1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(
581       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval or sret attributes by adding the
719   /// corresponding argument's pointee type.
720   void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(
728       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
729       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
730 
731   Error parseComdatRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
733   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
734   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
735                                         ArrayRef<uint64_t> Record);
736 
737   Error parseAttributeBlock();
738   Error parseAttributeGroupBlock();
739   Error parseTypeTable();
740   Error parseTypeTableBody();
741   Error parseOperandBundleTags();
742   Error parseSyncScopeNames();
743 
744   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
745                                 unsigned NameIndex, Triple &TT);
746   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
747                                ArrayRef<uint64_t> Record);
748   Error parseValueSymbolTable(uint64_t Offset = 0);
749   Error parseGlobalValueSymbolTable();
750   Error parseConstants();
751   Error rememberAndSkipFunctionBodies();
752   Error rememberAndSkipFunctionBody();
753   /// Save the positions of the Metadata blocks and skip parsing the blocks.
754   Error rememberAndSkipMetadata();
755   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
756   Error parseFunctionBody(Function *F);
757   Error globalCleanup();
758   Error resolveGlobalAndIndirectSymbolInits();
759   Error parseUseLists();
760   Error findFunctionInStream(
761       Function *F,
762       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
763 
764   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
765 };
766 
767 /// Class to manage reading and parsing function summary index bitcode
768 /// files/sections.
769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
770   /// The module index built during parsing.
771   ModuleSummaryIndex &TheIndex;
772 
773   /// Indicates whether we have encountered a global value summary section
774   /// yet during parsing.
775   bool SeenGlobalValSummary = false;
776 
777   /// Indicates whether we have already parsed the VST, used for error checking.
778   bool SeenValueSymbolTable = false;
779 
780   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
781   /// Used to enable on-demand parsing of the VST.
782   uint64_t VSTOffset = 0;
783 
784   // Map to save ValueId to ValueInfo association that was recorded in the
785   // ValueSymbolTable. It is used after the VST is parsed to convert
786   // call graph edges read from the function summary from referencing
787   // callees by their ValueId to using the ValueInfo instead, which is how
788   // they are recorded in the summary index being built.
789   // We save a GUID which refers to the same global as the ValueInfo, but
790   // ignoring the linkage, i.e. for values other than local linkage they are
791   // identical.
792   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
793       ValueIdToValueInfoMap;
794 
795   /// Map populated during module path string table parsing, from the
796   /// module ID to a string reference owned by the index's module
797   /// path string table, used to correlate with combined index
798   /// summary records.
799   DenseMap<uint64_t, StringRef> ModuleIdMap;
800 
801   /// Original source file name recorded in a bitcode record.
802   std::string SourceFileName;
803 
804   /// The string identifier given to this module by the client, normally the
805   /// path to the bitcode file.
806   StringRef ModulePath;
807 
808   /// For per-module summary indexes, the unique numerical identifier given to
809   /// this module by the client.
810   unsigned ModuleId;
811 
812 public:
813   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
814                                   ModuleSummaryIndex &TheIndex,
815                                   StringRef ModulePath, unsigned ModuleId);
816 
817   Error parseModule();
818 
819 private:
820   void setValueGUID(uint64_t ValueID, StringRef ValueName,
821                     GlobalValue::LinkageTypes Linkage,
822                     StringRef SourceFileName);
823   Error parseValueSymbolTable(
824       uint64_t Offset,
825       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
826   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
827   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
828                                                     bool IsOldProfileFormat,
829                                                     bool HasProfile,
830                                                     bool HasRelBF);
831   Error parseEntireSummary(unsigned ID);
832   Error parseModuleStringTable();
833   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
834   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
835                                        TypeIdCompatibleVtableInfo &TypeId);
836   std::vector<FunctionSummary::ParamAccess>
837   parseParamAccesses(ArrayRef<uint64_t> Record);
838 
839   std::pair<ValueInfo, GlobalValue::GUID>
840   getValueInfoFromValueId(unsigned ValueId);
841 
842   void addThisModule();
843   ModuleSummaryIndex::ModuleInfo *getThisModule();
844 };
845 
846 } // end anonymous namespace
847 
848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
849                                                     Error Err) {
850   if (Err) {
851     std::error_code EC;
852     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
853       EC = EIB.convertToErrorCode();
854       Ctx.emitError(EIB.message());
855     });
856     return EC;
857   }
858   return std::error_code();
859 }
860 
861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
862                              StringRef ProducerIdentification,
863                              LLVMContext &Context)
864     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
865       ValueList(Context, Stream.SizeInBytes()) {
866   this->ProducerIdentification = std::string(ProducerIdentification);
867 }
868 
869 Error BitcodeReader::materializeForwardReferencedFunctions() {
870   if (WillMaterializeAllForwardRefs)
871     return Error::success();
872 
873   // Prevent recursion.
874   WillMaterializeAllForwardRefs = true;
875 
876   while (!BasicBlockFwdRefQueue.empty()) {
877     Function *F = BasicBlockFwdRefQueue.front();
878     BasicBlockFwdRefQueue.pop_front();
879     assert(F && "Expected valid function");
880     if (!BasicBlockFwdRefs.count(F))
881       // Already materialized.
882       continue;
883 
884     // Check for a function that isn't materializable to prevent an infinite
885     // loop.  When parsing a blockaddress stored in a global variable, there
886     // isn't a trivial way to check if a function will have a body without a
887     // linear search through FunctionsWithBodies, so just check it here.
888     if (!F->isMaterializable())
889       return error("Never resolved function from blockaddress");
890 
891     // Try to materialize F.
892     if (Error Err = materialize(F))
893       return Err;
894   }
895   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
896 
897   // Reset state.
898   WillMaterializeAllForwardRefs = false;
899   return Error::success();
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //  Helper functions to implement forward reference resolution, etc.
904 //===----------------------------------------------------------------------===//
905 
906 static bool hasImplicitComdat(size_t Val) {
907   switch (Val) {
908   default:
909     return false;
910   case 1:  // Old WeakAnyLinkage
911   case 4:  // Old LinkOnceAnyLinkage
912   case 10: // Old WeakODRLinkage
913   case 11: // Old LinkOnceODRLinkage
914     return true;
915   }
916 }
917 
918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
919   switch (Val) {
920   default: // Map unknown/new linkages to external
921   case 0:
922     return GlobalValue::ExternalLinkage;
923   case 2:
924     return GlobalValue::AppendingLinkage;
925   case 3:
926     return GlobalValue::InternalLinkage;
927   case 5:
928     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
929   case 6:
930     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
931   case 7:
932     return GlobalValue::ExternalWeakLinkage;
933   case 8:
934     return GlobalValue::CommonLinkage;
935   case 9:
936     return GlobalValue::PrivateLinkage;
937   case 12:
938     return GlobalValue::AvailableExternallyLinkage;
939   case 13:
940     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
941   case 14:
942     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
943   case 15:
944     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
945   case 1: // Old value with implicit comdat.
946   case 16:
947     return GlobalValue::WeakAnyLinkage;
948   case 10: // Old value with implicit comdat.
949   case 17:
950     return GlobalValue::WeakODRLinkage;
951   case 4: // Old value with implicit comdat.
952   case 18:
953     return GlobalValue::LinkOnceAnyLinkage;
954   case 11: // Old value with implicit comdat.
955   case 19:
956     return GlobalValue::LinkOnceODRLinkage;
957   }
958 }
959 
960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
961   FunctionSummary::FFlags Flags;
962   Flags.ReadNone = RawFlags & 0x1;
963   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
964   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
965   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
966   Flags.NoInline = (RawFlags >> 4) & 0x1;
967   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
968   return Flags;
969 }
970 
971 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
972 //
973 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
974 // visibility: [8, 10).
975 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
976                                                             uint64_t Version) {
977   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
978   // like getDecodedLinkage() above. Any future change to the linkage enum and
979   // to getDecodedLinkage() will need to be taken into account here as above.
980   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
981   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
982   RawFlags = RawFlags >> 4;
983   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
984   // The Live flag wasn't introduced until version 3. For dead stripping
985   // to work correctly on earlier versions, we must conservatively treat all
986   // values as live.
987   bool Live = (RawFlags & 0x2) || Version < 3;
988   bool Local = (RawFlags & 0x4);
989   bool AutoHide = (RawFlags & 0x8);
990 
991   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
992                                      Live, Local, AutoHide);
993 }
994 
995 // Decode the flags for GlobalVariable in the summary
996 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
997   return GlobalVarSummary::GVarFlags(
998       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
999       (RawFlags & 0x4) ? true : false,
1000       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1001 }
1002 
1003 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1004   switch (Val) {
1005   default: // Map unknown visibilities to default.
1006   case 0: return GlobalValue::DefaultVisibility;
1007   case 1: return GlobalValue::HiddenVisibility;
1008   case 2: return GlobalValue::ProtectedVisibility;
1009   }
1010 }
1011 
1012 static GlobalValue::DLLStorageClassTypes
1013 getDecodedDLLStorageClass(unsigned Val) {
1014   switch (Val) {
1015   default: // Map unknown values to default.
1016   case 0: return GlobalValue::DefaultStorageClass;
1017   case 1: return GlobalValue::DLLImportStorageClass;
1018   case 2: return GlobalValue::DLLExportStorageClass;
1019   }
1020 }
1021 
1022 static bool getDecodedDSOLocal(unsigned Val) {
1023   switch(Val) {
1024   default: // Map unknown values to preemptable.
1025   case 0:  return false;
1026   case 1:  return true;
1027   }
1028 }
1029 
1030 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1031   switch (Val) {
1032     case 0: return GlobalVariable::NotThreadLocal;
1033     default: // Map unknown non-zero value to general dynamic.
1034     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1035     case 2: return GlobalVariable::LocalDynamicTLSModel;
1036     case 3: return GlobalVariable::InitialExecTLSModel;
1037     case 4: return GlobalVariable::LocalExecTLSModel;
1038   }
1039 }
1040 
1041 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1042   switch (Val) {
1043     default: // Map unknown to UnnamedAddr::None.
1044     case 0: return GlobalVariable::UnnamedAddr::None;
1045     case 1: return GlobalVariable::UnnamedAddr::Global;
1046     case 2: return GlobalVariable::UnnamedAddr::Local;
1047   }
1048 }
1049 
1050 static int getDecodedCastOpcode(unsigned Val) {
1051   switch (Val) {
1052   default: return -1;
1053   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1054   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1055   case bitc::CAST_SEXT    : return Instruction::SExt;
1056   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1057   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1058   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1059   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1060   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1061   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1062   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1063   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1064   case bitc::CAST_BITCAST : return Instruction::BitCast;
1065   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1066   }
1067 }
1068 
1069 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1070   bool IsFP = Ty->isFPOrFPVectorTy();
1071   // UnOps are only valid for int/fp or vector of int/fp types
1072   if (!IsFP && !Ty->isIntOrIntVectorTy())
1073     return -1;
1074 
1075   switch (Val) {
1076   default:
1077     return -1;
1078   case bitc::UNOP_FNEG:
1079     return IsFP ? Instruction::FNeg : -1;
1080   }
1081 }
1082 
1083 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1084   bool IsFP = Ty->isFPOrFPVectorTy();
1085   // BinOps are only valid for int/fp or vector of int/fp types
1086   if (!IsFP && !Ty->isIntOrIntVectorTy())
1087     return -1;
1088 
1089   switch (Val) {
1090   default:
1091     return -1;
1092   case bitc::BINOP_ADD:
1093     return IsFP ? Instruction::FAdd : Instruction::Add;
1094   case bitc::BINOP_SUB:
1095     return IsFP ? Instruction::FSub : Instruction::Sub;
1096   case bitc::BINOP_MUL:
1097     return IsFP ? Instruction::FMul : Instruction::Mul;
1098   case bitc::BINOP_UDIV:
1099     return IsFP ? -1 : Instruction::UDiv;
1100   case bitc::BINOP_SDIV:
1101     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1102   case bitc::BINOP_UREM:
1103     return IsFP ? -1 : Instruction::URem;
1104   case bitc::BINOP_SREM:
1105     return IsFP ? Instruction::FRem : Instruction::SRem;
1106   case bitc::BINOP_SHL:
1107     return IsFP ? -1 : Instruction::Shl;
1108   case bitc::BINOP_LSHR:
1109     return IsFP ? -1 : Instruction::LShr;
1110   case bitc::BINOP_ASHR:
1111     return IsFP ? -1 : Instruction::AShr;
1112   case bitc::BINOP_AND:
1113     return IsFP ? -1 : Instruction::And;
1114   case bitc::BINOP_OR:
1115     return IsFP ? -1 : Instruction::Or;
1116   case bitc::BINOP_XOR:
1117     return IsFP ? -1 : Instruction::Xor;
1118   }
1119 }
1120 
1121 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1122   switch (Val) {
1123   default: return AtomicRMWInst::BAD_BINOP;
1124   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1125   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1126   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1127   case bitc::RMW_AND: return AtomicRMWInst::And;
1128   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1129   case bitc::RMW_OR: return AtomicRMWInst::Or;
1130   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1131   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1132   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1133   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1134   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1135   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1136   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1137   }
1138 }
1139 
1140 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1141   switch (Val) {
1142   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1143   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1144   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1145   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1146   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1147   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1148   default: // Map unknown orderings to sequentially-consistent.
1149   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1150   }
1151 }
1152 
1153 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1154   switch (Val) {
1155   default: // Map unknown selection kinds to any.
1156   case bitc::COMDAT_SELECTION_KIND_ANY:
1157     return Comdat::Any;
1158   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1159     return Comdat::ExactMatch;
1160   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1161     return Comdat::Largest;
1162   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1163     return Comdat::NoDuplicates;
1164   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1165     return Comdat::SameSize;
1166   }
1167 }
1168 
1169 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1170   FastMathFlags FMF;
1171   if (0 != (Val & bitc::UnsafeAlgebra))
1172     FMF.setFast();
1173   if (0 != (Val & bitc::AllowReassoc))
1174     FMF.setAllowReassoc();
1175   if (0 != (Val & bitc::NoNaNs))
1176     FMF.setNoNaNs();
1177   if (0 != (Val & bitc::NoInfs))
1178     FMF.setNoInfs();
1179   if (0 != (Val & bitc::NoSignedZeros))
1180     FMF.setNoSignedZeros();
1181   if (0 != (Val & bitc::AllowReciprocal))
1182     FMF.setAllowReciprocal();
1183   if (0 != (Val & bitc::AllowContract))
1184     FMF.setAllowContract(true);
1185   if (0 != (Val & bitc::ApproxFunc))
1186     FMF.setApproxFunc();
1187   return FMF;
1188 }
1189 
1190 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1191   switch (Val) {
1192   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1193   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1194   }
1195 }
1196 
1197 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1198   // The type table size is always specified correctly.
1199   if (ID >= TypeList.size())
1200     return nullptr;
1201 
1202   if (Type *Ty = TypeList[ID])
1203     return Ty;
1204 
1205   // If we have a forward reference, the only possible case is when it is to a
1206   // named struct.  Just create a placeholder for now.
1207   return TypeList[ID] = createIdentifiedStructType(Context);
1208 }
1209 
1210 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1211                                                       StringRef Name) {
1212   auto *Ret = StructType::create(Context, Name);
1213   IdentifiedStructTypes.push_back(Ret);
1214   return Ret;
1215 }
1216 
1217 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1218   auto *Ret = StructType::create(Context);
1219   IdentifiedStructTypes.push_back(Ret);
1220   return Ret;
1221 }
1222 
1223 //===----------------------------------------------------------------------===//
1224 //  Functions for parsing blocks from the bitcode file
1225 //===----------------------------------------------------------------------===//
1226 
1227 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1228   switch (Val) {
1229   case Attribute::EndAttrKinds:
1230   case Attribute::EmptyKey:
1231   case Attribute::TombstoneKey:
1232     llvm_unreachable("Synthetic enumerators which should never get here");
1233 
1234   case Attribute::None:            return 0;
1235   case Attribute::ZExt:            return 1 << 0;
1236   case Attribute::SExt:            return 1 << 1;
1237   case Attribute::NoReturn:        return 1 << 2;
1238   case Attribute::InReg:           return 1 << 3;
1239   case Attribute::StructRet:       return 1 << 4;
1240   case Attribute::NoUnwind:        return 1 << 5;
1241   case Attribute::NoAlias:         return 1 << 6;
1242   case Attribute::ByVal:           return 1 << 7;
1243   case Attribute::Nest:            return 1 << 8;
1244   case Attribute::ReadNone:        return 1 << 9;
1245   case Attribute::ReadOnly:        return 1 << 10;
1246   case Attribute::NoInline:        return 1 << 11;
1247   case Attribute::AlwaysInline:    return 1 << 12;
1248   case Attribute::OptimizeForSize: return 1 << 13;
1249   case Attribute::StackProtect:    return 1 << 14;
1250   case Attribute::StackProtectReq: return 1 << 15;
1251   case Attribute::Alignment:       return 31 << 16;
1252   case Attribute::NoCapture:       return 1 << 21;
1253   case Attribute::NoRedZone:       return 1 << 22;
1254   case Attribute::NoImplicitFloat: return 1 << 23;
1255   case Attribute::Naked:           return 1 << 24;
1256   case Attribute::InlineHint:      return 1 << 25;
1257   case Attribute::StackAlignment:  return 7 << 26;
1258   case Attribute::ReturnsTwice:    return 1 << 29;
1259   case Attribute::UWTable:         return 1 << 30;
1260   case Attribute::NonLazyBind:     return 1U << 31;
1261   case Attribute::SanitizeAddress: return 1ULL << 32;
1262   case Attribute::MinSize:         return 1ULL << 33;
1263   case Attribute::NoDuplicate:     return 1ULL << 34;
1264   case Attribute::StackProtectStrong: return 1ULL << 35;
1265   case Attribute::SanitizeThread:  return 1ULL << 36;
1266   case Attribute::SanitizeMemory:  return 1ULL << 37;
1267   case Attribute::NoBuiltin:       return 1ULL << 38;
1268   case Attribute::Returned:        return 1ULL << 39;
1269   case Attribute::Cold:            return 1ULL << 40;
1270   case Attribute::Builtin:         return 1ULL << 41;
1271   case Attribute::OptimizeNone:    return 1ULL << 42;
1272   case Attribute::InAlloca:        return 1ULL << 43;
1273   case Attribute::NonNull:         return 1ULL << 44;
1274   case Attribute::JumpTable:       return 1ULL << 45;
1275   case Attribute::Convergent:      return 1ULL << 46;
1276   case Attribute::SafeStack:       return 1ULL << 47;
1277   case Attribute::NoRecurse:       return 1ULL << 48;
1278   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1279   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1280   case Attribute::SwiftSelf:       return 1ULL << 51;
1281   case Attribute::SwiftError:      return 1ULL << 52;
1282   case Attribute::WriteOnly:       return 1ULL << 53;
1283   case Attribute::Speculatable:    return 1ULL << 54;
1284   case Attribute::StrictFP:        return 1ULL << 55;
1285   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1286   case Attribute::NoCfCheck:       return 1ULL << 57;
1287   case Attribute::OptForFuzzing:   return 1ULL << 58;
1288   case Attribute::ShadowCallStack: return 1ULL << 59;
1289   case Attribute::SpeculativeLoadHardening:
1290     return 1ULL << 60;
1291   case Attribute::ImmArg:
1292     return 1ULL << 61;
1293   case Attribute::WillReturn:
1294     return 1ULL << 62;
1295   case Attribute::NoFree:
1296     return 1ULL << 63;
1297   default:
1298     // Other attributes are not supported in the raw format,
1299     // as we ran out of space.
1300     return 0;
1301   }
1302   llvm_unreachable("Unsupported attribute type");
1303 }
1304 
1305 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1306   if (!Val) return;
1307 
1308   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1309        I = Attribute::AttrKind(I + 1)) {
1310     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1311       if (I == Attribute::Alignment)
1312         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1313       else if (I == Attribute::StackAlignment)
1314         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1315       else
1316         B.addAttribute(I);
1317     }
1318   }
1319 }
1320 
1321 /// This fills an AttrBuilder object with the LLVM attributes that have
1322 /// been decoded from the given integer. This function must stay in sync with
1323 /// 'encodeLLVMAttributesForBitcode'.
1324 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1325                                            uint64_t EncodedAttrs) {
1326   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1327   // the bits above 31 down by 11 bits.
1328   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1329   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1330          "Alignment must be a power of two.");
1331 
1332   if (Alignment)
1333     B.addAlignmentAttr(Alignment);
1334   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1335                           (EncodedAttrs & 0xffff));
1336 }
1337 
1338 Error BitcodeReader::parseAttributeBlock() {
1339   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1340     return Err;
1341 
1342   if (!MAttributes.empty())
1343     return error("Invalid multiple blocks");
1344 
1345   SmallVector<uint64_t, 64> Record;
1346 
1347   SmallVector<AttributeList, 8> Attrs;
1348 
1349   // Read all the records.
1350   while (true) {
1351     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1352     if (!MaybeEntry)
1353       return MaybeEntry.takeError();
1354     BitstreamEntry Entry = MaybeEntry.get();
1355 
1356     switch (Entry.Kind) {
1357     case BitstreamEntry::SubBlock: // Handled for us already.
1358     case BitstreamEntry::Error:
1359       return error("Malformed block");
1360     case BitstreamEntry::EndBlock:
1361       return Error::success();
1362     case BitstreamEntry::Record:
1363       // The interesting case.
1364       break;
1365     }
1366 
1367     // Read a record.
1368     Record.clear();
1369     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1370     if (!MaybeRecord)
1371       return MaybeRecord.takeError();
1372     switch (MaybeRecord.get()) {
1373     default:  // Default behavior: ignore.
1374       break;
1375     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1376       // Deprecated, but still needed to read old bitcode files.
1377       if (Record.size() & 1)
1378         return error("Invalid record");
1379 
1380       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1381         AttrBuilder B;
1382         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1383         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1384       }
1385 
1386       MAttributes.push_back(AttributeList::get(Context, Attrs));
1387       Attrs.clear();
1388       break;
1389     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1390       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1391         Attrs.push_back(MAttributeGroups[Record[i]]);
1392 
1393       MAttributes.push_back(AttributeList::get(Context, Attrs));
1394       Attrs.clear();
1395       break;
1396     }
1397   }
1398 }
1399 
1400 // Returns Attribute::None on unrecognized codes.
1401 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1402   switch (Code) {
1403   default:
1404     return Attribute::None;
1405   case bitc::ATTR_KIND_ALIGNMENT:
1406     return Attribute::Alignment;
1407   case bitc::ATTR_KIND_ALWAYS_INLINE:
1408     return Attribute::AlwaysInline;
1409   case bitc::ATTR_KIND_ARGMEMONLY:
1410     return Attribute::ArgMemOnly;
1411   case bitc::ATTR_KIND_BUILTIN:
1412     return Attribute::Builtin;
1413   case bitc::ATTR_KIND_BY_VAL:
1414     return Attribute::ByVal;
1415   case bitc::ATTR_KIND_IN_ALLOCA:
1416     return Attribute::InAlloca;
1417   case bitc::ATTR_KIND_COLD:
1418     return Attribute::Cold;
1419   case bitc::ATTR_KIND_CONVERGENT:
1420     return Attribute::Convergent;
1421   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1422     return Attribute::InaccessibleMemOnly;
1423   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1424     return Attribute::InaccessibleMemOrArgMemOnly;
1425   case bitc::ATTR_KIND_INLINE_HINT:
1426     return Attribute::InlineHint;
1427   case bitc::ATTR_KIND_IN_REG:
1428     return Attribute::InReg;
1429   case bitc::ATTR_KIND_JUMP_TABLE:
1430     return Attribute::JumpTable;
1431   case bitc::ATTR_KIND_MIN_SIZE:
1432     return Attribute::MinSize;
1433   case bitc::ATTR_KIND_NAKED:
1434     return Attribute::Naked;
1435   case bitc::ATTR_KIND_NEST:
1436     return Attribute::Nest;
1437   case bitc::ATTR_KIND_NO_ALIAS:
1438     return Attribute::NoAlias;
1439   case bitc::ATTR_KIND_NO_BUILTIN:
1440     return Attribute::NoBuiltin;
1441   case bitc::ATTR_KIND_NO_CALLBACK:
1442     return Attribute::NoCallback;
1443   case bitc::ATTR_KIND_NO_CAPTURE:
1444     return Attribute::NoCapture;
1445   case bitc::ATTR_KIND_NO_DUPLICATE:
1446     return Attribute::NoDuplicate;
1447   case bitc::ATTR_KIND_NOFREE:
1448     return Attribute::NoFree;
1449   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1450     return Attribute::NoImplicitFloat;
1451   case bitc::ATTR_KIND_NO_INLINE:
1452     return Attribute::NoInline;
1453   case bitc::ATTR_KIND_NO_RECURSE:
1454     return Attribute::NoRecurse;
1455   case bitc::ATTR_KIND_NO_MERGE:
1456     return Attribute::NoMerge;
1457   case bitc::ATTR_KIND_NON_LAZY_BIND:
1458     return Attribute::NonLazyBind;
1459   case bitc::ATTR_KIND_NON_NULL:
1460     return Attribute::NonNull;
1461   case bitc::ATTR_KIND_DEREFERENCEABLE:
1462     return Attribute::Dereferenceable;
1463   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1464     return Attribute::DereferenceableOrNull;
1465   case bitc::ATTR_KIND_ALLOC_SIZE:
1466     return Attribute::AllocSize;
1467   case bitc::ATTR_KIND_NO_RED_ZONE:
1468     return Attribute::NoRedZone;
1469   case bitc::ATTR_KIND_NO_RETURN:
1470     return Attribute::NoReturn;
1471   case bitc::ATTR_KIND_NOSYNC:
1472     return Attribute::NoSync;
1473   case bitc::ATTR_KIND_NOCF_CHECK:
1474     return Attribute::NoCfCheck;
1475   case bitc::ATTR_KIND_NO_UNWIND:
1476     return Attribute::NoUnwind;
1477   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1478     return Attribute::NullPointerIsValid;
1479   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1480     return Attribute::OptForFuzzing;
1481   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1482     return Attribute::OptimizeForSize;
1483   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1484     return Attribute::OptimizeNone;
1485   case bitc::ATTR_KIND_READ_NONE:
1486     return Attribute::ReadNone;
1487   case bitc::ATTR_KIND_READ_ONLY:
1488     return Attribute::ReadOnly;
1489   case bitc::ATTR_KIND_RETURNED:
1490     return Attribute::Returned;
1491   case bitc::ATTR_KIND_RETURNS_TWICE:
1492     return Attribute::ReturnsTwice;
1493   case bitc::ATTR_KIND_S_EXT:
1494     return Attribute::SExt;
1495   case bitc::ATTR_KIND_SPECULATABLE:
1496     return Attribute::Speculatable;
1497   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1498     return Attribute::StackAlignment;
1499   case bitc::ATTR_KIND_STACK_PROTECT:
1500     return Attribute::StackProtect;
1501   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1502     return Attribute::StackProtectReq;
1503   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1504     return Attribute::StackProtectStrong;
1505   case bitc::ATTR_KIND_SAFESTACK:
1506     return Attribute::SafeStack;
1507   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1508     return Attribute::ShadowCallStack;
1509   case bitc::ATTR_KIND_STRICT_FP:
1510     return Attribute::StrictFP;
1511   case bitc::ATTR_KIND_STRUCT_RET:
1512     return Attribute::StructRet;
1513   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1514     return Attribute::SanitizeAddress;
1515   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1516     return Attribute::SanitizeHWAddress;
1517   case bitc::ATTR_KIND_SANITIZE_THREAD:
1518     return Attribute::SanitizeThread;
1519   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1520     return Attribute::SanitizeMemory;
1521   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1522     return Attribute::SpeculativeLoadHardening;
1523   case bitc::ATTR_KIND_SWIFT_ERROR:
1524     return Attribute::SwiftError;
1525   case bitc::ATTR_KIND_SWIFT_SELF:
1526     return Attribute::SwiftSelf;
1527   case bitc::ATTR_KIND_UW_TABLE:
1528     return Attribute::UWTable;
1529   case bitc::ATTR_KIND_VSCALE_RANGE:
1530     return Attribute::VScaleRange;
1531   case bitc::ATTR_KIND_WILLRETURN:
1532     return Attribute::WillReturn;
1533   case bitc::ATTR_KIND_WRITEONLY:
1534     return Attribute::WriteOnly;
1535   case bitc::ATTR_KIND_Z_EXT:
1536     return Attribute::ZExt;
1537   case bitc::ATTR_KIND_IMMARG:
1538     return Attribute::ImmArg;
1539   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1540     return Attribute::SanitizeMemTag;
1541   case bitc::ATTR_KIND_PREALLOCATED:
1542     return Attribute::Preallocated;
1543   case bitc::ATTR_KIND_NOUNDEF:
1544     return Attribute::NoUndef;
1545   case bitc::ATTR_KIND_BYREF:
1546     return Attribute::ByRef;
1547   case bitc::ATTR_KIND_MUSTPROGRESS:
1548     return Attribute::MustProgress;
1549   case bitc::ATTR_KIND_HOT:
1550     return Attribute::Hot;
1551   }
1552 }
1553 
1554 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1555                                          MaybeAlign &Alignment) {
1556   // Note: Alignment in bitcode files is incremented by 1, so that zero
1557   // can be used for default alignment.
1558   if (Exponent > Value::MaxAlignmentExponent + 1)
1559     return error("Invalid alignment value");
1560   Alignment = decodeMaybeAlign(Exponent);
1561   return Error::success();
1562 }
1563 
1564 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1565   *Kind = getAttrFromCode(Code);
1566   if (*Kind == Attribute::None)
1567     return error("Unknown attribute kind (" + Twine(Code) + ")");
1568   return Error::success();
1569 }
1570 
1571 Error BitcodeReader::parseAttributeGroupBlock() {
1572   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1573     return Err;
1574 
1575   if (!MAttributeGroups.empty())
1576     return error("Invalid multiple blocks");
1577 
1578   SmallVector<uint64_t, 64> Record;
1579 
1580   // Read all the records.
1581   while (true) {
1582     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1583     if (!MaybeEntry)
1584       return MaybeEntry.takeError();
1585     BitstreamEntry Entry = MaybeEntry.get();
1586 
1587     switch (Entry.Kind) {
1588     case BitstreamEntry::SubBlock: // Handled for us already.
1589     case BitstreamEntry::Error:
1590       return error("Malformed block");
1591     case BitstreamEntry::EndBlock:
1592       return Error::success();
1593     case BitstreamEntry::Record:
1594       // The interesting case.
1595       break;
1596     }
1597 
1598     // Read a record.
1599     Record.clear();
1600     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1601     if (!MaybeRecord)
1602       return MaybeRecord.takeError();
1603     switch (MaybeRecord.get()) {
1604     default:  // Default behavior: ignore.
1605       break;
1606     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1607       if (Record.size() < 3)
1608         return error("Invalid record");
1609 
1610       uint64_t GrpID = Record[0];
1611       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1612 
1613       AttrBuilder B;
1614       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1615         if (Record[i] == 0) {        // Enum attribute
1616           Attribute::AttrKind Kind;
1617           if (Error Err = parseAttrKind(Record[++i], &Kind))
1618             return Err;
1619 
1620           // Upgrade old-style byval attribute to one with a type, even if it's
1621           // nullptr. We will have to insert the real type when we associate
1622           // this AttributeList with a function.
1623           if (Kind == Attribute::ByVal)
1624             B.addByValAttr(nullptr);
1625           else if (Kind == Attribute::StructRet)
1626             B.addStructRetAttr(nullptr);
1627           else if (Kind == Attribute::InAlloca)
1628             B.addInAllocaAttr(nullptr);
1629 
1630           B.addAttribute(Kind);
1631         } else if (Record[i] == 1) { // Integer attribute
1632           Attribute::AttrKind Kind;
1633           if (Error Err = parseAttrKind(Record[++i], &Kind))
1634             return Err;
1635           if (Kind == Attribute::Alignment)
1636             B.addAlignmentAttr(Record[++i]);
1637           else if (Kind == Attribute::StackAlignment)
1638             B.addStackAlignmentAttr(Record[++i]);
1639           else if (Kind == Attribute::Dereferenceable)
1640             B.addDereferenceableAttr(Record[++i]);
1641           else if (Kind == Attribute::DereferenceableOrNull)
1642             B.addDereferenceableOrNullAttr(Record[++i]);
1643           else if (Kind == Attribute::AllocSize)
1644             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1645           else if (Kind == Attribute::VScaleRange)
1646             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1647         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1648           bool HasValue = (Record[i++] == 4);
1649           SmallString<64> KindStr;
1650           SmallString<64> ValStr;
1651 
1652           while (Record[i] != 0 && i != e)
1653             KindStr += Record[i++];
1654           assert(Record[i] == 0 && "Kind string not null terminated");
1655 
1656           if (HasValue) {
1657             // Has a value associated with it.
1658             ++i; // Skip the '0' that terminates the "kind" string.
1659             while (Record[i] != 0 && i != e)
1660               ValStr += Record[i++];
1661             assert(Record[i] == 0 && "Value string not null terminated");
1662           }
1663 
1664           B.addAttribute(KindStr.str(), ValStr.str());
1665         } else {
1666           assert((Record[i] == 5 || Record[i] == 6) &&
1667                  "Invalid attribute group entry");
1668           bool HasType = Record[i] == 6;
1669           Attribute::AttrKind Kind;
1670           if (Error Err = parseAttrKind(Record[++i], &Kind))
1671             return Err;
1672           if (Kind == Attribute::ByVal) {
1673             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1674           } else if (Kind == Attribute::StructRet) {
1675             B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1676           } else if (Kind == Attribute::ByRef) {
1677             B.addByRefAttr(getTypeByID(Record[++i]));
1678           } else if (Kind == Attribute::Preallocated) {
1679             B.addPreallocatedAttr(getTypeByID(Record[++i]));
1680           } else if (Kind == Attribute::InAlloca) {
1681             B.addInAllocaAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1682           }
1683         }
1684       }
1685 
1686       UpgradeAttributes(B);
1687       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1688       break;
1689     }
1690     }
1691   }
1692 }
1693 
1694 Error BitcodeReader::parseTypeTable() {
1695   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1696     return Err;
1697 
1698   return parseTypeTableBody();
1699 }
1700 
1701 Error BitcodeReader::parseTypeTableBody() {
1702   if (!TypeList.empty())
1703     return error("Invalid multiple blocks");
1704 
1705   SmallVector<uint64_t, 64> Record;
1706   unsigned NumRecords = 0;
1707 
1708   SmallString<64> TypeName;
1709 
1710   // Read all the records for this type table.
1711   while (true) {
1712     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1713     if (!MaybeEntry)
1714       return MaybeEntry.takeError();
1715     BitstreamEntry Entry = MaybeEntry.get();
1716 
1717     switch (Entry.Kind) {
1718     case BitstreamEntry::SubBlock: // Handled for us already.
1719     case BitstreamEntry::Error:
1720       return error("Malformed block");
1721     case BitstreamEntry::EndBlock:
1722       if (NumRecords != TypeList.size())
1723         return error("Malformed block");
1724       return Error::success();
1725     case BitstreamEntry::Record:
1726       // The interesting case.
1727       break;
1728     }
1729 
1730     // Read a record.
1731     Record.clear();
1732     Type *ResultTy = nullptr;
1733     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1734     if (!MaybeRecord)
1735       return MaybeRecord.takeError();
1736     switch (MaybeRecord.get()) {
1737     default:
1738       return error("Invalid value");
1739     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1740       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1741       // type list.  This allows us to reserve space.
1742       if (Record.empty())
1743         return error("Invalid record");
1744       TypeList.resize(Record[0]);
1745       continue;
1746     case bitc::TYPE_CODE_VOID:      // VOID
1747       ResultTy = Type::getVoidTy(Context);
1748       break;
1749     case bitc::TYPE_CODE_HALF:     // HALF
1750       ResultTy = Type::getHalfTy(Context);
1751       break;
1752     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1753       ResultTy = Type::getBFloatTy(Context);
1754       break;
1755     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1756       ResultTy = Type::getFloatTy(Context);
1757       break;
1758     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1759       ResultTy = Type::getDoubleTy(Context);
1760       break;
1761     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1762       ResultTy = Type::getX86_FP80Ty(Context);
1763       break;
1764     case bitc::TYPE_CODE_FP128:     // FP128
1765       ResultTy = Type::getFP128Ty(Context);
1766       break;
1767     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1768       ResultTy = Type::getPPC_FP128Ty(Context);
1769       break;
1770     case bitc::TYPE_CODE_LABEL:     // LABEL
1771       ResultTy = Type::getLabelTy(Context);
1772       break;
1773     case bitc::TYPE_CODE_METADATA:  // METADATA
1774       ResultTy = Type::getMetadataTy(Context);
1775       break;
1776     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1777       ResultTy = Type::getX86_MMXTy(Context);
1778       break;
1779     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1780       ResultTy = Type::getX86_AMXTy(Context);
1781       break;
1782     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1783       ResultTy = Type::getTokenTy(Context);
1784       break;
1785     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1786       if (Record.empty())
1787         return error("Invalid record");
1788 
1789       uint64_t NumBits = Record[0];
1790       if (NumBits < IntegerType::MIN_INT_BITS ||
1791           NumBits > IntegerType::MAX_INT_BITS)
1792         return error("Bitwidth for integer type out of range");
1793       ResultTy = IntegerType::get(Context, NumBits);
1794       break;
1795     }
1796     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1797                                     //          [pointee type, address space]
1798       if (Record.empty())
1799         return error("Invalid record");
1800       unsigned AddressSpace = 0;
1801       if (Record.size() == 2)
1802         AddressSpace = Record[1];
1803       ResultTy = getTypeByID(Record[0]);
1804       if (!ResultTy ||
1805           !PointerType::isValidElementType(ResultTy))
1806         return error("Invalid type");
1807       ResultTy = PointerType::get(ResultTy, AddressSpace);
1808       break;
1809     }
1810     case bitc::TYPE_CODE_FUNCTION_OLD: {
1811       // Deprecated, but still needed to read old bitcode files.
1812       // FUNCTION: [vararg, attrid, retty, paramty x N]
1813       if (Record.size() < 3)
1814         return error("Invalid record");
1815       SmallVector<Type*, 8> ArgTys;
1816       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1817         if (Type *T = getTypeByID(Record[i]))
1818           ArgTys.push_back(T);
1819         else
1820           break;
1821       }
1822 
1823       ResultTy = getTypeByID(Record[2]);
1824       if (!ResultTy || ArgTys.size() < Record.size()-3)
1825         return error("Invalid type");
1826 
1827       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1828       break;
1829     }
1830     case bitc::TYPE_CODE_FUNCTION: {
1831       // FUNCTION: [vararg, retty, paramty x N]
1832       if (Record.size() < 2)
1833         return error("Invalid record");
1834       SmallVector<Type*, 8> ArgTys;
1835       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1836         if (Type *T = getTypeByID(Record[i])) {
1837           if (!FunctionType::isValidArgumentType(T))
1838             return error("Invalid function argument type");
1839           ArgTys.push_back(T);
1840         }
1841         else
1842           break;
1843       }
1844 
1845       ResultTy = getTypeByID(Record[1]);
1846       if (!ResultTy || ArgTys.size() < Record.size()-2)
1847         return error("Invalid type");
1848 
1849       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1850       break;
1851     }
1852     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1853       if (Record.empty())
1854         return error("Invalid record");
1855       SmallVector<Type*, 8> EltTys;
1856       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1857         if (Type *T = getTypeByID(Record[i]))
1858           EltTys.push_back(T);
1859         else
1860           break;
1861       }
1862       if (EltTys.size() != Record.size()-1)
1863         return error("Invalid type");
1864       ResultTy = StructType::get(Context, EltTys, Record[0]);
1865       break;
1866     }
1867     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1868       if (convertToString(Record, 0, TypeName))
1869         return error("Invalid record");
1870       continue;
1871 
1872     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1873       if (Record.empty())
1874         return error("Invalid record");
1875 
1876       if (NumRecords >= TypeList.size())
1877         return error("Invalid TYPE table");
1878 
1879       // Check to see if this was forward referenced, if so fill in the temp.
1880       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1881       if (Res) {
1882         Res->setName(TypeName);
1883         TypeList[NumRecords] = nullptr;
1884       } else  // Otherwise, create a new struct.
1885         Res = createIdentifiedStructType(Context, TypeName);
1886       TypeName.clear();
1887 
1888       SmallVector<Type*, 8> EltTys;
1889       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1890         if (Type *T = getTypeByID(Record[i]))
1891           EltTys.push_back(T);
1892         else
1893           break;
1894       }
1895       if (EltTys.size() != Record.size()-1)
1896         return error("Invalid record");
1897       Res->setBody(EltTys, Record[0]);
1898       ResultTy = Res;
1899       break;
1900     }
1901     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1902       if (Record.size() != 1)
1903         return error("Invalid record");
1904 
1905       if (NumRecords >= TypeList.size())
1906         return error("Invalid TYPE table");
1907 
1908       // Check to see if this was forward referenced, if so fill in the temp.
1909       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1910       if (Res) {
1911         Res->setName(TypeName);
1912         TypeList[NumRecords] = nullptr;
1913       } else  // Otherwise, create a new struct with no body.
1914         Res = createIdentifiedStructType(Context, TypeName);
1915       TypeName.clear();
1916       ResultTy = Res;
1917       break;
1918     }
1919     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1920       if (Record.size() < 2)
1921         return error("Invalid record");
1922       ResultTy = getTypeByID(Record[1]);
1923       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1924         return error("Invalid type");
1925       ResultTy = ArrayType::get(ResultTy, Record[0]);
1926       break;
1927     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1928                                     //         [numelts, eltty, scalable]
1929       if (Record.size() < 2)
1930         return error("Invalid record");
1931       if (Record[0] == 0)
1932         return error("Invalid vector length");
1933       ResultTy = getTypeByID(Record[1]);
1934       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1935         return error("Invalid type");
1936       bool Scalable = Record.size() > 2 ? Record[2] : false;
1937       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1938       break;
1939     }
1940 
1941     if (NumRecords >= TypeList.size())
1942       return error("Invalid TYPE table");
1943     if (TypeList[NumRecords])
1944       return error(
1945           "Invalid TYPE table: Only named structs can be forward referenced");
1946     assert(ResultTy && "Didn't read a type?");
1947     TypeList[NumRecords++] = ResultTy;
1948   }
1949 }
1950 
1951 Error BitcodeReader::parseOperandBundleTags() {
1952   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1953     return Err;
1954 
1955   if (!BundleTags.empty())
1956     return error("Invalid multiple blocks");
1957 
1958   SmallVector<uint64_t, 64> Record;
1959 
1960   while (true) {
1961     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1962     if (!MaybeEntry)
1963       return MaybeEntry.takeError();
1964     BitstreamEntry Entry = MaybeEntry.get();
1965 
1966     switch (Entry.Kind) {
1967     case BitstreamEntry::SubBlock: // Handled for us already.
1968     case BitstreamEntry::Error:
1969       return error("Malformed block");
1970     case BitstreamEntry::EndBlock:
1971       return Error::success();
1972     case BitstreamEntry::Record:
1973       // The interesting case.
1974       break;
1975     }
1976 
1977     // Tags are implicitly mapped to integers by their order.
1978 
1979     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1980     if (!MaybeRecord)
1981       return MaybeRecord.takeError();
1982     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1983       return error("Invalid record");
1984 
1985     // OPERAND_BUNDLE_TAG: [strchr x N]
1986     BundleTags.emplace_back();
1987     if (convertToString(Record, 0, BundleTags.back()))
1988       return error("Invalid record");
1989     Record.clear();
1990   }
1991 }
1992 
1993 Error BitcodeReader::parseSyncScopeNames() {
1994   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1995     return Err;
1996 
1997   if (!SSIDs.empty())
1998     return error("Invalid multiple synchronization scope names blocks");
1999 
2000   SmallVector<uint64_t, 64> Record;
2001   while (true) {
2002     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2003     if (!MaybeEntry)
2004       return MaybeEntry.takeError();
2005     BitstreamEntry Entry = MaybeEntry.get();
2006 
2007     switch (Entry.Kind) {
2008     case BitstreamEntry::SubBlock: // Handled for us already.
2009     case BitstreamEntry::Error:
2010       return error("Malformed block");
2011     case BitstreamEntry::EndBlock:
2012       if (SSIDs.empty())
2013         return error("Invalid empty synchronization scope names block");
2014       return Error::success();
2015     case BitstreamEntry::Record:
2016       // The interesting case.
2017       break;
2018     }
2019 
2020     // Synchronization scope names are implicitly mapped to synchronization
2021     // scope IDs by their order.
2022 
2023     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2024     if (!MaybeRecord)
2025       return MaybeRecord.takeError();
2026     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2027       return error("Invalid record");
2028 
2029     SmallString<16> SSN;
2030     if (convertToString(Record, 0, SSN))
2031       return error("Invalid record");
2032 
2033     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2034     Record.clear();
2035   }
2036 }
2037 
2038 /// Associate a value with its name from the given index in the provided record.
2039 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2040                                              unsigned NameIndex, Triple &TT) {
2041   SmallString<128> ValueName;
2042   if (convertToString(Record, NameIndex, ValueName))
2043     return error("Invalid record");
2044   unsigned ValueID = Record[0];
2045   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2046     return error("Invalid record");
2047   Value *V = ValueList[ValueID];
2048 
2049   StringRef NameStr(ValueName.data(), ValueName.size());
2050   if (NameStr.find_first_of(0) != StringRef::npos)
2051     return error("Invalid value name");
2052   V->setName(NameStr);
2053   auto *GO = dyn_cast<GlobalObject>(V);
2054   if (GO) {
2055     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2056       if (TT.supportsCOMDAT())
2057         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2058       else
2059         GO->setComdat(nullptr);
2060     }
2061   }
2062   return V;
2063 }
2064 
2065 /// Helper to note and return the current location, and jump to the given
2066 /// offset.
2067 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2068                                                  BitstreamCursor &Stream) {
2069   // Save the current parsing location so we can jump back at the end
2070   // of the VST read.
2071   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2072   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2073     return std::move(JumpFailed);
2074   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2075   if (!MaybeEntry)
2076     return MaybeEntry.takeError();
2077   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2078   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2079   return CurrentBit;
2080 }
2081 
2082 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2083                                             Function *F,
2084                                             ArrayRef<uint64_t> Record) {
2085   // Note that we subtract 1 here because the offset is relative to one word
2086   // before the start of the identification or module block, which was
2087   // historically always the start of the regular bitcode header.
2088   uint64_t FuncWordOffset = Record[1] - 1;
2089   uint64_t FuncBitOffset = FuncWordOffset * 32;
2090   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2091   // Set the LastFunctionBlockBit to point to the last function block.
2092   // Later when parsing is resumed after function materialization,
2093   // we can simply skip that last function block.
2094   if (FuncBitOffset > LastFunctionBlockBit)
2095     LastFunctionBlockBit = FuncBitOffset;
2096 }
2097 
2098 /// Read a new-style GlobalValue symbol table.
2099 Error BitcodeReader::parseGlobalValueSymbolTable() {
2100   unsigned FuncBitcodeOffsetDelta =
2101       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2102 
2103   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2104     return Err;
2105 
2106   SmallVector<uint64_t, 64> Record;
2107   while (true) {
2108     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2109     if (!MaybeEntry)
2110       return MaybeEntry.takeError();
2111     BitstreamEntry Entry = MaybeEntry.get();
2112 
2113     switch (Entry.Kind) {
2114     case BitstreamEntry::SubBlock:
2115     case BitstreamEntry::Error:
2116       return error("Malformed block");
2117     case BitstreamEntry::EndBlock:
2118       return Error::success();
2119     case BitstreamEntry::Record:
2120       break;
2121     }
2122 
2123     Record.clear();
2124     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2125     if (!MaybeRecord)
2126       return MaybeRecord.takeError();
2127     switch (MaybeRecord.get()) {
2128     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2129       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2130                               cast<Function>(ValueList[Record[0]]), Record);
2131       break;
2132     }
2133   }
2134 }
2135 
2136 /// Parse the value symbol table at either the current parsing location or
2137 /// at the given bit offset if provided.
2138 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2139   uint64_t CurrentBit;
2140   // Pass in the Offset to distinguish between calling for the module-level
2141   // VST (where we want to jump to the VST offset) and the function-level
2142   // VST (where we don't).
2143   if (Offset > 0) {
2144     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2145     if (!MaybeCurrentBit)
2146       return MaybeCurrentBit.takeError();
2147     CurrentBit = MaybeCurrentBit.get();
2148     // If this module uses a string table, read this as a module-level VST.
2149     if (UseStrtab) {
2150       if (Error Err = parseGlobalValueSymbolTable())
2151         return Err;
2152       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2153         return JumpFailed;
2154       return Error::success();
2155     }
2156     // Otherwise, the VST will be in a similar format to a function-level VST,
2157     // and will contain symbol names.
2158   }
2159 
2160   // Compute the delta between the bitcode indices in the VST (the word offset
2161   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2162   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2163   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2164   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2165   // just before entering the VST subblock because: 1) the EnterSubBlock
2166   // changes the AbbrevID width; 2) the VST block is nested within the same
2167   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2168   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2169   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2170   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2171   unsigned FuncBitcodeOffsetDelta =
2172       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2173 
2174   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2175     return Err;
2176 
2177   SmallVector<uint64_t, 64> Record;
2178 
2179   Triple TT(TheModule->getTargetTriple());
2180 
2181   // Read all the records for this value table.
2182   SmallString<128> ValueName;
2183 
2184   while (true) {
2185     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2186     if (!MaybeEntry)
2187       return MaybeEntry.takeError();
2188     BitstreamEntry Entry = MaybeEntry.get();
2189 
2190     switch (Entry.Kind) {
2191     case BitstreamEntry::SubBlock: // Handled for us already.
2192     case BitstreamEntry::Error:
2193       return error("Malformed block");
2194     case BitstreamEntry::EndBlock:
2195       if (Offset > 0)
2196         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2197           return JumpFailed;
2198       return Error::success();
2199     case BitstreamEntry::Record:
2200       // The interesting case.
2201       break;
2202     }
2203 
2204     // Read a record.
2205     Record.clear();
2206     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2207     if (!MaybeRecord)
2208       return MaybeRecord.takeError();
2209     switch (MaybeRecord.get()) {
2210     default:  // Default behavior: unknown type.
2211       break;
2212     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2213       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2214       if (Error Err = ValOrErr.takeError())
2215         return Err;
2216       ValOrErr.get();
2217       break;
2218     }
2219     case bitc::VST_CODE_FNENTRY: {
2220       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2221       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2222       if (Error Err = ValOrErr.takeError())
2223         return Err;
2224       Value *V = ValOrErr.get();
2225 
2226       // Ignore function offsets emitted for aliases of functions in older
2227       // versions of LLVM.
2228       if (auto *F = dyn_cast<Function>(V))
2229         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2230       break;
2231     }
2232     case bitc::VST_CODE_BBENTRY: {
2233       if (convertToString(Record, 1, ValueName))
2234         return error("Invalid record");
2235       BasicBlock *BB = getBasicBlock(Record[0]);
2236       if (!BB)
2237         return error("Invalid record");
2238 
2239       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2240       ValueName.clear();
2241       break;
2242     }
2243     }
2244   }
2245 }
2246 
2247 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2248 /// encoding.
2249 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2250   if ((V & 1) == 0)
2251     return V >> 1;
2252   if (V != 1)
2253     return -(V >> 1);
2254   // There is no such thing as -0 with integers.  "-0" really means MININT.
2255   return 1ULL << 63;
2256 }
2257 
2258 /// Resolve all of the initializers for global values and aliases that we can.
2259 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2260   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2261   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2262       IndirectSymbolInitWorklist;
2263   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2264   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2265   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2266 
2267   GlobalInitWorklist.swap(GlobalInits);
2268   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2269   FunctionPrefixWorklist.swap(FunctionPrefixes);
2270   FunctionPrologueWorklist.swap(FunctionPrologues);
2271   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2272 
2273   while (!GlobalInitWorklist.empty()) {
2274     unsigned ValID = GlobalInitWorklist.back().second;
2275     if (ValID >= ValueList.size()) {
2276       // Not ready to resolve this yet, it requires something later in the file.
2277       GlobalInits.push_back(GlobalInitWorklist.back());
2278     } else {
2279       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2280         GlobalInitWorklist.back().first->setInitializer(C);
2281       else
2282         return error("Expected a constant");
2283     }
2284     GlobalInitWorklist.pop_back();
2285   }
2286 
2287   while (!IndirectSymbolInitWorklist.empty()) {
2288     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2289     if (ValID >= ValueList.size()) {
2290       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2291     } else {
2292       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2293       if (!C)
2294         return error("Expected a constant");
2295       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2296       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2297         return error("Alias and aliasee types don't match");
2298       GIS->setIndirectSymbol(C);
2299     }
2300     IndirectSymbolInitWorklist.pop_back();
2301   }
2302 
2303   while (!FunctionPrefixWorklist.empty()) {
2304     unsigned ValID = FunctionPrefixWorklist.back().second;
2305     if (ValID >= ValueList.size()) {
2306       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2307     } else {
2308       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2309         FunctionPrefixWorklist.back().first->setPrefixData(C);
2310       else
2311         return error("Expected a constant");
2312     }
2313     FunctionPrefixWorklist.pop_back();
2314   }
2315 
2316   while (!FunctionPrologueWorklist.empty()) {
2317     unsigned ValID = FunctionPrologueWorklist.back().second;
2318     if (ValID >= ValueList.size()) {
2319       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2320     } else {
2321       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2322         FunctionPrologueWorklist.back().first->setPrologueData(C);
2323       else
2324         return error("Expected a constant");
2325     }
2326     FunctionPrologueWorklist.pop_back();
2327   }
2328 
2329   while (!FunctionPersonalityFnWorklist.empty()) {
2330     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2331     if (ValID >= ValueList.size()) {
2332       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2333     } else {
2334       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2335         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2336       else
2337         return error("Expected a constant");
2338     }
2339     FunctionPersonalityFnWorklist.pop_back();
2340   }
2341 
2342   return Error::success();
2343 }
2344 
2345 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2346   SmallVector<uint64_t, 8> Words(Vals.size());
2347   transform(Vals, Words.begin(),
2348                  BitcodeReader::decodeSignRotatedValue);
2349 
2350   return APInt(TypeBits, Words);
2351 }
2352 
2353 Error BitcodeReader::parseConstants() {
2354   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2355     return Err;
2356 
2357   SmallVector<uint64_t, 64> Record;
2358 
2359   // Read all the records for this value table.
2360   Type *CurTy = Type::getInt32Ty(Context);
2361   Type *CurFullTy = Type::getInt32Ty(Context);
2362   unsigned NextCstNo = ValueList.size();
2363 
2364   struct DelayedShufTy {
2365     VectorType *OpTy;
2366     VectorType *RTy;
2367     Type *CurFullTy;
2368     uint64_t Op0Idx;
2369     uint64_t Op1Idx;
2370     uint64_t Op2Idx;
2371     unsigned CstNo;
2372   };
2373   std::vector<DelayedShufTy> DelayedShuffles;
2374   while (true) {
2375     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2376     if (!MaybeEntry)
2377       return MaybeEntry.takeError();
2378     BitstreamEntry Entry = MaybeEntry.get();
2379 
2380     switch (Entry.Kind) {
2381     case BitstreamEntry::SubBlock: // Handled for us already.
2382     case BitstreamEntry::Error:
2383       return error("Malformed block");
2384     case BitstreamEntry::EndBlock:
2385       // Once all the constants have been read, go through and resolve forward
2386       // references.
2387       //
2388       // We have to treat shuffles specially because they don't have three
2389       // operands anymore.  We need to convert the shuffle mask into an array,
2390       // and we can't convert a forward reference.
2391       for (auto &DelayedShuffle : DelayedShuffles) {
2392         VectorType *OpTy = DelayedShuffle.OpTy;
2393         VectorType *RTy = DelayedShuffle.RTy;
2394         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2395         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2396         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2397         uint64_t CstNo = DelayedShuffle.CstNo;
2398         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2399         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2400         Type *ShufTy =
2401             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2402         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2403         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2404           return error("Invalid shufflevector operands");
2405         SmallVector<int, 16> Mask;
2406         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2407         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2408         ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy);
2409       }
2410 
2411       if (NextCstNo != ValueList.size())
2412         return error("Invalid constant reference");
2413 
2414       ValueList.resolveConstantForwardRefs();
2415       return Error::success();
2416     case BitstreamEntry::Record:
2417       // The interesting case.
2418       break;
2419     }
2420 
2421     // Read a record.
2422     Record.clear();
2423     Type *VoidType = Type::getVoidTy(Context);
2424     Value *V = nullptr;
2425     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2426     if (!MaybeBitCode)
2427       return MaybeBitCode.takeError();
2428     switch (unsigned BitCode = MaybeBitCode.get()) {
2429     default:  // Default behavior: unknown constant
2430     case bitc::CST_CODE_UNDEF:     // UNDEF
2431       V = UndefValue::get(CurTy);
2432       break;
2433     case bitc::CST_CODE_POISON:    // POISON
2434       V = PoisonValue::get(CurTy);
2435       break;
2436     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2437       if (Record.empty())
2438         return error("Invalid record");
2439       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2440         return error("Invalid record");
2441       if (TypeList[Record[0]] == VoidType)
2442         return error("Invalid constant type");
2443       CurFullTy = TypeList[Record[0]];
2444       CurTy = flattenPointerTypes(CurFullTy);
2445       continue;  // Skip the ValueList manipulation.
2446     case bitc::CST_CODE_NULL:      // NULL
2447       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2448         return error("Invalid type for a constant null value");
2449       V = Constant::getNullValue(CurTy);
2450       break;
2451     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2452       if (!CurTy->isIntegerTy() || Record.empty())
2453         return error("Invalid record");
2454       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2455       break;
2456     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2457       if (!CurTy->isIntegerTy() || Record.empty())
2458         return error("Invalid record");
2459 
2460       APInt VInt =
2461           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2462       V = ConstantInt::get(Context, VInt);
2463 
2464       break;
2465     }
2466     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2467       if (Record.empty())
2468         return error("Invalid record");
2469       if (CurTy->isHalfTy())
2470         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2471                                              APInt(16, (uint16_t)Record[0])));
2472       else if (CurTy->isBFloatTy())
2473         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2474                                              APInt(16, (uint32_t)Record[0])));
2475       else if (CurTy->isFloatTy())
2476         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2477                                              APInt(32, (uint32_t)Record[0])));
2478       else if (CurTy->isDoubleTy())
2479         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2480                                              APInt(64, Record[0])));
2481       else if (CurTy->isX86_FP80Ty()) {
2482         // Bits are not stored the same way as a normal i80 APInt, compensate.
2483         uint64_t Rearrange[2];
2484         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2485         Rearrange[1] = Record[0] >> 48;
2486         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2487                                              APInt(80, Rearrange)));
2488       } else if (CurTy->isFP128Ty())
2489         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2490                                              APInt(128, Record)));
2491       else if (CurTy->isPPC_FP128Ty())
2492         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2493                                              APInt(128, Record)));
2494       else
2495         V = UndefValue::get(CurTy);
2496       break;
2497     }
2498 
2499     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2500       if (Record.empty())
2501         return error("Invalid record");
2502 
2503       unsigned Size = Record.size();
2504       SmallVector<Constant*, 16> Elts;
2505 
2506       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2507         for (unsigned i = 0; i != Size; ++i)
2508           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2509                                                      STy->getElementType(i)));
2510         V = ConstantStruct::get(STy, Elts);
2511       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2512         Type *EltTy = ATy->getElementType();
2513         for (unsigned i = 0; i != Size; ++i)
2514           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2515         V = ConstantArray::get(ATy, Elts);
2516       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2517         Type *EltTy = VTy->getElementType();
2518         for (unsigned i = 0; i != Size; ++i)
2519           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2520         V = ConstantVector::get(Elts);
2521       } else {
2522         V = UndefValue::get(CurTy);
2523       }
2524       break;
2525     }
2526     case bitc::CST_CODE_STRING:    // STRING: [values]
2527     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2528       if (Record.empty())
2529         return error("Invalid record");
2530 
2531       SmallString<16> Elts(Record.begin(), Record.end());
2532       V = ConstantDataArray::getString(Context, Elts,
2533                                        BitCode == bitc::CST_CODE_CSTRING);
2534       break;
2535     }
2536     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2537       if (Record.empty())
2538         return error("Invalid record");
2539 
2540       Type *EltTy;
2541       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2542         EltTy = Array->getElementType();
2543       else
2544         EltTy = cast<VectorType>(CurTy)->getElementType();
2545       if (EltTy->isIntegerTy(8)) {
2546         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2547         if (isa<VectorType>(CurTy))
2548           V = ConstantDataVector::get(Context, Elts);
2549         else
2550           V = ConstantDataArray::get(Context, Elts);
2551       } else if (EltTy->isIntegerTy(16)) {
2552         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2553         if (isa<VectorType>(CurTy))
2554           V = ConstantDataVector::get(Context, Elts);
2555         else
2556           V = ConstantDataArray::get(Context, Elts);
2557       } else if (EltTy->isIntegerTy(32)) {
2558         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2559         if (isa<VectorType>(CurTy))
2560           V = ConstantDataVector::get(Context, Elts);
2561         else
2562           V = ConstantDataArray::get(Context, Elts);
2563       } else if (EltTy->isIntegerTy(64)) {
2564         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2565         if (isa<VectorType>(CurTy))
2566           V = ConstantDataVector::get(Context, Elts);
2567         else
2568           V = ConstantDataArray::get(Context, Elts);
2569       } else if (EltTy->isHalfTy()) {
2570         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2571         if (isa<VectorType>(CurTy))
2572           V = ConstantDataVector::getFP(EltTy, Elts);
2573         else
2574           V = ConstantDataArray::getFP(EltTy, Elts);
2575       } else if (EltTy->isBFloatTy()) {
2576         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2577         if (isa<VectorType>(CurTy))
2578           V = ConstantDataVector::getFP(EltTy, Elts);
2579         else
2580           V = ConstantDataArray::getFP(EltTy, Elts);
2581       } else if (EltTy->isFloatTy()) {
2582         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2583         if (isa<VectorType>(CurTy))
2584           V = ConstantDataVector::getFP(EltTy, Elts);
2585         else
2586           V = ConstantDataArray::getFP(EltTy, Elts);
2587       } else if (EltTy->isDoubleTy()) {
2588         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2589         if (isa<VectorType>(CurTy))
2590           V = ConstantDataVector::getFP(EltTy, Elts);
2591         else
2592           V = ConstantDataArray::getFP(EltTy, Elts);
2593       } else {
2594         return error("Invalid type for value");
2595       }
2596       break;
2597     }
2598     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2599       if (Record.size() < 2)
2600         return error("Invalid record");
2601       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2602       if (Opc < 0) {
2603         V = UndefValue::get(CurTy);  // Unknown unop.
2604       } else {
2605         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2606         unsigned Flags = 0;
2607         V = ConstantExpr::get(Opc, LHS, Flags);
2608       }
2609       break;
2610     }
2611     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2612       if (Record.size() < 3)
2613         return error("Invalid record");
2614       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2615       if (Opc < 0) {
2616         V = UndefValue::get(CurTy);  // Unknown binop.
2617       } else {
2618         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2619         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2620         unsigned Flags = 0;
2621         if (Record.size() >= 4) {
2622           if (Opc == Instruction::Add ||
2623               Opc == Instruction::Sub ||
2624               Opc == Instruction::Mul ||
2625               Opc == Instruction::Shl) {
2626             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2627               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2628             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2629               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2630           } else if (Opc == Instruction::SDiv ||
2631                      Opc == Instruction::UDiv ||
2632                      Opc == Instruction::LShr ||
2633                      Opc == Instruction::AShr) {
2634             if (Record[3] & (1 << bitc::PEO_EXACT))
2635               Flags |= SDivOperator::IsExact;
2636           }
2637         }
2638         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2639       }
2640       break;
2641     }
2642     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2643       if (Record.size() < 3)
2644         return error("Invalid record");
2645       int Opc = getDecodedCastOpcode(Record[0]);
2646       if (Opc < 0) {
2647         V = UndefValue::get(CurTy);  // Unknown cast.
2648       } else {
2649         Type *OpTy = getTypeByID(Record[1]);
2650         if (!OpTy)
2651           return error("Invalid record");
2652         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2653         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2654         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2655       }
2656       break;
2657     }
2658     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2659     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2660     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2661                                                      // operands]
2662       unsigned OpNum = 0;
2663       Type *PointeeType = nullptr;
2664       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2665           Record.size() % 2)
2666         PointeeType = getTypeByID(Record[OpNum++]);
2667 
2668       bool InBounds = false;
2669       Optional<unsigned> InRangeIndex;
2670       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2671         uint64_t Op = Record[OpNum++];
2672         InBounds = Op & 1;
2673         InRangeIndex = Op >> 1;
2674       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2675         InBounds = true;
2676 
2677       SmallVector<Constant*, 16> Elts;
2678       Type *Elt0FullTy = nullptr;
2679       while (OpNum != Record.size()) {
2680         if (!Elt0FullTy)
2681           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2682         Type *ElTy = getTypeByID(Record[OpNum++]);
2683         if (!ElTy)
2684           return error("Invalid record");
2685         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2686       }
2687 
2688       if (Elts.size() < 1)
2689         return error("Invalid gep with no operands");
2690 
2691       Type *ImplicitPointeeType =
2692           getPointerElementFlatType(Elt0FullTy->getScalarType());
2693       if (!PointeeType)
2694         PointeeType = ImplicitPointeeType;
2695       else if (PointeeType != ImplicitPointeeType)
2696         return error("Explicit gep operator type does not match pointee type "
2697                      "of pointer operand");
2698 
2699       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2700       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2701                                          InBounds, InRangeIndex);
2702       break;
2703     }
2704     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2705       if (Record.size() < 3)
2706         return error("Invalid record");
2707 
2708       Type *SelectorTy = Type::getInt1Ty(Context);
2709 
2710       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2711       // Get the type from the ValueList before getting a forward ref.
2712       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2713         if (Value *V = ValueList[Record[0]])
2714           if (SelectorTy != V->getType())
2715             SelectorTy = VectorType::get(SelectorTy,
2716                                          VTy->getElementCount());
2717 
2718       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2719                                                               SelectorTy),
2720                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2721                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2722       break;
2723     }
2724     case bitc::CST_CODE_CE_EXTRACTELT
2725         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2726       if (Record.size() < 3)
2727         return error("Invalid record");
2728       VectorType *OpTy =
2729         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2730       if (!OpTy)
2731         return error("Invalid record");
2732       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2733       Constant *Op1 = nullptr;
2734       if (Record.size() == 4) {
2735         Type *IdxTy = getTypeByID(Record[2]);
2736         if (!IdxTy)
2737           return error("Invalid record");
2738         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2739       } else {
2740         // Deprecated, but still needed to read old bitcode files.
2741         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2742       }
2743       if (!Op1)
2744         return error("Invalid record");
2745       V = ConstantExpr::getExtractElement(Op0, Op1);
2746       break;
2747     }
2748     case bitc::CST_CODE_CE_INSERTELT
2749         : { // CE_INSERTELT: [opval, opval, opty, opval]
2750       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2751       if (Record.size() < 3 || !OpTy)
2752         return error("Invalid record");
2753       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2754       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2755                                                   OpTy->getElementType());
2756       Constant *Op2 = nullptr;
2757       if (Record.size() == 4) {
2758         Type *IdxTy = getTypeByID(Record[2]);
2759         if (!IdxTy)
2760           return error("Invalid record");
2761         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2762       } else {
2763         // Deprecated, but still needed to read old bitcode files.
2764         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2765       }
2766       if (!Op2)
2767         return error("Invalid record");
2768       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2769       break;
2770     }
2771     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2772       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2773       if (Record.size() < 3 || !OpTy)
2774         return error("Invalid record");
2775       DelayedShuffles.push_back(
2776           {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo});
2777       ++NextCstNo;
2778       continue;
2779     }
2780     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2781       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2782       VectorType *OpTy =
2783         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2784       if (Record.size() < 4 || !RTy || !OpTy)
2785         return error("Invalid record");
2786       DelayedShuffles.push_back(
2787           {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo});
2788       ++NextCstNo;
2789       continue;
2790     }
2791     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2792       if (Record.size() < 4)
2793         return error("Invalid record");
2794       Type *OpTy = getTypeByID(Record[0]);
2795       if (!OpTy)
2796         return error("Invalid record");
2797       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2798       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2799 
2800       if (OpTy->isFPOrFPVectorTy())
2801         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2802       else
2803         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2804       break;
2805     }
2806     // This maintains backward compatibility, pre-asm dialect keywords.
2807     // Deprecated, but still needed to read old bitcode files.
2808     case bitc::CST_CODE_INLINEASM_OLD: {
2809       if (Record.size() < 2)
2810         return error("Invalid record");
2811       std::string AsmStr, ConstrStr;
2812       bool HasSideEffects = Record[0] & 1;
2813       bool IsAlignStack = Record[0] >> 1;
2814       unsigned AsmStrSize = Record[1];
2815       if (2+AsmStrSize >= Record.size())
2816         return error("Invalid record");
2817       unsigned ConstStrSize = Record[2+AsmStrSize];
2818       if (3+AsmStrSize+ConstStrSize > Record.size())
2819         return error("Invalid record");
2820 
2821       for (unsigned i = 0; i != AsmStrSize; ++i)
2822         AsmStr += (char)Record[2+i];
2823       for (unsigned i = 0; i != ConstStrSize; ++i)
2824         ConstrStr += (char)Record[3+AsmStrSize+i];
2825       UpgradeInlineAsmString(&AsmStr);
2826       V = InlineAsm::get(
2827           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2828           ConstrStr, HasSideEffects, IsAlignStack);
2829       break;
2830     }
2831     // This version adds support for the asm dialect keywords (e.g.,
2832     // inteldialect).
2833     case bitc::CST_CODE_INLINEASM: {
2834       if (Record.size() < 2)
2835         return error("Invalid record");
2836       std::string AsmStr, ConstrStr;
2837       bool HasSideEffects = Record[0] & 1;
2838       bool IsAlignStack = (Record[0] >> 1) & 1;
2839       unsigned AsmDialect = Record[0] >> 2;
2840       unsigned AsmStrSize = Record[1];
2841       if (2+AsmStrSize >= Record.size())
2842         return error("Invalid record");
2843       unsigned ConstStrSize = Record[2+AsmStrSize];
2844       if (3+AsmStrSize+ConstStrSize > Record.size())
2845         return error("Invalid record");
2846 
2847       for (unsigned i = 0; i != AsmStrSize; ++i)
2848         AsmStr += (char)Record[2+i];
2849       for (unsigned i = 0; i != ConstStrSize; ++i)
2850         ConstrStr += (char)Record[3+AsmStrSize+i];
2851       UpgradeInlineAsmString(&AsmStr);
2852       V = InlineAsm::get(
2853           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2854           ConstrStr, HasSideEffects, IsAlignStack,
2855           InlineAsm::AsmDialect(AsmDialect));
2856       break;
2857     }
2858     case bitc::CST_CODE_BLOCKADDRESS:{
2859       if (Record.size() < 3)
2860         return error("Invalid record");
2861       Type *FnTy = getTypeByID(Record[0]);
2862       if (!FnTy)
2863         return error("Invalid record");
2864       Function *Fn =
2865         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2866       if (!Fn)
2867         return error("Invalid record");
2868 
2869       // If the function is already parsed we can insert the block address right
2870       // away.
2871       BasicBlock *BB;
2872       unsigned BBID = Record[2];
2873       if (!BBID)
2874         // Invalid reference to entry block.
2875         return error("Invalid ID");
2876       if (!Fn->empty()) {
2877         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2878         for (size_t I = 0, E = BBID; I != E; ++I) {
2879           if (BBI == BBE)
2880             return error("Invalid ID");
2881           ++BBI;
2882         }
2883         BB = &*BBI;
2884       } else {
2885         // Otherwise insert a placeholder and remember it so it can be inserted
2886         // when the function is parsed.
2887         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2888         if (FwdBBs.empty())
2889           BasicBlockFwdRefQueue.push_back(Fn);
2890         if (FwdBBs.size() < BBID + 1)
2891           FwdBBs.resize(BBID + 1);
2892         if (!FwdBBs[BBID])
2893           FwdBBs[BBID] = BasicBlock::Create(Context);
2894         BB = FwdBBs[BBID];
2895       }
2896       V = BlockAddress::get(Fn, BB);
2897       break;
2898     }
2899     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2900       if (Record.size() < 2)
2901         return error("Invalid record");
2902       Type *GVTy = getTypeByID(Record[0]);
2903       if (!GVTy)
2904         return error("Invalid record");
2905       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2906           ValueList.getConstantFwdRef(Record[1], GVTy));
2907       if (!GV)
2908         return error("Invalid record");
2909 
2910       V = DSOLocalEquivalent::get(GV);
2911       break;
2912     }
2913     }
2914 
2915     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2916            "Incorrect fully structured type provided for Constant");
2917     ValueList.assignValue(V, NextCstNo, CurFullTy);
2918     ++NextCstNo;
2919   }
2920 }
2921 
2922 Error BitcodeReader::parseUseLists() {
2923   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2924     return Err;
2925 
2926   // Read all the records.
2927   SmallVector<uint64_t, 64> Record;
2928 
2929   while (true) {
2930     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2931     if (!MaybeEntry)
2932       return MaybeEntry.takeError();
2933     BitstreamEntry Entry = MaybeEntry.get();
2934 
2935     switch (Entry.Kind) {
2936     case BitstreamEntry::SubBlock: // Handled for us already.
2937     case BitstreamEntry::Error:
2938       return error("Malformed block");
2939     case BitstreamEntry::EndBlock:
2940       return Error::success();
2941     case BitstreamEntry::Record:
2942       // The interesting case.
2943       break;
2944     }
2945 
2946     // Read a use list record.
2947     Record.clear();
2948     bool IsBB = false;
2949     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2950     if (!MaybeRecord)
2951       return MaybeRecord.takeError();
2952     switch (MaybeRecord.get()) {
2953     default:  // Default behavior: unknown type.
2954       break;
2955     case bitc::USELIST_CODE_BB:
2956       IsBB = true;
2957       LLVM_FALLTHROUGH;
2958     case bitc::USELIST_CODE_DEFAULT: {
2959       unsigned RecordLength = Record.size();
2960       if (RecordLength < 3)
2961         // Records should have at least an ID and two indexes.
2962         return error("Invalid record");
2963       unsigned ID = Record.pop_back_val();
2964 
2965       Value *V;
2966       if (IsBB) {
2967         assert(ID < FunctionBBs.size() && "Basic block not found");
2968         V = FunctionBBs[ID];
2969       } else
2970         V = ValueList[ID];
2971       unsigned NumUses = 0;
2972       SmallDenseMap<const Use *, unsigned, 16> Order;
2973       for (const Use &U : V->materialized_uses()) {
2974         if (++NumUses > Record.size())
2975           break;
2976         Order[&U] = Record[NumUses - 1];
2977       }
2978       if (Order.size() != Record.size() || NumUses > Record.size())
2979         // Mismatches can happen if the functions are being materialized lazily
2980         // (out-of-order), or a value has been upgraded.
2981         break;
2982 
2983       V->sortUseList([&](const Use &L, const Use &R) {
2984         return Order.lookup(&L) < Order.lookup(&R);
2985       });
2986       break;
2987     }
2988     }
2989   }
2990 }
2991 
2992 /// When we see the block for metadata, remember where it is and then skip it.
2993 /// This lets us lazily deserialize the metadata.
2994 Error BitcodeReader::rememberAndSkipMetadata() {
2995   // Save the current stream state.
2996   uint64_t CurBit = Stream.GetCurrentBitNo();
2997   DeferredMetadataInfo.push_back(CurBit);
2998 
2999   // Skip over the block for now.
3000   if (Error Err = Stream.SkipBlock())
3001     return Err;
3002   return Error::success();
3003 }
3004 
3005 Error BitcodeReader::materializeMetadata() {
3006   for (uint64_t BitPos : DeferredMetadataInfo) {
3007     // Move the bit stream to the saved position.
3008     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3009       return JumpFailed;
3010     if (Error Err = MDLoader->parseModuleMetadata())
3011       return Err;
3012   }
3013 
3014   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3015   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3016   // multiple times.
3017   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3018     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3019       NamedMDNode *LinkerOpts =
3020           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3021       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3022         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3023     }
3024   }
3025 
3026   DeferredMetadataInfo.clear();
3027   return Error::success();
3028 }
3029 
3030 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3031 
3032 /// When we see the block for a function body, remember where it is and then
3033 /// skip it.  This lets us lazily deserialize the functions.
3034 Error BitcodeReader::rememberAndSkipFunctionBody() {
3035   // Get the function we are talking about.
3036   if (FunctionsWithBodies.empty())
3037     return error("Insufficient function protos");
3038 
3039   Function *Fn = FunctionsWithBodies.back();
3040   FunctionsWithBodies.pop_back();
3041 
3042   // Save the current stream state.
3043   uint64_t CurBit = Stream.GetCurrentBitNo();
3044   assert(
3045       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3046       "Mismatch between VST and scanned function offsets");
3047   DeferredFunctionInfo[Fn] = CurBit;
3048 
3049   // Skip over the function block for now.
3050   if (Error Err = Stream.SkipBlock())
3051     return Err;
3052   return Error::success();
3053 }
3054 
3055 Error BitcodeReader::globalCleanup() {
3056   // Patch the initializers for globals and aliases up.
3057   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3058     return Err;
3059   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3060     return error("Malformed global initializer set");
3061 
3062   // Look for intrinsic functions which need to be upgraded at some point
3063   // and functions that need to have their function attributes upgraded.
3064   for (Function &F : *TheModule) {
3065     MDLoader->upgradeDebugIntrinsics(F);
3066     Function *NewFn;
3067     if (UpgradeIntrinsicFunction(&F, NewFn))
3068       UpgradedIntrinsics[&F] = NewFn;
3069     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3070       // Some types could be renamed during loading if several modules are
3071       // loaded in the same LLVMContext (LTO scenario). In this case we should
3072       // remangle intrinsics names as well.
3073       RemangledIntrinsics[&F] = Remangled.getValue();
3074     // Look for functions that rely on old function attribute behavior.
3075     UpgradeFunctionAttributes(F);
3076   }
3077 
3078   // Look for global variables which need to be renamed.
3079   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3080   for (GlobalVariable &GV : TheModule->globals())
3081     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3082       UpgradedVariables.emplace_back(&GV, Upgraded);
3083   for (auto &Pair : UpgradedVariables) {
3084     Pair.first->eraseFromParent();
3085     TheModule->getGlobalList().push_back(Pair.second);
3086   }
3087 
3088   // Force deallocation of memory for these vectors to favor the client that
3089   // want lazy deserialization.
3090   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3091   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3092       IndirectSymbolInits);
3093   return Error::success();
3094 }
3095 
3096 /// Support for lazy parsing of function bodies. This is required if we
3097 /// either have an old bitcode file without a VST forward declaration record,
3098 /// or if we have an anonymous function being materialized, since anonymous
3099 /// functions do not have a name and are therefore not in the VST.
3100 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3101   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3102     return JumpFailed;
3103 
3104   if (Stream.AtEndOfStream())
3105     return error("Could not find function in stream");
3106 
3107   if (!SeenFirstFunctionBody)
3108     return error("Trying to materialize functions before seeing function blocks");
3109 
3110   // An old bitcode file with the symbol table at the end would have
3111   // finished the parse greedily.
3112   assert(SeenValueSymbolTable);
3113 
3114   SmallVector<uint64_t, 64> Record;
3115 
3116   while (true) {
3117     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3118     if (!MaybeEntry)
3119       return MaybeEntry.takeError();
3120     llvm::BitstreamEntry Entry = MaybeEntry.get();
3121 
3122     switch (Entry.Kind) {
3123     default:
3124       return error("Expect SubBlock");
3125     case BitstreamEntry::SubBlock:
3126       switch (Entry.ID) {
3127       default:
3128         return error("Expect function block");
3129       case bitc::FUNCTION_BLOCK_ID:
3130         if (Error Err = rememberAndSkipFunctionBody())
3131           return Err;
3132         NextUnreadBit = Stream.GetCurrentBitNo();
3133         return Error::success();
3134       }
3135     }
3136   }
3137 }
3138 
3139 bool BitcodeReaderBase::readBlockInfo() {
3140   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3141       Stream.ReadBlockInfoBlock();
3142   if (!MaybeNewBlockInfo)
3143     return true; // FIXME Handle the error.
3144   Optional<BitstreamBlockInfo> NewBlockInfo =
3145       std::move(MaybeNewBlockInfo.get());
3146   if (!NewBlockInfo)
3147     return true;
3148   BlockInfo = std::move(*NewBlockInfo);
3149   return false;
3150 }
3151 
3152 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3153   // v1: [selection_kind, name]
3154   // v2: [strtab_offset, strtab_size, selection_kind]
3155   StringRef Name;
3156   std::tie(Name, Record) = readNameFromStrtab(Record);
3157 
3158   if (Record.empty())
3159     return error("Invalid record");
3160   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3161   std::string OldFormatName;
3162   if (!UseStrtab) {
3163     if (Record.size() < 2)
3164       return error("Invalid record");
3165     unsigned ComdatNameSize = Record[1];
3166     OldFormatName.reserve(ComdatNameSize);
3167     for (unsigned i = 0; i != ComdatNameSize; ++i)
3168       OldFormatName += (char)Record[2 + i];
3169     Name = OldFormatName;
3170   }
3171   Comdat *C = TheModule->getOrInsertComdat(Name);
3172   C->setSelectionKind(SK);
3173   ComdatList.push_back(C);
3174   return Error::success();
3175 }
3176 
3177 static void inferDSOLocal(GlobalValue *GV) {
3178   // infer dso_local from linkage and visibility if it is not encoded.
3179   if (GV->hasLocalLinkage() ||
3180       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3181     GV->setDSOLocal(true);
3182 }
3183 
3184 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3185   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3186   // visibility, threadlocal, unnamed_addr, externally_initialized,
3187   // dllstorageclass, comdat, attributes, preemption specifier,
3188   // partition strtab offset, partition strtab size] (name in VST)
3189   // v2: [strtab_offset, strtab_size, v1]
3190   StringRef Name;
3191   std::tie(Name, Record) = readNameFromStrtab(Record);
3192 
3193   if (Record.size() < 6)
3194     return error("Invalid record");
3195   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3196   Type *Ty = flattenPointerTypes(FullTy);
3197   if (!Ty)
3198     return error("Invalid record");
3199   bool isConstant = Record[1] & 1;
3200   bool explicitType = Record[1] & 2;
3201   unsigned AddressSpace;
3202   if (explicitType) {
3203     AddressSpace = Record[1] >> 2;
3204   } else {
3205     if (!Ty->isPointerTy())
3206       return error("Invalid type for value");
3207     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3208     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3209   }
3210 
3211   uint64_t RawLinkage = Record[3];
3212   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3213   MaybeAlign Alignment;
3214   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3215     return Err;
3216   std::string Section;
3217   if (Record[5]) {
3218     if (Record[5] - 1 >= SectionTable.size())
3219       return error("Invalid ID");
3220     Section = SectionTable[Record[5] - 1];
3221   }
3222   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3223   // Local linkage must have default visibility.
3224   // auto-upgrade `hidden` and `protected` for old bitcode.
3225   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3226     Visibility = getDecodedVisibility(Record[6]);
3227 
3228   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3229   if (Record.size() > 7)
3230     TLM = getDecodedThreadLocalMode(Record[7]);
3231 
3232   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3233   if (Record.size() > 8)
3234     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3235 
3236   bool ExternallyInitialized = false;
3237   if (Record.size() > 9)
3238     ExternallyInitialized = Record[9];
3239 
3240   GlobalVariable *NewGV =
3241       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3242                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3243   NewGV->setAlignment(Alignment);
3244   if (!Section.empty())
3245     NewGV->setSection(Section);
3246   NewGV->setVisibility(Visibility);
3247   NewGV->setUnnamedAddr(UnnamedAddr);
3248 
3249   if (Record.size() > 10)
3250     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3251   else
3252     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3253 
3254   FullTy = PointerType::get(FullTy, AddressSpace);
3255   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3256          "Incorrect fully specified type for GlobalVariable");
3257   ValueList.push_back(NewGV, FullTy);
3258 
3259   // Remember which value to use for the global initializer.
3260   if (unsigned InitID = Record[2])
3261     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3262 
3263   if (Record.size() > 11) {
3264     if (unsigned ComdatID = Record[11]) {
3265       if (ComdatID > ComdatList.size())
3266         return error("Invalid global variable comdat ID");
3267       NewGV->setComdat(ComdatList[ComdatID - 1]);
3268     }
3269   } else if (hasImplicitComdat(RawLinkage)) {
3270     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3271   }
3272 
3273   if (Record.size() > 12) {
3274     auto AS = getAttributes(Record[12]).getFnAttributes();
3275     NewGV->setAttributes(AS);
3276   }
3277 
3278   if (Record.size() > 13) {
3279     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3280   }
3281   inferDSOLocal(NewGV);
3282 
3283   // Check whether we have enough values to read a partition name.
3284   if (Record.size() > 15)
3285     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3286 
3287   return Error::success();
3288 }
3289 
3290 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3291   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3292   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3293   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3294   // v2: [strtab_offset, strtab_size, v1]
3295   StringRef Name;
3296   std::tie(Name, Record) = readNameFromStrtab(Record);
3297 
3298   if (Record.size() < 8)
3299     return error("Invalid record");
3300   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3301   Type *FTy = flattenPointerTypes(FullFTy);
3302   if (!FTy)
3303     return error("Invalid record");
3304   if (isa<PointerType>(FTy))
3305     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3306 
3307   if (!isa<FunctionType>(FTy))
3308     return error("Invalid type for value");
3309   auto CC = static_cast<CallingConv::ID>(Record[1]);
3310   if (CC & ~CallingConv::MaxID)
3311     return error("Invalid calling convention ID");
3312 
3313   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3314   if (Record.size() > 16)
3315     AddrSpace = Record[16];
3316 
3317   Function *Func =
3318       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3319                        AddrSpace, Name, TheModule);
3320 
3321   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3322          "Incorrect fully specified type provided for function");
3323   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3324 
3325   Func->setCallingConv(CC);
3326   bool isProto = Record[2];
3327   uint64_t RawLinkage = Record[3];
3328   Func->setLinkage(getDecodedLinkage(RawLinkage));
3329   Func->setAttributes(getAttributes(Record[4]));
3330 
3331   // Upgrade any old-style byval or sret without a type by propagating the
3332   // argument's pointee type. There should be no opaque pointers where the byval
3333   // type is implicit.
3334   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3335     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3336                                      Attribute::InAlloca}) {
3337       if (!Func->hasParamAttribute(i, Kind))
3338         continue;
3339 
3340       Func->removeParamAttr(i, Kind);
3341 
3342       Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3343       Type *PtrEltTy = getPointerElementFlatType(PTy);
3344       Attribute NewAttr;
3345       switch (Kind) {
3346       case Attribute::ByVal:
3347         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3348         break;
3349       case Attribute::StructRet:
3350         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3351         break;
3352       case Attribute::InAlloca:
3353         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3354         break;
3355       default:
3356         llvm_unreachable("not an upgraded type attribute");
3357       }
3358 
3359       Func->addParamAttr(i, NewAttr);
3360     }
3361   }
3362 
3363   MaybeAlign Alignment;
3364   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3365     return Err;
3366   Func->setAlignment(Alignment);
3367   if (Record[6]) {
3368     if (Record[6] - 1 >= SectionTable.size())
3369       return error("Invalid ID");
3370     Func->setSection(SectionTable[Record[6] - 1]);
3371   }
3372   // Local linkage must have default visibility.
3373   // auto-upgrade `hidden` and `protected` for old bitcode.
3374   if (!Func->hasLocalLinkage())
3375     Func->setVisibility(getDecodedVisibility(Record[7]));
3376   if (Record.size() > 8 && Record[8]) {
3377     if (Record[8] - 1 >= GCTable.size())
3378       return error("Invalid ID");
3379     Func->setGC(GCTable[Record[8] - 1]);
3380   }
3381   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3382   if (Record.size() > 9)
3383     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3384   Func->setUnnamedAddr(UnnamedAddr);
3385   if (Record.size() > 10 && Record[10] != 0)
3386     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3387 
3388   if (Record.size() > 11)
3389     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3390   else
3391     upgradeDLLImportExportLinkage(Func, RawLinkage);
3392 
3393   if (Record.size() > 12) {
3394     if (unsigned ComdatID = Record[12]) {
3395       if (ComdatID > ComdatList.size())
3396         return error("Invalid function comdat ID");
3397       Func->setComdat(ComdatList[ComdatID - 1]);
3398     }
3399   } else if (hasImplicitComdat(RawLinkage)) {
3400     Func->setComdat(reinterpret_cast<Comdat *>(1));
3401   }
3402 
3403   if (Record.size() > 13 && Record[13] != 0)
3404     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3405 
3406   if (Record.size() > 14 && Record[14] != 0)
3407     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3408 
3409   if (Record.size() > 15) {
3410     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3411   }
3412   inferDSOLocal(Func);
3413 
3414   // Record[16] is the address space number.
3415 
3416   // Check whether we have enough values to read a partition name.
3417   if (Record.size() > 18)
3418     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3419 
3420   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3421   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3422          "Incorrect fully specified type provided for Function");
3423   ValueList.push_back(Func, FullTy);
3424 
3425   // If this is a function with a body, remember the prototype we are
3426   // creating now, so that we can match up the body with them later.
3427   if (!isProto) {
3428     Func->setIsMaterializable(true);
3429     FunctionsWithBodies.push_back(Func);
3430     DeferredFunctionInfo[Func] = 0;
3431   }
3432   return Error::success();
3433 }
3434 
3435 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3436     unsigned BitCode, ArrayRef<uint64_t> Record) {
3437   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3438   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3439   // dllstorageclass, threadlocal, unnamed_addr,
3440   // preemption specifier] (name in VST)
3441   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3442   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3443   // preemption specifier] (name in VST)
3444   // v2: [strtab_offset, strtab_size, v1]
3445   StringRef Name;
3446   std::tie(Name, Record) = readNameFromStrtab(Record);
3447 
3448   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3449   if (Record.size() < (3 + (unsigned)NewRecord))
3450     return error("Invalid record");
3451   unsigned OpNum = 0;
3452   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3453   Type *Ty = flattenPointerTypes(FullTy);
3454   if (!Ty)
3455     return error("Invalid record");
3456 
3457   unsigned AddrSpace;
3458   if (!NewRecord) {
3459     auto *PTy = dyn_cast<PointerType>(Ty);
3460     if (!PTy)
3461       return error("Invalid type for value");
3462     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3463     AddrSpace = PTy->getAddressSpace();
3464   } else {
3465     AddrSpace = Record[OpNum++];
3466   }
3467 
3468   auto Val = Record[OpNum++];
3469   auto Linkage = Record[OpNum++];
3470   GlobalIndirectSymbol *NewGA;
3471   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3472       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3473     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3474                                 TheModule);
3475   else
3476     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3477                                 nullptr, TheModule);
3478 
3479   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3480          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3481   // Local linkage must have default visibility.
3482   // auto-upgrade `hidden` and `protected` for old bitcode.
3483   if (OpNum != Record.size()) {
3484     auto VisInd = OpNum++;
3485     if (!NewGA->hasLocalLinkage())
3486       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3487   }
3488   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3489       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3490     if (OpNum != Record.size())
3491       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3492     else
3493       upgradeDLLImportExportLinkage(NewGA, Linkage);
3494     if (OpNum != Record.size())
3495       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3496     if (OpNum != Record.size())
3497       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3498   }
3499   if (OpNum != Record.size())
3500     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3501   inferDSOLocal(NewGA);
3502 
3503   // Check whether we have enough values to read a partition name.
3504   if (OpNum + 1 < Record.size()) {
3505     NewGA->setPartition(
3506         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3507     OpNum += 2;
3508   }
3509 
3510   FullTy = PointerType::get(FullTy, AddrSpace);
3511   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3512          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3513   ValueList.push_back(NewGA, FullTy);
3514   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3515   return Error::success();
3516 }
3517 
3518 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3519                                  bool ShouldLazyLoadMetadata,
3520                                  DataLayoutCallbackTy DataLayoutCallback) {
3521   if (ResumeBit) {
3522     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3523       return JumpFailed;
3524   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3525     return Err;
3526 
3527   SmallVector<uint64_t, 64> Record;
3528 
3529   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3530   // finalize the datalayout before we run any of that code.
3531   bool ResolvedDataLayout = false;
3532   auto ResolveDataLayout = [&] {
3533     if (ResolvedDataLayout)
3534       return;
3535 
3536     // datalayout and triple can't be parsed after this point.
3537     ResolvedDataLayout = true;
3538 
3539     // Upgrade data layout string.
3540     std::string DL = llvm::UpgradeDataLayoutString(
3541         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3542     TheModule->setDataLayout(DL);
3543 
3544     if (auto LayoutOverride =
3545             DataLayoutCallback(TheModule->getTargetTriple()))
3546       TheModule->setDataLayout(*LayoutOverride);
3547   };
3548 
3549   // Read all the records for this module.
3550   while (true) {
3551     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3552     if (!MaybeEntry)
3553       return MaybeEntry.takeError();
3554     llvm::BitstreamEntry Entry = MaybeEntry.get();
3555 
3556     switch (Entry.Kind) {
3557     case BitstreamEntry::Error:
3558       return error("Malformed block");
3559     case BitstreamEntry::EndBlock:
3560       ResolveDataLayout();
3561       return globalCleanup();
3562 
3563     case BitstreamEntry::SubBlock:
3564       switch (Entry.ID) {
3565       default:  // Skip unknown content.
3566         if (Error Err = Stream.SkipBlock())
3567           return Err;
3568         break;
3569       case bitc::BLOCKINFO_BLOCK_ID:
3570         if (readBlockInfo())
3571           return error("Malformed block");
3572         break;
3573       case bitc::PARAMATTR_BLOCK_ID:
3574         if (Error Err = parseAttributeBlock())
3575           return Err;
3576         break;
3577       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3578         if (Error Err = parseAttributeGroupBlock())
3579           return Err;
3580         break;
3581       case bitc::TYPE_BLOCK_ID_NEW:
3582         if (Error Err = parseTypeTable())
3583           return Err;
3584         break;
3585       case bitc::VALUE_SYMTAB_BLOCK_ID:
3586         if (!SeenValueSymbolTable) {
3587           // Either this is an old form VST without function index and an
3588           // associated VST forward declaration record (which would have caused
3589           // the VST to be jumped to and parsed before it was encountered
3590           // normally in the stream), or there were no function blocks to
3591           // trigger an earlier parsing of the VST.
3592           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3593           if (Error Err = parseValueSymbolTable())
3594             return Err;
3595           SeenValueSymbolTable = true;
3596         } else {
3597           // We must have had a VST forward declaration record, which caused
3598           // the parser to jump to and parse the VST earlier.
3599           assert(VSTOffset > 0);
3600           if (Error Err = Stream.SkipBlock())
3601             return Err;
3602         }
3603         break;
3604       case bitc::CONSTANTS_BLOCK_ID:
3605         if (Error Err = parseConstants())
3606           return Err;
3607         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3608           return Err;
3609         break;
3610       case bitc::METADATA_BLOCK_ID:
3611         if (ShouldLazyLoadMetadata) {
3612           if (Error Err = rememberAndSkipMetadata())
3613             return Err;
3614           break;
3615         }
3616         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3617         if (Error Err = MDLoader->parseModuleMetadata())
3618           return Err;
3619         break;
3620       case bitc::METADATA_KIND_BLOCK_ID:
3621         if (Error Err = MDLoader->parseMetadataKinds())
3622           return Err;
3623         break;
3624       case bitc::FUNCTION_BLOCK_ID:
3625         ResolveDataLayout();
3626 
3627         // If this is the first function body we've seen, reverse the
3628         // FunctionsWithBodies list.
3629         if (!SeenFirstFunctionBody) {
3630           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3631           if (Error Err = globalCleanup())
3632             return Err;
3633           SeenFirstFunctionBody = true;
3634         }
3635 
3636         if (VSTOffset > 0) {
3637           // If we have a VST forward declaration record, make sure we
3638           // parse the VST now if we haven't already. It is needed to
3639           // set up the DeferredFunctionInfo vector for lazy reading.
3640           if (!SeenValueSymbolTable) {
3641             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3642               return Err;
3643             SeenValueSymbolTable = true;
3644             // Fall through so that we record the NextUnreadBit below.
3645             // This is necessary in case we have an anonymous function that
3646             // is later materialized. Since it will not have a VST entry we
3647             // need to fall back to the lazy parse to find its offset.
3648           } else {
3649             // If we have a VST forward declaration record, but have already
3650             // parsed the VST (just above, when the first function body was
3651             // encountered here), then we are resuming the parse after
3652             // materializing functions. The ResumeBit points to the
3653             // start of the last function block recorded in the
3654             // DeferredFunctionInfo map. Skip it.
3655             if (Error Err = Stream.SkipBlock())
3656               return Err;
3657             continue;
3658           }
3659         }
3660 
3661         // Support older bitcode files that did not have the function
3662         // index in the VST, nor a VST forward declaration record, as
3663         // well as anonymous functions that do not have VST entries.
3664         // Build the DeferredFunctionInfo vector on the fly.
3665         if (Error Err = rememberAndSkipFunctionBody())
3666           return Err;
3667 
3668         // Suspend parsing when we reach the function bodies. Subsequent
3669         // materialization calls will resume it when necessary. If the bitcode
3670         // file is old, the symbol table will be at the end instead and will not
3671         // have been seen yet. In this case, just finish the parse now.
3672         if (SeenValueSymbolTable) {
3673           NextUnreadBit = Stream.GetCurrentBitNo();
3674           // After the VST has been parsed, we need to make sure intrinsic name
3675           // are auto-upgraded.
3676           return globalCleanup();
3677         }
3678         break;
3679       case bitc::USELIST_BLOCK_ID:
3680         if (Error Err = parseUseLists())
3681           return Err;
3682         break;
3683       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3684         if (Error Err = parseOperandBundleTags())
3685           return Err;
3686         break;
3687       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3688         if (Error Err = parseSyncScopeNames())
3689           return Err;
3690         break;
3691       }
3692       continue;
3693 
3694     case BitstreamEntry::Record:
3695       // The interesting case.
3696       break;
3697     }
3698 
3699     // Read a record.
3700     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3701     if (!MaybeBitCode)
3702       return MaybeBitCode.takeError();
3703     switch (unsigned BitCode = MaybeBitCode.get()) {
3704     default: break;  // Default behavior, ignore unknown content.
3705     case bitc::MODULE_CODE_VERSION: {
3706       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3707       if (!VersionOrErr)
3708         return VersionOrErr.takeError();
3709       UseRelativeIDs = *VersionOrErr >= 1;
3710       break;
3711     }
3712     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3713       if (ResolvedDataLayout)
3714         return error("target triple too late in module");
3715       std::string S;
3716       if (convertToString(Record, 0, S))
3717         return error("Invalid record");
3718       TheModule->setTargetTriple(S);
3719       break;
3720     }
3721     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3722       if (ResolvedDataLayout)
3723         return error("datalayout too late in module");
3724       std::string S;
3725       if (convertToString(Record, 0, S))
3726         return error("Invalid record");
3727       TheModule->setDataLayout(S);
3728       break;
3729     }
3730     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3731       std::string S;
3732       if (convertToString(Record, 0, S))
3733         return error("Invalid record");
3734       TheModule->setModuleInlineAsm(S);
3735       break;
3736     }
3737     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3738       // Deprecated, but still needed to read old bitcode files.
3739       std::string S;
3740       if (convertToString(Record, 0, S))
3741         return error("Invalid record");
3742       // Ignore value.
3743       break;
3744     }
3745     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3746       std::string S;
3747       if (convertToString(Record, 0, S))
3748         return error("Invalid record");
3749       SectionTable.push_back(S);
3750       break;
3751     }
3752     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3753       std::string S;
3754       if (convertToString(Record, 0, S))
3755         return error("Invalid record");
3756       GCTable.push_back(S);
3757       break;
3758     }
3759     case bitc::MODULE_CODE_COMDAT:
3760       if (Error Err = parseComdatRecord(Record))
3761         return Err;
3762       break;
3763     case bitc::MODULE_CODE_GLOBALVAR:
3764       if (Error Err = parseGlobalVarRecord(Record))
3765         return Err;
3766       break;
3767     case bitc::MODULE_CODE_FUNCTION:
3768       ResolveDataLayout();
3769       if (Error Err = parseFunctionRecord(Record))
3770         return Err;
3771       break;
3772     case bitc::MODULE_CODE_IFUNC:
3773     case bitc::MODULE_CODE_ALIAS:
3774     case bitc::MODULE_CODE_ALIAS_OLD:
3775       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3776         return Err;
3777       break;
3778     /// MODULE_CODE_VSTOFFSET: [offset]
3779     case bitc::MODULE_CODE_VSTOFFSET:
3780       if (Record.empty())
3781         return error("Invalid record");
3782       // Note that we subtract 1 here because the offset is relative to one word
3783       // before the start of the identification or module block, which was
3784       // historically always the start of the regular bitcode header.
3785       VSTOffset = Record[0] - 1;
3786       break;
3787     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3788     case bitc::MODULE_CODE_SOURCE_FILENAME:
3789       SmallString<128> ValueName;
3790       if (convertToString(Record, 0, ValueName))
3791         return error("Invalid record");
3792       TheModule->setSourceFileName(ValueName);
3793       break;
3794     }
3795     Record.clear();
3796   }
3797 }
3798 
3799 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3800                                       bool IsImporting,
3801                                       DataLayoutCallbackTy DataLayoutCallback) {
3802   TheModule = M;
3803   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3804                             [&](unsigned ID) { return getTypeByID(ID); });
3805   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3806 }
3807 
3808 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3809   if (!isa<PointerType>(PtrType))
3810     return error("Load/Store operand is not a pointer type");
3811   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3812 
3813   if (ValType && ValType != ElemType)
3814     return error("Explicit load/store type does not match pointee "
3815                  "type of pointer operand");
3816   if (!PointerType::isLoadableOrStorableType(ElemType))
3817     return error("Cannot load/store from pointer");
3818   return Error::success();
3819 }
3820 
3821 void BitcodeReader::propagateByValSRetTypes(CallBase *CB,
3822                                             ArrayRef<Type *> ArgsFullTys) {
3823   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3824     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3825                                      Attribute::InAlloca}) {
3826       if (!CB->paramHasAttr(i, Kind))
3827         continue;
3828 
3829       CB->removeParamAttr(i, Kind);
3830 
3831       Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]);
3832       Attribute NewAttr;
3833       switch (Kind) {
3834       case Attribute::ByVal:
3835         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3836         break;
3837       case Attribute::StructRet:
3838         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3839         break;
3840       case Attribute::InAlloca:
3841         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3842         break;
3843       default:
3844         llvm_unreachable("not an upgraded type attribute");
3845       }
3846 
3847       CB->addParamAttr(i, NewAttr);
3848     }
3849   }
3850 }
3851 
3852 /// Lazily parse the specified function body block.
3853 Error BitcodeReader::parseFunctionBody(Function *F) {
3854   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3855     return Err;
3856 
3857   // Unexpected unresolved metadata when parsing function.
3858   if (MDLoader->hasFwdRefs())
3859     return error("Invalid function metadata: incoming forward references");
3860 
3861   InstructionList.clear();
3862   unsigned ModuleValueListSize = ValueList.size();
3863   unsigned ModuleMDLoaderSize = MDLoader->size();
3864 
3865   // Add all the function arguments to the value table.
3866   unsigned ArgNo = 0;
3867   FunctionType *FullFTy = FunctionTypes[F];
3868   for (Argument &I : F->args()) {
3869     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3870            "Incorrect fully specified type for Function Argument");
3871     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3872   }
3873   unsigned NextValueNo = ValueList.size();
3874   BasicBlock *CurBB = nullptr;
3875   unsigned CurBBNo = 0;
3876 
3877   DebugLoc LastLoc;
3878   auto getLastInstruction = [&]() -> Instruction * {
3879     if (CurBB && !CurBB->empty())
3880       return &CurBB->back();
3881     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3882              !FunctionBBs[CurBBNo - 1]->empty())
3883       return &FunctionBBs[CurBBNo - 1]->back();
3884     return nullptr;
3885   };
3886 
3887   std::vector<OperandBundleDef> OperandBundles;
3888 
3889   // Read all the records.
3890   SmallVector<uint64_t, 64> Record;
3891 
3892   while (true) {
3893     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3894     if (!MaybeEntry)
3895       return MaybeEntry.takeError();
3896     llvm::BitstreamEntry Entry = MaybeEntry.get();
3897 
3898     switch (Entry.Kind) {
3899     case BitstreamEntry::Error:
3900       return error("Malformed block");
3901     case BitstreamEntry::EndBlock:
3902       goto OutOfRecordLoop;
3903 
3904     case BitstreamEntry::SubBlock:
3905       switch (Entry.ID) {
3906       default:  // Skip unknown content.
3907         if (Error Err = Stream.SkipBlock())
3908           return Err;
3909         break;
3910       case bitc::CONSTANTS_BLOCK_ID:
3911         if (Error Err = parseConstants())
3912           return Err;
3913         NextValueNo = ValueList.size();
3914         break;
3915       case bitc::VALUE_SYMTAB_BLOCK_ID:
3916         if (Error Err = parseValueSymbolTable())
3917           return Err;
3918         break;
3919       case bitc::METADATA_ATTACHMENT_ID:
3920         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3921           return Err;
3922         break;
3923       case bitc::METADATA_BLOCK_ID:
3924         assert(DeferredMetadataInfo.empty() &&
3925                "Must read all module-level metadata before function-level");
3926         if (Error Err = MDLoader->parseFunctionMetadata())
3927           return Err;
3928         break;
3929       case bitc::USELIST_BLOCK_ID:
3930         if (Error Err = parseUseLists())
3931           return Err;
3932         break;
3933       }
3934       continue;
3935 
3936     case BitstreamEntry::Record:
3937       // The interesting case.
3938       break;
3939     }
3940 
3941     // Read a record.
3942     Record.clear();
3943     Instruction *I = nullptr;
3944     Type *FullTy = nullptr;
3945     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3946     if (!MaybeBitCode)
3947       return MaybeBitCode.takeError();
3948     switch (unsigned BitCode = MaybeBitCode.get()) {
3949     default: // Default behavior: reject
3950       return error("Invalid value");
3951     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3952       if (Record.empty() || Record[0] == 0)
3953         return error("Invalid record");
3954       // Create all the basic blocks for the function.
3955       FunctionBBs.resize(Record[0]);
3956 
3957       // See if anything took the address of blocks in this function.
3958       auto BBFRI = BasicBlockFwdRefs.find(F);
3959       if (BBFRI == BasicBlockFwdRefs.end()) {
3960         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3961           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3962       } else {
3963         auto &BBRefs = BBFRI->second;
3964         // Check for invalid basic block references.
3965         if (BBRefs.size() > FunctionBBs.size())
3966           return error("Invalid ID");
3967         assert(!BBRefs.empty() && "Unexpected empty array");
3968         assert(!BBRefs.front() && "Invalid reference to entry block");
3969         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3970              ++I)
3971           if (I < RE && BBRefs[I]) {
3972             BBRefs[I]->insertInto(F);
3973             FunctionBBs[I] = BBRefs[I];
3974           } else {
3975             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3976           }
3977 
3978         // Erase from the table.
3979         BasicBlockFwdRefs.erase(BBFRI);
3980       }
3981 
3982       CurBB = FunctionBBs[0];
3983       continue;
3984     }
3985 
3986     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3987       // This record indicates that the last instruction is at the same
3988       // location as the previous instruction with a location.
3989       I = getLastInstruction();
3990 
3991       if (!I)
3992         return error("Invalid record");
3993       I->setDebugLoc(LastLoc);
3994       I = nullptr;
3995       continue;
3996 
3997     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3998       I = getLastInstruction();
3999       if (!I || Record.size() < 4)
4000         return error("Invalid record");
4001 
4002       unsigned Line = Record[0], Col = Record[1];
4003       unsigned ScopeID = Record[2], IAID = Record[3];
4004       bool isImplicitCode = Record.size() == 5 && Record[4];
4005 
4006       MDNode *Scope = nullptr, *IA = nullptr;
4007       if (ScopeID) {
4008         Scope = dyn_cast_or_null<MDNode>(
4009             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4010         if (!Scope)
4011           return error("Invalid record");
4012       }
4013       if (IAID) {
4014         IA = dyn_cast_or_null<MDNode>(
4015             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4016         if (!IA)
4017           return error("Invalid record");
4018       }
4019       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4020                                 isImplicitCode);
4021       I->setDebugLoc(LastLoc);
4022       I = nullptr;
4023       continue;
4024     }
4025     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4026       unsigned OpNum = 0;
4027       Value *LHS;
4028       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4029           OpNum+1 > Record.size())
4030         return error("Invalid record");
4031 
4032       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4033       if (Opc == -1)
4034         return error("Invalid record");
4035       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4036       InstructionList.push_back(I);
4037       if (OpNum < Record.size()) {
4038         if (isa<FPMathOperator>(I)) {
4039           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4040           if (FMF.any())
4041             I->setFastMathFlags(FMF);
4042         }
4043       }
4044       break;
4045     }
4046     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4047       unsigned OpNum = 0;
4048       Value *LHS, *RHS;
4049       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4050           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4051           OpNum+1 > Record.size())
4052         return error("Invalid record");
4053 
4054       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4055       if (Opc == -1)
4056         return error("Invalid record");
4057       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4058       InstructionList.push_back(I);
4059       if (OpNum < Record.size()) {
4060         if (Opc == Instruction::Add ||
4061             Opc == Instruction::Sub ||
4062             Opc == Instruction::Mul ||
4063             Opc == Instruction::Shl) {
4064           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4065             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4066           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4067             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4068         } else if (Opc == Instruction::SDiv ||
4069                    Opc == Instruction::UDiv ||
4070                    Opc == Instruction::LShr ||
4071                    Opc == Instruction::AShr) {
4072           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4073             cast<BinaryOperator>(I)->setIsExact(true);
4074         } else if (isa<FPMathOperator>(I)) {
4075           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4076           if (FMF.any())
4077             I->setFastMathFlags(FMF);
4078         }
4079 
4080       }
4081       break;
4082     }
4083     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4084       unsigned OpNum = 0;
4085       Value *Op;
4086       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4087           OpNum+2 != Record.size())
4088         return error("Invalid record");
4089 
4090       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
4091       Type *ResTy = flattenPointerTypes(FullTy);
4092       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4093       if (Opc == -1 || !ResTy)
4094         return error("Invalid record");
4095       Instruction *Temp = nullptr;
4096       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4097         if (Temp) {
4098           InstructionList.push_back(Temp);
4099           assert(CurBB && "No current BB?");
4100           CurBB->getInstList().push_back(Temp);
4101         }
4102       } else {
4103         auto CastOp = (Instruction::CastOps)Opc;
4104         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4105           return error("Invalid cast");
4106         I = CastInst::Create(CastOp, Op, ResTy);
4107       }
4108       InstructionList.push_back(I);
4109       break;
4110     }
4111     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4112     case bitc::FUNC_CODE_INST_GEP_OLD:
4113     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4114       unsigned OpNum = 0;
4115 
4116       Type *Ty;
4117       bool InBounds;
4118 
4119       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4120         InBounds = Record[OpNum++];
4121         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4122         Ty = flattenPointerTypes(FullTy);
4123       } else {
4124         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4125         Ty = nullptr;
4126       }
4127 
4128       Value *BasePtr;
4129       Type *FullBaseTy = nullptr;
4130       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4131         return error("Invalid record");
4132 
4133       if (!Ty) {
4134         std::tie(FullTy, Ty) =
4135             getPointerElementTypes(FullBaseTy->getScalarType());
4136       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
4137         return error(
4138             "Explicit gep type does not match pointee type of pointer operand");
4139 
4140       SmallVector<Value*, 16> GEPIdx;
4141       while (OpNum != Record.size()) {
4142         Value *Op;
4143         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4144           return error("Invalid record");
4145         GEPIdx.push_back(Op);
4146       }
4147 
4148       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4149       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4150 
4151       InstructionList.push_back(I);
4152       if (InBounds)
4153         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4154       break;
4155     }
4156 
4157     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4158                                        // EXTRACTVAL: [opty, opval, n x indices]
4159       unsigned OpNum = 0;
4160       Value *Agg;
4161       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4162         return error("Invalid record");
4163 
4164       unsigned RecSize = Record.size();
4165       if (OpNum == RecSize)
4166         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4167 
4168       SmallVector<unsigned, 4> EXTRACTVALIdx;
4169       for (; OpNum != RecSize; ++OpNum) {
4170         bool IsArray = FullTy->isArrayTy();
4171         bool IsStruct = FullTy->isStructTy();
4172         uint64_t Index = Record[OpNum];
4173 
4174         if (!IsStruct && !IsArray)
4175           return error("EXTRACTVAL: Invalid type");
4176         if ((unsigned)Index != Index)
4177           return error("Invalid value");
4178         if (IsStruct && Index >= FullTy->getStructNumElements())
4179           return error("EXTRACTVAL: Invalid struct index");
4180         if (IsArray && Index >= FullTy->getArrayNumElements())
4181           return error("EXTRACTVAL: Invalid array index");
4182         EXTRACTVALIdx.push_back((unsigned)Index);
4183 
4184         if (IsStruct)
4185           FullTy = FullTy->getStructElementType(Index);
4186         else
4187           FullTy = FullTy->getArrayElementType();
4188       }
4189 
4190       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4191       InstructionList.push_back(I);
4192       break;
4193     }
4194 
4195     case bitc::FUNC_CODE_INST_INSERTVAL: {
4196                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4197       unsigned OpNum = 0;
4198       Value *Agg;
4199       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4200         return error("Invalid record");
4201       Value *Val;
4202       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4203         return error("Invalid record");
4204 
4205       unsigned RecSize = Record.size();
4206       if (OpNum == RecSize)
4207         return error("INSERTVAL: Invalid instruction with 0 indices");
4208 
4209       SmallVector<unsigned, 4> INSERTVALIdx;
4210       Type *CurTy = Agg->getType();
4211       for (; OpNum != RecSize; ++OpNum) {
4212         bool IsArray = CurTy->isArrayTy();
4213         bool IsStruct = CurTy->isStructTy();
4214         uint64_t Index = Record[OpNum];
4215 
4216         if (!IsStruct && !IsArray)
4217           return error("INSERTVAL: Invalid type");
4218         if ((unsigned)Index != Index)
4219           return error("Invalid value");
4220         if (IsStruct && Index >= CurTy->getStructNumElements())
4221           return error("INSERTVAL: Invalid struct index");
4222         if (IsArray && Index >= CurTy->getArrayNumElements())
4223           return error("INSERTVAL: Invalid array index");
4224 
4225         INSERTVALIdx.push_back((unsigned)Index);
4226         if (IsStruct)
4227           CurTy = CurTy->getStructElementType(Index);
4228         else
4229           CurTy = CurTy->getArrayElementType();
4230       }
4231 
4232       if (CurTy != Val->getType())
4233         return error("Inserted value type doesn't match aggregate type");
4234 
4235       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4236       InstructionList.push_back(I);
4237       break;
4238     }
4239 
4240     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4241       // obsolete form of select
4242       // handles select i1 ... in old bitcode
4243       unsigned OpNum = 0;
4244       Value *TrueVal, *FalseVal, *Cond;
4245       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4246           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4247           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4248         return error("Invalid record");
4249 
4250       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4251       InstructionList.push_back(I);
4252       break;
4253     }
4254 
4255     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4256       // new form of select
4257       // handles select i1 or select [N x i1]
4258       unsigned OpNum = 0;
4259       Value *TrueVal, *FalseVal, *Cond;
4260       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4261           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4262           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4263         return error("Invalid record");
4264 
4265       // select condition can be either i1 or [N x i1]
4266       if (VectorType* vector_type =
4267           dyn_cast<VectorType>(Cond->getType())) {
4268         // expect <n x i1>
4269         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4270           return error("Invalid type for value");
4271       } else {
4272         // expect i1
4273         if (Cond->getType() != Type::getInt1Ty(Context))
4274           return error("Invalid type for value");
4275       }
4276 
4277       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4278       InstructionList.push_back(I);
4279       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4280         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4281         if (FMF.any())
4282           I->setFastMathFlags(FMF);
4283       }
4284       break;
4285     }
4286 
4287     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4288       unsigned OpNum = 0;
4289       Value *Vec, *Idx;
4290       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4291           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4292         return error("Invalid record");
4293       if (!Vec->getType()->isVectorTy())
4294         return error("Invalid type for value");
4295       I = ExtractElementInst::Create(Vec, Idx);
4296       FullTy = cast<VectorType>(FullTy)->getElementType();
4297       InstructionList.push_back(I);
4298       break;
4299     }
4300 
4301     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4302       unsigned OpNum = 0;
4303       Value *Vec, *Elt, *Idx;
4304       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4305         return error("Invalid record");
4306       if (!Vec->getType()->isVectorTy())
4307         return error("Invalid type for value");
4308       if (popValue(Record, OpNum, NextValueNo,
4309                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4310           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4311         return error("Invalid record");
4312       I = InsertElementInst::Create(Vec, Elt, Idx);
4313       InstructionList.push_back(I);
4314       break;
4315     }
4316 
4317     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4318       unsigned OpNum = 0;
4319       Value *Vec1, *Vec2, *Mask;
4320       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4321           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4322         return error("Invalid record");
4323 
4324       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4325         return error("Invalid record");
4326       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4327         return error("Invalid type for value");
4328 
4329       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4330       FullTy =
4331           VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4332                           cast<VectorType>(Mask->getType())->getElementCount());
4333       InstructionList.push_back(I);
4334       break;
4335     }
4336 
4337     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4338       // Old form of ICmp/FCmp returning bool
4339       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4340       // both legal on vectors but had different behaviour.
4341     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4342       // FCmp/ICmp returning bool or vector of bool
4343 
4344       unsigned OpNum = 0;
4345       Value *LHS, *RHS;
4346       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4347           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4348         return error("Invalid record");
4349 
4350       if (OpNum >= Record.size())
4351         return error(
4352             "Invalid record: operand number exceeded available operands");
4353 
4354       unsigned PredVal = Record[OpNum];
4355       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4356       FastMathFlags FMF;
4357       if (IsFP && Record.size() > OpNum+1)
4358         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4359 
4360       if (OpNum+1 != Record.size())
4361         return error("Invalid record");
4362 
4363       if (LHS->getType()->isFPOrFPVectorTy())
4364         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4365       else
4366         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4367 
4368       if (FMF.any())
4369         I->setFastMathFlags(FMF);
4370       InstructionList.push_back(I);
4371       break;
4372     }
4373 
4374     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4375       {
4376         unsigned Size = Record.size();
4377         if (Size == 0) {
4378           I = ReturnInst::Create(Context);
4379           InstructionList.push_back(I);
4380           break;
4381         }
4382 
4383         unsigned OpNum = 0;
4384         Value *Op = nullptr;
4385         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4386           return error("Invalid record");
4387         if (OpNum != Record.size())
4388           return error("Invalid record");
4389 
4390         I = ReturnInst::Create(Context, Op);
4391         InstructionList.push_back(I);
4392         break;
4393       }
4394     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4395       if (Record.size() != 1 && Record.size() != 3)
4396         return error("Invalid record");
4397       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4398       if (!TrueDest)
4399         return error("Invalid record");
4400 
4401       if (Record.size() == 1) {
4402         I = BranchInst::Create(TrueDest);
4403         InstructionList.push_back(I);
4404       }
4405       else {
4406         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4407         Value *Cond = getValue(Record, 2, NextValueNo,
4408                                Type::getInt1Ty(Context));
4409         if (!FalseDest || !Cond)
4410           return error("Invalid record");
4411         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4412         InstructionList.push_back(I);
4413       }
4414       break;
4415     }
4416     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4417       if (Record.size() != 1 && Record.size() != 2)
4418         return error("Invalid record");
4419       unsigned Idx = 0;
4420       Value *CleanupPad =
4421           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4422       if (!CleanupPad)
4423         return error("Invalid record");
4424       BasicBlock *UnwindDest = nullptr;
4425       if (Record.size() == 2) {
4426         UnwindDest = getBasicBlock(Record[Idx++]);
4427         if (!UnwindDest)
4428           return error("Invalid record");
4429       }
4430 
4431       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4432       InstructionList.push_back(I);
4433       break;
4434     }
4435     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4436       if (Record.size() != 2)
4437         return error("Invalid record");
4438       unsigned Idx = 0;
4439       Value *CatchPad =
4440           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4441       if (!CatchPad)
4442         return error("Invalid record");
4443       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4444       if (!BB)
4445         return error("Invalid record");
4446 
4447       I = CatchReturnInst::Create(CatchPad, BB);
4448       InstructionList.push_back(I);
4449       break;
4450     }
4451     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4452       // We must have, at minimum, the outer scope and the number of arguments.
4453       if (Record.size() < 2)
4454         return error("Invalid record");
4455 
4456       unsigned Idx = 0;
4457 
4458       Value *ParentPad =
4459           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4460 
4461       unsigned NumHandlers = Record[Idx++];
4462 
4463       SmallVector<BasicBlock *, 2> Handlers;
4464       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4465         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4466         if (!BB)
4467           return error("Invalid record");
4468         Handlers.push_back(BB);
4469       }
4470 
4471       BasicBlock *UnwindDest = nullptr;
4472       if (Idx + 1 == Record.size()) {
4473         UnwindDest = getBasicBlock(Record[Idx++]);
4474         if (!UnwindDest)
4475           return error("Invalid record");
4476       }
4477 
4478       if (Record.size() != Idx)
4479         return error("Invalid record");
4480 
4481       auto *CatchSwitch =
4482           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4483       for (BasicBlock *Handler : Handlers)
4484         CatchSwitch->addHandler(Handler);
4485       I = CatchSwitch;
4486       InstructionList.push_back(I);
4487       break;
4488     }
4489     case bitc::FUNC_CODE_INST_CATCHPAD:
4490     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4491       // We must have, at minimum, the outer scope and the number of arguments.
4492       if (Record.size() < 2)
4493         return error("Invalid record");
4494 
4495       unsigned Idx = 0;
4496 
4497       Value *ParentPad =
4498           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4499 
4500       unsigned NumArgOperands = Record[Idx++];
4501 
4502       SmallVector<Value *, 2> Args;
4503       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4504         Value *Val;
4505         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4506           return error("Invalid record");
4507         Args.push_back(Val);
4508       }
4509 
4510       if (Record.size() != Idx)
4511         return error("Invalid record");
4512 
4513       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4514         I = CleanupPadInst::Create(ParentPad, Args);
4515       else
4516         I = CatchPadInst::Create(ParentPad, Args);
4517       InstructionList.push_back(I);
4518       break;
4519     }
4520     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4521       // Check magic
4522       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4523         // "New" SwitchInst format with case ranges. The changes to write this
4524         // format were reverted but we still recognize bitcode that uses it.
4525         // Hopefully someday we will have support for case ranges and can use
4526         // this format again.
4527 
4528         Type *OpTy = getTypeByID(Record[1]);
4529         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4530 
4531         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4532         BasicBlock *Default = getBasicBlock(Record[3]);
4533         if (!OpTy || !Cond || !Default)
4534           return error("Invalid record");
4535 
4536         unsigned NumCases = Record[4];
4537 
4538         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4539         InstructionList.push_back(SI);
4540 
4541         unsigned CurIdx = 5;
4542         for (unsigned i = 0; i != NumCases; ++i) {
4543           SmallVector<ConstantInt*, 1> CaseVals;
4544           unsigned NumItems = Record[CurIdx++];
4545           for (unsigned ci = 0; ci != NumItems; ++ci) {
4546             bool isSingleNumber = Record[CurIdx++];
4547 
4548             APInt Low;
4549             unsigned ActiveWords = 1;
4550             if (ValueBitWidth > 64)
4551               ActiveWords = Record[CurIdx++];
4552             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4553                                 ValueBitWidth);
4554             CurIdx += ActiveWords;
4555 
4556             if (!isSingleNumber) {
4557               ActiveWords = 1;
4558               if (ValueBitWidth > 64)
4559                 ActiveWords = Record[CurIdx++];
4560               APInt High = readWideAPInt(
4561                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4562               CurIdx += ActiveWords;
4563 
4564               // FIXME: It is not clear whether values in the range should be
4565               // compared as signed or unsigned values. The partially
4566               // implemented changes that used this format in the past used
4567               // unsigned comparisons.
4568               for ( ; Low.ule(High); ++Low)
4569                 CaseVals.push_back(ConstantInt::get(Context, Low));
4570             } else
4571               CaseVals.push_back(ConstantInt::get(Context, Low));
4572           }
4573           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4574           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4575                  cve = CaseVals.end(); cvi != cve; ++cvi)
4576             SI->addCase(*cvi, DestBB);
4577         }
4578         I = SI;
4579         break;
4580       }
4581 
4582       // Old SwitchInst format without case ranges.
4583 
4584       if (Record.size() < 3 || (Record.size() & 1) == 0)
4585         return error("Invalid record");
4586       Type *OpTy = getTypeByID(Record[0]);
4587       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4588       BasicBlock *Default = getBasicBlock(Record[2]);
4589       if (!OpTy || !Cond || !Default)
4590         return error("Invalid record");
4591       unsigned NumCases = (Record.size()-3)/2;
4592       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4593       InstructionList.push_back(SI);
4594       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4595         ConstantInt *CaseVal =
4596           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4597         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4598         if (!CaseVal || !DestBB) {
4599           delete SI;
4600           return error("Invalid record");
4601         }
4602         SI->addCase(CaseVal, DestBB);
4603       }
4604       I = SI;
4605       break;
4606     }
4607     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4608       if (Record.size() < 2)
4609         return error("Invalid record");
4610       Type *OpTy = getTypeByID(Record[0]);
4611       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4612       if (!OpTy || !Address)
4613         return error("Invalid record");
4614       unsigned NumDests = Record.size()-2;
4615       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4616       InstructionList.push_back(IBI);
4617       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4618         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4619           IBI->addDestination(DestBB);
4620         } else {
4621           delete IBI;
4622           return error("Invalid record");
4623         }
4624       }
4625       I = IBI;
4626       break;
4627     }
4628 
4629     case bitc::FUNC_CODE_INST_INVOKE: {
4630       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4631       if (Record.size() < 4)
4632         return error("Invalid record");
4633       unsigned OpNum = 0;
4634       AttributeList PAL = getAttributes(Record[OpNum++]);
4635       unsigned CCInfo = Record[OpNum++];
4636       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4637       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4638 
4639       FunctionType *FTy = nullptr;
4640       FunctionType *FullFTy = nullptr;
4641       if ((CCInfo >> 13) & 1) {
4642         FullFTy =
4643             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4644         if (!FullFTy)
4645           return error("Explicit invoke type is not a function type");
4646         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4647       }
4648 
4649       Value *Callee;
4650       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4651         return error("Invalid record");
4652 
4653       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4654       if (!CalleeTy)
4655         return error("Callee is not a pointer");
4656       if (!FTy) {
4657         FullFTy =
4658             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4659         if (!FullFTy)
4660           return error("Callee is not of pointer to function type");
4661         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4662       } else if (getPointerElementFlatType(FullTy) != FTy)
4663         return error("Explicit invoke type does not match pointee type of "
4664                      "callee operand");
4665       if (Record.size() < FTy->getNumParams() + OpNum)
4666         return error("Insufficient operands to call");
4667 
4668       SmallVector<Value*, 16> Ops;
4669       SmallVector<Type *, 16> ArgsFullTys;
4670       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4671         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4672                                FTy->getParamType(i)));
4673         ArgsFullTys.push_back(FullFTy->getParamType(i));
4674         if (!Ops.back())
4675           return error("Invalid record");
4676       }
4677 
4678       if (!FTy->isVarArg()) {
4679         if (Record.size() != OpNum)
4680           return error("Invalid record");
4681       } else {
4682         // Read type/value pairs for varargs params.
4683         while (OpNum != Record.size()) {
4684           Value *Op;
4685           Type *FullTy;
4686           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4687             return error("Invalid record");
4688           Ops.push_back(Op);
4689           ArgsFullTys.push_back(FullTy);
4690         }
4691       }
4692 
4693       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4694                              OperandBundles);
4695       FullTy = FullFTy->getReturnType();
4696       OperandBundles.clear();
4697       InstructionList.push_back(I);
4698       cast<InvokeInst>(I)->setCallingConv(
4699           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4700       cast<InvokeInst>(I)->setAttributes(PAL);
4701       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
4702 
4703       break;
4704     }
4705     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4706       unsigned Idx = 0;
4707       Value *Val = nullptr;
4708       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4709         return error("Invalid record");
4710       I = ResumeInst::Create(Val);
4711       InstructionList.push_back(I);
4712       break;
4713     }
4714     case bitc::FUNC_CODE_INST_CALLBR: {
4715       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4716       unsigned OpNum = 0;
4717       AttributeList PAL = getAttributes(Record[OpNum++]);
4718       unsigned CCInfo = Record[OpNum++];
4719 
4720       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4721       unsigned NumIndirectDests = Record[OpNum++];
4722       SmallVector<BasicBlock *, 16> IndirectDests;
4723       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4724         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4725 
4726       FunctionType *FTy = nullptr;
4727       FunctionType *FullFTy = nullptr;
4728       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4729         FullFTy =
4730             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4731         if (!FullFTy)
4732           return error("Explicit call type is not a function type");
4733         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4734       }
4735 
4736       Value *Callee;
4737       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4738         return error("Invalid record");
4739 
4740       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4741       if (!OpTy)
4742         return error("Callee is not a pointer type");
4743       if (!FTy) {
4744         FullFTy =
4745             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4746         if (!FullFTy)
4747           return error("Callee is not of pointer to function type");
4748         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4749       } else if (getPointerElementFlatType(FullTy) != FTy)
4750         return error("Explicit call type does not match pointee type of "
4751                      "callee operand");
4752       if (Record.size() < FTy->getNumParams() + OpNum)
4753         return error("Insufficient operands to call");
4754 
4755       SmallVector<Value*, 16> Args;
4756       // Read the fixed params.
4757       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4758         if (FTy->getParamType(i)->isLabelTy())
4759           Args.push_back(getBasicBlock(Record[OpNum]));
4760         else
4761           Args.push_back(getValue(Record, OpNum, NextValueNo,
4762                                   FTy->getParamType(i)));
4763         if (!Args.back())
4764           return error("Invalid record");
4765       }
4766 
4767       // Read type/value pairs for varargs params.
4768       if (!FTy->isVarArg()) {
4769         if (OpNum != Record.size())
4770           return error("Invalid record");
4771       } else {
4772         while (OpNum != Record.size()) {
4773           Value *Op;
4774           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4775             return error("Invalid record");
4776           Args.push_back(Op);
4777         }
4778       }
4779 
4780       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4781                              OperandBundles);
4782       FullTy = FullFTy->getReturnType();
4783       OperandBundles.clear();
4784       InstructionList.push_back(I);
4785       cast<CallBrInst>(I)->setCallingConv(
4786           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4787       cast<CallBrInst>(I)->setAttributes(PAL);
4788       break;
4789     }
4790     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4791       I = new UnreachableInst(Context);
4792       InstructionList.push_back(I);
4793       break;
4794     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4795       if (Record.empty())
4796         return error("Invalid record");
4797       // The first record specifies the type.
4798       FullTy = getFullyStructuredTypeByID(Record[0]);
4799       Type *Ty = flattenPointerTypes(FullTy);
4800       if (!Ty)
4801         return error("Invalid record");
4802 
4803       // Phi arguments are pairs of records of [value, basic block].
4804       // There is an optional final record for fast-math-flags if this phi has a
4805       // floating-point type.
4806       size_t NumArgs = (Record.size() - 1) / 2;
4807       PHINode *PN = PHINode::Create(Ty, NumArgs);
4808       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4809         return error("Invalid record");
4810       InstructionList.push_back(PN);
4811 
4812       for (unsigned i = 0; i != NumArgs; i++) {
4813         Value *V;
4814         // With the new function encoding, it is possible that operands have
4815         // negative IDs (for forward references).  Use a signed VBR
4816         // representation to keep the encoding small.
4817         if (UseRelativeIDs)
4818           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4819         else
4820           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4821         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4822         if (!V || !BB)
4823           return error("Invalid record");
4824         PN->addIncoming(V, BB);
4825       }
4826       I = PN;
4827 
4828       // If there are an even number of records, the final record must be FMF.
4829       if (Record.size() % 2 == 0) {
4830         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4831         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4832         if (FMF.any())
4833           I->setFastMathFlags(FMF);
4834       }
4835 
4836       break;
4837     }
4838 
4839     case bitc::FUNC_CODE_INST_LANDINGPAD:
4840     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4841       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4842       unsigned Idx = 0;
4843       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4844         if (Record.size() < 3)
4845           return error("Invalid record");
4846       } else {
4847         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4848         if (Record.size() < 4)
4849           return error("Invalid record");
4850       }
4851       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4852       Type *Ty = flattenPointerTypes(FullTy);
4853       if (!Ty)
4854         return error("Invalid record");
4855       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4856         Value *PersFn = nullptr;
4857         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4858           return error("Invalid record");
4859 
4860         if (!F->hasPersonalityFn())
4861           F->setPersonalityFn(cast<Constant>(PersFn));
4862         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4863           return error("Personality function mismatch");
4864       }
4865 
4866       bool IsCleanup = !!Record[Idx++];
4867       unsigned NumClauses = Record[Idx++];
4868       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4869       LP->setCleanup(IsCleanup);
4870       for (unsigned J = 0; J != NumClauses; ++J) {
4871         LandingPadInst::ClauseType CT =
4872           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4873         Value *Val;
4874 
4875         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4876           delete LP;
4877           return error("Invalid record");
4878         }
4879 
4880         assert((CT != LandingPadInst::Catch ||
4881                 !isa<ArrayType>(Val->getType())) &&
4882                "Catch clause has a invalid type!");
4883         assert((CT != LandingPadInst::Filter ||
4884                 isa<ArrayType>(Val->getType())) &&
4885                "Filter clause has invalid type!");
4886         LP->addClause(cast<Constant>(Val));
4887       }
4888 
4889       I = LP;
4890       InstructionList.push_back(I);
4891       break;
4892     }
4893 
4894     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4895       if (Record.size() != 4)
4896         return error("Invalid record");
4897       using APV = AllocaPackedValues;
4898       const uint64_t Rec = Record[3];
4899       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4900       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4901       FullTy = getFullyStructuredTypeByID(Record[0]);
4902       Type *Ty = flattenPointerTypes(FullTy);
4903       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4904         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4905         if (!PTy)
4906           return error("Old-style alloca with a non-pointer type");
4907         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4908       }
4909       Type *OpTy = getTypeByID(Record[1]);
4910       Value *Size = getFnValueByID(Record[2], OpTy);
4911       MaybeAlign Align;
4912       if (Error Err =
4913               parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4914         return Err;
4915       }
4916       if (!Ty || !Size)
4917         return error("Invalid record");
4918 
4919       // FIXME: Make this an optional field.
4920       const DataLayout &DL = TheModule->getDataLayout();
4921       unsigned AS = DL.getAllocaAddrSpace();
4922 
4923       SmallPtrSet<Type *, 4> Visited;
4924       if (!Align && !Ty->isSized(&Visited))
4925         return error("alloca of unsized type");
4926       if (!Align)
4927         Align = DL.getPrefTypeAlign(Ty);
4928 
4929       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4930       AI->setUsedWithInAlloca(InAlloca);
4931       AI->setSwiftError(SwiftError);
4932       I = AI;
4933       FullTy = PointerType::get(FullTy, AS);
4934       InstructionList.push_back(I);
4935       break;
4936     }
4937     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4938       unsigned OpNum = 0;
4939       Value *Op;
4940       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4941           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4942         return error("Invalid record");
4943 
4944       if (!isa<PointerType>(Op->getType()))
4945         return error("Load operand is not a pointer type");
4946 
4947       Type *Ty = nullptr;
4948       if (OpNum + 3 == Record.size()) {
4949         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4950         Ty = flattenPointerTypes(FullTy);
4951       } else
4952         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4953 
4954       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4955         return Err;
4956 
4957       MaybeAlign Align;
4958       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4959         return Err;
4960       SmallPtrSet<Type *, 4> Visited;
4961       if (!Align && !Ty->isSized(&Visited))
4962         return error("load of unsized type");
4963       if (!Align)
4964         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4965       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4966       InstructionList.push_back(I);
4967       break;
4968     }
4969     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4970        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4971       unsigned OpNum = 0;
4972       Value *Op;
4973       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4974           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4975         return error("Invalid record");
4976 
4977       if (!isa<PointerType>(Op->getType()))
4978         return error("Load operand is not a pointer type");
4979 
4980       Type *Ty = nullptr;
4981       if (OpNum + 5 == Record.size()) {
4982         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4983         Ty = flattenPointerTypes(FullTy);
4984       } else
4985         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4986 
4987       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4988         return Err;
4989 
4990       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4991       if (Ordering == AtomicOrdering::NotAtomic ||
4992           Ordering == AtomicOrdering::Release ||
4993           Ordering == AtomicOrdering::AcquireRelease)
4994         return error("Invalid record");
4995       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4996         return error("Invalid record");
4997       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4998 
4999       MaybeAlign Align;
5000       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5001         return Err;
5002       if (!Align)
5003         return error("Alignment missing from atomic load");
5004       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5005       InstructionList.push_back(I);
5006       break;
5007     }
5008     case bitc::FUNC_CODE_INST_STORE:
5009     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5010       unsigned OpNum = 0;
5011       Value *Val, *Ptr;
5012       Type *FullTy;
5013       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5014           (BitCode == bitc::FUNC_CODE_INST_STORE
5015                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5016                : popValue(Record, OpNum, NextValueNo,
5017                           getPointerElementFlatType(FullTy), Val)) ||
5018           OpNum + 2 != Record.size())
5019         return error("Invalid record");
5020 
5021       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5022         return Err;
5023       MaybeAlign Align;
5024       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5025         return Err;
5026       SmallPtrSet<Type *, 4> Visited;
5027       if (!Align && !Val->getType()->isSized(&Visited))
5028         return error("store of unsized type");
5029       if (!Align)
5030         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5031       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5032       InstructionList.push_back(I);
5033       break;
5034     }
5035     case bitc::FUNC_CODE_INST_STOREATOMIC:
5036     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5037       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5038       unsigned OpNum = 0;
5039       Value *Val, *Ptr;
5040       Type *FullTy;
5041       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5042           !isa<PointerType>(Ptr->getType()) ||
5043           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5044                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5045                : popValue(Record, OpNum, NextValueNo,
5046                           getPointerElementFlatType(FullTy), Val)) ||
5047           OpNum + 4 != Record.size())
5048         return error("Invalid record");
5049 
5050       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5051         return Err;
5052       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5053       if (Ordering == AtomicOrdering::NotAtomic ||
5054           Ordering == AtomicOrdering::Acquire ||
5055           Ordering == AtomicOrdering::AcquireRelease)
5056         return error("Invalid record");
5057       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5058       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5059         return error("Invalid record");
5060 
5061       MaybeAlign Align;
5062       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5063         return Err;
5064       if (!Align)
5065         return error("Alignment missing from atomic store");
5066       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5067       InstructionList.push_back(I);
5068       break;
5069     }
5070     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5071       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5072       // failure_ordering?, weak?]
5073       const size_t NumRecords = Record.size();
5074       unsigned OpNum = 0;
5075       Value *Ptr = nullptr;
5076       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5077         return error("Invalid record");
5078 
5079       if (!isa<PointerType>(Ptr->getType()))
5080         return error("Cmpxchg operand is not a pointer type");
5081 
5082       Value *Cmp = nullptr;
5083       if (popValue(Record, OpNum, NextValueNo,
5084                    getPointerElementFlatType(FullTy), Cmp))
5085         return error("Invalid record");
5086 
5087       FullTy = cast<PointerType>(FullTy)->getElementType();
5088 
5089       Value *New = nullptr;
5090       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5091           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5092         return error("Invalid record");
5093 
5094       const AtomicOrdering SuccessOrdering =
5095           getDecodedOrdering(Record[OpNum + 1]);
5096       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5097           SuccessOrdering == AtomicOrdering::Unordered)
5098         return error("Invalid record");
5099 
5100       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5101 
5102       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5103         return Err;
5104 
5105       const AtomicOrdering FailureOrdering =
5106           NumRecords < 7
5107               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5108               : getDecodedOrdering(Record[OpNum + 3]);
5109 
5110       const Align Alignment(
5111           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5112 
5113       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5114                                 FailureOrdering, SSID);
5115       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5116       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5117 
5118       if (NumRecords < 8) {
5119         // Before weak cmpxchgs existed, the instruction simply returned the
5120         // value loaded from memory, so bitcode files from that era will be
5121         // expecting the first component of a modern cmpxchg.
5122         CurBB->getInstList().push_back(I);
5123         I = ExtractValueInst::Create(I, 0);
5124         FullTy = cast<StructType>(FullTy)->getElementType(0);
5125       } else {
5126         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5127       }
5128 
5129       InstructionList.push_back(I);
5130       break;
5131     }
5132     case bitc::FUNC_CODE_INST_CMPXCHG: {
5133       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5134       // failure_ordering, weak, align?]
5135       const size_t NumRecords = Record.size();
5136       unsigned OpNum = 0;
5137       Value *Ptr = nullptr;
5138       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5139         return error("Invalid record");
5140 
5141       if (!isa<PointerType>(Ptr->getType()))
5142         return error("Cmpxchg operand is not a pointer type");
5143 
5144       Value *Cmp = nullptr;
5145       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
5146         return error("Invalid record");
5147 
5148       Value *Val = nullptr;
5149       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5150         return error("Invalid record");
5151 
5152       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5153         return error("Invalid record");
5154 
5155       const bool IsVol = Record[OpNum];
5156 
5157       const AtomicOrdering SuccessOrdering =
5158           getDecodedOrdering(Record[OpNum + 1]);
5159       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5160           SuccessOrdering == AtomicOrdering::Unordered)
5161         return error("Invalid record");
5162 
5163       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5164 
5165       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5166         return Err;
5167 
5168       const AtomicOrdering FailureOrdering =
5169           getDecodedOrdering(Record[OpNum + 3]);
5170 
5171       const bool IsWeak = Record[OpNum + 4];
5172 
5173       MaybeAlign Alignment;
5174 
5175       if (NumRecords == (OpNum + 6)) {
5176         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5177           return Err;
5178       }
5179       if (!Alignment)
5180         Alignment =
5181             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5182 
5183       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5184                                 FailureOrdering, SSID);
5185       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5186       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5187       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5188 
5189       InstructionList.push_back(I);
5190       break;
5191     }
5192     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5193       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid, align?]
5194       const size_t NumRecords = Record.size();
5195       unsigned OpNum = 0;
5196 
5197       Value *Ptr = nullptr;
5198       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5199         return error("Invalid record");
5200 
5201       if (!isa<PointerType>(Ptr->getType()))
5202         return error("Invalid record");
5203 
5204       Value *Val = nullptr;
5205       if (popValue(Record, OpNum, NextValueNo,
5206                    getPointerElementFlatType(FullTy), Val))
5207         return error("Invalid record");
5208 
5209       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5210         return error("Invalid record");
5211 
5212       const AtomicRMWInst::BinOp Operation =
5213           getDecodedRMWOperation(Record[OpNum]);
5214       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5215           Operation > AtomicRMWInst::LAST_BINOP)
5216         return error("Invalid record");
5217 
5218       const bool IsVol = Record[OpNum + 1];
5219 
5220       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5221       if (Ordering == AtomicOrdering::NotAtomic ||
5222           Ordering == AtomicOrdering::Unordered)
5223         return error("Invalid record");
5224 
5225       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5226 
5227       MaybeAlign Alignment;
5228 
5229       if (NumRecords == (OpNum + 5)) {
5230         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5231           return Err;
5232       }
5233 
5234       if (!Alignment)
5235         Alignment =
5236             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5237 
5238       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5239       FullTy = getPointerElementFlatType(FullTy);
5240       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5241 
5242       InstructionList.push_back(I);
5243       break;
5244     }
5245     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5246       if (2 != Record.size())
5247         return error("Invalid record");
5248       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5249       if (Ordering == AtomicOrdering::NotAtomic ||
5250           Ordering == AtomicOrdering::Unordered ||
5251           Ordering == AtomicOrdering::Monotonic)
5252         return error("Invalid record");
5253       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5254       I = new FenceInst(Context, Ordering, SSID);
5255       InstructionList.push_back(I);
5256       break;
5257     }
5258     case bitc::FUNC_CODE_INST_CALL: {
5259       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5260       if (Record.size() < 3)
5261         return error("Invalid record");
5262 
5263       unsigned OpNum = 0;
5264       AttributeList PAL = getAttributes(Record[OpNum++]);
5265       unsigned CCInfo = Record[OpNum++];
5266 
5267       FastMathFlags FMF;
5268       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5269         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5270         if (!FMF.any())
5271           return error("Fast math flags indicator set for call with no FMF");
5272       }
5273 
5274       FunctionType *FTy = nullptr;
5275       FunctionType *FullFTy = nullptr;
5276       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5277         FullFTy =
5278             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5279         if (!FullFTy)
5280           return error("Explicit call type is not a function type");
5281         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5282       }
5283 
5284       Value *Callee;
5285       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5286         return error("Invalid record");
5287 
5288       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5289       if (!OpTy)
5290         return error("Callee is not a pointer type");
5291       if (!FTy) {
5292         FullFTy =
5293             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5294         if (!FullFTy)
5295           return error("Callee is not of pointer to function type");
5296         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5297       } else if (getPointerElementFlatType(FullTy) != FTy)
5298         return error("Explicit call type does not match pointee type of "
5299                      "callee operand");
5300       if (Record.size() < FTy->getNumParams() + OpNum)
5301         return error("Insufficient operands to call");
5302 
5303       SmallVector<Value*, 16> Args;
5304       SmallVector<Type*, 16> ArgsFullTys;
5305       // Read the fixed params.
5306       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5307         if (FTy->getParamType(i)->isLabelTy())
5308           Args.push_back(getBasicBlock(Record[OpNum]));
5309         else
5310           Args.push_back(getValue(Record, OpNum, NextValueNo,
5311                                   FTy->getParamType(i)));
5312         ArgsFullTys.push_back(FullFTy->getParamType(i));
5313         if (!Args.back())
5314           return error("Invalid record");
5315       }
5316 
5317       // Read type/value pairs for varargs params.
5318       if (!FTy->isVarArg()) {
5319         if (OpNum != Record.size())
5320           return error("Invalid record");
5321       } else {
5322         while (OpNum != Record.size()) {
5323           Value *Op;
5324           Type *FullTy;
5325           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5326             return error("Invalid record");
5327           Args.push_back(Op);
5328           ArgsFullTys.push_back(FullTy);
5329         }
5330       }
5331 
5332       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5333       FullTy = FullFTy->getReturnType();
5334       OperandBundles.clear();
5335       InstructionList.push_back(I);
5336       cast<CallInst>(I)->setCallingConv(
5337           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5338       CallInst::TailCallKind TCK = CallInst::TCK_None;
5339       if (CCInfo & 1 << bitc::CALL_TAIL)
5340         TCK = CallInst::TCK_Tail;
5341       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5342         TCK = CallInst::TCK_MustTail;
5343       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5344         TCK = CallInst::TCK_NoTail;
5345       cast<CallInst>(I)->setTailCallKind(TCK);
5346       cast<CallInst>(I)->setAttributes(PAL);
5347       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
5348       if (FMF.any()) {
5349         if (!isa<FPMathOperator>(I))
5350           return error("Fast-math-flags specified for call without "
5351                        "floating-point scalar or vector return type");
5352         I->setFastMathFlags(FMF);
5353       }
5354       break;
5355     }
5356     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5357       if (Record.size() < 3)
5358         return error("Invalid record");
5359       Type *OpTy = getTypeByID(Record[0]);
5360       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5361       FullTy = getFullyStructuredTypeByID(Record[2]);
5362       Type *ResTy = flattenPointerTypes(FullTy);
5363       if (!OpTy || !Op || !ResTy)
5364         return error("Invalid record");
5365       I = new VAArgInst(Op, ResTy);
5366       InstructionList.push_back(I);
5367       break;
5368     }
5369 
5370     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5371       // A call or an invoke can be optionally prefixed with some variable
5372       // number of operand bundle blocks.  These blocks are read into
5373       // OperandBundles and consumed at the next call or invoke instruction.
5374 
5375       if (Record.empty() || Record[0] >= BundleTags.size())
5376         return error("Invalid record");
5377 
5378       std::vector<Value *> Inputs;
5379 
5380       unsigned OpNum = 1;
5381       while (OpNum != Record.size()) {
5382         Value *Op;
5383         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5384           return error("Invalid record");
5385         Inputs.push_back(Op);
5386       }
5387 
5388       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5389       continue;
5390     }
5391 
5392     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5393       unsigned OpNum = 0;
5394       Value *Op = nullptr;
5395       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5396         return error("Invalid record");
5397       if (OpNum != Record.size())
5398         return error("Invalid record");
5399 
5400       I = new FreezeInst(Op);
5401       InstructionList.push_back(I);
5402       break;
5403     }
5404     }
5405 
5406     // Add instruction to end of current BB.  If there is no current BB, reject
5407     // this file.
5408     if (!CurBB) {
5409       I->deleteValue();
5410       return error("Invalid instruction with no BB");
5411     }
5412     if (!OperandBundles.empty()) {
5413       I->deleteValue();
5414       return error("Operand bundles found with no consumer");
5415     }
5416     CurBB->getInstList().push_back(I);
5417 
5418     // If this was a terminator instruction, move to the next block.
5419     if (I->isTerminator()) {
5420       ++CurBBNo;
5421       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5422     }
5423 
5424     // Non-void values get registered in the value table for future use.
5425     if (!I->getType()->isVoidTy()) {
5426       if (!FullTy) {
5427         FullTy = I->getType();
5428         assert(
5429             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5430             !isa<ArrayType>(FullTy) &&
5431             (!isa<VectorType>(FullTy) ||
5432              cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5433              cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5434             "Structured types must be assigned with corresponding non-opaque "
5435             "pointer type");
5436       }
5437 
5438       assert(I->getType() == flattenPointerTypes(FullTy) &&
5439              "Incorrect fully structured type provided for Instruction");
5440       ValueList.assignValue(I, NextValueNo++, FullTy);
5441     }
5442   }
5443 
5444 OutOfRecordLoop:
5445 
5446   if (!OperandBundles.empty())
5447     return error("Operand bundles found with no consumer");
5448 
5449   // Check the function list for unresolved values.
5450   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5451     if (!A->getParent()) {
5452       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5453       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5454         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5455           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5456           delete A;
5457         }
5458       }
5459       return error("Never resolved value found in function");
5460     }
5461   }
5462 
5463   // Unexpected unresolved metadata about to be dropped.
5464   if (MDLoader->hasFwdRefs())
5465     return error("Invalid function metadata: outgoing forward refs");
5466 
5467   // Trim the value list down to the size it was before we parsed this function.
5468   ValueList.shrinkTo(ModuleValueListSize);
5469   MDLoader->shrinkTo(ModuleMDLoaderSize);
5470   std::vector<BasicBlock*>().swap(FunctionBBs);
5471   return Error::success();
5472 }
5473 
5474 /// Find the function body in the bitcode stream
5475 Error BitcodeReader::findFunctionInStream(
5476     Function *F,
5477     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5478   while (DeferredFunctionInfoIterator->second == 0) {
5479     // This is the fallback handling for the old format bitcode that
5480     // didn't contain the function index in the VST, or when we have
5481     // an anonymous function which would not have a VST entry.
5482     // Assert that we have one of those two cases.
5483     assert(VSTOffset == 0 || !F->hasName());
5484     // Parse the next body in the stream and set its position in the
5485     // DeferredFunctionInfo map.
5486     if (Error Err = rememberAndSkipFunctionBodies())
5487       return Err;
5488   }
5489   return Error::success();
5490 }
5491 
5492 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5493   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5494     return SyncScope::ID(Val);
5495   if (Val >= SSIDs.size())
5496     return SyncScope::System; // Map unknown synchronization scopes to system.
5497   return SSIDs[Val];
5498 }
5499 
5500 //===----------------------------------------------------------------------===//
5501 // GVMaterializer implementation
5502 //===----------------------------------------------------------------------===//
5503 
5504 Error BitcodeReader::materialize(GlobalValue *GV) {
5505   Function *F = dyn_cast<Function>(GV);
5506   // If it's not a function or is already material, ignore the request.
5507   if (!F || !F->isMaterializable())
5508     return Error::success();
5509 
5510   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5511   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5512   // If its position is recorded as 0, its body is somewhere in the stream
5513   // but we haven't seen it yet.
5514   if (DFII->second == 0)
5515     if (Error Err = findFunctionInStream(F, DFII))
5516       return Err;
5517 
5518   // Materialize metadata before parsing any function bodies.
5519   if (Error Err = materializeMetadata())
5520     return Err;
5521 
5522   // Move the bit stream to the saved position of the deferred function body.
5523   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5524     return JumpFailed;
5525   if (Error Err = parseFunctionBody(F))
5526     return Err;
5527   F->setIsMaterializable(false);
5528 
5529   if (StripDebugInfo)
5530     stripDebugInfo(*F);
5531 
5532   // Upgrade any old intrinsic calls in the function.
5533   for (auto &I : UpgradedIntrinsics) {
5534     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5535          UI != UE;) {
5536       User *U = *UI;
5537       ++UI;
5538       if (CallInst *CI = dyn_cast<CallInst>(U))
5539         UpgradeIntrinsicCall(CI, I.second);
5540     }
5541   }
5542 
5543   // Update calls to the remangled intrinsics
5544   for (auto &I : RemangledIntrinsics)
5545     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5546          UI != UE;)
5547       // Don't expect any other users than call sites
5548       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5549 
5550   // Finish fn->subprogram upgrade for materialized functions.
5551   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5552     F->setSubprogram(SP);
5553 
5554   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5555   if (!MDLoader->isStrippingTBAA()) {
5556     for (auto &I : instructions(F)) {
5557       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5558       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5559         continue;
5560       MDLoader->setStripTBAA(true);
5561       stripTBAA(F->getParent());
5562     }
5563   }
5564 
5565   // "Upgrade" older incorrect branch weights by dropping them.
5566   for (auto &I : instructions(F)) {
5567     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5568       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5569         MDString *MDS = cast<MDString>(MD->getOperand(0));
5570         StringRef ProfName = MDS->getString();
5571         // Check consistency of !prof branch_weights metadata.
5572         if (!ProfName.equals("branch_weights"))
5573           continue;
5574         unsigned ExpectedNumOperands = 0;
5575         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5576           ExpectedNumOperands = BI->getNumSuccessors();
5577         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5578           ExpectedNumOperands = SI->getNumSuccessors();
5579         else if (isa<CallInst>(&I))
5580           ExpectedNumOperands = 1;
5581         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5582           ExpectedNumOperands = IBI->getNumDestinations();
5583         else if (isa<SelectInst>(&I))
5584           ExpectedNumOperands = 2;
5585         else
5586           continue; // ignore and continue.
5587 
5588         // If branch weight doesn't match, just strip branch weight.
5589         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5590           I.setMetadata(LLVMContext::MD_prof, nullptr);
5591       }
5592     }
5593   }
5594 
5595   // Look for functions that rely on old function attribute behavior.
5596   UpgradeFunctionAttributes(*F);
5597 
5598   // Bring in any functions that this function forward-referenced via
5599   // blockaddresses.
5600   return materializeForwardReferencedFunctions();
5601 }
5602 
5603 Error BitcodeReader::materializeModule() {
5604   if (Error Err = materializeMetadata())
5605     return Err;
5606 
5607   // Promise to materialize all forward references.
5608   WillMaterializeAllForwardRefs = true;
5609 
5610   // Iterate over the module, deserializing any functions that are still on
5611   // disk.
5612   for (Function &F : *TheModule) {
5613     if (Error Err = materialize(&F))
5614       return Err;
5615   }
5616   // At this point, if there are any function bodies, parse the rest of
5617   // the bits in the module past the last function block we have recorded
5618   // through either lazy scanning or the VST.
5619   if (LastFunctionBlockBit || NextUnreadBit)
5620     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5621                                     ? LastFunctionBlockBit
5622                                     : NextUnreadBit))
5623       return Err;
5624 
5625   // Check that all block address forward references got resolved (as we
5626   // promised above).
5627   if (!BasicBlockFwdRefs.empty())
5628     return error("Never resolved function from blockaddress");
5629 
5630   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5631   // delete the old functions to clean up. We can't do this unless the entire
5632   // module is materialized because there could always be another function body
5633   // with calls to the old function.
5634   for (auto &I : UpgradedIntrinsics) {
5635     for (auto *U : I.first->users()) {
5636       if (CallInst *CI = dyn_cast<CallInst>(U))
5637         UpgradeIntrinsicCall(CI, I.second);
5638     }
5639     if (!I.first->use_empty())
5640       I.first->replaceAllUsesWith(I.second);
5641     I.first->eraseFromParent();
5642   }
5643   UpgradedIntrinsics.clear();
5644   // Do the same for remangled intrinsics
5645   for (auto &I : RemangledIntrinsics) {
5646     I.first->replaceAllUsesWith(I.second);
5647     I.first->eraseFromParent();
5648   }
5649   RemangledIntrinsics.clear();
5650 
5651   UpgradeDebugInfo(*TheModule);
5652 
5653   UpgradeModuleFlags(*TheModule);
5654 
5655   UpgradeARCRuntime(*TheModule);
5656 
5657   return Error::success();
5658 }
5659 
5660 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5661   return IdentifiedStructTypes;
5662 }
5663 
5664 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5665     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5666     StringRef ModulePath, unsigned ModuleId)
5667     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5668       ModulePath(ModulePath), ModuleId(ModuleId) {}
5669 
5670 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5671   TheIndex.addModule(ModulePath, ModuleId);
5672 }
5673 
5674 ModuleSummaryIndex::ModuleInfo *
5675 ModuleSummaryIndexBitcodeReader::getThisModule() {
5676   return TheIndex.getModule(ModulePath);
5677 }
5678 
5679 std::pair<ValueInfo, GlobalValue::GUID>
5680 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5681   auto VGI = ValueIdToValueInfoMap[ValueId];
5682   assert(VGI.first);
5683   return VGI;
5684 }
5685 
5686 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5687     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5688     StringRef SourceFileName) {
5689   std::string GlobalId =
5690       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5691   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5692   auto OriginalNameID = ValueGUID;
5693   if (GlobalValue::isLocalLinkage(Linkage))
5694     OriginalNameID = GlobalValue::getGUID(ValueName);
5695   if (PrintSummaryGUIDs)
5696     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5697            << ValueName << "\n";
5698 
5699   // UseStrtab is false for legacy summary formats and value names are
5700   // created on stack. In that case we save the name in a string saver in
5701   // the index so that the value name can be recorded.
5702   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5703       TheIndex.getOrInsertValueInfo(
5704           ValueGUID,
5705           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5706       OriginalNameID);
5707 }
5708 
5709 // Specialized value symbol table parser used when reading module index
5710 // blocks where we don't actually create global values. The parsed information
5711 // is saved in the bitcode reader for use when later parsing summaries.
5712 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5713     uint64_t Offset,
5714     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5715   // With a strtab the VST is not required to parse the summary.
5716   if (UseStrtab)
5717     return Error::success();
5718 
5719   assert(Offset > 0 && "Expected non-zero VST offset");
5720   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5721   if (!MaybeCurrentBit)
5722     return MaybeCurrentBit.takeError();
5723   uint64_t CurrentBit = MaybeCurrentBit.get();
5724 
5725   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5726     return Err;
5727 
5728   SmallVector<uint64_t, 64> Record;
5729 
5730   // Read all the records for this value table.
5731   SmallString<128> ValueName;
5732 
5733   while (true) {
5734     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5735     if (!MaybeEntry)
5736       return MaybeEntry.takeError();
5737     BitstreamEntry Entry = MaybeEntry.get();
5738 
5739     switch (Entry.Kind) {
5740     case BitstreamEntry::SubBlock: // Handled for us already.
5741     case BitstreamEntry::Error:
5742       return error("Malformed block");
5743     case BitstreamEntry::EndBlock:
5744       // Done parsing VST, jump back to wherever we came from.
5745       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5746         return JumpFailed;
5747       return Error::success();
5748     case BitstreamEntry::Record:
5749       // The interesting case.
5750       break;
5751     }
5752 
5753     // Read a record.
5754     Record.clear();
5755     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5756     if (!MaybeRecord)
5757       return MaybeRecord.takeError();
5758     switch (MaybeRecord.get()) {
5759     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5760       break;
5761     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5762       if (convertToString(Record, 1, ValueName))
5763         return error("Invalid record");
5764       unsigned ValueID = Record[0];
5765       assert(!SourceFileName.empty());
5766       auto VLI = ValueIdToLinkageMap.find(ValueID);
5767       assert(VLI != ValueIdToLinkageMap.end() &&
5768              "No linkage found for VST entry?");
5769       auto Linkage = VLI->second;
5770       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5771       ValueName.clear();
5772       break;
5773     }
5774     case bitc::VST_CODE_FNENTRY: {
5775       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5776       if (convertToString(Record, 2, ValueName))
5777         return error("Invalid record");
5778       unsigned ValueID = Record[0];
5779       assert(!SourceFileName.empty());
5780       auto VLI = ValueIdToLinkageMap.find(ValueID);
5781       assert(VLI != ValueIdToLinkageMap.end() &&
5782              "No linkage found for VST entry?");
5783       auto Linkage = VLI->second;
5784       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5785       ValueName.clear();
5786       break;
5787     }
5788     case bitc::VST_CODE_COMBINED_ENTRY: {
5789       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5790       unsigned ValueID = Record[0];
5791       GlobalValue::GUID RefGUID = Record[1];
5792       // The "original name", which is the second value of the pair will be
5793       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5794       ValueIdToValueInfoMap[ValueID] =
5795           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5796       break;
5797     }
5798     }
5799   }
5800 }
5801 
5802 // Parse just the blocks needed for building the index out of the module.
5803 // At the end of this routine the module Index is populated with a map
5804 // from global value id to GlobalValueSummary objects.
5805 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5806   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5807     return Err;
5808 
5809   SmallVector<uint64_t, 64> Record;
5810   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5811   unsigned ValueId = 0;
5812 
5813   // Read the index for this module.
5814   while (true) {
5815     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5816     if (!MaybeEntry)
5817       return MaybeEntry.takeError();
5818     llvm::BitstreamEntry Entry = MaybeEntry.get();
5819 
5820     switch (Entry.Kind) {
5821     case BitstreamEntry::Error:
5822       return error("Malformed block");
5823     case BitstreamEntry::EndBlock:
5824       return Error::success();
5825 
5826     case BitstreamEntry::SubBlock:
5827       switch (Entry.ID) {
5828       default: // Skip unknown content.
5829         if (Error Err = Stream.SkipBlock())
5830           return Err;
5831         break;
5832       case bitc::BLOCKINFO_BLOCK_ID:
5833         // Need to parse these to get abbrev ids (e.g. for VST)
5834         if (readBlockInfo())
5835           return error("Malformed block");
5836         break;
5837       case bitc::VALUE_SYMTAB_BLOCK_ID:
5838         // Should have been parsed earlier via VSTOffset, unless there
5839         // is no summary section.
5840         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5841                 !SeenGlobalValSummary) &&
5842                "Expected early VST parse via VSTOffset record");
5843         if (Error Err = Stream.SkipBlock())
5844           return Err;
5845         break;
5846       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5847       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5848         // Add the module if it is a per-module index (has a source file name).
5849         if (!SourceFileName.empty())
5850           addThisModule();
5851         assert(!SeenValueSymbolTable &&
5852                "Already read VST when parsing summary block?");
5853         // We might not have a VST if there were no values in the
5854         // summary. An empty summary block generated when we are
5855         // performing ThinLTO compiles so we don't later invoke
5856         // the regular LTO process on them.
5857         if (VSTOffset > 0) {
5858           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5859             return Err;
5860           SeenValueSymbolTable = true;
5861         }
5862         SeenGlobalValSummary = true;
5863         if (Error Err = parseEntireSummary(Entry.ID))
5864           return Err;
5865         break;
5866       case bitc::MODULE_STRTAB_BLOCK_ID:
5867         if (Error Err = parseModuleStringTable())
5868           return Err;
5869         break;
5870       }
5871       continue;
5872 
5873     case BitstreamEntry::Record: {
5874         Record.clear();
5875         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5876         if (!MaybeBitCode)
5877           return MaybeBitCode.takeError();
5878         switch (MaybeBitCode.get()) {
5879         default:
5880           break; // Default behavior, ignore unknown content.
5881         case bitc::MODULE_CODE_VERSION: {
5882           if (Error Err = parseVersionRecord(Record).takeError())
5883             return Err;
5884           break;
5885         }
5886         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5887         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5888           SmallString<128> ValueName;
5889           if (convertToString(Record, 0, ValueName))
5890             return error("Invalid record");
5891           SourceFileName = ValueName.c_str();
5892           break;
5893         }
5894         /// MODULE_CODE_HASH: [5*i32]
5895         case bitc::MODULE_CODE_HASH: {
5896           if (Record.size() != 5)
5897             return error("Invalid hash length " + Twine(Record.size()).str());
5898           auto &Hash = getThisModule()->second.second;
5899           int Pos = 0;
5900           for (auto &Val : Record) {
5901             assert(!(Val >> 32) && "Unexpected high bits set");
5902             Hash[Pos++] = Val;
5903           }
5904           break;
5905         }
5906         /// MODULE_CODE_VSTOFFSET: [offset]
5907         case bitc::MODULE_CODE_VSTOFFSET:
5908           if (Record.empty())
5909             return error("Invalid record");
5910           // Note that we subtract 1 here because the offset is relative to one
5911           // word before the start of the identification or module block, which
5912           // was historically always the start of the regular bitcode header.
5913           VSTOffset = Record[0] - 1;
5914           break;
5915         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5916         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5917         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5918         // v2: [strtab offset, strtab size, v1]
5919         case bitc::MODULE_CODE_GLOBALVAR:
5920         case bitc::MODULE_CODE_FUNCTION:
5921         case bitc::MODULE_CODE_ALIAS: {
5922           StringRef Name;
5923           ArrayRef<uint64_t> GVRecord;
5924           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5925           if (GVRecord.size() <= 3)
5926             return error("Invalid record");
5927           uint64_t RawLinkage = GVRecord[3];
5928           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5929           if (!UseStrtab) {
5930             ValueIdToLinkageMap[ValueId++] = Linkage;
5931             break;
5932           }
5933 
5934           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5935           break;
5936         }
5937         }
5938       }
5939       continue;
5940     }
5941   }
5942 }
5943 
5944 std::vector<ValueInfo>
5945 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5946   std::vector<ValueInfo> Ret;
5947   Ret.reserve(Record.size());
5948   for (uint64_t RefValueId : Record)
5949     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5950   return Ret;
5951 }
5952 
5953 std::vector<FunctionSummary::EdgeTy>
5954 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5955                                               bool IsOldProfileFormat,
5956                                               bool HasProfile, bool HasRelBF) {
5957   std::vector<FunctionSummary::EdgeTy> Ret;
5958   Ret.reserve(Record.size());
5959   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5960     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5961     uint64_t RelBF = 0;
5962     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5963     if (IsOldProfileFormat) {
5964       I += 1; // Skip old callsitecount field
5965       if (HasProfile)
5966         I += 1; // Skip old profilecount field
5967     } else if (HasProfile)
5968       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5969     else if (HasRelBF)
5970       RelBF = Record[++I];
5971     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5972   }
5973   return Ret;
5974 }
5975 
5976 static void
5977 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5978                                        WholeProgramDevirtResolution &Wpd) {
5979   uint64_t ArgNum = Record[Slot++];
5980   WholeProgramDevirtResolution::ByArg &B =
5981       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5982   Slot += ArgNum;
5983 
5984   B.TheKind =
5985       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5986   B.Info = Record[Slot++];
5987   B.Byte = Record[Slot++];
5988   B.Bit = Record[Slot++];
5989 }
5990 
5991 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5992                                               StringRef Strtab, size_t &Slot,
5993                                               TypeIdSummary &TypeId) {
5994   uint64_t Id = Record[Slot++];
5995   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5996 
5997   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5998   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5999                         static_cast<size_t>(Record[Slot + 1])};
6000   Slot += 2;
6001 
6002   uint64_t ResByArgNum = Record[Slot++];
6003   for (uint64_t I = 0; I != ResByArgNum; ++I)
6004     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6005 }
6006 
6007 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6008                                      StringRef Strtab,
6009                                      ModuleSummaryIndex &TheIndex) {
6010   size_t Slot = 0;
6011   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6012       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6013   Slot += 2;
6014 
6015   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6016   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6017   TypeId.TTRes.AlignLog2 = Record[Slot++];
6018   TypeId.TTRes.SizeM1 = Record[Slot++];
6019   TypeId.TTRes.BitMask = Record[Slot++];
6020   TypeId.TTRes.InlineBits = Record[Slot++];
6021 
6022   while (Slot < Record.size())
6023     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6024 }
6025 
6026 std::vector<FunctionSummary::ParamAccess>
6027 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6028   auto ReadRange = [&]() {
6029     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6030                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6031     Record = Record.drop_front();
6032     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6033                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6034     Record = Record.drop_front();
6035     ConstantRange Range{Lower, Upper};
6036     assert(!Range.isFullSet());
6037     assert(!Range.isUpperSignWrapped());
6038     return Range;
6039   };
6040 
6041   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6042   while (!Record.empty()) {
6043     PendingParamAccesses.emplace_back();
6044     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6045     ParamAccess.ParamNo = Record.front();
6046     Record = Record.drop_front();
6047     ParamAccess.Use = ReadRange();
6048     ParamAccess.Calls.resize(Record.front());
6049     Record = Record.drop_front();
6050     for (auto &Call : ParamAccess.Calls) {
6051       Call.ParamNo = Record.front();
6052       Record = Record.drop_front();
6053       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6054       Record = Record.drop_front();
6055       Call.Offsets = ReadRange();
6056     }
6057   }
6058   return PendingParamAccesses;
6059 }
6060 
6061 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6062     ArrayRef<uint64_t> Record, size_t &Slot,
6063     TypeIdCompatibleVtableInfo &TypeId) {
6064   uint64_t Offset = Record[Slot++];
6065   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6066   TypeId.push_back({Offset, Callee});
6067 }
6068 
6069 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6070     ArrayRef<uint64_t> Record) {
6071   size_t Slot = 0;
6072   TypeIdCompatibleVtableInfo &TypeId =
6073       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6074           {Strtab.data() + Record[Slot],
6075            static_cast<size_t>(Record[Slot + 1])});
6076   Slot += 2;
6077 
6078   while (Slot < Record.size())
6079     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6080 }
6081 
6082 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6083                            unsigned WOCnt) {
6084   // Readonly and writeonly refs are in the end of the refs list.
6085   assert(ROCnt + WOCnt <= Refs.size());
6086   unsigned FirstWORef = Refs.size() - WOCnt;
6087   unsigned RefNo = FirstWORef - ROCnt;
6088   for (; RefNo < FirstWORef; ++RefNo)
6089     Refs[RefNo].setReadOnly();
6090   for (; RefNo < Refs.size(); ++RefNo)
6091     Refs[RefNo].setWriteOnly();
6092 }
6093 
6094 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6095 // objects in the index.
6096 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6097   if (Error Err = Stream.EnterSubBlock(ID))
6098     return Err;
6099   SmallVector<uint64_t, 64> Record;
6100 
6101   // Parse version
6102   {
6103     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6104     if (!MaybeEntry)
6105       return MaybeEntry.takeError();
6106     BitstreamEntry Entry = MaybeEntry.get();
6107 
6108     if (Entry.Kind != BitstreamEntry::Record)
6109       return error("Invalid Summary Block: record for version expected");
6110     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6111     if (!MaybeRecord)
6112       return MaybeRecord.takeError();
6113     if (MaybeRecord.get() != bitc::FS_VERSION)
6114       return error("Invalid Summary Block: version expected");
6115   }
6116   const uint64_t Version = Record[0];
6117   const bool IsOldProfileFormat = Version == 1;
6118   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6119     return error("Invalid summary version " + Twine(Version) +
6120                  ". Version should be in the range [1-" +
6121                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6122                  "].");
6123   Record.clear();
6124 
6125   // Keep around the last seen summary to be used when we see an optional
6126   // "OriginalName" attachement.
6127   GlobalValueSummary *LastSeenSummary = nullptr;
6128   GlobalValue::GUID LastSeenGUID = 0;
6129 
6130   // We can expect to see any number of type ID information records before
6131   // each function summary records; these variables store the information
6132   // collected so far so that it can be used to create the summary object.
6133   std::vector<GlobalValue::GUID> PendingTypeTests;
6134   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6135       PendingTypeCheckedLoadVCalls;
6136   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6137       PendingTypeCheckedLoadConstVCalls;
6138   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6139 
6140   while (true) {
6141     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6142     if (!MaybeEntry)
6143       return MaybeEntry.takeError();
6144     BitstreamEntry Entry = MaybeEntry.get();
6145 
6146     switch (Entry.Kind) {
6147     case BitstreamEntry::SubBlock: // Handled for us already.
6148     case BitstreamEntry::Error:
6149       return error("Malformed block");
6150     case BitstreamEntry::EndBlock:
6151       return Error::success();
6152     case BitstreamEntry::Record:
6153       // The interesting case.
6154       break;
6155     }
6156 
6157     // Read a record. The record format depends on whether this
6158     // is a per-module index or a combined index file. In the per-module
6159     // case the records contain the associated value's ID for correlation
6160     // with VST entries. In the combined index the correlation is done
6161     // via the bitcode offset of the summary records (which were saved
6162     // in the combined index VST entries). The records also contain
6163     // information used for ThinLTO renaming and importing.
6164     Record.clear();
6165     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6166     if (!MaybeBitCode)
6167       return MaybeBitCode.takeError();
6168     switch (unsigned BitCode = MaybeBitCode.get()) {
6169     default: // Default behavior: ignore.
6170       break;
6171     case bitc::FS_FLAGS: {  // [flags]
6172       TheIndex.setFlags(Record[0]);
6173       break;
6174     }
6175     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6176       uint64_t ValueID = Record[0];
6177       GlobalValue::GUID RefGUID = Record[1];
6178       ValueIdToValueInfoMap[ValueID] =
6179           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6180       break;
6181     }
6182     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6183     //                numrefs x valueid, n x (valueid)]
6184     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6185     //                        numrefs x valueid,
6186     //                        n x (valueid, hotness)]
6187     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6188     //                      numrefs x valueid,
6189     //                      n x (valueid, relblockfreq)]
6190     case bitc::FS_PERMODULE:
6191     case bitc::FS_PERMODULE_RELBF:
6192     case bitc::FS_PERMODULE_PROFILE: {
6193       unsigned ValueID = Record[0];
6194       uint64_t RawFlags = Record[1];
6195       unsigned InstCount = Record[2];
6196       uint64_t RawFunFlags = 0;
6197       unsigned NumRefs = Record[3];
6198       unsigned NumRORefs = 0, NumWORefs = 0;
6199       int RefListStartIndex = 4;
6200       if (Version >= 4) {
6201         RawFunFlags = Record[3];
6202         NumRefs = Record[4];
6203         RefListStartIndex = 5;
6204         if (Version >= 5) {
6205           NumRORefs = Record[5];
6206           RefListStartIndex = 6;
6207           if (Version >= 7) {
6208             NumWORefs = Record[6];
6209             RefListStartIndex = 7;
6210           }
6211         }
6212       }
6213 
6214       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6215       // The module path string ref set in the summary must be owned by the
6216       // index's module string table. Since we don't have a module path
6217       // string table section in the per-module index, we create a single
6218       // module path string table entry with an empty (0) ID to take
6219       // ownership.
6220       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6221       assert(Record.size() >= RefListStartIndex + NumRefs &&
6222              "Record size inconsistent with number of references");
6223       std::vector<ValueInfo> Refs = makeRefList(
6224           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6225       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6226       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6227       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6228           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6229           IsOldProfileFormat, HasProfile, HasRelBF);
6230       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6231       auto FS = std::make_unique<FunctionSummary>(
6232           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6233           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6234           std::move(PendingTypeTestAssumeVCalls),
6235           std::move(PendingTypeCheckedLoadVCalls),
6236           std::move(PendingTypeTestAssumeConstVCalls),
6237           std::move(PendingTypeCheckedLoadConstVCalls),
6238           std::move(PendingParamAccesses));
6239       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6240       FS->setModulePath(getThisModule()->first());
6241       FS->setOriginalName(VIAndOriginalGUID.second);
6242       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6243       break;
6244     }
6245     // FS_ALIAS: [valueid, flags, valueid]
6246     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6247     // they expect all aliasee summaries to be available.
6248     case bitc::FS_ALIAS: {
6249       unsigned ValueID = Record[0];
6250       uint64_t RawFlags = Record[1];
6251       unsigned AliaseeID = Record[2];
6252       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6253       auto AS = std::make_unique<AliasSummary>(Flags);
6254       // The module path string ref set in the summary must be owned by the
6255       // index's module string table. Since we don't have a module path
6256       // string table section in the per-module index, we create a single
6257       // module path string table entry with an empty (0) ID to take
6258       // ownership.
6259       AS->setModulePath(getThisModule()->first());
6260 
6261       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6262       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6263       if (!AliaseeInModule)
6264         return error("Alias expects aliasee summary to be parsed");
6265       AS->setAliasee(AliaseeVI, AliaseeInModule);
6266 
6267       auto GUID = getValueInfoFromValueId(ValueID);
6268       AS->setOriginalName(GUID.second);
6269       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6270       break;
6271     }
6272     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6273     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6274       unsigned ValueID = Record[0];
6275       uint64_t RawFlags = Record[1];
6276       unsigned RefArrayStart = 2;
6277       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6278                                       /* WriteOnly */ false,
6279                                       /* Constant */ false,
6280                                       GlobalObject::VCallVisibilityPublic);
6281       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6282       if (Version >= 5) {
6283         GVF = getDecodedGVarFlags(Record[2]);
6284         RefArrayStart = 3;
6285       }
6286       std::vector<ValueInfo> Refs =
6287           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6288       auto FS =
6289           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6290       FS->setModulePath(getThisModule()->first());
6291       auto GUID = getValueInfoFromValueId(ValueID);
6292       FS->setOriginalName(GUID.second);
6293       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6294       break;
6295     }
6296     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6297     //                        numrefs, numrefs x valueid,
6298     //                        n x (valueid, offset)]
6299     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6300       unsigned ValueID = Record[0];
6301       uint64_t RawFlags = Record[1];
6302       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6303       unsigned NumRefs = Record[3];
6304       unsigned RefListStartIndex = 4;
6305       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6306       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6307       std::vector<ValueInfo> Refs = makeRefList(
6308           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6309       VTableFuncList VTableFuncs;
6310       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6311         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6312         uint64_t Offset = Record[++I];
6313         VTableFuncs.push_back({Callee, Offset});
6314       }
6315       auto VS =
6316           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6317       VS->setModulePath(getThisModule()->first());
6318       VS->setVTableFuncs(VTableFuncs);
6319       auto GUID = getValueInfoFromValueId(ValueID);
6320       VS->setOriginalName(GUID.second);
6321       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6322       break;
6323     }
6324     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6325     //               numrefs x valueid, n x (valueid)]
6326     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6327     //                       numrefs x valueid, n x (valueid, hotness)]
6328     case bitc::FS_COMBINED:
6329     case bitc::FS_COMBINED_PROFILE: {
6330       unsigned ValueID = Record[0];
6331       uint64_t ModuleId = Record[1];
6332       uint64_t RawFlags = Record[2];
6333       unsigned InstCount = Record[3];
6334       uint64_t RawFunFlags = 0;
6335       uint64_t EntryCount = 0;
6336       unsigned NumRefs = Record[4];
6337       unsigned NumRORefs = 0, NumWORefs = 0;
6338       int RefListStartIndex = 5;
6339 
6340       if (Version >= 4) {
6341         RawFunFlags = Record[4];
6342         RefListStartIndex = 6;
6343         size_t NumRefsIndex = 5;
6344         if (Version >= 5) {
6345           unsigned NumRORefsOffset = 1;
6346           RefListStartIndex = 7;
6347           if (Version >= 6) {
6348             NumRefsIndex = 6;
6349             EntryCount = Record[5];
6350             RefListStartIndex = 8;
6351             if (Version >= 7) {
6352               RefListStartIndex = 9;
6353               NumWORefs = Record[8];
6354               NumRORefsOffset = 2;
6355             }
6356           }
6357           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6358         }
6359         NumRefs = Record[NumRefsIndex];
6360       }
6361 
6362       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6363       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6364       assert(Record.size() >= RefListStartIndex + NumRefs &&
6365              "Record size inconsistent with number of references");
6366       std::vector<ValueInfo> Refs = makeRefList(
6367           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6368       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6369       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6370           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6371           IsOldProfileFormat, HasProfile, false);
6372       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6373       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6374       auto FS = std::make_unique<FunctionSummary>(
6375           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6376           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6377           std::move(PendingTypeTestAssumeVCalls),
6378           std::move(PendingTypeCheckedLoadVCalls),
6379           std::move(PendingTypeTestAssumeConstVCalls),
6380           std::move(PendingTypeCheckedLoadConstVCalls),
6381           std::move(PendingParamAccesses));
6382       LastSeenSummary = FS.get();
6383       LastSeenGUID = VI.getGUID();
6384       FS->setModulePath(ModuleIdMap[ModuleId]);
6385       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6386       break;
6387     }
6388     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6389     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6390     // they expect all aliasee summaries to be available.
6391     case bitc::FS_COMBINED_ALIAS: {
6392       unsigned ValueID = Record[0];
6393       uint64_t ModuleId = Record[1];
6394       uint64_t RawFlags = Record[2];
6395       unsigned AliaseeValueId = Record[3];
6396       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6397       auto AS = std::make_unique<AliasSummary>(Flags);
6398       LastSeenSummary = AS.get();
6399       AS->setModulePath(ModuleIdMap[ModuleId]);
6400 
6401       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6402       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6403       AS->setAliasee(AliaseeVI, AliaseeInModule);
6404 
6405       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6406       LastSeenGUID = VI.getGUID();
6407       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6408       break;
6409     }
6410     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6411     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6412       unsigned ValueID = Record[0];
6413       uint64_t ModuleId = Record[1];
6414       uint64_t RawFlags = Record[2];
6415       unsigned RefArrayStart = 3;
6416       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6417                                       /* WriteOnly */ false,
6418                                       /* Constant */ false,
6419                                       GlobalObject::VCallVisibilityPublic);
6420       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6421       if (Version >= 5) {
6422         GVF = getDecodedGVarFlags(Record[3]);
6423         RefArrayStart = 4;
6424       }
6425       std::vector<ValueInfo> Refs =
6426           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6427       auto FS =
6428           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6429       LastSeenSummary = FS.get();
6430       FS->setModulePath(ModuleIdMap[ModuleId]);
6431       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6432       LastSeenGUID = VI.getGUID();
6433       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6434       break;
6435     }
6436     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6437     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6438       uint64_t OriginalName = Record[0];
6439       if (!LastSeenSummary)
6440         return error("Name attachment that does not follow a combined record");
6441       LastSeenSummary->setOriginalName(OriginalName);
6442       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6443       // Reset the LastSeenSummary
6444       LastSeenSummary = nullptr;
6445       LastSeenGUID = 0;
6446       break;
6447     }
6448     case bitc::FS_TYPE_TESTS:
6449       assert(PendingTypeTests.empty());
6450       llvm::append_range(PendingTypeTests, Record);
6451       break;
6452 
6453     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6454       assert(PendingTypeTestAssumeVCalls.empty());
6455       for (unsigned I = 0; I != Record.size(); I += 2)
6456         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6457       break;
6458 
6459     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6460       assert(PendingTypeCheckedLoadVCalls.empty());
6461       for (unsigned I = 0; I != Record.size(); I += 2)
6462         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6463       break;
6464 
6465     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6466       PendingTypeTestAssumeConstVCalls.push_back(
6467           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6468       break;
6469 
6470     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6471       PendingTypeCheckedLoadConstVCalls.push_back(
6472           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6473       break;
6474 
6475     case bitc::FS_CFI_FUNCTION_DEFS: {
6476       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6477       for (unsigned I = 0; I != Record.size(); I += 2)
6478         CfiFunctionDefs.insert(
6479             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6480       break;
6481     }
6482 
6483     case bitc::FS_CFI_FUNCTION_DECLS: {
6484       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6485       for (unsigned I = 0; I != Record.size(); I += 2)
6486         CfiFunctionDecls.insert(
6487             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6488       break;
6489     }
6490 
6491     case bitc::FS_TYPE_ID:
6492       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6493       break;
6494 
6495     case bitc::FS_TYPE_ID_METADATA:
6496       parseTypeIdCompatibleVtableSummaryRecord(Record);
6497       break;
6498 
6499     case bitc::FS_BLOCK_COUNT:
6500       TheIndex.addBlockCount(Record[0]);
6501       break;
6502 
6503     case bitc::FS_PARAM_ACCESS: {
6504       PendingParamAccesses = parseParamAccesses(Record);
6505       break;
6506     }
6507     }
6508   }
6509   llvm_unreachable("Exit infinite loop");
6510 }
6511 
6512 // Parse the  module string table block into the Index.
6513 // This populates the ModulePathStringTable map in the index.
6514 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6515   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6516     return Err;
6517 
6518   SmallVector<uint64_t, 64> Record;
6519 
6520   SmallString<128> ModulePath;
6521   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6522 
6523   while (true) {
6524     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6525     if (!MaybeEntry)
6526       return MaybeEntry.takeError();
6527     BitstreamEntry Entry = MaybeEntry.get();
6528 
6529     switch (Entry.Kind) {
6530     case BitstreamEntry::SubBlock: // Handled for us already.
6531     case BitstreamEntry::Error:
6532       return error("Malformed block");
6533     case BitstreamEntry::EndBlock:
6534       return Error::success();
6535     case BitstreamEntry::Record:
6536       // The interesting case.
6537       break;
6538     }
6539 
6540     Record.clear();
6541     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6542     if (!MaybeRecord)
6543       return MaybeRecord.takeError();
6544     switch (MaybeRecord.get()) {
6545     default: // Default behavior: ignore.
6546       break;
6547     case bitc::MST_CODE_ENTRY: {
6548       // MST_ENTRY: [modid, namechar x N]
6549       uint64_t ModuleId = Record[0];
6550 
6551       if (convertToString(Record, 1, ModulePath))
6552         return error("Invalid record");
6553 
6554       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6555       ModuleIdMap[ModuleId] = LastSeenModule->first();
6556 
6557       ModulePath.clear();
6558       break;
6559     }
6560     /// MST_CODE_HASH: [5*i32]
6561     case bitc::MST_CODE_HASH: {
6562       if (Record.size() != 5)
6563         return error("Invalid hash length " + Twine(Record.size()).str());
6564       if (!LastSeenModule)
6565         return error("Invalid hash that does not follow a module path");
6566       int Pos = 0;
6567       for (auto &Val : Record) {
6568         assert(!(Val >> 32) && "Unexpected high bits set");
6569         LastSeenModule->second.second[Pos++] = Val;
6570       }
6571       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6572       LastSeenModule = nullptr;
6573       break;
6574     }
6575     }
6576   }
6577   llvm_unreachable("Exit infinite loop");
6578 }
6579 
6580 namespace {
6581 
6582 // FIXME: This class is only here to support the transition to llvm::Error. It
6583 // will be removed once this transition is complete. Clients should prefer to
6584 // deal with the Error value directly, rather than converting to error_code.
6585 class BitcodeErrorCategoryType : public std::error_category {
6586   const char *name() const noexcept override {
6587     return "llvm.bitcode";
6588   }
6589 
6590   std::string message(int IE) const override {
6591     BitcodeError E = static_cast<BitcodeError>(IE);
6592     switch (E) {
6593     case BitcodeError::CorruptedBitcode:
6594       return "Corrupted bitcode";
6595     }
6596     llvm_unreachable("Unknown error type!");
6597   }
6598 };
6599 
6600 } // end anonymous namespace
6601 
6602 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6603 
6604 const std::error_category &llvm::BitcodeErrorCategory() {
6605   return *ErrorCategory;
6606 }
6607 
6608 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6609                                             unsigned Block, unsigned RecordID) {
6610   if (Error Err = Stream.EnterSubBlock(Block))
6611     return std::move(Err);
6612 
6613   StringRef Strtab;
6614   while (true) {
6615     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6616     if (!MaybeEntry)
6617       return MaybeEntry.takeError();
6618     llvm::BitstreamEntry Entry = MaybeEntry.get();
6619 
6620     switch (Entry.Kind) {
6621     case BitstreamEntry::EndBlock:
6622       return Strtab;
6623 
6624     case BitstreamEntry::Error:
6625       return error("Malformed block");
6626 
6627     case BitstreamEntry::SubBlock:
6628       if (Error Err = Stream.SkipBlock())
6629         return std::move(Err);
6630       break;
6631 
6632     case BitstreamEntry::Record:
6633       StringRef Blob;
6634       SmallVector<uint64_t, 1> Record;
6635       Expected<unsigned> MaybeRecord =
6636           Stream.readRecord(Entry.ID, Record, &Blob);
6637       if (!MaybeRecord)
6638         return MaybeRecord.takeError();
6639       if (MaybeRecord.get() == RecordID)
6640         Strtab = Blob;
6641       break;
6642     }
6643   }
6644 }
6645 
6646 //===----------------------------------------------------------------------===//
6647 // External interface
6648 //===----------------------------------------------------------------------===//
6649 
6650 Expected<std::vector<BitcodeModule>>
6651 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6652   auto FOrErr = getBitcodeFileContents(Buffer);
6653   if (!FOrErr)
6654     return FOrErr.takeError();
6655   return std::move(FOrErr->Mods);
6656 }
6657 
6658 Expected<BitcodeFileContents>
6659 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6660   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6661   if (!StreamOrErr)
6662     return StreamOrErr.takeError();
6663   BitstreamCursor &Stream = *StreamOrErr;
6664 
6665   BitcodeFileContents F;
6666   while (true) {
6667     uint64_t BCBegin = Stream.getCurrentByteNo();
6668 
6669     // We may be consuming bitcode from a client that leaves garbage at the end
6670     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6671     // the end that there cannot possibly be another module, stop looking.
6672     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6673       return F;
6674 
6675     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6676     if (!MaybeEntry)
6677       return MaybeEntry.takeError();
6678     llvm::BitstreamEntry Entry = MaybeEntry.get();
6679 
6680     switch (Entry.Kind) {
6681     case BitstreamEntry::EndBlock:
6682     case BitstreamEntry::Error:
6683       return error("Malformed block");
6684 
6685     case BitstreamEntry::SubBlock: {
6686       uint64_t IdentificationBit = -1ull;
6687       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6688         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6689         if (Error Err = Stream.SkipBlock())
6690           return std::move(Err);
6691 
6692         {
6693           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6694           if (!MaybeEntry)
6695             return MaybeEntry.takeError();
6696           Entry = MaybeEntry.get();
6697         }
6698 
6699         if (Entry.Kind != BitstreamEntry::SubBlock ||
6700             Entry.ID != bitc::MODULE_BLOCK_ID)
6701           return error("Malformed block");
6702       }
6703 
6704       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6705         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6706         if (Error Err = Stream.SkipBlock())
6707           return std::move(Err);
6708 
6709         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6710                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6711                           Buffer.getBufferIdentifier(), IdentificationBit,
6712                           ModuleBit});
6713         continue;
6714       }
6715 
6716       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6717         Expected<StringRef> Strtab =
6718             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6719         if (!Strtab)
6720           return Strtab.takeError();
6721         // This string table is used by every preceding bitcode module that does
6722         // not have its own string table. A bitcode file may have multiple
6723         // string tables if it was created by binary concatenation, for example
6724         // with "llvm-cat -b".
6725         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6726           if (!I->Strtab.empty())
6727             break;
6728           I->Strtab = *Strtab;
6729         }
6730         // Similarly, the string table is used by every preceding symbol table;
6731         // normally there will be just one unless the bitcode file was created
6732         // by binary concatenation.
6733         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6734           F.StrtabForSymtab = *Strtab;
6735         continue;
6736       }
6737 
6738       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6739         Expected<StringRef> SymtabOrErr =
6740             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6741         if (!SymtabOrErr)
6742           return SymtabOrErr.takeError();
6743 
6744         // We can expect the bitcode file to have multiple symbol tables if it
6745         // was created by binary concatenation. In that case we silently
6746         // ignore any subsequent symbol tables, which is fine because this is a
6747         // low level function. The client is expected to notice that the number
6748         // of modules in the symbol table does not match the number of modules
6749         // in the input file and regenerate the symbol table.
6750         if (F.Symtab.empty())
6751           F.Symtab = *SymtabOrErr;
6752         continue;
6753       }
6754 
6755       if (Error Err = Stream.SkipBlock())
6756         return std::move(Err);
6757       continue;
6758     }
6759     case BitstreamEntry::Record:
6760       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6761         continue;
6762       else
6763         return StreamFailed.takeError();
6764     }
6765   }
6766 }
6767 
6768 /// Get a lazy one-at-time loading module from bitcode.
6769 ///
6770 /// This isn't always used in a lazy context.  In particular, it's also used by
6771 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6772 /// in forward-referenced functions from block address references.
6773 ///
6774 /// \param[in] MaterializeAll Set to \c true if we should materialize
6775 /// everything.
6776 Expected<std::unique_ptr<Module>>
6777 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6778                              bool ShouldLazyLoadMetadata, bool IsImporting,
6779                              DataLayoutCallbackTy DataLayoutCallback) {
6780   BitstreamCursor Stream(Buffer);
6781 
6782   std::string ProducerIdentification;
6783   if (IdentificationBit != -1ull) {
6784     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6785       return std::move(JumpFailed);
6786     Expected<std::string> ProducerIdentificationOrErr =
6787         readIdentificationBlock(Stream);
6788     if (!ProducerIdentificationOrErr)
6789       return ProducerIdentificationOrErr.takeError();
6790 
6791     ProducerIdentification = *ProducerIdentificationOrErr;
6792   }
6793 
6794   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6795     return std::move(JumpFailed);
6796   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6797                               Context);
6798 
6799   std::unique_ptr<Module> M =
6800       std::make_unique<Module>(ModuleIdentifier, Context);
6801   M->setMaterializer(R);
6802 
6803   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6804   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6805                                       IsImporting, DataLayoutCallback))
6806     return std::move(Err);
6807 
6808   if (MaterializeAll) {
6809     // Read in the entire module, and destroy the BitcodeReader.
6810     if (Error Err = M->materializeAll())
6811       return std::move(Err);
6812   } else {
6813     // Resolve forward references from blockaddresses.
6814     if (Error Err = R->materializeForwardReferencedFunctions())
6815       return std::move(Err);
6816   }
6817   return std::move(M);
6818 }
6819 
6820 Expected<std::unique_ptr<Module>>
6821 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6822                              bool IsImporting) {
6823   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6824                        [](StringRef) { return None; });
6825 }
6826 
6827 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6828 // We don't use ModuleIdentifier here because the client may need to control the
6829 // module path used in the combined summary (e.g. when reading summaries for
6830 // regular LTO modules).
6831 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6832                                  StringRef ModulePath, uint64_t ModuleId) {
6833   BitstreamCursor Stream(Buffer);
6834   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6835     return JumpFailed;
6836 
6837   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6838                                     ModulePath, ModuleId);
6839   return R.parseModule();
6840 }
6841 
6842 // Parse the specified bitcode buffer, returning the function info index.
6843 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6844   BitstreamCursor Stream(Buffer);
6845   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6846     return std::move(JumpFailed);
6847 
6848   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6849   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6850                                     ModuleIdentifier, 0);
6851 
6852   if (Error Err = R.parseModule())
6853     return std::move(Err);
6854 
6855   return std::move(Index);
6856 }
6857 
6858 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6859                                                 unsigned ID) {
6860   if (Error Err = Stream.EnterSubBlock(ID))
6861     return std::move(Err);
6862   SmallVector<uint64_t, 64> Record;
6863 
6864   while (true) {
6865     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6866     if (!MaybeEntry)
6867       return MaybeEntry.takeError();
6868     BitstreamEntry Entry = MaybeEntry.get();
6869 
6870     switch (Entry.Kind) {
6871     case BitstreamEntry::SubBlock: // Handled for us already.
6872     case BitstreamEntry::Error:
6873       return error("Malformed block");
6874     case BitstreamEntry::EndBlock:
6875       // If no flags record found, conservatively return true to mimic
6876       // behavior before this flag was added.
6877       return true;
6878     case BitstreamEntry::Record:
6879       // The interesting case.
6880       break;
6881     }
6882 
6883     // Look for the FS_FLAGS record.
6884     Record.clear();
6885     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6886     if (!MaybeBitCode)
6887       return MaybeBitCode.takeError();
6888     switch (MaybeBitCode.get()) {
6889     default: // Default behavior: ignore.
6890       break;
6891     case bitc::FS_FLAGS: { // [flags]
6892       uint64_t Flags = Record[0];
6893       // Scan flags.
6894       assert(Flags <= 0x7f && "Unexpected bits in flag");
6895 
6896       return Flags & 0x8;
6897     }
6898     }
6899   }
6900   llvm_unreachable("Exit infinite loop");
6901 }
6902 
6903 // Check if the given bitcode buffer contains a global value summary block.
6904 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6905   BitstreamCursor Stream(Buffer);
6906   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6907     return std::move(JumpFailed);
6908 
6909   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6910     return std::move(Err);
6911 
6912   while (true) {
6913     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6914     if (!MaybeEntry)
6915       return MaybeEntry.takeError();
6916     llvm::BitstreamEntry Entry = MaybeEntry.get();
6917 
6918     switch (Entry.Kind) {
6919     case BitstreamEntry::Error:
6920       return error("Malformed block");
6921     case BitstreamEntry::EndBlock:
6922       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6923                             /*EnableSplitLTOUnit=*/false};
6924 
6925     case BitstreamEntry::SubBlock:
6926       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6927         Expected<bool> EnableSplitLTOUnit =
6928             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6929         if (!EnableSplitLTOUnit)
6930           return EnableSplitLTOUnit.takeError();
6931         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6932                               *EnableSplitLTOUnit};
6933       }
6934 
6935       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6936         Expected<bool> EnableSplitLTOUnit =
6937             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6938         if (!EnableSplitLTOUnit)
6939           return EnableSplitLTOUnit.takeError();
6940         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6941                               *EnableSplitLTOUnit};
6942       }
6943 
6944       // Ignore other sub-blocks.
6945       if (Error Err = Stream.SkipBlock())
6946         return std::move(Err);
6947       continue;
6948 
6949     case BitstreamEntry::Record:
6950       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6951         continue;
6952       else
6953         return StreamFailed.takeError();
6954     }
6955   }
6956 }
6957 
6958 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6959   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6960   if (!MsOrErr)
6961     return MsOrErr.takeError();
6962 
6963   if (MsOrErr->size() != 1)
6964     return error("Expected a single module");
6965 
6966   return (*MsOrErr)[0];
6967 }
6968 
6969 Expected<std::unique_ptr<Module>>
6970 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6971                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6972   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6973   if (!BM)
6974     return BM.takeError();
6975 
6976   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6977 }
6978 
6979 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6980     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6981     bool ShouldLazyLoadMetadata, bool IsImporting) {
6982   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6983                                      IsImporting);
6984   if (MOrErr)
6985     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6986   return MOrErr;
6987 }
6988 
6989 Expected<std::unique_ptr<Module>>
6990 BitcodeModule::parseModule(LLVMContext &Context,
6991                            DataLayoutCallbackTy DataLayoutCallback) {
6992   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6993   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6994   // written.  We must defer until the Module has been fully materialized.
6995 }
6996 
6997 Expected<std::unique_ptr<Module>>
6998 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6999                        DataLayoutCallbackTy DataLayoutCallback) {
7000   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7001   if (!BM)
7002     return BM.takeError();
7003 
7004   return BM->parseModule(Context, DataLayoutCallback);
7005 }
7006 
7007 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7008   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7009   if (!StreamOrErr)
7010     return StreamOrErr.takeError();
7011 
7012   return readTriple(*StreamOrErr);
7013 }
7014 
7015 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7016   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7017   if (!StreamOrErr)
7018     return StreamOrErr.takeError();
7019 
7020   return hasObjCCategory(*StreamOrErr);
7021 }
7022 
7023 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7024   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7025   if (!StreamOrErr)
7026     return StreamOrErr.takeError();
7027 
7028   return readIdentificationCode(*StreamOrErr);
7029 }
7030 
7031 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7032                                    ModuleSummaryIndex &CombinedIndex,
7033                                    uint64_t ModuleId) {
7034   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7035   if (!BM)
7036     return BM.takeError();
7037 
7038   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7039 }
7040 
7041 Expected<std::unique_ptr<ModuleSummaryIndex>>
7042 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7043   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7044   if (!BM)
7045     return BM.takeError();
7046 
7047   return BM->getSummary();
7048 }
7049 
7050 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7051   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7052   if (!BM)
7053     return BM.takeError();
7054 
7055   return BM->getLTOInfo();
7056 }
7057 
7058 Expected<std::unique_ptr<ModuleSummaryIndex>>
7059 llvm::getModuleSummaryIndexForFile(StringRef Path,
7060                                    bool IgnoreEmptyThinLTOIndexFile) {
7061   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7062       MemoryBuffer::getFileOrSTDIN(Path);
7063   if (!FileOrErr)
7064     return errorCodeToError(FileOrErr.getError());
7065   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7066     return nullptr;
7067   return getModuleSummaryIndex(**FileOrErr);
7068 }
7069