1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
157     Result += (char)Record[i];
158   return false;
159 }
160 
161 // Strip all the TBAA attachment for the module.
162 static void stripTBAA(Module *M) {
163   for (auto &F : *M) {
164     if (F.isMaterializable())
165       continue;
166     for (auto &I : instructions(F))
167       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
168   }
169 }
170 
171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
172 /// "epoch" encoded in the bitcode, and return the producer name if any.
173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
174   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
175     return std::move(Err);
176 
177   // Read all the records.
178   SmallVector<uint64_t, 64> Record;
179 
180   std::string ProducerIdentification;
181 
182   while (true) {
183     BitstreamEntry Entry;
184     if (Expected<BitstreamEntry> Res = Stream.advance())
185       Entry = Res.get();
186     else
187       return Res.takeError();
188 
189     switch (Entry.Kind) {
190     default:
191     case BitstreamEntry::Error:
192       return error("Malformed block");
193     case BitstreamEntry::EndBlock:
194       return ProducerIdentification;
195     case BitstreamEntry::Record:
196       // The interesting case.
197       break;
198     }
199 
200     // Read a record.
201     Record.clear();
202     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
203     if (!MaybeBitCode)
204       return MaybeBitCode.takeError();
205     switch (MaybeBitCode.get()) {
206     default: // Default behavior: reject
207       return error("Invalid value");
208     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
209       convertToString(Record, 0, ProducerIdentification);
210       break;
211     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
212       unsigned epoch = (unsigned)Record[0];
213       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
214         return error(
215           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
216           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
217       }
218     }
219     }
220   }
221 }
222 
223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
224   // We expect a number of well-defined blocks, though we don't necessarily
225   // need to understand them all.
226   while (true) {
227     if (Stream.AtEndOfStream())
228       return "";
229 
230     BitstreamEntry Entry;
231     if (Expected<BitstreamEntry> Res = Stream.advance())
232       Entry = std::move(Res.get());
233     else
234       return Res.takeError();
235 
236     switch (Entry.Kind) {
237     case BitstreamEntry::EndBlock:
238     case BitstreamEntry::Error:
239       return error("Malformed block");
240 
241     case BitstreamEntry::SubBlock:
242       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
243         return readIdentificationBlock(Stream);
244 
245       // Ignore other sub-blocks.
246       if (Error Err = Stream.SkipBlock())
247         return std::move(Err);
248       continue;
249     case BitstreamEntry::Record:
250       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
251         continue;
252       else
253         return Skipped.takeError();
254     }
255   }
256 }
257 
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260     return std::move(Err);
261 
262   SmallVector<uint64_t, 64> Record;
263   // Read all the records for this module.
264 
265   while (true) {
266     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267     if (!MaybeEntry)
268       return MaybeEntry.takeError();
269     BitstreamEntry Entry = MaybeEntry.get();
270 
271     switch (Entry.Kind) {
272     case BitstreamEntry::SubBlock: // Handled for us already.
273     case BitstreamEntry::Error:
274       return error("Malformed block");
275     case BitstreamEntry::EndBlock:
276       return false;
277     case BitstreamEntry::Record:
278       // The interesting case.
279       break;
280     }
281 
282     // Read a record.
283     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284     if (!MaybeRecord)
285       return MaybeRecord.takeError();
286     switch (MaybeRecord.get()) {
287     default:
288       break; // Default behavior, ignore unknown content.
289     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290       std::string S;
291       if (convertToString(Record, 0, S))
292         return error("Invalid record");
293       // Check for the i386 and other (x86_64, ARM) conventions
294       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295           S.find("__OBJC,__category") != std::string::npos)
296         return true;
297       break;
298     }
299     }
300     Record.clear();
301   }
302   llvm_unreachable("Exit infinite loop");
303 }
304 
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306   // We expect a number of well-defined blocks, though we don't necessarily
307   // need to understand them all.
308   while (true) {
309     BitstreamEntry Entry;
310     if (Expected<BitstreamEntry> Res = Stream.advance())
311       Entry = std::move(Res.get());
312     else
313       return Res.takeError();
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
332         continue;
333       else
334         return Skipped.takeError();
335     }
336   }
337 }
338 
339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
340   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
341     return std::move(Err);
342 
343   SmallVector<uint64_t, 64> Record;
344 
345   std::string Triple;
346 
347   // Read all the records for this module.
348   while (true) {
349     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
350     if (!MaybeEntry)
351       return MaybeEntry.takeError();
352     BitstreamEntry Entry = MaybeEntry.get();
353 
354     switch (Entry.Kind) {
355     case BitstreamEntry::SubBlock: // Handled for us already.
356     case BitstreamEntry::Error:
357       return error("Malformed block");
358     case BitstreamEntry::EndBlock:
359       return Triple;
360     case BitstreamEntry::Record:
361       // The interesting case.
362       break;
363     }
364 
365     // Read a record.
366     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
367     if (!MaybeRecord)
368       return MaybeRecord.takeError();
369     switch (MaybeRecord.get()) {
370     default: break;  // Default behavior, ignore unknown content.
371     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
372       std::string S;
373       if (convertToString(Record, 0, S))
374         return error("Invalid record");
375       Triple = S;
376       break;
377     }
378     }
379     Record.clear();
380   }
381   llvm_unreachable("Exit infinite loop");
382 }
383 
384 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
385   // We expect a number of well-defined blocks, though we don't necessarily
386   // need to understand them all.
387   while (true) {
388     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
389     if (!MaybeEntry)
390       return MaybeEntry.takeError();
391     BitstreamEntry Entry = MaybeEntry.get();
392 
393     switch (Entry.Kind) {
394     case BitstreamEntry::Error:
395       return error("Malformed block");
396     case BitstreamEntry::EndBlock:
397       return "";
398 
399     case BitstreamEntry::SubBlock:
400       if (Entry.ID == bitc::MODULE_BLOCK_ID)
401         return readModuleTriple(Stream);
402 
403       // Ignore other sub-blocks.
404       if (Error Err = Stream.SkipBlock())
405         return std::move(Err);
406       continue;
407 
408     case BitstreamEntry::Record:
409       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
410         continue;
411       else
412         return Skipped.takeError();
413     }
414   }
415 }
416 
417 namespace {
418 
419 class BitcodeReaderBase {
420 protected:
421   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
422       : Stream(std::move(Stream)), Strtab(Strtab) {
423     this->Stream.setBlockInfo(&BlockInfo);
424   }
425 
426   BitstreamBlockInfo BlockInfo;
427   BitstreamCursor Stream;
428   StringRef Strtab;
429 
430   /// In version 2 of the bitcode we store names of global values and comdats in
431   /// a string table rather than in the VST.
432   bool UseStrtab = false;
433 
434   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
435 
436   /// If this module uses a string table, pop the reference to the string table
437   /// and return the referenced string and the rest of the record. Otherwise
438   /// just return the record itself.
439   std::pair<StringRef, ArrayRef<uint64_t>>
440   readNameFromStrtab(ArrayRef<uint64_t> Record);
441 
442   bool readBlockInfo();
443 
444   // Contains an arbitrary and optional string identifying the bitcode producer
445   std::string ProducerIdentification;
446 
447   Error error(const Twine &Message);
448 };
449 
450 } // end anonymous namespace
451 
452 Error BitcodeReaderBase::error(const Twine &Message) {
453   std::string FullMsg = Message.str();
454   if (!ProducerIdentification.empty())
455     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
456                LLVM_VERSION_STRING "')";
457   return ::error(FullMsg);
458 }
459 
460 Expected<unsigned>
461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
462   if (Record.empty())
463     return error("Invalid record");
464   unsigned ModuleVersion = Record[0];
465   if (ModuleVersion > 2)
466     return error("Invalid value");
467   UseStrtab = ModuleVersion >= 2;
468   return ModuleVersion;
469 }
470 
471 std::pair<StringRef, ArrayRef<uint64_t>>
472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
473   if (!UseStrtab)
474     return {"", Record};
475   // Invalid reference. Let the caller complain about the record being empty.
476   if (Record[0] + Record[1] > Strtab.size())
477     return {"", {}};
478   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
479 }
480 
481 namespace {
482 
483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
484   LLVMContext &Context;
485   Module *TheModule = nullptr;
486   // Next offset to start scanning for lazy parsing of function bodies.
487   uint64_t NextUnreadBit = 0;
488   // Last function offset found in the VST.
489   uint64_t LastFunctionBlockBit = 0;
490   bool SeenValueSymbolTable = false;
491   uint64_t VSTOffset = 0;
492 
493   std::vector<std::string> SectionTable;
494   std::vector<std::string> GCTable;
495 
496   std::vector<Type*> TypeList;
497   DenseMap<Function *, FunctionType *> FunctionTypes;
498   BitcodeReaderValueList ValueList;
499   Optional<MetadataLoader> MDLoader;
500   std::vector<Comdat *> ComdatList;
501   SmallVector<Instruction *, 64> InstructionList;
502 
503   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
504   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
506   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
507   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
508 
509   /// The set of attributes by index.  Index zero in the file is for null, and
510   /// is thus not represented here.  As such all indices are off by one.
511   std::vector<AttributeList> MAttributes;
512 
513   /// The set of attribute groups.
514   std::map<unsigned, AttributeList> MAttributeGroups;
515 
516   /// While parsing a function body, this is a list of the basic blocks for the
517   /// function.
518   std::vector<BasicBlock*> FunctionBBs;
519 
520   // When reading the module header, this list is populated with functions that
521   // have bodies later in the file.
522   std::vector<Function*> FunctionsWithBodies;
523 
524   // When intrinsic functions are encountered which require upgrading they are
525   // stored here with their replacement function.
526   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
527   UpdatedIntrinsicMap UpgradedIntrinsics;
528   // Intrinsics which were remangled because of types rename
529   UpdatedIntrinsicMap RemangledIntrinsics;
530 
531   // Several operations happen after the module header has been read, but
532   // before function bodies are processed. This keeps track of whether
533   // we've done this yet.
534   bool SeenFirstFunctionBody = false;
535 
536   /// When function bodies are initially scanned, this map contains info about
537   /// where to find deferred function body in the stream.
538   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
539 
540   /// When Metadata block is initially scanned when parsing the module, we may
541   /// choose to defer parsing of the metadata. This vector contains info about
542   /// which Metadata blocks are deferred.
543   std::vector<uint64_t> DeferredMetadataInfo;
544 
545   /// These are basic blocks forward-referenced by block addresses.  They are
546   /// inserted lazily into functions when they're loaded.  The basic block ID is
547   /// its index into the vector.
548   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
549   std::deque<Function *> BasicBlockFwdRefQueue;
550 
551   /// Indicates that we are using a new encoding for instruction operands where
552   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
553   /// instruction number, for a more compact encoding.  Some instruction
554   /// operands are not relative to the instruction ID: basic block numbers, and
555   /// types. Once the old style function blocks have been phased out, we would
556   /// not need this flag.
557   bool UseRelativeIDs = false;
558 
559   /// True if all functions will be materialized, negating the need to process
560   /// (e.g.) blockaddress forward references.
561   bool WillMaterializeAllForwardRefs = false;
562 
563   bool StripDebugInfo = false;
564   TBAAVerifier TBAAVerifyHelper;
565 
566   std::vector<std::string> BundleTags;
567   SmallVector<SyncScope::ID, 8> SSIDs;
568 
569 public:
570   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
571                 StringRef ProducerIdentification, LLVMContext &Context);
572 
573   Error materializeForwardReferencedFunctions();
574 
575   Error materialize(GlobalValue *GV) override;
576   Error materializeModule() override;
577   std::vector<StructType *> getIdentifiedStructTypes() const override;
578 
579   /// Main interface to parsing a bitcode buffer.
580   /// \returns true if an error occurred.
581   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
582                          bool IsImporting = false);
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval attributes by adding the corresponding
719   /// argument's pointee type.
720   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
728 
729   Error parseComdatRecord(ArrayRef<uint64_t> Record);
730   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
731   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
733                                         ArrayRef<uint64_t> Record);
734 
735   Error parseAttributeBlock();
736   Error parseAttributeGroupBlock();
737   Error parseTypeTable();
738   Error parseTypeTableBody();
739   Error parseOperandBundleTags();
740   Error parseSyncScopeNames();
741 
742   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
743                                 unsigned NameIndex, Triple &TT);
744   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
745                                ArrayRef<uint64_t> Record);
746   Error parseValueSymbolTable(uint64_t Offset = 0);
747   Error parseGlobalValueSymbolTable();
748   Error parseConstants();
749   Error rememberAndSkipFunctionBodies();
750   Error rememberAndSkipFunctionBody();
751   /// Save the positions of the Metadata blocks and skip parsing the blocks.
752   Error rememberAndSkipMetadata();
753   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
754   Error parseFunctionBody(Function *F);
755   Error globalCleanup();
756   Error resolveGlobalAndIndirectSymbolInits();
757   Error parseUseLists();
758   Error findFunctionInStream(
759       Function *F,
760       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
761 
762   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
763 };
764 
765 /// Class to manage reading and parsing function summary index bitcode
766 /// files/sections.
767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
768   /// The module index built during parsing.
769   ModuleSummaryIndex &TheIndex;
770 
771   /// Indicates whether we have encountered a global value summary section
772   /// yet during parsing.
773   bool SeenGlobalValSummary = false;
774 
775   /// Indicates whether we have already parsed the VST, used for error checking.
776   bool SeenValueSymbolTable = false;
777 
778   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
779   /// Used to enable on-demand parsing of the VST.
780   uint64_t VSTOffset = 0;
781 
782   // Map to save ValueId to ValueInfo association that was recorded in the
783   // ValueSymbolTable. It is used after the VST is parsed to convert
784   // call graph edges read from the function summary from referencing
785   // callees by their ValueId to using the ValueInfo instead, which is how
786   // they are recorded in the summary index being built.
787   // We save a GUID which refers to the same global as the ValueInfo, but
788   // ignoring the linkage, i.e. for values other than local linkage they are
789   // identical.
790   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
791       ValueIdToValueInfoMap;
792 
793   /// Map populated during module path string table parsing, from the
794   /// module ID to a string reference owned by the index's module
795   /// path string table, used to correlate with combined index
796   /// summary records.
797   DenseMap<uint64_t, StringRef> ModuleIdMap;
798 
799   /// Original source file name recorded in a bitcode record.
800   std::string SourceFileName;
801 
802   /// The string identifier given to this module by the client, normally the
803   /// path to the bitcode file.
804   StringRef ModulePath;
805 
806   /// For per-module summary indexes, the unique numerical identifier given to
807   /// this module by the client.
808   unsigned ModuleId;
809 
810 public:
811   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
812                                   ModuleSummaryIndex &TheIndex,
813                                   StringRef ModulePath, unsigned ModuleId);
814 
815   Error parseModule();
816 
817 private:
818   void setValueGUID(uint64_t ValueID, StringRef ValueName,
819                     GlobalValue::LinkageTypes Linkage,
820                     StringRef SourceFileName);
821   Error parseValueSymbolTable(
822       uint64_t Offset,
823       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
824   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
825   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
826                                                     bool IsOldProfileFormat,
827                                                     bool HasProfile,
828                                                     bool HasRelBF);
829   Error parseEntireSummary(unsigned ID);
830   Error parseModuleStringTable();
831   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
832   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
833                                        TypeIdCompatibleVtableInfo &TypeId);
834 
835   std::pair<ValueInfo, GlobalValue::GUID>
836   getValueInfoFromValueId(unsigned ValueId);
837 
838   void addThisModule();
839   ModuleSummaryIndex::ModuleInfo *getThisModule();
840 };
841 
842 } // end anonymous namespace
843 
844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
845                                                     Error Err) {
846   if (Err) {
847     std::error_code EC;
848     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
849       EC = EIB.convertToErrorCode();
850       Ctx.emitError(EIB.message());
851     });
852     return EC;
853   }
854   return std::error_code();
855 }
856 
857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
858                              StringRef ProducerIdentification,
859                              LLVMContext &Context)
860     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
861       ValueList(Context) {
862   this->ProducerIdentification = ProducerIdentification;
863 }
864 
865 Error BitcodeReader::materializeForwardReferencedFunctions() {
866   if (WillMaterializeAllForwardRefs)
867     return Error::success();
868 
869   // Prevent recursion.
870   WillMaterializeAllForwardRefs = true;
871 
872   while (!BasicBlockFwdRefQueue.empty()) {
873     Function *F = BasicBlockFwdRefQueue.front();
874     BasicBlockFwdRefQueue.pop_front();
875     assert(F && "Expected valid function");
876     if (!BasicBlockFwdRefs.count(F))
877       // Already materialized.
878       continue;
879 
880     // Check for a function that isn't materializable to prevent an infinite
881     // loop.  When parsing a blockaddress stored in a global variable, there
882     // isn't a trivial way to check if a function will have a body without a
883     // linear search through FunctionsWithBodies, so just check it here.
884     if (!F->isMaterializable())
885       return error("Never resolved function from blockaddress");
886 
887     // Try to materialize F.
888     if (Error Err = materialize(F))
889       return Err;
890   }
891   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
892 
893   // Reset state.
894   WillMaterializeAllForwardRefs = false;
895   return Error::success();
896 }
897 
898 //===----------------------------------------------------------------------===//
899 //  Helper functions to implement forward reference resolution, etc.
900 //===----------------------------------------------------------------------===//
901 
902 static bool hasImplicitComdat(size_t Val) {
903   switch (Val) {
904   default:
905     return false;
906   case 1:  // Old WeakAnyLinkage
907   case 4:  // Old LinkOnceAnyLinkage
908   case 10: // Old WeakODRLinkage
909   case 11: // Old LinkOnceODRLinkage
910     return true;
911   }
912 }
913 
914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
915   switch (Val) {
916   default: // Map unknown/new linkages to external
917   case 0:
918     return GlobalValue::ExternalLinkage;
919   case 2:
920     return GlobalValue::AppendingLinkage;
921   case 3:
922     return GlobalValue::InternalLinkage;
923   case 5:
924     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
925   case 6:
926     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
927   case 7:
928     return GlobalValue::ExternalWeakLinkage;
929   case 8:
930     return GlobalValue::CommonLinkage;
931   case 9:
932     return GlobalValue::PrivateLinkage;
933   case 12:
934     return GlobalValue::AvailableExternallyLinkage;
935   case 13:
936     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
937   case 14:
938     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
939   case 15:
940     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
941   case 1: // Old value with implicit comdat.
942   case 16:
943     return GlobalValue::WeakAnyLinkage;
944   case 10: // Old value with implicit comdat.
945   case 17:
946     return GlobalValue::WeakODRLinkage;
947   case 4: // Old value with implicit comdat.
948   case 18:
949     return GlobalValue::LinkOnceAnyLinkage;
950   case 11: // Old value with implicit comdat.
951   case 19:
952     return GlobalValue::LinkOnceODRLinkage;
953   }
954 }
955 
956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
957   FunctionSummary::FFlags Flags;
958   Flags.ReadNone = RawFlags & 0x1;
959   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
960   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
961   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
962   Flags.NoInline = (RawFlags >> 4) & 0x1;
963   return Flags;
964 }
965 
966 /// Decode the flags for GlobalValue in the summary.
967 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
968                                                             uint64_t Version) {
969   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
970   // like getDecodedLinkage() above. Any future change to the linkage enum and
971   // to getDecodedLinkage() will need to be taken into account here as above.
972   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
973   RawFlags = RawFlags >> 4;
974   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
975   // The Live flag wasn't introduced until version 3. For dead stripping
976   // to work correctly on earlier versions, we must conservatively treat all
977   // values as live.
978   bool Live = (RawFlags & 0x2) || Version < 3;
979   bool Local = (RawFlags & 0x4);
980   bool AutoHide = (RawFlags & 0x8);
981 
982   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
983 }
984 
985 // Decode the flags for GlobalVariable in the summary
986 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
987   return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false,
988                                      (RawFlags & 0x2) ? true : false);
989 }
990 
991 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
992   switch (Val) {
993   default: // Map unknown visibilities to default.
994   case 0: return GlobalValue::DefaultVisibility;
995   case 1: return GlobalValue::HiddenVisibility;
996   case 2: return GlobalValue::ProtectedVisibility;
997   }
998 }
999 
1000 static GlobalValue::DLLStorageClassTypes
1001 getDecodedDLLStorageClass(unsigned Val) {
1002   switch (Val) {
1003   default: // Map unknown values to default.
1004   case 0: return GlobalValue::DefaultStorageClass;
1005   case 1: return GlobalValue::DLLImportStorageClass;
1006   case 2: return GlobalValue::DLLExportStorageClass;
1007   }
1008 }
1009 
1010 static bool getDecodedDSOLocal(unsigned Val) {
1011   switch(Val) {
1012   default: // Map unknown values to preemptable.
1013   case 0:  return false;
1014   case 1:  return true;
1015   }
1016 }
1017 
1018 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1019   switch (Val) {
1020     case 0: return GlobalVariable::NotThreadLocal;
1021     default: // Map unknown non-zero value to general dynamic.
1022     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1023     case 2: return GlobalVariable::LocalDynamicTLSModel;
1024     case 3: return GlobalVariable::InitialExecTLSModel;
1025     case 4: return GlobalVariable::LocalExecTLSModel;
1026   }
1027 }
1028 
1029 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1030   switch (Val) {
1031     default: // Map unknown to UnnamedAddr::None.
1032     case 0: return GlobalVariable::UnnamedAddr::None;
1033     case 1: return GlobalVariable::UnnamedAddr::Global;
1034     case 2: return GlobalVariable::UnnamedAddr::Local;
1035   }
1036 }
1037 
1038 static int getDecodedCastOpcode(unsigned Val) {
1039   switch (Val) {
1040   default: return -1;
1041   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1042   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1043   case bitc::CAST_SEXT    : return Instruction::SExt;
1044   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1045   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1046   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1047   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1048   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1049   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1050   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1051   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1052   case bitc::CAST_BITCAST : return Instruction::BitCast;
1053   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1054   }
1055 }
1056 
1057 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1058   bool IsFP = Ty->isFPOrFPVectorTy();
1059   // UnOps are only valid for int/fp or vector of int/fp types
1060   if (!IsFP && !Ty->isIntOrIntVectorTy())
1061     return -1;
1062 
1063   switch (Val) {
1064   default:
1065     return -1;
1066   case bitc::UNOP_NEG:
1067     return IsFP ? Instruction::FNeg : -1;
1068   }
1069 }
1070 
1071 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1072   bool IsFP = Ty->isFPOrFPVectorTy();
1073   // BinOps are only valid for int/fp or vector of int/fp types
1074   if (!IsFP && !Ty->isIntOrIntVectorTy())
1075     return -1;
1076 
1077   switch (Val) {
1078   default:
1079     return -1;
1080   case bitc::BINOP_ADD:
1081     return IsFP ? Instruction::FAdd : Instruction::Add;
1082   case bitc::BINOP_SUB:
1083     return IsFP ? Instruction::FSub : Instruction::Sub;
1084   case bitc::BINOP_MUL:
1085     return IsFP ? Instruction::FMul : Instruction::Mul;
1086   case bitc::BINOP_UDIV:
1087     return IsFP ? -1 : Instruction::UDiv;
1088   case bitc::BINOP_SDIV:
1089     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1090   case bitc::BINOP_UREM:
1091     return IsFP ? -1 : Instruction::URem;
1092   case bitc::BINOP_SREM:
1093     return IsFP ? Instruction::FRem : Instruction::SRem;
1094   case bitc::BINOP_SHL:
1095     return IsFP ? -1 : Instruction::Shl;
1096   case bitc::BINOP_LSHR:
1097     return IsFP ? -1 : Instruction::LShr;
1098   case bitc::BINOP_ASHR:
1099     return IsFP ? -1 : Instruction::AShr;
1100   case bitc::BINOP_AND:
1101     return IsFP ? -1 : Instruction::And;
1102   case bitc::BINOP_OR:
1103     return IsFP ? -1 : Instruction::Or;
1104   case bitc::BINOP_XOR:
1105     return IsFP ? -1 : Instruction::Xor;
1106   }
1107 }
1108 
1109 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1110   switch (Val) {
1111   default: return AtomicRMWInst::BAD_BINOP;
1112   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1113   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1114   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1115   case bitc::RMW_AND: return AtomicRMWInst::And;
1116   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1117   case bitc::RMW_OR: return AtomicRMWInst::Or;
1118   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1119   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1120   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1121   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1122   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1123   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1124   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1125   }
1126 }
1127 
1128 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1129   switch (Val) {
1130   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1131   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1132   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1133   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1134   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1135   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1136   default: // Map unknown orderings to sequentially-consistent.
1137   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1138   }
1139 }
1140 
1141 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1142   switch (Val) {
1143   default: // Map unknown selection kinds to any.
1144   case bitc::COMDAT_SELECTION_KIND_ANY:
1145     return Comdat::Any;
1146   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1147     return Comdat::ExactMatch;
1148   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1149     return Comdat::Largest;
1150   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1151     return Comdat::NoDuplicates;
1152   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1153     return Comdat::SameSize;
1154   }
1155 }
1156 
1157 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1158   FastMathFlags FMF;
1159   if (0 != (Val & bitc::UnsafeAlgebra))
1160     FMF.setFast();
1161   if (0 != (Val & bitc::AllowReassoc))
1162     FMF.setAllowReassoc();
1163   if (0 != (Val & bitc::NoNaNs))
1164     FMF.setNoNaNs();
1165   if (0 != (Val & bitc::NoInfs))
1166     FMF.setNoInfs();
1167   if (0 != (Val & bitc::NoSignedZeros))
1168     FMF.setNoSignedZeros();
1169   if (0 != (Val & bitc::AllowReciprocal))
1170     FMF.setAllowReciprocal();
1171   if (0 != (Val & bitc::AllowContract))
1172     FMF.setAllowContract(true);
1173   if (0 != (Val & bitc::ApproxFunc))
1174     FMF.setApproxFunc();
1175   return FMF;
1176 }
1177 
1178 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1179   switch (Val) {
1180   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1181   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1182   }
1183 }
1184 
1185 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1186   // The type table size is always specified correctly.
1187   if (ID >= TypeList.size())
1188     return nullptr;
1189 
1190   if (Type *Ty = TypeList[ID])
1191     return Ty;
1192 
1193   // If we have a forward reference, the only possible case is when it is to a
1194   // named struct.  Just create a placeholder for now.
1195   return TypeList[ID] = createIdentifiedStructType(Context);
1196 }
1197 
1198 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1199                                                       StringRef Name) {
1200   auto *Ret = StructType::create(Context, Name);
1201   IdentifiedStructTypes.push_back(Ret);
1202   return Ret;
1203 }
1204 
1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1206   auto *Ret = StructType::create(Context);
1207   IdentifiedStructTypes.push_back(Ret);
1208   return Ret;
1209 }
1210 
1211 //===----------------------------------------------------------------------===//
1212 //  Functions for parsing blocks from the bitcode file
1213 //===----------------------------------------------------------------------===//
1214 
1215 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1216   switch (Val) {
1217   case Attribute::EndAttrKinds:
1218     llvm_unreachable("Synthetic enumerators which should never get here");
1219 
1220   case Attribute::None:            return 0;
1221   case Attribute::ZExt:            return 1 << 0;
1222   case Attribute::SExt:            return 1 << 1;
1223   case Attribute::NoReturn:        return 1 << 2;
1224   case Attribute::InReg:           return 1 << 3;
1225   case Attribute::StructRet:       return 1 << 4;
1226   case Attribute::NoUnwind:        return 1 << 5;
1227   case Attribute::NoAlias:         return 1 << 6;
1228   case Attribute::ByVal:           return 1 << 7;
1229   case Attribute::Nest:            return 1 << 8;
1230   case Attribute::ReadNone:        return 1 << 9;
1231   case Attribute::ReadOnly:        return 1 << 10;
1232   case Attribute::NoInline:        return 1 << 11;
1233   case Attribute::AlwaysInline:    return 1 << 12;
1234   case Attribute::OptimizeForSize: return 1 << 13;
1235   case Attribute::StackProtect:    return 1 << 14;
1236   case Attribute::StackProtectReq: return 1 << 15;
1237   case Attribute::Alignment:       return 31 << 16;
1238   case Attribute::NoCapture:       return 1 << 21;
1239   case Attribute::NoRedZone:       return 1 << 22;
1240   case Attribute::NoImplicitFloat: return 1 << 23;
1241   case Attribute::Naked:           return 1 << 24;
1242   case Attribute::InlineHint:      return 1 << 25;
1243   case Attribute::StackAlignment:  return 7 << 26;
1244   case Attribute::ReturnsTwice:    return 1 << 29;
1245   case Attribute::UWTable:         return 1 << 30;
1246   case Attribute::NonLazyBind:     return 1U << 31;
1247   case Attribute::SanitizeAddress: return 1ULL << 32;
1248   case Attribute::MinSize:         return 1ULL << 33;
1249   case Attribute::NoDuplicate:     return 1ULL << 34;
1250   case Attribute::StackProtectStrong: return 1ULL << 35;
1251   case Attribute::SanitizeThread:  return 1ULL << 36;
1252   case Attribute::SanitizeMemory:  return 1ULL << 37;
1253   case Attribute::NoBuiltin:       return 1ULL << 38;
1254   case Attribute::Returned:        return 1ULL << 39;
1255   case Attribute::Cold:            return 1ULL << 40;
1256   case Attribute::Builtin:         return 1ULL << 41;
1257   case Attribute::OptimizeNone:    return 1ULL << 42;
1258   case Attribute::InAlloca:        return 1ULL << 43;
1259   case Attribute::NonNull:         return 1ULL << 44;
1260   case Attribute::JumpTable:       return 1ULL << 45;
1261   case Attribute::Convergent:      return 1ULL << 46;
1262   case Attribute::SafeStack:       return 1ULL << 47;
1263   case Attribute::NoRecurse:       return 1ULL << 48;
1264   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1265   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1266   case Attribute::SwiftSelf:       return 1ULL << 51;
1267   case Attribute::SwiftError:      return 1ULL << 52;
1268   case Attribute::WriteOnly:       return 1ULL << 53;
1269   case Attribute::Speculatable:    return 1ULL << 54;
1270   case Attribute::StrictFP:        return 1ULL << 55;
1271   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1272   case Attribute::NoCfCheck:       return 1ULL << 57;
1273   case Attribute::OptForFuzzing:   return 1ULL << 58;
1274   case Attribute::ShadowCallStack: return 1ULL << 59;
1275   case Attribute::SpeculativeLoadHardening:
1276     return 1ULL << 60;
1277   case Attribute::ImmArg:
1278     return 1ULL << 61;
1279   case Attribute::WillReturn:
1280     return 1ULL << 62;
1281   case Attribute::NoFree:
1282     return 1ULL << 63;
1283   case Attribute::Dereferenceable:
1284     llvm_unreachable("dereferenceable attribute not supported in raw format");
1285     break;
1286   case Attribute::DereferenceableOrNull:
1287     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1288                      "format");
1289     break;
1290   case Attribute::ArgMemOnly:
1291     llvm_unreachable("argmemonly attribute not supported in raw format");
1292     break;
1293   case Attribute::AllocSize:
1294     llvm_unreachable("allocsize not supported in raw format");
1295     break;
1296   }
1297   llvm_unreachable("Unsupported attribute type");
1298 }
1299 
1300 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1301   if (!Val) return;
1302 
1303   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1304        I = Attribute::AttrKind(I + 1)) {
1305     if (I == Attribute::Dereferenceable ||
1306         I == Attribute::DereferenceableOrNull ||
1307         I == Attribute::ArgMemOnly ||
1308         I == Attribute::AllocSize)
1309       continue;
1310     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1311       if (I == Attribute::Alignment)
1312         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1313       else if (I == Attribute::StackAlignment)
1314         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1315       else
1316         B.addAttribute(I);
1317     }
1318   }
1319 }
1320 
1321 /// This fills an AttrBuilder object with the LLVM attributes that have
1322 /// been decoded from the given integer. This function must stay in sync with
1323 /// 'encodeLLVMAttributesForBitcode'.
1324 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1325                                            uint64_t EncodedAttrs) {
1326   // FIXME: Remove in 4.0.
1327 
1328   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1329   // the bits above 31 down by 11 bits.
1330   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1331   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1332          "Alignment must be a power of two.");
1333 
1334   if (Alignment)
1335     B.addAlignmentAttr(Alignment);
1336   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1337                           (EncodedAttrs & 0xffff));
1338 }
1339 
1340 Error BitcodeReader::parseAttributeBlock() {
1341   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1342     return Err;
1343 
1344   if (!MAttributes.empty())
1345     return error("Invalid multiple blocks");
1346 
1347   SmallVector<uint64_t, 64> Record;
1348 
1349   SmallVector<AttributeList, 8> Attrs;
1350 
1351   // Read all the records.
1352   while (true) {
1353     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1354     if (!MaybeEntry)
1355       return MaybeEntry.takeError();
1356     BitstreamEntry Entry = MaybeEntry.get();
1357 
1358     switch (Entry.Kind) {
1359     case BitstreamEntry::SubBlock: // Handled for us already.
1360     case BitstreamEntry::Error:
1361       return error("Malformed block");
1362     case BitstreamEntry::EndBlock:
1363       return Error::success();
1364     case BitstreamEntry::Record:
1365       // The interesting case.
1366       break;
1367     }
1368 
1369     // Read a record.
1370     Record.clear();
1371     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1372     if (!MaybeRecord)
1373       return MaybeRecord.takeError();
1374     switch (MaybeRecord.get()) {
1375     default:  // Default behavior: ignore.
1376       break;
1377     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1378       // FIXME: Remove in 4.0.
1379       if (Record.size() & 1)
1380         return error("Invalid record");
1381 
1382       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1383         AttrBuilder B;
1384         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1385         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1386       }
1387 
1388       MAttributes.push_back(AttributeList::get(Context, Attrs));
1389       Attrs.clear();
1390       break;
1391     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1392       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1393         Attrs.push_back(MAttributeGroups[Record[i]]);
1394 
1395       MAttributes.push_back(AttributeList::get(Context, Attrs));
1396       Attrs.clear();
1397       break;
1398     }
1399   }
1400 }
1401 
1402 // Returns Attribute::None on unrecognized codes.
1403 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1404   switch (Code) {
1405   default:
1406     return Attribute::None;
1407   case bitc::ATTR_KIND_ALIGNMENT:
1408     return Attribute::Alignment;
1409   case bitc::ATTR_KIND_ALWAYS_INLINE:
1410     return Attribute::AlwaysInline;
1411   case bitc::ATTR_KIND_ARGMEMONLY:
1412     return Attribute::ArgMemOnly;
1413   case bitc::ATTR_KIND_BUILTIN:
1414     return Attribute::Builtin;
1415   case bitc::ATTR_KIND_BY_VAL:
1416     return Attribute::ByVal;
1417   case bitc::ATTR_KIND_IN_ALLOCA:
1418     return Attribute::InAlloca;
1419   case bitc::ATTR_KIND_COLD:
1420     return Attribute::Cold;
1421   case bitc::ATTR_KIND_CONVERGENT:
1422     return Attribute::Convergent;
1423   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1424     return Attribute::InaccessibleMemOnly;
1425   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1426     return Attribute::InaccessibleMemOrArgMemOnly;
1427   case bitc::ATTR_KIND_INLINE_HINT:
1428     return Attribute::InlineHint;
1429   case bitc::ATTR_KIND_IN_REG:
1430     return Attribute::InReg;
1431   case bitc::ATTR_KIND_JUMP_TABLE:
1432     return Attribute::JumpTable;
1433   case bitc::ATTR_KIND_MIN_SIZE:
1434     return Attribute::MinSize;
1435   case bitc::ATTR_KIND_NAKED:
1436     return Attribute::Naked;
1437   case bitc::ATTR_KIND_NEST:
1438     return Attribute::Nest;
1439   case bitc::ATTR_KIND_NO_ALIAS:
1440     return Attribute::NoAlias;
1441   case bitc::ATTR_KIND_NO_BUILTIN:
1442     return Attribute::NoBuiltin;
1443   case bitc::ATTR_KIND_NO_CAPTURE:
1444     return Attribute::NoCapture;
1445   case bitc::ATTR_KIND_NO_DUPLICATE:
1446     return Attribute::NoDuplicate;
1447   case bitc::ATTR_KIND_NOFREE:
1448     return Attribute::NoFree;
1449   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1450     return Attribute::NoImplicitFloat;
1451   case bitc::ATTR_KIND_NO_INLINE:
1452     return Attribute::NoInline;
1453   case bitc::ATTR_KIND_NO_RECURSE:
1454     return Attribute::NoRecurse;
1455   case bitc::ATTR_KIND_NON_LAZY_BIND:
1456     return Attribute::NonLazyBind;
1457   case bitc::ATTR_KIND_NON_NULL:
1458     return Attribute::NonNull;
1459   case bitc::ATTR_KIND_DEREFERENCEABLE:
1460     return Attribute::Dereferenceable;
1461   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1462     return Attribute::DereferenceableOrNull;
1463   case bitc::ATTR_KIND_ALLOC_SIZE:
1464     return Attribute::AllocSize;
1465   case bitc::ATTR_KIND_NO_RED_ZONE:
1466     return Attribute::NoRedZone;
1467   case bitc::ATTR_KIND_NO_RETURN:
1468     return Attribute::NoReturn;
1469   case bitc::ATTR_KIND_NOCF_CHECK:
1470     return Attribute::NoCfCheck;
1471   case bitc::ATTR_KIND_NO_UNWIND:
1472     return Attribute::NoUnwind;
1473   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1474     return Attribute::OptForFuzzing;
1475   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1476     return Attribute::OptimizeForSize;
1477   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1478     return Attribute::OptimizeNone;
1479   case bitc::ATTR_KIND_READ_NONE:
1480     return Attribute::ReadNone;
1481   case bitc::ATTR_KIND_READ_ONLY:
1482     return Attribute::ReadOnly;
1483   case bitc::ATTR_KIND_RETURNED:
1484     return Attribute::Returned;
1485   case bitc::ATTR_KIND_RETURNS_TWICE:
1486     return Attribute::ReturnsTwice;
1487   case bitc::ATTR_KIND_S_EXT:
1488     return Attribute::SExt;
1489   case bitc::ATTR_KIND_SPECULATABLE:
1490     return Attribute::Speculatable;
1491   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1492     return Attribute::StackAlignment;
1493   case bitc::ATTR_KIND_STACK_PROTECT:
1494     return Attribute::StackProtect;
1495   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1496     return Attribute::StackProtectReq;
1497   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1498     return Attribute::StackProtectStrong;
1499   case bitc::ATTR_KIND_SAFESTACK:
1500     return Attribute::SafeStack;
1501   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1502     return Attribute::ShadowCallStack;
1503   case bitc::ATTR_KIND_STRICT_FP:
1504     return Attribute::StrictFP;
1505   case bitc::ATTR_KIND_STRUCT_RET:
1506     return Attribute::StructRet;
1507   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1508     return Attribute::SanitizeAddress;
1509   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1510     return Attribute::SanitizeHWAddress;
1511   case bitc::ATTR_KIND_SANITIZE_THREAD:
1512     return Attribute::SanitizeThread;
1513   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1514     return Attribute::SanitizeMemory;
1515   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1516     return Attribute::SpeculativeLoadHardening;
1517   case bitc::ATTR_KIND_SWIFT_ERROR:
1518     return Attribute::SwiftError;
1519   case bitc::ATTR_KIND_SWIFT_SELF:
1520     return Attribute::SwiftSelf;
1521   case bitc::ATTR_KIND_UW_TABLE:
1522     return Attribute::UWTable;
1523   case bitc::ATTR_KIND_WILLRETURN:
1524     return Attribute::WillReturn;
1525   case bitc::ATTR_KIND_WRITEONLY:
1526     return Attribute::WriteOnly;
1527   case bitc::ATTR_KIND_Z_EXT:
1528     return Attribute::ZExt;
1529   case bitc::ATTR_KIND_IMMARG:
1530     return Attribute::ImmArg;
1531   }
1532 }
1533 
1534 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1535                                          unsigned &Alignment) {
1536   // Note: Alignment in bitcode files is incremented by 1, so that zero
1537   // can be used for default alignment.
1538   if (Exponent > Value::MaxAlignmentExponent + 1)
1539     return error("Invalid alignment value");
1540   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1541   return Error::success();
1542 }
1543 
1544 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1545   *Kind = getAttrFromCode(Code);
1546   if (*Kind == Attribute::None)
1547     return error("Unknown attribute kind (" + Twine(Code) + ")");
1548   return Error::success();
1549 }
1550 
1551 Error BitcodeReader::parseAttributeGroupBlock() {
1552   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1553     return Err;
1554 
1555   if (!MAttributeGroups.empty())
1556     return error("Invalid multiple blocks");
1557 
1558   SmallVector<uint64_t, 64> Record;
1559 
1560   // Read all the records.
1561   while (true) {
1562     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1563     if (!MaybeEntry)
1564       return MaybeEntry.takeError();
1565     BitstreamEntry Entry = MaybeEntry.get();
1566 
1567     switch (Entry.Kind) {
1568     case BitstreamEntry::SubBlock: // Handled for us already.
1569     case BitstreamEntry::Error:
1570       return error("Malformed block");
1571     case BitstreamEntry::EndBlock:
1572       return Error::success();
1573     case BitstreamEntry::Record:
1574       // The interesting case.
1575       break;
1576     }
1577 
1578     // Read a record.
1579     Record.clear();
1580     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1581     if (!MaybeRecord)
1582       return MaybeRecord.takeError();
1583     switch (MaybeRecord.get()) {
1584     default:  // Default behavior: ignore.
1585       break;
1586     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1587       if (Record.size() < 3)
1588         return error("Invalid record");
1589 
1590       uint64_t GrpID = Record[0];
1591       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1592 
1593       AttrBuilder B;
1594       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1595         if (Record[i] == 0) {        // Enum attribute
1596           Attribute::AttrKind Kind;
1597           if (Error Err = parseAttrKind(Record[++i], &Kind))
1598             return Err;
1599 
1600           // Upgrade old-style byval attribute to one with a type, even if it's
1601           // nullptr. We will have to insert the real type when we associate
1602           // this AttributeList with a function.
1603           if (Kind == Attribute::ByVal)
1604             B.addByValAttr(nullptr);
1605 
1606           B.addAttribute(Kind);
1607         } else if (Record[i] == 1) { // Integer attribute
1608           Attribute::AttrKind Kind;
1609           if (Error Err = parseAttrKind(Record[++i], &Kind))
1610             return Err;
1611           if (Kind == Attribute::Alignment)
1612             B.addAlignmentAttr(Record[++i]);
1613           else if (Kind == Attribute::StackAlignment)
1614             B.addStackAlignmentAttr(Record[++i]);
1615           else if (Kind == Attribute::Dereferenceable)
1616             B.addDereferenceableAttr(Record[++i]);
1617           else if (Kind == Attribute::DereferenceableOrNull)
1618             B.addDereferenceableOrNullAttr(Record[++i]);
1619           else if (Kind == Attribute::AllocSize)
1620             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1621         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1622           bool HasValue = (Record[i++] == 4);
1623           SmallString<64> KindStr;
1624           SmallString<64> ValStr;
1625 
1626           while (Record[i] != 0 && i != e)
1627             KindStr += Record[i++];
1628           assert(Record[i] == 0 && "Kind string not null terminated");
1629 
1630           if (HasValue) {
1631             // Has a value associated with it.
1632             ++i; // Skip the '0' that terminates the "kind" string.
1633             while (Record[i] != 0 && i != e)
1634               ValStr += Record[i++];
1635             assert(Record[i] == 0 && "Value string not null terminated");
1636           }
1637 
1638           B.addAttribute(KindStr.str(), ValStr.str());
1639         } else {
1640           assert((Record[i] == 5 || Record[i] == 6) &&
1641                  "Invalid attribute group entry");
1642           bool HasType = Record[i] == 6;
1643           Attribute::AttrKind Kind;
1644           if (Error Err = parseAttrKind(Record[++i], &Kind))
1645             return Err;
1646           if (Kind == Attribute::ByVal)
1647             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1648         }
1649       }
1650 
1651       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1652       break;
1653     }
1654     }
1655   }
1656 }
1657 
1658 Error BitcodeReader::parseTypeTable() {
1659   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1660     return Err;
1661 
1662   return parseTypeTableBody();
1663 }
1664 
1665 Error BitcodeReader::parseTypeTableBody() {
1666   if (!TypeList.empty())
1667     return error("Invalid multiple blocks");
1668 
1669   SmallVector<uint64_t, 64> Record;
1670   unsigned NumRecords = 0;
1671 
1672   SmallString<64> TypeName;
1673 
1674   // Read all the records for this type table.
1675   while (true) {
1676     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1677     if (!MaybeEntry)
1678       return MaybeEntry.takeError();
1679     BitstreamEntry Entry = MaybeEntry.get();
1680 
1681     switch (Entry.Kind) {
1682     case BitstreamEntry::SubBlock: // Handled for us already.
1683     case BitstreamEntry::Error:
1684       return error("Malformed block");
1685     case BitstreamEntry::EndBlock:
1686       if (NumRecords != TypeList.size())
1687         return error("Malformed block");
1688       return Error::success();
1689     case BitstreamEntry::Record:
1690       // The interesting case.
1691       break;
1692     }
1693 
1694     // Read a record.
1695     Record.clear();
1696     Type *ResultTy = nullptr;
1697     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1698     if (!MaybeRecord)
1699       return MaybeRecord.takeError();
1700     switch (MaybeRecord.get()) {
1701     default:
1702       return error("Invalid value");
1703     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1704       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1705       // type list.  This allows us to reserve space.
1706       if (Record.size() < 1)
1707         return error("Invalid record");
1708       TypeList.resize(Record[0]);
1709       continue;
1710     case bitc::TYPE_CODE_VOID:      // VOID
1711       ResultTy = Type::getVoidTy(Context);
1712       break;
1713     case bitc::TYPE_CODE_HALF:     // HALF
1714       ResultTy = Type::getHalfTy(Context);
1715       break;
1716     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1717       ResultTy = Type::getFloatTy(Context);
1718       break;
1719     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1720       ResultTy = Type::getDoubleTy(Context);
1721       break;
1722     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1723       ResultTy = Type::getX86_FP80Ty(Context);
1724       break;
1725     case bitc::TYPE_CODE_FP128:     // FP128
1726       ResultTy = Type::getFP128Ty(Context);
1727       break;
1728     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1729       ResultTy = Type::getPPC_FP128Ty(Context);
1730       break;
1731     case bitc::TYPE_CODE_LABEL:     // LABEL
1732       ResultTy = Type::getLabelTy(Context);
1733       break;
1734     case bitc::TYPE_CODE_METADATA:  // METADATA
1735       ResultTy = Type::getMetadataTy(Context);
1736       break;
1737     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1738       ResultTy = Type::getX86_MMXTy(Context);
1739       break;
1740     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1741       ResultTy = Type::getTokenTy(Context);
1742       break;
1743     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1744       if (Record.size() < 1)
1745         return error("Invalid record");
1746 
1747       uint64_t NumBits = Record[0];
1748       if (NumBits < IntegerType::MIN_INT_BITS ||
1749           NumBits > IntegerType::MAX_INT_BITS)
1750         return error("Bitwidth for integer type out of range");
1751       ResultTy = IntegerType::get(Context, NumBits);
1752       break;
1753     }
1754     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1755                                     //          [pointee type, address space]
1756       if (Record.size() < 1)
1757         return error("Invalid record");
1758       unsigned AddressSpace = 0;
1759       if (Record.size() == 2)
1760         AddressSpace = Record[1];
1761       ResultTy = getTypeByID(Record[0]);
1762       if (!ResultTy ||
1763           !PointerType::isValidElementType(ResultTy))
1764         return error("Invalid type");
1765       ResultTy = PointerType::get(ResultTy, AddressSpace);
1766       break;
1767     }
1768     case bitc::TYPE_CODE_FUNCTION_OLD: {
1769       // FIXME: attrid is dead, remove it in LLVM 4.0
1770       // FUNCTION: [vararg, attrid, retty, paramty x N]
1771       if (Record.size() < 3)
1772         return error("Invalid record");
1773       SmallVector<Type*, 8> ArgTys;
1774       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1775         if (Type *T = getTypeByID(Record[i]))
1776           ArgTys.push_back(T);
1777         else
1778           break;
1779       }
1780 
1781       ResultTy = getTypeByID(Record[2]);
1782       if (!ResultTy || ArgTys.size() < Record.size()-3)
1783         return error("Invalid type");
1784 
1785       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1786       break;
1787     }
1788     case bitc::TYPE_CODE_FUNCTION: {
1789       // FUNCTION: [vararg, retty, paramty x N]
1790       if (Record.size() < 2)
1791         return error("Invalid record");
1792       SmallVector<Type*, 8> ArgTys;
1793       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1794         if (Type *T = getTypeByID(Record[i])) {
1795           if (!FunctionType::isValidArgumentType(T))
1796             return error("Invalid function argument type");
1797           ArgTys.push_back(T);
1798         }
1799         else
1800           break;
1801       }
1802 
1803       ResultTy = getTypeByID(Record[1]);
1804       if (!ResultTy || ArgTys.size() < Record.size()-2)
1805         return error("Invalid type");
1806 
1807       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1808       break;
1809     }
1810     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1811       if (Record.size() < 1)
1812         return error("Invalid record");
1813       SmallVector<Type*, 8> EltTys;
1814       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1815         if (Type *T = getTypeByID(Record[i]))
1816           EltTys.push_back(T);
1817         else
1818           break;
1819       }
1820       if (EltTys.size() != Record.size()-1)
1821         return error("Invalid type");
1822       ResultTy = StructType::get(Context, EltTys, Record[0]);
1823       break;
1824     }
1825     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1826       if (convertToString(Record, 0, TypeName))
1827         return error("Invalid record");
1828       continue;
1829 
1830     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1831       if (Record.size() < 1)
1832         return error("Invalid record");
1833 
1834       if (NumRecords >= TypeList.size())
1835         return error("Invalid TYPE table");
1836 
1837       // Check to see if this was forward referenced, if so fill in the temp.
1838       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1839       if (Res) {
1840         Res->setName(TypeName);
1841         TypeList[NumRecords] = nullptr;
1842       } else  // Otherwise, create a new struct.
1843         Res = createIdentifiedStructType(Context, TypeName);
1844       TypeName.clear();
1845 
1846       SmallVector<Type*, 8> EltTys;
1847       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1848         if (Type *T = getTypeByID(Record[i]))
1849           EltTys.push_back(T);
1850         else
1851           break;
1852       }
1853       if (EltTys.size() != Record.size()-1)
1854         return error("Invalid record");
1855       Res->setBody(EltTys, Record[0]);
1856       ResultTy = Res;
1857       break;
1858     }
1859     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1860       if (Record.size() != 1)
1861         return error("Invalid record");
1862 
1863       if (NumRecords >= TypeList.size())
1864         return error("Invalid TYPE table");
1865 
1866       // Check to see if this was forward referenced, if so fill in the temp.
1867       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1868       if (Res) {
1869         Res->setName(TypeName);
1870         TypeList[NumRecords] = nullptr;
1871       } else  // Otherwise, create a new struct with no body.
1872         Res = createIdentifiedStructType(Context, TypeName);
1873       TypeName.clear();
1874       ResultTy = Res;
1875       break;
1876     }
1877     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1878       if (Record.size() < 2)
1879         return error("Invalid record");
1880       ResultTy = getTypeByID(Record[1]);
1881       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1882         return error("Invalid type");
1883       ResultTy = ArrayType::get(ResultTy, Record[0]);
1884       break;
1885     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1886                                     //         [numelts, eltty, scalable]
1887       if (Record.size() < 2)
1888         return error("Invalid record");
1889       if (Record[0] == 0)
1890         return error("Invalid vector length");
1891       ResultTy = getTypeByID(Record[1]);
1892       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1893         return error("Invalid type");
1894       bool Scalable = Record.size() > 2 ? Record[2] : false;
1895       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1896       break;
1897     }
1898 
1899     if (NumRecords >= TypeList.size())
1900       return error("Invalid TYPE table");
1901     if (TypeList[NumRecords])
1902       return error(
1903           "Invalid TYPE table: Only named structs can be forward referenced");
1904     assert(ResultTy && "Didn't read a type?");
1905     TypeList[NumRecords++] = ResultTy;
1906   }
1907 }
1908 
1909 Error BitcodeReader::parseOperandBundleTags() {
1910   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1911     return Err;
1912 
1913   if (!BundleTags.empty())
1914     return error("Invalid multiple blocks");
1915 
1916   SmallVector<uint64_t, 64> Record;
1917 
1918   while (true) {
1919     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1920     if (!MaybeEntry)
1921       return MaybeEntry.takeError();
1922     BitstreamEntry Entry = MaybeEntry.get();
1923 
1924     switch (Entry.Kind) {
1925     case BitstreamEntry::SubBlock: // Handled for us already.
1926     case BitstreamEntry::Error:
1927       return error("Malformed block");
1928     case BitstreamEntry::EndBlock:
1929       return Error::success();
1930     case BitstreamEntry::Record:
1931       // The interesting case.
1932       break;
1933     }
1934 
1935     // Tags are implicitly mapped to integers by their order.
1936 
1937     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1938     if (!MaybeRecord)
1939       return MaybeRecord.takeError();
1940     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1941       return error("Invalid record");
1942 
1943     // OPERAND_BUNDLE_TAG: [strchr x N]
1944     BundleTags.emplace_back();
1945     if (convertToString(Record, 0, BundleTags.back()))
1946       return error("Invalid record");
1947     Record.clear();
1948   }
1949 }
1950 
1951 Error BitcodeReader::parseSyncScopeNames() {
1952   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1953     return Err;
1954 
1955   if (!SSIDs.empty())
1956     return error("Invalid multiple synchronization scope names blocks");
1957 
1958   SmallVector<uint64_t, 64> Record;
1959   while (true) {
1960     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1961     if (!MaybeEntry)
1962       return MaybeEntry.takeError();
1963     BitstreamEntry Entry = MaybeEntry.get();
1964 
1965     switch (Entry.Kind) {
1966     case BitstreamEntry::SubBlock: // Handled for us already.
1967     case BitstreamEntry::Error:
1968       return error("Malformed block");
1969     case BitstreamEntry::EndBlock:
1970       if (SSIDs.empty())
1971         return error("Invalid empty synchronization scope names block");
1972       return Error::success();
1973     case BitstreamEntry::Record:
1974       // The interesting case.
1975       break;
1976     }
1977 
1978     // Synchronization scope names are implicitly mapped to synchronization
1979     // scope IDs by their order.
1980 
1981     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1982     if (!MaybeRecord)
1983       return MaybeRecord.takeError();
1984     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
1985       return error("Invalid record");
1986 
1987     SmallString<16> SSN;
1988     if (convertToString(Record, 0, SSN))
1989       return error("Invalid record");
1990 
1991     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1992     Record.clear();
1993   }
1994 }
1995 
1996 /// Associate a value with its name from the given index in the provided record.
1997 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1998                                              unsigned NameIndex, Triple &TT) {
1999   SmallString<128> ValueName;
2000   if (convertToString(Record, NameIndex, ValueName))
2001     return error("Invalid record");
2002   unsigned ValueID = Record[0];
2003   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2004     return error("Invalid record");
2005   Value *V = ValueList[ValueID];
2006 
2007   StringRef NameStr(ValueName.data(), ValueName.size());
2008   if (NameStr.find_first_of(0) != StringRef::npos)
2009     return error("Invalid value name");
2010   V->setName(NameStr);
2011   auto *GO = dyn_cast<GlobalObject>(V);
2012   if (GO) {
2013     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2014       if (TT.supportsCOMDAT())
2015         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2016       else
2017         GO->setComdat(nullptr);
2018     }
2019   }
2020   return V;
2021 }
2022 
2023 /// Helper to note and return the current location, and jump to the given
2024 /// offset.
2025 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2026                                                  BitstreamCursor &Stream) {
2027   // Save the current parsing location so we can jump back at the end
2028   // of the VST read.
2029   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2030   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2031     return std::move(JumpFailed);
2032   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2033   if (!MaybeEntry)
2034     return MaybeEntry.takeError();
2035   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2036   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2037   return CurrentBit;
2038 }
2039 
2040 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2041                                             Function *F,
2042                                             ArrayRef<uint64_t> Record) {
2043   // Note that we subtract 1 here because the offset is relative to one word
2044   // before the start of the identification or module block, which was
2045   // historically always the start of the regular bitcode header.
2046   uint64_t FuncWordOffset = Record[1] - 1;
2047   uint64_t FuncBitOffset = FuncWordOffset * 32;
2048   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2049   // Set the LastFunctionBlockBit to point to the last function block.
2050   // Later when parsing is resumed after function materialization,
2051   // we can simply skip that last function block.
2052   if (FuncBitOffset > LastFunctionBlockBit)
2053     LastFunctionBlockBit = FuncBitOffset;
2054 }
2055 
2056 /// Read a new-style GlobalValue symbol table.
2057 Error BitcodeReader::parseGlobalValueSymbolTable() {
2058   unsigned FuncBitcodeOffsetDelta =
2059       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2060 
2061   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2062     return Err;
2063 
2064   SmallVector<uint64_t, 64> Record;
2065   while (true) {
2066     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2067     if (!MaybeEntry)
2068       return MaybeEntry.takeError();
2069     BitstreamEntry Entry = MaybeEntry.get();
2070 
2071     switch (Entry.Kind) {
2072     case BitstreamEntry::SubBlock:
2073     case BitstreamEntry::Error:
2074       return error("Malformed block");
2075     case BitstreamEntry::EndBlock:
2076       return Error::success();
2077     case BitstreamEntry::Record:
2078       break;
2079     }
2080 
2081     Record.clear();
2082     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2083     if (!MaybeRecord)
2084       return MaybeRecord.takeError();
2085     switch (MaybeRecord.get()) {
2086     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2087       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2088                               cast<Function>(ValueList[Record[0]]), Record);
2089       break;
2090     }
2091   }
2092 }
2093 
2094 /// Parse the value symbol table at either the current parsing location or
2095 /// at the given bit offset if provided.
2096 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2097   uint64_t CurrentBit;
2098   // Pass in the Offset to distinguish between calling for the module-level
2099   // VST (where we want to jump to the VST offset) and the function-level
2100   // VST (where we don't).
2101   if (Offset > 0) {
2102     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2103     if (!MaybeCurrentBit)
2104       return MaybeCurrentBit.takeError();
2105     CurrentBit = MaybeCurrentBit.get();
2106     // If this module uses a string table, read this as a module-level VST.
2107     if (UseStrtab) {
2108       if (Error Err = parseGlobalValueSymbolTable())
2109         return Err;
2110       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2111         return JumpFailed;
2112       return Error::success();
2113     }
2114     // Otherwise, the VST will be in a similar format to a function-level VST,
2115     // and will contain symbol names.
2116   }
2117 
2118   // Compute the delta between the bitcode indices in the VST (the word offset
2119   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2120   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2121   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2122   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2123   // just before entering the VST subblock because: 1) the EnterSubBlock
2124   // changes the AbbrevID width; 2) the VST block is nested within the same
2125   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2126   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2127   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2128   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2129   unsigned FuncBitcodeOffsetDelta =
2130       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2131 
2132   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2133     return Err;
2134 
2135   SmallVector<uint64_t, 64> Record;
2136 
2137   Triple TT(TheModule->getTargetTriple());
2138 
2139   // Read all the records for this value table.
2140   SmallString<128> ValueName;
2141 
2142   while (true) {
2143     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2144     if (!MaybeEntry)
2145       return MaybeEntry.takeError();
2146     BitstreamEntry Entry = MaybeEntry.get();
2147 
2148     switch (Entry.Kind) {
2149     case BitstreamEntry::SubBlock: // Handled for us already.
2150     case BitstreamEntry::Error:
2151       return error("Malformed block");
2152     case BitstreamEntry::EndBlock:
2153       if (Offset > 0)
2154         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2155           return JumpFailed;
2156       return Error::success();
2157     case BitstreamEntry::Record:
2158       // The interesting case.
2159       break;
2160     }
2161 
2162     // Read a record.
2163     Record.clear();
2164     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2165     if (!MaybeRecord)
2166       return MaybeRecord.takeError();
2167     switch (MaybeRecord.get()) {
2168     default:  // Default behavior: unknown type.
2169       break;
2170     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2171       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2172       if (Error Err = ValOrErr.takeError())
2173         return Err;
2174       ValOrErr.get();
2175       break;
2176     }
2177     case bitc::VST_CODE_FNENTRY: {
2178       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2179       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2180       if (Error Err = ValOrErr.takeError())
2181         return Err;
2182       Value *V = ValOrErr.get();
2183 
2184       // Ignore function offsets emitted for aliases of functions in older
2185       // versions of LLVM.
2186       if (auto *F = dyn_cast<Function>(V))
2187         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2188       break;
2189     }
2190     case bitc::VST_CODE_BBENTRY: {
2191       if (convertToString(Record, 1, ValueName))
2192         return error("Invalid record");
2193       BasicBlock *BB = getBasicBlock(Record[0]);
2194       if (!BB)
2195         return error("Invalid record");
2196 
2197       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2198       ValueName.clear();
2199       break;
2200     }
2201     }
2202   }
2203 }
2204 
2205 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2206 /// encoding.
2207 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2208   if ((V & 1) == 0)
2209     return V >> 1;
2210   if (V != 1)
2211     return -(V >> 1);
2212   // There is no such thing as -0 with integers.  "-0" really means MININT.
2213   return 1ULL << 63;
2214 }
2215 
2216 /// Resolve all of the initializers for global values and aliases that we can.
2217 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2218   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2219   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2220       IndirectSymbolInitWorklist;
2221   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2222   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2223   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2224 
2225   GlobalInitWorklist.swap(GlobalInits);
2226   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2227   FunctionPrefixWorklist.swap(FunctionPrefixes);
2228   FunctionPrologueWorklist.swap(FunctionPrologues);
2229   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2230 
2231   while (!GlobalInitWorklist.empty()) {
2232     unsigned ValID = GlobalInitWorklist.back().second;
2233     if (ValID >= ValueList.size()) {
2234       // Not ready to resolve this yet, it requires something later in the file.
2235       GlobalInits.push_back(GlobalInitWorklist.back());
2236     } else {
2237       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2238         GlobalInitWorklist.back().first->setInitializer(C);
2239       else
2240         return error("Expected a constant");
2241     }
2242     GlobalInitWorklist.pop_back();
2243   }
2244 
2245   while (!IndirectSymbolInitWorklist.empty()) {
2246     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2247     if (ValID >= ValueList.size()) {
2248       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2249     } else {
2250       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2251       if (!C)
2252         return error("Expected a constant");
2253       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2254       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2255         return error("Alias and aliasee types don't match");
2256       GIS->setIndirectSymbol(C);
2257     }
2258     IndirectSymbolInitWorklist.pop_back();
2259   }
2260 
2261   while (!FunctionPrefixWorklist.empty()) {
2262     unsigned ValID = FunctionPrefixWorklist.back().second;
2263     if (ValID >= ValueList.size()) {
2264       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2265     } else {
2266       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2267         FunctionPrefixWorklist.back().first->setPrefixData(C);
2268       else
2269         return error("Expected a constant");
2270     }
2271     FunctionPrefixWorklist.pop_back();
2272   }
2273 
2274   while (!FunctionPrologueWorklist.empty()) {
2275     unsigned ValID = FunctionPrologueWorklist.back().second;
2276     if (ValID >= ValueList.size()) {
2277       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2278     } else {
2279       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2280         FunctionPrologueWorklist.back().first->setPrologueData(C);
2281       else
2282         return error("Expected a constant");
2283     }
2284     FunctionPrologueWorklist.pop_back();
2285   }
2286 
2287   while (!FunctionPersonalityFnWorklist.empty()) {
2288     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2289     if (ValID >= ValueList.size()) {
2290       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2291     } else {
2292       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2293         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2294       else
2295         return error("Expected a constant");
2296     }
2297     FunctionPersonalityFnWorklist.pop_back();
2298   }
2299 
2300   return Error::success();
2301 }
2302 
2303 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2304   SmallVector<uint64_t, 8> Words(Vals.size());
2305   transform(Vals, Words.begin(),
2306                  BitcodeReader::decodeSignRotatedValue);
2307 
2308   return APInt(TypeBits, Words);
2309 }
2310 
2311 Error BitcodeReader::parseConstants() {
2312   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2313     return Err;
2314 
2315   SmallVector<uint64_t, 64> Record;
2316 
2317   // Read all the records for this value table.
2318   Type *CurTy = Type::getInt32Ty(Context);
2319   Type *CurFullTy = Type::getInt32Ty(Context);
2320   unsigned NextCstNo = ValueList.size();
2321 
2322   while (true) {
2323     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2324     if (!MaybeEntry)
2325       return MaybeEntry.takeError();
2326     BitstreamEntry Entry = MaybeEntry.get();
2327 
2328     switch (Entry.Kind) {
2329     case BitstreamEntry::SubBlock: // Handled for us already.
2330     case BitstreamEntry::Error:
2331       return error("Malformed block");
2332     case BitstreamEntry::EndBlock:
2333       if (NextCstNo != ValueList.size())
2334         return error("Invalid constant reference");
2335 
2336       // Once all the constants have been read, go through and resolve forward
2337       // references.
2338       ValueList.resolveConstantForwardRefs();
2339       return Error::success();
2340     case BitstreamEntry::Record:
2341       // The interesting case.
2342       break;
2343     }
2344 
2345     // Read a record.
2346     Record.clear();
2347     Type *VoidType = Type::getVoidTy(Context);
2348     Value *V = nullptr;
2349     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2350     if (!MaybeBitCode)
2351       return MaybeBitCode.takeError();
2352     switch (unsigned BitCode = MaybeBitCode.get()) {
2353     default:  // Default behavior: unknown constant
2354     case bitc::CST_CODE_UNDEF:     // UNDEF
2355       V = UndefValue::get(CurTy);
2356       break;
2357     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2358       if (Record.empty())
2359         return error("Invalid record");
2360       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2361         return error("Invalid record");
2362       if (TypeList[Record[0]] == VoidType)
2363         return error("Invalid constant type");
2364       CurFullTy = TypeList[Record[0]];
2365       CurTy = flattenPointerTypes(CurFullTy);
2366       continue;  // Skip the ValueList manipulation.
2367     case bitc::CST_CODE_NULL:      // NULL
2368       V = Constant::getNullValue(CurTy);
2369       break;
2370     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2371       if (!CurTy->isIntegerTy() || Record.empty())
2372         return error("Invalid record");
2373       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2374       break;
2375     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2376       if (!CurTy->isIntegerTy() || Record.empty())
2377         return error("Invalid record");
2378 
2379       APInt VInt =
2380           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2381       V = ConstantInt::get(Context, VInt);
2382 
2383       break;
2384     }
2385     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2386       if (Record.empty())
2387         return error("Invalid record");
2388       if (CurTy->isHalfTy())
2389         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2390                                              APInt(16, (uint16_t)Record[0])));
2391       else if (CurTy->isFloatTy())
2392         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2393                                              APInt(32, (uint32_t)Record[0])));
2394       else if (CurTy->isDoubleTy())
2395         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2396                                              APInt(64, Record[0])));
2397       else if (CurTy->isX86_FP80Ty()) {
2398         // Bits are not stored the same way as a normal i80 APInt, compensate.
2399         uint64_t Rearrange[2];
2400         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2401         Rearrange[1] = Record[0] >> 48;
2402         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2403                                              APInt(80, Rearrange)));
2404       } else if (CurTy->isFP128Ty())
2405         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2406                                              APInt(128, Record)));
2407       else if (CurTy->isPPC_FP128Ty())
2408         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2409                                              APInt(128, Record)));
2410       else
2411         V = UndefValue::get(CurTy);
2412       break;
2413     }
2414 
2415     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2416       if (Record.empty())
2417         return error("Invalid record");
2418 
2419       unsigned Size = Record.size();
2420       SmallVector<Constant*, 16> Elts;
2421 
2422       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2423         for (unsigned i = 0; i != Size; ++i)
2424           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2425                                                      STy->getElementType(i)));
2426         V = ConstantStruct::get(STy, Elts);
2427       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2428         Type *EltTy = ATy->getElementType();
2429         for (unsigned i = 0; i != Size; ++i)
2430           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2431         V = ConstantArray::get(ATy, Elts);
2432       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2433         Type *EltTy = VTy->getElementType();
2434         for (unsigned i = 0; i != Size; ++i)
2435           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2436         V = ConstantVector::get(Elts);
2437       } else {
2438         V = UndefValue::get(CurTy);
2439       }
2440       break;
2441     }
2442     case bitc::CST_CODE_STRING:    // STRING: [values]
2443     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2444       if (Record.empty())
2445         return error("Invalid record");
2446 
2447       SmallString<16> Elts(Record.begin(), Record.end());
2448       V = ConstantDataArray::getString(Context, Elts,
2449                                        BitCode == bitc::CST_CODE_CSTRING);
2450       break;
2451     }
2452     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2453       if (Record.empty())
2454         return error("Invalid record");
2455 
2456       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2457       if (EltTy->isIntegerTy(8)) {
2458         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2459         if (isa<VectorType>(CurTy))
2460           V = ConstantDataVector::get(Context, Elts);
2461         else
2462           V = ConstantDataArray::get(Context, Elts);
2463       } else if (EltTy->isIntegerTy(16)) {
2464         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2465         if (isa<VectorType>(CurTy))
2466           V = ConstantDataVector::get(Context, Elts);
2467         else
2468           V = ConstantDataArray::get(Context, Elts);
2469       } else if (EltTy->isIntegerTy(32)) {
2470         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2471         if (isa<VectorType>(CurTy))
2472           V = ConstantDataVector::get(Context, Elts);
2473         else
2474           V = ConstantDataArray::get(Context, Elts);
2475       } else if (EltTy->isIntegerTy(64)) {
2476         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2477         if (isa<VectorType>(CurTy))
2478           V = ConstantDataVector::get(Context, Elts);
2479         else
2480           V = ConstantDataArray::get(Context, Elts);
2481       } else if (EltTy->isHalfTy()) {
2482         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2483         if (isa<VectorType>(CurTy))
2484           V = ConstantDataVector::getFP(Context, Elts);
2485         else
2486           V = ConstantDataArray::getFP(Context, Elts);
2487       } else if (EltTy->isFloatTy()) {
2488         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2489         if (isa<VectorType>(CurTy))
2490           V = ConstantDataVector::getFP(Context, Elts);
2491         else
2492           V = ConstantDataArray::getFP(Context, Elts);
2493       } else if (EltTy->isDoubleTy()) {
2494         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2495         if (isa<VectorType>(CurTy))
2496           V = ConstantDataVector::getFP(Context, Elts);
2497         else
2498           V = ConstantDataArray::getFP(Context, Elts);
2499       } else {
2500         return error("Invalid type for value");
2501       }
2502       break;
2503     }
2504     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2505       if (Record.size() < 2)
2506         return error("Invalid record");
2507       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2508       if (Opc < 0) {
2509         V = UndefValue::get(CurTy);  // Unknown unop.
2510       } else {
2511         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2512         unsigned Flags = 0;
2513         V = ConstantExpr::get(Opc, LHS, Flags);
2514       }
2515       break;
2516     }
2517     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2518       if (Record.size() < 3)
2519         return error("Invalid record");
2520       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2521       if (Opc < 0) {
2522         V = UndefValue::get(CurTy);  // Unknown binop.
2523       } else {
2524         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2525         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2526         unsigned Flags = 0;
2527         if (Record.size() >= 4) {
2528           if (Opc == Instruction::Add ||
2529               Opc == Instruction::Sub ||
2530               Opc == Instruction::Mul ||
2531               Opc == Instruction::Shl) {
2532             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2533               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2534             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2535               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2536           } else if (Opc == Instruction::SDiv ||
2537                      Opc == Instruction::UDiv ||
2538                      Opc == Instruction::LShr ||
2539                      Opc == Instruction::AShr) {
2540             if (Record[3] & (1 << bitc::PEO_EXACT))
2541               Flags |= SDivOperator::IsExact;
2542           }
2543         }
2544         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2545       }
2546       break;
2547     }
2548     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2549       if (Record.size() < 3)
2550         return error("Invalid record");
2551       int Opc = getDecodedCastOpcode(Record[0]);
2552       if (Opc < 0) {
2553         V = UndefValue::get(CurTy);  // Unknown cast.
2554       } else {
2555         Type *OpTy = getTypeByID(Record[1]);
2556         if (!OpTy)
2557           return error("Invalid record");
2558         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2559         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2560         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2561       }
2562       break;
2563     }
2564     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2565     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2566     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2567                                                      // operands]
2568       unsigned OpNum = 0;
2569       Type *PointeeType = nullptr;
2570       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2571           Record.size() % 2)
2572         PointeeType = getTypeByID(Record[OpNum++]);
2573 
2574       bool InBounds = false;
2575       Optional<unsigned> InRangeIndex;
2576       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2577         uint64_t Op = Record[OpNum++];
2578         InBounds = Op & 1;
2579         InRangeIndex = Op >> 1;
2580       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2581         InBounds = true;
2582 
2583       SmallVector<Constant*, 16> Elts;
2584       Type *Elt0FullTy = nullptr;
2585       while (OpNum != Record.size()) {
2586         if (!Elt0FullTy)
2587           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2588         Type *ElTy = getTypeByID(Record[OpNum++]);
2589         if (!ElTy)
2590           return error("Invalid record");
2591         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2592       }
2593 
2594       if (Elts.size() < 1)
2595         return error("Invalid gep with no operands");
2596 
2597       Type *ImplicitPointeeType =
2598           getPointerElementFlatType(Elt0FullTy->getScalarType());
2599       if (!PointeeType)
2600         PointeeType = ImplicitPointeeType;
2601       else if (PointeeType != ImplicitPointeeType)
2602         return error("Explicit gep operator type does not match pointee type "
2603                      "of pointer operand");
2604 
2605       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2606       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2607                                          InBounds, InRangeIndex);
2608       break;
2609     }
2610     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2611       if (Record.size() < 3)
2612         return error("Invalid record");
2613 
2614       Type *SelectorTy = Type::getInt1Ty(Context);
2615 
2616       // The selector might be an i1 or an <n x i1>
2617       // Get the type from the ValueList before getting a forward ref.
2618       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2619         if (Value *V = ValueList[Record[0]])
2620           if (SelectorTy != V->getType())
2621             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2622 
2623       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2624                                                               SelectorTy),
2625                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2626                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2627       break;
2628     }
2629     case bitc::CST_CODE_CE_EXTRACTELT
2630         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2631       if (Record.size() < 3)
2632         return error("Invalid record");
2633       VectorType *OpTy =
2634         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2635       if (!OpTy)
2636         return error("Invalid record");
2637       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2638       Constant *Op1 = nullptr;
2639       if (Record.size() == 4) {
2640         Type *IdxTy = getTypeByID(Record[2]);
2641         if (!IdxTy)
2642           return error("Invalid record");
2643         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2644       } else // TODO: Remove with llvm 4.0
2645         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2646       if (!Op1)
2647         return error("Invalid record");
2648       V = ConstantExpr::getExtractElement(Op0, Op1);
2649       break;
2650     }
2651     case bitc::CST_CODE_CE_INSERTELT
2652         : { // CE_INSERTELT: [opval, opval, opty, opval]
2653       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2654       if (Record.size() < 3 || !OpTy)
2655         return error("Invalid record");
2656       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2657       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2658                                                   OpTy->getElementType());
2659       Constant *Op2 = nullptr;
2660       if (Record.size() == 4) {
2661         Type *IdxTy = getTypeByID(Record[2]);
2662         if (!IdxTy)
2663           return error("Invalid record");
2664         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2665       } else // TODO: Remove with llvm 4.0
2666         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2667       if (!Op2)
2668         return error("Invalid record");
2669       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2670       break;
2671     }
2672     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2673       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2674       if (Record.size() < 3 || !OpTy)
2675         return error("Invalid record");
2676       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2677       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2678       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2679                                                  OpTy->getNumElements());
2680       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2681       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2682       break;
2683     }
2684     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2685       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2686       VectorType *OpTy =
2687         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2688       if (Record.size() < 4 || !RTy || !OpTy)
2689         return error("Invalid record");
2690       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2691       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2692       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2693                                                  RTy->getNumElements());
2694       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2695       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2696       break;
2697     }
2698     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2699       if (Record.size() < 4)
2700         return error("Invalid record");
2701       Type *OpTy = getTypeByID(Record[0]);
2702       if (!OpTy)
2703         return error("Invalid record");
2704       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2705       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2706 
2707       if (OpTy->isFPOrFPVectorTy())
2708         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2709       else
2710         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2711       break;
2712     }
2713     // This maintains backward compatibility, pre-asm dialect keywords.
2714     // FIXME: Remove with the 4.0 release.
2715     case bitc::CST_CODE_INLINEASM_OLD: {
2716       if (Record.size() < 2)
2717         return error("Invalid record");
2718       std::string AsmStr, ConstrStr;
2719       bool HasSideEffects = Record[0] & 1;
2720       bool IsAlignStack = Record[0] >> 1;
2721       unsigned AsmStrSize = Record[1];
2722       if (2+AsmStrSize >= Record.size())
2723         return error("Invalid record");
2724       unsigned ConstStrSize = Record[2+AsmStrSize];
2725       if (3+AsmStrSize+ConstStrSize > Record.size())
2726         return error("Invalid record");
2727 
2728       for (unsigned i = 0; i != AsmStrSize; ++i)
2729         AsmStr += (char)Record[2+i];
2730       for (unsigned i = 0; i != ConstStrSize; ++i)
2731         ConstrStr += (char)Record[3+AsmStrSize+i];
2732       UpgradeInlineAsmString(&AsmStr);
2733       V = InlineAsm::get(
2734           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2735           ConstrStr, HasSideEffects, IsAlignStack);
2736       break;
2737     }
2738     // This version adds support for the asm dialect keywords (e.g.,
2739     // inteldialect).
2740     case bitc::CST_CODE_INLINEASM: {
2741       if (Record.size() < 2)
2742         return error("Invalid record");
2743       std::string AsmStr, ConstrStr;
2744       bool HasSideEffects = Record[0] & 1;
2745       bool IsAlignStack = (Record[0] >> 1) & 1;
2746       unsigned AsmDialect = Record[0] >> 2;
2747       unsigned AsmStrSize = Record[1];
2748       if (2+AsmStrSize >= Record.size())
2749         return error("Invalid record");
2750       unsigned ConstStrSize = Record[2+AsmStrSize];
2751       if (3+AsmStrSize+ConstStrSize > Record.size())
2752         return error("Invalid record");
2753 
2754       for (unsigned i = 0; i != AsmStrSize; ++i)
2755         AsmStr += (char)Record[2+i];
2756       for (unsigned i = 0; i != ConstStrSize; ++i)
2757         ConstrStr += (char)Record[3+AsmStrSize+i];
2758       UpgradeInlineAsmString(&AsmStr);
2759       V = InlineAsm::get(
2760           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2761           ConstrStr, HasSideEffects, IsAlignStack,
2762           InlineAsm::AsmDialect(AsmDialect));
2763       break;
2764     }
2765     case bitc::CST_CODE_BLOCKADDRESS:{
2766       if (Record.size() < 3)
2767         return error("Invalid record");
2768       Type *FnTy = getTypeByID(Record[0]);
2769       if (!FnTy)
2770         return error("Invalid record");
2771       Function *Fn =
2772         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2773       if (!Fn)
2774         return error("Invalid record");
2775 
2776       // If the function is already parsed we can insert the block address right
2777       // away.
2778       BasicBlock *BB;
2779       unsigned BBID = Record[2];
2780       if (!BBID)
2781         // Invalid reference to entry block.
2782         return error("Invalid ID");
2783       if (!Fn->empty()) {
2784         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2785         for (size_t I = 0, E = BBID; I != E; ++I) {
2786           if (BBI == BBE)
2787             return error("Invalid ID");
2788           ++BBI;
2789         }
2790         BB = &*BBI;
2791       } else {
2792         // Otherwise insert a placeholder and remember it so it can be inserted
2793         // when the function is parsed.
2794         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2795         if (FwdBBs.empty())
2796           BasicBlockFwdRefQueue.push_back(Fn);
2797         if (FwdBBs.size() < BBID + 1)
2798           FwdBBs.resize(BBID + 1);
2799         if (!FwdBBs[BBID])
2800           FwdBBs[BBID] = BasicBlock::Create(Context);
2801         BB = FwdBBs[BBID];
2802       }
2803       V = BlockAddress::get(Fn, BB);
2804       break;
2805     }
2806     }
2807 
2808     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2809            "Incorrect fully structured type provided for Constant");
2810     ValueList.assignValue(V, NextCstNo, CurFullTy);
2811     ++NextCstNo;
2812   }
2813 }
2814 
2815 Error BitcodeReader::parseUseLists() {
2816   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2817     return Err;
2818 
2819   // Read all the records.
2820   SmallVector<uint64_t, 64> Record;
2821 
2822   while (true) {
2823     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2824     if (!MaybeEntry)
2825       return MaybeEntry.takeError();
2826     BitstreamEntry Entry = MaybeEntry.get();
2827 
2828     switch (Entry.Kind) {
2829     case BitstreamEntry::SubBlock: // Handled for us already.
2830     case BitstreamEntry::Error:
2831       return error("Malformed block");
2832     case BitstreamEntry::EndBlock:
2833       return Error::success();
2834     case BitstreamEntry::Record:
2835       // The interesting case.
2836       break;
2837     }
2838 
2839     // Read a use list record.
2840     Record.clear();
2841     bool IsBB = false;
2842     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2843     if (!MaybeRecord)
2844       return MaybeRecord.takeError();
2845     switch (MaybeRecord.get()) {
2846     default:  // Default behavior: unknown type.
2847       break;
2848     case bitc::USELIST_CODE_BB:
2849       IsBB = true;
2850       LLVM_FALLTHROUGH;
2851     case bitc::USELIST_CODE_DEFAULT: {
2852       unsigned RecordLength = Record.size();
2853       if (RecordLength < 3)
2854         // Records should have at least an ID and two indexes.
2855         return error("Invalid record");
2856       unsigned ID = Record.back();
2857       Record.pop_back();
2858 
2859       Value *V;
2860       if (IsBB) {
2861         assert(ID < FunctionBBs.size() && "Basic block not found");
2862         V = FunctionBBs[ID];
2863       } else
2864         V = ValueList[ID];
2865       unsigned NumUses = 0;
2866       SmallDenseMap<const Use *, unsigned, 16> Order;
2867       for (const Use &U : V->materialized_uses()) {
2868         if (++NumUses > Record.size())
2869           break;
2870         Order[&U] = Record[NumUses - 1];
2871       }
2872       if (Order.size() != Record.size() || NumUses > Record.size())
2873         // Mismatches can happen if the functions are being materialized lazily
2874         // (out-of-order), or a value has been upgraded.
2875         break;
2876 
2877       V->sortUseList([&](const Use &L, const Use &R) {
2878         return Order.lookup(&L) < Order.lookup(&R);
2879       });
2880       break;
2881     }
2882     }
2883   }
2884 }
2885 
2886 /// When we see the block for metadata, remember where it is and then skip it.
2887 /// This lets us lazily deserialize the metadata.
2888 Error BitcodeReader::rememberAndSkipMetadata() {
2889   // Save the current stream state.
2890   uint64_t CurBit = Stream.GetCurrentBitNo();
2891   DeferredMetadataInfo.push_back(CurBit);
2892 
2893   // Skip over the block for now.
2894   if (Error Err = Stream.SkipBlock())
2895     return Err;
2896   return Error::success();
2897 }
2898 
2899 Error BitcodeReader::materializeMetadata() {
2900   for (uint64_t BitPos : DeferredMetadataInfo) {
2901     // Move the bit stream to the saved position.
2902     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2903       return JumpFailed;
2904     if (Error Err = MDLoader->parseModuleMetadata())
2905       return Err;
2906   }
2907 
2908   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2909   // metadata.
2910   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2911     NamedMDNode *LinkerOpts =
2912         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2913     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2914       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2915   }
2916 
2917   DeferredMetadataInfo.clear();
2918   return Error::success();
2919 }
2920 
2921 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2922 
2923 /// When we see the block for a function body, remember where it is and then
2924 /// skip it.  This lets us lazily deserialize the functions.
2925 Error BitcodeReader::rememberAndSkipFunctionBody() {
2926   // Get the function we are talking about.
2927   if (FunctionsWithBodies.empty())
2928     return error("Insufficient function protos");
2929 
2930   Function *Fn = FunctionsWithBodies.back();
2931   FunctionsWithBodies.pop_back();
2932 
2933   // Save the current stream state.
2934   uint64_t CurBit = Stream.GetCurrentBitNo();
2935   assert(
2936       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2937       "Mismatch between VST and scanned function offsets");
2938   DeferredFunctionInfo[Fn] = CurBit;
2939 
2940   // Skip over the function block for now.
2941   if (Error Err = Stream.SkipBlock())
2942     return Err;
2943   return Error::success();
2944 }
2945 
2946 Error BitcodeReader::globalCleanup() {
2947   // Patch the initializers for globals and aliases up.
2948   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2949     return Err;
2950   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2951     return error("Malformed global initializer set");
2952 
2953   // Look for intrinsic functions which need to be upgraded at some point
2954   for (Function &F : *TheModule) {
2955     MDLoader->upgradeDebugIntrinsics(F);
2956     Function *NewFn;
2957     if (UpgradeIntrinsicFunction(&F, NewFn))
2958       UpgradedIntrinsics[&F] = NewFn;
2959     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2960       // Some types could be renamed during loading if several modules are
2961       // loaded in the same LLVMContext (LTO scenario). In this case we should
2962       // remangle intrinsics names as well.
2963       RemangledIntrinsics[&F] = Remangled.getValue();
2964   }
2965 
2966   // Look for global variables which need to be renamed.
2967   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2968   for (GlobalVariable &GV : TheModule->globals())
2969     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
2970       UpgradedVariables.emplace_back(&GV, Upgraded);
2971   for (auto &Pair : UpgradedVariables) {
2972     Pair.first->eraseFromParent();
2973     TheModule->getGlobalList().push_back(Pair.second);
2974   }
2975 
2976   // Force deallocation of memory for these vectors to favor the client that
2977   // want lazy deserialization.
2978   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2979   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2980       IndirectSymbolInits);
2981   return Error::success();
2982 }
2983 
2984 /// Support for lazy parsing of function bodies. This is required if we
2985 /// either have an old bitcode file without a VST forward declaration record,
2986 /// or if we have an anonymous function being materialized, since anonymous
2987 /// functions do not have a name and are therefore not in the VST.
2988 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2989   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
2990     return JumpFailed;
2991 
2992   if (Stream.AtEndOfStream())
2993     return error("Could not find function in stream");
2994 
2995   if (!SeenFirstFunctionBody)
2996     return error("Trying to materialize functions before seeing function blocks");
2997 
2998   // An old bitcode file with the symbol table at the end would have
2999   // finished the parse greedily.
3000   assert(SeenValueSymbolTable);
3001 
3002   SmallVector<uint64_t, 64> Record;
3003 
3004   while (true) {
3005     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3006     if (!MaybeEntry)
3007       return MaybeEntry.takeError();
3008     llvm::BitstreamEntry Entry = MaybeEntry.get();
3009 
3010     switch (Entry.Kind) {
3011     default:
3012       return error("Expect SubBlock");
3013     case BitstreamEntry::SubBlock:
3014       switch (Entry.ID) {
3015       default:
3016         return error("Expect function block");
3017       case bitc::FUNCTION_BLOCK_ID:
3018         if (Error Err = rememberAndSkipFunctionBody())
3019           return Err;
3020         NextUnreadBit = Stream.GetCurrentBitNo();
3021         return Error::success();
3022       }
3023     }
3024   }
3025 }
3026 
3027 bool BitcodeReaderBase::readBlockInfo() {
3028   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3029       Stream.ReadBlockInfoBlock();
3030   if (!MaybeNewBlockInfo)
3031     return true; // FIXME Handle the error.
3032   Optional<BitstreamBlockInfo> NewBlockInfo =
3033       std::move(MaybeNewBlockInfo.get());
3034   if (!NewBlockInfo)
3035     return true;
3036   BlockInfo = std::move(*NewBlockInfo);
3037   return false;
3038 }
3039 
3040 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3041   // v1: [selection_kind, name]
3042   // v2: [strtab_offset, strtab_size, selection_kind]
3043   StringRef Name;
3044   std::tie(Name, Record) = readNameFromStrtab(Record);
3045 
3046   if (Record.empty())
3047     return error("Invalid record");
3048   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3049   std::string OldFormatName;
3050   if (!UseStrtab) {
3051     if (Record.size() < 2)
3052       return error("Invalid record");
3053     unsigned ComdatNameSize = Record[1];
3054     OldFormatName.reserve(ComdatNameSize);
3055     for (unsigned i = 0; i != ComdatNameSize; ++i)
3056       OldFormatName += (char)Record[2 + i];
3057     Name = OldFormatName;
3058   }
3059   Comdat *C = TheModule->getOrInsertComdat(Name);
3060   C->setSelectionKind(SK);
3061   ComdatList.push_back(C);
3062   return Error::success();
3063 }
3064 
3065 static void inferDSOLocal(GlobalValue *GV) {
3066   // infer dso_local from linkage and visibility if it is not encoded.
3067   if (GV->hasLocalLinkage() ||
3068       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3069     GV->setDSOLocal(true);
3070 }
3071 
3072 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3073   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3074   // visibility, threadlocal, unnamed_addr, externally_initialized,
3075   // dllstorageclass, comdat, attributes, preemption specifier,
3076   // partition strtab offset, partition strtab size] (name in VST)
3077   // v2: [strtab_offset, strtab_size, v1]
3078   StringRef Name;
3079   std::tie(Name, Record) = readNameFromStrtab(Record);
3080 
3081   if (Record.size() < 6)
3082     return error("Invalid record");
3083   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3084   Type *Ty = flattenPointerTypes(FullTy);
3085   if (!Ty)
3086     return error("Invalid record");
3087   bool isConstant = Record[1] & 1;
3088   bool explicitType = Record[1] & 2;
3089   unsigned AddressSpace;
3090   if (explicitType) {
3091     AddressSpace = Record[1] >> 2;
3092   } else {
3093     if (!Ty->isPointerTy())
3094       return error("Invalid type for value");
3095     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3096     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3097   }
3098 
3099   uint64_t RawLinkage = Record[3];
3100   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3101   unsigned Alignment;
3102   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3103     return Err;
3104   std::string Section;
3105   if (Record[5]) {
3106     if (Record[5] - 1 >= SectionTable.size())
3107       return error("Invalid ID");
3108     Section = SectionTable[Record[5] - 1];
3109   }
3110   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3111   // Local linkage must have default visibility.
3112   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3113     // FIXME: Change to an error if non-default in 4.0.
3114     Visibility = getDecodedVisibility(Record[6]);
3115 
3116   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3117   if (Record.size() > 7)
3118     TLM = getDecodedThreadLocalMode(Record[7]);
3119 
3120   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3121   if (Record.size() > 8)
3122     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3123 
3124   bool ExternallyInitialized = false;
3125   if (Record.size() > 9)
3126     ExternallyInitialized = Record[9];
3127 
3128   GlobalVariable *NewGV =
3129       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3130                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3131   NewGV->setAlignment(Alignment);
3132   if (!Section.empty())
3133     NewGV->setSection(Section);
3134   NewGV->setVisibility(Visibility);
3135   NewGV->setUnnamedAddr(UnnamedAddr);
3136 
3137   if (Record.size() > 10)
3138     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3139   else
3140     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3141 
3142   FullTy = PointerType::get(FullTy, AddressSpace);
3143   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3144          "Incorrect fully specified type for GlobalVariable");
3145   ValueList.push_back(NewGV, FullTy);
3146 
3147   // Remember which value to use for the global initializer.
3148   if (unsigned InitID = Record[2])
3149     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3150 
3151   if (Record.size() > 11) {
3152     if (unsigned ComdatID = Record[11]) {
3153       if (ComdatID > ComdatList.size())
3154         return error("Invalid global variable comdat ID");
3155       NewGV->setComdat(ComdatList[ComdatID - 1]);
3156     }
3157   } else if (hasImplicitComdat(RawLinkage)) {
3158     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3159   }
3160 
3161   if (Record.size() > 12) {
3162     auto AS = getAttributes(Record[12]).getFnAttributes();
3163     NewGV->setAttributes(AS);
3164   }
3165 
3166   if (Record.size() > 13) {
3167     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3168   }
3169   inferDSOLocal(NewGV);
3170 
3171   // Check whether we have enough values to read a partition name.
3172   if (Record.size() > 15)
3173     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3174 
3175   return Error::success();
3176 }
3177 
3178 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3179   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3180   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3181   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3182   // v2: [strtab_offset, strtab_size, v1]
3183   StringRef Name;
3184   std::tie(Name, Record) = readNameFromStrtab(Record);
3185 
3186   if (Record.size() < 8)
3187     return error("Invalid record");
3188   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3189   Type *FTy = flattenPointerTypes(FullFTy);
3190   if (!FTy)
3191     return error("Invalid record");
3192   if (isa<PointerType>(FTy))
3193     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3194 
3195   if (!isa<FunctionType>(FTy))
3196     return error("Invalid type for value");
3197   auto CC = static_cast<CallingConv::ID>(Record[1]);
3198   if (CC & ~CallingConv::MaxID)
3199     return error("Invalid calling convention ID");
3200 
3201   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3202   if (Record.size() > 16)
3203     AddrSpace = Record[16];
3204 
3205   Function *Func =
3206       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3207                        AddrSpace, Name, TheModule);
3208 
3209   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3210          "Incorrect fully specified type provided for function");
3211   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3212 
3213   Func->setCallingConv(CC);
3214   bool isProto = Record[2];
3215   uint64_t RawLinkage = Record[3];
3216   Func->setLinkage(getDecodedLinkage(RawLinkage));
3217   Func->setAttributes(getAttributes(Record[4]));
3218 
3219   // Upgrade any old-style byval without a type by propagating the argument's
3220   // pointee type. There should be no opaque pointers where the byval type is
3221   // implicit.
3222   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3223     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3224       continue;
3225 
3226     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3227     Func->removeParamAttr(i, Attribute::ByVal);
3228     Func->addParamAttr(i, Attribute::getWithByValType(
3229                               Context, getPointerElementFlatType(PTy)));
3230   }
3231 
3232   unsigned Alignment;
3233   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3234     return Err;
3235   Func->setAlignment(Alignment);
3236   if (Record[6]) {
3237     if (Record[6] - 1 >= SectionTable.size())
3238       return error("Invalid ID");
3239     Func->setSection(SectionTable[Record[6] - 1]);
3240   }
3241   // Local linkage must have default visibility.
3242   if (!Func->hasLocalLinkage())
3243     // FIXME: Change to an error if non-default in 4.0.
3244     Func->setVisibility(getDecodedVisibility(Record[7]));
3245   if (Record.size() > 8 && Record[8]) {
3246     if (Record[8] - 1 >= GCTable.size())
3247       return error("Invalid ID");
3248     Func->setGC(GCTable[Record[8] - 1]);
3249   }
3250   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3251   if (Record.size() > 9)
3252     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3253   Func->setUnnamedAddr(UnnamedAddr);
3254   if (Record.size() > 10 && Record[10] != 0)
3255     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3256 
3257   if (Record.size() > 11)
3258     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3259   else
3260     upgradeDLLImportExportLinkage(Func, RawLinkage);
3261 
3262   if (Record.size() > 12) {
3263     if (unsigned ComdatID = Record[12]) {
3264       if (ComdatID > ComdatList.size())
3265         return error("Invalid function comdat ID");
3266       Func->setComdat(ComdatList[ComdatID - 1]);
3267     }
3268   } else if (hasImplicitComdat(RawLinkage)) {
3269     Func->setComdat(reinterpret_cast<Comdat *>(1));
3270   }
3271 
3272   if (Record.size() > 13 && Record[13] != 0)
3273     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3274 
3275   if (Record.size() > 14 && Record[14] != 0)
3276     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3277 
3278   if (Record.size() > 15) {
3279     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3280   }
3281   inferDSOLocal(Func);
3282 
3283   // Record[16] is the address space number.
3284 
3285   // Check whether we have enough values to read a partition name.
3286   if (Record.size() > 18)
3287     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3288 
3289   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3290   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3291          "Incorrect fully specified type provided for Function");
3292   ValueList.push_back(Func, FullTy);
3293 
3294   // If this is a function with a body, remember the prototype we are
3295   // creating now, so that we can match up the body with them later.
3296   if (!isProto) {
3297     Func->setIsMaterializable(true);
3298     FunctionsWithBodies.push_back(Func);
3299     DeferredFunctionInfo[Func] = 0;
3300   }
3301   return Error::success();
3302 }
3303 
3304 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3305     unsigned BitCode, ArrayRef<uint64_t> Record) {
3306   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3307   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3308   // dllstorageclass, threadlocal, unnamed_addr,
3309   // preemption specifier] (name in VST)
3310   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3311   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3312   // preemption specifier] (name in VST)
3313   // v2: [strtab_offset, strtab_size, v1]
3314   StringRef Name;
3315   std::tie(Name, Record) = readNameFromStrtab(Record);
3316 
3317   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3318   if (Record.size() < (3 + (unsigned)NewRecord))
3319     return error("Invalid record");
3320   unsigned OpNum = 0;
3321   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3322   Type *Ty = flattenPointerTypes(FullTy);
3323   if (!Ty)
3324     return error("Invalid record");
3325 
3326   unsigned AddrSpace;
3327   if (!NewRecord) {
3328     auto *PTy = dyn_cast<PointerType>(Ty);
3329     if (!PTy)
3330       return error("Invalid type for value");
3331     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3332     AddrSpace = PTy->getAddressSpace();
3333   } else {
3334     AddrSpace = Record[OpNum++];
3335   }
3336 
3337   auto Val = Record[OpNum++];
3338   auto Linkage = Record[OpNum++];
3339   GlobalIndirectSymbol *NewGA;
3340   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3341       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3342     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3343                                 TheModule);
3344   else
3345     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3346                                 nullptr, TheModule);
3347 
3348   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3349          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3350   // Old bitcode files didn't have visibility field.
3351   // Local linkage must have default visibility.
3352   if (OpNum != Record.size()) {
3353     auto VisInd = OpNum++;
3354     if (!NewGA->hasLocalLinkage())
3355       // FIXME: Change to an error if non-default in 4.0.
3356       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3357   }
3358   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3359       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3360     if (OpNum != Record.size())
3361       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3362     else
3363       upgradeDLLImportExportLinkage(NewGA, Linkage);
3364     if (OpNum != Record.size())
3365       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3366     if (OpNum != Record.size())
3367       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3368   }
3369   if (OpNum != Record.size())
3370     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3371   inferDSOLocal(NewGA);
3372 
3373   // Check whether we have enough values to read a partition name.
3374   if (OpNum + 1 < Record.size()) {
3375     NewGA->setPartition(
3376         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3377     OpNum += 2;
3378   }
3379 
3380   FullTy = PointerType::get(FullTy, AddrSpace);
3381   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3382          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3383   ValueList.push_back(NewGA, FullTy);
3384   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3385   return Error::success();
3386 }
3387 
3388 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3389                                  bool ShouldLazyLoadMetadata) {
3390   if (ResumeBit) {
3391     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3392       return JumpFailed;
3393   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3394     return Err;
3395 
3396   SmallVector<uint64_t, 64> Record;
3397 
3398   // Read all the records for this module.
3399   while (true) {
3400     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3401     if (!MaybeEntry)
3402       return MaybeEntry.takeError();
3403     llvm::BitstreamEntry Entry = MaybeEntry.get();
3404 
3405     switch (Entry.Kind) {
3406     case BitstreamEntry::Error:
3407       return error("Malformed block");
3408     case BitstreamEntry::EndBlock:
3409       return globalCleanup();
3410 
3411     case BitstreamEntry::SubBlock:
3412       switch (Entry.ID) {
3413       default:  // Skip unknown content.
3414         if (Error Err = Stream.SkipBlock())
3415           return Err;
3416         break;
3417       case bitc::BLOCKINFO_BLOCK_ID:
3418         if (readBlockInfo())
3419           return error("Malformed block");
3420         break;
3421       case bitc::PARAMATTR_BLOCK_ID:
3422         if (Error Err = parseAttributeBlock())
3423           return Err;
3424         break;
3425       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3426         if (Error Err = parseAttributeGroupBlock())
3427           return Err;
3428         break;
3429       case bitc::TYPE_BLOCK_ID_NEW:
3430         if (Error Err = parseTypeTable())
3431           return Err;
3432         break;
3433       case bitc::VALUE_SYMTAB_BLOCK_ID:
3434         if (!SeenValueSymbolTable) {
3435           // Either this is an old form VST without function index and an
3436           // associated VST forward declaration record (which would have caused
3437           // the VST to be jumped to and parsed before it was encountered
3438           // normally in the stream), or there were no function blocks to
3439           // trigger an earlier parsing of the VST.
3440           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3441           if (Error Err = parseValueSymbolTable())
3442             return Err;
3443           SeenValueSymbolTable = true;
3444         } else {
3445           // We must have had a VST forward declaration record, which caused
3446           // the parser to jump to and parse the VST earlier.
3447           assert(VSTOffset > 0);
3448           if (Error Err = Stream.SkipBlock())
3449             return Err;
3450         }
3451         break;
3452       case bitc::CONSTANTS_BLOCK_ID:
3453         if (Error Err = parseConstants())
3454           return Err;
3455         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3456           return Err;
3457         break;
3458       case bitc::METADATA_BLOCK_ID:
3459         if (ShouldLazyLoadMetadata) {
3460           if (Error Err = rememberAndSkipMetadata())
3461             return Err;
3462           break;
3463         }
3464         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3465         if (Error Err = MDLoader->parseModuleMetadata())
3466           return Err;
3467         break;
3468       case bitc::METADATA_KIND_BLOCK_ID:
3469         if (Error Err = MDLoader->parseMetadataKinds())
3470           return Err;
3471         break;
3472       case bitc::FUNCTION_BLOCK_ID:
3473         // If this is the first function body we've seen, reverse the
3474         // FunctionsWithBodies list.
3475         if (!SeenFirstFunctionBody) {
3476           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3477           if (Error Err = globalCleanup())
3478             return Err;
3479           SeenFirstFunctionBody = true;
3480         }
3481 
3482         if (VSTOffset > 0) {
3483           // If we have a VST forward declaration record, make sure we
3484           // parse the VST now if we haven't already. It is needed to
3485           // set up the DeferredFunctionInfo vector for lazy reading.
3486           if (!SeenValueSymbolTable) {
3487             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3488               return Err;
3489             SeenValueSymbolTable = true;
3490             // Fall through so that we record the NextUnreadBit below.
3491             // This is necessary in case we have an anonymous function that
3492             // is later materialized. Since it will not have a VST entry we
3493             // need to fall back to the lazy parse to find its offset.
3494           } else {
3495             // If we have a VST forward declaration record, but have already
3496             // parsed the VST (just above, when the first function body was
3497             // encountered here), then we are resuming the parse after
3498             // materializing functions. The ResumeBit points to the
3499             // start of the last function block recorded in the
3500             // DeferredFunctionInfo map. Skip it.
3501             if (Error Err = Stream.SkipBlock())
3502               return Err;
3503             continue;
3504           }
3505         }
3506 
3507         // Support older bitcode files that did not have the function
3508         // index in the VST, nor a VST forward declaration record, as
3509         // well as anonymous functions that do not have VST entries.
3510         // Build the DeferredFunctionInfo vector on the fly.
3511         if (Error Err = rememberAndSkipFunctionBody())
3512           return Err;
3513 
3514         // Suspend parsing when we reach the function bodies. Subsequent
3515         // materialization calls will resume it when necessary. If the bitcode
3516         // file is old, the symbol table will be at the end instead and will not
3517         // have been seen yet. In this case, just finish the parse now.
3518         if (SeenValueSymbolTable) {
3519           NextUnreadBit = Stream.GetCurrentBitNo();
3520           // After the VST has been parsed, we need to make sure intrinsic name
3521           // are auto-upgraded.
3522           return globalCleanup();
3523         }
3524         break;
3525       case bitc::USELIST_BLOCK_ID:
3526         if (Error Err = parseUseLists())
3527           return Err;
3528         break;
3529       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3530         if (Error Err = parseOperandBundleTags())
3531           return Err;
3532         break;
3533       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3534         if (Error Err = parseSyncScopeNames())
3535           return Err;
3536         break;
3537       }
3538       continue;
3539 
3540     case BitstreamEntry::Record:
3541       // The interesting case.
3542       break;
3543     }
3544 
3545     // Read a record.
3546     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3547     if (!MaybeBitCode)
3548       return MaybeBitCode.takeError();
3549     switch (unsigned BitCode = MaybeBitCode.get()) {
3550     default: break;  // Default behavior, ignore unknown content.
3551     case bitc::MODULE_CODE_VERSION: {
3552       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3553       if (!VersionOrErr)
3554         return VersionOrErr.takeError();
3555       UseRelativeIDs = *VersionOrErr >= 1;
3556       break;
3557     }
3558     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3559       std::string S;
3560       if (convertToString(Record, 0, S))
3561         return error("Invalid record");
3562       TheModule->setTargetTriple(S);
3563       break;
3564     }
3565     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3566       std::string S;
3567       if (convertToString(Record, 0, S))
3568         return error("Invalid record");
3569       TheModule->setDataLayout(S);
3570       break;
3571     }
3572     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3573       std::string S;
3574       if (convertToString(Record, 0, S))
3575         return error("Invalid record");
3576       TheModule->setModuleInlineAsm(S);
3577       break;
3578     }
3579     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3580       // FIXME: Remove in 4.0.
3581       std::string S;
3582       if (convertToString(Record, 0, S))
3583         return error("Invalid record");
3584       // Ignore value.
3585       break;
3586     }
3587     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3588       std::string S;
3589       if (convertToString(Record, 0, S))
3590         return error("Invalid record");
3591       SectionTable.push_back(S);
3592       break;
3593     }
3594     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3595       std::string S;
3596       if (convertToString(Record, 0, S))
3597         return error("Invalid record");
3598       GCTable.push_back(S);
3599       break;
3600     }
3601     case bitc::MODULE_CODE_COMDAT:
3602       if (Error Err = parseComdatRecord(Record))
3603         return Err;
3604       break;
3605     case bitc::MODULE_CODE_GLOBALVAR:
3606       if (Error Err = parseGlobalVarRecord(Record))
3607         return Err;
3608       break;
3609     case bitc::MODULE_CODE_FUNCTION:
3610       if (Error Err = parseFunctionRecord(Record))
3611         return Err;
3612       break;
3613     case bitc::MODULE_CODE_IFUNC:
3614     case bitc::MODULE_CODE_ALIAS:
3615     case bitc::MODULE_CODE_ALIAS_OLD:
3616       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3617         return Err;
3618       break;
3619     /// MODULE_CODE_VSTOFFSET: [offset]
3620     case bitc::MODULE_CODE_VSTOFFSET:
3621       if (Record.size() < 1)
3622         return error("Invalid record");
3623       // Note that we subtract 1 here because the offset is relative to one word
3624       // before the start of the identification or module block, which was
3625       // historically always the start of the regular bitcode header.
3626       VSTOffset = Record[0] - 1;
3627       break;
3628     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3629     case bitc::MODULE_CODE_SOURCE_FILENAME:
3630       SmallString<128> ValueName;
3631       if (convertToString(Record, 0, ValueName))
3632         return error("Invalid record");
3633       TheModule->setSourceFileName(ValueName);
3634       break;
3635     }
3636     Record.clear();
3637   }
3638 }
3639 
3640 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3641                                       bool IsImporting) {
3642   TheModule = M;
3643   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3644                             [&](unsigned ID) { return getTypeByID(ID); });
3645   return parseModule(0, ShouldLazyLoadMetadata);
3646 }
3647 
3648 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3649   if (!isa<PointerType>(PtrType))
3650     return error("Load/Store operand is not a pointer type");
3651   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3652 
3653   if (ValType && ValType != ElemType)
3654     return error("Explicit load/store type does not match pointee "
3655                  "type of pointer operand");
3656   if (!PointerType::isLoadableOrStorableType(ElemType))
3657     return error("Cannot load/store from pointer");
3658   return Error::success();
3659 }
3660 
3661 void BitcodeReader::propagateByValTypes(CallBase *CB,
3662                                         ArrayRef<Type *> ArgsFullTys) {
3663   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3664     if (!CB->paramHasAttr(i, Attribute::ByVal))
3665       continue;
3666 
3667     CB->removeParamAttr(i, Attribute::ByVal);
3668     CB->addParamAttr(
3669         i, Attribute::getWithByValType(
3670                Context, getPointerElementFlatType(ArgsFullTys[i])));
3671   }
3672 }
3673 
3674 /// Lazily parse the specified function body block.
3675 Error BitcodeReader::parseFunctionBody(Function *F) {
3676   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3677     return Err;
3678 
3679   // Unexpected unresolved metadata when parsing function.
3680   if (MDLoader->hasFwdRefs())
3681     return error("Invalid function metadata: incoming forward references");
3682 
3683   InstructionList.clear();
3684   unsigned ModuleValueListSize = ValueList.size();
3685   unsigned ModuleMDLoaderSize = MDLoader->size();
3686 
3687   // Add all the function arguments to the value table.
3688   unsigned ArgNo = 0;
3689   FunctionType *FullFTy = FunctionTypes[F];
3690   for (Argument &I : F->args()) {
3691     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3692            "Incorrect fully specified type for Function Argument");
3693     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3694   }
3695   unsigned NextValueNo = ValueList.size();
3696   BasicBlock *CurBB = nullptr;
3697   unsigned CurBBNo = 0;
3698 
3699   DebugLoc LastLoc;
3700   auto getLastInstruction = [&]() -> Instruction * {
3701     if (CurBB && !CurBB->empty())
3702       return &CurBB->back();
3703     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3704              !FunctionBBs[CurBBNo - 1]->empty())
3705       return &FunctionBBs[CurBBNo - 1]->back();
3706     return nullptr;
3707   };
3708 
3709   std::vector<OperandBundleDef> OperandBundles;
3710 
3711   // Read all the records.
3712   SmallVector<uint64_t, 64> Record;
3713 
3714   while (true) {
3715     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3716     if (!MaybeEntry)
3717       return MaybeEntry.takeError();
3718     llvm::BitstreamEntry Entry = MaybeEntry.get();
3719 
3720     switch (Entry.Kind) {
3721     case BitstreamEntry::Error:
3722       return error("Malformed block");
3723     case BitstreamEntry::EndBlock:
3724       goto OutOfRecordLoop;
3725 
3726     case BitstreamEntry::SubBlock:
3727       switch (Entry.ID) {
3728       default:  // Skip unknown content.
3729         if (Error Err = Stream.SkipBlock())
3730           return Err;
3731         break;
3732       case bitc::CONSTANTS_BLOCK_ID:
3733         if (Error Err = parseConstants())
3734           return Err;
3735         NextValueNo = ValueList.size();
3736         break;
3737       case bitc::VALUE_SYMTAB_BLOCK_ID:
3738         if (Error Err = parseValueSymbolTable())
3739           return Err;
3740         break;
3741       case bitc::METADATA_ATTACHMENT_ID:
3742         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3743           return Err;
3744         break;
3745       case bitc::METADATA_BLOCK_ID:
3746         assert(DeferredMetadataInfo.empty() &&
3747                "Must read all module-level metadata before function-level");
3748         if (Error Err = MDLoader->parseFunctionMetadata())
3749           return Err;
3750         break;
3751       case bitc::USELIST_BLOCK_ID:
3752         if (Error Err = parseUseLists())
3753           return Err;
3754         break;
3755       }
3756       continue;
3757 
3758     case BitstreamEntry::Record:
3759       // The interesting case.
3760       break;
3761     }
3762 
3763     // Read a record.
3764     Record.clear();
3765     Instruction *I = nullptr;
3766     Type *FullTy = nullptr;
3767     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3768     if (!MaybeBitCode)
3769       return MaybeBitCode.takeError();
3770     switch (unsigned BitCode = MaybeBitCode.get()) {
3771     default: // Default behavior: reject
3772       return error("Invalid value");
3773     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3774       if (Record.size() < 1 || Record[0] == 0)
3775         return error("Invalid record");
3776       // Create all the basic blocks for the function.
3777       FunctionBBs.resize(Record[0]);
3778 
3779       // See if anything took the address of blocks in this function.
3780       auto BBFRI = BasicBlockFwdRefs.find(F);
3781       if (BBFRI == BasicBlockFwdRefs.end()) {
3782         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3783           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3784       } else {
3785         auto &BBRefs = BBFRI->second;
3786         // Check for invalid basic block references.
3787         if (BBRefs.size() > FunctionBBs.size())
3788           return error("Invalid ID");
3789         assert(!BBRefs.empty() && "Unexpected empty array");
3790         assert(!BBRefs.front() && "Invalid reference to entry block");
3791         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3792              ++I)
3793           if (I < RE && BBRefs[I]) {
3794             BBRefs[I]->insertInto(F);
3795             FunctionBBs[I] = BBRefs[I];
3796           } else {
3797             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3798           }
3799 
3800         // Erase from the table.
3801         BasicBlockFwdRefs.erase(BBFRI);
3802       }
3803 
3804       CurBB = FunctionBBs[0];
3805       continue;
3806     }
3807 
3808     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3809       // This record indicates that the last instruction is at the same
3810       // location as the previous instruction with a location.
3811       I = getLastInstruction();
3812 
3813       if (!I)
3814         return error("Invalid record");
3815       I->setDebugLoc(LastLoc);
3816       I = nullptr;
3817       continue;
3818 
3819     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3820       I = getLastInstruction();
3821       if (!I || Record.size() < 4)
3822         return error("Invalid record");
3823 
3824       unsigned Line = Record[0], Col = Record[1];
3825       unsigned ScopeID = Record[2], IAID = Record[3];
3826       bool isImplicitCode = Record.size() == 5 && Record[4];
3827 
3828       MDNode *Scope = nullptr, *IA = nullptr;
3829       if (ScopeID) {
3830         Scope = dyn_cast_or_null<MDNode>(
3831             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3832         if (!Scope)
3833           return error("Invalid record");
3834       }
3835       if (IAID) {
3836         IA = dyn_cast_or_null<MDNode>(
3837             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3838         if (!IA)
3839           return error("Invalid record");
3840       }
3841       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3842       I->setDebugLoc(LastLoc);
3843       I = nullptr;
3844       continue;
3845     }
3846     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3847       unsigned OpNum = 0;
3848       Value *LHS;
3849       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3850           OpNum+1 > Record.size())
3851         return error("Invalid record");
3852 
3853       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3854       if (Opc == -1)
3855         return error("Invalid record");
3856       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3857       InstructionList.push_back(I);
3858       if (OpNum < Record.size()) {
3859         if (isa<FPMathOperator>(I)) {
3860           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3861           if (FMF.any())
3862             I->setFastMathFlags(FMF);
3863         }
3864       }
3865       break;
3866     }
3867     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3868       unsigned OpNum = 0;
3869       Value *LHS, *RHS;
3870       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3871           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3872           OpNum+1 > Record.size())
3873         return error("Invalid record");
3874 
3875       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3876       if (Opc == -1)
3877         return error("Invalid record");
3878       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3879       InstructionList.push_back(I);
3880       if (OpNum < Record.size()) {
3881         if (Opc == Instruction::Add ||
3882             Opc == Instruction::Sub ||
3883             Opc == Instruction::Mul ||
3884             Opc == Instruction::Shl) {
3885           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3886             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3887           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3888             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3889         } else if (Opc == Instruction::SDiv ||
3890                    Opc == Instruction::UDiv ||
3891                    Opc == Instruction::LShr ||
3892                    Opc == Instruction::AShr) {
3893           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3894             cast<BinaryOperator>(I)->setIsExact(true);
3895         } else if (isa<FPMathOperator>(I)) {
3896           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3897           if (FMF.any())
3898             I->setFastMathFlags(FMF);
3899         }
3900 
3901       }
3902       break;
3903     }
3904     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3905       unsigned OpNum = 0;
3906       Value *Op;
3907       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3908           OpNum+2 != Record.size())
3909         return error("Invalid record");
3910 
3911       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
3912       Type *ResTy = flattenPointerTypes(FullTy);
3913       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3914       if (Opc == -1 || !ResTy)
3915         return error("Invalid record");
3916       Instruction *Temp = nullptr;
3917       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3918         if (Temp) {
3919           InstructionList.push_back(Temp);
3920           CurBB->getInstList().push_back(Temp);
3921         }
3922       } else {
3923         auto CastOp = (Instruction::CastOps)Opc;
3924         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3925           return error("Invalid cast");
3926         I = CastInst::Create(CastOp, Op, ResTy);
3927       }
3928       InstructionList.push_back(I);
3929       break;
3930     }
3931     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3932     case bitc::FUNC_CODE_INST_GEP_OLD:
3933     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3934       unsigned OpNum = 0;
3935 
3936       Type *Ty;
3937       bool InBounds;
3938 
3939       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3940         InBounds = Record[OpNum++];
3941         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3942         Ty = flattenPointerTypes(FullTy);
3943       } else {
3944         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3945         Ty = nullptr;
3946       }
3947 
3948       Value *BasePtr;
3949       Type *FullBaseTy = nullptr;
3950       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
3951         return error("Invalid record");
3952 
3953       if (!Ty) {
3954         std::tie(FullTy, Ty) =
3955             getPointerElementTypes(FullBaseTy->getScalarType());
3956       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
3957         return error(
3958             "Explicit gep type does not match pointee type of pointer operand");
3959 
3960       SmallVector<Value*, 16> GEPIdx;
3961       while (OpNum != Record.size()) {
3962         Value *Op;
3963         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3964           return error("Invalid record");
3965         GEPIdx.push_back(Op);
3966       }
3967 
3968       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3969       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
3970 
3971       InstructionList.push_back(I);
3972       if (InBounds)
3973         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3974       break;
3975     }
3976 
3977     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3978                                        // EXTRACTVAL: [opty, opval, n x indices]
3979       unsigned OpNum = 0;
3980       Value *Agg;
3981       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
3982         return error("Invalid record");
3983 
3984       unsigned RecSize = Record.size();
3985       if (OpNum == RecSize)
3986         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3987 
3988       SmallVector<unsigned, 4> EXTRACTVALIdx;
3989       for (; OpNum != RecSize; ++OpNum) {
3990         bool IsArray = FullTy->isArrayTy();
3991         bool IsStruct = FullTy->isStructTy();
3992         uint64_t Index = Record[OpNum];
3993 
3994         if (!IsStruct && !IsArray)
3995           return error("EXTRACTVAL: Invalid type");
3996         if ((unsigned)Index != Index)
3997           return error("Invalid value");
3998         if (IsStruct && Index >= FullTy->getStructNumElements())
3999           return error("EXTRACTVAL: Invalid struct index");
4000         if (IsArray && Index >= FullTy->getArrayNumElements())
4001           return error("EXTRACTVAL: Invalid array index");
4002         EXTRACTVALIdx.push_back((unsigned)Index);
4003 
4004         if (IsStruct)
4005           FullTy = FullTy->getStructElementType(Index);
4006         else
4007           FullTy = FullTy->getArrayElementType();
4008       }
4009 
4010       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4011       InstructionList.push_back(I);
4012       break;
4013     }
4014 
4015     case bitc::FUNC_CODE_INST_INSERTVAL: {
4016                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4017       unsigned OpNum = 0;
4018       Value *Agg;
4019       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4020         return error("Invalid record");
4021       Value *Val;
4022       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4023         return error("Invalid record");
4024 
4025       unsigned RecSize = Record.size();
4026       if (OpNum == RecSize)
4027         return error("INSERTVAL: Invalid instruction with 0 indices");
4028 
4029       SmallVector<unsigned, 4> INSERTVALIdx;
4030       Type *CurTy = Agg->getType();
4031       for (; OpNum != RecSize; ++OpNum) {
4032         bool IsArray = CurTy->isArrayTy();
4033         bool IsStruct = CurTy->isStructTy();
4034         uint64_t Index = Record[OpNum];
4035 
4036         if (!IsStruct && !IsArray)
4037           return error("INSERTVAL: Invalid type");
4038         if ((unsigned)Index != Index)
4039           return error("Invalid value");
4040         if (IsStruct && Index >= CurTy->getStructNumElements())
4041           return error("INSERTVAL: Invalid struct index");
4042         if (IsArray && Index >= CurTy->getArrayNumElements())
4043           return error("INSERTVAL: Invalid array index");
4044 
4045         INSERTVALIdx.push_back((unsigned)Index);
4046         if (IsStruct)
4047           CurTy = CurTy->getStructElementType(Index);
4048         else
4049           CurTy = CurTy->getArrayElementType();
4050       }
4051 
4052       if (CurTy != Val->getType())
4053         return error("Inserted value type doesn't match aggregate type");
4054 
4055       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4056       InstructionList.push_back(I);
4057       break;
4058     }
4059 
4060     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4061       // obsolete form of select
4062       // handles select i1 ... in old bitcode
4063       unsigned OpNum = 0;
4064       Value *TrueVal, *FalseVal, *Cond;
4065       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4066           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4067           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4068         return error("Invalid record");
4069 
4070       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4071       InstructionList.push_back(I);
4072       break;
4073     }
4074 
4075     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4076       // new form of select
4077       // handles select i1 or select [N x i1]
4078       unsigned OpNum = 0;
4079       Value *TrueVal, *FalseVal, *Cond;
4080       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4081           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4082           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4083         return error("Invalid record");
4084 
4085       // select condition can be either i1 or [N x i1]
4086       if (VectorType* vector_type =
4087           dyn_cast<VectorType>(Cond->getType())) {
4088         // expect <n x i1>
4089         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4090           return error("Invalid type for value");
4091       } else {
4092         // expect i1
4093         if (Cond->getType() != Type::getInt1Ty(Context))
4094           return error("Invalid type for value");
4095       }
4096 
4097       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4098       InstructionList.push_back(I);
4099       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4100         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4101         if (FMF.any())
4102           I->setFastMathFlags(FMF);
4103       }
4104       break;
4105     }
4106 
4107     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4108       unsigned OpNum = 0;
4109       Value *Vec, *Idx;
4110       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4111           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4112         return error("Invalid record");
4113       if (!Vec->getType()->isVectorTy())
4114         return error("Invalid type for value");
4115       I = ExtractElementInst::Create(Vec, Idx);
4116       FullTy = FullTy->getVectorElementType();
4117       InstructionList.push_back(I);
4118       break;
4119     }
4120 
4121     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4122       unsigned OpNum = 0;
4123       Value *Vec, *Elt, *Idx;
4124       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4125         return error("Invalid record");
4126       if (!Vec->getType()->isVectorTy())
4127         return error("Invalid type for value");
4128       if (popValue(Record, OpNum, NextValueNo,
4129                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4130           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4131         return error("Invalid record");
4132       I = InsertElementInst::Create(Vec, Elt, Idx);
4133       InstructionList.push_back(I);
4134       break;
4135     }
4136 
4137     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4138       unsigned OpNum = 0;
4139       Value *Vec1, *Vec2, *Mask;
4140       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4141           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4142         return error("Invalid record");
4143 
4144       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4145         return error("Invalid record");
4146       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4147         return error("Invalid type for value");
4148       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4149       FullTy = VectorType::get(FullTy->getVectorElementType(),
4150                                Mask->getType()->getVectorNumElements());
4151       InstructionList.push_back(I);
4152       break;
4153     }
4154 
4155     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4156       // Old form of ICmp/FCmp returning bool
4157       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4158       // both legal on vectors but had different behaviour.
4159     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4160       // FCmp/ICmp returning bool or vector of bool
4161 
4162       unsigned OpNum = 0;
4163       Value *LHS, *RHS;
4164       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4165           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4166         return error("Invalid record");
4167 
4168       if (OpNum >= Record.size())
4169         return error(
4170             "Invalid record: operand number exceeded available operands");
4171 
4172       unsigned PredVal = Record[OpNum];
4173       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4174       FastMathFlags FMF;
4175       if (IsFP && Record.size() > OpNum+1)
4176         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4177 
4178       if (OpNum+1 != Record.size())
4179         return error("Invalid record");
4180 
4181       if (LHS->getType()->isFPOrFPVectorTy())
4182         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4183       else
4184         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4185 
4186       if (FMF.any())
4187         I->setFastMathFlags(FMF);
4188       InstructionList.push_back(I);
4189       break;
4190     }
4191 
4192     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4193       {
4194         unsigned Size = Record.size();
4195         if (Size == 0) {
4196           I = ReturnInst::Create(Context);
4197           InstructionList.push_back(I);
4198           break;
4199         }
4200 
4201         unsigned OpNum = 0;
4202         Value *Op = nullptr;
4203         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4204           return error("Invalid record");
4205         if (OpNum != Record.size())
4206           return error("Invalid record");
4207 
4208         I = ReturnInst::Create(Context, Op);
4209         InstructionList.push_back(I);
4210         break;
4211       }
4212     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4213       if (Record.size() != 1 && Record.size() != 3)
4214         return error("Invalid record");
4215       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4216       if (!TrueDest)
4217         return error("Invalid record");
4218 
4219       if (Record.size() == 1) {
4220         I = BranchInst::Create(TrueDest);
4221         InstructionList.push_back(I);
4222       }
4223       else {
4224         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4225         Value *Cond = getValue(Record, 2, NextValueNo,
4226                                Type::getInt1Ty(Context));
4227         if (!FalseDest || !Cond)
4228           return error("Invalid record");
4229         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4230         InstructionList.push_back(I);
4231       }
4232       break;
4233     }
4234     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4235       if (Record.size() != 1 && Record.size() != 2)
4236         return error("Invalid record");
4237       unsigned Idx = 0;
4238       Value *CleanupPad =
4239           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4240       if (!CleanupPad)
4241         return error("Invalid record");
4242       BasicBlock *UnwindDest = nullptr;
4243       if (Record.size() == 2) {
4244         UnwindDest = getBasicBlock(Record[Idx++]);
4245         if (!UnwindDest)
4246           return error("Invalid record");
4247       }
4248 
4249       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4250       InstructionList.push_back(I);
4251       break;
4252     }
4253     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4254       if (Record.size() != 2)
4255         return error("Invalid record");
4256       unsigned Idx = 0;
4257       Value *CatchPad =
4258           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4259       if (!CatchPad)
4260         return error("Invalid record");
4261       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4262       if (!BB)
4263         return error("Invalid record");
4264 
4265       I = CatchReturnInst::Create(CatchPad, BB);
4266       InstructionList.push_back(I);
4267       break;
4268     }
4269     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4270       // We must have, at minimum, the outer scope and the number of arguments.
4271       if (Record.size() < 2)
4272         return error("Invalid record");
4273 
4274       unsigned Idx = 0;
4275 
4276       Value *ParentPad =
4277           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4278 
4279       unsigned NumHandlers = Record[Idx++];
4280 
4281       SmallVector<BasicBlock *, 2> Handlers;
4282       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4283         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4284         if (!BB)
4285           return error("Invalid record");
4286         Handlers.push_back(BB);
4287       }
4288 
4289       BasicBlock *UnwindDest = nullptr;
4290       if (Idx + 1 == Record.size()) {
4291         UnwindDest = getBasicBlock(Record[Idx++]);
4292         if (!UnwindDest)
4293           return error("Invalid record");
4294       }
4295 
4296       if (Record.size() != Idx)
4297         return error("Invalid record");
4298 
4299       auto *CatchSwitch =
4300           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4301       for (BasicBlock *Handler : Handlers)
4302         CatchSwitch->addHandler(Handler);
4303       I = CatchSwitch;
4304       InstructionList.push_back(I);
4305       break;
4306     }
4307     case bitc::FUNC_CODE_INST_CATCHPAD:
4308     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4309       // We must have, at minimum, the outer scope and the number of arguments.
4310       if (Record.size() < 2)
4311         return error("Invalid record");
4312 
4313       unsigned Idx = 0;
4314 
4315       Value *ParentPad =
4316           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4317 
4318       unsigned NumArgOperands = Record[Idx++];
4319 
4320       SmallVector<Value *, 2> Args;
4321       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4322         Value *Val;
4323         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4324           return error("Invalid record");
4325         Args.push_back(Val);
4326       }
4327 
4328       if (Record.size() != Idx)
4329         return error("Invalid record");
4330 
4331       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4332         I = CleanupPadInst::Create(ParentPad, Args);
4333       else
4334         I = CatchPadInst::Create(ParentPad, Args);
4335       InstructionList.push_back(I);
4336       break;
4337     }
4338     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4339       // Check magic
4340       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4341         // "New" SwitchInst format with case ranges. The changes to write this
4342         // format were reverted but we still recognize bitcode that uses it.
4343         // Hopefully someday we will have support for case ranges and can use
4344         // this format again.
4345 
4346         Type *OpTy = getTypeByID(Record[1]);
4347         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4348 
4349         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4350         BasicBlock *Default = getBasicBlock(Record[3]);
4351         if (!OpTy || !Cond || !Default)
4352           return error("Invalid record");
4353 
4354         unsigned NumCases = Record[4];
4355 
4356         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4357         InstructionList.push_back(SI);
4358 
4359         unsigned CurIdx = 5;
4360         for (unsigned i = 0; i != NumCases; ++i) {
4361           SmallVector<ConstantInt*, 1> CaseVals;
4362           unsigned NumItems = Record[CurIdx++];
4363           for (unsigned ci = 0; ci != NumItems; ++ci) {
4364             bool isSingleNumber = Record[CurIdx++];
4365 
4366             APInt Low;
4367             unsigned ActiveWords = 1;
4368             if (ValueBitWidth > 64)
4369               ActiveWords = Record[CurIdx++];
4370             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4371                                 ValueBitWidth);
4372             CurIdx += ActiveWords;
4373 
4374             if (!isSingleNumber) {
4375               ActiveWords = 1;
4376               if (ValueBitWidth > 64)
4377                 ActiveWords = Record[CurIdx++];
4378               APInt High = readWideAPInt(
4379                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4380               CurIdx += ActiveWords;
4381 
4382               // FIXME: It is not clear whether values in the range should be
4383               // compared as signed or unsigned values. The partially
4384               // implemented changes that used this format in the past used
4385               // unsigned comparisons.
4386               for ( ; Low.ule(High); ++Low)
4387                 CaseVals.push_back(ConstantInt::get(Context, Low));
4388             } else
4389               CaseVals.push_back(ConstantInt::get(Context, Low));
4390           }
4391           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4392           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4393                  cve = CaseVals.end(); cvi != cve; ++cvi)
4394             SI->addCase(*cvi, DestBB);
4395         }
4396         I = SI;
4397         break;
4398       }
4399 
4400       // Old SwitchInst format without case ranges.
4401 
4402       if (Record.size() < 3 || (Record.size() & 1) == 0)
4403         return error("Invalid record");
4404       Type *OpTy = getTypeByID(Record[0]);
4405       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4406       BasicBlock *Default = getBasicBlock(Record[2]);
4407       if (!OpTy || !Cond || !Default)
4408         return error("Invalid record");
4409       unsigned NumCases = (Record.size()-3)/2;
4410       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4411       InstructionList.push_back(SI);
4412       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4413         ConstantInt *CaseVal =
4414           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4415         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4416         if (!CaseVal || !DestBB) {
4417           delete SI;
4418           return error("Invalid record");
4419         }
4420         SI->addCase(CaseVal, DestBB);
4421       }
4422       I = SI;
4423       break;
4424     }
4425     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4426       if (Record.size() < 2)
4427         return error("Invalid record");
4428       Type *OpTy = getTypeByID(Record[0]);
4429       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4430       if (!OpTy || !Address)
4431         return error("Invalid record");
4432       unsigned NumDests = Record.size()-2;
4433       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4434       InstructionList.push_back(IBI);
4435       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4436         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4437           IBI->addDestination(DestBB);
4438         } else {
4439           delete IBI;
4440           return error("Invalid record");
4441         }
4442       }
4443       I = IBI;
4444       break;
4445     }
4446 
4447     case bitc::FUNC_CODE_INST_INVOKE: {
4448       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4449       if (Record.size() < 4)
4450         return error("Invalid record");
4451       unsigned OpNum = 0;
4452       AttributeList PAL = getAttributes(Record[OpNum++]);
4453       unsigned CCInfo = Record[OpNum++];
4454       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4455       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4456 
4457       FunctionType *FTy = nullptr;
4458       FunctionType *FullFTy = nullptr;
4459       if ((CCInfo >> 13) & 1) {
4460         FullFTy =
4461             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4462         if (!FullFTy)
4463           return error("Explicit invoke type is not a function type");
4464         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4465       }
4466 
4467       Value *Callee;
4468       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4469         return error("Invalid record");
4470 
4471       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4472       if (!CalleeTy)
4473         return error("Callee is not a pointer");
4474       if (!FTy) {
4475         FullFTy =
4476             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4477         if (!FullFTy)
4478           return error("Callee is not of pointer to function type");
4479         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4480       } else if (getPointerElementFlatType(FullTy) != FTy)
4481         return error("Explicit invoke type does not match pointee type of "
4482                      "callee operand");
4483       if (Record.size() < FTy->getNumParams() + OpNum)
4484         return error("Insufficient operands to call");
4485 
4486       SmallVector<Value*, 16> Ops;
4487       SmallVector<Type *, 16> ArgsFullTys;
4488       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4489         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4490                                FTy->getParamType(i)));
4491         ArgsFullTys.push_back(FullFTy->getParamType(i));
4492         if (!Ops.back())
4493           return error("Invalid record");
4494       }
4495 
4496       if (!FTy->isVarArg()) {
4497         if (Record.size() != OpNum)
4498           return error("Invalid record");
4499       } else {
4500         // Read type/value pairs for varargs params.
4501         while (OpNum != Record.size()) {
4502           Value *Op;
4503           Type *FullTy;
4504           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4505             return error("Invalid record");
4506           Ops.push_back(Op);
4507           ArgsFullTys.push_back(FullTy);
4508         }
4509       }
4510 
4511       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4512                              OperandBundles);
4513       FullTy = FullFTy->getReturnType();
4514       OperandBundles.clear();
4515       InstructionList.push_back(I);
4516       cast<InvokeInst>(I)->setCallingConv(
4517           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4518       cast<InvokeInst>(I)->setAttributes(PAL);
4519       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4520 
4521       break;
4522     }
4523     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4524       unsigned Idx = 0;
4525       Value *Val = nullptr;
4526       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4527         return error("Invalid record");
4528       I = ResumeInst::Create(Val);
4529       InstructionList.push_back(I);
4530       break;
4531     }
4532     case bitc::FUNC_CODE_INST_CALLBR: {
4533       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4534       unsigned OpNum = 0;
4535       AttributeList PAL = getAttributes(Record[OpNum++]);
4536       unsigned CCInfo = Record[OpNum++];
4537 
4538       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4539       unsigned NumIndirectDests = Record[OpNum++];
4540       SmallVector<BasicBlock *, 16> IndirectDests;
4541       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4542         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4543 
4544       FunctionType *FTy = nullptr;
4545       FunctionType *FullFTy = nullptr;
4546       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4547         FullFTy =
4548             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4549         if (!FullFTy)
4550           return error("Explicit call type is not a function type");
4551         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4552       }
4553 
4554       Value *Callee;
4555       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4556         return error("Invalid record");
4557 
4558       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4559       if (!OpTy)
4560         return error("Callee is not a pointer type");
4561       if (!FTy) {
4562         FullFTy =
4563             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4564         if (!FullFTy)
4565           return error("Callee is not of pointer to function type");
4566         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4567       } else if (getPointerElementFlatType(FullTy) != FTy)
4568         return error("Explicit call type does not match pointee type of "
4569                      "callee operand");
4570       if (Record.size() < FTy->getNumParams() + OpNum)
4571         return error("Insufficient operands to call");
4572 
4573       SmallVector<Value*, 16> Args;
4574       // Read the fixed params.
4575       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4576         if (FTy->getParamType(i)->isLabelTy())
4577           Args.push_back(getBasicBlock(Record[OpNum]));
4578         else
4579           Args.push_back(getValue(Record, OpNum, NextValueNo,
4580                                   FTy->getParamType(i)));
4581         if (!Args.back())
4582           return error("Invalid record");
4583       }
4584 
4585       // Read type/value pairs for varargs params.
4586       if (!FTy->isVarArg()) {
4587         if (OpNum != Record.size())
4588           return error("Invalid record");
4589       } else {
4590         while (OpNum != Record.size()) {
4591           Value *Op;
4592           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4593             return error("Invalid record");
4594           Args.push_back(Op);
4595         }
4596       }
4597 
4598       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4599                              OperandBundles);
4600       FullTy = FullFTy->getReturnType();
4601       OperandBundles.clear();
4602       InstructionList.push_back(I);
4603       cast<CallBrInst>(I)->setCallingConv(
4604           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4605       cast<CallBrInst>(I)->setAttributes(PAL);
4606       break;
4607     }
4608     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4609       I = new UnreachableInst(Context);
4610       InstructionList.push_back(I);
4611       break;
4612     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4613       if (Record.size() < 1 || ((Record.size()-1)&1))
4614         return error("Invalid record");
4615       FullTy = getFullyStructuredTypeByID(Record[0]);
4616       Type *Ty = flattenPointerTypes(FullTy);
4617       if (!Ty)
4618         return error("Invalid record");
4619 
4620       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4621       InstructionList.push_back(PN);
4622 
4623       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4624         Value *V;
4625         // With the new function encoding, it is possible that operands have
4626         // negative IDs (for forward references).  Use a signed VBR
4627         // representation to keep the encoding small.
4628         if (UseRelativeIDs)
4629           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4630         else
4631           V = getValue(Record, 1+i, NextValueNo, Ty);
4632         BasicBlock *BB = getBasicBlock(Record[2+i]);
4633         if (!V || !BB)
4634           return error("Invalid record");
4635         PN->addIncoming(V, BB);
4636       }
4637       I = PN;
4638       break;
4639     }
4640 
4641     case bitc::FUNC_CODE_INST_LANDINGPAD:
4642     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4643       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4644       unsigned Idx = 0;
4645       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4646         if (Record.size() < 3)
4647           return error("Invalid record");
4648       } else {
4649         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4650         if (Record.size() < 4)
4651           return error("Invalid record");
4652       }
4653       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4654       Type *Ty = flattenPointerTypes(FullTy);
4655       if (!Ty)
4656         return error("Invalid record");
4657       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4658         Value *PersFn = nullptr;
4659         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4660           return error("Invalid record");
4661 
4662         if (!F->hasPersonalityFn())
4663           F->setPersonalityFn(cast<Constant>(PersFn));
4664         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4665           return error("Personality function mismatch");
4666       }
4667 
4668       bool IsCleanup = !!Record[Idx++];
4669       unsigned NumClauses = Record[Idx++];
4670       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4671       LP->setCleanup(IsCleanup);
4672       for (unsigned J = 0; J != NumClauses; ++J) {
4673         LandingPadInst::ClauseType CT =
4674           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4675         Value *Val;
4676 
4677         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4678           delete LP;
4679           return error("Invalid record");
4680         }
4681 
4682         assert((CT != LandingPadInst::Catch ||
4683                 !isa<ArrayType>(Val->getType())) &&
4684                "Catch clause has a invalid type!");
4685         assert((CT != LandingPadInst::Filter ||
4686                 isa<ArrayType>(Val->getType())) &&
4687                "Filter clause has invalid type!");
4688         LP->addClause(cast<Constant>(Val));
4689       }
4690 
4691       I = LP;
4692       InstructionList.push_back(I);
4693       break;
4694     }
4695 
4696     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4697       if (Record.size() != 4)
4698         return error("Invalid record");
4699       uint64_t AlignRecord = Record[3];
4700       const uint64_t InAllocaMask = uint64_t(1) << 5;
4701       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4702       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4703       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4704                                 SwiftErrorMask;
4705       bool InAlloca = AlignRecord & InAllocaMask;
4706       bool SwiftError = AlignRecord & SwiftErrorMask;
4707       FullTy = getFullyStructuredTypeByID(Record[0]);
4708       Type *Ty = flattenPointerTypes(FullTy);
4709       if ((AlignRecord & ExplicitTypeMask) == 0) {
4710         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4711         if (!PTy)
4712           return error("Old-style alloca with a non-pointer type");
4713         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4714       }
4715       Type *OpTy = getTypeByID(Record[1]);
4716       Value *Size = getFnValueByID(Record[2], OpTy);
4717       unsigned Align;
4718       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4719         return Err;
4720       }
4721       if (!Ty || !Size)
4722         return error("Invalid record");
4723 
4724       // FIXME: Make this an optional field.
4725       const DataLayout &DL = TheModule->getDataLayout();
4726       unsigned AS = DL.getAllocaAddrSpace();
4727 
4728       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4729       AI->setUsedWithInAlloca(InAlloca);
4730       AI->setSwiftError(SwiftError);
4731       I = AI;
4732       FullTy = PointerType::get(FullTy, AS);
4733       InstructionList.push_back(I);
4734       break;
4735     }
4736     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4737       unsigned OpNum = 0;
4738       Value *Op;
4739       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4740           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4741         return error("Invalid record");
4742 
4743       if (!isa<PointerType>(Op->getType()))
4744         return error("Load operand is not a pointer type");
4745 
4746       Type *Ty = nullptr;
4747       if (OpNum + 3 == Record.size()) {
4748         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4749         Ty = flattenPointerTypes(FullTy);
4750       } else
4751         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4752 
4753       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4754         return Err;
4755 
4756       unsigned Align;
4757       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4758         return Err;
4759       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4760       InstructionList.push_back(I);
4761       break;
4762     }
4763     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4764        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4765       unsigned OpNum = 0;
4766       Value *Op;
4767       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4768           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4769         return error("Invalid record");
4770 
4771       if (!isa<PointerType>(Op->getType()))
4772         return error("Load operand is not a pointer type");
4773 
4774       Type *Ty = nullptr;
4775       if (OpNum + 5 == Record.size()) {
4776         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4777         Ty = flattenPointerTypes(FullTy);
4778       } else
4779         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4780 
4781       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4782         return Err;
4783 
4784       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4785       if (Ordering == AtomicOrdering::NotAtomic ||
4786           Ordering == AtomicOrdering::Release ||
4787           Ordering == AtomicOrdering::AcquireRelease)
4788         return error("Invalid record");
4789       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4790         return error("Invalid record");
4791       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4792 
4793       unsigned Align;
4794       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4795         return Err;
4796       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4797       InstructionList.push_back(I);
4798       break;
4799     }
4800     case bitc::FUNC_CODE_INST_STORE:
4801     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4802       unsigned OpNum = 0;
4803       Value *Val, *Ptr;
4804       Type *FullTy;
4805       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4806           (BitCode == bitc::FUNC_CODE_INST_STORE
4807                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4808                : popValue(Record, OpNum, NextValueNo,
4809                           getPointerElementFlatType(FullTy), Val)) ||
4810           OpNum + 2 != Record.size())
4811         return error("Invalid record");
4812 
4813       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4814         return Err;
4815       unsigned Align;
4816       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4817         return Err;
4818       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4819       InstructionList.push_back(I);
4820       break;
4821     }
4822     case bitc::FUNC_CODE_INST_STOREATOMIC:
4823     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4824       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4825       unsigned OpNum = 0;
4826       Value *Val, *Ptr;
4827       Type *FullTy;
4828       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4829           !isa<PointerType>(Ptr->getType()) ||
4830           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4831                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4832                : popValue(Record, OpNum, NextValueNo,
4833                           getPointerElementFlatType(FullTy), Val)) ||
4834           OpNum + 4 != Record.size())
4835         return error("Invalid record");
4836 
4837       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4838         return Err;
4839       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4840       if (Ordering == AtomicOrdering::NotAtomic ||
4841           Ordering == AtomicOrdering::Acquire ||
4842           Ordering == AtomicOrdering::AcquireRelease)
4843         return error("Invalid record");
4844       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4845       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4846         return error("Invalid record");
4847 
4848       unsigned Align;
4849       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4850         return Err;
4851       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4852       InstructionList.push_back(I);
4853       break;
4854     }
4855     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4856     case bitc::FUNC_CODE_INST_CMPXCHG: {
4857       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4858       //          failureordering?, isweak?]
4859       unsigned OpNum = 0;
4860       Value *Ptr, *Cmp, *New;
4861       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4862         return error("Invalid record");
4863 
4864       if (!isa<PointerType>(Ptr->getType()))
4865         return error("Cmpxchg operand is not a pointer type");
4866 
4867       if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4868         if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4869           return error("Invalid record");
4870       } else if (popValue(Record, OpNum, NextValueNo,
4871                           getPointerElementFlatType(FullTy), Cmp))
4872         return error("Invalid record");
4873       else
4874         FullTy = cast<PointerType>(FullTy)->getElementType();
4875 
4876       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4877           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4878         return error("Invalid record");
4879 
4880       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4881       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4882           SuccessOrdering == AtomicOrdering::Unordered)
4883         return error("Invalid record");
4884       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4885 
4886       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4887         return Err;
4888       AtomicOrdering FailureOrdering;
4889       if (Record.size() < 7)
4890         FailureOrdering =
4891             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4892       else
4893         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4894 
4895       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4896                                 SSID);
4897       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
4898       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4899 
4900       if (Record.size() < 8) {
4901         // Before weak cmpxchgs existed, the instruction simply returned the
4902         // value loaded from memory, so bitcode files from that era will be
4903         // expecting the first component of a modern cmpxchg.
4904         CurBB->getInstList().push_back(I);
4905         I = ExtractValueInst::Create(I, 0);
4906         FullTy = cast<StructType>(FullTy)->getElementType(0);
4907       } else {
4908         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4909       }
4910 
4911       InstructionList.push_back(I);
4912       break;
4913     }
4914     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4915       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4916       unsigned OpNum = 0;
4917       Value *Ptr, *Val;
4918       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4919           !isa<PointerType>(Ptr->getType()) ||
4920           popValue(Record, OpNum, NextValueNo,
4921                    getPointerElementFlatType(FullTy), Val) ||
4922           OpNum + 4 != Record.size())
4923         return error("Invalid record");
4924       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4925       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4926           Operation > AtomicRMWInst::LAST_BINOP)
4927         return error("Invalid record");
4928       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4929       if (Ordering == AtomicOrdering::NotAtomic ||
4930           Ordering == AtomicOrdering::Unordered)
4931         return error("Invalid record");
4932       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4933       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4934       FullTy = getPointerElementFlatType(FullTy);
4935       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4936       InstructionList.push_back(I);
4937       break;
4938     }
4939     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4940       if (2 != Record.size())
4941         return error("Invalid record");
4942       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4943       if (Ordering == AtomicOrdering::NotAtomic ||
4944           Ordering == AtomicOrdering::Unordered ||
4945           Ordering == AtomicOrdering::Monotonic)
4946         return error("Invalid record");
4947       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4948       I = new FenceInst(Context, Ordering, SSID);
4949       InstructionList.push_back(I);
4950       break;
4951     }
4952     case bitc::FUNC_CODE_INST_CALL: {
4953       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4954       if (Record.size() < 3)
4955         return error("Invalid record");
4956 
4957       unsigned OpNum = 0;
4958       AttributeList PAL = getAttributes(Record[OpNum++]);
4959       unsigned CCInfo = Record[OpNum++];
4960 
4961       FastMathFlags FMF;
4962       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4963         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4964         if (!FMF.any())
4965           return error("Fast math flags indicator set for call with no FMF");
4966       }
4967 
4968       FunctionType *FTy = nullptr;
4969       FunctionType *FullFTy = nullptr;
4970       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4971         FullFTy =
4972             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4973         if (!FullFTy)
4974           return error("Explicit call type is not a function type");
4975         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4976       }
4977 
4978       Value *Callee;
4979       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4980         return error("Invalid record");
4981 
4982       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4983       if (!OpTy)
4984         return error("Callee is not a pointer type");
4985       if (!FTy) {
4986         FullFTy =
4987             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4988         if (!FullFTy)
4989           return error("Callee is not of pointer to function type");
4990         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4991       } else if (getPointerElementFlatType(FullTy) != FTy)
4992         return error("Explicit call type does not match pointee type of "
4993                      "callee operand");
4994       if (Record.size() < FTy->getNumParams() + OpNum)
4995         return error("Insufficient operands to call");
4996 
4997       SmallVector<Value*, 16> Args;
4998       SmallVector<Type*, 16> ArgsFullTys;
4999       // Read the fixed params.
5000       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5001         if (FTy->getParamType(i)->isLabelTy())
5002           Args.push_back(getBasicBlock(Record[OpNum]));
5003         else
5004           Args.push_back(getValue(Record, OpNum, NextValueNo,
5005                                   FTy->getParamType(i)));
5006         ArgsFullTys.push_back(FullFTy->getParamType(i));
5007         if (!Args.back())
5008           return error("Invalid record");
5009       }
5010 
5011       // Read type/value pairs for varargs params.
5012       if (!FTy->isVarArg()) {
5013         if (OpNum != Record.size())
5014           return error("Invalid record");
5015       } else {
5016         while (OpNum != Record.size()) {
5017           Value *Op;
5018           Type *FullTy;
5019           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5020             return error("Invalid record");
5021           Args.push_back(Op);
5022           ArgsFullTys.push_back(FullTy);
5023         }
5024       }
5025 
5026       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5027       FullTy = FullFTy->getReturnType();
5028       OperandBundles.clear();
5029       InstructionList.push_back(I);
5030       cast<CallInst>(I)->setCallingConv(
5031           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5032       CallInst::TailCallKind TCK = CallInst::TCK_None;
5033       if (CCInfo & 1 << bitc::CALL_TAIL)
5034         TCK = CallInst::TCK_Tail;
5035       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5036         TCK = CallInst::TCK_MustTail;
5037       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5038         TCK = CallInst::TCK_NoTail;
5039       cast<CallInst>(I)->setTailCallKind(TCK);
5040       cast<CallInst>(I)->setAttributes(PAL);
5041       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5042       if (FMF.any()) {
5043         if (!isa<FPMathOperator>(I))
5044           return error("Fast-math-flags specified for call without "
5045                        "floating-point scalar or vector return type");
5046         I->setFastMathFlags(FMF);
5047       }
5048       break;
5049     }
5050     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5051       if (Record.size() < 3)
5052         return error("Invalid record");
5053       Type *OpTy = getTypeByID(Record[0]);
5054       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5055       FullTy = getFullyStructuredTypeByID(Record[2]);
5056       Type *ResTy = flattenPointerTypes(FullTy);
5057       if (!OpTy || !Op || !ResTy)
5058         return error("Invalid record");
5059       I = new VAArgInst(Op, ResTy);
5060       InstructionList.push_back(I);
5061       break;
5062     }
5063 
5064     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5065       // A call or an invoke can be optionally prefixed with some variable
5066       // number of operand bundle blocks.  These blocks are read into
5067       // OperandBundles and consumed at the next call or invoke instruction.
5068 
5069       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5070         return error("Invalid record");
5071 
5072       std::vector<Value *> Inputs;
5073 
5074       unsigned OpNum = 1;
5075       while (OpNum != Record.size()) {
5076         Value *Op;
5077         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5078           return error("Invalid record");
5079         Inputs.push_back(Op);
5080       }
5081 
5082       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5083       continue;
5084     }
5085     }
5086 
5087     // Add instruction to end of current BB.  If there is no current BB, reject
5088     // this file.
5089     if (!CurBB) {
5090       I->deleteValue();
5091       return error("Invalid instruction with no BB");
5092     }
5093     if (!OperandBundles.empty()) {
5094       I->deleteValue();
5095       return error("Operand bundles found with no consumer");
5096     }
5097     CurBB->getInstList().push_back(I);
5098 
5099     // If this was a terminator instruction, move to the next block.
5100     if (I->isTerminator()) {
5101       ++CurBBNo;
5102       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5103     }
5104 
5105     // Non-void values get registered in the value table for future use.
5106     if (I && !I->getType()->isVoidTy()) {
5107       if (!FullTy) {
5108         FullTy = I->getType();
5109         assert(
5110             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5111             !isa<ArrayType>(FullTy) &&
5112             (!isa<VectorType>(FullTy) ||
5113              FullTy->getVectorElementType()->isFloatingPointTy() ||
5114              FullTy->getVectorElementType()->isIntegerTy()) &&
5115             "Structured types must be assigned with corresponding non-opaque "
5116             "pointer type");
5117       }
5118 
5119       assert(I->getType() == flattenPointerTypes(FullTy) &&
5120              "Incorrect fully structured type provided for Instruction");
5121       ValueList.assignValue(I, NextValueNo++, FullTy);
5122     }
5123   }
5124 
5125 OutOfRecordLoop:
5126 
5127   if (!OperandBundles.empty())
5128     return error("Operand bundles found with no consumer");
5129 
5130   // Check the function list for unresolved values.
5131   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5132     if (!A->getParent()) {
5133       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5134       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5135         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5136           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5137           delete A;
5138         }
5139       }
5140       return error("Never resolved value found in function");
5141     }
5142   }
5143 
5144   // Unexpected unresolved metadata about to be dropped.
5145   if (MDLoader->hasFwdRefs())
5146     return error("Invalid function metadata: outgoing forward refs");
5147 
5148   // Trim the value list down to the size it was before we parsed this function.
5149   ValueList.shrinkTo(ModuleValueListSize);
5150   MDLoader->shrinkTo(ModuleMDLoaderSize);
5151   std::vector<BasicBlock*>().swap(FunctionBBs);
5152   return Error::success();
5153 }
5154 
5155 /// Find the function body in the bitcode stream
5156 Error BitcodeReader::findFunctionInStream(
5157     Function *F,
5158     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5159   while (DeferredFunctionInfoIterator->second == 0) {
5160     // This is the fallback handling for the old format bitcode that
5161     // didn't contain the function index in the VST, or when we have
5162     // an anonymous function which would not have a VST entry.
5163     // Assert that we have one of those two cases.
5164     assert(VSTOffset == 0 || !F->hasName());
5165     // Parse the next body in the stream and set its position in the
5166     // DeferredFunctionInfo map.
5167     if (Error Err = rememberAndSkipFunctionBodies())
5168       return Err;
5169   }
5170   return Error::success();
5171 }
5172 
5173 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5174   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5175     return SyncScope::ID(Val);
5176   if (Val >= SSIDs.size())
5177     return SyncScope::System; // Map unknown synchronization scopes to system.
5178   return SSIDs[Val];
5179 }
5180 
5181 //===----------------------------------------------------------------------===//
5182 // GVMaterializer implementation
5183 //===----------------------------------------------------------------------===//
5184 
5185 Error BitcodeReader::materialize(GlobalValue *GV) {
5186   Function *F = dyn_cast<Function>(GV);
5187   // If it's not a function or is already material, ignore the request.
5188   if (!F || !F->isMaterializable())
5189     return Error::success();
5190 
5191   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5192   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5193   // If its position is recorded as 0, its body is somewhere in the stream
5194   // but we haven't seen it yet.
5195   if (DFII->second == 0)
5196     if (Error Err = findFunctionInStream(F, DFII))
5197       return Err;
5198 
5199   // Materialize metadata before parsing any function bodies.
5200   if (Error Err = materializeMetadata())
5201     return Err;
5202 
5203   // Move the bit stream to the saved position of the deferred function body.
5204   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5205     return JumpFailed;
5206   if (Error Err = parseFunctionBody(F))
5207     return Err;
5208   F->setIsMaterializable(false);
5209 
5210   if (StripDebugInfo)
5211     stripDebugInfo(*F);
5212 
5213   // Upgrade any old intrinsic calls in the function.
5214   for (auto &I : UpgradedIntrinsics) {
5215     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5216          UI != UE;) {
5217       User *U = *UI;
5218       ++UI;
5219       if (CallInst *CI = dyn_cast<CallInst>(U))
5220         UpgradeIntrinsicCall(CI, I.second);
5221     }
5222   }
5223 
5224   // Update calls to the remangled intrinsics
5225   for (auto &I : RemangledIntrinsics)
5226     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5227          UI != UE;)
5228       // Don't expect any other users than call sites
5229       CallSite(*UI++).setCalledFunction(I.second);
5230 
5231   // Finish fn->subprogram upgrade for materialized functions.
5232   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5233     F->setSubprogram(SP);
5234 
5235   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5236   if (!MDLoader->isStrippingTBAA()) {
5237     for (auto &I : instructions(F)) {
5238       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5239       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5240         continue;
5241       MDLoader->setStripTBAA(true);
5242       stripTBAA(F->getParent());
5243     }
5244   }
5245 
5246   // Bring in any functions that this function forward-referenced via
5247   // blockaddresses.
5248   return materializeForwardReferencedFunctions();
5249 }
5250 
5251 Error BitcodeReader::materializeModule() {
5252   if (Error Err = materializeMetadata())
5253     return Err;
5254 
5255   // Promise to materialize all forward references.
5256   WillMaterializeAllForwardRefs = true;
5257 
5258   // Iterate over the module, deserializing any functions that are still on
5259   // disk.
5260   for (Function &F : *TheModule) {
5261     if (Error Err = materialize(&F))
5262       return Err;
5263   }
5264   // At this point, if there are any function bodies, parse the rest of
5265   // the bits in the module past the last function block we have recorded
5266   // through either lazy scanning or the VST.
5267   if (LastFunctionBlockBit || NextUnreadBit)
5268     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5269                                     ? LastFunctionBlockBit
5270                                     : NextUnreadBit))
5271       return Err;
5272 
5273   // Check that all block address forward references got resolved (as we
5274   // promised above).
5275   if (!BasicBlockFwdRefs.empty())
5276     return error("Never resolved function from blockaddress");
5277 
5278   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5279   // delete the old functions to clean up. We can't do this unless the entire
5280   // module is materialized because there could always be another function body
5281   // with calls to the old function.
5282   for (auto &I : UpgradedIntrinsics) {
5283     for (auto *U : I.first->users()) {
5284       if (CallInst *CI = dyn_cast<CallInst>(U))
5285         UpgradeIntrinsicCall(CI, I.second);
5286     }
5287     if (!I.first->use_empty())
5288       I.first->replaceAllUsesWith(I.second);
5289     I.first->eraseFromParent();
5290   }
5291   UpgradedIntrinsics.clear();
5292   // Do the same for remangled intrinsics
5293   for (auto &I : RemangledIntrinsics) {
5294     I.first->replaceAllUsesWith(I.second);
5295     I.first->eraseFromParent();
5296   }
5297   RemangledIntrinsics.clear();
5298 
5299   UpgradeDebugInfo(*TheModule);
5300 
5301   UpgradeModuleFlags(*TheModule);
5302 
5303   UpgradeRetainReleaseMarker(*TheModule);
5304 
5305   return Error::success();
5306 }
5307 
5308 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5309   return IdentifiedStructTypes;
5310 }
5311 
5312 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5313     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5314     StringRef ModulePath, unsigned ModuleId)
5315     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5316       ModulePath(ModulePath), ModuleId(ModuleId) {}
5317 
5318 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5319   TheIndex.addModule(ModulePath, ModuleId);
5320 }
5321 
5322 ModuleSummaryIndex::ModuleInfo *
5323 ModuleSummaryIndexBitcodeReader::getThisModule() {
5324   return TheIndex.getModule(ModulePath);
5325 }
5326 
5327 std::pair<ValueInfo, GlobalValue::GUID>
5328 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5329   auto VGI = ValueIdToValueInfoMap[ValueId];
5330   assert(VGI.first);
5331   return VGI;
5332 }
5333 
5334 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5335     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5336     StringRef SourceFileName) {
5337   std::string GlobalId =
5338       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5339   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5340   auto OriginalNameID = ValueGUID;
5341   if (GlobalValue::isLocalLinkage(Linkage))
5342     OriginalNameID = GlobalValue::getGUID(ValueName);
5343   if (PrintSummaryGUIDs)
5344     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5345            << ValueName << "\n";
5346 
5347   // UseStrtab is false for legacy summary formats and value names are
5348   // created on stack. In that case we save the name in a string saver in
5349   // the index so that the value name can be recorded.
5350   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5351       TheIndex.getOrInsertValueInfo(
5352           ValueGUID,
5353           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5354       OriginalNameID);
5355 }
5356 
5357 // Specialized value symbol table parser used when reading module index
5358 // blocks where we don't actually create global values. The parsed information
5359 // is saved in the bitcode reader for use when later parsing summaries.
5360 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5361     uint64_t Offset,
5362     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5363   // With a strtab the VST is not required to parse the summary.
5364   if (UseStrtab)
5365     return Error::success();
5366 
5367   assert(Offset > 0 && "Expected non-zero VST offset");
5368   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5369   if (!MaybeCurrentBit)
5370     return MaybeCurrentBit.takeError();
5371   uint64_t CurrentBit = MaybeCurrentBit.get();
5372 
5373   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5374     return Err;
5375 
5376   SmallVector<uint64_t, 64> Record;
5377 
5378   // Read all the records for this value table.
5379   SmallString<128> ValueName;
5380 
5381   while (true) {
5382     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5383     if (!MaybeEntry)
5384       return MaybeEntry.takeError();
5385     BitstreamEntry Entry = MaybeEntry.get();
5386 
5387     switch (Entry.Kind) {
5388     case BitstreamEntry::SubBlock: // Handled for us already.
5389     case BitstreamEntry::Error:
5390       return error("Malformed block");
5391     case BitstreamEntry::EndBlock:
5392       // Done parsing VST, jump back to wherever we came from.
5393       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5394         return JumpFailed;
5395       return Error::success();
5396     case BitstreamEntry::Record:
5397       // The interesting case.
5398       break;
5399     }
5400 
5401     // Read a record.
5402     Record.clear();
5403     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5404     if (!MaybeRecord)
5405       return MaybeRecord.takeError();
5406     switch (MaybeRecord.get()) {
5407     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5408       break;
5409     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5410       if (convertToString(Record, 1, ValueName))
5411         return error("Invalid record");
5412       unsigned ValueID = Record[0];
5413       assert(!SourceFileName.empty());
5414       auto VLI = ValueIdToLinkageMap.find(ValueID);
5415       assert(VLI != ValueIdToLinkageMap.end() &&
5416              "No linkage found for VST entry?");
5417       auto Linkage = VLI->second;
5418       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5419       ValueName.clear();
5420       break;
5421     }
5422     case bitc::VST_CODE_FNENTRY: {
5423       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5424       if (convertToString(Record, 2, ValueName))
5425         return error("Invalid record");
5426       unsigned ValueID = Record[0];
5427       assert(!SourceFileName.empty());
5428       auto VLI = ValueIdToLinkageMap.find(ValueID);
5429       assert(VLI != ValueIdToLinkageMap.end() &&
5430              "No linkage found for VST entry?");
5431       auto Linkage = VLI->second;
5432       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5433       ValueName.clear();
5434       break;
5435     }
5436     case bitc::VST_CODE_COMBINED_ENTRY: {
5437       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5438       unsigned ValueID = Record[0];
5439       GlobalValue::GUID RefGUID = Record[1];
5440       // The "original name", which is the second value of the pair will be
5441       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5442       ValueIdToValueInfoMap[ValueID] =
5443           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5444       break;
5445     }
5446     }
5447   }
5448 }
5449 
5450 // Parse just the blocks needed for building the index out of the module.
5451 // At the end of this routine the module Index is populated with a map
5452 // from global value id to GlobalValueSummary objects.
5453 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5454   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5455     return Err;
5456 
5457   SmallVector<uint64_t, 64> Record;
5458   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5459   unsigned ValueId = 0;
5460 
5461   // Read the index for this module.
5462   while (true) {
5463     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5464     if (!MaybeEntry)
5465       return MaybeEntry.takeError();
5466     llvm::BitstreamEntry Entry = MaybeEntry.get();
5467 
5468     switch (Entry.Kind) {
5469     case BitstreamEntry::Error:
5470       return error("Malformed block");
5471     case BitstreamEntry::EndBlock:
5472       return Error::success();
5473 
5474     case BitstreamEntry::SubBlock:
5475       switch (Entry.ID) {
5476       default: // Skip unknown content.
5477         if (Error Err = Stream.SkipBlock())
5478           return Err;
5479         break;
5480       case bitc::BLOCKINFO_BLOCK_ID:
5481         // Need to parse these to get abbrev ids (e.g. for VST)
5482         if (readBlockInfo())
5483           return error("Malformed block");
5484         break;
5485       case bitc::VALUE_SYMTAB_BLOCK_ID:
5486         // Should have been parsed earlier via VSTOffset, unless there
5487         // is no summary section.
5488         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5489                 !SeenGlobalValSummary) &&
5490                "Expected early VST parse via VSTOffset record");
5491         if (Error Err = Stream.SkipBlock())
5492           return Err;
5493         break;
5494       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5495       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5496         // Add the module if it is a per-module index (has a source file name).
5497         if (!SourceFileName.empty())
5498           addThisModule();
5499         assert(!SeenValueSymbolTable &&
5500                "Already read VST when parsing summary block?");
5501         // We might not have a VST if there were no values in the
5502         // summary. An empty summary block generated when we are
5503         // performing ThinLTO compiles so we don't later invoke
5504         // the regular LTO process on them.
5505         if (VSTOffset > 0) {
5506           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5507             return Err;
5508           SeenValueSymbolTable = true;
5509         }
5510         SeenGlobalValSummary = true;
5511         if (Error Err = parseEntireSummary(Entry.ID))
5512           return Err;
5513         break;
5514       case bitc::MODULE_STRTAB_BLOCK_ID:
5515         if (Error Err = parseModuleStringTable())
5516           return Err;
5517         break;
5518       }
5519       continue;
5520 
5521     case BitstreamEntry::Record: {
5522         Record.clear();
5523         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5524         if (!MaybeBitCode)
5525           return MaybeBitCode.takeError();
5526         switch (MaybeBitCode.get()) {
5527         default:
5528           break; // Default behavior, ignore unknown content.
5529         case bitc::MODULE_CODE_VERSION: {
5530           if (Error Err = parseVersionRecord(Record).takeError())
5531             return Err;
5532           break;
5533         }
5534         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5535         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5536           SmallString<128> ValueName;
5537           if (convertToString(Record, 0, ValueName))
5538             return error("Invalid record");
5539           SourceFileName = ValueName.c_str();
5540           break;
5541         }
5542         /// MODULE_CODE_HASH: [5*i32]
5543         case bitc::MODULE_CODE_HASH: {
5544           if (Record.size() != 5)
5545             return error("Invalid hash length " + Twine(Record.size()).str());
5546           auto &Hash = getThisModule()->second.second;
5547           int Pos = 0;
5548           for (auto &Val : Record) {
5549             assert(!(Val >> 32) && "Unexpected high bits set");
5550             Hash[Pos++] = Val;
5551           }
5552           break;
5553         }
5554         /// MODULE_CODE_VSTOFFSET: [offset]
5555         case bitc::MODULE_CODE_VSTOFFSET:
5556           if (Record.size() < 1)
5557             return error("Invalid record");
5558           // Note that we subtract 1 here because the offset is relative to one
5559           // word before the start of the identification or module block, which
5560           // was historically always the start of the regular bitcode header.
5561           VSTOffset = Record[0] - 1;
5562           break;
5563         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5564         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5565         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5566         // v2: [strtab offset, strtab size, v1]
5567         case bitc::MODULE_CODE_GLOBALVAR:
5568         case bitc::MODULE_CODE_FUNCTION:
5569         case bitc::MODULE_CODE_ALIAS: {
5570           StringRef Name;
5571           ArrayRef<uint64_t> GVRecord;
5572           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5573           if (GVRecord.size() <= 3)
5574             return error("Invalid record");
5575           uint64_t RawLinkage = GVRecord[3];
5576           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5577           if (!UseStrtab) {
5578             ValueIdToLinkageMap[ValueId++] = Linkage;
5579             break;
5580           }
5581 
5582           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5583           break;
5584         }
5585         }
5586       }
5587       continue;
5588     }
5589   }
5590 }
5591 
5592 std::vector<ValueInfo>
5593 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5594   std::vector<ValueInfo> Ret;
5595   Ret.reserve(Record.size());
5596   for (uint64_t RefValueId : Record)
5597     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5598   return Ret;
5599 }
5600 
5601 std::vector<FunctionSummary::EdgeTy>
5602 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5603                                               bool IsOldProfileFormat,
5604                                               bool HasProfile, bool HasRelBF) {
5605   std::vector<FunctionSummary::EdgeTy> Ret;
5606   Ret.reserve(Record.size());
5607   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5608     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5609     uint64_t RelBF = 0;
5610     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5611     if (IsOldProfileFormat) {
5612       I += 1; // Skip old callsitecount field
5613       if (HasProfile)
5614         I += 1; // Skip old profilecount field
5615     } else if (HasProfile)
5616       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5617     else if (HasRelBF)
5618       RelBF = Record[++I];
5619     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5620   }
5621   return Ret;
5622 }
5623 
5624 static void
5625 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5626                                        WholeProgramDevirtResolution &Wpd) {
5627   uint64_t ArgNum = Record[Slot++];
5628   WholeProgramDevirtResolution::ByArg &B =
5629       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5630   Slot += ArgNum;
5631 
5632   B.TheKind =
5633       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5634   B.Info = Record[Slot++];
5635   B.Byte = Record[Slot++];
5636   B.Bit = Record[Slot++];
5637 }
5638 
5639 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5640                                               StringRef Strtab, size_t &Slot,
5641                                               TypeIdSummary &TypeId) {
5642   uint64_t Id = Record[Slot++];
5643   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5644 
5645   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5646   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5647                         static_cast<size_t>(Record[Slot + 1])};
5648   Slot += 2;
5649 
5650   uint64_t ResByArgNum = Record[Slot++];
5651   for (uint64_t I = 0; I != ResByArgNum; ++I)
5652     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5653 }
5654 
5655 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5656                                      StringRef Strtab,
5657                                      ModuleSummaryIndex &TheIndex) {
5658   size_t Slot = 0;
5659   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5660       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5661   Slot += 2;
5662 
5663   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5664   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5665   TypeId.TTRes.AlignLog2 = Record[Slot++];
5666   TypeId.TTRes.SizeM1 = Record[Slot++];
5667   TypeId.TTRes.BitMask = Record[Slot++];
5668   TypeId.TTRes.InlineBits = Record[Slot++];
5669 
5670   while (Slot < Record.size())
5671     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5672 }
5673 
5674 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5675     ArrayRef<uint64_t> Record, size_t &Slot,
5676     TypeIdCompatibleVtableInfo &TypeId) {
5677   uint64_t Offset = Record[Slot++];
5678   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5679   TypeId.push_back({Offset, Callee});
5680 }
5681 
5682 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5683     ArrayRef<uint64_t> Record) {
5684   size_t Slot = 0;
5685   TypeIdCompatibleVtableInfo &TypeId =
5686       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5687           {Strtab.data() + Record[Slot],
5688            static_cast<size_t>(Record[Slot + 1])});
5689   Slot += 2;
5690 
5691   while (Slot < Record.size())
5692     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5693 }
5694 
5695 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5696                            unsigned WOCnt) {
5697   // Readonly and writeonly refs are in the end of the refs list.
5698   assert(ROCnt + WOCnt <= Refs.size());
5699   unsigned FirstWORef = Refs.size() - WOCnt;
5700   unsigned RefNo = FirstWORef - ROCnt;
5701   for (; RefNo < FirstWORef; ++RefNo)
5702     Refs[RefNo].setReadOnly();
5703   for (; RefNo < Refs.size(); ++RefNo)
5704     Refs[RefNo].setWriteOnly();
5705 }
5706 
5707 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5708 // objects in the index.
5709 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5710   if (Error Err = Stream.EnterSubBlock(ID))
5711     return Err;
5712   SmallVector<uint64_t, 64> Record;
5713 
5714   // Parse version
5715   {
5716     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5717     if (!MaybeEntry)
5718       return MaybeEntry.takeError();
5719     BitstreamEntry Entry = MaybeEntry.get();
5720 
5721     if (Entry.Kind != BitstreamEntry::Record)
5722       return error("Invalid Summary Block: record for version expected");
5723     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5724     if (!MaybeRecord)
5725       return MaybeRecord.takeError();
5726     if (MaybeRecord.get() != bitc::FS_VERSION)
5727       return error("Invalid Summary Block: version expected");
5728   }
5729   const uint64_t Version = Record[0];
5730   const bool IsOldProfileFormat = Version == 1;
5731   if (Version < 1 || Version > 7)
5732     return error("Invalid summary version " + Twine(Version) +
5733                  ". Version should be in the range [1-7].");
5734   Record.clear();
5735 
5736   // Keep around the last seen summary to be used when we see an optional
5737   // "OriginalName" attachement.
5738   GlobalValueSummary *LastSeenSummary = nullptr;
5739   GlobalValue::GUID LastSeenGUID = 0;
5740 
5741   // We can expect to see any number of type ID information records before
5742   // each function summary records; these variables store the information
5743   // collected so far so that it can be used to create the summary object.
5744   std::vector<GlobalValue::GUID> PendingTypeTests;
5745   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5746       PendingTypeCheckedLoadVCalls;
5747   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5748       PendingTypeCheckedLoadConstVCalls;
5749 
5750   while (true) {
5751     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5752     if (!MaybeEntry)
5753       return MaybeEntry.takeError();
5754     BitstreamEntry Entry = MaybeEntry.get();
5755 
5756     switch (Entry.Kind) {
5757     case BitstreamEntry::SubBlock: // Handled for us already.
5758     case BitstreamEntry::Error:
5759       return error("Malformed block");
5760     case BitstreamEntry::EndBlock:
5761       return Error::success();
5762     case BitstreamEntry::Record:
5763       // The interesting case.
5764       break;
5765     }
5766 
5767     // Read a record. The record format depends on whether this
5768     // is a per-module index or a combined index file. In the per-module
5769     // case the records contain the associated value's ID for correlation
5770     // with VST entries. In the combined index the correlation is done
5771     // via the bitcode offset of the summary records (which were saved
5772     // in the combined index VST entries). The records also contain
5773     // information used for ThinLTO renaming and importing.
5774     Record.clear();
5775     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5776     if (!MaybeBitCode)
5777       return MaybeBitCode.takeError();
5778     switch (unsigned BitCode = MaybeBitCode.get()) {
5779     default: // Default behavior: ignore.
5780       break;
5781     case bitc::FS_FLAGS: {  // [flags]
5782       uint64_t Flags = Record[0];
5783       // Scan flags.
5784       assert(Flags <= 0x1f && "Unexpected bits in flag");
5785 
5786       // 1 bit: WithGlobalValueDeadStripping flag.
5787       // Set on combined index only.
5788       if (Flags & 0x1)
5789         TheIndex.setWithGlobalValueDeadStripping();
5790       // 1 bit: SkipModuleByDistributedBackend flag.
5791       // Set on combined index only.
5792       if (Flags & 0x2)
5793         TheIndex.setSkipModuleByDistributedBackend();
5794       // 1 bit: HasSyntheticEntryCounts flag.
5795       // Set on combined index only.
5796       if (Flags & 0x4)
5797         TheIndex.setHasSyntheticEntryCounts();
5798       // 1 bit: DisableSplitLTOUnit flag.
5799       // Set on per module indexes. It is up to the client to validate
5800       // the consistency of this flag across modules being linked.
5801       if (Flags & 0x8)
5802         TheIndex.setEnableSplitLTOUnit();
5803       // 1 bit: PartiallySplitLTOUnits flag.
5804       // Set on combined index only.
5805       if (Flags & 0x10)
5806         TheIndex.setPartiallySplitLTOUnits();
5807       break;
5808     }
5809     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5810       uint64_t ValueID = Record[0];
5811       GlobalValue::GUID RefGUID = Record[1];
5812       ValueIdToValueInfoMap[ValueID] =
5813           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5814       break;
5815     }
5816     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5817     //                numrefs x valueid, n x (valueid)]
5818     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5819     //                        numrefs x valueid,
5820     //                        n x (valueid, hotness)]
5821     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5822     //                      numrefs x valueid,
5823     //                      n x (valueid, relblockfreq)]
5824     case bitc::FS_PERMODULE:
5825     case bitc::FS_PERMODULE_RELBF:
5826     case bitc::FS_PERMODULE_PROFILE: {
5827       unsigned ValueID = Record[0];
5828       uint64_t RawFlags = Record[1];
5829       unsigned InstCount = Record[2];
5830       uint64_t RawFunFlags = 0;
5831       unsigned NumRefs = Record[3];
5832       unsigned NumRORefs = 0, NumWORefs = 0;
5833       int RefListStartIndex = 4;
5834       if (Version >= 4) {
5835         RawFunFlags = Record[3];
5836         NumRefs = Record[4];
5837         RefListStartIndex = 5;
5838         if (Version >= 5) {
5839           NumRORefs = Record[5];
5840           RefListStartIndex = 6;
5841           if (Version >= 7) {
5842             NumWORefs = Record[6];
5843             RefListStartIndex = 7;
5844           }
5845         }
5846       }
5847 
5848       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5849       // The module path string ref set in the summary must be owned by the
5850       // index's module string table. Since we don't have a module path
5851       // string table section in the per-module index, we create a single
5852       // module path string table entry with an empty (0) ID to take
5853       // ownership.
5854       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5855       assert(Record.size() >= RefListStartIndex + NumRefs &&
5856              "Record size inconsistent with number of references");
5857       std::vector<ValueInfo> Refs = makeRefList(
5858           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5859       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5860       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5861       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5862           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5863           IsOldProfileFormat, HasProfile, HasRelBF);
5864       setSpecialRefs(Refs, NumRORefs, NumWORefs);
5865       auto FS = llvm::make_unique<FunctionSummary>(
5866           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5867           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5868           std::move(PendingTypeTestAssumeVCalls),
5869           std::move(PendingTypeCheckedLoadVCalls),
5870           std::move(PendingTypeTestAssumeConstVCalls),
5871           std::move(PendingTypeCheckedLoadConstVCalls));
5872       PendingTypeTests.clear();
5873       PendingTypeTestAssumeVCalls.clear();
5874       PendingTypeCheckedLoadVCalls.clear();
5875       PendingTypeTestAssumeConstVCalls.clear();
5876       PendingTypeCheckedLoadConstVCalls.clear();
5877       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5878       FS->setModulePath(getThisModule()->first());
5879       FS->setOriginalName(VIAndOriginalGUID.second);
5880       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5881       break;
5882     }
5883     // FS_ALIAS: [valueid, flags, valueid]
5884     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5885     // they expect all aliasee summaries to be available.
5886     case bitc::FS_ALIAS: {
5887       unsigned ValueID = Record[0];
5888       uint64_t RawFlags = Record[1];
5889       unsigned AliaseeID = Record[2];
5890       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5891       auto AS = llvm::make_unique<AliasSummary>(Flags);
5892       // The module path string ref set in the summary must be owned by the
5893       // index's module string table. Since we don't have a module path
5894       // string table section in the per-module index, we create a single
5895       // module path string table entry with an empty (0) ID to take
5896       // ownership.
5897       AS->setModulePath(getThisModule()->first());
5898 
5899       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5900       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5901       if (!AliaseeInModule)
5902         return error("Alias expects aliasee summary to be parsed");
5903       AS->setAliasee(AliaseeVI, AliaseeInModule);
5904 
5905       auto GUID = getValueInfoFromValueId(ValueID);
5906       AS->setOriginalName(GUID.second);
5907       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5908       break;
5909     }
5910     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5911     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5912       unsigned ValueID = Record[0];
5913       uint64_t RawFlags = Record[1];
5914       unsigned RefArrayStart = 2;
5915       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
5916                                       /* WriteOnly */ false);
5917       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5918       if (Version >= 5) {
5919         GVF = getDecodedGVarFlags(Record[2]);
5920         RefArrayStart = 3;
5921       }
5922       std::vector<ValueInfo> Refs =
5923           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5924       auto FS =
5925           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5926       FS->setModulePath(getThisModule()->first());
5927       auto GUID = getValueInfoFromValueId(ValueID);
5928       FS->setOriginalName(GUID.second);
5929       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5930       break;
5931     }
5932     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
5933     //                        numrefs, numrefs x valueid,
5934     //                        n x (valueid, offset)]
5935     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
5936       unsigned ValueID = Record[0];
5937       uint64_t RawFlags = Record[1];
5938       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
5939       unsigned NumRefs = Record[3];
5940       unsigned RefListStartIndex = 4;
5941       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
5942       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5943       std::vector<ValueInfo> Refs = makeRefList(
5944           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5945       VTableFuncList VTableFuncs;
5946       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
5947         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5948         uint64_t Offset = Record[++I];
5949         VTableFuncs.push_back({Callee, Offset});
5950       }
5951       auto VS =
5952           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5953       VS->setModulePath(getThisModule()->first());
5954       VS->setVTableFuncs(VTableFuncs);
5955       auto GUID = getValueInfoFromValueId(ValueID);
5956       VS->setOriginalName(GUID.second);
5957       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
5958       break;
5959     }
5960     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5961     //               numrefs x valueid, n x (valueid)]
5962     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5963     //                       numrefs x valueid, n x (valueid, hotness)]
5964     case bitc::FS_COMBINED:
5965     case bitc::FS_COMBINED_PROFILE: {
5966       unsigned ValueID = Record[0];
5967       uint64_t ModuleId = Record[1];
5968       uint64_t RawFlags = Record[2];
5969       unsigned InstCount = Record[3];
5970       uint64_t RawFunFlags = 0;
5971       uint64_t EntryCount = 0;
5972       unsigned NumRefs = Record[4];
5973       unsigned NumRORefs = 0, NumWORefs = 0;
5974       int RefListStartIndex = 5;
5975 
5976       if (Version >= 4) {
5977         RawFunFlags = Record[4];
5978         RefListStartIndex = 6;
5979         size_t NumRefsIndex = 5;
5980         if (Version >= 5) {
5981           unsigned NumRORefsOffset = 1;
5982           RefListStartIndex = 7;
5983           if (Version >= 6) {
5984             NumRefsIndex = 6;
5985             EntryCount = Record[5];
5986             RefListStartIndex = 8;
5987             if (Version >= 7) {
5988               RefListStartIndex = 9;
5989               NumWORefs = Record[8];
5990               NumRORefsOffset = 2;
5991             }
5992           }
5993           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
5994         }
5995         NumRefs = Record[NumRefsIndex];
5996       }
5997 
5998       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5999       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6000       assert(Record.size() >= RefListStartIndex + NumRefs &&
6001              "Record size inconsistent with number of references");
6002       std::vector<ValueInfo> Refs = makeRefList(
6003           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6004       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6005       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6006           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6007           IsOldProfileFormat, HasProfile, false);
6008       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6009       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6010       auto FS = llvm::make_unique<FunctionSummary>(
6011           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6012           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6013           std::move(PendingTypeTestAssumeVCalls),
6014           std::move(PendingTypeCheckedLoadVCalls),
6015           std::move(PendingTypeTestAssumeConstVCalls),
6016           std::move(PendingTypeCheckedLoadConstVCalls));
6017       PendingTypeTests.clear();
6018       PendingTypeTestAssumeVCalls.clear();
6019       PendingTypeCheckedLoadVCalls.clear();
6020       PendingTypeTestAssumeConstVCalls.clear();
6021       PendingTypeCheckedLoadConstVCalls.clear();
6022       LastSeenSummary = FS.get();
6023       LastSeenGUID = VI.getGUID();
6024       FS->setModulePath(ModuleIdMap[ModuleId]);
6025       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6026       break;
6027     }
6028     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6029     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6030     // they expect all aliasee summaries to be available.
6031     case bitc::FS_COMBINED_ALIAS: {
6032       unsigned ValueID = Record[0];
6033       uint64_t ModuleId = Record[1];
6034       uint64_t RawFlags = Record[2];
6035       unsigned AliaseeValueId = Record[3];
6036       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6037       auto AS = llvm::make_unique<AliasSummary>(Flags);
6038       LastSeenSummary = AS.get();
6039       AS->setModulePath(ModuleIdMap[ModuleId]);
6040 
6041       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6042       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6043       AS->setAliasee(AliaseeVI, AliaseeInModule);
6044 
6045       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6046       LastSeenGUID = VI.getGUID();
6047       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6048       break;
6049     }
6050     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6051     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6052       unsigned ValueID = Record[0];
6053       uint64_t ModuleId = Record[1];
6054       uint64_t RawFlags = Record[2];
6055       unsigned RefArrayStart = 3;
6056       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6057                                       /* WriteOnly */ false);
6058       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6059       if (Version >= 5) {
6060         GVF = getDecodedGVarFlags(Record[3]);
6061         RefArrayStart = 4;
6062       }
6063       std::vector<ValueInfo> Refs =
6064           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6065       auto FS =
6066           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6067       LastSeenSummary = FS.get();
6068       FS->setModulePath(ModuleIdMap[ModuleId]);
6069       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6070       LastSeenGUID = VI.getGUID();
6071       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6072       break;
6073     }
6074     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6075     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6076       uint64_t OriginalName = Record[0];
6077       if (!LastSeenSummary)
6078         return error("Name attachment that does not follow a combined record");
6079       LastSeenSummary->setOriginalName(OriginalName);
6080       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6081       // Reset the LastSeenSummary
6082       LastSeenSummary = nullptr;
6083       LastSeenGUID = 0;
6084       break;
6085     }
6086     case bitc::FS_TYPE_TESTS:
6087       assert(PendingTypeTests.empty());
6088       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6089                               Record.end());
6090       break;
6091 
6092     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6093       assert(PendingTypeTestAssumeVCalls.empty());
6094       for (unsigned I = 0; I != Record.size(); I += 2)
6095         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6096       break;
6097 
6098     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6099       assert(PendingTypeCheckedLoadVCalls.empty());
6100       for (unsigned I = 0; I != Record.size(); I += 2)
6101         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6102       break;
6103 
6104     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6105       PendingTypeTestAssumeConstVCalls.push_back(
6106           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6107       break;
6108 
6109     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6110       PendingTypeCheckedLoadConstVCalls.push_back(
6111           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6112       break;
6113 
6114     case bitc::FS_CFI_FUNCTION_DEFS: {
6115       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6116       for (unsigned I = 0; I != Record.size(); I += 2)
6117         CfiFunctionDefs.insert(
6118             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6119       break;
6120     }
6121 
6122     case bitc::FS_CFI_FUNCTION_DECLS: {
6123       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6124       for (unsigned I = 0; I != Record.size(); I += 2)
6125         CfiFunctionDecls.insert(
6126             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6127       break;
6128     }
6129 
6130     case bitc::FS_TYPE_ID:
6131       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6132       break;
6133 
6134     case bitc::FS_TYPE_ID_METADATA:
6135       parseTypeIdCompatibleVtableSummaryRecord(Record);
6136       break;
6137     }
6138   }
6139   llvm_unreachable("Exit infinite loop");
6140 }
6141 
6142 // Parse the  module string table block into the Index.
6143 // This populates the ModulePathStringTable map in the index.
6144 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6145   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6146     return Err;
6147 
6148   SmallVector<uint64_t, 64> Record;
6149 
6150   SmallString<128> ModulePath;
6151   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6152 
6153   while (true) {
6154     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6155     if (!MaybeEntry)
6156       return MaybeEntry.takeError();
6157     BitstreamEntry Entry = MaybeEntry.get();
6158 
6159     switch (Entry.Kind) {
6160     case BitstreamEntry::SubBlock: // Handled for us already.
6161     case BitstreamEntry::Error:
6162       return error("Malformed block");
6163     case BitstreamEntry::EndBlock:
6164       return Error::success();
6165     case BitstreamEntry::Record:
6166       // The interesting case.
6167       break;
6168     }
6169 
6170     Record.clear();
6171     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6172     if (!MaybeRecord)
6173       return MaybeRecord.takeError();
6174     switch (MaybeRecord.get()) {
6175     default: // Default behavior: ignore.
6176       break;
6177     case bitc::MST_CODE_ENTRY: {
6178       // MST_ENTRY: [modid, namechar x N]
6179       uint64_t ModuleId = Record[0];
6180 
6181       if (convertToString(Record, 1, ModulePath))
6182         return error("Invalid record");
6183 
6184       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6185       ModuleIdMap[ModuleId] = LastSeenModule->first();
6186 
6187       ModulePath.clear();
6188       break;
6189     }
6190     /// MST_CODE_HASH: [5*i32]
6191     case bitc::MST_CODE_HASH: {
6192       if (Record.size() != 5)
6193         return error("Invalid hash length " + Twine(Record.size()).str());
6194       if (!LastSeenModule)
6195         return error("Invalid hash that does not follow a module path");
6196       int Pos = 0;
6197       for (auto &Val : Record) {
6198         assert(!(Val >> 32) && "Unexpected high bits set");
6199         LastSeenModule->second.second[Pos++] = Val;
6200       }
6201       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6202       LastSeenModule = nullptr;
6203       break;
6204     }
6205     }
6206   }
6207   llvm_unreachable("Exit infinite loop");
6208 }
6209 
6210 namespace {
6211 
6212 // FIXME: This class is only here to support the transition to llvm::Error. It
6213 // will be removed once this transition is complete. Clients should prefer to
6214 // deal with the Error value directly, rather than converting to error_code.
6215 class BitcodeErrorCategoryType : public std::error_category {
6216   const char *name() const noexcept override {
6217     return "llvm.bitcode";
6218   }
6219 
6220   std::string message(int IE) const override {
6221     BitcodeError E = static_cast<BitcodeError>(IE);
6222     switch (E) {
6223     case BitcodeError::CorruptedBitcode:
6224       return "Corrupted bitcode";
6225     }
6226     llvm_unreachable("Unknown error type!");
6227   }
6228 };
6229 
6230 } // end anonymous namespace
6231 
6232 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6233 
6234 const std::error_category &llvm::BitcodeErrorCategory() {
6235   return *ErrorCategory;
6236 }
6237 
6238 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6239                                             unsigned Block, unsigned RecordID) {
6240   if (Error Err = Stream.EnterSubBlock(Block))
6241     return std::move(Err);
6242 
6243   StringRef Strtab;
6244   while (true) {
6245     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6246     if (!MaybeEntry)
6247       return MaybeEntry.takeError();
6248     llvm::BitstreamEntry Entry = MaybeEntry.get();
6249 
6250     switch (Entry.Kind) {
6251     case BitstreamEntry::EndBlock:
6252       return Strtab;
6253 
6254     case BitstreamEntry::Error:
6255       return error("Malformed block");
6256 
6257     case BitstreamEntry::SubBlock:
6258       if (Error Err = Stream.SkipBlock())
6259         return std::move(Err);
6260       break;
6261 
6262     case BitstreamEntry::Record:
6263       StringRef Blob;
6264       SmallVector<uint64_t, 1> Record;
6265       Expected<unsigned> MaybeRecord =
6266           Stream.readRecord(Entry.ID, Record, &Blob);
6267       if (!MaybeRecord)
6268         return MaybeRecord.takeError();
6269       if (MaybeRecord.get() == RecordID)
6270         Strtab = Blob;
6271       break;
6272     }
6273   }
6274 }
6275 
6276 //===----------------------------------------------------------------------===//
6277 // External interface
6278 //===----------------------------------------------------------------------===//
6279 
6280 Expected<std::vector<BitcodeModule>>
6281 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6282   auto FOrErr = getBitcodeFileContents(Buffer);
6283   if (!FOrErr)
6284     return FOrErr.takeError();
6285   return std::move(FOrErr->Mods);
6286 }
6287 
6288 Expected<BitcodeFileContents>
6289 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6290   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6291   if (!StreamOrErr)
6292     return StreamOrErr.takeError();
6293   BitstreamCursor &Stream = *StreamOrErr;
6294 
6295   BitcodeFileContents F;
6296   while (true) {
6297     uint64_t BCBegin = Stream.getCurrentByteNo();
6298 
6299     // We may be consuming bitcode from a client that leaves garbage at the end
6300     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6301     // the end that there cannot possibly be another module, stop looking.
6302     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6303       return F;
6304 
6305     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6306     if (!MaybeEntry)
6307       return MaybeEntry.takeError();
6308     llvm::BitstreamEntry Entry = MaybeEntry.get();
6309 
6310     switch (Entry.Kind) {
6311     case BitstreamEntry::EndBlock:
6312     case BitstreamEntry::Error:
6313       return error("Malformed block");
6314 
6315     case BitstreamEntry::SubBlock: {
6316       uint64_t IdentificationBit = -1ull;
6317       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6318         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6319         if (Error Err = Stream.SkipBlock())
6320           return std::move(Err);
6321 
6322         {
6323           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6324           if (!MaybeEntry)
6325             return MaybeEntry.takeError();
6326           Entry = MaybeEntry.get();
6327         }
6328 
6329         if (Entry.Kind != BitstreamEntry::SubBlock ||
6330             Entry.ID != bitc::MODULE_BLOCK_ID)
6331           return error("Malformed block");
6332       }
6333 
6334       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6335         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6336         if (Error Err = Stream.SkipBlock())
6337           return std::move(Err);
6338 
6339         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6340                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6341                           Buffer.getBufferIdentifier(), IdentificationBit,
6342                           ModuleBit});
6343         continue;
6344       }
6345 
6346       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6347         Expected<StringRef> Strtab =
6348             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6349         if (!Strtab)
6350           return Strtab.takeError();
6351         // This string table is used by every preceding bitcode module that does
6352         // not have its own string table. A bitcode file may have multiple
6353         // string tables if it was created by binary concatenation, for example
6354         // with "llvm-cat -b".
6355         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6356           if (!I->Strtab.empty())
6357             break;
6358           I->Strtab = *Strtab;
6359         }
6360         // Similarly, the string table is used by every preceding symbol table;
6361         // normally there will be just one unless the bitcode file was created
6362         // by binary concatenation.
6363         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6364           F.StrtabForSymtab = *Strtab;
6365         continue;
6366       }
6367 
6368       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6369         Expected<StringRef> SymtabOrErr =
6370             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6371         if (!SymtabOrErr)
6372           return SymtabOrErr.takeError();
6373 
6374         // We can expect the bitcode file to have multiple symbol tables if it
6375         // was created by binary concatenation. In that case we silently
6376         // ignore any subsequent symbol tables, which is fine because this is a
6377         // low level function. The client is expected to notice that the number
6378         // of modules in the symbol table does not match the number of modules
6379         // in the input file and regenerate the symbol table.
6380         if (F.Symtab.empty())
6381           F.Symtab = *SymtabOrErr;
6382         continue;
6383       }
6384 
6385       if (Error Err = Stream.SkipBlock())
6386         return std::move(Err);
6387       continue;
6388     }
6389     case BitstreamEntry::Record:
6390       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6391         continue;
6392       else
6393         return StreamFailed.takeError();
6394     }
6395   }
6396 }
6397 
6398 /// Get a lazy one-at-time loading module from bitcode.
6399 ///
6400 /// This isn't always used in a lazy context.  In particular, it's also used by
6401 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6402 /// in forward-referenced functions from block address references.
6403 ///
6404 /// \param[in] MaterializeAll Set to \c true if we should materialize
6405 /// everything.
6406 Expected<std::unique_ptr<Module>>
6407 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6408                              bool ShouldLazyLoadMetadata, bool IsImporting) {
6409   BitstreamCursor Stream(Buffer);
6410 
6411   std::string ProducerIdentification;
6412   if (IdentificationBit != -1ull) {
6413     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6414       return std::move(JumpFailed);
6415     Expected<std::string> ProducerIdentificationOrErr =
6416         readIdentificationBlock(Stream);
6417     if (!ProducerIdentificationOrErr)
6418       return ProducerIdentificationOrErr.takeError();
6419 
6420     ProducerIdentification = *ProducerIdentificationOrErr;
6421   }
6422 
6423   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6424     return std::move(JumpFailed);
6425   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6426                               Context);
6427 
6428   std::unique_ptr<Module> M =
6429       llvm::make_unique<Module>(ModuleIdentifier, Context);
6430   M->setMaterializer(R);
6431 
6432   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6433   if (Error Err =
6434           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6435     return std::move(Err);
6436 
6437   if (MaterializeAll) {
6438     // Read in the entire module, and destroy the BitcodeReader.
6439     if (Error Err = M->materializeAll())
6440       return std::move(Err);
6441   } else {
6442     // Resolve forward references from blockaddresses.
6443     if (Error Err = R->materializeForwardReferencedFunctions())
6444       return std::move(Err);
6445   }
6446   return std::move(M);
6447 }
6448 
6449 Expected<std::unique_ptr<Module>>
6450 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6451                              bool IsImporting) {
6452   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6453 }
6454 
6455 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6456 // We don't use ModuleIdentifier here because the client may need to control the
6457 // module path used in the combined summary (e.g. when reading summaries for
6458 // regular LTO modules).
6459 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6460                                  StringRef ModulePath, uint64_t ModuleId) {
6461   BitstreamCursor Stream(Buffer);
6462   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6463     return JumpFailed;
6464 
6465   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6466                                     ModulePath, ModuleId);
6467   return R.parseModule();
6468 }
6469 
6470 // Parse the specified bitcode buffer, returning the function info index.
6471 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6472   BitstreamCursor Stream(Buffer);
6473   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6474     return std::move(JumpFailed);
6475 
6476   auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6477   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6478                                     ModuleIdentifier, 0);
6479 
6480   if (Error Err = R.parseModule())
6481     return std::move(Err);
6482 
6483   return std::move(Index);
6484 }
6485 
6486 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6487                                                 unsigned ID) {
6488   if (Error Err = Stream.EnterSubBlock(ID))
6489     return std::move(Err);
6490   SmallVector<uint64_t, 64> Record;
6491 
6492   while (true) {
6493     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6494     if (!MaybeEntry)
6495       return MaybeEntry.takeError();
6496     BitstreamEntry Entry = MaybeEntry.get();
6497 
6498     switch (Entry.Kind) {
6499     case BitstreamEntry::SubBlock: // Handled for us already.
6500     case BitstreamEntry::Error:
6501       return error("Malformed block");
6502     case BitstreamEntry::EndBlock:
6503       // If no flags record found, conservatively return true to mimic
6504       // behavior before this flag was added.
6505       return true;
6506     case BitstreamEntry::Record:
6507       // The interesting case.
6508       break;
6509     }
6510 
6511     // Look for the FS_FLAGS record.
6512     Record.clear();
6513     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6514     if (!MaybeBitCode)
6515       return MaybeBitCode.takeError();
6516     switch (MaybeBitCode.get()) {
6517     default: // Default behavior: ignore.
6518       break;
6519     case bitc::FS_FLAGS: { // [flags]
6520       uint64_t Flags = Record[0];
6521       // Scan flags.
6522       assert(Flags <= 0x1f && "Unexpected bits in flag");
6523 
6524       return Flags & 0x8;
6525     }
6526     }
6527   }
6528   llvm_unreachable("Exit infinite loop");
6529 }
6530 
6531 // Check if the given bitcode buffer contains a global value summary block.
6532 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6533   BitstreamCursor Stream(Buffer);
6534   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6535     return std::move(JumpFailed);
6536 
6537   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6538     return std::move(Err);
6539 
6540   while (true) {
6541     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6542     if (!MaybeEntry)
6543       return MaybeEntry.takeError();
6544     llvm::BitstreamEntry Entry = MaybeEntry.get();
6545 
6546     switch (Entry.Kind) {
6547     case BitstreamEntry::Error:
6548       return error("Malformed block");
6549     case BitstreamEntry::EndBlock:
6550       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6551                             /*EnableSplitLTOUnit=*/false};
6552 
6553     case BitstreamEntry::SubBlock:
6554       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6555         Expected<bool> EnableSplitLTOUnit =
6556             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6557         if (!EnableSplitLTOUnit)
6558           return EnableSplitLTOUnit.takeError();
6559         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6560                               *EnableSplitLTOUnit};
6561       }
6562 
6563       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6564         Expected<bool> EnableSplitLTOUnit =
6565             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6566         if (!EnableSplitLTOUnit)
6567           return EnableSplitLTOUnit.takeError();
6568         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6569                               *EnableSplitLTOUnit};
6570       }
6571 
6572       // Ignore other sub-blocks.
6573       if (Error Err = Stream.SkipBlock())
6574         return std::move(Err);
6575       continue;
6576 
6577     case BitstreamEntry::Record:
6578       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6579         continue;
6580       else
6581         return StreamFailed.takeError();
6582     }
6583   }
6584 }
6585 
6586 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6587   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6588   if (!MsOrErr)
6589     return MsOrErr.takeError();
6590 
6591   if (MsOrErr->size() != 1)
6592     return error("Expected a single module");
6593 
6594   return (*MsOrErr)[0];
6595 }
6596 
6597 Expected<std::unique_ptr<Module>>
6598 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6599                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6600   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6601   if (!BM)
6602     return BM.takeError();
6603 
6604   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6605 }
6606 
6607 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6608     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6609     bool ShouldLazyLoadMetadata, bool IsImporting) {
6610   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6611                                      IsImporting);
6612   if (MOrErr)
6613     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6614   return MOrErr;
6615 }
6616 
6617 Expected<std::unique_ptr<Module>>
6618 BitcodeModule::parseModule(LLVMContext &Context) {
6619   return getModuleImpl(Context, true, false, false);
6620   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6621   // written.  We must defer until the Module has been fully materialized.
6622 }
6623 
6624 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6625                                                          LLVMContext &Context) {
6626   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6627   if (!BM)
6628     return BM.takeError();
6629 
6630   return BM->parseModule(Context);
6631 }
6632 
6633 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6634   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6635   if (!StreamOrErr)
6636     return StreamOrErr.takeError();
6637 
6638   return readTriple(*StreamOrErr);
6639 }
6640 
6641 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6642   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6643   if (!StreamOrErr)
6644     return StreamOrErr.takeError();
6645 
6646   return hasObjCCategory(*StreamOrErr);
6647 }
6648 
6649 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6650   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6651   if (!StreamOrErr)
6652     return StreamOrErr.takeError();
6653 
6654   return readIdentificationCode(*StreamOrErr);
6655 }
6656 
6657 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6658                                    ModuleSummaryIndex &CombinedIndex,
6659                                    uint64_t ModuleId) {
6660   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6661   if (!BM)
6662     return BM.takeError();
6663 
6664   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6665 }
6666 
6667 Expected<std::unique_ptr<ModuleSummaryIndex>>
6668 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6669   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6670   if (!BM)
6671     return BM.takeError();
6672 
6673   return BM->getSummary();
6674 }
6675 
6676 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6677   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6678   if (!BM)
6679     return BM.takeError();
6680 
6681   return BM->getLTOInfo();
6682 }
6683 
6684 Expected<std::unique_ptr<ModuleSummaryIndex>>
6685 llvm::getModuleSummaryIndexForFile(StringRef Path,
6686                                    bool IgnoreEmptyThinLTOIndexFile) {
6687   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6688       MemoryBuffer::getFileOrSTDIN(Path);
6689   if (!FileOrErr)
6690     return errorCodeToError(FileOrErr.getError());
6691   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6692     return nullptr;
6693   return getModuleSummaryIndex(**FileOrErr);
6694 }
6695