1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/CallSite.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/DiagnosticPrinter.h" 24 #include "llvm/IR/GVMaterializer.h" 25 #include "llvm/IR/InlineAsm.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/ModuleSummaryIndex.h" 30 #include "llvm/IR/OperandTraits.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/ValueHandle.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/DataStream.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ManagedStatic.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/MemoryBuffer.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <deque> 41 #include <utility> 42 43 using namespace llvm; 44 45 static cl::opt<bool> PrintSummaryGUIDs( 46 "print-summary-global-ids", cl::init(false), cl::Hidden, 47 cl::desc( 48 "Print the global id for each value when reading the module summary")); 49 50 namespace { 51 enum { 52 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 53 }; 54 55 class BitcodeReaderValueList { 56 std::vector<WeakVH> ValuePtrs; 57 58 /// As we resolve forward-referenced constants, we add information about them 59 /// to this vector. This allows us to resolve them in bulk instead of 60 /// resolving each reference at a time. See the code in 61 /// ResolveConstantForwardRefs for more information about this. 62 /// 63 /// The key of this vector is the placeholder constant, the value is the slot 64 /// number that holds the resolved value. 65 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 66 ResolveConstantsTy ResolveConstants; 67 LLVMContext &Context; 68 public: 69 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 70 ~BitcodeReaderValueList() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 } 73 74 // vector compatibility methods 75 unsigned size() const { return ValuePtrs.size(); } 76 void resize(unsigned N) { ValuePtrs.resize(N); } 77 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 78 79 void clear() { 80 assert(ResolveConstants.empty() && "Constants not resolved?"); 81 ValuePtrs.clear(); 82 } 83 84 Value *operator[](unsigned i) const { 85 assert(i < ValuePtrs.size()); 86 return ValuePtrs[i]; 87 } 88 89 Value *back() const { return ValuePtrs.back(); } 90 void pop_back() { ValuePtrs.pop_back(); } 91 bool empty() const { return ValuePtrs.empty(); } 92 void shrinkTo(unsigned N) { 93 assert(N <= size() && "Invalid shrinkTo request!"); 94 ValuePtrs.resize(N); 95 } 96 97 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 98 Value *getValueFwdRef(unsigned Idx, Type *Ty); 99 100 void assignValue(Value *V, unsigned Idx); 101 102 /// Once all constants are read, this method bulk resolves any forward 103 /// references. 104 void resolveConstantForwardRefs(); 105 }; 106 107 class BitcodeReaderMetadataList { 108 unsigned NumFwdRefs; 109 bool AnyFwdRefs; 110 unsigned MinFwdRef; 111 unsigned MaxFwdRef; 112 113 /// Array of metadata references. 114 /// 115 /// Don't use std::vector here. Some versions of libc++ copy (instead of 116 /// move) on resize, and TrackingMDRef is very expensive to copy. 117 SmallVector<TrackingMDRef, 1> MetadataPtrs; 118 119 /// Structures for resolving old type refs. 120 struct { 121 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 122 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 123 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 124 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 125 } OldTypeRefs; 126 127 LLVMContext &Context; 128 public: 129 BitcodeReaderMetadataList(LLVMContext &C) 130 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 131 132 // vector compatibility methods 133 unsigned size() const { return MetadataPtrs.size(); } 134 void resize(unsigned N) { MetadataPtrs.resize(N); } 135 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 136 void clear() { MetadataPtrs.clear(); } 137 Metadata *back() const { return MetadataPtrs.back(); } 138 void pop_back() { MetadataPtrs.pop_back(); } 139 bool empty() const { return MetadataPtrs.empty(); } 140 141 Metadata *operator[](unsigned i) const { 142 assert(i < MetadataPtrs.size()); 143 return MetadataPtrs[i]; 144 } 145 146 Metadata *lookup(unsigned I) const { 147 if (I < MetadataPtrs.size()) 148 return MetadataPtrs[I]; 149 return nullptr; 150 } 151 152 void shrinkTo(unsigned N) { 153 assert(N <= size() && "Invalid shrinkTo request!"); 154 assert(!AnyFwdRefs && "Unexpected forward refs"); 155 MetadataPtrs.resize(N); 156 } 157 158 /// Return the given metadata, creating a replaceable forward reference if 159 /// necessary. 160 Metadata *getMetadataFwdRef(unsigned Idx); 161 162 /// Return the the given metadata only if it is fully resolved. 163 /// 164 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 165 /// would give \c false. 166 Metadata *getMetadataIfResolved(unsigned Idx); 167 168 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 169 void assignValue(Metadata *MD, unsigned Idx); 170 void tryToResolveCycles(); 171 bool hasFwdRefs() const { return AnyFwdRefs; } 172 173 /// Upgrade a type that had an MDString reference. 174 void addTypeRef(MDString &UUID, DICompositeType &CT); 175 176 /// Upgrade a type that had an MDString reference. 177 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 178 179 /// Upgrade a type ref array that may have MDString references. 180 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 181 182 private: 183 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 184 }; 185 186 class BitcodeReader : public GVMaterializer { 187 LLVMContext &Context; 188 Module *TheModule = nullptr; 189 std::unique_ptr<MemoryBuffer> Buffer; 190 std::unique_ptr<BitstreamReader> StreamFile; 191 BitstreamCursor Stream; 192 // Next offset to start scanning for lazy parsing of function bodies. 193 uint64_t NextUnreadBit = 0; 194 // Last function offset found in the VST. 195 uint64_t LastFunctionBlockBit = 0; 196 bool SeenValueSymbolTable = false; 197 uint64_t VSTOffset = 0; 198 // Contains an arbitrary and optional string identifying the bitcode producer 199 std::string ProducerIdentification; 200 201 std::vector<Type*> TypeList; 202 BitcodeReaderValueList ValueList; 203 BitcodeReaderMetadataList MetadataList; 204 std::vector<Comdat *> ComdatList; 205 SmallVector<Instruction *, 64> InstructionList; 206 207 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 208 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 209 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 210 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 211 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 212 213 SmallVector<Instruction*, 64> InstsWithTBAATag; 214 215 bool HasSeenOldLoopTags = false; 216 217 /// The set of attributes by index. Index zero in the file is for null, and 218 /// is thus not represented here. As such all indices are off by one. 219 std::vector<AttributeSet> MAttributes; 220 221 /// The set of attribute groups. 222 std::map<unsigned, AttributeSet> MAttributeGroups; 223 224 /// While parsing a function body, this is a list of the basic blocks for the 225 /// function. 226 std::vector<BasicBlock*> FunctionBBs; 227 228 // When reading the module header, this list is populated with functions that 229 // have bodies later in the file. 230 std::vector<Function*> FunctionsWithBodies; 231 232 // When intrinsic functions are encountered which require upgrading they are 233 // stored here with their replacement function. 234 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 235 UpdatedIntrinsicMap UpgradedIntrinsics; 236 // Intrinsics which were remangled because of types rename 237 UpdatedIntrinsicMap RemangledIntrinsics; 238 239 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 240 DenseMap<unsigned, unsigned> MDKindMap; 241 242 // Several operations happen after the module header has been read, but 243 // before function bodies are processed. This keeps track of whether 244 // we've done this yet. 245 bool SeenFirstFunctionBody = false; 246 247 /// When function bodies are initially scanned, this map contains info about 248 /// where to find deferred function body in the stream. 249 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 250 251 /// When Metadata block is initially scanned when parsing the module, we may 252 /// choose to defer parsing of the metadata. This vector contains info about 253 /// which Metadata blocks are deferred. 254 std::vector<uint64_t> DeferredMetadataInfo; 255 256 /// These are basic blocks forward-referenced by block addresses. They are 257 /// inserted lazily into functions when they're loaded. The basic block ID is 258 /// its index into the vector. 259 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 260 std::deque<Function *> BasicBlockFwdRefQueue; 261 262 /// Indicates that we are using a new encoding for instruction operands where 263 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 264 /// instruction number, for a more compact encoding. Some instruction 265 /// operands are not relative to the instruction ID: basic block numbers, and 266 /// types. Once the old style function blocks have been phased out, we would 267 /// not need this flag. 268 bool UseRelativeIDs = false; 269 270 /// True if all functions will be materialized, negating the need to process 271 /// (e.g.) blockaddress forward references. 272 bool WillMaterializeAllForwardRefs = false; 273 274 /// True if any Metadata block has been materialized. 275 bool IsMetadataMaterialized = false; 276 277 bool StripDebugInfo = false; 278 279 /// Functions that need to be matched with subprograms when upgrading old 280 /// metadata. 281 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 282 283 std::vector<std::string> BundleTags; 284 285 public: 286 std::error_code error(BitcodeError E, const Twine &Message); 287 std::error_code error(const Twine &Message); 288 289 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 290 BitcodeReader(LLVMContext &Context); 291 ~BitcodeReader() override { freeState(); } 292 293 std::error_code materializeForwardReferencedFunctions(); 294 295 void freeState(); 296 297 void releaseBuffer(); 298 299 std::error_code materialize(GlobalValue *GV) override; 300 std::error_code materializeModule() override; 301 std::vector<StructType *> getIdentifiedStructTypes() const override; 302 303 /// \brief Main interface to parsing a bitcode buffer. 304 /// \returns true if an error occurred. 305 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 306 Module *M, 307 bool ShouldLazyLoadMetadata = false); 308 309 /// \brief Cheap mechanism to just extract module triple 310 /// \returns true if an error occurred. 311 ErrorOr<std::string> parseTriple(); 312 313 /// Cheap mechanism to just extract the identification block out of bitcode. 314 ErrorOr<std::string> parseIdentificationBlock(); 315 316 static uint64_t decodeSignRotatedValue(uint64_t V); 317 318 /// Materialize any deferred Metadata block. 319 std::error_code materializeMetadata() override; 320 321 void setStripDebugInfo() override; 322 323 private: 324 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 325 // ProducerIdentification data member, and do some basic enforcement on the 326 // "epoch" encoded in the bitcode. 327 std::error_code parseBitcodeVersion(); 328 329 std::vector<StructType *> IdentifiedStructTypes; 330 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 331 StructType *createIdentifiedStructType(LLVMContext &Context); 332 333 Type *getTypeByID(unsigned ID); 334 Value *getFnValueByID(unsigned ID, Type *Ty) { 335 if (Ty && Ty->isMetadataTy()) 336 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 337 return ValueList.getValueFwdRef(ID, Ty); 338 } 339 Metadata *getFnMetadataByID(unsigned ID) { 340 return MetadataList.getMetadataFwdRef(ID); 341 } 342 BasicBlock *getBasicBlock(unsigned ID) const { 343 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 344 return FunctionBBs[ID]; 345 } 346 AttributeSet getAttributes(unsigned i) const { 347 if (i-1 < MAttributes.size()) 348 return MAttributes[i-1]; 349 return AttributeSet(); 350 } 351 352 /// Read a value/type pair out of the specified record from slot 'Slot'. 353 /// Increment Slot past the number of slots used in the record. Return true on 354 /// failure. 355 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 356 unsigned InstNum, Value *&ResVal) { 357 if (Slot == Record.size()) return true; 358 unsigned ValNo = (unsigned)Record[Slot++]; 359 // Adjust the ValNo, if it was encoded relative to the InstNum. 360 if (UseRelativeIDs) 361 ValNo = InstNum - ValNo; 362 if (ValNo < InstNum) { 363 // If this is not a forward reference, just return the value we already 364 // have. 365 ResVal = getFnValueByID(ValNo, nullptr); 366 return ResVal == nullptr; 367 } 368 if (Slot == Record.size()) 369 return true; 370 371 unsigned TypeNo = (unsigned)Record[Slot++]; 372 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 373 return ResVal == nullptr; 374 } 375 376 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 377 /// past the number of slots used by the value in the record. Return true if 378 /// there is an error. 379 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 380 unsigned InstNum, Type *Ty, Value *&ResVal) { 381 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 382 return true; 383 // All values currently take a single record slot. 384 ++Slot; 385 return false; 386 } 387 388 /// Like popValue, but does not increment the Slot number. 389 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 390 unsigned InstNum, Type *Ty, Value *&ResVal) { 391 ResVal = getValue(Record, Slot, InstNum, Ty); 392 return ResVal == nullptr; 393 } 394 395 /// Version of getValue that returns ResVal directly, or 0 if there is an 396 /// error. 397 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 398 unsigned InstNum, Type *Ty) { 399 if (Slot == Record.size()) return nullptr; 400 unsigned ValNo = (unsigned)Record[Slot]; 401 // Adjust the ValNo, if it was encoded relative to the InstNum. 402 if (UseRelativeIDs) 403 ValNo = InstNum - ValNo; 404 return getFnValueByID(ValNo, Ty); 405 } 406 407 /// Like getValue, but decodes signed VBRs. 408 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 409 unsigned InstNum, Type *Ty) { 410 if (Slot == Record.size()) return nullptr; 411 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 412 // Adjust the ValNo, if it was encoded relative to the InstNum. 413 if (UseRelativeIDs) 414 ValNo = InstNum - ValNo; 415 return getFnValueByID(ValNo, Ty); 416 } 417 418 /// Converts alignment exponent (i.e. power of two (or zero)) to the 419 /// corresponding alignment to use. If alignment is too large, returns 420 /// a corresponding error code. 421 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 422 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 423 std::error_code parseModule(uint64_t ResumeBit, 424 bool ShouldLazyLoadMetadata = false); 425 std::error_code parseAttributeBlock(); 426 std::error_code parseAttributeGroupBlock(); 427 std::error_code parseTypeTable(); 428 std::error_code parseTypeTableBody(); 429 std::error_code parseOperandBundleTags(); 430 431 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 432 unsigned NameIndex, Triple &TT); 433 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 434 std::error_code parseConstants(); 435 std::error_code rememberAndSkipFunctionBodies(); 436 std::error_code rememberAndSkipFunctionBody(); 437 /// Save the positions of the Metadata blocks and skip parsing the blocks. 438 std::error_code rememberAndSkipMetadata(); 439 std::error_code parseFunctionBody(Function *F); 440 std::error_code globalCleanup(); 441 std::error_code resolveGlobalAndIndirectSymbolInits(); 442 std::error_code parseMetadata(bool ModuleLevel = false); 443 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 444 StringRef Blob, 445 unsigned &NextMetadataNo); 446 std::error_code parseMetadataKinds(); 447 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 448 std::error_code 449 parseGlobalObjectAttachment(GlobalObject &GO, 450 ArrayRef<uint64_t> Record); 451 std::error_code parseMetadataAttachment(Function &F); 452 ErrorOr<std::string> parseModuleTriple(); 453 std::error_code parseUseLists(); 454 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 455 std::error_code initStreamFromBuffer(); 456 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 457 std::error_code findFunctionInStream( 458 Function *F, 459 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 460 }; 461 462 /// Class to manage reading and parsing function summary index bitcode 463 /// files/sections. 464 class ModuleSummaryIndexBitcodeReader { 465 DiagnosticHandlerFunction DiagnosticHandler; 466 467 /// Eventually points to the module index built during parsing. 468 ModuleSummaryIndex *TheIndex = nullptr; 469 470 std::unique_ptr<MemoryBuffer> Buffer; 471 std::unique_ptr<BitstreamReader> StreamFile; 472 BitstreamCursor Stream; 473 474 /// Used to indicate whether caller only wants to check for the presence 475 /// of the global value summary bitcode section. All blocks are skipped, 476 /// but the SeenGlobalValSummary boolean is set. 477 bool CheckGlobalValSummaryPresenceOnly = false; 478 479 /// Indicates whether we have encountered a global value summary section 480 /// yet during parsing, used when checking if file contains global value 481 /// summary section. 482 bool SeenGlobalValSummary = false; 483 484 /// Indicates whether we have already parsed the VST, used for error checking. 485 bool SeenValueSymbolTable = false; 486 487 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 488 /// Used to enable on-demand parsing of the VST. 489 uint64_t VSTOffset = 0; 490 491 // Map to save ValueId to GUID association that was recorded in the 492 // ValueSymbolTable. It is used after the VST is parsed to convert 493 // call graph edges read from the function summary from referencing 494 // callees by their ValueId to using the GUID instead, which is how 495 // they are recorded in the summary index being built. 496 // We save a second GUID which is the same as the first one, but ignoring the 497 // linkage, i.e. for value other than local linkage they are identical. 498 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 499 ValueIdToCallGraphGUIDMap; 500 501 /// Map populated during module path string table parsing, from the 502 /// module ID to a string reference owned by the index's module 503 /// path string table, used to correlate with combined index 504 /// summary records. 505 DenseMap<uint64_t, StringRef> ModuleIdMap; 506 507 /// Original source file name recorded in a bitcode record. 508 std::string SourceFileName; 509 510 public: 511 std::error_code error(const Twine &Message); 512 513 ModuleSummaryIndexBitcodeReader( 514 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 515 bool CheckGlobalValSummaryPresenceOnly = false); 516 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 517 518 void freeState(); 519 520 void releaseBuffer(); 521 522 /// Check if the parser has encountered a summary section. 523 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 524 525 /// \brief Main interface to parsing a bitcode buffer. 526 /// \returns true if an error occurred. 527 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 528 ModuleSummaryIndex *I); 529 530 private: 531 std::error_code parseModule(); 532 std::error_code parseValueSymbolTable( 533 uint64_t Offset, 534 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 535 std::error_code parseEntireSummary(); 536 std::error_code parseModuleStringTable(); 537 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 538 std::error_code initStreamFromBuffer(); 539 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 540 std::pair<GlobalValue::GUID, GlobalValue::GUID> 541 getGUIDFromValueId(unsigned ValueId); 542 }; 543 } // end anonymous namespace 544 545 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 546 DiagnosticSeverity Severity, 547 const Twine &Msg) 548 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 549 550 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 551 552 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler, 553 std::error_code EC, const Twine &Message) { 554 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 555 DiagnosticHandler(DI); 556 return EC; 557 } 558 559 static std::error_code error(LLVMContext &Context, std::error_code EC, 560 const Twine &Message) { 561 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 562 Message); 563 } 564 565 static std::error_code error(LLVMContext &Context, const Twine &Message) { 566 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 567 Message); 568 } 569 570 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 571 if (!ProducerIdentification.empty()) { 572 return ::error(Context, make_error_code(E), 573 Message + " (Producer: '" + ProducerIdentification + 574 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 575 } 576 return ::error(Context, make_error_code(E), Message); 577 } 578 579 std::error_code BitcodeReader::error(const Twine &Message) { 580 if (!ProducerIdentification.empty()) { 581 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 582 Message + " (Producer: '" + ProducerIdentification + 583 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 584 } 585 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 586 Message); 587 } 588 589 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 590 : Context(Context), Buffer(Buffer), ValueList(Context), 591 MetadataList(Context) {} 592 593 BitcodeReader::BitcodeReader(LLVMContext &Context) 594 : Context(Context), Buffer(nullptr), ValueList(Context), 595 MetadataList(Context) {} 596 597 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 598 if (WillMaterializeAllForwardRefs) 599 return std::error_code(); 600 601 // Prevent recursion. 602 WillMaterializeAllForwardRefs = true; 603 604 while (!BasicBlockFwdRefQueue.empty()) { 605 Function *F = BasicBlockFwdRefQueue.front(); 606 BasicBlockFwdRefQueue.pop_front(); 607 assert(F && "Expected valid function"); 608 if (!BasicBlockFwdRefs.count(F)) 609 // Already materialized. 610 continue; 611 612 // Check for a function that isn't materializable to prevent an infinite 613 // loop. When parsing a blockaddress stored in a global variable, there 614 // isn't a trivial way to check if a function will have a body without a 615 // linear search through FunctionsWithBodies, so just check it here. 616 if (!F->isMaterializable()) 617 return error("Never resolved function from blockaddress"); 618 619 // Try to materialize F. 620 if (std::error_code EC = materialize(F)) 621 return EC; 622 } 623 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 624 625 // Reset state. 626 WillMaterializeAllForwardRefs = false; 627 return std::error_code(); 628 } 629 630 void BitcodeReader::freeState() { 631 Buffer = nullptr; 632 std::vector<Type*>().swap(TypeList); 633 ValueList.clear(); 634 MetadataList.clear(); 635 std::vector<Comdat *>().swap(ComdatList); 636 637 std::vector<AttributeSet>().swap(MAttributes); 638 std::vector<BasicBlock*>().swap(FunctionBBs); 639 std::vector<Function*>().swap(FunctionsWithBodies); 640 DeferredFunctionInfo.clear(); 641 DeferredMetadataInfo.clear(); 642 MDKindMap.clear(); 643 644 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 645 BasicBlockFwdRefQueue.clear(); 646 } 647 648 //===----------------------------------------------------------------------===// 649 // Helper functions to implement forward reference resolution, etc. 650 //===----------------------------------------------------------------------===// 651 652 /// Convert a string from a record into an std::string, return true on failure. 653 template <typename StrTy> 654 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 655 StrTy &Result) { 656 if (Idx > Record.size()) 657 return true; 658 659 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 660 Result += (char)Record[i]; 661 return false; 662 } 663 664 static bool hasImplicitComdat(size_t Val) { 665 switch (Val) { 666 default: 667 return false; 668 case 1: // Old WeakAnyLinkage 669 case 4: // Old LinkOnceAnyLinkage 670 case 10: // Old WeakODRLinkage 671 case 11: // Old LinkOnceODRLinkage 672 return true; 673 } 674 } 675 676 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 677 switch (Val) { 678 default: // Map unknown/new linkages to external 679 case 0: 680 return GlobalValue::ExternalLinkage; 681 case 2: 682 return GlobalValue::AppendingLinkage; 683 case 3: 684 return GlobalValue::InternalLinkage; 685 case 5: 686 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 687 case 6: 688 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 689 case 7: 690 return GlobalValue::ExternalWeakLinkage; 691 case 8: 692 return GlobalValue::CommonLinkage; 693 case 9: 694 return GlobalValue::PrivateLinkage; 695 case 12: 696 return GlobalValue::AvailableExternallyLinkage; 697 case 13: 698 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 699 case 14: 700 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 701 case 15: 702 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 703 case 1: // Old value with implicit comdat. 704 case 16: 705 return GlobalValue::WeakAnyLinkage; 706 case 10: // Old value with implicit comdat. 707 case 17: 708 return GlobalValue::WeakODRLinkage; 709 case 4: // Old value with implicit comdat. 710 case 18: 711 return GlobalValue::LinkOnceAnyLinkage; 712 case 11: // Old value with implicit comdat. 713 case 19: 714 return GlobalValue::LinkOnceODRLinkage; 715 } 716 } 717 718 // Decode the flags for GlobalValue in the summary 719 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 720 uint64_t Version) { 721 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 722 // like getDecodedLinkage() above. Any future change to the linkage enum and 723 // to getDecodedLinkage() will need to be taken into account here as above. 724 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 725 RawFlags = RawFlags >> 4; 726 auto HasSection = RawFlags & 0x1; // bool 727 return GlobalValueSummary::GVFlags(Linkage, HasSection); 728 } 729 730 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 731 switch (Val) { 732 default: // Map unknown visibilities to default. 733 case 0: return GlobalValue::DefaultVisibility; 734 case 1: return GlobalValue::HiddenVisibility; 735 case 2: return GlobalValue::ProtectedVisibility; 736 } 737 } 738 739 static GlobalValue::DLLStorageClassTypes 740 getDecodedDLLStorageClass(unsigned Val) { 741 switch (Val) { 742 default: // Map unknown values to default. 743 case 0: return GlobalValue::DefaultStorageClass; 744 case 1: return GlobalValue::DLLImportStorageClass; 745 case 2: return GlobalValue::DLLExportStorageClass; 746 } 747 } 748 749 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 750 switch (Val) { 751 case 0: return GlobalVariable::NotThreadLocal; 752 default: // Map unknown non-zero value to general dynamic. 753 case 1: return GlobalVariable::GeneralDynamicTLSModel; 754 case 2: return GlobalVariable::LocalDynamicTLSModel; 755 case 3: return GlobalVariable::InitialExecTLSModel; 756 case 4: return GlobalVariable::LocalExecTLSModel; 757 } 758 } 759 760 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 761 switch (Val) { 762 default: // Map unknown to UnnamedAddr::None. 763 case 0: return GlobalVariable::UnnamedAddr::None; 764 case 1: return GlobalVariable::UnnamedAddr::Global; 765 case 2: return GlobalVariable::UnnamedAddr::Local; 766 } 767 } 768 769 static int getDecodedCastOpcode(unsigned Val) { 770 switch (Val) { 771 default: return -1; 772 case bitc::CAST_TRUNC : return Instruction::Trunc; 773 case bitc::CAST_ZEXT : return Instruction::ZExt; 774 case bitc::CAST_SEXT : return Instruction::SExt; 775 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 776 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 777 case bitc::CAST_UITOFP : return Instruction::UIToFP; 778 case bitc::CAST_SITOFP : return Instruction::SIToFP; 779 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 780 case bitc::CAST_FPEXT : return Instruction::FPExt; 781 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 782 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 783 case bitc::CAST_BITCAST : return Instruction::BitCast; 784 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 785 } 786 } 787 788 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 789 bool IsFP = Ty->isFPOrFPVectorTy(); 790 // BinOps are only valid for int/fp or vector of int/fp types 791 if (!IsFP && !Ty->isIntOrIntVectorTy()) 792 return -1; 793 794 switch (Val) { 795 default: 796 return -1; 797 case bitc::BINOP_ADD: 798 return IsFP ? Instruction::FAdd : Instruction::Add; 799 case bitc::BINOP_SUB: 800 return IsFP ? Instruction::FSub : Instruction::Sub; 801 case bitc::BINOP_MUL: 802 return IsFP ? Instruction::FMul : Instruction::Mul; 803 case bitc::BINOP_UDIV: 804 return IsFP ? -1 : Instruction::UDiv; 805 case bitc::BINOP_SDIV: 806 return IsFP ? Instruction::FDiv : Instruction::SDiv; 807 case bitc::BINOP_UREM: 808 return IsFP ? -1 : Instruction::URem; 809 case bitc::BINOP_SREM: 810 return IsFP ? Instruction::FRem : Instruction::SRem; 811 case bitc::BINOP_SHL: 812 return IsFP ? -1 : Instruction::Shl; 813 case bitc::BINOP_LSHR: 814 return IsFP ? -1 : Instruction::LShr; 815 case bitc::BINOP_ASHR: 816 return IsFP ? -1 : Instruction::AShr; 817 case bitc::BINOP_AND: 818 return IsFP ? -1 : Instruction::And; 819 case bitc::BINOP_OR: 820 return IsFP ? -1 : Instruction::Or; 821 case bitc::BINOP_XOR: 822 return IsFP ? -1 : Instruction::Xor; 823 } 824 } 825 826 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 827 switch (Val) { 828 default: return AtomicRMWInst::BAD_BINOP; 829 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 830 case bitc::RMW_ADD: return AtomicRMWInst::Add; 831 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 832 case bitc::RMW_AND: return AtomicRMWInst::And; 833 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 834 case bitc::RMW_OR: return AtomicRMWInst::Or; 835 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 836 case bitc::RMW_MAX: return AtomicRMWInst::Max; 837 case bitc::RMW_MIN: return AtomicRMWInst::Min; 838 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 839 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 840 } 841 } 842 843 static AtomicOrdering getDecodedOrdering(unsigned Val) { 844 switch (Val) { 845 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 846 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 847 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 848 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 849 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 850 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 851 default: // Map unknown orderings to sequentially-consistent. 852 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 853 } 854 } 855 856 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 857 switch (Val) { 858 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 859 default: // Map unknown scopes to cross-thread. 860 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 861 } 862 } 863 864 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 865 switch (Val) { 866 default: // Map unknown selection kinds to any. 867 case bitc::COMDAT_SELECTION_KIND_ANY: 868 return Comdat::Any; 869 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 870 return Comdat::ExactMatch; 871 case bitc::COMDAT_SELECTION_KIND_LARGEST: 872 return Comdat::Largest; 873 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 874 return Comdat::NoDuplicates; 875 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 876 return Comdat::SameSize; 877 } 878 } 879 880 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 881 FastMathFlags FMF; 882 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 883 FMF.setUnsafeAlgebra(); 884 if (0 != (Val & FastMathFlags::NoNaNs)) 885 FMF.setNoNaNs(); 886 if (0 != (Val & FastMathFlags::NoInfs)) 887 FMF.setNoInfs(); 888 if (0 != (Val & FastMathFlags::NoSignedZeros)) 889 FMF.setNoSignedZeros(); 890 if (0 != (Val & FastMathFlags::AllowReciprocal)) 891 FMF.setAllowReciprocal(); 892 return FMF; 893 } 894 895 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 896 switch (Val) { 897 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 898 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 899 } 900 } 901 902 namespace llvm { 903 namespace { 904 /// \brief A class for maintaining the slot number definition 905 /// as a placeholder for the actual definition for forward constants defs. 906 class ConstantPlaceHolder : public ConstantExpr { 907 void operator=(const ConstantPlaceHolder &) = delete; 908 909 public: 910 // allocate space for exactly one operand 911 void *operator new(size_t s) { return User::operator new(s, 1); } 912 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 913 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 914 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 915 } 916 917 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 918 static bool classof(const Value *V) { 919 return isa<ConstantExpr>(V) && 920 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 921 } 922 923 /// Provide fast operand accessors 924 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 925 }; 926 } // end anonymous namespace 927 928 // FIXME: can we inherit this from ConstantExpr? 929 template <> 930 struct OperandTraits<ConstantPlaceHolder> : 931 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 932 }; 933 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 934 } // end namespace llvm 935 936 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 937 if (Idx == size()) { 938 push_back(V); 939 return; 940 } 941 942 if (Idx >= size()) 943 resize(Idx+1); 944 945 WeakVH &OldV = ValuePtrs[Idx]; 946 if (!OldV) { 947 OldV = V; 948 return; 949 } 950 951 // Handle constants and non-constants (e.g. instrs) differently for 952 // efficiency. 953 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 954 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 955 OldV = V; 956 } else { 957 // If there was a forward reference to this value, replace it. 958 Value *PrevVal = OldV; 959 OldV->replaceAllUsesWith(V); 960 delete PrevVal; 961 } 962 } 963 964 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 965 Type *Ty) { 966 if (Idx >= size()) 967 resize(Idx + 1); 968 969 if (Value *V = ValuePtrs[Idx]) { 970 if (Ty != V->getType()) 971 report_fatal_error("Type mismatch in constant table!"); 972 return cast<Constant>(V); 973 } 974 975 // Create and return a placeholder, which will later be RAUW'd. 976 Constant *C = new ConstantPlaceHolder(Ty, Context); 977 ValuePtrs[Idx] = C; 978 return C; 979 } 980 981 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 982 // Bail out for a clearly invalid value. This would make us call resize(0) 983 if (Idx == UINT_MAX) 984 return nullptr; 985 986 if (Idx >= size()) 987 resize(Idx + 1); 988 989 if (Value *V = ValuePtrs[Idx]) { 990 // If the types don't match, it's invalid. 991 if (Ty && Ty != V->getType()) 992 return nullptr; 993 return V; 994 } 995 996 // No type specified, must be invalid reference. 997 if (!Ty) return nullptr; 998 999 // Create and return a placeholder, which will later be RAUW'd. 1000 Value *V = new Argument(Ty); 1001 ValuePtrs[Idx] = V; 1002 return V; 1003 } 1004 1005 /// Once all constants are read, this method bulk resolves any forward 1006 /// references. The idea behind this is that we sometimes get constants (such 1007 /// as large arrays) which reference *many* forward ref constants. Replacing 1008 /// each of these causes a lot of thrashing when building/reuniquing the 1009 /// constant. Instead of doing this, we look at all the uses and rewrite all 1010 /// the place holders at once for any constant that uses a placeholder. 1011 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1012 // Sort the values by-pointer so that they are efficient to look up with a 1013 // binary search. 1014 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1015 1016 SmallVector<Constant*, 64> NewOps; 1017 1018 while (!ResolveConstants.empty()) { 1019 Value *RealVal = operator[](ResolveConstants.back().second); 1020 Constant *Placeholder = ResolveConstants.back().first; 1021 ResolveConstants.pop_back(); 1022 1023 // Loop over all users of the placeholder, updating them to reference the 1024 // new value. If they reference more than one placeholder, update them all 1025 // at once. 1026 while (!Placeholder->use_empty()) { 1027 auto UI = Placeholder->user_begin(); 1028 User *U = *UI; 1029 1030 // If the using object isn't uniqued, just update the operands. This 1031 // handles instructions and initializers for global variables. 1032 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1033 UI.getUse().set(RealVal); 1034 continue; 1035 } 1036 1037 // Otherwise, we have a constant that uses the placeholder. Replace that 1038 // constant with a new constant that has *all* placeholder uses updated. 1039 Constant *UserC = cast<Constant>(U); 1040 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1041 I != E; ++I) { 1042 Value *NewOp; 1043 if (!isa<ConstantPlaceHolder>(*I)) { 1044 // Not a placeholder reference. 1045 NewOp = *I; 1046 } else if (*I == Placeholder) { 1047 // Common case is that it just references this one placeholder. 1048 NewOp = RealVal; 1049 } else { 1050 // Otherwise, look up the placeholder in ResolveConstants. 1051 ResolveConstantsTy::iterator It = 1052 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1053 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1054 0)); 1055 assert(It != ResolveConstants.end() && It->first == *I); 1056 NewOp = operator[](It->second); 1057 } 1058 1059 NewOps.push_back(cast<Constant>(NewOp)); 1060 } 1061 1062 // Make the new constant. 1063 Constant *NewC; 1064 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1065 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1066 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1067 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1068 } else if (isa<ConstantVector>(UserC)) { 1069 NewC = ConstantVector::get(NewOps); 1070 } else { 1071 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1072 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1073 } 1074 1075 UserC->replaceAllUsesWith(NewC); 1076 UserC->destroyConstant(); 1077 NewOps.clear(); 1078 } 1079 1080 // Update all ValueHandles, they should be the only users at this point. 1081 Placeholder->replaceAllUsesWith(RealVal); 1082 delete Placeholder; 1083 } 1084 } 1085 1086 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1087 if (Idx == size()) { 1088 push_back(MD); 1089 return; 1090 } 1091 1092 if (Idx >= size()) 1093 resize(Idx+1); 1094 1095 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1096 if (!OldMD) { 1097 OldMD.reset(MD); 1098 return; 1099 } 1100 1101 // If there was a forward reference to this value, replace it. 1102 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1103 PrevMD->replaceAllUsesWith(MD); 1104 --NumFwdRefs; 1105 } 1106 1107 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1108 if (Idx >= size()) 1109 resize(Idx + 1); 1110 1111 if (Metadata *MD = MetadataPtrs[Idx]) 1112 return MD; 1113 1114 // Track forward refs to be resolved later. 1115 if (AnyFwdRefs) { 1116 MinFwdRef = std::min(MinFwdRef, Idx); 1117 MaxFwdRef = std::max(MaxFwdRef, Idx); 1118 } else { 1119 AnyFwdRefs = true; 1120 MinFwdRef = MaxFwdRef = Idx; 1121 } 1122 ++NumFwdRefs; 1123 1124 // Create and return a placeholder, which will later be RAUW'd. 1125 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1126 MetadataPtrs[Idx].reset(MD); 1127 return MD; 1128 } 1129 1130 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1131 Metadata *MD = lookup(Idx); 1132 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1133 if (!N->isResolved()) 1134 return nullptr; 1135 return MD; 1136 } 1137 1138 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1139 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1140 } 1141 1142 void BitcodeReaderMetadataList::tryToResolveCycles() { 1143 if (NumFwdRefs) 1144 // Still forward references... can't resolve cycles. 1145 return; 1146 1147 bool DidReplaceTypeRefs = false; 1148 1149 // Give up on finding a full definition for any forward decls that remain. 1150 for (const auto &Ref : OldTypeRefs.FwdDecls) 1151 OldTypeRefs.Final.insert(Ref); 1152 OldTypeRefs.FwdDecls.clear(); 1153 1154 // Upgrade from old type ref arrays. In strange cases, this could add to 1155 // OldTypeRefs.Unknown. 1156 for (const auto &Array : OldTypeRefs.Arrays) { 1157 DidReplaceTypeRefs = true; 1158 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1159 } 1160 OldTypeRefs.Arrays.clear(); 1161 1162 // Replace old string-based type refs with the resolved node, if possible. 1163 // If we haven't seen the node, leave it to the verifier to complain about 1164 // the invalid string reference. 1165 for (const auto &Ref : OldTypeRefs.Unknown) { 1166 DidReplaceTypeRefs = true; 1167 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1168 Ref.second->replaceAllUsesWith(CT); 1169 else 1170 Ref.second->replaceAllUsesWith(Ref.first); 1171 } 1172 OldTypeRefs.Unknown.clear(); 1173 1174 // Make sure all the upgraded types are resolved. 1175 if (DidReplaceTypeRefs) { 1176 AnyFwdRefs = true; 1177 MinFwdRef = 0; 1178 MaxFwdRef = MetadataPtrs.size() - 1; 1179 } 1180 1181 if (!AnyFwdRefs) 1182 // Nothing to do. 1183 return; 1184 1185 // Resolve any cycles. 1186 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1187 auto &MD = MetadataPtrs[I]; 1188 auto *N = dyn_cast_or_null<MDNode>(MD); 1189 if (!N) 1190 continue; 1191 1192 assert(!N->isTemporary() && "Unexpected forward reference"); 1193 N->resolveCycles(); 1194 } 1195 1196 // Make sure we return early again until there's another forward ref. 1197 AnyFwdRefs = false; 1198 } 1199 1200 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1201 DICompositeType &CT) { 1202 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1203 if (CT.isForwardDecl()) 1204 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1205 else 1206 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1207 } 1208 1209 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1210 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1211 if (LLVM_LIKELY(!UUID)) 1212 return MaybeUUID; 1213 1214 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1215 return CT; 1216 1217 auto &Ref = OldTypeRefs.Unknown[UUID]; 1218 if (!Ref) 1219 Ref = MDNode::getTemporary(Context, None); 1220 return Ref.get(); 1221 } 1222 1223 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1224 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1225 if (!Tuple || Tuple->isDistinct()) 1226 return MaybeTuple; 1227 1228 // Look through the array immediately if possible. 1229 if (!Tuple->isTemporary()) 1230 return resolveTypeRefArray(Tuple); 1231 1232 // Create and return a placeholder to use for now. Eventually 1233 // resolveTypeRefArrays() will be resolve this forward reference. 1234 OldTypeRefs.Arrays.emplace_back( 1235 std::piecewise_construct, std::forward_as_tuple(Tuple), 1236 std::forward_as_tuple(MDTuple::getTemporary(Context, None))); 1237 return OldTypeRefs.Arrays.back().second.get(); 1238 } 1239 1240 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1241 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1242 if (!Tuple || Tuple->isDistinct()) 1243 return MaybeTuple; 1244 1245 // Look through the DITypeRefArray, upgrading each DITypeRef. 1246 SmallVector<Metadata *, 32> Ops; 1247 Ops.reserve(Tuple->getNumOperands()); 1248 for (Metadata *MD : Tuple->operands()) 1249 Ops.push_back(upgradeTypeRef(MD)); 1250 1251 return MDTuple::get(Context, Ops); 1252 } 1253 1254 Type *BitcodeReader::getTypeByID(unsigned ID) { 1255 // The type table size is always specified correctly. 1256 if (ID >= TypeList.size()) 1257 return nullptr; 1258 1259 if (Type *Ty = TypeList[ID]) 1260 return Ty; 1261 1262 // If we have a forward reference, the only possible case is when it is to a 1263 // named struct. Just create a placeholder for now. 1264 return TypeList[ID] = createIdentifiedStructType(Context); 1265 } 1266 1267 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1268 StringRef Name) { 1269 auto *Ret = StructType::create(Context, Name); 1270 IdentifiedStructTypes.push_back(Ret); 1271 return Ret; 1272 } 1273 1274 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1275 auto *Ret = StructType::create(Context); 1276 IdentifiedStructTypes.push_back(Ret); 1277 return Ret; 1278 } 1279 1280 //===----------------------------------------------------------------------===// 1281 // Functions for parsing blocks from the bitcode file 1282 //===----------------------------------------------------------------------===// 1283 1284 1285 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1286 /// been decoded from the given integer. This function must stay in sync with 1287 /// 'encodeLLVMAttributesForBitcode'. 1288 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1289 uint64_t EncodedAttrs) { 1290 // FIXME: Remove in 4.0. 1291 1292 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1293 // the bits above 31 down by 11 bits. 1294 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1295 assert((!Alignment || isPowerOf2_32(Alignment)) && 1296 "Alignment must be a power of two."); 1297 1298 if (Alignment) 1299 B.addAlignmentAttr(Alignment); 1300 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1301 (EncodedAttrs & 0xffff)); 1302 } 1303 1304 std::error_code BitcodeReader::parseAttributeBlock() { 1305 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1306 return error("Invalid record"); 1307 1308 if (!MAttributes.empty()) 1309 return error("Invalid multiple blocks"); 1310 1311 SmallVector<uint64_t, 64> Record; 1312 1313 SmallVector<AttributeSet, 8> Attrs; 1314 1315 // Read all the records. 1316 while (1) { 1317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1318 1319 switch (Entry.Kind) { 1320 case BitstreamEntry::SubBlock: // Handled for us already. 1321 case BitstreamEntry::Error: 1322 return error("Malformed block"); 1323 case BitstreamEntry::EndBlock: 1324 return std::error_code(); 1325 case BitstreamEntry::Record: 1326 // The interesting case. 1327 break; 1328 } 1329 1330 // Read a record. 1331 Record.clear(); 1332 switch (Stream.readRecord(Entry.ID, Record)) { 1333 default: // Default behavior: ignore. 1334 break; 1335 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1336 // FIXME: Remove in 4.0. 1337 if (Record.size() & 1) 1338 return error("Invalid record"); 1339 1340 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1341 AttrBuilder B; 1342 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1343 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1344 } 1345 1346 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1347 Attrs.clear(); 1348 break; 1349 } 1350 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1351 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1352 Attrs.push_back(MAttributeGroups[Record[i]]); 1353 1354 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1355 Attrs.clear(); 1356 break; 1357 } 1358 } 1359 } 1360 } 1361 1362 // Returns Attribute::None on unrecognized codes. 1363 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1364 switch (Code) { 1365 default: 1366 return Attribute::None; 1367 case bitc::ATTR_KIND_ALIGNMENT: 1368 return Attribute::Alignment; 1369 case bitc::ATTR_KIND_ALWAYS_INLINE: 1370 return Attribute::AlwaysInline; 1371 case bitc::ATTR_KIND_ARGMEMONLY: 1372 return Attribute::ArgMemOnly; 1373 case bitc::ATTR_KIND_BUILTIN: 1374 return Attribute::Builtin; 1375 case bitc::ATTR_KIND_BY_VAL: 1376 return Attribute::ByVal; 1377 case bitc::ATTR_KIND_IN_ALLOCA: 1378 return Attribute::InAlloca; 1379 case bitc::ATTR_KIND_COLD: 1380 return Attribute::Cold; 1381 case bitc::ATTR_KIND_CONVERGENT: 1382 return Attribute::Convergent; 1383 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1384 return Attribute::InaccessibleMemOnly; 1385 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1386 return Attribute::InaccessibleMemOrArgMemOnly; 1387 case bitc::ATTR_KIND_INLINE_HINT: 1388 return Attribute::InlineHint; 1389 case bitc::ATTR_KIND_IN_REG: 1390 return Attribute::InReg; 1391 case bitc::ATTR_KIND_JUMP_TABLE: 1392 return Attribute::JumpTable; 1393 case bitc::ATTR_KIND_MIN_SIZE: 1394 return Attribute::MinSize; 1395 case bitc::ATTR_KIND_NAKED: 1396 return Attribute::Naked; 1397 case bitc::ATTR_KIND_NEST: 1398 return Attribute::Nest; 1399 case bitc::ATTR_KIND_NO_ALIAS: 1400 return Attribute::NoAlias; 1401 case bitc::ATTR_KIND_NO_BUILTIN: 1402 return Attribute::NoBuiltin; 1403 case bitc::ATTR_KIND_NO_CAPTURE: 1404 return Attribute::NoCapture; 1405 case bitc::ATTR_KIND_NO_DUPLICATE: 1406 return Attribute::NoDuplicate; 1407 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1408 return Attribute::NoImplicitFloat; 1409 case bitc::ATTR_KIND_NO_INLINE: 1410 return Attribute::NoInline; 1411 case bitc::ATTR_KIND_NO_RECURSE: 1412 return Attribute::NoRecurse; 1413 case bitc::ATTR_KIND_NON_LAZY_BIND: 1414 return Attribute::NonLazyBind; 1415 case bitc::ATTR_KIND_NON_NULL: 1416 return Attribute::NonNull; 1417 case bitc::ATTR_KIND_DEREFERENCEABLE: 1418 return Attribute::Dereferenceable; 1419 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1420 return Attribute::DereferenceableOrNull; 1421 case bitc::ATTR_KIND_ALLOC_SIZE: 1422 return Attribute::AllocSize; 1423 case bitc::ATTR_KIND_NO_RED_ZONE: 1424 return Attribute::NoRedZone; 1425 case bitc::ATTR_KIND_NO_RETURN: 1426 return Attribute::NoReturn; 1427 case bitc::ATTR_KIND_NO_UNWIND: 1428 return Attribute::NoUnwind; 1429 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1430 return Attribute::OptimizeForSize; 1431 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1432 return Attribute::OptimizeNone; 1433 case bitc::ATTR_KIND_READ_NONE: 1434 return Attribute::ReadNone; 1435 case bitc::ATTR_KIND_READ_ONLY: 1436 return Attribute::ReadOnly; 1437 case bitc::ATTR_KIND_RETURNED: 1438 return Attribute::Returned; 1439 case bitc::ATTR_KIND_RETURNS_TWICE: 1440 return Attribute::ReturnsTwice; 1441 case bitc::ATTR_KIND_S_EXT: 1442 return Attribute::SExt; 1443 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1444 return Attribute::StackAlignment; 1445 case bitc::ATTR_KIND_STACK_PROTECT: 1446 return Attribute::StackProtect; 1447 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1448 return Attribute::StackProtectReq; 1449 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1450 return Attribute::StackProtectStrong; 1451 case bitc::ATTR_KIND_SAFESTACK: 1452 return Attribute::SafeStack; 1453 case bitc::ATTR_KIND_STRUCT_RET: 1454 return Attribute::StructRet; 1455 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1456 return Attribute::SanitizeAddress; 1457 case bitc::ATTR_KIND_SANITIZE_THREAD: 1458 return Attribute::SanitizeThread; 1459 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1460 return Attribute::SanitizeMemory; 1461 case bitc::ATTR_KIND_SWIFT_ERROR: 1462 return Attribute::SwiftError; 1463 case bitc::ATTR_KIND_SWIFT_SELF: 1464 return Attribute::SwiftSelf; 1465 case bitc::ATTR_KIND_UW_TABLE: 1466 return Attribute::UWTable; 1467 case bitc::ATTR_KIND_WRITEONLY: 1468 return Attribute::WriteOnly; 1469 case bitc::ATTR_KIND_Z_EXT: 1470 return Attribute::ZExt; 1471 } 1472 } 1473 1474 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1475 unsigned &Alignment) { 1476 // Note: Alignment in bitcode files is incremented by 1, so that zero 1477 // can be used for default alignment. 1478 if (Exponent > Value::MaxAlignmentExponent + 1) 1479 return error("Invalid alignment value"); 1480 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1481 return std::error_code(); 1482 } 1483 1484 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1485 Attribute::AttrKind *Kind) { 1486 *Kind = getAttrFromCode(Code); 1487 if (*Kind == Attribute::None) 1488 return error(BitcodeError::CorruptedBitcode, 1489 "Unknown attribute kind (" + Twine(Code) + ")"); 1490 return std::error_code(); 1491 } 1492 1493 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1494 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1495 return error("Invalid record"); 1496 1497 if (!MAttributeGroups.empty()) 1498 return error("Invalid multiple blocks"); 1499 1500 SmallVector<uint64_t, 64> Record; 1501 1502 // Read all the records. 1503 while (1) { 1504 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1505 1506 switch (Entry.Kind) { 1507 case BitstreamEntry::SubBlock: // Handled for us already. 1508 case BitstreamEntry::Error: 1509 return error("Malformed block"); 1510 case BitstreamEntry::EndBlock: 1511 return std::error_code(); 1512 case BitstreamEntry::Record: 1513 // The interesting case. 1514 break; 1515 } 1516 1517 // Read a record. 1518 Record.clear(); 1519 switch (Stream.readRecord(Entry.ID, Record)) { 1520 default: // Default behavior: ignore. 1521 break; 1522 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1523 if (Record.size() < 3) 1524 return error("Invalid record"); 1525 1526 uint64_t GrpID = Record[0]; 1527 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1528 1529 AttrBuilder B; 1530 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1531 if (Record[i] == 0) { // Enum attribute 1532 Attribute::AttrKind Kind; 1533 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1534 return EC; 1535 1536 B.addAttribute(Kind); 1537 } else if (Record[i] == 1) { // Integer attribute 1538 Attribute::AttrKind Kind; 1539 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1540 return EC; 1541 if (Kind == Attribute::Alignment) 1542 B.addAlignmentAttr(Record[++i]); 1543 else if (Kind == Attribute::StackAlignment) 1544 B.addStackAlignmentAttr(Record[++i]); 1545 else if (Kind == Attribute::Dereferenceable) 1546 B.addDereferenceableAttr(Record[++i]); 1547 else if (Kind == Attribute::DereferenceableOrNull) 1548 B.addDereferenceableOrNullAttr(Record[++i]); 1549 else if (Kind == Attribute::AllocSize) 1550 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1551 } else { // String attribute 1552 assert((Record[i] == 3 || Record[i] == 4) && 1553 "Invalid attribute group entry"); 1554 bool HasValue = (Record[i++] == 4); 1555 SmallString<64> KindStr; 1556 SmallString<64> ValStr; 1557 1558 while (Record[i] != 0 && i != e) 1559 KindStr += Record[i++]; 1560 assert(Record[i] == 0 && "Kind string not null terminated"); 1561 1562 if (HasValue) { 1563 // Has a value associated with it. 1564 ++i; // Skip the '0' that terminates the "kind" string. 1565 while (Record[i] != 0 && i != e) 1566 ValStr += Record[i++]; 1567 assert(Record[i] == 0 && "Value string not null terminated"); 1568 } 1569 1570 B.addAttribute(KindStr.str(), ValStr.str()); 1571 } 1572 } 1573 1574 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1575 break; 1576 } 1577 } 1578 } 1579 } 1580 1581 std::error_code BitcodeReader::parseTypeTable() { 1582 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1583 return error("Invalid record"); 1584 1585 return parseTypeTableBody(); 1586 } 1587 1588 std::error_code BitcodeReader::parseTypeTableBody() { 1589 if (!TypeList.empty()) 1590 return error("Invalid multiple blocks"); 1591 1592 SmallVector<uint64_t, 64> Record; 1593 unsigned NumRecords = 0; 1594 1595 SmallString<64> TypeName; 1596 1597 // Read all the records for this type table. 1598 while (1) { 1599 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1600 1601 switch (Entry.Kind) { 1602 case BitstreamEntry::SubBlock: // Handled for us already. 1603 case BitstreamEntry::Error: 1604 return error("Malformed block"); 1605 case BitstreamEntry::EndBlock: 1606 if (NumRecords != TypeList.size()) 1607 return error("Malformed block"); 1608 return std::error_code(); 1609 case BitstreamEntry::Record: 1610 // The interesting case. 1611 break; 1612 } 1613 1614 // Read a record. 1615 Record.clear(); 1616 Type *ResultTy = nullptr; 1617 switch (Stream.readRecord(Entry.ID, Record)) { 1618 default: 1619 return error("Invalid value"); 1620 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1621 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1622 // type list. This allows us to reserve space. 1623 if (Record.size() < 1) 1624 return error("Invalid record"); 1625 TypeList.resize(Record[0]); 1626 continue; 1627 case bitc::TYPE_CODE_VOID: // VOID 1628 ResultTy = Type::getVoidTy(Context); 1629 break; 1630 case bitc::TYPE_CODE_HALF: // HALF 1631 ResultTy = Type::getHalfTy(Context); 1632 break; 1633 case bitc::TYPE_CODE_FLOAT: // FLOAT 1634 ResultTy = Type::getFloatTy(Context); 1635 break; 1636 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1637 ResultTy = Type::getDoubleTy(Context); 1638 break; 1639 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1640 ResultTy = Type::getX86_FP80Ty(Context); 1641 break; 1642 case bitc::TYPE_CODE_FP128: // FP128 1643 ResultTy = Type::getFP128Ty(Context); 1644 break; 1645 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1646 ResultTy = Type::getPPC_FP128Ty(Context); 1647 break; 1648 case bitc::TYPE_CODE_LABEL: // LABEL 1649 ResultTy = Type::getLabelTy(Context); 1650 break; 1651 case bitc::TYPE_CODE_METADATA: // METADATA 1652 ResultTy = Type::getMetadataTy(Context); 1653 break; 1654 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1655 ResultTy = Type::getX86_MMXTy(Context); 1656 break; 1657 case bitc::TYPE_CODE_TOKEN: // TOKEN 1658 ResultTy = Type::getTokenTy(Context); 1659 break; 1660 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1661 if (Record.size() < 1) 1662 return error("Invalid record"); 1663 1664 uint64_t NumBits = Record[0]; 1665 if (NumBits < IntegerType::MIN_INT_BITS || 1666 NumBits > IntegerType::MAX_INT_BITS) 1667 return error("Bitwidth for integer type out of range"); 1668 ResultTy = IntegerType::get(Context, NumBits); 1669 break; 1670 } 1671 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1672 // [pointee type, address space] 1673 if (Record.size() < 1) 1674 return error("Invalid record"); 1675 unsigned AddressSpace = 0; 1676 if (Record.size() == 2) 1677 AddressSpace = Record[1]; 1678 ResultTy = getTypeByID(Record[0]); 1679 if (!ResultTy || 1680 !PointerType::isValidElementType(ResultTy)) 1681 return error("Invalid type"); 1682 ResultTy = PointerType::get(ResultTy, AddressSpace); 1683 break; 1684 } 1685 case bitc::TYPE_CODE_FUNCTION_OLD: { 1686 // FIXME: attrid is dead, remove it in LLVM 4.0 1687 // FUNCTION: [vararg, attrid, retty, paramty x N] 1688 if (Record.size() < 3) 1689 return error("Invalid record"); 1690 SmallVector<Type*, 8> ArgTys; 1691 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1692 if (Type *T = getTypeByID(Record[i])) 1693 ArgTys.push_back(T); 1694 else 1695 break; 1696 } 1697 1698 ResultTy = getTypeByID(Record[2]); 1699 if (!ResultTy || ArgTys.size() < Record.size()-3) 1700 return error("Invalid type"); 1701 1702 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1703 break; 1704 } 1705 case bitc::TYPE_CODE_FUNCTION: { 1706 // FUNCTION: [vararg, retty, paramty x N] 1707 if (Record.size() < 2) 1708 return error("Invalid record"); 1709 SmallVector<Type*, 8> ArgTys; 1710 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1711 if (Type *T = getTypeByID(Record[i])) { 1712 if (!FunctionType::isValidArgumentType(T)) 1713 return error("Invalid function argument type"); 1714 ArgTys.push_back(T); 1715 } 1716 else 1717 break; 1718 } 1719 1720 ResultTy = getTypeByID(Record[1]); 1721 if (!ResultTy || ArgTys.size() < Record.size()-2) 1722 return error("Invalid type"); 1723 1724 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1725 break; 1726 } 1727 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1728 if (Record.size() < 1) 1729 return error("Invalid record"); 1730 SmallVector<Type*, 8> EltTys; 1731 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1732 if (Type *T = getTypeByID(Record[i])) 1733 EltTys.push_back(T); 1734 else 1735 break; 1736 } 1737 if (EltTys.size() != Record.size()-1) 1738 return error("Invalid type"); 1739 ResultTy = StructType::get(Context, EltTys, Record[0]); 1740 break; 1741 } 1742 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1743 if (convertToString(Record, 0, TypeName)) 1744 return error("Invalid record"); 1745 continue; 1746 1747 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1748 if (Record.size() < 1) 1749 return error("Invalid record"); 1750 1751 if (NumRecords >= TypeList.size()) 1752 return error("Invalid TYPE table"); 1753 1754 // Check to see if this was forward referenced, if so fill in the temp. 1755 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1756 if (Res) { 1757 Res->setName(TypeName); 1758 TypeList[NumRecords] = nullptr; 1759 } else // Otherwise, create a new struct. 1760 Res = createIdentifiedStructType(Context, TypeName); 1761 TypeName.clear(); 1762 1763 SmallVector<Type*, 8> EltTys; 1764 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1765 if (Type *T = getTypeByID(Record[i])) 1766 EltTys.push_back(T); 1767 else 1768 break; 1769 } 1770 if (EltTys.size() != Record.size()-1) 1771 return error("Invalid record"); 1772 Res->setBody(EltTys, Record[0]); 1773 ResultTy = Res; 1774 break; 1775 } 1776 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1777 if (Record.size() != 1) 1778 return error("Invalid record"); 1779 1780 if (NumRecords >= TypeList.size()) 1781 return error("Invalid TYPE table"); 1782 1783 // Check to see if this was forward referenced, if so fill in the temp. 1784 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1785 if (Res) { 1786 Res->setName(TypeName); 1787 TypeList[NumRecords] = nullptr; 1788 } else // Otherwise, create a new struct with no body. 1789 Res = createIdentifiedStructType(Context, TypeName); 1790 TypeName.clear(); 1791 ResultTy = Res; 1792 break; 1793 } 1794 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1795 if (Record.size() < 2) 1796 return error("Invalid record"); 1797 ResultTy = getTypeByID(Record[1]); 1798 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1799 return error("Invalid type"); 1800 ResultTy = ArrayType::get(ResultTy, Record[0]); 1801 break; 1802 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1803 if (Record.size() < 2) 1804 return error("Invalid record"); 1805 if (Record[0] == 0) 1806 return error("Invalid vector length"); 1807 ResultTy = getTypeByID(Record[1]); 1808 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1809 return error("Invalid type"); 1810 ResultTy = VectorType::get(ResultTy, Record[0]); 1811 break; 1812 } 1813 1814 if (NumRecords >= TypeList.size()) 1815 return error("Invalid TYPE table"); 1816 if (TypeList[NumRecords]) 1817 return error( 1818 "Invalid TYPE table: Only named structs can be forward referenced"); 1819 assert(ResultTy && "Didn't read a type?"); 1820 TypeList[NumRecords++] = ResultTy; 1821 } 1822 } 1823 1824 std::error_code BitcodeReader::parseOperandBundleTags() { 1825 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1826 return error("Invalid record"); 1827 1828 if (!BundleTags.empty()) 1829 return error("Invalid multiple blocks"); 1830 1831 SmallVector<uint64_t, 64> Record; 1832 1833 while (1) { 1834 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1835 1836 switch (Entry.Kind) { 1837 case BitstreamEntry::SubBlock: // Handled for us already. 1838 case BitstreamEntry::Error: 1839 return error("Malformed block"); 1840 case BitstreamEntry::EndBlock: 1841 return std::error_code(); 1842 case BitstreamEntry::Record: 1843 // The interesting case. 1844 break; 1845 } 1846 1847 // Tags are implicitly mapped to integers by their order. 1848 1849 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1850 return error("Invalid record"); 1851 1852 // OPERAND_BUNDLE_TAG: [strchr x N] 1853 BundleTags.emplace_back(); 1854 if (convertToString(Record, 0, BundleTags.back())) 1855 return error("Invalid record"); 1856 Record.clear(); 1857 } 1858 } 1859 1860 /// Associate a value with its name from the given index in the provided record. 1861 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1862 unsigned NameIndex, Triple &TT) { 1863 SmallString<128> ValueName; 1864 if (convertToString(Record, NameIndex, ValueName)) 1865 return error("Invalid record"); 1866 unsigned ValueID = Record[0]; 1867 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1868 return error("Invalid record"); 1869 Value *V = ValueList[ValueID]; 1870 1871 StringRef NameStr(ValueName.data(), ValueName.size()); 1872 if (NameStr.find_first_of(0) != StringRef::npos) 1873 return error("Invalid value name"); 1874 V->setName(NameStr); 1875 auto *GO = dyn_cast<GlobalObject>(V); 1876 if (GO) { 1877 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1878 if (TT.isOSBinFormatMachO()) 1879 GO->setComdat(nullptr); 1880 else 1881 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1882 } 1883 } 1884 return V; 1885 } 1886 1887 /// Helper to note and return the current location, and jump to the given 1888 /// offset. 1889 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1890 BitstreamCursor &Stream) { 1891 // Save the current parsing location so we can jump back at the end 1892 // of the VST read. 1893 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1894 Stream.JumpToBit(Offset * 32); 1895 #ifndef NDEBUG 1896 // Do some checking if we are in debug mode. 1897 BitstreamEntry Entry = Stream.advance(); 1898 assert(Entry.Kind == BitstreamEntry::SubBlock); 1899 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1900 #else 1901 // In NDEBUG mode ignore the output so we don't get an unused variable 1902 // warning. 1903 Stream.advance(); 1904 #endif 1905 return CurrentBit; 1906 } 1907 1908 /// Parse the value symbol table at either the current parsing location or 1909 /// at the given bit offset if provided. 1910 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1911 uint64_t CurrentBit; 1912 // Pass in the Offset to distinguish between calling for the module-level 1913 // VST (where we want to jump to the VST offset) and the function-level 1914 // VST (where we don't). 1915 if (Offset > 0) 1916 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1917 1918 // Compute the delta between the bitcode indices in the VST (the word offset 1919 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1920 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1921 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1922 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1923 // just before entering the VST subblock because: 1) the EnterSubBlock 1924 // changes the AbbrevID width; 2) the VST block is nested within the same 1925 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1926 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1927 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1928 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1929 unsigned FuncBitcodeOffsetDelta = 1930 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1931 1932 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1933 return error("Invalid record"); 1934 1935 SmallVector<uint64_t, 64> Record; 1936 1937 Triple TT(TheModule->getTargetTriple()); 1938 1939 // Read all the records for this value table. 1940 SmallString<128> ValueName; 1941 while (1) { 1942 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1943 1944 switch (Entry.Kind) { 1945 case BitstreamEntry::SubBlock: // Handled for us already. 1946 case BitstreamEntry::Error: 1947 return error("Malformed block"); 1948 case BitstreamEntry::EndBlock: 1949 if (Offset > 0) 1950 Stream.JumpToBit(CurrentBit); 1951 return std::error_code(); 1952 case BitstreamEntry::Record: 1953 // The interesting case. 1954 break; 1955 } 1956 1957 // Read a record. 1958 Record.clear(); 1959 switch (Stream.readRecord(Entry.ID, Record)) { 1960 default: // Default behavior: unknown type. 1961 break; 1962 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1963 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1964 if (std::error_code EC = ValOrErr.getError()) 1965 return EC; 1966 ValOrErr.get(); 1967 break; 1968 } 1969 case bitc::VST_CODE_FNENTRY: { 1970 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1971 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1972 if (std::error_code EC = ValOrErr.getError()) 1973 return EC; 1974 Value *V = ValOrErr.get(); 1975 1976 auto *GO = dyn_cast<GlobalObject>(V); 1977 if (!GO) { 1978 // If this is an alias, need to get the actual Function object 1979 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1980 auto *GA = dyn_cast<GlobalAlias>(V); 1981 if (GA) 1982 GO = GA->getBaseObject(); 1983 assert(GO); 1984 } 1985 1986 uint64_t FuncWordOffset = Record[1]; 1987 Function *F = dyn_cast<Function>(GO); 1988 assert(F); 1989 uint64_t FuncBitOffset = FuncWordOffset * 32; 1990 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1991 // Set the LastFunctionBlockBit to point to the last function block. 1992 // Later when parsing is resumed after function materialization, 1993 // we can simply skip that last function block. 1994 if (FuncBitOffset > LastFunctionBlockBit) 1995 LastFunctionBlockBit = FuncBitOffset; 1996 break; 1997 } 1998 case bitc::VST_CODE_BBENTRY: { 1999 if (convertToString(Record, 1, ValueName)) 2000 return error("Invalid record"); 2001 BasicBlock *BB = getBasicBlock(Record[0]); 2002 if (!BB) 2003 return error("Invalid record"); 2004 2005 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2006 ValueName.clear(); 2007 break; 2008 } 2009 } 2010 } 2011 } 2012 2013 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2014 std::error_code 2015 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2016 if (Record.size() < 2) 2017 return error("Invalid record"); 2018 2019 unsigned Kind = Record[0]; 2020 SmallString<8> Name(Record.begin() + 1, Record.end()); 2021 2022 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2023 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2024 return error("Conflicting METADATA_KIND records"); 2025 return std::error_code(); 2026 } 2027 2028 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2029 2030 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2031 StringRef Blob, 2032 unsigned &NextMetadataNo) { 2033 // All the MDStrings in the block are emitted together in a single 2034 // record. The strings are concatenated and stored in a blob along with 2035 // their sizes. 2036 if (Record.size() != 2) 2037 return error("Invalid record: metadata strings layout"); 2038 2039 unsigned NumStrings = Record[0]; 2040 unsigned StringsOffset = Record[1]; 2041 if (!NumStrings) 2042 return error("Invalid record: metadata strings with no strings"); 2043 if (StringsOffset > Blob.size()) 2044 return error("Invalid record: metadata strings corrupt offset"); 2045 2046 StringRef Lengths = Blob.slice(0, StringsOffset); 2047 SimpleBitstreamCursor R(*StreamFile); 2048 R.jumpToPointer(Lengths.begin()); 2049 2050 // Ensure that Blob doesn't get invalidated, even if this is reading from 2051 // a StreamingMemoryObject with corrupt data. 2052 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2053 2054 StringRef Strings = Blob.drop_front(StringsOffset); 2055 do { 2056 if (R.AtEndOfStream()) 2057 return error("Invalid record: metadata strings bad length"); 2058 2059 unsigned Size = R.ReadVBR(6); 2060 if (Strings.size() < Size) 2061 return error("Invalid record: metadata strings truncated chars"); 2062 2063 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2064 NextMetadataNo++); 2065 Strings = Strings.drop_front(Size); 2066 } while (--NumStrings); 2067 2068 return std::error_code(); 2069 } 2070 2071 namespace { 2072 class PlaceholderQueue { 2073 // Placeholders would thrash around when moved, so store in a std::deque 2074 // instead of some sort of vector. 2075 std::deque<DistinctMDOperandPlaceholder> PHs; 2076 2077 public: 2078 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2079 void flush(BitcodeReaderMetadataList &MetadataList); 2080 }; 2081 } // end namespace 2082 2083 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2084 PHs.emplace_back(ID); 2085 return PHs.back(); 2086 } 2087 2088 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2089 while (!PHs.empty()) { 2090 PHs.front().replaceUseWith( 2091 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2092 PHs.pop_front(); 2093 } 2094 } 2095 2096 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2097 /// module level metadata. 2098 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2099 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2100 "Must read all module-level metadata before function-level"); 2101 2102 IsMetadataMaterialized = true; 2103 unsigned NextMetadataNo = MetadataList.size(); 2104 2105 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2106 return error("Invalid metadata: fwd refs into function blocks"); 2107 2108 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2109 return error("Invalid record"); 2110 2111 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2112 SmallVector<uint64_t, 64> Record; 2113 2114 PlaceholderQueue Placeholders; 2115 bool IsDistinct; 2116 auto getMD = [&](unsigned ID) -> Metadata * { 2117 if (!IsDistinct) 2118 return MetadataList.getMetadataFwdRef(ID); 2119 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2120 return MD; 2121 return &Placeholders.getPlaceholderOp(ID); 2122 }; 2123 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2124 if (ID) 2125 return getMD(ID - 1); 2126 return nullptr; 2127 }; 2128 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2129 if (ID) 2130 return MetadataList.getMetadataFwdRef(ID - 1); 2131 return nullptr; 2132 }; 2133 auto getMDString = [&](unsigned ID) -> MDString *{ 2134 // This requires that the ID is not really a forward reference. In 2135 // particular, the MDString must already have been resolved. 2136 return cast_or_null<MDString>(getMDOrNull(ID)); 2137 }; 2138 2139 // Support for old type refs. 2140 auto getDITypeRefOrNull = [&](unsigned ID) { 2141 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2142 }; 2143 2144 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2145 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2146 2147 // Read all the records. 2148 while (1) { 2149 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2150 2151 switch (Entry.Kind) { 2152 case BitstreamEntry::SubBlock: // Handled for us already. 2153 case BitstreamEntry::Error: 2154 return error("Malformed block"); 2155 case BitstreamEntry::EndBlock: 2156 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2157 for (auto CU_SP : CUSubprograms) 2158 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2159 for (auto &Op : SPs->operands()) 2160 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2161 SP->replaceOperandWith(7, CU_SP.first); 2162 2163 MetadataList.tryToResolveCycles(); 2164 Placeholders.flush(MetadataList); 2165 return std::error_code(); 2166 case BitstreamEntry::Record: 2167 // The interesting case. 2168 break; 2169 } 2170 2171 // Read a record. 2172 Record.clear(); 2173 StringRef Blob; 2174 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2175 IsDistinct = false; 2176 switch (Code) { 2177 default: // Default behavior: ignore. 2178 break; 2179 case bitc::METADATA_NAME: { 2180 // Read name of the named metadata. 2181 SmallString<8> Name(Record.begin(), Record.end()); 2182 Record.clear(); 2183 Code = Stream.ReadCode(); 2184 2185 unsigned NextBitCode = Stream.readRecord(Code, Record); 2186 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2187 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2188 2189 // Read named metadata elements. 2190 unsigned Size = Record.size(); 2191 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2192 for (unsigned i = 0; i != Size; ++i) { 2193 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2194 if (!MD) 2195 return error("Invalid record"); 2196 NMD->addOperand(MD); 2197 } 2198 break; 2199 } 2200 case bitc::METADATA_OLD_FN_NODE: { 2201 // FIXME: Remove in 4.0. 2202 // This is a LocalAsMetadata record, the only type of function-local 2203 // metadata. 2204 if (Record.size() % 2 == 1) 2205 return error("Invalid record"); 2206 2207 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2208 // to be legal, but there's no upgrade path. 2209 auto dropRecord = [&] { 2210 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2211 }; 2212 if (Record.size() != 2) { 2213 dropRecord(); 2214 break; 2215 } 2216 2217 Type *Ty = getTypeByID(Record[0]); 2218 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2219 dropRecord(); 2220 break; 2221 } 2222 2223 MetadataList.assignValue( 2224 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2225 NextMetadataNo++); 2226 break; 2227 } 2228 case bitc::METADATA_OLD_NODE: { 2229 // FIXME: Remove in 4.0. 2230 if (Record.size() % 2 == 1) 2231 return error("Invalid record"); 2232 2233 unsigned Size = Record.size(); 2234 SmallVector<Metadata *, 8> Elts; 2235 for (unsigned i = 0; i != Size; i += 2) { 2236 Type *Ty = getTypeByID(Record[i]); 2237 if (!Ty) 2238 return error("Invalid record"); 2239 if (Ty->isMetadataTy()) 2240 Elts.push_back(getMD(Record[i + 1])); 2241 else if (!Ty->isVoidTy()) { 2242 auto *MD = 2243 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2244 assert(isa<ConstantAsMetadata>(MD) && 2245 "Expected non-function-local metadata"); 2246 Elts.push_back(MD); 2247 } else 2248 Elts.push_back(nullptr); 2249 } 2250 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2251 break; 2252 } 2253 case bitc::METADATA_VALUE: { 2254 if (Record.size() != 2) 2255 return error("Invalid record"); 2256 2257 Type *Ty = getTypeByID(Record[0]); 2258 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2259 return error("Invalid record"); 2260 2261 MetadataList.assignValue( 2262 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2263 NextMetadataNo++); 2264 break; 2265 } 2266 case bitc::METADATA_DISTINCT_NODE: 2267 IsDistinct = true; 2268 // fallthrough... 2269 case bitc::METADATA_NODE: { 2270 SmallVector<Metadata *, 8> Elts; 2271 Elts.reserve(Record.size()); 2272 for (unsigned ID : Record) 2273 Elts.push_back(getMDOrNull(ID)); 2274 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2275 : MDNode::get(Context, Elts), 2276 NextMetadataNo++); 2277 break; 2278 } 2279 case bitc::METADATA_LOCATION: { 2280 if (Record.size() != 5) 2281 return error("Invalid record"); 2282 2283 IsDistinct = Record[0]; 2284 unsigned Line = Record[1]; 2285 unsigned Column = Record[2]; 2286 Metadata *Scope = getMD(Record[3]); 2287 Metadata *InlinedAt = getMDOrNull(Record[4]); 2288 MetadataList.assignValue( 2289 GET_OR_DISTINCT(DILocation, 2290 (Context, Line, Column, Scope, InlinedAt)), 2291 NextMetadataNo++); 2292 break; 2293 } 2294 case bitc::METADATA_GENERIC_DEBUG: { 2295 if (Record.size() < 4) 2296 return error("Invalid record"); 2297 2298 IsDistinct = Record[0]; 2299 unsigned Tag = Record[1]; 2300 unsigned Version = Record[2]; 2301 2302 if (Tag >= 1u << 16 || Version != 0) 2303 return error("Invalid record"); 2304 2305 auto *Header = getMDString(Record[3]); 2306 SmallVector<Metadata *, 8> DwarfOps; 2307 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2308 DwarfOps.push_back(getMDOrNull(Record[I])); 2309 MetadataList.assignValue( 2310 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2311 NextMetadataNo++); 2312 break; 2313 } 2314 case bitc::METADATA_SUBRANGE: { 2315 if (Record.size() != 3) 2316 return error("Invalid record"); 2317 2318 IsDistinct = Record[0]; 2319 MetadataList.assignValue( 2320 GET_OR_DISTINCT(DISubrange, 2321 (Context, Record[1], unrotateSign(Record[2]))), 2322 NextMetadataNo++); 2323 break; 2324 } 2325 case bitc::METADATA_ENUMERATOR: { 2326 if (Record.size() != 3) 2327 return error("Invalid record"); 2328 2329 IsDistinct = Record[0]; 2330 MetadataList.assignValue( 2331 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2332 getMDString(Record[2]))), 2333 NextMetadataNo++); 2334 break; 2335 } 2336 case bitc::METADATA_BASIC_TYPE: { 2337 if (Record.size() != 6) 2338 return error("Invalid record"); 2339 2340 IsDistinct = Record[0]; 2341 MetadataList.assignValue( 2342 GET_OR_DISTINCT(DIBasicType, 2343 (Context, Record[1], getMDString(Record[2]), 2344 Record[3], Record[4], Record[5])), 2345 NextMetadataNo++); 2346 break; 2347 } 2348 case bitc::METADATA_DERIVED_TYPE: { 2349 if (Record.size() != 12) 2350 return error("Invalid record"); 2351 2352 IsDistinct = Record[0]; 2353 MetadataList.assignValue( 2354 GET_OR_DISTINCT( 2355 DIDerivedType, 2356 (Context, Record[1], getMDString(Record[2]), 2357 getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]), 2358 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9], 2359 Record[10], getDITypeRefOrNull(Record[11]))), 2360 NextMetadataNo++); 2361 break; 2362 } 2363 case bitc::METADATA_COMPOSITE_TYPE: { 2364 if (Record.size() != 16) 2365 return error("Invalid record"); 2366 2367 // If we have a UUID and this is not a forward declaration, lookup the 2368 // mapping. 2369 IsDistinct = Record[0] & 0x1; 2370 bool IsNotUsedInTypeRef = Record[0] >= 2; 2371 unsigned Tag = Record[1]; 2372 MDString *Name = getMDString(Record[2]); 2373 Metadata *File = getMDOrNull(Record[3]); 2374 unsigned Line = Record[4]; 2375 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2376 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2377 uint64_t SizeInBits = Record[7]; 2378 uint64_t AlignInBits = Record[8]; 2379 uint64_t OffsetInBits = Record[9]; 2380 unsigned Flags = Record[10]; 2381 Metadata *Elements = getMDOrNull(Record[11]); 2382 unsigned RuntimeLang = Record[12]; 2383 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2384 Metadata *TemplateParams = getMDOrNull(Record[14]); 2385 auto *Identifier = getMDString(Record[15]); 2386 DICompositeType *CT = nullptr; 2387 if (Identifier) 2388 CT = DICompositeType::buildODRType( 2389 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2390 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2391 VTableHolder, TemplateParams); 2392 2393 // Create a node if we didn't get a lazy ODR type. 2394 if (!CT) 2395 CT = GET_OR_DISTINCT(DICompositeType, 2396 (Context, Tag, Name, File, Line, Scope, BaseType, 2397 SizeInBits, AlignInBits, OffsetInBits, Flags, 2398 Elements, RuntimeLang, VTableHolder, 2399 TemplateParams, Identifier)); 2400 if (!IsNotUsedInTypeRef && Identifier) 2401 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2402 2403 MetadataList.assignValue(CT, NextMetadataNo++); 2404 break; 2405 } 2406 case bitc::METADATA_SUBROUTINE_TYPE: { 2407 if (Record.size() < 3 || Record.size() > 4) 2408 return error("Invalid record"); 2409 bool IsOldTypeRefArray = Record[0] < 2; 2410 unsigned CC = (Record.size() > 3) ? Record[3] : 0; 2411 2412 IsDistinct = Record[0] & 0x1; 2413 Metadata *Types = getMDOrNull(Record[2]); 2414 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2415 Types = MetadataList.upgradeTypeRefArray(Types); 2416 2417 MetadataList.assignValue( 2418 GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], CC, Types)), 2419 NextMetadataNo++); 2420 break; 2421 } 2422 2423 case bitc::METADATA_MODULE: { 2424 if (Record.size() != 6) 2425 return error("Invalid record"); 2426 2427 IsDistinct = Record[0]; 2428 MetadataList.assignValue( 2429 GET_OR_DISTINCT(DIModule, 2430 (Context, getMDOrNull(Record[1]), 2431 getMDString(Record[2]), getMDString(Record[3]), 2432 getMDString(Record[4]), getMDString(Record[5]))), 2433 NextMetadataNo++); 2434 break; 2435 } 2436 2437 case bitc::METADATA_FILE: { 2438 if (Record.size() != 3) 2439 return error("Invalid record"); 2440 2441 IsDistinct = Record[0]; 2442 MetadataList.assignValue( 2443 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2444 getMDString(Record[2]))), 2445 NextMetadataNo++); 2446 break; 2447 } 2448 case bitc::METADATA_COMPILE_UNIT: { 2449 if (Record.size() < 14 || Record.size() > 16) 2450 return error("Invalid record"); 2451 2452 // Ignore Record[0], which indicates whether this compile unit is 2453 // distinct. It's always distinct. 2454 IsDistinct = true; 2455 auto *CU = DICompileUnit::getDistinct( 2456 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2457 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2458 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2459 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2460 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2461 Record.size() <= 14 ? 0 : Record[14]); 2462 2463 MetadataList.assignValue(CU, NextMetadataNo++); 2464 2465 // Move the Upgrade the list of subprograms. 2466 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2467 CUSubprograms.push_back({CU, SPs}); 2468 break; 2469 } 2470 case bitc::METADATA_SUBPROGRAM: { 2471 if (Record.size() < 18 || Record.size() > 20) 2472 return error("Invalid record"); 2473 2474 IsDistinct = 2475 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2476 // Version 1 has a Function as Record[15]. 2477 // Version 2 has removed Record[15]. 2478 // Version 3 has the Unit as Record[15]. 2479 // Version 4 added thisAdjustment. 2480 bool HasUnit = Record[0] >= 2; 2481 if (HasUnit && Record.size() < 19) 2482 return error("Invalid record"); 2483 Metadata *CUorFn = getMDOrNull(Record[15]); 2484 unsigned Offset = Record.size() >= 19 ? 1 : 0; 2485 bool HasFn = Offset && !HasUnit; 2486 bool HasThisAdj = Record.size() >= 20; 2487 DISubprogram *SP = GET_OR_DISTINCT( 2488 DISubprogram, (Context, 2489 getDITypeRefOrNull(Record[1]), // scope 2490 getMDString(Record[2]), // name 2491 getMDString(Record[3]), // linkageName 2492 getMDOrNull(Record[4]), // file 2493 Record[5], // line 2494 getMDOrNull(Record[6]), // type 2495 Record[7], // isLocal 2496 Record[8], // isDefinition 2497 Record[9], // scopeLine 2498 getDITypeRefOrNull(Record[10]), // containingType 2499 Record[11], // virtuality 2500 Record[12], // virtualIndex 2501 HasThisAdj ? Record[19] : 0, // thisAdjustment 2502 Record[13], // flags 2503 Record[14], // isOptimized 2504 HasUnit ? CUorFn : nullptr, // unit 2505 getMDOrNull(Record[15 + Offset]), // templateParams 2506 getMDOrNull(Record[16 + Offset]), // declaration 2507 getMDOrNull(Record[17 + Offset]) // variables 2508 )); 2509 MetadataList.assignValue(SP, NextMetadataNo++); 2510 2511 // Upgrade sp->function mapping to function->sp mapping. 2512 if (HasFn) { 2513 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2514 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2515 if (F->isMaterializable()) 2516 // Defer until materialized; unmaterialized functions may not have 2517 // metadata. 2518 FunctionsWithSPs[F] = SP; 2519 else if (!F->empty()) 2520 F->setSubprogram(SP); 2521 } 2522 } 2523 break; 2524 } 2525 case bitc::METADATA_LEXICAL_BLOCK: { 2526 if (Record.size() != 5) 2527 return error("Invalid record"); 2528 2529 IsDistinct = Record[0]; 2530 MetadataList.assignValue( 2531 GET_OR_DISTINCT(DILexicalBlock, 2532 (Context, getMDOrNull(Record[1]), 2533 getMDOrNull(Record[2]), Record[3], Record[4])), 2534 NextMetadataNo++); 2535 break; 2536 } 2537 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2538 if (Record.size() != 4) 2539 return error("Invalid record"); 2540 2541 IsDistinct = Record[0]; 2542 MetadataList.assignValue( 2543 GET_OR_DISTINCT(DILexicalBlockFile, 2544 (Context, getMDOrNull(Record[1]), 2545 getMDOrNull(Record[2]), Record[3])), 2546 NextMetadataNo++); 2547 break; 2548 } 2549 case bitc::METADATA_NAMESPACE: { 2550 if (Record.size() != 5) 2551 return error("Invalid record"); 2552 2553 IsDistinct = Record[0]; 2554 MetadataList.assignValue( 2555 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2556 getMDOrNull(Record[2]), 2557 getMDString(Record[3]), Record[4])), 2558 NextMetadataNo++); 2559 break; 2560 } 2561 case bitc::METADATA_MACRO: { 2562 if (Record.size() != 5) 2563 return error("Invalid record"); 2564 2565 IsDistinct = Record[0]; 2566 MetadataList.assignValue( 2567 GET_OR_DISTINCT(DIMacro, 2568 (Context, Record[1], Record[2], 2569 getMDString(Record[3]), getMDString(Record[4]))), 2570 NextMetadataNo++); 2571 break; 2572 } 2573 case bitc::METADATA_MACRO_FILE: { 2574 if (Record.size() != 5) 2575 return error("Invalid record"); 2576 2577 IsDistinct = Record[0]; 2578 MetadataList.assignValue( 2579 GET_OR_DISTINCT(DIMacroFile, 2580 (Context, Record[1], Record[2], 2581 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2582 NextMetadataNo++); 2583 break; 2584 } 2585 case bitc::METADATA_TEMPLATE_TYPE: { 2586 if (Record.size() != 3) 2587 return error("Invalid record"); 2588 2589 IsDistinct = Record[0]; 2590 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2591 (Context, getMDString(Record[1]), 2592 getDITypeRefOrNull(Record[2]))), 2593 NextMetadataNo++); 2594 break; 2595 } 2596 case bitc::METADATA_TEMPLATE_VALUE: { 2597 if (Record.size() != 5) 2598 return error("Invalid record"); 2599 2600 IsDistinct = Record[0]; 2601 MetadataList.assignValue( 2602 GET_OR_DISTINCT(DITemplateValueParameter, 2603 (Context, Record[1], getMDString(Record[2]), 2604 getDITypeRefOrNull(Record[3]), 2605 getMDOrNull(Record[4]))), 2606 NextMetadataNo++); 2607 break; 2608 } 2609 case bitc::METADATA_GLOBAL_VAR: { 2610 if (Record.size() != 11) 2611 return error("Invalid record"); 2612 2613 IsDistinct = Record[0]; 2614 MetadataList.assignValue( 2615 GET_OR_DISTINCT(DIGlobalVariable, 2616 (Context, getMDOrNull(Record[1]), 2617 getMDString(Record[2]), getMDString(Record[3]), 2618 getMDOrNull(Record[4]), Record[5], 2619 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2620 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2621 NextMetadataNo++); 2622 break; 2623 } 2624 case bitc::METADATA_LOCAL_VAR: { 2625 // 10th field is for the obseleted 'inlinedAt:' field. 2626 if (Record.size() < 8 || Record.size() > 10) 2627 return error("Invalid record"); 2628 2629 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2630 // DW_TAG_arg_variable. 2631 IsDistinct = Record[0]; 2632 bool HasTag = Record.size() > 8; 2633 MetadataList.assignValue( 2634 GET_OR_DISTINCT(DILocalVariable, 2635 (Context, getMDOrNull(Record[1 + HasTag]), 2636 getMDString(Record[2 + HasTag]), 2637 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2638 getDITypeRefOrNull(Record[5 + HasTag]), 2639 Record[6 + HasTag], Record[7 + HasTag])), 2640 NextMetadataNo++); 2641 break; 2642 } 2643 case bitc::METADATA_EXPRESSION: { 2644 if (Record.size() < 1) 2645 return error("Invalid record"); 2646 2647 IsDistinct = Record[0]; 2648 MetadataList.assignValue( 2649 GET_OR_DISTINCT(DIExpression, 2650 (Context, makeArrayRef(Record).slice(1))), 2651 NextMetadataNo++); 2652 break; 2653 } 2654 case bitc::METADATA_OBJC_PROPERTY: { 2655 if (Record.size() != 8) 2656 return error("Invalid record"); 2657 2658 IsDistinct = Record[0]; 2659 MetadataList.assignValue( 2660 GET_OR_DISTINCT(DIObjCProperty, 2661 (Context, getMDString(Record[1]), 2662 getMDOrNull(Record[2]), Record[3], 2663 getMDString(Record[4]), getMDString(Record[5]), 2664 Record[6], getDITypeRefOrNull(Record[7]))), 2665 NextMetadataNo++); 2666 break; 2667 } 2668 case bitc::METADATA_IMPORTED_ENTITY: { 2669 if (Record.size() != 6) 2670 return error("Invalid record"); 2671 2672 IsDistinct = Record[0]; 2673 MetadataList.assignValue( 2674 GET_OR_DISTINCT(DIImportedEntity, 2675 (Context, Record[1], getMDOrNull(Record[2]), 2676 getDITypeRefOrNull(Record[3]), Record[4], 2677 getMDString(Record[5]))), 2678 NextMetadataNo++); 2679 break; 2680 } 2681 case bitc::METADATA_STRING_OLD: { 2682 std::string String(Record.begin(), Record.end()); 2683 2684 // Test for upgrading !llvm.loop. 2685 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2686 2687 Metadata *MD = MDString::get(Context, String); 2688 MetadataList.assignValue(MD, NextMetadataNo++); 2689 break; 2690 } 2691 case bitc::METADATA_STRINGS: 2692 if (std::error_code EC = 2693 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2694 return EC; 2695 break; 2696 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { 2697 if (Record.size() % 2 == 0) 2698 return error("Invalid record"); 2699 unsigned ValueID = Record[0]; 2700 if (ValueID >= ValueList.size()) 2701 return error("Invalid record"); 2702 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID])) 2703 parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1)); 2704 break; 2705 } 2706 case bitc::METADATA_KIND: { 2707 // Support older bitcode files that had METADATA_KIND records in a 2708 // block with METADATA_BLOCK_ID. 2709 if (std::error_code EC = parseMetadataKindRecord(Record)) 2710 return EC; 2711 break; 2712 } 2713 } 2714 } 2715 #undef GET_OR_DISTINCT 2716 } 2717 2718 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2719 std::error_code BitcodeReader::parseMetadataKinds() { 2720 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2721 return error("Invalid record"); 2722 2723 SmallVector<uint64_t, 64> Record; 2724 2725 // Read all the records. 2726 while (1) { 2727 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2728 2729 switch (Entry.Kind) { 2730 case BitstreamEntry::SubBlock: // Handled for us already. 2731 case BitstreamEntry::Error: 2732 return error("Malformed block"); 2733 case BitstreamEntry::EndBlock: 2734 return std::error_code(); 2735 case BitstreamEntry::Record: 2736 // The interesting case. 2737 break; 2738 } 2739 2740 // Read a record. 2741 Record.clear(); 2742 unsigned Code = Stream.readRecord(Entry.ID, Record); 2743 switch (Code) { 2744 default: // Default behavior: ignore. 2745 break; 2746 case bitc::METADATA_KIND: { 2747 if (std::error_code EC = parseMetadataKindRecord(Record)) 2748 return EC; 2749 break; 2750 } 2751 } 2752 } 2753 } 2754 2755 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2756 /// encoding. 2757 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2758 if ((V & 1) == 0) 2759 return V >> 1; 2760 if (V != 1) 2761 return -(V >> 1); 2762 // There is no such thing as -0 with integers. "-0" really means MININT. 2763 return 1ULL << 63; 2764 } 2765 2766 /// Resolve all of the initializers for global values and aliases that we can. 2767 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2768 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2769 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2770 IndirectSymbolInitWorklist; 2771 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2772 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2773 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2774 2775 GlobalInitWorklist.swap(GlobalInits); 2776 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2777 FunctionPrefixWorklist.swap(FunctionPrefixes); 2778 FunctionPrologueWorklist.swap(FunctionPrologues); 2779 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2780 2781 while (!GlobalInitWorklist.empty()) { 2782 unsigned ValID = GlobalInitWorklist.back().second; 2783 if (ValID >= ValueList.size()) { 2784 // Not ready to resolve this yet, it requires something later in the file. 2785 GlobalInits.push_back(GlobalInitWorklist.back()); 2786 } else { 2787 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2788 GlobalInitWorklist.back().first->setInitializer(C); 2789 else 2790 return error("Expected a constant"); 2791 } 2792 GlobalInitWorklist.pop_back(); 2793 } 2794 2795 while (!IndirectSymbolInitWorklist.empty()) { 2796 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2797 if (ValID >= ValueList.size()) { 2798 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2799 } else { 2800 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2801 if (!C) 2802 return error("Expected a constant"); 2803 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2804 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2805 return error("Alias and aliasee types don't match"); 2806 GIS->setIndirectSymbol(C); 2807 } 2808 IndirectSymbolInitWorklist.pop_back(); 2809 } 2810 2811 while (!FunctionPrefixWorklist.empty()) { 2812 unsigned ValID = FunctionPrefixWorklist.back().second; 2813 if (ValID >= ValueList.size()) { 2814 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2815 } else { 2816 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2817 FunctionPrefixWorklist.back().first->setPrefixData(C); 2818 else 2819 return error("Expected a constant"); 2820 } 2821 FunctionPrefixWorklist.pop_back(); 2822 } 2823 2824 while (!FunctionPrologueWorklist.empty()) { 2825 unsigned ValID = FunctionPrologueWorklist.back().second; 2826 if (ValID >= ValueList.size()) { 2827 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2828 } else { 2829 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2830 FunctionPrologueWorklist.back().first->setPrologueData(C); 2831 else 2832 return error("Expected a constant"); 2833 } 2834 FunctionPrologueWorklist.pop_back(); 2835 } 2836 2837 while (!FunctionPersonalityFnWorklist.empty()) { 2838 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2839 if (ValID >= ValueList.size()) { 2840 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2841 } else { 2842 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2843 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2844 else 2845 return error("Expected a constant"); 2846 } 2847 FunctionPersonalityFnWorklist.pop_back(); 2848 } 2849 2850 return std::error_code(); 2851 } 2852 2853 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2854 SmallVector<uint64_t, 8> Words(Vals.size()); 2855 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2856 BitcodeReader::decodeSignRotatedValue); 2857 2858 return APInt(TypeBits, Words); 2859 } 2860 2861 std::error_code BitcodeReader::parseConstants() { 2862 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2863 return error("Invalid record"); 2864 2865 SmallVector<uint64_t, 64> Record; 2866 2867 // Read all the records for this value table. 2868 Type *CurTy = Type::getInt32Ty(Context); 2869 unsigned NextCstNo = ValueList.size(); 2870 while (1) { 2871 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2872 2873 switch (Entry.Kind) { 2874 case BitstreamEntry::SubBlock: // Handled for us already. 2875 case BitstreamEntry::Error: 2876 return error("Malformed block"); 2877 case BitstreamEntry::EndBlock: 2878 if (NextCstNo != ValueList.size()) 2879 return error("Invalid constant reference"); 2880 2881 // Once all the constants have been read, go through and resolve forward 2882 // references. 2883 ValueList.resolveConstantForwardRefs(); 2884 return std::error_code(); 2885 case BitstreamEntry::Record: 2886 // The interesting case. 2887 break; 2888 } 2889 2890 // Read a record. 2891 Record.clear(); 2892 Type *VoidType = Type::getVoidTy(Context); 2893 Value *V = nullptr; 2894 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2895 switch (BitCode) { 2896 default: // Default behavior: unknown constant 2897 case bitc::CST_CODE_UNDEF: // UNDEF 2898 V = UndefValue::get(CurTy); 2899 break; 2900 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2901 if (Record.empty()) 2902 return error("Invalid record"); 2903 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2904 return error("Invalid record"); 2905 if (TypeList[Record[0]] == VoidType) 2906 return error("Invalid constant type"); 2907 CurTy = TypeList[Record[0]]; 2908 continue; // Skip the ValueList manipulation. 2909 case bitc::CST_CODE_NULL: // NULL 2910 V = Constant::getNullValue(CurTy); 2911 break; 2912 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2913 if (!CurTy->isIntegerTy() || Record.empty()) 2914 return error("Invalid record"); 2915 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2916 break; 2917 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2918 if (!CurTy->isIntegerTy() || Record.empty()) 2919 return error("Invalid record"); 2920 2921 APInt VInt = 2922 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2923 V = ConstantInt::get(Context, VInt); 2924 2925 break; 2926 } 2927 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2928 if (Record.empty()) 2929 return error("Invalid record"); 2930 if (CurTy->isHalfTy()) 2931 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2932 APInt(16, (uint16_t)Record[0]))); 2933 else if (CurTy->isFloatTy()) 2934 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2935 APInt(32, (uint32_t)Record[0]))); 2936 else if (CurTy->isDoubleTy()) 2937 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2938 APInt(64, Record[0]))); 2939 else if (CurTy->isX86_FP80Ty()) { 2940 // Bits are not stored the same way as a normal i80 APInt, compensate. 2941 uint64_t Rearrange[2]; 2942 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2943 Rearrange[1] = Record[0] >> 48; 2944 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2945 APInt(80, Rearrange))); 2946 } else if (CurTy->isFP128Ty()) 2947 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2948 APInt(128, Record))); 2949 else if (CurTy->isPPC_FP128Ty()) 2950 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2951 APInt(128, Record))); 2952 else 2953 V = UndefValue::get(CurTy); 2954 break; 2955 } 2956 2957 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2958 if (Record.empty()) 2959 return error("Invalid record"); 2960 2961 unsigned Size = Record.size(); 2962 SmallVector<Constant*, 16> Elts; 2963 2964 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2965 for (unsigned i = 0; i != Size; ++i) 2966 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2967 STy->getElementType(i))); 2968 V = ConstantStruct::get(STy, Elts); 2969 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2970 Type *EltTy = ATy->getElementType(); 2971 for (unsigned i = 0; i != Size; ++i) 2972 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2973 V = ConstantArray::get(ATy, Elts); 2974 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2975 Type *EltTy = VTy->getElementType(); 2976 for (unsigned i = 0; i != Size; ++i) 2977 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2978 V = ConstantVector::get(Elts); 2979 } else { 2980 V = UndefValue::get(CurTy); 2981 } 2982 break; 2983 } 2984 case bitc::CST_CODE_STRING: // STRING: [values] 2985 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2986 if (Record.empty()) 2987 return error("Invalid record"); 2988 2989 SmallString<16> Elts(Record.begin(), Record.end()); 2990 V = ConstantDataArray::getString(Context, Elts, 2991 BitCode == bitc::CST_CODE_CSTRING); 2992 break; 2993 } 2994 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2995 if (Record.empty()) 2996 return error("Invalid record"); 2997 2998 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2999 if (EltTy->isIntegerTy(8)) { 3000 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3001 if (isa<VectorType>(CurTy)) 3002 V = ConstantDataVector::get(Context, Elts); 3003 else 3004 V = ConstantDataArray::get(Context, Elts); 3005 } else if (EltTy->isIntegerTy(16)) { 3006 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3007 if (isa<VectorType>(CurTy)) 3008 V = ConstantDataVector::get(Context, Elts); 3009 else 3010 V = ConstantDataArray::get(Context, Elts); 3011 } else if (EltTy->isIntegerTy(32)) { 3012 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3013 if (isa<VectorType>(CurTy)) 3014 V = ConstantDataVector::get(Context, Elts); 3015 else 3016 V = ConstantDataArray::get(Context, Elts); 3017 } else if (EltTy->isIntegerTy(64)) { 3018 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3019 if (isa<VectorType>(CurTy)) 3020 V = ConstantDataVector::get(Context, Elts); 3021 else 3022 V = ConstantDataArray::get(Context, Elts); 3023 } else if (EltTy->isHalfTy()) { 3024 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3025 if (isa<VectorType>(CurTy)) 3026 V = ConstantDataVector::getFP(Context, Elts); 3027 else 3028 V = ConstantDataArray::getFP(Context, Elts); 3029 } else if (EltTy->isFloatTy()) { 3030 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3031 if (isa<VectorType>(CurTy)) 3032 V = ConstantDataVector::getFP(Context, Elts); 3033 else 3034 V = ConstantDataArray::getFP(Context, Elts); 3035 } else if (EltTy->isDoubleTy()) { 3036 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3037 if (isa<VectorType>(CurTy)) 3038 V = ConstantDataVector::getFP(Context, Elts); 3039 else 3040 V = ConstantDataArray::getFP(Context, Elts); 3041 } else { 3042 return error("Invalid type for value"); 3043 } 3044 break; 3045 } 3046 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3047 if (Record.size() < 3) 3048 return error("Invalid record"); 3049 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3050 if (Opc < 0) { 3051 V = UndefValue::get(CurTy); // Unknown binop. 3052 } else { 3053 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3054 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3055 unsigned Flags = 0; 3056 if (Record.size() >= 4) { 3057 if (Opc == Instruction::Add || 3058 Opc == Instruction::Sub || 3059 Opc == Instruction::Mul || 3060 Opc == Instruction::Shl) { 3061 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3062 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3063 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3064 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3065 } else if (Opc == Instruction::SDiv || 3066 Opc == Instruction::UDiv || 3067 Opc == Instruction::LShr || 3068 Opc == Instruction::AShr) { 3069 if (Record[3] & (1 << bitc::PEO_EXACT)) 3070 Flags |= SDivOperator::IsExact; 3071 } 3072 } 3073 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3074 } 3075 break; 3076 } 3077 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3078 if (Record.size() < 3) 3079 return error("Invalid record"); 3080 int Opc = getDecodedCastOpcode(Record[0]); 3081 if (Opc < 0) { 3082 V = UndefValue::get(CurTy); // Unknown cast. 3083 } else { 3084 Type *OpTy = getTypeByID(Record[1]); 3085 if (!OpTy) 3086 return error("Invalid record"); 3087 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3088 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3089 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3090 } 3091 break; 3092 } 3093 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3094 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3095 unsigned OpNum = 0; 3096 Type *PointeeType = nullptr; 3097 if (Record.size() % 2) 3098 PointeeType = getTypeByID(Record[OpNum++]); 3099 SmallVector<Constant*, 16> Elts; 3100 while (OpNum != Record.size()) { 3101 Type *ElTy = getTypeByID(Record[OpNum++]); 3102 if (!ElTy) 3103 return error("Invalid record"); 3104 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3105 } 3106 3107 if (PointeeType && 3108 PointeeType != 3109 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3110 ->getElementType()) 3111 return error("Explicit gep operator type does not match pointee type " 3112 "of pointer operand"); 3113 3114 if (Elts.size() < 1) 3115 return error("Invalid gep with no operands"); 3116 3117 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3118 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3119 BitCode == 3120 bitc::CST_CODE_CE_INBOUNDS_GEP); 3121 break; 3122 } 3123 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3124 if (Record.size() < 3) 3125 return error("Invalid record"); 3126 3127 Type *SelectorTy = Type::getInt1Ty(Context); 3128 3129 // The selector might be an i1 or an <n x i1> 3130 // Get the type from the ValueList before getting a forward ref. 3131 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3132 if (Value *V = ValueList[Record[0]]) 3133 if (SelectorTy != V->getType()) 3134 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3135 3136 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3137 SelectorTy), 3138 ValueList.getConstantFwdRef(Record[1],CurTy), 3139 ValueList.getConstantFwdRef(Record[2],CurTy)); 3140 break; 3141 } 3142 case bitc::CST_CODE_CE_EXTRACTELT 3143 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3144 if (Record.size() < 3) 3145 return error("Invalid record"); 3146 VectorType *OpTy = 3147 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3148 if (!OpTy) 3149 return error("Invalid record"); 3150 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3151 Constant *Op1 = nullptr; 3152 if (Record.size() == 4) { 3153 Type *IdxTy = getTypeByID(Record[2]); 3154 if (!IdxTy) 3155 return error("Invalid record"); 3156 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3157 } else // TODO: Remove with llvm 4.0 3158 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3159 if (!Op1) 3160 return error("Invalid record"); 3161 V = ConstantExpr::getExtractElement(Op0, Op1); 3162 break; 3163 } 3164 case bitc::CST_CODE_CE_INSERTELT 3165 : { // CE_INSERTELT: [opval, opval, opty, opval] 3166 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3167 if (Record.size() < 3 || !OpTy) 3168 return error("Invalid record"); 3169 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3170 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3171 OpTy->getElementType()); 3172 Constant *Op2 = nullptr; 3173 if (Record.size() == 4) { 3174 Type *IdxTy = getTypeByID(Record[2]); 3175 if (!IdxTy) 3176 return error("Invalid record"); 3177 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3178 } else // TODO: Remove with llvm 4.0 3179 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3180 if (!Op2) 3181 return error("Invalid record"); 3182 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3183 break; 3184 } 3185 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3186 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3187 if (Record.size() < 3 || !OpTy) 3188 return error("Invalid record"); 3189 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3190 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3191 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3192 OpTy->getNumElements()); 3193 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3194 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3195 break; 3196 } 3197 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3198 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3199 VectorType *OpTy = 3200 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3201 if (Record.size() < 4 || !RTy || !OpTy) 3202 return error("Invalid record"); 3203 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3204 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3205 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3206 RTy->getNumElements()); 3207 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3208 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3209 break; 3210 } 3211 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3212 if (Record.size() < 4) 3213 return error("Invalid record"); 3214 Type *OpTy = getTypeByID(Record[0]); 3215 if (!OpTy) 3216 return error("Invalid record"); 3217 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3218 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3219 3220 if (OpTy->isFPOrFPVectorTy()) 3221 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3222 else 3223 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3224 break; 3225 } 3226 // This maintains backward compatibility, pre-asm dialect keywords. 3227 // FIXME: Remove with the 4.0 release. 3228 case bitc::CST_CODE_INLINEASM_OLD: { 3229 if (Record.size() < 2) 3230 return error("Invalid record"); 3231 std::string AsmStr, ConstrStr; 3232 bool HasSideEffects = Record[0] & 1; 3233 bool IsAlignStack = Record[0] >> 1; 3234 unsigned AsmStrSize = Record[1]; 3235 if (2+AsmStrSize >= Record.size()) 3236 return error("Invalid record"); 3237 unsigned ConstStrSize = Record[2+AsmStrSize]; 3238 if (3+AsmStrSize+ConstStrSize > Record.size()) 3239 return error("Invalid record"); 3240 3241 for (unsigned i = 0; i != AsmStrSize; ++i) 3242 AsmStr += (char)Record[2+i]; 3243 for (unsigned i = 0; i != ConstStrSize; ++i) 3244 ConstrStr += (char)Record[3+AsmStrSize+i]; 3245 PointerType *PTy = cast<PointerType>(CurTy); 3246 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3247 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3248 break; 3249 } 3250 // This version adds support for the asm dialect keywords (e.g., 3251 // inteldialect). 3252 case bitc::CST_CODE_INLINEASM: { 3253 if (Record.size() < 2) 3254 return error("Invalid record"); 3255 std::string AsmStr, ConstrStr; 3256 bool HasSideEffects = Record[0] & 1; 3257 bool IsAlignStack = (Record[0] >> 1) & 1; 3258 unsigned AsmDialect = Record[0] >> 2; 3259 unsigned AsmStrSize = Record[1]; 3260 if (2+AsmStrSize >= Record.size()) 3261 return error("Invalid record"); 3262 unsigned ConstStrSize = Record[2+AsmStrSize]; 3263 if (3+AsmStrSize+ConstStrSize > Record.size()) 3264 return error("Invalid record"); 3265 3266 for (unsigned i = 0; i != AsmStrSize; ++i) 3267 AsmStr += (char)Record[2+i]; 3268 for (unsigned i = 0; i != ConstStrSize; ++i) 3269 ConstrStr += (char)Record[3+AsmStrSize+i]; 3270 PointerType *PTy = cast<PointerType>(CurTy); 3271 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3272 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3273 InlineAsm::AsmDialect(AsmDialect)); 3274 break; 3275 } 3276 case bitc::CST_CODE_BLOCKADDRESS:{ 3277 if (Record.size() < 3) 3278 return error("Invalid record"); 3279 Type *FnTy = getTypeByID(Record[0]); 3280 if (!FnTy) 3281 return error("Invalid record"); 3282 Function *Fn = 3283 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3284 if (!Fn) 3285 return error("Invalid record"); 3286 3287 // If the function is already parsed we can insert the block address right 3288 // away. 3289 BasicBlock *BB; 3290 unsigned BBID = Record[2]; 3291 if (!BBID) 3292 // Invalid reference to entry block. 3293 return error("Invalid ID"); 3294 if (!Fn->empty()) { 3295 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3296 for (size_t I = 0, E = BBID; I != E; ++I) { 3297 if (BBI == BBE) 3298 return error("Invalid ID"); 3299 ++BBI; 3300 } 3301 BB = &*BBI; 3302 } else { 3303 // Otherwise insert a placeholder and remember it so it can be inserted 3304 // when the function is parsed. 3305 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3306 if (FwdBBs.empty()) 3307 BasicBlockFwdRefQueue.push_back(Fn); 3308 if (FwdBBs.size() < BBID + 1) 3309 FwdBBs.resize(BBID + 1); 3310 if (!FwdBBs[BBID]) 3311 FwdBBs[BBID] = BasicBlock::Create(Context); 3312 BB = FwdBBs[BBID]; 3313 } 3314 V = BlockAddress::get(Fn, BB); 3315 break; 3316 } 3317 } 3318 3319 ValueList.assignValue(V, NextCstNo); 3320 ++NextCstNo; 3321 } 3322 } 3323 3324 std::error_code BitcodeReader::parseUseLists() { 3325 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3326 return error("Invalid record"); 3327 3328 // Read all the records. 3329 SmallVector<uint64_t, 64> Record; 3330 while (1) { 3331 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3332 3333 switch (Entry.Kind) { 3334 case BitstreamEntry::SubBlock: // Handled for us already. 3335 case BitstreamEntry::Error: 3336 return error("Malformed block"); 3337 case BitstreamEntry::EndBlock: 3338 return std::error_code(); 3339 case BitstreamEntry::Record: 3340 // The interesting case. 3341 break; 3342 } 3343 3344 // Read a use list record. 3345 Record.clear(); 3346 bool IsBB = false; 3347 switch (Stream.readRecord(Entry.ID, Record)) { 3348 default: // Default behavior: unknown type. 3349 break; 3350 case bitc::USELIST_CODE_BB: 3351 IsBB = true; 3352 // fallthrough 3353 case bitc::USELIST_CODE_DEFAULT: { 3354 unsigned RecordLength = Record.size(); 3355 if (RecordLength < 3) 3356 // Records should have at least an ID and two indexes. 3357 return error("Invalid record"); 3358 unsigned ID = Record.back(); 3359 Record.pop_back(); 3360 3361 Value *V; 3362 if (IsBB) { 3363 assert(ID < FunctionBBs.size() && "Basic block not found"); 3364 V = FunctionBBs[ID]; 3365 } else 3366 V = ValueList[ID]; 3367 unsigned NumUses = 0; 3368 SmallDenseMap<const Use *, unsigned, 16> Order; 3369 for (const Use &U : V->materialized_uses()) { 3370 if (++NumUses > Record.size()) 3371 break; 3372 Order[&U] = Record[NumUses - 1]; 3373 } 3374 if (Order.size() != Record.size() || NumUses > Record.size()) 3375 // Mismatches can happen if the functions are being materialized lazily 3376 // (out-of-order), or a value has been upgraded. 3377 break; 3378 3379 V->sortUseList([&](const Use &L, const Use &R) { 3380 return Order.lookup(&L) < Order.lookup(&R); 3381 }); 3382 break; 3383 } 3384 } 3385 } 3386 } 3387 3388 /// When we see the block for metadata, remember where it is and then skip it. 3389 /// This lets us lazily deserialize the metadata. 3390 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3391 // Save the current stream state. 3392 uint64_t CurBit = Stream.GetCurrentBitNo(); 3393 DeferredMetadataInfo.push_back(CurBit); 3394 3395 // Skip over the block for now. 3396 if (Stream.SkipBlock()) 3397 return error("Invalid record"); 3398 return std::error_code(); 3399 } 3400 3401 std::error_code BitcodeReader::materializeMetadata() { 3402 for (uint64_t BitPos : DeferredMetadataInfo) { 3403 // Move the bit stream to the saved position. 3404 Stream.JumpToBit(BitPos); 3405 if (std::error_code EC = parseMetadata(true)) 3406 return EC; 3407 } 3408 DeferredMetadataInfo.clear(); 3409 return std::error_code(); 3410 } 3411 3412 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3413 3414 /// When we see the block for a function body, remember where it is and then 3415 /// skip it. This lets us lazily deserialize the functions. 3416 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3417 // Get the function we are talking about. 3418 if (FunctionsWithBodies.empty()) 3419 return error("Insufficient function protos"); 3420 3421 Function *Fn = FunctionsWithBodies.back(); 3422 FunctionsWithBodies.pop_back(); 3423 3424 // Save the current stream state. 3425 uint64_t CurBit = Stream.GetCurrentBitNo(); 3426 assert( 3427 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3428 "Mismatch between VST and scanned function offsets"); 3429 DeferredFunctionInfo[Fn] = CurBit; 3430 3431 // Skip over the function block for now. 3432 if (Stream.SkipBlock()) 3433 return error("Invalid record"); 3434 return std::error_code(); 3435 } 3436 3437 std::error_code BitcodeReader::globalCleanup() { 3438 // Patch the initializers for globals and aliases up. 3439 resolveGlobalAndIndirectSymbolInits(); 3440 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3441 return error("Malformed global initializer set"); 3442 3443 // Look for intrinsic functions which need to be upgraded at some point 3444 for (Function &F : *TheModule) { 3445 Function *NewFn; 3446 if (UpgradeIntrinsicFunction(&F, NewFn)) 3447 UpgradedIntrinsics[&F] = NewFn; 3448 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3449 // Some types could be renamed during loading if several modules are 3450 // loaded in the same LLVMContext (LTO scenario). In this case we should 3451 // remangle intrinsics names as well. 3452 RemangledIntrinsics[&F] = Remangled.getValue(); 3453 } 3454 3455 // Look for global variables which need to be renamed. 3456 for (GlobalVariable &GV : TheModule->globals()) 3457 UpgradeGlobalVariable(&GV); 3458 3459 // Force deallocation of memory for these vectors to favor the client that 3460 // want lazy deserialization. 3461 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3462 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3463 IndirectSymbolInits); 3464 return std::error_code(); 3465 } 3466 3467 /// Support for lazy parsing of function bodies. This is required if we 3468 /// either have an old bitcode file without a VST forward declaration record, 3469 /// or if we have an anonymous function being materialized, since anonymous 3470 /// functions do not have a name and are therefore not in the VST. 3471 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3472 Stream.JumpToBit(NextUnreadBit); 3473 3474 if (Stream.AtEndOfStream()) 3475 return error("Could not find function in stream"); 3476 3477 if (!SeenFirstFunctionBody) 3478 return error("Trying to materialize functions before seeing function blocks"); 3479 3480 // An old bitcode file with the symbol table at the end would have 3481 // finished the parse greedily. 3482 assert(SeenValueSymbolTable); 3483 3484 SmallVector<uint64_t, 64> Record; 3485 3486 while (1) { 3487 BitstreamEntry Entry = Stream.advance(); 3488 switch (Entry.Kind) { 3489 default: 3490 return error("Expect SubBlock"); 3491 case BitstreamEntry::SubBlock: 3492 switch (Entry.ID) { 3493 default: 3494 return error("Expect function block"); 3495 case bitc::FUNCTION_BLOCK_ID: 3496 if (std::error_code EC = rememberAndSkipFunctionBody()) 3497 return EC; 3498 NextUnreadBit = Stream.GetCurrentBitNo(); 3499 return std::error_code(); 3500 } 3501 } 3502 } 3503 } 3504 3505 std::error_code BitcodeReader::parseBitcodeVersion() { 3506 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3507 return error("Invalid record"); 3508 3509 // Read all the records. 3510 SmallVector<uint64_t, 64> Record; 3511 while (1) { 3512 BitstreamEntry Entry = Stream.advance(); 3513 3514 switch (Entry.Kind) { 3515 default: 3516 case BitstreamEntry::Error: 3517 return error("Malformed block"); 3518 case BitstreamEntry::EndBlock: 3519 return std::error_code(); 3520 case BitstreamEntry::Record: 3521 // The interesting case. 3522 break; 3523 } 3524 3525 // Read a record. 3526 Record.clear(); 3527 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3528 switch (BitCode) { 3529 default: // Default behavior: reject 3530 return error("Invalid value"); 3531 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3532 // N] 3533 convertToString(Record, 0, ProducerIdentification); 3534 break; 3535 } 3536 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3537 unsigned epoch = (unsigned)Record[0]; 3538 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3539 return error( 3540 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3541 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3542 } 3543 } 3544 } 3545 } 3546 } 3547 3548 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3549 bool ShouldLazyLoadMetadata) { 3550 if (ResumeBit) 3551 Stream.JumpToBit(ResumeBit); 3552 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3553 return error("Invalid record"); 3554 3555 SmallVector<uint64_t, 64> Record; 3556 std::vector<std::string> SectionTable; 3557 std::vector<std::string> GCTable; 3558 3559 // Read all the records for this module. 3560 while (1) { 3561 BitstreamEntry Entry = Stream.advance(); 3562 3563 switch (Entry.Kind) { 3564 case BitstreamEntry::Error: 3565 return error("Malformed block"); 3566 case BitstreamEntry::EndBlock: 3567 return globalCleanup(); 3568 3569 case BitstreamEntry::SubBlock: 3570 switch (Entry.ID) { 3571 default: // Skip unknown content. 3572 if (Stream.SkipBlock()) 3573 return error("Invalid record"); 3574 break; 3575 case bitc::BLOCKINFO_BLOCK_ID: 3576 if (Stream.ReadBlockInfoBlock()) 3577 return error("Malformed block"); 3578 break; 3579 case bitc::PARAMATTR_BLOCK_ID: 3580 if (std::error_code EC = parseAttributeBlock()) 3581 return EC; 3582 break; 3583 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3584 if (std::error_code EC = parseAttributeGroupBlock()) 3585 return EC; 3586 break; 3587 case bitc::TYPE_BLOCK_ID_NEW: 3588 if (std::error_code EC = parseTypeTable()) 3589 return EC; 3590 break; 3591 case bitc::VALUE_SYMTAB_BLOCK_ID: 3592 if (!SeenValueSymbolTable) { 3593 // Either this is an old form VST without function index and an 3594 // associated VST forward declaration record (which would have caused 3595 // the VST to be jumped to and parsed before it was encountered 3596 // normally in the stream), or there were no function blocks to 3597 // trigger an earlier parsing of the VST. 3598 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3599 if (std::error_code EC = parseValueSymbolTable()) 3600 return EC; 3601 SeenValueSymbolTable = true; 3602 } else { 3603 // We must have had a VST forward declaration record, which caused 3604 // the parser to jump to and parse the VST earlier. 3605 assert(VSTOffset > 0); 3606 if (Stream.SkipBlock()) 3607 return error("Invalid record"); 3608 } 3609 break; 3610 case bitc::CONSTANTS_BLOCK_ID: 3611 if (std::error_code EC = parseConstants()) 3612 return EC; 3613 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3614 return EC; 3615 break; 3616 case bitc::METADATA_BLOCK_ID: 3617 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3618 if (std::error_code EC = rememberAndSkipMetadata()) 3619 return EC; 3620 break; 3621 } 3622 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3623 if (std::error_code EC = parseMetadata(true)) 3624 return EC; 3625 break; 3626 case bitc::METADATA_KIND_BLOCK_ID: 3627 if (std::error_code EC = parseMetadataKinds()) 3628 return EC; 3629 break; 3630 case bitc::FUNCTION_BLOCK_ID: 3631 // If this is the first function body we've seen, reverse the 3632 // FunctionsWithBodies list. 3633 if (!SeenFirstFunctionBody) { 3634 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3635 if (std::error_code EC = globalCleanup()) 3636 return EC; 3637 SeenFirstFunctionBody = true; 3638 } 3639 3640 if (VSTOffset > 0) { 3641 // If we have a VST forward declaration record, make sure we 3642 // parse the VST now if we haven't already. It is needed to 3643 // set up the DeferredFunctionInfo vector for lazy reading. 3644 if (!SeenValueSymbolTable) { 3645 if (std::error_code EC = 3646 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3647 return EC; 3648 SeenValueSymbolTable = true; 3649 // Fall through so that we record the NextUnreadBit below. 3650 // This is necessary in case we have an anonymous function that 3651 // is later materialized. Since it will not have a VST entry we 3652 // need to fall back to the lazy parse to find its offset. 3653 } else { 3654 // If we have a VST forward declaration record, but have already 3655 // parsed the VST (just above, when the first function body was 3656 // encountered here), then we are resuming the parse after 3657 // materializing functions. The ResumeBit points to the 3658 // start of the last function block recorded in the 3659 // DeferredFunctionInfo map. Skip it. 3660 if (Stream.SkipBlock()) 3661 return error("Invalid record"); 3662 continue; 3663 } 3664 } 3665 3666 // Support older bitcode files that did not have the function 3667 // index in the VST, nor a VST forward declaration record, as 3668 // well as anonymous functions that do not have VST entries. 3669 // Build the DeferredFunctionInfo vector on the fly. 3670 if (std::error_code EC = rememberAndSkipFunctionBody()) 3671 return EC; 3672 3673 // Suspend parsing when we reach the function bodies. Subsequent 3674 // materialization calls will resume it when necessary. If the bitcode 3675 // file is old, the symbol table will be at the end instead and will not 3676 // have been seen yet. In this case, just finish the parse now. 3677 if (SeenValueSymbolTable) { 3678 NextUnreadBit = Stream.GetCurrentBitNo(); 3679 return std::error_code(); 3680 } 3681 break; 3682 case bitc::USELIST_BLOCK_ID: 3683 if (std::error_code EC = parseUseLists()) 3684 return EC; 3685 break; 3686 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3687 if (std::error_code EC = parseOperandBundleTags()) 3688 return EC; 3689 break; 3690 } 3691 continue; 3692 3693 case BitstreamEntry::Record: 3694 // The interesting case. 3695 break; 3696 } 3697 3698 // Read a record. 3699 auto BitCode = Stream.readRecord(Entry.ID, Record); 3700 switch (BitCode) { 3701 default: break; // Default behavior, ignore unknown content. 3702 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3703 if (Record.size() < 1) 3704 return error("Invalid record"); 3705 // Only version #0 and #1 are supported so far. 3706 unsigned module_version = Record[0]; 3707 switch (module_version) { 3708 default: 3709 return error("Invalid value"); 3710 case 0: 3711 UseRelativeIDs = false; 3712 break; 3713 case 1: 3714 UseRelativeIDs = true; 3715 break; 3716 } 3717 break; 3718 } 3719 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3720 std::string S; 3721 if (convertToString(Record, 0, S)) 3722 return error("Invalid record"); 3723 TheModule->setTargetTriple(S); 3724 break; 3725 } 3726 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3727 std::string S; 3728 if (convertToString(Record, 0, S)) 3729 return error("Invalid record"); 3730 TheModule->setDataLayout(S); 3731 break; 3732 } 3733 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3734 std::string S; 3735 if (convertToString(Record, 0, S)) 3736 return error("Invalid record"); 3737 TheModule->setModuleInlineAsm(S); 3738 break; 3739 } 3740 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3741 // FIXME: Remove in 4.0. 3742 std::string S; 3743 if (convertToString(Record, 0, S)) 3744 return error("Invalid record"); 3745 // Ignore value. 3746 break; 3747 } 3748 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3749 std::string S; 3750 if (convertToString(Record, 0, S)) 3751 return error("Invalid record"); 3752 SectionTable.push_back(S); 3753 break; 3754 } 3755 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3756 std::string S; 3757 if (convertToString(Record, 0, S)) 3758 return error("Invalid record"); 3759 GCTable.push_back(S); 3760 break; 3761 } 3762 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3763 if (Record.size() < 2) 3764 return error("Invalid record"); 3765 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3766 unsigned ComdatNameSize = Record[1]; 3767 std::string ComdatName; 3768 ComdatName.reserve(ComdatNameSize); 3769 for (unsigned i = 0; i != ComdatNameSize; ++i) 3770 ComdatName += (char)Record[2 + i]; 3771 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3772 C->setSelectionKind(SK); 3773 ComdatList.push_back(C); 3774 break; 3775 } 3776 // GLOBALVAR: [pointer type, isconst, initid, 3777 // linkage, alignment, section, visibility, threadlocal, 3778 // unnamed_addr, externally_initialized, dllstorageclass, 3779 // comdat] 3780 case bitc::MODULE_CODE_GLOBALVAR: { 3781 if (Record.size() < 6) 3782 return error("Invalid record"); 3783 Type *Ty = getTypeByID(Record[0]); 3784 if (!Ty) 3785 return error("Invalid record"); 3786 bool isConstant = Record[1] & 1; 3787 bool explicitType = Record[1] & 2; 3788 unsigned AddressSpace; 3789 if (explicitType) { 3790 AddressSpace = Record[1] >> 2; 3791 } else { 3792 if (!Ty->isPointerTy()) 3793 return error("Invalid type for value"); 3794 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3795 Ty = cast<PointerType>(Ty)->getElementType(); 3796 } 3797 3798 uint64_t RawLinkage = Record[3]; 3799 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3800 unsigned Alignment; 3801 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3802 return EC; 3803 std::string Section; 3804 if (Record[5]) { 3805 if (Record[5]-1 >= SectionTable.size()) 3806 return error("Invalid ID"); 3807 Section = SectionTable[Record[5]-1]; 3808 } 3809 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3810 // Local linkage must have default visibility. 3811 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3812 // FIXME: Change to an error if non-default in 4.0. 3813 Visibility = getDecodedVisibility(Record[6]); 3814 3815 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3816 if (Record.size() > 7) 3817 TLM = getDecodedThreadLocalMode(Record[7]); 3818 3819 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3820 if (Record.size() > 8) 3821 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3822 3823 bool ExternallyInitialized = false; 3824 if (Record.size() > 9) 3825 ExternallyInitialized = Record[9]; 3826 3827 GlobalVariable *NewGV = 3828 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3829 TLM, AddressSpace, ExternallyInitialized); 3830 NewGV->setAlignment(Alignment); 3831 if (!Section.empty()) 3832 NewGV->setSection(Section); 3833 NewGV->setVisibility(Visibility); 3834 NewGV->setUnnamedAddr(UnnamedAddr); 3835 3836 if (Record.size() > 10) 3837 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3838 else 3839 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3840 3841 ValueList.push_back(NewGV); 3842 3843 // Remember which value to use for the global initializer. 3844 if (unsigned InitID = Record[2]) 3845 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3846 3847 if (Record.size() > 11) { 3848 if (unsigned ComdatID = Record[11]) { 3849 if (ComdatID > ComdatList.size()) 3850 return error("Invalid global variable comdat ID"); 3851 NewGV->setComdat(ComdatList[ComdatID - 1]); 3852 } 3853 } else if (hasImplicitComdat(RawLinkage)) { 3854 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3855 } 3856 3857 break; 3858 } 3859 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3860 // alignment, section, visibility, gc, unnamed_addr, 3861 // prologuedata, dllstorageclass, comdat, prefixdata] 3862 case bitc::MODULE_CODE_FUNCTION: { 3863 if (Record.size() < 8) 3864 return error("Invalid record"); 3865 Type *Ty = getTypeByID(Record[0]); 3866 if (!Ty) 3867 return error("Invalid record"); 3868 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3869 Ty = PTy->getElementType(); 3870 auto *FTy = dyn_cast<FunctionType>(Ty); 3871 if (!FTy) 3872 return error("Invalid type for value"); 3873 auto CC = static_cast<CallingConv::ID>(Record[1]); 3874 if (CC & ~CallingConv::MaxID) 3875 return error("Invalid calling convention ID"); 3876 3877 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3878 "", TheModule); 3879 3880 Func->setCallingConv(CC); 3881 bool isProto = Record[2]; 3882 uint64_t RawLinkage = Record[3]; 3883 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3884 Func->setAttributes(getAttributes(Record[4])); 3885 3886 unsigned Alignment; 3887 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3888 return EC; 3889 Func->setAlignment(Alignment); 3890 if (Record[6]) { 3891 if (Record[6]-1 >= SectionTable.size()) 3892 return error("Invalid ID"); 3893 Func->setSection(SectionTable[Record[6]-1]); 3894 } 3895 // Local linkage must have default visibility. 3896 if (!Func->hasLocalLinkage()) 3897 // FIXME: Change to an error if non-default in 4.0. 3898 Func->setVisibility(getDecodedVisibility(Record[7])); 3899 if (Record.size() > 8 && Record[8]) { 3900 if (Record[8]-1 >= GCTable.size()) 3901 return error("Invalid ID"); 3902 Func->setGC(GCTable[Record[8] - 1]); 3903 } 3904 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3905 if (Record.size() > 9) 3906 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3907 Func->setUnnamedAddr(UnnamedAddr); 3908 if (Record.size() > 10 && Record[10] != 0) 3909 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3910 3911 if (Record.size() > 11) 3912 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3913 else 3914 upgradeDLLImportExportLinkage(Func, RawLinkage); 3915 3916 if (Record.size() > 12) { 3917 if (unsigned ComdatID = Record[12]) { 3918 if (ComdatID > ComdatList.size()) 3919 return error("Invalid function comdat ID"); 3920 Func->setComdat(ComdatList[ComdatID - 1]); 3921 } 3922 } else if (hasImplicitComdat(RawLinkage)) { 3923 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3924 } 3925 3926 if (Record.size() > 13 && Record[13] != 0) 3927 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3928 3929 if (Record.size() > 14 && Record[14] != 0) 3930 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3931 3932 ValueList.push_back(Func); 3933 3934 // If this is a function with a body, remember the prototype we are 3935 // creating now, so that we can match up the body with them later. 3936 if (!isProto) { 3937 Func->setIsMaterializable(true); 3938 FunctionsWithBodies.push_back(Func); 3939 DeferredFunctionInfo[Func] = 0; 3940 } 3941 break; 3942 } 3943 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3944 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3945 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3946 case bitc::MODULE_CODE_IFUNC: 3947 case bitc::MODULE_CODE_ALIAS: 3948 case bitc::MODULE_CODE_ALIAS_OLD: { 3949 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3950 if (Record.size() < (3 + (unsigned)NewRecord)) 3951 return error("Invalid record"); 3952 unsigned OpNum = 0; 3953 Type *Ty = getTypeByID(Record[OpNum++]); 3954 if (!Ty) 3955 return error("Invalid record"); 3956 3957 unsigned AddrSpace; 3958 if (!NewRecord) { 3959 auto *PTy = dyn_cast<PointerType>(Ty); 3960 if (!PTy) 3961 return error("Invalid type for value"); 3962 Ty = PTy->getElementType(); 3963 AddrSpace = PTy->getAddressSpace(); 3964 } else { 3965 AddrSpace = Record[OpNum++]; 3966 } 3967 3968 auto Val = Record[OpNum++]; 3969 auto Linkage = Record[OpNum++]; 3970 GlobalIndirectSymbol *NewGA; 3971 if (BitCode == bitc::MODULE_CODE_ALIAS || 3972 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3973 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3974 "", TheModule); 3975 else 3976 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3977 "", nullptr, TheModule); 3978 // Old bitcode files didn't have visibility field. 3979 // Local linkage must have default visibility. 3980 if (OpNum != Record.size()) { 3981 auto VisInd = OpNum++; 3982 if (!NewGA->hasLocalLinkage()) 3983 // FIXME: Change to an error if non-default in 4.0. 3984 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3985 } 3986 if (OpNum != Record.size()) 3987 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3988 else 3989 upgradeDLLImportExportLinkage(NewGA, Linkage); 3990 if (OpNum != Record.size()) 3991 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3992 if (OpNum != Record.size()) 3993 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3994 ValueList.push_back(NewGA); 3995 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3996 break; 3997 } 3998 /// MODULE_CODE_PURGEVALS: [numvals] 3999 case bitc::MODULE_CODE_PURGEVALS: 4000 // Trim down the value list to the specified size. 4001 if (Record.size() < 1 || Record[0] > ValueList.size()) 4002 return error("Invalid record"); 4003 ValueList.shrinkTo(Record[0]); 4004 break; 4005 /// MODULE_CODE_VSTOFFSET: [offset] 4006 case bitc::MODULE_CODE_VSTOFFSET: 4007 if (Record.size() < 1) 4008 return error("Invalid record"); 4009 VSTOffset = Record[0]; 4010 break; 4011 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4012 case bitc::MODULE_CODE_SOURCE_FILENAME: 4013 SmallString<128> ValueName; 4014 if (convertToString(Record, 0, ValueName)) 4015 return error("Invalid record"); 4016 TheModule->setSourceFileName(ValueName); 4017 break; 4018 } 4019 Record.clear(); 4020 } 4021 } 4022 4023 /// Helper to read the header common to all bitcode files. 4024 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 4025 // Sniff for the signature. 4026 if (Stream.Read(8) != 'B' || 4027 Stream.Read(8) != 'C' || 4028 Stream.Read(4) != 0x0 || 4029 Stream.Read(4) != 0xC || 4030 Stream.Read(4) != 0xE || 4031 Stream.Read(4) != 0xD) 4032 return false; 4033 return true; 4034 } 4035 4036 std::error_code 4037 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 4038 Module *M, bool ShouldLazyLoadMetadata) { 4039 TheModule = M; 4040 4041 if (std::error_code EC = initStream(std::move(Streamer))) 4042 return EC; 4043 4044 // Sniff for the signature. 4045 if (!hasValidBitcodeHeader(Stream)) 4046 return error("Invalid bitcode signature"); 4047 4048 // We expect a number of well-defined blocks, though we don't necessarily 4049 // need to understand them all. 4050 while (1) { 4051 if (Stream.AtEndOfStream()) { 4052 // We didn't really read a proper Module. 4053 return error("Malformed IR file"); 4054 } 4055 4056 BitstreamEntry Entry = 4057 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4058 4059 if (Entry.Kind != BitstreamEntry::SubBlock) 4060 return error("Malformed block"); 4061 4062 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4063 parseBitcodeVersion(); 4064 continue; 4065 } 4066 4067 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4068 return parseModule(0, ShouldLazyLoadMetadata); 4069 4070 if (Stream.SkipBlock()) 4071 return error("Invalid record"); 4072 } 4073 } 4074 4075 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4076 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4077 return error("Invalid record"); 4078 4079 SmallVector<uint64_t, 64> Record; 4080 4081 std::string Triple; 4082 // Read all the records for this module. 4083 while (1) { 4084 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4085 4086 switch (Entry.Kind) { 4087 case BitstreamEntry::SubBlock: // Handled for us already. 4088 case BitstreamEntry::Error: 4089 return error("Malformed block"); 4090 case BitstreamEntry::EndBlock: 4091 return Triple; 4092 case BitstreamEntry::Record: 4093 // The interesting case. 4094 break; 4095 } 4096 4097 // Read a record. 4098 switch (Stream.readRecord(Entry.ID, Record)) { 4099 default: break; // Default behavior, ignore unknown content. 4100 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4101 std::string S; 4102 if (convertToString(Record, 0, S)) 4103 return error("Invalid record"); 4104 Triple = S; 4105 break; 4106 } 4107 } 4108 Record.clear(); 4109 } 4110 llvm_unreachable("Exit infinite loop"); 4111 } 4112 4113 ErrorOr<std::string> BitcodeReader::parseTriple() { 4114 if (std::error_code EC = initStream(nullptr)) 4115 return EC; 4116 4117 // Sniff for the signature. 4118 if (!hasValidBitcodeHeader(Stream)) 4119 return error("Invalid bitcode signature"); 4120 4121 // We expect a number of well-defined blocks, though we don't necessarily 4122 // need to understand them all. 4123 while (1) { 4124 BitstreamEntry Entry = Stream.advance(); 4125 4126 switch (Entry.Kind) { 4127 case BitstreamEntry::Error: 4128 return error("Malformed block"); 4129 case BitstreamEntry::EndBlock: 4130 return std::error_code(); 4131 4132 case BitstreamEntry::SubBlock: 4133 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4134 return parseModuleTriple(); 4135 4136 // Ignore other sub-blocks. 4137 if (Stream.SkipBlock()) 4138 return error("Malformed block"); 4139 continue; 4140 4141 case BitstreamEntry::Record: 4142 Stream.skipRecord(Entry.ID); 4143 continue; 4144 } 4145 } 4146 } 4147 4148 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4149 if (std::error_code EC = initStream(nullptr)) 4150 return EC; 4151 4152 // Sniff for the signature. 4153 if (!hasValidBitcodeHeader(Stream)) 4154 return error("Invalid bitcode signature"); 4155 4156 // We expect a number of well-defined blocks, though we don't necessarily 4157 // need to understand them all. 4158 while (1) { 4159 BitstreamEntry Entry = Stream.advance(); 4160 switch (Entry.Kind) { 4161 case BitstreamEntry::Error: 4162 return error("Malformed block"); 4163 case BitstreamEntry::EndBlock: 4164 return std::error_code(); 4165 4166 case BitstreamEntry::SubBlock: 4167 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4168 if (std::error_code EC = parseBitcodeVersion()) 4169 return EC; 4170 return ProducerIdentification; 4171 } 4172 // Ignore other sub-blocks. 4173 if (Stream.SkipBlock()) 4174 return error("Malformed block"); 4175 continue; 4176 case BitstreamEntry::Record: 4177 Stream.skipRecord(Entry.ID); 4178 continue; 4179 } 4180 } 4181 } 4182 4183 std::error_code BitcodeReader::parseGlobalObjectAttachment( 4184 GlobalObject &GO, ArrayRef<uint64_t> Record) { 4185 assert(Record.size() % 2 == 0); 4186 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4187 auto K = MDKindMap.find(Record[I]); 4188 if (K == MDKindMap.end()) 4189 return error("Invalid ID"); 4190 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4191 if (!MD) 4192 return error("Invalid metadata attachment"); 4193 GO.addMetadata(K->second, *MD); 4194 } 4195 return std::error_code(); 4196 } 4197 4198 /// Parse metadata attachments. 4199 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4200 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4201 return error("Invalid record"); 4202 4203 SmallVector<uint64_t, 64> Record; 4204 while (1) { 4205 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4206 4207 switch (Entry.Kind) { 4208 case BitstreamEntry::SubBlock: // Handled for us already. 4209 case BitstreamEntry::Error: 4210 return error("Malformed block"); 4211 case BitstreamEntry::EndBlock: 4212 return std::error_code(); 4213 case BitstreamEntry::Record: 4214 // The interesting case. 4215 break; 4216 } 4217 4218 // Read a metadata attachment record. 4219 Record.clear(); 4220 switch (Stream.readRecord(Entry.ID, Record)) { 4221 default: // Default behavior: ignore. 4222 break; 4223 case bitc::METADATA_ATTACHMENT: { 4224 unsigned RecordLength = Record.size(); 4225 if (Record.empty()) 4226 return error("Invalid record"); 4227 if (RecordLength % 2 == 0) { 4228 // A function attachment. 4229 if (std::error_code EC = parseGlobalObjectAttachment(F, Record)) 4230 return EC; 4231 continue; 4232 } 4233 4234 // An instruction attachment. 4235 Instruction *Inst = InstructionList[Record[0]]; 4236 for (unsigned i = 1; i != RecordLength; i = i+2) { 4237 unsigned Kind = Record[i]; 4238 DenseMap<unsigned, unsigned>::iterator I = 4239 MDKindMap.find(Kind); 4240 if (I == MDKindMap.end()) 4241 return error("Invalid ID"); 4242 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4243 if (isa<LocalAsMetadata>(Node)) 4244 // Drop the attachment. This used to be legal, but there's no 4245 // upgrade path. 4246 break; 4247 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4248 if (!MD) 4249 return error("Invalid metadata attachment"); 4250 4251 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4252 MD = upgradeInstructionLoopAttachment(*MD); 4253 4254 Inst->setMetadata(I->second, MD); 4255 if (I->second == LLVMContext::MD_tbaa) { 4256 InstsWithTBAATag.push_back(Inst); 4257 continue; 4258 } 4259 } 4260 break; 4261 } 4262 } 4263 } 4264 } 4265 4266 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4267 LLVMContext &Context = PtrType->getContext(); 4268 if (!isa<PointerType>(PtrType)) 4269 return error(Context, "Load/Store operand is not a pointer type"); 4270 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4271 4272 if (ValType && ValType != ElemType) 4273 return error(Context, "Explicit load/store type does not match pointee " 4274 "type of pointer operand"); 4275 if (!PointerType::isLoadableOrStorableType(ElemType)) 4276 return error(Context, "Cannot load/store from pointer"); 4277 return std::error_code(); 4278 } 4279 4280 /// Lazily parse the specified function body block. 4281 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4282 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4283 return error("Invalid record"); 4284 4285 // Unexpected unresolved metadata when parsing function. 4286 if (MetadataList.hasFwdRefs()) 4287 return error("Invalid function metadata: incoming forward references"); 4288 4289 InstructionList.clear(); 4290 unsigned ModuleValueListSize = ValueList.size(); 4291 unsigned ModuleMetadataListSize = MetadataList.size(); 4292 4293 // Add all the function arguments to the value table. 4294 for (Argument &I : F->args()) 4295 ValueList.push_back(&I); 4296 4297 unsigned NextValueNo = ValueList.size(); 4298 BasicBlock *CurBB = nullptr; 4299 unsigned CurBBNo = 0; 4300 4301 DebugLoc LastLoc; 4302 auto getLastInstruction = [&]() -> Instruction * { 4303 if (CurBB && !CurBB->empty()) 4304 return &CurBB->back(); 4305 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4306 !FunctionBBs[CurBBNo - 1]->empty()) 4307 return &FunctionBBs[CurBBNo - 1]->back(); 4308 return nullptr; 4309 }; 4310 4311 std::vector<OperandBundleDef> OperandBundles; 4312 4313 // Read all the records. 4314 SmallVector<uint64_t, 64> Record; 4315 while (1) { 4316 BitstreamEntry Entry = Stream.advance(); 4317 4318 switch (Entry.Kind) { 4319 case BitstreamEntry::Error: 4320 return error("Malformed block"); 4321 case BitstreamEntry::EndBlock: 4322 goto OutOfRecordLoop; 4323 4324 case BitstreamEntry::SubBlock: 4325 switch (Entry.ID) { 4326 default: // Skip unknown content. 4327 if (Stream.SkipBlock()) 4328 return error("Invalid record"); 4329 break; 4330 case bitc::CONSTANTS_BLOCK_ID: 4331 if (std::error_code EC = parseConstants()) 4332 return EC; 4333 NextValueNo = ValueList.size(); 4334 break; 4335 case bitc::VALUE_SYMTAB_BLOCK_ID: 4336 if (std::error_code EC = parseValueSymbolTable()) 4337 return EC; 4338 break; 4339 case bitc::METADATA_ATTACHMENT_ID: 4340 if (std::error_code EC = parseMetadataAttachment(*F)) 4341 return EC; 4342 break; 4343 case bitc::METADATA_BLOCK_ID: 4344 if (std::error_code EC = parseMetadata()) 4345 return EC; 4346 break; 4347 case bitc::USELIST_BLOCK_ID: 4348 if (std::error_code EC = parseUseLists()) 4349 return EC; 4350 break; 4351 } 4352 continue; 4353 4354 case BitstreamEntry::Record: 4355 // The interesting case. 4356 break; 4357 } 4358 4359 // Read a record. 4360 Record.clear(); 4361 Instruction *I = nullptr; 4362 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4363 switch (BitCode) { 4364 default: // Default behavior: reject 4365 return error("Invalid value"); 4366 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4367 if (Record.size() < 1 || Record[0] == 0) 4368 return error("Invalid record"); 4369 // Create all the basic blocks for the function. 4370 FunctionBBs.resize(Record[0]); 4371 4372 // See if anything took the address of blocks in this function. 4373 auto BBFRI = BasicBlockFwdRefs.find(F); 4374 if (BBFRI == BasicBlockFwdRefs.end()) { 4375 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4376 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4377 } else { 4378 auto &BBRefs = BBFRI->second; 4379 // Check for invalid basic block references. 4380 if (BBRefs.size() > FunctionBBs.size()) 4381 return error("Invalid ID"); 4382 assert(!BBRefs.empty() && "Unexpected empty array"); 4383 assert(!BBRefs.front() && "Invalid reference to entry block"); 4384 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4385 ++I) 4386 if (I < RE && BBRefs[I]) { 4387 BBRefs[I]->insertInto(F); 4388 FunctionBBs[I] = BBRefs[I]; 4389 } else { 4390 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4391 } 4392 4393 // Erase from the table. 4394 BasicBlockFwdRefs.erase(BBFRI); 4395 } 4396 4397 CurBB = FunctionBBs[0]; 4398 continue; 4399 } 4400 4401 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4402 // This record indicates that the last instruction is at the same 4403 // location as the previous instruction with a location. 4404 I = getLastInstruction(); 4405 4406 if (!I) 4407 return error("Invalid record"); 4408 I->setDebugLoc(LastLoc); 4409 I = nullptr; 4410 continue; 4411 4412 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4413 I = getLastInstruction(); 4414 if (!I || Record.size() < 4) 4415 return error("Invalid record"); 4416 4417 unsigned Line = Record[0], Col = Record[1]; 4418 unsigned ScopeID = Record[2], IAID = Record[3]; 4419 4420 MDNode *Scope = nullptr, *IA = nullptr; 4421 if (ScopeID) { 4422 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4423 if (!Scope) 4424 return error("Invalid record"); 4425 } 4426 if (IAID) { 4427 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4428 if (!IA) 4429 return error("Invalid record"); 4430 } 4431 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4432 I->setDebugLoc(LastLoc); 4433 I = nullptr; 4434 continue; 4435 } 4436 4437 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4438 unsigned OpNum = 0; 4439 Value *LHS, *RHS; 4440 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4441 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4442 OpNum+1 > Record.size()) 4443 return error("Invalid record"); 4444 4445 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4446 if (Opc == -1) 4447 return error("Invalid record"); 4448 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4449 InstructionList.push_back(I); 4450 if (OpNum < Record.size()) { 4451 if (Opc == Instruction::Add || 4452 Opc == Instruction::Sub || 4453 Opc == Instruction::Mul || 4454 Opc == Instruction::Shl) { 4455 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4456 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4457 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4458 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4459 } else if (Opc == Instruction::SDiv || 4460 Opc == Instruction::UDiv || 4461 Opc == Instruction::LShr || 4462 Opc == Instruction::AShr) { 4463 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4464 cast<BinaryOperator>(I)->setIsExact(true); 4465 } else if (isa<FPMathOperator>(I)) { 4466 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4467 if (FMF.any()) 4468 I->setFastMathFlags(FMF); 4469 } 4470 4471 } 4472 break; 4473 } 4474 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4475 unsigned OpNum = 0; 4476 Value *Op; 4477 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4478 OpNum+2 != Record.size()) 4479 return error("Invalid record"); 4480 4481 Type *ResTy = getTypeByID(Record[OpNum]); 4482 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4483 if (Opc == -1 || !ResTy) 4484 return error("Invalid record"); 4485 Instruction *Temp = nullptr; 4486 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4487 if (Temp) { 4488 InstructionList.push_back(Temp); 4489 CurBB->getInstList().push_back(Temp); 4490 } 4491 } else { 4492 auto CastOp = (Instruction::CastOps)Opc; 4493 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4494 return error("Invalid cast"); 4495 I = CastInst::Create(CastOp, Op, ResTy); 4496 } 4497 InstructionList.push_back(I); 4498 break; 4499 } 4500 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4501 case bitc::FUNC_CODE_INST_GEP_OLD: 4502 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4503 unsigned OpNum = 0; 4504 4505 Type *Ty; 4506 bool InBounds; 4507 4508 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4509 InBounds = Record[OpNum++]; 4510 Ty = getTypeByID(Record[OpNum++]); 4511 } else { 4512 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4513 Ty = nullptr; 4514 } 4515 4516 Value *BasePtr; 4517 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4518 return error("Invalid record"); 4519 4520 if (!Ty) 4521 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4522 ->getElementType(); 4523 else if (Ty != 4524 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4525 ->getElementType()) 4526 return error( 4527 "Explicit gep type does not match pointee type of pointer operand"); 4528 4529 SmallVector<Value*, 16> GEPIdx; 4530 while (OpNum != Record.size()) { 4531 Value *Op; 4532 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4533 return error("Invalid record"); 4534 GEPIdx.push_back(Op); 4535 } 4536 4537 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4538 4539 InstructionList.push_back(I); 4540 if (InBounds) 4541 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4542 break; 4543 } 4544 4545 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4546 // EXTRACTVAL: [opty, opval, n x indices] 4547 unsigned OpNum = 0; 4548 Value *Agg; 4549 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4550 return error("Invalid record"); 4551 4552 unsigned RecSize = Record.size(); 4553 if (OpNum == RecSize) 4554 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4555 4556 SmallVector<unsigned, 4> EXTRACTVALIdx; 4557 Type *CurTy = Agg->getType(); 4558 for (; OpNum != RecSize; ++OpNum) { 4559 bool IsArray = CurTy->isArrayTy(); 4560 bool IsStruct = CurTy->isStructTy(); 4561 uint64_t Index = Record[OpNum]; 4562 4563 if (!IsStruct && !IsArray) 4564 return error("EXTRACTVAL: Invalid type"); 4565 if ((unsigned)Index != Index) 4566 return error("Invalid value"); 4567 if (IsStruct && Index >= CurTy->subtypes().size()) 4568 return error("EXTRACTVAL: Invalid struct index"); 4569 if (IsArray && Index >= CurTy->getArrayNumElements()) 4570 return error("EXTRACTVAL: Invalid array index"); 4571 EXTRACTVALIdx.push_back((unsigned)Index); 4572 4573 if (IsStruct) 4574 CurTy = CurTy->subtypes()[Index]; 4575 else 4576 CurTy = CurTy->subtypes()[0]; 4577 } 4578 4579 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4580 InstructionList.push_back(I); 4581 break; 4582 } 4583 4584 case bitc::FUNC_CODE_INST_INSERTVAL: { 4585 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4586 unsigned OpNum = 0; 4587 Value *Agg; 4588 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4589 return error("Invalid record"); 4590 Value *Val; 4591 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4592 return error("Invalid record"); 4593 4594 unsigned RecSize = Record.size(); 4595 if (OpNum == RecSize) 4596 return error("INSERTVAL: Invalid instruction with 0 indices"); 4597 4598 SmallVector<unsigned, 4> INSERTVALIdx; 4599 Type *CurTy = Agg->getType(); 4600 for (; OpNum != RecSize; ++OpNum) { 4601 bool IsArray = CurTy->isArrayTy(); 4602 bool IsStruct = CurTy->isStructTy(); 4603 uint64_t Index = Record[OpNum]; 4604 4605 if (!IsStruct && !IsArray) 4606 return error("INSERTVAL: Invalid type"); 4607 if ((unsigned)Index != Index) 4608 return error("Invalid value"); 4609 if (IsStruct && Index >= CurTy->subtypes().size()) 4610 return error("INSERTVAL: Invalid struct index"); 4611 if (IsArray && Index >= CurTy->getArrayNumElements()) 4612 return error("INSERTVAL: Invalid array index"); 4613 4614 INSERTVALIdx.push_back((unsigned)Index); 4615 if (IsStruct) 4616 CurTy = CurTy->subtypes()[Index]; 4617 else 4618 CurTy = CurTy->subtypes()[0]; 4619 } 4620 4621 if (CurTy != Val->getType()) 4622 return error("Inserted value type doesn't match aggregate type"); 4623 4624 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4625 InstructionList.push_back(I); 4626 break; 4627 } 4628 4629 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4630 // obsolete form of select 4631 // handles select i1 ... in old bitcode 4632 unsigned OpNum = 0; 4633 Value *TrueVal, *FalseVal, *Cond; 4634 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4635 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4636 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4637 return error("Invalid record"); 4638 4639 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4640 InstructionList.push_back(I); 4641 break; 4642 } 4643 4644 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4645 // new form of select 4646 // handles select i1 or select [N x i1] 4647 unsigned OpNum = 0; 4648 Value *TrueVal, *FalseVal, *Cond; 4649 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4650 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4651 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4652 return error("Invalid record"); 4653 4654 // select condition can be either i1 or [N x i1] 4655 if (VectorType* vector_type = 4656 dyn_cast<VectorType>(Cond->getType())) { 4657 // expect <n x i1> 4658 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4659 return error("Invalid type for value"); 4660 } else { 4661 // expect i1 4662 if (Cond->getType() != Type::getInt1Ty(Context)) 4663 return error("Invalid type for value"); 4664 } 4665 4666 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4667 InstructionList.push_back(I); 4668 break; 4669 } 4670 4671 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4672 unsigned OpNum = 0; 4673 Value *Vec, *Idx; 4674 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4675 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4676 return error("Invalid record"); 4677 if (!Vec->getType()->isVectorTy()) 4678 return error("Invalid type for value"); 4679 I = ExtractElementInst::Create(Vec, Idx); 4680 InstructionList.push_back(I); 4681 break; 4682 } 4683 4684 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4685 unsigned OpNum = 0; 4686 Value *Vec, *Elt, *Idx; 4687 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4688 return error("Invalid record"); 4689 if (!Vec->getType()->isVectorTy()) 4690 return error("Invalid type for value"); 4691 if (popValue(Record, OpNum, NextValueNo, 4692 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4693 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4694 return error("Invalid record"); 4695 I = InsertElementInst::Create(Vec, Elt, Idx); 4696 InstructionList.push_back(I); 4697 break; 4698 } 4699 4700 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4701 unsigned OpNum = 0; 4702 Value *Vec1, *Vec2, *Mask; 4703 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4704 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4705 return error("Invalid record"); 4706 4707 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4708 return error("Invalid record"); 4709 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4710 return error("Invalid type for value"); 4711 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4712 InstructionList.push_back(I); 4713 break; 4714 } 4715 4716 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4717 // Old form of ICmp/FCmp returning bool 4718 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4719 // both legal on vectors but had different behaviour. 4720 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4721 // FCmp/ICmp returning bool or vector of bool 4722 4723 unsigned OpNum = 0; 4724 Value *LHS, *RHS; 4725 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4726 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4727 return error("Invalid record"); 4728 4729 unsigned PredVal = Record[OpNum]; 4730 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4731 FastMathFlags FMF; 4732 if (IsFP && Record.size() > OpNum+1) 4733 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4734 4735 if (OpNum+1 != Record.size()) 4736 return error("Invalid record"); 4737 4738 if (LHS->getType()->isFPOrFPVectorTy()) 4739 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4740 else 4741 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4742 4743 if (FMF.any()) 4744 I->setFastMathFlags(FMF); 4745 InstructionList.push_back(I); 4746 break; 4747 } 4748 4749 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4750 { 4751 unsigned Size = Record.size(); 4752 if (Size == 0) { 4753 I = ReturnInst::Create(Context); 4754 InstructionList.push_back(I); 4755 break; 4756 } 4757 4758 unsigned OpNum = 0; 4759 Value *Op = nullptr; 4760 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4761 return error("Invalid record"); 4762 if (OpNum != Record.size()) 4763 return error("Invalid record"); 4764 4765 I = ReturnInst::Create(Context, Op); 4766 InstructionList.push_back(I); 4767 break; 4768 } 4769 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4770 if (Record.size() != 1 && Record.size() != 3) 4771 return error("Invalid record"); 4772 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4773 if (!TrueDest) 4774 return error("Invalid record"); 4775 4776 if (Record.size() == 1) { 4777 I = BranchInst::Create(TrueDest); 4778 InstructionList.push_back(I); 4779 } 4780 else { 4781 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4782 Value *Cond = getValue(Record, 2, NextValueNo, 4783 Type::getInt1Ty(Context)); 4784 if (!FalseDest || !Cond) 4785 return error("Invalid record"); 4786 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4787 InstructionList.push_back(I); 4788 } 4789 break; 4790 } 4791 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4792 if (Record.size() != 1 && Record.size() != 2) 4793 return error("Invalid record"); 4794 unsigned Idx = 0; 4795 Value *CleanupPad = 4796 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4797 if (!CleanupPad) 4798 return error("Invalid record"); 4799 BasicBlock *UnwindDest = nullptr; 4800 if (Record.size() == 2) { 4801 UnwindDest = getBasicBlock(Record[Idx++]); 4802 if (!UnwindDest) 4803 return error("Invalid record"); 4804 } 4805 4806 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4807 InstructionList.push_back(I); 4808 break; 4809 } 4810 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4811 if (Record.size() != 2) 4812 return error("Invalid record"); 4813 unsigned Idx = 0; 4814 Value *CatchPad = 4815 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4816 if (!CatchPad) 4817 return error("Invalid record"); 4818 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4819 if (!BB) 4820 return error("Invalid record"); 4821 4822 I = CatchReturnInst::Create(CatchPad, BB); 4823 InstructionList.push_back(I); 4824 break; 4825 } 4826 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4827 // We must have, at minimum, the outer scope and the number of arguments. 4828 if (Record.size() < 2) 4829 return error("Invalid record"); 4830 4831 unsigned Idx = 0; 4832 4833 Value *ParentPad = 4834 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4835 4836 unsigned NumHandlers = Record[Idx++]; 4837 4838 SmallVector<BasicBlock *, 2> Handlers; 4839 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4840 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4841 if (!BB) 4842 return error("Invalid record"); 4843 Handlers.push_back(BB); 4844 } 4845 4846 BasicBlock *UnwindDest = nullptr; 4847 if (Idx + 1 == Record.size()) { 4848 UnwindDest = getBasicBlock(Record[Idx++]); 4849 if (!UnwindDest) 4850 return error("Invalid record"); 4851 } 4852 4853 if (Record.size() != Idx) 4854 return error("Invalid record"); 4855 4856 auto *CatchSwitch = 4857 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4858 for (BasicBlock *Handler : Handlers) 4859 CatchSwitch->addHandler(Handler); 4860 I = CatchSwitch; 4861 InstructionList.push_back(I); 4862 break; 4863 } 4864 case bitc::FUNC_CODE_INST_CATCHPAD: 4865 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4866 // We must have, at minimum, the outer scope and the number of arguments. 4867 if (Record.size() < 2) 4868 return error("Invalid record"); 4869 4870 unsigned Idx = 0; 4871 4872 Value *ParentPad = 4873 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4874 4875 unsigned NumArgOperands = Record[Idx++]; 4876 4877 SmallVector<Value *, 2> Args; 4878 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4879 Value *Val; 4880 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4881 return error("Invalid record"); 4882 Args.push_back(Val); 4883 } 4884 4885 if (Record.size() != Idx) 4886 return error("Invalid record"); 4887 4888 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4889 I = CleanupPadInst::Create(ParentPad, Args); 4890 else 4891 I = CatchPadInst::Create(ParentPad, Args); 4892 InstructionList.push_back(I); 4893 break; 4894 } 4895 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4896 // Check magic 4897 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4898 // "New" SwitchInst format with case ranges. The changes to write this 4899 // format were reverted but we still recognize bitcode that uses it. 4900 // Hopefully someday we will have support for case ranges and can use 4901 // this format again. 4902 4903 Type *OpTy = getTypeByID(Record[1]); 4904 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4905 4906 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4907 BasicBlock *Default = getBasicBlock(Record[3]); 4908 if (!OpTy || !Cond || !Default) 4909 return error("Invalid record"); 4910 4911 unsigned NumCases = Record[4]; 4912 4913 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4914 InstructionList.push_back(SI); 4915 4916 unsigned CurIdx = 5; 4917 for (unsigned i = 0; i != NumCases; ++i) { 4918 SmallVector<ConstantInt*, 1> CaseVals; 4919 unsigned NumItems = Record[CurIdx++]; 4920 for (unsigned ci = 0; ci != NumItems; ++ci) { 4921 bool isSingleNumber = Record[CurIdx++]; 4922 4923 APInt Low; 4924 unsigned ActiveWords = 1; 4925 if (ValueBitWidth > 64) 4926 ActiveWords = Record[CurIdx++]; 4927 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4928 ValueBitWidth); 4929 CurIdx += ActiveWords; 4930 4931 if (!isSingleNumber) { 4932 ActiveWords = 1; 4933 if (ValueBitWidth > 64) 4934 ActiveWords = Record[CurIdx++]; 4935 APInt High = readWideAPInt( 4936 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4937 CurIdx += ActiveWords; 4938 4939 // FIXME: It is not clear whether values in the range should be 4940 // compared as signed or unsigned values. The partially 4941 // implemented changes that used this format in the past used 4942 // unsigned comparisons. 4943 for ( ; Low.ule(High); ++Low) 4944 CaseVals.push_back(ConstantInt::get(Context, Low)); 4945 } else 4946 CaseVals.push_back(ConstantInt::get(Context, Low)); 4947 } 4948 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4949 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4950 cve = CaseVals.end(); cvi != cve; ++cvi) 4951 SI->addCase(*cvi, DestBB); 4952 } 4953 I = SI; 4954 break; 4955 } 4956 4957 // Old SwitchInst format without case ranges. 4958 4959 if (Record.size() < 3 || (Record.size() & 1) == 0) 4960 return error("Invalid record"); 4961 Type *OpTy = getTypeByID(Record[0]); 4962 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4963 BasicBlock *Default = getBasicBlock(Record[2]); 4964 if (!OpTy || !Cond || !Default) 4965 return error("Invalid record"); 4966 unsigned NumCases = (Record.size()-3)/2; 4967 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4968 InstructionList.push_back(SI); 4969 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4970 ConstantInt *CaseVal = 4971 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4972 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4973 if (!CaseVal || !DestBB) { 4974 delete SI; 4975 return error("Invalid record"); 4976 } 4977 SI->addCase(CaseVal, DestBB); 4978 } 4979 I = SI; 4980 break; 4981 } 4982 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4983 if (Record.size() < 2) 4984 return error("Invalid record"); 4985 Type *OpTy = getTypeByID(Record[0]); 4986 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4987 if (!OpTy || !Address) 4988 return error("Invalid record"); 4989 unsigned NumDests = Record.size()-2; 4990 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4991 InstructionList.push_back(IBI); 4992 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4993 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4994 IBI->addDestination(DestBB); 4995 } else { 4996 delete IBI; 4997 return error("Invalid record"); 4998 } 4999 } 5000 I = IBI; 5001 break; 5002 } 5003 5004 case bitc::FUNC_CODE_INST_INVOKE: { 5005 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5006 if (Record.size() < 4) 5007 return error("Invalid record"); 5008 unsigned OpNum = 0; 5009 AttributeSet PAL = getAttributes(Record[OpNum++]); 5010 unsigned CCInfo = Record[OpNum++]; 5011 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5012 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5013 5014 FunctionType *FTy = nullptr; 5015 if (CCInfo >> 13 & 1 && 5016 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5017 return error("Explicit invoke type is not a function type"); 5018 5019 Value *Callee; 5020 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5021 return error("Invalid record"); 5022 5023 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5024 if (!CalleeTy) 5025 return error("Callee is not a pointer"); 5026 if (!FTy) { 5027 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5028 if (!FTy) 5029 return error("Callee is not of pointer to function type"); 5030 } else if (CalleeTy->getElementType() != FTy) 5031 return error("Explicit invoke type does not match pointee type of " 5032 "callee operand"); 5033 if (Record.size() < FTy->getNumParams() + OpNum) 5034 return error("Insufficient operands to call"); 5035 5036 SmallVector<Value*, 16> Ops; 5037 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5038 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5039 FTy->getParamType(i))); 5040 if (!Ops.back()) 5041 return error("Invalid record"); 5042 } 5043 5044 if (!FTy->isVarArg()) { 5045 if (Record.size() != OpNum) 5046 return error("Invalid record"); 5047 } else { 5048 // Read type/value pairs for varargs params. 5049 while (OpNum != Record.size()) { 5050 Value *Op; 5051 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5052 return error("Invalid record"); 5053 Ops.push_back(Op); 5054 } 5055 } 5056 5057 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5058 OperandBundles.clear(); 5059 InstructionList.push_back(I); 5060 cast<InvokeInst>(I)->setCallingConv( 5061 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5062 cast<InvokeInst>(I)->setAttributes(PAL); 5063 break; 5064 } 5065 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5066 unsigned Idx = 0; 5067 Value *Val = nullptr; 5068 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5069 return error("Invalid record"); 5070 I = ResumeInst::Create(Val); 5071 InstructionList.push_back(I); 5072 break; 5073 } 5074 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5075 I = new UnreachableInst(Context); 5076 InstructionList.push_back(I); 5077 break; 5078 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5079 if (Record.size() < 1 || ((Record.size()-1)&1)) 5080 return error("Invalid record"); 5081 Type *Ty = getTypeByID(Record[0]); 5082 if (!Ty) 5083 return error("Invalid record"); 5084 5085 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5086 InstructionList.push_back(PN); 5087 5088 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5089 Value *V; 5090 // With the new function encoding, it is possible that operands have 5091 // negative IDs (for forward references). Use a signed VBR 5092 // representation to keep the encoding small. 5093 if (UseRelativeIDs) 5094 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5095 else 5096 V = getValue(Record, 1+i, NextValueNo, Ty); 5097 BasicBlock *BB = getBasicBlock(Record[2+i]); 5098 if (!V || !BB) 5099 return error("Invalid record"); 5100 PN->addIncoming(V, BB); 5101 } 5102 I = PN; 5103 break; 5104 } 5105 5106 case bitc::FUNC_CODE_INST_LANDINGPAD: 5107 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5108 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5109 unsigned Idx = 0; 5110 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5111 if (Record.size() < 3) 5112 return error("Invalid record"); 5113 } else { 5114 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5115 if (Record.size() < 4) 5116 return error("Invalid record"); 5117 } 5118 Type *Ty = getTypeByID(Record[Idx++]); 5119 if (!Ty) 5120 return error("Invalid record"); 5121 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5122 Value *PersFn = nullptr; 5123 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5124 return error("Invalid record"); 5125 5126 if (!F->hasPersonalityFn()) 5127 F->setPersonalityFn(cast<Constant>(PersFn)); 5128 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5129 return error("Personality function mismatch"); 5130 } 5131 5132 bool IsCleanup = !!Record[Idx++]; 5133 unsigned NumClauses = Record[Idx++]; 5134 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5135 LP->setCleanup(IsCleanup); 5136 for (unsigned J = 0; J != NumClauses; ++J) { 5137 LandingPadInst::ClauseType CT = 5138 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5139 Value *Val; 5140 5141 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5142 delete LP; 5143 return error("Invalid record"); 5144 } 5145 5146 assert((CT != LandingPadInst::Catch || 5147 !isa<ArrayType>(Val->getType())) && 5148 "Catch clause has a invalid type!"); 5149 assert((CT != LandingPadInst::Filter || 5150 isa<ArrayType>(Val->getType())) && 5151 "Filter clause has invalid type!"); 5152 LP->addClause(cast<Constant>(Val)); 5153 } 5154 5155 I = LP; 5156 InstructionList.push_back(I); 5157 break; 5158 } 5159 5160 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5161 if (Record.size() != 4) 5162 return error("Invalid record"); 5163 uint64_t AlignRecord = Record[3]; 5164 const uint64_t InAllocaMask = uint64_t(1) << 5; 5165 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5166 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5167 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5168 SwiftErrorMask; 5169 bool InAlloca = AlignRecord & InAllocaMask; 5170 bool SwiftError = AlignRecord & SwiftErrorMask; 5171 Type *Ty = getTypeByID(Record[0]); 5172 if ((AlignRecord & ExplicitTypeMask) == 0) { 5173 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5174 if (!PTy) 5175 return error("Old-style alloca with a non-pointer type"); 5176 Ty = PTy->getElementType(); 5177 } 5178 Type *OpTy = getTypeByID(Record[1]); 5179 Value *Size = getFnValueByID(Record[2], OpTy); 5180 unsigned Align; 5181 if (std::error_code EC = 5182 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5183 return EC; 5184 } 5185 if (!Ty || !Size) 5186 return error("Invalid record"); 5187 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5188 AI->setUsedWithInAlloca(InAlloca); 5189 AI->setSwiftError(SwiftError); 5190 I = AI; 5191 InstructionList.push_back(I); 5192 break; 5193 } 5194 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5195 unsigned OpNum = 0; 5196 Value *Op; 5197 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5198 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5199 return error("Invalid record"); 5200 5201 Type *Ty = nullptr; 5202 if (OpNum + 3 == Record.size()) 5203 Ty = getTypeByID(Record[OpNum++]); 5204 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5205 return EC; 5206 if (!Ty) 5207 Ty = cast<PointerType>(Op->getType())->getElementType(); 5208 5209 unsigned Align; 5210 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5211 return EC; 5212 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5213 5214 InstructionList.push_back(I); 5215 break; 5216 } 5217 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5218 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5219 unsigned OpNum = 0; 5220 Value *Op; 5221 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5222 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5223 return error("Invalid record"); 5224 5225 Type *Ty = nullptr; 5226 if (OpNum + 5 == Record.size()) 5227 Ty = getTypeByID(Record[OpNum++]); 5228 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5229 return EC; 5230 if (!Ty) 5231 Ty = cast<PointerType>(Op->getType())->getElementType(); 5232 5233 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5234 if (Ordering == AtomicOrdering::NotAtomic || 5235 Ordering == AtomicOrdering::Release || 5236 Ordering == AtomicOrdering::AcquireRelease) 5237 return error("Invalid record"); 5238 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5239 return error("Invalid record"); 5240 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5241 5242 unsigned Align; 5243 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5244 return EC; 5245 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5246 5247 InstructionList.push_back(I); 5248 break; 5249 } 5250 case bitc::FUNC_CODE_INST_STORE: 5251 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5252 unsigned OpNum = 0; 5253 Value *Val, *Ptr; 5254 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5255 (BitCode == bitc::FUNC_CODE_INST_STORE 5256 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5257 : popValue(Record, OpNum, NextValueNo, 5258 cast<PointerType>(Ptr->getType())->getElementType(), 5259 Val)) || 5260 OpNum + 2 != Record.size()) 5261 return error("Invalid record"); 5262 5263 if (std::error_code EC = 5264 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5265 return EC; 5266 unsigned Align; 5267 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5268 return EC; 5269 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5270 InstructionList.push_back(I); 5271 break; 5272 } 5273 case bitc::FUNC_CODE_INST_STOREATOMIC: 5274 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5275 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5276 unsigned OpNum = 0; 5277 Value *Val, *Ptr; 5278 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5279 !isa<PointerType>(Ptr->getType()) || 5280 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5281 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5282 : popValue(Record, OpNum, NextValueNo, 5283 cast<PointerType>(Ptr->getType())->getElementType(), 5284 Val)) || 5285 OpNum + 4 != Record.size()) 5286 return error("Invalid record"); 5287 5288 if (std::error_code EC = 5289 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5290 return EC; 5291 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5292 if (Ordering == AtomicOrdering::NotAtomic || 5293 Ordering == AtomicOrdering::Acquire || 5294 Ordering == AtomicOrdering::AcquireRelease) 5295 return error("Invalid record"); 5296 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5297 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5298 return error("Invalid record"); 5299 5300 unsigned Align; 5301 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5302 return EC; 5303 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5304 InstructionList.push_back(I); 5305 break; 5306 } 5307 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5308 case bitc::FUNC_CODE_INST_CMPXCHG: { 5309 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5310 // failureordering?, isweak?] 5311 unsigned OpNum = 0; 5312 Value *Ptr, *Cmp, *New; 5313 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5314 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5315 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5316 : popValue(Record, OpNum, NextValueNo, 5317 cast<PointerType>(Ptr->getType())->getElementType(), 5318 Cmp)) || 5319 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5320 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5321 return error("Invalid record"); 5322 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5323 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5324 SuccessOrdering == AtomicOrdering::Unordered) 5325 return error("Invalid record"); 5326 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5327 5328 if (std::error_code EC = 5329 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5330 return EC; 5331 AtomicOrdering FailureOrdering; 5332 if (Record.size() < 7) 5333 FailureOrdering = 5334 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5335 else 5336 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5337 5338 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5339 SynchScope); 5340 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5341 5342 if (Record.size() < 8) { 5343 // Before weak cmpxchgs existed, the instruction simply returned the 5344 // value loaded from memory, so bitcode files from that era will be 5345 // expecting the first component of a modern cmpxchg. 5346 CurBB->getInstList().push_back(I); 5347 I = ExtractValueInst::Create(I, 0); 5348 } else { 5349 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5350 } 5351 5352 InstructionList.push_back(I); 5353 break; 5354 } 5355 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5356 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5357 unsigned OpNum = 0; 5358 Value *Ptr, *Val; 5359 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5360 !isa<PointerType>(Ptr->getType()) || 5361 popValue(Record, OpNum, NextValueNo, 5362 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5363 OpNum+4 != Record.size()) 5364 return error("Invalid record"); 5365 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5366 if (Operation < AtomicRMWInst::FIRST_BINOP || 5367 Operation > AtomicRMWInst::LAST_BINOP) 5368 return error("Invalid record"); 5369 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5370 if (Ordering == AtomicOrdering::NotAtomic || 5371 Ordering == AtomicOrdering::Unordered) 5372 return error("Invalid record"); 5373 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5374 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5375 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5376 InstructionList.push_back(I); 5377 break; 5378 } 5379 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5380 if (2 != Record.size()) 5381 return error("Invalid record"); 5382 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5383 if (Ordering == AtomicOrdering::NotAtomic || 5384 Ordering == AtomicOrdering::Unordered || 5385 Ordering == AtomicOrdering::Monotonic) 5386 return error("Invalid record"); 5387 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5388 I = new FenceInst(Context, Ordering, SynchScope); 5389 InstructionList.push_back(I); 5390 break; 5391 } 5392 case bitc::FUNC_CODE_INST_CALL: { 5393 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5394 if (Record.size() < 3) 5395 return error("Invalid record"); 5396 5397 unsigned OpNum = 0; 5398 AttributeSet PAL = getAttributes(Record[OpNum++]); 5399 unsigned CCInfo = Record[OpNum++]; 5400 5401 FastMathFlags FMF; 5402 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5403 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5404 if (!FMF.any()) 5405 return error("Fast math flags indicator set for call with no FMF"); 5406 } 5407 5408 FunctionType *FTy = nullptr; 5409 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5410 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5411 return error("Explicit call type is not a function type"); 5412 5413 Value *Callee; 5414 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5415 return error("Invalid record"); 5416 5417 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5418 if (!OpTy) 5419 return error("Callee is not a pointer type"); 5420 if (!FTy) { 5421 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5422 if (!FTy) 5423 return error("Callee is not of pointer to function type"); 5424 } else if (OpTy->getElementType() != FTy) 5425 return error("Explicit call type does not match pointee type of " 5426 "callee operand"); 5427 if (Record.size() < FTy->getNumParams() + OpNum) 5428 return error("Insufficient operands to call"); 5429 5430 SmallVector<Value*, 16> Args; 5431 // Read the fixed params. 5432 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5433 if (FTy->getParamType(i)->isLabelTy()) 5434 Args.push_back(getBasicBlock(Record[OpNum])); 5435 else 5436 Args.push_back(getValue(Record, OpNum, NextValueNo, 5437 FTy->getParamType(i))); 5438 if (!Args.back()) 5439 return error("Invalid record"); 5440 } 5441 5442 // Read type/value pairs for varargs params. 5443 if (!FTy->isVarArg()) { 5444 if (OpNum != Record.size()) 5445 return error("Invalid record"); 5446 } else { 5447 while (OpNum != Record.size()) { 5448 Value *Op; 5449 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5450 return error("Invalid record"); 5451 Args.push_back(Op); 5452 } 5453 } 5454 5455 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5456 OperandBundles.clear(); 5457 InstructionList.push_back(I); 5458 cast<CallInst>(I)->setCallingConv( 5459 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5460 CallInst::TailCallKind TCK = CallInst::TCK_None; 5461 if (CCInfo & 1 << bitc::CALL_TAIL) 5462 TCK = CallInst::TCK_Tail; 5463 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5464 TCK = CallInst::TCK_MustTail; 5465 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5466 TCK = CallInst::TCK_NoTail; 5467 cast<CallInst>(I)->setTailCallKind(TCK); 5468 cast<CallInst>(I)->setAttributes(PAL); 5469 if (FMF.any()) { 5470 if (!isa<FPMathOperator>(I)) 5471 return error("Fast-math-flags specified for call without " 5472 "floating-point scalar or vector return type"); 5473 I->setFastMathFlags(FMF); 5474 } 5475 break; 5476 } 5477 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5478 if (Record.size() < 3) 5479 return error("Invalid record"); 5480 Type *OpTy = getTypeByID(Record[0]); 5481 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5482 Type *ResTy = getTypeByID(Record[2]); 5483 if (!OpTy || !Op || !ResTy) 5484 return error("Invalid record"); 5485 I = new VAArgInst(Op, ResTy); 5486 InstructionList.push_back(I); 5487 break; 5488 } 5489 5490 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5491 // A call or an invoke can be optionally prefixed with some variable 5492 // number of operand bundle blocks. These blocks are read into 5493 // OperandBundles and consumed at the next call or invoke instruction. 5494 5495 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5496 return error("Invalid record"); 5497 5498 std::vector<Value *> Inputs; 5499 5500 unsigned OpNum = 1; 5501 while (OpNum != Record.size()) { 5502 Value *Op; 5503 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5504 return error("Invalid record"); 5505 Inputs.push_back(Op); 5506 } 5507 5508 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5509 continue; 5510 } 5511 } 5512 5513 // Add instruction to end of current BB. If there is no current BB, reject 5514 // this file. 5515 if (!CurBB) { 5516 delete I; 5517 return error("Invalid instruction with no BB"); 5518 } 5519 if (!OperandBundles.empty()) { 5520 delete I; 5521 return error("Operand bundles found with no consumer"); 5522 } 5523 CurBB->getInstList().push_back(I); 5524 5525 // If this was a terminator instruction, move to the next block. 5526 if (isa<TerminatorInst>(I)) { 5527 ++CurBBNo; 5528 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5529 } 5530 5531 // Non-void values get registered in the value table for future use. 5532 if (I && !I->getType()->isVoidTy()) 5533 ValueList.assignValue(I, NextValueNo++); 5534 } 5535 5536 OutOfRecordLoop: 5537 5538 if (!OperandBundles.empty()) 5539 return error("Operand bundles found with no consumer"); 5540 5541 // Check the function list for unresolved values. 5542 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5543 if (!A->getParent()) { 5544 // We found at least one unresolved value. Nuke them all to avoid leaks. 5545 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5546 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5547 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5548 delete A; 5549 } 5550 } 5551 return error("Never resolved value found in function"); 5552 } 5553 } 5554 5555 // Unexpected unresolved metadata about to be dropped. 5556 if (MetadataList.hasFwdRefs()) 5557 return error("Invalid function metadata: outgoing forward refs"); 5558 5559 // Trim the value list down to the size it was before we parsed this function. 5560 ValueList.shrinkTo(ModuleValueListSize); 5561 MetadataList.shrinkTo(ModuleMetadataListSize); 5562 std::vector<BasicBlock*>().swap(FunctionBBs); 5563 return std::error_code(); 5564 } 5565 5566 /// Find the function body in the bitcode stream 5567 std::error_code BitcodeReader::findFunctionInStream( 5568 Function *F, 5569 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5570 while (DeferredFunctionInfoIterator->second == 0) { 5571 // This is the fallback handling for the old format bitcode that 5572 // didn't contain the function index in the VST, or when we have 5573 // an anonymous function which would not have a VST entry. 5574 // Assert that we have one of those two cases. 5575 assert(VSTOffset == 0 || !F->hasName()); 5576 // Parse the next body in the stream and set its position in the 5577 // DeferredFunctionInfo map. 5578 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5579 return EC; 5580 } 5581 return std::error_code(); 5582 } 5583 5584 //===----------------------------------------------------------------------===// 5585 // GVMaterializer implementation 5586 //===----------------------------------------------------------------------===// 5587 5588 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5589 5590 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5591 Function *F = dyn_cast<Function>(GV); 5592 // If it's not a function or is already material, ignore the request. 5593 if (!F || !F->isMaterializable()) 5594 return std::error_code(); 5595 5596 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5597 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5598 // If its position is recorded as 0, its body is somewhere in the stream 5599 // but we haven't seen it yet. 5600 if (DFII->second == 0) 5601 if (std::error_code EC = findFunctionInStream(F, DFII)) 5602 return EC; 5603 5604 // Materialize metadata before parsing any function bodies. 5605 if (std::error_code EC = materializeMetadata()) 5606 return EC; 5607 5608 // Move the bit stream to the saved position of the deferred function body. 5609 Stream.JumpToBit(DFII->second); 5610 5611 if (std::error_code EC = parseFunctionBody(F)) 5612 return EC; 5613 F->setIsMaterializable(false); 5614 5615 if (StripDebugInfo) 5616 stripDebugInfo(*F); 5617 5618 // Upgrade any old intrinsic calls in the function. 5619 for (auto &I : UpgradedIntrinsics) { 5620 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5621 UI != UE;) { 5622 User *U = *UI; 5623 ++UI; 5624 if (CallInst *CI = dyn_cast<CallInst>(U)) 5625 UpgradeIntrinsicCall(CI, I.second); 5626 } 5627 } 5628 5629 // Update calls to the remangled intrinsics 5630 for (auto &I : RemangledIntrinsics) 5631 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5632 UI != UE;) 5633 // Don't expect any other users than call sites 5634 CallSite(*UI++).setCalledFunction(I.second); 5635 5636 // Finish fn->subprogram upgrade for materialized functions. 5637 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5638 F->setSubprogram(SP); 5639 5640 // Bring in any functions that this function forward-referenced via 5641 // blockaddresses. 5642 return materializeForwardReferencedFunctions(); 5643 } 5644 5645 std::error_code BitcodeReader::materializeModule() { 5646 if (std::error_code EC = materializeMetadata()) 5647 return EC; 5648 5649 // Promise to materialize all forward references. 5650 WillMaterializeAllForwardRefs = true; 5651 5652 // Iterate over the module, deserializing any functions that are still on 5653 // disk. 5654 for (Function &F : *TheModule) { 5655 if (std::error_code EC = materialize(&F)) 5656 return EC; 5657 } 5658 // At this point, if there are any function bodies, parse the rest of 5659 // the bits in the module past the last function block we have recorded 5660 // through either lazy scanning or the VST. 5661 if (LastFunctionBlockBit || NextUnreadBit) 5662 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5663 : NextUnreadBit); 5664 5665 // Check that all block address forward references got resolved (as we 5666 // promised above). 5667 if (!BasicBlockFwdRefs.empty()) 5668 return error("Never resolved function from blockaddress"); 5669 5670 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5671 // to prevent this instructions with TBAA tags should be upgraded first. 5672 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5673 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5674 5675 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5676 // delete the old functions to clean up. We can't do this unless the entire 5677 // module is materialized because there could always be another function body 5678 // with calls to the old function. 5679 for (auto &I : UpgradedIntrinsics) { 5680 for (auto *U : I.first->users()) { 5681 if (CallInst *CI = dyn_cast<CallInst>(U)) 5682 UpgradeIntrinsicCall(CI, I.second); 5683 } 5684 if (!I.first->use_empty()) 5685 I.first->replaceAllUsesWith(I.second); 5686 I.first->eraseFromParent(); 5687 } 5688 UpgradedIntrinsics.clear(); 5689 // Do the same for remangled intrinsics 5690 for (auto &I : RemangledIntrinsics) { 5691 I.first->replaceAllUsesWith(I.second); 5692 I.first->eraseFromParent(); 5693 } 5694 RemangledIntrinsics.clear(); 5695 5696 UpgradeDebugInfo(*TheModule); 5697 5698 UpgradeModuleFlags(*TheModule); 5699 return std::error_code(); 5700 } 5701 5702 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5703 return IdentifiedStructTypes; 5704 } 5705 5706 std::error_code 5707 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5708 if (Streamer) 5709 return initLazyStream(std::move(Streamer)); 5710 return initStreamFromBuffer(); 5711 } 5712 5713 std::error_code BitcodeReader::initStreamFromBuffer() { 5714 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5715 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5716 5717 if (Buffer->getBufferSize() & 3) 5718 return error("Invalid bitcode signature"); 5719 5720 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5721 // The magic number is 0x0B17C0DE stored in little endian. 5722 if (isBitcodeWrapper(BufPtr, BufEnd)) 5723 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5724 return error("Invalid bitcode wrapper header"); 5725 5726 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5727 Stream.init(&*StreamFile); 5728 5729 return std::error_code(); 5730 } 5731 5732 std::error_code 5733 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5734 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5735 // see it. 5736 auto OwnedBytes = 5737 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5738 StreamingMemoryObject &Bytes = *OwnedBytes; 5739 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5740 Stream.init(&*StreamFile); 5741 5742 unsigned char buf[16]; 5743 if (Bytes.readBytes(buf, 16, 0) != 16) 5744 return error("Invalid bitcode signature"); 5745 5746 if (!isBitcode(buf, buf + 16)) 5747 return error("Invalid bitcode signature"); 5748 5749 if (isBitcodeWrapper(buf, buf + 4)) { 5750 const unsigned char *bitcodeStart = buf; 5751 const unsigned char *bitcodeEnd = buf + 16; 5752 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5753 Bytes.dropLeadingBytes(bitcodeStart - buf); 5754 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5755 } 5756 return std::error_code(); 5757 } 5758 5759 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5760 return ::error(DiagnosticHandler, 5761 make_error_code(BitcodeError::CorruptedBitcode), Message); 5762 } 5763 5764 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5765 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5766 bool CheckGlobalValSummaryPresenceOnly) 5767 : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(Buffer), 5768 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5769 5770 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5771 5772 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5773 5774 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5775 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5776 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5777 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5778 return VGI->second; 5779 } 5780 5781 // Specialized value symbol table parser used when reading module index 5782 // blocks where we don't actually create global values. The parsed information 5783 // is saved in the bitcode reader for use when later parsing summaries. 5784 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5785 uint64_t Offset, 5786 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5787 assert(Offset > 0 && "Expected non-zero VST offset"); 5788 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5789 5790 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5791 return error("Invalid record"); 5792 5793 SmallVector<uint64_t, 64> Record; 5794 5795 // Read all the records for this value table. 5796 SmallString<128> ValueName; 5797 while (1) { 5798 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5799 5800 switch (Entry.Kind) { 5801 case BitstreamEntry::SubBlock: // Handled for us already. 5802 case BitstreamEntry::Error: 5803 return error("Malformed block"); 5804 case BitstreamEntry::EndBlock: 5805 // Done parsing VST, jump back to wherever we came from. 5806 Stream.JumpToBit(CurrentBit); 5807 return std::error_code(); 5808 case BitstreamEntry::Record: 5809 // The interesting case. 5810 break; 5811 } 5812 5813 // Read a record. 5814 Record.clear(); 5815 switch (Stream.readRecord(Entry.ID, Record)) { 5816 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5817 break; 5818 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5819 if (convertToString(Record, 1, ValueName)) 5820 return error("Invalid record"); 5821 unsigned ValueID = Record[0]; 5822 assert(!SourceFileName.empty()); 5823 auto VLI = ValueIdToLinkageMap.find(ValueID); 5824 assert(VLI != ValueIdToLinkageMap.end() && 5825 "No linkage found for VST entry?"); 5826 auto Linkage = VLI->second; 5827 std::string GlobalId = 5828 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5829 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5830 auto OriginalNameID = ValueGUID; 5831 if (GlobalValue::isLocalLinkage(Linkage)) 5832 OriginalNameID = GlobalValue::getGUID(ValueName); 5833 if (PrintSummaryGUIDs) 5834 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5835 << ValueName << "\n"; 5836 ValueIdToCallGraphGUIDMap[ValueID] = 5837 std::make_pair(ValueGUID, OriginalNameID); 5838 ValueName.clear(); 5839 break; 5840 } 5841 case bitc::VST_CODE_FNENTRY: { 5842 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5843 if (convertToString(Record, 2, ValueName)) 5844 return error("Invalid record"); 5845 unsigned ValueID = Record[0]; 5846 assert(!SourceFileName.empty()); 5847 auto VLI = ValueIdToLinkageMap.find(ValueID); 5848 assert(VLI != ValueIdToLinkageMap.end() && 5849 "No linkage found for VST entry?"); 5850 auto Linkage = VLI->second; 5851 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5852 ValueName, VLI->second, SourceFileName); 5853 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5854 auto OriginalNameID = FunctionGUID; 5855 if (GlobalValue::isLocalLinkage(Linkage)) 5856 OriginalNameID = GlobalValue::getGUID(ValueName); 5857 if (PrintSummaryGUIDs) 5858 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 5859 << ValueName << "\n"; 5860 ValueIdToCallGraphGUIDMap[ValueID] = 5861 std::make_pair(FunctionGUID, OriginalNameID); 5862 5863 ValueName.clear(); 5864 break; 5865 } 5866 case bitc::VST_CODE_COMBINED_ENTRY: { 5867 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5868 unsigned ValueID = Record[0]; 5869 GlobalValue::GUID RefGUID = Record[1]; 5870 // The "original name", which is the second value of the pair will be 5871 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5872 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5873 break; 5874 } 5875 } 5876 } 5877 } 5878 5879 // Parse just the blocks needed for building the index out of the module. 5880 // At the end of this routine the module Index is populated with a map 5881 // from global value id to GlobalValueSummary objects. 5882 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5883 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5884 return error("Invalid record"); 5885 5886 SmallVector<uint64_t, 64> Record; 5887 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5888 unsigned ValueId = 0; 5889 5890 // Read the index for this module. 5891 while (1) { 5892 BitstreamEntry Entry = Stream.advance(); 5893 5894 switch (Entry.Kind) { 5895 case BitstreamEntry::Error: 5896 return error("Malformed block"); 5897 case BitstreamEntry::EndBlock: 5898 return std::error_code(); 5899 5900 case BitstreamEntry::SubBlock: 5901 if (CheckGlobalValSummaryPresenceOnly) { 5902 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5903 SeenGlobalValSummary = true; 5904 // No need to parse the rest since we found the summary. 5905 return std::error_code(); 5906 } 5907 if (Stream.SkipBlock()) 5908 return error("Invalid record"); 5909 continue; 5910 } 5911 switch (Entry.ID) { 5912 default: // Skip unknown content. 5913 if (Stream.SkipBlock()) 5914 return error("Invalid record"); 5915 break; 5916 case bitc::BLOCKINFO_BLOCK_ID: 5917 // Need to parse these to get abbrev ids (e.g. for VST) 5918 if (Stream.ReadBlockInfoBlock()) 5919 return error("Malformed block"); 5920 break; 5921 case bitc::VALUE_SYMTAB_BLOCK_ID: 5922 // Should have been parsed earlier via VSTOffset, unless there 5923 // is no summary section. 5924 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5925 !SeenGlobalValSummary) && 5926 "Expected early VST parse via VSTOffset record"); 5927 if (Stream.SkipBlock()) 5928 return error("Invalid record"); 5929 break; 5930 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5931 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5932 assert(!SeenValueSymbolTable && 5933 "Already read VST when parsing summary block?"); 5934 if (std::error_code EC = 5935 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5936 return EC; 5937 SeenValueSymbolTable = true; 5938 SeenGlobalValSummary = true; 5939 if (std::error_code EC = parseEntireSummary()) 5940 return EC; 5941 break; 5942 case bitc::MODULE_STRTAB_BLOCK_ID: 5943 if (std::error_code EC = parseModuleStringTable()) 5944 return EC; 5945 break; 5946 } 5947 continue; 5948 5949 case BitstreamEntry::Record: { 5950 Record.clear(); 5951 auto BitCode = Stream.readRecord(Entry.ID, Record); 5952 switch (BitCode) { 5953 default: 5954 break; // Default behavior, ignore unknown content. 5955 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5956 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5957 SmallString<128> ValueName; 5958 if (convertToString(Record, 0, ValueName)) 5959 return error("Invalid record"); 5960 SourceFileName = ValueName.c_str(); 5961 break; 5962 } 5963 /// MODULE_CODE_HASH: [5*i32] 5964 case bitc::MODULE_CODE_HASH: { 5965 if (Record.size() != 5) 5966 return error("Invalid hash length " + Twine(Record.size()).str()); 5967 if (!TheIndex) 5968 break; 5969 if (TheIndex->modulePaths().empty()) 5970 // Does not have any summary emitted. 5971 break; 5972 if (TheIndex->modulePaths().size() != 1) 5973 return error("Don't expect multiple modules defined?"); 5974 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5975 int Pos = 0; 5976 for (auto &Val : Record) { 5977 assert(!(Val >> 32) && "Unexpected high bits set"); 5978 Hash[Pos++] = Val; 5979 } 5980 break; 5981 } 5982 /// MODULE_CODE_VSTOFFSET: [offset] 5983 case bitc::MODULE_CODE_VSTOFFSET: 5984 if (Record.size() < 1) 5985 return error("Invalid record"); 5986 VSTOffset = Record[0]; 5987 break; 5988 // GLOBALVAR: [pointer type, isconst, initid, 5989 // linkage, alignment, section, visibility, threadlocal, 5990 // unnamed_addr, externally_initialized, dllstorageclass, 5991 // comdat] 5992 case bitc::MODULE_CODE_GLOBALVAR: { 5993 if (Record.size() < 6) 5994 return error("Invalid record"); 5995 uint64_t RawLinkage = Record[3]; 5996 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5997 ValueIdToLinkageMap[ValueId++] = Linkage; 5998 break; 5999 } 6000 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 6001 // alignment, section, visibility, gc, unnamed_addr, 6002 // prologuedata, dllstorageclass, comdat, prefixdata] 6003 case bitc::MODULE_CODE_FUNCTION: { 6004 if (Record.size() < 8) 6005 return error("Invalid record"); 6006 uint64_t RawLinkage = Record[3]; 6007 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6008 ValueIdToLinkageMap[ValueId++] = Linkage; 6009 break; 6010 } 6011 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 6012 // dllstorageclass] 6013 case bitc::MODULE_CODE_ALIAS: { 6014 if (Record.size() < 6) 6015 return error("Invalid record"); 6016 uint64_t RawLinkage = Record[3]; 6017 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6018 ValueIdToLinkageMap[ValueId++] = Linkage; 6019 break; 6020 } 6021 } 6022 } 6023 continue; 6024 } 6025 } 6026 } 6027 6028 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6029 // objects in the index. 6030 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 6031 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6032 return error("Invalid record"); 6033 SmallVector<uint64_t, 64> Record; 6034 6035 // Parse version 6036 { 6037 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6038 if (Entry.Kind != BitstreamEntry::Record) 6039 return error("Invalid Summary Block: record for version expected"); 6040 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6041 return error("Invalid Summary Block: version expected"); 6042 } 6043 const uint64_t Version = Record[0]; 6044 if (Version != 1) 6045 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 6046 Record.clear(); 6047 6048 // Keep around the last seen summary to be used when we see an optional 6049 // "OriginalName" attachement. 6050 GlobalValueSummary *LastSeenSummary = nullptr; 6051 bool Combined = false; 6052 while (1) { 6053 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6054 6055 switch (Entry.Kind) { 6056 case BitstreamEntry::SubBlock: // Handled for us already. 6057 case BitstreamEntry::Error: 6058 return error("Malformed block"); 6059 case BitstreamEntry::EndBlock: 6060 // For a per-module index, remove any entries that still have empty 6061 // summaries. The VST parsing creates entries eagerly for all symbols, 6062 // but not all have associated summaries (e.g. it doesn't know how to 6063 // distinguish between VST_CODE_ENTRY for function declarations vs global 6064 // variables with initializers that end up with a summary). Remove those 6065 // entries now so that we don't need to rely on the combined index merger 6066 // to clean them up (especially since that may not run for the first 6067 // module's index if we merge into that). 6068 if (!Combined) 6069 TheIndex->removeEmptySummaryEntries(); 6070 return std::error_code(); 6071 case BitstreamEntry::Record: 6072 // The interesting case. 6073 break; 6074 } 6075 6076 // Read a record. The record format depends on whether this 6077 // is a per-module index or a combined index file. In the per-module 6078 // case the records contain the associated value's ID for correlation 6079 // with VST entries. In the combined index the correlation is done 6080 // via the bitcode offset of the summary records (which were saved 6081 // in the combined index VST entries). The records also contain 6082 // information used for ThinLTO renaming and importing. 6083 Record.clear(); 6084 auto BitCode = Stream.readRecord(Entry.ID, Record); 6085 switch (BitCode) { 6086 default: // Default behavior: ignore. 6087 break; 6088 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6089 // n x (valueid, callsitecount)] 6090 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6091 // numrefs x valueid, 6092 // n x (valueid, callsitecount, profilecount)] 6093 case bitc::FS_PERMODULE: 6094 case bitc::FS_PERMODULE_PROFILE: { 6095 unsigned ValueID = Record[0]; 6096 uint64_t RawFlags = Record[1]; 6097 unsigned InstCount = Record[2]; 6098 unsigned NumRefs = Record[3]; 6099 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6100 std::unique_ptr<FunctionSummary> FS = 6101 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6102 // The module path string ref set in the summary must be owned by the 6103 // index's module string table. Since we don't have a module path 6104 // string table section in the per-module index, we create a single 6105 // module path string table entry with an empty (0) ID to take 6106 // ownership. 6107 FS->setModulePath( 6108 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6109 static int RefListStartIndex = 4; 6110 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6111 assert(Record.size() >= RefListStartIndex + NumRefs && 6112 "Record size inconsistent with number of references"); 6113 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6114 unsigned RefValueId = Record[I]; 6115 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6116 FS->addRefEdge(RefGUID); 6117 } 6118 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6119 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6120 ++I) { 6121 unsigned CalleeValueId = Record[I]; 6122 unsigned CallsiteCount = Record[++I]; 6123 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6124 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6125 FS->addCallGraphEdge(CalleeGUID, 6126 CalleeInfo(CallsiteCount, ProfileCount)); 6127 } 6128 auto GUID = getGUIDFromValueId(ValueID); 6129 FS->setOriginalName(GUID.second); 6130 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6131 break; 6132 } 6133 // FS_ALIAS: [valueid, flags, valueid] 6134 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6135 // they expect all aliasee summaries to be available. 6136 case bitc::FS_ALIAS: { 6137 unsigned ValueID = Record[0]; 6138 uint64_t RawFlags = Record[1]; 6139 unsigned AliaseeID = Record[2]; 6140 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6141 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6142 // The module path string ref set in the summary must be owned by the 6143 // index's module string table. Since we don't have a module path 6144 // string table section in the per-module index, we create a single 6145 // module path string table entry with an empty (0) ID to take 6146 // ownership. 6147 AS->setModulePath( 6148 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6149 6150 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6151 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6152 if (!AliaseeSummary) 6153 return error("Alias expects aliasee summary to be parsed"); 6154 AS->setAliasee(AliaseeSummary); 6155 6156 auto GUID = getGUIDFromValueId(ValueID); 6157 AS->setOriginalName(GUID.second); 6158 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6159 break; 6160 } 6161 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6162 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6163 unsigned ValueID = Record[0]; 6164 uint64_t RawFlags = Record[1]; 6165 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6166 std::unique_ptr<GlobalVarSummary> FS = 6167 llvm::make_unique<GlobalVarSummary>(Flags); 6168 FS->setModulePath( 6169 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6170 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6171 unsigned RefValueId = Record[I]; 6172 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6173 FS->addRefEdge(RefGUID); 6174 } 6175 auto GUID = getGUIDFromValueId(ValueID); 6176 FS->setOriginalName(GUID.second); 6177 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6178 break; 6179 } 6180 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6181 // numrefs x valueid, n x (valueid, callsitecount)] 6182 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6183 // numrefs x valueid, 6184 // n x (valueid, callsitecount, profilecount)] 6185 case bitc::FS_COMBINED: 6186 case bitc::FS_COMBINED_PROFILE: { 6187 unsigned ValueID = Record[0]; 6188 uint64_t ModuleId = Record[1]; 6189 uint64_t RawFlags = Record[2]; 6190 unsigned InstCount = Record[3]; 6191 unsigned NumRefs = Record[4]; 6192 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6193 std::unique_ptr<FunctionSummary> FS = 6194 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6195 LastSeenSummary = FS.get(); 6196 FS->setModulePath(ModuleIdMap[ModuleId]); 6197 static int RefListStartIndex = 5; 6198 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6199 assert(Record.size() >= RefListStartIndex + NumRefs && 6200 "Record size inconsistent with number of references"); 6201 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6202 ++I) { 6203 unsigned RefValueId = Record[I]; 6204 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6205 FS->addRefEdge(RefGUID); 6206 } 6207 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6208 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6209 ++I) { 6210 unsigned CalleeValueId = Record[I]; 6211 unsigned CallsiteCount = Record[++I]; 6212 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6213 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6214 FS->addCallGraphEdge(CalleeGUID, 6215 CalleeInfo(CallsiteCount, ProfileCount)); 6216 } 6217 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6218 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6219 Combined = true; 6220 break; 6221 } 6222 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6223 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6224 // they expect all aliasee summaries to be available. 6225 case bitc::FS_COMBINED_ALIAS: { 6226 unsigned ValueID = Record[0]; 6227 uint64_t ModuleId = Record[1]; 6228 uint64_t RawFlags = Record[2]; 6229 unsigned AliaseeValueId = Record[3]; 6230 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6231 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6232 LastSeenSummary = AS.get(); 6233 AS->setModulePath(ModuleIdMap[ModuleId]); 6234 6235 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6236 auto AliaseeInModule = 6237 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6238 if (!AliaseeInModule) 6239 return error("Alias expects aliasee summary to be parsed"); 6240 AS->setAliasee(AliaseeInModule); 6241 6242 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6243 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6244 Combined = true; 6245 break; 6246 } 6247 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6248 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6249 unsigned ValueID = Record[0]; 6250 uint64_t ModuleId = Record[1]; 6251 uint64_t RawFlags = Record[2]; 6252 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6253 std::unique_ptr<GlobalVarSummary> FS = 6254 llvm::make_unique<GlobalVarSummary>(Flags); 6255 LastSeenSummary = FS.get(); 6256 FS->setModulePath(ModuleIdMap[ModuleId]); 6257 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6258 unsigned RefValueId = Record[I]; 6259 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6260 FS->addRefEdge(RefGUID); 6261 } 6262 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6263 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6264 Combined = true; 6265 break; 6266 } 6267 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6268 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6269 uint64_t OriginalName = Record[0]; 6270 if (!LastSeenSummary) 6271 return error("Name attachment that does not follow a combined record"); 6272 LastSeenSummary->setOriginalName(OriginalName); 6273 // Reset the LastSeenSummary 6274 LastSeenSummary = nullptr; 6275 } 6276 } 6277 } 6278 llvm_unreachable("Exit infinite loop"); 6279 } 6280 6281 // Parse the module string table block into the Index. 6282 // This populates the ModulePathStringTable map in the index. 6283 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6284 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6285 return error("Invalid record"); 6286 6287 SmallVector<uint64_t, 64> Record; 6288 6289 SmallString<128> ModulePath; 6290 ModulePathStringTableTy::iterator LastSeenModulePath; 6291 while (1) { 6292 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6293 6294 switch (Entry.Kind) { 6295 case BitstreamEntry::SubBlock: // Handled for us already. 6296 case BitstreamEntry::Error: 6297 return error("Malformed block"); 6298 case BitstreamEntry::EndBlock: 6299 return std::error_code(); 6300 case BitstreamEntry::Record: 6301 // The interesting case. 6302 break; 6303 } 6304 6305 Record.clear(); 6306 switch (Stream.readRecord(Entry.ID, Record)) { 6307 default: // Default behavior: ignore. 6308 break; 6309 case bitc::MST_CODE_ENTRY: { 6310 // MST_ENTRY: [modid, namechar x N] 6311 uint64_t ModuleId = Record[0]; 6312 6313 if (convertToString(Record, 1, ModulePath)) 6314 return error("Invalid record"); 6315 6316 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6317 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6318 6319 ModulePath.clear(); 6320 break; 6321 } 6322 /// MST_CODE_HASH: [5*i32] 6323 case bitc::MST_CODE_HASH: { 6324 if (Record.size() != 5) 6325 return error("Invalid hash length " + Twine(Record.size()).str()); 6326 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6327 return error("Invalid hash that does not follow a module path"); 6328 int Pos = 0; 6329 for (auto &Val : Record) { 6330 assert(!(Val >> 32) && "Unexpected high bits set"); 6331 LastSeenModulePath->second.second[Pos++] = Val; 6332 } 6333 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6334 LastSeenModulePath = TheIndex->modulePaths().end(); 6335 break; 6336 } 6337 } 6338 } 6339 llvm_unreachable("Exit infinite loop"); 6340 } 6341 6342 // Parse the function info index from the bitcode streamer into the given index. 6343 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6344 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6345 TheIndex = I; 6346 6347 if (std::error_code EC = initStream(std::move(Streamer))) 6348 return EC; 6349 6350 // Sniff for the signature. 6351 if (!hasValidBitcodeHeader(Stream)) 6352 return error("Invalid bitcode signature"); 6353 6354 // We expect a number of well-defined blocks, though we don't necessarily 6355 // need to understand them all. 6356 while (1) { 6357 if (Stream.AtEndOfStream()) { 6358 // We didn't really read a proper Module block. 6359 return error("Malformed block"); 6360 } 6361 6362 BitstreamEntry Entry = 6363 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6364 6365 if (Entry.Kind != BitstreamEntry::SubBlock) 6366 return error("Malformed block"); 6367 6368 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6369 // building the function summary index. 6370 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6371 return parseModule(); 6372 6373 if (Stream.SkipBlock()) 6374 return error("Invalid record"); 6375 } 6376 } 6377 6378 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6379 std::unique_ptr<DataStreamer> Streamer) { 6380 if (Streamer) 6381 return initLazyStream(std::move(Streamer)); 6382 return initStreamFromBuffer(); 6383 } 6384 6385 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6386 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6387 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6388 6389 if (Buffer->getBufferSize() & 3) 6390 return error("Invalid bitcode signature"); 6391 6392 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6393 // The magic number is 0x0B17C0DE stored in little endian. 6394 if (isBitcodeWrapper(BufPtr, BufEnd)) 6395 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6396 return error("Invalid bitcode wrapper header"); 6397 6398 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6399 Stream.init(&*StreamFile); 6400 6401 return std::error_code(); 6402 } 6403 6404 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6405 std::unique_ptr<DataStreamer> Streamer) { 6406 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6407 // see it. 6408 auto OwnedBytes = 6409 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6410 StreamingMemoryObject &Bytes = *OwnedBytes; 6411 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6412 Stream.init(&*StreamFile); 6413 6414 unsigned char buf[16]; 6415 if (Bytes.readBytes(buf, 16, 0) != 16) 6416 return error("Invalid bitcode signature"); 6417 6418 if (!isBitcode(buf, buf + 16)) 6419 return error("Invalid bitcode signature"); 6420 6421 if (isBitcodeWrapper(buf, buf + 4)) { 6422 const unsigned char *bitcodeStart = buf; 6423 const unsigned char *bitcodeEnd = buf + 16; 6424 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6425 Bytes.dropLeadingBytes(bitcodeStart - buf); 6426 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6427 } 6428 return std::error_code(); 6429 } 6430 6431 namespace { 6432 // FIXME: This class is only here to support the transition to llvm::Error. It 6433 // will be removed once this transition is complete. Clients should prefer to 6434 // deal with the Error value directly, rather than converting to error_code. 6435 class BitcodeErrorCategoryType : public std::error_category { 6436 const char *name() const LLVM_NOEXCEPT override { 6437 return "llvm.bitcode"; 6438 } 6439 std::string message(int IE) const override { 6440 BitcodeError E = static_cast<BitcodeError>(IE); 6441 switch (E) { 6442 case BitcodeError::InvalidBitcodeSignature: 6443 return "Invalid bitcode signature"; 6444 case BitcodeError::CorruptedBitcode: 6445 return "Corrupted bitcode"; 6446 } 6447 llvm_unreachable("Unknown error type!"); 6448 } 6449 }; 6450 } // end anonymous namespace 6451 6452 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6453 6454 const std::error_category &llvm::BitcodeErrorCategory() { 6455 return *ErrorCategory; 6456 } 6457 6458 //===----------------------------------------------------------------------===// 6459 // External interface 6460 //===----------------------------------------------------------------------===// 6461 6462 static ErrorOr<std::unique_ptr<Module>> 6463 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6464 BitcodeReader *R, LLVMContext &Context, 6465 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6466 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6467 M->setMaterializer(R); 6468 6469 auto cleanupOnError = [&](std::error_code EC) { 6470 R->releaseBuffer(); // Never take ownership on error. 6471 return EC; 6472 }; 6473 6474 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6475 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6476 ShouldLazyLoadMetadata)) 6477 return cleanupOnError(EC); 6478 6479 if (MaterializeAll) { 6480 // Read in the entire module, and destroy the BitcodeReader. 6481 if (std::error_code EC = M->materializeAll()) 6482 return cleanupOnError(EC); 6483 } else { 6484 // Resolve forward references from blockaddresses. 6485 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6486 return cleanupOnError(EC); 6487 } 6488 return std::move(M); 6489 } 6490 6491 /// \brief Get a lazy one-at-time loading module from bitcode. 6492 /// 6493 /// This isn't always used in a lazy context. In particular, it's also used by 6494 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6495 /// in forward-referenced functions from block address references. 6496 /// 6497 /// \param[in] MaterializeAll Set to \c true if we should materialize 6498 /// everything. 6499 static ErrorOr<std::unique_ptr<Module>> 6500 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6501 LLVMContext &Context, bool MaterializeAll, 6502 bool ShouldLazyLoadMetadata = false) { 6503 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6504 6505 ErrorOr<std::unique_ptr<Module>> Ret = 6506 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6507 MaterializeAll, ShouldLazyLoadMetadata); 6508 if (!Ret) 6509 return Ret; 6510 6511 Buffer.release(); // The BitcodeReader owns it now. 6512 return Ret; 6513 } 6514 6515 ErrorOr<std::unique_ptr<Module>> 6516 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6517 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6518 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6519 ShouldLazyLoadMetadata); 6520 } 6521 6522 ErrorOr<std::unique_ptr<Module>> 6523 llvm::getStreamedBitcodeModule(StringRef Name, 6524 std::unique_ptr<DataStreamer> Streamer, 6525 LLVMContext &Context) { 6526 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6527 BitcodeReader *R = new BitcodeReader(Context); 6528 6529 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6530 false); 6531 } 6532 6533 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6534 LLVMContext &Context) { 6535 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6536 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6537 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6538 // written. We must defer until the Module has been fully materialized. 6539 } 6540 6541 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6542 LLVMContext &Context) { 6543 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6544 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6545 ErrorOr<std::string> Triple = R->parseTriple(); 6546 if (Triple.getError()) 6547 return ""; 6548 return Triple.get(); 6549 } 6550 6551 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6552 LLVMContext &Context) { 6553 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6554 BitcodeReader R(Buf.release(), Context); 6555 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6556 if (ProducerString.getError()) 6557 return ""; 6558 return ProducerString.get(); 6559 } 6560 6561 // Parse the specified bitcode buffer, returning the function info index. 6562 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex( 6563 MemoryBufferRef Buffer, 6564 const DiagnosticHandlerFunction &DiagnosticHandler) { 6565 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6566 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6567 6568 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6569 6570 auto cleanupOnError = [&](std::error_code EC) { 6571 R.releaseBuffer(); // Never take ownership on error. 6572 return EC; 6573 }; 6574 6575 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6576 return cleanupOnError(EC); 6577 6578 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6579 return std::move(Index); 6580 } 6581 6582 // Check if the given bitcode buffer contains a global value summary block. 6583 bool llvm::hasGlobalValueSummary( 6584 MemoryBufferRef Buffer, 6585 const DiagnosticHandlerFunction &DiagnosticHandler) { 6586 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6587 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6588 6589 auto cleanupOnError = [&](std::error_code EC) { 6590 R.releaseBuffer(); // Never take ownership on error. 6591 return false; 6592 }; 6593 6594 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6595 return cleanupOnError(EC); 6596 6597 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6598 return R.foundGlobalValSummary(); 6599 } 6600