 57; 1254 case Attribute::OptForFuzzing: return 1ULL << 58; 1255 case Attribute::ShadowCallStack: return 1ULL << 59; 1256 case Attribute::SpeculativeLoadHardening: 1257 return 1ULL << 60; 1258 case Attribute::ImmArg: 1259 return 1ULL << 61; 1260 case Attribute::WillReturn: 1261 return 1ULL << 62; 1262 case Attribute::NoFree: 1263 return 1ULL << 63; 1264 default: 1265 // Other attributes are not supported in the raw format, 1266 // as we ran out of space. 1267 return 0; 1268 } 1269 llvm_unreachable("Unsupported attribute type"); 1270 } 1271 1272 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1273 if (!Val) return; 1274 1275 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1276 I = Attribute::AttrKind(I + 1)) { 1277 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1278 if (I == Attribute::Alignment) 1279 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1280 else if (I == Attribute::StackAlignment) 1281 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1282 else 1283 B.addAttribute(I); 1284 } 1285 } 1286 } 1287 1288 /// This fills an AttrBuilder object with the LLVM attributes that have 1289 /// been decoded from the given integer. This function must stay in sync with 1290 /// 'encodeLLVMAttributesForBitcode'. 1291 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1292 uint64_t EncodedAttrs) { 1293 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1294 // the bits above 31 down by 11 bits. 1295 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1296 assert((!Alignment || isPowerOf2_32(Alignment)) && 1297 "Alignment must be a power of two."); 1298 1299 if (Alignment) 1300 B.addAlignmentAttr(Alignment); 1301 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1302 (EncodedAttrs & 0xffff)); 1303 } 1304 1305 Error BitcodeReader::parseAttributeBlock() { 1306 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1307 return Err; 1308 1309 if (!MAttributes.empty()) 1310 return error("Invalid multiple blocks"); 1311 1312 SmallVector<uint64_t, 64> Record; 1313 1314 SmallVector<AttributeList, 8> Attrs; 1315 1316 // Read all the records. 1317 while (true) { 1318 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1319 if (!MaybeEntry) 1320 return MaybeEntry.takeError(); 1321 BitstreamEntry Entry = MaybeEntry.get(); 1322 1323 switch (Entry.Kind) { 1324 case BitstreamEntry::SubBlock: // Handled for us already. 1325 case BitstreamEntry::Error: 1326 return error("Malformed block"); 1327 case BitstreamEntry::EndBlock: 1328 return Error::success(); 1329 case BitstreamEntry::Record: 1330 // The interesting case. 1331 break; 1332 } 1333 1334 // Read a record. 1335 Record.clear(); 1336 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1337 if (!MaybeRecord) 1338 return MaybeRecord.takeError(); 1339 switch (MaybeRecord.get()) { 1340 default: // Default behavior: ignore. 1341 break; 1342 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1343 // Deprecated, but still needed to read old bitcode files. 1344 if (Record.size() & 1) 1345 return error("Invalid record"); 1346 1347 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1348 AttrBuilder B; 1349 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1350 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1351 } 1352 1353 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1354 Attrs.clear(); 1355 break; 1356 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1357 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1358 Attrs.push_back(MAttributeGroups[Record[i]]); 1359 1360 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1361 Attrs.clear(); 1362 break; 1363 } 1364 } 1365 } 1366 1367 // Returns Attribute::None on unrecognized codes. 1368 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1369 switch (Code) { 1370 default: 1371 return Attribute::None; 1372 case bitc::ATTR_KIND_ALIGNMENT: 1373 return Attribute::Alignment; 1374 case bitc::ATTR_KIND_ALWAYS_INLINE: 1375 return Attribute::AlwaysInline; 1376 case bitc::ATTR_KIND_ARGMEMONLY: 1377 return Attribute::ArgMemOnly; 1378 case bitc::ATTR_KIND_BUILTIN: 1379 return Attribute::Builtin; 1380 case bitc::ATTR_KIND_BY_VAL: 1381 return Attribute::ByVal; 1382 case bitc::ATTR_KIND_IN_ALLOCA: 1383 return Attribute::InAlloca; 1384 case bitc::ATTR_KIND_COLD: 1385 return Attribute::Cold; 1386 case bitc::ATTR_KIND_CONVERGENT: 1387 return Attribute::Convergent; 1388 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1389 return Attribute::InaccessibleMemOnly; 1390 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1391 return Attribute::InaccessibleMemOrArgMemOnly; 1392 case bitc::ATTR_KIND_INLINE_HINT: 1393 return Attribute::InlineHint; 1394 case bitc::ATTR_KIND_IN_REG: 1395 return Attribute::InReg; 1396 case bitc::ATTR_KIND_JUMP_TABLE: 1397 return Attribute::JumpTable; 1398 case bitc::ATTR_KIND_MIN_SIZE: 1399 return Attribute::MinSize; 1400 case bitc::ATTR_KIND_NAKED: 1401 return Attribute::Naked; 1402 case bitc::ATTR_KIND_NEST: 1403 return Attribute::Nest; 1404 case bitc::ATTR_KIND_NO_ALIAS: 1405 return Attribute::NoAlias; 1406 case bitc::ATTR_KIND_NO_BUILTIN: 1407 return Attribute::NoBuiltin; 1408 case bitc::ATTR_KIND_NO_CALLBACK: 1409 return Attribute::NoCallback; 1410 case bitc::ATTR_KIND_NO_CAPTURE: 1411 return Attribute::NoCapture; 1412 case bitc::ATTR_KIND_NO_DUPLICATE: 1413 return Attribute::NoDuplicate; 1414 case bitc::ATTR_KIND_NOFREE: 1415 return Attribute::NoFree; 1416 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1417 return Attribute::NoImplicitFloat; 1418 case bitc::ATTR_KIND_NO_INLINE: 1419 return Attribute::NoInline; 1420 case bitc::ATTR_KIND_NO_RECURSE: 1421 return Attribute::NoRecurse; 1422 case bitc::ATTR_KIND_NO_MERGE: 1423 return Attribute::NoMerge; 1424 case bitc::ATTR_KIND_NON_LAZY_BIND: 1425 return Attribute::NonLazyBind; 1426 case bitc::ATTR_KIND_NON_NULL: 1427 return Attribute::NonNull; 1428 case bitc::ATTR_KIND_DEREFERENCEABLE: 1429 return Attribute::Dereferenceable; 1430 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1431 return Attribute::DereferenceableOrNull; 1432 case bitc::ATTR_KIND_ALLOC_SIZE: 1433 return Attribute::AllocSize; 1434 case bitc::ATTR_KIND_NO_RED_ZONE: 1435 return Attribute::NoRedZone; 1436 case bitc::ATTR_KIND_NO_RETURN: 1437 return Attribute::NoReturn; 1438 case bitc::ATTR_KIND_NOSYNC: 1439 return Attribute::NoSync; 1440 case bitc::ATTR_KIND_NOCF_CHECK: 1441 return Attribute::NoCfCheck; 1442 case bitc::ATTR_KIND_NO_UNWIND: 1443 return Attribute::NoUnwind; 1444 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1445 return Attribute::NoSanitizeCoverage; 1446 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1447 return Attribute::NullPointerIsValid; 1448 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1449 return Attribute::OptForFuzzing; 1450 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1451 return Attribute::OptimizeForSize; 1452 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1453 return Attribute::OptimizeNone; 1454 case bitc::ATTR_KIND_READ_NONE: 1455 return Attribute::ReadNone; 1456 case bitc::ATTR_KIND_READ_ONLY: 1457 return Attribute::ReadOnly; 1458 case bitc::ATTR_KIND_RETURNED: 1459 return Attribute::Returned; 1460 case bitc::ATTR_KIND_RETURNS_TWICE: 1461 return Attribute::ReturnsTwice; 1462 case bitc::ATTR_KIND_S_EXT: 1463 return Attribute::SExt; 1464 case bitc::ATTR_KIND_SPECULATABLE: 1465 return Attribute::Speculatable; 1466 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1467 return Attribute::StackAlignment; 1468 case bitc::ATTR_KIND_STACK_PROTECT: 1469 return Attribute::StackProtect; 1470 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1471 return Attribute::StackProtectReq; 1472 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1473 return Attribute::StackProtectStrong; 1474 case bitc::ATTR_KIND_SAFESTACK: 1475 return Attribute::SafeStack; 1476 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1477 return Attribute::ShadowCallStack; 1478 case bitc::ATTR_KIND_STRICT_FP: 1479 return Attribute::StrictFP; 1480 case bitc::ATTR_KIND_STRUCT_RET: 1481 return Attribute::StructRet; 1482 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1483 return Attribute::SanitizeAddress; 1484 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1485 return Attribute::SanitizeHWAddress; 1486 case bitc::ATTR_KIND_SANITIZE_THREAD: 1487 return Attribute::SanitizeThread; 1488 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1489 return Attribute::SanitizeMemory; 1490 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1491 return Attribute::SpeculativeLoadHardening; 1492 case bitc::ATTR_KIND_SWIFT_ERROR: 1493 return Attribute::SwiftError; 1494 case bitc::ATTR_KIND_SWIFT_SELF: 1495 return Attribute::SwiftSelf; 1496 case bitc::ATTR_KIND_SWIFT_ASYNC: 1497 return Attribute::SwiftAsync; 1498 case bitc::ATTR_KIND_UW_TABLE: 1499 return Attribute::UWTable; 1500 case bitc::ATTR_KIND_VSCALE_RANGE: 1501 return Attribute::VScaleRange; 1502 case bitc::ATTR_KIND_WILLRETURN: 1503 return Attribute::WillReturn; 1504 case bitc::ATTR_KIND_WRITEONLY: 1505 return Attribute::WriteOnly; 1506 case bitc::ATTR_KIND_Z_EXT: 1507 return Attribute::ZExt; 1508 case bitc::ATTR_KIND_IMMARG: 1509 return Attribute::ImmArg; 1510 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1511 return Attribute::SanitizeMemTag; 1512 case bitc::ATTR_KIND_PREALLOCATED: 1513 return Attribute::Preallocated; 1514 case bitc::ATTR_KIND_NOUNDEF: 1515 return Attribute::NoUndef; 1516 case bitc::ATTR_KIND_BYREF: 1517 return Attribute::ByRef; 1518 case bitc::ATTR_KIND_MUSTPROGRESS: 1519 return Attribute::MustProgress; 1520 case bitc::ATTR_KIND_HOT: 1521 return Attribute::Hot; 1522 } 1523 } 1524 1525 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1526 MaybeAlign &Alignment) { 1527 // Note: Alignment in bitcode files is incremented by 1, so that zero 1528 // can be used for default alignment. 1529 if (Exponent > Value::MaxAlignmentExponent + 1) 1530 return error("Invalid alignment value"); 1531 Alignment = decodeMaybeAlign(Exponent); 1532 return Error::success(); 1533 } 1534 1535 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1536 *Kind = getAttrFromCode(Code); 1537 if (*Kind == Attribute::None) 1538 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1539 return Error::success(); 1540 } 1541 1542 Error BitcodeReader::parseAttributeGroupBlock() { 1543 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1544 return Err; 1545 1546 if (!MAttributeGroups.empty()) 1547 return error("Invalid multiple blocks"); 1548 1549 SmallVector<uint64_t, 64> Record; 1550 1551 // Read all the records. 1552 while (true) { 1553 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1554 if (!MaybeEntry) 1555 return MaybeEntry.takeError(); 1556 BitstreamEntry Entry = MaybeEntry.get(); 1557 1558 switch (Entry.Kind) { 1559 case BitstreamEntry::SubBlock: // Handled for us already. 1560 case BitstreamEntry::Error: 1561 return error("Malformed block"); 1562 case BitstreamEntry::EndBlock: 1563 return Error::success(); 1564 case BitstreamEntry::Record: 1565 // The interesting case. 1566 break; 1567 } 1568 1569 // Read a record. 1570 Record.clear(); 1571 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1572 if (!MaybeRecord) 1573 return MaybeRecord.takeError(); 1574 switch (MaybeRecord.get()) { 1575 default: // Default behavior: ignore. 1576 break; 1577 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1578 if (Record.size() < 3) 1579 return error("Invalid record"); 1580 1581 uint64_t GrpID = Record[0]; 1582 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1583 1584 AttrBuilder B; 1585 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1586 if (Record[i] == 0) { // Enum attribute 1587 Attribute::AttrKind Kind; 1588 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1589 return Err; 1590 1591 // Upgrade old-style byval attribute to one with a type, even if it's 1592 // nullptr. We will have to insert the real type when we associate 1593 // this AttributeList with a function. 1594 if (Kind == Attribute::ByVal) 1595 B.addByValAttr(nullptr); 1596 else if (Kind == Attribute::StructRet) 1597 B.addStructRetAttr(nullptr); 1598 else if (Kind == Attribute::InAlloca) 1599 B.addInAllocaAttr(nullptr); 1600 1601 B.addAttribute(Kind); 1602 } else if (Record[i] == 1) { // Integer attribute 1603 Attribute::AttrKind Kind; 1604 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1605 return Err; 1606 if (Kind == Attribute::Alignment) 1607 B.addAlignmentAttr(Record[++i]); 1608 else if (Kind == Attribute::StackAlignment) 1609 B.addStackAlignmentAttr(Record[++i]); 1610 else if (Kind == Attribute::Dereferenceable) 1611 B.addDereferenceableAttr(Record[++i]); 1612 else if (Kind == Attribute::DereferenceableOrNull) 1613 B.addDereferenceableOrNullAttr(Record[++i]); 1614 else if (Kind == Attribute::AllocSize) 1615 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1616 else if (Kind == Attribute::VScaleRange) 1617 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1618 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1619 bool HasValue = (Record[i++] == 4); 1620 SmallString<64> KindStr; 1621 SmallString<64> ValStr; 1622 1623 while (Record[i] != 0 && i != e) 1624 KindStr += Record[i++]; 1625 assert(Record[i] == 0 && "Kind string not null terminated"); 1626 1627 if (HasValue) { 1628 // Has a value associated with it. 1629 ++i; // Skip the '0' that terminates the "kind" string. 1630 while (Record[i] != 0 && i != e) 1631 ValStr += Record[i++]; 1632 assert(Record[i] == 0 && "Value string not null terminated"); 1633 } 1634 1635 B.addAttribute(KindStr.str(), ValStr.str()); 1636 } else { 1637 assert((Record[i] == 5 || Record[i] == 6) && 1638 "Invalid attribute group entry"); 1639 bool HasType = Record[i] == 6; 1640 Attribute::AttrKind Kind; 1641 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1642 return Err; 1643 if (Kind == Attribute::ByVal) { 1644 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1645 } else if (Kind == Attribute::StructRet) { 1646 B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1647 } else if (Kind == Attribute::ByRef) { 1648 B.addByRefAttr(getTypeByID(Record[++i])); 1649 } else if (Kind == Attribute::Preallocated) { 1650 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1651 } else if (Kind == Attribute::InAlloca) { 1652 B.addInAllocaAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1653 } 1654 } 1655 } 1656 1657 UpgradeAttributes(B); 1658 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1659 break; 1660 } 1661 } 1662 } 1663 } 1664 1665 Error BitcodeReader::parseTypeTable() { 1666 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1667 return Err; 1668 1669 return parseTypeTableBody(); 1670 } 1671 1672 Error BitcodeReader::parseTypeTableBody() { 1673 if (!TypeList.empty()) 1674 return error("Invalid multiple blocks"); 1675 1676 SmallVector<uint64_t, 64> Record; 1677 unsigned NumRecords = 0; 1678 1679 SmallString<64> TypeName; 1680 1681 // Read all the records for this type table. 1682 while (true) { 1683 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1684 if (!MaybeEntry) 1685 return MaybeEntry.takeError(); 1686 BitstreamEntry Entry = MaybeEntry.get(); 1687 1688 switch (Entry.Kind) { 1689 case BitstreamEntry::SubBlock: // Handled for us already. 1690 case BitstreamEntry::Error: 1691 return error("Malformed block"); 1692 case BitstreamEntry::EndBlock: 1693 if (NumRecords != TypeList.size()) 1694 return error("Malformed block"); 1695 return Error::success(); 1696 case BitstreamEntry::Record: 1697 // The interesting case. 1698 break; 1699 } 1700 1701 // Read a record. 1702 Record.clear(); 1703 Type *ResultTy = nullptr; 1704 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1705 if (!MaybeRecord) 1706 return MaybeRecord.takeError(); 1707 switch (MaybeRecord.get()) { 1708 default: 1709 return error("Invalid value"); 1710 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1711 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1712 // type list. This allows us to reserve space. 1713 if (Record.empty()) 1714 return error("Invalid record"); 1715 TypeList.resize(Record[0]); 1716 continue; 1717 case bitc::TYPE_CODE_VOID: // VOID 1718 ResultTy = Type::getVoidTy(Context); 1719 break; 1720 case bitc::TYPE_CODE_HALF: // HALF 1721 ResultTy = Type::getHalfTy(Context); 1722 break; 1723 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1724 ResultTy = Type::getBFloatTy(Context); 1725 break; 1726 case bitc::TYPE_CODE_FLOAT: // FLOAT 1727 ResultTy = Type::getFloatTy(Context); 1728 break; 1729 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1730 ResultTy = Type::getDoubleTy(Context); 1731 break; 1732 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1733 ResultTy = Type::getX86_FP80Ty(Context); 1734 break; 1735 case bitc::TYPE_CODE_FP128: // FP128 1736 ResultTy = Type::getFP128Ty(Context); 1737 break; 1738 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1739 ResultTy = Type::getPPC_FP128Ty(Context); 1740 break; 1741 case bitc::TYPE_CODE_LABEL: // LABEL 1742 ResultTy = Type::getLabelTy(Context); 1743 break; 1744 case bitc::TYPE_CODE_METADATA: // METADATA 1745 ResultTy = Type::getMetadataTy(Context); 1746 break; 1747 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1748 ResultTy = Type::getX86_MMXTy(Context); 1749 break; 1750 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1751 ResultTy = Type::getX86_AMXTy(Context); 1752 break; 1753 case bitc::TYPE_CODE_TOKEN: // TOKEN 1754 ResultTy = Type::getTokenTy(Context); 1755 break; 1756 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1757 if (Record.empty()) 1758 return error("Invalid record"); 1759 1760 uint64_t NumBits = Record[0]; 1761 if (NumBits < IntegerType::MIN_INT_BITS || 1762 NumBits > IntegerType::MAX_INT_BITS) 1763 return error("Bitwidth for integer type out of range"); 1764 ResultTy = IntegerType::get(Context, NumBits); 1765 break; 1766 } 1767 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1768 // [pointee type, address space] 1769 if (Record.empty()) 1770 return error("Invalid record"); 1771 unsigned AddressSpace = 0; 1772 if (Record.size() == 2) 1773 AddressSpace = Record[1]; 1774 ResultTy = getTypeByID(Record[0]); 1775 if (!ResultTy || 1776 !PointerType::isValidElementType(ResultTy)) 1777 return error("Invalid type"); 1778 ResultTy = PointerType::get(ResultTy, AddressSpace); 1779 break; 1780 } 1781 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1782 if (Record.size() != 1) 1783 return error("Invalid record"); 1784 unsigned AddressSpace = Record[0]; 1785 ResultTy = PointerType::get(Context, AddressSpace); 1786 break; 1787 } 1788 case bitc::TYPE_CODE_FUNCTION_OLD: { 1789 // Deprecated, but still needed to read old bitcode files. 1790 // FUNCTION: [vararg, attrid, retty, paramty x N] 1791 if (Record.size() < 3) 1792 return error("Invalid record"); 1793 SmallVector<Type*, 8> ArgTys; 1794 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1795 if (Type *T = getTypeByID(Record[i])) 1796 ArgTys.push_back(T); 1797 else 1798 break; 1799 } 1800 1801 ResultTy = getTypeByID(Record[2]); 1802 if (!ResultTy || ArgTys.size() < Record.size()-3) 1803 return error("Invalid type"); 1804 1805 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1806 break; 1807 } 1808 case bitc::TYPE_CODE_FUNCTION: { 1809 // FUNCTION: [vararg, retty, paramty x N] 1810 if (Record.size() < 2) 1811 return error("Invalid record"); 1812 SmallVector<Type*, 8> ArgTys; 1813 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1814 if (Type *T = getTypeByID(Record[i])) { 1815 if (!FunctionType::isValidArgumentType(T)) 1816 return error("Invalid function argument type"); 1817 ArgTys.push_back(T); 1818 } 1819 else 1820 break; 1821 } 1822 1823 ResultTy = getTypeByID(Record[1]); 1824 if (!ResultTy || ArgTys.size() < Record.size()-2) 1825 return error("Invalid type"); 1826 1827 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1828 break; 1829 } 1830 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1831 if (Record.empty()) 1832 return error("Invalid record"); 1833 SmallVector<Type*, 8> EltTys; 1834 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1835 if (Type *T = getTypeByID(Record[i])) 1836 EltTys.push_back(T); 1837 else 1838 break; 1839 } 1840 if (EltTys.size() != Record.size()-1) 1841 return error("Invalid type"); 1842 ResultTy = StructType::get(Context, EltTys, Record[0]); 1843 break; 1844 } 1845 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1846 if (convertToString(Record, 0, TypeName)) 1847 return error("Invalid record"); 1848 continue; 1849 1850 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1851 if (Record.empty()) 1852 return error("Invalid record"); 1853 1854 if (NumRecords >= TypeList.size()) 1855 return error("Invalid TYPE table"); 1856 1857 // Check to see if this was forward referenced, if so fill in the temp. 1858 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1859 if (Res) { 1860 Res->setName(TypeName); 1861 TypeList[NumRecords] = nullptr; 1862 } else // Otherwise, create a new struct. 1863 Res = createIdentifiedStructType(Context, TypeName); 1864 TypeName.clear(); 1865 1866 SmallVector<Type*, 8> EltTys; 1867 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1868 if (Type *T = getTypeByID(Record[i])) 1869 EltTys.push_back(T); 1870 else 1871 break; 1872 } 1873 if (EltTys.size() != Record.size()-1) 1874 return error("Invalid record"); 1875 Res->setBody(EltTys, Record[0]); 1876 ResultTy = Res; 1877 break; 1878 } 1879 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1880 if (Record.size() != 1) 1881 return error("Invalid record"); 1882 1883 if (NumRecords >= TypeList.size()) 1884 return error("Invalid TYPE table"); 1885 1886 // Check to see if this was forward referenced, if so fill in the temp. 1887 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1888 if (Res) { 1889 Res->setName(TypeName); 1890 TypeList[NumRecords] = nullptr; 1891 } else // Otherwise, create a new struct with no body. 1892 Res = createIdentifiedStructType(Context, TypeName); 1893 TypeName.clear(); 1894 ResultTy = Res; 1895 break; 1896 } 1897 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1898 if (Record.size() < 2) 1899 return error("Invalid record"); 1900 ResultTy = getTypeByID(Record[1]); 1901 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1902 return error("Invalid type"); 1903 ResultTy = ArrayType::get(ResultTy, Record[0]); 1904 break; 1905 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1906 // [numelts, eltty, scalable] 1907 if (Record.size() < 2) 1908 return error("Invalid record"); 1909 if (Record[0] == 0) 1910 return error("Invalid vector length"); 1911 ResultTy = getTypeByID(Record[1]); 1912 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1913 return error("Invalid type"); 1914 bool Scalable = Record.size() > 2 ? Record[2] : false; 1915 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1916 break; 1917 } 1918 1919 if (NumRecords >= TypeList.size()) 1920 return error("Invalid TYPE table"); 1921 if (TypeList[NumRecords]) 1922 return error( 1923 "Invalid TYPE table: Only named structs can be forward referenced"); 1924 assert(ResultTy && "Didn't read a type?"); 1925 TypeList[NumRecords++] = ResultTy; 1926 } 1927 } 1928 1929 Error BitcodeReader::parseOperandBundleTags() { 1930 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1931 return Err; 1932 1933 if (!BundleTags.empty()) 1934 return error("Invalid multiple blocks"); 1935 1936 SmallVector<uint64_t, 64> Record; 1937 1938 while (true) { 1939 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1940 if (!MaybeEntry) 1941 return MaybeEntry.takeError(); 1942 BitstreamEntry Entry = MaybeEntry.get(); 1943 1944 switch (Entry.Kind) { 1945 case BitstreamEntry::SubBlock: // Handled for us already. 1946 case BitstreamEntry::Error: 1947 return error("Malformed block"); 1948 case BitstreamEntry::EndBlock: 1949 return Error::success(); 1950 case BitstreamEntry::Record: 1951 // The interesting case. 1952 break; 1953 } 1954 1955 // Tags are implicitly mapped to integers by their order. 1956 1957 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1958 if (!MaybeRecord) 1959 return MaybeRecord.takeError(); 1960 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1961 return error("Invalid record"); 1962 1963 // OPERAND_BUNDLE_TAG: [strchr x N] 1964 BundleTags.emplace_back(); 1965 if (convertToString(Record, 0, BundleTags.back())) 1966 return error("Invalid record"); 1967 Record.clear(); 1968 } 1969 } 1970 1971 Error BitcodeReader::parseSyncScopeNames() { 1972 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1973 return Err; 1974 1975 if (!SSIDs.empty()) 1976 return error("Invalid multiple synchronization scope names blocks"); 1977 1978 SmallVector<uint64_t, 64> Record; 1979 while (true) { 1980 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1981 if (!MaybeEntry) 1982 return MaybeEntry.takeError(); 1983 BitstreamEntry Entry = MaybeEntry.get(); 1984 1985 switch (Entry.Kind) { 1986 case BitstreamEntry::SubBlock: // Handled for us already. 1987 case BitstreamEntry::Error: 1988 return error("Malformed block"); 1989 case BitstreamEntry::EndBlock: 1990 if (SSIDs.empty()) 1991 return error("Invalid empty synchronization scope names block"); 1992 return Error::success(); 1993 case BitstreamEntry::Record: 1994 // The interesting case. 1995 break; 1996 } 1997 1998 // Synchronization scope names are implicitly mapped to synchronization 1999 // scope IDs by their order. 2000 2001 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2002 if (!MaybeRecord) 2003 return MaybeRecord.takeError(); 2004 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2005 return error("Invalid record"); 2006 2007 SmallString<16> SSN; 2008 if (convertToString(Record, 0, SSN)) 2009 return error("Invalid record"); 2010 2011 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2012 Record.clear(); 2013 } 2014 } 2015 2016 /// Associate a value with its name from the given index in the provided record. 2017 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2018 unsigned NameIndex, Triple &TT) { 2019 SmallString<128> ValueName; 2020 if (convertToString(Record, NameIndex, ValueName)) 2021 return error("Invalid record"); 2022 unsigned ValueID = Record[0]; 2023 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2024 return error("Invalid record"); 2025 Value *V = ValueList[ValueID]; 2026 2027 StringRef NameStr(ValueName.data(), ValueName.size()); 2028 if (NameStr.find_first_of(0) != StringRef::npos) 2029 return error("Invalid value name"); 2030 V->setName(NameStr); 2031 auto *GO = dyn_cast<GlobalObject>(V); 2032 if (GO) { 2033 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2034 if (TT.supportsCOMDAT()) 2035 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2036 else 2037 GO->setComdat(nullptr); 2038 } 2039 } 2040 return V; 2041 } 2042 2043 /// Helper to note and return the current location, and jump to the given 2044 /// offset. 2045 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2046 BitstreamCursor &Stream) { 2047 // Save the current parsing location so we can jump back at the end 2048 // of the VST read. 2049 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2050 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2051 return std::move(JumpFailed); 2052 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2053 if (!MaybeEntry) 2054 return MaybeEntry.takeError(); 2055 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2056 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2057 return CurrentBit; 2058 } 2059 2060 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2061 Function *F, 2062 ArrayRef<uint64_t> Record) { 2063 // Note that we subtract 1 here because the offset is relative to one word 2064 // before the start of the identification or module block, which was 2065 // historically always the start of the regular bitcode header. 2066 uint64_t FuncWordOffset = Record[1] - 1; 2067 uint64_t FuncBitOffset = FuncWordOffset * 32; 2068 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2069 // Set the LastFunctionBlockBit to point to the last function block. 2070 // Later when parsing is resumed after function materialization, 2071 // we can simply skip that last function block. 2072 if (FuncBitOffset > LastFunctionBlockBit) 2073 LastFunctionBlockBit = FuncBitOffset; 2074 } 2075 2076 /// Read a new-style GlobalValue symbol table. 2077 Error BitcodeReader::parseGlobalValueSymbolTable() { 2078 unsigned FuncBitcodeOffsetDelta = 2079 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2080 2081 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2082 return Err; 2083 2084 SmallVector<uint64_t, 64> Record; 2085 while (true) { 2086 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2087 if (!MaybeEntry) 2088 return MaybeEntry.takeError(); 2089 BitstreamEntry Entry = MaybeEntry.get(); 2090 2091 switch (Entry.Kind) { 2092 case BitstreamEntry::SubBlock: 2093 case BitstreamEntry::Error: 2094 return error("Malformed block"); 2095 case BitstreamEntry::EndBlock: 2096 return Error::success(); 2097 case BitstreamEntry::Record: 2098 break; 2099 } 2100 2101 Record.clear(); 2102 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2103 if (!MaybeRecord) 2104 return MaybeRecord.takeError(); 2105 switch (MaybeRecord.get()) { 2106 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2107 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2108 cast<Function>(ValueList[Record[0]]), Record); 2109 break; 2110 } 2111 } 2112 } 2113 2114 /// Parse the value symbol table at either the current parsing location or 2115 /// at the given bit offset if provided. 2116 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2117 uint64_t CurrentBit; 2118 // Pass in the Offset to distinguish between calling for the module-level 2119 // VST (where we want to jump to the VST offset) and the function-level 2120 // VST (where we don't). 2121 if (Offset > 0) { 2122 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2123 if (!MaybeCurrentBit) 2124 return MaybeCurrentBit.takeError(); 2125 CurrentBit = MaybeCurrentBit.get(); 2126 // If this module uses a string table, read this as a module-level VST. 2127 if (UseStrtab) { 2128 if (Error Err = parseGlobalValueSymbolTable()) 2129 return Err; 2130 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2131 return JumpFailed; 2132 return Error::success(); 2133 } 2134 // Otherwise, the VST will be in a similar format to a function-level VST, 2135 // and will contain symbol names. 2136 } 2137 2138 // Compute the delta between the bitcode indices in the VST (the word offset 2139 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2140 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2141 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2142 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2143 // just before entering the VST subblock because: 1) the EnterSubBlock 2144 // changes the AbbrevID width; 2) the VST block is nested within the same 2145 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2146 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2147 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2148 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2149 unsigned FuncBitcodeOffsetDelta = 2150 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2151 2152 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2153 return Err; 2154 2155 SmallVector<uint64_t, 64> Record; 2156 2157 Triple TT(TheModule->getTargetTriple()); 2158 2159 // Read all the records for this value table. 2160 SmallString<128> ValueName; 2161 2162 while (true) { 2163 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2164 if (!MaybeEntry) 2165 return MaybeEntry.takeError(); 2166 BitstreamEntry Entry = MaybeEntry.get(); 2167 2168 switch (Entry.Kind) { 2169 case BitstreamEntry::SubBlock: // Handled for us already. 2170 case BitstreamEntry::Error: 2171 return error("Malformed block"); 2172 case BitstreamEntry::EndBlock: 2173 if (Offset > 0) 2174 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2175 return JumpFailed; 2176 return Error::success(); 2177 case BitstreamEntry::Record: 2178 // The interesting case. 2179 break; 2180 } 2181 2182 // Read a record. 2183 Record.clear(); 2184 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2185 if (!MaybeRecord) 2186 return MaybeRecord.takeError(); 2187 switch (MaybeRecord.get()) { 2188 default: // Default behavior: unknown type. 2189 break; 2190 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2191 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2192 if (Error Err = ValOrErr.takeError()) 2193 return Err; 2194 ValOrErr.get(); 2195 break; 2196 } 2197 case bitc::VST_CODE_FNENTRY: { 2198 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2199 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2200 if (Error Err = ValOrErr.takeError()) 2201 return Err; 2202 Value *V = ValOrErr.get(); 2203 2204 // Ignore function offsets emitted for aliases of functions in older 2205 // versions of LLVM. 2206 if (auto *F = dyn_cast<Function>(V)) 2207 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2208 break; 2209 } 2210 case bitc::VST_CODE_BBENTRY: { 2211 if (convertToString(Record, 1, ValueName)) 2212 return error("Invalid record"); 2213 BasicBlock *BB = getBasicBlock(Record[0]); 2214 if (!BB) 2215 return error("Invalid record"); 2216 2217 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2218 ValueName.clear(); 2219 break; 2220 } 2221 } 2222 } 2223 } 2224 2225 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2226 /// encoding. 2227 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2228 if ((V & 1) == 0) 2229 return V >> 1; 2230 if (V != 1) 2231 return -(V >> 1); 2232 // There is no such thing as -0 with integers. "-0" really means MININT. 2233 return 1ULL << 63; 2234 } 2235 2236 /// Resolve all of the initializers for global values and aliases that we can. 2237 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2238 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2239 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2240 IndirectSymbolInitWorklist; 2241 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2242 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2243 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2244 2245 GlobalInitWorklist.swap(GlobalInits); 2246 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2247 FunctionPrefixWorklist.swap(FunctionPrefixes); 2248 FunctionPrologueWorklist.swap(FunctionPrologues); 2249 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2250 2251 while (!GlobalInitWorklist.empty()) { 2252 unsigned ValID = GlobalInitWorklist.back().second; 2253 if (ValID >= ValueList.size()) { 2254 // Not ready to resolve this yet, it requires something later in the file. 2255 GlobalInits.push_back(GlobalInitWorklist.back()); 2256 } else { 2257 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2258 GlobalInitWorklist.back().first->setInitializer(C); 2259 else 2260 return error("Expected a constant"); 2261 } 2262 GlobalInitWorklist.pop_back(); 2263 } 2264 2265 while (!IndirectSymbolInitWorklist.empty()) { 2266 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2267 if (ValID >= ValueList.size()) { 2268 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2269 } else { 2270 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2271 if (!C) 2272 return error("Expected a constant"); 2273 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2274 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2275 return error("Alias and aliasee types don't match"); 2276 GIS->setIndirectSymbol(C); 2277 } 2278 IndirectSymbolInitWorklist.pop_back(); 2279 } 2280 2281 while (!FunctionPrefixWorklist.empty()) { 2282 unsigned ValID = FunctionPrefixWorklist.back().second; 2283 if (ValID >= ValueList.size()) { 2284 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2285 } else { 2286 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2287 FunctionPrefixWorklist.back().first->setPrefixData(C); 2288 else 2289 return error("Expected a constant"); 2290 } 2291 FunctionPrefixWorklist.pop_back(); 2292 } 2293 2294 while (!FunctionPrologueWorklist.empty()) { 2295 unsigned ValID = FunctionPrologueWorklist.back().second; 2296 if (ValID >= ValueList.size()) { 2297 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2298 } else { 2299 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2300 FunctionPrologueWorklist.back().first->setPrologueData(C); 2301 else 2302 return error("Expected a constant"); 2303 } 2304 FunctionPrologueWorklist.pop_back(); 2305 } 2306 2307 while (!FunctionPersonalityFnWorklist.empty()) { 2308 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2309 if (ValID >= ValueList.size()) { 2310 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2311 } else { 2312 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2313 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2314 else 2315 return error("Expected a constant"); 2316 } 2317 FunctionPersonalityFnWorklist.pop_back(); 2318 } 2319 2320 return Error::success(); 2321 } 2322 2323 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2324 SmallVector<uint64_t, 8> Words(Vals.size()); 2325 transform(Vals, Words.begin(), 2326 BitcodeReader::decodeSignRotatedValue); 2327 2328 return APInt(TypeBits, Words); 2329 } 2330 2331 Error BitcodeReader::parseConstants() { 2332 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2333 return Err; 2334 2335 SmallVector<uint64_t, 64> Record; 2336 2337 // Read all the records for this value table. 2338 Type *CurTy = Type::getInt32Ty(Context); 2339 unsigned NextCstNo = ValueList.size(); 2340 2341 struct DelayedShufTy { 2342 VectorType *OpTy; 2343 VectorType *RTy; 2344 uint64_t Op0Idx; 2345 uint64_t Op1Idx; 2346 uint64_t Op2Idx; 2347 unsigned CstNo; 2348 }; 2349 std::vector<DelayedShufTy> DelayedShuffles; 2350 while (true) { 2351 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2352 if (!MaybeEntry) 2353 return MaybeEntry.takeError(); 2354 BitstreamEntry Entry = MaybeEntry.get(); 2355 2356 switch (Entry.Kind) { 2357 case BitstreamEntry::SubBlock: // Handled for us already. 2358 case BitstreamEntry::Error: 2359 return error("Malformed block"); 2360 case BitstreamEntry::EndBlock: 2361 // Once all the constants have been read, go through and resolve forward 2362 // references. 2363 // 2364 // We have to treat shuffles specially because they don't have three 2365 // operands anymore. We need to convert the shuffle mask into an array, 2366 // and we can't convert a forward reference. 2367 for (auto &DelayedShuffle : DelayedShuffles) { 2368 VectorType *OpTy = DelayedShuffle.OpTy; 2369 VectorType *RTy = DelayedShuffle.RTy; 2370 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2371 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2372 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2373 uint64_t CstNo = DelayedShuffle.CstNo; 2374 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2375 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2376 Type *ShufTy = 2377 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2378 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2379 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2380 return error("Invalid shufflevector operands"); 2381 SmallVector<int, 16> Mask; 2382 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2383 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2384 ValueList.assignValue(V, CstNo); 2385 } 2386 2387 if (NextCstNo != ValueList.size()) 2388 return error("Invalid constant reference"); 2389 2390 ValueList.resolveConstantForwardRefs(); 2391 return Error::success(); 2392 case BitstreamEntry::Record: 2393 // The interesting case. 2394 break; 2395 } 2396 2397 // Read a record. 2398 Record.clear(); 2399 Type *VoidType = Type::getVoidTy(Context); 2400 Value *V = nullptr; 2401 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2402 if (!MaybeBitCode) 2403 return MaybeBitCode.takeError(); 2404 switch (unsigned BitCode = MaybeBitCode.get()) { 2405 default: // Default behavior: unknown constant 2406 case bitc::CST_CODE_UNDEF: // UNDEF 2407 V = UndefValue::get(CurTy); 2408 break; 2409 case bitc::CST_CODE_POISON: // POISON 2410 V = PoisonValue::get(CurTy); 2411 break; 2412 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2413 if (Record.empty()) 2414 return error("Invalid record"); 2415 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2416 return error("Invalid record"); 2417 if (TypeList[Record[0]] == VoidType) 2418 return error("Invalid constant type"); 2419 CurTy = TypeList[Record[0]]; 2420 continue; // Skip the ValueList manipulation. 2421 case bitc::CST_CODE_NULL: // NULL 2422 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2423 return error("Invalid type for a constant null value"); 2424 V = Constant::getNullValue(CurTy); 2425 break; 2426 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2427 if (!CurTy->isIntegerTy() || Record.empty()) 2428 return error("Invalid record"); 2429 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2430 break; 2431 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2432 if (!CurTy->isIntegerTy() || Record.empty()) 2433 return error("Invalid record"); 2434 2435 APInt VInt = 2436 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2437 V = ConstantInt::get(Context, VInt); 2438 2439 break; 2440 } 2441 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2442 if (Record.empty()) 2443 return error("Invalid record"); 2444 if (CurTy->isHalfTy()) 2445 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2446 APInt(16, (uint16_t)Record[0]))); 2447 else if (CurTy->isBFloatTy()) 2448 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2449 APInt(16, (uint32_t)Record[0]))); 2450 else if (CurTy->isFloatTy()) 2451 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2452 APInt(32, (uint32_t)Record[0]))); 2453 else if (CurTy->isDoubleTy()) 2454 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2455 APInt(64, Record[0]))); 2456 else if (CurTy->isX86_FP80Ty()) { 2457 // Bits are not stored the same way as a normal i80 APInt, compensate. 2458 uint64_t Rearrange[2]; 2459 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2460 Rearrange[1] = Record[0] >> 48; 2461 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2462 APInt(80, Rearrange))); 2463 } else if (CurTy->isFP128Ty()) 2464 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2465 APInt(128, Record))); 2466 else if (CurTy->isPPC_FP128Ty()) 2467 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2468 APInt(128, Record))); 2469 else 2470 V = UndefValue::get(CurTy); 2471 break; 2472 } 2473 2474 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2475 if (Record.empty()) 2476 return error("Invalid record"); 2477 2478 unsigned Size = Record.size(); 2479 SmallVector<Constant*, 16> Elts; 2480 2481 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2482 for (unsigned i = 0; i != Size; ++i) 2483 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2484 STy->getElementType(i))); 2485 V = ConstantStruct::get(STy, Elts); 2486 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2487 Type *EltTy = ATy->getElementType(); 2488 for (unsigned i = 0; i != Size; ++i) 2489 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2490 V = ConstantArray::get(ATy, Elts); 2491 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2492 Type *EltTy = VTy->getElementType(); 2493 for (unsigned i = 0; i != Size; ++i) 2494 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2495 V = ConstantVector::get(Elts); 2496 } else { 2497 V = UndefValue::get(CurTy); 2498 } 2499 break; 2500 } 2501 case bitc::CST_CODE_STRING: // STRING: [values] 2502 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2503 if (Record.empty()) 2504 return error("Invalid record"); 2505 2506 SmallString<16> Elts(Record.begin(), Record.end()); 2507 V = ConstantDataArray::getString(Context, Elts, 2508 BitCode == bitc::CST_CODE_CSTRING); 2509 break; 2510 } 2511 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2512 if (Record.empty()) 2513 return error("Invalid record"); 2514 2515 Type *EltTy; 2516 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2517 EltTy = Array->getElementType(); 2518 else 2519 EltTy = cast<VectorType>(CurTy)->getElementType(); 2520 if (EltTy->isIntegerTy(8)) { 2521 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2522 if (isa<VectorType>(CurTy)) 2523 V = ConstantDataVector::get(Context, Elts); 2524 else 2525 V = ConstantDataArray::get(Context, Elts); 2526 } else if (EltTy->isIntegerTy(16)) { 2527 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2528 if (isa<VectorType>(CurTy)) 2529 V = ConstantDataVector::get(Context, Elts); 2530 else 2531 V = ConstantDataArray::get(Context, Elts); 2532 } else if (EltTy->isIntegerTy(32)) { 2533 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2534 if (isa<VectorType>(CurTy)) 2535 V = ConstantDataVector::get(Context, Elts); 2536 else 2537 V = ConstantDataArray::get(Context, Elts); 2538 } else if (EltTy->isIntegerTy(64)) { 2539 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2540 if (isa<VectorType>(CurTy)) 2541 V = ConstantDataVector::get(Context, Elts); 2542 else 2543 V = ConstantDataArray::get(Context, Elts); 2544 } else if (EltTy->isHalfTy()) { 2545 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2546 if (isa<VectorType>(CurTy)) 2547 V = ConstantDataVector::getFP(EltTy, Elts); 2548 else 2549 V = ConstantDataArray::getFP(EltTy, Elts); 2550 } else if (EltTy->isBFloatTy()) { 2551 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2552 if (isa<VectorType>(CurTy)) 2553 V = ConstantDataVector::getFP(EltTy, Elts); 2554 else 2555 V = ConstantDataArray::getFP(EltTy, Elts); 2556 } else if (EltTy->isFloatTy()) { 2557 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2558 if (isa<VectorType>(CurTy)) 2559 V = ConstantDataVector::getFP(EltTy, Elts); 2560 else 2561 V = ConstantDataArray::getFP(EltTy, Elts); 2562 } else if (EltTy->isDoubleTy()) { 2563 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2564 if (isa<VectorType>(CurTy)) 2565 V = ConstantDataVector::getFP(EltTy, Elts); 2566 else 2567 V = ConstantDataArray::getFP(EltTy, Elts); 2568 } else { 2569 return error("Invalid type for value"); 2570 } 2571 break; 2572 } 2573 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2574 if (Record.size() < 2) 2575 return error("Invalid record"); 2576 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2577 if (Opc < 0) { 2578 V = UndefValue::get(CurTy); // Unknown unop. 2579 } else { 2580 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2581 unsigned Flags = 0; 2582 V = ConstantExpr::get(Opc, LHS, Flags); 2583 } 2584 break; 2585 } 2586 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2587 if (Record.size() < 3) 2588 return error("Invalid record"); 2589 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2590 if (Opc < 0) { 2591 V = UndefValue::get(CurTy); // Unknown binop. 2592 } else { 2593 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2594 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2595 unsigned Flags = 0; 2596 if (Record.size() >= 4) { 2597 if (Opc == Instruction::Add || 2598 Opc == Instruction::Sub || 2599 Opc == Instruction::Mul || 2600 Opc == Instruction::Shl) { 2601 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2602 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2603 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2604 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2605 } else if (Opc == Instruction::SDiv || 2606 Opc == Instruction::UDiv || 2607 Opc == Instruction::LShr || 2608 Opc == Instruction::AShr) { 2609 if (Record[3] & (1 << bitc::PEO_EXACT)) 2610 Flags |= SDivOperator::IsExact; 2611 } 2612 } 2613 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2614 } 2615 break; 2616 } 2617 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2618 if (Record.size() < 3) 2619 return error("Invalid record"); 2620 int Opc = getDecodedCastOpcode(Record[0]); 2621 if (Opc < 0) { 2622 V = UndefValue::get(CurTy); // Unknown cast. 2623 } else { 2624 Type *OpTy = getTypeByID(Record[1]); 2625 if (!OpTy) 2626 return error("Invalid record"); 2627 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2628 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2629 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2630 } 2631 break; 2632 } 2633 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2634 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2635 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2636 // operands] 2637 unsigned OpNum = 0; 2638 Type *PointeeType = nullptr; 2639 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2640 Record.size() % 2) 2641 PointeeType = getTypeByID(Record[OpNum++]); 2642 2643 bool InBounds = false; 2644 Optional<unsigned> InRangeIndex; 2645 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2646 uint64_t Op = Record[OpNum++]; 2647 InBounds = Op & 1; 2648 InRangeIndex = Op >> 1; 2649 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2650 InBounds = true; 2651 2652 SmallVector<Constant*, 16> Elts; 2653 Type *Elt0FullTy = nullptr; 2654 while (OpNum != Record.size()) { 2655 if (!Elt0FullTy) 2656 Elt0FullTy = getTypeByID(Record[OpNum]); 2657 Type *ElTy = getTypeByID(Record[OpNum++]); 2658 if (!ElTy) 2659 return error("Invalid record"); 2660 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2661 } 2662 2663 if (Elts.size() < 1) 2664 return error("Invalid gep with no operands"); 2665 2666 Type *ImplicitPointeeType = 2667 cast<PointerType>(Elt0FullTy->getScalarType())->getElementType(); 2668 if (!PointeeType) 2669 PointeeType = ImplicitPointeeType; 2670 else if (PointeeType != ImplicitPointeeType) 2671 return error("Explicit gep operator type does not match pointee type " 2672 "of pointer operand"); 2673 2674 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2675 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2676 InBounds, InRangeIndex); 2677 break; 2678 } 2679 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2680 if (Record.size() < 3) 2681 return error("Invalid record"); 2682 2683 Type *SelectorTy = Type::getInt1Ty(Context); 2684 2685 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2686 // Get the type from the ValueList before getting a forward ref. 2687 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2688 if (Value *V = ValueList[Record[0]]) 2689 if (SelectorTy != V->getType()) 2690 SelectorTy = VectorType::get(SelectorTy, 2691 VTy->getElementCount()); 2692 2693 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2694 SelectorTy), 2695 ValueList.getConstantFwdRef(Record[1],CurTy), 2696 ValueList.getConstantFwdRef(Record[2],CurTy)); 2697 break; 2698 } 2699 case bitc::CST_CODE_CE_EXTRACTELT 2700 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2701 if (Record.size() < 3) 2702 return error("Invalid record"); 2703 VectorType *OpTy = 2704 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2705 if (!OpTy) 2706 return error("Invalid record"); 2707 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2708 Constant *Op1 = nullptr; 2709 if (Record.size() == 4) { 2710 Type *IdxTy = getTypeByID(Record[2]); 2711 if (!IdxTy) 2712 return error("Invalid record"); 2713 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2714 } else { 2715 // Deprecated, but still needed to read old bitcode files. 2716 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2717 } 2718 if (!Op1) 2719 return error("Invalid record"); 2720 V = ConstantExpr::getExtractElement(Op0, Op1); 2721 break; 2722 } 2723 case bitc::CST_CODE_CE_INSERTELT 2724 : { // CE_INSERTELT: [opval, opval, opty, opval] 2725 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2726 if (Record.size() < 3 || !OpTy) 2727 return error("Invalid record"); 2728 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2729 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2730 OpTy->getElementType()); 2731 Constant *Op2 = nullptr; 2732 if (Record.size() == 4) { 2733 Type *IdxTy = getTypeByID(Record[2]); 2734 if (!IdxTy) 2735 return error("Invalid record"); 2736 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2737 } else { 2738 // Deprecated, but still needed to read old bitcode files. 2739 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2740 } 2741 if (!Op2) 2742 return error("Invalid record"); 2743 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2744 break; 2745 } 2746 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2747 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2748 if (Record.size() < 3 || !OpTy) 2749 return error("Invalid record"); 2750 DelayedShuffles.push_back( 2751 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2752 ++NextCstNo; 2753 continue; 2754 } 2755 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2756 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2757 VectorType *OpTy = 2758 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2759 if (Record.size() < 4 || !RTy || !OpTy) 2760 return error("Invalid record"); 2761 DelayedShuffles.push_back( 2762 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2763 ++NextCstNo; 2764 continue; 2765 } 2766 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2767 if (Record.size() < 4) 2768 return error("Invalid record"); 2769 Type *OpTy = getTypeByID(Record[0]); 2770 if (!OpTy) 2771 return error("Invalid record"); 2772 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2773 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2774 2775 if (OpTy->isFPOrFPVectorTy()) 2776 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2777 else 2778 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2779 break; 2780 } 2781 // This maintains backward compatibility, pre-asm dialect keywords. 2782 // Deprecated, but still needed to read old bitcode files. 2783 case bitc::CST_CODE_INLINEASM_OLD: { 2784 if (Record.size() < 2) 2785 return error("Invalid record"); 2786 std::string AsmStr, ConstrStr; 2787 bool HasSideEffects = Record[0] & 1; 2788 bool IsAlignStack = Record[0] >> 1; 2789 unsigned AsmStrSize = Record[1]; 2790 if (2+AsmStrSize >= Record.size()) 2791 return error("Invalid record"); 2792 unsigned ConstStrSize = Record[2+AsmStrSize]; 2793 if (3+AsmStrSize+ConstStrSize > Record.size()) 2794 return error("Invalid record"); 2795 2796 for (unsigned i = 0; i != AsmStrSize; ++i) 2797 AsmStr += (char)Record[2+i]; 2798 for (unsigned i = 0; i != ConstStrSize; ++i) 2799 ConstrStr += (char)Record[3+AsmStrSize+i]; 2800 UpgradeInlineAsmString(&AsmStr); 2801 V = InlineAsm::get( 2802 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2803 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2804 break; 2805 } 2806 // This version adds support for the asm dialect keywords (e.g., 2807 // inteldialect). 2808 case bitc::CST_CODE_INLINEASM_OLD2: { 2809 if (Record.size() < 2) 2810 return error("Invalid record"); 2811 std::string AsmStr, ConstrStr; 2812 bool HasSideEffects = Record[0] & 1; 2813 bool IsAlignStack = (Record[0] >> 1) & 1; 2814 unsigned AsmDialect = Record[0] >> 2; 2815 unsigned AsmStrSize = Record[1]; 2816 if (2+AsmStrSize >= Record.size()) 2817 return error("Invalid record"); 2818 unsigned ConstStrSize = Record[2+AsmStrSize]; 2819 if (3+AsmStrSize+ConstStrSize > Record.size()) 2820 return error("Invalid record"); 2821 2822 for (unsigned i = 0; i != AsmStrSize; ++i) 2823 AsmStr += (char)Record[2+i]; 2824 for (unsigned i = 0; i != ConstStrSize; ++i) 2825 ConstrStr += (char)Record[3+AsmStrSize+i]; 2826 UpgradeInlineAsmString(&AsmStr); 2827 V = InlineAsm::get( 2828 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2829 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2830 InlineAsm::AsmDialect(AsmDialect)); 2831 break; 2832 } 2833 // This version adds support for the unwind keyword. 2834 case bitc::CST_CODE_INLINEASM: { 2835 if (Record.size() < 2) 2836 return error("Invalid record"); 2837 std::string AsmStr, ConstrStr; 2838 bool HasSideEffects = Record[0] & 1; 2839 bool IsAlignStack = (Record[0] >> 1) & 1; 2840 unsigned AsmDialect = (Record[0] >> 2) & 1; 2841 bool CanThrow = (Record[0] >> 3) & 1; 2842 unsigned AsmStrSize = Record[1]; 2843 if (2 + AsmStrSize >= Record.size()) 2844 return error("Invalid record"); 2845 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2846 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2847 return error("Invalid record"); 2848 2849 for (unsigned i = 0; i != AsmStrSize; ++i) 2850 AsmStr += (char)Record[2 + i]; 2851 for (unsigned i = 0; i != ConstStrSize; ++i) 2852 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2853 UpgradeInlineAsmString(&AsmStr); 2854 V = InlineAsm::get( 2855 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2856 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2857 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2858 break; 2859 } 2860 case bitc::CST_CODE_BLOCKADDRESS:{ 2861 if (Record.size() < 3) 2862 return error("Invalid record"); 2863 Type *FnTy = getTypeByID(Record[0]); 2864 if (!FnTy) 2865 return error("Invalid record"); 2866 Function *Fn = 2867 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2868 if (!Fn) 2869 return error("Invalid record"); 2870 2871 // If the function is already parsed we can insert the block address right 2872 // away. 2873 BasicBlock *BB; 2874 unsigned BBID = Record[2]; 2875 if (!BBID) 2876 // Invalid reference to entry block. 2877 return error("Invalid ID"); 2878 if (!Fn->empty()) { 2879 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2880 for (size_t I = 0, E = BBID; I != E; ++I) { 2881 if (BBI == BBE) 2882 return error("Invalid ID"); 2883 ++BBI; 2884 } 2885 BB = &*BBI; 2886 } else { 2887 // Otherwise insert a placeholder and remember it so it can be inserted 2888 // when the function is parsed. 2889 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2890 if (FwdBBs.empty()) 2891 BasicBlockFwdRefQueue.push_back(Fn); 2892 if (FwdBBs.size() < BBID + 1) 2893 FwdBBs.resize(BBID + 1); 2894 if (!FwdBBs[BBID]) 2895 FwdBBs[BBID] = BasicBlock::Create(Context); 2896 BB = FwdBBs[BBID]; 2897 } 2898 V = BlockAddress::get(Fn, BB); 2899 break; 2900 } 2901 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2902 if (Record.size() < 2) 2903 return error("Invalid record"); 2904 Type *GVTy = getTypeByID(Record[0]); 2905 if (!GVTy) 2906 return error("Invalid record"); 2907 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2908 ValueList.getConstantFwdRef(Record[1], GVTy)); 2909 if (!GV) 2910 return error("Invalid record"); 2911 2912 V = DSOLocalEquivalent::get(GV); 2913 break; 2914 } 2915 } 2916 2917 ValueList.assignValue(V, NextCstNo); 2918 ++NextCstNo; 2919 } 2920 } 2921 2922 Error BitcodeReader::parseUseLists() { 2923 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2924 return Err; 2925 2926 // Read all the records. 2927 SmallVector<uint64_t, 64> Record; 2928 2929 while (true) { 2930 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2931 if (!MaybeEntry) 2932 return MaybeEntry.takeError(); 2933 BitstreamEntry Entry = MaybeEntry.get(); 2934 2935 switch (Entry.Kind) { 2936 case BitstreamEntry::SubBlock: // Handled for us already. 2937 case BitstreamEntry::Error: 2938 return error("Malformed block"); 2939 case BitstreamEntry::EndBlock: 2940 return Error::success(); 2941 case BitstreamEntry::Record: 2942 // The interesting case. 2943 break; 2944 } 2945 2946 // Read a use list record. 2947 Record.clear(); 2948 bool IsBB = false; 2949 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2950 if (!MaybeRecord) 2951 return MaybeRecord.takeError(); 2952 switch (MaybeRecord.get()) { 2953 default: // Default behavior: unknown type. 2954 break; 2955 case bitc::USELIST_CODE_BB: 2956 IsBB = true; 2957 LLVM_FALLTHROUGH; 2958 case bitc::USELIST_CODE_DEFAULT: { 2959 unsigned RecordLength = Record.size(); 2960 if (RecordLength < 3) 2961 // Records should have at least an ID and two indexes. 2962 return error("Invalid record"); 2963 unsigned ID = Record.pop_back_val(); 2964 2965 Value *V; 2966 if (IsBB) { 2967 assert(ID < FunctionBBs.size() && "Basic block not found"); 2968 V = FunctionBBs[ID]; 2969 } else 2970 V = ValueList[ID]; 2971 unsigned NumUses = 0; 2972 SmallDenseMap<const Use *, unsigned, 16> Order; 2973 for (const Use &U : V->materialized_uses()) { 2974 if (++NumUses > Record.size()) 2975 break; 2976 Order[&U] = Record[NumUses - 1]; 2977 } 2978 if (Order.size() != Record.size() || NumUses > Record.size()) 2979 // Mismatches can happen if the functions are being materialized lazily 2980 // (out-of-order), or a value has been upgraded. 2981 break; 2982 2983 V->sortUseList([&](const Use &L, const Use &R) { 2984 return Order.lookup(&L) < Order.lookup(&R); 2985 }); 2986 break; 2987 } 2988 } 2989 } 2990 } 2991 2992 /// When we see the block for metadata, remember where it is and then skip it. 2993 /// This lets us lazily deserialize the metadata. 2994 Error BitcodeReader::rememberAndSkipMetadata() { 2995 // Save the current stream state. 2996 uint64_t CurBit = Stream.GetCurrentBitNo(); 2997 DeferredMetadataInfo.push_back(CurBit); 2998 2999 // Skip over the block for now. 3000 if (Error Err = Stream.SkipBlock()) 3001 return Err; 3002 return Error::success(); 3003 } 3004 3005 Error BitcodeReader::materializeMetadata() { 3006 for (uint64_t BitPos : DeferredMetadataInfo) { 3007 // Move the bit stream to the saved position. 3008 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3009 return JumpFailed; 3010 if (Error Err = MDLoader->parseModuleMetadata()) 3011 return Err; 3012 } 3013 3014 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3015 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3016 // multiple times. 3017 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3018 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3019 NamedMDNode *LinkerOpts = 3020 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3021 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3022 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3023 } 3024 } 3025 3026 DeferredMetadataInfo.clear(); 3027 return Error::success(); 3028 } 3029 3030 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3031 3032 /// When we see the block for a function body, remember where it is and then 3033 /// skip it. This lets us lazily deserialize the functions. 3034 Error BitcodeReader::rememberAndSkipFunctionBody() { 3035 // Get the function we are talking about. 3036 if (FunctionsWithBodies.empty()) 3037 return error("Insufficient function protos"); 3038 3039 Function *Fn = FunctionsWithBodies.back(); 3040 FunctionsWithBodies.pop_back(); 3041 3042 // Save the current stream state. 3043 uint64_t CurBit = Stream.GetCurrentBitNo(); 3044 assert( 3045 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3046 "Mismatch between VST and scanned function offsets"); 3047 DeferredFunctionInfo[Fn] = CurBit; 3048 3049 // Skip over the function block for now. 3050 if (Error Err = Stream.SkipBlock()) 3051 return Err; 3052 return Error::success(); 3053 } 3054 3055 Error BitcodeReader::globalCleanup() { 3056 // Patch the initializers for globals and aliases up. 3057 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3058 return Err; 3059 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3060 return error("Malformed global initializer set"); 3061 3062 // Look for intrinsic functions which need to be upgraded at some point 3063 // and functions that need to have their function attributes upgraded. 3064 for (Function &F : *TheModule) { 3065 MDLoader->upgradeDebugIntrinsics(F); 3066 Function *NewFn; 3067 if (UpgradeIntrinsicFunction(&F, NewFn)) 3068 UpgradedIntrinsics[&F] = NewFn; 3069 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3070 // Some types could be renamed during loading if several modules are 3071 // loaded in the same LLVMContext (LTO scenario). In this case we should 3072 // remangle intrinsics names as well. 3073 RemangledIntrinsics[&F] = Remangled.getValue(); 3074 // Look for functions that rely on old function attribute behavior. 3075 UpgradeFunctionAttributes(F); 3076 } 3077 3078 // Look for global variables which need to be renamed. 3079 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3080 for (GlobalVariable &GV : TheModule->globals()) 3081 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3082 UpgradedVariables.emplace_back(&GV, Upgraded); 3083 for (auto &Pair : UpgradedVariables) { 3084 Pair.first->eraseFromParent(); 3085 TheModule->getGlobalList().push_back(Pair.second); 3086 } 3087 3088 // Force deallocation of memory for these vectors to favor the client that 3089 // want lazy deserialization. 3090 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3091 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3092 IndirectSymbolInits); 3093 return Error::success(); 3094 } 3095 3096 /// Support for lazy parsing of function bodies. This is required if we 3097 /// either have an old bitcode file without a VST forward declaration record, 3098 /// or if we have an anonymous function being materialized, since anonymous 3099 /// functions do not have a name and are therefore not in the VST. 3100 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3101 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3102 return JumpFailed; 3103 3104 if (Stream.AtEndOfStream()) 3105 return error("Could not find function in stream"); 3106 3107 if (!SeenFirstFunctionBody) 3108 return error("Trying to materialize functions before seeing function blocks"); 3109 3110 // An old bitcode file with the symbol table at the end would have 3111 // finished the parse greedily. 3112 assert(SeenValueSymbolTable); 3113 3114 SmallVector<uint64_t, 64> Record; 3115 3116 while (true) { 3117 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3118 if (!MaybeEntry) 3119 return MaybeEntry.takeError(); 3120 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3121 3122 switch (Entry.Kind) { 3123 default: 3124 return error("Expect SubBlock"); 3125 case BitstreamEntry::SubBlock: 3126 switch (Entry.ID) { 3127 default: 3128 return error("Expect function block"); 3129 case bitc::FUNCTION_BLOCK_ID: 3130 if (Error Err = rememberAndSkipFunctionBody()) 3131 return Err; 3132 NextUnreadBit = Stream.GetCurrentBitNo(); 3133 return Error::success(); 3134 } 3135 } 3136 } 3137 } 3138 3139 bool BitcodeReaderBase::readBlockInfo() { 3140 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3141 Stream.ReadBlockInfoBlock(); 3142 if (!MaybeNewBlockInfo) 3143 return true; // FIXME Handle the error. 3144 Optional<BitstreamBlockInfo> NewBlockInfo = 3145 std::move(MaybeNewBlockInfo.get()); 3146 if (!NewBlockInfo) 3147 return true; 3148 BlockInfo = std::move(*NewBlockInfo); 3149 return false; 3150 } 3151 3152 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3153 // v1: [selection_kind, name] 3154 // v2: [strtab_offset, strtab_size, selection_kind] 3155 StringRef Name; 3156 std::tie(Name, Record) = readNameFromStrtab(Record); 3157 3158 if (Record.empty()) 3159 return error("Invalid record"); 3160 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3161 std::string OldFormatName; 3162 if (!UseStrtab) { 3163 if (Record.size() < 2) 3164 return error("Invalid record"); 3165 unsigned ComdatNameSize = Record[1]; 3166 OldFormatName.reserve(ComdatNameSize); 3167 for (unsigned i = 0; i != ComdatNameSize; ++i) 3168 OldFormatName += (char)Record[2 + i]; 3169 Name = OldFormatName; 3170 } 3171 Comdat *C = TheModule->getOrInsertComdat(Name); 3172 C->setSelectionKind(SK); 3173 ComdatList.push_back(C); 3174 return Error::success(); 3175 } 3176 3177 static void inferDSOLocal(GlobalValue *GV) { 3178 // infer dso_local from linkage and visibility if it is not encoded. 3179 if (GV->hasLocalLinkage() || 3180 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3181 GV->setDSOLocal(true); 3182 } 3183 3184 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3185 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3186 // visibility, threadlocal, unnamed_addr, externally_initialized, 3187 // dllstorageclass, comdat, attributes, preemption specifier, 3188 // partition strtab offset, partition strtab size] (name in VST) 3189 // v2: [strtab_offset, strtab_size, v1] 3190 StringRef Name; 3191 std::tie(Name, Record) = readNameFromStrtab(Record); 3192 3193 if (Record.size() < 6) 3194 return error("Invalid record"); 3195 Type *Ty = getTypeByID(Record[0]); 3196 if (!Ty) 3197 return error("Invalid record"); 3198 bool isConstant = Record[1] & 1; 3199 bool explicitType = Record[1] & 2; 3200 unsigned AddressSpace; 3201 if (explicitType) { 3202 AddressSpace = Record[1] >> 2; 3203 } else { 3204 if (!Ty->isPointerTy()) 3205 return error("Invalid type for value"); 3206 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3207 Ty = cast<PointerType>(Ty)->getElementType(); 3208 } 3209 3210 uint64_t RawLinkage = Record[3]; 3211 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3212 MaybeAlign Alignment; 3213 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3214 return Err; 3215 std::string Section; 3216 if (Record[5]) { 3217 if (Record[5] - 1 >= SectionTable.size()) 3218 return error("Invalid ID"); 3219 Section = SectionTable[Record[5] - 1]; 3220 } 3221 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3222 // Local linkage must have default visibility. 3223 // auto-upgrade `hidden` and `protected` for old bitcode. 3224 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3225 Visibility = getDecodedVisibility(Record[6]); 3226 3227 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3228 if (Record.size() > 7) 3229 TLM = getDecodedThreadLocalMode(Record[7]); 3230 3231 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3232 if (Record.size() > 8) 3233 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3234 3235 bool ExternallyInitialized = false; 3236 if (Record.size() > 9) 3237 ExternallyInitialized = Record[9]; 3238 3239 GlobalVariable *NewGV = 3240 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3241 nullptr, TLM, AddressSpace, ExternallyInitialized); 3242 NewGV->setAlignment(Alignment); 3243 if (!Section.empty()) 3244 NewGV->setSection(Section); 3245 NewGV->setVisibility(Visibility); 3246 NewGV->setUnnamedAddr(UnnamedAddr); 3247 3248 if (Record.size() > 10) 3249 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3250 else 3251 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3252 3253 ValueList.push_back(NewGV); 3254 3255 // Remember which value to use for the global initializer. 3256 if (unsigned InitID = Record[2]) 3257 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3258 3259 if (Record.size() > 11) { 3260 if (unsigned ComdatID = Record[11]) { 3261 if (ComdatID > ComdatList.size()) 3262 return error("Invalid global variable comdat ID"); 3263 NewGV->setComdat(ComdatList[ComdatID - 1]); 3264 } 3265 } else if (hasImplicitComdat(RawLinkage)) { 3266 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3267 } 3268 3269 if (Record.size() > 12) { 3270 auto AS = getAttributes(Record[12]).getFnAttributes(); 3271 NewGV->setAttributes(AS); 3272 } 3273 3274 if (Record.size() > 13) { 3275 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3276 } 3277 inferDSOLocal(NewGV); 3278 3279 // Check whether we have enough values to read a partition name. 3280 if (Record.size() > 15) 3281 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3282 3283 return Error::success(); 3284 } 3285 3286 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3287 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3288 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3289 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3290 // v2: [strtab_offset, strtab_size, v1] 3291 StringRef Name; 3292 std::tie(Name, Record) = readNameFromStrtab(Record); 3293 3294 if (Record.size() < 8) 3295 return error("Invalid record"); 3296 Type *FTy = getTypeByID(Record[0]); 3297 if (!FTy) 3298 return error("Invalid record"); 3299 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3300 FTy = PTy->getElementType(); 3301 3302 if (!isa<FunctionType>(FTy)) 3303 return error("Invalid type for value"); 3304 auto CC = static_cast<CallingConv::ID>(Record[1]); 3305 if (CC & ~CallingConv::MaxID) 3306 return error("Invalid calling convention ID"); 3307 3308 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3309 if (Record.size() > 16) 3310 AddrSpace = Record[16]; 3311 3312 Function *Func = 3313 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3314 AddrSpace, Name, TheModule); 3315 3316 assert(Func->getFunctionType() == FTy && 3317 "Incorrect fully specified type provided for function"); 3318 FunctionTypes[Func] = cast<FunctionType>(FTy); 3319 3320 Func->setCallingConv(CC); 3321 bool isProto = Record[2]; 3322 uint64_t RawLinkage = Record[3]; 3323 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3324 Func->setAttributes(getAttributes(Record[4])); 3325 3326 // Upgrade any old-style byval or sret without a type by propagating the 3327 // argument's pointee type. There should be no opaque pointers where the byval 3328 // type is implicit. 3329 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3330 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3331 Attribute::InAlloca}) { 3332 if (!Func->hasParamAttribute(i, Kind)) 3333 continue; 3334 3335 Func->removeParamAttr(i, Kind); 3336 3337 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3338 Type *PtrEltTy = cast<PointerType>(PTy)->getElementType(); 3339 Attribute NewAttr; 3340 switch (Kind) { 3341 case Attribute::ByVal: 3342 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3343 break; 3344 case Attribute::StructRet: 3345 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3346 break; 3347 case Attribute::InAlloca: 3348 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3349 break; 3350 default: 3351 llvm_unreachable("not an upgraded type attribute"); 3352 } 3353 3354 Func->addParamAttr(i, NewAttr); 3355 } 3356 } 3357 3358 MaybeAlign Alignment; 3359 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3360 return Err; 3361 Func->setAlignment(Alignment); 3362 if (Record[6]) { 3363 if (Record[6] - 1 >= SectionTable.size()) 3364 return error("Invalid ID"); 3365 Func->setSection(SectionTable[Record[6] - 1]); 3366 } 3367 // Local linkage must have default visibility. 3368 // auto-upgrade `hidden` and `protected` for old bitcode. 3369 if (!Func->hasLocalLinkage()) 3370 Func->setVisibility(getDecodedVisibility(Record[7])); 3371 if (Record.size() > 8 && Record[8]) { 3372 if (Record[8] - 1 >= GCTable.size()) 3373 return error("Invalid ID"); 3374 Func->setGC(GCTable[Record[8] - 1]); 3375 } 3376 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3377 if (Record.size() > 9) 3378 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3379 Func->setUnnamedAddr(UnnamedAddr); 3380 if (Record.size() > 10 && Record[10] != 0) 3381 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3382 3383 if (Record.size() > 11) 3384 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3385 else 3386 upgradeDLLImportExportLinkage(Func, RawLinkage); 3387 3388 if (Record.size() > 12) { 3389 if (unsigned ComdatID = Record[12]) { 3390 if (ComdatID > ComdatList.size()) 3391 return error("Invalid function comdat ID"); 3392 Func->setComdat(ComdatList[ComdatID - 1]); 3393 } 3394 } else if (hasImplicitComdat(RawLinkage)) { 3395 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3396 } 3397 3398 if (Record.size() > 13 && Record[13] != 0) 3399 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3400 3401 if (Record.size() > 14 && Record[14] != 0) 3402 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3403 3404 if (Record.size() > 15) { 3405 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3406 } 3407 inferDSOLocal(Func); 3408 3409 // Record[16] is the address space number. 3410 3411 // Check whether we have enough values to read a partition name. 3412 if (Record.size() > 18) 3413 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3414 3415 ValueList.push_back(Func); 3416 3417 // If this is a function with a body, remember the prototype we are 3418 // creating now, so that we can match up the body with them later. 3419 if (!isProto) { 3420 Func->setIsMaterializable(true); 3421 FunctionsWithBodies.push_back(Func); 3422 DeferredFunctionInfo[Func] = 0; 3423 } 3424 return Error::success(); 3425 } 3426 3427 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3428 unsigned BitCode, ArrayRef<uint64_t> Record) { 3429 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3430 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3431 // dllstorageclass, threadlocal, unnamed_addr, 3432 // preemption specifier] (name in VST) 3433 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3434 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3435 // preemption specifier] (name in VST) 3436 // v2: [strtab_offset, strtab_size, v1] 3437 StringRef Name; 3438 std::tie(Name, Record) = readNameFromStrtab(Record); 3439 3440 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3441 if (Record.size() < (3 + (unsigned)NewRecord)) 3442 return error("Invalid record"); 3443 unsigned OpNum = 0; 3444 Type *Ty = getTypeByID(Record[OpNum++]); 3445 if (!Ty) 3446 return error("Invalid record"); 3447 3448 unsigned AddrSpace; 3449 if (!NewRecord) { 3450 auto *PTy = dyn_cast<PointerType>(Ty); 3451 if (!PTy) 3452 return error("Invalid type for value"); 3453 Ty = PTy->getElementType(); 3454 AddrSpace = PTy->getAddressSpace(); 3455 } else { 3456 AddrSpace = Record[OpNum++]; 3457 } 3458 3459 auto Val = Record[OpNum++]; 3460 auto Linkage = Record[OpNum++]; 3461 GlobalIndirectSymbol *NewGA; 3462 if (BitCode == bitc::MODULE_CODE_ALIAS || 3463 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3464 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3465 TheModule); 3466 else 3467 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3468 nullptr, TheModule); 3469 3470 // Local linkage must have default visibility. 3471 // auto-upgrade `hidden` and `protected` for old bitcode. 3472 if (OpNum != Record.size()) { 3473 auto VisInd = OpNum++; 3474 if (!NewGA->hasLocalLinkage()) 3475 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3476 } 3477 if (BitCode == bitc::MODULE_CODE_ALIAS || 3478 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3479 if (OpNum != Record.size()) 3480 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3481 else 3482 upgradeDLLImportExportLinkage(NewGA, Linkage); 3483 if (OpNum != Record.size()) 3484 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3485 if (OpNum != Record.size()) 3486 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3487 } 3488 if (OpNum != Record.size()) 3489 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3490 inferDSOLocal(NewGA); 3491 3492 // Check whether we have enough values to read a partition name. 3493 if (OpNum + 1 < Record.size()) { 3494 NewGA->setPartition( 3495 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3496 OpNum += 2; 3497 } 3498 3499 ValueList.push_back(NewGA); 3500 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3501 return Error::success(); 3502 } 3503 3504 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3505 bool ShouldLazyLoadMetadata, 3506 DataLayoutCallbackTy DataLayoutCallback) { 3507 if (ResumeBit) { 3508 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3509 return JumpFailed; 3510 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3511 return Err; 3512 3513 SmallVector<uint64_t, 64> Record; 3514 3515 // Parts of bitcode parsing depend on the datalayout. Make sure we 3516 // finalize the datalayout before we run any of that code. 3517 bool ResolvedDataLayout = false; 3518 auto ResolveDataLayout = [&] { 3519 if (ResolvedDataLayout) 3520 return; 3521 3522 // datalayout and triple can't be parsed after this point. 3523 ResolvedDataLayout = true; 3524 3525 // Upgrade data layout string. 3526 std::string DL = llvm::UpgradeDataLayoutString( 3527 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3528 TheModule->setDataLayout(DL); 3529 3530 if (auto LayoutOverride = 3531 DataLayoutCallback(TheModule->getTargetTriple())) 3532 TheModule->setDataLayout(*LayoutOverride); 3533 }; 3534 3535 // Read all the records for this module. 3536 while (true) { 3537 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3538 if (!MaybeEntry) 3539 return MaybeEntry.takeError(); 3540 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3541 3542 switch (Entry.Kind) { 3543 case BitstreamEntry::Error: 3544 return error("Malformed block"); 3545 case BitstreamEntry::EndBlock: 3546 ResolveDataLayout(); 3547 return globalCleanup(); 3548 3549 case BitstreamEntry::SubBlock: 3550 switch (Entry.ID) { 3551 default: // Skip unknown content. 3552 if (Error Err = Stream.SkipBlock()) 3553 return Err; 3554 break; 3555 case bitc::BLOCKINFO_BLOCK_ID: 3556 if (readBlockInfo()) 3557 return error("Malformed block"); 3558 break; 3559 case bitc::PARAMATTR_BLOCK_ID: 3560 if (Error Err = parseAttributeBlock()) 3561 return Err; 3562 break; 3563 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3564 if (Error Err = parseAttributeGroupBlock()) 3565 return Err; 3566 break; 3567 case bitc::TYPE_BLOCK_ID_NEW: 3568 if (Error Err = parseTypeTable()) 3569 return Err; 3570 break; 3571 case bitc::VALUE_SYMTAB_BLOCK_ID: 3572 if (!SeenValueSymbolTable) { 3573 // Either this is an old form VST without function index and an 3574 // associated VST forward declaration record (which would have caused 3575 // the VST to be jumped to and parsed before it was encountered 3576 // normally in the stream), or there were no function blocks to 3577 // trigger an earlier parsing of the VST. 3578 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3579 if (Error Err = parseValueSymbolTable()) 3580 return Err; 3581 SeenValueSymbolTable = true; 3582 } else { 3583 // We must have had a VST forward declaration record, which caused 3584 // the parser to jump to and parse the VST earlier. 3585 assert(VSTOffset > 0); 3586 if (Error Err = Stream.SkipBlock()) 3587 return Err; 3588 } 3589 break; 3590 case bitc::CONSTANTS_BLOCK_ID: 3591 if (Error Err = parseConstants()) 3592 return Err; 3593 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3594 return Err; 3595 break; 3596 case bitc::METADATA_BLOCK_ID: 3597 if (ShouldLazyLoadMetadata) { 3598 if (Error Err = rememberAndSkipMetadata()) 3599 return Err; 3600 break; 3601 } 3602 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3603 if (Error Err = MDLoader->parseModuleMetadata()) 3604 return Err; 3605 break; 3606 case bitc::METADATA_KIND_BLOCK_ID: 3607 if (Error Err = MDLoader->parseMetadataKinds()) 3608 return Err; 3609 break; 3610 case bitc::FUNCTION_BLOCK_ID: 3611 ResolveDataLayout(); 3612 3613 // If this is the first function body we've seen, reverse the 3614 // FunctionsWithBodies list. 3615 if (!SeenFirstFunctionBody) { 3616 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3617 if (Error Err = globalCleanup()) 3618 return Err; 3619 SeenFirstFunctionBody = true; 3620 } 3621 3622 if (VSTOffset > 0) { 3623 // If we have a VST forward declaration record, make sure we 3624 // parse the VST now if we haven't already. It is needed to 3625 // set up the DeferredFunctionInfo vector for lazy reading. 3626 if (!SeenValueSymbolTable) { 3627 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3628 return Err; 3629 SeenValueSymbolTable = true; 3630 // Fall through so that we record the NextUnreadBit below. 3631 // This is necessary in case we have an anonymous function that 3632 // is later materialized. Since it will not have a VST entry we 3633 // need to fall back to the lazy parse to find its offset. 3634 } else { 3635 // If we have a VST forward declaration record, but have already 3636 // parsed the VST (just above, when the first function body was 3637 // encountered here), then we are resuming the parse after 3638 // materializing functions. The ResumeBit points to the 3639 // start of the last function block recorded in the 3640 // DeferredFunctionInfo map. Skip it. 3641 if (Error Err = Stream.SkipBlock()) 3642 return Err; 3643 continue; 3644 } 3645 } 3646 3647 // Support older bitcode files that did not have the function 3648 // index in the VST, nor a VST forward declaration record, as 3649 // well as anonymous functions that do not have VST entries. 3650 // Build the DeferredFunctionInfo vector on the fly. 3651 if (Error Err = rememberAndSkipFunctionBody()) 3652 return Err; 3653 3654 // Suspend parsing when we reach the function bodies. Subsequent 3655 // materialization calls will resume it when necessary. If the bitcode 3656 // file is old, the symbol table will be at the end instead and will not 3657 // have been seen yet. In this case, just finish the parse now. 3658 if (SeenValueSymbolTable) { 3659 NextUnreadBit = Stream.GetCurrentBitNo(); 3660 // After the VST has been parsed, we need to make sure intrinsic name 3661 // are auto-upgraded. 3662 return globalCleanup(); 3663 } 3664 break; 3665 case bitc::USELIST_BLOCK_ID: 3666 if (Error Err = parseUseLists()) 3667 return Err; 3668 break; 3669 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3670 if (Error Err = parseOperandBundleTags()) 3671 return Err; 3672 break; 3673 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3674 if (Error Err = parseSyncScopeNames()) 3675 return Err; 3676 break; 3677 } 3678 continue; 3679 3680 case BitstreamEntry::Record: 3681 // The interesting case. 3682 break; 3683 } 3684 3685 // Read a record. 3686 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3687 if (!MaybeBitCode) 3688 return MaybeBitCode.takeError(); 3689 switch (unsigned BitCode = MaybeBitCode.get()) { 3690 default: break; // Default behavior, ignore unknown content. 3691 case bitc::MODULE_CODE_VERSION: { 3692 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3693 if (!VersionOrErr) 3694 return VersionOrErr.takeError(); 3695 UseRelativeIDs = *VersionOrErr >= 1; 3696 break; 3697 } 3698 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3699 if (ResolvedDataLayout) 3700 return error("target triple too late in module"); 3701 std::string S; 3702 if (convertToString(Record, 0, S)) 3703 return error("Invalid record"); 3704 TheModule->setTargetTriple(S); 3705 break; 3706 } 3707 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3708 if (ResolvedDataLayout) 3709 return error("datalayout too late in module"); 3710 std::string S; 3711 if (convertToString(Record, 0, S)) 3712 return error("Invalid record"); 3713 TheModule->setDataLayout(S); 3714 break; 3715 } 3716 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3717 std::string S; 3718 if (convertToString(Record, 0, S)) 3719 return error("Invalid record"); 3720 TheModule->setModuleInlineAsm(S); 3721 break; 3722 } 3723 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3724 // Deprecated, but still needed to read old bitcode files. 3725 std::string S; 3726 if (convertToString(Record, 0, S)) 3727 return error("Invalid record"); 3728 // Ignore value. 3729 break; 3730 } 3731 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3732 std::string S; 3733 if (convertToString(Record, 0, S)) 3734 return error("Invalid record"); 3735 SectionTable.push_back(S); 3736 break; 3737 } 3738 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3739 std::string S; 3740 if (convertToString(Record, 0, S)) 3741 return error("Invalid record"); 3742 GCTable.push_back(S); 3743 break; 3744 } 3745 case bitc::MODULE_CODE_COMDAT: 3746 if (Error Err = parseComdatRecord(Record)) 3747 return Err; 3748 break; 3749 case bitc::MODULE_CODE_GLOBALVAR: 3750 if (Error Err = parseGlobalVarRecord(Record)) 3751 return Err; 3752 break; 3753 case bitc::MODULE_CODE_FUNCTION: 3754 ResolveDataLayout(); 3755 if (Error Err = parseFunctionRecord(Record)) 3756 return Err; 3757 break; 3758 case bitc::MODULE_CODE_IFUNC: 3759 case bitc::MODULE_CODE_ALIAS: 3760 case bitc::MODULE_CODE_ALIAS_OLD: 3761 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3762 return Err; 3763 break; 3764 /// MODULE_CODE_VSTOFFSET: [offset] 3765 case bitc::MODULE_CODE_VSTOFFSET: 3766 if (Record.empty()) 3767 return error("Invalid record"); 3768 // Note that we subtract 1 here because the offset is relative to one word 3769 // before the start of the identification or module block, which was 3770 // historically always the start of the regular bitcode header. 3771 VSTOffset = Record[0] - 1; 3772 break; 3773 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3774 case bitc::MODULE_CODE_SOURCE_FILENAME: 3775 SmallString<128> ValueName; 3776 if (convertToString(Record, 0, ValueName)) 3777 return error("Invalid record"); 3778 TheModule->setSourceFileName(ValueName); 3779 break; 3780 } 3781 Record.clear(); 3782 } 3783 } 3784 3785 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3786 bool IsImporting, 3787 DataLayoutCallbackTy DataLayoutCallback) { 3788 TheModule = M; 3789 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3790 [&](unsigned ID) { return getTypeByID(ID); }); 3791 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3792 } 3793 3794 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3795 if (!isa<PointerType>(PtrType)) 3796 return error("Load/Store operand is not a pointer type"); 3797 3798 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3799 return error("Explicit load/store type does not match pointee " 3800 "type of pointer operand"); 3801 if (!PointerType::isLoadableOrStorableType(ValType)) 3802 return error("Cannot load/store from pointer"); 3803 return Error::success(); 3804 } 3805 3806 void BitcodeReader::propagateByValSRetTypes(CallBase *CB, 3807 ArrayRef<Type *> ArgsTys) { 3808 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3809 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3810 Attribute::InAlloca}) { 3811 if (!CB->paramHasAttr(i, Kind)) 3812 continue; 3813 3814 CB->removeParamAttr(i, Kind); 3815 3816 Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType(); 3817 Attribute NewAttr; 3818 switch (Kind) { 3819 case Attribute::ByVal: 3820 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3821 break; 3822 case Attribute::StructRet: 3823 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3824 break; 3825 case Attribute::InAlloca: 3826 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3827 break; 3828 default: 3829 llvm_unreachable("not an upgraded type attribute"); 3830 } 3831 3832 CB->addParamAttr(i, NewAttr); 3833 } 3834 } 3835 } 3836 3837 /// Lazily parse the specified function body block. 3838 Error BitcodeReader::parseFunctionBody(Function *F) { 3839 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3840 return Err; 3841 3842 // Unexpected unresolved metadata when parsing function. 3843 if (MDLoader->hasFwdRefs()) 3844 return error("Invalid function metadata: incoming forward references"); 3845 3846 InstructionList.clear(); 3847 unsigned ModuleValueListSize = ValueList.size(); 3848 unsigned ModuleMDLoaderSize = MDLoader->size(); 3849 3850 // Add all the function arguments to the value table. 3851 unsigned ArgNo = 0; 3852 FunctionType *FTy = FunctionTypes[F]; 3853 for (Argument &I : F->args()) { 3854 assert(I.getType() == FTy->getParamType(ArgNo++) && 3855 "Incorrect fully specified type for Function Argument"); 3856 ValueList.push_back(&I); 3857 } 3858 unsigned NextValueNo = ValueList.size(); 3859 BasicBlock *CurBB = nullptr; 3860 unsigned CurBBNo = 0; 3861 3862 DebugLoc LastLoc; 3863 auto getLastInstruction = [&]() -> Instruction * { 3864 if (CurBB && !CurBB->empty()) 3865 return &CurBB->back(); 3866 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3867 !FunctionBBs[CurBBNo - 1]->empty()) 3868 return &FunctionBBs[CurBBNo - 1]->back(); 3869 return nullptr; 3870 }; 3871 3872 std::vector<OperandBundleDef> OperandBundles; 3873 3874 // Read all the records. 3875 SmallVector<uint64_t, 64> Record; 3876 3877 while (true) { 3878 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3879 if (!MaybeEntry) 3880 return MaybeEntry.takeError(); 3881 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3882 3883 switch (Entry.Kind) { 3884 case BitstreamEntry::Error: 3885 return error("Malformed block"); 3886 case BitstreamEntry::EndBlock: 3887 goto OutOfRecordLoop; 3888 3889 case BitstreamEntry::SubBlock: 3890 switch (Entry.ID) { 3891 default: // Skip unknown content. 3892 if (Error Err = Stream.SkipBlock()) 3893 return Err; 3894 break; 3895 case bitc::CONSTANTS_BLOCK_ID: 3896 if (Error Err = parseConstants()) 3897 return Err; 3898 NextValueNo = ValueList.size(); 3899 break; 3900 case bitc::VALUE_SYMTAB_BLOCK_ID: 3901 if (Error Err = parseValueSymbolTable()) 3902 return Err; 3903 break; 3904 case bitc::METADATA_ATTACHMENT_ID: 3905 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3906 return Err; 3907 break; 3908 case bitc::METADATA_BLOCK_ID: 3909 assert(DeferredMetadataInfo.empty() && 3910 "Must read all module-level metadata before function-level"); 3911 if (Error Err = MDLoader->parseFunctionMetadata()) 3912 return Err; 3913 break; 3914 case bitc::USELIST_BLOCK_ID: 3915 if (Error Err = parseUseLists()) 3916 return Err; 3917 break; 3918 } 3919 continue; 3920 3921 case BitstreamEntry::Record: 3922 // The interesting case. 3923 break; 3924 } 3925 3926 // Read a record. 3927 Record.clear(); 3928 Instruction *I = nullptr; 3929 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3930 if (!MaybeBitCode) 3931 return MaybeBitCode.takeError(); 3932 switch (unsigned BitCode = MaybeBitCode.get()) { 3933 default: // Default behavior: reject 3934 return error("Invalid value"); 3935 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3936 if (Record.empty() || Record[0] == 0) 3937 return error("Invalid record"); 3938 // Create all the basic blocks for the function. 3939 FunctionBBs.resize(Record[0]); 3940 3941 // See if anything took the address of blocks in this function. 3942 auto BBFRI = BasicBlockFwdRefs.find(F); 3943 if (BBFRI == BasicBlockFwdRefs.end()) { 3944 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3945 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3946 } else { 3947 auto &BBRefs = BBFRI->second; 3948 // Check for invalid basic block references. 3949 if (BBRefs.size() > FunctionBBs.size()) 3950 return error("Invalid ID"); 3951 assert(!BBRefs.empty() && "Unexpected empty array"); 3952 assert(!BBRefs.front() && "Invalid reference to entry block"); 3953 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3954 ++I) 3955 if (I < RE && BBRefs[I]) { 3956 BBRefs[I]->insertInto(F); 3957 FunctionBBs[I] = BBRefs[I]; 3958 } else { 3959 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3960 } 3961 3962 // Erase from the table. 3963 BasicBlockFwdRefs.erase(BBFRI); 3964 } 3965 3966 CurBB = FunctionBBs[0]; 3967 continue; 3968 } 3969 3970 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3971 // This record indicates that the last instruction is at the same 3972 // location as the previous instruction with a location. 3973 I = getLastInstruction(); 3974 3975 if (!I) 3976 return error("Invalid record"); 3977 I->setDebugLoc(LastLoc); 3978 I = nullptr; 3979 continue; 3980 3981 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3982 I = getLastInstruction(); 3983 if (!I || Record.size() < 4) 3984 return error("Invalid record"); 3985 3986 unsigned Line = Record[0], Col = Record[1]; 3987 unsigned ScopeID = Record[2], IAID = Record[3]; 3988 bool isImplicitCode = Record.size() == 5 && Record[4]; 3989 3990 MDNode *Scope = nullptr, *IA = nullptr; 3991 if (ScopeID) { 3992 Scope = dyn_cast_or_null<MDNode>( 3993 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3994 if (!Scope) 3995 return error("Invalid record"); 3996 } 3997 if (IAID) { 3998 IA = dyn_cast_or_null<MDNode>( 3999 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4000 if (!IA) 4001 return error("Invalid record"); 4002 } 4003 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4004 isImplicitCode); 4005 I->setDebugLoc(LastLoc); 4006 I = nullptr; 4007 continue; 4008 } 4009 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4010 unsigned OpNum = 0; 4011 Value *LHS; 4012 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4013 OpNum+1 > Record.size()) 4014 return error("Invalid record"); 4015 4016 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4017 if (Opc == -1) 4018 return error("Invalid record"); 4019 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4020 InstructionList.push_back(I); 4021 if (OpNum < Record.size()) { 4022 if (isa<FPMathOperator>(I)) { 4023 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4024 if (FMF.any()) 4025 I->setFastMathFlags(FMF); 4026 } 4027 } 4028 break; 4029 } 4030 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4031 unsigned OpNum = 0; 4032 Value *LHS, *RHS; 4033 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4034 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4035 OpNum+1 > Record.size()) 4036 return error("Invalid record"); 4037 4038 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4039 if (Opc == -1) 4040 return error("Invalid record"); 4041 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4042 InstructionList.push_back(I); 4043 if (OpNum < Record.size()) { 4044 if (Opc == Instruction::Add || 4045 Opc == Instruction::Sub || 4046 Opc == Instruction::Mul || 4047 Opc == Instruction::Shl) { 4048 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4049 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4050 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4051 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4052 } else if (Opc == Instruction::SDiv || 4053 Opc == Instruction::UDiv || 4054 Opc == Instruction::LShr || 4055 Opc == Instruction::AShr) { 4056 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4057 cast<BinaryOperator>(I)->setIsExact(true); 4058 } else if (isa<FPMathOperator>(I)) { 4059 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4060 if (FMF.any()) 4061 I->setFastMathFlags(FMF); 4062 } 4063 4064 } 4065 break; 4066 } 4067 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4068 unsigned OpNum = 0; 4069 Value *Op; 4070 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4071 OpNum+2 != Record.size()) 4072 return error("Invalid record"); 4073 4074 Type *ResTy = getTypeByID(Record[OpNum]); 4075 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4076 if (Opc == -1 || !ResTy) 4077 return error("Invalid record"); 4078 Instruction *Temp = nullptr; 4079 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4080 if (Temp) { 4081 InstructionList.push_back(Temp); 4082 assert(CurBB && "No current BB?"); 4083 CurBB->getInstList().push_back(Temp); 4084 } 4085 } else { 4086 auto CastOp = (Instruction::CastOps)Opc; 4087 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4088 return error("Invalid cast"); 4089 I = CastInst::Create(CastOp, Op, ResTy); 4090 } 4091 InstructionList.push_back(I); 4092 break; 4093 } 4094 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4095 case bitc::FUNC_CODE_INST_GEP_OLD: 4096 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4097 unsigned OpNum = 0; 4098 4099 Type *Ty; 4100 bool InBounds; 4101 4102 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4103 InBounds = Record[OpNum++]; 4104 Ty = getTypeByID(Record[OpNum++]); 4105 } else { 4106 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4107 Ty = nullptr; 4108 } 4109 4110 Value *BasePtr; 4111 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4112 return error("Invalid record"); 4113 4114 if (!Ty) { 4115 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4116 ->getElementType(); 4117 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4118 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4119 return error( 4120 "Explicit gep type does not match pointee type of pointer operand"); 4121 } 4122 4123 SmallVector<Value*, 16> GEPIdx; 4124 while (OpNum != Record.size()) { 4125 Value *Op; 4126 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4127 return error("Invalid record"); 4128 GEPIdx.push_back(Op); 4129 } 4130 4131 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4132 4133 InstructionList.push_back(I); 4134 if (InBounds) 4135 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4136 break; 4137 } 4138 4139 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4140 // EXTRACTVAL: [opty, opval, n x indices] 4141 unsigned OpNum = 0; 4142 Value *Agg; 4143 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4144 return error("Invalid record"); 4145 Type *Ty = Agg->getType(); 4146 4147 unsigned RecSize = Record.size(); 4148 if (OpNum == RecSize) 4149 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4150 4151 SmallVector<unsigned, 4> EXTRACTVALIdx; 4152 for (; OpNum != RecSize; ++OpNum) { 4153 bool IsArray = Ty->isArrayTy(); 4154 bool IsStruct = Ty->isStructTy(); 4155 uint64_t Index = Record[OpNum]; 4156 4157 if (!IsStruct && !IsArray) 4158 return error("EXTRACTVAL: Invalid type"); 4159 if ((unsigned)Index != Index) 4160 return error("Invalid value"); 4161 if (IsStruct && Index >= Ty->getStructNumElements()) 4162 return error("EXTRACTVAL: Invalid struct index"); 4163 if (IsArray && Index >= Ty->getArrayNumElements()) 4164 return error("EXTRACTVAL: Invalid array index"); 4165 EXTRACTVALIdx.push_back((unsigned)Index); 4166 4167 if (IsStruct) 4168 Ty = Ty->getStructElementType(Index); 4169 else 4170 Ty = Ty->getArrayElementType(); 4171 } 4172 4173 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4174 InstructionList.push_back(I); 4175 break; 4176 } 4177 4178 case bitc::FUNC_CODE_INST_INSERTVAL: { 4179 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4180 unsigned OpNum = 0; 4181 Value *Agg; 4182 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4183 return error("Invalid record"); 4184 Value *Val; 4185 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4186 return error("Invalid record"); 4187 4188 unsigned RecSize = Record.size(); 4189 if (OpNum == RecSize) 4190 return error("INSERTVAL: Invalid instruction with 0 indices"); 4191 4192 SmallVector<unsigned, 4> INSERTVALIdx; 4193 Type *CurTy = Agg->getType(); 4194 for (; OpNum != RecSize; ++OpNum) { 4195 bool IsArray = CurTy->isArrayTy(); 4196 bool IsStruct = CurTy->isStructTy(); 4197 uint64_t Index = Record[OpNum]; 4198 4199 if (!IsStruct && !IsArray) 4200 return error("INSERTVAL: Invalid type"); 4201 if ((unsigned)Index != Index) 4202 return error("Invalid value"); 4203 if (IsStruct && Index >= CurTy->getStructNumElements()) 4204 return error("INSERTVAL: Invalid struct index"); 4205 if (IsArray && Index >= CurTy->getArrayNumElements()) 4206 return error("INSERTVAL: Invalid array index"); 4207 4208 INSERTVALIdx.push_back((unsigned)Index); 4209 if (IsStruct) 4210 CurTy = CurTy->getStructElementType(Index); 4211 else 4212 CurTy = CurTy->getArrayElementType(); 4213 } 4214 4215 if (CurTy != Val->getType()) 4216 return error("Inserted value type doesn't match aggregate type"); 4217 4218 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4219 InstructionList.push_back(I); 4220 break; 4221 } 4222 4223 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4224 // obsolete form of select 4225 // handles select i1 ... in old bitcode 4226 unsigned OpNum = 0; 4227 Value *TrueVal, *FalseVal, *Cond; 4228 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4229 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4230 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4231 return error("Invalid record"); 4232 4233 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4234 InstructionList.push_back(I); 4235 break; 4236 } 4237 4238 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4239 // new form of select 4240 // handles select i1 or select [N x i1] 4241 unsigned OpNum = 0; 4242 Value *TrueVal, *FalseVal, *Cond; 4243 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4244 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4245 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4246 return error("Invalid record"); 4247 4248 // select condition can be either i1 or [N x i1] 4249 if (VectorType* vector_type = 4250 dyn_cast<VectorType>(Cond->getType())) { 4251 // expect <n x i1> 4252 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4253 return error("Invalid type for value"); 4254 } else { 4255 // expect i1 4256 if (Cond->getType() != Type::getInt1Ty(Context)) 4257 return error("Invalid type for value"); 4258 } 4259 4260 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4261 InstructionList.push_back(I); 4262 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4263 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4264 if (FMF.any()) 4265 I->setFastMathFlags(FMF); 4266 } 4267 break; 4268 } 4269 4270 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4271 unsigned OpNum = 0; 4272 Value *Vec, *Idx; 4273 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4274 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4275 return error("Invalid record"); 4276 if (!Vec->getType()->isVectorTy()) 4277 return error("Invalid type for value"); 4278 I = ExtractElementInst::Create(Vec, Idx); 4279 InstructionList.push_back(I); 4280 break; 4281 } 4282 4283 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4284 unsigned OpNum = 0; 4285 Value *Vec, *Elt, *Idx; 4286 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4287 return error("Invalid record"); 4288 if (!Vec->getType()->isVectorTy()) 4289 return error("Invalid type for value"); 4290 if (popValue(Record, OpNum, NextValueNo, 4291 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4292 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4293 return error("Invalid record"); 4294 I = InsertElementInst::Create(Vec, Elt, Idx); 4295 InstructionList.push_back(I); 4296 break; 4297 } 4298 4299 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4300 unsigned OpNum = 0; 4301 Value *Vec1, *Vec2, *Mask; 4302 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4303 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4304 return error("Invalid record"); 4305 4306 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4307 return error("Invalid record"); 4308 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4309 return error("Invalid type for value"); 4310 4311 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4312 InstructionList.push_back(I); 4313 break; 4314 } 4315 4316 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4317 // Old form of ICmp/FCmp returning bool 4318 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4319 // both legal on vectors but had different behaviour. 4320 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4321 // FCmp/ICmp returning bool or vector of bool 4322 4323 unsigned OpNum = 0; 4324 Value *LHS, *RHS; 4325 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4326 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4327 return error("Invalid record"); 4328 4329 if (OpNum >= Record.size()) 4330 return error( 4331 "Invalid record: operand number exceeded available operands"); 4332 4333 unsigned PredVal = Record[OpNum]; 4334 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4335 FastMathFlags FMF; 4336 if (IsFP && Record.size() > OpNum+1) 4337 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4338 4339 if (OpNum+1 != Record.size()) 4340 return error("Invalid record"); 4341 4342 if (LHS->getType()->isFPOrFPVectorTy()) 4343 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4344 else 4345 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4346 4347 if (FMF.any()) 4348 I->setFastMathFlags(FMF); 4349 InstructionList.push_back(I); 4350 break; 4351 } 4352 4353 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4354 { 4355 unsigned Size = Record.size(); 4356 if (Size == 0) { 4357 I = ReturnInst::Create(Context); 4358 InstructionList.push_back(I); 4359 break; 4360 } 4361 4362 unsigned OpNum = 0; 4363 Value *Op = nullptr; 4364 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4365 return error("Invalid record"); 4366 if (OpNum != Record.size()) 4367 return error("Invalid record"); 4368 4369 I = ReturnInst::Create(Context, Op); 4370 InstructionList.push_back(I); 4371 break; 4372 } 4373 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4374 if (Record.size() != 1 && Record.size() != 3) 4375 return error("Invalid record"); 4376 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4377 if (!TrueDest) 4378 return error("Invalid record"); 4379 4380 if (Record.size() == 1) { 4381 I = BranchInst::Create(TrueDest); 4382 InstructionList.push_back(I); 4383 } 4384 else { 4385 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4386 Value *Cond = getValue(Record, 2, NextValueNo, 4387 Type::getInt1Ty(Context)); 4388 if (!FalseDest || !Cond) 4389 return error("Invalid record"); 4390 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4391 InstructionList.push_back(I); 4392 } 4393 break; 4394 } 4395 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4396 if (Record.size() != 1 && Record.size() != 2) 4397 return error("Invalid record"); 4398 unsigned Idx = 0; 4399 Value *CleanupPad = 4400 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4401 if (!CleanupPad) 4402 return error("Invalid record"); 4403 BasicBlock *UnwindDest = nullptr; 4404 if (Record.size() == 2) { 4405 UnwindDest = getBasicBlock(Record[Idx++]); 4406 if (!UnwindDest) 4407 return error("Invalid record"); 4408 } 4409 4410 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4411 InstructionList.push_back(I); 4412 break; 4413 } 4414 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4415 if (Record.size() != 2) 4416 return error("Invalid record"); 4417 unsigned Idx = 0; 4418 Value *CatchPad = 4419 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4420 if (!CatchPad) 4421 return error("Invalid record"); 4422 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4423 if (!BB) 4424 return error("Invalid record"); 4425 4426 I = CatchReturnInst::Create(CatchPad, BB); 4427 InstructionList.push_back(I); 4428 break; 4429 } 4430 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4431 // We must have, at minimum, the outer scope and the number of arguments. 4432 if (Record.size() < 2) 4433 return error("Invalid record"); 4434 4435 unsigned Idx = 0; 4436 4437 Value *ParentPad = 4438 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4439 4440 unsigned NumHandlers = Record[Idx++]; 4441 4442 SmallVector<BasicBlock *, 2> Handlers; 4443 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4444 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4445 if (!BB) 4446 return error("Invalid record"); 4447 Handlers.push_back(BB); 4448 } 4449 4450 BasicBlock *UnwindDest = nullptr; 4451 if (Idx + 1 == Record.size()) { 4452 UnwindDest = getBasicBlock(Record[Idx++]); 4453 if (!UnwindDest) 4454 return error("Invalid record"); 4455 } 4456 4457 if (Record.size() != Idx) 4458 return error("Invalid record"); 4459 4460 auto *CatchSwitch = 4461 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4462 for (BasicBlock *Handler : Handlers) 4463 CatchSwitch->addHandler(Handler); 4464 I = CatchSwitch; 4465 InstructionList.push_back(I); 4466 break; 4467 } 4468 case bitc::FUNC_CODE_INST_CATCHPAD: 4469 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4470 // We must have, at minimum, the outer scope and the number of arguments. 4471 if (Record.size() < 2) 4472 return error("Invalid record"); 4473 4474 unsigned Idx = 0; 4475 4476 Value *ParentPad = 4477 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4478 4479 unsigned NumArgOperands = Record[Idx++]; 4480 4481 SmallVector<Value *, 2> Args; 4482 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4483 Value *Val; 4484 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4485 return error("Invalid record"); 4486 Args.push_back(Val); 4487 } 4488 4489 if (Record.size() != Idx) 4490 return error("Invalid record"); 4491 4492 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4493 I = CleanupPadInst::Create(ParentPad, Args); 4494 else 4495 I = CatchPadInst::Create(ParentPad, Args); 4496 InstructionList.push_back(I); 4497 break; 4498 } 4499 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4500 // Check magic 4501 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4502 // "New" SwitchInst format with case ranges. The changes to write this 4503 // format were reverted but we still recognize bitcode that uses it. 4504 // Hopefully someday we will have support for case ranges and can use 4505 // this format again. 4506 4507 Type *OpTy = getTypeByID(Record[1]); 4508 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4509 4510 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4511 BasicBlock *Default = getBasicBlock(Record[3]); 4512 if (!OpTy || !Cond || !Default) 4513 return error("Invalid record"); 4514 4515 unsigned NumCases = Record[4]; 4516 4517 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4518 InstructionList.push_back(SI); 4519 4520 unsigned CurIdx = 5; 4521 for (unsigned i = 0; i != NumCases; ++i) { 4522 SmallVector<ConstantInt*, 1> CaseVals; 4523 unsigned NumItems = Record[CurIdx++]; 4524 for (unsigned ci = 0; ci != NumItems; ++ci) { 4525 bool isSingleNumber = Record[CurIdx++]; 4526 4527 APInt Low; 4528 unsigned ActiveWords = 1; 4529 if (ValueBitWidth > 64) 4530 ActiveWords = Record[CurIdx++]; 4531 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4532 ValueBitWidth); 4533 CurIdx += ActiveWords; 4534 4535 if (!isSingleNumber) { 4536 ActiveWords = 1; 4537 if (ValueBitWidth > 64) 4538 ActiveWords = Record[CurIdx++]; 4539 APInt High = readWideAPInt( 4540 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4541 CurIdx += ActiveWords; 4542 4543 // FIXME: It is not clear whether values in the range should be 4544 // compared as signed or unsigned values. The partially 4545 // implemented changes that used this format in the past used 4546 // unsigned comparisons. 4547 for ( ; Low.ule(High); ++Low) 4548 CaseVals.push_back(ConstantInt::get(Context, Low)); 4549 } else 4550 CaseVals.push_back(ConstantInt::get(Context, Low)); 4551 } 4552 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4553 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4554 cve = CaseVals.end(); cvi != cve; ++cvi) 4555 SI->addCase(*cvi, DestBB); 4556 } 4557 I = SI; 4558 break; 4559 } 4560 4561 // Old SwitchInst format without case ranges. 4562 4563 if (Record.size() < 3 || (Record.size() & 1) == 0) 4564 return error("Invalid record"); 4565 Type *OpTy = getTypeByID(Record[0]); 4566 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4567 BasicBlock *Default = getBasicBlock(Record[2]); 4568 if (!OpTy || !Cond || !Default) 4569 return error("Invalid record"); 4570 unsigned NumCases = (Record.size()-3)/2; 4571 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4572 InstructionList.push_back(SI); 4573 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4574 ConstantInt *CaseVal = 4575 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4576 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4577 if (!CaseVal || !DestBB) { 4578 delete SI; 4579 return error("Invalid record"); 4580 } 4581 SI->addCase(CaseVal, DestBB); 4582 } 4583 I = SI; 4584 break; 4585 } 4586 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4587 if (Record.size() < 2) 4588 return error("Invalid record"); 4589 Type *OpTy = getTypeByID(Record[0]); 4590 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4591 if (!OpTy || !Address) 4592 return error("Invalid record"); 4593 unsigned NumDests = Record.size()-2; 4594 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4595 InstructionList.push_back(IBI); 4596 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4597 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4598 IBI->addDestination(DestBB); 4599 } else { 4600 delete IBI; 4601 return error("Invalid record"); 4602 } 4603 } 4604 I = IBI; 4605 break; 4606 } 4607 4608 case bitc::FUNC_CODE_INST_INVOKE: { 4609 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4610 if (Record.size() < 4) 4611 return error("Invalid record"); 4612 unsigned OpNum = 0; 4613 AttributeList PAL = getAttributes(Record[OpNum++]); 4614 unsigned CCInfo = Record[OpNum++]; 4615 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4616 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4617 4618 FunctionType *FTy = nullptr; 4619 if ((CCInfo >> 13) & 1) { 4620 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4621 if (!FTy) 4622 return error("Explicit invoke type is not a function type"); 4623 } 4624 4625 Value *Callee; 4626 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4627 return error("Invalid record"); 4628 4629 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4630 if (!CalleeTy) 4631 return error("Callee is not a pointer"); 4632 if (!FTy) { 4633 FTy = dyn_cast<FunctionType>( 4634 cast<PointerType>(Callee->getType())->getElementType()); 4635 if (!FTy) 4636 return error("Callee is not of pointer to function type"); 4637 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy) 4638 return error("Explicit invoke type does not match pointee type of " 4639 "callee operand"); 4640 if (Record.size() < FTy->getNumParams() + OpNum) 4641 return error("Insufficient operands to call"); 4642 4643 SmallVector<Value*, 16> Ops; 4644 SmallVector<Type *, 16> ArgsTys; 4645 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4646 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4647 FTy->getParamType(i))); 4648 ArgsTys.push_back(FTy->getParamType(i)); 4649 if (!Ops.back()) 4650 return error("Invalid record"); 4651 } 4652 4653 if (!FTy->isVarArg()) { 4654 if (Record.size() != OpNum) 4655 return error("Invalid record"); 4656 } else { 4657 // Read type/value pairs for varargs params. 4658 while (OpNum != Record.size()) { 4659 Value *Op; 4660 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4661 return error("Invalid record"); 4662 Ops.push_back(Op); 4663 ArgsTys.push_back(Op->getType()); 4664 } 4665 } 4666 4667 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4668 OperandBundles); 4669 OperandBundles.clear(); 4670 InstructionList.push_back(I); 4671 cast<InvokeInst>(I)->setCallingConv( 4672 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4673 cast<InvokeInst>(I)->setAttributes(PAL); 4674 propagateByValSRetTypes(cast<CallBase>(I), ArgsTys); 4675 4676 break; 4677 } 4678 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4679 unsigned Idx = 0; 4680 Value *Val = nullptr; 4681 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4682 return error("Invalid record"); 4683 I = ResumeInst::Create(Val); 4684 InstructionList.push_back(I); 4685 break; 4686 } 4687 case bitc::FUNC_CODE_INST_CALLBR: { 4688 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4689 unsigned OpNum = 0; 4690 AttributeList PAL = getAttributes(Record[OpNum++]); 4691 unsigned CCInfo = Record[OpNum++]; 4692 4693 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4694 unsigned NumIndirectDests = Record[OpNum++]; 4695 SmallVector<BasicBlock *, 16> IndirectDests; 4696 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4697 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4698 4699 FunctionType *FTy = nullptr; 4700 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4701 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4702 if (!FTy) 4703 return error("Explicit call type is not a function type"); 4704 } 4705 4706 Value *Callee; 4707 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4708 return error("Invalid record"); 4709 4710 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4711 if (!OpTy) 4712 return error("Callee is not a pointer type"); 4713 if (!FTy) { 4714 FTy = dyn_cast<FunctionType>( 4715 cast<PointerType>(Callee->getType())->getElementType()); 4716 if (!FTy) 4717 return error("Callee is not of pointer to function type"); 4718 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy) 4719 return error("Explicit call type does not match pointee type of " 4720 "callee operand"); 4721 if (Record.size() < FTy->getNumParams() + OpNum) 4722 return error("Insufficient operands to call"); 4723 4724 SmallVector<Value*, 16> Args; 4725 // Read the fixed params. 4726 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4727 if (FTy->getParamType(i)->isLabelTy()) 4728 Args.push_back(getBasicBlock(Record[OpNum])); 4729 else 4730 Args.push_back(getValue(Record, OpNum, NextValueNo, 4731 FTy->getParamType(i))); 4732 if (!Args.back()) 4733 return error("Invalid record"); 4734 } 4735 4736 // Read type/value pairs for varargs params. 4737 if (!FTy->isVarArg()) { 4738 if (OpNum != Record.size()) 4739 return error("Invalid record"); 4740 } else { 4741 while (OpNum != Record.size()) { 4742 Value *Op; 4743 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4744 return error("Invalid record"); 4745 Args.push_back(Op); 4746 } 4747 } 4748 4749 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4750 OperandBundles); 4751 OperandBundles.clear(); 4752 InstructionList.push_back(I); 4753 cast<CallBrInst>(I)->setCallingConv( 4754 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4755 cast<CallBrInst>(I)->setAttributes(PAL); 4756 break; 4757 } 4758 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4759 I = new UnreachableInst(Context); 4760 InstructionList.push_back(I); 4761 break; 4762 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4763 if (Record.empty()) 4764 return error("Invalid record"); 4765 // The first record specifies the type. 4766 Type *Ty = getTypeByID(Record[0]); 4767 if (!Ty) 4768 return error("Invalid record"); 4769 4770 // Phi arguments are pairs of records of [value, basic block]. 4771 // There is an optional final record for fast-math-flags if this phi has a 4772 // floating-point type. 4773 size_t NumArgs = (Record.size() - 1) / 2; 4774 PHINode *PN = PHINode::Create(Ty, NumArgs); 4775 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4776 return error("Invalid record"); 4777 InstructionList.push_back(PN); 4778 4779 for (unsigned i = 0; i != NumArgs; i++) { 4780 Value *V; 4781 // With the new function encoding, it is possible that operands have 4782 // negative IDs (for forward references). Use a signed VBR 4783 // representation to keep the encoding small. 4784 if (UseRelativeIDs) 4785 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4786 else 4787 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4788 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4789 if (!V || !BB) 4790 return error("Invalid record"); 4791 PN->addIncoming(V, BB); 4792 } 4793 I = PN; 4794 4795 // If there are an even number of records, the final record must be FMF. 4796 if (Record.size() % 2 == 0) { 4797 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4798 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4799 if (FMF.any()) 4800 I->setFastMathFlags(FMF); 4801 } 4802 4803 break; 4804 } 4805 4806 case bitc::FUNC_CODE_INST_LANDINGPAD: 4807 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4808 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4809 unsigned Idx = 0; 4810 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4811 if (Record.size() < 3) 4812 return error("Invalid record"); 4813 } else { 4814 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4815 if (Record.size() < 4) 4816 return error("Invalid record"); 4817 } 4818 Type *Ty = getTypeByID(Record[Idx++]); 4819 if (!Ty) 4820 return error("Invalid record"); 4821 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4822 Value *PersFn = nullptr; 4823 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4824 return error("Invalid record"); 4825 4826 if (!F->hasPersonalityFn()) 4827 F->setPersonalityFn(cast<Constant>(PersFn)); 4828 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4829 return error("Personality function mismatch"); 4830 } 4831 4832 bool IsCleanup = !!Record[Idx++]; 4833 unsigned NumClauses = Record[Idx++]; 4834 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4835 LP->setCleanup(IsCleanup); 4836 for (unsigned J = 0; J != NumClauses; ++J) { 4837 LandingPadInst::ClauseType CT = 4838 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4839 Value *Val; 4840 4841 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4842 delete LP; 4843 return error("Invalid record"); 4844 } 4845 4846 assert((CT != LandingPadInst::Catch || 4847 !isa<ArrayType>(Val->getType())) && 4848 "Catch clause has a invalid type!"); 4849 assert((CT != LandingPadInst::Filter || 4850 isa<ArrayType>(Val->getType())) && 4851 "Filter clause has invalid type!"); 4852 LP->addClause(cast<Constant>(Val)); 4853 } 4854 4855 I = LP; 4856 InstructionList.push_back(I); 4857 break; 4858 } 4859 4860 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4861 if (Record.size() != 4) 4862 return error("Invalid record"); 4863 using APV = AllocaPackedValues; 4864 const uint64_t Rec = Record[3]; 4865 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4866 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4867 Type *Ty = getTypeByID(Record[0]); 4868 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4869 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4870 if (!PTy) 4871 return error("Old-style alloca with a non-pointer type"); 4872 Ty = PTy->getElementType(); 4873 } 4874 Type *OpTy = getTypeByID(Record[1]); 4875 Value *Size = getFnValueByID(Record[2], OpTy); 4876 MaybeAlign Align; 4877 if (Error Err = 4878 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4879 return Err; 4880 } 4881 if (!Ty || !Size) 4882 return error("Invalid record"); 4883 4884 // FIXME: Make this an optional field. 4885 const DataLayout &DL = TheModule->getDataLayout(); 4886 unsigned AS = DL.getAllocaAddrSpace(); 4887 4888 SmallPtrSet<Type *, 4> Visited; 4889 if (!Align && !Ty->isSized(&Visited)) 4890 return error("alloca of unsized type"); 4891 if (!Align) 4892 Align = DL.getPrefTypeAlign(Ty); 4893 4894 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4895 AI->setUsedWithInAlloca(InAlloca); 4896 AI->setSwiftError(SwiftError); 4897 I = AI; 4898 InstructionList.push_back(I); 4899 break; 4900 } 4901 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4902 unsigned OpNum = 0; 4903 Value *Op; 4904 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4905 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4906 return error("Invalid record"); 4907 4908 if (!isa<PointerType>(Op->getType())) 4909 return error("Load operand is not a pointer type"); 4910 4911 Type *Ty = nullptr; 4912 if (OpNum + 3 == Record.size()) { 4913 Ty = getTypeByID(Record[OpNum++]); 4914 } else { 4915 Ty = cast<PointerType>(Op->getType())->getElementType(); 4916 } 4917 4918 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4919 return Err; 4920 4921 MaybeAlign Align; 4922 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4923 return Err; 4924 SmallPtrSet<Type *, 4> Visited; 4925 if (!Align && !Ty->isSized(&Visited)) 4926 return error("load of unsized type"); 4927 if (!Align) 4928 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4929 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4930 InstructionList.push_back(I); 4931 break; 4932 } 4933 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4934 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4935 unsigned OpNum = 0; 4936 Value *Op; 4937 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4938 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4939 return error("Invalid record"); 4940 4941 if (!isa<PointerType>(Op->getType())) 4942 return error("Load operand is not a pointer type"); 4943 4944 Type *Ty = nullptr; 4945 if (OpNum + 5 == Record.size()) { 4946 Ty = getTypeByID(Record[OpNum++]); 4947 } else { 4948 Ty = cast<PointerType>(Op->getType())->getElementType(); 4949 } 4950 4951 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4952 return Err; 4953 4954 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4955 if (Ordering == AtomicOrdering::NotAtomic || 4956 Ordering == AtomicOrdering::Release || 4957 Ordering == AtomicOrdering::AcquireRelease) 4958 return error("Invalid record"); 4959 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4960 return error("Invalid record"); 4961 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4962 4963 MaybeAlign Align; 4964 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4965 return Err; 4966 if (!Align) 4967 return error("Alignment missing from atomic load"); 4968 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4969 InstructionList.push_back(I); 4970 break; 4971 } 4972 case bitc::FUNC_CODE_INST_STORE: 4973 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4974 unsigned OpNum = 0; 4975 Value *Val, *Ptr; 4976 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4977 (BitCode == bitc::FUNC_CODE_INST_STORE 4978 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4979 : popValue(Record, OpNum, NextValueNo, 4980 cast<PointerType>(Ptr->getType())->getElementType(), 4981 Val)) || 4982 OpNum + 2 != Record.size()) 4983 return error("Invalid record"); 4984 4985 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4986 return Err; 4987 MaybeAlign Align; 4988 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4989 return Err; 4990 SmallPtrSet<Type *, 4> Visited; 4991 if (!Align && !Val->getType()->isSized(&Visited)) 4992 return error("store of unsized type"); 4993 if (!Align) 4994 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 4995 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 4996 InstructionList.push_back(I); 4997 break; 4998 } 4999 case bitc::FUNC_CODE_INST_STOREATOMIC: 5000 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5001 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5002 unsigned OpNum = 0; 5003 Value *Val, *Ptr; 5004 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5005 !isa<PointerType>(Ptr->getType()) || 5006 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5007 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5008 : popValue(Record, OpNum, NextValueNo, 5009 cast<PointerType>(Ptr->getType())->getElementType(), 5010 Val)) || 5011 OpNum + 4 != Record.size()) 5012 return error("Invalid record"); 5013 5014 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5015 return Err; 5016 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5017 if (Ordering == AtomicOrdering::NotAtomic || 5018 Ordering == AtomicOrdering::Acquire || 5019 Ordering == AtomicOrdering::AcquireRelease) 5020 return error("Invalid record"); 5021 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5022 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5023 return error("Invalid record"); 5024 5025 MaybeAlign Align; 5026 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5027 return Err; 5028 if (!Align) 5029 return error("Alignment missing from atomic store"); 5030 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5031 InstructionList.push_back(I); 5032 break; 5033 } 5034 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5035 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5036 // failure_ordering?, weak?] 5037 const size_t NumRecords = Record.size(); 5038 unsigned OpNum = 0; 5039 Value *Ptr = nullptr; 5040 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5041 return error("Invalid record"); 5042 5043 if (!isa<PointerType>(Ptr->getType())) 5044 return error("Cmpxchg operand is not a pointer type"); 5045 5046 Value *Cmp = nullptr; 5047 if (popValue(Record, OpNum, NextValueNo, 5048 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5049 Cmp)) 5050 return error("Invalid record"); 5051 5052 Value *New = nullptr; 5053 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5054 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5055 return error("Invalid record"); 5056 5057 const AtomicOrdering SuccessOrdering = 5058 getDecodedOrdering(Record[OpNum + 1]); 5059 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5060 SuccessOrdering == AtomicOrdering::Unordered) 5061 return error("Invalid record"); 5062 5063 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5064 5065 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5066 return Err; 5067 5068 const AtomicOrdering FailureOrdering = 5069 NumRecords < 7 5070 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5071 : getDecodedOrdering(Record[OpNum + 3]); 5072 5073 if (FailureOrdering == AtomicOrdering::NotAtomic || 5074 FailureOrdering == AtomicOrdering::Unordered) 5075 return error("Invalid record"); 5076 5077 const Align Alignment( 5078 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5079 5080 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5081 FailureOrdering, SSID); 5082 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5083 5084 if (NumRecords < 8) { 5085 // Before weak cmpxchgs existed, the instruction simply returned the 5086 // value loaded from memory, so bitcode files from that era will be 5087 // expecting the first component of a modern cmpxchg. 5088 CurBB->getInstList().push_back(I); 5089 I = ExtractValueInst::Create(I, 0); 5090 } else { 5091 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5092 } 5093 5094 InstructionList.push_back(I); 5095 break; 5096 } 5097 case bitc::FUNC_CODE_INST_CMPXCHG: { 5098 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5099 // failure_ordering, weak, align?] 5100 const size_t NumRecords = Record.size(); 5101 unsigned OpNum = 0; 5102 Value *Ptr = nullptr; 5103 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5104 return error("Invalid record"); 5105 5106 if (!isa<PointerType>(Ptr->getType())) 5107 return error("Cmpxchg operand is not a pointer type"); 5108 5109 Value *Cmp = nullptr; 5110 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5111 return error("Invalid record"); 5112 5113 Value *Val = nullptr; 5114 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5115 return error("Invalid record"); 5116 5117 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5118 return error("Invalid record"); 5119 5120 const bool IsVol = Record[OpNum]; 5121 5122 const AtomicOrdering SuccessOrdering = 5123 getDecodedOrdering(Record[OpNum + 1]); 5124 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5125 return error("Invalid cmpxchg success ordering"); 5126 5127 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5128 5129 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5130 return Err; 5131 5132 const AtomicOrdering FailureOrdering = 5133 getDecodedOrdering(Record[OpNum + 3]); 5134 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5135 return error("Invalid cmpxchg failure ordering"); 5136 5137 const bool IsWeak = Record[OpNum + 4]; 5138 5139 MaybeAlign Alignment; 5140 5141 if (NumRecords == (OpNum + 6)) { 5142 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5143 return Err; 5144 } 5145 if (!Alignment) 5146 Alignment = 5147 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5148 5149 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5150 FailureOrdering, SSID); 5151 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5152 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5153 5154 InstructionList.push_back(I); 5155 break; 5156 } 5157 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5158 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5159 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5160 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5161 const size_t NumRecords = Record.size(); 5162 unsigned OpNum = 0; 5163 5164 Value *Ptr = nullptr; 5165 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5166 return error("Invalid record"); 5167 5168 if (!isa<PointerType>(Ptr->getType())) 5169 return error("Invalid record"); 5170 5171 Value *Val = nullptr; 5172 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5173 if (popValue(Record, OpNum, NextValueNo, 5174 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5175 Val)) 5176 return error("Invalid record"); 5177 } else { 5178 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5179 return error("Invalid record"); 5180 } 5181 5182 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5183 return error("Invalid record"); 5184 5185 const AtomicRMWInst::BinOp Operation = 5186 getDecodedRMWOperation(Record[OpNum]); 5187 if (Operation < AtomicRMWInst::FIRST_BINOP || 5188 Operation > AtomicRMWInst::LAST_BINOP) 5189 return error("Invalid record"); 5190 5191 const bool IsVol = Record[OpNum + 1]; 5192 5193 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5194 if (Ordering == AtomicOrdering::NotAtomic || 5195 Ordering == AtomicOrdering::Unordered) 5196 return error("Invalid record"); 5197 5198 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5199 5200 MaybeAlign Alignment; 5201 5202 if (NumRecords == (OpNum + 5)) { 5203 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5204 return Err; 5205 } 5206 5207 if (!Alignment) 5208 Alignment = 5209 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5210 5211 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5212 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5213 5214 InstructionList.push_back(I); 5215 break; 5216 } 5217 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5218 if (2 != Record.size()) 5219 return error("Invalid record"); 5220 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5221 if (Ordering == AtomicOrdering::NotAtomic || 5222 Ordering == AtomicOrdering::Unordered || 5223 Ordering == AtomicOrdering::Monotonic) 5224 return error("Invalid record"); 5225 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5226 I = new FenceInst(Context, Ordering, SSID); 5227 InstructionList.push_back(I); 5228 break; 5229 } 5230 case bitc::FUNC_CODE_INST_CALL: { 5231 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5232 if (Record.size() < 3) 5233 return error("Invalid record"); 5234 5235 unsigned OpNum = 0; 5236 AttributeList PAL = getAttributes(Record[OpNum++]); 5237 unsigned CCInfo = Record[OpNum++]; 5238 5239 FastMathFlags FMF; 5240 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5241 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5242 if (!FMF.any()) 5243 return error("Fast math flags indicator set for call with no FMF"); 5244 } 5245 5246 FunctionType *FTy = nullptr; 5247 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5248 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5249 if (!FTy) 5250 return error("Explicit call type is not a function type"); 5251 } 5252 5253 Value *Callee; 5254 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5255 return error("Invalid record"); 5256 5257 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5258 if (!OpTy) 5259 return error("Callee is not a pointer type"); 5260 if (!FTy) { 5261 FTy = dyn_cast<FunctionType>( 5262 cast<PointerType>(Callee->getType())->getElementType()); 5263 if (!FTy) 5264 return error("Callee is not of pointer to function type"); 5265 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy) 5266 return error("Explicit call type does not match pointee type of " 5267 "callee operand"); 5268 if (Record.size() < FTy->getNumParams() + OpNum) 5269 return error("Insufficient operands to call"); 5270 5271 SmallVector<Value*, 16> Args; 5272 SmallVector<Type *, 16> ArgsTys; 5273 // Read the fixed params. 5274 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5275 if (FTy->getParamType(i)->isLabelTy()) 5276 Args.push_back(getBasicBlock(Record[OpNum])); 5277 else 5278 Args.push_back(getValue(Record, OpNum, NextValueNo, 5279 FTy->getParamType(i))); 5280 ArgsTys.push_back(FTy->getParamType(i)); 5281 if (!Args.back()) 5282 return error("Invalid record"); 5283 } 5284 5285 // Read type/value pairs for varargs params. 5286 if (!FTy->isVarArg()) { 5287 if (OpNum != Record.size()) 5288 return error("Invalid record"); 5289 } else { 5290 while (OpNum != Record.size()) { 5291 Value *Op; 5292 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5293 return error("Invalid record"); 5294 Args.push_back(Op); 5295 ArgsTys.push_back(Op->getType()); 5296 } 5297 } 5298 5299 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5300 OperandBundles.clear(); 5301 InstructionList.push_back(I); 5302 cast<CallInst>(I)->setCallingConv( 5303 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5304 CallInst::TailCallKind TCK = CallInst::TCK_None; 5305 if (CCInfo & 1 << bitc::CALL_TAIL) 5306 TCK = CallInst::TCK_Tail; 5307 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5308 TCK = CallInst::TCK_MustTail; 5309 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5310 TCK = CallInst::TCK_NoTail; 5311 cast<CallInst>(I)->setTailCallKind(TCK); 5312 cast<CallInst>(I)->setAttributes(PAL); 5313 propagateByValSRetTypes(cast<CallBase>(I), ArgsTys); 5314 if (FMF.any()) { 5315 if (!isa<FPMathOperator>(I)) 5316 return error("Fast-math-flags specified for call without " 5317 "floating-point scalar or vector return type"); 5318 I->setFastMathFlags(FMF); 5319 } 5320 break; 5321 } 5322 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5323 if (Record.size() < 3) 5324 return error("Invalid record"); 5325 Type *OpTy = getTypeByID(Record[0]); 5326 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5327 Type *ResTy = getTypeByID(Record[2]); 5328 if (!OpTy || !Op || !ResTy) 5329 return error("Invalid record"); 5330 I = new VAArgInst(Op, ResTy); 5331 InstructionList.push_back(I); 5332 break; 5333 } 5334 5335 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5336 // A call or an invoke can be optionally prefixed with some variable 5337 // number of operand bundle blocks. These blocks are read into 5338 // OperandBundles and consumed at the next call or invoke instruction. 5339 5340 if (Record.empty() || Record[0] >= BundleTags.size()) 5341 return error("Invalid record"); 5342 5343 std::vector<Value *> Inputs; 5344 5345 unsigned OpNum = 1; 5346 while (OpNum != Record.size()) { 5347 Value *Op; 5348 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5349 return error("Invalid record"); 5350 Inputs.push_back(Op); 5351 } 5352 5353 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5354 continue; 5355 } 5356 5357 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5358 unsigned OpNum = 0; 5359 Value *Op = nullptr; 5360 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5361 return error("Invalid record"); 5362 if (OpNum != Record.size()) 5363 return error("Invalid record"); 5364 5365 I = new FreezeInst(Op); 5366 InstructionList.push_back(I); 5367 break; 5368 } 5369 } 5370 5371 // Add instruction to end of current BB. If there is no current BB, reject 5372 // this file. 5373 if (!CurBB) { 5374 I->deleteValue(); 5375 return error("Invalid instruction with no BB"); 5376 } 5377 if (!OperandBundles.empty()) { 5378 I->deleteValue(); 5379 return error("Operand bundles found with no consumer"); 5380 } 5381 CurBB->getInstList().push_back(I); 5382 5383 // If this was a terminator instruction, move to the next block. 5384 if (I->isTerminator()) { 5385 ++CurBBNo; 5386 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5387 } 5388 5389 // Non-void values get registered in the value table for future use. 5390 if (!I->getType()->isVoidTy()) 5391 ValueList.assignValue(I, NextValueNo++); 5392 } 5393 5394 OutOfRecordLoop: 5395 5396 if (!OperandBundles.empty()) 5397 return error("Operand bundles found with no consumer"); 5398 5399 // Check the function list for unresolved values. 5400 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5401 if (!A->getParent()) { 5402 // We found at least one unresolved value. Nuke them all to avoid leaks. 5403 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5404 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5405 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5406 delete A; 5407 } 5408 } 5409 return error("Never resolved value found in function"); 5410 } 5411 } 5412 5413 // Unexpected unresolved metadata about to be dropped. 5414 if (MDLoader->hasFwdRefs()) 5415 return error("Invalid function metadata: outgoing forward refs"); 5416 5417 // Trim the value list down to the size it was before we parsed this function. 5418 ValueList.shrinkTo(ModuleValueListSize); 5419 MDLoader->shrinkTo(ModuleMDLoaderSize); 5420 std::vector<BasicBlock*>().swap(FunctionBBs); 5421 return Error::success(); 5422 } 5423 5424 /// Find the function body in the bitcode stream 5425 Error BitcodeReader::findFunctionInStream( 5426 Function *F, 5427 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5428 while (DeferredFunctionInfoIterator->second == 0) { 5429 // This is the fallback handling for the old format bitcode that 5430 // didn't contain the function index in the VST, or when we have 5431 // an anonymous function which would not have a VST entry. 5432 // Assert that we have one of those two cases. 5433 assert(VSTOffset == 0 || !F->hasName()); 5434 // Parse the next body in the stream and set its position in the 5435 // DeferredFunctionInfo map. 5436 if (Error Err = rememberAndSkipFunctionBodies()) 5437 return Err; 5438 } 5439 return Error::success(); 5440 } 5441 5442 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5443 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5444 return SyncScope::ID(Val); 5445 if (Val >= SSIDs.size()) 5446 return SyncScope::System; // Map unknown synchronization scopes to system. 5447 return SSIDs[Val]; 5448 } 5449 5450 //===----------------------------------------------------------------------===// 5451 // GVMaterializer implementation 5452 //===----------------------------------------------------------------------===// 5453 5454 Error BitcodeReader::materialize(GlobalValue *GV) { 5455 Function *F = dyn_cast<Function>(GV); 5456 // If it's not a function or is already material, ignore the request. 5457 if (!F || !F->isMaterializable()) 5458 return Error::success(); 5459 5460 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5461 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5462 // If its position is recorded as 0, its body is somewhere in the stream 5463 // but we haven't seen it yet. 5464 if (DFII->second == 0) 5465 if (Error Err = findFunctionInStream(F, DFII)) 5466 return Err; 5467 5468 // Materialize metadata before parsing any function bodies. 5469 if (Error Err = materializeMetadata()) 5470 return Err; 5471 5472 // Move the bit stream to the saved position of the deferred function body. 5473 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5474 return JumpFailed; 5475 if (Error Err = parseFunctionBody(F)) 5476 return Err; 5477 F->setIsMaterializable(false); 5478 5479 if (StripDebugInfo) 5480 stripDebugInfo(*F); 5481 5482 // Upgrade any old intrinsic calls in the function. 5483 for (auto &I : UpgradedIntrinsics) { 5484 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5485 UI != UE;) { 5486 User *U = *UI; 5487 ++UI; 5488 if (CallInst *CI = dyn_cast<CallInst>(U)) 5489 UpgradeIntrinsicCall(CI, I.second); 5490 } 5491 } 5492 5493 // Update calls to the remangled intrinsics 5494 for (auto &I : RemangledIntrinsics) 5495 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5496 UI != UE;) 5497 // Don't expect any other users than call sites 5498 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5499 5500 // Finish fn->subprogram upgrade for materialized functions. 5501 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5502 F->setSubprogram(SP); 5503 5504 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5505 if (!MDLoader->isStrippingTBAA()) { 5506 for (auto &I : instructions(F)) { 5507 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5508 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5509 continue; 5510 MDLoader->setStripTBAA(true); 5511 stripTBAA(F->getParent()); 5512 } 5513 } 5514 5515 for (auto &I : instructions(F)) { 5516 // "Upgrade" older incorrect branch weights by dropping them. 5517 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5518 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5519 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5520 StringRef ProfName = MDS->getString(); 5521 // Check consistency of !prof branch_weights metadata. 5522 if (!ProfName.equals("branch_weights")) 5523 continue; 5524 unsigned ExpectedNumOperands = 0; 5525 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5526 ExpectedNumOperands = BI->getNumSuccessors(); 5527 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5528 ExpectedNumOperands = SI->getNumSuccessors(); 5529 else if (isa<CallInst>(&I)) 5530 ExpectedNumOperands = 1; 5531 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5532 ExpectedNumOperands = IBI->getNumDestinations(); 5533 else if (isa<SelectInst>(&I)) 5534 ExpectedNumOperands = 2; 5535 else 5536 continue; // ignore and continue. 5537 5538 // If branch weight doesn't match, just strip branch weight. 5539 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5540 I.setMetadata(LLVMContext::MD_prof, nullptr); 5541 } 5542 } 5543 5544 // Remove incompatible attributes on function calls. 5545 if (auto *CI = dyn_cast<CallBase>(&I)) { 5546 CI->removeAttributes(AttributeList::ReturnIndex, 5547 AttributeFuncs::typeIncompatible( 5548 CI->getFunctionType()->getReturnType())); 5549 5550 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5551 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5552 CI->getArgOperand(ArgNo)->getType())); 5553 } 5554 } 5555 5556 // Look for functions that rely on old function attribute behavior. 5557 UpgradeFunctionAttributes(*F); 5558 5559 // Bring in any functions that this function forward-referenced via 5560 // blockaddresses. 5561 return materializeForwardReferencedFunctions(); 5562 } 5563 5564 Error BitcodeReader::materializeModule() { 5565 if (Error Err = materializeMetadata()) 5566 return Err; 5567 5568 // Promise to materialize all forward references. 5569 WillMaterializeAllForwardRefs = true; 5570 5571 // Iterate over the module, deserializing any functions that are still on 5572 // disk. 5573 for (Function &F : *TheModule) { 5574 if (Error Err = materialize(&F)) 5575 return Err; 5576 } 5577 // At this point, if there are any function bodies, parse the rest of 5578 // the bits in the module past the last function block we have recorded 5579 // through either lazy scanning or the VST. 5580 if (LastFunctionBlockBit || NextUnreadBit) 5581 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5582 ? LastFunctionBlockBit 5583 : NextUnreadBit)) 5584 return Err; 5585 5586 // Check that all block address forward references got resolved (as we 5587 // promised above). 5588 if (!BasicBlockFwdRefs.empty()) 5589 return error("Never resolved function from blockaddress"); 5590 5591 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5592 // delete the old functions to clean up. We can't do this unless the entire 5593 // module is materialized because there could always be another function body 5594 // with calls to the old function. 5595 for (auto &I : UpgradedIntrinsics) { 5596 for (auto *U : I.first->users()) { 5597 if (CallInst *CI = dyn_cast<CallInst>(U)) 5598 UpgradeIntrinsicCall(CI, I.second); 5599 } 5600 if (!I.first->use_empty()) 5601 I.first->replaceAllUsesWith(I.second); 5602 I.first->eraseFromParent(); 5603 } 5604 UpgradedIntrinsics.clear(); 5605 // Do the same for remangled intrinsics 5606 for (auto &I : RemangledIntrinsics) { 5607 I.first->replaceAllUsesWith(I.second); 5608 I.first->eraseFromParent(); 5609 } 5610 RemangledIntrinsics.clear(); 5611 5612 UpgradeDebugInfo(*TheModule); 5613 5614 UpgradeModuleFlags(*TheModule); 5615 5616 UpgradeARCRuntime(*TheModule); 5617 5618 return Error::success(); 5619 } 5620 5621 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5622 return IdentifiedStructTypes; 5623 } 5624 5625 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5626 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5627 StringRef ModulePath, unsigned ModuleId) 5628 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5629 ModulePath(ModulePath), ModuleId(ModuleId) {} 5630 5631 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5632 TheIndex.addModule(ModulePath, ModuleId); 5633 } 5634 5635 ModuleSummaryIndex::ModuleInfo * 5636 ModuleSummaryIndexBitcodeReader::getThisModule() { 5637 return TheIndex.getModule(ModulePath); 5638 } 5639 5640 std::pair<ValueInfo, GlobalValue::GUID> 5641 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5642 auto VGI = ValueIdToValueInfoMap[ValueId]; 5643 assert(VGI.first); 5644 return VGI; 5645 } 5646 5647 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5648 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5649 StringRef SourceFileName) { 5650 std::string GlobalId = 5651 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5652 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5653 auto OriginalNameID = ValueGUID; 5654 if (GlobalValue::isLocalLinkage(Linkage)) 5655 OriginalNameID = GlobalValue::getGUID(ValueName); 5656 if (PrintSummaryGUIDs) 5657 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5658 << ValueName << "\n"; 5659 5660 // UseStrtab is false for legacy summary formats and value names are 5661 // created on stack. In that case we save the name in a string saver in 5662 // the index so that the value name can be recorded. 5663 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5664 TheIndex.getOrInsertValueInfo( 5665 ValueGUID, 5666 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5667 OriginalNameID); 5668 } 5669 5670 // Specialized value symbol table parser used when reading module index 5671 // blocks where we don't actually create global values. The parsed information 5672 // is saved in the bitcode reader for use when later parsing summaries. 5673 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5674 uint64_t Offset, 5675 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5676 // With a strtab the VST is not required to parse the summary. 5677 if (UseStrtab) 5678 return Error::success(); 5679 5680 assert(Offset > 0 && "Expected non-zero VST offset"); 5681 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5682 if (!MaybeCurrentBit) 5683 return MaybeCurrentBit.takeError(); 5684 uint64_t CurrentBit = MaybeCurrentBit.get(); 5685 5686 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5687 return Err; 5688 5689 SmallVector<uint64_t, 64> Record; 5690 5691 // Read all the records for this value table. 5692 SmallString<128> ValueName; 5693 5694 while (true) { 5695 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5696 if (!MaybeEntry) 5697 return MaybeEntry.takeError(); 5698 BitstreamEntry Entry = MaybeEntry.get(); 5699 5700 switch (Entry.Kind) { 5701 case BitstreamEntry::SubBlock: // Handled for us already. 5702 case BitstreamEntry::Error: 5703 return error("Malformed block"); 5704 case BitstreamEntry::EndBlock: 5705 // Done parsing VST, jump back to wherever we came from. 5706 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5707 return JumpFailed; 5708 return Error::success(); 5709 case BitstreamEntry::Record: 5710 // The interesting case. 5711 break; 5712 } 5713 5714 // Read a record. 5715 Record.clear(); 5716 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5717 if (!MaybeRecord) 5718 return MaybeRecord.takeError(); 5719 switch (MaybeRecord.get()) { 5720 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5721 break; 5722 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5723 if (convertToString(Record, 1, ValueName)) 5724 return error("Invalid record"); 5725 unsigned ValueID = Record[0]; 5726 assert(!SourceFileName.empty()); 5727 auto VLI = ValueIdToLinkageMap.find(ValueID); 5728 assert(VLI != ValueIdToLinkageMap.end() && 5729 "No linkage found for VST entry?"); 5730 auto Linkage = VLI->second; 5731 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5732 ValueName.clear(); 5733 break; 5734 } 5735 case bitc::VST_CODE_FNENTRY: { 5736 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5737 if (convertToString(Record, 2, ValueName)) 5738 return error("Invalid record"); 5739 unsigned ValueID = Record[0]; 5740 assert(!SourceFileName.empty()); 5741 auto VLI = ValueIdToLinkageMap.find(ValueID); 5742 assert(VLI != ValueIdToLinkageMap.end() && 5743 "No linkage found for VST entry?"); 5744 auto Linkage = VLI->second; 5745 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5746 ValueName.clear(); 5747 break; 5748 } 5749 case bitc::VST_CODE_COMBINED_ENTRY: { 5750 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5751 unsigned ValueID = Record[0]; 5752 GlobalValue::GUID RefGUID = Record[1]; 5753 // The "original name", which is the second value of the pair will be 5754 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5755 ValueIdToValueInfoMap[ValueID] = 5756 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5757 break; 5758 } 5759 } 5760 } 5761 } 5762 5763 // Parse just the blocks needed for building the index out of the module. 5764 // At the end of this routine the module Index is populated with a map 5765 // from global value id to GlobalValueSummary objects. 5766 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5767 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5768 return Err; 5769 5770 SmallVector<uint64_t, 64> Record; 5771 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5772 unsigned ValueId = 0; 5773 5774 // Read the index for this module. 5775 while (true) { 5776 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5777 if (!MaybeEntry) 5778 return MaybeEntry.takeError(); 5779 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5780 5781 switch (Entry.Kind) { 5782 case BitstreamEntry::Error: 5783 return error("Malformed block"); 5784 case BitstreamEntry::EndBlock: 5785 return Error::success(); 5786 5787 case BitstreamEntry::SubBlock: 5788 switch (Entry.ID) { 5789 default: // Skip unknown content. 5790 if (Error Err = Stream.SkipBlock()) 5791 return Err; 5792 break; 5793 case bitc::BLOCKINFO_BLOCK_ID: 5794 // Need to parse these to get abbrev ids (e.g. for VST) 5795 if (readBlockInfo()) 5796 return error("Malformed block"); 5797 break; 5798 case bitc::VALUE_SYMTAB_BLOCK_ID: 5799 // Should have been parsed earlier via VSTOffset, unless there 5800 // is no summary section. 5801 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5802 !SeenGlobalValSummary) && 5803 "Expected early VST parse via VSTOffset record"); 5804 if (Error Err = Stream.SkipBlock()) 5805 return Err; 5806 break; 5807 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5808 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5809 // Add the module if it is a per-module index (has a source file name). 5810 if (!SourceFileName.empty()) 5811 addThisModule(); 5812 assert(!SeenValueSymbolTable && 5813 "Already read VST when parsing summary block?"); 5814 // We might not have a VST if there were no values in the 5815 // summary. An empty summary block generated when we are 5816 // performing ThinLTO compiles so we don't later invoke 5817 // the regular LTO process on them. 5818 if (VSTOffset > 0) { 5819 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5820 return Err; 5821 SeenValueSymbolTable = true; 5822 } 5823 SeenGlobalValSummary = true; 5824 if (Error Err = parseEntireSummary(Entry.ID)) 5825 return Err; 5826 break; 5827 case bitc::MODULE_STRTAB_BLOCK_ID: 5828 if (Error Err = parseModuleStringTable()) 5829 return Err; 5830 break; 5831 } 5832 continue; 5833 5834 case BitstreamEntry::Record: { 5835 Record.clear(); 5836 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5837 if (!MaybeBitCode) 5838 return MaybeBitCode.takeError(); 5839 switch (MaybeBitCode.get()) { 5840 default: 5841 break; // Default behavior, ignore unknown content. 5842 case bitc::MODULE_CODE_VERSION: { 5843 if (Error Err = parseVersionRecord(Record).takeError()) 5844 return Err; 5845 break; 5846 } 5847 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5848 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5849 SmallString<128> ValueName; 5850 if (convertToString(Record, 0, ValueName)) 5851 return error("Invalid record"); 5852 SourceFileName = ValueName.c_str(); 5853 break; 5854 } 5855 /// MODULE_CODE_HASH: [5*i32] 5856 case bitc::MODULE_CODE_HASH: { 5857 if (Record.size() != 5) 5858 return error("Invalid hash length " + Twine(Record.size()).str()); 5859 auto &Hash = getThisModule()->second.second; 5860 int Pos = 0; 5861 for (auto &Val : Record) { 5862 assert(!(Val >> 32) && "Unexpected high bits set"); 5863 Hash[Pos++] = Val; 5864 } 5865 break; 5866 } 5867 /// MODULE_CODE_VSTOFFSET: [offset] 5868 case bitc::MODULE_CODE_VSTOFFSET: 5869 if (Record.empty()) 5870 return error("Invalid record"); 5871 // Note that we subtract 1 here because the offset is relative to one 5872 // word before the start of the identification or module block, which 5873 // was historically always the start of the regular bitcode header. 5874 VSTOffset = Record[0] - 1; 5875 break; 5876 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5877 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5878 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5879 // v2: [strtab offset, strtab size, v1] 5880 case bitc::MODULE_CODE_GLOBALVAR: 5881 case bitc::MODULE_CODE_FUNCTION: 5882 case bitc::MODULE_CODE_ALIAS: { 5883 StringRef Name; 5884 ArrayRef<uint64_t> GVRecord; 5885 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5886 if (GVRecord.size() <= 3) 5887 return error("Invalid record"); 5888 uint64_t RawLinkage = GVRecord[3]; 5889 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5890 if (!UseStrtab) { 5891 ValueIdToLinkageMap[ValueId++] = Linkage; 5892 break; 5893 } 5894 5895 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5896 break; 5897 } 5898 } 5899 } 5900 continue; 5901 } 5902 } 5903 } 5904 5905 std::vector<ValueInfo> 5906 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5907 std::vector<ValueInfo> Ret; 5908 Ret.reserve(Record.size()); 5909 for (uint64_t RefValueId : Record) 5910 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5911 return Ret; 5912 } 5913 5914 std::vector<FunctionSummary::EdgeTy> 5915 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5916 bool IsOldProfileFormat, 5917 bool HasProfile, bool HasRelBF) { 5918 std::vector<FunctionSummary::EdgeTy> Ret; 5919 Ret.reserve(Record.size()); 5920 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5921 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5922 uint64_t RelBF = 0; 5923 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5924 if (IsOldProfileFormat) { 5925 I += 1; // Skip old callsitecount field 5926 if (HasProfile) 5927 I += 1; // Skip old profilecount field 5928 } else if (HasProfile) 5929 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5930 else if (HasRelBF) 5931 RelBF = Record[++I]; 5932 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5933 } 5934 return Ret; 5935 } 5936 5937 static void 5938 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5939 WholeProgramDevirtResolution &Wpd) { 5940 uint64_t ArgNum = Record[Slot++]; 5941 WholeProgramDevirtResolution::ByArg &B = 5942 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5943 Slot += ArgNum; 5944 5945 B.TheKind = 5946 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5947 B.Info = Record[Slot++]; 5948 B.Byte = Record[Slot++]; 5949 B.Bit = Record[Slot++]; 5950 } 5951 5952 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5953 StringRef Strtab, size_t &Slot, 5954 TypeIdSummary &TypeId) { 5955 uint64_t Id = Record[Slot++]; 5956 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5957 5958 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5959 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5960 static_cast<size_t>(Record[Slot + 1])}; 5961 Slot += 2; 5962 5963 uint64_t ResByArgNum = Record[Slot++]; 5964 for (uint64_t I = 0; I != ResByArgNum; ++I) 5965 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5966 } 5967 5968 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5969 StringRef Strtab, 5970 ModuleSummaryIndex &TheIndex) { 5971 size_t Slot = 0; 5972 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5973 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5974 Slot += 2; 5975 5976 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5977 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5978 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5979 TypeId.TTRes.SizeM1 = Record[Slot++]; 5980 TypeId.TTRes.BitMask = Record[Slot++]; 5981 TypeId.TTRes.InlineBits = Record[Slot++]; 5982 5983 while (Slot < Record.size()) 5984 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5985 } 5986 5987 std::vector<FunctionSummary::ParamAccess> 5988 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 5989 auto ReadRange = [&]() { 5990 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 5991 BitcodeReader::decodeSignRotatedValue(Record.front())); 5992 Record = Record.drop_front(); 5993 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 5994 BitcodeReader::decodeSignRotatedValue(Record.front())); 5995 Record = Record.drop_front(); 5996 ConstantRange Range{Lower, Upper}; 5997 assert(!Range.isFullSet()); 5998 assert(!Range.isUpperSignWrapped()); 5999 return Range; 6000 }; 6001 6002 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6003 while (!Record.empty()) { 6004 PendingParamAccesses.emplace_back(); 6005 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6006 ParamAccess.ParamNo = Record.front(); 6007 Record = Record.drop_front(); 6008 ParamAccess.Use = ReadRange(); 6009 ParamAccess.Calls.resize(Record.front()); 6010 Record = Record.drop_front(); 6011 for (auto &Call : ParamAccess.Calls) { 6012 Call.ParamNo = Record.front(); 6013 Record = Record.drop_front(); 6014 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6015 Record = Record.drop_front(); 6016 Call.Offsets = ReadRange(); 6017 } 6018 } 6019 return PendingParamAccesses; 6020 } 6021 6022 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6023 ArrayRef<uint64_t> Record, size_t &Slot, 6024 TypeIdCompatibleVtableInfo &TypeId) { 6025 uint64_t Offset = Record[Slot++]; 6026 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6027 TypeId.push_back({Offset, Callee}); 6028 } 6029 6030 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6031 ArrayRef<uint64_t> Record) { 6032 size_t Slot = 0; 6033 TypeIdCompatibleVtableInfo &TypeId = 6034 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6035 {Strtab.data() + Record[Slot], 6036 static_cast<size_t>(Record[Slot + 1])}); 6037 Slot += 2; 6038 6039 while (Slot < Record.size()) 6040 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6041 } 6042 6043 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6044 unsigned WOCnt) { 6045 // Readonly and writeonly refs are in the end of the refs list. 6046 assert(ROCnt + WOCnt <= Refs.size()); 6047 unsigned FirstWORef = Refs.size() - WOCnt; 6048 unsigned RefNo = FirstWORef - ROCnt; 6049 for (; RefNo < FirstWORef; ++RefNo) 6050 Refs[RefNo].setReadOnly(); 6051 for (; RefNo < Refs.size(); ++RefNo) 6052 Refs[RefNo].setWriteOnly(); 6053 } 6054 6055 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6056 // objects in the index. 6057 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6058 if (Error Err = Stream.EnterSubBlock(ID)) 6059 return Err; 6060 SmallVector<uint64_t, 64> Record; 6061 6062 // Parse version 6063 { 6064 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6065 if (!MaybeEntry) 6066 return MaybeEntry.takeError(); 6067 BitstreamEntry Entry = MaybeEntry.get(); 6068 6069 if (Entry.Kind != BitstreamEntry::Record) 6070 return error("Invalid Summary Block: record for version expected"); 6071 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6072 if (!MaybeRecord) 6073 return MaybeRecord.takeError(); 6074 if (MaybeRecord.get() != bitc::FS_VERSION) 6075 return error("Invalid Summary Block: version expected"); 6076 } 6077 const uint64_t Version = Record[0]; 6078 const bool IsOldProfileFormat = Version == 1; 6079 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6080 return error("Invalid summary version " + Twine(Version) + 6081 ". Version should be in the range [1-" + 6082 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6083 "]."); 6084 Record.clear(); 6085 6086 // Keep around the last seen summary to be used when we see an optional 6087 // "OriginalName" attachement. 6088 GlobalValueSummary *LastSeenSummary = nullptr; 6089 GlobalValue::GUID LastSeenGUID = 0; 6090 6091 // We can expect to see any number of type ID information records before 6092 // each function summary records; these variables store the information 6093 // collected so far so that it can be used to create the summary object. 6094 std::vector<GlobalValue::GUID> PendingTypeTests; 6095 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6096 PendingTypeCheckedLoadVCalls; 6097 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6098 PendingTypeCheckedLoadConstVCalls; 6099 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6100 6101 while (true) { 6102 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6103 if (!MaybeEntry) 6104 return MaybeEntry.takeError(); 6105 BitstreamEntry Entry = MaybeEntry.get(); 6106 6107 switch (Entry.Kind) { 6108 case BitstreamEntry::SubBlock: // Handled for us already. 6109 case BitstreamEntry::Error: 6110 return error("Malformed block"); 6111 case BitstreamEntry::EndBlock: 6112 return Error::success(); 6113 case BitstreamEntry::Record: 6114 // The interesting case. 6115 break; 6116 } 6117 6118 // Read a record. The record format depends on whether this 6119 // is a per-module index or a combined index file. In the per-module 6120 // case the records contain the associated value's ID for correlation 6121 // with VST entries. In the combined index the correlation is done 6122 // via the bitcode offset of the summary records (which were saved 6123 // in the combined index VST entries). The records also contain 6124 // information used for ThinLTO renaming and importing. 6125 Record.clear(); 6126 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6127 if (!MaybeBitCode) 6128 return MaybeBitCode.takeError(); 6129 switch (unsigned BitCode = MaybeBitCode.get()) { 6130 default: // Default behavior: ignore. 6131 break; 6132 case bitc::FS_FLAGS: { // [flags] 6133 TheIndex.setFlags(Record[0]); 6134 break; 6135 } 6136 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6137 uint64_t ValueID = Record[0]; 6138 GlobalValue::GUID RefGUID = Record[1]; 6139 ValueIdToValueInfoMap[ValueID] = 6140 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6141 break; 6142 } 6143 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6144 // numrefs x valueid, n x (valueid)] 6145 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6146 // numrefs x valueid, 6147 // n x (valueid, hotness)] 6148 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6149 // numrefs x valueid, 6150 // n x (valueid, relblockfreq)] 6151 case bitc::FS_PERMODULE: 6152 case bitc::FS_PERMODULE_RELBF: 6153 case bitc::FS_PERMODULE_PROFILE: { 6154 unsigned ValueID = Record[0]; 6155 uint64_t RawFlags = Record[1]; 6156 unsigned InstCount = Record[2]; 6157 uint64_t RawFunFlags = 0; 6158 unsigned NumRefs = Record[3]; 6159 unsigned NumRORefs = 0, NumWORefs = 0; 6160 int RefListStartIndex = 4; 6161 if (Version >= 4) { 6162 RawFunFlags = Record[3]; 6163 NumRefs = Record[4]; 6164 RefListStartIndex = 5; 6165 if (Version >= 5) { 6166 NumRORefs = Record[5]; 6167 RefListStartIndex = 6; 6168 if (Version >= 7) { 6169 NumWORefs = Record[6]; 6170 RefListStartIndex = 7; 6171 } 6172 } 6173 } 6174 6175 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6176 // The module path string ref set in the summary must be owned by the 6177 // index's module string table. Since we don't have a module path 6178 // string table section in the per-module index, we create a single 6179 // module path string table entry with an empty (0) ID to take 6180 // ownership. 6181 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6182 assert(Record.size() >= RefListStartIndex + NumRefs && 6183 "Record size inconsistent with number of references"); 6184 std::vector<ValueInfo> Refs = makeRefList( 6185 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6186 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6187 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6188 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6189 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6190 IsOldProfileFormat, HasProfile, HasRelBF); 6191 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6192 auto FS = std::make_unique<FunctionSummary>( 6193 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6194 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6195 std::move(PendingTypeTestAssumeVCalls), 6196 std::move(PendingTypeCheckedLoadVCalls), 6197 std::move(PendingTypeTestAssumeConstVCalls), 6198 std::move(PendingTypeCheckedLoadConstVCalls), 6199 std::move(PendingParamAccesses)); 6200 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6201 FS->setModulePath(getThisModule()->first()); 6202 FS->setOriginalName(VIAndOriginalGUID.second); 6203 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6204 break; 6205 } 6206 // FS_ALIAS: [valueid, flags, valueid] 6207 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6208 // they expect all aliasee summaries to be available. 6209 case bitc::FS_ALIAS: { 6210 unsigned ValueID = Record[0]; 6211 uint64_t RawFlags = Record[1]; 6212 unsigned AliaseeID = Record[2]; 6213 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6214 auto AS = std::make_unique<AliasSummary>(Flags); 6215 // The module path string ref set in the summary must be owned by the 6216 // index's module string table. Since we don't have a module path 6217 // string table section in the per-module index, we create a single 6218 // module path string table entry with an empty (0) ID to take 6219 // ownership. 6220 AS->setModulePath(getThisModule()->first()); 6221 6222 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6223 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6224 if (!AliaseeInModule) 6225 return error("Alias expects aliasee summary to be parsed"); 6226 AS->setAliasee(AliaseeVI, AliaseeInModule); 6227 6228 auto GUID = getValueInfoFromValueId(ValueID); 6229 AS->setOriginalName(GUID.second); 6230 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6231 break; 6232 } 6233 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6234 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6235 unsigned ValueID = Record[0]; 6236 uint64_t RawFlags = Record[1]; 6237 unsigned RefArrayStart = 2; 6238 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6239 /* WriteOnly */ false, 6240 /* Constant */ false, 6241 GlobalObject::VCallVisibilityPublic); 6242 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6243 if (Version >= 5) { 6244 GVF = getDecodedGVarFlags(Record[2]); 6245 RefArrayStart = 3; 6246 } 6247 std::vector<ValueInfo> Refs = 6248 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6249 auto FS = 6250 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6251 FS->setModulePath(getThisModule()->first()); 6252 auto GUID = getValueInfoFromValueId(ValueID); 6253 FS->setOriginalName(GUID.second); 6254 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6255 break; 6256 } 6257 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6258 // numrefs, numrefs x valueid, 6259 // n x (valueid, offset)] 6260 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6261 unsigned ValueID = Record[0]; 6262 uint64_t RawFlags = Record[1]; 6263 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6264 unsigned NumRefs = Record[3]; 6265 unsigned RefListStartIndex = 4; 6266 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6267 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6268 std::vector<ValueInfo> Refs = makeRefList( 6269 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6270 VTableFuncList VTableFuncs; 6271 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6272 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6273 uint64_t Offset = Record[++I]; 6274 VTableFuncs.push_back({Callee, Offset}); 6275 } 6276 auto VS = 6277 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6278 VS->setModulePath(getThisModule()->first()); 6279 VS->setVTableFuncs(VTableFuncs); 6280 auto GUID = getValueInfoFromValueId(ValueID); 6281 VS->setOriginalName(GUID.second); 6282 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6283 break; 6284 } 6285 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6286 // numrefs x valueid, n x (valueid)] 6287 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6288 // numrefs x valueid, n x (valueid, hotness)] 6289 case bitc::FS_COMBINED: 6290 case bitc::FS_COMBINED_PROFILE: { 6291 unsigned ValueID = Record[0]; 6292 uint64_t ModuleId = Record[1]; 6293 uint64_t RawFlags = Record[2]; 6294 unsigned InstCount = Record[3]; 6295 uint64_t RawFunFlags = 0; 6296 uint64_t EntryCount = 0; 6297 unsigned NumRefs = Record[4]; 6298 unsigned NumRORefs = 0, NumWORefs = 0; 6299 int RefListStartIndex = 5; 6300 6301 if (Version >= 4) { 6302 RawFunFlags = Record[4]; 6303 RefListStartIndex = 6; 6304 size_t NumRefsIndex = 5; 6305 if (Version >= 5) { 6306 unsigned NumRORefsOffset = 1; 6307 RefListStartIndex = 7; 6308 if (Version >= 6) { 6309 NumRefsIndex = 6; 6310 EntryCount = Record[5]; 6311 RefListStartIndex = 8; 6312 if (Version >= 7) { 6313 RefListStartIndex = 9; 6314 NumWORefs = Record[8]; 6315 NumRORefsOffset = 2; 6316 } 6317 } 6318 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6319 } 6320 NumRefs = Record[NumRefsIndex]; 6321 } 6322 6323 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6324 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6325 assert(Record.size() >= RefListStartIndex + NumRefs && 6326 "Record size inconsistent with number of references"); 6327 std::vector<ValueInfo> Refs = makeRefList( 6328 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6329 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6330 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6331 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6332 IsOldProfileFormat, HasProfile, false); 6333 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6334 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6335 auto FS = std::make_unique<FunctionSummary>( 6336 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6337 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6338 std::move(PendingTypeTestAssumeVCalls), 6339 std::move(PendingTypeCheckedLoadVCalls), 6340 std::move(PendingTypeTestAssumeConstVCalls), 6341 std::move(PendingTypeCheckedLoadConstVCalls), 6342 std::move(PendingParamAccesses)); 6343 LastSeenSummary = FS.get(); 6344 LastSeenGUID = VI.getGUID(); 6345 FS->setModulePath(ModuleIdMap[ModuleId]); 6346 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6347 break; 6348 } 6349 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6350 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6351 // they expect all aliasee summaries to be available. 6352 case bitc::FS_COMBINED_ALIAS: { 6353 unsigned ValueID = Record[0]; 6354 uint64_t ModuleId = Record[1]; 6355 uint64_t RawFlags = Record[2]; 6356 unsigned AliaseeValueId = Record[3]; 6357 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6358 auto AS = std::make_unique<AliasSummary>(Flags); 6359 LastSeenSummary = AS.get(); 6360 AS->setModulePath(ModuleIdMap[ModuleId]); 6361 6362 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6363 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6364 AS->setAliasee(AliaseeVI, AliaseeInModule); 6365 6366 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6367 LastSeenGUID = VI.getGUID(); 6368 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6369 break; 6370 } 6371 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6372 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6373 unsigned ValueID = Record[0]; 6374 uint64_t ModuleId = Record[1]; 6375 uint64_t RawFlags = Record[2]; 6376 unsigned RefArrayStart = 3; 6377 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6378 /* WriteOnly */ false, 6379 /* Constant */ false, 6380 GlobalObject::VCallVisibilityPublic); 6381 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6382 if (Version >= 5) { 6383 GVF = getDecodedGVarFlags(Record[3]); 6384 RefArrayStart = 4; 6385 } 6386 std::vector<ValueInfo> Refs = 6387 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6388 auto FS = 6389 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6390 LastSeenSummary = FS.get(); 6391 FS->setModulePath(ModuleIdMap[ModuleId]); 6392 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6393 LastSeenGUID = VI.getGUID(); 6394 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6395 break; 6396 } 6397 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6398 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6399 uint64_t OriginalName = Record[0]; 6400 if (!LastSeenSummary) 6401 return error("Name attachment that does not follow a combined record"); 6402 LastSeenSummary->setOriginalName(OriginalName); 6403 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6404 // Reset the LastSeenSummary 6405 LastSeenSummary = nullptr; 6406 LastSeenGUID = 0; 6407 break; 6408 } 6409 case bitc::FS_TYPE_TESTS: 6410 assert(PendingTypeTests.empty()); 6411 llvm::append_range(PendingTypeTests, Record); 6412 break; 6413 6414 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6415 assert(PendingTypeTestAssumeVCalls.empty()); 6416 for (unsigned I = 0; I != Record.size(); I += 2) 6417 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6418 break; 6419 6420 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6421 assert(PendingTypeCheckedLoadVCalls.empty()); 6422 for (unsigned I = 0; I != Record.size(); I += 2) 6423 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6424 break; 6425 6426 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6427 PendingTypeTestAssumeConstVCalls.push_back( 6428 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6429 break; 6430 6431 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6432 PendingTypeCheckedLoadConstVCalls.push_back( 6433 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6434 break; 6435 6436 case bitc::FS_CFI_FUNCTION_DEFS: { 6437 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6438 for (unsigned I = 0; I != Record.size(); I += 2) 6439 CfiFunctionDefs.insert( 6440 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6441 break; 6442 } 6443 6444 case bitc::FS_CFI_FUNCTION_DECLS: { 6445 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6446 for (unsigned I = 0; I != Record.size(); I += 2) 6447 CfiFunctionDecls.insert( 6448 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6449 break; 6450 } 6451 6452 case bitc::FS_TYPE_ID: 6453 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6454 break; 6455 6456 case bitc::FS_TYPE_ID_METADATA: 6457 parseTypeIdCompatibleVtableSummaryRecord(Record); 6458 break; 6459 6460 case bitc::FS_BLOCK_COUNT: 6461 TheIndex.addBlockCount(Record[0]); 6462 break; 6463 6464 case bitc::FS_PARAM_ACCESS: { 6465 PendingParamAccesses = parseParamAccesses(Record); 6466 break; 6467 } 6468 } 6469 } 6470 llvm_unreachable("Exit infinite loop"); 6471 } 6472 6473 // Parse the module string table block into the Index. 6474 // This populates the ModulePathStringTable map in the index. 6475 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6476 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6477 return Err; 6478 6479 SmallVector<uint64_t, 64> Record; 6480 6481 SmallString<128> ModulePath; 6482 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6483 6484 while (true) { 6485 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6486 if (!MaybeEntry) 6487 return MaybeEntry.takeError(); 6488 BitstreamEntry Entry = MaybeEntry.get(); 6489 6490 switch (Entry.Kind) { 6491 case BitstreamEntry::SubBlock: // Handled for us already. 6492 case BitstreamEntry::Error: 6493 return error("Malformed block"); 6494 case BitstreamEntry::EndBlock: 6495 return Error::success(); 6496 case BitstreamEntry::Record: 6497 // The interesting case. 6498 break; 6499 } 6500 6501 Record.clear(); 6502 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6503 if (!MaybeRecord) 6504 return MaybeRecord.takeError(); 6505 switch (MaybeRecord.get()) { 6506 default: // Default behavior: ignore. 6507 break; 6508 case bitc::MST_CODE_ENTRY: { 6509 // MST_ENTRY: [modid, namechar x N] 6510 uint64_t ModuleId = Record[0]; 6511 6512 if (convertToString(Record, 1, ModulePath)) 6513 return error("Invalid record"); 6514 6515 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6516 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6517 6518 ModulePath.clear(); 6519 break; 6520 } 6521 /// MST_CODE_HASH: [5*i32] 6522 case bitc::MST_CODE_HASH: { 6523 if (Record.size() != 5) 6524 return error("Invalid hash length " + Twine(Record.size()).str()); 6525 if (!LastSeenModule) 6526 return error("Invalid hash that does not follow a module path"); 6527 int Pos = 0; 6528 for (auto &Val : Record) { 6529 assert(!(Val >> 32) && "Unexpected high bits set"); 6530 LastSeenModule->second.second[Pos++] = Val; 6531 } 6532 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6533 LastSeenModule = nullptr; 6534 break; 6535 } 6536 } 6537 } 6538 llvm_unreachable("Exit infinite loop"); 6539 } 6540 6541 namespace { 6542 6543 // FIXME: This class is only here to support the transition to llvm::Error. It 6544 // will be removed once this transition is complete. Clients should prefer to 6545 // deal with the Error value directly, rather than converting to error_code. 6546 class BitcodeErrorCategoryType : public std::error_category { 6547 const char *name() const noexcept override { 6548 return "llvm.bitcode"; 6549 } 6550 6551 std::string message(int IE) const override { 6552 BitcodeError E = static_cast<BitcodeError>(IE); 6553 switch (E) { 6554 case BitcodeError::CorruptedBitcode: 6555 return "Corrupted bitcode"; 6556 } 6557 llvm_unreachable("Unknown error type!"); 6558 } 6559 }; 6560 6561 } // end anonymous namespace 6562 6563 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6564 6565 const std::error_category &llvm::BitcodeErrorCategory() { 6566 return *ErrorCategory; 6567 } 6568 6569 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6570 unsigned Block, unsigned RecordID) { 6571 if (Error Err = Stream.EnterSubBlock(Block)) 6572 return std::move(Err); 6573 6574 StringRef Strtab; 6575 while (true) { 6576 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6577 if (!MaybeEntry) 6578 return MaybeEntry.takeError(); 6579 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6580 6581 switch (Entry.Kind) { 6582 case BitstreamEntry::EndBlock: 6583 return Strtab; 6584 6585 case BitstreamEntry::Error: 6586 return error("Malformed block"); 6587 6588 case BitstreamEntry::SubBlock: 6589 if (Error Err = Stream.SkipBlock()) 6590 return std::move(Err); 6591 break; 6592 6593 case BitstreamEntry::Record: 6594 StringRef Blob; 6595 SmallVector<uint64_t, 1> Record; 6596 Expected<unsigned> MaybeRecord = 6597 Stream.readRecord(Entry.ID, Record, &Blob); 6598 if (!MaybeRecord) 6599 return MaybeRecord.takeError(); 6600 if (MaybeRecord.get() == RecordID) 6601 Strtab = Blob; 6602 break; 6603 } 6604 } 6605 } 6606 6607 //===----------------------------------------------------------------------===// 6608 // External interface 6609 //===----------------------------------------------------------------------===// 6610 6611 Expected<std::vector<BitcodeModule>> 6612 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6613 auto FOrErr = getBitcodeFileContents(Buffer); 6614 if (!FOrErr) 6615 return FOrErr.takeError(); 6616 return std::move(FOrErr->Mods); 6617 } 6618 6619 Expected<BitcodeFileContents> 6620 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6621 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6622 if (!StreamOrErr) 6623 return StreamOrErr.takeError(); 6624 BitstreamCursor &Stream = *StreamOrErr; 6625 6626 BitcodeFileContents F; 6627 while (true) { 6628 uint64_t BCBegin = Stream.getCurrentByteNo(); 6629 6630 // We may be consuming bitcode from a client that leaves garbage at the end 6631 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6632 // the end that there cannot possibly be another module, stop looking. 6633 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6634 return F; 6635 6636 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6637 if (!MaybeEntry) 6638 return MaybeEntry.takeError(); 6639 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6640 6641 switch (Entry.Kind) { 6642 case BitstreamEntry::EndBlock: 6643 case BitstreamEntry::Error: 6644 return error("Malformed block"); 6645 6646 case BitstreamEntry::SubBlock: { 6647 uint64_t IdentificationBit = -1ull; 6648 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6649 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6650 if (Error Err = Stream.SkipBlock()) 6651 return std::move(Err); 6652 6653 { 6654 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6655 if (!MaybeEntry) 6656 return MaybeEntry.takeError(); 6657 Entry = MaybeEntry.get(); 6658 } 6659 6660 if (Entry.Kind != BitstreamEntry::SubBlock || 6661 Entry.ID != bitc::MODULE_BLOCK_ID) 6662 return error("Malformed block"); 6663 } 6664 6665 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6666 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6667 if (Error Err = Stream.SkipBlock()) 6668 return std::move(Err); 6669 6670 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6671 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6672 Buffer.getBufferIdentifier(), IdentificationBit, 6673 ModuleBit}); 6674 continue; 6675 } 6676 6677 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6678 Expected<StringRef> Strtab = 6679 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6680 if (!Strtab) 6681 return Strtab.takeError(); 6682 // This string table is used by every preceding bitcode module that does 6683 // not have its own string table. A bitcode file may have multiple 6684 // string tables if it was created by binary concatenation, for example 6685 // with "llvm-cat -b". 6686 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6687 if (!I->Strtab.empty()) 6688 break; 6689 I->Strtab = *Strtab; 6690 } 6691 // Similarly, the string table is used by every preceding symbol table; 6692 // normally there will be just one unless the bitcode file was created 6693 // by binary concatenation. 6694 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6695 F.StrtabForSymtab = *Strtab; 6696 continue; 6697 } 6698 6699 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6700 Expected<StringRef> SymtabOrErr = 6701 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6702 if (!SymtabOrErr) 6703 return SymtabOrErr.takeError(); 6704 6705 // We can expect the bitcode file to have multiple symbol tables if it 6706 // was created by binary concatenation. In that case we silently 6707 // ignore any subsequent symbol tables, which is fine because this is a 6708 // low level function. The client is expected to notice that the number 6709 // of modules in the symbol table does not match the number of modules 6710 // in the input file and regenerate the symbol table. 6711 if (F.Symtab.empty()) 6712 F.Symtab = *SymtabOrErr; 6713 continue; 6714 } 6715 6716 if (Error Err = Stream.SkipBlock()) 6717 return std::move(Err); 6718 continue; 6719 } 6720 case BitstreamEntry::Record: 6721 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6722 continue; 6723 else 6724 return StreamFailed.takeError(); 6725 } 6726 } 6727 } 6728 6729 /// Get a lazy one-at-time loading module from bitcode. 6730 /// 6731 /// This isn't always used in a lazy context. In particular, it's also used by 6732 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6733 /// in forward-referenced functions from block address references. 6734 /// 6735 /// \param[in] MaterializeAll Set to \c true if we should materialize 6736 /// everything. 6737 Expected<std::unique_ptr<Module>> 6738 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6739 bool ShouldLazyLoadMetadata, bool IsImporting, 6740 DataLayoutCallbackTy DataLayoutCallback) { 6741 BitstreamCursor Stream(Buffer); 6742 6743 std::string ProducerIdentification; 6744 if (IdentificationBit != -1ull) { 6745 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6746 return std::move(JumpFailed); 6747 Expected<std::string> ProducerIdentificationOrErr = 6748 readIdentificationBlock(Stream); 6749 if (!ProducerIdentificationOrErr) 6750 return ProducerIdentificationOrErr.takeError(); 6751 6752 ProducerIdentification = *ProducerIdentificationOrErr; 6753 } 6754 6755 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6756 return std::move(JumpFailed); 6757 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6758 Context); 6759 6760 std::unique_ptr<Module> M = 6761 std::make_unique<Module>(ModuleIdentifier, Context); 6762 M->setMaterializer(R); 6763 6764 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6765 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6766 IsImporting, DataLayoutCallback)) 6767 return std::move(Err); 6768 6769 if (MaterializeAll) { 6770 // Read in the entire module, and destroy the BitcodeReader. 6771 if (Error Err = M->materializeAll()) 6772 return std::move(Err); 6773 } else { 6774 // Resolve forward references from blockaddresses. 6775 if (Error Err = R->materializeForwardReferencedFunctions()) 6776 return std::move(Err); 6777 } 6778 return std::move(M); 6779 } 6780 6781 Expected<std::unique_ptr<Module>> 6782 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6783 bool IsImporting) { 6784 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6785 [](StringRef) { return None; }); 6786 } 6787 6788 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6789 // We don't use ModuleIdentifier here because the client may need to control the 6790 // module path used in the combined summary (e.g. when reading summaries for 6791 // regular LTO modules). 6792 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6793 StringRef ModulePath, uint64_t ModuleId) { 6794 BitstreamCursor Stream(Buffer); 6795 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6796 return JumpFailed; 6797 6798 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6799 ModulePath, ModuleId); 6800 return R.parseModule(); 6801 } 6802 6803 // Parse the specified bitcode buffer, returning the function info index. 6804 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6805 BitstreamCursor Stream(Buffer); 6806 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6807 return std::move(JumpFailed); 6808 6809 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6810 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6811 ModuleIdentifier, 0); 6812 6813 if (Error Err = R.parseModule()) 6814 return std::move(Err); 6815 6816 return std::move(Index); 6817 } 6818 6819 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6820 unsigned ID) { 6821 if (Error Err = Stream.EnterSubBlock(ID)) 6822 return std::move(Err); 6823 SmallVector<uint64_t, 64> Record; 6824 6825 while (true) { 6826 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6827 if (!MaybeEntry) 6828 return MaybeEntry.takeError(); 6829 BitstreamEntry Entry = MaybeEntry.get(); 6830 6831 switch (Entry.Kind) { 6832 case BitstreamEntry::SubBlock: // Handled for us already. 6833 case BitstreamEntry::Error: 6834 return error("Malformed block"); 6835 case BitstreamEntry::EndBlock: 6836 // If no flags record found, conservatively return true to mimic 6837 // behavior before this flag was added. 6838 return true; 6839 case BitstreamEntry::Record: 6840 // The interesting case. 6841 break; 6842 } 6843 6844 // Look for the FS_FLAGS record. 6845 Record.clear(); 6846 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6847 if (!MaybeBitCode) 6848 return MaybeBitCode.takeError(); 6849 switch (MaybeBitCode.get()) { 6850 default: // Default behavior: ignore. 6851 break; 6852 case bitc::FS_FLAGS: { // [flags] 6853 uint64_t Flags = Record[0]; 6854 // Scan flags. 6855 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6856 6857 return Flags & 0x8; 6858 } 6859 } 6860 } 6861 llvm_unreachable("Exit infinite loop"); 6862 } 6863 6864 // Check if the given bitcode buffer contains a global value summary block. 6865 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6866 BitstreamCursor Stream(Buffer); 6867 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6868 return std::move(JumpFailed); 6869 6870 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6871 return std::move(Err); 6872 6873 while (true) { 6874 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6875 if (!MaybeEntry) 6876 return MaybeEntry.takeError(); 6877 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6878 6879 switch (Entry.Kind) { 6880 case BitstreamEntry::Error: 6881 return error("Malformed block"); 6882 case BitstreamEntry::EndBlock: 6883 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6884 /*EnableSplitLTOUnit=*/false}; 6885 6886 case BitstreamEntry::SubBlock: 6887 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6888 Expected<bool> EnableSplitLTOUnit = 6889 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6890 if (!EnableSplitLTOUnit) 6891 return EnableSplitLTOUnit.takeError(); 6892 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6893 *EnableSplitLTOUnit}; 6894 } 6895 6896 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6897 Expected<bool> EnableSplitLTOUnit = 6898 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6899 if (!EnableSplitLTOUnit) 6900 return EnableSplitLTOUnit.takeError(); 6901 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6902 *EnableSplitLTOUnit}; 6903 } 6904 6905 // Ignore other sub-blocks. 6906 if (Error Err = Stream.SkipBlock()) 6907 return std::move(Err); 6908 continue; 6909 6910 case BitstreamEntry::Record: 6911 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6912 continue; 6913 else 6914 return StreamFailed.takeError(); 6915 } 6916 } 6917 } 6918 6919 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6920 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6921 if (!MsOrErr) 6922 return MsOrErr.takeError(); 6923 6924 if (MsOrErr->size() != 1) 6925 return error("Expected a single module"); 6926 6927 return (*MsOrErr)[0]; 6928 } 6929 6930 Expected<std::unique_ptr<Module>> 6931 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6932 bool ShouldLazyLoadMetadata, bool IsImporting) { 6933 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6934 if (!BM) 6935 return BM.takeError(); 6936 6937 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6938 } 6939 6940 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6941 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6942 bool ShouldLazyLoadMetadata, bool IsImporting) { 6943 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6944 IsImporting); 6945 if (MOrErr) 6946 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6947 return MOrErr; 6948 } 6949 6950 Expected<std::unique_ptr<Module>> 6951 BitcodeModule::parseModule(LLVMContext &Context, 6952 DataLayoutCallbackTy DataLayoutCallback) { 6953 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6954 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6955 // written. We must defer until the Module has been fully materialized. 6956 } 6957 6958 Expected<std::unique_ptr<Module>> 6959 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6960 DataLayoutCallbackTy DataLayoutCallback) { 6961 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6962 if (!BM) 6963 return BM.takeError(); 6964 6965 return BM->parseModule(Context, DataLayoutCallback); 6966 } 6967 6968 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6969 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6970 if (!StreamOrErr) 6971 return StreamOrErr.takeError(); 6972 6973 return readTriple(*StreamOrErr); 6974 } 6975 6976 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6977 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6978 if (!StreamOrErr) 6979 return StreamOrErr.takeError(); 6980 6981 return hasObjCCategory(*StreamOrErr); 6982 } 6983 6984 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6985 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6986 if (!StreamOrErr) 6987 return StreamOrErr.takeError(); 6988 6989 return readIdentificationCode(*StreamOrErr); 6990 } 6991 6992 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6993 ModuleSummaryIndex &CombinedIndex, 6994 uint64_t ModuleId) { 6995 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6996 if (!BM) 6997 return BM.takeError(); 6998 6999 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7000 } 7001 7002 Expected<std::unique_ptr<ModuleSummaryIndex>> 7003 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7004 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7005 if (!BM) 7006 return BM.takeError(); 7007 7008 return BM->getSummary(); 7009 } 7010 7011 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7012 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7013 if (!BM) 7014 return BM.takeError(); 7015 7016 return BM->getLTOInfo(); 7017 } 7018 7019 Expected<std::unique_ptr<ModuleSummaryIndex>> 7020 llvm::getModuleSummaryIndexForFile(StringRef Path, 7021 bool IgnoreEmptyThinLTOIndexFile) { 7022 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7023 MemoryBuffer::getFileOrSTDIN(Path); 7024 if (!FileOrErr) 7025 return errorCodeToError(FileOrErr.getError()); 7026 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7027 return nullptr; 7028 return getModuleSummaryIndex(**FileOrErr); 7029 } 7030