1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalIndirectSymbol.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 156 Result += (char)Record[i]; 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](std::string) { 583 return None; 584 }); 585 586 static uint64_t decodeSignRotatedValue(uint64_t V); 587 588 /// Materialize any deferred Metadata block. 589 Error materializeMetadata() override; 590 591 void setStripDebugInfo() override; 592 593 private: 594 std::vector<StructType *> IdentifiedStructTypes; 595 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 596 StructType *createIdentifiedStructType(LLVMContext &Context); 597 598 /// Map all pointer types within \param Ty to the opaque pointer 599 /// type in the same address space if opaque pointers are being 600 /// used, otherwise nop. This converts a bitcode-reader internal 601 /// type into one suitable for use in a Value. 602 Type *flattenPointerTypes(Type *Ty) { 603 return Ty; 604 } 605 606 /// Given a fully structured pointer type (i.e. not opaque), return 607 /// the flattened form of its element, suitable for use in a Value. 608 Type *getPointerElementFlatType(Type *Ty) { 609 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 610 } 611 612 /// Given a fully structured pointer type, get its element type in 613 /// both fully structured form, and flattened form suitable for use 614 /// in a Value. 615 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 616 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 617 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 618 } 619 620 /// Return the flattened type (suitable for use in a Value) 621 /// specified by the given \param ID . 622 Type *getTypeByID(unsigned ID) { 623 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 624 } 625 626 /// Return the fully structured (bitcode-reader internal) type 627 /// corresponding to the given \param ID . 628 Type *getFullyStructuredTypeByID(unsigned ID); 629 630 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 631 if (Ty && Ty->isMetadataTy()) 632 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 633 return ValueList.getValueFwdRef(ID, Ty, FullTy); 634 } 635 636 Metadata *getFnMetadataByID(unsigned ID) { 637 return MDLoader->getMetadataFwdRefOrLoad(ID); 638 } 639 640 BasicBlock *getBasicBlock(unsigned ID) const { 641 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 642 return FunctionBBs[ID]; 643 } 644 645 AttributeList getAttributes(unsigned i) const { 646 if (i-1 < MAttributes.size()) 647 return MAttributes[i-1]; 648 return AttributeList(); 649 } 650 651 /// Read a value/type pair out of the specified record from slot 'Slot'. 652 /// Increment Slot past the number of slots used in the record. Return true on 653 /// failure. 654 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 655 unsigned InstNum, Value *&ResVal, 656 Type **FullTy = nullptr) { 657 if (Slot == Record.size()) return true; 658 unsigned ValNo = (unsigned)Record[Slot++]; 659 // Adjust the ValNo, if it was encoded relative to the InstNum. 660 if (UseRelativeIDs) 661 ValNo = InstNum - ValNo; 662 if (ValNo < InstNum) { 663 // If this is not a forward reference, just return the value we already 664 // have. 665 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 666 return ResVal == nullptr; 667 } 668 if (Slot == Record.size()) 669 return true; 670 671 unsigned TypeNo = (unsigned)Record[Slot++]; 672 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 673 if (FullTy) 674 *FullTy = getFullyStructuredTypeByID(TypeNo); 675 return ResVal == nullptr; 676 } 677 678 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 679 /// past the number of slots used by the value in the record. Return true if 680 /// there is an error. 681 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 682 unsigned InstNum, Type *Ty, Value *&ResVal) { 683 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 684 return true; 685 // All values currently take a single record slot. 686 ++Slot; 687 return false; 688 } 689 690 /// Like popValue, but does not increment the Slot number. 691 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 692 unsigned InstNum, Type *Ty, Value *&ResVal) { 693 ResVal = getValue(Record, Slot, InstNum, Ty); 694 return ResVal == nullptr; 695 } 696 697 /// Version of getValue that returns ResVal directly, or 0 if there is an 698 /// error. 699 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 700 unsigned InstNum, Type *Ty) { 701 if (Slot == Record.size()) return nullptr; 702 unsigned ValNo = (unsigned)Record[Slot]; 703 // Adjust the ValNo, if it was encoded relative to the InstNum. 704 if (UseRelativeIDs) 705 ValNo = InstNum - ValNo; 706 return getFnValueByID(ValNo, Ty); 707 } 708 709 /// Like getValue, but decodes signed VBRs. 710 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 711 unsigned InstNum, Type *Ty) { 712 if (Slot == Record.size()) return nullptr; 713 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 714 // Adjust the ValNo, if it was encoded relative to the InstNum. 715 if (UseRelativeIDs) 716 ValNo = InstNum - ValNo; 717 return getFnValueByID(ValNo, Ty); 718 } 719 720 /// Upgrades old-style typeless byval attributes by adding the corresponding 721 /// argument's pointee type. 722 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 723 724 /// Converts alignment exponent (i.e. power of two (or zero)) to the 725 /// corresponding alignment to use. If alignment is too large, returns 726 /// a corresponding error code. 727 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 728 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 729 Error parseModule( 730 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 731 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 732 733 Error parseComdatRecord(ArrayRef<uint64_t> Record); 734 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 735 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 736 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 737 ArrayRef<uint64_t> Record); 738 739 Error parseAttributeBlock(); 740 Error parseAttributeGroupBlock(); 741 Error parseTypeTable(); 742 Error parseTypeTableBody(); 743 Error parseOperandBundleTags(); 744 Error parseSyncScopeNames(); 745 746 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 747 unsigned NameIndex, Triple &TT); 748 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 749 ArrayRef<uint64_t> Record); 750 Error parseValueSymbolTable(uint64_t Offset = 0); 751 Error parseGlobalValueSymbolTable(); 752 Error parseConstants(); 753 Error rememberAndSkipFunctionBodies(); 754 Error rememberAndSkipFunctionBody(); 755 /// Save the positions of the Metadata blocks and skip parsing the blocks. 756 Error rememberAndSkipMetadata(); 757 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 758 Error parseFunctionBody(Function *F); 759 Error globalCleanup(); 760 Error resolveGlobalAndIndirectSymbolInits(); 761 Error parseUseLists(); 762 Error findFunctionInStream( 763 Function *F, 764 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 765 766 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 767 }; 768 769 /// Class to manage reading and parsing function summary index bitcode 770 /// files/sections. 771 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 772 /// The module index built during parsing. 773 ModuleSummaryIndex &TheIndex; 774 775 /// Indicates whether we have encountered a global value summary section 776 /// yet during parsing. 777 bool SeenGlobalValSummary = false; 778 779 /// Indicates whether we have already parsed the VST, used for error checking. 780 bool SeenValueSymbolTable = false; 781 782 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 783 /// Used to enable on-demand parsing of the VST. 784 uint64_t VSTOffset = 0; 785 786 // Map to save ValueId to ValueInfo association that was recorded in the 787 // ValueSymbolTable. It is used after the VST is parsed to convert 788 // call graph edges read from the function summary from referencing 789 // callees by their ValueId to using the ValueInfo instead, which is how 790 // they are recorded in the summary index being built. 791 // We save a GUID which refers to the same global as the ValueInfo, but 792 // ignoring the linkage, i.e. for values other than local linkage they are 793 // identical. 794 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 795 ValueIdToValueInfoMap; 796 797 /// Map populated during module path string table parsing, from the 798 /// module ID to a string reference owned by the index's module 799 /// path string table, used to correlate with combined index 800 /// summary records. 801 DenseMap<uint64_t, StringRef> ModuleIdMap; 802 803 /// Original source file name recorded in a bitcode record. 804 std::string SourceFileName; 805 806 /// The string identifier given to this module by the client, normally the 807 /// path to the bitcode file. 808 StringRef ModulePath; 809 810 /// For per-module summary indexes, the unique numerical identifier given to 811 /// this module by the client. 812 unsigned ModuleId; 813 814 public: 815 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 816 ModuleSummaryIndex &TheIndex, 817 StringRef ModulePath, unsigned ModuleId); 818 819 Error parseModule(); 820 821 private: 822 void setValueGUID(uint64_t ValueID, StringRef ValueName, 823 GlobalValue::LinkageTypes Linkage, 824 StringRef SourceFileName); 825 Error parseValueSymbolTable( 826 uint64_t Offset, 827 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 828 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 829 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 830 bool IsOldProfileFormat, 831 bool HasProfile, 832 bool HasRelBF); 833 Error parseEntireSummary(unsigned ID); 834 Error parseModuleStringTable(); 835 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 836 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 837 TypeIdCompatibleVtableInfo &TypeId); 838 839 std::pair<ValueInfo, GlobalValue::GUID> 840 getValueInfoFromValueId(unsigned ValueId); 841 842 void addThisModule(); 843 ModuleSummaryIndex::ModuleInfo *getThisModule(); 844 }; 845 846 } // end anonymous namespace 847 848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 849 Error Err) { 850 if (Err) { 851 std::error_code EC; 852 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 853 EC = EIB.convertToErrorCode(); 854 Ctx.emitError(EIB.message()); 855 }); 856 return EC; 857 } 858 return std::error_code(); 859 } 860 861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 862 StringRef ProducerIdentification, 863 LLVMContext &Context) 864 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 865 ValueList(Context, Stream.SizeInBytes()) { 866 this->ProducerIdentification = std::string(ProducerIdentification); 867 } 868 869 Error BitcodeReader::materializeForwardReferencedFunctions() { 870 if (WillMaterializeAllForwardRefs) 871 return Error::success(); 872 873 // Prevent recursion. 874 WillMaterializeAllForwardRefs = true; 875 876 while (!BasicBlockFwdRefQueue.empty()) { 877 Function *F = BasicBlockFwdRefQueue.front(); 878 BasicBlockFwdRefQueue.pop_front(); 879 assert(F && "Expected valid function"); 880 if (!BasicBlockFwdRefs.count(F)) 881 // Already materialized. 882 continue; 883 884 // Check for a function that isn't materializable to prevent an infinite 885 // loop. When parsing a blockaddress stored in a global variable, there 886 // isn't a trivial way to check if a function will have a body without a 887 // linear search through FunctionsWithBodies, so just check it here. 888 if (!F->isMaterializable()) 889 return error("Never resolved function from blockaddress"); 890 891 // Try to materialize F. 892 if (Error Err = materialize(F)) 893 return Err; 894 } 895 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 896 897 // Reset state. 898 WillMaterializeAllForwardRefs = false; 899 return Error::success(); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Helper functions to implement forward reference resolution, etc. 904 //===----------------------------------------------------------------------===// 905 906 static bool hasImplicitComdat(size_t Val) { 907 switch (Val) { 908 default: 909 return false; 910 case 1: // Old WeakAnyLinkage 911 case 4: // Old LinkOnceAnyLinkage 912 case 10: // Old WeakODRLinkage 913 case 11: // Old LinkOnceODRLinkage 914 return true; 915 } 916 } 917 918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 919 switch (Val) { 920 default: // Map unknown/new linkages to external 921 case 0: 922 return GlobalValue::ExternalLinkage; 923 case 2: 924 return GlobalValue::AppendingLinkage; 925 case 3: 926 return GlobalValue::InternalLinkage; 927 case 5: 928 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 929 case 6: 930 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 931 case 7: 932 return GlobalValue::ExternalWeakLinkage; 933 case 8: 934 return GlobalValue::CommonLinkage; 935 case 9: 936 return GlobalValue::PrivateLinkage; 937 case 12: 938 return GlobalValue::AvailableExternallyLinkage; 939 case 13: 940 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 941 case 14: 942 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 943 case 15: 944 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 945 case 1: // Old value with implicit comdat. 946 case 16: 947 return GlobalValue::WeakAnyLinkage; 948 case 10: // Old value with implicit comdat. 949 case 17: 950 return GlobalValue::WeakODRLinkage; 951 case 4: // Old value with implicit comdat. 952 case 18: 953 return GlobalValue::LinkOnceAnyLinkage; 954 case 11: // Old value with implicit comdat. 955 case 19: 956 return GlobalValue::LinkOnceODRLinkage; 957 } 958 } 959 960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 961 FunctionSummary::FFlags Flags; 962 Flags.ReadNone = RawFlags & 0x1; 963 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 964 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 965 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 966 Flags.NoInline = (RawFlags >> 4) & 0x1; 967 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 968 return Flags; 969 } 970 971 /// Decode the flags for GlobalValue in the summary. 972 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 973 uint64_t Version) { 974 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 975 // like getDecodedLinkage() above. Any future change to the linkage enum and 976 // to getDecodedLinkage() will need to be taken into account here as above. 977 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 978 RawFlags = RawFlags >> 4; 979 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 980 // The Live flag wasn't introduced until version 3. For dead stripping 981 // to work correctly on earlier versions, we must conservatively treat all 982 // values as live. 983 bool Live = (RawFlags & 0x2) || Version < 3; 984 bool Local = (RawFlags & 0x4); 985 bool AutoHide = (RawFlags & 0x8); 986 987 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 988 } 989 990 // Decode the flags for GlobalVariable in the summary 991 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 992 return GlobalVarSummary::GVarFlags( 993 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 994 (RawFlags & 0x4) ? true : false, 995 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 996 } 997 998 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 999 switch (Val) { 1000 default: // Map unknown visibilities to default. 1001 case 0: return GlobalValue::DefaultVisibility; 1002 case 1: return GlobalValue::HiddenVisibility; 1003 case 2: return GlobalValue::ProtectedVisibility; 1004 } 1005 } 1006 1007 static GlobalValue::DLLStorageClassTypes 1008 getDecodedDLLStorageClass(unsigned Val) { 1009 switch (Val) { 1010 default: // Map unknown values to default. 1011 case 0: return GlobalValue::DefaultStorageClass; 1012 case 1: return GlobalValue::DLLImportStorageClass; 1013 case 2: return GlobalValue::DLLExportStorageClass; 1014 } 1015 } 1016 1017 static bool getDecodedDSOLocal(unsigned Val) { 1018 switch(Val) { 1019 default: // Map unknown values to preemptable. 1020 case 0: return false; 1021 case 1: return true; 1022 } 1023 } 1024 1025 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1026 switch (Val) { 1027 case 0: return GlobalVariable::NotThreadLocal; 1028 default: // Map unknown non-zero value to general dynamic. 1029 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1030 case 2: return GlobalVariable::LocalDynamicTLSModel; 1031 case 3: return GlobalVariable::InitialExecTLSModel; 1032 case 4: return GlobalVariable::LocalExecTLSModel; 1033 } 1034 } 1035 1036 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1037 switch (Val) { 1038 default: // Map unknown to UnnamedAddr::None. 1039 case 0: return GlobalVariable::UnnamedAddr::None; 1040 case 1: return GlobalVariable::UnnamedAddr::Global; 1041 case 2: return GlobalVariable::UnnamedAddr::Local; 1042 } 1043 } 1044 1045 static int getDecodedCastOpcode(unsigned Val) { 1046 switch (Val) { 1047 default: return -1; 1048 case bitc::CAST_TRUNC : return Instruction::Trunc; 1049 case bitc::CAST_ZEXT : return Instruction::ZExt; 1050 case bitc::CAST_SEXT : return Instruction::SExt; 1051 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1052 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1053 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1054 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1055 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1056 case bitc::CAST_FPEXT : return Instruction::FPExt; 1057 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1058 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1059 case bitc::CAST_BITCAST : return Instruction::BitCast; 1060 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1061 } 1062 } 1063 1064 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1065 bool IsFP = Ty->isFPOrFPVectorTy(); 1066 // UnOps are only valid for int/fp or vector of int/fp types 1067 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1068 return -1; 1069 1070 switch (Val) { 1071 default: 1072 return -1; 1073 case bitc::UNOP_FNEG: 1074 return IsFP ? Instruction::FNeg : -1; 1075 } 1076 } 1077 1078 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1079 bool IsFP = Ty->isFPOrFPVectorTy(); 1080 // BinOps are only valid for int/fp or vector of int/fp types 1081 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1082 return -1; 1083 1084 switch (Val) { 1085 default: 1086 return -1; 1087 case bitc::BINOP_ADD: 1088 return IsFP ? Instruction::FAdd : Instruction::Add; 1089 case bitc::BINOP_SUB: 1090 return IsFP ? Instruction::FSub : Instruction::Sub; 1091 case bitc::BINOP_MUL: 1092 return IsFP ? Instruction::FMul : Instruction::Mul; 1093 case bitc::BINOP_UDIV: 1094 return IsFP ? -1 : Instruction::UDiv; 1095 case bitc::BINOP_SDIV: 1096 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1097 case bitc::BINOP_UREM: 1098 return IsFP ? -1 : Instruction::URem; 1099 case bitc::BINOP_SREM: 1100 return IsFP ? Instruction::FRem : Instruction::SRem; 1101 case bitc::BINOP_SHL: 1102 return IsFP ? -1 : Instruction::Shl; 1103 case bitc::BINOP_LSHR: 1104 return IsFP ? -1 : Instruction::LShr; 1105 case bitc::BINOP_ASHR: 1106 return IsFP ? -1 : Instruction::AShr; 1107 case bitc::BINOP_AND: 1108 return IsFP ? -1 : Instruction::And; 1109 case bitc::BINOP_OR: 1110 return IsFP ? -1 : Instruction::Or; 1111 case bitc::BINOP_XOR: 1112 return IsFP ? -1 : Instruction::Xor; 1113 } 1114 } 1115 1116 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1117 switch (Val) { 1118 default: return AtomicRMWInst::BAD_BINOP; 1119 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1120 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1121 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1122 case bitc::RMW_AND: return AtomicRMWInst::And; 1123 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1124 case bitc::RMW_OR: return AtomicRMWInst::Or; 1125 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1126 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1127 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1128 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1129 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1130 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1131 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1132 } 1133 } 1134 1135 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1136 switch (Val) { 1137 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1138 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1139 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1140 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1141 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1142 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1143 default: // Map unknown orderings to sequentially-consistent. 1144 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1145 } 1146 } 1147 1148 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1149 switch (Val) { 1150 default: // Map unknown selection kinds to any. 1151 case bitc::COMDAT_SELECTION_KIND_ANY: 1152 return Comdat::Any; 1153 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1154 return Comdat::ExactMatch; 1155 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1156 return Comdat::Largest; 1157 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1158 return Comdat::NoDuplicates; 1159 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1160 return Comdat::SameSize; 1161 } 1162 } 1163 1164 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1165 FastMathFlags FMF; 1166 if (0 != (Val & bitc::UnsafeAlgebra)) 1167 FMF.setFast(); 1168 if (0 != (Val & bitc::AllowReassoc)) 1169 FMF.setAllowReassoc(); 1170 if (0 != (Val & bitc::NoNaNs)) 1171 FMF.setNoNaNs(); 1172 if (0 != (Val & bitc::NoInfs)) 1173 FMF.setNoInfs(); 1174 if (0 != (Val & bitc::NoSignedZeros)) 1175 FMF.setNoSignedZeros(); 1176 if (0 != (Val & bitc::AllowReciprocal)) 1177 FMF.setAllowReciprocal(); 1178 if (0 != (Val & bitc::AllowContract)) 1179 FMF.setAllowContract(true); 1180 if (0 != (Val & bitc::ApproxFunc)) 1181 FMF.setApproxFunc(); 1182 return FMF; 1183 } 1184 1185 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1186 switch (Val) { 1187 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1188 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1189 } 1190 } 1191 1192 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1193 // The type table size is always specified correctly. 1194 if (ID >= TypeList.size()) 1195 return nullptr; 1196 1197 if (Type *Ty = TypeList[ID]) 1198 return Ty; 1199 1200 // If we have a forward reference, the only possible case is when it is to a 1201 // named struct. Just create a placeholder for now. 1202 return TypeList[ID] = createIdentifiedStructType(Context); 1203 } 1204 1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1206 StringRef Name) { 1207 auto *Ret = StructType::create(Context, Name); 1208 IdentifiedStructTypes.push_back(Ret); 1209 return Ret; 1210 } 1211 1212 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1213 auto *Ret = StructType::create(Context); 1214 IdentifiedStructTypes.push_back(Ret); 1215 return Ret; 1216 } 1217 1218 //===----------------------------------------------------------------------===// 1219 // Functions for parsing blocks from the bitcode file 1220 //===----------------------------------------------------------------------===// 1221 1222 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1223 switch (Val) { 1224 case Attribute::EndAttrKinds: 1225 case Attribute::EmptyKey: 1226 case Attribute::TombstoneKey: 1227 llvm_unreachable("Synthetic enumerators which should never get here"); 1228 1229 case Attribute::None: return 0; 1230 case Attribute::ZExt: return 1 << 0; 1231 case Attribute::SExt: return 1 << 1; 1232 case Attribute::NoReturn: return 1 << 2; 1233 case Attribute::InReg: return 1 << 3; 1234 case Attribute::StructRet: return 1 << 4; 1235 case Attribute::NoUnwind: return 1 << 5; 1236 case Attribute::NoAlias: return 1 << 6; 1237 case Attribute::ByVal: return 1 << 7; 1238 case Attribute::Nest: return 1 << 8; 1239 case Attribute::ReadNone: return 1 << 9; 1240 case Attribute::ReadOnly: return 1 << 10; 1241 case Attribute::NoInline: return 1 << 11; 1242 case Attribute::AlwaysInline: return 1 << 12; 1243 case Attribute::OptimizeForSize: return 1 << 13; 1244 case Attribute::StackProtect: return 1 << 14; 1245 case Attribute::StackProtectReq: return 1 << 15; 1246 case Attribute::Alignment: return 31 << 16; 1247 case Attribute::NoCapture: return 1 << 21; 1248 case Attribute::NoRedZone: return 1 << 22; 1249 case Attribute::NoImplicitFloat: return 1 << 23; 1250 case Attribute::Naked: return 1 << 24; 1251 case Attribute::InlineHint: return 1 << 25; 1252 case Attribute::StackAlignment: return 7 << 26; 1253 case Attribute::ReturnsTwice: return 1 << 29; 1254 case Attribute::UWTable: return 1 << 30; 1255 case Attribute::NonLazyBind: return 1U << 31; 1256 case Attribute::SanitizeAddress: return 1ULL << 32; 1257 case Attribute::MinSize: return 1ULL << 33; 1258 case Attribute::NoDuplicate: return 1ULL << 34; 1259 case Attribute::StackProtectStrong: return 1ULL << 35; 1260 case Attribute::SanitizeThread: return 1ULL << 36; 1261 case Attribute::SanitizeMemory: return 1ULL << 37; 1262 case Attribute::NoBuiltin: return 1ULL << 38; 1263 case Attribute::Returned: return 1ULL << 39; 1264 case Attribute::Cold: return 1ULL << 40; 1265 case Attribute::Builtin: return 1ULL << 41; 1266 case Attribute::OptimizeNone: return 1ULL << 42; 1267 case Attribute::InAlloca: return 1ULL << 43; 1268 case Attribute::NonNull: return 1ULL << 44; 1269 case Attribute::JumpTable: return 1ULL << 45; 1270 case Attribute::Convergent: return 1ULL << 46; 1271 case Attribute::SafeStack: return 1ULL << 47; 1272 case Attribute::NoRecurse: return 1ULL << 48; 1273 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1274 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1275 case Attribute::SwiftSelf: return 1ULL << 51; 1276 case Attribute::SwiftError: return 1ULL << 52; 1277 case Attribute::WriteOnly: return 1ULL << 53; 1278 case Attribute::Speculatable: return 1ULL << 54; 1279 case Attribute::StrictFP: return 1ULL << 55; 1280 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1281 case Attribute::NoCfCheck: return 1ULL << 57; 1282 case Attribute::OptForFuzzing: return 1ULL << 58; 1283 case Attribute::ShadowCallStack: return 1ULL << 59; 1284 case Attribute::SpeculativeLoadHardening: 1285 return 1ULL << 60; 1286 case Attribute::ImmArg: 1287 return 1ULL << 61; 1288 case Attribute::WillReturn: 1289 return 1ULL << 62; 1290 case Attribute::NoFree: 1291 return 1ULL << 63; 1292 default: 1293 // Other attributes are not supported in the raw format, 1294 // as we ran out of space. 1295 return 0; 1296 } 1297 llvm_unreachable("Unsupported attribute type"); 1298 } 1299 1300 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1301 if (!Val) return; 1302 1303 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1304 I = Attribute::AttrKind(I + 1)) { 1305 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1306 if (I == Attribute::Alignment) 1307 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1308 else if (I == Attribute::StackAlignment) 1309 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1310 else 1311 B.addAttribute(I); 1312 } 1313 } 1314 } 1315 1316 /// This fills an AttrBuilder object with the LLVM attributes that have 1317 /// been decoded from the given integer. This function must stay in sync with 1318 /// 'encodeLLVMAttributesForBitcode'. 1319 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1320 uint64_t EncodedAttrs) { 1321 // FIXME: Remove in 4.0. 1322 1323 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1324 // the bits above 31 down by 11 bits. 1325 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1326 assert((!Alignment || isPowerOf2_32(Alignment)) && 1327 "Alignment must be a power of two."); 1328 1329 if (Alignment) 1330 B.addAlignmentAttr(Alignment); 1331 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1332 (EncodedAttrs & 0xffff)); 1333 } 1334 1335 Error BitcodeReader::parseAttributeBlock() { 1336 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1337 return Err; 1338 1339 if (!MAttributes.empty()) 1340 return error("Invalid multiple blocks"); 1341 1342 SmallVector<uint64_t, 64> Record; 1343 1344 SmallVector<AttributeList, 8> Attrs; 1345 1346 // Read all the records. 1347 while (true) { 1348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1349 if (!MaybeEntry) 1350 return MaybeEntry.takeError(); 1351 BitstreamEntry Entry = MaybeEntry.get(); 1352 1353 switch (Entry.Kind) { 1354 case BitstreamEntry::SubBlock: // Handled for us already. 1355 case BitstreamEntry::Error: 1356 return error("Malformed block"); 1357 case BitstreamEntry::EndBlock: 1358 return Error::success(); 1359 case BitstreamEntry::Record: 1360 // The interesting case. 1361 break; 1362 } 1363 1364 // Read a record. 1365 Record.clear(); 1366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1367 if (!MaybeRecord) 1368 return MaybeRecord.takeError(); 1369 switch (MaybeRecord.get()) { 1370 default: // Default behavior: ignore. 1371 break; 1372 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1373 // FIXME: Remove in 4.0. 1374 if (Record.size() & 1) 1375 return error("Invalid record"); 1376 1377 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1378 AttrBuilder B; 1379 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1380 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1381 } 1382 1383 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1384 Attrs.clear(); 1385 break; 1386 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1387 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1388 Attrs.push_back(MAttributeGroups[Record[i]]); 1389 1390 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1391 Attrs.clear(); 1392 break; 1393 } 1394 } 1395 } 1396 1397 // Returns Attribute::None on unrecognized codes. 1398 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1399 switch (Code) { 1400 default: 1401 return Attribute::None; 1402 case bitc::ATTR_KIND_ALIGNMENT: 1403 return Attribute::Alignment; 1404 case bitc::ATTR_KIND_ALWAYS_INLINE: 1405 return Attribute::AlwaysInline; 1406 case bitc::ATTR_KIND_ARGMEMONLY: 1407 return Attribute::ArgMemOnly; 1408 case bitc::ATTR_KIND_BUILTIN: 1409 return Attribute::Builtin; 1410 case bitc::ATTR_KIND_BY_VAL: 1411 return Attribute::ByVal; 1412 case bitc::ATTR_KIND_IN_ALLOCA: 1413 return Attribute::InAlloca; 1414 case bitc::ATTR_KIND_COLD: 1415 return Attribute::Cold; 1416 case bitc::ATTR_KIND_CONVERGENT: 1417 return Attribute::Convergent; 1418 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1419 return Attribute::InaccessibleMemOnly; 1420 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1421 return Attribute::InaccessibleMemOrArgMemOnly; 1422 case bitc::ATTR_KIND_INLINE_HINT: 1423 return Attribute::InlineHint; 1424 case bitc::ATTR_KIND_IN_REG: 1425 return Attribute::InReg; 1426 case bitc::ATTR_KIND_JUMP_TABLE: 1427 return Attribute::JumpTable; 1428 case bitc::ATTR_KIND_MIN_SIZE: 1429 return Attribute::MinSize; 1430 case bitc::ATTR_KIND_NAKED: 1431 return Attribute::Naked; 1432 case bitc::ATTR_KIND_NEST: 1433 return Attribute::Nest; 1434 case bitc::ATTR_KIND_NO_ALIAS: 1435 return Attribute::NoAlias; 1436 case bitc::ATTR_KIND_NO_BUILTIN: 1437 return Attribute::NoBuiltin; 1438 case bitc::ATTR_KIND_NO_CAPTURE: 1439 return Attribute::NoCapture; 1440 case bitc::ATTR_KIND_NO_DUPLICATE: 1441 return Attribute::NoDuplicate; 1442 case bitc::ATTR_KIND_NOFREE: 1443 return Attribute::NoFree; 1444 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1445 return Attribute::NoImplicitFloat; 1446 case bitc::ATTR_KIND_NO_INLINE: 1447 return Attribute::NoInline; 1448 case bitc::ATTR_KIND_NO_RECURSE: 1449 return Attribute::NoRecurse; 1450 case bitc::ATTR_KIND_NO_MERGE: 1451 return Attribute::NoMerge; 1452 case bitc::ATTR_KIND_NON_LAZY_BIND: 1453 return Attribute::NonLazyBind; 1454 case bitc::ATTR_KIND_NON_NULL: 1455 return Attribute::NonNull; 1456 case bitc::ATTR_KIND_DEREFERENCEABLE: 1457 return Attribute::Dereferenceable; 1458 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1459 return Attribute::DereferenceableOrNull; 1460 case bitc::ATTR_KIND_ALLOC_SIZE: 1461 return Attribute::AllocSize; 1462 case bitc::ATTR_KIND_NO_RED_ZONE: 1463 return Attribute::NoRedZone; 1464 case bitc::ATTR_KIND_NO_RETURN: 1465 return Attribute::NoReturn; 1466 case bitc::ATTR_KIND_NOSYNC: 1467 return Attribute::NoSync; 1468 case bitc::ATTR_KIND_NOCF_CHECK: 1469 return Attribute::NoCfCheck; 1470 case bitc::ATTR_KIND_NO_UNWIND: 1471 return Attribute::NoUnwind; 1472 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1473 return Attribute::OptForFuzzing; 1474 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1475 return Attribute::OptimizeForSize; 1476 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1477 return Attribute::OptimizeNone; 1478 case bitc::ATTR_KIND_READ_NONE: 1479 return Attribute::ReadNone; 1480 case bitc::ATTR_KIND_READ_ONLY: 1481 return Attribute::ReadOnly; 1482 case bitc::ATTR_KIND_RETURNED: 1483 return Attribute::Returned; 1484 case bitc::ATTR_KIND_RETURNS_TWICE: 1485 return Attribute::ReturnsTwice; 1486 case bitc::ATTR_KIND_S_EXT: 1487 return Attribute::SExt; 1488 case bitc::ATTR_KIND_SPECULATABLE: 1489 return Attribute::Speculatable; 1490 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1491 return Attribute::StackAlignment; 1492 case bitc::ATTR_KIND_STACK_PROTECT: 1493 return Attribute::StackProtect; 1494 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1495 return Attribute::StackProtectReq; 1496 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1497 return Attribute::StackProtectStrong; 1498 case bitc::ATTR_KIND_SAFESTACK: 1499 return Attribute::SafeStack; 1500 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1501 return Attribute::ShadowCallStack; 1502 case bitc::ATTR_KIND_STRICT_FP: 1503 return Attribute::StrictFP; 1504 case bitc::ATTR_KIND_STRUCT_RET: 1505 return Attribute::StructRet; 1506 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1507 return Attribute::SanitizeAddress; 1508 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1509 return Attribute::SanitizeHWAddress; 1510 case bitc::ATTR_KIND_SANITIZE_THREAD: 1511 return Attribute::SanitizeThread; 1512 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1513 return Attribute::SanitizeMemory; 1514 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1515 return Attribute::SpeculativeLoadHardening; 1516 case bitc::ATTR_KIND_SWIFT_ERROR: 1517 return Attribute::SwiftError; 1518 case bitc::ATTR_KIND_SWIFT_SELF: 1519 return Attribute::SwiftSelf; 1520 case bitc::ATTR_KIND_UW_TABLE: 1521 return Attribute::UWTable; 1522 case bitc::ATTR_KIND_WILLRETURN: 1523 return Attribute::WillReturn; 1524 case bitc::ATTR_KIND_WRITEONLY: 1525 return Attribute::WriteOnly; 1526 case bitc::ATTR_KIND_Z_EXT: 1527 return Attribute::ZExt; 1528 case bitc::ATTR_KIND_IMMARG: 1529 return Attribute::ImmArg; 1530 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1531 return Attribute::SanitizeMemTag; 1532 case bitc::ATTR_KIND_PREALLOCATED: 1533 return Attribute::Preallocated; 1534 } 1535 } 1536 1537 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1538 MaybeAlign &Alignment) { 1539 // Note: Alignment in bitcode files is incremented by 1, so that zero 1540 // can be used for default alignment. 1541 if (Exponent > Value::MaxAlignmentExponent + 1) 1542 return error("Invalid alignment value"); 1543 Alignment = decodeMaybeAlign(Exponent); 1544 return Error::success(); 1545 } 1546 1547 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1548 *Kind = getAttrFromCode(Code); 1549 if (*Kind == Attribute::None) 1550 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1551 return Error::success(); 1552 } 1553 1554 Error BitcodeReader::parseAttributeGroupBlock() { 1555 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1556 return Err; 1557 1558 if (!MAttributeGroups.empty()) 1559 return error("Invalid multiple blocks"); 1560 1561 SmallVector<uint64_t, 64> Record; 1562 1563 // Read all the records. 1564 while (true) { 1565 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1566 if (!MaybeEntry) 1567 return MaybeEntry.takeError(); 1568 BitstreamEntry Entry = MaybeEntry.get(); 1569 1570 switch (Entry.Kind) { 1571 case BitstreamEntry::SubBlock: // Handled for us already. 1572 case BitstreamEntry::Error: 1573 return error("Malformed block"); 1574 case BitstreamEntry::EndBlock: 1575 return Error::success(); 1576 case BitstreamEntry::Record: 1577 // The interesting case. 1578 break; 1579 } 1580 1581 // Read a record. 1582 Record.clear(); 1583 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1584 if (!MaybeRecord) 1585 return MaybeRecord.takeError(); 1586 switch (MaybeRecord.get()) { 1587 default: // Default behavior: ignore. 1588 break; 1589 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1590 if (Record.size() < 3) 1591 return error("Invalid record"); 1592 1593 uint64_t GrpID = Record[0]; 1594 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1595 1596 AttrBuilder B; 1597 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1598 if (Record[i] == 0) { // Enum attribute 1599 Attribute::AttrKind Kind; 1600 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1601 return Err; 1602 1603 // Upgrade old-style byval attribute to one with a type, even if it's 1604 // nullptr. We will have to insert the real type when we associate 1605 // this AttributeList with a function. 1606 if (Kind == Attribute::ByVal) 1607 B.addByValAttr(nullptr); 1608 1609 B.addAttribute(Kind); 1610 } else if (Record[i] == 1) { // Integer attribute 1611 Attribute::AttrKind Kind; 1612 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1613 return Err; 1614 if (Kind == Attribute::Alignment) 1615 B.addAlignmentAttr(Record[++i]); 1616 else if (Kind == Attribute::StackAlignment) 1617 B.addStackAlignmentAttr(Record[++i]); 1618 else if (Kind == Attribute::Dereferenceable) 1619 B.addDereferenceableAttr(Record[++i]); 1620 else if (Kind == Attribute::DereferenceableOrNull) 1621 B.addDereferenceableOrNullAttr(Record[++i]); 1622 else if (Kind == Attribute::AllocSize) 1623 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1624 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1625 bool HasValue = (Record[i++] == 4); 1626 SmallString<64> KindStr; 1627 SmallString<64> ValStr; 1628 1629 while (Record[i] != 0 && i != e) 1630 KindStr += Record[i++]; 1631 assert(Record[i] == 0 && "Kind string not null terminated"); 1632 1633 if (HasValue) { 1634 // Has a value associated with it. 1635 ++i; // Skip the '0' that terminates the "kind" string. 1636 while (Record[i] != 0 && i != e) 1637 ValStr += Record[i++]; 1638 assert(Record[i] == 0 && "Value string not null terminated"); 1639 } 1640 1641 B.addAttribute(KindStr.str(), ValStr.str()); 1642 } else { 1643 assert((Record[i] == 5 || Record[i] == 6) && 1644 "Invalid attribute group entry"); 1645 bool HasType = Record[i] == 6; 1646 Attribute::AttrKind Kind; 1647 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1648 return Err; 1649 if (Kind == Attribute::ByVal) { 1650 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1651 } else if (Kind == Attribute::Preallocated) { 1652 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1653 } 1654 } 1655 } 1656 1657 UpgradeFramePointerAttributes(B); 1658 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1659 break; 1660 } 1661 } 1662 } 1663 } 1664 1665 Error BitcodeReader::parseTypeTable() { 1666 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1667 return Err; 1668 1669 return parseTypeTableBody(); 1670 } 1671 1672 Error BitcodeReader::parseTypeTableBody() { 1673 if (!TypeList.empty()) 1674 return error("Invalid multiple blocks"); 1675 1676 SmallVector<uint64_t, 64> Record; 1677 unsigned NumRecords = 0; 1678 1679 SmallString<64> TypeName; 1680 1681 // Read all the records for this type table. 1682 while (true) { 1683 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1684 if (!MaybeEntry) 1685 return MaybeEntry.takeError(); 1686 BitstreamEntry Entry = MaybeEntry.get(); 1687 1688 switch (Entry.Kind) { 1689 case BitstreamEntry::SubBlock: // Handled for us already. 1690 case BitstreamEntry::Error: 1691 return error("Malformed block"); 1692 case BitstreamEntry::EndBlock: 1693 if (NumRecords != TypeList.size()) 1694 return error("Malformed block"); 1695 return Error::success(); 1696 case BitstreamEntry::Record: 1697 // The interesting case. 1698 break; 1699 } 1700 1701 // Read a record. 1702 Record.clear(); 1703 Type *ResultTy = nullptr; 1704 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1705 if (!MaybeRecord) 1706 return MaybeRecord.takeError(); 1707 switch (MaybeRecord.get()) { 1708 default: 1709 return error("Invalid value"); 1710 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1711 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1712 // type list. This allows us to reserve space. 1713 if (Record.size() < 1) 1714 return error("Invalid record"); 1715 TypeList.resize(Record[0]); 1716 continue; 1717 case bitc::TYPE_CODE_VOID: // VOID 1718 ResultTy = Type::getVoidTy(Context); 1719 break; 1720 case bitc::TYPE_CODE_HALF: // HALF 1721 ResultTy = Type::getHalfTy(Context); 1722 break; 1723 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1724 ResultTy = Type::getBFloatTy(Context); 1725 break; 1726 case bitc::TYPE_CODE_FLOAT: // FLOAT 1727 ResultTy = Type::getFloatTy(Context); 1728 break; 1729 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1730 ResultTy = Type::getDoubleTy(Context); 1731 break; 1732 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1733 ResultTy = Type::getX86_FP80Ty(Context); 1734 break; 1735 case bitc::TYPE_CODE_FP128: // FP128 1736 ResultTy = Type::getFP128Ty(Context); 1737 break; 1738 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1739 ResultTy = Type::getPPC_FP128Ty(Context); 1740 break; 1741 case bitc::TYPE_CODE_LABEL: // LABEL 1742 ResultTy = Type::getLabelTy(Context); 1743 break; 1744 case bitc::TYPE_CODE_METADATA: // METADATA 1745 ResultTy = Type::getMetadataTy(Context); 1746 break; 1747 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1748 ResultTy = Type::getX86_MMXTy(Context); 1749 break; 1750 case bitc::TYPE_CODE_TOKEN: // TOKEN 1751 ResultTy = Type::getTokenTy(Context); 1752 break; 1753 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1754 if (Record.size() < 1) 1755 return error("Invalid record"); 1756 1757 uint64_t NumBits = Record[0]; 1758 if (NumBits < IntegerType::MIN_INT_BITS || 1759 NumBits > IntegerType::MAX_INT_BITS) 1760 return error("Bitwidth for integer type out of range"); 1761 ResultTy = IntegerType::get(Context, NumBits); 1762 break; 1763 } 1764 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1765 // [pointee type, address space] 1766 if (Record.size() < 1) 1767 return error("Invalid record"); 1768 unsigned AddressSpace = 0; 1769 if (Record.size() == 2) 1770 AddressSpace = Record[1]; 1771 ResultTy = getTypeByID(Record[0]); 1772 if (!ResultTy || 1773 !PointerType::isValidElementType(ResultTy)) 1774 return error("Invalid type"); 1775 ResultTy = PointerType::get(ResultTy, AddressSpace); 1776 break; 1777 } 1778 case bitc::TYPE_CODE_FUNCTION_OLD: { 1779 // FIXME: attrid is dead, remove it in LLVM 4.0 1780 // FUNCTION: [vararg, attrid, retty, paramty x N] 1781 if (Record.size() < 3) 1782 return error("Invalid record"); 1783 SmallVector<Type*, 8> ArgTys; 1784 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1785 if (Type *T = getTypeByID(Record[i])) 1786 ArgTys.push_back(T); 1787 else 1788 break; 1789 } 1790 1791 ResultTy = getTypeByID(Record[2]); 1792 if (!ResultTy || ArgTys.size() < Record.size()-3) 1793 return error("Invalid type"); 1794 1795 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1796 break; 1797 } 1798 case bitc::TYPE_CODE_FUNCTION: { 1799 // FUNCTION: [vararg, retty, paramty x N] 1800 if (Record.size() < 2) 1801 return error("Invalid record"); 1802 SmallVector<Type*, 8> ArgTys; 1803 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1804 if (Type *T = getTypeByID(Record[i])) { 1805 if (!FunctionType::isValidArgumentType(T)) 1806 return error("Invalid function argument type"); 1807 ArgTys.push_back(T); 1808 } 1809 else 1810 break; 1811 } 1812 1813 ResultTy = getTypeByID(Record[1]); 1814 if (!ResultTy || ArgTys.size() < Record.size()-2) 1815 return error("Invalid type"); 1816 1817 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1818 break; 1819 } 1820 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1821 if (Record.size() < 1) 1822 return error("Invalid record"); 1823 SmallVector<Type*, 8> EltTys; 1824 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1825 if (Type *T = getTypeByID(Record[i])) 1826 EltTys.push_back(T); 1827 else 1828 break; 1829 } 1830 if (EltTys.size() != Record.size()-1) 1831 return error("Invalid type"); 1832 ResultTy = StructType::get(Context, EltTys, Record[0]); 1833 break; 1834 } 1835 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1836 if (convertToString(Record, 0, TypeName)) 1837 return error("Invalid record"); 1838 continue; 1839 1840 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1841 if (Record.size() < 1) 1842 return error("Invalid record"); 1843 1844 if (NumRecords >= TypeList.size()) 1845 return error("Invalid TYPE table"); 1846 1847 // Check to see if this was forward referenced, if so fill in the temp. 1848 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1849 if (Res) { 1850 Res->setName(TypeName); 1851 TypeList[NumRecords] = nullptr; 1852 } else // Otherwise, create a new struct. 1853 Res = createIdentifiedStructType(Context, TypeName); 1854 TypeName.clear(); 1855 1856 SmallVector<Type*, 8> EltTys; 1857 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1858 if (Type *T = getTypeByID(Record[i])) 1859 EltTys.push_back(T); 1860 else 1861 break; 1862 } 1863 if (EltTys.size() != Record.size()-1) 1864 return error("Invalid record"); 1865 Res->setBody(EltTys, Record[0]); 1866 ResultTy = Res; 1867 break; 1868 } 1869 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1870 if (Record.size() != 1) 1871 return error("Invalid record"); 1872 1873 if (NumRecords >= TypeList.size()) 1874 return error("Invalid TYPE table"); 1875 1876 // Check to see if this was forward referenced, if so fill in the temp. 1877 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1878 if (Res) { 1879 Res->setName(TypeName); 1880 TypeList[NumRecords] = nullptr; 1881 } else // Otherwise, create a new struct with no body. 1882 Res = createIdentifiedStructType(Context, TypeName); 1883 TypeName.clear(); 1884 ResultTy = Res; 1885 break; 1886 } 1887 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1888 if (Record.size() < 2) 1889 return error("Invalid record"); 1890 ResultTy = getTypeByID(Record[1]); 1891 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1892 return error("Invalid type"); 1893 ResultTy = ArrayType::get(ResultTy, Record[0]); 1894 break; 1895 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1896 // [numelts, eltty, scalable] 1897 if (Record.size() < 2) 1898 return error("Invalid record"); 1899 if (Record[0] == 0) 1900 return error("Invalid vector length"); 1901 ResultTy = getTypeByID(Record[1]); 1902 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1903 return error("Invalid type"); 1904 bool Scalable = Record.size() > 2 ? Record[2] : false; 1905 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1906 break; 1907 } 1908 1909 if (NumRecords >= TypeList.size()) 1910 return error("Invalid TYPE table"); 1911 if (TypeList[NumRecords]) 1912 return error( 1913 "Invalid TYPE table: Only named structs can be forward referenced"); 1914 assert(ResultTy && "Didn't read a type?"); 1915 TypeList[NumRecords++] = ResultTy; 1916 } 1917 } 1918 1919 Error BitcodeReader::parseOperandBundleTags() { 1920 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1921 return Err; 1922 1923 if (!BundleTags.empty()) 1924 return error("Invalid multiple blocks"); 1925 1926 SmallVector<uint64_t, 64> Record; 1927 1928 while (true) { 1929 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1930 if (!MaybeEntry) 1931 return MaybeEntry.takeError(); 1932 BitstreamEntry Entry = MaybeEntry.get(); 1933 1934 switch (Entry.Kind) { 1935 case BitstreamEntry::SubBlock: // Handled for us already. 1936 case BitstreamEntry::Error: 1937 return error("Malformed block"); 1938 case BitstreamEntry::EndBlock: 1939 return Error::success(); 1940 case BitstreamEntry::Record: 1941 // The interesting case. 1942 break; 1943 } 1944 1945 // Tags are implicitly mapped to integers by their order. 1946 1947 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1948 if (!MaybeRecord) 1949 return MaybeRecord.takeError(); 1950 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1951 return error("Invalid record"); 1952 1953 // OPERAND_BUNDLE_TAG: [strchr x N] 1954 BundleTags.emplace_back(); 1955 if (convertToString(Record, 0, BundleTags.back())) 1956 return error("Invalid record"); 1957 Record.clear(); 1958 } 1959 } 1960 1961 Error BitcodeReader::parseSyncScopeNames() { 1962 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1963 return Err; 1964 1965 if (!SSIDs.empty()) 1966 return error("Invalid multiple synchronization scope names blocks"); 1967 1968 SmallVector<uint64_t, 64> Record; 1969 while (true) { 1970 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1971 if (!MaybeEntry) 1972 return MaybeEntry.takeError(); 1973 BitstreamEntry Entry = MaybeEntry.get(); 1974 1975 switch (Entry.Kind) { 1976 case BitstreamEntry::SubBlock: // Handled for us already. 1977 case BitstreamEntry::Error: 1978 return error("Malformed block"); 1979 case BitstreamEntry::EndBlock: 1980 if (SSIDs.empty()) 1981 return error("Invalid empty synchronization scope names block"); 1982 return Error::success(); 1983 case BitstreamEntry::Record: 1984 // The interesting case. 1985 break; 1986 } 1987 1988 // Synchronization scope names are implicitly mapped to synchronization 1989 // scope IDs by their order. 1990 1991 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1992 if (!MaybeRecord) 1993 return MaybeRecord.takeError(); 1994 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1995 return error("Invalid record"); 1996 1997 SmallString<16> SSN; 1998 if (convertToString(Record, 0, SSN)) 1999 return error("Invalid record"); 2000 2001 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2002 Record.clear(); 2003 } 2004 } 2005 2006 /// Associate a value with its name from the given index in the provided record. 2007 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2008 unsigned NameIndex, Triple &TT) { 2009 SmallString<128> ValueName; 2010 if (convertToString(Record, NameIndex, ValueName)) 2011 return error("Invalid record"); 2012 unsigned ValueID = Record[0]; 2013 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2014 return error("Invalid record"); 2015 Value *V = ValueList[ValueID]; 2016 2017 StringRef NameStr(ValueName.data(), ValueName.size()); 2018 if (NameStr.find_first_of(0) != StringRef::npos) 2019 return error("Invalid value name"); 2020 V->setName(NameStr); 2021 auto *GO = dyn_cast<GlobalObject>(V); 2022 if (GO) { 2023 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2024 if (TT.supportsCOMDAT()) 2025 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2026 else 2027 GO->setComdat(nullptr); 2028 } 2029 } 2030 return V; 2031 } 2032 2033 /// Helper to note and return the current location, and jump to the given 2034 /// offset. 2035 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2036 BitstreamCursor &Stream) { 2037 // Save the current parsing location so we can jump back at the end 2038 // of the VST read. 2039 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2040 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2041 return std::move(JumpFailed); 2042 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2043 if (!MaybeEntry) 2044 return MaybeEntry.takeError(); 2045 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2046 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2047 return CurrentBit; 2048 } 2049 2050 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2051 Function *F, 2052 ArrayRef<uint64_t> Record) { 2053 // Note that we subtract 1 here because the offset is relative to one word 2054 // before the start of the identification or module block, which was 2055 // historically always the start of the regular bitcode header. 2056 uint64_t FuncWordOffset = Record[1] - 1; 2057 uint64_t FuncBitOffset = FuncWordOffset * 32; 2058 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2059 // Set the LastFunctionBlockBit to point to the last function block. 2060 // Later when parsing is resumed after function materialization, 2061 // we can simply skip that last function block. 2062 if (FuncBitOffset > LastFunctionBlockBit) 2063 LastFunctionBlockBit = FuncBitOffset; 2064 } 2065 2066 /// Read a new-style GlobalValue symbol table. 2067 Error BitcodeReader::parseGlobalValueSymbolTable() { 2068 unsigned FuncBitcodeOffsetDelta = 2069 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2070 2071 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2072 return Err; 2073 2074 SmallVector<uint64_t, 64> Record; 2075 while (true) { 2076 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2077 if (!MaybeEntry) 2078 return MaybeEntry.takeError(); 2079 BitstreamEntry Entry = MaybeEntry.get(); 2080 2081 switch (Entry.Kind) { 2082 case BitstreamEntry::SubBlock: 2083 case BitstreamEntry::Error: 2084 return error("Malformed block"); 2085 case BitstreamEntry::EndBlock: 2086 return Error::success(); 2087 case BitstreamEntry::Record: 2088 break; 2089 } 2090 2091 Record.clear(); 2092 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2093 if (!MaybeRecord) 2094 return MaybeRecord.takeError(); 2095 switch (MaybeRecord.get()) { 2096 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2097 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2098 cast<Function>(ValueList[Record[0]]), Record); 2099 break; 2100 } 2101 } 2102 } 2103 2104 /// Parse the value symbol table at either the current parsing location or 2105 /// at the given bit offset if provided. 2106 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2107 uint64_t CurrentBit; 2108 // Pass in the Offset to distinguish between calling for the module-level 2109 // VST (where we want to jump to the VST offset) and the function-level 2110 // VST (where we don't). 2111 if (Offset > 0) { 2112 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2113 if (!MaybeCurrentBit) 2114 return MaybeCurrentBit.takeError(); 2115 CurrentBit = MaybeCurrentBit.get(); 2116 // If this module uses a string table, read this as a module-level VST. 2117 if (UseStrtab) { 2118 if (Error Err = parseGlobalValueSymbolTable()) 2119 return Err; 2120 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2121 return JumpFailed; 2122 return Error::success(); 2123 } 2124 // Otherwise, the VST will be in a similar format to a function-level VST, 2125 // and will contain symbol names. 2126 } 2127 2128 // Compute the delta between the bitcode indices in the VST (the word offset 2129 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2130 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2131 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2132 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2133 // just before entering the VST subblock because: 1) the EnterSubBlock 2134 // changes the AbbrevID width; 2) the VST block is nested within the same 2135 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2136 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2137 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2138 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2139 unsigned FuncBitcodeOffsetDelta = 2140 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2141 2142 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2143 return Err; 2144 2145 SmallVector<uint64_t, 64> Record; 2146 2147 Triple TT(TheModule->getTargetTriple()); 2148 2149 // Read all the records for this value table. 2150 SmallString<128> ValueName; 2151 2152 while (true) { 2153 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2154 if (!MaybeEntry) 2155 return MaybeEntry.takeError(); 2156 BitstreamEntry Entry = MaybeEntry.get(); 2157 2158 switch (Entry.Kind) { 2159 case BitstreamEntry::SubBlock: // Handled for us already. 2160 case BitstreamEntry::Error: 2161 return error("Malformed block"); 2162 case BitstreamEntry::EndBlock: 2163 if (Offset > 0) 2164 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2165 return JumpFailed; 2166 return Error::success(); 2167 case BitstreamEntry::Record: 2168 // The interesting case. 2169 break; 2170 } 2171 2172 // Read a record. 2173 Record.clear(); 2174 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2175 if (!MaybeRecord) 2176 return MaybeRecord.takeError(); 2177 switch (MaybeRecord.get()) { 2178 default: // Default behavior: unknown type. 2179 break; 2180 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2181 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2182 if (Error Err = ValOrErr.takeError()) 2183 return Err; 2184 ValOrErr.get(); 2185 break; 2186 } 2187 case bitc::VST_CODE_FNENTRY: { 2188 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2189 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2190 if (Error Err = ValOrErr.takeError()) 2191 return Err; 2192 Value *V = ValOrErr.get(); 2193 2194 // Ignore function offsets emitted for aliases of functions in older 2195 // versions of LLVM. 2196 if (auto *F = dyn_cast<Function>(V)) 2197 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2198 break; 2199 } 2200 case bitc::VST_CODE_BBENTRY: { 2201 if (convertToString(Record, 1, ValueName)) 2202 return error("Invalid record"); 2203 BasicBlock *BB = getBasicBlock(Record[0]); 2204 if (!BB) 2205 return error("Invalid record"); 2206 2207 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2208 ValueName.clear(); 2209 break; 2210 } 2211 } 2212 } 2213 } 2214 2215 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2216 /// encoding. 2217 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2218 if ((V & 1) == 0) 2219 return V >> 1; 2220 if (V != 1) 2221 return -(V >> 1); 2222 // There is no such thing as -0 with integers. "-0" really means MININT. 2223 return 1ULL << 63; 2224 } 2225 2226 /// Resolve all of the initializers for global values and aliases that we can. 2227 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2228 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2229 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2230 IndirectSymbolInitWorklist; 2231 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2232 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2233 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2234 2235 GlobalInitWorklist.swap(GlobalInits); 2236 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2237 FunctionPrefixWorklist.swap(FunctionPrefixes); 2238 FunctionPrologueWorklist.swap(FunctionPrologues); 2239 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2240 2241 while (!GlobalInitWorklist.empty()) { 2242 unsigned ValID = GlobalInitWorklist.back().second; 2243 if (ValID >= ValueList.size()) { 2244 // Not ready to resolve this yet, it requires something later in the file. 2245 GlobalInits.push_back(GlobalInitWorklist.back()); 2246 } else { 2247 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2248 GlobalInitWorklist.back().first->setInitializer(C); 2249 else 2250 return error("Expected a constant"); 2251 } 2252 GlobalInitWorklist.pop_back(); 2253 } 2254 2255 while (!IndirectSymbolInitWorklist.empty()) { 2256 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2257 if (ValID >= ValueList.size()) { 2258 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2259 } else { 2260 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2261 if (!C) 2262 return error("Expected a constant"); 2263 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2264 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2265 return error("Alias and aliasee types don't match"); 2266 GIS->setIndirectSymbol(C); 2267 } 2268 IndirectSymbolInitWorklist.pop_back(); 2269 } 2270 2271 while (!FunctionPrefixWorklist.empty()) { 2272 unsigned ValID = FunctionPrefixWorklist.back().second; 2273 if (ValID >= ValueList.size()) { 2274 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2275 } else { 2276 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2277 FunctionPrefixWorklist.back().first->setPrefixData(C); 2278 else 2279 return error("Expected a constant"); 2280 } 2281 FunctionPrefixWorklist.pop_back(); 2282 } 2283 2284 while (!FunctionPrologueWorklist.empty()) { 2285 unsigned ValID = FunctionPrologueWorklist.back().second; 2286 if (ValID >= ValueList.size()) { 2287 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2288 } else { 2289 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2290 FunctionPrologueWorklist.back().first->setPrologueData(C); 2291 else 2292 return error("Expected a constant"); 2293 } 2294 FunctionPrologueWorklist.pop_back(); 2295 } 2296 2297 while (!FunctionPersonalityFnWorklist.empty()) { 2298 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2299 if (ValID >= ValueList.size()) { 2300 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2301 } else { 2302 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2303 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2304 else 2305 return error("Expected a constant"); 2306 } 2307 FunctionPersonalityFnWorklist.pop_back(); 2308 } 2309 2310 return Error::success(); 2311 } 2312 2313 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2314 SmallVector<uint64_t, 8> Words(Vals.size()); 2315 transform(Vals, Words.begin(), 2316 BitcodeReader::decodeSignRotatedValue); 2317 2318 return APInt(TypeBits, Words); 2319 } 2320 2321 Error BitcodeReader::parseConstants() { 2322 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2323 return Err; 2324 2325 SmallVector<uint64_t, 64> Record; 2326 2327 // Read all the records for this value table. 2328 Type *CurTy = Type::getInt32Ty(Context); 2329 Type *CurFullTy = Type::getInt32Ty(Context); 2330 unsigned NextCstNo = ValueList.size(); 2331 2332 struct DelayedShufTy { 2333 VectorType *OpTy; 2334 VectorType *RTy; 2335 Type *CurFullTy; 2336 uint64_t Op0Idx; 2337 uint64_t Op1Idx; 2338 uint64_t Op2Idx; 2339 }; 2340 std::vector<DelayedShufTy> DelayedShuffles; 2341 while (true) { 2342 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2343 if (!MaybeEntry) 2344 return MaybeEntry.takeError(); 2345 BitstreamEntry Entry = MaybeEntry.get(); 2346 2347 switch (Entry.Kind) { 2348 case BitstreamEntry::SubBlock: // Handled for us already. 2349 case BitstreamEntry::Error: 2350 return error("Malformed block"); 2351 case BitstreamEntry::EndBlock: 2352 if (NextCstNo != ValueList.size()) 2353 return error("Invalid constant reference"); 2354 2355 // Once all the constants have been read, go through and resolve forward 2356 // references. 2357 // 2358 // We have to treat shuffles specially because they don't have three 2359 // operands anymore. We need to convert the shuffle mask into an array, 2360 // and we can't convert a forward reference. 2361 for (auto &DelayedShuffle : DelayedShuffles) { 2362 VectorType *OpTy = DelayedShuffle.OpTy; 2363 VectorType *RTy = DelayedShuffle.RTy; 2364 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2365 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2366 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2367 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2368 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2369 Type *ShufTy = 2370 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2371 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2372 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2373 return error("Invalid shufflevector operands"); 2374 SmallVector<int, 16> Mask; 2375 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2376 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2377 ValueList.assignValue(V, NextCstNo, DelayedShuffle.CurFullTy); 2378 ++NextCstNo; 2379 } 2380 ValueList.resolveConstantForwardRefs(); 2381 return Error::success(); 2382 case BitstreamEntry::Record: 2383 // The interesting case. 2384 break; 2385 } 2386 2387 // Read a record. 2388 Record.clear(); 2389 Type *VoidType = Type::getVoidTy(Context); 2390 Value *V = nullptr; 2391 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2392 if (!MaybeBitCode) 2393 return MaybeBitCode.takeError(); 2394 switch (unsigned BitCode = MaybeBitCode.get()) { 2395 default: // Default behavior: unknown constant 2396 case bitc::CST_CODE_UNDEF: // UNDEF 2397 V = UndefValue::get(CurTy); 2398 break; 2399 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2400 if (Record.empty()) 2401 return error("Invalid record"); 2402 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2403 return error("Invalid record"); 2404 if (TypeList[Record[0]] == VoidType) 2405 return error("Invalid constant type"); 2406 CurFullTy = TypeList[Record[0]]; 2407 CurTy = flattenPointerTypes(CurFullTy); 2408 continue; // Skip the ValueList manipulation. 2409 case bitc::CST_CODE_NULL: // NULL 2410 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2411 return error("Invalid type for a constant null value"); 2412 V = Constant::getNullValue(CurTy); 2413 break; 2414 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2415 if (!CurTy->isIntegerTy() || Record.empty()) 2416 return error("Invalid record"); 2417 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2418 break; 2419 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2420 if (!CurTy->isIntegerTy() || Record.empty()) 2421 return error("Invalid record"); 2422 2423 APInt VInt = 2424 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2425 V = ConstantInt::get(Context, VInt); 2426 2427 break; 2428 } 2429 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2430 if (Record.empty()) 2431 return error("Invalid record"); 2432 if (CurTy->isHalfTy()) 2433 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2434 APInt(16, (uint16_t)Record[0]))); 2435 else if (CurTy->isBFloatTy()) 2436 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2437 APInt(16, (uint32_t)Record[0]))); 2438 else if (CurTy->isFloatTy()) 2439 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2440 APInt(32, (uint32_t)Record[0]))); 2441 else if (CurTy->isDoubleTy()) 2442 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2443 APInt(64, Record[0]))); 2444 else if (CurTy->isX86_FP80Ty()) { 2445 // Bits are not stored the same way as a normal i80 APInt, compensate. 2446 uint64_t Rearrange[2]; 2447 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2448 Rearrange[1] = Record[0] >> 48; 2449 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2450 APInt(80, Rearrange))); 2451 } else if (CurTy->isFP128Ty()) 2452 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2453 APInt(128, Record))); 2454 else if (CurTy->isPPC_FP128Ty()) 2455 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2456 APInt(128, Record))); 2457 else 2458 V = UndefValue::get(CurTy); 2459 break; 2460 } 2461 2462 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2463 if (Record.empty()) 2464 return error("Invalid record"); 2465 2466 unsigned Size = Record.size(); 2467 SmallVector<Constant*, 16> Elts; 2468 2469 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2470 for (unsigned i = 0; i != Size; ++i) 2471 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2472 STy->getElementType(i))); 2473 V = ConstantStruct::get(STy, Elts); 2474 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2475 Type *EltTy = ATy->getElementType(); 2476 for (unsigned i = 0; i != Size; ++i) 2477 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2478 V = ConstantArray::get(ATy, Elts); 2479 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2480 Type *EltTy = VTy->getElementType(); 2481 for (unsigned i = 0; i != Size; ++i) 2482 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2483 V = ConstantVector::get(Elts); 2484 } else { 2485 V = UndefValue::get(CurTy); 2486 } 2487 break; 2488 } 2489 case bitc::CST_CODE_STRING: // STRING: [values] 2490 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2491 if (Record.empty()) 2492 return error("Invalid record"); 2493 2494 SmallString<16> Elts(Record.begin(), Record.end()); 2495 V = ConstantDataArray::getString(Context, Elts, 2496 BitCode == bitc::CST_CODE_CSTRING); 2497 break; 2498 } 2499 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2500 if (Record.empty()) 2501 return error("Invalid record"); 2502 2503 Type *EltTy; 2504 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2505 EltTy = Array->getElementType(); 2506 else 2507 EltTy = cast<VectorType>(CurTy)->getElementType(); 2508 if (EltTy->isIntegerTy(8)) { 2509 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2510 if (isa<VectorType>(CurTy)) 2511 V = ConstantDataVector::get(Context, Elts); 2512 else 2513 V = ConstantDataArray::get(Context, Elts); 2514 } else if (EltTy->isIntegerTy(16)) { 2515 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2516 if (isa<VectorType>(CurTy)) 2517 V = ConstantDataVector::get(Context, Elts); 2518 else 2519 V = ConstantDataArray::get(Context, Elts); 2520 } else if (EltTy->isIntegerTy(32)) { 2521 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2522 if (isa<VectorType>(CurTy)) 2523 V = ConstantDataVector::get(Context, Elts); 2524 else 2525 V = ConstantDataArray::get(Context, Elts); 2526 } else if (EltTy->isIntegerTy(64)) { 2527 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2528 if (isa<VectorType>(CurTy)) 2529 V = ConstantDataVector::get(Context, Elts); 2530 else 2531 V = ConstantDataArray::get(Context, Elts); 2532 } else if (EltTy->isHalfTy()) { 2533 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2534 if (isa<VectorType>(CurTy)) 2535 V = ConstantDataVector::getFP(EltTy, Elts); 2536 else 2537 V = ConstantDataArray::getFP(EltTy, Elts); 2538 } else if (EltTy->isBFloatTy()) { 2539 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2540 if (isa<VectorType>(CurTy)) 2541 V = ConstantDataVector::getFP(EltTy, Elts); 2542 else 2543 V = ConstantDataArray::getFP(EltTy, Elts); 2544 } else if (EltTy->isFloatTy()) { 2545 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2546 if (isa<VectorType>(CurTy)) 2547 V = ConstantDataVector::getFP(EltTy, Elts); 2548 else 2549 V = ConstantDataArray::getFP(EltTy, Elts); 2550 } else if (EltTy->isDoubleTy()) { 2551 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2552 if (isa<VectorType>(CurTy)) 2553 V = ConstantDataVector::getFP(EltTy, Elts); 2554 else 2555 V = ConstantDataArray::getFP(EltTy, Elts); 2556 } else { 2557 return error("Invalid type for value"); 2558 } 2559 break; 2560 } 2561 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2562 if (Record.size() < 2) 2563 return error("Invalid record"); 2564 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2565 if (Opc < 0) { 2566 V = UndefValue::get(CurTy); // Unknown unop. 2567 } else { 2568 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2569 unsigned Flags = 0; 2570 V = ConstantExpr::get(Opc, LHS, Flags); 2571 } 2572 break; 2573 } 2574 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2575 if (Record.size() < 3) 2576 return error("Invalid record"); 2577 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2578 if (Opc < 0) { 2579 V = UndefValue::get(CurTy); // Unknown binop. 2580 } else { 2581 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2582 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2583 unsigned Flags = 0; 2584 if (Record.size() >= 4) { 2585 if (Opc == Instruction::Add || 2586 Opc == Instruction::Sub || 2587 Opc == Instruction::Mul || 2588 Opc == Instruction::Shl) { 2589 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2590 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2591 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2592 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2593 } else if (Opc == Instruction::SDiv || 2594 Opc == Instruction::UDiv || 2595 Opc == Instruction::LShr || 2596 Opc == Instruction::AShr) { 2597 if (Record[3] & (1 << bitc::PEO_EXACT)) 2598 Flags |= SDivOperator::IsExact; 2599 } 2600 } 2601 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2602 } 2603 break; 2604 } 2605 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2606 if (Record.size() < 3) 2607 return error("Invalid record"); 2608 int Opc = getDecodedCastOpcode(Record[0]); 2609 if (Opc < 0) { 2610 V = UndefValue::get(CurTy); // Unknown cast. 2611 } else { 2612 Type *OpTy = getTypeByID(Record[1]); 2613 if (!OpTy) 2614 return error("Invalid record"); 2615 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2616 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2617 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2618 } 2619 break; 2620 } 2621 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2622 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2623 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2624 // operands] 2625 unsigned OpNum = 0; 2626 Type *PointeeType = nullptr; 2627 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2628 Record.size() % 2) 2629 PointeeType = getTypeByID(Record[OpNum++]); 2630 2631 bool InBounds = false; 2632 Optional<unsigned> InRangeIndex; 2633 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2634 uint64_t Op = Record[OpNum++]; 2635 InBounds = Op & 1; 2636 InRangeIndex = Op >> 1; 2637 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2638 InBounds = true; 2639 2640 SmallVector<Constant*, 16> Elts; 2641 Type *Elt0FullTy = nullptr; 2642 while (OpNum != Record.size()) { 2643 if (!Elt0FullTy) 2644 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2645 Type *ElTy = getTypeByID(Record[OpNum++]); 2646 if (!ElTy) 2647 return error("Invalid record"); 2648 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2649 } 2650 2651 if (Elts.size() < 1) 2652 return error("Invalid gep with no operands"); 2653 2654 Type *ImplicitPointeeType = 2655 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2656 if (!PointeeType) 2657 PointeeType = ImplicitPointeeType; 2658 else if (PointeeType != ImplicitPointeeType) 2659 return error("Explicit gep operator type does not match pointee type " 2660 "of pointer operand"); 2661 2662 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2663 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2664 InBounds, InRangeIndex); 2665 break; 2666 } 2667 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2668 if (Record.size() < 3) 2669 return error("Invalid record"); 2670 2671 Type *SelectorTy = Type::getInt1Ty(Context); 2672 2673 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2674 // Get the type from the ValueList before getting a forward ref. 2675 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2676 if (Value *V = ValueList[Record[0]]) 2677 if (SelectorTy != V->getType()) 2678 SelectorTy = VectorType::get(SelectorTy, 2679 VTy->getElementCount()); 2680 2681 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2682 SelectorTy), 2683 ValueList.getConstantFwdRef(Record[1],CurTy), 2684 ValueList.getConstantFwdRef(Record[2],CurTy)); 2685 break; 2686 } 2687 case bitc::CST_CODE_CE_EXTRACTELT 2688 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2689 if (Record.size() < 3) 2690 return error("Invalid record"); 2691 VectorType *OpTy = 2692 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2693 if (!OpTy) 2694 return error("Invalid record"); 2695 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2696 Constant *Op1 = nullptr; 2697 if (Record.size() == 4) { 2698 Type *IdxTy = getTypeByID(Record[2]); 2699 if (!IdxTy) 2700 return error("Invalid record"); 2701 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2702 } else // TODO: Remove with llvm 4.0 2703 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2704 if (!Op1) 2705 return error("Invalid record"); 2706 V = ConstantExpr::getExtractElement(Op0, Op1); 2707 break; 2708 } 2709 case bitc::CST_CODE_CE_INSERTELT 2710 : { // CE_INSERTELT: [opval, opval, opty, opval] 2711 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2712 if (Record.size() < 3 || !OpTy) 2713 return error("Invalid record"); 2714 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2715 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2716 OpTy->getElementType()); 2717 Constant *Op2 = nullptr; 2718 if (Record.size() == 4) { 2719 Type *IdxTy = getTypeByID(Record[2]); 2720 if (!IdxTy) 2721 return error("Invalid record"); 2722 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2723 } else // TODO: Remove with llvm 4.0 2724 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2725 if (!Op2) 2726 return error("Invalid record"); 2727 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2728 break; 2729 } 2730 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2731 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2732 if (Record.size() < 3 || !OpTy) 2733 return error("Invalid record"); 2734 DelayedShuffles.push_back( 2735 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2]}); 2736 continue; 2737 } 2738 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2739 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2740 VectorType *OpTy = 2741 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2742 if (Record.size() < 4 || !RTy || !OpTy) 2743 return error("Invalid record"); 2744 DelayedShuffles.push_back( 2745 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3]}); 2746 continue; 2747 } 2748 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2749 if (Record.size() < 4) 2750 return error("Invalid record"); 2751 Type *OpTy = getTypeByID(Record[0]); 2752 if (!OpTy) 2753 return error("Invalid record"); 2754 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2755 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2756 2757 if (OpTy->isFPOrFPVectorTy()) 2758 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2759 else 2760 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2761 break; 2762 } 2763 // This maintains backward compatibility, pre-asm dialect keywords. 2764 // FIXME: Remove with the 4.0 release. 2765 case bitc::CST_CODE_INLINEASM_OLD: { 2766 if (Record.size() < 2) 2767 return error("Invalid record"); 2768 std::string AsmStr, ConstrStr; 2769 bool HasSideEffects = Record[0] & 1; 2770 bool IsAlignStack = Record[0] >> 1; 2771 unsigned AsmStrSize = Record[1]; 2772 if (2+AsmStrSize >= Record.size()) 2773 return error("Invalid record"); 2774 unsigned ConstStrSize = Record[2+AsmStrSize]; 2775 if (3+AsmStrSize+ConstStrSize > Record.size()) 2776 return error("Invalid record"); 2777 2778 for (unsigned i = 0; i != AsmStrSize; ++i) 2779 AsmStr += (char)Record[2+i]; 2780 for (unsigned i = 0; i != ConstStrSize; ++i) 2781 ConstrStr += (char)Record[3+AsmStrSize+i]; 2782 UpgradeInlineAsmString(&AsmStr); 2783 V = InlineAsm::get( 2784 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2785 ConstrStr, HasSideEffects, IsAlignStack); 2786 break; 2787 } 2788 // This version adds support for the asm dialect keywords (e.g., 2789 // inteldialect). 2790 case bitc::CST_CODE_INLINEASM: { 2791 if (Record.size() < 2) 2792 return error("Invalid record"); 2793 std::string AsmStr, ConstrStr; 2794 bool HasSideEffects = Record[0] & 1; 2795 bool IsAlignStack = (Record[0] >> 1) & 1; 2796 unsigned AsmDialect = Record[0] >> 2; 2797 unsigned AsmStrSize = Record[1]; 2798 if (2+AsmStrSize >= Record.size()) 2799 return error("Invalid record"); 2800 unsigned ConstStrSize = Record[2+AsmStrSize]; 2801 if (3+AsmStrSize+ConstStrSize > Record.size()) 2802 return error("Invalid record"); 2803 2804 for (unsigned i = 0; i != AsmStrSize; ++i) 2805 AsmStr += (char)Record[2+i]; 2806 for (unsigned i = 0; i != ConstStrSize; ++i) 2807 ConstrStr += (char)Record[3+AsmStrSize+i]; 2808 UpgradeInlineAsmString(&AsmStr); 2809 V = InlineAsm::get( 2810 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2811 ConstrStr, HasSideEffects, IsAlignStack, 2812 InlineAsm::AsmDialect(AsmDialect)); 2813 break; 2814 } 2815 case bitc::CST_CODE_BLOCKADDRESS:{ 2816 if (Record.size() < 3) 2817 return error("Invalid record"); 2818 Type *FnTy = getTypeByID(Record[0]); 2819 if (!FnTy) 2820 return error("Invalid record"); 2821 Function *Fn = 2822 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2823 if (!Fn) 2824 return error("Invalid record"); 2825 2826 // If the function is already parsed we can insert the block address right 2827 // away. 2828 BasicBlock *BB; 2829 unsigned BBID = Record[2]; 2830 if (!BBID) 2831 // Invalid reference to entry block. 2832 return error("Invalid ID"); 2833 if (!Fn->empty()) { 2834 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2835 for (size_t I = 0, E = BBID; I != E; ++I) { 2836 if (BBI == BBE) 2837 return error("Invalid ID"); 2838 ++BBI; 2839 } 2840 BB = &*BBI; 2841 } else { 2842 // Otherwise insert a placeholder and remember it so it can be inserted 2843 // when the function is parsed. 2844 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2845 if (FwdBBs.empty()) 2846 BasicBlockFwdRefQueue.push_back(Fn); 2847 if (FwdBBs.size() < BBID + 1) 2848 FwdBBs.resize(BBID + 1); 2849 if (!FwdBBs[BBID]) 2850 FwdBBs[BBID] = BasicBlock::Create(Context); 2851 BB = FwdBBs[BBID]; 2852 } 2853 V = BlockAddress::get(Fn, BB); 2854 break; 2855 } 2856 } 2857 2858 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2859 "Incorrect fully structured type provided for Constant"); 2860 ValueList.assignValue(V, NextCstNo, CurFullTy); 2861 ++NextCstNo; 2862 } 2863 } 2864 2865 Error BitcodeReader::parseUseLists() { 2866 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2867 return Err; 2868 2869 // Read all the records. 2870 SmallVector<uint64_t, 64> Record; 2871 2872 while (true) { 2873 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2874 if (!MaybeEntry) 2875 return MaybeEntry.takeError(); 2876 BitstreamEntry Entry = MaybeEntry.get(); 2877 2878 switch (Entry.Kind) { 2879 case BitstreamEntry::SubBlock: // Handled for us already. 2880 case BitstreamEntry::Error: 2881 return error("Malformed block"); 2882 case BitstreamEntry::EndBlock: 2883 return Error::success(); 2884 case BitstreamEntry::Record: 2885 // The interesting case. 2886 break; 2887 } 2888 2889 // Read a use list record. 2890 Record.clear(); 2891 bool IsBB = false; 2892 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2893 if (!MaybeRecord) 2894 return MaybeRecord.takeError(); 2895 switch (MaybeRecord.get()) { 2896 default: // Default behavior: unknown type. 2897 break; 2898 case bitc::USELIST_CODE_BB: 2899 IsBB = true; 2900 LLVM_FALLTHROUGH; 2901 case bitc::USELIST_CODE_DEFAULT: { 2902 unsigned RecordLength = Record.size(); 2903 if (RecordLength < 3) 2904 // Records should have at least an ID and two indexes. 2905 return error("Invalid record"); 2906 unsigned ID = Record.back(); 2907 Record.pop_back(); 2908 2909 Value *V; 2910 if (IsBB) { 2911 assert(ID < FunctionBBs.size() && "Basic block not found"); 2912 V = FunctionBBs[ID]; 2913 } else 2914 V = ValueList[ID]; 2915 unsigned NumUses = 0; 2916 SmallDenseMap<const Use *, unsigned, 16> Order; 2917 for (const Use &U : V->materialized_uses()) { 2918 if (++NumUses > Record.size()) 2919 break; 2920 Order[&U] = Record[NumUses - 1]; 2921 } 2922 if (Order.size() != Record.size() || NumUses > Record.size()) 2923 // Mismatches can happen if the functions are being materialized lazily 2924 // (out-of-order), or a value has been upgraded. 2925 break; 2926 2927 V->sortUseList([&](const Use &L, const Use &R) { 2928 return Order.lookup(&L) < Order.lookup(&R); 2929 }); 2930 break; 2931 } 2932 } 2933 } 2934 } 2935 2936 /// When we see the block for metadata, remember where it is and then skip it. 2937 /// This lets us lazily deserialize the metadata. 2938 Error BitcodeReader::rememberAndSkipMetadata() { 2939 // Save the current stream state. 2940 uint64_t CurBit = Stream.GetCurrentBitNo(); 2941 DeferredMetadataInfo.push_back(CurBit); 2942 2943 // Skip over the block for now. 2944 if (Error Err = Stream.SkipBlock()) 2945 return Err; 2946 return Error::success(); 2947 } 2948 2949 Error BitcodeReader::materializeMetadata() { 2950 for (uint64_t BitPos : DeferredMetadataInfo) { 2951 // Move the bit stream to the saved position. 2952 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2953 return JumpFailed; 2954 if (Error Err = MDLoader->parseModuleMetadata()) 2955 return Err; 2956 } 2957 2958 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2959 // metadata. 2960 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2961 NamedMDNode *LinkerOpts = 2962 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2963 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2964 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2965 } 2966 2967 DeferredMetadataInfo.clear(); 2968 return Error::success(); 2969 } 2970 2971 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2972 2973 /// When we see the block for a function body, remember where it is and then 2974 /// skip it. This lets us lazily deserialize the functions. 2975 Error BitcodeReader::rememberAndSkipFunctionBody() { 2976 // Get the function we are talking about. 2977 if (FunctionsWithBodies.empty()) 2978 return error("Insufficient function protos"); 2979 2980 Function *Fn = FunctionsWithBodies.back(); 2981 FunctionsWithBodies.pop_back(); 2982 2983 // Save the current stream state. 2984 uint64_t CurBit = Stream.GetCurrentBitNo(); 2985 assert( 2986 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2987 "Mismatch between VST and scanned function offsets"); 2988 DeferredFunctionInfo[Fn] = CurBit; 2989 2990 // Skip over the function block for now. 2991 if (Error Err = Stream.SkipBlock()) 2992 return Err; 2993 return Error::success(); 2994 } 2995 2996 Error BitcodeReader::globalCleanup() { 2997 // Patch the initializers for globals and aliases up. 2998 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2999 return Err; 3000 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3001 return error("Malformed global initializer set"); 3002 3003 // Look for intrinsic functions which need to be upgraded at some point 3004 for (Function &F : *TheModule) { 3005 MDLoader->upgradeDebugIntrinsics(F); 3006 Function *NewFn; 3007 if (UpgradeIntrinsicFunction(&F, NewFn)) 3008 UpgradedIntrinsics[&F] = NewFn; 3009 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3010 // Some types could be renamed during loading if several modules are 3011 // loaded in the same LLVMContext (LTO scenario). In this case we should 3012 // remangle intrinsics names as well. 3013 RemangledIntrinsics[&F] = Remangled.getValue(); 3014 } 3015 3016 // Look for global variables which need to be renamed. 3017 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3018 for (GlobalVariable &GV : TheModule->globals()) 3019 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3020 UpgradedVariables.emplace_back(&GV, Upgraded); 3021 for (auto &Pair : UpgradedVariables) { 3022 Pair.first->eraseFromParent(); 3023 TheModule->getGlobalList().push_back(Pair.second); 3024 } 3025 3026 // Force deallocation of memory for these vectors to favor the client that 3027 // want lazy deserialization. 3028 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3029 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3030 IndirectSymbolInits); 3031 return Error::success(); 3032 } 3033 3034 /// Support for lazy parsing of function bodies. This is required if we 3035 /// either have an old bitcode file without a VST forward declaration record, 3036 /// or if we have an anonymous function being materialized, since anonymous 3037 /// functions do not have a name and are therefore not in the VST. 3038 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3039 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3040 return JumpFailed; 3041 3042 if (Stream.AtEndOfStream()) 3043 return error("Could not find function in stream"); 3044 3045 if (!SeenFirstFunctionBody) 3046 return error("Trying to materialize functions before seeing function blocks"); 3047 3048 // An old bitcode file with the symbol table at the end would have 3049 // finished the parse greedily. 3050 assert(SeenValueSymbolTable); 3051 3052 SmallVector<uint64_t, 64> Record; 3053 3054 while (true) { 3055 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3056 if (!MaybeEntry) 3057 return MaybeEntry.takeError(); 3058 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3059 3060 switch (Entry.Kind) { 3061 default: 3062 return error("Expect SubBlock"); 3063 case BitstreamEntry::SubBlock: 3064 switch (Entry.ID) { 3065 default: 3066 return error("Expect function block"); 3067 case bitc::FUNCTION_BLOCK_ID: 3068 if (Error Err = rememberAndSkipFunctionBody()) 3069 return Err; 3070 NextUnreadBit = Stream.GetCurrentBitNo(); 3071 return Error::success(); 3072 } 3073 } 3074 } 3075 } 3076 3077 bool BitcodeReaderBase::readBlockInfo() { 3078 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3079 Stream.ReadBlockInfoBlock(); 3080 if (!MaybeNewBlockInfo) 3081 return true; // FIXME Handle the error. 3082 Optional<BitstreamBlockInfo> NewBlockInfo = 3083 std::move(MaybeNewBlockInfo.get()); 3084 if (!NewBlockInfo) 3085 return true; 3086 BlockInfo = std::move(*NewBlockInfo); 3087 return false; 3088 } 3089 3090 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3091 // v1: [selection_kind, name] 3092 // v2: [strtab_offset, strtab_size, selection_kind] 3093 StringRef Name; 3094 std::tie(Name, Record) = readNameFromStrtab(Record); 3095 3096 if (Record.empty()) 3097 return error("Invalid record"); 3098 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3099 std::string OldFormatName; 3100 if (!UseStrtab) { 3101 if (Record.size() < 2) 3102 return error("Invalid record"); 3103 unsigned ComdatNameSize = Record[1]; 3104 OldFormatName.reserve(ComdatNameSize); 3105 for (unsigned i = 0; i != ComdatNameSize; ++i) 3106 OldFormatName += (char)Record[2 + i]; 3107 Name = OldFormatName; 3108 } 3109 Comdat *C = TheModule->getOrInsertComdat(Name); 3110 C->setSelectionKind(SK); 3111 ComdatList.push_back(C); 3112 return Error::success(); 3113 } 3114 3115 static void inferDSOLocal(GlobalValue *GV) { 3116 // infer dso_local from linkage and visibility if it is not encoded. 3117 if (GV->hasLocalLinkage() || 3118 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3119 GV->setDSOLocal(true); 3120 } 3121 3122 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3123 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3124 // visibility, threadlocal, unnamed_addr, externally_initialized, 3125 // dllstorageclass, comdat, attributes, preemption specifier, 3126 // partition strtab offset, partition strtab size] (name in VST) 3127 // v2: [strtab_offset, strtab_size, v1] 3128 StringRef Name; 3129 std::tie(Name, Record) = readNameFromStrtab(Record); 3130 3131 if (Record.size() < 6) 3132 return error("Invalid record"); 3133 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3134 Type *Ty = flattenPointerTypes(FullTy); 3135 if (!Ty) 3136 return error("Invalid record"); 3137 bool isConstant = Record[1] & 1; 3138 bool explicitType = Record[1] & 2; 3139 unsigned AddressSpace; 3140 if (explicitType) { 3141 AddressSpace = Record[1] >> 2; 3142 } else { 3143 if (!Ty->isPointerTy()) 3144 return error("Invalid type for value"); 3145 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3146 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3147 } 3148 3149 uint64_t RawLinkage = Record[3]; 3150 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3151 MaybeAlign Alignment; 3152 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3153 return Err; 3154 std::string Section; 3155 if (Record[5]) { 3156 if (Record[5] - 1 >= SectionTable.size()) 3157 return error("Invalid ID"); 3158 Section = SectionTable[Record[5] - 1]; 3159 } 3160 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3161 // Local linkage must have default visibility. 3162 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3163 // FIXME: Change to an error if non-default in 4.0. 3164 Visibility = getDecodedVisibility(Record[6]); 3165 3166 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3167 if (Record.size() > 7) 3168 TLM = getDecodedThreadLocalMode(Record[7]); 3169 3170 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3171 if (Record.size() > 8) 3172 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3173 3174 bool ExternallyInitialized = false; 3175 if (Record.size() > 9) 3176 ExternallyInitialized = Record[9]; 3177 3178 GlobalVariable *NewGV = 3179 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3180 nullptr, TLM, AddressSpace, ExternallyInitialized); 3181 NewGV->setAlignment(Alignment); 3182 if (!Section.empty()) 3183 NewGV->setSection(Section); 3184 NewGV->setVisibility(Visibility); 3185 NewGV->setUnnamedAddr(UnnamedAddr); 3186 3187 if (Record.size() > 10) 3188 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3189 else 3190 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3191 3192 FullTy = PointerType::get(FullTy, AddressSpace); 3193 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3194 "Incorrect fully specified type for GlobalVariable"); 3195 ValueList.push_back(NewGV, FullTy); 3196 3197 // Remember which value to use for the global initializer. 3198 if (unsigned InitID = Record[2]) 3199 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3200 3201 if (Record.size() > 11) { 3202 if (unsigned ComdatID = Record[11]) { 3203 if (ComdatID > ComdatList.size()) 3204 return error("Invalid global variable comdat ID"); 3205 NewGV->setComdat(ComdatList[ComdatID - 1]); 3206 } 3207 } else if (hasImplicitComdat(RawLinkage)) { 3208 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3209 } 3210 3211 if (Record.size() > 12) { 3212 auto AS = getAttributes(Record[12]).getFnAttributes(); 3213 NewGV->setAttributes(AS); 3214 } 3215 3216 if (Record.size() > 13) { 3217 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3218 } 3219 inferDSOLocal(NewGV); 3220 3221 // Check whether we have enough values to read a partition name. 3222 if (Record.size() > 15) 3223 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3224 3225 return Error::success(); 3226 } 3227 3228 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3229 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3230 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3231 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3232 // v2: [strtab_offset, strtab_size, v1] 3233 StringRef Name; 3234 std::tie(Name, Record) = readNameFromStrtab(Record); 3235 3236 if (Record.size() < 8) 3237 return error("Invalid record"); 3238 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3239 Type *FTy = flattenPointerTypes(FullFTy); 3240 if (!FTy) 3241 return error("Invalid record"); 3242 if (isa<PointerType>(FTy)) 3243 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3244 3245 if (!isa<FunctionType>(FTy)) 3246 return error("Invalid type for value"); 3247 auto CC = static_cast<CallingConv::ID>(Record[1]); 3248 if (CC & ~CallingConv::MaxID) 3249 return error("Invalid calling convention ID"); 3250 3251 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3252 if (Record.size() > 16) 3253 AddrSpace = Record[16]; 3254 3255 Function *Func = 3256 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3257 AddrSpace, Name, TheModule); 3258 3259 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3260 "Incorrect fully specified type provided for function"); 3261 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3262 3263 Func->setCallingConv(CC); 3264 bool isProto = Record[2]; 3265 uint64_t RawLinkage = Record[3]; 3266 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3267 Func->setAttributes(getAttributes(Record[4])); 3268 3269 // Upgrade any old-style byval without a type by propagating the argument's 3270 // pointee type. There should be no opaque pointers where the byval type is 3271 // implicit. 3272 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3273 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3274 continue; 3275 3276 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3277 Func->removeParamAttr(i, Attribute::ByVal); 3278 Func->addParamAttr(i, Attribute::getWithByValType( 3279 Context, getPointerElementFlatType(PTy))); 3280 } 3281 3282 MaybeAlign Alignment; 3283 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3284 return Err; 3285 Func->setAlignment(Alignment); 3286 if (Record[6]) { 3287 if (Record[6] - 1 >= SectionTable.size()) 3288 return error("Invalid ID"); 3289 Func->setSection(SectionTable[Record[6] - 1]); 3290 } 3291 // Local linkage must have default visibility. 3292 if (!Func->hasLocalLinkage()) 3293 // FIXME: Change to an error if non-default in 4.0. 3294 Func->setVisibility(getDecodedVisibility(Record[7])); 3295 if (Record.size() > 8 && Record[8]) { 3296 if (Record[8] - 1 >= GCTable.size()) 3297 return error("Invalid ID"); 3298 Func->setGC(GCTable[Record[8] - 1]); 3299 } 3300 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3301 if (Record.size() > 9) 3302 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3303 Func->setUnnamedAddr(UnnamedAddr); 3304 if (Record.size() > 10 && Record[10] != 0) 3305 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3306 3307 if (Record.size() > 11) 3308 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3309 else 3310 upgradeDLLImportExportLinkage(Func, RawLinkage); 3311 3312 if (Record.size() > 12) { 3313 if (unsigned ComdatID = Record[12]) { 3314 if (ComdatID > ComdatList.size()) 3315 return error("Invalid function comdat ID"); 3316 Func->setComdat(ComdatList[ComdatID - 1]); 3317 } 3318 } else if (hasImplicitComdat(RawLinkage)) { 3319 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3320 } 3321 3322 if (Record.size() > 13 && Record[13] != 0) 3323 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3324 3325 if (Record.size() > 14 && Record[14] != 0) 3326 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3327 3328 if (Record.size() > 15) { 3329 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3330 } 3331 inferDSOLocal(Func); 3332 3333 // Record[16] is the address space number. 3334 3335 // Check whether we have enough values to read a partition name. 3336 if (Record.size() > 18) 3337 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3338 3339 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3340 assert(Func->getType() == flattenPointerTypes(FullTy) && 3341 "Incorrect fully specified type provided for Function"); 3342 ValueList.push_back(Func, FullTy); 3343 3344 // If this is a function with a body, remember the prototype we are 3345 // creating now, so that we can match up the body with them later. 3346 if (!isProto) { 3347 Func->setIsMaterializable(true); 3348 FunctionsWithBodies.push_back(Func); 3349 DeferredFunctionInfo[Func] = 0; 3350 } 3351 return Error::success(); 3352 } 3353 3354 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3355 unsigned BitCode, ArrayRef<uint64_t> Record) { 3356 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3357 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3358 // dllstorageclass, threadlocal, unnamed_addr, 3359 // preemption specifier] (name in VST) 3360 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3361 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3362 // preemption specifier] (name in VST) 3363 // v2: [strtab_offset, strtab_size, v1] 3364 StringRef Name; 3365 std::tie(Name, Record) = readNameFromStrtab(Record); 3366 3367 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3368 if (Record.size() < (3 + (unsigned)NewRecord)) 3369 return error("Invalid record"); 3370 unsigned OpNum = 0; 3371 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3372 Type *Ty = flattenPointerTypes(FullTy); 3373 if (!Ty) 3374 return error("Invalid record"); 3375 3376 unsigned AddrSpace; 3377 if (!NewRecord) { 3378 auto *PTy = dyn_cast<PointerType>(Ty); 3379 if (!PTy) 3380 return error("Invalid type for value"); 3381 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3382 AddrSpace = PTy->getAddressSpace(); 3383 } else { 3384 AddrSpace = Record[OpNum++]; 3385 } 3386 3387 auto Val = Record[OpNum++]; 3388 auto Linkage = Record[OpNum++]; 3389 GlobalIndirectSymbol *NewGA; 3390 if (BitCode == bitc::MODULE_CODE_ALIAS || 3391 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3392 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3393 TheModule); 3394 else 3395 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3396 nullptr, TheModule); 3397 3398 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3399 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3400 // Old bitcode files didn't have visibility field. 3401 // Local linkage must have default visibility. 3402 if (OpNum != Record.size()) { 3403 auto VisInd = OpNum++; 3404 if (!NewGA->hasLocalLinkage()) 3405 // FIXME: Change to an error if non-default in 4.0. 3406 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3407 } 3408 if (BitCode == bitc::MODULE_CODE_ALIAS || 3409 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3410 if (OpNum != Record.size()) 3411 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3412 else 3413 upgradeDLLImportExportLinkage(NewGA, Linkage); 3414 if (OpNum != Record.size()) 3415 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3416 if (OpNum != Record.size()) 3417 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3418 } 3419 if (OpNum != Record.size()) 3420 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3421 inferDSOLocal(NewGA); 3422 3423 // Check whether we have enough values to read a partition name. 3424 if (OpNum + 1 < Record.size()) { 3425 NewGA->setPartition( 3426 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3427 OpNum += 2; 3428 } 3429 3430 FullTy = PointerType::get(FullTy, AddrSpace); 3431 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3432 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3433 ValueList.push_back(NewGA, FullTy); 3434 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3435 return Error::success(); 3436 } 3437 3438 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3439 bool ShouldLazyLoadMetadata, 3440 DataLayoutCallbackTy DataLayoutCallback) { 3441 if (ResumeBit) { 3442 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3443 return JumpFailed; 3444 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3445 return Err; 3446 3447 SmallVector<uint64_t, 64> Record; 3448 3449 // Parts of bitcode parsing depend on the datalayout. Make sure we 3450 // finalize the datalayout before we run any of that code. 3451 bool ResolvedDataLayout = false; 3452 auto ResolveDataLayout = [&] { 3453 if (ResolvedDataLayout) 3454 return; 3455 3456 // datalayout and triple can't be parsed after this point. 3457 ResolvedDataLayout = true; 3458 3459 // Upgrade data layout string. 3460 std::string DL = llvm::UpgradeDataLayoutString( 3461 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3462 TheModule->setDataLayout(DL); 3463 3464 if (auto LayoutOverride = 3465 DataLayoutCallback(TheModule->getTargetTriple())) 3466 TheModule->setDataLayout(*LayoutOverride); 3467 }; 3468 3469 // Read all the records for this module. 3470 while (true) { 3471 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3472 if (!MaybeEntry) 3473 return MaybeEntry.takeError(); 3474 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3475 3476 switch (Entry.Kind) { 3477 case BitstreamEntry::Error: 3478 return error("Malformed block"); 3479 case BitstreamEntry::EndBlock: 3480 ResolveDataLayout(); 3481 return globalCleanup(); 3482 3483 case BitstreamEntry::SubBlock: 3484 switch (Entry.ID) { 3485 default: // Skip unknown content. 3486 if (Error Err = Stream.SkipBlock()) 3487 return Err; 3488 break; 3489 case bitc::BLOCKINFO_BLOCK_ID: 3490 if (readBlockInfo()) 3491 return error("Malformed block"); 3492 break; 3493 case bitc::PARAMATTR_BLOCK_ID: 3494 if (Error Err = parseAttributeBlock()) 3495 return Err; 3496 break; 3497 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3498 if (Error Err = parseAttributeGroupBlock()) 3499 return Err; 3500 break; 3501 case bitc::TYPE_BLOCK_ID_NEW: 3502 if (Error Err = parseTypeTable()) 3503 return Err; 3504 break; 3505 case bitc::VALUE_SYMTAB_BLOCK_ID: 3506 if (!SeenValueSymbolTable) { 3507 // Either this is an old form VST without function index and an 3508 // associated VST forward declaration record (which would have caused 3509 // the VST to be jumped to and parsed before it was encountered 3510 // normally in the stream), or there were no function blocks to 3511 // trigger an earlier parsing of the VST. 3512 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3513 if (Error Err = parseValueSymbolTable()) 3514 return Err; 3515 SeenValueSymbolTable = true; 3516 } else { 3517 // We must have had a VST forward declaration record, which caused 3518 // the parser to jump to and parse the VST earlier. 3519 assert(VSTOffset > 0); 3520 if (Error Err = Stream.SkipBlock()) 3521 return Err; 3522 } 3523 break; 3524 case bitc::CONSTANTS_BLOCK_ID: 3525 if (Error Err = parseConstants()) 3526 return Err; 3527 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3528 return Err; 3529 break; 3530 case bitc::METADATA_BLOCK_ID: 3531 if (ShouldLazyLoadMetadata) { 3532 if (Error Err = rememberAndSkipMetadata()) 3533 return Err; 3534 break; 3535 } 3536 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3537 if (Error Err = MDLoader->parseModuleMetadata()) 3538 return Err; 3539 break; 3540 case bitc::METADATA_KIND_BLOCK_ID: 3541 if (Error Err = MDLoader->parseMetadataKinds()) 3542 return Err; 3543 break; 3544 case bitc::FUNCTION_BLOCK_ID: 3545 ResolveDataLayout(); 3546 3547 // If this is the first function body we've seen, reverse the 3548 // FunctionsWithBodies list. 3549 if (!SeenFirstFunctionBody) { 3550 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3551 if (Error Err = globalCleanup()) 3552 return Err; 3553 SeenFirstFunctionBody = true; 3554 } 3555 3556 if (VSTOffset > 0) { 3557 // If we have a VST forward declaration record, make sure we 3558 // parse the VST now if we haven't already. It is needed to 3559 // set up the DeferredFunctionInfo vector for lazy reading. 3560 if (!SeenValueSymbolTable) { 3561 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3562 return Err; 3563 SeenValueSymbolTable = true; 3564 // Fall through so that we record the NextUnreadBit below. 3565 // This is necessary in case we have an anonymous function that 3566 // is later materialized. Since it will not have a VST entry we 3567 // need to fall back to the lazy parse to find its offset. 3568 } else { 3569 // If we have a VST forward declaration record, but have already 3570 // parsed the VST (just above, when the first function body was 3571 // encountered here), then we are resuming the parse after 3572 // materializing functions. The ResumeBit points to the 3573 // start of the last function block recorded in the 3574 // DeferredFunctionInfo map. Skip it. 3575 if (Error Err = Stream.SkipBlock()) 3576 return Err; 3577 continue; 3578 } 3579 } 3580 3581 // Support older bitcode files that did not have the function 3582 // index in the VST, nor a VST forward declaration record, as 3583 // well as anonymous functions that do not have VST entries. 3584 // Build the DeferredFunctionInfo vector on the fly. 3585 if (Error Err = rememberAndSkipFunctionBody()) 3586 return Err; 3587 3588 // Suspend parsing when we reach the function bodies. Subsequent 3589 // materialization calls will resume it when necessary. If the bitcode 3590 // file is old, the symbol table will be at the end instead and will not 3591 // have been seen yet. In this case, just finish the parse now. 3592 if (SeenValueSymbolTable) { 3593 NextUnreadBit = Stream.GetCurrentBitNo(); 3594 // After the VST has been parsed, we need to make sure intrinsic name 3595 // are auto-upgraded. 3596 return globalCleanup(); 3597 } 3598 break; 3599 case bitc::USELIST_BLOCK_ID: 3600 if (Error Err = parseUseLists()) 3601 return Err; 3602 break; 3603 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3604 if (Error Err = parseOperandBundleTags()) 3605 return Err; 3606 break; 3607 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3608 if (Error Err = parseSyncScopeNames()) 3609 return Err; 3610 break; 3611 } 3612 continue; 3613 3614 case BitstreamEntry::Record: 3615 // The interesting case. 3616 break; 3617 } 3618 3619 // Read a record. 3620 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3621 if (!MaybeBitCode) 3622 return MaybeBitCode.takeError(); 3623 switch (unsigned BitCode = MaybeBitCode.get()) { 3624 default: break; // Default behavior, ignore unknown content. 3625 case bitc::MODULE_CODE_VERSION: { 3626 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3627 if (!VersionOrErr) 3628 return VersionOrErr.takeError(); 3629 UseRelativeIDs = *VersionOrErr >= 1; 3630 break; 3631 } 3632 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3633 if (ResolvedDataLayout) 3634 return error("target triple too late in module"); 3635 std::string S; 3636 if (convertToString(Record, 0, S)) 3637 return error("Invalid record"); 3638 TheModule->setTargetTriple(S); 3639 break; 3640 } 3641 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3642 if (ResolvedDataLayout) 3643 return error("datalayout too late in module"); 3644 std::string S; 3645 if (convertToString(Record, 0, S)) 3646 return error("Invalid record"); 3647 TheModule->setDataLayout(S); 3648 break; 3649 } 3650 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3651 std::string S; 3652 if (convertToString(Record, 0, S)) 3653 return error("Invalid record"); 3654 TheModule->setModuleInlineAsm(S); 3655 break; 3656 } 3657 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3658 // FIXME: Remove in 4.0. 3659 std::string S; 3660 if (convertToString(Record, 0, S)) 3661 return error("Invalid record"); 3662 // Ignore value. 3663 break; 3664 } 3665 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3666 std::string S; 3667 if (convertToString(Record, 0, S)) 3668 return error("Invalid record"); 3669 SectionTable.push_back(S); 3670 break; 3671 } 3672 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3673 std::string S; 3674 if (convertToString(Record, 0, S)) 3675 return error("Invalid record"); 3676 GCTable.push_back(S); 3677 break; 3678 } 3679 case bitc::MODULE_CODE_COMDAT: 3680 if (Error Err = parseComdatRecord(Record)) 3681 return Err; 3682 break; 3683 case bitc::MODULE_CODE_GLOBALVAR: 3684 if (Error Err = parseGlobalVarRecord(Record)) 3685 return Err; 3686 break; 3687 case bitc::MODULE_CODE_FUNCTION: 3688 ResolveDataLayout(); 3689 if (Error Err = parseFunctionRecord(Record)) 3690 return Err; 3691 break; 3692 case bitc::MODULE_CODE_IFUNC: 3693 case bitc::MODULE_CODE_ALIAS: 3694 case bitc::MODULE_CODE_ALIAS_OLD: 3695 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3696 return Err; 3697 break; 3698 /// MODULE_CODE_VSTOFFSET: [offset] 3699 case bitc::MODULE_CODE_VSTOFFSET: 3700 if (Record.size() < 1) 3701 return error("Invalid record"); 3702 // Note that we subtract 1 here because the offset is relative to one word 3703 // before the start of the identification or module block, which was 3704 // historically always the start of the regular bitcode header. 3705 VSTOffset = Record[0] - 1; 3706 break; 3707 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3708 case bitc::MODULE_CODE_SOURCE_FILENAME: 3709 SmallString<128> ValueName; 3710 if (convertToString(Record, 0, ValueName)) 3711 return error("Invalid record"); 3712 TheModule->setSourceFileName(ValueName); 3713 break; 3714 } 3715 Record.clear(); 3716 } 3717 } 3718 3719 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3720 bool IsImporting, 3721 DataLayoutCallbackTy DataLayoutCallback) { 3722 TheModule = M; 3723 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3724 [&](unsigned ID) { return getTypeByID(ID); }); 3725 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3726 } 3727 3728 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3729 if (!isa<PointerType>(PtrType)) 3730 return error("Load/Store operand is not a pointer type"); 3731 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3732 3733 if (ValType && ValType != ElemType) 3734 return error("Explicit load/store type does not match pointee " 3735 "type of pointer operand"); 3736 if (!PointerType::isLoadableOrStorableType(ElemType)) 3737 return error("Cannot load/store from pointer"); 3738 return Error::success(); 3739 } 3740 3741 void BitcodeReader::propagateByValTypes(CallBase *CB, 3742 ArrayRef<Type *> ArgsFullTys) { 3743 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3744 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3745 continue; 3746 3747 CB->removeParamAttr(i, Attribute::ByVal); 3748 CB->addParamAttr( 3749 i, Attribute::getWithByValType( 3750 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3751 } 3752 } 3753 3754 /// Lazily parse the specified function body block. 3755 Error BitcodeReader::parseFunctionBody(Function *F) { 3756 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3757 return Err; 3758 3759 // Unexpected unresolved metadata when parsing function. 3760 if (MDLoader->hasFwdRefs()) 3761 return error("Invalid function metadata: incoming forward references"); 3762 3763 InstructionList.clear(); 3764 unsigned ModuleValueListSize = ValueList.size(); 3765 unsigned ModuleMDLoaderSize = MDLoader->size(); 3766 3767 // Add all the function arguments to the value table. 3768 unsigned ArgNo = 0; 3769 FunctionType *FullFTy = FunctionTypes[F]; 3770 for (Argument &I : F->args()) { 3771 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3772 "Incorrect fully specified type for Function Argument"); 3773 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3774 } 3775 unsigned NextValueNo = ValueList.size(); 3776 BasicBlock *CurBB = nullptr; 3777 unsigned CurBBNo = 0; 3778 3779 DebugLoc LastLoc; 3780 auto getLastInstruction = [&]() -> Instruction * { 3781 if (CurBB && !CurBB->empty()) 3782 return &CurBB->back(); 3783 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3784 !FunctionBBs[CurBBNo - 1]->empty()) 3785 return &FunctionBBs[CurBBNo - 1]->back(); 3786 return nullptr; 3787 }; 3788 3789 std::vector<OperandBundleDef> OperandBundles; 3790 3791 // Read all the records. 3792 SmallVector<uint64_t, 64> Record; 3793 3794 while (true) { 3795 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3796 if (!MaybeEntry) 3797 return MaybeEntry.takeError(); 3798 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3799 3800 switch (Entry.Kind) { 3801 case BitstreamEntry::Error: 3802 return error("Malformed block"); 3803 case BitstreamEntry::EndBlock: 3804 goto OutOfRecordLoop; 3805 3806 case BitstreamEntry::SubBlock: 3807 switch (Entry.ID) { 3808 default: // Skip unknown content. 3809 if (Error Err = Stream.SkipBlock()) 3810 return Err; 3811 break; 3812 case bitc::CONSTANTS_BLOCK_ID: 3813 if (Error Err = parseConstants()) 3814 return Err; 3815 NextValueNo = ValueList.size(); 3816 break; 3817 case bitc::VALUE_SYMTAB_BLOCK_ID: 3818 if (Error Err = parseValueSymbolTable()) 3819 return Err; 3820 break; 3821 case bitc::METADATA_ATTACHMENT_ID: 3822 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3823 return Err; 3824 break; 3825 case bitc::METADATA_BLOCK_ID: 3826 assert(DeferredMetadataInfo.empty() && 3827 "Must read all module-level metadata before function-level"); 3828 if (Error Err = MDLoader->parseFunctionMetadata()) 3829 return Err; 3830 break; 3831 case bitc::USELIST_BLOCK_ID: 3832 if (Error Err = parseUseLists()) 3833 return Err; 3834 break; 3835 } 3836 continue; 3837 3838 case BitstreamEntry::Record: 3839 // The interesting case. 3840 break; 3841 } 3842 3843 // Read a record. 3844 Record.clear(); 3845 Instruction *I = nullptr; 3846 Type *FullTy = nullptr; 3847 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3848 if (!MaybeBitCode) 3849 return MaybeBitCode.takeError(); 3850 switch (unsigned BitCode = MaybeBitCode.get()) { 3851 default: // Default behavior: reject 3852 return error("Invalid value"); 3853 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3854 if (Record.size() < 1 || Record[0] == 0) 3855 return error("Invalid record"); 3856 // Create all the basic blocks for the function. 3857 FunctionBBs.resize(Record[0]); 3858 3859 // See if anything took the address of blocks in this function. 3860 auto BBFRI = BasicBlockFwdRefs.find(F); 3861 if (BBFRI == BasicBlockFwdRefs.end()) { 3862 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3863 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3864 } else { 3865 auto &BBRefs = BBFRI->second; 3866 // Check for invalid basic block references. 3867 if (BBRefs.size() > FunctionBBs.size()) 3868 return error("Invalid ID"); 3869 assert(!BBRefs.empty() && "Unexpected empty array"); 3870 assert(!BBRefs.front() && "Invalid reference to entry block"); 3871 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3872 ++I) 3873 if (I < RE && BBRefs[I]) { 3874 BBRefs[I]->insertInto(F); 3875 FunctionBBs[I] = BBRefs[I]; 3876 } else { 3877 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3878 } 3879 3880 // Erase from the table. 3881 BasicBlockFwdRefs.erase(BBFRI); 3882 } 3883 3884 CurBB = FunctionBBs[0]; 3885 continue; 3886 } 3887 3888 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3889 // This record indicates that the last instruction is at the same 3890 // location as the previous instruction with a location. 3891 I = getLastInstruction(); 3892 3893 if (!I) 3894 return error("Invalid record"); 3895 I->setDebugLoc(LastLoc); 3896 I = nullptr; 3897 continue; 3898 3899 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3900 I = getLastInstruction(); 3901 if (!I || Record.size() < 4) 3902 return error("Invalid record"); 3903 3904 unsigned Line = Record[0], Col = Record[1]; 3905 unsigned ScopeID = Record[2], IAID = Record[3]; 3906 bool isImplicitCode = Record.size() == 5 && Record[4]; 3907 3908 MDNode *Scope = nullptr, *IA = nullptr; 3909 if (ScopeID) { 3910 Scope = dyn_cast_or_null<MDNode>( 3911 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3912 if (!Scope) 3913 return error("Invalid record"); 3914 } 3915 if (IAID) { 3916 IA = dyn_cast_or_null<MDNode>( 3917 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3918 if (!IA) 3919 return error("Invalid record"); 3920 } 3921 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3922 I->setDebugLoc(LastLoc); 3923 I = nullptr; 3924 continue; 3925 } 3926 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3927 unsigned OpNum = 0; 3928 Value *LHS; 3929 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3930 OpNum+1 > Record.size()) 3931 return error("Invalid record"); 3932 3933 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3934 if (Opc == -1) 3935 return error("Invalid record"); 3936 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3937 InstructionList.push_back(I); 3938 if (OpNum < Record.size()) { 3939 if (isa<FPMathOperator>(I)) { 3940 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3941 if (FMF.any()) 3942 I->setFastMathFlags(FMF); 3943 } 3944 } 3945 break; 3946 } 3947 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3948 unsigned OpNum = 0; 3949 Value *LHS, *RHS; 3950 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3951 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3952 OpNum+1 > Record.size()) 3953 return error("Invalid record"); 3954 3955 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3956 if (Opc == -1) 3957 return error("Invalid record"); 3958 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3959 InstructionList.push_back(I); 3960 if (OpNum < Record.size()) { 3961 if (Opc == Instruction::Add || 3962 Opc == Instruction::Sub || 3963 Opc == Instruction::Mul || 3964 Opc == Instruction::Shl) { 3965 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3966 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3967 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3968 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3969 } else if (Opc == Instruction::SDiv || 3970 Opc == Instruction::UDiv || 3971 Opc == Instruction::LShr || 3972 Opc == Instruction::AShr) { 3973 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3974 cast<BinaryOperator>(I)->setIsExact(true); 3975 } else if (isa<FPMathOperator>(I)) { 3976 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3977 if (FMF.any()) 3978 I->setFastMathFlags(FMF); 3979 } 3980 3981 } 3982 break; 3983 } 3984 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3985 unsigned OpNum = 0; 3986 Value *Op; 3987 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3988 OpNum+2 != Record.size()) 3989 return error("Invalid record"); 3990 3991 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3992 Type *ResTy = flattenPointerTypes(FullTy); 3993 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3994 if (Opc == -1 || !ResTy) 3995 return error("Invalid record"); 3996 Instruction *Temp = nullptr; 3997 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3998 if (Temp) { 3999 InstructionList.push_back(Temp); 4000 assert(CurBB && "No current BB?"); 4001 CurBB->getInstList().push_back(Temp); 4002 } 4003 } else { 4004 auto CastOp = (Instruction::CastOps)Opc; 4005 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4006 return error("Invalid cast"); 4007 I = CastInst::Create(CastOp, Op, ResTy); 4008 } 4009 InstructionList.push_back(I); 4010 break; 4011 } 4012 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4013 case bitc::FUNC_CODE_INST_GEP_OLD: 4014 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4015 unsigned OpNum = 0; 4016 4017 Type *Ty; 4018 bool InBounds; 4019 4020 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4021 InBounds = Record[OpNum++]; 4022 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4023 Ty = flattenPointerTypes(FullTy); 4024 } else { 4025 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4026 Ty = nullptr; 4027 } 4028 4029 Value *BasePtr; 4030 Type *FullBaseTy = nullptr; 4031 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4032 return error("Invalid record"); 4033 4034 if (!Ty) { 4035 std::tie(FullTy, Ty) = 4036 getPointerElementTypes(FullBaseTy->getScalarType()); 4037 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 4038 return error( 4039 "Explicit gep type does not match pointee type of pointer operand"); 4040 4041 SmallVector<Value*, 16> GEPIdx; 4042 while (OpNum != Record.size()) { 4043 Value *Op; 4044 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4045 return error("Invalid record"); 4046 GEPIdx.push_back(Op); 4047 } 4048 4049 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4050 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4051 4052 InstructionList.push_back(I); 4053 if (InBounds) 4054 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4055 break; 4056 } 4057 4058 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4059 // EXTRACTVAL: [opty, opval, n x indices] 4060 unsigned OpNum = 0; 4061 Value *Agg; 4062 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4063 return error("Invalid record"); 4064 4065 unsigned RecSize = Record.size(); 4066 if (OpNum == RecSize) 4067 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4068 4069 SmallVector<unsigned, 4> EXTRACTVALIdx; 4070 for (; OpNum != RecSize; ++OpNum) { 4071 bool IsArray = FullTy->isArrayTy(); 4072 bool IsStruct = FullTy->isStructTy(); 4073 uint64_t Index = Record[OpNum]; 4074 4075 if (!IsStruct && !IsArray) 4076 return error("EXTRACTVAL: Invalid type"); 4077 if ((unsigned)Index != Index) 4078 return error("Invalid value"); 4079 if (IsStruct && Index >= FullTy->getStructNumElements()) 4080 return error("EXTRACTVAL: Invalid struct index"); 4081 if (IsArray && Index >= FullTy->getArrayNumElements()) 4082 return error("EXTRACTVAL: Invalid array index"); 4083 EXTRACTVALIdx.push_back((unsigned)Index); 4084 4085 if (IsStruct) 4086 FullTy = FullTy->getStructElementType(Index); 4087 else 4088 FullTy = FullTy->getArrayElementType(); 4089 } 4090 4091 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4092 InstructionList.push_back(I); 4093 break; 4094 } 4095 4096 case bitc::FUNC_CODE_INST_INSERTVAL: { 4097 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4098 unsigned OpNum = 0; 4099 Value *Agg; 4100 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4101 return error("Invalid record"); 4102 Value *Val; 4103 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4104 return error("Invalid record"); 4105 4106 unsigned RecSize = Record.size(); 4107 if (OpNum == RecSize) 4108 return error("INSERTVAL: Invalid instruction with 0 indices"); 4109 4110 SmallVector<unsigned, 4> INSERTVALIdx; 4111 Type *CurTy = Agg->getType(); 4112 for (; OpNum != RecSize; ++OpNum) { 4113 bool IsArray = CurTy->isArrayTy(); 4114 bool IsStruct = CurTy->isStructTy(); 4115 uint64_t Index = Record[OpNum]; 4116 4117 if (!IsStruct && !IsArray) 4118 return error("INSERTVAL: Invalid type"); 4119 if ((unsigned)Index != Index) 4120 return error("Invalid value"); 4121 if (IsStruct && Index >= CurTy->getStructNumElements()) 4122 return error("INSERTVAL: Invalid struct index"); 4123 if (IsArray && Index >= CurTy->getArrayNumElements()) 4124 return error("INSERTVAL: Invalid array index"); 4125 4126 INSERTVALIdx.push_back((unsigned)Index); 4127 if (IsStruct) 4128 CurTy = CurTy->getStructElementType(Index); 4129 else 4130 CurTy = CurTy->getArrayElementType(); 4131 } 4132 4133 if (CurTy != Val->getType()) 4134 return error("Inserted value type doesn't match aggregate type"); 4135 4136 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4137 InstructionList.push_back(I); 4138 break; 4139 } 4140 4141 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4142 // obsolete form of select 4143 // handles select i1 ... in old bitcode 4144 unsigned OpNum = 0; 4145 Value *TrueVal, *FalseVal, *Cond; 4146 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4147 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4148 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4149 return error("Invalid record"); 4150 4151 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4152 InstructionList.push_back(I); 4153 break; 4154 } 4155 4156 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4157 // new form of select 4158 // handles select i1 or select [N x i1] 4159 unsigned OpNum = 0; 4160 Value *TrueVal, *FalseVal, *Cond; 4161 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4162 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4163 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4164 return error("Invalid record"); 4165 4166 // select condition can be either i1 or [N x i1] 4167 if (VectorType* vector_type = 4168 dyn_cast<VectorType>(Cond->getType())) { 4169 // expect <n x i1> 4170 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4171 return error("Invalid type for value"); 4172 } else { 4173 // expect i1 4174 if (Cond->getType() != Type::getInt1Ty(Context)) 4175 return error("Invalid type for value"); 4176 } 4177 4178 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4179 InstructionList.push_back(I); 4180 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4181 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4182 if (FMF.any()) 4183 I->setFastMathFlags(FMF); 4184 } 4185 break; 4186 } 4187 4188 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4189 unsigned OpNum = 0; 4190 Value *Vec, *Idx; 4191 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4192 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4193 return error("Invalid record"); 4194 if (!Vec->getType()->isVectorTy()) 4195 return error("Invalid type for value"); 4196 I = ExtractElementInst::Create(Vec, Idx); 4197 FullTy = cast<VectorType>(FullTy)->getElementType(); 4198 InstructionList.push_back(I); 4199 break; 4200 } 4201 4202 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4203 unsigned OpNum = 0; 4204 Value *Vec, *Elt, *Idx; 4205 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4206 return error("Invalid record"); 4207 if (!Vec->getType()->isVectorTy()) 4208 return error("Invalid type for value"); 4209 if (popValue(Record, OpNum, NextValueNo, 4210 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4211 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4212 return error("Invalid record"); 4213 I = InsertElementInst::Create(Vec, Elt, Idx); 4214 InstructionList.push_back(I); 4215 break; 4216 } 4217 4218 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4219 unsigned OpNum = 0; 4220 Value *Vec1, *Vec2, *Mask; 4221 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4222 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4223 return error("Invalid record"); 4224 4225 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4226 return error("Invalid record"); 4227 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4228 return error("Invalid type for value"); 4229 4230 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4231 FullTy = 4232 VectorType::get(cast<VectorType>(FullTy)->getElementType(), 4233 cast<VectorType>(Mask->getType())->getElementCount()); 4234 InstructionList.push_back(I); 4235 break; 4236 } 4237 4238 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4239 // Old form of ICmp/FCmp returning bool 4240 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4241 // both legal on vectors but had different behaviour. 4242 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4243 // FCmp/ICmp returning bool or vector of bool 4244 4245 unsigned OpNum = 0; 4246 Value *LHS, *RHS; 4247 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4248 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4249 return error("Invalid record"); 4250 4251 if (OpNum >= Record.size()) 4252 return error( 4253 "Invalid record: operand number exceeded available operands"); 4254 4255 unsigned PredVal = Record[OpNum]; 4256 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4257 FastMathFlags FMF; 4258 if (IsFP && Record.size() > OpNum+1) 4259 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4260 4261 if (OpNum+1 != Record.size()) 4262 return error("Invalid record"); 4263 4264 if (LHS->getType()->isFPOrFPVectorTy()) 4265 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4266 else 4267 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4268 4269 if (FMF.any()) 4270 I->setFastMathFlags(FMF); 4271 InstructionList.push_back(I); 4272 break; 4273 } 4274 4275 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4276 { 4277 unsigned Size = Record.size(); 4278 if (Size == 0) { 4279 I = ReturnInst::Create(Context); 4280 InstructionList.push_back(I); 4281 break; 4282 } 4283 4284 unsigned OpNum = 0; 4285 Value *Op = nullptr; 4286 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4287 return error("Invalid record"); 4288 if (OpNum != Record.size()) 4289 return error("Invalid record"); 4290 4291 I = ReturnInst::Create(Context, Op); 4292 InstructionList.push_back(I); 4293 break; 4294 } 4295 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4296 if (Record.size() != 1 && Record.size() != 3) 4297 return error("Invalid record"); 4298 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4299 if (!TrueDest) 4300 return error("Invalid record"); 4301 4302 if (Record.size() == 1) { 4303 I = BranchInst::Create(TrueDest); 4304 InstructionList.push_back(I); 4305 } 4306 else { 4307 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4308 Value *Cond = getValue(Record, 2, NextValueNo, 4309 Type::getInt1Ty(Context)); 4310 if (!FalseDest || !Cond) 4311 return error("Invalid record"); 4312 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4313 InstructionList.push_back(I); 4314 } 4315 break; 4316 } 4317 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4318 if (Record.size() != 1 && Record.size() != 2) 4319 return error("Invalid record"); 4320 unsigned Idx = 0; 4321 Value *CleanupPad = 4322 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4323 if (!CleanupPad) 4324 return error("Invalid record"); 4325 BasicBlock *UnwindDest = nullptr; 4326 if (Record.size() == 2) { 4327 UnwindDest = getBasicBlock(Record[Idx++]); 4328 if (!UnwindDest) 4329 return error("Invalid record"); 4330 } 4331 4332 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4333 InstructionList.push_back(I); 4334 break; 4335 } 4336 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4337 if (Record.size() != 2) 4338 return error("Invalid record"); 4339 unsigned Idx = 0; 4340 Value *CatchPad = 4341 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4342 if (!CatchPad) 4343 return error("Invalid record"); 4344 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4345 if (!BB) 4346 return error("Invalid record"); 4347 4348 I = CatchReturnInst::Create(CatchPad, BB); 4349 InstructionList.push_back(I); 4350 break; 4351 } 4352 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4353 // We must have, at minimum, the outer scope and the number of arguments. 4354 if (Record.size() < 2) 4355 return error("Invalid record"); 4356 4357 unsigned Idx = 0; 4358 4359 Value *ParentPad = 4360 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4361 4362 unsigned NumHandlers = Record[Idx++]; 4363 4364 SmallVector<BasicBlock *, 2> Handlers; 4365 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4366 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4367 if (!BB) 4368 return error("Invalid record"); 4369 Handlers.push_back(BB); 4370 } 4371 4372 BasicBlock *UnwindDest = nullptr; 4373 if (Idx + 1 == Record.size()) { 4374 UnwindDest = getBasicBlock(Record[Idx++]); 4375 if (!UnwindDest) 4376 return error("Invalid record"); 4377 } 4378 4379 if (Record.size() != Idx) 4380 return error("Invalid record"); 4381 4382 auto *CatchSwitch = 4383 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4384 for (BasicBlock *Handler : Handlers) 4385 CatchSwitch->addHandler(Handler); 4386 I = CatchSwitch; 4387 InstructionList.push_back(I); 4388 break; 4389 } 4390 case bitc::FUNC_CODE_INST_CATCHPAD: 4391 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4392 // We must have, at minimum, the outer scope and the number of arguments. 4393 if (Record.size() < 2) 4394 return error("Invalid record"); 4395 4396 unsigned Idx = 0; 4397 4398 Value *ParentPad = 4399 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4400 4401 unsigned NumArgOperands = Record[Idx++]; 4402 4403 SmallVector<Value *, 2> Args; 4404 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4405 Value *Val; 4406 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4407 return error("Invalid record"); 4408 Args.push_back(Val); 4409 } 4410 4411 if (Record.size() != Idx) 4412 return error("Invalid record"); 4413 4414 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4415 I = CleanupPadInst::Create(ParentPad, Args); 4416 else 4417 I = CatchPadInst::Create(ParentPad, Args); 4418 InstructionList.push_back(I); 4419 break; 4420 } 4421 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4422 // Check magic 4423 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4424 // "New" SwitchInst format with case ranges. The changes to write this 4425 // format were reverted but we still recognize bitcode that uses it. 4426 // Hopefully someday we will have support for case ranges and can use 4427 // this format again. 4428 4429 Type *OpTy = getTypeByID(Record[1]); 4430 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4431 4432 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4433 BasicBlock *Default = getBasicBlock(Record[3]); 4434 if (!OpTy || !Cond || !Default) 4435 return error("Invalid record"); 4436 4437 unsigned NumCases = Record[4]; 4438 4439 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4440 InstructionList.push_back(SI); 4441 4442 unsigned CurIdx = 5; 4443 for (unsigned i = 0; i != NumCases; ++i) { 4444 SmallVector<ConstantInt*, 1> CaseVals; 4445 unsigned NumItems = Record[CurIdx++]; 4446 for (unsigned ci = 0; ci != NumItems; ++ci) { 4447 bool isSingleNumber = Record[CurIdx++]; 4448 4449 APInt Low; 4450 unsigned ActiveWords = 1; 4451 if (ValueBitWidth > 64) 4452 ActiveWords = Record[CurIdx++]; 4453 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4454 ValueBitWidth); 4455 CurIdx += ActiveWords; 4456 4457 if (!isSingleNumber) { 4458 ActiveWords = 1; 4459 if (ValueBitWidth > 64) 4460 ActiveWords = Record[CurIdx++]; 4461 APInt High = readWideAPInt( 4462 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4463 CurIdx += ActiveWords; 4464 4465 // FIXME: It is not clear whether values in the range should be 4466 // compared as signed or unsigned values. The partially 4467 // implemented changes that used this format in the past used 4468 // unsigned comparisons. 4469 for ( ; Low.ule(High); ++Low) 4470 CaseVals.push_back(ConstantInt::get(Context, Low)); 4471 } else 4472 CaseVals.push_back(ConstantInt::get(Context, Low)); 4473 } 4474 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4475 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4476 cve = CaseVals.end(); cvi != cve; ++cvi) 4477 SI->addCase(*cvi, DestBB); 4478 } 4479 I = SI; 4480 break; 4481 } 4482 4483 // Old SwitchInst format without case ranges. 4484 4485 if (Record.size() < 3 || (Record.size() & 1) == 0) 4486 return error("Invalid record"); 4487 Type *OpTy = getTypeByID(Record[0]); 4488 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4489 BasicBlock *Default = getBasicBlock(Record[2]); 4490 if (!OpTy || !Cond || !Default) 4491 return error("Invalid record"); 4492 unsigned NumCases = (Record.size()-3)/2; 4493 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4494 InstructionList.push_back(SI); 4495 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4496 ConstantInt *CaseVal = 4497 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4498 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4499 if (!CaseVal || !DestBB) { 4500 delete SI; 4501 return error("Invalid record"); 4502 } 4503 SI->addCase(CaseVal, DestBB); 4504 } 4505 I = SI; 4506 break; 4507 } 4508 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4509 if (Record.size() < 2) 4510 return error("Invalid record"); 4511 Type *OpTy = getTypeByID(Record[0]); 4512 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4513 if (!OpTy || !Address) 4514 return error("Invalid record"); 4515 unsigned NumDests = Record.size()-2; 4516 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4517 InstructionList.push_back(IBI); 4518 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4519 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4520 IBI->addDestination(DestBB); 4521 } else { 4522 delete IBI; 4523 return error("Invalid record"); 4524 } 4525 } 4526 I = IBI; 4527 break; 4528 } 4529 4530 case bitc::FUNC_CODE_INST_INVOKE: { 4531 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4532 if (Record.size() < 4) 4533 return error("Invalid record"); 4534 unsigned OpNum = 0; 4535 AttributeList PAL = getAttributes(Record[OpNum++]); 4536 unsigned CCInfo = Record[OpNum++]; 4537 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4538 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4539 4540 FunctionType *FTy = nullptr; 4541 FunctionType *FullFTy = nullptr; 4542 if ((CCInfo >> 13) & 1) { 4543 FullFTy = 4544 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4545 if (!FullFTy) 4546 return error("Explicit invoke type is not a function type"); 4547 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4548 } 4549 4550 Value *Callee; 4551 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4552 return error("Invalid record"); 4553 4554 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4555 if (!CalleeTy) 4556 return error("Callee is not a pointer"); 4557 if (!FTy) { 4558 FullFTy = 4559 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4560 if (!FullFTy) 4561 return error("Callee is not of pointer to function type"); 4562 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4563 } else if (getPointerElementFlatType(FullTy) != FTy) 4564 return error("Explicit invoke type does not match pointee type of " 4565 "callee operand"); 4566 if (Record.size() < FTy->getNumParams() + OpNum) 4567 return error("Insufficient operands to call"); 4568 4569 SmallVector<Value*, 16> Ops; 4570 SmallVector<Type *, 16> ArgsFullTys; 4571 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4572 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4573 FTy->getParamType(i))); 4574 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4575 if (!Ops.back()) 4576 return error("Invalid record"); 4577 } 4578 4579 if (!FTy->isVarArg()) { 4580 if (Record.size() != OpNum) 4581 return error("Invalid record"); 4582 } else { 4583 // Read type/value pairs for varargs params. 4584 while (OpNum != Record.size()) { 4585 Value *Op; 4586 Type *FullTy; 4587 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4588 return error("Invalid record"); 4589 Ops.push_back(Op); 4590 ArgsFullTys.push_back(FullTy); 4591 } 4592 } 4593 4594 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4595 OperandBundles); 4596 FullTy = FullFTy->getReturnType(); 4597 OperandBundles.clear(); 4598 InstructionList.push_back(I); 4599 cast<InvokeInst>(I)->setCallingConv( 4600 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4601 cast<InvokeInst>(I)->setAttributes(PAL); 4602 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4603 4604 break; 4605 } 4606 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4607 unsigned Idx = 0; 4608 Value *Val = nullptr; 4609 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4610 return error("Invalid record"); 4611 I = ResumeInst::Create(Val); 4612 InstructionList.push_back(I); 4613 break; 4614 } 4615 case bitc::FUNC_CODE_INST_CALLBR: { 4616 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4617 unsigned OpNum = 0; 4618 AttributeList PAL = getAttributes(Record[OpNum++]); 4619 unsigned CCInfo = Record[OpNum++]; 4620 4621 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4622 unsigned NumIndirectDests = Record[OpNum++]; 4623 SmallVector<BasicBlock *, 16> IndirectDests; 4624 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4625 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4626 4627 FunctionType *FTy = nullptr; 4628 FunctionType *FullFTy = nullptr; 4629 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4630 FullFTy = 4631 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4632 if (!FullFTy) 4633 return error("Explicit call type is not a function type"); 4634 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4635 } 4636 4637 Value *Callee; 4638 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4639 return error("Invalid record"); 4640 4641 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4642 if (!OpTy) 4643 return error("Callee is not a pointer type"); 4644 if (!FTy) { 4645 FullFTy = 4646 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4647 if (!FullFTy) 4648 return error("Callee is not of pointer to function type"); 4649 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4650 } else if (getPointerElementFlatType(FullTy) != FTy) 4651 return error("Explicit call type does not match pointee type of " 4652 "callee operand"); 4653 if (Record.size() < FTy->getNumParams() + OpNum) 4654 return error("Insufficient operands to call"); 4655 4656 SmallVector<Value*, 16> Args; 4657 // Read the fixed params. 4658 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4659 if (FTy->getParamType(i)->isLabelTy()) 4660 Args.push_back(getBasicBlock(Record[OpNum])); 4661 else 4662 Args.push_back(getValue(Record, OpNum, NextValueNo, 4663 FTy->getParamType(i))); 4664 if (!Args.back()) 4665 return error("Invalid record"); 4666 } 4667 4668 // Read type/value pairs for varargs params. 4669 if (!FTy->isVarArg()) { 4670 if (OpNum != Record.size()) 4671 return error("Invalid record"); 4672 } else { 4673 while (OpNum != Record.size()) { 4674 Value *Op; 4675 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4676 return error("Invalid record"); 4677 Args.push_back(Op); 4678 } 4679 } 4680 4681 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4682 OperandBundles); 4683 FullTy = FullFTy->getReturnType(); 4684 OperandBundles.clear(); 4685 InstructionList.push_back(I); 4686 cast<CallBrInst>(I)->setCallingConv( 4687 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4688 cast<CallBrInst>(I)->setAttributes(PAL); 4689 break; 4690 } 4691 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4692 I = new UnreachableInst(Context); 4693 InstructionList.push_back(I); 4694 break; 4695 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4696 if (Record.size() < 1) 4697 return error("Invalid record"); 4698 // The first record specifies the type. 4699 FullTy = getFullyStructuredTypeByID(Record[0]); 4700 Type *Ty = flattenPointerTypes(FullTy); 4701 if (!Ty) 4702 return error("Invalid record"); 4703 4704 // Phi arguments are pairs of records of [value, basic block]. 4705 // There is an optional final record for fast-math-flags if this phi has a 4706 // floating-point type. 4707 size_t NumArgs = (Record.size() - 1) / 2; 4708 PHINode *PN = PHINode::Create(Ty, NumArgs); 4709 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4710 return error("Invalid record"); 4711 InstructionList.push_back(PN); 4712 4713 for (unsigned i = 0; i != NumArgs; i++) { 4714 Value *V; 4715 // With the new function encoding, it is possible that operands have 4716 // negative IDs (for forward references). Use a signed VBR 4717 // representation to keep the encoding small. 4718 if (UseRelativeIDs) 4719 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4720 else 4721 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4722 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4723 if (!V || !BB) 4724 return error("Invalid record"); 4725 PN->addIncoming(V, BB); 4726 } 4727 I = PN; 4728 4729 // If there are an even number of records, the final record must be FMF. 4730 if (Record.size() % 2 == 0) { 4731 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4732 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4733 if (FMF.any()) 4734 I->setFastMathFlags(FMF); 4735 } 4736 4737 break; 4738 } 4739 4740 case bitc::FUNC_CODE_INST_LANDINGPAD: 4741 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4742 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4743 unsigned Idx = 0; 4744 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4745 if (Record.size() < 3) 4746 return error("Invalid record"); 4747 } else { 4748 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4749 if (Record.size() < 4) 4750 return error("Invalid record"); 4751 } 4752 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4753 Type *Ty = flattenPointerTypes(FullTy); 4754 if (!Ty) 4755 return error("Invalid record"); 4756 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4757 Value *PersFn = nullptr; 4758 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4759 return error("Invalid record"); 4760 4761 if (!F->hasPersonalityFn()) 4762 F->setPersonalityFn(cast<Constant>(PersFn)); 4763 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4764 return error("Personality function mismatch"); 4765 } 4766 4767 bool IsCleanup = !!Record[Idx++]; 4768 unsigned NumClauses = Record[Idx++]; 4769 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4770 LP->setCleanup(IsCleanup); 4771 for (unsigned J = 0; J != NumClauses; ++J) { 4772 LandingPadInst::ClauseType CT = 4773 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4774 Value *Val; 4775 4776 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4777 delete LP; 4778 return error("Invalid record"); 4779 } 4780 4781 assert((CT != LandingPadInst::Catch || 4782 !isa<ArrayType>(Val->getType())) && 4783 "Catch clause has a invalid type!"); 4784 assert((CT != LandingPadInst::Filter || 4785 isa<ArrayType>(Val->getType())) && 4786 "Filter clause has invalid type!"); 4787 LP->addClause(cast<Constant>(Val)); 4788 } 4789 4790 I = LP; 4791 InstructionList.push_back(I); 4792 break; 4793 } 4794 4795 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4796 if (Record.size() != 4) 4797 return error("Invalid record"); 4798 uint64_t AlignRecord = Record[3]; 4799 const uint64_t InAllocaMask = uint64_t(1) << 5; 4800 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4801 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4802 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4803 SwiftErrorMask; 4804 bool InAlloca = AlignRecord & InAllocaMask; 4805 bool SwiftError = AlignRecord & SwiftErrorMask; 4806 FullTy = getFullyStructuredTypeByID(Record[0]); 4807 Type *Ty = flattenPointerTypes(FullTy); 4808 if ((AlignRecord & ExplicitTypeMask) == 0) { 4809 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4810 if (!PTy) 4811 return error("Old-style alloca with a non-pointer type"); 4812 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4813 } 4814 Type *OpTy = getTypeByID(Record[1]); 4815 Value *Size = getFnValueByID(Record[2], OpTy); 4816 MaybeAlign Align; 4817 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4818 return Err; 4819 } 4820 if (!Ty || !Size) 4821 return error("Invalid record"); 4822 4823 // FIXME: Make this an optional field. 4824 const DataLayout &DL = TheModule->getDataLayout(); 4825 unsigned AS = DL.getAllocaAddrSpace(); 4826 4827 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4828 AI->setUsedWithInAlloca(InAlloca); 4829 AI->setSwiftError(SwiftError); 4830 I = AI; 4831 FullTy = PointerType::get(FullTy, AS); 4832 InstructionList.push_back(I); 4833 break; 4834 } 4835 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4836 unsigned OpNum = 0; 4837 Value *Op; 4838 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4839 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4840 return error("Invalid record"); 4841 4842 if (!isa<PointerType>(Op->getType())) 4843 return error("Load operand is not a pointer type"); 4844 4845 Type *Ty = nullptr; 4846 if (OpNum + 3 == Record.size()) { 4847 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4848 Ty = flattenPointerTypes(FullTy); 4849 } else 4850 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4851 4852 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4853 return Err; 4854 4855 MaybeAlign Align; 4856 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4857 return Err; 4858 if (!Align && !Ty->isSized()) 4859 return error("load of unsized type"); 4860 if (!Align) 4861 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4862 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4863 InstructionList.push_back(I); 4864 break; 4865 } 4866 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4867 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4868 unsigned OpNum = 0; 4869 Value *Op; 4870 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4871 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4872 return error("Invalid record"); 4873 4874 if (!isa<PointerType>(Op->getType())) 4875 return error("Load operand is not a pointer type"); 4876 4877 Type *Ty = nullptr; 4878 if (OpNum + 5 == Record.size()) { 4879 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4880 Ty = flattenPointerTypes(FullTy); 4881 } else 4882 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4883 4884 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4885 return Err; 4886 4887 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4888 if (Ordering == AtomicOrdering::NotAtomic || 4889 Ordering == AtomicOrdering::Release || 4890 Ordering == AtomicOrdering::AcquireRelease) 4891 return error("Invalid record"); 4892 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4893 return error("Invalid record"); 4894 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4895 4896 MaybeAlign Align; 4897 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4898 return Err; 4899 if (!Align) 4900 return error("Alignment missing from atomic load"); 4901 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4902 InstructionList.push_back(I); 4903 break; 4904 } 4905 case bitc::FUNC_CODE_INST_STORE: 4906 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4907 unsigned OpNum = 0; 4908 Value *Val, *Ptr; 4909 Type *FullTy; 4910 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4911 (BitCode == bitc::FUNC_CODE_INST_STORE 4912 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4913 : popValue(Record, OpNum, NextValueNo, 4914 getPointerElementFlatType(FullTy), Val)) || 4915 OpNum + 2 != Record.size()) 4916 return error("Invalid record"); 4917 4918 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4919 return Err; 4920 MaybeAlign Align; 4921 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4922 return Err; 4923 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align); 4924 InstructionList.push_back(I); 4925 break; 4926 } 4927 case bitc::FUNC_CODE_INST_STOREATOMIC: 4928 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4929 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4930 unsigned OpNum = 0; 4931 Value *Val, *Ptr; 4932 Type *FullTy; 4933 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4934 !isa<PointerType>(Ptr->getType()) || 4935 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4936 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4937 : popValue(Record, OpNum, NextValueNo, 4938 getPointerElementFlatType(FullTy), Val)) || 4939 OpNum + 4 != Record.size()) 4940 return error("Invalid record"); 4941 4942 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4943 return Err; 4944 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4945 if (Ordering == AtomicOrdering::NotAtomic || 4946 Ordering == AtomicOrdering::Acquire || 4947 Ordering == AtomicOrdering::AcquireRelease) 4948 return error("Invalid record"); 4949 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4950 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4951 return error("Invalid record"); 4952 4953 MaybeAlign Align; 4954 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4955 return Err; 4956 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID); 4957 InstructionList.push_back(I); 4958 break; 4959 } 4960 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4961 case bitc::FUNC_CODE_INST_CMPXCHG: { 4962 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4963 // failureordering?, isweak?] 4964 unsigned OpNum = 0; 4965 Value *Ptr, *Cmp, *New; 4966 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4967 return error("Invalid record"); 4968 4969 if (!isa<PointerType>(Ptr->getType())) 4970 return error("Cmpxchg operand is not a pointer type"); 4971 4972 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4973 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4974 return error("Invalid record"); 4975 } else if (popValue(Record, OpNum, NextValueNo, 4976 getPointerElementFlatType(FullTy), Cmp)) 4977 return error("Invalid record"); 4978 else 4979 FullTy = cast<PointerType>(FullTy)->getElementType(); 4980 4981 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4982 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4983 return error("Invalid record"); 4984 4985 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4986 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4987 SuccessOrdering == AtomicOrdering::Unordered) 4988 return error("Invalid record"); 4989 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4990 4991 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4992 return Err; 4993 AtomicOrdering FailureOrdering; 4994 if (Record.size() < 7) 4995 FailureOrdering = 4996 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4997 else 4998 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4999 5000 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5001 SSID); 5002 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5003 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5004 5005 if (Record.size() < 8) { 5006 // Before weak cmpxchgs existed, the instruction simply returned the 5007 // value loaded from memory, so bitcode files from that era will be 5008 // expecting the first component of a modern cmpxchg. 5009 CurBB->getInstList().push_back(I); 5010 I = ExtractValueInst::Create(I, 0); 5011 FullTy = cast<StructType>(FullTy)->getElementType(0); 5012 } else { 5013 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5014 } 5015 5016 InstructionList.push_back(I); 5017 break; 5018 } 5019 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5020 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 5021 unsigned OpNum = 0; 5022 Value *Ptr, *Val; 5023 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5024 !isa<PointerType>(Ptr->getType()) || 5025 popValue(Record, OpNum, NextValueNo, 5026 getPointerElementFlatType(FullTy), Val) || 5027 OpNum + 4 != Record.size()) 5028 return error("Invalid record"); 5029 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5030 if (Operation < AtomicRMWInst::FIRST_BINOP || 5031 Operation > AtomicRMWInst::LAST_BINOP) 5032 return error("Invalid record"); 5033 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5034 if (Ordering == AtomicOrdering::NotAtomic || 5035 Ordering == AtomicOrdering::Unordered) 5036 return error("Invalid record"); 5037 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5038 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 5039 FullTy = getPointerElementFlatType(FullTy); 5040 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5041 InstructionList.push_back(I); 5042 break; 5043 } 5044 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5045 if (2 != Record.size()) 5046 return error("Invalid record"); 5047 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5048 if (Ordering == AtomicOrdering::NotAtomic || 5049 Ordering == AtomicOrdering::Unordered || 5050 Ordering == AtomicOrdering::Monotonic) 5051 return error("Invalid record"); 5052 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5053 I = new FenceInst(Context, Ordering, SSID); 5054 InstructionList.push_back(I); 5055 break; 5056 } 5057 case bitc::FUNC_CODE_INST_CALL: { 5058 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5059 if (Record.size() < 3) 5060 return error("Invalid record"); 5061 5062 unsigned OpNum = 0; 5063 AttributeList PAL = getAttributes(Record[OpNum++]); 5064 unsigned CCInfo = Record[OpNum++]; 5065 5066 FastMathFlags FMF; 5067 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5068 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5069 if (!FMF.any()) 5070 return error("Fast math flags indicator set for call with no FMF"); 5071 } 5072 5073 FunctionType *FTy = nullptr; 5074 FunctionType *FullFTy = nullptr; 5075 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5076 FullFTy = 5077 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5078 if (!FullFTy) 5079 return error("Explicit call type is not a function type"); 5080 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5081 } 5082 5083 Value *Callee; 5084 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5085 return error("Invalid record"); 5086 5087 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5088 if (!OpTy) 5089 return error("Callee is not a pointer type"); 5090 if (!FTy) { 5091 FullFTy = 5092 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5093 if (!FullFTy) 5094 return error("Callee is not of pointer to function type"); 5095 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5096 } else if (getPointerElementFlatType(FullTy) != FTy) 5097 return error("Explicit call type does not match pointee type of " 5098 "callee operand"); 5099 if (Record.size() < FTy->getNumParams() + OpNum) 5100 return error("Insufficient operands to call"); 5101 5102 SmallVector<Value*, 16> Args; 5103 SmallVector<Type*, 16> ArgsFullTys; 5104 // Read the fixed params. 5105 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5106 if (FTy->getParamType(i)->isLabelTy()) 5107 Args.push_back(getBasicBlock(Record[OpNum])); 5108 else 5109 Args.push_back(getValue(Record, OpNum, NextValueNo, 5110 FTy->getParamType(i))); 5111 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5112 if (!Args.back()) 5113 return error("Invalid record"); 5114 } 5115 5116 // Read type/value pairs for varargs params. 5117 if (!FTy->isVarArg()) { 5118 if (OpNum != Record.size()) 5119 return error("Invalid record"); 5120 } else { 5121 while (OpNum != Record.size()) { 5122 Value *Op; 5123 Type *FullTy; 5124 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5125 return error("Invalid record"); 5126 Args.push_back(Op); 5127 ArgsFullTys.push_back(FullTy); 5128 } 5129 } 5130 5131 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5132 FullTy = FullFTy->getReturnType(); 5133 OperandBundles.clear(); 5134 InstructionList.push_back(I); 5135 cast<CallInst>(I)->setCallingConv( 5136 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5137 CallInst::TailCallKind TCK = CallInst::TCK_None; 5138 if (CCInfo & 1 << bitc::CALL_TAIL) 5139 TCK = CallInst::TCK_Tail; 5140 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5141 TCK = CallInst::TCK_MustTail; 5142 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5143 TCK = CallInst::TCK_NoTail; 5144 cast<CallInst>(I)->setTailCallKind(TCK); 5145 cast<CallInst>(I)->setAttributes(PAL); 5146 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5147 if (FMF.any()) { 5148 if (!isa<FPMathOperator>(I)) 5149 return error("Fast-math-flags specified for call without " 5150 "floating-point scalar or vector return type"); 5151 I->setFastMathFlags(FMF); 5152 } 5153 break; 5154 } 5155 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5156 if (Record.size() < 3) 5157 return error("Invalid record"); 5158 Type *OpTy = getTypeByID(Record[0]); 5159 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5160 FullTy = getFullyStructuredTypeByID(Record[2]); 5161 Type *ResTy = flattenPointerTypes(FullTy); 5162 if (!OpTy || !Op || !ResTy) 5163 return error("Invalid record"); 5164 I = new VAArgInst(Op, ResTy); 5165 InstructionList.push_back(I); 5166 break; 5167 } 5168 5169 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5170 // A call or an invoke can be optionally prefixed with some variable 5171 // number of operand bundle blocks. These blocks are read into 5172 // OperandBundles and consumed at the next call or invoke instruction. 5173 5174 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5175 return error("Invalid record"); 5176 5177 std::vector<Value *> Inputs; 5178 5179 unsigned OpNum = 1; 5180 while (OpNum != Record.size()) { 5181 Value *Op; 5182 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5183 return error("Invalid record"); 5184 Inputs.push_back(Op); 5185 } 5186 5187 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5188 continue; 5189 } 5190 5191 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5192 unsigned OpNum = 0; 5193 Value *Op = nullptr; 5194 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5195 return error("Invalid record"); 5196 if (OpNum != Record.size()) 5197 return error("Invalid record"); 5198 5199 I = new FreezeInst(Op); 5200 InstructionList.push_back(I); 5201 break; 5202 } 5203 } 5204 5205 // Add instruction to end of current BB. If there is no current BB, reject 5206 // this file. 5207 if (!CurBB) { 5208 I->deleteValue(); 5209 return error("Invalid instruction with no BB"); 5210 } 5211 if (!OperandBundles.empty()) { 5212 I->deleteValue(); 5213 return error("Operand bundles found with no consumer"); 5214 } 5215 CurBB->getInstList().push_back(I); 5216 5217 // If this was a terminator instruction, move to the next block. 5218 if (I->isTerminator()) { 5219 ++CurBBNo; 5220 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5221 } 5222 5223 // Non-void values get registered in the value table for future use. 5224 if (!I->getType()->isVoidTy()) { 5225 if (!FullTy) { 5226 FullTy = I->getType(); 5227 assert( 5228 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5229 !isa<ArrayType>(FullTy) && 5230 (!isa<VectorType>(FullTy) || 5231 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() || 5232 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) && 5233 "Structured types must be assigned with corresponding non-opaque " 5234 "pointer type"); 5235 } 5236 5237 assert(I->getType() == flattenPointerTypes(FullTy) && 5238 "Incorrect fully structured type provided for Instruction"); 5239 ValueList.assignValue(I, NextValueNo++, FullTy); 5240 } 5241 } 5242 5243 OutOfRecordLoop: 5244 5245 if (!OperandBundles.empty()) 5246 return error("Operand bundles found with no consumer"); 5247 5248 // Check the function list for unresolved values. 5249 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5250 if (!A->getParent()) { 5251 // We found at least one unresolved value. Nuke them all to avoid leaks. 5252 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5253 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5254 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5255 delete A; 5256 } 5257 } 5258 return error("Never resolved value found in function"); 5259 } 5260 } 5261 5262 // Unexpected unresolved metadata about to be dropped. 5263 if (MDLoader->hasFwdRefs()) 5264 return error("Invalid function metadata: outgoing forward refs"); 5265 5266 // Trim the value list down to the size it was before we parsed this function. 5267 ValueList.shrinkTo(ModuleValueListSize); 5268 MDLoader->shrinkTo(ModuleMDLoaderSize); 5269 std::vector<BasicBlock*>().swap(FunctionBBs); 5270 return Error::success(); 5271 } 5272 5273 /// Find the function body in the bitcode stream 5274 Error BitcodeReader::findFunctionInStream( 5275 Function *F, 5276 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5277 while (DeferredFunctionInfoIterator->second == 0) { 5278 // This is the fallback handling for the old format bitcode that 5279 // didn't contain the function index in the VST, or when we have 5280 // an anonymous function which would not have a VST entry. 5281 // Assert that we have one of those two cases. 5282 assert(VSTOffset == 0 || !F->hasName()); 5283 // Parse the next body in the stream and set its position in the 5284 // DeferredFunctionInfo map. 5285 if (Error Err = rememberAndSkipFunctionBodies()) 5286 return Err; 5287 } 5288 return Error::success(); 5289 } 5290 5291 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5292 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5293 return SyncScope::ID(Val); 5294 if (Val >= SSIDs.size()) 5295 return SyncScope::System; // Map unknown synchronization scopes to system. 5296 return SSIDs[Val]; 5297 } 5298 5299 //===----------------------------------------------------------------------===// 5300 // GVMaterializer implementation 5301 //===----------------------------------------------------------------------===// 5302 5303 Error BitcodeReader::materialize(GlobalValue *GV) { 5304 Function *F = dyn_cast<Function>(GV); 5305 // If it's not a function or is already material, ignore the request. 5306 if (!F || !F->isMaterializable()) 5307 return Error::success(); 5308 5309 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5310 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5311 // If its position is recorded as 0, its body is somewhere in the stream 5312 // but we haven't seen it yet. 5313 if (DFII->second == 0) 5314 if (Error Err = findFunctionInStream(F, DFII)) 5315 return Err; 5316 5317 // Materialize metadata before parsing any function bodies. 5318 if (Error Err = materializeMetadata()) 5319 return Err; 5320 5321 // Move the bit stream to the saved position of the deferred function body. 5322 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5323 return JumpFailed; 5324 if (Error Err = parseFunctionBody(F)) 5325 return Err; 5326 F->setIsMaterializable(false); 5327 5328 if (StripDebugInfo) 5329 stripDebugInfo(*F); 5330 5331 // Upgrade any old intrinsic calls in the function. 5332 for (auto &I : UpgradedIntrinsics) { 5333 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5334 UI != UE;) { 5335 User *U = *UI; 5336 ++UI; 5337 if (CallInst *CI = dyn_cast<CallInst>(U)) 5338 UpgradeIntrinsicCall(CI, I.second); 5339 } 5340 } 5341 5342 // Update calls to the remangled intrinsics 5343 for (auto &I : RemangledIntrinsics) 5344 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5345 UI != UE;) 5346 // Don't expect any other users than call sites 5347 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5348 5349 // Finish fn->subprogram upgrade for materialized functions. 5350 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5351 F->setSubprogram(SP); 5352 5353 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5354 if (!MDLoader->isStrippingTBAA()) { 5355 for (auto &I : instructions(F)) { 5356 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5357 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5358 continue; 5359 MDLoader->setStripTBAA(true); 5360 stripTBAA(F->getParent()); 5361 } 5362 } 5363 5364 // Bring in any functions that this function forward-referenced via 5365 // blockaddresses. 5366 return materializeForwardReferencedFunctions(); 5367 } 5368 5369 Error BitcodeReader::materializeModule() { 5370 if (Error Err = materializeMetadata()) 5371 return Err; 5372 5373 // Promise to materialize all forward references. 5374 WillMaterializeAllForwardRefs = true; 5375 5376 // Iterate over the module, deserializing any functions that are still on 5377 // disk. 5378 for (Function &F : *TheModule) { 5379 if (Error Err = materialize(&F)) 5380 return Err; 5381 } 5382 // At this point, if there are any function bodies, parse the rest of 5383 // the bits in the module past the last function block we have recorded 5384 // through either lazy scanning or the VST. 5385 if (LastFunctionBlockBit || NextUnreadBit) 5386 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5387 ? LastFunctionBlockBit 5388 : NextUnreadBit)) 5389 return Err; 5390 5391 // Check that all block address forward references got resolved (as we 5392 // promised above). 5393 if (!BasicBlockFwdRefs.empty()) 5394 return error("Never resolved function from blockaddress"); 5395 5396 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5397 // delete the old functions to clean up. We can't do this unless the entire 5398 // module is materialized because there could always be another function body 5399 // with calls to the old function. 5400 for (auto &I : UpgradedIntrinsics) { 5401 for (auto *U : I.first->users()) { 5402 if (CallInst *CI = dyn_cast<CallInst>(U)) 5403 UpgradeIntrinsicCall(CI, I.second); 5404 } 5405 if (!I.first->use_empty()) 5406 I.first->replaceAllUsesWith(I.second); 5407 I.first->eraseFromParent(); 5408 } 5409 UpgradedIntrinsics.clear(); 5410 // Do the same for remangled intrinsics 5411 for (auto &I : RemangledIntrinsics) { 5412 I.first->replaceAllUsesWith(I.second); 5413 I.first->eraseFromParent(); 5414 } 5415 RemangledIntrinsics.clear(); 5416 5417 UpgradeDebugInfo(*TheModule); 5418 5419 UpgradeModuleFlags(*TheModule); 5420 5421 UpgradeARCRuntime(*TheModule); 5422 5423 return Error::success(); 5424 } 5425 5426 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5427 return IdentifiedStructTypes; 5428 } 5429 5430 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5431 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5432 StringRef ModulePath, unsigned ModuleId) 5433 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5434 ModulePath(ModulePath), ModuleId(ModuleId) {} 5435 5436 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5437 TheIndex.addModule(ModulePath, ModuleId); 5438 } 5439 5440 ModuleSummaryIndex::ModuleInfo * 5441 ModuleSummaryIndexBitcodeReader::getThisModule() { 5442 return TheIndex.getModule(ModulePath); 5443 } 5444 5445 std::pair<ValueInfo, GlobalValue::GUID> 5446 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5447 auto VGI = ValueIdToValueInfoMap[ValueId]; 5448 assert(VGI.first); 5449 return VGI; 5450 } 5451 5452 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5453 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5454 StringRef SourceFileName) { 5455 std::string GlobalId = 5456 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5457 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5458 auto OriginalNameID = ValueGUID; 5459 if (GlobalValue::isLocalLinkage(Linkage)) 5460 OriginalNameID = GlobalValue::getGUID(ValueName); 5461 if (PrintSummaryGUIDs) 5462 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5463 << ValueName << "\n"; 5464 5465 // UseStrtab is false for legacy summary formats and value names are 5466 // created on stack. In that case we save the name in a string saver in 5467 // the index so that the value name can be recorded. 5468 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5469 TheIndex.getOrInsertValueInfo( 5470 ValueGUID, 5471 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5472 OriginalNameID); 5473 } 5474 5475 // Specialized value symbol table parser used when reading module index 5476 // blocks where we don't actually create global values. The parsed information 5477 // is saved in the bitcode reader for use when later parsing summaries. 5478 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5479 uint64_t Offset, 5480 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5481 // With a strtab the VST is not required to parse the summary. 5482 if (UseStrtab) 5483 return Error::success(); 5484 5485 assert(Offset > 0 && "Expected non-zero VST offset"); 5486 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5487 if (!MaybeCurrentBit) 5488 return MaybeCurrentBit.takeError(); 5489 uint64_t CurrentBit = MaybeCurrentBit.get(); 5490 5491 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5492 return Err; 5493 5494 SmallVector<uint64_t, 64> Record; 5495 5496 // Read all the records for this value table. 5497 SmallString<128> ValueName; 5498 5499 while (true) { 5500 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5501 if (!MaybeEntry) 5502 return MaybeEntry.takeError(); 5503 BitstreamEntry Entry = MaybeEntry.get(); 5504 5505 switch (Entry.Kind) { 5506 case BitstreamEntry::SubBlock: // Handled for us already. 5507 case BitstreamEntry::Error: 5508 return error("Malformed block"); 5509 case BitstreamEntry::EndBlock: 5510 // Done parsing VST, jump back to wherever we came from. 5511 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5512 return JumpFailed; 5513 return Error::success(); 5514 case BitstreamEntry::Record: 5515 // The interesting case. 5516 break; 5517 } 5518 5519 // Read a record. 5520 Record.clear(); 5521 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5522 if (!MaybeRecord) 5523 return MaybeRecord.takeError(); 5524 switch (MaybeRecord.get()) { 5525 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5526 break; 5527 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5528 if (convertToString(Record, 1, ValueName)) 5529 return error("Invalid record"); 5530 unsigned ValueID = Record[0]; 5531 assert(!SourceFileName.empty()); 5532 auto VLI = ValueIdToLinkageMap.find(ValueID); 5533 assert(VLI != ValueIdToLinkageMap.end() && 5534 "No linkage found for VST entry?"); 5535 auto Linkage = VLI->second; 5536 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5537 ValueName.clear(); 5538 break; 5539 } 5540 case bitc::VST_CODE_FNENTRY: { 5541 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5542 if (convertToString(Record, 2, ValueName)) 5543 return error("Invalid record"); 5544 unsigned ValueID = Record[0]; 5545 assert(!SourceFileName.empty()); 5546 auto VLI = ValueIdToLinkageMap.find(ValueID); 5547 assert(VLI != ValueIdToLinkageMap.end() && 5548 "No linkage found for VST entry?"); 5549 auto Linkage = VLI->second; 5550 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5551 ValueName.clear(); 5552 break; 5553 } 5554 case bitc::VST_CODE_COMBINED_ENTRY: { 5555 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5556 unsigned ValueID = Record[0]; 5557 GlobalValue::GUID RefGUID = Record[1]; 5558 // The "original name", which is the second value of the pair will be 5559 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5560 ValueIdToValueInfoMap[ValueID] = 5561 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5562 break; 5563 } 5564 } 5565 } 5566 } 5567 5568 // Parse just the blocks needed for building the index out of the module. 5569 // At the end of this routine the module Index is populated with a map 5570 // from global value id to GlobalValueSummary objects. 5571 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5572 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5573 return Err; 5574 5575 SmallVector<uint64_t, 64> Record; 5576 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5577 unsigned ValueId = 0; 5578 5579 // Read the index for this module. 5580 while (true) { 5581 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5582 if (!MaybeEntry) 5583 return MaybeEntry.takeError(); 5584 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5585 5586 switch (Entry.Kind) { 5587 case BitstreamEntry::Error: 5588 return error("Malformed block"); 5589 case BitstreamEntry::EndBlock: 5590 return Error::success(); 5591 5592 case BitstreamEntry::SubBlock: 5593 switch (Entry.ID) { 5594 default: // Skip unknown content. 5595 if (Error Err = Stream.SkipBlock()) 5596 return Err; 5597 break; 5598 case bitc::BLOCKINFO_BLOCK_ID: 5599 // Need to parse these to get abbrev ids (e.g. for VST) 5600 if (readBlockInfo()) 5601 return error("Malformed block"); 5602 break; 5603 case bitc::VALUE_SYMTAB_BLOCK_ID: 5604 // Should have been parsed earlier via VSTOffset, unless there 5605 // is no summary section. 5606 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5607 !SeenGlobalValSummary) && 5608 "Expected early VST parse via VSTOffset record"); 5609 if (Error Err = Stream.SkipBlock()) 5610 return Err; 5611 break; 5612 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5613 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5614 // Add the module if it is a per-module index (has a source file name). 5615 if (!SourceFileName.empty()) 5616 addThisModule(); 5617 assert(!SeenValueSymbolTable && 5618 "Already read VST when parsing summary block?"); 5619 // We might not have a VST if there were no values in the 5620 // summary. An empty summary block generated when we are 5621 // performing ThinLTO compiles so we don't later invoke 5622 // the regular LTO process on them. 5623 if (VSTOffset > 0) { 5624 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5625 return Err; 5626 SeenValueSymbolTable = true; 5627 } 5628 SeenGlobalValSummary = true; 5629 if (Error Err = parseEntireSummary(Entry.ID)) 5630 return Err; 5631 break; 5632 case bitc::MODULE_STRTAB_BLOCK_ID: 5633 if (Error Err = parseModuleStringTable()) 5634 return Err; 5635 break; 5636 } 5637 continue; 5638 5639 case BitstreamEntry::Record: { 5640 Record.clear(); 5641 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5642 if (!MaybeBitCode) 5643 return MaybeBitCode.takeError(); 5644 switch (MaybeBitCode.get()) { 5645 default: 5646 break; // Default behavior, ignore unknown content. 5647 case bitc::MODULE_CODE_VERSION: { 5648 if (Error Err = parseVersionRecord(Record).takeError()) 5649 return Err; 5650 break; 5651 } 5652 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5653 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5654 SmallString<128> ValueName; 5655 if (convertToString(Record, 0, ValueName)) 5656 return error("Invalid record"); 5657 SourceFileName = ValueName.c_str(); 5658 break; 5659 } 5660 /// MODULE_CODE_HASH: [5*i32] 5661 case bitc::MODULE_CODE_HASH: { 5662 if (Record.size() != 5) 5663 return error("Invalid hash length " + Twine(Record.size()).str()); 5664 auto &Hash = getThisModule()->second.second; 5665 int Pos = 0; 5666 for (auto &Val : Record) { 5667 assert(!(Val >> 32) && "Unexpected high bits set"); 5668 Hash[Pos++] = Val; 5669 } 5670 break; 5671 } 5672 /// MODULE_CODE_VSTOFFSET: [offset] 5673 case bitc::MODULE_CODE_VSTOFFSET: 5674 if (Record.size() < 1) 5675 return error("Invalid record"); 5676 // Note that we subtract 1 here because the offset is relative to one 5677 // word before the start of the identification or module block, which 5678 // was historically always the start of the regular bitcode header. 5679 VSTOffset = Record[0] - 1; 5680 break; 5681 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5682 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5683 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5684 // v2: [strtab offset, strtab size, v1] 5685 case bitc::MODULE_CODE_GLOBALVAR: 5686 case bitc::MODULE_CODE_FUNCTION: 5687 case bitc::MODULE_CODE_ALIAS: { 5688 StringRef Name; 5689 ArrayRef<uint64_t> GVRecord; 5690 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5691 if (GVRecord.size() <= 3) 5692 return error("Invalid record"); 5693 uint64_t RawLinkage = GVRecord[3]; 5694 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5695 if (!UseStrtab) { 5696 ValueIdToLinkageMap[ValueId++] = Linkage; 5697 break; 5698 } 5699 5700 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5701 break; 5702 } 5703 } 5704 } 5705 continue; 5706 } 5707 } 5708 } 5709 5710 std::vector<ValueInfo> 5711 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5712 std::vector<ValueInfo> Ret; 5713 Ret.reserve(Record.size()); 5714 for (uint64_t RefValueId : Record) 5715 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5716 return Ret; 5717 } 5718 5719 std::vector<FunctionSummary::EdgeTy> 5720 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5721 bool IsOldProfileFormat, 5722 bool HasProfile, bool HasRelBF) { 5723 std::vector<FunctionSummary::EdgeTy> Ret; 5724 Ret.reserve(Record.size()); 5725 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5726 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5727 uint64_t RelBF = 0; 5728 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5729 if (IsOldProfileFormat) { 5730 I += 1; // Skip old callsitecount field 5731 if (HasProfile) 5732 I += 1; // Skip old profilecount field 5733 } else if (HasProfile) 5734 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5735 else if (HasRelBF) 5736 RelBF = Record[++I]; 5737 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5738 } 5739 return Ret; 5740 } 5741 5742 static void 5743 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5744 WholeProgramDevirtResolution &Wpd) { 5745 uint64_t ArgNum = Record[Slot++]; 5746 WholeProgramDevirtResolution::ByArg &B = 5747 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5748 Slot += ArgNum; 5749 5750 B.TheKind = 5751 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5752 B.Info = Record[Slot++]; 5753 B.Byte = Record[Slot++]; 5754 B.Bit = Record[Slot++]; 5755 } 5756 5757 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5758 StringRef Strtab, size_t &Slot, 5759 TypeIdSummary &TypeId) { 5760 uint64_t Id = Record[Slot++]; 5761 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5762 5763 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5764 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5765 static_cast<size_t>(Record[Slot + 1])}; 5766 Slot += 2; 5767 5768 uint64_t ResByArgNum = Record[Slot++]; 5769 for (uint64_t I = 0; I != ResByArgNum; ++I) 5770 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5771 } 5772 5773 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5774 StringRef Strtab, 5775 ModuleSummaryIndex &TheIndex) { 5776 size_t Slot = 0; 5777 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5778 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5779 Slot += 2; 5780 5781 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5782 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5783 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5784 TypeId.TTRes.SizeM1 = Record[Slot++]; 5785 TypeId.TTRes.BitMask = Record[Slot++]; 5786 TypeId.TTRes.InlineBits = Record[Slot++]; 5787 5788 while (Slot < Record.size()) 5789 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5790 } 5791 5792 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5793 ArrayRef<uint64_t> Record, size_t &Slot, 5794 TypeIdCompatibleVtableInfo &TypeId) { 5795 uint64_t Offset = Record[Slot++]; 5796 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5797 TypeId.push_back({Offset, Callee}); 5798 } 5799 5800 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5801 ArrayRef<uint64_t> Record) { 5802 size_t Slot = 0; 5803 TypeIdCompatibleVtableInfo &TypeId = 5804 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5805 {Strtab.data() + Record[Slot], 5806 static_cast<size_t>(Record[Slot + 1])}); 5807 Slot += 2; 5808 5809 while (Slot < Record.size()) 5810 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5811 } 5812 5813 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5814 unsigned WOCnt) { 5815 // Readonly and writeonly refs are in the end of the refs list. 5816 assert(ROCnt + WOCnt <= Refs.size()); 5817 unsigned FirstWORef = Refs.size() - WOCnt; 5818 unsigned RefNo = FirstWORef - ROCnt; 5819 for (; RefNo < FirstWORef; ++RefNo) 5820 Refs[RefNo].setReadOnly(); 5821 for (; RefNo < Refs.size(); ++RefNo) 5822 Refs[RefNo].setWriteOnly(); 5823 } 5824 5825 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5826 // objects in the index. 5827 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5828 if (Error Err = Stream.EnterSubBlock(ID)) 5829 return Err; 5830 SmallVector<uint64_t, 64> Record; 5831 5832 // Parse version 5833 { 5834 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5835 if (!MaybeEntry) 5836 return MaybeEntry.takeError(); 5837 BitstreamEntry Entry = MaybeEntry.get(); 5838 5839 if (Entry.Kind != BitstreamEntry::Record) 5840 return error("Invalid Summary Block: record for version expected"); 5841 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5842 if (!MaybeRecord) 5843 return MaybeRecord.takeError(); 5844 if (MaybeRecord.get() != bitc::FS_VERSION) 5845 return error("Invalid Summary Block: version expected"); 5846 } 5847 const uint64_t Version = Record[0]; 5848 const bool IsOldProfileFormat = Version == 1; 5849 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 5850 return error("Invalid summary version " + Twine(Version) + 5851 ". Version should be in the range [1-" + 5852 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 5853 "]."); 5854 Record.clear(); 5855 5856 // Keep around the last seen summary to be used when we see an optional 5857 // "OriginalName" attachement. 5858 GlobalValueSummary *LastSeenSummary = nullptr; 5859 GlobalValue::GUID LastSeenGUID = 0; 5860 5861 // We can expect to see any number of type ID information records before 5862 // each function summary records; these variables store the information 5863 // collected so far so that it can be used to create the summary object. 5864 std::vector<GlobalValue::GUID> PendingTypeTests; 5865 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5866 PendingTypeCheckedLoadVCalls; 5867 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5868 PendingTypeCheckedLoadConstVCalls; 5869 5870 while (true) { 5871 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5872 if (!MaybeEntry) 5873 return MaybeEntry.takeError(); 5874 BitstreamEntry Entry = MaybeEntry.get(); 5875 5876 switch (Entry.Kind) { 5877 case BitstreamEntry::SubBlock: // Handled for us already. 5878 case BitstreamEntry::Error: 5879 return error("Malformed block"); 5880 case BitstreamEntry::EndBlock: 5881 return Error::success(); 5882 case BitstreamEntry::Record: 5883 // The interesting case. 5884 break; 5885 } 5886 5887 // Read a record. The record format depends on whether this 5888 // is a per-module index or a combined index file. In the per-module 5889 // case the records contain the associated value's ID for correlation 5890 // with VST entries. In the combined index the correlation is done 5891 // via the bitcode offset of the summary records (which were saved 5892 // in the combined index VST entries). The records also contain 5893 // information used for ThinLTO renaming and importing. 5894 Record.clear(); 5895 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5896 if (!MaybeBitCode) 5897 return MaybeBitCode.takeError(); 5898 switch (unsigned BitCode = MaybeBitCode.get()) { 5899 default: // Default behavior: ignore. 5900 break; 5901 case bitc::FS_FLAGS: { // [flags] 5902 TheIndex.setFlags(Record[0]); 5903 break; 5904 } 5905 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5906 uint64_t ValueID = Record[0]; 5907 GlobalValue::GUID RefGUID = Record[1]; 5908 ValueIdToValueInfoMap[ValueID] = 5909 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5910 break; 5911 } 5912 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5913 // numrefs x valueid, n x (valueid)] 5914 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5915 // numrefs x valueid, 5916 // n x (valueid, hotness)] 5917 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5918 // numrefs x valueid, 5919 // n x (valueid, relblockfreq)] 5920 case bitc::FS_PERMODULE: 5921 case bitc::FS_PERMODULE_RELBF: 5922 case bitc::FS_PERMODULE_PROFILE: { 5923 unsigned ValueID = Record[0]; 5924 uint64_t RawFlags = Record[1]; 5925 unsigned InstCount = Record[2]; 5926 uint64_t RawFunFlags = 0; 5927 unsigned NumRefs = Record[3]; 5928 unsigned NumRORefs = 0, NumWORefs = 0; 5929 int RefListStartIndex = 4; 5930 if (Version >= 4) { 5931 RawFunFlags = Record[3]; 5932 NumRefs = Record[4]; 5933 RefListStartIndex = 5; 5934 if (Version >= 5) { 5935 NumRORefs = Record[5]; 5936 RefListStartIndex = 6; 5937 if (Version >= 7) { 5938 NumWORefs = Record[6]; 5939 RefListStartIndex = 7; 5940 } 5941 } 5942 } 5943 5944 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5945 // The module path string ref set in the summary must be owned by the 5946 // index's module string table. Since we don't have a module path 5947 // string table section in the per-module index, we create a single 5948 // module path string table entry with an empty (0) ID to take 5949 // ownership. 5950 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5951 assert(Record.size() >= RefListStartIndex + NumRefs && 5952 "Record size inconsistent with number of references"); 5953 std::vector<ValueInfo> Refs = makeRefList( 5954 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5955 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5956 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5957 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5958 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5959 IsOldProfileFormat, HasProfile, HasRelBF); 5960 setSpecialRefs(Refs, NumRORefs, NumWORefs); 5961 auto FS = std::make_unique<FunctionSummary>( 5962 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5963 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5964 std::move(PendingTypeTestAssumeVCalls), 5965 std::move(PendingTypeCheckedLoadVCalls), 5966 std::move(PendingTypeTestAssumeConstVCalls), 5967 std::move(PendingTypeCheckedLoadConstVCalls)); 5968 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5969 FS->setModulePath(getThisModule()->first()); 5970 FS->setOriginalName(VIAndOriginalGUID.second); 5971 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5972 break; 5973 } 5974 // FS_ALIAS: [valueid, flags, valueid] 5975 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5976 // they expect all aliasee summaries to be available. 5977 case bitc::FS_ALIAS: { 5978 unsigned ValueID = Record[0]; 5979 uint64_t RawFlags = Record[1]; 5980 unsigned AliaseeID = Record[2]; 5981 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5982 auto AS = std::make_unique<AliasSummary>(Flags); 5983 // The module path string ref set in the summary must be owned by the 5984 // index's module string table. Since we don't have a module path 5985 // string table section in the per-module index, we create a single 5986 // module path string table entry with an empty (0) ID to take 5987 // ownership. 5988 AS->setModulePath(getThisModule()->first()); 5989 5990 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5991 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5992 if (!AliaseeInModule) 5993 return error("Alias expects aliasee summary to be parsed"); 5994 AS->setAliasee(AliaseeVI, AliaseeInModule); 5995 5996 auto GUID = getValueInfoFromValueId(ValueID); 5997 AS->setOriginalName(GUID.second); 5998 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5999 break; 6000 } 6001 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6002 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6003 unsigned ValueID = Record[0]; 6004 uint64_t RawFlags = Record[1]; 6005 unsigned RefArrayStart = 2; 6006 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6007 /* WriteOnly */ false, 6008 /* Constant */ false, 6009 GlobalObject::VCallVisibilityPublic); 6010 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6011 if (Version >= 5) { 6012 GVF = getDecodedGVarFlags(Record[2]); 6013 RefArrayStart = 3; 6014 } 6015 std::vector<ValueInfo> Refs = 6016 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6017 auto FS = 6018 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6019 FS->setModulePath(getThisModule()->first()); 6020 auto GUID = getValueInfoFromValueId(ValueID); 6021 FS->setOriginalName(GUID.second); 6022 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6023 break; 6024 } 6025 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6026 // numrefs, numrefs x valueid, 6027 // n x (valueid, offset)] 6028 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6029 unsigned ValueID = Record[0]; 6030 uint64_t RawFlags = Record[1]; 6031 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6032 unsigned NumRefs = Record[3]; 6033 unsigned RefListStartIndex = 4; 6034 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6035 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6036 std::vector<ValueInfo> Refs = makeRefList( 6037 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6038 VTableFuncList VTableFuncs; 6039 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6040 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6041 uint64_t Offset = Record[++I]; 6042 VTableFuncs.push_back({Callee, Offset}); 6043 } 6044 auto VS = 6045 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6046 VS->setModulePath(getThisModule()->first()); 6047 VS->setVTableFuncs(VTableFuncs); 6048 auto GUID = getValueInfoFromValueId(ValueID); 6049 VS->setOriginalName(GUID.second); 6050 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6051 break; 6052 } 6053 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6054 // numrefs x valueid, n x (valueid)] 6055 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6056 // numrefs x valueid, n x (valueid, hotness)] 6057 case bitc::FS_COMBINED: 6058 case bitc::FS_COMBINED_PROFILE: { 6059 unsigned ValueID = Record[0]; 6060 uint64_t ModuleId = Record[1]; 6061 uint64_t RawFlags = Record[2]; 6062 unsigned InstCount = Record[3]; 6063 uint64_t RawFunFlags = 0; 6064 uint64_t EntryCount = 0; 6065 unsigned NumRefs = Record[4]; 6066 unsigned NumRORefs = 0, NumWORefs = 0; 6067 int RefListStartIndex = 5; 6068 6069 if (Version >= 4) { 6070 RawFunFlags = Record[4]; 6071 RefListStartIndex = 6; 6072 size_t NumRefsIndex = 5; 6073 if (Version >= 5) { 6074 unsigned NumRORefsOffset = 1; 6075 RefListStartIndex = 7; 6076 if (Version >= 6) { 6077 NumRefsIndex = 6; 6078 EntryCount = Record[5]; 6079 RefListStartIndex = 8; 6080 if (Version >= 7) { 6081 RefListStartIndex = 9; 6082 NumWORefs = Record[8]; 6083 NumRORefsOffset = 2; 6084 } 6085 } 6086 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6087 } 6088 NumRefs = Record[NumRefsIndex]; 6089 } 6090 6091 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6092 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6093 assert(Record.size() >= RefListStartIndex + NumRefs && 6094 "Record size inconsistent with number of references"); 6095 std::vector<ValueInfo> Refs = makeRefList( 6096 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6097 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6098 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6099 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6100 IsOldProfileFormat, HasProfile, false); 6101 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6102 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6103 auto FS = std::make_unique<FunctionSummary>( 6104 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6105 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6106 std::move(PendingTypeTestAssumeVCalls), 6107 std::move(PendingTypeCheckedLoadVCalls), 6108 std::move(PendingTypeTestAssumeConstVCalls), 6109 std::move(PendingTypeCheckedLoadConstVCalls)); 6110 LastSeenSummary = FS.get(); 6111 LastSeenGUID = VI.getGUID(); 6112 FS->setModulePath(ModuleIdMap[ModuleId]); 6113 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6114 break; 6115 } 6116 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6117 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6118 // they expect all aliasee summaries to be available. 6119 case bitc::FS_COMBINED_ALIAS: { 6120 unsigned ValueID = Record[0]; 6121 uint64_t ModuleId = Record[1]; 6122 uint64_t RawFlags = Record[2]; 6123 unsigned AliaseeValueId = Record[3]; 6124 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6125 auto AS = std::make_unique<AliasSummary>(Flags); 6126 LastSeenSummary = AS.get(); 6127 AS->setModulePath(ModuleIdMap[ModuleId]); 6128 6129 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6130 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6131 AS->setAliasee(AliaseeVI, AliaseeInModule); 6132 6133 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6134 LastSeenGUID = VI.getGUID(); 6135 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6136 break; 6137 } 6138 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6139 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6140 unsigned ValueID = Record[0]; 6141 uint64_t ModuleId = Record[1]; 6142 uint64_t RawFlags = Record[2]; 6143 unsigned RefArrayStart = 3; 6144 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6145 /* WriteOnly */ false, 6146 /* Constant */ false, 6147 GlobalObject::VCallVisibilityPublic); 6148 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6149 if (Version >= 5) { 6150 GVF = getDecodedGVarFlags(Record[3]); 6151 RefArrayStart = 4; 6152 } 6153 std::vector<ValueInfo> Refs = 6154 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6155 auto FS = 6156 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6157 LastSeenSummary = FS.get(); 6158 FS->setModulePath(ModuleIdMap[ModuleId]); 6159 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6160 LastSeenGUID = VI.getGUID(); 6161 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6162 break; 6163 } 6164 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6165 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6166 uint64_t OriginalName = Record[0]; 6167 if (!LastSeenSummary) 6168 return error("Name attachment that does not follow a combined record"); 6169 LastSeenSummary->setOriginalName(OriginalName); 6170 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6171 // Reset the LastSeenSummary 6172 LastSeenSummary = nullptr; 6173 LastSeenGUID = 0; 6174 break; 6175 } 6176 case bitc::FS_TYPE_TESTS: 6177 assert(PendingTypeTests.empty()); 6178 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6179 Record.end()); 6180 break; 6181 6182 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6183 assert(PendingTypeTestAssumeVCalls.empty()); 6184 for (unsigned I = 0; I != Record.size(); I += 2) 6185 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6186 break; 6187 6188 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6189 assert(PendingTypeCheckedLoadVCalls.empty()); 6190 for (unsigned I = 0; I != Record.size(); I += 2) 6191 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6192 break; 6193 6194 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6195 PendingTypeTestAssumeConstVCalls.push_back( 6196 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6197 break; 6198 6199 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6200 PendingTypeCheckedLoadConstVCalls.push_back( 6201 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6202 break; 6203 6204 case bitc::FS_CFI_FUNCTION_DEFS: { 6205 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6206 for (unsigned I = 0; I != Record.size(); I += 2) 6207 CfiFunctionDefs.insert( 6208 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6209 break; 6210 } 6211 6212 case bitc::FS_CFI_FUNCTION_DECLS: { 6213 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6214 for (unsigned I = 0; I != Record.size(); I += 2) 6215 CfiFunctionDecls.insert( 6216 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6217 break; 6218 } 6219 6220 case bitc::FS_TYPE_ID: 6221 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6222 break; 6223 6224 case bitc::FS_TYPE_ID_METADATA: 6225 parseTypeIdCompatibleVtableSummaryRecord(Record); 6226 break; 6227 } 6228 } 6229 llvm_unreachable("Exit infinite loop"); 6230 } 6231 6232 // Parse the module string table block into the Index. 6233 // This populates the ModulePathStringTable map in the index. 6234 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6235 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6236 return Err; 6237 6238 SmallVector<uint64_t, 64> Record; 6239 6240 SmallString<128> ModulePath; 6241 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6242 6243 while (true) { 6244 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6245 if (!MaybeEntry) 6246 return MaybeEntry.takeError(); 6247 BitstreamEntry Entry = MaybeEntry.get(); 6248 6249 switch (Entry.Kind) { 6250 case BitstreamEntry::SubBlock: // Handled for us already. 6251 case BitstreamEntry::Error: 6252 return error("Malformed block"); 6253 case BitstreamEntry::EndBlock: 6254 return Error::success(); 6255 case BitstreamEntry::Record: 6256 // The interesting case. 6257 break; 6258 } 6259 6260 Record.clear(); 6261 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6262 if (!MaybeRecord) 6263 return MaybeRecord.takeError(); 6264 switch (MaybeRecord.get()) { 6265 default: // Default behavior: ignore. 6266 break; 6267 case bitc::MST_CODE_ENTRY: { 6268 // MST_ENTRY: [modid, namechar x N] 6269 uint64_t ModuleId = Record[0]; 6270 6271 if (convertToString(Record, 1, ModulePath)) 6272 return error("Invalid record"); 6273 6274 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6275 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6276 6277 ModulePath.clear(); 6278 break; 6279 } 6280 /// MST_CODE_HASH: [5*i32] 6281 case bitc::MST_CODE_HASH: { 6282 if (Record.size() != 5) 6283 return error("Invalid hash length " + Twine(Record.size()).str()); 6284 if (!LastSeenModule) 6285 return error("Invalid hash that does not follow a module path"); 6286 int Pos = 0; 6287 for (auto &Val : Record) { 6288 assert(!(Val >> 32) && "Unexpected high bits set"); 6289 LastSeenModule->second.second[Pos++] = Val; 6290 } 6291 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6292 LastSeenModule = nullptr; 6293 break; 6294 } 6295 } 6296 } 6297 llvm_unreachable("Exit infinite loop"); 6298 } 6299 6300 namespace { 6301 6302 // FIXME: This class is only here to support the transition to llvm::Error. It 6303 // will be removed once this transition is complete. Clients should prefer to 6304 // deal with the Error value directly, rather than converting to error_code. 6305 class BitcodeErrorCategoryType : public std::error_category { 6306 const char *name() const noexcept override { 6307 return "llvm.bitcode"; 6308 } 6309 6310 std::string message(int IE) const override { 6311 BitcodeError E = static_cast<BitcodeError>(IE); 6312 switch (E) { 6313 case BitcodeError::CorruptedBitcode: 6314 return "Corrupted bitcode"; 6315 } 6316 llvm_unreachable("Unknown error type!"); 6317 } 6318 }; 6319 6320 } // end anonymous namespace 6321 6322 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6323 6324 const std::error_category &llvm::BitcodeErrorCategory() { 6325 return *ErrorCategory; 6326 } 6327 6328 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6329 unsigned Block, unsigned RecordID) { 6330 if (Error Err = Stream.EnterSubBlock(Block)) 6331 return std::move(Err); 6332 6333 StringRef Strtab; 6334 while (true) { 6335 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6336 if (!MaybeEntry) 6337 return MaybeEntry.takeError(); 6338 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6339 6340 switch (Entry.Kind) { 6341 case BitstreamEntry::EndBlock: 6342 return Strtab; 6343 6344 case BitstreamEntry::Error: 6345 return error("Malformed block"); 6346 6347 case BitstreamEntry::SubBlock: 6348 if (Error Err = Stream.SkipBlock()) 6349 return std::move(Err); 6350 break; 6351 6352 case BitstreamEntry::Record: 6353 StringRef Blob; 6354 SmallVector<uint64_t, 1> Record; 6355 Expected<unsigned> MaybeRecord = 6356 Stream.readRecord(Entry.ID, Record, &Blob); 6357 if (!MaybeRecord) 6358 return MaybeRecord.takeError(); 6359 if (MaybeRecord.get() == RecordID) 6360 Strtab = Blob; 6361 break; 6362 } 6363 } 6364 } 6365 6366 //===----------------------------------------------------------------------===// 6367 // External interface 6368 //===----------------------------------------------------------------------===// 6369 6370 Expected<std::vector<BitcodeModule>> 6371 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6372 auto FOrErr = getBitcodeFileContents(Buffer); 6373 if (!FOrErr) 6374 return FOrErr.takeError(); 6375 return std::move(FOrErr->Mods); 6376 } 6377 6378 Expected<BitcodeFileContents> 6379 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6380 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6381 if (!StreamOrErr) 6382 return StreamOrErr.takeError(); 6383 BitstreamCursor &Stream = *StreamOrErr; 6384 6385 BitcodeFileContents F; 6386 while (true) { 6387 uint64_t BCBegin = Stream.getCurrentByteNo(); 6388 6389 // We may be consuming bitcode from a client that leaves garbage at the end 6390 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6391 // the end that there cannot possibly be another module, stop looking. 6392 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6393 return F; 6394 6395 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6396 if (!MaybeEntry) 6397 return MaybeEntry.takeError(); 6398 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6399 6400 switch (Entry.Kind) { 6401 case BitstreamEntry::EndBlock: 6402 case BitstreamEntry::Error: 6403 return error("Malformed block"); 6404 6405 case BitstreamEntry::SubBlock: { 6406 uint64_t IdentificationBit = -1ull; 6407 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6408 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6409 if (Error Err = Stream.SkipBlock()) 6410 return std::move(Err); 6411 6412 { 6413 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6414 if (!MaybeEntry) 6415 return MaybeEntry.takeError(); 6416 Entry = MaybeEntry.get(); 6417 } 6418 6419 if (Entry.Kind != BitstreamEntry::SubBlock || 6420 Entry.ID != bitc::MODULE_BLOCK_ID) 6421 return error("Malformed block"); 6422 } 6423 6424 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6425 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6426 if (Error Err = Stream.SkipBlock()) 6427 return std::move(Err); 6428 6429 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6430 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6431 Buffer.getBufferIdentifier(), IdentificationBit, 6432 ModuleBit}); 6433 continue; 6434 } 6435 6436 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6437 Expected<StringRef> Strtab = 6438 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6439 if (!Strtab) 6440 return Strtab.takeError(); 6441 // This string table is used by every preceding bitcode module that does 6442 // not have its own string table. A bitcode file may have multiple 6443 // string tables if it was created by binary concatenation, for example 6444 // with "llvm-cat -b". 6445 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6446 if (!I->Strtab.empty()) 6447 break; 6448 I->Strtab = *Strtab; 6449 } 6450 // Similarly, the string table is used by every preceding symbol table; 6451 // normally there will be just one unless the bitcode file was created 6452 // by binary concatenation. 6453 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6454 F.StrtabForSymtab = *Strtab; 6455 continue; 6456 } 6457 6458 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6459 Expected<StringRef> SymtabOrErr = 6460 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6461 if (!SymtabOrErr) 6462 return SymtabOrErr.takeError(); 6463 6464 // We can expect the bitcode file to have multiple symbol tables if it 6465 // was created by binary concatenation. In that case we silently 6466 // ignore any subsequent symbol tables, which is fine because this is a 6467 // low level function. The client is expected to notice that the number 6468 // of modules in the symbol table does not match the number of modules 6469 // in the input file and regenerate the symbol table. 6470 if (F.Symtab.empty()) 6471 F.Symtab = *SymtabOrErr; 6472 continue; 6473 } 6474 6475 if (Error Err = Stream.SkipBlock()) 6476 return std::move(Err); 6477 continue; 6478 } 6479 case BitstreamEntry::Record: 6480 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6481 continue; 6482 else 6483 return StreamFailed.takeError(); 6484 } 6485 } 6486 } 6487 6488 /// Get a lazy one-at-time loading module from bitcode. 6489 /// 6490 /// This isn't always used in a lazy context. In particular, it's also used by 6491 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6492 /// in forward-referenced functions from block address references. 6493 /// 6494 /// \param[in] MaterializeAll Set to \c true if we should materialize 6495 /// everything. 6496 Expected<std::unique_ptr<Module>> 6497 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6498 bool ShouldLazyLoadMetadata, bool IsImporting, 6499 DataLayoutCallbackTy DataLayoutCallback) { 6500 BitstreamCursor Stream(Buffer); 6501 6502 std::string ProducerIdentification; 6503 if (IdentificationBit != -1ull) { 6504 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6505 return std::move(JumpFailed); 6506 Expected<std::string> ProducerIdentificationOrErr = 6507 readIdentificationBlock(Stream); 6508 if (!ProducerIdentificationOrErr) 6509 return ProducerIdentificationOrErr.takeError(); 6510 6511 ProducerIdentification = *ProducerIdentificationOrErr; 6512 } 6513 6514 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6515 return std::move(JumpFailed); 6516 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6517 Context); 6518 6519 std::unique_ptr<Module> M = 6520 std::make_unique<Module>(ModuleIdentifier, Context); 6521 M->setMaterializer(R); 6522 6523 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6524 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6525 IsImporting, DataLayoutCallback)) 6526 return std::move(Err); 6527 6528 if (MaterializeAll) { 6529 // Read in the entire module, and destroy the BitcodeReader. 6530 if (Error Err = M->materializeAll()) 6531 return std::move(Err); 6532 } else { 6533 // Resolve forward references from blockaddresses. 6534 if (Error Err = R->materializeForwardReferencedFunctions()) 6535 return std::move(Err); 6536 } 6537 return std::move(M); 6538 } 6539 6540 Expected<std::unique_ptr<Module>> 6541 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6542 bool IsImporting) { 6543 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6544 [](StringRef) { return None; }); 6545 } 6546 6547 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6548 // We don't use ModuleIdentifier here because the client may need to control the 6549 // module path used in the combined summary (e.g. when reading summaries for 6550 // regular LTO modules). 6551 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6552 StringRef ModulePath, uint64_t ModuleId) { 6553 BitstreamCursor Stream(Buffer); 6554 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6555 return JumpFailed; 6556 6557 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6558 ModulePath, ModuleId); 6559 return R.parseModule(); 6560 } 6561 6562 // Parse the specified bitcode buffer, returning the function info index. 6563 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6564 BitstreamCursor Stream(Buffer); 6565 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6566 return std::move(JumpFailed); 6567 6568 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6569 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6570 ModuleIdentifier, 0); 6571 6572 if (Error Err = R.parseModule()) 6573 return std::move(Err); 6574 6575 return std::move(Index); 6576 } 6577 6578 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6579 unsigned ID) { 6580 if (Error Err = Stream.EnterSubBlock(ID)) 6581 return std::move(Err); 6582 SmallVector<uint64_t, 64> Record; 6583 6584 while (true) { 6585 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6586 if (!MaybeEntry) 6587 return MaybeEntry.takeError(); 6588 BitstreamEntry Entry = MaybeEntry.get(); 6589 6590 switch (Entry.Kind) { 6591 case BitstreamEntry::SubBlock: // Handled for us already. 6592 case BitstreamEntry::Error: 6593 return error("Malformed block"); 6594 case BitstreamEntry::EndBlock: 6595 // If no flags record found, conservatively return true to mimic 6596 // behavior before this flag was added. 6597 return true; 6598 case BitstreamEntry::Record: 6599 // The interesting case. 6600 break; 6601 } 6602 6603 // Look for the FS_FLAGS record. 6604 Record.clear(); 6605 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6606 if (!MaybeBitCode) 6607 return MaybeBitCode.takeError(); 6608 switch (MaybeBitCode.get()) { 6609 default: // Default behavior: ignore. 6610 break; 6611 case bitc::FS_FLAGS: { // [flags] 6612 uint64_t Flags = Record[0]; 6613 // Scan flags. 6614 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6615 6616 return Flags & 0x8; 6617 } 6618 } 6619 } 6620 llvm_unreachable("Exit infinite loop"); 6621 } 6622 6623 // Check if the given bitcode buffer contains a global value summary block. 6624 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6625 BitstreamCursor Stream(Buffer); 6626 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6627 return std::move(JumpFailed); 6628 6629 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6630 return std::move(Err); 6631 6632 while (true) { 6633 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6634 if (!MaybeEntry) 6635 return MaybeEntry.takeError(); 6636 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6637 6638 switch (Entry.Kind) { 6639 case BitstreamEntry::Error: 6640 return error("Malformed block"); 6641 case BitstreamEntry::EndBlock: 6642 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6643 /*EnableSplitLTOUnit=*/false}; 6644 6645 case BitstreamEntry::SubBlock: 6646 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6647 Expected<bool> EnableSplitLTOUnit = 6648 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6649 if (!EnableSplitLTOUnit) 6650 return EnableSplitLTOUnit.takeError(); 6651 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6652 *EnableSplitLTOUnit}; 6653 } 6654 6655 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6656 Expected<bool> EnableSplitLTOUnit = 6657 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6658 if (!EnableSplitLTOUnit) 6659 return EnableSplitLTOUnit.takeError(); 6660 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6661 *EnableSplitLTOUnit}; 6662 } 6663 6664 // Ignore other sub-blocks. 6665 if (Error Err = Stream.SkipBlock()) 6666 return std::move(Err); 6667 continue; 6668 6669 case BitstreamEntry::Record: 6670 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6671 continue; 6672 else 6673 return StreamFailed.takeError(); 6674 } 6675 } 6676 } 6677 6678 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6679 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6680 if (!MsOrErr) 6681 return MsOrErr.takeError(); 6682 6683 if (MsOrErr->size() != 1) 6684 return error("Expected a single module"); 6685 6686 return (*MsOrErr)[0]; 6687 } 6688 6689 Expected<std::unique_ptr<Module>> 6690 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6691 bool ShouldLazyLoadMetadata, bool IsImporting) { 6692 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6693 if (!BM) 6694 return BM.takeError(); 6695 6696 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6697 } 6698 6699 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6700 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6701 bool ShouldLazyLoadMetadata, bool IsImporting) { 6702 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6703 IsImporting); 6704 if (MOrErr) 6705 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6706 return MOrErr; 6707 } 6708 6709 Expected<std::unique_ptr<Module>> 6710 BitcodeModule::parseModule(LLVMContext &Context, 6711 DataLayoutCallbackTy DataLayoutCallback) { 6712 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6713 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6714 // written. We must defer until the Module has been fully materialized. 6715 } 6716 6717 Expected<std::unique_ptr<Module>> 6718 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6719 DataLayoutCallbackTy DataLayoutCallback) { 6720 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6721 if (!BM) 6722 return BM.takeError(); 6723 6724 return BM->parseModule(Context, DataLayoutCallback); 6725 } 6726 6727 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6728 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6729 if (!StreamOrErr) 6730 return StreamOrErr.takeError(); 6731 6732 return readTriple(*StreamOrErr); 6733 } 6734 6735 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6736 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6737 if (!StreamOrErr) 6738 return StreamOrErr.takeError(); 6739 6740 return hasObjCCategory(*StreamOrErr); 6741 } 6742 6743 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6744 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6745 if (!StreamOrErr) 6746 return StreamOrErr.takeError(); 6747 6748 return readIdentificationCode(*StreamOrErr); 6749 } 6750 6751 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6752 ModuleSummaryIndex &CombinedIndex, 6753 uint64_t ModuleId) { 6754 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6755 if (!BM) 6756 return BM.takeError(); 6757 6758 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6759 } 6760 6761 Expected<std::unique_ptr<ModuleSummaryIndex>> 6762 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6763 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6764 if (!BM) 6765 return BM.takeError(); 6766 6767 return BM->getSummary(); 6768 } 6769 6770 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6771 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6772 if (!BM) 6773 return BM.takeError(); 6774 6775 return BM->getLTOInfo(); 6776 } 6777 6778 Expected<std::unique_ptr<ModuleSummaryIndex>> 6779 llvm::getModuleSummaryIndexForFile(StringRef Path, 6780 bool IgnoreEmptyThinLTOIndexFile) { 6781 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6782 MemoryBuffer::getFileOrSTDIN(Path); 6783 if (!FileOrErr) 6784 return errorCodeToError(FileOrErr.getError()); 6785 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6786 return nullptr; 6787 return getModuleSummaryIndex(**FileOrErr); 6788 } 6789