1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Bitcode/BitstreamReader.h" 26 #include "llvm/Bitcode/LLVMBitCodes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/DiagnosticPrinter.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalIndirectSymbol.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/GVMaterializer.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstIterator.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/OperandTraits.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/TrackingMDRef.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/ValueHandle.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 /// Helper to read the header common to all bitcode files. 108 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 109 // Sniff for the signature. 110 if (!Stream.canSkipToPos(4) || 111 Stream.Read(8) != 'B' || 112 Stream.Read(8) != 'C' || 113 Stream.Read(4) != 0x0 || 114 Stream.Read(4) != 0xC || 115 Stream.Read(4) != 0xE || 116 Stream.Read(4) != 0xD) 117 return false; 118 return true; 119 } 120 121 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 122 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 123 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 124 125 if (Buffer.getBufferSize() & 3) 126 return error("Invalid bitcode signature"); 127 128 // If we have a wrapper header, parse it and ignore the non-bc file contents. 129 // The magic number is 0x0B17C0DE stored in little endian. 130 if (isBitcodeWrapper(BufPtr, BufEnd)) 131 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 132 return error("Invalid bitcode wrapper header"); 133 134 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 135 if (!hasValidBitcodeHeader(Stream)) 136 return error("Invalid bitcode signature"); 137 138 return std::move(Stream); 139 } 140 141 /// Convert a string from a record into an std::string, return true on failure. 142 template <typename StrTy> 143 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 144 StrTy &Result) { 145 if (Idx > Record.size()) 146 return true; 147 148 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 149 Result += (char)Record[i]; 150 return false; 151 } 152 153 // Strip all the TBAA attachment for the module. 154 void stripTBAA(Module *M) { 155 for (auto &F : *M) { 156 if (F.isMaterializable()) 157 continue; 158 for (auto &I : instructions(F)) 159 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 160 } 161 } 162 163 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 164 /// "epoch" encoded in the bitcode, and return the producer name if any. 165 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 166 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 167 return error("Invalid record"); 168 169 // Read all the records. 170 SmallVector<uint64_t, 64> Record; 171 172 std::string ProducerIdentification; 173 174 while (true) { 175 BitstreamEntry Entry = Stream.advance(); 176 177 switch (Entry.Kind) { 178 default: 179 case BitstreamEntry::Error: 180 return error("Malformed block"); 181 case BitstreamEntry::EndBlock: 182 return ProducerIdentification; 183 case BitstreamEntry::Record: 184 // The interesting case. 185 break; 186 } 187 188 // Read a record. 189 Record.clear(); 190 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 191 switch (BitCode) { 192 default: // Default behavior: reject 193 return error("Invalid value"); 194 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 195 convertToString(Record, 0, ProducerIdentification); 196 break; 197 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 198 unsigned epoch = (unsigned)Record[0]; 199 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 200 return error( 201 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 202 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 203 } 204 } 205 } 206 } 207 } 208 209 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 210 // We expect a number of well-defined blocks, though we don't necessarily 211 // need to understand them all. 212 while (true) { 213 if (Stream.AtEndOfStream()) 214 return ""; 215 216 BitstreamEntry Entry = Stream.advance(); 217 switch (Entry.Kind) { 218 case BitstreamEntry::EndBlock: 219 case BitstreamEntry::Error: 220 return error("Malformed block"); 221 222 case BitstreamEntry::SubBlock: 223 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 224 return readIdentificationBlock(Stream); 225 226 // Ignore other sub-blocks. 227 if (Stream.SkipBlock()) 228 return error("Malformed block"); 229 continue; 230 case BitstreamEntry::Record: 231 Stream.skipRecord(Entry.ID); 232 continue; 233 } 234 } 235 } 236 237 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 238 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 239 return error("Invalid record"); 240 241 SmallVector<uint64_t, 64> Record; 242 // Read all the records for this module. 243 244 while (true) { 245 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 246 247 switch (Entry.Kind) { 248 case BitstreamEntry::SubBlock: // Handled for us already. 249 case BitstreamEntry::Error: 250 return error("Malformed block"); 251 case BitstreamEntry::EndBlock: 252 return false; 253 case BitstreamEntry::Record: 254 // The interesting case. 255 break; 256 } 257 258 // Read a record. 259 switch (Stream.readRecord(Entry.ID, Record)) { 260 default: 261 break; // Default behavior, ignore unknown content. 262 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 263 std::string S; 264 if (convertToString(Record, 0, S)) 265 return error("Invalid record"); 266 // Check for the i386 and other (x86_64, ARM) conventions 267 if (S.find("__DATA, __objc_catlist") != std::string::npos || 268 S.find("__OBJC,__category") != std::string::npos) 269 return true; 270 break; 271 } 272 } 273 Record.clear(); 274 } 275 llvm_unreachable("Exit infinite loop"); 276 } 277 278 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 279 // We expect a number of well-defined blocks, though we don't necessarily 280 // need to understand them all. 281 while (true) { 282 BitstreamEntry Entry = Stream.advance(); 283 284 switch (Entry.Kind) { 285 case BitstreamEntry::Error: 286 return error("Malformed block"); 287 case BitstreamEntry::EndBlock: 288 return false; 289 290 case BitstreamEntry::SubBlock: 291 if (Entry.ID == bitc::MODULE_BLOCK_ID) 292 return hasObjCCategoryInModule(Stream); 293 294 // Ignore other sub-blocks. 295 if (Stream.SkipBlock()) 296 return error("Malformed block"); 297 continue; 298 299 case BitstreamEntry::Record: 300 Stream.skipRecord(Entry.ID); 301 continue; 302 } 303 } 304 } 305 306 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 307 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 308 return error("Invalid record"); 309 310 SmallVector<uint64_t, 64> Record; 311 312 std::string Triple; 313 314 // Read all the records for this module. 315 while (true) { 316 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 317 318 switch (Entry.Kind) { 319 case BitstreamEntry::SubBlock: // Handled for us already. 320 case BitstreamEntry::Error: 321 return error("Malformed block"); 322 case BitstreamEntry::EndBlock: 323 return Triple; 324 case BitstreamEntry::Record: 325 // The interesting case. 326 break; 327 } 328 329 // Read a record. 330 switch (Stream.readRecord(Entry.ID, Record)) { 331 default: break; // Default behavior, ignore unknown content. 332 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 333 std::string S; 334 if (convertToString(Record, 0, S)) 335 return error("Invalid record"); 336 Triple = S; 337 break; 338 } 339 } 340 Record.clear(); 341 } 342 llvm_unreachable("Exit infinite loop"); 343 } 344 345 Expected<std::string> readTriple(BitstreamCursor &Stream) { 346 // We expect a number of well-defined blocks, though we don't necessarily 347 // need to understand them all. 348 while (true) { 349 BitstreamEntry Entry = Stream.advance(); 350 351 switch (Entry.Kind) { 352 case BitstreamEntry::Error: 353 return error("Malformed block"); 354 case BitstreamEntry::EndBlock: 355 return ""; 356 357 case BitstreamEntry::SubBlock: 358 if (Entry.ID == bitc::MODULE_BLOCK_ID) 359 return readModuleTriple(Stream); 360 361 // Ignore other sub-blocks. 362 if (Stream.SkipBlock()) 363 return error("Malformed block"); 364 continue; 365 366 case BitstreamEntry::Record: 367 Stream.skipRecord(Entry.ID); 368 continue; 369 } 370 } 371 } 372 373 class BitcodeReaderBase { 374 protected: 375 BitcodeReaderBase(BitstreamCursor Stream) : Stream(std::move(Stream)) { 376 this->Stream.setBlockInfo(&BlockInfo); 377 } 378 379 BitstreamBlockInfo BlockInfo; 380 BitstreamCursor Stream; 381 382 bool readBlockInfo(); 383 384 // Contains an arbitrary and optional string identifying the bitcode producer 385 std::string ProducerIdentification; 386 387 Error error(const Twine &Message); 388 }; 389 390 Error BitcodeReaderBase::error(const Twine &Message) { 391 std::string FullMsg = Message.str(); 392 if (!ProducerIdentification.empty()) 393 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 394 LLVM_VERSION_STRING "')"; 395 return ::error(FullMsg); 396 } 397 398 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 399 LLVMContext &Context; 400 Module *TheModule = nullptr; 401 // Next offset to start scanning for lazy parsing of function bodies. 402 uint64_t NextUnreadBit = 0; 403 // Last function offset found in the VST. 404 uint64_t LastFunctionBlockBit = 0; 405 bool SeenValueSymbolTable = false; 406 uint64_t VSTOffset = 0; 407 408 std::vector<Type*> TypeList; 409 BitcodeReaderValueList ValueList; 410 Optional<MetadataLoader> MDLoader; 411 std::vector<Comdat *> ComdatList; 412 SmallVector<Instruction *, 64> InstructionList; 413 414 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 415 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 416 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 417 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 418 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 419 420 /// The set of attributes by index. Index zero in the file is for null, and 421 /// is thus not represented here. As such all indices are off by one. 422 std::vector<AttributeSet> MAttributes; 423 424 /// The set of attribute groups. 425 std::map<unsigned, AttributeSet> MAttributeGroups; 426 427 /// While parsing a function body, this is a list of the basic blocks for the 428 /// function. 429 std::vector<BasicBlock*> FunctionBBs; 430 431 // When reading the module header, this list is populated with functions that 432 // have bodies later in the file. 433 std::vector<Function*> FunctionsWithBodies; 434 435 // When intrinsic functions are encountered which require upgrading they are 436 // stored here with their replacement function. 437 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 438 UpdatedIntrinsicMap UpgradedIntrinsics; 439 // Intrinsics which were remangled because of types rename 440 UpdatedIntrinsicMap RemangledIntrinsics; 441 442 // Several operations happen after the module header has been read, but 443 // before function bodies are processed. This keeps track of whether 444 // we've done this yet. 445 bool SeenFirstFunctionBody = false; 446 447 /// When function bodies are initially scanned, this map contains info about 448 /// where to find deferred function body in the stream. 449 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 450 451 /// When Metadata block is initially scanned when parsing the module, we may 452 /// choose to defer parsing of the metadata. This vector contains info about 453 /// which Metadata blocks are deferred. 454 std::vector<uint64_t> DeferredMetadataInfo; 455 456 /// These are basic blocks forward-referenced by block addresses. They are 457 /// inserted lazily into functions when they're loaded. The basic block ID is 458 /// its index into the vector. 459 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 460 std::deque<Function *> BasicBlockFwdRefQueue; 461 462 /// Indicates that we are using a new encoding for instruction operands where 463 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 464 /// instruction number, for a more compact encoding. Some instruction 465 /// operands are not relative to the instruction ID: basic block numbers, and 466 /// types. Once the old style function blocks have been phased out, we would 467 /// not need this flag. 468 bool UseRelativeIDs = false; 469 470 /// True if all functions will be materialized, negating the need to process 471 /// (e.g.) blockaddress forward references. 472 bool WillMaterializeAllForwardRefs = false; 473 474 bool StripDebugInfo = false; 475 TBAAVerifier TBAAVerifyHelper; 476 477 std::vector<std::string> BundleTags; 478 479 public: 480 BitcodeReader(BitstreamCursor Stream, StringRef ProducerIdentification, 481 LLVMContext &Context); 482 483 Error materializeForwardReferencedFunctions(); 484 485 Error materialize(GlobalValue *GV) override; 486 Error materializeModule() override; 487 std::vector<StructType *> getIdentifiedStructTypes() const override; 488 489 /// \brief Main interface to parsing a bitcode buffer. 490 /// \returns true if an error occurred. 491 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false); 492 493 static uint64_t decodeSignRotatedValue(uint64_t V); 494 495 /// Materialize any deferred Metadata block. 496 Error materializeMetadata() override; 497 498 void setStripDebugInfo() override; 499 500 private: 501 std::vector<StructType *> IdentifiedStructTypes; 502 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 503 StructType *createIdentifiedStructType(LLVMContext &Context); 504 505 Type *getTypeByID(unsigned ID); 506 507 Value *getFnValueByID(unsigned ID, Type *Ty) { 508 if (Ty && Ty->isMetadataTy()) 509 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 510 return ValueList.getValueFwdRef(ID, Ty); 511 } 512 513 Metadata *getFnMetadataByID(unsigned ID) { 514 return MDLoader->getMetadataFwdRef(ID); 515 } 516 517 BasicBlock *getBasicBlock(unsigned ID) const { 518 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 519 return FunctionBBs[ID]; 520 } 521 522 AttributeSet getAttributes(unsigned i) const { 523 if (i-1 < MAttributes.size()) 524 return MAttributes[i-1]; 525 return AttributeSet(); 526 } 527 528 /// Read a value/type pair out of the specified record from slot 'Slot'. 529 /// Increment Slot past the number of slots used in the record. Return true on 530 /// failure. 531 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 532 unsigned InstNum, Value *&ResVal) { 533 if (Slot == Record.size()) return true; 534 unsigned ValNo = (unsigned)Record[Slot++]; 535 // Adjust the ValNo, if it was encoded relative to the InstNum. 536 if (UseRelativeIDs) 537 ValNo = InstNum - ValNo; 538 if (ValNo < InstNum) { 539 // If this is not a forward reference, just return the value we already 540 // have. 541 ResVal = getFnValueByID(ValNo, nullptr); 542 return ResVal == nullptr; 543 } 544 if (Slot == Record.size()) 545 return true; 546 547 unsigned TypeNo = (unsigned)Record[Slot++]; 548 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 549 return ResVal == nullptr; 550 } 551 552 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 553 /// past the number of slots used by the value in the record. Return true if 554 /// there is an error. 555 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 556 unsigned InstNum, Type *Ty, Value *&ResVal) { 557 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 558 return true; 559 // All values currently take a single record slot. 560 ++Slot; 561 return false; 562 } 563 564 /// Like popValue, but does not increment the Slot number. 565 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 566 unsigned InstNum, Type *Ty, Value *&ResVal) { 567 ResVal = getValue(Record, Slot, InstNum, Ty); 568 return ResVal == nullptr; 569 } 570 571 /// Version of getValue that returns ResVal directly, or 0 if there is an 572 /// error. 573 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 574 unsigned InstNum, Type *Ty) { 575 if (Slot == Record.size()) return nullptr; 576 unsigned ValNo = (unsigned)Record[Slot]; 577 // Adjust the ValNo, if it was encoded relative to the InstNum. 578 if (UseRelativeIDs) 579 ValNo = InstNum - ValNo; 580 return getFnValueByID(ValNo, Ty); 581 } 582 583 /// Like getValue, but decodes signed VBRs. 584 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 585 unsigned InstNum, Type *Ty) { 586 if (Slot == Record.size()) return nullptr; 587 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 588 // Adjust the ValNo, if it was encoded relative to the InstNum. 589 if (UseRelativeIDs) 590 ValNo = InstNum - ValNo; 591 return getFnValueByID(ValNo, Ty); 592 } 593 594 /// Converts alignment exponent (i.e. power of two (or zero)) to the 595 /// corresponding alignment to use. If alignment is too large, returns 596 /// a corresponding error code. 597 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 598 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 599 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 600 Error parseAttributeBlock(); 601 Error parseAttributeGroupBlock(); 602 Error parseTypeTable(); 603 Error parseTypeTableBody(); 604 Error parseOperandBundleTags(); 605 606 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 607 unsigned NameIndex, Triple &TT); 608 Error parseValueSymbolTable(uint64_t Offset = 0); 609 Error parseConstants(); 610 Error rememberAndSkipFunctionBodies(); 611 Error rememberAndSkipFunctionBody(); 612 /// Save the positions of the Metadata blocks and skip parsing the blocks. 613 Error rememberAndSkipMetadata(); 614 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 615 Error parseFunctionBody(Function *F); 616 Error globalCleanup(); 617 Error resolveGlobalAndIndirectSymbolInits(); 618 Error parseUseLists(); 619 Error findFunctionInStream( 620 Function *F, 621 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 622 }; 623 624 /// Class to manage reading and parsing function summary index bitcode 625 /// files/sections. 626 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 627 /// The module index built during parsing. 628 ModuleSummaryIndex &TheIndex; 629 630 /// Indicates whether we have encountered a global value summary section 631 /// yet during parsing. 632 bool SeenGlobalValSummary = false; 633 634 /// Indicates whether we have already parsed the VST, used for error checking. 635 bool SeenValueSymbolTable = false; 636 637 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 638 /// Used to enable on-demand parsing of the VST. 639 uint64_t VSTOffset = 0; 640 641 // Map to save ValueId to GUID association that was recorded in the 642 // ValueSymbolTable. It is used after the VST is parsed to convert 643 // call graph edges read from the function summary from referencing 644 // callees by their ValueId to using the GUID instead, which is how 645 // they are recorded in the summary index being built. 646 // We save a second GUID which is the same as the first one, but ignoring the 647 // linkage, i.e. for value other than local linkage they are identical. 648 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 649 ValueIdToCallGraphGUIDMap; 650 651 /// Map populated during module path string table parsing, from the 652 /// module ID to a string reference owned by the index's module 653 /// path string table, used to correlate with combined index 654 /// summary records. 655 DenseMap<uint64_t, StringRef> ModuleIdMap; 656 657 /// Original source file name recorded in a bitcode record. 658 std::string SourceFileName; 659 660 public: 661 ModuleSummaryIndexBitcodeReader( 662 BitstreamCursor Stream, ModuleSummaryIndex &TheIndex); 663 664 Error parseModule(StringRef ModulePath); 665 666 private: 667 Error parseValueSymbolTable( 668 uint64_t Offset, 669 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 670 Error parseEntireSummary(StringRef ModulePath); 671 Error parseModuleStringTable(); 672 std::pair<GlobalValue::GUID, GlobalValue::GUID> 673 674 getGUIDFromValueId(unsigned ValueId); 675 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 676 readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I, 677 bool IsOldProfileFormat, bool HasProfile); 678 }; 679 680 } // end anonymous namespace 681 682 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 683 Error Err) { 684 if (Err) { 685 std::error_code EC; 686 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 687 EC = EIB.convertToErrorCode(); 688 Ctx.emitError(EIB.message()); 689 }); 690 return EC; 691 } 692 return std::error_code(); 693 } 694 695 BitcodeReader::BitcodeReader(BitstreamCursor Stream, 696 StringRef ProducerIdentification, 697 LLVMContext &Context) 698 : BitcodeReaderBase(std::move(Stream)), Context(Context), 699 ValueList(Context) { 700 this->ProducerIdentification = ProducerIdentification; 701 } 702 703 Error BitcodeReader::materializeForwardReferencedFunctions() { 704 if (WillMaterializeAllForwardRefs) 705 return Error::success(); 706 707 // Prevent recursion. 708 WillMaterializeAllForwardRefs = true; 709 710 while (!BasicBlockFwdRefQueue.empty()) { 711 Function *F = BasicBlockFwdRefQueue.front(); 712 BasicBlockFwdRefQueue.pop_front(); 713 assert(F && "Expected valid function"); 714 if (!BasicBlockFwdRefs.count(F)) 715 // Already materialized. 716 continue; 717 718 // Check for a function that isn't materializable to prevent an infinite 719 // loop. When parsing a blockaddress stored in a global variable, there 720 // isn't a trivial way to check if a function will have a body without a 721 // linear search through FunctionsWithBodies, so just check it here. 722 if (!F->isMaterializable()) 723 return error("Never resolved function from blockaddress"); 724 725 // Try to materialize F. 726 if (Error Err = materialize(F)) 727 return Err; 728 } 729 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 730 731 // Reset state. 732 WillMaterializeAllForwardRefs = false; 733 return Error::success(); 734 } 735 736 //===----------------------------------------------------------------------===// 737 // Helper functions to implement forward reference resolution, etc. 738 //===----------------------------------------------------------------------===// 739 740 static bool hasImplicitComdat(size_t Val) { 741 switch (Val) { 742 default: 743 return false; 744 case 1: // Old WeakAnyLinkage 745 case 4: // Old LinkOnceAnyLinkage 746 case 10: // Old WeakODRLinkage 747 case 11: // Old LinkOnceODRLinkage 748 return true; 749 } 750 } 751 752 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 753 switch (Val) { 754 default: // Map unknown/new linkages to external 755 case 0: 756 return GlobalValue::ExternalLinkage; 757 case 2: 758 return GlobalValue::AppendingLinkage; 759 case 3: 760 return GlobalValue::InternalLinkage; 761 case 5: 762 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 763 case 6: 764 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 765 case 7: 766 return GlobalValue::ExternalWeakLinkage; 767 case 8: 768 return GlobalValue::CommonLinkage; 769 case 9: 770 return GlobalValue::PrivateLinkage; 771 case 12: 772 return GlobalValue::AvailableExternallyLinkage; 773 case 13: 774 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 775 case 14: 776 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 777 case 15: 778 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 779 case 1: // Old value with implicit comdat. 780 case 16: 781 return GlobalValue::WeakAnyLinkage; 782 case 10: // Old value with implicit comdat. 783 case 17: 784 return GlobalValue::WeakODRLinkage; 785 case 4: // Old value with implicit comdat. 786 case 18: 787 return GlobalValue::LinkOnceAnyLinkage; 788 case 11: // Old value with implicit comdat. 789 case 19: 790 return GlobalValue::LinkOnceODRLinkage; 791 } 792 } 793 794 /// Decode the flags for GlobalValue in the summary. 795 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 796 uint64_t Version) { 797 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 798 // like getDecodedLinkage() above. Any future change to the linkage enum and 799 // to getDecodedLinkage() will need to be taken into account here as above. 800 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 801 RawFlags = RawFlags >> 4; 802 bool NoRename = RawFlags & 0x1; 803 bool IsNotViableToInline = RawFlags & 0x2; 804 bool HasInlineAsmMaybeReferencingInternal = RawFlags & 0x4; 805 return GlobalValueSummary::GVFlags(Linkage, NoRename, 806 HasInlineAsmMaybeReferencingInternal, 807 IsNotViableToInline); 808 } 809 810 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 811 switch (Val) { 812 default: // Map unknown visibilities to default. 813 case 0: return GlobalValue::DefaultVisibility; 814 case 1: return GlobalValue::HiddenVisibility; 815 case 2: return GlobalValue::ProtectedVisibility; 816 } 817 } 818 819 static GlobalValue::DLLStorageClassTypes 820 getDecodedDLLStorageClass(unsigned Val) { 821 switch (Val) { 822 default: // Map unknown values to default. 823 case 0: return GlobalValue::DefaultStorageClass; 824 case 1: return GlobalValue::DLLImportStorageClass; 825 case 2: return GlobalValue::DLLExportStorageClass; 826 } 827 } 828 829 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 830 switch (Val) { 831 case 0: return GlobalVariable::NotThreadLocal; 832 default: // Map unknown non-zero value to general dynamic. 833 case 1: return GlobalVariable::GeneralDynamicTLSModel; 834 case 2: return GlobalVariable::LocalDynamicTLSModel; 835 case 3: return GlobalVariable::InitialExecTLSModel; 836 case 4: return GlobalVariable::LocalExecTLSModel; 837 } 838 } 839 840 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 841 switch (Val) { 842 default: // Map unknown to UnnamedAddr::None. 843 case 0: return GlobalVariable::UnnamedAddr::None; 844 case 1: return GlobalVariable::UnnamedAddr::Global; 845 case 2: return GlobalVariable::UnnamedAddr::Local; 846 } 847 } 848 849 static int getDecodedCastOpcode(unsigned Val) { 850 switch (Val) { 851 default: return -1; 852 case bitc::CAST_TRUNC : return Instruction::Trunc; 853 case bitc::CAST_ZEXT : return Instruction::ZExt; 854 case bitc::CAST_SEXT : return Instruction::SExt; 855 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 856 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 857 case bitc::CAST_UITOFP : return Instruction::UIToFP; 858 case bitc::CAST_SITOFP : return Instruction::SIToFP; 859 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 860 case bitc::CAST_FPEXT : return Instruction::FPExt; 861 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 862 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 863 case bitc::CAST_BITCAST : return Instruction::BitCast; 864 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 865 } 866 } 867 868 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 869 bool IsFP = Ty->isFPOrFPVectorTy(); 870 // BinOps are only valid for int/fp or vector of int/fp types 871 if (!IsFP && !Ty->isIntOrIntVectorTy()) 872 return -1; 873 874 switch (Val) { 875 default: 876 return -1; 877 case bitc::BINOP_ADD: 878 return IsFP ? Instruction::FAdd : Instruction::Add; 879 case bitc::BINOP_SUB: 880 return IsFP ? Instruction::FSub : Instruction::Sub; 881 case bitc::BINOP_MUL: 882 return IsFP ? Instruction::FMul : Instruction::Mul; 883 case bitc::BINOP_UDIV: 884 return IsFP ? -1 : Instruction::UDiv; 885 case bitc::BINOP_SDIV: 886 return IsFP ? Instruction::FDiv : Instruction::SDiv; 887 case bitc::BINOP_UREM: 888 return IsFP ? -1 : Instruction::URem; 889 case bitc::BINOP_SREM: 890 return IsFP ? Instruction::FRem : Instruction::SRem; 891 case bitc::BINOP_SHL: 892 return IsFP ? -1 : Instruction::Shl; 893 case bitc::BINOP_LSHR: 894 return IsFP ? -1 : Instruction::LShr; 895 case bitc::BINOP_ASHR: 896 return IsFP ? -1 : Instruction::AShr; 897 case bitc::BINOP_AND: 898 return IsFP ? -1 : Instruction::And; 899 case bitc::BINOP_OR: 900 return IsFP ? -1 : Instruction::Or; 901 case bitc::BINOP_XOR: 902 return IsFP ? -1 : Instruction::Xor; 903 } 904 } 905 906 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 907 switch (Val) { 908 default: return AtomicRMWInst::BAD_BINOP; 909 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 910 case bitc::RMW_ADD: return AtomicRMWInst::Add; 911 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 912 case bitc::RMW_AND: return AtomicRMWInst::And; 913 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 914 case bitc::RMW_OR: return AtomicRMWInst::Or; 915 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 916 case bitc::RMW_MAX: return AtomicRMWInst::Max; 917 case bitc::RMW_MIN: return AtomicRMWInst::Min; 918 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 919 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 920 } 921 } 922 923 static AtomicOrdering getDecodedOrdering(unsigned Val) { 924 switch (Val) { 925 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 926 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 927 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 928 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 929 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 930 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 931 default: // Map unknown orderings to sequentially-consistent. 932 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 933 } 934 } 935 936 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 937 switch (Val) { 938 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 939 default: // Map unknown scopes to cross-thread. 940 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 941 } 942 } 943 944 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 945 switch (Val) { 946 default: // Map unknown selection kinds to any. 947 case bitc::COMDAT_SELECTION_KIND_ANY: 948 return Comdat::Any; 949 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 950 return Comdat::ExactMatch; 951 case bitc::COMDAT_SELECTION_KIND_LARGEST: 952 return Comdat::Largest; 953 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 954 return Comdat::NoDuplicates; 955 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 956 return Comdat::SameSize; 957 } 958 } 959 960 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 961 FastMathFlags FMF; 962 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 963 FMF.setUnsafeAlgebra(); 964 if (0 != (Val & FastMathFlags::NoNaNs)) 965 FMF.setNoNaNs(); 966 if (0 != (Val & FastMathFlags::NoInfs)) 967 FMF.setNoInfs(); 968 if (0 != (Val & FastMathFlags::NoSignedZeros)) 969 FMF.setNoSignedZeros(); 970 if (0 != (Val & FastMathFlags::AllowReciprocal)) 971 FMF.setAllowReciprocal(); 972 return FMF; 973 } 974 975 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 976 switch (Val) { 977 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 978 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 979 } 980 } 981 982 983 Type *BitcodeReader::getTypeByID(unsigned ID) { 984 // The type table size is always specified correctly. 985 if (ID >= TypeList.size()) 986 return nullptr; 987 988 if (Type *Ty = TypeList[ID]) 989 return Ty; 990 991 // If we have a forward reference, the only possible case is when it is to a 992 // named struct. Just create a placeholder for now. 993 return TypeList[ID] = createIdentifiedStructType(Context); 994 } 995 996 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 997 StringRef Name) { 998 auto *Ret = StructType::create(Context, Name); 999 IdentifiedStructTypes.push_back(Ret); 1000 return Ret; 1001 } 1002 1003 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1004 auto *Ret = StructType::create(Context); 1005 IdentifiedStructTypes.push_back(Ret); 1006 return Ret; 1007 } 1008 1009 //===----------------------------------------------------------------------===// 1010 // Functions for parsing blocks from the bitcode file 1011 //===----------------------------------------------------------------------===// 1012 1013 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1014 switch (Val) { 1015 case Attribute::EndAttrKinds: 1016 llvm_unreachable("Synthetic enumerators which should never get here"); 1017 1018 case Attribute::None: return 0; 1019 case Attribute::ZExt: return 1 << 0; 1020 case Attribute::SExt: return 1 << 1; 1021 case Attribute::NoReturn: return 1 << 2; 1022 case Attribute::InReg: return 1 << 3; 1023 case Attribute::StructRet: return 1 << 4; 1024 case Attribute::NoUnwind: return 1 << 5; 1025 case Attribute::NoAlias: return 1 << 6; 1026 case Attribute::ByVal: return 1 << 7; 1027 case Attribute::Nest: return 1 << 8; 1028 case Attribute::ReadNone: return 1 << 9; 1029 case Attribute::ReadOnly: return 1 << 10; 1030 case Attribute::NoInline: return 1 << 11; 1031 case Attribute::AlwaysInline: return 1 << 12; 1032 case Attribute::OptimizeForSize: return 1 << 13; 1033 case Attribute::StackProtect: return 1 << 14; 1034 case Attribute::StackProtectReq: return 1 << 15; 1035 case Attribute::Alignment: return 31 << 16; 1036 case Attribute::NoCapture: return 1 << 21; 1037 case Attribute::NoRedZone: return 1 << 22; 1038 case Attribute::NoImplicitFloat: return 1 << 23; 1039 case Attribute::Naked: return 1 << 24; 1040 case Attribute::InlineHint: return 1 << 25; 1041 case Attribute::StackAlignment: return 7 << 26; 1042 case Attribute::ReturnsTwice: return 1 << 29; 1043 case Attribute::UWTable: return 1 << 30; 1044 case Attribute::NonLazyBind: return 1U << 31; 1045 case Attribute::SanitizeAddress: return 1ULL << 32; 1046 case Attribute::MinSize: return 1ULL << 33; 1047 case Attribute::NoDuplicate: return 1ULL << 34; 1048 case Attribute::StackProtectStrong: return 1ULL << 35; 1049 case Attribute::SanitizeThread: return 1ULL << 36; 1050 case Attribute::SanitizeMemory: return 1ULL << 37; 1051 case Attribute::NoBuiltin: return 1ULL << 38; 1052 case Attribute::Returned: return 1ULL << 39; 1053 case Attribute::Cold: return 1ULL << 40; 1054 case Attribute::Builtin: return 1ULL << 41; 1055 case Attribute::OptimizeNone: return 1ULL << 42; 1056 case Attribute::InAlloca: return 1ULL << 43; 1057 case Attribute::NonNull: return 1ULL << 44; 1058 case Attribute::JumpTable: return 1ULL << 45; 1059 case Attribute::Convergent: return 1ULL << 46; 1060 case Attribute::SafeStack: return 1ULL << 47; 1061 case Attribute::NoRecurse: return 1ULL << 48; 1062 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1063 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1064 case Attribute::SwiftSelf: return 1ULL << 51; 1065 case Attribute::SwiftError: return 1ULL << 52; 1066 case Attribute::WriteOnly: return 1ULL << 53; 1067 case Attribute::Dereferenceable: 1068 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1069 break; 1070 case Attribute::DereferenceableOrNull: 1071 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1072 "format"); 1073 break; 1074 case Attribute::ArgMemOnly: 1075 llvm_unreachable("argmemonly attribute not supported in raw format"); 1076 break; 1077 case Attribute::AllocSize: 1078 llvm_unreachable("allocsize not supported in raw format"); 1079 break; 1080 } 1081 llvm_unreachable("Unsupported attribute type"); 1082 } 1083 1084 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1085 if (!Val) return; 1086 1087 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1088 I = Attribute::AttrKind(I + 1)) { 1089 if (I == Attribute::Dereferenceable || 1090 I == Attribute::DereferenceableOrNull || 1091 I == Attribute::ArgMemOnly || 1092 I == Attribute::AllocSize) 1093 continue; 1094 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1095 if (I == Attribute::Alignment) 1096 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1097 else if (I == Attribute::StackAlignment) 1098 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1099 else 1100 B.addAttribute(I); 1101 } 1102 } 1103 } 1104 1105 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1106 /// been decoded from the given integer. This function must stay in sync with 1107 /// 'encodeLLVMAttributesForBitcode'. 1108 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1109 uint64_t EncodedAttrs) { 1110 // FIXME: Remove in 4.0. 1111 1112 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1113 // the bits above 31 down by 11 bits. 1114 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1115 assert((!Alignment || isPowerOf2_32(Alignment)) && 1116 "Alignment must be a power of two."); 1117 1118 if (Alignment) 1119 B.addAlignmentAttr(Alignment); 1120 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1121 (EncodedAttrs & 0xffff)); 1122 } 1123 1124 Error BitcodeReader::parseAttributeBlock() { 1125 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1126 return error("Invalid record"); 1127 1128 if (!MAttributes.empty()) 1129 return error("Invalid multiple blocks"); 1130 1131 SmallVector<uint64_t, 64> Record; 1132 1133 SmallVector<AttributeSet, 8> Attrs; 1134 1135 // Read all the records. 1136 while (true) { 1137 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1138 1139 switch (Entry.Kind) { 1140 case BitstreamEntry::SubBlock: // Handled for us already. 1141 case BitstreamEntry::Error: 1142 return error("Malformed block"); 1143 case BitstreamEntry::EndBlock: 1144 return Error::success(); 1145 case BitstreamEntry::Record: 1146 // The interesting case. 1147 break; 1148 } 1149 1150 // Read a record. 1151 Record.clear(); 1152 switch (Stream.readRecord(Entry.ID, Record)) { 1153 default: // Default behavior: ignore. 1154 break; 1155 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1156 // FIXME: Remove in 4.0. 1157 if (Record.size() & 1) 1158 return error("Invalid record"); 1159 1160 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1161 AttrBuilder B; 1162 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1163 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1164 } 1165 1166 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1167 Attrs.clear(); 1168 break; 1169 } 1170 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1171 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1172 Attrs.push_back(MAttributeGroups[Record[i]]); 1173 1174 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1175 Attrs.clear(); 1176 break; 1177 } 1178 } 1179 } 1180 } 1181 1182 // Returns Attribute::None on unrecognized codes. 1183 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1184 switch (Code) { 1185 default: 1186 return Attribute::None; 1187 case bitc::ATTR_KIND_ALIGNMENT: 1188 return Attribute::Alignment; 1189 case bitc::ATTR_KIND_ALWAYS_INLINE: 1190 return Attribute::AlwaysInline; 1191 case bitc::ATTR_KIND_ARGMEMONLY: 1192 return Attribute::ArgMemOnly; 1193 case bitc::ATTR_KIND_BUILTIN: 1194 return Attribute::Builtin; 1195 case bitc::ATTR_KIND_BY_VAL: 1196 return Attribute::ByVal; 1197 case bitc::ATTR_KIND_IN_ALLOCA: 1198 return Attribute::InAlloca; 1199 case bitc::ATTR_KIND_COLD: 1200 return Attribute::Cold; 1201 case bitc::ATTR_KIND_CONVERGENT: 1202 return Attribute::Convergent; 1203 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1204 return Attribute::InaccessibleMemOnly; 1205 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1206 return Attribute::InaccessibleMemOrArgMemOnly; 1207 case bitc::ATTR_KIND_INLINE_HINT: 1208 return Attribute::InlineHint; 1209 case bitc::ATTR_KIND_IN_REG: 1210 return Attribute::InReg; 1211 case bitc::ATTR_KIND_JUMP_TABLE: 1212 return Attribute::JumpTable; 1213 case bitc::ATTR_KIND_MIN_SIZE: 1214 return Attribute::MinSize; 1215 case bitc::ATTR_KIND_NAKED: 1216 return Attribute::Naked; 1217 case bitc::ATTR_KIND_NEST: 1218 return Attribute::Nest; 1219 case bitc::ATTR_KIND_NO_ALIAS: 1220 return Attribute::NoAlias; 1221 case bitc::ATTR_KIND_NO_BUILTIN: 1222 return Attribute::NoBuiltin; 1223 case bitc::ATTR_KIND_NO_CAPTURE: 1224 return Attribute::NoCapture; 1225 case bitc::ATTR_KIND_NO_DUPLICATE: 1226 return Attribute::NoDuplicate; 1227 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1228 return Attribute::NoImplicitFloat; 1229 case bitc::ATTR_KIND_NO_INLINE: 1230 return Attribute::NoInline; 1231 case bitc::ATTR_KIND_NO_RECURSE: 1232 return Attribute::NoRecurse; 1233 case bitc::ATTR_KIND_NON_LAZY_BIND: 1234 return Attribute::NonLazyBind; 1235 case bitc::ATTR_KIND_NON_NULL: 1236 return Attribute::NonNull; 1237 case bitc::ATTR_KIND_DEREFERENCEABLE: 1238 return Attribute::Dereferenceable; 1239 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1240 return Attribute::DereferenceableOrNull; 1241 case bitc::ATTR_KIND_ALLOC_SIZE: 1242 return Attribute::AllocSize; 1243 case bitc::ATTR_KIND_NO_RED_ZONE: 1244 return Attribute::NoRedZone; 1245 case bitc::ATTR_KIND_NO_RETURN: 1246 return Attribute::NoReturn; 1247 case bitc::ATTR_KIND_NO_UNWIND: 1248 return Attribute::NoUnwind; 1249 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1250 return Attribute::OptimizeForSize; 1251 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1252 return Attribute::OptimizeNone; 1253 case bitc::ATTR_KIND_READ_NONE: 1254 return Attribute::ReadNone; 1255 case bitc::ATTR_KIND_READ_ONLY: 1256 return Attribute::ReadOnly; 1257 case bitc::ATTR_KIND_RETURNED: 1258 return Attribute::Returned; 1259 case bitc::ATTR_KIND_RETURNS_TWICE: 1260 return Attribute::ReturnsTwice; 1261 case bitc::ATTR_KIND_S_EXT: 1262 return Attribute::SExt; 1263 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1264 return Attribute::StackAlignment; 1265 case bitc::ATTR_KIND_STACK_PROTECT: 1266 return Attribute::StackProtect; 1267 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1268 return Attribute::StackProtectReq; 1269 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1270 return Attribute::StackProtectStrong; 1271 case bitc::ATTR_KIND_SAFESTACK: 1272 return Attribute::SafeStack; 1273 case bitc::ATTR_KIND_STRUCT_RET: 1274 return Attribute::StructRet; 1275 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1276 return Attribute::SanitizeAddress; 1277 case bitc::ATTR_KIND_SANITIZE_THREAD: 1278 return Attribute::SanitizeThread; 1279 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1280 return Attribute::SanitizeMemory; 1281 case bitc::ATTR_KIND_SWIFT_ERROR: 1282 return Attribute::SwiftError; 1283 case bitc::ATTR_KIND_SWIFT_SELF: 1284 return Attribute::SwiftSelf; 1285 case bitc::ATTR_KIND_UW_TABLE: 1286 return Attribute::UWTable; 1287 case bitc::ATTR_KIND_WRITEONLY: 1288 return Attribute::WriteOnly; 1289 case bitc::ATTR_KIND_Z_EXT: 1290 return Attribute::ZExt; 1291 } 1292 } 1293 1294 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1295 unsigned &Alignment) { 1296 // Note: Alignment in bitcode files is incremented by 1, so that zero 1297 // can be used for default alignment. 1298 if (Exponent > Value::MaxAlignmentExponent + 1) 1299 return error("Invalid alignment value"); 1300 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1301 return Error::success(); 1302 } 1303 1304 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1305 *Kind = getAttrFromCode(Code); 1306 if (*Kind == Attribute::None) 1307 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1308 return Error::success(); 1309 } 1310 1311 Error BitcodeReader::parseAttributeGroupBlock() { 1312 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1313 return error("Invalid record"); 1314 1315 if (!MAttributeGroups.empty()) 1316 return error("Invalid multiple blocks"); 1317 1318 SmallVector<uint64_t, 64> Record; 1319 1320 // Read all the records. 1321 while (true) { 1322 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1323 1324 switch (Entry.Kind) { 1325 case BitstreamEntry::SubBlock: // Handled for us already. 1326 case BitstreamEntry::Error: 1327 return error("Malformed block"); 1328 case BitstreamEntry::EndBlock: 1329 return Error::success(); 1330 case BitstreamEntry::Record: 1331 // The interesting case. 1332 break; 1333 } 1334 1335 // Read a record. 1336 Record.clear(); 1337 switch (Stream.readRecord(Entry.ID, Record)) { 1338 default: // Default behavior: ignore. 1339 break; 1340 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1341 if (Record.size() < 3) 1342 return error("Invalid record"); 1343 1344 uint64_t GrpID = Record[0]; 1345 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1346 1347 AttrBuilder B; 1348 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1349 if (Record[i] == 0) { // Enum attribute 1350 Attribute::AttrKind Kind; 1351 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1352 return Err; 1353 1354 B.addAttribute(Kind); 1355 } else if (Record[i] == 1) { // Integer attribute 1356 Attribute::AttrKind Kind; 1357 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1358 return Err; 1359 if (Kind == Attribute::Alignment) 1360 B.addAlignmentAttr(Record[++i]); 1361 else if (Kind == Attribute::StackAlignment) 1362 B.addStackAlignmentAttr(Record[++i]); 1363 else if (Kind == Attribute::Dereferenceable) 1364 B.addDereferenceableAttr(Record[++i]); 1365 else if (Kind == Attribute::DereferenceableOrNull) 1366 B.addDereferenceableOrNullAttr(Record[++i]); 1367 else if (Kind == Attribute::AllocSize) 1368 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1369 } else { // String attribute 1370 assert((Record[i] == 3 || Record[i] == 4) && 1371 "Invalid attribute group entry"); 1372 bool HasValue = (Record[i++] == 4); 1373 SmallString<64> KindStr; 1374 SmallString<64> ValStr; 1375 1376 while (Record[i] != 0 && i != e) 1377 KindStr += Record[i++]; 1378 assert(Record[i] == 0 && "Kind string not null terminated"); 1379 1380 if (HasValue) { 1381 // Has a value associated with it. 1382 ++i; // Skip the '0' that terminates the "kind" string. 1383 while (Record[i] != 0 && i != e) 1384 ValStr += Record[i++]; 1385 assert(Record[i] == 0 && "Value string not null terminated"); 1386 } 1387 1388 B.addAttribute(KindStr.str(), ValStr.str()); 1389 } 1390 } 1391 1392 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1393 break; 1394 } 1395 } 1396 } 1397 } 1398 1399 Error BitcodeReader::parseTypeTable() { 1400 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1401 return error("Invalid record"); 1402 1403 return parseTypeTableBody(); 1404 } 1405 1406 Error BitcodeReader::parseTypeTableBody() { 1407 if (!TypeList.empty()) 1408 return error("Invalid multiple blocks"); 1409 1410 SmallVector<uint64_t, 64> Record; 1411 unsigned NumRecords = 0; 1412 1413 SmallString<64> TypeName; 1414 1415 // Read all the records for this type table. 1416 while (true) { 1417 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1418 1419 switch (Entry.Kind) { 1420 case BitstreamEntry::SubBlock: // Handled for us already. 1421 case BitstreamEntry::Error: 1422 return error("Malformed block"); 1423 case BitstreamEntry::EndBlock: 1424 if (NumRecords != TypeList.size()) 1425 return error("Malformed block"); 1426 return Error::success(); 1427 case BitstreamEntry::Record: 1428 // The interesting case. 1429 break; 1430 } 1431 1432 // Read a record. 1433 Record.clear(); 1434 Type *ResultTy = nullptr; 1435 switch (Stream.readRecord(Entry.ID, Record)) { 1436 default: 1437 return error("Invalid value"); 1438 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1439 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1440 // type list. This allows us to reserve space. 1441 if (Record.size() < 1) 1442 return error("Invalid record"); 1443 TypeList.resize(Record[0]); 1444 continue; 1445 case bitc::TYPE_CODE_VOID: // VOID 1446 ResultTy = Type::getVoidTy(Context); 1447 break; 1448 case bitc::TYPE_CODE_HALF: // HALF 1449 ResultTy = Type::getHalfTy(Context); 1450 break; 1451 case bitc::TYPE_CODE_FLOAT: // FLOAT 1452 ResultTy = Type::getFloatTy(Context); 1453 break; 1454 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1455 ResultTy = Type::getDoubleTy(Context); 1456 break; 1457 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1458 ResultTy = Type::getX86_FP80Ty(Context); 1459 break; 1460 case bitc::TYPE_CODE_FP128: // FP128 1461 ResultTy = Type::getFP128Ty(Context); 1462 break; 1463 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1464 ResultTy = Type::getPPC_FP128Ty(Context); 1465 break; 1466 case bitc::TYPE_CODE_LABEL: // LABEL 1467 ResultTy = Type::getLabelTy(Context); 1468 break; 1469 case bitc::TYPE_CODE_METADATA: // METADATA 1470 ResultTy = Type::getMetadataTy(Context); 1471 break; 1472 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1473 ResultTy = Type::getX86_MMXTy(Context); 1474 break; 1475 case bitc::TYPE_CODE_TOKEN: // TOKEN 1476 ResultTy = Type::getTokenTy(Context); 1477 break; 1478 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1479 if (Record.size() < 1) 1480 return error("Invalid record"); 1481 1482 uint64_t NumBits = Record[0]; 1483 if (NumBits < IntegerType::MIN_INT_BITS || 1484 NumBits > IntegerType::MAX_INT_BITS) 1485 return error("Bitwidth for integer type out of range"); 1486 ResultTy = IntegerType::get(Context, NumBits); 1487 break; 1488 } 1489 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1490 // [pointee type, address space] 1491 if (Record.size() < 1) 1492 return error("Invalid record"); 1493 unsigned AddressSpace = 0; 1494 if (Record.size() == 2) 1495 AddressSpace = Record[1]; 1496 ResultTy = getTypeByID(Record[0]); 1497 if (!ResultTy || 1498 !PointerType::isValidElementType(ResultTy)) 1499 return error("Invalid type"); 1500 ResultTy = PointerType::get(ResultTy, AddressSpace); 1501 break; 1502 } 1503 case bitc::TYPE_CODE_FUNCTION_OLD: { 1504 // FIXME: attrid is dead, remove it in LLVM 4.0 1505 // FUNCTION: [vararg, attrid, retty, paramty x N] 1506 if (Record.size() < 3) 1507 return error("Invalid record"); 1508 SmallVector<Type*, 8> ArgTys; 1509 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1510 if (Type *T = getTypeByID(Record[i])) 1511 ArgTys.push_back(T); 1512 else 1513 break; 1514 } 1515 1516 ResultTy = getTypeByID(Record[2]); 1517 if (!ResultTy || ArgTys.size() < Record.size()-3) 1518 return error("Invalid type"); 1519 1520 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1521 break; 1522 } 1523 case bitc::TYPE_CODE_FUNCTION: { 1524 // FUNCTION: [vararg, retty, paramty x N] 1525 if (Record.size() < 2) 1526 return error("Invalid record"); 1527 SmallVector<Type*, 8> ArgTys; 1528 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1529 if (Type *T = getTypeByID(Record[i])) { 1530 if (!FunctionType::isValidArgumentType(T)) 1531 return error("Invalid function argument type"); 1532 ArgTys.push_back(T); 1533 } 1534 else 1535 break; 1536 } 1537 1538 ResultTy = getTypeByID(Record[1]); 1539 if (!ResultTy || ArgTys.size() < Record.size()-2) 1540 return error("Invalid type"); 1541 1542 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1543 break; 1544 } 1545 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1546 if (Record.size() < 1) 1547 return error("Invalid record"); 1548 SmallVector<Type*, 8> EltTys; 1549 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1550 if (Type *T = getTypeByID(Record[i])) 1551 EltTys.push_back(T); 1552 else 1553 break; 1554 } 1555 if (EltTys.size() != Record.size()-1) 1556 return error("Invalid type"); 1557 ResultTy = StructType::get(Context, EltTys, Record[0]); 1558 break; 1559 } 1560 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1561 if (convertToString(Record, 0, TypeName)) 1562 return error("Invalid record"); 1563 continue; 1564 1565 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1566 if (Record.size() < 1) 1567 return error("Invalid record"); 1568 1569 if (NumRecords >= TypeList.size()) 1570 return error("Invalid TYPE table"); 1571 1572 // Check to see if this was forward referenced, if so fill in the temp. 1573 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1574 if (Res) { 1575 Res->setName(TypeName); 1576 TypeList[NumRecords] = nullptr; 1577 } else // Otherwise, create a new struct. 1578 Res = createIdentifiedStructType(Context, TypeName); 1579 TypeName.clear(); 1580 1581 SmallVector<Type*, 8> EltTys; 1582 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1583 if (Type *T = getTypeByID(Record[i])) 1584 EltTys.push_back(T); 1585 else 1586 break; 1587 } 1588 if (EltTys.size() != Record.size()-1) 1589 return error("Invalid record"); 1590 Res->setBody(EltTys, Record[0]); 1591 ResultTy = Res; 1592 break; 1593 } 1594 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1595 if (Record.size() != 1) 1596 return error("Invalid record"); 1597 1598 if (NumRecords >= TypeList.size()) 1599 return error("Invalid TYPE table"); 1600 1601 // Check to see if this was forward referenced, if so fill in the temp. 1602 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1603 if (Res) { 1604 Res->setName(TypeName); 1605 TypeList[NumRecords] = nullptr; 1606 } else // Otherwise, create a new struct with no body. 1607 Res = createIdentifiedStructType(Context, TypeName); 1608 TypeName.clear(); 1609 ResultTy = Res; 1610 break; 1611 } 1612 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1613 if (Record.size() < 2) 1614 return error("Invalid record"); 1615 ResultTy = getTypeByID(Record[1]); 1616 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1617 return error("Invalid type"); 1618 ResultTy = ArrayType::get(ResultTy, Record[0]); 1619 break; 1620 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1621 if (Record.size() < 2) 1622 return error("Invalid record"); 1623 if (Record[0] == 0) 1624 return error("Invalid vector length"); 1625 ResultTy = getTypeByID(Record[1]); 1626 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1627 return error("Invalid type"); 1628 ResultTy = VectorType::get(ResultTy, Record[0]); 1629 break; 1630 } 1631 1632 if (NumRecords >= TypeList.size()) 1633 return error("Invalid TYPE table"); 1634 if (TypeList[NumRecords]) 1635 return error( 1636 "Invalid TYPE table: Only named structs can be forward referenced"); 1637 assert(ResultTy && "Didn't read a type?"); 1638 TypeList[NumRecords++] = ResultTy; 1639 } 1640 } 1641 1642 Error BitcodeReader::parseOperandBundleTags() { 1643 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1644 return error("Invalid record"); 1645 1646 if (!BundleTags.empty()) 1647 return error("Invalid multiple blocks"); 1648 1649 SmallVector<uint64_t, 64> Record; 1650 1651 while (true) { 1652 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1653 1654 switch (Entry.Kind) { 1655 case BitstreamEntry::SubBlock: // Handled for us already. 1656 case BitstreamEntry::Error: 1657 return error("Malformed block"); 1658 case BitstreamEntry::EndBlock: 1659 return Error::success(); 1660 case BitstreamEntry::Record: 1661 // The interesting case. 1662 break; 1663 } 1664 1665 // Tags are implicitly mapped to integers by their order. 1666 1667 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1668 return error("Invalid record"); 1669 1670 // OPERAND_BUNDLE_TAG: [strchr x N] 1671 BundleTags.emplace_back(); 1672 if (convertToString(Record, 0, BundleTags.back())) 1673 return error("Invalid record"); 1674 Record.clear(); 1675 } 1676 } 1677 1678 /// Associate a value with its name from the given index in the provided record. 1679 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1680 unsigned NameIndex, Triple &TT) { 1681 SmallString<128> ValueName; 1682 if (convertToString(Record, NameIndex, ValueName)) 1683 return error("Invalid record"); 1684 unsigned ValueID = Record[0]; 1685 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1686 return error("Invalid record"); 1687 Value *V = ValueList[ValueID]; 1688 1689 StringRef NameStr(ValueName.data(), ValueName.size()); 1690 if (NameStr.find_first_of(0) != StringRef::npos) 1691 return error("Invalid value name"); 1692 V->setName(NameStr); 1693 auto *GO = dyn_cast<GlobalObject>(V); 1694 if (GO) { 1695 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1696 if (TT.isOSBinFormatMachO()) 1697 GO->setComdat(nullptr); 1698 else 1699 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1700 } 1701 } 1702 return V; 1703 } 1704 1705 /// Helper to note and return the current location, and jump to the given 1706 /// offset. 1707 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1708 BitstreamCursor &Stream) { 1709 // Save the current parsing location so we can jump back at the end 1710 // of the VST read. 1711 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1712 Stream.JumpToBit(Offset * 32); 1713 #ifndef NDEBUG 1714 // Do some checking if we are in debug mode. 1715 BitstreamEntry Entry = Stream.advance(); 1716 assert(Entry.Kind == BitstreamEntry::SubBlock); 1717 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1718 #else 1719 // In NDEBUG mode ignore the output so we don't get an unused variable 1720 // warning. 1721 Stream.advance(); 1722 #endif 1723 return CurrentBit; 1724 } 1725 1726 /// Parse the value symbol table at either the current parsing location or 1727 /// at the given bit offset if provided. 1728 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1729 uint64_t CurrentBit; 1730 // Pass in the Offset to distinguish between calling for the module-level 1731 // VST (where we want to jump to the VST offset) and the function-level 1732 // VST (where we don't). 1733 if (Offset > 0) 1734 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1735 1736 // Compute the delta between the bitcode indices in the VST (the word offset 1737 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1738 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1739 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1740 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1741 // just before entering the VST subblock because: 1) the EnterSubBlock 1742 // changes the AbbrevID width; 2) the VST block is nested within the same 1743 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1744 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1745 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1746 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1747 unsigned FuncBitcodeOffsetDelta = 1748 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1749 1750 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1751 return error("Invalid record"); 1752 1753 SmallVector<uint64_t, 64> Record; 1754 1755 Triple TT(TheModule->getTargetTriple()); 1756 1757 // Read all the records for this value table. 1758 SmallString<128> ValueName; 1759 1760 while (true) { 1761 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1762 1763 switch (Entry.Kind) { 1764 case BitstreamEntry::SubBlock: // Handled for us already. 1765 case BitstreamEntry::Error: 1766 return error("Malformed block"); 1767 case BitstreamEntry::EndBlock: 1768 if (Offset > 0) 1769 Stream.JumpToBit(CurrentBit); 1770 return Error::success(); 1771 case BitstreamEntry::Record: 1772 // The interesting case. 1773 break; 1774 } 1775 1776 // Read a record. 1777 Record.clear(); 1778 switch (Stream.readRecord(Entry.ID, Record)) { 1779 default: // Default behavior: unknown type. 1780 break; 1781 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1782 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1783 if (Error Err = ValOrErr.takeError()) 1784 return Err; 1785 ValOrErr.get(); 1786 break; 1787 } 1788 case bitc::VST_CODE_FNENTRY: { 1789 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1790 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1791 if (Error Err = ValOrErr.takeError()) 1792 return Err; 1793 Value *V = ValOrErr.get(); 1794 1795 auto *GO = dyn_cast<GlobalObject>(V); 1796 if (!GO) { 1797 // If this is an alias, need to get the actual Function object 1798 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1799 auto *GA = dyn_cast<GlobalAlias>(V); 1800 if (GA) 1801 GO = GA->getBaseObject(); 1802 assert(GO); 1803 } 1804 1805 // Note that we subtract 1 here because the offset is relative to one word 1806 // before the start of the identification or module block, which was 1807 // historically always the start of the regular bitcode header. 1808 uint64_t FuncWordOffset = Record[1] - 1; 1809 Function *F = dyn_cast<Function>(GO); 1810 assert(F); 1811 uint64_t FuncBitOffset = FuncWordOffset * 32; 1812 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1813 // Set the LastFunctionBlockBit to point to the last function block. 1814 // Later when parsing is resumed after function materialization, 1815 // we can simply skip that last function block. 1816 if (FuncBitOffset > LastFunctionBlockBit) 1817 LastFunctionBlockBit = FuncBitOffset; 1818 break; 1819 } 1820 case bitc::VST_CODE_BBENTRY: { 1821 if (convertToString(Record, 1, ValueName)) 1822 return error("Invalid record"); 1823 BasicBlock *BB = getBasicBlock(Record[0]); 1824 if (!BB) 1825 return error("Invalid record"); 1826 1827 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1828 ValueName.clear(); 1829 break; 1830 } 1831 } 1832 } 1833 } 1834 1835 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 1836 /// encoding. 1837 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1838 if ((V & 1) == 0) 1839 return V >> 1; 1840 if (V != 1) 1841 return -(V >> 1); 1842 // There is no such thing as -0 with integers. "-0" really means MININT. 1843 return 1ULL << 63; 1844 } 1845 1846 /// Resolve all of the initializers for global values and aliases that we can. 1847 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 1848 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1849 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 1850 IndirectSymbolInitWorklist; 1851 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1852 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1853 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 1854 1855 GlobalInitWorklist.swap(GlobalInits); 1856 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 1857 FunctionPrefixWorklist.swap(FunctionPrefixes); 1858 FunctionPrologueWorklist.swap(FunctionPrologues); 1859 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 1860 1861 while (!GlobalInitWorklist.empty()) { 1862 unsigned ValID = GlobalInitWorklist.back().second; 1863 if (ValID >= ValueList.size()) { 1864 // Not ready to resolve this yet, it requires something later in the file. 1865 GlobalInits.push_back(GlobalInitWorklist.back()); 1866 } else { 1867 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1868 GlobalInitWorklist.back().first->setInitializer(C); 1869 else 1870 return error("Expected a constant"); 1871 } 1872 GlobalInitWorklist.pop_back(); 1873 } 1874 1875 while (!IndirectSymbolInitWorklist.empty()) { 1876 unsigned ValID = IndirectSymbolInitWorklist.back().second; 1877 if (ValID >= ValueList.size()) { 1878 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 1879 } else { 1880 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 1881 if (!C) 1882 return error("Expected a constant"); 1883 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 1884 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 1885 return error("Alias and aliasee types don't match"); 1886 GIS->setIndirectSymbol(C); 1887 } 1888 IndirectSymbolInitWorklist.pop_back(); 1889 } 1890 1891 while (!FunctionPrefixWorklist.empty()) { 1892 unsigned ValID = FunctionPrefixWorklist.back().second; 1893 if (ValID >= ValueList.size()) { 1894 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1895 } else { 1896 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1897 FunctionPrefixWorklist.back().first->setPrefixData(C); 1898 else 1899 return error("Expected a constant"); 1900 } 1901 FunctionPrefixWorklist.pop_back(); 1902 } 1903 1904 while (!FunctionPrologueWorklist.empty()) { 1905 unsigned ValID = FunctionPrologueWorklist.back().second; 1906 if (ValID >= ValueList.size()) { 1907 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1908 } else { 1909 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1910 FunctionPrologueWorklist.back().first->setPrologueData(C); 1911 else 1912 return error("Expected a constant"); 1913 } 1914 FunctionPrologueWorklist.pop_back(); 1915 } 1916 1917 while (!FunctionPersonalityFnWorklist.empty()) { 1918 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 1919 if (ValID >= ValueList.size()) { 1920 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 1921 } else { 1922 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1923 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 1924 else 1925 return error("Expected a constant"); 1926 } 1927 FunctionPersonalityFnWorklist.pop_back(); 1928 } 1929 1930 return Error::success(); 1931 } 1932 1933 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1934 SmallVector<uint64_t, 8> Words(Vals.size()); 1935 transform(Vals, Words.begin(), 1936 BitcodeReader::decodeSignRotatedValue); 1937 1938 return APInt(TypeBits, Words); 1939 } 1940 1941 Error BitcodeReader::parseConstants() { 1942 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1943 return error("Invalid record"); 1944 1945 SmallVector<uint64_t, 64> Record; 1946 1947 // Read all the records for this value table. 1948 Type *CurTy = Type::getInt32Ty(Context); 1949 unsigned NextCstNo = ValueList.size(); 1950 1951 while (true) { 1952 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1953 1954 switch (Entry.Kind) { 1955 case BitstreamEntry::SubBlock: // Handled for us already. 1956 case BitstreamEntry::Error: 1957 return error("Malformed block"); 1958 case BitstreamEntry::EndBlock: 1959 if (NextCstNo != ValueList.size()) 1960 return error("Invalid constant reference"); 1961 1962 // Once all the constants have been read, go through and resolve forward 1963 // references. 1964 ValueList.resolveConstantForwardRefs(); 1965 return Error::success(); 1966 case BitstreamEntry::Record: 1967 // The interesting case. 1968 break; 1969 } 1970 1971 // Read a record. 1972 Record.clear(); 1973 Type *VoidType = Type::getVoidTy(Context); 1974 Value *V = nullptr; 1975 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1976 switch (BitCode) { 1977 default: // Default behavior: unknown constant 1978 case bitc::CST_CODE_UNDEF: // UNDEF 1979 V = UndefValue::get(CurTy); 1980 break; 1981 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1982 if (Record.empty()) 1983 return error("Invalid record"); 1984 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1985 return error("Invalid record"); 1986 if (TypeList[Record[0]] == VoidType) 1987 return error("Invalid constant type"); 1988 CurTy = TypeList[Record[0]]; 1989 continue; // Skip the ValueList manipulation. 1990 case bitc::CST_CODE_NULL: // NULL 1991 V = Constant::getNullValue(CurTy); 1992 break; 1993 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1994 if (!CurTy->isIntegerTy() || Record.empty()) 1995 return error("Invalid record"); 1996 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1997 break; 1998 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1999 if (!CurTy->isIntegerTy() || Record.empty()) 2000 return error("Invalid record"); 2001 2002 APInt VInt = 2003 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2004 V = ConstantInt::get(Context, VInt); 2005 2006 break; 2007 } 2008 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2009 if (Record.empty()) 2010 return error("Invalid record"); 2011 if (CurTy->isHalfTy()) 2012 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2013 APInt(16, (uint16_t)Record[0]))); 2014 else if (CurTy->isFloatTy()) 2015 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2016 APInt(32, (uint32_t)Record[0]))); 2017 else if (CurTy->isDoubleTy()) 2018 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2019 APInt(64, Record[0]))); 2020 else if (CurTy->isX86_FP80Ty()) { 2021 // Bits are not stored the same way as a normal i80 APInt, compensate. 2022 uint64_t Rearrange[2]; 2023 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2024 Rearrange[1] = Record[0] >> 48; 2025 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2026 APInt(80, Rearrange))); 2027 } else if (CurTy->isFP128Ty()) 2028 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2029 APInt(128, Record))); 2030 else if (CurTy->isPPC_FP128Ty()) 2031 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2032 APInt(128, Record))); 2033 else 2034 V = UndefValue::get(CurTy); 2035 break; 2036 } 2037 2038 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2039 if (Record.empty()) 2040 return error("Invalid record"); 2041 2042 unsigned Size = Record.size(); 2043 SmallVector<Constant*, 16> Elts; 2044 2045 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2046 for (unsigned i = 0; i != Size; ++i) 2047 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2048 STy->getElementType(i))); 2049 V = ConstantStruct::get(STy, Elts); 2050 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2051 Type *EltTy = ATy->getElementType(); 2052 for (unsigned i = 0; i != Size; ++i) 2053 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2054 V = ConstantArray::get(ATy, Elts); 2055 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2056 Type *EltTy = VTy->getElementType(); 2057 for (unsigned i = 0; i != Size; ++i) 2058 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2059 V = ConstantVector::get(Elts); 2060 } else { 2061 V = UndefValue::get(CurTy); 2062 } 2063 break; 2064 } 2065 case bitc::CST_CODE_STRING: // STRING: [values] 2066 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2067 if (Record.empty()) 2068 return error("Invalid record"); 2069 2070 SmallString<16> Elts(Record.begin(), Record.end()); 2071 V = ConstantDataArray::getString(Context, Elts, 2072 BitCode == bitc::CST_CODE_CSTRING); 2073 break; 2074 } 2075 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2076 if (Record.empty()) 2077 return error("Invalid record"); 2078 2079 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2080 if (EltTy->isIntegerTy(8)) { 2081 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2082 if (isa<VectorType>(CurTy)) 2083 V = ConstantDataVector::get(Context, Elts); 2084 else 2085 V = ConstantDataArray::get(Context, Elts); 2086 } else if (EltTy->isIntegerTy(16)) { 2087 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2088 if (isa<VectorType>(CurTy)) 2089 V = ConstantDataVector::get(Context, Elts); 2090 else 2091 V = ConstantDataArray::get(Context, Elts); 2092 } else if (EltTy->isIntegerTy(32)) { 2093 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2094 if (isa<VectorType>(CurTy)) 2095 V = ConstantDataVector::get(Context, Elts); 2096 else 2097 V = ConstantDataArray::get(Context, Elts); 2098 } else if (EltTy->isIntegerTy(64)) { 2099 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2100 if (isa<VectorType>(CurTy)) 2101 V = ConstantDataVector::get(Context, Elts); 2102 else 2103 V = ConstantDataArray::get(Context, Elts); 2104 } else if (EltTy->isHalfTy()) { 2105 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2106 if (isa<VectorType>(CurTy)) 2107 V = ConstantDataVector::getFP(Context, Elts); 2108 else 2109 V = ConstantDataArray::getFP(Context, Elts); 2110 } else if (EltTy->isFloatTy()) { 2111 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2112 if (isa<VectorType>(CurTy)) 2113 V = ConstantDataVector::getFP(Context, Elts); 2114 else 2115 V = ConstantDataArray::getFP(Context, Elts); 2116 } else if (EltTy->isDoubleTy()) { 2117 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2118 if (isa<VectorType>(CurTy)) 2119 V = ConstantDataVector::getFP(Context, Elts); 2120 else 2121 V = ConstantDataArray::getFP(Context, Elts); 2122 } else { 2123 return error("Invalid type for value"); 2124 } 2125 break; 2126 } 2127 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2128 if (Record.size() < 3) 2129 return error("Invalid record"); 2130 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2131 if (Opc < 0) { 2132 V = UndefValue::get(CurTy); // Unknown binop. 2133 } else { 2134 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2135 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2136 unsigned Flags = 0; 2137 if (Record.size() >= 4) { 2138 if (Opc == Instruction::Add || 2139 Opc == Instruction::Sub || 2140 Opc == Instruction::Mul || 2141 Opc == Instruction::Shl) { 2142 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2143 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2144 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2145 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2146 } else if (Opc == Instruction::SDiv || 2147 Opc == Instruction::UDiv || 2148 Opc == Instruction::LShr || 2149 Opc == Instruction::AShr) { 2150 if (Record[3] & (1 << bitc::PEO_EXACT)) 2151 Flags |= SDivOperator::IsExact; 2152 } 2153 } 2154 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2155 } 2156 break; 2157 } 2158 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2159 if (Record.size() < 3) 2160 return error("Invalid record"); 2161 int Opc = getDecodedCastOpcode(Record[0]); 2162 if (Opc < 0) { 2163 V = UndefValue::get(CurTy); // Unknown cast. 2164 } else { 2165 Type *OpTy = getTypeByID(Record[1]); 2166 if (!OpTy) 2167 return error("Invalid record"); 2168 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2169 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2170 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2171 } 2172 break; 2173 } 2174 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2175 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2176 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2177 // operands] 2178 unsigned OpNum = 0; 2179 Type *PointeeType = nullptr; 2180 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2181 Record.size() % 2) 2182 PointeeType = getTypeByID(Record[OpNum++]); 2183 2184 bool InBounds = false; 2185 Optional<unsigned> InRangeIndex; 2186 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2187 uint64_t Op = Record[OpNum++]; 2188 InBounds = Op & 1; 2189 InRangeIndex = Op >> 1; 2190 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2191 InBounds = true; 2192 2193 SmallVector<Constant*, 16> Elts; 2194 while (OpNum != Record.size()) { 2195 Type *ElTy = getTypeByID(Record[OpNum++]); 2196 if (!ElTy) 2197 return error("Invalid record"); 2198 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2199 } 2200 2201 if (PointeeType && 2202 PointeeType != 2203 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2204 ->getElementType()) 2205 return error("Explicit gep operator type does not match pointee type " 2206 "of pointer operand"); 2207 2208 if (Elts.size() < 1) 2209 return error("Invalid gep with no operands"); 2210 2211 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2212 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2213 InBounds, InRangeIndex); 2214 break; 2215 } 2216 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2217 if (Record.size() < 3) 2218 return error("Invalid record"); 2219 2220 Type *SelectorTy = Type::getInt1Ty(Context); 2221 2222 // The selector might be an i1 or an <n x i1> 2223 // Get the type from the ValueList before getting a forward ref. 2224 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2225 if (Value *V = ValueList[Record[0]]) 2226 if (SelectorTy != V->getType()) 2227 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2228 2229 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2230 SelectorTy), 2231 ValueList.getConstantFwdRef(Record[1],CurTy), 2232 ValueList.getConstantFwdRef(Record[2],CurTy)); 2233 break; 2234 } 2235 case bitc::CST_CODE_CE_EXTRACTELT 2236 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2237 if (Record.size() < 3) 2238 return error("Invalid record"); 2239 VectorType *OpTy = 2240 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2241 if (!OpTy) 2242 return error("Invalid record"); 2243 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2244 Constant *Op1 = nullptr; 2245 if (Record.size() == 4) { 2246 Type *IdxTy = getTypeByID(Record[2]); 2247 if (!IdxTy) 2248 return error("Invalid record"); 2249 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2250 } else // TODO: Remove with llvm 4.0 2251 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2252 if (!Op1) 2253 return error("Invalid record"); 2254 V = ConstantExpr::getExtractElement(Op0, Op1); 2255 break; 2256 } 2257 case bitc::CST_CODE_CE_INSERTELT 2258 : { // CE_INSERTELT: [opval, opval, opty, opval] 2259 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2260 if (Record.size() < 3 || !OpTy) 2261 return error("Invalid record"); 2262 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2263 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2264 OpTy->getElementType()); 2265 Constant *Op2 = nullptr; 2266 if (Record.size() == 4) { 2267 Type *IdxTy = getTypeByID(Record[2]); 2268 if (!IdxTy) 2269 return error("Invalid record"); 2270 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2271 } else // TODO: Remove with llvm 4.0 2272 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2273 if (!Op2) 2274 return error("Invalid record"); 2275 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2276 break; 2277 } 2278 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2279 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2280 if (Record.size() < 3 || !OpTy) 2281 return error("Invalid record"); 2282 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2283 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2284 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2285 OpTy->getNumElements()); 2286 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2287 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2288 break; 2289 } 2290 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2291 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2292 VectorType *OpTy = 2293 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2294 if (Record.size() < 4 || !RTy || !OpTy) 2295 return error("Invalid record"); 2296 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2297 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2298 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2299 RTy->getNumElements()); 2300 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2301 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2302 break; 2303 } 2304 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2305 if (Record.size() < 4) 2306 return error("Invalid record"); 2307 Type *OpTy = getTypeByID(Record[0]); 2308 if (!OpTy) 2309 return error("Invalid record"); 2310 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2311 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2312 2313 if (OpTy->isFPOrFPVectorTy()) 2314 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2315 else 2316 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2317 break; 2318 } 2319 // This maintains backward compatibility, pre-asm dialect keywords. 2320 // FIXME: Remove with the 4.0 release. 2321 case bitc::CST_CODE_INLINEASM_OLD: { 2322 if (Record.size() < 2) 2323 return error("Invalid record"); 2324 std::string AsmStr, ConstrStr; 2325 bool HasSideEffects = Record[0] & 1; 2326 bool IsAlignStack = Record[0] >> 1; 2327 unsigned AsmStrSize = Record[1]; 2328 if (2+AsmStrSize >= Record.size()) 2329 return error("Invalid record"); 2330 unsigned ConstStrSize = Record[2+AsmStrSize]; 2331 if (3+AsmStrSize+ConstStrSize > Record.size()) 2332 return error("Invalid record"); 2333 2334 for (unsigned i = 0; i != AsmStrSize; ++i) 2335 AsmStr += (char)Record[2+i]; 2336 for (unsigned i = 0; i != ConstStrSize; ++i) 2337 ConstrStr += (char)Record[3+AsmStrSize+i]; 2338 PointerType *PTy = cast<PointerType>(CurTy); 2339 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2340 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2341 break; 2342 } 2343 // This version adds support for the asm dialect keywords (e.g., 2344 // inteldialect). 2345 case bitc::CST_CODE_INLINEASM: { 2346 if (Record.size() < 2) 2347 return error("Invalid record"); 2348 std::string AsmStr, ConstrStr; 2349 bool HasSideEffects = Record[0] & 1; 2350 bool IsAlignStack = (Record[0] >> 1) & 1; 2351 unsigned AsmDialect = Record[0] >> 2; 2352 unsigned AsmStrSize = Record[1]; 2353 if (2+AsmStrSize >= Record.size()) 2354 return error("Invalid record"); 2355 unsigned ConstStrSize = Record[2+AsmStrSize]; 2356 if (3+AsmStrSize+ConstStrSize > Record.size()) 2357 return error("Invalid record"); 2358 2359 for (unsigned i = 0; i != AsmStrSize; ++i) 2360 AsmStr += (char)Record[2+i]; 2361 for (unsigned i = 0; i != ConstStrSize; ++i) 2362 ConstrStr += (char)Record[3+AsmStrSize+i]; 2363 PointerType *PTy = cast<PointerType>(CurTy); 2364 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2365 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2366 InlineAsm::AsmDialect(AsmDialect)); 2367 break; 2368 } 2369 case bitc::CST_CODE_BLOCKADDRESS:{ 2370 if (Record.size() < 3) 2371 return error("Invalid record"); 2372 Type *FnTy = getTypeByID(Record[0]); 2373 if (!FnTy) 2374 return error("Invalid record"); 2375 Function *Fn = 2376 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2377 if (!Fn) 2378 return error("Invalid record"); 2379 2380 // If the function is already parsed we can insert the block address right 2381 // away. 2382 BasicBlock *BB; 2383 unsigned BBID = Record[2]; 2384 if (!BBID) 2385 // Invalid reference to entry block. 2386 return error("Invalid ID"); 2387 if (!Fn->empty()) { 2388 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2389 for (size_t I = 0, E = BBID; I != E; ++I) { 2390 if (BBI == BBE) 2391 return error("Invalid ID"); 2392 ++BBI; 2393 } 2394 BB = &*BBI; 2395 } else { 2396 // Otherwise insert a placeholder and remember it so it can be inserted 2397 // when the function is parsed. 2398 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2399 if (FwdBBs.empty()) 2400 BasicBlockFwdRefQueue.push_back(Fn); 2401 if (FwdBBs.size() < BBID + 1) 2402 FwdBBs.resize(BBID + 1); 2403 if (!FwdBBs[BBID]) 2404 FwdBBs[BBID] = BasicBlock::Create(Context); 2405 BB = FwdBBs[BBID]; 2406 } 2407 V = BlockAddress::get(Fn, BB); 2408 break; 2409 } 2410 } 2411 2412 ValueList.assignValue(V, NextCstNo); 2413 ++NextCstNo; 2414 } 2415 } 2416 2417 Error BitcodeReader::parseUseLists() { 2418 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2419 return error("Invalid record"); 2420 2421 // Read all the records. 2422 SmallVector<uint64_t, 64> Record; 2423 2424 while (true) { 2425 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2426 2427 switch (Entry.Kind) { 2428 case BitstreamEntry::SubBlock: // Handled for us already. 2429 case BitstreamEntry::Error: 2430 return error("Malformed block"); 2431 case BitstreamEntry::EndBlock: 2432 return Error::success(); 2433 case BitstreamEntry::Record: 2434 // The interesting case. 2435 break; 2436 } 2437 2438 // Read a use list record. 2439 Record.clear(); 2440 bool IsBB = false; 2441 switch (Stream.readRecord(Entry.ID, Record)) { 2442 default: // Default behavior: unknown type. 2443 break; 2444 case bitc::USELIST_CODE_BB: 2445 IsBB = true; 2446 LLVM_FALLTHROUGH; 2447 case bitc::USELIST_CODE_DEFAULT: { 2448 unsigned RecordLength = Record.size(); 2449 if (RecordLength < 3) 2450 // Records should have at least an ID and two indexes. 2451 return error("Invalid record"); 2452 unsigned ID = Record.back(); 2453 Record.pop_back(); 2454 2455 Value *V; 2456 if (IsBB) { 2457 assert(ID < FunctionBBs.size() && "Basic block not found"); 2458 V = FunctionBBs[ID]; 2459 } else 2460 V = ValueList[ID]; 2461 unsigned NumUses = 0; 2462 SmallDenseMap<const Use *, unsigned, 16> Order; 2463 for (const Use &U : V->materialized_uses()) { 2464 if (++NumUses > Record.size()) 2465 break; 2466 Order[&U] = Record[NumUses - 1]; 2467 } 2468 if (Order.size() != Record.size() || NumUses > Record.size()) 2469 // Mismatches can happen if the functions are being materialized lazily 2470 // (out-of-order), or a value has been upgraded. 2471 break; 2472 2473 V->sortUseList([&](const Use &L, const Use &R) { 2474 return Order.lookup(&L) < Order.lookup(&R); 2475 }); 2476 break; 2477 } 2478 } 2479 } 2480 } 2481 2482 /// When we see the block for metadata, remember where it is and then skip it. 2483 /// This lets us lazily deserialize the metadata. 2484 Error BitcodeReader::rememberAndSkipMetadata() { 2485 // Save the current stream state. 2486 uint64_t CurBit = Stream.GetCurrentBitNo(); 2487 DeferredMetadataInfo.push_back(CurBit); 2488 2489 // Skip over the block for now. 2490 if (Stream.SkipBlock()) 2491 return error("Invalid record"); 2492 return Error::success(); 2493 } 2494 2495 Error BitcodeReader::materializeMetadata() { 2496 for (uint64_t BitPos : DeferredMetadataInfo) { 2497 // Move the bit stream to the saved position. 2498 Stream.JumpToBit(BitPos); 2499 if (Error Err = MDLoader->parseModuleMetadata()) 2500 return Err; 2501 } 2502 DeferredMetadataInfo.clear(); 2503 return Error::success(); 2504 } 2505 2506 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2507 2508 /// When we see the block for a function body, remember where it is and then 2509 /// skip it. This lets us lazily deserialize the functions. 2510 Error BitcodeReader::rememberAndSkipFunctionBody() { 2511 // Get the function we are talking about. 2512 if (FunctionsWithBodies.empty()) 2513 return error("Insufficient function protos"); 2514 2515 Function *Fn = FunctionsWithBodies.back(); 2516 FunctionsWithBodies.pop_back(); 2517 2518 // Save the current stream state. 2519 uint64_t CurBit = Stream.GetCurrentBitNo(); 2520 assert( 2521 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2522 "Mismatch between VST and scanned function offsets"); 2523 DeferredFunctionInfo[Fn] = CurBit; 2524 2525 // Skip over the function block for now. 2526 if (Stream.SkipBlock()) 2527 return error("Invalid record"); 2528 return Error::success(); 2529 } 2530 2531 Error BitcodeReader::globalCleanup() { 2532 // Patch the initializers for globals and aliases up. 2533 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2534 return Err; 2535 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2536 return error("Malformed global initializer set"); 2537 2538 // Look for intrinsic functions which need to be upgraded at some point 2539 for (Function &F : *TheModule) { 2540 Function *NewFn; 2541 if (UpgradeIntrinsicFunction(&F, NewFn)) 2542 UpgradedIntrinsics[&F] = NewFn; 2543 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2544 // Some types could be renamed during loading if several modules are 2545 // loaded in the same LLVMContext (LTO scenario). In this case we should 2546 // remangle intrinsics names as well. 2547 RemangledIntrinsics[&F] = Remangled.getValue(); 2548 } 2549 2550 // Look for global variables which need to be renamed. 2551 for (GlobalVariable &GV : TheModule->globals()) 2552 UpgradeGlobalVariable(&GV); 2553 2554 // Force deallocation of memory for these vectors to favor the client that 2555 // want lazy deserialization. 2556 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2557 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 2558 IndirectSymbolInits); 2559 return Error::success(); 2560 } 2561 2562 /// Support for lazy parsing of function bodies. This is required if we 2563 /// either have an old bitcode file without a VST forward declaration record, 2564 /// or if we have an anonymous function being materialized, since anonymous 2565 /// functions do not have a name and are therefore not in the VST. 2566 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2567 Stream.JumpToBit(NextUnreadBit); 2568 2569 if (Stream.AtEndOfStream()) 2570 return error("Could not find function in stream"); 2571 2572 if (!SeenFirstFunctionBody) 2573 return error("Trying to materialize functions before seeing function blocks"); 2574 2575 // An old bitcode file with the symbol table at the end would have 2576 // finished the parse greedily. 2577 assert(SeenValueSymbolTable); 2578 2579 SmallVector<uint64_t, 64> Record; 2580 2581 while (true) { 2582 BitstreamEntry Entry = Stream.advance(); 2583 switch (Entry.Kind) { 2584 default: 2585 return error("Expect SubBlock"); 2586 case BitstreamEntry::SubBlock: 2587 switch (Entry.ID) { 2588 default: 2589 return error("Expect function block"); 2590 case bitc::FUNCTION_BLOCK_ID: 2591 if (Error Err = rememberAndSkipFunctionBody()) 2592 return Err; 2593 NextUnreadBit = Stream.GetCurrentBitNo(); 2594 return Error::success(); 2595 } 2596 } 2597 } 2598 } 2599 2600 bool BitcodeReaderBase::readBlockInfo() { 2601 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2602 if (!NewBlockInfo) 2603 return true; 2604 BlockInfo = std::move(*NewBlockInfo); 2605 return false; 2606 } 2607 2608 Error BitcodeReader::parseModule(uint64_t ResumeBit, 2609 bool ShouldLazyLoadMetadata) { 2610 if (ResumeBit) 2611 Stream.JumpToBit(ResumeBit); 2612 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2613 return error("Invalid record"); 2614 2615 SmallVector<uint64_t, 64> Record; 2616 std::vector<std::string> SectionTable; 2617 std::vector<std::string> GCTable; 2618 2619 // Read all the records for this module. 2620 while (true) { 2621 BitstreamEntry Entry = Stream.advance(); 2622 2623 switch (Entry.Kind) { 2624 case BitstreamEntry::Error: 2625 return error("Malformed block"); 2626 case BitstreamEntry::EndBlock: 2627 return globalCleanup(); 2628 2629 case BitstreamEntry::SubBlock: 2630 switch (Entry.ID) { 2631 default: // Skip unknown content. 2632 if (Stream.SkipBlock()) 2633 return error("Invalid record"); 2634 break; 2635 case bitc::BLOCKINFO_BLOCK_ID: 2636 if (readBlockInfo()) 2637 return error("Malformed block"); 2638 break; 2639 case bitc::PARAMATTR_BLOCK_ID: 2640 if (Error Err = parseAttributeBlock()) 2641 return Err; 2642 break; 2643 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2644 if (Error Err = parseAttributeGroupBlock()) 2645 return Err; 2646 break; 2647 case bitc::TYPE_BLOCK_ID_NEW: 2648 if (Error Err = parseTypeTable()) 2649 return Err; 2650 break; 2651 case bitc::VALUE_SYMTAB_BLOCK_ID: 2652 if (!SeenValueSymbolTable) { 2653 // Either this is an old form VST without function index and an 2654 // associated VST forward declaration record (which would have caused 2655 // the VST to be jumped to and parsed before it was encountered 2656 // normally in the stream), or there were no function blocks to 2657 // trigger an earlier parsing of the VST. 2658 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 2659 if (Error Err = parseValueSymbolTable()) 2660 return Err; 2661 SeenValueSymbolTable = true; 2662 } else { 2663 // We must have had a VST forward declaration record, which caused 2664 // the parser to jump to and parse the VST earlier. 2665 assert(VSTOffset > 0); 2666 if (Stream.SkipBlock()) 2667 return error("Invalid record"); 2668 } 2669 break; 2670 case bitc::CONSTANTS_BLOCK_ID: 2671 if (Error Err = parseConstants()) 2672 return Err; 2673 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2674 return Err; 2675 break; 2676 case bitc::METADATA_BLOCK_ID: 2677 if (ShouldLazyLoadMetadata) { 2678 if (Error Err = rememberAndSkipMetadata()) 2679 return Err; 2680 break; 2681 } 2682 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2683 if (Error Err = MDLoader->parseModuleMetadata()) 2684 return Err; 2685 break; 2686 case bitc::METADATA_KIND_BLOCK_ID: 2687 if (Error Err = MDLoader->parseMetadataKinds()) 2688 return Err; 2689 break; 2690 case bitc::FUNCTION_BLOCK_ID: 2691 // If this is the first function body we've seen, reverse the 2692 // FunctionsWithBodies list. 2693 if (!SeenFirstFunctionBody) { 2694 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2695 if (Error Err = globalCleanup()) 2696 return Err; 2697 SeenFirstFunctionBody = true; 2698 } 2699 2700 if (VSTOffset > 0) { 2701 // If we have a VST forward declaration record, make sure we 2702 // parse the VST now if we haven't already. It is needed to 2703 // set up the DeferredFunctionInfo vector for lazy reading. 2704 if (!SeenValueSymbolTable) { 2705 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 2706 return Err; 2707 SeenValueSymbolTable = true; 2708 // Fall through so that we record the NextUnreadBit below. 2709 // This is necessary in case we have an anonymous function that 2710 // is later materialized. Since it will not have a VST entry we 2711 // need to fall back to the lazy parse to find its offset. 2712 } else { 2713 // If we have a VST forward declaration record, but have already 2714 // parsed the VST (just above, when the first function body was 2715 // encountered here), then we are resuming the parse after 2716 // materializing functions. The ResumeBit points to the 2717 // start of the last function block recorded in the 2718 // DeferredFunctionInfo map. Skip it. 2719 if (Stream.SkipBlock()) 2720 return error("Invalid record"); 2721 continue; 2722 } 2723 } 2724 2725 // Support older bitcode files that did not have the function 2726 // index in the VST, nor a VST forward declaration record, as 2727 // well as anonymous functions that do not have VST entries. 2728 // Build the DeferredFunctionInfo vector on the fly. 2729 if (Error Err = rememberAndSkipFunctionBody()) 2730 return Err; 2731 2732 // Suspend parsing when we reach the function bodies. Subsequent 2733 // materialization calls will resume it when necessary. If the bitcode 2734 // file is old, the symbol table will be at the end instead and will not 2735 // have been seen yet. In this case, just finish the parse now. 2736 if (SeenValueSymbolTable) { 2737 NextUnreadBit = Stream.GetCurrentBitNo(); 2738 // After the VST has been parsed, we need to make sure intrinsic name 2739 // are auto-upgraded. 2740 return globalCleanup(); 2741 } 2742 break; 2743 case bitc::USELIST_BLOCK_ID: 2744 if (Error Err = parseUseLists()) 2745 return Err; 2746 break; 2747 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 2748 if (Error Err = parseOperandBundleTags()) 2749 return Err; 2750 break; 2751 } 2752 continue; 2753 2754 case BitstreamEntry::Record: 2755 // The interesting case. 2756 break; 2757 } 2758 2759 // Read a record. 2760 auto BitCode = Stream.readRecord(Entry.ID, Record); 2761 switch (BitCode) { 2762 default: break; // Default behavior, ignore unknown content. 2763 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2764 if (Record.size() < 1) 2765 return error("Invalid record"); 2766 // Only version #0 and #1 are supported so far. 2767 unsigned module_version = Record[0]; 2768 switch (module_version) { 2769 default: 2770 return error("Invalid value"); 2771 case 0: 2772 UseRelativeIDs = false; 2773 break; 2774 case 1: 2775 UseRelativeIDs = true; 2776 break; 2777 } 2778 break; 2779 } 2780 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2781 std::string S; 2782 if (convertToString(Record, 0, S)) 2783 return error("Invalid record"); 2784 TheModule->setTargetTriple(S); 2785 break; 2786 } 2787 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2788 std::string S; 2789 if (convertToString(Record, 0, S)) 2790 return error("Invalid record"); 2791 TheModule->setDataLayout(S); 2792 break; 2793 } 2794 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2795 std::string S; 2796 if (convertToString(Record, 0, S)) 2797 return error("Invalid record"); 2798 TheModule->setModuleInlineAsm(S); 2799 break; 2800 } 2801 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2802 // FIXME: Remove in 4.0. 2803 std::string S; 2804 if (convertToString(Record, 0, S)) 2805 return error("Invalid record"); 2806 // Ignore value. 2807 break; 2808 } 2809 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2810 std::string S; 2811 if (convertToString(Record, 0, S)) 2812 return error("Invalid record"); 2813 SectionTable.push_back(S); 2814 break; 2815 } 2816 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2817 std::string S; 2818 if (convertToString(Record, 0, S)) 2819 return error("Invalid record"); 2820 GCTable.push_back(S); 2821 break; 2822 } 2823 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2824 if (Record.size() < 2) 2825 return error("Invalid record"); 2826 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2827 unsigned ComdatNameSize = Record[1]; 2828 std::string ComdatName; 2829 ComdatName.reserve(ComdatNameSize); 2830 for (unsigned i = 0; i != ComdatNameSize; ++i) 2831 ComdatName += (char)Record[2 + i]; 2832 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2833 C->setSelectionKind(SK); 2834 ComdatList.push_back(C); 2835 break; 2836 } 2837 // GLOBALVAR: [pointer type, isconst, initid, 2838 // linkage, alignment, section, visibility, threadlocal, 2839 // unnamed_addr, externally_initialized, dllstorageclass, 2840 // comdat] 2841 case bitc::MODULE_CODE_GLOBALVAR: { 2842 if (Record.size() < 6) 2843 return error("Invalid record"); 2844 Type *Ty = getTypeByID(Record[0]); 2845 if (!Ty) 2846 return error("Invalid record"); 2847 bool isConstant = Record[1] & 1; 2848 bool explicitType = Record[1] & 2; 2849 unsigned AddressSpace; 2850 if (explicitType) { 2851 AddressSpace = Record[1] >> 2; 2852 } else { 2853 if (!Ty->isPointerTy()) 2854 return error("Invalid type for value"); 2855 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2856 Ty = cast<PointerType>(Ty)->getElementType(); 2857 } 2858 2859 uint64_t RawLinkage = Record[3]; 2860 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2861 unsigned Alignment; 2862 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2863 return Err; 2864 std::string Section; 2865 if (Record[5]) { 2866 if (Record[5]-1 >= SectionTable.size()) 2867 return error("Invalid ID"); 2868 Section = SectionTable[Record[5]-1]; 2869 } 2870 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2871 // Local linkage must have default visibility. 2872 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2873 // FIXME: Change to an error if non-default in 4.0. 2874 Visibility = getDecodedVisibility(Record[6]); 2875 2876 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2877 if (Record.size() > 7) 2878 TLM = getDecodedThreadLocalMode(Record[7]); 2879 2880 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2881 if (Record.size() > 8) 2882 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2883 2884 bool ExternallyInitialized = false; 2885 if (Record.size() > 9) 2886 ExternallyInitialized = Record[9]; 2887 2888 GlobalVariable *NewGV = 2889 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2890 TLM, AddressSpace, ExternallyInitialized); 2891 NewGV->setAlignment(Alignment); 2892 if (!Section.empty()) 2893 NewGV->setSection(Section); 2894 NewGV->setVisibility(Visibility); 2895 NewGV->setUnnamedAddr(UnnamedAddr); 2896 2897 if (Record.size() > 10) 2898 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2899 else 2900 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2901 2902 ValueList.push_back(NewGV); 2903 2904 // Remember which value to use for the global initializer. 2905 if (unsigned InitID = Record[2]) 2906 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2907 2908 if (Record.size() > 11) { 2909 if (unsigned ComdatID = Record[11]) { 2910 if (ComdatID > ComdatList.size()) 2911 return error("Invalid global variable comdat ID"); 2912 NewGV->setComdat(ComdatList[ComdatID - 1]); 2913 } 2914 } else if (hasImplicitComdat(RawLinkage)) { 2915 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2916 } 2917 2918 break; 2919 } 2920 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2921 // alignment, section, visibility, gc, unnamed_addr, 2922 // prologuedata, dllstorageclass, comdat, prefixdata] 2923 case bitc::MODULE_CODE_FUNCTION: { 2924 if (Record.size() < 8) 2925 return error("Invalid record"); 2926 Type *Ty = getTypeByID(Record[0]); 2927 if (!Ty) 2928 return error("Invalid record"); 2929 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2930 Ty = PTy->getElementType(); 2931 auto *FTy = dyn_cast<FunctionType>(Ty); 2932 if (!FTy) 2933 return error("Invalid type for value"); 2934 auto CC = static_cast<CallingConv::ID>(Record[1]); 2935 if (CC & ~CallingConv::MaxID) 2936 return error("Invalid calling convention ID"); 2937 2938 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2939 "", TheModule); 2940 2941 Func->setCallingConv(CC); 2942 bool isProto = Record[2]; 2943 uint64_t RawLinkage = Record[3]; 2944 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2945 Func->setAttributes(getAttributes(Record[4])); 2946 2947 unsigned Alignment; 2948 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2949 return Err; 2950 Func->setAlignment(Alignment); 2951 if (Record[6]) { 2952 if (Record[6]-1 >= SectionTable.size()) 2953 return error("Invalid ID"); 2954 Func->setSection(SectionTable[Record[6]-1]); 2955 } 2956 // Local linkage must have default visibility. 2957 if (!Func->hasLocalLinkage()) 2958 // FIXME: Change to an error if non-default in 4.0. 2959 Func->setVisibility(getDecodedVisibility(Record[7])); 2960 if (Record.size() > 8 && Record[8]) { 2961 if (Record[8]-1 >= GCTable.size()) 2962 return error("Invalid ID"); 2963 Func->setGC(GCTable[Record[8] - 1]); 2964 } 2965 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2966 if (Record.size() > 9) 2967 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2968 Func->setUnnamedAddr(UnnamedAddr); 2969 if (Record.size() > 10 && Record[10] != 0) 2970 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2971 2972 if (Record.size() > 11) 2973 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2974 else 2975 upgradeDLLImportExportLinkage(Func, RawLinkage); 2976 2977 if (Record.size() > 12) { 2978 if (unsigned ComdatID = Record[12]) { 2979 if (ComdatID > ComdatList.size()) 2980 return error("Invalid function comdat ID"); 2981 Func->setComdat(ComdatList[ComdatID - 1]); 2982 } 2983 } else if (hasImplicitComdat(RawLinkage)) { 2984 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2985 } 2986 2987 if (Record.size() > 13 && Record[13] != 0) 2988 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2989 2990 if (Record.size() > 14 && Record[14] != 0) 2991 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2992 2993 ValueList.push_back(Func); 2994 2995 // If this is a function with a body, remember the prototype we are 2996 // creating now, so that we can match up the body with them later. 2997 if (!isProto) { 2998 Func->setIsMaterializable(true); 2999 FunctionsWithBodies.push_back(Func); 3000 DeferredFunctionInfo[Func] = 0; 3001 } 3002 break; 3003 } 3004 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3005 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3006 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3007 case bitc::MODULE_CODE_IFUNC: 3008 case bitc::MODULE_CODE_ALIAS: 3009 case bitc::MODULE_CODE_ALIAS_OLD: { 3010 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3011 if (Record.size() < (3 + (unsigned)NewRecord)) 3012 return error("Invalid record"); 3013 unsigned OpNum = 0; 3014 Type *Ty = getTypeByID(Record[OpNum++]); 3015 if (!Ty) 3016 return error("Invalid record"); 3017 3018 unsigned AddrSpace; 3019 if (!NewRecord) { 3020 auto *PTy = dyn_cast<PointerType>(Ty); 3021 if (!PTy) 3022 return error("Invalid type for value"); 3023 Ty = PTy->getElementType(); 3024 AddrSpace = PTy->getAddressSpace(); 3025 } else { 3026 AddrSpace = Record[OpNum++]; 3027 } 3028 3029 auto Val = Record[OpNum++]; 3030 auto Linkage = Record[OpNum++]; 3031 GlobalIndirectSymbol *NewGA; 3032 if (BitCode == bitc::MODULE_CODE_ALIAS || 3033 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3034 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3035 "", TheModule); 3036 else 3037 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3038 "", nullptr, TheModule); 3039 // Old bitcode files didn't have visibility field. 3040 // Local linkage must have default visibility. 3041 if (OpNum != Record.size()) { 3042 auto VisInd = OpNum++; 3043 if (!NewGA->hasLocalLinkage()) 3044 // FIXME: Change to an error if non-default in 4.0. 3045 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3046 } 3047 if (OpNum != Record.size()) 3048 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3049 else 3050 upgradeDLLImportExportLinkage(NewGA, Linkage); 3051 if (OpNum != Record.size()) 3052 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3053 if (OpNum != Record.size()) 3054 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3055 ValueList.push_back(NewGA); 3056 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3057 break; 3058 } 3059 /// MODULE_CODE_PURGEVALS: [numvals] 3060 case bitc::MODULE_CODE_PURGEVALS: 3061 // Trim down the value list to the specified size. 3062 if (Record.size() < 1 || Record[0] > ValueList.size()) 3063 return error("Invalid record"); 3064 ValueList.shrinkTo(Record[0]); 3065 break; 3066 /// MODULE_CODE_VSTOFFSET: [offset] 3067 case bitc::MODULE_CODE_VSTOFFSET: 3068 if (Record.size() < 1) 3069 return error("Invalid record"); 3070 // Note that we subtract 1 here because the offset is relative to one word 3071 // before the start of the identification or module block, which was 3072 // historically always the start of the regular bitcode header. 3073 VSTOffset = Record[0] - 1; 3074 break; 3075 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3076 case bitc::MODULE_CODE_SOURCE_FILENAME: 3077 SmallString<128> ValueName; 3078 if (convertToString(Record, 0, ValueName)) 3079 return error("Invalid record"); 3080 TheModule->setSourceFileName(ValueName); 3081 break; 3082 } 3083 Record.clear(); 3084 } 3085 } 3086 3087 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata) { 3088 TheModule = M; 3089 MDLoader = MetadataLoader(Stream, *M, ValueList, 3090 [&](unsigned ID) { return getTypeByID(ID); }); 3091 return parseModule(0, ShouldLazyLoadMetadata); 3092 } 3093 3094 3095 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3096 if (!isa<PointerType>(PtrType)) 3097 return error("Load/Store operand is not a pointer type"); 3098 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3099 3100 if (ValType && ValType != ElemType) 3101 return error("Explicit load/store type does not match pointee " 3102 "type of pointer operand"); 3103 if (!PointerType::isLoadableOrStorableType(ElemType)) 3104 return error("Cannot load/store from pointer"); 3105 return Error::success(); 3106 } 3107 3108 /// Lazily parse the specified function body block. 3109 Error BitcodeReader::parseFunctionBody(Function *F) { 3110 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3111 return error("Invalid record"); 3112 3113 // Unexpected unresolved metadata when parsing function. 3114 if (MDLoader->hasFwdRefs()) 3115 return error("Invalid function metadata: incoming forward references"); 3116 3117 InstructionList.clear(); 3118 unsigned ModuleValueListSize = ValueList.size(); 3119 unsigned ModuleMDLoaderSize = MDLoader->size(); 3120 3121 // Add all the function arguments to the value table. 3122 for (Argument &I : F->args()) 3123 ValueList.push_back(&I); 3124 3125 unsigned NextValueNo = ValueList.size(); 3126 BasicBlock *CurBB = nullptr; 3127 unsigned CurBBNo = 0; 3128 3129 DebugLoc LastLoc; 3130 auto getLastInstruction = [&]() -> Instruction * { 3131 if (CurBB && !CurBB->empty()) 3132 return &CurBB->back(); 3133 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3134 !FunctionBBs[CurBBNo - 1]->empty()) 3135 return &FunctionBBs[CurBBNo - 1]->back(); 3136 return nullptr; 3137 }; 3138 3139 std::vector<OperandBundleDef> OperandBundles; 3140 3141 // Read all the records. 3142 SmallVector<uint64_t, 64> Record; 3143 3144 while (true) { 3145 BitstreamEntry Entry = Stream.advance(); 3146 3147 switch (Entry.Kind) { 3148 case BitstreamEntry::Error: 3149 return error("Malformed block"); 3150 case BitstreamEntry::EndBlock: 3151 goto OutOfRecordLoop; 3152 3153 case BitstreamEntry::SubBlock: 3154 switch (Entry.ID) { 3155 default: // Skip unknown content. 3156 if (Stream.SkipBlock()) 3157 return error("Invalid record"); 3158 break; 3159 case bitc::CONSTANTS_BLOCK_ID: 3160 if (Error Err = parseConstants()) 3161 return Err; 3162 NextValueNo = ValueList.size(); 3163 break; 3164 case bitc::VALUE_SYMTAB_BLOCK_ID: 3165 if (Error Err = parseValueSymbolTable()) 3166 return Err; 3167 break; 3168 case bitc::METADATA_ATTACHMENT_ID: 3169 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3170 return Err; 3171 break; 3172 case bitc::METADATA_BLOCK_ID: 3173 assert(DeferredMetadataInfo.empty() && 3174 "Must read all module-level metadata before function-level"); 3175 if (Error Err = MDLoader->parseFunctionMetadata()) 3176 return Err; 3177 break; 3178 case bitc::USELIST_BLOCK_ID: 3179 if (Error Err = parseUseLists()) 3180 return Err; 3181 break; 3182 } 3183 continue; 3184 3185 case BitstreamEntry::Record: 3186 // The interesting case. 3187 break; 3188 } 3189 3190 // Read a record. 3191 Record.clear(); 3192 Instruction *I = nullptr; 3193 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3194 switch (BitCode) { 3195 default: // Default behavior: reject 3196 return error("Invalid value"); 3197 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3198 if (Record.size() < 1 || Record[0] == 0) 3199 return error("Invalid record"); 3200 // Create all the basic blocks for the function. 3201 FunctionBBs.resize(Record[0]); 3202 3203 // See if anything took the address of blocks in this function. 3204 auto BBFRI = BasicBlockFwdRefs.find(F); 3205 if (BBFRI == BasicBlockFwdRefs.end()) { 3206 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3207 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3208 } else { 3209 auto &BBRefs = BBFRI->second; 3210 // Check for invalid basic block references. 3211 if (BBRefs.size() > FunctionBBs.size()) 3212 return error("Invalid ID"); 3213 assert(!BBRefs.empty() && "Unexpected empty array"); 3214 assert(!BBRefs.front() && "Invalid reference to entry block"); 3215 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3216 ++I) 3217 if (I < RE && BBRefs[I]) { 3218 BBRefs[I]->insertInto(F); 3219 FunctionBBs[I] = BBRefs[I]; 3220 } else { 3221 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3222 } 3223 3224 // Erase from the table. 3225 BasicBlockFwdRefs.erase(BBFRI); 3226 } 3227 3228 CurBB = FunctionBBs[0]; 3229 continue; 3230 } 3231 3232 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3233 // This record indicates that the last instruction is at the same 3234 // location as the previous instruction with a location. 3235 I = getLastInstruction(); 3236 3237 if (!I) 3238 return error("Invalid record"); 3239 I->setDebugLoc(LastLoc); 3240 I = nullptr; 3241 continue; 3242 3243 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3244 I = getLastInstruction(); 3245 if (!I || Record.size() < 4) 3246 return error("Invalid record"); 3247 3248 unsigned Line = Record[0], Col = Record[1]; 3249 unsigned ScopeID = Record[2], IAID = Record[3]; 3250 3251 MDNode *Scope = nullptr, *IA = nullptr; 3252 if (ScopeID) { 3253 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3254 if (!Scope) 3255 return error("Invalid record"); 3256 } 3257 if (IAID) { 3258 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3259 if (!IA) 3260 return error("Invalid record"); 3261 } 3262 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3263 I->setDebugLoc(LastLoc); 3264 I = nullptr; 3265 continue; 3266 } 3267 3268 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3269 unsigned OpNum = 0; 3270 Value *LHS, *RHS; 3271 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3272 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3273 OpNum+1 > Record.size()) 3274 return error("Invalid record"); 3275 3276 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3277 if (Opc == -1) 3278 return error("Invalid record"); 3279 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3280 InstructionList.push_back(I); 3281 if (OpNum < Record.size()) { 3282 if (Opc == Instruction::Add || 3283 Opc == Instruction::Sub || 3284 Opc == Instruction::Mul || 3285 Opc == Instruction::Shl) { 3286 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3287 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3288 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3289 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3290 } else if (Opc == Instruction::SDiv || 3291 Opc == Instruction::UDiv || 3292 Opc == Instruction::LShr || 3293 Opc == Instruction::AShr) { 3294 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3295 cast<BinaryOperator>(I)->setIsExact(true); 3296 } else if (isa<FPMathOperator>(I)) { 3297 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3298 if (FMF.any()) 3299 I->setFastMathFlags(FMF); 3300 } 3301 3302 } 3303 break; 3304 } 3305 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3306 unsigned OpNum = 0; 3307 Value *Op; 3308 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3309 OpNum+2 != Record.size()) 3310 return error("Invalid record"); 3311 3312 Type *ResTy = getTypeByID(Record[OpNum]); 3313 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3314 if (Opc == -1 || !ResTy) 3315 return error("Invalid record"); 3316 Instruction *Temp = nullptr; 3317 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3318 if (Temp) { 3319 InstructionList.push_back(Temp); 3320 CurBB->getInstList().push_back(Temp); 3321 } 3322 } else { 3323 auto CastOp = (Instruction::CastOps)Opc; 3324 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3325 return error("Invalid cast"); 3326 I = CastInst::Create(CastOp, Op, ResTy); 3327 } 3328 InstructionList.push_back(I); 3329 break; 3330 } 3331 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3332 case bitc::FUNC_CODE_INST_GEP_OLD: 3333 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3334 unsigned OpNum = 0; 3335 3336 Type *Ty; 3337 bool InBounds; 3338 3339 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3340 InBounds = Record[OpNum++]; 3341 Ty = getTypeByID(Record[OpNum++]); 3342 } else { 3343 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3344 Ty = nullptr; 3345 } 3346 3347 Value *BasePtr; 3348 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3349 return error("Invalid record"); 3350 3351 if (!Ty) 3352 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3353 ->getElementType(); 3354 else if (Ty != 3355 cast<PointerType>(BasePtr->getType()->getScalarType()) 3356 ->getElementType()) 3357 return error( 3358 "Explicit gep type does not match pointee type of pointer operand"); 3359 3360 SmallVector<Value*, 16> GEPIdx; 3361 while (OpNum != Record.size()) { 3362 Value *Op; 3363 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3364 return error("Invalid record"); 3365 GEPIdx.push_back(Op); 3366 } 3367 3368 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3369 3370 InstructionList.push_back(I); 3371 if (InBounds) 3372 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3373 break; 3374 } 3375 3376 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3377 // EXTRACTVAL: [opty, opval, n x indices] 3378 unsigned OpNum = 0; 3379 Value *Agg; 3380 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3381 return error("Invalid record"); 3382 3383 unsigned RecSize = Record.size(); 3384 if (OpNum == RecSize) 3385 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3386 3387 SmallVector<unsigned, 4> EXTRACTVALIdx; 3388 Type *CurTy = Agg->getType(); 3389 for (; OpNum != RecSize; ++OpNum) { 3390 bool IsArray = CurTy->isArrayTy(); 3391 bool IsStruct = CurTy->isStructTy(); 3392 uint64_t Index = Record[OpNum]; 3393 3394 if (!IsStruct && !IsArray) 3395 return error("EXTRACTVAL: Invalid type"); 3396 if ((unsigned)Index != Index) 3397 return error("Invalid value"); 3398 if (IsStruct && Index >= CurTy->subtypes().size()) 3399 return error("EXTRACTVAL: Invalid struct index"); 3400 if (IsArray && Index >= CurTy->getArrayNumElements()) 3401 return error("EXTRACTVAL: Invalid array index"); 3402 EXTRACTVALIdx.push_back((unsigned)Index); 3403 3404 if (IsStruct) 3405 CurTy = CurTy->subtypes()[Index]; 3406 else 3407 CurTy = CurTy->subtypes()[0]; 3408 } 3409 3410 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3411 InstructionList.push_back(I); 3412 break; 3413 } 3414 3415 case bitc::FUNC_CODE_INST_INSERTVAL: { 3416 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3417 unsigned OpNum = 0; 3418 Value *Agg; 3419 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3420 return error("Invalid record"); 3421 Value *Val; 3422 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3423 return error("Invalid record"); 3424 3425 unsigned RecSize = Record.size(); 3426 if (OpNum == RecSize) 3427 return error("INSERTVAL: Invalid instruction with 0 indices"); 3428 3429 SmallVector<unsigned, 4> INSERTVALIdx; 3430 Type *CurTy = Agg->getType(); 3431 for (; OpNum != RecSize; ++OpNum) { 3432 bool IsArray = CurTy->isArrayTy(); 3433 bool IsStruct = CurTy->isStructTy(); 3434 uint64_t Index = Record[OpNum]; 3435 3436 if (!IsStruct && !IsArray) 3437 return error("INSERTVAL: Invalid type"); 3438 if ((unsigned)Index != Index) 3439 return error("Invalid value"); 3440 if (IsStruct && Index >= CurTy->subtypes().size()) 3441 return error("INSERTVAL: Invalid struct index"); 3442 if (IsArray && Index >= CurTy->getArrayNumElements()) 3443 return error("INSERTVAL: Invalid array index"); 3444 3445 INSERTVALIdx.push_back((unsigned)Index); 3446 if (IsStruct) 3447 CurTy = CurTy->subtypes()[Index]; 3448 else 3449 CurTy = CurTy->subtypes()[0]; 3450 } 3451 3452 if (CurTy != Val->getType()) 3453 return error("Inserted value type doesn't match aggregate type"); 3454 3455 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3456 InstructionList.push_back(I); 3457 break; 3458 } 3459 3460 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3461 // obsolete form of select 3462 // handles select i1 ... in old bitcode 3463 unsigned OpNum = 0; 3464 Value *TrueVal, *FalseVal, *Cond; 3465 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3466 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3467 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3468 return error("Invalid record"); 3469 3470 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3471 InstructionList.push_back(I); 3472 break; 3473 } 3474 3475 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3476 // new form of select 3477 // handles select i1 or select [N x i1] 3478 unsigned OpNum = 0; 3479 Value *TrueVal, *FalseVal, *Cond; 3480 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3481 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3482 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3483 return error("Invalid record"); 3484 3485 // select condition can be either i1 or [N x i1] 3486 if (VectorType* vector_type = 3487 dyn_cast<VectorType>(Cond->getType())) { 3488 // expect <n x i1> 3489 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3490 return error("Invalid type for value"); 3491 } else { 3492 // expect i1 3493 if (Cond->getType() != Type::getInt1Ty(Context)) 3494 return error("Invalid type for value"); 3495 } 3496 3497 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3498 InstructionList.push_back(I); 3499 break; 3500 } 3501 3502 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3503 unsigned OpNum = 0; 3504 Value *Vec, *Idx; 3505 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3506 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3507 return error("Invalid record"); 3508 if (!Vec->getType()->isVectorTy()) 3509 return error("Invalid type for value"); 3510 I = ExtractElementInst::Create(Vec, Idx); 3511 InstructionList.push_back(I); 3512 break; 3513 } 3514 3515 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3516 unsigned OpNum = 0; 3517 Value *Vec, *Elt, *Idx; 3518 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3519 return error("Invalid record"); 3520 if (!Vec->getType()->isVectorTy()) 3521 return error("Invalid type for value"); 3522 if (popValue(Record, OpNum, NextValueNo, 3523 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3524 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3525 return error("Invalid record"); 3526 I = InsertElementInst::Create(Vec, Elt, Idx); 3527 InstructionList.push_back(I); 3528 break; 3529 } 3530 3531 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3532 unsigned OpNum = 0; 3533 Value *Vec1, *Vec2, *Mask; 3534 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3535 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3536 return error("Invalid record"); 3537 3538 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3539 return error("Invalid record"); 3540 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3541 return error("Invalid type for value"); 3542 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3543 InstructionList.push_back(I); 3544 break; 3545 } 3546 3547 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3548 // Old form of ICmp/FCmp returning bool 3549 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3550 // both legal on vectors but had different behaviour. 3551 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3552 // FCmp/ICmp returning bool or vector of bool 3553 3554 unsigned OpNum = 0; 3555 Value *LHS, *RHS; 3556 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3557 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3558 return error("Invalid record"); 3559 3560 unsigned PredVal = Record[OpNum]; 3561 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3562 FastMathFlags FMF; 3563 if (IsFP && Record.size() > OpNum+1) 3564 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3565 3566 if (OpNum+1 != Record.size()) 3567 return error("Invalid record"); 3568 3569 if (LHS->getType()->isFPOrFPVectorTy()) 3570 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3571 else 3572 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3573 3574 if (FMF.any()) 3575 I->setFastMathFlags(FMF); 3576 InstructionList.push_back(I); 3577 break; 3578 } 3579 3580 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3581 { 3582 unsigned Size = Record.size(); 3583 if (Size == 0) { 3584 I = ReturnInst::Create(Context); 3585 InstructionList.push_back(I); 3586 break; 3587 } 3588 3589 unsigned OpNum = 0; 3590 Value *Op = nullptr; 3591 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3592 return error("Invalid record"); 3593 if (OpNum != Record.size()) 3594 return error("Invalid record"); 3595 3596 I = ReturnInst::Create(Context, Op); 3597 InstructionList.push_back(I); 3598 break; 3599 } 3600 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3601 if (Record.size() != 1 && Record.size() != 3) 3602 return error("Invalid record"); 3603 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3604 if (!TrueDest) 3605 return error("Invalid record"); 3606 3607 if (Record.size() == 1) { 3608 I = BranchInst::Create(TrueDest); 3609 InstructionList.push_back(I); 3610 } 3611 else { 3612 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3613 Value *Cond = getValue(Record, 2, NextValueNo, 3614 Type::getInt1Ty(Context)); 3615 if (!FalseDest || !Cond) 3616 return error("Invalid record"); 3617 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3618 InstructionList.push_back(I); 3619 } 3620 break; 3621 } 3622 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3623 if (Record.size() != 1 && Record.size() != 2) 3624 return error("Invalid record"); 3625 unsigned Idx = 0; 3626 Value *CleanupPad = 3627 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3628 if (!CleanupPad) 3629 return error("Invalid record"); 3630 BasicBlock *UnwindDest = nullptr; 3631 if (Record.size() == 2) { 3632 UnwindDest = getBasicBlock(Record[Idx++]); 3633 if (!UnwindDest) 3634 return error("Invalid record"); 3635 } 3636 3637 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3638 InstructionList.push_back(I); 3639 break; 3640 } 3641 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3642 if (Record.size() != 2) 3643 return error("Invalid record"); 3644 unsigned Idx = 0; 3645 Value *CatchPad = 3646 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3647 if (!CatchPad) 3648 return error("Invalid record"); 3649 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3650 if (!BB) 3651 return error("Invalid record"); 3652 3653 I = CatchReturnInst::Create(CatchPad, BB); 3654 InstructionList.push_back(I); 3655 break; 3656 } 3657 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3658 // We must have, at minimum, the outer scope and the number of arguments. 3659 if (Record.size() < 2) 3660 return error("Invalid record"); 3661 3662 unsigned Idx = 0; 3663 3664 Value *ParentPad = 3665 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3666 3667 unsigned NumHandlers = Record[Idx++]; 3668 3669 SmallVector<BasicBlock *, 2> Handlers; 3670 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3671 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3672 if (!BB) 3673 return error("Invalid record"); 3674 Handlers.push_back(BB); 3675 } 3676 3677 BasicBlock *UnwindDest = nullptr; 3678 if (Idx + 1 == Record.size()) { 3679 UnwindDest = getBasicBlock(Record[Idx++]); 3680 if (!UnwindDest) 3681 return error("Invalid record"); 3682 } 3683 3684 if (Record.size() != Idx) 3685 return error("Invalid record"); 3686 3687 auto *CatchSwitch = 3688 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3689 for (BasicBlock *Handler : Handlers) 3690 CatchSwitch->addHandler(Handler); 3691 I = CatchSwitch; 3692 InstructionList.push_back(I); 3693 break; 3694 } 3695 case bitc::FUNC_CODE_INST_CATCHPAD: 3696 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3697 // We must have, at minimum, the outer scope and the number of arguments. 3698 if (Record.size() < 2) 3699 return error("Invalid record"); 3700 3701 unsigned Idx = 0; 3702 3703 Value *ParentPad = 3704 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3705 3706 unsigned NumArgOperands = Record[Idx++]; 3707 3708 SmallVector<Value *, 2> Args; 3709 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3710 Value *Val; 3711 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3712 return error("Invalid record"); 3713 Args.push_back(Val); 3714 } 3715 3716 if (Record.size() != Idx) 3717 return error("Invalid record"); 3718 3719 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3720 I = CleanupPadInst::Create(ParentPad, Args); 3721 else 3722 I = CatchPadInst::Create(ParentPad, Args); 3723 InstructionList.push_back(I); 3724 break; 3725 } 3726 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3727 // Check magic 3728 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3729 // "New" SwitchInst format with case ranges. The changes to write this 3730 // format were reverted but we still recognize bitcode that uses it. 3731 // Hopefully someday we will have support for case ranges and can use 3732 // this format again. 3733 3734 Type *OpTy = getTypeByID(Record[1]); 3735 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3736 3737 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3738 BasicBlock *Default = getBasicBlock(Record[3]); 3739 if (!OpTy || !Cond || !Default) 3740 return error("Invalid record"); 3741 3742 unsigned NumCases = Record[4]; 3743 3744 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3745 InstructionList.push_back(SI); 3746 3747 unsigned CurIdx = 5; 3748 for (unsigned i = 0; i != NumCases; ++i) { 3749 SmallVector<ConstantInt*, 1> CaseVals; 3750 unsigned NumItems = Record[CurIdx++]; 3751 for (unsigned ci = 0; ci != NumItems; ++ci) { 3752 bool isSingleNumber = Record[CurIdx++]; 3753 3754 APInt Low; 3755 unsigned ActiveWords = 1; 3756 if (ValueBitWidth > 64) 3757 ActiveWords = Record[CurIdx++]; 3758 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3759 ValueBitWidth); 3760 CurIdx += ActiveWords; 3761 3762 if (!isSingleNumber) { 3763 ActiveWords = 1; 3764 if (ValueBitWidth > 64) 3765 ActiveWords = Record[CurIdx++]; 3766 APInt High = readWideAPInt( 3767 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3768 CurIdx += ActiveWords; 3769 3770 // FIXME: It is not clear whether values in the range should be 3771 // compared as signed or unsigned values. The partially 3772 // implemented changes that used this format in the past used 3773 // unsigned comparisons. 3774 for ( ; Low.ule(High); ++Low) 3775 CaseVals.push_back(ConstantInt::get(Context, Low)); 3776 } else 3777 CaseVals.push_back(ConstantInt::get(Context, Low)); 3778 } 3779 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3780 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3781 cve = CaseVals.end(); cvi != cve; ++cvi) 3782 SI->addCase(*cvi, DestBB); 3783 } 3784 I = SI; 3785 break; 3786 } 3787 3788 // Old SwitchInst format without case ranges. 3789 3790 if (Record.size() < 3 || (Record.size() & 1) == 0) 3791 return error("Invalid record"); 3792 Type *OpTy = getTypeByID(Record[0]); 3793 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3794 BasicBlock *Default = getBasicBlock(Record[2]); 3795 if (!OpTy || !Cond || !Default) 3796 return error("Invalid record"); 3797 unsigned NumCases = (Record.size()-3)/2; 3798 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3799 InstructionList.push_back(SI); 3800 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3801 ConstantInt *CaseVal = 3802 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3803 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3804 if (!CaseVal || !DestBB) { 3805 delete SI; 3806 return error("Invalid record"); 3807 } 3808 SI->addCase(CaseVal, DestBB); 3809 } 3810 I = SI; 3811 break; 3812 } 3813 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3814 if (Record.size() < 2) 3815 return error("Invalid record"); 3816 Type *OpTy = getTypeByID(Record[0]); 3817 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3818 if (!OpTy || !Address) 3819 return error("Invalid record"); 3820 unsigned NumDests = Record.size()-2; 3821 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3822 InstructionList.push_back(IBI); 3823 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3824 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3825 IBI->addDestination(DestBB); 3826 } else { 3827 delete IBI; 3828 return error("Invalid record"); 3829 } 3830 } 3831 I = IBI; 3832 break; 3833 } 3834 3835 case bitc::FUNC_CODE_INST_INVOKE: { 3836 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3837 if (Record.size() < 4) 3838 return error("Invalid record"); 3839 unsigned OpNum = 0; 3840 AttributeSet PAL = getAttributes(Record[OpNum++]); 3841 unsigned CCInfo = Record[OpNum++]; 3842 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3843 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3844 3845 FunctionType *FTy = nullptr; 3846 if (CCInfo >> 13 & 1 && 3847 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3848 return error("Explicit invoke type is not a function type"); 3849 3850 Value *Callee; 3851 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3852 return error("Invalid record"); 3853 3854 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3855 if (!CalleeTy) 3856 return error("Callee is not a pointer"); 3857 if (!FTy) { 3858 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3859 if (!FTy) 3860 return error("Callee is not of pointer to function type"); 3861 } else if (CalleeTy->getElementType() != FTy) 3862 return error("Explicit invoke type does not match pointee type of " 3863 "callee operand"); 3864 if (Record.size() < FTy->getNumParams() + OpNum) 3865 return error("Insufficient operands to call"); 3866 3867 SmallVector<Value*, 16> Ops; 3868 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3869 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3870 FTy->getParamType(i))); 3871 if (!Ops.back()) 3872 return error("Invalid record"); 3873 } 3874 3875 if (!FTy->isVarArg()) { 3876 if (Record.size() != OpNum) 3877 return error("Invalid record"); 3878 } else { 3879 // Read type/value pairs for varargs params. 3880 while (OpNum != Record.size()) { 3881 Value *Op; 3882 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3883 return error("Invalid record"); 3884 Ops.push_back(Op); 3885 } 3886 } 3887 3888 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 3889 OperandBundles.clear(); 3890 InstructionList.push_back(I); 3891 cast<InvokeInst>(I)->setCallingConv( 3892 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 3893 cast<InvokeInst>(I)->setAttributes(PAL); 3894 break; 3895 } 3896 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3897 unsigned Idx = 0; 3898 Value *Val = nullptr; 3899 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3900 return error("Invalid record"); 3901 I = ResumeInst::Create(Val); 3902 InstructionList.push_back(I); 3903 break; 3904 } 3905 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3906 I = new UnreachableInst(Context); 3907 InstructionList.push_back(I); 3908 break; 3909 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3910 if (Record.size() < 1 || ((Record.size()-1)&1)) 3911 return error("Invalid record"); 3912 Type *Ty = getTypeByID(Record[0]); 3913 if (!Ty) 3914 return error("Invalid record"); 3915 3916 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3917 InstructionList.push_back(PN); 3918 3919 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3920 Value *V; 3921 // With the new function encoding, it is possible that operands have 3922 // negative IDs (for forward references). Use a signed VBR 3923 // representation to keep the encoding small. 3924 if (UseRelativeIDs) 3925 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3926 else 3927 V = getValue(Record, 1+i, NextValueNo, Ty); 3928 BasicBlock *BB = getBasicBlock(Record[2+i]); 3929 if (!V || !BB) 3930 return error("Invalid record"); 3931 PN->addIncoming(V, BB); 3932 } 3933 I = PN; 3934 break; 3935 } 3936 3937 case bitc::FUNC_CODE_INST_LANDINGPAD: 3938 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 3939 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3940 unsigned Idx = 0; 3941 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 3942 if (Record.size() < 3) 3943 return error("Invalid record"); 3944 } else { 3945 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 3946 if (Record.size() < 4) 3947 return error("Invalid record"); 3948 } 3949 Type *Ty = getTypeByID(Record[Idx++]); 3950 if (!Ty) 3951 return error("Invalid record"); 3952 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 3953 Value *PersFn = nullptr; 3954 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3955 return error("Invalid record"); 3956 3957 if (!F->hasPersonalityFn()) 3958 F->setPersonalityFn(cast<Constant>(PersFn)); 3959 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 3960 return error("Personality function mismatch"); 3961 } 3962 3963 bool IsCleanup = !!Record[Idx++]; 3964 unsigned NumClauses = Record[Idx++]; 3965 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 3966 LP->setCleanup(IsCleanup); 3967 for (unsigned J = 0; J != NumClauses; ++J) { 3968 LandingPadInst::ClauseType CT = 3969 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3970 Value *Val; 3971 3972 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3973 delete LP; 3974 return error("Invalid record"); 3975 } 3976 3977 assert((CT != LandingPadInst::Catch || 3978 !isa<ArrayType>(Val->getType())) && 3979 "Catch clause has a invalid type!"); 3980 assert((CT != LandingPadInst::Filter || 3981 isa<ArrayType>(Val->getType())) && 3982 "Filter clause has invalid type!"); 3983 LP->addClause(cast<Constant>(Val)); 3984 } 3985 3986 I = LP; 3987 InstructionList.push_back(I); 3988 break; 3989 } 3990 3991 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3992 if (Record.size() != 4) 3993 return error("Invalid record"); 3994 uint64_t AlignRecord = Record[3]; 3995 const uint64_t InAllocaMask = uint64_t(1) << 5; 3996 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 3997 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 3998 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 3999 SwiftErrorMask; 4000 bool InAlloca = AlignRecord & InAllocaMask; 4001 bool SwiftError = AlignRecord & SwiftErrorMask; 4002 Type *Ty = getTypeByID(Record[0]); 4003 if ((AlignRecord & ExplicitTypeMask) == 0) { 4004 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4005 if (!PTy) 4006 return error("Old-style alloca with a non-pointer type"); 4007 Ty = PTy->getElementType(); 4008 } 4009 Type *OpTy = getTypeByID(Record[1]); 4010 Value *Size = getFnValueByID(Record[2], OpTy); 4011 unsigned Align; 4012 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4013 return Err; 4014 } 4015 if (!Ty || !Size) 4016 return error("Invalid record"); 4017 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4018 AI->setUsedWithInAlloca(InAlloca); 4019 AI->setSwiftError(SwiftError); 4020 I = AI; 4021 InstructionList.push_back(I); 4022 break; 4023 } 4024 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4025 unsigned OpNum = 0; 4026 Value *Op; 4027 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4028 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4029 return error("Invalid record"); 4030 4031 Type *Ty = nullptr; 4032 if (OpNum + 3 == Record.size()) 4033 Ty = getTypeByID(Record[OpNum++]); 4034 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4035 return Err; 4036 if (!Ty) 4037 Ty = cast<PointerType>(Op->getType())->getElementType(); 4038 4039 unsigned Align; 4040 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4041 return Err; 4042 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4043 4044 InstructionList.push_back(I); 4045 break; 4046 } 4047 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4048 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4049 unsigned OpNum = 0; 4050 Value *Op; 4051 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4052 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4053 return error("Invalid record"); 4054 4055 Type *Ty = nullptr; 4056 if (OpNum + 5 == Record.size()) 4057 Ty = getTypeByID(Record[OpNum++]); 4058 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4059 return Err; 4060 if (!Ty) 4061 Ty = cast<PointerType>(Op->getType())->getElementType(); 4062 4063 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4064 if (Ordering == AtomicOrdering::NotAtomic || 4065 Ordering == AtomicOrdering::Release || 4066 Ordering == AtomicOrdering::AcquireRelease) 4067 return error("Invalid record"); 4068 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4069 return error("Invalid record"); 4070 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4071 4072 unsigned Align; 4073 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4074 return Err; 4075 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4076 4077 InstructionList.push_back(I); 4078 break; 4079 } 4080 case bitc::FUNC_CODE_INST_STORE: 4081 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4082 unsigned OpNum = 0; 4083 Value *Val, *Ptr; 4084 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4085 (BitCode == bitc::FUNC_CODE_INST_STORE 4086 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4087 : popValue(Record, OpNum, NextValueNo, 4088 cast<PointerType>(Ptr->getType())->getElementType(), 4089 Val)) || 4090 OpNum + 2 != Record.size()) 4091 return error("Invalid record"); 4092 4093 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4094 return Err; 4095 unsigned Align; 4096 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4097 return Err; 4098 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4099 InstructionList.push_back(I); 4100 break; 4101 } 4102 case bitc::FUNC_CODE_INST_STOREATOMIC: 4103 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4104 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4105 unsigned OpNum = 0; 4106 Value *Val, *Ptr; 4107 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4108 !isa<PointerType>(Ptr->getType()) || 4109 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4110 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4111 : popValue(Record, OpNum, NextValueNo, 4112 cast<PointerType>(Ptr->getType())->getElementType(), 4113 Val)) || 4114 OpNum + 4 != Record.size()) 4115 return error("Invalid record"); 4116 4117 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4118 return Err; 4119 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4120 if (Ordering == AtomicOrdering::NotAtomic || 4121 Ordering == AtomicOrdering::Acquire || 4122 Ordering == AtomicOrdering::AcquireRelease) 4123 return error("Invalid record"); 4124 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4125 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4126 return error("Invalid record"); 4127 4128 unsigned Align; 4129 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4130 return Err; 4131 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4132 InstructionList.push_back(I); 4133 break; 4134 } 4135 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4136 case bitc::FUNC_CODE_INST_CMPXCHG: { 4137 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4138 // failureordering?, isweak?] 4139 unsigned OpNum = 0; 4140 Value *Ptr, *Cmp, *New; 4141 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4142 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4143 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4144 : popValue(Record, OpNum, NextValueNo, 4145 cast<PointerType>(Ptr->getType())->getElementType(), 4146 Cmp)) || 4147 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4148 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4149 return error("Invalid record"); 4150 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4151 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4152 SuccessOrdering == AtomicOrdering::Unordered) 4153 return error("Invalid record"); 4154 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4155 4156 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4157 return Err; 4158 AtomicOrdering FailureOrdering; 4159 if (Record.size() < 7) 4160 FailureOrdering = 4161 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4162 else 4163 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4164 4165 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4166 SynchScope); 4167 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4168 4169 if (Record.size() < 8) { 4170 // Before weak cmpxchgs existed, the instruction simply returned the 4171 // value loaded from memory, so bitcode files from that era will be 4172 // expecting the first component of a modern cmpxchg. 4173 CurBB->getInstList().push_back(I); 4174 I = ExtractValueInst::Create(I, 0); 4175 } else { 4176 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4177 } 4178 4179 InstructionList.push_back(I); 4180 break; 4181 } 4182 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4183 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4184 unsigned OpNum = 0; 4185 Value *Ptr, *Val; 4186 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4187 !isa<PointerType>(Ptr->getType()) || 4188 popValue(Record, OpNum, NextValueNo, 4189 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4190 OpNum+4 != Record.size()) 4191 return error("Invalid record"); 4192 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4193 if (Operation < AtomicRMWInst::FIRST_BINOP || 4194 Operation > AtomicRMWInst::LAST_BINOP) 4195 return error("Invalid record"); 4196 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4197 if (Ordering == AtomicOrdering::NotAtomic || 4198 Ordering == AtomicOrdering::Unordered) 4199 return error("Invalid record"); 4200 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4201 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4202 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4203 InstructionList.push_back(I); 4204 break; 4205 } 4206 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4207 if (2 != Record.size()) 4208 return error("Invalid record"); 4209 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4210 if (Ordering == AtomicOrdering::NotAtomic || 4211 Ordering == AtomicOrdering::Unordered || 4212 Ordering == AtomicOrdering::Monotonic) 4213 return error("Invalid record"); 4214 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4215 I = new FenceInst(Context, Ordering, SynchScope); 4216 InstructionList.push_back(I); 4217 break; 4218 } 4219 case bitc::FUNC_CODE_INST_CALL: { 4220 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4221 if (Record.size() < 3) 4222 return error("Invalid record"); 4223 4224 unsigned OpNum = 0; 4225 AttributeSet PAL = getAttributes(Record[OpNum++]); 4226 unsigned CCInfo = Record[OpNum++]; 4227 4228 FastMathFlags FMF; 4229 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4230 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4231 if (!FMF.any()) 4232 return error("Fast math flags indicator set for call with no FMF"); 4233 } 4234 4235 FunctionType *FTy = nullptr; 4236 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4237 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4238 return error("Explicit call type is not a function type"); 4239 4240 Value *Callee; 4241 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4242 return error("Invalid record"); 4243 4244 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4245 if (!OpTy) 4246 return error("Callee is not a pointer type"); 4247 if (!FTy) { 4248 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4249 if (!FTy) 4250 return error("Callee is not of pointer to function type"); 4251 } else if (OpTy->getElementType() != FTy) 4252 return error("Explicit call type does not match pointee type of " 4253 "callee operand"); 4254 if (Record.size() < FTy->getNumParams() + OpNum) 4255 return error("Insufficient operands to call"); 4256 4257 SmallVector<Value*, 16> Args; 4258 // Read the fixed params. 4259 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4260 if (FTy->getParamType(i)->isLabelTy()) 4261 Args.push_back(getBasicBlock(Record[OpNum])); 4262 else 4263 Args.push_back(getValue(Record, OpNum, NextValueNo, 4264 FTy->getParamType(i))); 4265 if (!Args.back()) 4266 return error("Invalid record"); 4267 } 4268 4269 // Read type/value pairs for varargs params. 4270 if (!FTy->isVarArg()) { 4271 if (OpNum != Record.size()) 4272 return error("Invalid record"); 4273 } else { 4274 while (OpNum != Record.size()) { 4275 Value *Op; 4276 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4277 return error("Invalid record"); 4278 Args.push_back(Op); 4279 } 4280 } 4281 4282 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4283 OperandBundles.clear(); 4284 InstructionList.push_back(I); 4285 cast<CallInst>(I)->setCallingConv( 4286 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4287 CallInst::TailCallKind TCK = CallInst::TCK_None; 4288 if (CCInfo & 1 << bitc::CALL_TAIL) 4289 TCK = CallInst::TCK_Tail; 4290 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4291 TCK = CallInst::TCK_MustTail; 4292 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4293 TCK = CallInst::TCK_NoTail; 4294 cast<CallInst>(I)->setTailCallKind(TCK); 4295 cast<CallInst>(I)->setAttributes(PAL); 4296 if (FMF.any()) { 4297 if (!isa<FPMathOperator>(I)) 4298 return error("Fast-math-flags specified for call without " 4299 "floating-point scalar or vector return type"); 4300 I->setFastMathFlags(FMF); 4301 } 4302 break; 4303 } 4304 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4305 if (Record.size() < 3) 4306 return error("Invalid record"); 4307 Type *OpTy = getTypeByID(Record[0]); 4308 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4309 Type *ResTy = getTypeByID(Record[2]); 4310 if (!OpTy || !Op || !ResTy) 4311 return error("Invalid record"); 4312 I = new VAArgInst(Op, ResTy); 4313 InstructionList.push_back(I); 4314 break; 4315 } 4316 4317 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4318 // A call or an invoke can be optionally prefixed with some variable 4319 // number of operand bundle blocks. These blocks are read into 4320 // OperandBundles and consumed at the next call or invoke instruction. 4321 4322 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4323 return error("Invalid record"); 4324 4325 std::vector<Value *> Inputs; 4326 4327 unsigned OpNum = 1; 4328 while (OpNum != Record.size()) { 4329 Value *Op; 4330 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4331 return error("Invalid record"); 4332 Inputs.push_back(Op); 4333 } 4334 4335 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4336 continue; 4337 } 4338 } 4339 4340 // Add instruction to end of current BB. If there is no current BB, reject 4341 // this file. 4342 if (!CurBB) { 4343 delete I; 4344 return error("Invalid instruction with no BB"); 4345 } 4346 if (!OperandBundles.empty()) { 4347 delete I; 4348 return error("Operand bundles found with no consumer"); 4349 } 4350 CurBB->getInstList().push_back(I); 4351 4352 // If this was a terminator instruction, move to the next block. 4353 if (isa<TerminatorInst>(I)) { 4354 ++CurBBNo; 4355 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4356 } 4357 4358 // Non-void values get registered in the value table for future use. 4359 if (I && !I->getType()->isVoidTy()) 4360 ValueList.assignValue(I, NextValueNo++); 4361 } 4362 4363 OutOfRecordLoop: 4364 4365 if (!OperandBundles.empty()) 4366 return error("Operand bundles found with no consumer"); 4367 4368 // Check the function list for unresolved values. 4369 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4370 if (!A->getParent()) { 4371 // We found at least one unresolved value. Nuke them all to avoid leaks. 4372 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4373 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4374 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4375 delete A; 4376 } 4377 } 4378 return error("Never resolved value found in function"); 4379 } 4380 } 4381 4382 // Unexpected unresolved metadata about to be dropped. 4383 if (MDLoader->hasFwdRefs()) 4384 return error("Invalid function metadata: outgoing forward refs"); 4385 4386 // Trim the value list down to the size it was before we parsed this function. 4387 ValueList.shrinkTo(ModuleValueListSize); 4388 MDLoader->shrinkTo(ModuleMDLoaderSize); 4389 std::vector<BasicBlock*>().swap(FunctionBBs); 4390 return Error::success(); 4391 } 4392 4393 /// Find the function body in the bitcode stream 4394 Error BitcodeReader::findFunctionInStream( 4395 Function *F, 4396 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4397 while (DeferredFunctionInfoIterator->second == 0) { 4398 // This is the fallback handling for the old format bitcode that 4399 // didn't contain the function index in the VST, or when we have 4400 // an anonymous function which would not have a VST entry. 4401 // Assert that we have one of those two cases. 4402 assert(VSTOffset == 0 || !F->hasName()); 4403 // Parse the next body in the stream and set its position in the 4404 // DeferredFunctionInfo map. 4405 if (Error Err = rememberAndSkipFunctionBodies()) 4406 return Err; 4407 } 4408 return Error::success(); 4409 } 4410 4411 //===----------------------------------------------------------------------===// 4412 // GVMaterializer implementation 4413 //===----------------------------------------------------------------------===// 4414 4415 Error BitcodeReader::materialize(GlobalValue *GV) { 4416 Function *F = dyn_cast<Function>(GV); 4417 // If it's not a function or is already material, ignore the request. 4418 if (!F || !F->isMaterializable()) 4419 return Error::success(); 4420 4421 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4422 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4423 // If its position is recorded as 0, its body is somewhere in the stream 4424 // but we haven't seen it yet. 4425 if (DFII->second == 0) 4426 if (Error Err = findFunctionInStream(F, DFII)) 4427 return Err; 4428 4429 // Materialize metadata before parsing any function bodies. 4430 if (Error Err = materializeMetadata()) 4431 return Err; 4432 4433 // Move the bit stream to the saved position of the deferred function body. 4434 Stream.JumpToBit(DFII->second); 4435 4436 if (Error Err = parseFunctionBody(F)) 4437 return Err; 4438 F->setIsMaterializable(false); 4439 4440 if (StripDebugInfo) 4441 stripDebugInfo(*F); 4442 4443 // Upgrade any old intrinsic calls in the function. 4444 for (auto &I : UpgradedIntrinsics) { 4445 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4446 UI != UE;) { 4447 User *U = *UI; 4448 ++UI; 4449 if (CallInst *CI = dyn_cast<CallInst>(U)) 4450 UpgradeIntrinsicCall(CI, I.second); 4451 } 4452 } 4453 4454 // Update calls to the remangled intrinsics 4455 for (auto &I : RemangledIntrinsics) 4456 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4457 UI != UE;) 4458 // Don't expect any other users than call sites 4459 CallSite(*UI++).setCalledFunction(I.second); 4460 4461 // Finish fn->subprogram upgrade for materialized functions. 4462 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4463 F->setSubprogram(SP); 4464 4465 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4466 if (!MDLoader->isStrippingTBAA()) { 4467 for (auto &I : instructions(F)) { 4468 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4469 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4470 continue; 4471 MDLoader->setStripTBAA(true); 4472 stripTBAA(F->getParent()); 4473 } 4474 } 4475 4476 // Bring in any functions that this function forward-referenced via 4477 // blockaddresses. 4478 return materializeForwardReferencedFunctions(); 4479 } 4480 4481 Error BitcodeReader::materializeModule() { 4482 if (Error Err = materializeMetadata()) 4483 return Err; 4484 4485 // Promise to materialize all forward references. 4486 WillMaterializeAllForwardRefs = true; 4487 4488 // Iterate over the module, deserializing any functions that are still on 4489 // disk. 4490 for (Function &F : *TheModule) { 4491 if (Error Err = materialize(&F)) 4492 return Err; 4493 } 4494 // At this point, if there are any function bodies, parse the rest of 4495 // the bits in the module past the last function block we have recorded 4496 // through either lazy scanning or the VST. 4497 if (LastFunctionBlockBit || NextUnreadBit) 4498 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4499 ? LastFunctionBlockBit 4500 : NextUnreadBit)) 4501 return Err; 4502 4503 // Check that all block address forward references got resolved (as we 4504 // promised above). 4505 if (!BasicBlockFwdRefs.empty()) 4506 return error("Never resolved function from blockaddress"); 4507 4508 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4509 // delete the old functions to clean up. We can't do this unless the entire 4510 // module is materialized because there could always be another function body 4511 // with calls to the old function. 4512 for (auto &I : UpgradedIntrinsics) { 4513 for (auto *U : I.first->users()) { 4514 if (CallInst *CI = dyn_cast<CallInst>(U)) 4515 UpgradeIntrinsicCall(CI, I.second); 4516 } 4517 if (!I.first->use_empty()) 4518 I.first->replaceAllUsesWith(I.second); 4519 I.first->eraseFromParent(); 4520 } 4521 UpgradedIntrinsics.clear(); 4522 // Do the same for remangled intrinsics 4523 for (auto &I : RemangledIntrinsics) { 4524 I.first->replaceAllUsesWith(I.second); 4525 I.first->eraseFromParent(); 4526 } 4527 RemangledIntrinsics.clear(); 4528 4529 UpgradeDebugInfo(*TheModule); 4530 4531 UpgradeModuleFlags(*TheModule); 4532 return Error::success(); 4533 } 4534 4535 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4536 return IdentifiedStructTypes; 4537 } 4538 4539 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4540 BitstreamCursor Cursor, ModuleSummaryIndex &TheIndex) 4541 : BitcodeReaderBase(std::move(Cursor)), TheIndex(TheIndex) {} 4542 4543 std::pair<GlobalValue::GUID, GlobalValue::GUID> 4544 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 4545 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 4546 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 4547 return VGI->second; 4548 } 4549 4550 // Specialized value symbol table parser used when reading module index 4551 // blocks where we don't actually create global values. The parsed information 4552 // is saved in the bitcode reader for use when later parsing summaries. 4553 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4554 uint64_t Offset, 4555 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4556 assert(Offset > 0 && "Expected non-zero VST offset"); 4557 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4558 4559 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4560 return error("Invalid record"); 4561 4562 SmallVector<uint64_t, 64> Record; 4563 4564 // Read all the records for this value table. 4565 SmallString<128> ValueName; 4566 4567 while (true) { 4568 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4569 4570 switch (Entry.Kind) { 4571 case BitstreamEntry::SubBlock: // Handled for us already. 4572 case BitstreamEntry::Error: 4573 return error("Malformed block"); 4574 case BitstreamEntry::EndBlock: 4575 // Done parsing VST, jump back to wherever we came from. 4576 Stream.JumpToBit(CurrentBit); 4577 return Error::success(); 4578 case BitstreamEntry::Record: 4579 // The interesting case. 4580 break; 4581 } 4582 4583 // Read a record. 4584 Record.clear(); 4585 switch (Stream.readRecord(Entry.ID, Record)) { 4586 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4587 break; 4588 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4589 if (convertToString(Record, 1, ValueName)) 4590 return error("Invalid record"); 4591 unsigned ValueID = Record[0]; 4592 assert(!SourceFileName.empty()); 4593 auto VLI = ValueIdToLinkageMap.find(ValueID); 4594 assert(VLI != ValueIdToLinkageMap.end() && 4595 "No linkage found for VST entry?"); 4596 auto Linkage = VLI->second; 4597 std::string GlobalId = 4598 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4599 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4600 auto OriginalNameID = ValueGUID; 4601 if (GlobalValue::isLocalLinkage(Linkage)) 4602 OriginalNameID = GlobalValue::getGUID(ValueName); 4603 if (PrintSummaryGUIDs) 4604 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4605 << ValueName << "\n"; 4606 ValueIdToCallGraphGUIDMap[ValueID] = 4607 std::make_pair(ValueGUID, OriginalNameID); 4608 ValueName.clear(); 4609 break; 4610 } 4611 case bitc::VST_CODE_FNENTRY: { 4612 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4613 if (convertToString(Record, 2, ValueName)) 4614 return error("Invalid record"); 4615 unsigned ValueID = Record[0]; 4616 assert(!SourceFileName.empty()); 4617 auto VLI = ValueIdToLinkageMap.find(ValueID); 4618 assert(VLI != ValueIdToLinkageMap.end() && 4619 "No linkage found for VST entry?"); 4620 auto Linkage = VLI->second; 4621 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 4622 ValueName, VLI->second, SourceFileName); 4623 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 4624 auto OriginalNameID = FunctionGUID; 4625 if (GlobalValue::isLocalLinkage(Linkage)) 4626 OriginalNameID = GlobalValue::getGUID(ValueName); 4627 if (PrintSummaryGUIDs) 4628 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 4629 << ValueName << "\n"; 4630 ValueIdToCallGraphGUIDMap[ValueID] = 4631 std::make_pair(FunctionGUID, OriginalNameID); 4632 4633 ValueName.clear(); 4634 break; 4635 } 4636 case bitc::VST_CODE_COMBINED_ENTRY: { 4637 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4638 unsigned ValueID = Record[0]; 4639 GlobalValue::GUID RefGUID = Record[1]; 4640 // The "original name", which is the second value of the pair will be 4641 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4642 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 4643 break; 4644 } 4645 } 4646 } 4647 } 4648 4649 // Parse just the blocks needed for building the index out of the module. 4650 // At the end of this routine the module Index is populated with a map 4651 // from global value id to GlobalValueSummary objects. 4652 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) { 4653 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4654 return error("Invalid record"); 4655 4656 SmallVector<uint64_t, 64> Record; 4657 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4658 unsigned ValueId = 0; 4659 4660 // Read the index for this module. 4661 while (true) { 4662 BitstreamEntry Entry = Stream.advance(); 4663 4664 switch (Entry.Kind) { 4665 case BitstreamEntry::Error: 4666 return error("Malformed block"); 4667 case BitstreamEntry::EndBlock: 4668 return Error::success(); 4669 4670 case BitstreamEntry::SubBlock: 4671 switch (Entry.ID) { 4672 default: // Skip unknown content. 4673 if (Stream.SkipBlock()) 4674 return error("Invalid record"); 4675 break; 4676 case bitc::BLOCKINFO_BLOCK_ID: 4677 // Need to parse these to get abbrev ids (e.g. for VST) 4678 if (readBlockInfo()) 4679 return error("Malformed block"); 4680 break; 4681 case bitc::VALUE_SYMTAB_BLOCK_ID: 4682 // Should have been parsed earlier via VSTOffset, unless there 4683 // is no summary section. 4684 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4685 !SeenGlobalValSummary) && 4686 "Expected early VST parse via VSTOffset record"); 4687 if (Stream.SkipBlock()) 4688 return error("Invalid record"); 4689 break; 4690 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4691 assert(!SeenValueSymbolTable && 4692 "Already read VST when parsing summary block?"); 4693 // We might not have a VST if there were no values in the 4694 // summary. An empty summary block generated when we are 4695 // performing ThinLTO compiles so we don't later invoke 4696 // the regular LTO process on them. 4697 if (VSTOffset > 0) { 4698 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4699 return Err; 4700 SeenValueSymbolTable = true; 4701 } 4702 SeenGlobalValSummary = true; 4703 if (Error Err = parseEntireSummary(ModulePath)) 4704 return Err; 4705 break; 4706 case bitc::MODULE_STRTAB_BLOCK_ID: 4707 if (Error Err = parseModuleStringTable()) 4708 return Err; 4709 break; 4710 } 4711 continue; 4712 4713 case BitstreamEntry::Record: { 4714 Record.clear(); 4715 auto BitCode = Stream.readRecord(Entry.ID, Record); 4716 switch (BitCode) { 4717 default: 4718 break; // Default behavior, ignore unknown content. 4719 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4720 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4721 SmallString<128> ValueName; 4722 if (convertToString(Record, 0, ValueName)) 4723 return error("Invalid record"); 4724 SourceFileName = ValueName.c_str(); 4725 break; 4726 } 4727 /// MODULE_CODE_HASH: [5*i32] 4728 case bitc::MODULE_CODE_HASH: { 4729 if (Record.size() != 5) 4730 return error("Invalid hash length " + Twine(Record.size()).str()); 4731 if (TheIndex.modulePaths().empty()) 4732 // We always seed the index with the module. 4733 TheIndex.addModulePath(ModulePath, 0); 4734 if (TheIndex.modulePaths().size() != 1) 4735 return error("Don't expect multiple modules defined?"); 4736 auto &Hash = TheIndex.modulePaths().begin()->second.second; 4737 int Pos = 0; 4738 for (auto &Val : Record) { 4739 assert(!(Val >> 32) && "Unexpected high bits set"); 4740 Hash[Pos++] = Val; 4741 } 4742 break; 4743 } 4744 /// MODULE_CODE_VSTOFFSET: [offset] 4745 case bitc::MODULE_CODE_VSTOFFSET: 4746 if (Record.size() < 1) 4747 return error("Invalid record"); 4748 // Note that we subtract 1 here because the offset is relative to one 4749 // word before the start of the identification or module block, which 4750 // was historically always the start of the regular bitcode header. 4751 VSTOffset = Record[0] - 1; 4752 break; 4753 // GLOBALVAR: [pointer type, isconst, initid, 4754 // linkage, alignment, section, visibility, threadlocal, 4755 // unnamed_addr, externally_initialized, dllstorageclass, 4756 // comdat] 4757 case bitc::MODULE_CODE_GLOBALVAR: { 4758 if (Record.size() < 6) 4759 return error("Invalid record"); 4760 uint64_t RawLinkage = Record[3]; 4761 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4762 ValueIdToLinkageMap[ValueId++] = Linkage; 4763 break; 4764 } 4765 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 4766 // alignment, section, visibility, gc, unnamed_addr, 4767 // prologuedata, dllstorageclass, comdat, prefixdata] 4768 case bitc::MODULE_CODE_FUNCTION: { 4769 if (Record.size() < 8) 4770 return error("Invalid record"); 4771 uint64_t RawLinkage = Record[3]; 4772 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4773 ValueIdToLinkageMap[ValueId++] = Linkage; 4774 break; 4775 } 4776 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4777 // dllstorageclass] 4778 case bitc::MODULE_CODE_ALIAS: { 4779 if (Record.size() < 6) 4780 return error("Invalid record"); 4781 uint64_t RawLinkage = Record[3]; 4782 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4783 ValueIdToLinkageMap[ValueId++] = Linkage; 4784 break; 4785 } 4786 } 4787 } 4788 continue; 4789 } 4790 } 4791 } 4792 4793 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 4794 // objects in the index. 4795 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary( 4796 StringRef ModulePath) { 4797 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 4798 return error("Invalid record"); 4799 SmallVector<uint64_t, 64> Record; 4800 4801 // Parse version 4802 { 4803 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4804 if (Entry.Kind != BitstreamEntry::Record) 4805 return error("Invalid Summary Block: record for version expected"); 4806 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 4807 return error("Invalid Summary Block: version expected"); 4808 } 4809 const uint64_t Version = Record[0]; 4810 const bool IsOldProfileFormat = Version == 1; 4811 if (!IsOldProfileFormat && Version != 2) 4812 return error("Invalid summary version " + Twine(Version) + 4813 ", 1 or 2 expected"); 4814 Record.clear(); 4815 4816 // Keep around the last seen summary to be used when we see an optional 4817 // "OriginalName" attachement. 4818 GlobalValueSummary *LastSeenSummary = nullptr; 4819 bool Combined = false; 4820 4821 while (true) { 4822 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4823 4824 switch (Entry.Kind) { 4825 case BitstreamEntry::SubBlock: // Handled for us already. 4826 case BitstreamEntry::Error: 4827 return error("Malformed block"); 4828 case BitstreamEntry::EndBlock: 4829 // For a per-module index, remove any entries that still have empty 4830 // summaries. The VST parsing creates entries eagerly for all symbols, 4831 // but not all have associated summaries (e.g. it doesn't know how to 4832 // distinguish between VST_CODE_ENTRY for function declarations vs global 4833 // variables with initializers that end up with a summary). Remove those 4834 // entries now so that we don't need to rely on the combined index merger 4835 // to clean them up (especially since that may not run for the first 4836 // module's index if we merge into that). 4837 if (!Combined) 4838 TheIndex.removeEmptySummaryEntries(); 4839 return Error::success(); 4840 case BitstreamEntry::Record: 4841 // The interesting case. 4842 break; 4843 } 4844 4845 // Read a record. The record format depends on whether this 4846 // is a per-module index or a combined index file. In the per-module 4847 // case the records contain the associated value's ID for correlation 4848 // with VST entries. In the combined index the correlation is done 4849 // via the bitcode offset of the summary records (which were saved 4850 // in the combined index VST entries). The records also contain 4851 // information used for ThinLTO renaming and importing. 4852 Record.clear(); 4853 auto BitCode = Stream.readRecord(Entry.ID, Record); 4854 switch (BitCode) { 4855 default: // Default behavior: ignore. 4856 break; 4857 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 4858 // n x (valueid)] 4859 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 4860 // numrefs x valueid, 4861 // n x (valueid, hotness)] 4862 case bitc::FS_PERMODULE: 4863 case bitc::FS_PERMODULE_PROFILE: { 4864 unsigned ValueID = Record[0]; 4865 uint64_t RawFlags = Record[1]; 4866 unsigned InstCount = Record[2]; 4867 unsigned NumRefs = Record[3]; 4868 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4869 std::unique_ptr<FunctionSummary> FS = 4870 llvm::make_unique<FunctionSummary>(Flags, InstCount); 4871 // The module path string ref set in the summary must be owned by the 4872 // index's module string table. Since we don't have a module path 4873 // string table section in the per-module index, we create a single 4874 // module path string table entry with an empty (0) ID to take 4875 // ownership. 4876 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4877 static int RefListStartIndex = 4; 4878 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 4879 assert(Record.size() >= RefListStartIndex + NumRefs && 4880 "Record size inconsistent with number of references"); 4881 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 4882 unsigned RefValueId = Record[I]; 4883 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 4884 FS->addRefEdge(RefGUID); 4885 } 4886 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 4887 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 4888 ++I) { 4889 CalleeInfo::HotnessType Hotness; 4890 GlobalValue::GUID CalleeGUID; 4891 std::tie(CalleeGUID, Hotness) = 4892 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 4893 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 4894 } 4895 auto GUID = getGUIDFromValueId(ValueID); 4896 FS->setOriginalName(GUID.second); 4897 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 4898 break; 4899 } 4900 // FS_ALIAS: [valueid, flags, valueid] 4901 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 4902 // they expect all aliasee summaries to be available. 4903 case bitc::FS_ALIAS: { 4904 unsigned ValueID = Record[0]; 4905 uint64_t RawFlags = Record[1]; 4906 unsigned AliaseeID = Record[2]; 4907 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4908 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 4909 // The module path string ref set in the summary must be owned by the 4910 // index's module string table. Since we don't have a module path 4911 // string table section in the per-module index, we create a single 4912 // module path string table entry with an empty (0) ID to take 4913 // ownership. 4914 AS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4915 4916 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 4917 auto *AliaseeSummary = TheIndex.getGlobalValueSummary(AliaseeGUID); 4918 if (!AliaseeSummary) 4919 return error("Alias expects aliasee summary to be parsed"); 4920 AS->setAliasee(AliaseeSummary); 4921 4922 auto GUID = getGUIDFromValueId(ValueID); 4923 AS->setOriginalName(GUID.second); 4924 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 4925 break; 4926 } 4927 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 4928 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 4929 unsigned ValueID = Record[0]; 4930 uint64_t RawFlags = Record[1]; 4931 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4932 std::unique_ptr<GlobalVarSummary> FS = 4933 llvm::make_unique<GlobalVarSummary>(Flags); 4934 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4935 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 4936 unsigned RefValueId = Record[I]; 4937 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 4938 FS->addRefEdge(RefGUID); 4939 } 4940 auto GUID = getGUIDFromValueId(ValueID); 4941 FS->setOriginalName(GUID.second); 4942 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 4943 break; 4944 } 4945 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 4946 // numrefs x valueid, n x (valueid)] 4947 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 4948 // numrefs x valueid, n x (valueid, hotness)] 4949 case bitc::FS_COMBINED: 4950 case bitc::FS_COMBINED_PROFILE: { 4951 unsigned ValueID = Record[0]; 4952 uint64_t ModuleId = Record[1]; 4953 uint64_t RawFlags = Record[2]; 4954 unsigned InstCount = Record[3]; 4955 unsigned NumRefs = Record[4]; 4956 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4957 std::unique_ptr<FunctionSummary> FS = 4958 llvm::make_unique<FunctionSummary>(Flags, InstCount); 4959 LastSeenSummary = FS.get(); 4960 FS->setModulePath(ModuleIdMap[ModuleId]); 4961 static int RefListStartIndex = 5; 4962 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 4963 assert(Record.size() >= RefListStartIndex + NumRefs && 4964 "Record size inconsistent with number of references"); 4965 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 4966 ++I) { 4967 unsigned RefValueId = Record[I]; 4968 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 4969 FS->addRefEdge(RefGUID); 4970 } 4971 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 4972 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 4973 ++I) { 4974 CalleeInfo::HotnessType Hotness; 4975 GlobalValue::GUID CalleeGUID; 4976 std::tie(CalleeGUID, Hotness) = 4977 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 4978 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 4979 } 4980 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 4981 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 4982 Combined = true; 4983 break; 4984 } 4985 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 4986 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 4987 // they expect all aliasee summaries to be available. 4988 case bitc::FS_COMBINED_ALIAS: { 4989 unsigned ValueID = Record[0]; 4990 uint64_t ModuleId = Record[1]; 4991 uint64_t RawFlags = Record[2]; 4992 unsigned AliaseeValueId = Record[3]; 4993 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4994 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 4995 LastSeenSummary = AS.get(); 4996 AS->setModulePath(ModuleIdMap[ModuleId]); 4997 4998 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 4999 auto AliaseeInModule = 5000 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5001 if (!AliaseeInModule) 5002 return error("Alias expects aliasee summary to be parsed"); 5003 AS->setAliasee(AliaseeInModule); 5004 5005 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5006 TheIndex.addGlobalValueSummary(GUID, std::move(AS)); 5007 Combined = true; 5008 break; 5009 } 5010 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5011 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5012 unsigned ValueID = Record[0]; 5013 uint64_t ModuleId = Record[1]; 5014 uint64_t RawFlags = Record[2]; 5015 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5016 std::unique_ptr<GlobalVarSummary> FS = 5017 llvm::make_unique<GlobalVarSummary>(Flags); 5018 LastSeenSummary = FS.get(); 5019 FS->setModulePath(ModuleIdMap[ModuleId]); 5020 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 5021 unsigned RefValueId = Record[I]; 5022 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 5023 FS->addRefEdge(RefGUID); 5024 } 5025 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5026 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 5027 Combined = true; 5028 break; 5029 } 5030 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5031 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5032 uint64_t OriginalName = Record[0]; 5033 if (!LastSeenSummary) 5034 return error("Name attachment that does not follow a combined record"); 5035 LastSeenSummary->setOriginalName(OriginalName); 5036 // Reset the LastSeenSummary 5037 LastSeenSummary = nullptr; 5038 } 5039 } 5040 } 5041 llvm_unreachable("Exit infinite loop"); 5042 } 5043 5044 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 5045 ModuleSummaryIndexBitcodeReader::readCallGraphEdge( 5046 const SmallVector<uint64_t, 64> &Record, unsigned int &I, 5047 const bool IsOldProfileFormat, const bool HasProfile) { 5048 5049 auto Hotness = CalleeInfo::HotnessType::Unknown; 5050 unsigned CalleeValueId = Record[I]; 5051 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 5052 if (IsOldProfileFormat) { 5053 I += 1; // Skip old callsitecount field 5054 if (HasProfile) 5055 I += 1; // Skip old profilecount field 5056 } else if (HasProfile) 5057 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5058 return {CalleeGUID, Hotness}; 5059 } 5060 5061 // Parse the module string table block into the Index. 5062 // This populates the ModulePathStringTable map in the index. 5063 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5064 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5065 return error("Invalid record"); 5066 5067 SmallVector<uint64_t, 64> Record; 5068 5069 SmallString<128> ModulePath; 5070 ModulePathStringTableTy::iterator LastSeenModulePath; 5071 5072 while (true) { 5073 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5074 5075 switch (Entry.Kind) { 5076 case BitstreamEntry::SubBlock: // Handled for us already. 5077 case BitstreamEntry::Error: 5078 return error("Malformed block"); 5079 case BitstreamEntry::EndBlock: 5080 return Error::success(); 5081 case BitstreamEntry::Record: 5082 // The interesting case. 5083 break; 5084 } 5085 5086 Record.clear(); 5087 switch (Stream.readRecord(Entry.ID, Record)) { 5088 default: // Default behavior: ignore. 5089 break; 5090 case bitc::MST_CODE_ENTRY: { 5091 // MST_ENTRY: [modid, namechar x N] 5092 uint64_t ModuleId = Record[0]; 5093 5094 if (convertToString(Record, 1, ModulePath)) 5095 return error("Invalid record"); 5096 5097 LastSeenModulePath = TheIndex.addModulePath(ModulePath, ModuleId); 5098 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 5099 5100 ModulePath.clear(); 5101 break; 5102 } 5103 /// MST_CODE_HASH: [5*i32] 5104 case bitc::MST_CODE_HASH: { 5105 if (Record.size() != 5) 5106 return error("Invalid hash length " + Twine(Record.size()).str()); 5107 if (LastSeenModulePath == TheIndex.modulePaths().end()) 5108 return error("Invalid hash that does not follow a module path"); 5109 int Pos = 0; 5110 for (auto &Val : Record) { 5111 assert(!(Val >> 32) && "Unexpected high bits set"); 5112 LastSeenModulePath->second.second[Pos++] = Val; 5113 } 5114 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 5115 LastSeenModulePath = TheIndex.modulePaths().end(); 5116 break; 5117 } 5118 } 5119 } 5120 llvm_unreachable("Exit infinite loop"); 5121 } 5122 5123 namespace { 5124 5125 // FIXME: This class is only here to support the transition to llvm::Error. It 5126 // will be removed once this transition is complete. Clients should prefer to 5127 // deal with the Error value directly, rather than converting to error_code. 5128 class BitcodeErrorCategoryType : public std::error_category { 5129 const char *name() const noexcept override { 5130 return "llvm.bitcode"; 5131 } 5132 std::string message(int IE) const override { 5133 BitcodeError E = static_cast<BitcodeError>(IE); 5134 switch (E) { 5135 case BitcodeError::CorruptedBitcode: 5136 return "Corrupted bitcode"; 5137 } 5138 llvm_unreachable("Unknown error type!"); 5139 } 5140 }; 5141 5142 } // end anonymous namespace 5143 5144 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5145 5146 const std::error_category &llvm::BitcodeErrorCategory() { 5147 return *ErrorCategory; 5148 } 5149 5150 //===----------------------------------------------------------------------===// 5151 // External interface 5152 //===----------------------------------------------------------------------===// 5153 5154 Expected<std::vector<BitcodeModule>> 5155 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5156 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5157 if (!StreamOrErr) 5158 return StreamOrErr.takeError(); 5159 BitstreamCursor &Stream = *StreamOrErr; 5160 5161 std::vector<BitcodeModule> Modules; 5162 while (true) { 5163 uint64_t BCBegin = Stream.getCurrentByteNo(); 5164 5165 // We may be consuming bitcode from a client that leaves garbage at the end 5166 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5167 // the end that there cannot possibly be another module, stop looking. 5168 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5169 return Modules; 5170 5171 BitstreamEntry Entry = Stream.advance(); 5172 switch (Entry.Kind) { 5173 case BitstreamEntry::EndBlock: 5174 case BitstreamEntry::Error: 5175 return error("Malformed block"); 5176 5177 case BitstreamEntry::SubBlock: { 5178 uint64_t IdentificationBit = -1ull; 5179 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5180 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5181 if (Stream.SkipBlock()) 5182 return error("Malformed block"); 5183 5184 Entry = Stream.advance(); 5185 if (Entry.Kind != BitstreamEntry::SubBlock || 5186 Entry.ID != bitc::MODULE_BLOCK_ID) 5187 return error("Malformed block"); 5188 } 5189 5190 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5191 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5192 if (Stream.SkipBlock()) 5193 return error("Malformed block"); 5194 5195 Modules.push_back({Stream.getBitcodeBytes().slice( 5196 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5197 Buffer.getBufferIdentifier(), IdentificationBit, 5198 ModuleBit}); 5199 continue; 5200 } 5201 5202 if (Stream.SkipBlock()) 5203 return error("Malformed block"); 5204 continue; 5205 } 5206 case BitstreamEntry::Record: 5207 Stream.skipRecord(Entry.ID); 5208 continue; 5209 } 5210 } 5211 } 5212 5213 /// \brief Get a lazy one-at-time loading module from bitcode. 5214 /// 5215 /// This isn't always used in a lazy context. In particular, it's also used by 5216 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5217 /// in forward-referenced functions from block address references. 5218 /// 5219 /// \param[in] MaterializeAll Set to \c true if we should materialize 5220 /// everything. 5221 Expected<std::unique_ptr<Module>> 5222 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5223 bool ShouldLazyLoadMetadata) { 5224 BitstreamCursor Stream(Buffer); 5225 5226 std::string ProducerIdentification; 5227 if (IdentificationBit != -1ull) { 5228 Stream.JumpToBit(IdentificationBit); 5229 Expected<std::string> ProducerIdentificationOrErr = 5230 readIdentificationBlock(Stream); 5231 if (!ProducerIdentificationOrErr) 5232 return ProducerIdentificationOrErr.takeError(); 5233 5234 ProducerIdentification = *ProducerIdentificationOrErr; 5235 } 5236 5237 Stream.JumpToBit(ModuleBit); 5238 auto *R = 5239 new BitcodeReader(std::move(Stream), ProducerIdentification, Context); 5240 5241 std::unique_ptr<Module> M = 5242 llvm::make_unique<Module>(ModuleIdentifier, Context); 5243 M->setMaterializer(R); 5244 5245 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5246 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata)) 5247 return std::move(Err); 5248 5249 if (MaterializeAll) { 5250 // Read in the entire module, and destroy the BitcodeReader. 5251 if (Error Err = M->materializeAll()) 5252 return std::move(Err); 5253 } else { 5254 // Resolve forward references from blockaddresses. 5255 if (Error Err = R->materializeForwardReferencedFunctions()) 5256 return std::move(Err); 5257 } 5258 return std::move(M); 5259 } 5260 5261 Expected<std::unique_ptr<Module>> 5262 BitcodeModule::getLazyModule(LLVMContext &Context, 5263 bool ShouldLazyLoadMetadata) { 5264 return getModuleImpl(Context, false, ShouldLazyLoadMetadata); 5265 } 5266 5267 // Parse the specified bitcode buffer, returning the function info index. 5268 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5269 BitstreamCursor Stream(Buffer); 5270 Stream.JumpToBit(ModuleBit); 5271 5272 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5273 ModuleSummaryIndexBitcodeReader R(std::move(Stream), *Index); 5274 5275 if (Error Err = R.parseModule(ModuleIdentifier)) 5276 return std::move(Err); 5277 5278 return std::move(Index); 5279 } 5280 5281 // Check if the given bitcode buffer contains a global value summary block. 5282 Expected<bool> BitcodeModule::hasSummary() { 5283 BitstreamCursor Stream(Buffer); 5284 Stream.JumpToBit(ModuleBit); 5285 5286 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5287 return error("Invalid record"); 5288 5289 while (true) { 5290 BitstreamEntry Entry = Stream.advance(); 5291 5292 switch (Entry.Kind) { 5293 case BitstreamEntry::Error: 5294 return error("Malformed block"); 5295 case BitstreamEntry::EndBlock: 5296 return false; 5297 5298 case BitstreamEntry::SubBlock: 5299 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5300 return true; 5301 5302 // Ignore other sub-blocks. 5303 if (Stream.SkipBlock()) 5304 return error("Malformed block"); 5305 continue; 5306 5307 case BitstreamEntry::Record: 5308 Stream.skipRecord(Entry.ID); 5309 continue; 5310 } 5311 } 5312 } 5313 5314 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5315 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5316 if (!MsOrErr) 5317 return MsOrErr.takeError(); 5318 5319 if (MsOrErr->size() != 1) 5320 return error("Expected a single module"); 5321 5322 return (*MsOrErr)[0]; 5323 } 5324 5325 Expected<std::unique_ptr<Module>> 5326 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, 5327 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 5328 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5329 if (!BM) 5330 return BM.takeError(); 5331 5332 return BM->getLazyModule(Context, ShouldLazyLoadMetadata); 5333 } 5334 5335 Expected<std::unique_ptr<Module>> 5336 llvm::getOwningLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 5337 LLVMContext &Context, 5338 bool ShouldLazyLoadMetadata) { 5339 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata); 5340 if (MOrErr) 5341 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5342 return MOrErr; 5343 } 5344 5345 Expected<std::unique_ptr<Module>> 5346 BitcodeModule::parseModule(LLVMContext &Context) { 5347 return getModuleImpl(Context, true, false); 5348 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5349 // written. We must defer until the Module has been fully materialized. 5350 } 5351 5352 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5353 LLVMContext &Context) { 5354 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5355 if (!BM) 5356 return BM.takeError(); 5357 5358 return BM->parseModule(Context); 5359 } 5360 5361 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5362 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5363 if (!StreamOrErr) 5364 return StreamOrErr.takeError(); 5365 5366 return readTriple(*StreamOrErr); 5367 } 5368 5369 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5370 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5371 if (!StreamOrErr) 5372 return StreamOrErr.takeError(); 5373 5374 return hasObjCCategory(*StreamOrErr); 5375 } 5376 5377 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5378 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5379 if (!StreamOrErr) 5380 return StreamOrErr.takeError(); 5381 5382 return readIdentificationCode(*StreamOrErr); 5383 } 5384 5385 Expected<std::unique_ptr<ModuleSummaryIndex>> 5386 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5387 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5388 if (!BM) 5389 return BM.takeError(); 5390 5391 return BM->getSummary(); 5392 } 5393 5394 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) { 5395 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5396 if (!BM) 5397 return BM.takeError(); 5398 5399 return BM->hasSummary(); 5400 } 5401