1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 41 using namespace llvm; 42 43 static cl::opt<bool> PrintSummaryGUIDs( 44 "print-summary-global-ids", cl::init(false), cl::Hidden, 45 cl::desc( 46 "Print the global id for each value when reading the module summary")); 47 48 namespace { 49 enum { 50 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty); 97 98 void assignValue(Value *V, unsigned Idx); 99 100 /// Once all constants are read, this method bulk resolves any forward 101 /// references. 102 void resolveConstantForwardRefs(); 103 }; 104 105 class BitcodeReaderMetadataList { 106 unsigned NumFwdRefs; 107 bool AnyFwdRefs; 108 unsigned MinFwdRef; 109 unsigned MaxFwdRef; 110 111 /// Array of metadata references. 112 /// 113 /// Don't use std::vector here. Some versions of libc++ copy (instead of 114 /// move) on resize, and TrackingMDRef is very expensive to copy. 115 SmallVector<TrackingMDRef, 1> MetadataPtrs; 116 117 /// Structures for resolving old type refs. 118 struct { 119 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 120 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 121 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 122 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 123 } OldTypeRefs; 124 125 LLVMContext &Context; 126 public: 127 BitcodeReaderMetadataList(LLVMContext &C) 128 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 129 130 // vector compatibility methods 131 unsigned size() const { return MetadataPtrs.size(); } 132 void resize(unsigned N) { MetadataPtrs.resize(N); } 133 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 134 void clear() { MetadataPtrs.clear(); } 135 Metadata *back() const { return MetadataPtrs.back(); } 136 void pop_back() { MetadataPtrs.pop_back(); } 137 bool empty() const { return MetadataPtrs.empty(); } 138 139 Metadata *operator[](unsigned i) const { 140 assert(i < MetadataPtrs.size()); 141 return MetadataPtrs[i]; 142 } 143 144 Metadata *lookup(unsigned I) const { 145 if (I < MetadataPtrs.size()) 146 return MetadataPtrs[I]; 147 return nullptr; 148 } 149 150 void shrinkTo(unsigned N) { 151 assert(N <= size() && "Invalid shrinkTo request!"); 152 assert(!AnyFwdRefs && "Unexpected forward refs"); 153 MetadataPtrs.resize(N); 154 } 155 156 /// Return the given metadata, creating a replaceable forward reference if 157 /// necessary. 158 Metadata *getMetadataFwdRef(unsigned Idx); 159 160 /// Return the the given metadata only if it is fully resolved. 161 /// 162 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 163 /// would give \c false. 164 Metadata *getMetadataIfResolved(unsigned Idx); 165 166 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 167 void assignValue(Metadata *MD, unsigned Idx); 168 void tryToResolveCycles(); 169 bool hasFwdRefs() const { return AnyFwdRefs; } 170 171 /// Upgrade a type that had an MDString reference. 172 void addTypeRef(MDString &UUID, DICompositeType &CT); 173 174 /// Upgrade a type that had an MDString reference. 175 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 176 177 /// Upgrade a type ref array that may have MDString references. 178 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 179 180 private: 181 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 182 }; 183 184 class BitcodeReader : public GVMaterializer { 185 LLVMContext &Context; 186 Module *TheModule = nullptr; 187 std::unique_ptr<MemoryBuffer> Buffer; 188 std::unique_ptr<BitstreamReader> StreamFile; 189 BitstreamCursor Stream; 190 // Next offset to start scanning for lazy parsing of function bodies. 191 uint64_t NextUnreadBit = 0; 192 // Last function offset found in the VST. 193 uint64_t LastFunctionBlockBit = 0; 194 bool SeenValueSymbolTable = false; 195 uint64_t VSTOffset = 0; 196 // Contains an arbitrary and optional string identifying the bitcode producer 197 std::string ProducerIdentification; 198 199 std::vector<Type*> TypeList; 200 BitcodeReaderValueList ValueList; 201 BitcodeReaderMetadataList MetadataList; 202 std::vector<Comdat *> ComdatList; 203 SmallVector<Instruction *, 64> InstructionList; 204 205 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 206 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 207 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 208 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 209 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 210 211 SmallVector<Instruction*, 64> InstsWithTBAATag; 212 213 bool HasSeenOldLoopTags = false; 214 215 /// The set of attributes by index. Index zero in the file is for null, and 216 /// is thus not represented here. As such all indices are off by one. 217 std::vector<AttributeSet> MAttributes; 218 219 /// The set of attribute groups. 220 std::map<unsigned, AttributeSet> MAttributeGroups; 221 222 /// While parsing a function body, this is a list of the basic blocks for the 223 /// function. 224 std::vector<BasicBlock*> FunctionBBs; 225 226 // When reading the module header, this list is populated with functions that 227 // have bodies later in the file. 228 std::vector<Function*> FunctionsWithBodies; 229 230 // When intrinsic functions are encountered which require upgrading they are 231 // stored here with their replacement function. 232 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 233 UpgradedIntrinsicMap UpgradedIntrinsics; 234 235 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 236 DenseMap<unsigned, unsigned> MDKindMap; 237 238 // Several operations happen after the module header has been read, but 239 // before function bodies are processed. This keeps track of whether 240 // we've done this yet. 241 bool SeenFirstFunctionBody = false; 242 243 /// When function bodies are initially scanned, this map contains info about 244 /// where to find deferred function body in the stream. 245 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 246 247 /// When Metadata block is initially scanned when parsing the module, we may 248 /// choose to defer parsing of the metadata. This vector contains info about 249 /// which Metadata blocks are deferred. 250 std::vector<uint64_t> DeferredMetadataInfo; 251 252 /// These are basic blocks forward-referenced by block addresses. They are 253 /// inserted lazily into functions when they're loaded. The basic block ID is 254 /// its index into the vector. 255 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 256 std::deque<Function *> BasicBlockFwdRefQueue; 257 258 /// Indicates that we are using a new encoding for instruction operands where 259 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 260 /// instruction number, for a more compact encoding. Some instruction 261 /// operands are not relative to the instruction ID: basic block numbers, and 262 /// types. Once the old style function blocks have been phased out, we would 263 /// not need this flag. 264 bool UseRelativeIDs = false; 265 266 /// True if all functions will be materialized, negating the need to process 267 /// (e.g.) blockaddress forward references. 268 bool WillMaterializeAllForwardRefs = false; 269 270 /// True if any Metadata block has been materialized. 271 bool IsMetadataMaterialized = false; 272 273 bool StripDebugInfo = false; 274 275 /// Functions that need to be matched with subprograms when upgrading old 276 /// metadata. 277 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 278 279 std::vector<std::string> BundleTags; 280 281 public: 282 std::error_code error(BitcodeError E, const Twine &Message); 283 std::error_code error(BitcodeError E); 284 std::error_code error(const Twine &Message); 285 286 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 287 BitcodeReader(LLVMContext &Context); 288 ~BitcodeReader() override { freeState(); } 289 290 std::error_code materializeForwardReferencedFunctions(); 291 292 void freeState(); 293 294 void releaseBuffer(); 295 296 std::error_code materialize(GlobalValue *GV) override; 297 std::error_code materializeModule() override; 298 std::vector<StructType *> getIdentifiedStructTypes() const override; 299 300 /// \brief Main interface to parsing a bitcode buffer. 301 /// \returns true if an error occurred. 302 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 303 Module *M, 304 bool ShouldLazyLoadMetadata = false); 305 306 /// \brief Cheap mechanism to just extract module triple 307 /// \returns true if an error occurred. 308 ErrorOr<std::string> parseTriple(); 309 310 /// Cheap mechanism to just extract the identification block out of bitcode. 311 ErrorOr<std::string> parseIdentificationBlock(); 312 313 static uint64_t decodeSignRotatedValue(uint64_t V); 314 315 /// Materialize any deferred Metadata block. 316 std::error_code materializeMetadata() override; 317 318 void setStripDebugInfo() override; 319 320 private: 321 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 322 // ProducerIdentification data member, and do some basic enforcement on the 323 // "epoch" encoded in the bitcode. 324 std::error_code parseBitcodeVersion(); 325 326 std::vector<StructType *> IdentifiedStructTypes; 327 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 328 StructType *createIdentifiedStructType(LLVMContext &Context); 329 330 Type *getTypeByID(unsigned ID); 331 Value *getFnValueByID(unsigned ID, Type *Ty) { 332 if (Ty && Ty->isMetadataTy()) 333 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 334 return ValueList.getValueFwdRef(ID, Ty); 335 } 336 Metadata *getFnMetadataByID(unsigned ID) { 337 return MetadataList.getMetadataFwdRef(ID); 338 } 339 BasicBlock *getBasicBlock(unsigned ID) const { 340 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 341 return FunctionBBs[ID]; 342 } 343 AttributeSet getAttributes(unsigned i) const { 344 if (i-1 < MAttributes.size()) 345 return MAttributes[i-1]; 346 return AttributeSet(); 347 } 348 349 /// Read a value/type pair out of the specified record from slot 'Slot'. 350 /// Increment Slot past the number of slots used in the record. Return true on 351 /// failure. 352 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 353 unsigned InstNum, Value *&ResVal) { 354 if (Slot == Record.size()) return true; 355 unsigned ValNo = (unsigned)Record[Slot++]; 356 // Adjust the ValNo, if it was encoded relative to the InstNum. 357 if (UseRelativeIDs) 358 ValNo = InstNum - ValNo; 359 if (ValNo < InstNum) { 360 // If this is not a forward reference, just return the value we already 361 // have. 362 ResVal = getFnValueByID(ValNo, nullptr); 363 return ResVal == nullptr; 364 } 365 if (Slot == Record.size()) 366 return true; 367 368 unsigned TypeNo = (unsigned)Record[Slot++]; 369 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 370 return ResVal == nullptr; 371 } 372 373 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 374 /// past the number of slots used by the value in the record. Return true if 375 /// there is an error. 376 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 377 unsigned InstNum, Type *Ty, Value *&ResVal) { 378 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 379 return true; 380 // All values currently take a single record slot. 381 ++Slot; 382 return false; 383 } 384 385 /// Like popValue, but does not increment the Slot number. 386 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 387 unsigned InstNum, Type *Ty, Value *&ResVal) { 388 ResVal = getValue(Record, Slot, InstNum, Ty); 389 return ResVal == nullptr; 390 } 391 392 /// Version of getValue that returns ResVal directly, or 0 if there is an 393 /// error. 394 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 395 unsigned InstNum, Type *Ty) { 396 if (Slot == Record.size()) return nullptr; 397 unsigned ValNo = (unsigned)Record[Slot]; 398 // Adjust the ValNo, if it was encoded relative to the InstNum. 399 if (UseRelativeIDs) 400 ValNo = InstNum - ValNo; 401 return getFnValueByID(ValNo, Ty); 402 } 403 404 /// Like getValue, but decodes signed VBRs. 405 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 406 unsigned InstNum, Type *Ty) { 407 if (Slot == Record.size()) return nullptr; 408 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 409 // Adjust the ValNo, if it was encoded relative to the InstNum. 410 if (UseRelativeIDs) 411 ValNo = InstNum - ValNo; 412 return getFnValueByID(ValNo, Ty); 413 } 414 415 /// Converts alignment exponent (i.e. power of two (or zero)) to the 416 /// corresponding alignment to use. If alignment is too large, returns 417 /// a corresponding error code. 418 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 419 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 420 std::error_code parseModule(uint64_t ResumeBit, 421 bool ShouldLazyLoadMetadata = false); 422 std::error_code parseAttributeBlock(); 423 std::error_code parseAttributeGroupBlock(); 424 std::error_code parseTypeTable(); 425 std::error_code parseTypeTableBody(); 426 std::error_code parseOperandBundleTags(); 427 428 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 429 unsigned NameIndex, Triple &TT); 430 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 431 std::error_code parseConstants(); 432 std::error_code rememberAndSkipFunctionBodies(); 433 std::error_code rememberAndSkipFunctionBody(); 434 /// Save the positions of the Metadata blocks and skip parsing the blocks. 435 std::error_code rememberAndSkipMetadata(); 436 std::error_code parseFunctionBody(Function *F); 437 std::error_code globalCleanup(); 438 std::error_code resolveGlobalAndIndirectSymbolInits(); 439 std::error_code parseMetadata(bool ModuleLevel = false); 440 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 441 StringRef Blob, 442 unsigned &NextMetadataNo); 443 std::error_code parseMetadataKinds(); 444 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 445 std::error_code parseMetadataAttachment(Function &F); 446 ErrorOr<std::string> parseModuleTriple(); 447 std::error_code parseUseLists(); 448 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 449 std::error_code initStreamFromBuffer(); 450 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 451 std::error_code findFunctionInStream( 452 Function *F, 453 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 454 }; 455 456 /// Class to manage reading and parsing function summary index bitcode 457 /// files/sections. 458 class ModuleSummaryIndexBitcodeReader { 459 DiagnosticHandlerFunction DiagnosticHandler; 460 461 /// Eventually points to the module index built during parsing. 462 ModuleSummaryIndex *TheIndex = nullptr; 463 464 std::unique_ptr<MemoryBuffer> Buffer; 465 std::unique_ptr<BitstreamReader> StreamFile; 466 BitstreamCursor Stream; 467 468 /// Used to indicate whether caller only wants to check for the presence 469 /// of the global value summary bitcode section. All blocks are skipped, 470 /// but the SeenGlobalValSummary boolean is set. 471 bool CheckGlobalValSummaryPresenceOnly = false; 472 473 /// Indicates whether we have encountered a global value summary section 474 /// yet during parsing, used when checking if file contains global value 475 /// summary section. 476 bool SeenGlobalValSummary = false; 477 478 /// Indicates whether we have already parsed the VST, used for error checking. 479 bool SeenValueSymbolTable = false; 480 481 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 482 /// Used to enable on-demand parsing of the VST. 483 uint64_t VSTOffset = 0; 484 485 // Map to save ValueId to GUID association that was recorded in the 486 // ValueSymbolTable. It is used after the VST is parsed to convert 487 // call graph edges read from the function summary from referencing 488 // callees by their ValueId to using the GUID instead, which is how 489 // they are recorded in the summary index being built. 490 // We save a second GUID which is the same as the first one, but ignoring the 491 // linkage, i.e. for value other than local linkage they are identical. 492 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 493 ValueIdToCallGraphGUIDMap; 494 495 /// Map populated during module path string table parsing, from the 496 /// module ID to a string reference owned by the index's module 497 /// path string table, used to correlate with combined index 498 /// summary records. 499 DenseMap<uint64_t, StringRef> ModuleIdMap; 500 501 /// Original source file name recorded in a bitcode record. 502 std::string SourceFileName; 503 504 public: 505 std::error_code error(BitcodeError E, const Twine &Message); 506 std::error_code error(BitcodeError E); 507 std::error_code error(const Twine &Message); 508 509 ModuleSummaryIndexBitcodeReader( 510 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 511 bool CheckGlobalValSummaryPresenceOnly = false); 512 ModuleSummaryIndexBitcodeReader( 513 DiagnosticHandlerFunction DiagnosticHandler, 514 bool CheckGlobalValSummaryPresenceOnly = false); 515 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 516 517 void freeState(); 518 519 void releaseBuffer(); 520 521 /// Check if the parser has encountered a summary section. 522 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 523 524 /// \brief Main interface to parsing a bitcode buffer. 525 /// \returns true if an error occurred. 526 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 527 ModuleSummaryIndex *I); 528 529 private: 530 std::error_code parseModule(); 531 std::error_code parseValueSymbolTable( 532 uint64_t Offset, 533 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 534 std::error_code parseEntireSummary(); 535 std::error_code parseModuleStringTable(); 536 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 537 std::error_code initStreamFromBuffer(); 538 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 539 std::pair<GlobalValue::GUID, GlobalValue::GUID> 540 getGUIDFromValueId(unsigned ValueId); 541 }; 542 } // end anonymous namespace 543 544 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 545 DiagnosticSeverity Severity, 546 const Twine &Msg) 547 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 548 549 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 550 551 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 552 std::error_code EC, const Twine &Message) { 553 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 554 DiagnosticHandler(DI); 555 return EC; 556 } 557 558 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 559 std::error_code EC) { 560 return error(DiagnosticHandler, EC, EC.message()); 561 } 562 563 static std::error_code error(LLVMContext &Context, std::error_code EC, 564 const Twine &Message) { 565 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 566 Message); 567 } 568 569 static std::error_code error(LLVMContext &Context, std::error_code EC) { 570 return error(Context, EC, EC.message()); 571 } 572 573 static std::error_code error(LLVMContext &Context, const Twine &Message) { 574 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 575 Message); 576 } 577 578 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 579 if (!ProducerIdentification.empty()) { 580 return ::error(Context, make_error_code(E), 581 Message + " (Producer: '" + ProducerIdentification + 582 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 583 } 584 return ::error(Context, make_error_code(E), Message); 585 } 586 587 std::error_code BitcodeReader::error(const Twine &Message) { 588 if (!ProducerIdentification.empty()) { 589 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 590 Message + " (Producer: '" + ProducerIdentification + 591 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 592 } 593 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 594 Message); 595 } 596 597 std::error_code BitcodeReader::error(BitcodeError E) { 598 return ::error(Context, make_error_code(E)); 599 } 600 601 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 602 : Context(Context), Buffer(Buffer), ValueList(Context), 603 MetadataList(Context) {} 604 605 BitcodeReader::BitcodeReader(LLVMContext &Context) 606 : Context(Context), Buffer(nullptr), ValueList(Context), 607 MetadataList(Context) {} 608 609 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 610 if (WillMaterializeAllForwardRefs) 611 return std::error_code(); 612 613 // Prevent recursion. 614 WillMaterializeAllForwardRefs = true; 615 616 while (!BasicBlockFwdRefQueue.empty()) { 617 Function *F = BasicBlockFwdRefQueue.front(); 618 BasicBlockFwdRefQueue.pop_front(); 619 assert(F && "Expected valid function"); 620 if (!BasicBlockFwdRefs.count(F)) 621 // Already materialized. 622 continue; 623 624 // Check for a function that isn't materializable to prevent an infinite 625 // loop. When parsing a blockaddress stored in a global variable, there 626 // isn't a trivial way to check if a function will have a body without a 627 // linear search through FunctionsWithBodies, so just check it here. 628 if (!F->isMaterializable()) 629 return error("Never resolved function from blockaddress"); 630 631 // Try to materialize F. 632 if (std::error_code EC = materialize(F)) 633 return EC; 634 } 635 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 636 637 // Reset state. 638 WillMaterializeAllForwardRefs = false; 639 return std::error_code(); 640 } 641 642 void BitcodeReader::freeState() { 643 Buffer = nullptr; 644 std::vector<Type*>().swap(TypeList); 645 ValueList.clear(); 646 MetadataList.clear(); 647 std::vector<Comdat *>().swap(ComdatList); 648 649 std::vector<AttributeSet>().swap(MAttributes); 650 std::vector<BasicBlock*>().swap(FunctionBBs); 651 std::vector<Function*>().swap(FunctionsWithBodies); 652 DeferredFunctionInfo.clear(); 653 DeferredMetadataInfo.clear(); 654 MDKindMap.clear(); 655 656 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 657 BasicBlockFwdRefQueue.clear(); 658 } 659 660 //===----------------------------------------------------------------------===// 661 // Helper functions to implement forward reference resolution, etc. 662 //===----------------------------------------------------------------------===// 663 664 /// Convert a string from a record into an std::string, return true on failure. 665 template <typename StrTy> 666 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 667 StrTy &Result) { 668 if (Idx > Record.size()) 669 return true; 670 671 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 672 Result += (char)Record[i]; 673 return false; 674 } 675 676 static bool hasImplicitComdat(size_t Val) { 677 switch (Val) { 678 default: 679 return false; 680 case 1: // Old WeakAnyLinkage 681 case 4: // Old LinkOnceAnyLinkage 682 case 10: // Old WeakODRLinkage 683 case 11: // Old LinkOnceODRLinkage 684 return true; 685 } 686 } 687 688 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 689 switch (Val) { 690 default: // Map unknown/new linkages to external 691 case 0: 692 return GlobalValue::ExternalLinkage; 693 case 2: 694 return GlobalValue::AppendingLinkage; 695 case 3: 696 return GlobalValue::InternalLinkage; 697 case 5: 698 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 699 case 6: 700 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 701 case 7: 702 return GlobalValue::ExternalWeakLinkage; 703 case 8: 704 return GlobalValue::CommonLinkage; 705 case 9: 706 return GlobalValue::PrivateLinkage; 707 case 12: 708 return GlobalValue::AvailableExternallyLinkage; 709 case 13: 710 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 711 case 14: 712 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 713 case 15: 714 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 715 case 1: // Old value with implicit comdat. 716 case 16: 717 return GlobalValue::WeakAnyLinkage; 718 case 10: // Old value with implicit comdat. 719 case 17: 720 return GlobalValue::WeakODRLinkage; 721 case 4: // Old value with implicit comdat. 722 case 18: 723 return GlobalValue::LinkOnceAnyLinkage; 724 case 11: // Old value with implicit comdat. 725 case 19: 726 return GlobalValue::LinkOnceODRLinkage; 727 } 728 } 729 730 // Decode the flags for GlobalValue in the summary 731 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 732 uint64_t Version) { 733 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 734 // like getDecodedLinkage() above. Any future change to the linkage enum and 735 // to getDecodedLinkage() will need to be taken into account here as above. 736 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 737 RawFlags = RawFlags >> 4; 738 auto HasSection = RawFlags & 0x1; // bool 739 return GlobalValueSummary::GVFlags(Linkage, HasSection); 740 } 741 742 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 743 switch (Val) { 744 default: // Map unknown visibilities to default. 745 case 0: return GlobalValue::DefaultVisibility; 746 case 1: return GlobalValue::HiddenVisibility; 747 case 2: return GlobalValue::ProtectedVisibility; 748 } 749 } 750 751 static GlobalValue::DLLStorageClassTypes 752 getDecodedDLLStorageClass(unsigned Val) { 753 switch (Val) { 754 default: // Map unknown values to default. 755 case 0: return GlobalValue::DefaultStorageClass; 756 case 1: return GlobalValue::DLLImportStorageClass; 757 case 2: return GlobalValue::DLLExportStorageClass; 758 } 759 } 760 761 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 762 switch (Val) { 763 case 0: return GlobalVariable::NotThreadLocal; 764 default: // Map unknown non-zero value to general dynamic. 765 case 1: return GlobalVariable::GeneralDynamicTLSModel; 766 case 2: return GlobalVariable::LocalDynamicTLSModel; 767 case 3: return GlobalVariable::InitialExecTLSModel; 768 case 4: return GlobalVariable::LocalExecTLSModel; 769 } 770 } 771 772 static int getDecodedCastOpcode(unsigned Val) { 773 switch (Val) { 774 default: return -1; 775 case bitc::CAST_TRUNC : return Instruction::Trunc; 776 case bitc::CAST_ZEXT : return Instruction::ZExt; 777 case bitc::CAST_SEXT : return Instruction::SExt; 778 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 779 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 780 case bitc::CAST_UITOFP : return Instruction::UIToFP; 781 case bitc::CAST_SITOFP : return Instruction::SIToFP; 782 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 783 case bitc::CAST_FPEXT : return Instruction::FPExt; 784 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 785 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 786 case bitc::CAST_BITCAST : return Instruction::BitCast; 787 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 788 } 789 } 790 791 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 792 bool IsFP = Ty->isFPOrFPVectorTy(); 793 // BinOps are only valid for int/fp or vector of int/fp types 794 if (!IsFP && !Ty->isIntOrIntVectorTy()) 795 return -1; 796 797 switch (Val) { 798 default: 799 return -1; 800 case bitc::BINOP_ADD: 801 return IsFP ? Instruction::FAdd : Instruction::Add; 802 case bitc::BINOP_SUB: 803 return IsFP ? Instruction::FSub : Instruction::Sub; 804 case bitc::BINOP_MUL: 805 return IsFP ? Instruction::FMul : Instruction::Mul; 806 case bitc::BINOP_UDIV: 807 return IsFP ? -1 : Instruction::UDiv; 808 case bitc::BINOP_SDIV: 809 return IsFP ? Instruction::FDiv : Instruction::SDiv; 810 case bitc::BINOP_UREM: 811 return IsFP ? -1 : Instruction::URem; 812 case bitc::BINOP_SREM: 813 return IsFP ? Instruction::FRem : Instruction::SRem; 814 case bitc::BINOP_SHL: 815 return IsFP ? -1 : Instruction::Shl; 816 case bitc::BINOP_LSHR: 817 return IsFP ? -1 : Instruction::LShr; 818 case bitc::BINOP_ASHR: 819 return IsFP ? -1 : Instruction::AShr; 820 case bitc::BINOP_AND: 821 return IsFP ? -1 : Instruction::And; 822 case bitc::BINOP_OR: 823 return IsFP ? -1 : Instruction::Or; 824 case bitc::BINOP_XOR: 825 return IsFP ? -1 : Instruction::Xor; 826 } 827 } 828 829 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 830 switch (Val) { 831 default: return AtomicRMWInst::BAD_BINOP; 832 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 833 case bitc::RMW_ADD: return AtomicRMWInst::Add; 834 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 835 case bitc::RMW_AND: return AtomicRMWInst::And; 836 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 837 case bitc::RMW_OR: return AtomicRMWInst::Or; 838 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 839 case bitc::RMW_MAX: return AtomicRMWInst::Max; 840 case bitc::RMW_MIN: return AtomicRMWInst::Min; 841 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 842 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 843 } 844 } 845 846 static AtomicOrdering getDecodedOrdering(unsigned Val) { 847 switch (Val) { 848 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 849 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 850 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 851 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 852 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 853 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 854 default: // Map unknown orderings to sequentially-consistent. 855 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 856 } 857 } 858 859 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 860 switch (Val) { 861 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 862 default: // Map unknown scopes to cross-thread. 863 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 864 } 865 } 866 867 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 868 switch (Val) { 869 default: // Map unknown selection kinds to any. 870 case bitc::COMDAT_SELECTION_KIND_ANY: 871 return Comdat::Any; 872 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 873 return Comdat::ExactMatch; 874 case bitc::COMDAT_SELECTION_KIND_LARGEST: 875 return Comdat::Largest; 876 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 877 return Comdat::NoDuplicates; 878 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 879 return Comdat::SameSize; 880 } 881 } 882 883 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 884 FastMathFlags FMF; 885 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 886 FMF.setUnsafeAlgebra(); 887 if (0 != (Val & FastMathFlags::NoNaNs)) 888 FMF.setNoNaNs(); 889 if (0 != (Val & FastMathFlags::NoInfs)) 890 FMF.setNoInfs(); 891 if (0 != (Val & FastMathFlags::NoSignedZeros)) 892 FMF.setNoSignedZeros(); 893 if (0 != (Val & FastMathFlags::AllowReciprocal)) 894 FMF.setAllowReciprocal(); 895 return FMF; 896 } 897 898 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 899 switch (Val) { 900 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 901 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 902 } 903 } 904 905 namespace llvm { 906 namespace { 907 /// \brief A class for maintaining the slot number definition 908 /// as a placeholder for the actual definition for forward constants defs. 909 class ConstantPlaceHolder : public ConstantExpr { 910 void operator=(const ConstantPlaceHolder &) = delete; 911 912 public: 913 // allocate space for exactly one operand 914 void *operator new(size_t s) { return User::operator new(s, 1); } 915 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 916 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 917 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 918 } 919 920 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 921 static bool classof(const Value *V) { 922 return isa<ConstantExpr>(V) && 923 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 924 } 925 926 /// Provide fast operand accessors 927 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 928 }; 929 } // end anonymous namespace 930 931 // FIXME: can we inherit this from ConstantExpr? 932 template <> 933 struct OperandTraits<ConstantPlaceHolder> : 934 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 935 }; 936 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 937 } // end namespace llvm 938 939 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 940 if (Idx == size()) { 941 push_back(V); 942 return; 943 } 944 945 if (Idx >= size()) 946 resize(Idx+1); 947 948 WeakVH &OldV = ValuePtrs[Idx]; 949 if (!OldV) { 950 OldV = V; 951 return; 952 } 953 954 // Handle constants and non-constants (e.g. instrs) differently for 955 // efficiency. 956 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 957 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 958 OldV = V; 959 } else { 960 // If there was a forward reference to this value, replace it. 961 Value *PrevVal = OldV; 962 OldV->replaceAllUsesWith(V); 963 delete PrevVal; 964 } 965 } 966 967 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 968 Type *Ty) { 969 if (Idx >= size()) 970 resize(Idx + 1); 971 972 if (Value *V = ValuePtrs[Idx]) { 973 if (Ty != V->getType()) 974 report_fatal_error("Type mismatch in constant table!"); 975 return cast<Constant>(V); 976 } 977 978 // Create and return a placeholder, which will later be RAUW'd. 979 Constant *C = new ConstantPlaceHolder(Ty, Context); 980 ValuePtrs[Idx] = C; 981 return C; 982 } 983 984 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 985 // Bail out for a clearly invalid value. This would make us call resize(0) 986 if (Idx == UINT_MAX) 987 return nullptr; 988 989 if (Idx >= size()) 990 resize(Idx + 1); 991 992 if (Value *V = ValuePtrs[Idx]) { 993 // If the types don't match, it's invalid. 994 if (Ty && Ty != V->getType()) 995 return nullptr; 996 return V; 997 } 998 999 // No type specified, must be invalid reference. 1000 if (!Ty) return nullptr; 1001 1002 // Create and return a placeholder, which will later be RAUW'd. 1003 Value *V = new Argument(Ty); 1004 ValuePtrs[Idx] = V; 1005 return V; 1006 } 1007 1008 /// Once all constants are read, this method bulk resolves any forward 1009 /// references. The idea behind this is that we sometimes get constants (such 1010 /// as large arrays) which reference *many* forward ref constants. Replacing 1011 /// each of these causes a lot of thrashing when building/reuniquing the 1012 /// constant. Instead of doing this, we look at all the uses and rewrite all 1013 /// the place holders at once for any constant that uses a placeholder. 1014 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1015 // Sort the values by-pointer so that they are efficient to look up with a 1016 // binary search. 1017 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1018 1019 SmallVector<Constant*, 64> NewOps; 1020 1021 while (!ResolveConstants.empty()) { 1022 Value *RealVal = operator[](ResolveConstants.back().second); 1023 Constant *Placeholder = ResolveConstants.back().first; 1024 ResolveConstants.pop_back(); 1025 1026 // Loop over all users of the placeholder, updating them to reference the 1027 // new value. If they reference more than one placeholder, update them all 1028 // at once. 1029 while (!Placeholder->use_empty()) { 1030 auto UI = Placeholder->user_begin(); 1031 User *U = *UI; 1032 1033 // If the using object isn't uniqued, just update the operands. This 1034 // handles instructions and initializers for global variables. 1035 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1036 UI.getUse().set(RealVal); 1037 continue; 1038 } 1039 1040 // Otherwise, we have a constant that uses the placeholder. Replace that 1041 // constant with a new constant that has *all* placeholder uses updated. 1042 Constant *UserC = cast<Constant>(U); 1043 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1044 I != E; ++I) { 1045 Value *NewOp; 1046 if (!isa<ConstantPlaceHolder>(*I)) { 1047 // Not a placeholder reference. 1048 NewOp = *I; 1049 } else if (*I == Placeholder) { 1050 // Common case is that it just references this one placeholder. 1051 NewOp = RealVal; 1052 } else { 1053 // Otherwise, look up the placeholder in ResolveConstants. 1054 ResolveConstantsTy::iterator It = 1055 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1056 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1057 0)); 1058 assert(It != ResolveConstants.end() && It->first == *I); 1059 NewOp = operator[](It->second); 1060 } 1061 1062 NewOps.push_back(cast<Constant>(NewOp)); 1063 } 1064 1065 // Make the new constant. 1066 Constant *NewC; 1067 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1068 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1069 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1070 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1071 } else if (isa<ConstantVector>(UserC)) { 1072 NewC = ConstantVector::get(NewOps); 1073 } else { 1074 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1075 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1076 } 1077 1078 UserC->replaceAllUsesWith(NewC); 1079 UserC->destroyConstant(); 1080 NewOps.clear(); 1081 } 1082 1083 // Update all ValueHandles, they should be the only users at this point. 1084 Placeholder->replaceAllUsesWith(RealVal); 1085 delete Placeholder; 1086 } 1087 } 1088 1089 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1090 if (Idx == size()) { 1091 push_back(MD); 1092 return; 1093 } 1094 1095 if (Idx >= size()) 1096 resize(Idx+1); 1097 1098 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1099 if (!OldMD) { 1100 OldMD.reset(MD); 1101 return; 1102 } 1103 1104 // If there was a forward reference to this value, replace it. 1105 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1106 PrevMD->replaceAllUsesWith(MD); 1107 --NumFwdRefs; 1108 } 1109 1110 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1111 if (Idx >= size()) 1112 resize(Idx + 1); 1113 1114 if (Metadata *MD = MetadataPtrs[Idx]) 1115 return MD; 1116 1117 // Track forward refs to be resolved later. 1118 if (AnyFwdRefs) { 1119 MinFwdRef = std::min(MinFwdRef, Idx); 1120 MaxFwdRef = std::max(MaxFwdRef, Idx); 1121 } else { 1122 AnyFwdRefs = true; 1123 MinFwdRef = MaxFwdRef = Idx; 1124 } 1125 ++NumFwdRefs; 1126 1127 // Create and return a placeholder, which will later be RAUW'd. 1128 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1129 MetadataPtrs[Idx].reset(MD); 1130 return MD; 1131 } 1132 1133 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1134 Metadata *MD = lookup(Idx); 1135 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1136 if (!N->isResolved()) 1137 return nullptr; 1138 return MD; 1139 } 1140 1141 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1142 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1143 } 1144 1145 void BitcodeReaderMetadataList::tryToResolveCycles() { 1146 if (NumFwdRefs) 1147 // Still forward references... can't resolve cycles. 1148 return; 1149 1150 bool DidReplaceTypeRefs = false; 1151 1152 // Give up on finding a full definition for any forward decls that remain. 1153 for (const auto &Ref : OldTypeRefs.FwdDecls) 1154 OldTypeRefs.Final.insert(Ref); 1155 OldTypeRefs.FwdDecls.clear(); 1156 1157 // Upgrade from old type ref arrays. In strange cases, this could add to 1158 // OldTypeRefs.Unknown. 1159 for (const auto &Array : OldTypeRefs.Arrays) { 1160 DidReplaceTypeRefs = true; 1161 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1162 } 1163 OldTypeRefs.Arrays.clear(); 1164 1165 // Replace old string-based type refs with the resolved node, if possible. 1166 // If we haven't seen the node, leave it to the verifier to complain about 1167 // the invalid string reference. 1168 for (const auto &Ref : OldTypeRefs.Unknown) { 1169 DidReplaceTypeRefs = true; 1170 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1171 Ref.second->replaceAllUsesWith(CT); 1172 else 1173 Ref.second->replaceAllUsesWith(Ref.first); 1174 } 1175 OldTypeRefs.Unknown.clear(); 1176 1177 // Make sure all the upgraded types are resolved. 1178 if (DidReplaceTypeRefs) { 1179 AnyFwdRefs = true; 1180 MinFwdRef = 0; 1181 MaxFwdRef = MetadataPtrs.size() - 1; 1182 } 1183 1184 if (!AnyFwdRefs) 1185 // Nothing to do. 1186 return; 1187 1188 // Resolve any cycles. 1189 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1190 auto &MD = MetadataPtrs[I]; 1191 auto *N = dyn_cast_or_null<MDNode>(MD); 1192 if (!N) 1193 continue; 1194 1195 assert(!N->isTemporary() && "Unexpected forward reference"); 1196 N->resolveCycles(); 1197 } 1198 1199 // Make sure we return early again until there's another forward ref. 1200 AnyFwdRefs = false; 1201 } 1202 1203 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1204 DICompositeType &CT) { 1205 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1206 if (CT.isForwardDecl()) 1207 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1208 else 1209 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1210 } 1211 1212 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1213 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1214 if (LLVM_LIKELY(!UUID)) 1215 return MaybeUUID; 1216 1217 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1218 return CT; 1219 1220 auto &Ref = OldTypeRefs.Unknown[UUID]; 1221 if (!Ref) 1222 Ref = MDNode::getTemporary(Context, None); 1223 return Ref.get(); 1224 } 1225 1226 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1227 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1228 if (!Tuple || Tuple->isDistinct()) 1229 return MaybeTuple; 1230 1231 // Look through the array immediately if possible. 1232 if (!Tuple->isTemporary()) 1233 return resolveTypeRefArray(Tuple); 1234 1235 // Create and return a placeholder to use for now. Eventually 1236 // resolveTypeRefArrays() will be resolve this forward reference. 1237 OldTypeRefs.Arrays.emplace_back(); 1238 OldTypeRefs.Arrays.back().first.reset(Tuple); 1239 OldTypeRefs.Arrays.back().second = MDTuple::getTemporary(Context, None); 1240 return OldTypeRefs.Arrays.back().second.get(); 1241 } 1242 1243 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1244 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1245 if (!Tuple || Tuple->isDistinct()) 1246 return MaybeTuple; 1247 1248 // Look through the DITypeRefArray, upgrading each DITypeRef. 1249 SmallVector<Metadata *, 32> Ops; 1250 Ops.reserve(Tuple->getNumOperands()); 1251 for (Metadata *MD : Tuple->operands()) 1252 Ops.push_back(upgradeTypeRef(MD)); 1253 1254 return MDTuple::get(Context, Ops); 1255 } 1256 1257 Type *BitcodeReader::getTypeByID(unsigned ID) { 1258 // The type table size is always specified correctly. 1259 if (ID >= TypeList.size()) 1260 return nullptr; 1261 1262 if (Type *Ty = TypeList[ID]) 1263 return Ty; 1264 1265 // If we have a forward reference, the only possible case is when it is to a 1266 // named struct. Just create a placeholder for now. 1267 return TypeList[ID] = createIdentifiedStructType(Context); 1268 } 1269 1270 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1271 StringRef Name) { 1272 auto *Ret = StructType::create(Context, Name); 1273 IdentifiedStructTypes.push_back(Ret); 1274 return Ret; 1275 } 1276 1277 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1278 auto *Ret = StructType::create(Context); 1279 IdentifiedStructTypes.push_back(Ret); 1280 return Ret; 1281 } 1282 1283 //===----------------------------------------------------------------------===// 1284 // Functions for parsing blocks from the bitcode file 1285 //===----------------------------------------------------------------------===// 1286 1287 1288 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1289 /// been decoded from the given integer. This function must stay in sync with 1290 /// 'encodeLLVMAttributesForBitcode'. 1291 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1292 uint64_t EncodedAttrs) { 1293 // FIXME: Remove in 4.0. 1294 1295 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1296 // the bits above 31 down by 11 bits. 1297 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1298 assert((!Alignment || isPowerOf2_32(Alignment)) && 1299 "Alignment must be a power of two."); 1300 1301 if (Alignment) 1302 B.addAlignmentAttr(Alignment); 1303 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1304 (EncodedAttrs & 0xffff)); 1305 } 1306 1307 std::error_code BitcodeReader::parseAttributeBlock() { 1308 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1309 return error("Invalid record"); 1310 1311 if (!MAttributes.empty()) 1312 return error("Invalid multiple blocks"); 1313 1314 SmallVector<uint64_t, 64> Record; 1315 1316 SmallVector<AttributeSet, 8> Attrs; 1317 1318 // Read all the records. 1319 while (1) { 1320 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1321 1322 switch (Entry.Kind) { 1323 case BitstreamEntry::SubBlock: // Handled for us already. 1324 case BitstreamEntry::Error: 1325 return error("Malformed block"); 1326 case BitstreamEntry::EndBlock: 1327 return std::error_code(); 1328 case BitstreamEntry::Record: 1329 // The interesting case. 1330 break; 1331 } 1332 1333 // Read a record. 1334 Record.clear(); 1335 switch (Stream.readRecord(Entry.ID, Record)) { 1336 default: // Default behavior: ignore. 1337 break; 1338 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1339 // FIXME: Remove in 4.0. 1340 if (Record.size() & 1) 1341 return error("Invalid record"); 1342 1343 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1344 AttrBuilder B; 1345 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1346 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1347 } 1348 1349 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1350 Attrs.clear(); 1351 break; 1352 } 1353 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1354 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1355 Attrs.push_back(MAttributeGroups[Record[i]]); 1356 1357 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1358 Attrs.clear(); 1359 break; 1360 } 1361 } 1362 } 1363 } 1364 1365 // Returns Attribute::None on unrecognized codes. 1366 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1367 switch (Code) { 1368 default: 1369 return Attribute::None; 1370 case bitc::ATTR_KIND_ALIGNMENT: 1371 return Attribute::Alignment; 1372 case bitc::ATTR_KIND_ALWAYS_INLINE: 1373 return Attribute::AlwaysInline; 1374 case bitc::ATTR_KIND_ARGMEMONLY: 1375 return Attribute::ArgMemOnly; 1376 case bitc::ATTR_KIND_BUILTIN: 1377 return Attribute::Builtin; 1378 case bitc::ATTR_KIND_BY_VAL: 1379 return Attribute::ByVal; 1380 case bitc::ATTR_KIND_IN_ALLOCA: 1381 return Attribute::InAlloca; 1382 case bitc::ATTR_KIND_COLD: 1383 return Attribute::Cold; 1384 case bitc::ATTR_KIND_CONVERGENT: 1385 return Attribute::Convergent; 1386 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1387 return Attribute::InaccessibleMemOnly; 1388 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1389 return Attribute::InaccessibleMemOrArgMemOnly; 1390 case bitc::ATTR_KIND_INLINE_HINT: 1391 return Attribute::InlineHint; 1392 case bitc::ATTR_KIND_IN_REG: 1393 return Attribute::InReg; 1394 case bitc::ATTR_KIND_JUMP_TABLE: 1395 return Attribute::JumpTable; 1396 case bitc::ATTR_KIND_MIN_SIZE: 1397 return Attribute::MinSize; 1398 case bitc::ATTR_KIND_NAKED: 1399 return Attribute::Naked; 1400 case bitc::ATTR_KIND_NEST: 1401 return Attribute::Nest; 1402 case bitc::ATTR_KIND_NO_ALIAS: 1403 return Attribute::NoAlias; 1404 case bitc::ATTR_KIND_NO_BUILTIN: 1405 return Attribute::NoBuiltin; 1406 case bitc::ATTR_KIND_NO_CAPTURE: 1407 return Attribute::NoCapture; 1408 case bitc::ATTR_KIND_NO_DUPLICATE: 1409 return Attribute::NoDuplicate; 1410 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1411 return Attribute::NoImplicitFloat; 1412 case bitc::ATTR_KIND_NO_INLINE: 1413 return Attribute::NoInline; 1414 case bitc::ATTR_KIND_NO_RECURSE: 1415 return Attribute::NoRecurse; 1416 case bitc::ATTR_KIND_NON_LAZY_BIND: 1417 return Attribute::NonLazyBind; 1418 case bitc::ATTR_KIND_NON_NULL: 1419 return Attribute::NonNull; 1420 case bitc::ATTR_KIND_DEREFERENCEABLE: 1421 return Attribute::Dereferenceable; 1422 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1423 return Attribute::DereferenceableOrNull; 1424 case bitc::ATTR_KIND_ALLOC_SIZE: 1425 return Attribute::AllocSize; 1426 case bitc::ATTR_KIND_NO_RED_ZONE: 1427 return Attribute::NoRedZone; 1428 case bitc::ATTR_KIND_NO_RETURN: 1429 return Attribute::NoReturn; 1430 case bitc::ATTR_KIND_NO_UNWIND: 1431 return Attribute::NoUnwind; 1432 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1433 return Attribute::OptimizeForSize; 1434 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1435 return Attribute::OptimizeNone; 1436 case bitc::ATTR_KIND_READ_NONE: 1437 return Attribute::ReadNone; 1438 case bitc::ATTR_KIND_READ_ONLY: 1439 return Attribute::ReadOnly; 1440 case bitc::ATTR_KIND_RETURNED: 1441 return Attribute::Returned; 1442 case bitc::ATTR_KIND_RETURNS_TWICE: 1443 return Attribute::ReturnsTwice; 1444 case bitc::ATTR_KIND_S_EXT: 1445 return Attribute::SExt; 1446 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1447 return Attribute::StackAlignment; 1448 case bitc::ATTR_KIND_STACK_PROTECT: 1449 return Attribute::StackProtect; 1450 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1451 return Attribute::StackProtectReq; 1452 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1453 return Attribute::StackProtectStrong; 1454 case bitc::ATTR_KIND_SAFESTACK: 1455 return Attribute::SafeStack; 1456 case bitc::ATTR_KIND_STRUCT_RET: 1457 return Attribute::StructRet; 1458 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1459 return Attribute::SanitizeAddress; 1460 case bitc::ATTR_KIND_SANITIZE_THREAD: 1461 return Attribute::SanitizeThread; 1462 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1463 return Attribute::SanitizeMemory; 1464 case bitc::ATTR_KIND_SWIFT_ERROR: 1465 return Attribute::SwiftError; 1466 case bitc::ATTR_KIND_SWIFT_SELF: 1467 return Attribute::SwiftSelf; 1468 case bitc::ATTR_KIND_UW_TABLE: 1469 return Attribute::UWTable; 1470 case bitc::ATTR_KIND_Z_EXT: 1471 return Attribute::ZExt; 1472 } 1473 } 1474 1475 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1476 unsigned &Alignment) { 1477 // Note: Alignment in bitcode files is incremented by 1, so that zero 1478 // can be used for default alignment. 1479 if (Exponent > Value::MaxAlignmentExponent + 1) 1480 return error("Invalid alignment value"); 1481 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1482 return std::error_code(); 1483 } 1484 1485 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1486 Attribute::AttrKind *Kind) { 1487 *Kind = getAttrFromCode(Code); 1488 if (*Kind == Attribute::None) 1489 return error(BitcodeError::CorruptedBitcode, 1490 "Unknown attribute kind (" + Twine(Code) + ")"); 1491 return std::error_code(); 1492 } 1493 1494 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1495 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1496 return error("Invalid record"); 1497 1498 if (!MAttributeGroups.empty()) 1499 return error("Invalid multiple blocks"); 1500 1501 SmallVector<uint64_t, 64> Record; 1502 1503 // Read all the records. 1504 while (1) { 1505 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1506 1507 switch (Entry.Kind) { 1508 case BitstreamEntry::SubBlock: // Handled for us already. 1509 case BitstreamEntry::Error: 1510 return error("Malformed block"); 1511 case BitstreamEntry::EndBlock: 1512 return std::error_code(); 1513 case BitstreamEntry::Record: 1514 // The interesting case. 1515 break; 1516 } 1517 1518 // Read a record. 1519 Record.clear(); 1520 switch (Stream.readRecord(Entry.ID, Record)) { 1521 default: // Default behavior: ignore. 1522 break; 1523 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1524 if (Record.size() < 3) 1525 return error("Invalid record"); 1526 1527 uint64_t GrpID = Record[0]; 1528 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1529 1530 AttrBuilder B; 1531 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1532 if (Record[i] == 0) { // Enum attribute 1533 Attribute::AttrKind Kind; 1534 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1535 return EC; 1536 1537 B.addAttribute(Kind); 1538 } else if (Record[i] == 1) { // Integer attribute 1539 Attribute::AttrKind Kind; 1540 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1541 return EC; 1542 if (Kind == Attribute::Alignment) 1543 B.addAlignmentAttr(Record[++i]); 1544 else if (Kind == Attribute::StackAlignment) 1545 B.addStackAlignmentAttr(Record[++i]); 1546 else if (Kind == Attribute::Dereferenceable) 1547 B.addDereferenceableAttr(Record[++i]); 1548 else if (Kind == Attribute::DereferenceableOrNull) 1549 B.addDereferenceableOrNullAttr(Record[++i]); 1550 else if (Kind == Attribute::AllocSize) 1551 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1552 } else { // String attribute 1553 assert((Record[i] == 3 || Record[i] == 4) && 1554 "Invalid attribute group entry"); 1555 bool HasValue = (Record[i++] == 4); 1556 SmallString<64> KindStr; 1557 SmallString<64> ValStr; 1558 1559 while (Record[i] != 0 && i != e) 1560 KindStr += Record[i++]; 1561 assert(Record[i] == 0 && "Kind string not null terminated"); 1562 1563 if (HasValue) { 1564 // Has a value associated with it. 1565 ++i; // Skip the '0' that terminates the "kind" string. 1566 while (Record[i] != 0 && i != e) 1567 ValStr += Record[i++]; 1568 assert(Record[i] == 0 && "Value string not null terminated"); 1569 } 1570 1571 B.addAttribute(KindStr.str(), ValStr.str()); 1572 } 1573 } 1574 1575 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1576 break; 1577 } 1578 } 1579 } 1580 } 1581 1582 std::error_code BitcodeReader::parseTypeTable() { 1583 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1584 return error("Invalid record"); 1585 1586 return parseTypeTableBody(); 1587 } 1588 1589 std::error_code BitcodeReader::parseTypeTableBody() { 1590 if (!TypeList.empty()) 1591 return error("Invalid multiple blocks"); 1592 1593 SmallVector<uint64_t, 64> Record; 1594 unsigned NumRecords = 0; 1595 1596 SmallString<64> TypeName; 1597 1598 // Read all the records for this type table. 1599 while (1) { 1600 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1601 1602 switch (Entry.Kind) { 1603 case BitstreamEntry::SubBlock: // Handled for us already. 1604 case BitstreamEntry::Error: 1605 return error("Malformed block"); 1606 case BitstreamEntry::EndBlock: 1607 if (NumRecords != TypeList.size()) 1608 return error("Malformed block"); 1609 return std::error_code(); 1610 case BitstreamEntry::Record: 1611 // The interesting case. 1612 break; 1613 } 1614 1615 // Read a record. 1616 Record.clear(); 1617 Type *ResultTy = nullptr; 1618 switch (Stream.readRecord(Entry.ID, Record)) { 1619 default: 1620 return error("Invalid value"); 1621 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1622 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1623 // type list. This allows us to reserve space. 1624 if (Record.size() < 1) 1625 return error("Invalid record"); 1626 TypeList.resize(Record[0]); 1627 continue; 1628 case bitc::TYPE_CODE_VOID: // VOID 1629 ResultTy = Type::getVoidTy(Context); 1630 break; 1631 case bitc::TYPE_CODE_HALF: // HALF 1632 ResultTy = Type::getHalfTy(Context); 1633 break; 1634 case bitc::TYPE_CODE_FLOAT: // FLOAT 1635 ResultTy = Type::getFloatTy(Context); 1636 break; 1637 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1638 ResultTy = Type::getDoubleTy(Context); 1639 break; 1640 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1641 ResultTy = Type::getX86_FP80Ty(Context); 1642 break; 1643 case bitc::TYPE_CODE_FP128: // FP128 1644 ResultTy = Type::getFP128Ty(Context); 1645 break; 1646 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1647 ResultTy = Type::getPPC_FP128Ty(Context); 1648 break; 1649 case bitc::TYPE_CODE_LABEL: // LABEL 1650 ResultTy = Type::getLabelTy(Context); 1651 break; 1652 case bitc::TYPE_CODE_METADATA: // METADATA 1653 ResultTy = Type::getMetadataTy(Context); 1654 break; 1655 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1656 ResultTy = Type::getX86_MMXTy(Context); 1657 break; 1658 case bitc::TYPE_CODE_TOKEN: // TOKEN 1659 ResultTy = Type::getTokenTy(Context); 1660 break; 1661 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1662 if (Record.size() < 1) 1663 return error("Invalid record"); 1664 1665 uint64_t NumBits = Record[0]; 1666 if (NumBits < IntegerType::MIN_INT_BITS || 1667 NumBits > IntegerType::MAX_INT_BITS) 1668 return error("Bitwidth for integer type out of range"); 1669 ResultTy = IntegerType::get(Context, NumBits); 1670 break; 1671 } 1672 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1673 // [pointee type, address space] 1674 if (Record.size() < 1) 1675 return error("Invalid record"); 1676 unsigned AddressSpace = 0; 1677 if (Record.size() == 2) 1678 AddressSpace = Record[1]; 1679 ResultTy = getTypeByID(Record[0]); 1680 if (!ResultTy || 1681 !PointerType::isValidElementType(ResultTy)) 1682 return error("Invalid type"); 1683 ResultTy = PointerType::get(ResultTy, AddressSpace); 1684 break; 1685 } 1686 case bitc::TYPE_CODE_FUNCTION_OLD: { 1687 // FIXME: attrid is dead, remove it in LLVM 4.0 1688 // FUNCTION: [vararg, attrid, retty, paramty x N] 1689 if (Record.size() < 3) 1690 return error("Invalid record"); 1691 SmallVector<Type*, 8> ArgTys; 1692 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1693 if (Type *T = getTypeByID(Record[i])) 1694 ArgTys.push_back(T); 1695 else 1696 break; 1697 } 1698 1699 ResultTy = getTypeByID(Record[2]); 1700 if (!ResultTy || ArgTys.size() < Record.size()-3) 1701 return error("Invalid type"); 1702 1703 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1704 break; 1705 } 1706 case bitc::TYPE_CODE_FUNCTION: { 1707 // FUNCTION: [vararg, retty, paramty x N] 1708 if (Record.size() < 2) 1709 return error("Invalid record"); 1710 SmallVector<Type*, 8> ArgTys; 1711 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1712 if (Type *T = getTypeByID(Record[i])) { 1713 if (!FunctionType::isValidArgumentType(T)) 1714 return error("Invalid function argument type"); 1715 ArgTys.push_back(T); 1716 } 1717 else 1718 break; 1719 } 1720 1721 ResultTy = getTypeByID(Record[1]); 1722 if (!ResultTy || ArgTys.size() < Record.size()-2) 1723 return error("Invalid type"); 1724 1725 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1726 break; 1727 } 1728 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1729 if (Record.size() < 1) 1730 return error("Invalid record"); 1731 SmallVector<Type*, 8> EltTys; 1732 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1733 if (Type *T = getTypeByID(Record[i])) 1734 EltTys.push_back(T); 1735 else 1736 break; 1737 } 1738 if (EltTys.size() != Record.size()-1) 1739 return error("Invalid type"); 1740 ResultTy = StructType::get(Context, EltTys, Record[0]); 1741 break; 1742 } 1743 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1744 if (convertToString(Record, 0, TypeName)) 1745 return error("Invalid record"); 1746 continue; 1747 1748 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1749 if (Record.size() < 1) 1750 return error("Invalid record"); 1751 1752 if (NumRecords >= TypeList.size()) 1753 return error("Invalid TYPE table"); 1754 1755 // Check to see if this was forward referenced, if so fill in the temp. 1756 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1757 if (Res) { 1758 Res->setName(TypeName); 1759 TypeList[NumRecords] = nullptr; 1760 } else // Otherwise, create a new struct. 1761 Res = createIdentifiedStructType(Context, TypeName); 1762 TypeName.clear(); 1763 1764 SmallVector<Type*, 8> EltTys; 1765 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1766 if (Type *T = getTypeByID(Record[i])) 1767 EltTys.push_back(T); 1768 else 1769 break; 1770 } 1771 if (EltTys.size() != Record.size()-1) 1772 return error("Invalid record"); 1773 Res->setBody(EltTys, Record[0]); 1774 ResultTy = Res; 1775 break; 1776 } 1777 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1778 if (Record.size() != 1) 1779 return error("Invalid record"); 1780 1781 if (NumRecords >= TypeList.size()) 1782 return error("Invalid TYPE table"); 1783 1784 // Check to see if this was forward referenced, if so fill in the temp. 1785 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1786 if (Res) { 1787 Res->setName(TypeName); 1788 TypeList[NumRecords] = nullptr; 1789 } else // Otherwise, create a new struct with no body. 1790 Res = createIdentifiedStructType(Context, TypeName); 1791 TypeName.clear(); 1792 ResultTy = Res; 1793 break; 1794 } 1795 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1796 if (Record.size() < 2) 1797 return error("Invalid record"); 1798 ResultTy = getTypeByID(Record[1]); 1799 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1800 return error("Invalid type"); 1801 ResultTy = ArrayType::get(ResultTy, Record[0]); 1802 break; 1803 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1804 if (Record.size() < 2) 1805 return error("Invalid record"); 1806 if (Record[0] == 0) 1807 return error("Invalid vector length"); 1808 ResultTy = getTypeByID(Record[1]); 1809 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1810 return error("Invalid type"); 1811 ResultTy = VectorType::get(ResultTy, Record[0]); 1812 break; 1813 } 1814 1815 if (NumRecords >= TypeList.size()) 1816 return error("Invalid TYPE table"); 1817 if (TypeList[NumRecords]) 1818 return error( 1819 "Invalid TYPE table: Only named structs can be forward referenced"); 1820 assert(ResultTy && "Didn't read a type?"); 1821 TypeList[NumRecords++] = ResultTy; 1822 } 1823 } 1824 1825 std::error_code BitcodeReader::parseOperandBundleTags() { 1826 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1827 return error("Invalid record"); 1828 1829 if (!BundleTags.empty()) 1830 return error("Invalid multiple blocks"); 1831 1832 SmallVector<uint64_t, 64> Record; 1833 1834 while (1) { 1835 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1836 1837 switch (Entry.Kind) { 1838 case BitstreamEntry::SubBlock: // Handled for us already. 1839 case BitstreamEntry::Error: 1840 return error("Malformed block"); 1841 case BitstreamEntry::EndBlock: 1842 return std::error_code(); 1843 case BitstreamEntry::Record: 1844 // The interesting case. 1845 break; 1846 } 1847 1848 // Tags are implicitly mapped to integers by their order. 1849 1850 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1851 return error("Invalid record"); 1852 1853 // OPERAND_BUNDLE_TAG: [strchr x N] 1854 BundleTags.emplace_back(); 1855 if (convertToString(Record, 0, BundleTags.back())) 1856 return error("Invalid record"); 1857 Record.clear(); 1858 } 1859 } 1860 1861 /// Associate a value with its name from the given index in the provided record. 1862 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1863 unsigned NameIndex, Triple &TT) { 1864 SmallString<128> ValueName; 1865 if (convertToString(Record, NameIndex, ValueName)) 1866 return error("Invalid record"); 1867 unsigned ValueID = Record[0]; 1868 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1869 return error("Invalid record"); 1870 Value *V = ValueList[ValueID]; 1871 1872 StringRef NameStr(ValueName.data(), ValueName.size()); 1873 if (NameStr.find_first_of(0) != StringRef::npos) 1874 return error("Invalid value name"); 1875 V->setName(NameStr); 1876 auto *GO = dyn_cast<GlobalObject>(V); 1877 if (GO) { 1878 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1879 if (TT.isOSBinFormatMachO()) 1880 GO->setComdat(nullptr); 1881 else 1882 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1883 } 1884 } 1885 return V; 1886 } 1887 1888 /// Helper to note and return the current location, and jump to the given 1889 /// offset. 1890 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1891 BitstreamCursor &Stream) { 1892 // Save the current parsing location so we can jump back at the end 1893 // of the VST read. 1894 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1895 Stream.JumpToBit(Offset * 32); 1896 #ifndef NDEBUG 1897 // Do some checking if we are in debug mode. 1898 BitstreamEntry Entry = Stream.advance(); 1899 assert(Entry.Kind == BitstreamEntry::SubBlock); 1900 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1901 #else 1902 // In NDEBUG mode ignore the output so we don't get an unused variable 1903 // warning. 1904 Stream.advance(); 1905 #endif 1906 return CurrentBit; 1907 } 1908 1909 /// Parse the value symbol table at either the current parsing location or 1910 /// at the given bit offset if provided. 1911 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1912 uint64_t CurrentBit; 1913 // Pass in the Offset to distinguish between calling for the module-level 1914 // VST (where we want to jump to the VST offset) and the function-level 1915 // VST (where we don't). 1916 if (Offset > 0) 1917 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1918 1919 // Compute the delta between the bitcode indices in the VST (the word offset 1920 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1921 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1922 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1923 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1924 // just before entering the VST subblock because: 1) the EnterSubBlock 1925 // changes the AbbrevID width; 2) the VST block is nested within the same 1926 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1927 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1928 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1929 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1930 unsigned FuncBitcodeOffsetDelta = 1931 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1932 1933 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1934 return error("Invalid record"); 1935 1936 SmallVector<uint64_t, 64> Record; 1937 1938 Triple TT(TheModule->getTargetTriple()); 1939 1940 // Read all the records for this value table. 1941 SmallString<128> ValueName; 1942 while (1) { 1943 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1944 1945 switch (Entry.Kind) { 1946 case BitstreamEntry::SubBlock: // Handled for us already. 1947 case BitstreamEntry::Error: 1948 return error("Malformed block"); 1949 case BitstreamEntry::EndBlock: 1950 if (Offset > 0) 1951 Stream.JumpToBit(CurrentBit); 1952 return std::error_code(); 1953 case BitstreamEntry::Record: 1954 // The interesting case. 1955 break; 1956 } 1957 1958 // Read a record. 1959 Record.clear(); 1960 switch (Stream.readRecord(Entry.ID, Record)) { 1961 default: // Default behavior: unknown type. 1962 break; 1963 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1964 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1965 if (std::error_code EC = ValOrErr.getError()) 1966 return EC; 1967 ValOrErr.get(); 1968 break; 1969 } 1970 case bitc::VST_CODE_FNENTRY: { 1971 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1972 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1973 if (std::error_code EC = ValOrErr.getError()) 1974 return EC; 1975 Value *V = ValOrErr.get(); 1976 1977 auto *GO = dyn_cast<GlobalObject>(V); 1978 if (!GO) { 1979 // If this is an alias, need to get the actual Function object 1980 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1981 auto *GA = dyn_cast<GlobalAlias>(V); 1982 if (GA) 1983 GO = GA->getBaseObject(); 1984 assert(GO); 1985 } 1986 1987 uint64_t FuncWordOffset = Record[1]; 1988 Function *F = dyn_cast<Function>(GO); 1989 assert(F); 1990 uint64_t FuncBitOffset = FuncWordOffset * 32; 1991 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1992 // Set the LastFunctionBlockBit to point to the last function block. 1993 // Later when parsing is resumed after function materialization, 1994 // we can simply skip that last function block. 1995 if (FuncBitOffset > LastFunctionBlockBit) 1996 LastFunctionBlockBit = FuncBitOffset; 1997 break; 1998 } 1999 case bitc::VST_CODE_BBENTRY: { 2000 if (convertToString(Record, 1, ValueName)) 2001 return error("Invalid record"); 2002 BasicBlock *BB = getBasicBlock(Record[0]); 2003 if (!BB) 2004 return error("Invalid record"); 2005 2006 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2007 ValueName.clear(); 2008 break; 2009 } 2010 } 2011 } 2012 } 2013 2014 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2015 std::error_code 2016 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2017 if (Record.size() < 2) 2018 return error("Invalid record"); 2019 2020 unsigned Kind = Record[0]; 2021 SmallString<8> Name(Record.begin() + 1, Record.end()); 2022 2023 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2024 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2025 return error("Conflicting METADATA_KIND records"); 2026 return std::error_code(); 2027 } 2028 2029 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2030 2031 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2032 StringRef Blob, 2033 unsigned &NextMetadataNo) { 2034 // All the MDStrings in the block are emitted together in a single 2035 // record. The strings are concatenated and stored in a blob along with 2036 // their sizes. 2037 if (Record.size() != 2) 2038 return error("Invalid record: metadata strings layout"); 2039 2040 unsigned NumStrings = Record[0]; 2041 unsigned StringsOffset = Record[1]; 2042 if (!NumStrings) 2043 return error("Invalid record: metadata strings with no strings"); 2044 if (StringsOffset > Blob.size()) 2045 return error("Invalid record: metadata strings corrupt offset"); 2046 2047 StringRef Lengths = Blob.slice(0, StringsOffset); 2048 SimpleBitstreamCursor R(*StreamFile); 2049 R.jumpToPointer(Lengths.begin()); 2050 2051 // Ensure that Blob doesn't get invalidated, even if this is reading from 2052 // a StreamingMemoryObject with corrupt data. 2053 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2054 2055 StringRef Strings = Blob.drop_front(StringsOffset); 2056 do { 2057 if (R.AtEndOfStream()) 2058 return error("Invalid record: metadata strings bad length"); 2059 2060 unsigned Size = R.ReadVBR(6); 2061 if (Strings.size() < Size) 2062 return error("Invalid record: metadata strings truncated chars"); 2063 2064 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2065 NextMetadataNo++); 2066 Strings = Strings.drop_front(Size); 2067 } while (--NumStrings); 2068 2069 return std::error_code(); 2070 } 2071 2072 namespace { 2073 class PlaceholderQueue { 2074 // Placeholders would thrash around when moved, so store in a std::deque 2075 // instead of some sort of vector. 2076 std::deque<DistinctMDOperandPlaceholder> PHs; 2077 2078 public: 2079 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2080 void flush(BitcodeReaderMetadataList &MetadataList); 2081 }; 2082 } // end namespace 2083 2084 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2085 PHs.emplace_back(ID); 2086 return PHs.back(); 2087 } 2088 2089 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2090 while (!PHs.empty()) { 2091 PHs.front().replaceUseWith( 2092 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2093 PHs.pop_front(); 2094 } 2095 } 2096 2097 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2098 /// module level metadata. 2099 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2100 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2101 "Must read all module-level metadata before function-level"); 2102 2103 IsMetadataMaterialized = true; 2104 unsigned NextMetadataNo = MetadataList.size(); 2105 2106 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2107 return error("Invalid metadata: fwd refs into function blocks"); 2108 2109 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2110 return error("Invalid record"); 2111 2112 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2113 SmallVector<uint64_t, 64> Record; 2114 2115 PlaceholderQueue Placeholders; 2116 bool IsDistinct; 2117 auto getMD = [&](unsigned ID) -> Metadata * { 2118 if (!IsDistinct) 2119 return MetadataList.getMetadataFwdRef(ID); 2120 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2121 return MD; 2122 return &Placeholders.getPlaceholderOp(ID); 2123 }; 2124 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2125 if (ID) 2126 return getMD(ID - 1); 2127 return nullptr; 2128 }; 2129 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2130 if (ID) 2131 return MetadataList.getMetadataFwdRef(ID - 1); 2132 return nullptr; 2133 }; 2134 auto getMDString = [&](unsigned ID) -> MDString *{ 2135 // This requires that the ID is not really a forward reference. In 2136 // particular, the MDString must already have been resolved. 2137 return cast_or_null<MDString>(getMDOrNull(ID)); 2138 }; 2139 2140 // Support for old type refs. 2141 auto getDITypeRefOrNull = [&](unsigned ID) { 2142 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2143 }; 2144 2145 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2146 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2147 2148 // Read all the records. 2149 while (1) { 2150 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2151 2152 switch (Entry.Kind) { 2153 case BitstreamEntry::SubBlock: // Handled for us already. 2154 case BitstreamEntry::Error: 2155 return error("Malformed block"); 2156 case BitstreamEntry::EndBlock: 2157 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2158 for (auto CU_SP : CUSubprograms) 2159 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2160 for (auto &Op : SPs->operands()) 2161 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2162 SP->replaceOperandWith(7, CU_SP.first); 2163 2164 MetadataList.tryToResolveCycles(); 2165 Placeholders.flush(MetadataList); 2166 return std::error_code(); 2167 case BitstreamEntry::Record: 2168 // The interesting case. 2169 break; 2170 } 2171 2172 // Read a record. 2173 Record.clear(); 2174 StringRef Blob; 2175 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2176 IsDistinct = false; 2177 switch (Code) { 2178 default: // Default behavior: ignore. 2179 break; 2180 case bitc::METADATA_NAME: { 2181 // Read name of the named metadata. 2182 SmallString<8> Name(Record.begin(), Record.end()); 2183 Record.clear(); 2184 Code = Stream.ReadCode(); 2185 2186 unsigned NextBitCode = Stream.readRecord(Code, Record); 2187 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2188 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2189 2190 // Read named metadata elements. 2191 unsigned Size = Record.size(); 2192 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2193 for (unsigned i = 0; i != Size; ++i) { 2194 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2195 if (!MD) 2196 return error("Invalid record"); 2197 NMD->addOperand(MD); 2198 } 2199 break; 2200 } 2201 case bitc::METADATA_OLD_FN_NODE: { 2202 // FIXME: Remove in 4.0. 2203 // This is a LocalAsMetadata record, the only type of function-local 2204 // metadata. 2205 if (Record.size() % 2 == 1) 2206 return error("Invalid record"); 2207 2208 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2209 // to be legal, but there's no upgrade path. 2210 auto dropRecord = [&] { 2211 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2212 }; 2213 if (Record.size() != 2) { 2214 dropRecord(); 2215 break; 2216 } 2217 2218 Type *Ty = getTypeByID(Record[0]); 2219 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2220 dropRecord(); 2221 break; 2222 } 2223 2224 MetadataList.assignValue( 2225 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2226 NextMetadataNo++); 2227 break; 2228 } 2229 case bitc::METADATA_OLD_NODE: { 2230 // FIXME: Remove in 4.0. 2231 if (Record.size() % 2 == 1) 2232 return error("Invalid record"); 2233 2234 unsigned Size = Record.size(); 2235 SmallVector<Metadata *, 8> Elts; 2236 for (unsigned i = 0; i != Size; i += 2) { 2237 Type *Ty = getTypeByID(Record[i]); 2238 if (!Ty) 2239 return error("Invalid record"); 2240 if (Ty->isMetadataTy()) 2241 Elts.push_back(getMD(Record[i + 1])); 2242 else if (!Ty->isVoidTy()) { 2243 auto *MD = 2244 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2245 assert(isa<ConstantAsMetadata>(MD) && 2246 "Expected non-function-local metadata"); 2247 Elts.push_back(MD); 2248 } else 2249 Elts.push_back(nullptr); 2250 } 2251 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2252 break; 2253 } 2254 case bitc::METADATA_VALUE: { 2255 if (Record.size() != 2) 2256 return error("Invalid record"); 2257 2258 Type *Ty = getTypeByID(Record[0]); 2259 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2260 return error("Invalid record"); 2261 2262 MetadataList.assignValue( 2263 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2264 NextMetadataNo++); 2265 break; 2266 } 2267 case bitc::METADATA_DISTINCT_NODE: 2268 IsDistinct = true; 2269 // fallthrough... 2270 case bitc::METADATA_NODE: { 2271 SmallVector<Metadata *, 8> Elts; 2272 Elts.reserve(Record.size()); 2273 for (unsigned ID : Record) 2274 Elts.push_back(getMDOrNull(ID)); 2275 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2276 : MDNode::get(Context, Elts), 2277 NextMetadataNo++); 2278 break; 2279 } 2280 case bitc::METADATA_LOCATION: { 2281 if (Record.size() != 5) 2282 return error("Invalid record"); 2283 2284 IsDistinct = Record[0]; 2285 unsigned Line = Record[1]; 2286 unsigned Column = Record[2]; 2287 Metadata *Scope = getMD(Record[3]); 2288 Metadata *InlinedAt = getMDOrNull(Record[4]); 2289 MetadataList.assignValue( 2290 GET_OR_DISTINCT(DILocation, 2291 (Context, Line, Column, Scope, InlinedAt)), 2292 NextMetadataNo++); 2293 break; 2294 } 2295 case bitc::METADATA_GENERIC_DEBUG: { 2296 if (Record.size() < 4) 2297 return error("Invalid record"); 2298 2299 IsDistinct = Record[0]; 2300 unsigned Tag = Record[1]; 2301 unsigned Version = Record[2]; 2302 2303 if (Tag >= 1u << 16 || Version != 0) 2304 return error("Invalid record"); 2305 2306 auto *Header = getMDString(Record[3]); 2307 SmallVector<Metadata *, 8> DwarfOps; 2308 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2309 DwarfOps.push_back(getMDOrNull(Record[I])); 2310 MetadataList.assignValue( 2311 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2312 NextMetadataNo++); 2313 break; 2314 } 2315 case bitc::METADATA_SUBRANGE: { 2316 if (Record.size() != 3) 2317 return error("Invalid record"); 2318 2319 IsDistinct = Record[0]; 2320 MetadataList.assignValue( 2321 GET_OR_DISTINCT(DISubrange, 2322 (Context, Record[1], unrotateSign(Record[2]))), 2323 NextMetadataNo++); 2324 break; 2325 } 2326 case bitc::METADATA_ENUMERATOR: { 2327 if (Record.size() != 3) 2328 return error("Invalid record"); 2329 2330 IsDistinct = Record[0]; 2331 MetadataList.assignValue( 2332 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2333 getMDString(Record[2]))), 2334 NextMetadataNo++); 2335 break; 2336 } 2337 case bitc::METADATA_BASIC_TYPE: { 2338 if (Record.size() != 6) 2339 return error("Invalid record"); 2340 2341 IsDistinct = Record[0]; 2342 MetadataList.assignValue( 2343 GET_OR_DISTINCT(DIBasicType, 2344 (Context, Record[1], getMDString(Record[2]), 2345 Record[3], Record[4], Record[5])), 2346 NextMetadataNo++); 2347 break; 2348 } 2349 case bitc::METADATA_DERIVED_TYPE: { 2350 if (Record.size() != 12) 2351 return error("Invalid record"); 2352 2353 IsDistinct = Record[0]; 2354 MetadataList.assignValue( 2355 GET_OR_DISTINCT( 2356 DIDerivedType, 2357 (Context, Record[1], getMDString(Record[2]), 2358 getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]), 2359 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9], 2360 Record[10], getDITypeRefOrNull(Record[11]))), 2361 NextMetadataNo++); 2362 break; 2363 } 2364 case bitc::METADATA_COMPOSITE_TYPE: { 2365 if (Record.size() != 16) 2366 return error("Invalid record"); 2367 2368 // If we have a UUID and this is not a forward declaration, lookup the 2369 // mapping. 2370 IsDistinct = Record[0] & 0x1; 2371 bool IsNotUsedInTypeRef = Record[0] >= 2; 2372 unsigned Tag = Record[1]; 2373 MDString *Name = getMDString(Record[2]); 2374 Metadata *File = getMDOrNull(Record[3]); 2375 unsigned Line = Record[4]; 2376 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2377 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2378 uint64_t SizeInBits = Record[7]; 2379 uint64_t AlignInBits = Record[8]; 2380 uint64_t OffsetInBits = Record[9]; 2381 unsigned Flags = Record[10]; 2382 Metadata *Elements = getMDOrNull(Record[11]); 2383 unsigned RuntimeLang = Record[12]; 2384 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2385 Metadata *TemplateParams = getMDOrNull(Record[14]); 2386 auto *Identifier = getMDString(Record[15]); 2387 DICompositeType *CT = nullptr; 2388 if (Identifier) 2389 CT = DICompositeType::buildODRType( 2390 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2391 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2392 VTableHolder, TemplateParams); 2393 2394 // Create a node if we didn't get a lazy ODR type. 2395 if (!CT) 2396 CT = GET_OR_DISTINCT(DICompositeType, 2397 (Context, Tag, Name, File, Line, Scope, BaseType, 2398 SizeInBits, AlignInBits, OffsetInBits, Flags, 2399 Elements, RuntimeLang, VTableHolder, 2400 TemplateParams, Identifier)); 2401 if (!IsNotUsedInTypeRef && Identifier) 2402 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2403 2404 MetadataList.assignValue(CT, NextMetadataNo++); 2405 break; 2406 } 2407 case bitc::METADATA_SUBROUTINE_TYPE: { 2408 if (Record.size() != 3) 2409 return error("Invalid record"); 2410 2411 IsDistinct = Record[0] & 0x1; 2412 bool IsOldTypeRefArray = Record[0] < 2; 2413 Metadata *Types = getMDOrNull(Record[2]); 2414 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2415 Types = MetadataList.upgradeTypeRefArray(Types); 2416 2417 MetadataList.assignValue( 2418 GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], Types)), 2419 NextMetadataNo++); 2420 break; 2421 } 2422 2423 case bitc::METADATA_MODULE: { 2424 if (Record.size() != 6) 2425 return error("Invalid record"); 2426 2427 IsDistinct = Record[0]; 2428 MetadataList.assignValue( 2429 GET_OR_DISTINCT(DIModule, 2430 (Context, getMDOrNull(Record[1]), 2431 getMDString(Record[2]), getMDString(Record[3]), 2432 getMDString(Record[4]), getMDString(Record[5]))), 2433 NextMetadataNo++); 2434 break; 2435 } 2436 2437 case bitc::METADATA_FILE: { 2438 if (Record.size() != 3) 2439 return error("Invalid record"); 2440 2441 IsDistinct = Record[0]; 2442 MetadataList.assignValue( 2443 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2444 getMDString(Record[2]))), 2445 NextMetadataNo++); 2446 break; 2447 } 2448 case bitc::METADATA_COMPILE_UNIT: { 2449 if (Record.size() < 14 || Record.size() > 16) 2450 return error("Invalid record"); 2451 2452 // Ignore Record[0], which indicates whether this compile unit is 2453 // distinct. It's always distinct. 2454 IsDistinct = true; 2455 auto *CU = DICompileUnit::getDistinct( 2456 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2457 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2458 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2459 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2460 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2461 Record.size() <= 14 ? 0 : Record[14]); 2462 2463 MetadataList.assignValue(CU, NextMetadataNo++); 2464 2465 // Move the Upgrade the list of subprograms. 2466 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2467 CUSubprograms.push_back({CU, SPs}); 2468 break; 2469 } 2470 case bitc::METADATA_SUBPROGRAM: { 2471 if (Record.size() != 18 && Record.size() != 19) 2472 return error("Invalid record"); 2473 2474 IsDistinct = 2475 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2476 // Version 1 has a Function as Record[15]. 2477 // Version 2 has removed Record[15]. 2478 // Version 3 has the Unit as Record[15]. 2479 bool HasUnit = Record[0] >= 2; 2480 if (HasUnit && Record.size() != 19) 2481 return error("Invalid record"); 2482 Metadata *CUorFn = getMDOrNull(Record[15]); 2483 unsigned Offset = Record.size() == 19 ? 1 : 0; 2484 bool HasFn = Offset && !HasUnit; 2485 DISubprogram *SP = GET_OR_DISTINCT( 2486 DISubprogram, 2487 (Context, getDITypeRefOrNull(Record[1]), getMDString(Record[2]), 2488 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2489 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2490 getDITypeRefOrNull(Record[10]), Record[11], Record[12], Record[13], 2491 Record[14], HasUnit ? CUorFn : nullptr, 2492 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2493 getMDOrNull(Record[17 + Offset]))); 2494 MetadataList.assignValue(SP, NextMetadataNo++); 2495 2496 // Upgrade sp->function mapping to function->sp mapping. 2497 if (HasFn) { 2498 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2499 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2500 if (F->isMaterializable()) 2501 // Defer until materialized; unmaterialized functions may not have 2502 // metadata. 2503 FunctionsWithSPs[F] = SP; 2504 else if (!F->empty()) 2505 F->setSubprogram(SP); 2506 } 2507 } 2508 break; 2509 } 2510 case bitc::METADATA_LEXICAL_BLOCK: { 2511 if (Record.size() != 5) 2512 return error("Invalid record"); 2513 2514 IsDistinct = Record[0]; 2515 MetadataList.assignValue( 2516 GET_OR_DISTINCT(DILexicalBlock, 2517 (Context, getMDOrNull(Record[1]), 2518 getMDOrNull(Record[2]), Record[3], Record[4])), 2519 NextMetadataNo++); 2520 break; 2521 } 2522 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2523 if (Record.size() != 4) 2524 return error("Invalid record"); 2525 2526 IsDistinct = Record[0]; 2527 MetadataList.assignValue( 2528 GET_OR_DISTINCT(DILexicalBlockFile, 2529 (Context, getMDOrNull(Record[1]), 2530 getMDOrNull(Record[2]), Record[3])), 2531 NextMetadataNo++); 2532 break; 2533 } 2534 case bitc::METADATA_NAMESPACE: { 2535 if (Record.size() != 5) 2536 return error("Invalid record"); 2537 2538 IsDistinct = Record[0]; 2539 MetadataList.assignValue( 2540 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2541 getMDOrNull(Record[2]), 2542 getMDString(Record[3]), Record[4])), 2543 NextMetadataNo++); 2544 break; 2545 } 2546 case bitc::METADATA_MACRO: { 2547 if (Record.size() != 5) 2548 return error("Invalid record"); 2549 2550 IsDistinct = Record[0]; 2551 MetadataList.assignValue( 2552 GET_OR_DISTINCT(DIMacro, 2553 (Context, Record[1], Record[2], 2554 getMDString(Record[3]), getMDString(Record[4]))), 2555 NextMetadataNo++); 2556 break; 2557 } 2558 case bitc::METADATA_MACRO_FILE: { 2559 if (Record.size() != 5) 2560 return error("Invalid record"); 2561 2562 IsDistinct = Record[0]; 2563 MetadataList.assignValue( 2564 GET_OR_DISTINCT(DIMacroFile, 2565 (Context, Record[1], Record[2], 2566 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2567 NextMetadataNo++); 2568 break; 2569 } 2570 case bitc::METADATA_TEMPLATE_TYPE: { 2571 if (Record.size() != 3) 2572 return error("Invalid record"); 2573 2574 IsDistinct = Record[0]; 2575 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2576 (Context, getMDString(Record[1]), 2577 getDITypeRefOrNull(Record[2]))), 2578 NextMetadataNo++); 2579 break; 2580 } 2581 case bitc::METADATA_TEMPLATE_VALUE: { 2582 if (Record.size() != 5) 2583 return error("Invalid record"); 2584 2585 IsDistinct = Record[0]; 2586 MetadataList.assignValue( 2587 GET_OR_DISTINCT(DITemplateValueParameter, 2588 (Context, Record[1], getMDString(Record[2]), 2589 getDITypeRefOrNull(Record[3]), 2590 getMDOrNull(Record[4]))), 2591 NextMetadataNo++); 2592 break; 2593 } 2594 case bitc::METADATA_GLOBAL_VAR: { 2595 if (Record.size() != 11) 2596 return error("Invalid record"); 2597 2598 IsDistinct = Record[0]; 2599 MetadataList.assignValue( 2600 GET_OR_DISTINCT(DIGlobalVariable, 2601 (Context, getMDOrNull(Record[1]), 2602 getMDString(Record[2]), getMDString(Record[3]), 2603 getMDOrNull(Record[4]), Record[5], 2604 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2605 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2606 NextMetadataNo++); 2607 break; 2608 } 2609 case bitc::METADATA_LOCAL_VAR: { 2610 // 10th field is for the obseleted 'inlinedAt:' field. 2611 if (Record.size() < 8 || Record.size() > 10) 2612 return error("Invalid record"); 2613 2614 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2615 // DW_TAG_arg_variable. 2616 IsDistinct = Record[0]; 2617 bool HasTag = Record.size() > 8; 2618 MetadataList.assignValue( 2619 GET_OR_DISTINCT(DILocalVariable, 2620 (Context, getMDOrNull(Record[1 + HasTag]), 2621 getMDString(Record[2 + HasTag]), 2622 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2623 getDITypeRefOrNull(Record[5 + HasTag]), 2624 Record[6 + HasTag], Record[7 + HasTag])), 2625 NextMetadataNo++); 2626 break; 2627 } 2628 case bitc::METADATA_EXPRESSION: { 2629 if (Record.size() < 1) 2630 return error("Invalid record"); 2631 2632 IsDistinct = Record[0]; 2633 MetadataList.assignValue( 2634 GET_OR_DISTINCT(DIExpression, 2635 (Context, makeArrayRef(Record).slice(1))), 2636 NextMetadataNo++); 2637 break; 2638 } 2639 case bitc::METADATA_OBJC_PROPERTY: { 2640 if (Record.size() != 8) 2641 return error("Invalid record"); 2642 2643 IsDistinct = Record[0]; 2644 MetadataList.assignValue( 2645 GET_OR_DISTINCT(DIObjCProperty, 2646 (Context, getMDString(Record[1]), 2647 getMDOrNull(Record[2]), Record[3], 2648 getMDString(Record[4]), getMDString(Record[5]), 2649 Record[6], getDITypeRefOrNull(Record[7]))), 2650 NextMetadataNo++); 2651 break; 2652 } 2653 case bitc::METADATA_IMPORTED_ENTITY: { 2654 if (Record.size() != 6) 2655 return error("Invalid record"); 2656 2657 IsDistinct = Record[0]; 2658 MetadataList.assignValue( 2659 GET_OR_DISTINCT(DIImportedEntity, 2660 (Context, Record[1], getMDOrNull(Record[2]), 2661 getDITypeRefOrNull(Record[3]), Record[4], 2662 getMDString(Record[5]))), 2663 NextMetadataNo++); 2664 break; 2665 } 2666 case bitc::METADATA_STRING_OLD: { 2667 std::string String(Record.begin(), Record.end()); 2668 2669 // Test for upgrading !llvm.loop. 2670 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2671 2672 Metadata *MD = MDString::get(Context, String); 2673 MetadataList.assignValue(MD, NextMetadataNo++); 2674 break; 2675 } 2676 case bitc::METADATA_STRINGS: 2677 if (std::error_code EC = 2678 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2679 return EC; 2680 break; 2681 case bitc::METADATA_KIND: { 2682 // Support older bitcode files that had METADATA_KIND records in a 2683 // block with METADATA_BLOCK_ID. 2684 if (std::error_code EC = parseMetadataKindRecord(Record)) 2685 return EC; 2686 break; 2687 } 2688 } 2689 } 2690 #undef GET_OR_DISTINCT 2691 } 2692 2693 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2694 std::error_code BitcodeReader::parseMetadataKinds() { 2695 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2696 return error("Invalid record"); 2697 2698 SmallVector<uint64_t, 64> Record; 2699 2700 // Read all the records. 2701 while (1) { 2702 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2703 2704 switch (Entry.Kind) { 2705 case BitstreamEntry::SubBlock: // Handled for us already. 2706 case BitstreamEntry::Error: 2707 return error("Malformed block"); 2708 case BitstreamEntry::EndBlock: 2709 return std::error_code(); 2710 case BitstreamEntry::Record: 2711 // The interesting case. 2712 break; 2713 } 2714 2715 // Read a record. 2716 Record.clear(); 2717 unsigned Code = Stream.readRecord(Entry.ID, Record); 2718 switch (Code) { 2719 default: // Default behavior: ignore. 2720 break; 2721 case bitc::METADATA_KIND: { 2722 if (std::error_code EC = parseMetadataKindRecord(Record)) 2723 return EC; 2724 break; 2725 } 2726 } 2727 } 2728 } 2729 2730 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2731 /// encoding. 2732 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2733 if ((V & 1) == 0) 2734 return V >> 1; 2735 if (V != 1) 2736 return -(V >> 1); 2737 // There is no such thing as -0 with integers. "-0" really means MININT. 2738 return 1ULL << 63; 2739 } 2740 2741 /// Resolve all of the initializers for global values and aliases that we can. 2742 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2743 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2744 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2745 IndirectSymbolInitWorklist; 2746 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2747 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2748 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2749 2750 GlobalInitWorklist.swap(GlobalInits); 2751 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2752 FunctionPrefixWorklist.swap(FunctionPrefixes); 2753 FunctionPrologueWorklist.swap(FunctionPrologues); 2754 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2755 2756 while (!GlobalInitWorklist.empty()) { 2757 unsigned ValID = GlobalInitWorklist.back().second; 2758 if (ValID >= ValueList.size()) { 2759 // Not ready to resolve this yet, it requires something later in the file. 2760 GlobalInits.push_back(GlobalInitWorklist.back()); 2761 } else { 2762 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2763 GlobalInitWorklist.back().first->setInitializer(C); 2764 else 2765 return error("Expected a constant"); 2766 } 2767 GlobalInitWorklist.pop_back(); 2768 } 2769 2770 while (!IndirectSymbolInitWorklist.empty()) { 2771 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2772 if (ValID >= ValueList.size()) { 2773 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2774 } else { 2775 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2776 if (!C) 2777 return error("Expected a constant"); 2778 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2779 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2780 return error("Alias and aliasee types don't match"); 2781 GIS->setIndirectSymbol(C); 2782 } 2783 IndirectSymbolInitWorklist.pop_back(); 2784 } 2785 2786 while (!FunctionPrefixWorklist.empty()) { 2787 unsigned ValID = FunctionPrefixWorklist.back().second; 2788 if (ValID >= ValueList.size()) { 2789 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2790 } else { 2791 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2792 FunctionPrefixWorklist.back().first->setPrefixData(C); 2793 else 2794 return error("Expected a constant"); 2795 } 2796 FunctionPrefixWorklist.pop_back(); 2797 } 2798 2799 while (!FunctionPrologueWorklist.empty()) { 2800 unsigned ValID = FunctionPrologueWorklist.back().second; 2801 if (ValID >= ValueList.size()) { 2802 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2803 } else { 2804 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2805 FunctionPrologueWorklist.back().first->setPrologueData(C); 2806 else 2807 return error("Expected a constant"); 2808 } 2809 FunctionPrologueWorklist.pop_back(); 2810 } 2811 2812 while (!FunctionPersonalityFnWorklist.empty()) { 2813 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2814 if (ValID >= ValueList.size()) { 2815 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2816 } else { 2817 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2818 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2819 else 2820 return error("Expected a constant"); 2821 } 2822 FunctionPersonalityFnWorklist.pop_back(); 2823 } 2824 2825 return std::error_code(); 2826 } 2827 2828 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2829 SmallVector<uint64_t, 8> Words(Vals.size()); 2830 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2831 BitcodeReader::decodeSignRotatedValue); 2832 2833 return APInt(TypeBits, Words); 2834 } 2835 2836 std::error_code BitcodeReader::parseConstants() { 2837 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2838 return error("Invalid record"); 2839 2840 SmallVector<uint64_t, 64> Record; 2841 2842 // Read all the records for this value table. 2843 Type *CurTy = Type::getInt32Ty(Context); 2844 unsigned NextCstNo = ValueList.size(); 2845 while (1) { 2846 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2847 2848 switch (Entry.Kind) { 2849 case BitstreamEntry::SubBlock: // Handled for us already. 2850 case BitstreamEntry::Error: 2851 return error("Malformed block"); 2852 case BitstreamEntry::EndBlock: 2853 if (NextCstNo != ValueList.size()) 2854 return error("Invalid constant reference"); 2855 2856 // Once all the constants have been read, go through and resolve forward 2857 // references. 2858 ValueList.resolveConstantForwardRefs(); 2859 return std::error_code(); 2860 case BitstreamEntry::Record: 2861 // The interesting case. 2862 break; 2863 } 2864 2865 // Read a record. 2866 Record.clear(); 2867 Value *V = nullptr; 2868 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2869 switch (BitCode) { 2870 default: // Default behavior: unknown constant 2871 case bitc::CST_CODE_UNDEF: // UNDEF 2872 V = UndefValue::get(CurTy); 2873 break; 2874 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2875 if (Record.empty()) 2876 return error("Invalid record"); 2877 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2878 return error("Invalid record"); 2879 CurTy = TypeList[Record[0]]; 2880 continue; // Skip the ValueList manipulation. 2881 case bitc::CST_CODE_NULL: // NULL 2882 V = Constant::getNullValue(CurTy); 2883 break; 2884 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2885 if (!CurTy->isIntegerTy() || Record.empty()) 2886 return error("Invalid record"); 2887 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2888 break; 2889 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2890 if (!CurTy->isIntegerTy() || Record.empty()) 2891 return error("Invalid record"); 2892 2893 APInt VInt = 2894 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2895 V = ConstantInt::get(Context, VInt); 2896 2897 break; 2898 } 2899 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2900 if (Record.empty()) 2901 return error("Invalid record"); 2902 if (CurTy->isHalfTy()) 2903 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2904 APInt(16, (uint16_t)Record[0]))); 2905 else if (CurTy->isFloatTy()) 2906 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2907 APInt(32, (uint32_t)Record[0]))); 2908 else if (CurTy->isDoubleTy()) 2909 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2910 APInt(64, Record[0]))); 2911 else if (CurTy->isX86_FP80Ty()) { 2912 // Bits are not stored the same way as a normal i80 APInt, compensate. 2913 uint64_t Rearrange[2]; 2914 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2915 Rearrange[1] = Record[0] >> 48; 2916 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2917 APInt(80, Rearrange))); 2918 } else if (CurTy->isFP128Ty()) 2919 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2920 APInt(128, Record))); 2921 else if (CurTy->isPPC_FP128Ty()) 2922 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2923 APInt(128, Record))); 2924 else 2925 V = UndefValue::get(CurTy); 2926 break; 2927 } 2928 2929 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2930 if (Record.empty()) 2931 return error("Invalid record"); 2932 2933 unsigned Size = Record.size(); 2934 SmallVector<Constant*, 16> Elts; 2935 2936 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2937 for (unsigned i = 0; i != Size; ++i) 2938 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2939 STy->getElementType(i))); 2940 V = ConstantStruct::get(STy, Elts); 2941 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2942 Type *EltTy = ATy->getElementType(); 2943 for (unsigned i = 0; i != Size; ++i) 2944 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2945 V = ConstantArray::get(ATy, Elts); 2946 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2947 Type *EltTy = VTy->getElementType(); 2948 for (unsigned i = 0; i != Size; ++i) 2949 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2950 V = ConstantVector::get(Elts); 2951 } else { 2952 V = UndefValue::get(CurTy); 2953 } 2954 break; 2955 } 2956 case bitc::CST_CODE_STRING: // STRING: [values] 2957 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2958 if (Record.empty()) 2959 return error("Invalid record"); 2960 2961 SmallString<16> Elts(Record.begin(), Record.end()); 2962 V = ConstantDataArray::getString(Context, Elts, 2963 BitCode == bitc::CST_CODE_CSTRING); 2964 break; 2965 } 2966 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2967 if (Record.empty()) 2968 return error("Invalid record"); 2969 2970 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2971 if (EltTy->isIntegerTy(8)) { 2972 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2973 if (isa<VectorType>(CurTy)) 2974 V = ConstantDataVector::get(Context, Elts); 2975 else 2976 V = ConstantDataArray::get(Context, Elts); 2977 } else if (EltTy->isIntegerTy(16)) { 2978 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2979 if (isa<VectorType>(CurTy)) 2980 V = ConstantDataVector::get(Context, Elts); 2981 else 2982 V = ConstantDataArray::get(Context, Elts); 2983 } else if (EltTy->isIntegerTy(32)) { 2984 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2985 if (isa<VectorType>(CurTy)) 2986 V = ConstantDataVector::get(Context, Elts); 2987 else 2988 V = ConstantDataArray::get(Context, Elts); 2989 } else if (EltTy->isIntegerTy(64)) { 2990 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2991 if (isa<VectorType>(CurTy)) 2992 V = ConstantDataVector::get(Context, Elts); 2993 else 2994 V = ConstantDataArray::get(Context, Elts); 2995 } else if (EltTy->isHalfTy()) { 2996 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2997 if (isa<VectorType>(CurTy)) 2998 V = ConstantDataVector::getFP(Context, Elts); 2999 else 3000 V = ConstantDataArray::getFP(Context, Elts); 3001 } else if (EltTy->isFloatTy()) { 3002 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3003 if (isa<VectorType>(CurTy)) 3004 V = ConstantDataVector::getFP(Context, Elts); 3005 else 3006 V = ConstantDataArray::getFP(Context, Elts); 3007 } else if (EltTy->isDoubleTy()) { 3008 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3009 if (isa<VectorType>(CurTy)) 3010 V = ConstantDataVector::getFP(Context, Elts); 3011 else 3012 V = ConstantDataArray::getFP(Context, Elts); 3013 } else { 3014 return error("Invalid type for value"); 3015 } 3016 break; 3017 } 3018 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3019 if (Record.size() < 3) 3020 return error("Invalid record"); 3021 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3022 if (Opc < 0) { 3023 V = UndefValue::get(CurTy); // Unknown binop. 3024 } else { 3025 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3026 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3027 unsigned Flags = 0; 3028 if (Record.size() >= 4) { 3029 if (Opc == Instruction::Add || 3030 Opc == Instruction::Sub || 3031 Opc == Instruction::Mul || 3032 Opc == Instruction::Shl) { 3033 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3034 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3035 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3036 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3037 } else if (Opc == Instruction::SDiv || 3038 Opc == Instruction::UDiv || 3039 Opc == Instruction::LShr || 3040 Opc == Instruction::AShr) { 3041 if (Record[3] & (1 << bitc::PEO_EXACT)) 3042 Flags |= SDivOperator::IsExact; 3043 } 3044 } 3045 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3046 } 3047 break; 3048 } 3049 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3050 if (Record.size() < 3) 3051 return error("Invalid record"); 3052 int Opc = getDecodedCastOpcode(Record[0]); 3053 if (Opc < 0) { 3054 V = UndefValue::get(CurTy); // Unknown cast. 3055 } else { 3056 Type *OpTy = getTypeByID(Record[1]); 3057 if (!OpTy) 3058 return error("Invalid record"); 3059 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3060 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3061 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3062 } 3063 break; 3064 } 3065 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3066 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3067 unsigned OpNum = 0; 3068 Type *PointeeType = nullptr; 3069 if (Record.size() % 2) 3070 PointeeType = getTypeByID(Record[OpNum++]); 3071 SmallVector<Constant*, 16> Elts; 3072 while (OpNum != Record.size()) { 3073 Type *ElTy = getTypeByID(Record[OpNum++]); 3074 if (!ElTy) 3075 return error("Invalid record"); 3076 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3077 } 3078 3079 if (PointeeType && 3080 PointeeType != 3081 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3082 ->getElementType()) 3083 return error("Explicit gep operator type does not match pointee type " 3084 "of pointer operand"); 3085 3086 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3087 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3088 BitCode == 3089 bitc::CST_CODE_CE_INBOUNDS_GEP); 3090 break; 3091 } 3092 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3093 if (Record.size() < 3) 3094 return error("Invalid record"); 3095 3096 Type *SelectorTy = Type::getInt1Ty(Context); 3097 3098 // The selector might be an i1 or an <n x i1> 3099 // Get the type from the ValueList before getting a forward ref. 3100 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3101 if (Value *V = ValueList[Record[0]]) 3102 if (SelectorTy != V->getType()) 3103 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3104 3105 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3106 SelectorTy), 3107 ValueList.getConstantFwdRef(Record[1],CurTy), 3108 ValueList.getConstantFwdRef(Record[2],CurTy)); 3109 break; 3110 } 3111 case bitc::CST_CODE_CE_EXTRACTELT 3112 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3113 if (Record.size() < 3) 3114 return error("Invalid record"); 3115 VectorType *OpTy = 3116 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3117 if (!OpTy) 3118 return error("Invalid record"); 3119 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3120 Constant *Op1 = nullptr; 3121 if (Record.size() == 4) { 3122 Type *IdxTy = getTypeByID(Record[2]); 3123 if (!IdxTy) 3124 return error("Invalid record"); 3125 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3126 } else // TODO: Remove with llvm 4.0 3127 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3128 if (!Op1) 3129 return error("Invalid record"); 3130 V = ConstantExpr::getExtractElement(Op0, Op1); 3131 break; 3132 } 3133 case bitc::CST_CODE_CE_INSERTELT 3134 : { // CE_INSERTELT: [opval, opval, opty, opval] 3135 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3136 if (Record.size() < 3 || !OpTy) 3137 return error("Invalid record"); 3138 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3139 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3140 OpTy->getElementType()); 3141 Constant *Op2 = nullptr; 3142 if (Record.size() == 4) { 3143 Type *IdxTy = getTypeByID(Record[2]); 3144 if (!IdxTy) 3145 return error("Invalid record"); 3146 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3147 } else // TODO: Remove with llvm 4.0 3148 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3149 if (!Op2) 3150 return error("Invalid record"); 3151 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3152 break; 3153 } 3154 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3155 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3156 if (Record.size() < 3 || !OpTy) 3157 return error("Invalid record"); 3158 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3159 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3160 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3161 OpTy->getNumElements()); 3162 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3163 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3164 break; 3165 } 3166 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3167 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3168 VectorType *OpTy = 3169 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3170 if (Record.size() < 4 || !RTy || !OpTy) 3171 return error("Invalid record"); 3172 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3173 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3174 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3175 RTy->getNumElements()); 3176 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3177 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3178 break; 3179 } 3180 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3181 if (Record.size() < 4) 3182 return error("Invalid record"); 3183 Type *OpTy = getTypeByID(Record[0]); 3184 if (!OpTy) 3185 return error("Invalid record"); 3186 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3187 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3188 3189 if (OpTy->isFPOrFPVectorTy()) 3190 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3191 else 3192 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3193 break; 3194 } 3195 // This maintains backward compatibility, pre-asm dialect keywords. 3196 // FIXME: Remove with the 4.0 release. 3197 case bitc::CST_CODE_INLINEASM_OLD: { 3198 if (Record.size() < 2) 3199 return error("Invalid record"); 3200 std::string AsmStr, ConstrStr; 3201 bool HasSideEffects = Record[0] & 1; 3202 bool IsAlignStack = Record[0] >> 1; 3203 unsigned AsmStrSize = Record[1]; 3204 if (2+AsmStrSize >= Record.size()) 3205 return error("Invalid record"); 3206 unsigned ConstStrSize = Record[2+AsmStrSize]; 3207 if (3+AsmStrSize+ConstStrSize > Record.size()) 3208 return error("Invalid record"); 3209 3210 for (unsigned i = 0; i != AsmStrSize; ++i) 3211 AsmStr += (char)Record[2+i]; 3212 for (unsigned i = 0; i != ConstStrSize; ++i) 3213 ConstrStr += (char)Record[3+AsmStrSize+i]; 3214 PointerType *PTy = cast<PointerType>(CurTy); 3215 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3216 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3217 break; 3218 } 3219 // This version adds support for the asm dialect keywords (e.g., 3220 // inteldialect). 3221 case bitc::CST_CODE_INLINEASM: { 3222 if (Record.size() < 2) 3223 return error("Invalid record"); 3224 std::string AsmStr, ConstrStr; 3225 bool HasSideEffects = Record[0] & 1; 3226 bool IsAlignStack = (Record[0] >> 1) & 1; 3227 unsigned AsmDialect = Record[0] >> 2; 3228 unsigned AsmStrSize = Record[1]; 3229 if (2+AsmStrSize >= Record.size()) 3230 return error("Invalid record"); 3231 unsigned ConstStrSize = Record[2+AsmStrSize]; 3232 if (3+AsmStrSize+ConstStrSize > Record.size()) 3233 return error("Invalid record"); 3234 3235 for (unsigned i = 0; i != AsmStrSize; ++i) 3236 AsmStr += (char)Record[2+i]; 3237 for (unsigned i = 0; i != ConstStrSize; ++i) 3238 ConstrStr += (char)Record[3+AsmStrSize+i]; 3239 PointerType *PTy = cast<PointerType>(CurTy); 3240 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3241 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3242 InlineAsm::AsmDialect(AsmDialect)); 3243 break; 3244 } 3245 case bitc::CST_CODE_BLOCKADDRESS:{ 3246 if (Record.size() < 3) 3247 return error("Invalid record"); 3248 Type *FnTy = getTypeByID(Record[0]); 3249 if (!FnTy) 3250 return error("Invalid record"); 3251 Function *Fn = 3252 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3253 if (!Fn) 3254 return error("Invalid record"); 3255 3256 // If the function is already parsed we can insert the block address right 3257 // away. 3258 BasicBlock *BB; 3259 unsigned BBID = Record[2]; 3260 if (!BBID) 3261 // Invalid reference to entry block. 3262 return error("Invalid ID"); 3263 if (!Fn->empty()) { 3264 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3265 for (size_t I = 0, E = BBID; I != E; ++I) { 3266 if (BBI == BBE) 3267 return error("Invalid ID"); 3268 ++BBI; 3269 } 3270 BB = &*BBI; 3271 } else { 3272 // Otherwise insert a placeholder and remember it so it can be inserted 3273 // when the function is parsed. 3274 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3275 if (FwdBBs.empty()) 3276 BasicBlockFwdRefQueue.push_back(Fn); 3277 if (FwdBBs.size() < BBID + 1) 3278 FwdBBs.resize(BBID + 1); 3279 if (!FwdBBs[BBID]) 3280 FwdBBs[BBID] = BasicBlock::Create(Context); 3281 BB = FwdBBs[BBID]; 3282 } 3283 V = BlockAddress::get(Fn, BB); 3284 break; 3285 } 3286 } 3287 3288 ValueList.assignValue(V, NextCstNo); 3289 ++NextCstNo; 3290 } 3291 } 3292 3293 std::error_code BitcodeReader::parseUseLists() { 3294 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3295 return error("Invalid record"); 3296 3297 // Read all the records. 3298 SmallVector<uint64_t, 64> Record; 3299 while (1) { 3300 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3301 3302 switch (Entry.Kind) { 3303 case BitstreamEntry::SubBlock: // Handled for us already. 3304 case BitstreamEntry::Error: 3305 return error("Malformed block"); 3306 case BitstreamEntry::EndBlock: 3307 return std::error_code(); 3308 case BitstreamEntry::Record: 3309 // The interesting case. 3310 break; 3311 } 3312 3313 // Read a use list record. 3314 Record.clear(); 3315 bool IsBB = false; 3316 switch (Stream.readRecord(Entry.ID, Record)) { 3317 default: // Default behavior: unknown type. 3318 break; 3319 case bitc::USELIST_CODE_BB: 3320 IsBB = true; 3321 // fallthrough 3322 case bitc::USELIST_CODE_DEFAULT: { 3323 unsigned RecordLength = Record.size(); 3324 if (RecordLength < 3) 3325 // Records should have at least an ID and two indexes. 3326 return error("Invalid record"); 3327 unsigned ID = Record.back(); 3328 Record.pop_back(); 3329 3330 Value *V; 3331 if (IsBB) { 3332 assert(ID < FunctionBBs.size() && "Basic block not found"); 3333 V = FunctionBBs[ID]; 3334 } else 3335 V = ValueList[ID]; 3336 unsigned NumUses = 0; 3337 SmallDenseMap<const Use *, unsigned, 16> Order; 3338 for (const Use &U : V->materialized_uses()) { 3339 if (++NumUses > Record.size()) 3340 break; 3341 Order[&U] = Record[NumUses - 1]; 3342 } 3343 if (Order.size() != Record.size() || NumUses > Record.size()) 3344 // Mismatches can happen if the functions are being materialized lazily 3345 // (out-of-order), or a value has been upgraded. 3346 break; 3347 3348 V->sortUseList([&](const Use &L, const Use &R) { 3349 return Order.lookup(&L) < Order.lookup(&R); 3350 }); 3351 break; 3352 } 3353 } 3354 } 3355 } 3356 3357 /// When we see the block for metadata, remember where it is and then skip it. 3358 /// This lets us lazily deserialize the metadata. 3359 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3360 // Save the current stream state. 3361 uint64_t CurBit = Stream.GetCurrentBitNo(); 3362 DeferredMetadataInfo.push_back(CurBit); 3363 3364 // Skip over the block for now. 3365 if (Stream.SkipBlock()) 3366 return error("Invalid record"); 3367 return std::error_code(); 3368 } 3369 3370 std::error_code BitcodeReader::materializeMetadata() { 3371 for (uint64_t BitPos : DeferredMetadataInfo) { 3372 // Move the bit stream to the saved position. 3373 Stream.JumpToBit(BitPos); 3374 if (std::error_code EC = parseMetadata(true)) 3375 return EC; 3376 } 3377 DeferredMetadataInfo.clear(); 3378 return std::error_code(); 3379 } 3380 3381 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3382 3383 /// When we see the block for a function body, remember where it is and then 3384 /// skip it. This lets us lazily deserialize the functions. 3385 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3386 // Get the function we are talking about. 3387 if (FunctionsWithBodies.empty()) 3388 return error("Insufficient function protos"); 3389 3390 Function *Fn = FunctionsWithBodies.back(); 3391 FunctionsWithBodies.pop_back(); 3392 3393 // Save the current stream state. 3394 uint64_t CurBit = Stream.GetCurrentBitNo(); 3395 assert( 3396 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3397 "Mismatch between VST and scanned function offsets"); 3398 DeferredFunctionInfo[Fn] = CurBit; 3399 3400 // Skip over the function block for now. 3401 if (Stream.SkipBlock()) 3402 return error("Invalid record"); 3403 return std::error_code(); 3404 } 3405 3406 std::error_code BitcodeReader::globalCleanup() { 3407 // Patch the initializers for globals and aliases up. 3408 resolveGlobalAndIndirectSymbolInits(); 3409 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3410 return error("Malformed global initializer set"); 3411 3412 // Look for intrinsic functions which need to be upgraded at some point 3413 for (Function &F : *TheModule) { 3414 Function *NewFn; 3415 if (UpgradeIntrinsicFunction(&F, NewFn)) 3416 UpgradedIntrinsics[&F] = NewFn; 3417 } 3418 3419 // Look for global variables which need to be renamed. 3420 for (GlobalVariable &GV : TheModule->globals()) 3421 UpgradeGlobalVariable(&GV); 3422 3423 // Force deallocation of memory for these vectors to favor the client that 3424 // want lazy deserialization. 3425 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3426 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3427 IndirectSymbolInits); 3428 return std::error_code(); 3429 } 3430 3431 /// Support for lazy parsing of function bodies. This is required if we 3432 /// either have an old bitcode file without a VST forward declaration record, 3433 /// or if we have an anonymous function being materialized, since anonymous 3434 /// functions do not have a name and are therefore not in the VST. 3435 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3436 Stream.JumpToBit(NextUnreadBit); 3437 3438 if (Stream.AtEndOfStream()) 3439 return error("Could not find function in stream"); 3440 3441 if (!SeenFirstFunctionBody) 3442 return error("Trying to materialize functions before seeing function blocks"); 3443 3444 // An old bitcode file with the symbol table at the end would have 3445 // finished the parse greedily. 3446 assert(SeenValueSymbolTable); 3447 3448 SmallVector<uint64_t, 64> Record; 3449 3450 while (1) { 3451 BitstreamEntry Entry = Stream.advance(); 3452 switch (Entry.Kind) { 3453 default: 3454 return error("Expect SubBlock"); 3455 case BitstreamEntry::SubBlock: 3456 switch (Entry.ID) { 3457 default: 3458 return error("Expect function block"); 3459 case bitc::FUNCTION_BLOCK_ID: 3460 if (std::error_code EC = rememberAndSkipFunctionBody()) 3461 return EC; 3462 NextUnreadBit = Stream.GetCurrentBitNo(); 3463 return std::error_code(); 3464 } 3465 } 3466 } 3467 } 3468 3469 std::error_code BitcodeReader::parseBitcodeVersion() { 3470 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3471 return error("Invalid record"); 3472 3473 // Read all the records. 3474 SmallVector<uint64_t, 64> Record; 3475 while (1) { 3476 BitstreamEntry Entry = Stream.advance(); 3477 3478 switch (Entry.Kind) { 3479 default: 3480 case BitstreamEntry::Error: 3481 return error("Malformed block"); 3482 case BitstreamEntry::EndBlock: 3483 return std::error_code(); 3484 case BitstreamEntry::Record: 3485 // The interesting case. 3486 break; 3487 } 3488 3489 // Read a record. 3490 Record.clear(); 3491 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3492 switch (BitCode) { 3493 default: // Default behavior: reject 3494 return error("Invalid value"); 3495 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3496 // N] 3497 convertToString(Record, 0, ProducerIdentification); 3498 break; 3499 } 3500 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3501 unsigned epoch = (unsigned)Record[0]; 3502 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3503 return error( 3504 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3505 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3506 } 3507 } 3508 } 3509 } 3510 } 3511 3512 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3513 bool ShouldLazyLoadMetadata) { 3514 if (ResumeBit) 3515 Stream.JumpToBit(ResumeBit); 3516 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3517 return error("Invalid record"); 3518 3519 SmallVector<uint64_t, 64> Record; 3520 std::vector<std::string> SectionTable; 3521 std::vector<std::string> GCTable; 3522 3523 // Read all the records for this module. 3524 while (1) { 3525 BitstreamEntry Entry = Stream.advance(); 3526 3527 switch (Entry.Kind) { 3528 case BitstreamEntry::Error: 3529 return error("Malformed block"); 3530 case BitstreamEntry::EndBlock: 3531 return globalCleanup(); 3532 3533 case BitstreamEntry::SubBlock: 3534 switch (Entry.ID) { 3535 default: // Skip unknown content. 3536 if (Stream.SkipBlock()) 3537 return error("Invalid record"); 3538 break; 3539 case bitc::BLOCKINFO_BLOCK_ID: 3540 if (Stream.ReadBlockInfoBlock()) 3541 return error("Malformed block"); 3542 break; 3543 case bitc::PARAMATTR_BLOCK_ID: 3544 if (std::error_code EC = parseAttributeBlock()) 3545 return EC; 3546 break; 3547 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3548 if (std::error_code EC = parseAttributeGroupBlock()) 3549 return EC; 3550 break; 3551 case bitc::TYPE_BLOCK_ID_NEW: 3552 if (std::error_code EC = parseTypeTable()) 3553 return EC; 3554 break; 3555 case bitc::VALUE_SYMTAB_BLOCK_ID: 3556 if (!SeenValueSymbolTable) { 3557 // Either this is an old form VST without function index and an 3558 // associated VST forward declaration record (which would have caused 3559 // the VST to be jumped to and parsed before it was encountered 3560 // normally in the stream), or there were no function blocks to 3561 // trigger an earlier parsing of the VST. 3562 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3563 if (std::error_code EC = parseValueSymbolTable()) 3564 return EC; 3565 SeenValueSymbolTable = true; 3566 } else { 3567 // We must have had a VST forward declaration record, which caused 3568 // the parser to jump to and parse the VST earlier. 3569 assert(VSTOffset > 0); 3570 if (Stream.SkipBlock()) 3571 return error("Invalid record"); 3572 } 3573 break; 3574 case bitc::CONSTANTS_BLOCK_ID: 3575 if (std::error_code EC = parseConstants()) 3576 return EC; 3577 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3578 return EC; 3579 break; 3580 case bitc::METADATA_BLOCK_ID: 3581 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3582 if (std::error_code EC = rememberAndSkipMetadata()) 3583 return EC; 3584 break; 3585 } 3586 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3587 if (std::error_code EC = parseMetadata(true)) 3588 return EC; 3589 break; 3590 case bitc::METADATA_KIND_BLOCK_ID: 3591 if (std::error_code EC = parseMetadataKinds()) 3592 return EC; 3593 break; 3594 case bitc::FUNCTION_BLOCK_ID: 3595 // If this is the first function body we've seen, reverse the 3596 // FunctionsWithBodies list. 3597 if (!SeenFirstFunctionBody) { 3598 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3599 if (std::error_code EC = globalCleanup()) 3600 return EC; 3601 SeenFirstFunctionBody = true; 3602 } 3603 3604 if (VSTOffset > 0) { 3605 // If we have a VST forward declaration record, make sure we 3606 // parse the VST now if we haven't already. It is needed to 3607 // set up the DeferredFunctionInfo vector for lazy reading. 3608 if (!SeenValueSymbolTable) { 3609 if (std::error_code EC = 3610 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3611 return EC; 3612 SeenValueSymbolTable = true; 3613 // Fall through so that we record the NextUnreadBit below. 3614 // This is necessary in case we have an anonymous function that 3615 // is later materialized. Since it will not have a VST entry we 3616 // need to fall back to the lazy parse to find its offset. 3617 } else { 3618 // If we have a VST forward declaration record, but have already 3619 // parsed the VST (just above, when the first function body was 3620 // encountered here), then we are resuming the parse after 3621 // materializing functions. The ResumeBit points to the 3622 // start of the last function block recorded in the 3623 // DeferredFunctionInfo map. Skip it. 3624 if (Stream.SkipBlock()) 3625 return error("Invalid record"); 3626 continue; 3627 } 3628 } 3629 3630 // Support older bitcode files that did not have the function 3631 // index in the VST, nor a VST forward declaration record, as 3632 // well as anonymous functions that do not have VST entries. 3633 // Build the DeferredFunctionInfo vector on the fly. 3634 if (std::error_code EC = rememberAndSkipFunctionBody()) 3635 return EC; 3636 3637 // Suspend parsing when we reach the function bodies. Subsequent 3638 // materialization calls will resume it when necessary. If the bitcode 3639 // file is old, the symbol table will be at the end instead and will not 3640 // have been seen yet. In this case, just finish the parse now. 3641 if (SeenValueSymbolTable) { 3642 NextUnreadBit = Stream.GetCurrentBitNo(); 3643 return std::error_code(); 3644 } 3645 break; 3646 case bitc::USELIST_BLOCK_ID: 3647 if (std::error_code EC = parseUseLists()) 3648 return EC; 3649 break; 3650 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3651 if (std::error_code EC = parseOperandBundleTags()) 3652 return EC; 3653 break; 3654 } 3655 continue; 3656 3657 case BitstreamEntry::Record: 3658 // The interesting case. 3659 break; 3660 } 3661 3662 // Read a record. 3663 auto BitCode = Stream.readRecord(Entry.ID, Record); 3664 switch (BitCode) { 3665 default: break; // Default behavior, ignore unknown content. 3666 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3667 if (Record.size() < 1) 3668 return error("Invalid record"); 3669 // Only version #0 and #1 are supported so far. 3670 unsigned module_version = Record[0]; 3671 switch (module_version) { 3672 default: 3673 return error("Invalid value"); 3674 case 0: 3675 UseRelativeIDs = false; 3676 break; 3677 case 1: 3678 UseRelativeIDs = true; 3679 break; 3680 } 3681 break; 3682 } 3683 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3684 std::string S; 3685 if (convertToString(Record, 0, S)) 3686 return error("Invalid record"); 3687 TheModule->setTargetTriple(S); 3688 break; 3689 } 3690 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3691 std::string S; 3692 if (convertToString(Record, 0, S)) 3693 return error("Invalid record"); 3694 TheModule->setDataLayout(S); 3695 break; 3696 } 3697 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3698 std::string S; 3699 if (convertToString(Record, 0, S)) 3700 return error("Invalid record"); 3701 TheModule->setModuleInlineAsm(S); 3702 break; 3703 } 3704 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3705 // FIXME: Remove in 4.0. 3706 std::string S; 3707 if (convertToString(Record, 0, S)) 3708 return error("Invalid record"); 3709 // Ignore value. 3710 break; 3711 } 3712 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3713 std::string S; 3714 if (convertToString(Record, 0, S)) 3715 return error("Invalid record"); 3716 SectionTable.push_back(S); 3717 break; 3718 } 3719 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3720 std::string S; 3721 if (convertToString(Record, 0, S)) 3722 return error("Invalid record"); 3723 GCTable.push_back(S); 3724 break; 3725 } 3726 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3727 if (Record.size() < 2) 3728 return error("Invalid record"); 3729 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3730 unsigned ComdatNameSize = Record[1]; 3731 std::string ComdatName; 3732 ComdatName.reserve(ComdatNameSize); 3733 for (unsigned i = 0; i != ComdatNameSize; ++i) 3734 ComdatName += (char)Record[2 + i]; 3735 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3736 C->setSelectionKind(SK); 3737 ComdatList.push_back(C); 3738 break; 3739 } 3740 // GLOBALVAR: [pointer type, isconst, initid, 3741 // linkage, alignment, section, visibility, threadlocal, 3742 // unnamed_addr, externally_initialized, dllstorageclass, 3743 // comdat] 3744 case bitc::MODULE_CODE_GLOBALVAR: { 3745 if (Record.size() < 6) 3746 return error("Invalid record"); 3747 Type *Ty = getTypeByID(Record[0]); 3748 if (!Ty) 3749 return error("Invalid record"); 3750 bool isConstant = Record[1] & 1; 3751 bool explicitType = Record[1] & 2; 3752 unsigned AddressSpace; 3753 if (explicitType) { 3754 AddressSpace = Record[1] >> 2; 3755 } else { 3756 if (!Ty->isPointerTy()) 3757 return error("Invalid type for value"); 3758 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3759 Ty = cast<PointerType>(Ty)->getElementType(); 3760 } 3761 3762 uint64_t RawLinkage = Record[3]; 3763 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3764 unsigned Alignment; 3765 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3766 return EC; 3767 std::string Section; 3768 if (Record[5]) { 3769 if (Record[5]-1 >= SectionTable.size()) 3770 return error("Invalid ID"); 3771 Section = SectionTable[Record[5]-1]; 3772 } 3773 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3774 // Local linkage must have default visibility. 3775 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3776 // FIXME: Change to an error if non-default in 4.0. 3777 Visibility = getDecodedVisibility(Record[6]); 3778 3779 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3780 if (Record.size() > 7) 3781 TLM = getDecodedThreadLocalMode(Record[7]); 3782 3783 bool UnnamedAddr = false; 3784 if (Record.size() > 8) 3785 UnnamedAddr = Record[8]; 3786 3787 bool ExternallyInitialized = false; 3788 if (Record.size() > 9) 3789 ExternallyInitialized = Record[9]; 3790 3791 GlobalVariable *NewGV = 3792 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3793 TLM, AddressSpace, ExternallyInitialized); 3794 NewGV->setAlignment(Alignment); 3795 if (!Section.empty()) 3796 NewGV->setSection(Section); 3797 NewGV->setVisibility(Visibility); 3798 NewGV->setUnnamedAddr(UnnamedAddr); 3799 3800 if (Record.size() > 10) 3801 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3802 else 3803 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3804 3805 ValueList.push_back(NewGV); 3806 3807 // Remember which value to use for the global initializer. 3808 if (unsigned InitID = Record[2]) 3809 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3810 3811 if (Record.size() > 11) { 3812 if (unsigned ComdatID = Record[11]) { 3813 if (ComdatID > ComdatList.size()) 3814 return error("Invalid global variable comdat ID"); 3815 NewGV->setComdat(ComdatList[ComdatID - 1]); 3816 } 3817 } else if (hasImplicitComdat(RawLinkage)) { 3818 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3819 } 3820 break; 3821 } 3822 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3823 // alignment, section, visibility, gc, unnamed_addr, 3824 // prologuedata, dllstorageclass, comdat, prefixdata] 3825 case bitc::MODULE_CODE_FUNCTION: { 3826 if (Record.size() < 8) 3827 return error("Invalid record"); 3828 Type *Ty = getTypeByID(Record[0]); 3829 if (!Ty) 3830 return error("Invalid record"); 3831 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3832 Ty = PTy->getElementType(); 3833 auto *FTy = dyn_cast<FunctionType>(Ty); 3834 if (!FTy) 3835 return error("Invalid type for value"); 3836 auto CC = static_cast<CallingConv::ID>(Record[1]); 3837 if (CC & ~CallingConv::MaxID) 3838 return error("Invalid calling convention ID"); 3839 3840 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3841 "", TheModule); 3842 3843 Func->setCallingConv(CC); 3844 bool isProto = Record[2]; 3845 uint64_t RawLinkage = Record[3]; 3846 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3847 Func->setAttributes(getAttributes(Record[4])); 3848 3849 unsigned Alignment; 3850 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3851 return EC; 3852 Func->setAlignment(Alignment); 3853 if (Record[6]) { 3854 if (Record[6]-1 >= SectionTable.size()) 3855 return error("Invalid ID"); 3856 Func->setSection(SectionTable[Record[6]-1]); 3857 } 3858 // Local linkage must have default visibility. 3859 if (!Func->hasLocalLinkage()) 3860 // FIXME: Change to an error if non-default in 4.0. 3861 Func->setVisibility(getDecodedVisibility(Record[7])); 3862 if (Record.size() > 8 && Record[8]) { 3863 if (Record[8]-1 >= GCTable.size()) 3864 return error("Invalid ID"); 3865 Func->setGC(GCTable[Record[8]-1].c_str()); 3866 } 3867 bool UnnamedAddr = false; 3868 if (Record.size() > 9) 3869 UnnamedAddr = Record[9]; 3870 Func->setUnnamedAddr(UnnamedAddr); 3871 if (Record.size() > 10 && Record[10] != 0) 3872 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3873 3874 if (Record.size() > 11) 3875 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3876 else 3877 upgradeDLLImportExportLinkage(Func, RawLinkage); 3878 3879 if (Record.size() > 12) { 3880 if (unsigned ComdatID = Record[12]) { 3881 if (ComdatID > ComdatList.size()) 3882 return error("Invalid function comdat ID"); 3883 Func->setComdat(ComdatList[ComdatID - 1]); 3884 } 3885 } else if (hasImplicitComdat(RawLinkage)) { 3886 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3887 } 3888 3889 if (Record.size() > 13 && Record[13] != 0) 3890 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3891 3892 if (Record.size() > 14 && Record[14] != 0) 3893 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3894 3895 ValueList.push_back(Func); 3896 3897 // If this is a function with a body, remember the prototype we are 3898 // creating now, so that we can match up the body with them later. 3899 if (!isProto) { 3900 Func->setIsMaterializable(true); 3901 FunctionsWithBodies.push_back(Func); 3902 DeferredFunctionInfo[Func] = 0; 3903 } 3904 break; 3905 } 3906 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3907 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3908 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3909 case bitc::MODULE_CODE_IFUNC: 3910 case bitc::MODULE_CODE_ALIAS: 3911 case bitc::MODULE_CODE_ALIAS_OLD: { 3912 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3913 if (Record.size() < (3 + (unsigned)NewRecord)) 3914 return error("Invalid record"); 3915 unsigned OpNum = 0; 3916 Type *Ty = getTypeByID(Record[OpNum++]); 3917 if (!Ty) 3918 return error("Invalid record"); 3919 3920 unsigned AddrSpace; 3921 if (!NewRecord) { 3922 auto *PTy = dyn_cast<PointerType>(Ty); 3923 if (!PTy) 3924 return error("Invalid type for value"); 3925 Ty = PTy->getElementType(); 3926 AddrSpace = PTy->getAddressSpace(); 3927 } else { 3928 AddrSpace = Record[OpNum++]; 3929 } 3930 3931 auto Val = Record[OpNum++]; 3932 auto Linkage = Record[OpNum++]; 3933 GlobalIndirectSymbol *NewGA; 3934 if (BitCode == bitc::MODULE_CODE_ALIAS || 3935 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3936 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3937 "", TheModule); 3938 else 3939 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3940 "", nullptr, TheModule); 3941 // Old bitcode files didn't have visibility field. 3942 // Local linkage must have default visibility. 3943 if (OpNum != Record.size()) { 3944 auto VisInd = OpNum++; 3945 if (!NewGA->hasLocalLinkage()) 3946 // FIXME: Change to an error if non-default in 4.0. 3947 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3948 } 3949 if (OpNum != Record.size()) 3950 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3951 else 3952 upgradeDLLImportExportLinkage(NewGA, Linkage); 3953 if (OpNum != Record.size()) 3954 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3955 if (OpNum != Record.size()) 3956 NewGA->setUnnamedAddr(Record[OpNum++]); 3957 ValueList.push_back(NewGA); 3958 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3959 break; 3960 } 3961 /// MODULE_CODE_PURGEVALS: [numvals] 3962 case bitc::MODULE_CODE_PURGEVALS: 3963 // Trim down the value list to the specified size. 3964 if (Record.size() < 1 || Record[0] > ValueList.size()) 3965 return error("Invalid record"); 3966 ValueList.shrinkTo(Record[0]); 3967 break; 3968 /// MODULE_CODE_VSTOFFSET: [offset] 3969 case bitc::MODULE_CODE_VSTOFFSET: 3970 if (Record.size() < 1) 3971 return error("Invalid record"); 3972 VSTOffset = Record[0]; 3973 break; 3974 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3975 case bitc::MODULE_CODE_SOURCE_FILENAME: 3976 SmallString<128> ValueName; 3977 if (convertToString(Record, 0, ValueName)) 3978 return error("Invalid record"); 3979 TheModule->setSourceFileName(ValueName); 3980 break; 3981 } 3982 Record.clear(); 3983 } 3984 } 3985 3986 /// Helper to read the header common to all bitcode files. 3987 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3988 // Sniff for the signature. 3989 if (Stream.Read(8) != 'B' || 3990 Stream.Read(8) != 'C' || 3991 Stream.Read(4) != 0x0 || 3992 Stream.Read(4) != 0xC || 3993 Stream.Read(4) != 0xE || 3994 Stream.Read(4) != 0xD) 3995 return false; 3996 return true; 3997 } 3998 3999 std::error_code 4000 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 4001 Module *M, bool ShouldLazyLoadMetadata) { 4002 TheModule = M; 4003 4004 if (std::error_code EC = initStream(std::move(Streamer))) 4005 return EC; 4006 4007 // Sniff for the signature. 4008 if (!hasValidBitcodeHeader(Stream)) 4009 return error("Invalid bitcode signature"); 4010 4011 // We expect a number of well-defined blocks, though we don't necessarily 4012 // need to understand them all. 4013 while (1) { 4014 if (Stream.AtEndOfStream()) { 4015 // We didn't really read a proper Module. 4016 return error("Malformed IR file"); 4017 } 4018 4019 BitstreamEntry Entry = 4020 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4021 4022 if (Entry.Kind != BitstreamEntry::SubBlock) 4023 return error("Malformed block"); 4024 4025 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4026 parseBitcodeVersion(); 4027 continue; 4028 } 4029 4030 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4031 return parseModule(0, ShouldLazyLoadMetadata); 4032 4033 if (Stream.SkipBlock()) 4034 return error("Invalid record"); 4035 } 4036 } 4037 4038 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4039 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4040 return error("Invalid record"); 4041 4042 SmallVector<uint64_t, 64> Record; 4043 4044 std::string Triple; 4045 // Read all the records for this module. 4046 while (1) { 4047 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4048 4049 switch (Entry.Kind) { 4050 case BitstreamEntry::SubBlock: // Handled for us already. 4051 case BitstreamEntry::Error: 4052 return error("Malformed block"); 4053 case BitstreamEntry::EndBlock: 4054 return Triple; 4055 case BitstreamEntry::Record: 4056 // The interesting case. 4057 break; 4058 } 4059 4060 // Read a record. 4061 switch (Stream.readRecord(Entry.ID, Record)) { 4062 default: break; // Default behavior, ignore unknown content. 4063 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4064 std::string S; 4065 if (convertToString(Record, 0, S)) 4066 return error("Invalid record"); 4067 Triple = S; 4068 break; 4069 } 4070 } 4071 Record.clear(); 4072 } 4073 llvm_unreachable("Exit infinite loop"); 4074 } 4075 4076 ErrorOr<std::string> BitcodeReader::parseTriple() { 4077 if (std::error_code EC = initStream(nullptr)) 4078 return EC; 4079 4080 // Sniff for the signature. 4081 if (!hasValidBitcodeHeader(Stream)) 4082 return error("Invalid bitcode signature"); 4083 4084 // We expect a number of well-defined blocks, though we don't necessarily 4085 // need to understand them all. 4086 while (1) { 4087 BitstreamEntry Entry = Stream.advance(); 4088 4089 switch (Entry.Kind) { 4090 case BitstreamEntry::Error: 4091 return error("Malformed block"); 4092 case BitstreamEntry::EndBlock: 4093 return std::error_code(); 4094 4095 case BitstreamEntry::SubBlock: 4096 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4097 return parseModuleTriple(); 4098 4099 // Ignore other sub-blocks. 4100 if (Stream.SkipBlock()) 4101 return error("Malformed block"); 4102 continue; 4103 4104 case BitstreamEntry::Record: 4105 Stream.skipRecord(Entry.ID); 4106 continue; 4107 } 4108 } 4109 } 4110 4111 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4112 if (std::error_code EC = initStream(nullptr)) 4113 return EC; 4114 4115 // Sniff for the signature. 4116 if (!hasValidBitcodeHeader(Stream)) 4117 return error("Invalid bitcode signature"); 4118 4119 // We expect a number of well-defined blocks, though we don't necessarily 4120 // need to understand them all. 4121 while (1) { 4122 BitstreamEntry Entry = Stream.advance(); 4123 switch (Entry.Kind) { 4124 case BitstreamEntry::Error: 4125 return error("Malformed block"); 4126 case BitstreamEntry::EndBlock: 4127 return std::error_code(); 4128 4129 case BitstreamEntry::SubBlock: 4130 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4131 if (std::error_code EC = parseBitcodeVersion()) 4132 return EC; 4133 return ProducerIdentification; 4134 } 4135 // Ignore other sub-blocks. 4136 if (Stream.SkipBlock()) 4137 return error("Malformed block"); 4138 continue; 4139 case BitstreamEntry::Record: 4140 Stream.skipRecord(Entry.ID); 4141 continue; 4142 } 4143 } 4144 } 4145 4146 /// Parse metadata attachments. 4147 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4148 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4149 return error("Invalid record"); 4150 4151 SmallVector<uint64_t, 64> Record; 4152 while (1) { 4153 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4154 4155 switch (Entry.Kind) { 4156 case BitstreamEntry::SubBlock: // Handled for us already. 4157 case BitstreamEntry::Error: 4158 return error("Malformed block"); 4159 case BitstreamEntry::EndBlock: 4160 return std::error_code(); 4161 case BitstreamEntry::Record: 4162 // The interesting case. 4163 break; 4164 } 4165 4166 // Read a metadata attachment record. 4167 Record.clear(); 4168 switch (Stream.readRecord(Entry.ID, Record)) { 4169 default: // Default behavior: ignore. 4170 break; 4171 case bitc::METADATA_ATTACHMENT: { 4172 unsigned RecordLength = Record.size(); 4173 if (Record.empty()) 4174 return error("Invalid record"); 4175 if (RecordLength % 2 == 0) { 4176 // A function attachment. 4177 for (unsigned I = 0; I != RecordLength; I += 2) { 4178 auto K = MDKindMap.find(Record[I]); 4179 if (K == MDKindMap.end()) 4180 return error("Invalid ID"); 4181 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4182 if (!MD) 4183 return error("Invalid metadata attachment"); 4184 F.setMetadata(K->second, MD); 4185 } 4186 continue; 4187 } 4188 4189 // An instruction attachment. 4190 Instruction *Inst = InstructionList[Record[0]]; 4191 for (unsigned i = 1; i != RecordLength; i = i+2) { 4192 unsigned Kind = Record[i]; 4193 DenseMap<unsigned, unsigned>::iterator I = 4194 MDKindMap.find(Kind); 4195 if (I == MDKindMap.end()) 4196 return error("Invalid ID"); 4197 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4198 if (isa<LocalAsMetadata>(Node)) 4199 // Drop the attachment. This used to be legal, but there's no 4200 // upgrade path. 4201 break; 4202 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4203 if (!MD) 4204 return error("Invalid metadata attachment"); 4205 4206 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4207 MD = upgradeInstructionLoopAttachment(*MD); 4208 4209 Inst->setMetadata(I->second, MD); 4210 if (I->second == LLVMContext::MD_tbaa) { 4211 InstsWithTBAATag.push_back(Inst); 4212 continue; 4213 } 4214 } 4215 break; 4216 } 4217 } 4218 } 4219 } 4220 4221 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4222 LLVMContext &Context = PtrType->getContext(); 4223 if (!isa<PointerType>(PtrType)) 4224 return error(Context, "Load/Store operand is not a pointer type"); 4225 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4226 4227 if (ValType && ValType != ElemType) 4228 return error(Context, "Explicit load/store type does not match pointee " 4229 "type of pointer operand"); 4230 if (!PointerType::isLoadableOrStorableType(ElemType)) 4231 return error(Context, "Cannot load/store from pointer"); 4232 return std::error_code(); 4233 } 4234 4235 /// Lazily parse the specified function body block. 4236 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4237 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4238 return error("Invalid record"); 4239 4240 // Unexpected unresolved metadata when parsing function. 4241 if (MetadataList.hasFwdRefs()) 4242 return error("Invalid function metadata: incoming forward references"); 4243 4244 InstructionList.clear(); 4245 unsigned ModuleValueListSize = ValueList.size(); 4246 unsigned ModuleMetadataListSize = MetadataList.size(); 4247 4248 // Add all the function arguments to the value table. 4249 for (Argument &I : F->args()) 4250 ValueList.push_back(&I); 4251 4252 unsigned NextValueNo = ValueList.size(); 4253 BasicBlock *CurBB = nullptr; 4254 unsigned CurBBNo = 0; 4255 4256 DebugLoc LastLoc; 4257 auto getLastInstruction = [&]() -> Instruction * { 4258 if (CurBB && !CurBB->empty()) 4259 return &CurBB->back(); 4260 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4261 !FunctionBBs[CurBBNo - 1]->empty()) 4262 return &FunctionBBs[CurBBNo - 1]->back(); 4263 return nullptr; 4264 }; 4265 4266 std::vector<OperandBundleDef> OperandBundles; 4267 4268 // Read all the records. 4269 SmallVector<uint64_t, 64> Record; 4270 while (1) { 4271 BitstreamEntry Entry = Stream.advance(); 4272 4273 switch (Entry.Kind) { 4274 case BitstreamEntry::Error: 4275 return error("Malformed block"); 4276 case BitstreamEntry::EndBlock: 4277 goto OutOfRecordLoop; 4278 4279 case BitstreamEntry::SubBlock: 4280 switch (Entry.ID) { 4281 default: // Skip unknown content. 4282 if (Stream.SkipBlock()) 4283 return error("Invalid record"); 4284 break; 4285 case bitc::CONSTANTS_BLOCK_ID: 4286 if (std::error_code EC = parseConstants()) 4287 return EC; 4288 NextValueNo = ValueList.size(); 4289 break; 4290 case bitc::VALUE_SYMTAB_BLOCK_ID: 4291 if (std::error_code EC = parseValueSymbolTable()) 4292 return EC; 4293 break; 4294 case bitc::METADATA_ATTACHMENT_ID: 4295 if (std::error_code EC = parseMetadataAttachment(*F)) 4296 return EC; 4297 break; 4298 case bitc::METADATA_BLOCK_ID: 4299 if (std::error_code EC = parseMetadata()) 4300 return EC; 4301 break; 4302 case bitc::USELIST_BLOCK_ID: 4303 if (std::error_code EC = parseUseLists()) 4304 return EC; 4305 break; 4306 } 4307 continue; 4308 4309 case BitstreamEntry::Record: 4310 // The interesting case. 4311 break; 4312 } 4313 4314 // Read a record. 4315 Record.clear(); 4316 Instruction *I = nullptr; 4317 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4318 switch (BitCode) { 4319 default: // Default behavior: reject 4320 return error("Invalid value"); 4321 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4322 if (Record.size() < 1 || Record[0] == 0) 4323 return error("Invalid record"); 4324 // Create all the basic blocks for the function. 4325 FunctionBBs.resize(Record[0]); 4326 4327 // See if anything took the address of blocks in this function. 4328 auto BBFRI = BasicBlockFwdRefs.find(F); 4329 if (BBFRI == BasicBlockFwdRefs.end()) { 4330 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4331 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4332 } else { 4333 auto &BBRefs = BBFRI->second; 4334 // Check for invalid basic block references. 4335 if (BBRefs.size() > FunctionBBs.size()) 4336 return error("Invalid ID"); 4337 assert(!BBRefs.empty() && "Unexpected empty array"); 4338 assert(!BBRefs.front() && "Invalid reference to entry block"); 4339 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4340 ++I) 4341 if (I < RE && BBRefs[I]) { 4342 BBRefs[I]->insertInto(F); 4343 FunctionBBs[I] = BBRefs[I]; 4344 } else { 4345 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4346 } 4347 4348 // Erase from the table. 4349 BasicBlockFwdRefs.erase(BBFRI); 4350 } 4351 4352 CurBB = FunctionBBs[0]; 4353 continue; 4354 } 4355 4356 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4357 // This record indicates that the last instruction is at the same 4358 // location as the previous instruction with a location. 4359 I = getLastInstruction(); 4360 4361 if (!I) 4362 return error("Invalid record"); 4363 I->setDebugLoc(LastLoc); 4364 I = nullptr; 4365 continue; 4366 4367 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4368 I = getLastInstruction(); 4369 if (!I || Record.size() < 4) 4370 return error("Invalid record"); 4371 4372 unsigned Line = Record[0], Col = Record[1]; 4373 unsigned ScopeID = Record[2], IAID = Record[3]; 4374 4375 MDNode *Scope = nullptr, *IA = nullptr; 4376 if (ScopeID) { 4377 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4378 if (!Scope) 4379 return error("Invalid record"); 4380 } 4381 if (IAID) { 4382 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4383 if (!IA) 4384 return error("Invalid record"); 4385 } 4386 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4387 I->setDebugLoc(LastLoc); 4388 I = nullptr; 4389 continue; 4390 } 4391 4392 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4393 unsigned OpNum = 0; 4394 Value *LHS, *RHS; 4395 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4396 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4397 OpNum+1 > Record.size()) 4398 return error("Invalid record"); 4399 4400 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4401 if (Opc == -1) 4402 return error("Invalid record"); 4403 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4404 InstructionList.push_back(I); 4405 if (OpNum < Record.size()) { 4406 if (Opc == Instruction::Add || 4407 Opc == Instruction::Sub || 4408 Opc == Instruction::Mul || 4409 Opc == Instruction::Shl) { 4410 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4411 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4412 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4413 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4414 } else if (Opc == Instruction::SDiv || 4415 Opc == Instruction::UDiv || 4416 Opc == Instruction::LShr || 4417 Opc == Instruction::AShr) { 4418 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4419 cast<BinaryOperator>(I)->setIsExact(true); 4420 } else if (isa<FPMathOperator>(I)) { 4421 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4422 if (FMF.any()) 4423 I->setFastMathFlags(FMF); 4424 } 4425 4426 } 4427 break; 4428 } 4429 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4430 unsigned OpNum = 0; 4431 Value *Op; 4432 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4433 OpNum+2 != Record.size()) 4434 return error("Invalid record"); 4435 4436 Type *ResTy = getTypeByID(Record[OpNum]); 4437 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4438 if (Opc == -1 || !ResTy) 4439 return error("Invalid record"); 4440 Instruction *Temp = nullptr; 4441 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4442 if (Temp) { 4443 InstructionList.push_back(Temp); 4444 CurBB->getInstList().push_back(Temp); 4445 } 4446 } else { 4447 auto CastOp = (Instruction::CastOps)Opc; 4448 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4449 return error("Invalid cast"); 4450 I = CastInst::Create(CastOp, Op, ResTy); 4451 } 4452 InstructionList.push_back(I); 4453 break; 4454 } 4455 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4456 case bitc::FUNC_CODE_INST_GEP_OLD: 4457 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4458 unsigned OpNum = 0; 4459 4460 Type *Ty; 4461 bool InBounds; 4462 4463 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4464 InBounds = Record[OpNum++]; 4465 Ty = getTypeByID(Record[OpNum++]); 4466 } else { 4467 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4468 Ty = nullptr; 4469 } 4470 4471 Value *BasePtr; 4472 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4473 return error("Invalid record"); 4474 4475 if (!Ty) 4476 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4477 ->getElementType(); 4478 else if (Ty != 4479 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4480 ->getElementType()) 4481 return error( 4482 "Explicit gep type does not match pointee type of pointer operand"); 4483 4484 SmallVector<Value*, 16> GEPIdx; 4485 while (OpNum != Record.size()) { 4486 Value *Op; 4487 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4488 return error("Invalid record"); 4489 GEPIdx.push_back(Op); 4490 } 4491 4492 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4493 4494 InstructionList.push_back(I); 4495 if (InBounds) 4496 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4497 break; 4498 } 4499 4500 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4501 // EXTRACTVAL: [opty, opval, n x indices] 4502 unsigned OpNum = 0; 4503 Value *Agg; 4504 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4505 return error("Invalid record"); 4506 4507 unsigned RecSize = Record.size(); 4508 if (OpNum == RecSize) 4509 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4510 4511 SmallVector<unsigned, 4> EXTRACTVALIdx; 4512 Type *CurTy = Agg->getType(); 4513 for (; OpNum != RecSize; ++OpNum) { 4514 bool IsArray = CurTy->isArrayTy(); 4515 bool IsStruct = CurTy->isStructTy(); 4516 uint64_t Index = Record[OpNum]; 4517 4518 if (!IsStruct && !IsArray) 4519 return error("EXTRACTVAL: Invalid type"); 4520 if ((unsigned)Index != Index) 4521 return error("Invalid value"); 4522 if (IsStruct && Index >= CurTy->subtypes().size()) 4523 return error("EXTRACTVAL: Invalid struct index"); 4524 if (IsArray && Index >= CurTy->getArrayNumElements()) 4525 return error("EXTRACTVAL: Invalid array index"); 4526 EXTRACTVALIdx.push_back((unsigned)Index); 4527 4528 if (IsStruct) 4529 CurTy = CurTy->subtypes()[Index]; 4530 else 4531 CurTy = CurTy->subtypes()[0]; 4532 } 4533 4534 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4535 InstructionList.push_back(I); 4536 break; 4537 } 4538 4539 case bitc::FUNC_CODE_INST_INSERTVAL: { 4540 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4541 unsigned OpNum = 0; 4542 Value *Agg; 4543 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4544 return error("Invalid record"); 4545 Value *Val; 4546 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4547 return error("Invalid record"); 4548 4549 unsigned RecSize = Record.size(); 4550 if (OpNum == RecSize) 4551 return error("INSERTVAL: Invalid instruction with 0 indices"); 4552 4553 SmallVector<unsigned, 4> INSERTVALIdx; 4554 Type *CurTy = Agg->getType(); 4555 for (; OpNum != RecSize; ++OpNum) { 4556 bool IsArray = CurTy->isArrayTy(); 4557 bool IsStruct = CurTy->isStructTy(); 4558 uint64_t Index = Record[OpNum]; 4559 4560 if (!IsStruct && !IsArray) 4561 return error("INSERTVAL: Invalid type"); 4562 if ((unsigned)Index != Index) 4563 return error("Invalid value"); 4564 if (IsStruct && Index >= CurTy->subtypes().size()) 4565 return error("INSERTVAL: Invalid struct index"); 4566 if (IsArray && Index >= CurTy->getArrayNumElements()) 4567 return error("INSERTVAL: Invalid array index"); 4568 4569 INSERTVALIdx.push_back((unsigned)Index); 4570 if (IsStruct) 4571 CurTy = CurTy->subtypes()[Index]; 4572 else 4573 CurTy = CurTy->subtypes()[0]; 4574 } 4575 4576 if (CurTy != Val->getType()) 4577 return error("Inserted value type doesn't match aggregate type"); 4578 4579 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4580 InstructionList.push_back(I); 4581 break; 4582 } 4583 4584 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4585 // obsolete form of select 4586 // handles select i1 ... in old bitcode 4587 unsigned OpNum = 0; 4588 Value *TrueVal, *FalseVal, *Cond; 4589 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4590 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4591 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4592 return error("Invalid record"); 4593 4594 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4595 InstructionList.push_back(I); 4596 break; 4597 } 4598 4599 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4600 // new form of select 4601 // handles select i1 or select [N x i1] 4602 unsigned OpNum = 0; 4603 Value *TrueVal, *FalseVal, *Cond; 4604 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4605 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4606 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4607 return error("Invalid record"); 4608 4609 // select condition can be either i1 or [N x i1] 4610 if (VectorType* vector_type = 4611 dyn_cast<VectorType>(Cond->getType())) { 4612 // expect <n x i1> 4613 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4614 return error("Invalid type for value"); 4615 } else { 4616 // expect i1 4617 if (Cond->getType() != Type::getInt1Ty(Context)) 4618 return error("Invalid type for value"); 4619 } 4620 4621 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4622 InstructionList.push_back(I); 4623 break; 4624 } 4625 4626 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4627 unsigned OpNum = 0; 4628 Value *Vec, *Idx; 4629 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4630 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4631 return error("Invalid record"); 4632 if (!Vec->getType()->isVectorTy()) 4633 return error("Invalid type for value"); 4634 I = ExtractElementInst::Create(Vec, Idx); 4635 InstructionList.push_back(I); 4636 break; 4637 } 4638 4639 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4640 unsigned OpNum = 0; 4641 Value *Vec, *Elt, *Idx; 4642 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4643 return error("Invalid record"); 4644 if (!Vec->getType()->isVectorTy()) 4645 return error("Invalid type for value"); 4646 if (popValue(Record, OpNum, NextValueNo, 4647 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4648 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4649 return error("Invalid record"); 4650 I = InsertElementInst::Create(Vec, Elt, Idx); 4651 InstructionList.push_back(I); 4652 break; 4653 } 4654 4655 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4656 unsigned OpNum = 0; 4657 Value *Vec1, *Vec2, *Mask; 4658 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4659 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4660 return error("Invalid record"); 4661 4662 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4663 return error("Invalid record"); 4664 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4665 return error("Invalid type for value"); 4666 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4667 InstructionList.push_back(I); 4668 break; 4669 } 4670 4671 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4672 // Old form of ICmp/FCmp returning bool 4673 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4674 // both legal on vectors but had different behaviour. 4675 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4676 // FCmp/ICmp returning bool or vector of bool 4677 4678 unsigned OpNum = 0; 4679 Value *LHS, *RHS; 4680 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4681 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4682 return error("Invalid record"); 4683 4684 unsigned PredVal = Record[OpNum]; 4685 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4686 FastMathFlags FMF; 4687 if (IsFP && Record.size() > OpNum+1) 4688 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4689 4690 if (OpNum+1 != Record.size()) 4691 return error("Invalid record"); 4692 4693 if (LHS->getType()->isFPOrFPVectorTy()) 4694 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4695 else 4696 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4697 4698 if (FMF.any()) 4699 I->setFastMathFlags(FMF); 4700 InstructionList.push_back(I); 4701 break; 4702 } 4703 4704 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4705 { 4706 unsigned Size = Record.size(); 4707 if (Size == 0) { 4708 I = ReturnInst::Create(Context); 4709 InstructionList.push_back(I); 4710 break; 4711 } 4712 4713 unsigned OpNum = 0; 4714 Value *Op = nullptr; 4715 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4716 return error("Invalid record"); 4717 if (OpNum != Record.size()) 4718 return error("Invalid record"); 4719 4720 I = ReturnInst::Create(Context, Op); 4721 InstructionList.push_back(I); 4722 break; 4723 } 4724 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4725 if (Record.size() != 1 && Record.size() != 3) 4726 return error("Invalid record"); 4727 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4728 if (!TrueDest) 4729 return error("Invalid record"); 4730 4731 if (Record.size() == 1) { 4732 I = BranchInst::Create(TrueDest); 4733 InstructionList.push_back(I); 4734 } 4735 else { 4736 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4737 Value *Cond = getValue(Record, 2, NextValueNo, 4738 Type::getInt1Ty(Context)); 4739 if (!FalseDest || !Cond) 4740 return error("Invalid record"); 4741 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4742 InstructionList.push_back(I); 4743 } 4744 break; 4745 } 4746 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4747 if (Record.size() != 1 && Record.size() != 2) 4748 return error("Invalid record"); 4749 unsigned Idx = 0; 4750 Value *CleanupPad = 4751 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4752 if (!CleanupPad) 4753 return error("Invalid record"); 4754 BasicBlock *UnwindDest = nullptr; 4755 if (Record.size() == 2) { 4756 UnwindDest = getBasicBlock(Record[Idx++]); 4757 if (!UnwindDest) 4758 return error("Invalid record"); 4759 } 4760 4761 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4762 InstructionList.push_back(I); 4763 break; 4764 } 4765 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4766 if (Record.size() != 2) 4767 return error("Invalid record"); 4768 unsigned Idx = 0; 4769 Value *CatchPad = 4770 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4771 if (!CatchPad) 4772 return error("Invalid record"); 4773 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4774 if (!BB) 4775 return error("Invalid record"); 4776 4777 I = CatchReturnInst::Create(CatchPad, BB); 4778 InstructionList.push_back(I); 4779 break; 4780 } 4781 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4782 // We must have, at minimum, the outer scope and the number of arguments. 4783 if (Record.size() < 2) 4784 return error("Invalid record"); 4785 4786 unsigned Idx = 0; 4787 4788 Value *ParentPad = 4789 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4790 4791 unsigned NumHandlers = Record[Idx++]; 4792 4793 SmallVector<BasicBlock *, 2> Handlers; 4794 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4795 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4796 if (!BB) 4797 return error("Invalid record"); 4798 Handlers.push_back(BB); 4799 } 4800 4801 BasicBlock *UnwindDest = nullptr; 4802 if (Idx + 1 == Record.size()) { 4803 UnwindDest = getBasicBlock(Record[Idx++]); 4804 if (!UnwindDest) 4805 return error("Invalid record"); 4806 } 4807 4808 if (Record.size() != Idx) 4809 return error("Invalid record"); 4810 4811 auto *CatchSwitch = 4812 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4813 for (BasicBlock *Handler : Handlers) 4814 CatchSwitch->addHandler(Handler); 4815 I = CatchSwitch; 4816 InstructionList.push_back(I); 4817 break; 4818 } 4819 case bitc::FUNC_CODE_INST_CATCHPAD: 4820 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4821 // We must have, at minimum, the outer scope and the number of arguments. 4822 if (Record.size() < 2) 4823 return error("Invalid record"); 4824 4825 unsigned Idx = 0; 4826 4827 Value *ParentPad = 4828 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4829 4830 unsigned NumArgOperands = Record[Idx++]; 4831 4832 SmallVector<Value *, 2> Args; 4833 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4834 Value *Val; 4835 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4836 return error("Invalid record"); 4837 Args.push_back(Val); 4838 } 4839 4840 if (Record.size() != Idx) 4841 return error("Invalid record"); 4842 4843 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4844 I = CleanupPadInst::Create(ParentPad, Args); 4845 else 4846 I = CatchPadInst::Create(ParentPad, Args); 4847 InstructionList.push_back(I); 4848 break; 4849 } 4850 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4851 // Check magic 4852 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4853 // "New" SwitchInst format with case ranges. The changes to write this 4854 // format were reverted but we still recognize bitcode that uses it. 4855 // Hopefully someday we will have support for case ranges and can use 4856 // this format again. 4857 4858 Type *OpTy = getTypeByID(Record[1]); 4859 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4860 4861 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4862 BasicBlock *Default = getBasicBlock(Record[3]); 4863 if (!OpTy || !Cond || !Default) 4864 return error("Invalid record"); 4865 4866 unsigned NumCases = Record[4]; 4867 4868 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4869 InstructionList.push_back(SI); 4870 4871 unsigned CurIdx = 5; 4872 for (unsigned i = 0; i != NumCases; ++i) { 4873 SmallVector<ConstantInt*, 1> CaseVals; 4874 unsigned NumItems = Record[CurIdx++]; 4875 for (unsigned ci = 0; ci != NumItems; ++ci) { 4876 bool isSingleNumber = Record[CurIdx++]; 4877 4878 APInt Low; 4879 unsigned ActiveWords = 1; 4880 if (ValueBitWidth > 64) 4881 ActiveWords = Record[CurIdx++]; 4882 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4883 ValueBitWidth); 4884 CurIdx += ActiveWords; 4885 4886 if (!isSingleNumber) { 4887 ActiveWords = 1; 4888 if (ValueBitWidth > 64) 4889 ActiveWords = Record[CurIdx++]; 4890 APInt High = readWideAPInt( 4891 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4892 CurIdx += ActiveWords; 4893 4894 // FIXME: It is not clear whether values in the range should be 4895 // compared as signed or unsigned values. The partially 4896 // implemented changes that used this format in the past used 4897 // unsigned comparisons. 4898 for ( ; Low.ule(High); ++Low) 4899 CaseVals.push_back(ConstantInt::get(Context, Low)); 4900 } else 4901 CaseVals.push_back(ConstantInt::get(Context, Low)); 4902 } 4903 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4904 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4905 cve = CaseVals.end(); cvi != cve; ++cvi) 4906 SI->addCase(*cvi, DestBB); 4907 } 4908 I = SI; 4909 break; 4910 } 4911 4912 // Old SwitchInst format without case ranges. 4913 4914 if (Record.size() < 3 || (Record.size() & 1) == 0) 4915 return error("Invalid record"); 4916 Type *OpTy = getTypeByID(Record[0]); 4917 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4918 BasicBlock *Default = getBasicBlock(Record[2]); 4919 if (!OpTy || !Cond || !Default) 4920 return error("Invalid record"); 4921 unsigned NumCases = (Record.size()-3)/2; 4922 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4923 InstructionList.push_back(SI); 4924 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4925 ConstantInt *CaseVal = 4926 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4927 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4928 if (!CaseVal || !DestBB) { 4929 delete SI; 4930 return error("Invalid record"); 4931 } 4932 SI->addCase(CaseVal, DestBB); 4933 } 4934 I = SI; 4935 break; 4936 } 4937 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4938 if (Record.size() < 2) 4939 return error("Invalid record"); 4940 Type *OpTy = getTypeByID(Record[0]); 4941 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4942 if (!OpTy || !Address) 4943 return error("Invalid record"); 4944 unsigned NumDests = Record.size()-2; 4945 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4946 InstructionList.push_back(IBI); 4947 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4948 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4949 IBI->addDestination(DestBB); 4950 } else { 4951 delete IBI; 4952 return error("Invalid record"); 4953 } 4954 } 4955 I = IBI; 4956 break; 4957 } 4958 4959 case bitc::FUNC_CODE_INST_INVOKE: { 4960 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4961 if (Record.size() < 4) 4962 return error("Invalid record"); 4963 unsigned OpNum = 0; 4964 AttributeSet PAL = getAttributes(Record[OpNum++]); 4965 unsigned CCInfo = Record[OpNum++]; 4966 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4967 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4968 4969 FunctionType *FTy = nullptr; 4970 if (CCInfo >> 13 & 1 && 4971 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4972 return error("Explicit invoke type is not a function type"); 4973 4974 Value *Callee; 4975 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4976 return error("Invalid record"); 4977 4978 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4979 if (!CalleeTy) 4980 return error("Callee is not a pointer"); 4981 if (!FTy) { 4982 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4983 if (!FTy) 4984 return error("Callee is not of pointer to function type"); 4985 } else if (CalleeTy->getElementType() != FTy) 4986 return error("Explicit invoke type does not match pointee type of " 4987 "callee operand"); 4988 if (Record.size() < FTy->getNumParams() + OpNum) 4989 return error("Insufficient operands to call"); 4990 4991 SmallVector<Value*, 16> Ops; 4992 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4993 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4994 FTy->getParamType(i))); 4995 if (!Ops.back()) 4996 return error("Invalid record"); 4997 } 4998 4999 if (!FTy->isVarArg()) { 5000 if (Record.size() != OpNum) 5001 return error("Invalid record"); 5002 } else { 5003 // Read type/value pairs for varargs params. 5004 while (OpNum != Record.size()) { 5005 Value *Op; 5006 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5007 return error("Invalid record"); 5008 Ops.push_back(Op); 5009 } 5010 } 5011 5012 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5013 OperandBundles.clear(); 5014 InstructionList.push_back(I); 5015 cast<InvokeInst>(I)->setCallingConv( 5016 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5017 cast<InvokeInst>(I)->setAttributes(PAL); 5018 break; 5019 } 5020 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5021 unsigned Idx = 0; 5022 Value *Val = nullptr; 5023 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5024 return error("Invalid record"); 5025 I = ResumeInst::Create(Val); 5026 InstructionList.push_back(I); 5027 break; 5028 } 5029 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5030 I = new UnreachableInst(Context); 5031 InstructionList.push_back(I); 5032 break; 5033 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5034 if (Record.size() < 1 || ((Record.size()-1)&1)) 5035 return error("Invalid record"); 5036 Type *Ty = getTypeByID(Record[0]); 5037 if (!Ty) 5038 return error("Invalid record"); 5039 5040 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5041 InstructionList.push_back(PN); 5042 5043 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5044 Value *V; 5045 // With the new function encoding, it is possible that operands have 5046 // negative IDs (for forward references). Use a signed VBR 5047 // representation to keep the encoding small. 5048 if (UseRelativeIDs) 5049 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5050 else 5051 V = getValue(Record, 1+i, NextValueNo, Ty); 5052 BasicBlock *BB = getBasicBlock(Record[2+i]); 5053 if (!V || !BB) 5054 return error("Invalid record"); 5055 PN->addIncoming(V, BB); 5056 } 5057 I = PN; 5058 break; 5059 } 5060 5061 case bitc::FUNC_CODE_INST_LANDINGPAD: 5062 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5063 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5064 unsigned Idx = 0; 5065 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5066 if (Record.size() < 3) 5067 return error("Invalid record"); 5068 } else { 5069 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5070 if (Record.size() < 4) 5071 return error("Invalid record"); 5072 } 5073 Type *Ty = getTypeByID(Record[Idx++]); 5074 if (!Ty) 5075 return error("Invalid record"); 5076 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5077 Value *PersFn = nullptr; 5078 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5079 return error("Invalid record"); 5080 5081 if (!F->hasPersonalityFn()) 5082 F->setPersonalityFn(cast<Constant>(PersFn)); 5083 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5084 return error("Personality function mismatch"); 5085 } 5086 5087 bool IsCleanup = !!Record[Idx++]; 5088 unsigned NumClauses = Record[Idx++]; 5089 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5090 LP->setCleanup(IsCleanup); 5091 for (unsigned J = 0; J != NumClauses; ++J) { 5092 LandingPadInst::ClauseType CT = 5093 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5094 Value *Val; 5095 5096 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5097 delete LP; 5098 return error("Invalid record"); 5099 } 5100 5101 assert((CT != LandingPadInst::Catch || 5102 !isa<ArrayType>(Val->getType())) && 5103 "Catch clause has a invalid type!"); 5104 assert((CT != LandingPadInst::Filter || 5105 isa<ArrayType>(Val->getType())) && 5106 "Filter clause has invalid type!"); 5107 LP->addClause(cast<Constant>(Val)); 5108 } 5109 5110 I = LP; 5111 InstructionList.push_back(I); 5112 break; 5113 } 5114 5115 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5116 if (Record.size() != 4) 5117 return error("Invalid record"); 5118 uint64_t AlignRecord = Record[3]; 5119 const uint64_t InAllocaMask = uint64_t(1) << 5; 5120 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5121 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5122 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5123 SwiftErrorMask; 5124 bool InAlloca = AlignRecord & InAllocaMask; 5125 bool SwiftError = AlignRecord & SwiftErrorMask; 5126 Type *Ty = getTypeByID(Record[0]); 5127 if ((AlignRecord & ExplicitTypeMask) == 0) { 5128 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5129 if (!PTy) 5130 return error("Old-style alloca with a non-pointer type"); 5131 Ty = PTy->getElementType(); 5132 } 5133 Type *OpTy = getTypeByID(Record[1]); 5134 Value *Size = getFnValueByID(Record[2], OpTy); 5135 unsigned Align; 5136 if (std::error_code EC = 5137 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5138 return EC; 5139 } 5140 if (!Ty || !Size) 5141 return error("Invalid record"); 5142 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5143 AI->setUsedWithInAlloca(InAlloca); 5144 AI->setSwiftError(SwiftError); 5145 I = AI; 5146 InstructionList.push_back(I); 5147 break; 5148 } 5149 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5150 unsigned OpNum = 0; 5151 Value *Op; 5152 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5153 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5154 return error("Invalid record"); 5155 5156 Type *Ty = nullptr; 5157 if (OpNum + 3 == Record.size()) 5158 Ty = getTypeByID(Record[OpNum++]); 5159 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5160 return EC; 5161 if (!Ty) 5162 Ty = cast<PointerType>(Op->getType())->getElementType(); 5163 5164 unsigned Align; 5165 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5166 return EC; 5167 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5168 5169 InstructionList.push_back(I); 5170 break; 5171 } 5172 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5173 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5174 unsigned OpNum = 0; 5175 Value *Op; 5176 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5177 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5178 return error("Invalid record"); 5179 5180 Type *Ty = nullptr; 5181 if (OpNum + 5 == Record.size()) 5182 Ty = getTypeByID(Record[OpNum++]); 5183 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5184 return EC; 5185 if (!Ty) 5186 Ty = cast<PointerType>(Op->getType())->getElementType(); 5187 5188 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5189 if (Ordering == AtomicOrdering::NotAtomic || 5190 Ordering == AtomicOrdering::Release || 5191 Ordering == AtomicOrdering::AcquireRelease) 5192 return error("Invalid record"); 5193 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5194 return error("Invalid record"); 5195 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5196 5197 unsigned Align; 5198 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5199 return EC; 5200 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5201 5202 InstructionList.push_back(I); 5203 break; 5204 } 5205 case bitc::FUNC_CODE_INST_STORE: 5206 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5207 unsigned OpNum = 0; 5208 Value *Val, *Ptr; 5209 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5210 (BitCode == bitc::FUNC_CODE_INST_STORE 5211 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5212 : popValue(Record, OpNum, NextValueNo, 5213 cast<PointerType>(Ptr->getType())->getElementType(), 5214 Val)) || 5215 OpNum + 2 != Record.size()) 5216 return error("Invalid record"); 5217 5218 if (std::error_code EC = 5219 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5220 return EC; 5221 unsigned Align; 5222 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5223 return EC; 5224 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5225 InstructionList.push_back(I); 5226 break; 5227 } 5228 case bitc::FUNC_CODE_INST_STOREATOMIC: 5229 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5230 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5231 unsigned OpNum = 0; 5232 Value *Val, *Ptr; 5233 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5234 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5235 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5236 : popValue(Record, OpNum, NextValueNo, 5237 cast<PointerType>(Ptr->getType())->getElementType(), 5238 Val)) || 5239 OpNum + 4 != Record.size()) 5240 return error("Invalid record"); 5241 5242 if (std::error_code EC = 5243 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5244 return EC; 5245 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5246 if (Ordering == AtomicOrdering::NotAtomic || 5247 Ordering == AtomicOrdering::Acquire || 5248 Ordering == AtomicOrdering::AcquireRelease) 5249 return error("Invalid record"); 5250 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5251 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5252 return error("Invalid record"); 5253 5254 unsigned Align; 5255 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5256 return EC; 5257 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5258 InstructionList.push_back(I); 5259 break; 5260 } 5261 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5262 case bitc::FUNC_CODE_INST_CMPXCHG: { 5263 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5264 // failureordering?, isweak?] 5265 unsigned OpNum = 0; 5266 Value *Ptr, *Cmp, *New; 5267 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5268 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5269 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5270 : popValue(Record, OpNum, NextValueNo, 5271 cast<PointerType>(Ptr->getType())->getElementType(), 5272 Cmp)) || 5273 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5274 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5275 return error("Invalid record"); 5276 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5277 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5278 SuccessOrdering == AtomicOrdering::Unordered) 5279 return error("Invalid record"); 5280 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5281 5282 if (std::error_code EC = 5283 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5284 return EC; 5285 AtomicOrdering FailureOrdering; 5286 if (Record.size() < 7) 5287 FailureOrdering = 5288 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5289 else 5290 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5291 5292 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5293 SynchScope); 5294 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5295 5296 if (Record.size() < 8) { 5297 // Before weak cmpxchgs existed, the instruction simply returned the 5298 // value loaded from memory, so bitcode files from that era will be 5299 // expecting the first component of a modern cmpxchg. 5300 CurBB->getInstList().push_back(I); 5301 I = ExtractValueInst::Create(I, 0); 5302 } else { 5303 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5304 } 5305 5306 InstructionList.push_back(I); 5307 break; 5308 } 5309 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5310 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5311 unsigned OpNum = 0; 5312 Value *Ptr, *Val; 5313 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5314 popValue(Record, OpNum, NextValueNo, 5315 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5316 OpNum+4 != Record.size()) 5317 return error("Invalid record"); 5318 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5319 if (Operation < AtomicRMWInst::FIRST_BINOP || 5320 Operation > AtomicRMWInst::LAST_BINOP) 5321 return error("Invalid record"); 5322 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5323 if (Ordering == AtomicOrdering::NotAtomic || 5324 Ordering == AtomicOrdering::Unordered) 5325 return error("Invalid record"); 5326 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5327 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5328 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5329 InstructionList.push_back(I); 5330 break; 5331 } 5332 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5333 if (2 != Record.size()) 5334 return error("Invalid record"); 5335 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5336 if (Ordering == AtomicOrdering::NotAtomic || 5337 Ordering == AtomicOrdering::Unordered || 5338 Ordering == AtomicOrdering::Monotonic) 5339 return error("Invalid record"); 5340 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5341 I = new FenceInst(Context, Ordering, SynchScope); 5342 InstructionList.push_back(I); 5343 break; 5344 } 5345 case bitc::FUNC_CODE_INST_CALL: { 5346 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5347 if (Record.size() < 3) 5348 return error("Invalid record"); 5349 5350 unsigned OpNum = 0; 5351 AttributeSet PAL = getAttributes(Record[OpNum++]); 5352 unsigned CCInfo = Record[OpNum++]; 5353 5354 FastMathFlags FMF; 5355 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5356 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5357 if (!FMF.any()) 5358 return error("Fast math flags indicator set for call with no FMF"); 5359 } 5360 5361 FunctionType *FTy = nullptr; 5362 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5363 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5364 return error("Explicit call type is not a function type"); 5365 5366 Value *Callee; 5367 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5368 return error("Invalid record"); 5369 5370 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5371 if (!OpTy) 5372 return error("Callee is not a pointer type"); 5373 if (!FTy) { 5374 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5375 if (!FTy) 5376 return error("Callee is not of pointer to function type"); 5377 } else if (OpTy->getElementType() != FTy) 5378 return error("Explicit call type does not match pointee type of " 5379 "callee operand"); 5380 if (Record.size() < FTy->getNumParams() + OpNum) 5381 return error("Insufficient operands to call"); 5382 5383 SmallVector<Value*, 16> Args; 5384 // Read the fixed params. 5385 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5386 if (FTy->getParamType(i)->isLabelTy()) 5387 Args.push_back(getBasicBlock(Record[OpNum])); 5388 else 5389 Args.push_back(getValue(Record, OpNum, NextValueNo, 5390 FTy->getParamType(i))); 5391 if (!Args.back()) 5392 return error("Invalid record"); 5393 } 5394 5395 // Read type/value pairs for varargs params. 5396 if (!FTy->isVarArg()) { 5397 if (OpNum != Record.size()) 5398 return error("Invalid record"); 5399 } else { 5400 while (OpNum != Record.size()) { 5401 Value *Op; 5402 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5403 return error("Invalid record"); 5404 Args.push_back(Op); 5405 } 5406 } 5407 5408 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5409 OperandBundles.clear(); 5410 InstructionList.push_back(I); 5411 cast<CallInst>(I)->setCallingConv( 5412 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5413 CallInst::TailCallKind TCK = CallInst::TCK_None; 5414 if (CCInfo & 1 << bitc::CALL_TAIL) 5415 TCK = CallInst::TCK_Tail; 5416 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5417 TCK = CallInst::TCK_MustTail; 5418 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5419 TCK = CallInst::TCK_NoTail; 5420 cast<CallInst>(I)->setTailCallKind(TCK); 5421 cast<CallInst>(I)->setAttributes(PAL); 5422 if (FMF.any()) { 5423 if (!isa<FPMathOperator>(I)) 5424 return error("Fast-math-flags specified for call without " 5425 "floating-point scalar or vector return type"); 5426 I->setFastMathFlags(FMF); 5427 } 5428 break; 5429 } 5430 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5431 if (Record.size() < 3) 5432 return error("Invalid record"); 5433 Type *OpTy = getTypeByID(Record[0]); 5434 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5435 Type *ResTy = getTypeByID(Record[2]); 5436 if (!OpTy || !Op || !ResTy) 5437 return error("Invalid record"); 5438 I = new VAArgInst(Op, ResTy); 5439 InstructionList.push_back(I); 5440 break; 5441 } 5442 5443 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5444 // A call or an invoke can be optionally prefixed with some variable 5445 // number of operand bundle blocks. These blocks are read into 5446 // OperandBundles and consumed at the next call or invoke instruction. 5447 5448 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5449 return error("Invalid record"); 5450 5451 std::vector<Value *> Inputs; 5452 5453 unsigned OpNum = 1; 5454 while (OpNum != Record.size()) { 5455 Value *Op; 5456 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5457 return error("Invalid record"); 5458 Inputs.push_back(Op); 5459 } 5460 5461 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5462 continue; 5463 } 5464 } 5465 5466 // Add instruction to end of current BB. If there is no current BB, reject 5467 // this file. 5468 if (!CurBB) { 5469 delete I; 5470 return error("Invalid instruction with no BB"); 5471 } 5472 if (!OperandBundles.empty()) { 5473 delete I; 5474 return error("Operand bundles found with no consumer"); 5475 } 5476 CurBB->getInstList().push_back(I); 5477 5478 // If this was a terminator instruction, move to the next block. 5479 if (isa<TerminatorInst>(I)) { 5480 ++CurBBNo; 5481 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5482 } 5483 5484 // Non-void values get registered in the value table for future use. 5485 if (I && !I->getType()->isVoidTy()) 5486 ValueList.assignValue(I, NextValueNo++); 5487 } 5488 5489 OutOfRecordLoop: 5490 5491 if (!OperandBundles.empty()) 5492 return error("Operand bundles found with no consumer"); 5493 5494 // Check the function list for unresolved values. 5495 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5496 if (!A->getParent()) { 5497 // We found at least one unresolved value. Nuke them all to avoid leaks. 5498 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5499 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5500 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5501 delete A; 5502 } 5503 } 5504 return error("Never resolved value found in function"); 5505 } 5506 } 5507 5508 // Unexpected unresolved metadata about to be dropped. 5509 if (MetadataList.hasFwdRefs()) 5510 return error("Invalid function metadata: outgoing forward refs"); 5511 5512 // Trim the value list down to the size it was before we parsed this function. 5513 ValueList.shrinkTo(ModuleValueListSize); 5514 MetadataList.shrinkTo(ModuleMetadataListSize); 5515 std::vector<BasicBlock*>().swap(FunctionBBs); 5516 return std::error_code(); 5517 } 5518 5519 /// Find the function body in the bitcode stream 5520 std::error_code BitcodeReader::findFunctionInStream( 5521 Function *F, 5522 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5523 while (DeferredFunctionInfoIterator->second == 0) { 5524 // This is the fallback handling for the old format bitcode that 5525 // didn't contain the function index in the VST, or when we have 5526 // an anonymous function which would not have a VST entry. 5527 // Assert that we have one of those two cases. 5528 assert(VSTOffset == 0 || !F->hasName()); 5529 // Parse the next body in the stream and set its position in the 5530 // DeferredFunctionInfo map. 5531 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5532 return EC; 5533 } 5534 return std::error_code(); 5535 } 5536 5537 //===----------------------------------------------------------------------===// 5538 // GVMaterializer implementation 5539 //===----------------------------------------------------------------------===// 5540 5541 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5542 5543 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5544 Function *F = dyn_cast<Function>(GV); 5545 // If it's not a function or is already material, ignore the request. 5546 if (!F || !F->isMaterializable()) 5547 return std::error_code(); 5548 5549 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5550 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5551 // If its position is recorded as 0, its body is somewhere in the stream 5552 // but we haven't seen it yet. 5553 if (DFII->second == 0) 5554 if (std::error_code EC = findFunctionInStream(F, DFII)) 5555 return EC; 5556 5557 // Materialize metadata before parsing any function bodies. 5558 if (std::error_code EC = materializeMetadata()) 5559 return EC; 5560 5561 // Move the bit stream to the saved position of the deferred function body. 5562 Stream.JumpToBit(DFII->second); 5563 5564 if (std::error_code EC = parseFunctionBody(F)) 5565 return EC; 5566 F->setIsMaterializable(false); 5567 5568 if (StripDebugInfo) 5569 stripDebugInfo(*F); 5570 5571 // Upgrade any old intrinsic calls in the function. 5572 for (auto &I : UpgradedIntrinsics) { 5573 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5574 UI != UE;) { 5575 User *U = *UI; 5576 ++UI; 5577 if (CallInst *CI = dyn_cast<CallInst>(U)) 5578 UpgradeIntrinsicCall(CI, I.second); 5579 } 5580 } 5581 5582 // Finish fn->subprogram upgrade for materialized functions. 5583 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5584 F->setSubprogram(SP); 5585 5586 // Bring in any functions that this function forward-referenced via 5587 // blockaddresses. 5588 return materializeForwardReferencedFunctions(); 5589 } 5590 5591 std::error_code BitcodeReader::materializeModule() { 5592 if (std::error_code EC = materializeMetadata()) 5593 return EC; 5594 5595 // Promise to materialize all forward references. 5596 WillMaterializeAllForwardRefs = true; 5597 5598 // Iterate over the module, deserializing any functions that are still on 5599 // disk. 5600 for (Function &F : *TheModule) { 5601 if (std::error_code EC = materialize(&F)) 5602 return EC; 5603 } 5604 // At this point, if there are any function bodies, parse the rest of 5605 // the bits in the module past the last function block we have recorded 5606 // through either lazy scanning or the VST. 5607 if (LastFunctionBlockBit || NextUnreadBit) 5608 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5609 : NextUnreadBit); 5610 5611 // Check that all block address forward references got resolved (as we 5612 // promised above). 5613 if (!BasicBlockFwdRefs.empty()) 5614 return error("Never resolved function from blockaddress"); 5615 5616 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5617 // to prevent this instructions with TBAA tags should be upgraded first. 5618 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5619 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5620 5621 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5622 // delete the old functions to clean up. We can't do this unless the entire 5623 // module is materialized because there could always be another function body 5624 // with calls to the old function. 5625 for (auto &I : UpgradedIntrinsics) { 5626 for (auto *U : I.first->users()) { 5627 if (CallInst *CI = dyn_cast<CallInst>(U)) 5628 UpgradeIntrinsicCall(CI, I.second); 5629 } 5630 if (!I.first->use_empty()) 5631 I.first->replaceAllUsesWith(I.second); 5632 I.first->eraseFromParent(); 5633 } 5634 UpgradedIntrinsics.clear(); 5635 5636 UpgradeDebugInfo(*TheModule); 5637 return std::error_code(); 5638 } 5639 5640 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5641 return IdentifiedStructTypes; 5642 } 5643 5644 std::error_code 5645 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5646 if (Streamer) 5647 return initLazyStream(std::move(Streamer)); 5648 return initStreamFromBuffer(); 5649 } 5650 5651 std::error_code BitcodeReader::initStreamFromBuffer() { 5652 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5653 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5654 5655 if (Buffer->getBufferSize() & 3) 5656 return error("Invalid bitcode signature"); 5657 5658 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5659 // The magic number is 0x0B17C0DE stored in little endian. 5660 if (isBitcodeWrapper(BufPtr, BufEnd)) 5661 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5662 return error("Invalid bitcode wrapper header"); 5663 5664 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5665 Stream.init(&*StreamFile); 5666 5667 return std::error_code(); 5668 } 5669 5670 std::error_code 5671 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5672 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5673 // see it. 5674 auto OwnedBytes = 5675 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5676 StreamingMemoryObject &Bytes = *OwnedBytes; 5677 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5678 Stream.init(&*StreamFile); 5679 5680 unsigned char buf[16]; 5681 if (Bytes.readBytes(buf, 16, 0) != 16) 5682 return error("Invalid bitcode signature"); 5683 5684 if (!isBitcode(buf, buf + 16)) 5685 return error("Invalid bitcode signature"); 5686 5687 if (isBitcodeWrapper(buf, buf + 4)) { 5688 const unsigned char *bitcodeStart = buf; 5689 const unsigned char *bitcodeEnd = buf + 16; 5690 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5691 Bytes.dropLeadingBytes(bitcodeStart - buf); 5692 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5693 } 5694 return std::error_code(); 5695 } 5696 5697 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5698 const Twine &Message) { 5699 return ::error(DiagnosticHandler, make_error_code(E), Message); 5700 } 5701 5702 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5703 return ::error(DiagnosticHandler, 5704 make_error_code(BitcodeError::CorruptedBitcode), Message); 5705 } 5706 5707 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5708 return ::error(DiagnosticHandler, make_error_code(E)); 5709 } 5710 5711 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5712 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5713 bool CheckGlobalValSummaryPresenceOnly) 5714 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), 5715 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5716 5717 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5718 DiagnosticHandlerFunction DiagnosticHandler, 5719 bool CheckGlobalValSummaryPresenceOnly) 5720 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), 5721 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5722 5723 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5724 5725 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5726 5727 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5728 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5729 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5730 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5731 return VGI->second; 5732 } 5733 5734 // Specialized value symbol table parser used when reading module index 5735 // blocks where we don't actually create global values. The parsed information 5736 // is saved in the bitcode reader for use when later parsing summaries. 5737 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5738 uint64_t Offset, 5739 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5740 assert(Offset > 0 && "Expected non-zero VST offset"); 5741 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5742 5743 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5744 return error("Invalid record"); 5745 5746 SmallVector<uint64_t, 64> Record; 5747 5748 // Read all the records for this value table. 5749 SmallString<128> ValueName; 5750 while (1) { 5751 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5752 5753 switch (Entry.Kind) { 5754 case BitstreamEntry::SubBlock: // Handled for us already. 5755 case BitstreamEntry::Error: 5756 return error("Malformed block"); 5757 case BitstreamEntry::EndBlock: 5758 // Done parsing VST, jump back to wherever we came from. 5759 Stream.JumpToBit(CurrentBit); 5760 return std::error_code(); 5761 case BitstreamEntry::Record: 5762 // The interesting case. 5763 break; 5764 } 5765 5766 // Read a record. 5767 Record.clear(); 5768 switch (Stream.readRecord(Entry.ID, Record)) { 5769 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5770 break; 5771 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5772 if (convertToString(Record, 1, ValueName)) 5773 return error("Invalid record"); 5774 unsigned ValueID = Record[0]; 5775 assert(!SourceFileName.empty()); 5776 auto VLI = ValueIdToLinkageMap.find(ValueID); 5777 assert(VLI != ValueIdToLinkageMap.end() && 5778 "No linkage found for VST entry?"); 5779 auto Linkage = VLI->second; 5780 std::string GlobalId = 5781 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5782 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5783 auto OriginalNameID = ValueGUID; 5784 if (GlobalValue::isLocalLinkage(Linkage)) 5785 OriginalNameID = GlobalValue::getGUID(ValueName); 5786 if (PrintSummaryGUIDs) 5787 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5788 << ValueName << "\n"; 5789 ValueIdToCallGraphGUIDMap[ValueID] = 5790 std::make_pair(ValueGUID, OriginalNameID); 5791 ValueName.clear(); 5792 break; 5793 } 5794 case bitc::VST_CODE_FNENTRY: { 5795 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5796 if (convertToString(Record, 2, ValueName)) 5797 return error("Invalid record"); 5798 unsigned ValueID = Record[0]; 5799 assert(!SourceFileName.empty()); 5800 auto VLI = ValueIdToLinkageMap.find(ValueID); 5801 assert(VLI != ValueIdToLinkageMap.end() && 5802 "No linkage found for VST entry?"); 5803 auto Linkage = VLI->second; 5804 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5805 ValueName, VLI->second, SourceFileName); 5806 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5807 auto OriginalNameID = FunctionGUID; 5808 if (GlobalValue::isLocalLinkage(Linkage)) 5809 OriginalNameID = GlobalValue::getGUID(ValueName); 5810 if (PrintSummaryGUIDs) 5811 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 5812 << ValueName << "\n"; 5813 ValueIdToCallGraphGUIDMap[ValueID] = 5814 std::make_pair(FunctionGUID, OriginalNameID); 5815 5816 ValueName.clear(); 5817 break; 5818 } 5819 case bitc::VST_CODE_COMBINED_ENTRY: { 5820 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5821 unsigned ValueID = Record[0]; 5822 GlobalValue::GUID RefGUID = Record[1]; 5823 // The "original name", which is the second value of the pair will be 5824 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5825 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5826 break; 5827 } 5828 } 5829 } 5830 } 5831 5832 // Parse just the blocks needed for building the index out of the module. 5833 // At the end of this routine the module Index is populated with a map 5834 // from global value id to GlobalValueSummary objects. 5835 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5836 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5837 return error("Invalid record"); 5838 5839 SmallVector<uint64_t, 64> Record; 5840 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5841 unsigned ValueId = 0; 5842 5843 // Read the index for this module. 5844 while (1) { 5845 BitstreamEntry Entry = Stream.advance(); 5846 5847 switch (Entry.Kind) { 5848 case BitstreamEntry::Error: 5849 return error("Malformed block"); 5850 case BitstreamEntry::EndBlock: 5851 return std::error_code(); 5852 5853 case BitstreamEntry::SubBlock: 5854 if (CheckGlobalValSummaryPresenceOnly) { 5855 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5856 SeenGlobalValSummary = true; 5857 // No need to parse the rest since we found the summary. 5858 return std::error_code(); 5859 } 5860 if (Stream.SkipBlock()) 5861 return error("Invalid record"); 5862 continue; 5863 } 5864 switch (Entry.ID) { 5865 default: // Skip unknown content. 5866 if (Stream.SkipBlock()) 5867 return error("Invalid record"); 5868 break; 5869 case bitc::BLOCKINFO_BLOCK_ID: 5870 // Need to parse these to get abbrev ids (e.g. for VST) 5871 if (Stream.ReadBlockInfoBlock()) 5872 return error("Malformed block"); 5873 break; 5874 case bitc::VALUE_SYMTAB_BLOCK_ID: 5875 // Should have been parsed earlier via VSTOffset, unless there 5876 // is no summary section. 5877 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5878 !SeenGlobalValSummary) && 5879 "Expected early VST parse via VSTOffset record"); 5880 if (Stream.SkipBlock()) 5881 return error("Invalid record"); 5882 break; 5883 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5884 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5885 assert(!SeenValueSymbolTable && 5886 "Already read VST when parsing summary block?"); 5887 if (std::error_code EC = 5888 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5889 return EC; 5890 SeenValueSymbolTable = true; 5891 SeenGlobalValSummary = true; 5892 if (std::error_code EC = parseEntireSummary()) 5893 return EC; 5894 break; 5895 case bitc::MODULE_STRTAB_BLOCK_ID: 5896 if (std::error_code EC = parseModuleStringTable()) 5897 return EC; 5898 break; 5899 } 5900 continue; 5901 5902 case BitstreamEntry::Record: { 5903 Record.clear(); 5904 auto BitCode = Stream.readRecord(Entry.ID, Record); 5905 switch (BitCode) { 5906 default: 5907 break; // Default behavior, ignore unknown content. 5908 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5909 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5910 SmallString<128> ValueName; 5911 if (convertToString(Record, 0, ValueName)) 5912 return error("Invalid record"); 5913 SourceFileName = ValueName.c_str(); 5914 break; 5915 } 5916 /// MODULE_CODE_HASH: [5*i32] 5917 case bitc::MODULE_CODE_HASH: { 5918 if (Record.size() != 5) 5919 return error("Invalid hash length " + Twine(Record.size()).str()); 5920 if (!TheIndex) 5921 break; 5922 if (TheIndex->modulePaths().empty()) 5923 // Does not have any summary emitted. 5924 break; 5925 if (TheIndex->modulePaths().size() != 1) 5926 return error("Don't expect multiple modules defined?"); 5927 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5928 int Pos = 0; 5929 for (auto &Val : Record) { 5930 assert(!(Val >> 32) && "Unexpected high bits set"); 5931 Hash[Pos++] = Val; 5932 } 5933 break; 5934 } 5935 /// MODULE_CODE_VSTOFFSET: [offset] 5936 case bitc::MODULE_CODE_VSTOFFSET: 5937 if (Record.size() < 1) 5938 return error("Invalid record"); 5939 VSTOffset = Record[0]; 5940 break; 5941 // GLOBALVAR: [pointer type, isconst, initid, 5942 // linkage, alignment, section, visibility, threadlocal, 5943 // unnamed_addr, externally_initialized, dllstorageclass, 5944 // comdat] 5945 case bitc::MODULE_CODE_GLOBALVAR: { 5946 if (Record.size() < 6) 5947 return error("Invalid record"); 5948 uint64_t RawLinkage = Record[3]; 5949 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5950 ValueIdToLinkageMap[ValueId++] = Linkage; 5951 break; 5952 } 5953 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5954 // alignment, section, visibility, gc, unnamed_addr, 5955 // prologuedata, dllstorageclass, comdat, prefixdata] 5956 case bitc::MODULE_CODE_FUNCTION: { 5957 if (Record.size() < 8) 5958 return error("Invalid record"); 5959 uint64_t RawLinkage = Record[3]; 5960 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5961 ValueIdToLinkageMap[ValueId++] = Linkage; 5962 break; 5963 } 5964 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5965 // dllstorageclass] 5966 case bitc::MODULE_CODE_ALIAS: { 5967 if (Record.size() < 6) 5968 return error("Invalid record"); 5969 uint64_t RawLinkage = Record[3]; 5970 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5971 ValueIdToLinkageMap[ValueId++] = Linkage; 5972 break; 5973 } 5974 } 5975 } 5976 continue; 5977 } 5978 } 5979 } 5980 5981 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5982 // objects in the index. 5983 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5984 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5985 return error("Invalid record"); 5986 SmallVector<uint64_t, 64> Record; 5987 5988 // Parse version 5989 { 5990 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5991 if (Entry.Kind != BitstreamEntry::Record) 5992 return error("Invalid Summary Block: record for version expected"); 5993 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5994 return error("Invalid Summary Block: version expected"); 5995 } 5996 const uint64_t Version = Record[0]; 5997 if (Version != 1) 5998 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 5999 Record.clear(); 6000 6001 // Keep around the last seen summary to be used when we see an optional 6002 // "OriginalName" attachement. 6003 GlobalValueSummary *LastSeenSummary = nullptr; 6004 bool Combined = false; 6005 while (1) { 6006 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6007 6008 switch (Entry.Kind) { 6009 case BitstreamEntry::SubBlock: // Handled for us already. 6010 case BitstreamEntry::Error: 6011 return error("Malformed block"); 6012 case BitstreamEntry::EndBlock: 6013 // For a per-module index, remove any entries that still have empty 6014 // summaries. The VST parsing creates entries eagerly for all symbols, 6015 // but not all have associated summaries (e.g. it doesn't know how to 6016 // distinguish between VST_CODE_ENTRY for function declarations vs global 6017 // variables with initializers that end up with a summary). Remove those 6018 // entries now so that we don't need to rely on the combined index merger 6019 // to clean them up (especially since that may not run for the first 6020 // module's index if we merge into that). 6021 if (!Combined) 6022 TheIndex->removeEmptySummaryEntries(); 6023 return std::error_code(); 6024 case BitstreamEntry::Record: 6025 // The interesting case. 6026 break; 6027 } 6028 6029 // Read a record. The record format depends on whether this 6030 // is a per-module index or a combined index file. In the per-module 6031 // case the records contain the associated value's ID for correlation 6032 // with VST entries. In the combined index the correlation is done 6033 // via the bitcode offset of the summary records (which were saved 6034 // in the combined index VST entries). The records also contain 6035 // information used for ThinLTO renaming and importing. 6036 Record.clear(); 6037 auto BitCode = Stream.readRecord(Entry.ID, Record); 6038 switch (BitCode) { 6039 default: // Default behavior: ignore. 6040 break; 6041 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6042 // n x (valueid, callsitecount)] 6043 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6044 // numrefs x valueid, 6045 // n x (valueid, callsitecount, profilecount)] 6046 case bitc::FS_PERMODULE: 6047 case bitc::FS_PERMODULE_PROFILE: { 6048 unsigned ValueID = Record[0]; 6049 uint64_t RawFlags = Record[1]; 6050 unsigned InstCount = Record[2]; 6051 unsigned NumRefs = Record[3]; 6052 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6053 std::unique_ptr<FunctionSummary> FS = 6054 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6055 // The module path string ref set in the summary must be owned by the 6056 // index's module string table. Since we don't have a module path 6057 // string table section in the per-module index, we create a single 6058 // module path string table entry with an empty (0) ID to take 6059 // ownership. 6060 FS->setModulePath( 6061 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6062 static int RefListStartIndex = 4; 6063 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6064 assert(Record.size() >= RefListStartIndex + NumRefs && 6065 "Record size inconsistent with number of references"); 6066 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6067 unsigned RefValueId = Record[I]; 6068 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6069 FS->addRefEdge(RefGUID); 6070 } 6071 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6072 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6073 ++I) { 6074 unsigned CalleeValueId = Record[I]; 6075 unsigned CallsiteCount = Record[++I]; 6076 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6077 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6078 FS->addCallGraphEdge(CalleeGUID, 6079 CalleeInfo(CallsiteCount, ProfileCount)); 6080 } 6081 auto GUID = getGUIDFromValueId(ValueID); 6082 FS->setOriginalName(GUID.second); 6083 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6084 break; 6085 } 6086 // FS_ALIAS: [valueid, flags, valueid] 6087 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6088 // they expect all aliasee summaries to be available. 6089 case bitc::FS_ALIAS: { 6090 unsigned ValueID = Record[0]; 6091 uint64_t RawFlags = Record[1]; 6092 unsigned AliaseeID = Record[2]; 6093 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6094 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6095 // The module path string ref set in the summary must be owned by the 6096 // index's module string table. Since we don't have a module path 6097 // string table section in the per-module index, we create a single 6098 // module path string table entry with an empty (0) ID to take 6099 // ownership. 6100 AS->setModulePath( 6101 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6102 6103 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6104 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6105 if (!AliaseeSummary) 6106 return error("Alias expects aliasee summary to be parsed"); 6107 AS->setAliasee(AliaseeSummary); 6108 6109 auto GUID = getGUIDFromValueId(ValueID); 6110 AS->setOriginalName(GUID.second); 6111 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6112 break; 6113 } 6114 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6115 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6116 unsigned ValueID = Record[0]; 6117 uint64_t RawFlags = Record[1]; 6118 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6119 std::unique_ptr<GlobalVarSummary> FS = 6120 llvm::make_unique<GlobalVarSummary>(Flags); 6121 FS->setModulePath( 6122 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6123 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6124 unsigned RefValueId = Record[I]; 6125 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6126 FS->addRefEdge(RefGUID); 6127 } 6128 auto GUID = getGUIDFromValueId(ValueID); 6129 FS->setOriginalName(GUID.second); 6130 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6131 break; 6132 } 6133 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6134 // numrefs x valueid, n x (valueid, callsitecount)] 6135 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6136 // numrefs x valueid, 6137 // n x (valueid, callsitecount, profilecount)] 6138 case bitc::FS_COMBINED: 6139 case bitc::FS_COMBINED_PROFILE: { 6140 unsigned ValueID = Record[0]; 6141 uint64_t ModuleId = Record[1]; 6142 uint64_t RawFlags = Record[2]; 6143 unsigned InstCount = Record[3]; 6144 unsigned NumRefs = Record[4]; 6145 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6146 std::unique_ptr<FunctionSummary> FS = 6147 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6148 LastSeenSummary = FS.get(); 6149 FS->setModulePath(ModuleIdMap[ModuleId]); 6150 static int RefListStartIndex = 5; 6151 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6152 assert(Record.size() >= RefListStartIndex + NumRefs && 6153 "Record size inconsistent with number of references"); 6154 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6155 ++I) { 6156 unsigned RefValueId = Record[I]; 6157 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6158 FS->addRefEdge(RefGUID); 6159 } 6160 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6161 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6162 ++I) { 6163 unsigned CalleeValueId = Record[I]; 6164 unsigned CallsiteCount = Record[++I]; 6165 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6166 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6167 FS->addCallGraphEdge(CalleeGUID, 6168 CalleeInfo(CallsiteCount, ProfileCount)); 6169 } 6170 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6171 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6172 Combined = true; 6173 break; 6174 } 6175 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6176 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6177 // they expect all aliasee summaries to be available. 6178 case bitc::FS_COMBINED_ALIAS: { 6179 unsigned ValueID = Record[0]; 6180 uint64_t ModuleId = Record[1]; 6181 uint64_t RawFlags = Record[2]; 6182 unsigned AliaseeValueId = Record[3]; 6183 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6184 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6185 LastSeenSummary = AS.get(); 6186 AS->setModulePath(ModuleIdMap[ModuleId]); 6187 6188 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6189 auto AliaseeInModule = 6190 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6191 if (!AliaseeInModule) 6192 return error("Alias expects aliasee summary to be parsed"); 6193 AS->setAliasee(AliaseeInModule); 6194 6195 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6196 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6197 Combined = true; 6198 break; 6199 } 6200 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6201 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6202 unsigned ValueID = Record[0]; 6203 uint64_t ModuleId = Record[1]; 6204 uint64_t RawFlags = Record[2]; 6205 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6206 std::unique_ptr<GlobalVarSummary> FS = 6207 llvm::make_unique<GlobalVarSummary>(Flags); 6208 LastSeenSummary = FS.get(); 6209 FS->setModulePath(ModuleIdMap[ModuleId]); 6210 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6211 unsigned RefValueId = Record[I]; 6212 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6213 FS->addRefEdge(RefGUID); 6214 } 6215 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6216 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6217 Combined = true; 6218 break; 6219 } 6220 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6221 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6222 uint64_t OriginalName = Record[0]; 6223 if (!LastSeenSummary) 6224 return error("Name attachment that does not follow a combined record"); 6225 LastSeenSummary->setOriginalName(OriginalName); 6226 // Reset the LastSeenSummary 6227 LastSeenSummary = nullptr; 6228 } 6229 } 6230 } 6231 llvm_unreachable("Exit infinite loop"); 6232 } 6233 6234 // Parse the module string table block into the Index. 6235 // This populates the ModulePathStringTable map in the index. 6236 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6237 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6238 return error("Invalid record"); 6239 6240 SmallVector<uint64_t, 64> Record; 6241 6242 SmallString<128> ModulePath; 6243 ModulePathStringTableTy::iterator LastSeenModulePath; 6244 while (1) { 6245 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6246 6247 switch (Entry.Kind) { 6248 case BitstreamEntry::SubBlock: // Handled for us already. 6249 case BitstreamEntry::Error: 6250 return error("Malformed block"); 6251 case BitstreamEntry::EndBlock: 6252 return std::error_code(); 6253 case BitstreamEntry::Record: 6254 // The interesting case. 6255 break; 6256 } 6257 6258 Record.clear(); 6259 switch (Stream.readRecord(Entry.ID, Record)) { 6260 default: // Default behavior: ignore. 6261 break; 6262 case bitc::MST_CODE_ENTRY: { 6263 // MST_ENTRY: [modid, namechar x N] 6264 uint64_t ModuleId = Record[0]; 6265 6266 if (convertToString(Record, 1, ModulePath)) 6267 return error("Invalid record"); 6268 6269 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6270 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6271 6272 ModulePath.clear(); 6273 break; 6274 } 6275 /// MST_CODE_HASH: [5*i32] 6276 case bitc::MST_CODE_HASH: { 6277 if (Record.size() != 5) 6278 return error("Invalid hash length " + Twine(Record.size()).str()); 6279 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6280 return error("Invalid hash that does not follow a module path"); 6281 int Pos = 0; 6282 for (auto &Val : Record) { 6283 assert(!(Val >> 32) && "Unexpected high bits set"); 6284 LastSeenModulePath->second.second[Pos++] = Val; 6285 } 6286 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6287 LastSeenModulePath = TheIndex->modulePaths().end(); 6288 break; 6289 } 6290 } 6291 } 6292 llvm_unreachable("Exit infinite loop"); 6293 } 6294 6295 // Parse the function info index from the bitcode streamer into the given index. 6296 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6297 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6298 TheIndex = I; 6299 6300 if (std::error_code EC = initStream(std::move(Streamer))) 6301 return EC; 6302 6303 // Sniff for the signature. 6304 if (!hasValidBitcodeHeader(Stream)) 6305 return error("Invalid bitcode signature"); 6306 6307 // We expect a number of well-defined blocks, though we don't necessarily 6308 // need to understand them all. 6309 while (1) { 6310 if (Stream.AtEndOfStream()) { 6311 // We didn't really read a proper Module block. 6312 return error("Malformed block"); 6313 } 6314 6315 BitstreamEntry Entry = 6316 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6317 6318 if (Entry.Kind != BitstreamEntry::SubBlock) 6319 return error("Malformed block"); 6320 6321 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6322 // building the function summary index. 6323 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6324 return parseModule(); 6325 6326 if (Stream.SkipBlock()) 6327 return error("Invalid record"); 6328 } 6329 } 6330 6331 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6332 std::unique_ptr<DataStreamer> Streamer) { 6333 if (Streamer) 6334 return initLazyStream(std::move(Streamer)); 6335 return initStreamFromBuffer(); 6336 } 6337 6338 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6339 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6340 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6341 6342 if (Buffer->getBufferSize() & 3) 6343 return error("Invalid bitcode signature"); 6344 6345 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6346 // The magic number is 0x0B17C0DE stored in little endian. 6347 if (isBitcodeWrapper(BufPtr, BufEnd)) 6348 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6349 return error("Invalid bitcode wrapper header"); 6350 6351 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6352 Stream.init(&*StreamFile); 6353 6354 return std::error_code(); 6355 } 6356 6357 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6358 std::unique_ptr<DataStreamer> Streamer) { 6359 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6360 // see it. 6361 auto OwnedBytes = 6362 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6363 StreamingMemoryObject &Bytes = *OwnedBytes; 6364 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6365 Stream.init(&*StreamFile); 6366 6367 unsigned char buf[16]; 6368 if (Bytes.readBytes(buf, 16, 0) != 16) 6369 return error("Invalid bitcode signature"); 6370 6371 if (!isBitcode(buf, buf + 16)) 6372 return error("Invalid bitcode signature"); 6373 6374 if (isBitcodeWrapper(buf, buf + 4)) { 6375 const unsigned char *bitcodeStart = buf; 6376 const unsigned char *bitcodeEnd = buf + 16; 6377 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6378 Bytes.dropLeadingBytes(bitcodeStart - buf); 6379 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6380 } 6381 return std::error_code(); 6382 } 6383 6384 namespace { 6385 class BitcodeErrorCategoryType : public std::error_category { 6386 const char *name() const LLVM_NOEXCEPT override { 6387 return "llvm.bitcode"; 6388 } 6389 std::string message(int IE) const override { 6390 BitcodeError E = static_cast<BitcodeError>(IE); 6391 switch (E) { 6392 case BitcodeError::InvalidBitcodeSignature: 6393 return "Invalid bitcode signature"; 6394 case BitcodeError::CorruptedBitcode: 6395 return "Corrupted bitcode"; 6396 } 6397 llvm_unreachable("Unknown error type!"); 6398 } 6399 }; 6400 } // end anonymous namespace 6401 6402 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6403 6404 const std::error_category &llvm::BitcodeErrorCategory() { 6405 return *ErrorCategory; 6406 } 6407 6408 //===----------------------------------------------------------------------===// 6409 // External interface 6410 //===----------------------------------------------------------------------===// 6411 6412 static ErrorOr<std::unique_ptr<Module>> 6413 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6414 BitcodeReader *R, LLVMContext &Context, 6415 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6416 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6417 M->setMaterializer(R); 6418 6419 auto cleanupOnError = [&](std::error_code EC) { 6420 R->releaseBuffer(); // Never take ownership on error. 6421 return EC; 6422 }; 6423 6424 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6425 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6426 ShouldLazyLoadMetadata)) 6427 return cleanupOnError(EC); 6428 6429 if (MaterializeAll) { 6430 // Read in the entire module, and destroy the BitcodeReader. 6431 if (std::error_code EC = M->materializeAll()) 6432 return cleanupOnError(EC); 6433 } else { 6434 // Resolve forward references from blockaddresses. 6435 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6436 return cleanupOnError(EC); 6437 } 6438 return std::move(M); 6439 } 6440 6441 /// \brief Get a lazy one-at-time loading module from bitcode. 6442 /// 6443 /// This isn't always used in a lazy context. In particular, it's also used by 6444 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6445 /// in forward-referenced functions from block address references. 6446 /// 6447 /// \param[in] MaterializeAll Set to \c true if we should materialize 6448 /// everything. 6449 static ErrorOr<std::unique_ptr<Module>> 6450 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6451 LLVMContext &Context, bool MaterializeAll, 6452 bool ShouldLazyLoadMetadata = false) { 6453 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6454 6455 ErrorOr<std::unique_ptr<Module>> Ret = 6456 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6457 MaterializeAll, ShouldLazyLoadMetadata); 6458 if (!Ret) 6459 return Ret; 6460 6461 Buffer.release(); // The BitcodeReader owns it now. 6462 return Ret; 6463 } 6464 6465 ErrorOr<std::unique_ptr<Module>> 6466 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6467 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6468 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6469 ShouldLazyLoadMetadata); 6470 } 6471 6472 ErrorOr<std::unique_ptr<Module>> 6473 llvm::getStreamedBitcodeModule(StringRef Name, 6474 std::unique_ptr<DataStreamer> Streamer, 6475 LLVMContext &Context) { 6476 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6477 BitcodeReader *R = new BitcodeReader(Context); 6478 6479 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6480 false); 6481 } 6482 6483 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6484 LLVMContext &Context) { 6485 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6486 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6487 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6488 // written. We must defer until the Module has been fully materialized. 6489 } 6490 6491 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6492 LLVMContext &Context) { 6493 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6494 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6495 ErrorOr<std::string> Triple = R->parseTriple(); 6496 if (Triple.getError()) 6497 return ""; 6498 return Triple.get(); 6499 } 6500 6501 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6502 LLVMContext &Context) { 6503 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6504 BitcodeReader R(Buf.release(), Context); 6505 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6506 if (ProducerString.getError()) 6507 return ""; 6508 return ProducerString.get(); 6509 } 6510 6511 // Parse the specified bitcode buffer, returning the function info index. 6512 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6513 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6514 DiagnosticHandlerFunction DiagnosticHandler) { 6515 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6516 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6517 6518 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6519 6520 auto cleanupOnError = [&](std::error_code EC) { 6521 R.releaseBuffer(); // Never take ownership on error. 6522 return EC; 6523 }; 6524 6525 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6526 return cleanupOnError(EC); 6527 6528 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6529 return std::move(Index); 6530 } 6531 6532 // Check if the given bitcode buffer contains a global value summary block. 6533 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6534 DiagnosticHandlerFunction DiagnosticHandler) { 6535 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6536 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6537 6538 auto cleanupOnError = [&](std::error_code EC) { 6539 R.releaseBuffer(); // Never take ownership on error. 6540 return false; 6541 }; 6542 6543 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6544 return cleanupOnError(EC); 6545 6546 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6547 return R.foundGlobalValSummary(); 6548 } 6549