1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
157     Result += (char)Record[i];
158   return false;
159 }
160 
161 // Strip all the TBAA attachment for the module.
162 static void stripTBAA(Module *M) {
163   for (auto &F : *M) {
164     if (F.isMaterializable())
165       continue;
166     for (auto &I : instructions(F))
167       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
168   }
169 }
170 
171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
172 /// "epoch" encoded in the bitcode, and return the producer name if any.
173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
174   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
175     return std::move(Err);
176 
177   // Read all the records.
178   SmallVector<uint64_t, 64> Record;
179 
180   std::string ProducerIdentification;
181 
182   while (true) {
183     BitstreamEntry Entry;
184     if (Expected<BitstreamEntry> Res = Stream.advance())
185       Entry = Res.get();
186     else
187       return Res.takeError();
188 
189     switch (Entry.Kind) {
190     default:
191     case BitstreamEntry::Error:
192       return error("Malformed block");
193     case BitstreamEntry::EndBlock:
194       return ProducerIdentification;
195     case BitstreamEntry::Record:
196       // The interesting case.
197       break;
198     }
199 
200     // Read a record.
201     Record.clear();
202     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
203     if (!MaybeBitCode)
204       return MaybeBitCode.takeError();
205     switch (MaybeBitCode.get()) {
206     default: // Default behavior: reject
207       return error("Invalid value");
208     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
209       convertToString(Record, 0, ProducerIdentification);
210       break;
211     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
212       unsigned epoch = (unsigned)Record[0];
213       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
214         return error(
215           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
216           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
217       }
218     }
219     }
220   }
221 }
222 
223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
224   // We expect a number of well-defined blocks, though we don't necessarily
225   // need to understand them all.
226   while (true) {
227     if (Stream.AtEndOfStream())
228       return "";
229 
230     BitstreamEntry Entry;
231     if (Expected<BitstreamEntry> Res = Stream.advance())
232       Entry = std::move(Res.get());
233     else
234       return Res.takeError();
235 
236     switch (Entry.Kind) {
237     case BitstreamEntry::EndBlock:
238     case BitstreamEntry::Error:
239       return error("Malformed block");
240 
241     case BitstreamEntry::SubBlock:
242       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
243         return readIdentificationBlock(Stream);
244 
245       // Ignore other sub-blocks.
246       if (Error Err = Stream.SkipBlock())
247         return std::move(Err);
248       continue;
249     case BitstreamEntry::Record:
250       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
251         continue;
252       else
253         return Skipped.takeError();
254     }
255   }
256 }
257 
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260     return std::move(Err);
261 
262   SmallVector<uint64_t, 64> Record;
263   // Read all the records for this module.
264 
265   while (true) {
266     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267     if (!MaybeEntry)
268       return MaybeEntry.takeError();
269     BitstreamEntry Entry = MaybeEntry.get();
270 
271     switch (Entry.Kind) {
272     case BitstreamEntry::SubBlock: // Handled for us already.
273     case BitstreamEntry::Error:
274       return error("Malformed block");
275     case BitstreamEntry::EndBlock:
276       return false;
277     case BitstreamEntry::Record:
278       // The interesting case.
279       break;
280     }
281 
282     // Read a record.
283     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284     if (!MaybeRecord)
285       return MaybeRecord.takeError();
286     switch (MaybeRecord.get()) {
287     default:
288       break; // Default behavior, ignore unknown content.
289     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290       std::string S;
291       if (convertToString(Record, 0, S))
292         return error("Invalid record");
293       // Check for the i386 and other (x86_64, ARM) conventions
294       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295           S.find("__OBJC,__category") != std::string::npos)
296         return true;
297       break;
298     }
299     }
300     Record.clear();
301   }
302   llvm_unreachable("Exit infinite loop");
303 }
304 
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306   // We expect a number of well-defined blocks, though we don't necessarily
307   // need to understand them all.
308   while (true) {
309     BitstreamEntry Entry;
310     if (Expected<BitstreamEntry> Res = Stream.advance())
311       Entry = std::move(Res.get());
312     else
313       return Res.takeError();
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
332         continue;
333       else
334         return Skipped.takeError();
335     }
336   }
337 }
338 
339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
340   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
341     return std::move(Err);
342 
343   SmallVector<uint64_t, 64> Record;
344 
345   std::string Triple;
346 
347   // Read all the records for this module.
348   while (true) {
349     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
350     if (!MaybeEntry)
351       return MaybeEntry.takeError();
352     BitstreamEntry Entry = MaybeEntry.get();
353 
354     switch (Entry.Kind) {
355     case BitstreamEntry::SubBlock: // Handled for us already.
356     case BitstreamEntry::Error:
357       return error("Malformed block");
358     case BitstreamEntry::EndBlock:
359       return Triple;
360     case BitstreamEntry::Record:
361       // The interesting case.
362       break;
363     }
364 
365     // Read a record.
366     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
367     if (!MaybeRecord)
368       return MaybeRecord.takeError();
369     switch (MaybeRecord.get()) {
370     default: break;  // Default behavior, ignore unknown content.
371     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
372       std::string S;
373       if (convertToString(Record, 0, S))
374         return error("Invalid record");
375       Triple = S;
376       break;
377     }
378     }
379     Record.clear();
380   }
381   llvm_unreachable("Exit infinite loop");
382 }
383 
384 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
385   // We expect a number of well-defined blocks, though we don't necessarily
386   // need to understand them all.
387   while (true) {
388     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
389     if (!MaybeEntry)
390       return MaybeEntry.takeError();
391     BitstreamEntry Entry = MaybeEntry.get();
392 
393     switch (Entry.Kind) {
394     case BitstreamEntry::Error:
395       return error("Malformed block");
396     case BitstreamEntry::EndBlock:
397       return "";
398 
399     case BitstreamEntry::SubBlock:
400       if (Entry.ID == bitc::MODULE_BLOCK_ID)
401         return readModuleTriple(Stream);
402 
403       // Ignore other sub-blocks.
404       if (Error Err = Stream.SkipBlock())
405         return std::move(Err);
406       continue;
407 
408     case BitstreamEntry::Record:
409       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
410         continue;
411       else
412         return Skipped.takeError();
413     }
414   }
415 }
416 
417 namespace {
418 
419 class BitcodeReaderBase {
420 protected:
421   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
422       : Stream(std::move(Stream)), Strtab(Strtab) {
423     this->Stream.setBlockInfo(&BlockInfo);
424   }
425 
426   BitstreamBlockInfo BlockInfo;
427   BitstreamCursor Stream;
428   StringRef Strtab;
429 
430   /// In version 2 of the bitcode we store names of global values and comdats in
431   /// a string table rather than in the VST.
432   bool UseStrtab = false;
433 
434   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
435 
436   /// If this module uses a string table, pop the reference to the string table
437   /// and return the referenced string and the rest of the record. Otherwise
438   /// just return the record itself.
439   std::pair<StringRef, ArrayRef<uint64_t>>
440   readNameFromStrtab(ArrayRef<uint64_t> Record);
441 
442   bool readBlockInfo();
443 
444   // Contains an arbitrary and optional string identifying the bitcode producer
445   std::string ProducerIdentification;
446 
447   Error error(const Twine &Message);
448 };
449 
450 } // end anonymous namespace
451 
452 Error BitcodeReaderBase::error(const Twine &Message) {
453   std::string FullMsg = Message.str();
454   if (!ProducerIdentification.empty())
455     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
456                LLVM_VERSION_STRING "')";
457   return ::error(FullMsg);
458 }
459 
460 Expected<unsigned>
461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
462   if (Record.empty())
463     return error("Invalid record");
464   unsigned ModuleVersion = Record[0];
465   if (ModuleVersion > 2)
466     return error("Invalid value");
467   UseStrtab = ModuleVersion >= 2;
468   return ModuleVersion;
469 }
470 
471 std::pair<StringRef, ArrayRef<uint64_t>>
472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
473   if (!UseStrtab)
474     return {"", Record};
475   // Invalid reference. Let the caller complain about the record being empty.
476   if (Record[0] + Record[1] > Strtab.size())
477     return {"", {}};
478   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
479 }
480 
481 namespace {
482 
483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
484   LLVMContext &Context;
485   Module *TheModule = nullptr;
486   // Next offset to start scanning for lazy parsing of function bodies.
487   uint64_t NextUnreadBit = 0;
488   // Last function offset found in the VST.
489   uint64_t LastFunctionBlockBit = 0;
490   bool SeenValueSymbolTable = false;
491   uint64_t VSTOffset = 0;
492 
493   std::vector<std::string> SectionTable;
494   std::vector<std::string> GCTable;
495 
496   std::vector<Type*> TypeList;
497   DenseMap<Function *, FunctionType *> FunctionTypes;
498   BitcodeReaderValueList ValueList;
499   Optional<MetadataLoader> MDLoader;
500   std::vector<Comdat *> ComdatList;
501   SmallVector<Instruction *, 64> InstructionList;
502 
503   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
504   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
506   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
507   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
508 
509   /// The set of attributes by index.  Index zero in the file is for null, and
510   /// is thus not represented here.  As such all indices are off by one.
511   std::vector<AttributeList> MAttributes;
512 
513   /// The set of attribute groups.
514   std::map<unsigned, AttributeList> MAttributeGroups;
515 
516   /// While parsing a function body, this is a list of the basic blocks for the
517   /// function.
518   std::vector<BasicBlock*> FunctionBBs;
519 
520   // When reading the module header, this list is populated with functions that
521   // have bodies later in the file.
522   std::vector<Function*> FunctionsWithBodies;
523 
524   // When intrinsic functions are encountered which require upgrading they are
525   // stored here with their replacement function.
526   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
527   UpdatedIntrinsicMap UpgradedIntrinsics;
528   // Intrinsics which were remangled because of types rename
529   UpdatedIntrinsicMap RemangledIntrinsics;
530 
531   // Several operations happen after the module header has been read, but
532   // before function bodies are processed. This keeps track of whether
533   // we've done this yet.
534   bool SeenFirstFunctionBody = false;
535 
536   /// When function bodies are initially scanned, this map contains info about
537   /// where to find deferred function body in the stream.
538   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
539 
540   /// When Metadata block is initially scanned when parsing the module, we may
541   /// choose to defer parsing of the metadata. This vector contains info about
542   /// which Metadata blocks are deferred.
543   std::vector<uint64_t> DeferredMetadataInfo;
544 
545   /// These are basic blocks forward-referenced by block addresses.  They are
546   /// inserted lazily into functions when they're loaded.  The basic block ID is
547   /// its index into the vector.
548   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
549   std::deque<Function *> BasicBlockFwdRefQueue;
550 
551   /// Indicates that we are using a new encoding for instruction operands where
552   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
553   /// instruction number, for a more compact encoding.  Some instruction
554   /// operands are not relative to the instruction ID: basic block numbers, and
555   /// types. Once the old style function blocks have been phased out, we would
556   /// not need this flag.
557   bool UseRelativeIDs = false;
558 
559   /// True if all functions will be materialized, negating the need to process
560   /// (e.g.) blockaddress forward references.
561   bool WillMaterializeAllForwardRefs = false;
562 
563   bool StripDebugInfo = false;
564   TBAAVerifier TBAAVerifyHelper;
565 
566   std::vector<std::string> BundleTags;
567   SmallVector<SyncScope::ID, 8> SSIDs;
568 
569 public:
570   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
571                 StringRef ProducerIdentification, LLVMContext &Context);
572 
573   Error materializeForwardReferencedFunctions();
574 
575   Error materialize(GlobalValue *GV) override;
576   Error materializeModule() override;
577   std::vector<StructType *> getIdentifiedStructTypes() const override;
578 
579   /// Main interface to parsing a bitcode buffer.
580   /// \returns true if an error occurred.
581   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
582                          bool IsImporting = false);
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval attributes by adding the corresponding
719   /// argument's pointee type.
720   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
728 
729   Error parseComdatRecord(ArrayRef<uint64_t> Record);
730   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
731   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
733                                         ArrayRef<uint64_t> Record);
734 
735   Error parseAttributeBlock();
736   Error parseAttributeGroupBlock();
737   Error parseTypeTable();
738   Error parseTypeTableBody();
739   Error parseOperandBundleTags();
740   Error parseSyncScopeNames();
741 
742   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
743                                 unsigned NameIndex, Triple &TT);
744   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
745                                ArrayRef<uint64_t> Record);
746   Error parseValueSymbolTable(uint64_t Offset = 0);
747   Error parseGlobalValueSymbolTable();
748   Error parseConstants();
749   Error rememberAndSkipFunctionBodies();
750   Error rememberAndSkipFunctionBody();
751   /// Save the positions of the Metadata blocks and skip parsing the blocks.
752   Error rememberAndSkipMetadata();
753   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
754   Error parseFunctionBody(Function *F);
755   Error globalCleanup();
756   Error resolveGlobalAndIndirectSymbolInits();
757   Error parseUseLists();
758   Error findFunctionInStream(
759       Function *F,
760       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
761 
762   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
763 };
764 
765 /// Class to manage reading and parsing function summary index bitcode
766 /// files/sections.
767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
768   /// The module index built during parsing.
769   ModuleSummaryIndex &TheIndex;
770 
771   /// Indicates whether we have encountered a global value summary section
772   /// yet during parsing.
773   bool SeenGlobalValSummary = false;
774 
775   /// Indicates whether we have already parsed the VST, used for error checking.
776   bool SeenValueSymbolTable = false;
777 
778   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
779   /// Used to enable on-demand parsing of the VST.
780   uint64_t VSTOffset = 0;
781 
782   // Map to save ValueId to ValueInfo association that was recorded in the
783   // ValueSymbolTable. It is used after the VST is parsed to convert
784   // call graph edges read from the function summary from referencing
785   // callees by their ValueId to using the ValueInfo instead, which is how
786   // they are recorded in the summary index being built.
787   // We save a GUID which refers to the same global as the ValueInfo, but
788   // ignoring the linkage, i.e. for values other than local linkage they are
789   // identical.
790   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
791       ValueIdToValueInfoMap;
792 
793   /// Map populated during module path string table parsing, from the
794   /// module ID to a string reference owned by the index's module
795   /// path string table, used to correlate with combined index
796   /// summary records.
797   DenseMap<uint64_t, StringRef> ModuleIdMap;
798 
799   /// Original source file name recorded in a bitcode record.
800   std::string SourceFileName;
801 
802   /// The string identifier given to this module by the client, normally the
803   /// path to the bitcode file.
804   StringRef ModulePath;
805 
806   /// For per-module summary indexes, the unique numerical identifier given to
807   /// this module by the client.
808   unsigned ModuleId;
809 
810 public:
811   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
812                                   ModuleSummaryIndex &TheIndex,
813                                   StringRef ModulePath, unsigned ModuleId);
814 
815   Error parseModule();
816 
817 private:
818   void setValueGUID(uint64_t ValueID, StringRef ValueName,
819                     GlobalValue::LinkageTypes Linkage,
820                     StringRef SourceFileName);
821   Error parseValueSymbolTable(
822       uint64_t Offset,
823       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
824   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
825   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
826                                                     bool IsOldProfileFormat,
827                                                     bool HasProfile,
828                                                     bool HasRelBF);
829   Error parseEntireSummary(unsigned ID);
830   Error parseModuleStringTable();
831   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
832   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
833                                        TypeIdCompatibleVtableInfo &TypeId);
834 
835   std::pair<ValueInfo, GlobalValue::GUID>
836   getValueInfoFromValueId(unsigned ValueId);
837 
838   void addThisModule();
839   ModuleSummaryIndex::ModuleInfo *getThisModule();
840 };
841 
842 } // end anonymous namespace
843 
844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
845                                                     Error Err) {
846   if (Err) {
847     std::error_code EC;
848     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
849       EC = EIB.convertToErrorCode();
850       Ctx.emitError(EIB.message());
851     });
852     return EC;
853   }
854   return std::error_code();
855 }
856 
857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
858                              StringRef ProducerIdentification,
859                              LLVMContext &Context)
860     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
861       ValueList(Context) {
862   this->ProducerIdentification = ProducerIdentification;
863 }
864 
865 Error BitcodeReader::materializeForwardReferencedFunctions() {
866   if (WillMaterializeAllForwardRefs)
867     return Error::success();
868 
869   // Prevent recursion.
870   WillMaterializeAllForwardRefs = true;
871 
872   while (!BasicBlockFwdRefQueue.empty()) {
873     Function *F = BasicBlockFwdRefQueue.front();
874     BasicBlockFwdRefQueue.pop_front();
875     assert(F && "Expected valid function");
876     if (!BasicBlockFwdRefs.count(F))
877       // Already materialized.
878       continue;
879 
880     // Check for a function that isn't materializable to prevent an infinite
881     // loop.  When parsing a blockaddress stored in a global variable, there
882     // isn't a trivial way to check if a function will have a body without a
883     // linear search through FunctionsWithBodies, so just check it here.
884     if (!F->isMaterializable())
885       return error("Never resolved function from blockaddress");
886 
887     // Try to materialize F.
888     if (Error Err = materialize(F))
889       return Err;
890   }
891   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
892 
893   // Reset state.
894   WillMaterializeAllForwardRefs = false;
895   return Error::success();
896 }
897 
898 //===----------------------------------------------------------------------===//
899 //  Helper functions to implement forward reference resolution, etc.
900 //===----------------------------------------------------------------------===//
901 
902 static bool hasImplicitComdat(size_t Val) {
903   switch (Val) {
904   default:
905     return false;
906   case 1:  // Old WeakAnyLinkage
907   case 4:  // Old LinkOnceAnyLinkage
908   case 10: // Old WeakODRLinkage
909   case 11: // Old LinkOnceODRLinkage
910     return true;
911   }
912 }
913 
914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
915   switch (Val) {
916   default: // Map unknown/new linkages to external
917   case 0:
918     return GlobalValue::ExternalLinkage;
919   case 2:
920     return GlobalValue::AppendingLinkage;
921   case 3:
922     return GlobalValue::InternalLinkage;
923   case 5:
924     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
925   case 6:
926     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
927   case 7:
928     return GlobalValue::ExternalWeakLinkage;
929   case 8:
930     return GlobalValue::CommonLinkage;
931   case 9:
932     return GlobalValue::PrivateLinkage;
933   case 12:
934     return GlobalValue::AvailableExternallyLinkage;
935   case 13:
936     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
937   case 14:
938     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
939   case 15:
940     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
941   case 1: // Old value with implicit comdat.
942   case 16:
943     return GlobalValue::WeakAnyLinkage;
944   case 10: // Old value with implicit comdat.
945   case 17:
946     return GlobalValue::WeakODRLinkage;
947   case 4: // Old value with implicit comdat.
948   case 18:
949     return GlobalValue::LinkOnceAnyLinkage;
950   case 11: // Old value with implicit comdat.
951   case 19:
952     return GlobalValue::LinkOnceODRLinkage;
953   }
954 }
955 
956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
957   FunctionSummary::FFlags Flags;
958   Flags.ReadNone = RawFlags & 0x1;
959   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
960   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
961   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
962   Flags.NoInline = (RawFlags >> 4) & 0x1;
963   return Flags;
964 }
965 
966 /// Decode the flags for GlobalValue in the summary.
967 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
968                                                             uint64_t Version) {
969   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
970   // like getDecodedLinkage() above. Any future change to the linkage enum and
971   // to getDecodedLinkage() will need to be taken into account here as above.
972   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
973   RawFlags = RawFlags >> 4;
974   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
975   // The Live flag wasn't introduced until version 3. For dead stripping
976   // to work correctly on earlier versions, we must conservatively treat all
977   // values as live.
978   bool Live = (RawFlags & 0x2) || Version < 3;
979   bool Local = (RawFlags & 0x4);
980   bool AutoHide = (RawFlags & 0x8);
981 
982   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
983 }
984 
985 // Decode the flags for GlobalVariable in the summary
986 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
987   return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false,
988                                      (RawFlags & 0x2) ? true : false);
989 }
990 
991 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
992   switch (Val) {
993   default: // Map unknown visibilities to default.
994   case 0: return GlobalValue::DefaultVisibility;
995   case 1: return GlobalValue::HiddenVisibility;
996   case 2: return GlobalValue::ProtectedVisibility;
997   }
998 }
999 
1000 static GlobalValue::DLLStorageClassTypes
1001 getDecodedDLLStorageClass(unsigned Val) {
1002   switch (Val) {
1003   default: // Map unknown values to default.
1004   case 0: return GlobalValue::DefaultStorageClass;
1005   case 1: return GlobalValue::DLLImportStorageClass;
1006   case 2: return GlobalValue::DLLExportStorageClass;
1007   }
1008 }
1009 
1010 static bool getDecodedDSOLocal(unsigned Val) {
1011   switch(Val) {
1012   default: // Map unknown values to preemptable.
1013   case 0:  return false;
1014   case 1:  return true;
1015   }
1016 }
1017 
1018 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1019   switch (Val) {
1020     case 0: return GlobalVariable::NotThreadLocal;
1021     default: // Map unknown non-zero value to general dynamic.
1022     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1023     case 2: return GlobalVariable::LocalDynamicTLSModel;
1024     case 3: return GlobalVariable::InitialExecTLSModel;
1025     case 4: return GlobalVariable::LocalExecTLSModel;
1026   }
1027 }
1028 
1029 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1030   switch (Val) {
1031     default: // Map unknown to UnnamedAddr::None.
1032     case 0: return GlobalVariable::UnnamedAddr::None;
1033     case 1: return GlobalVariable::UnnamedAddr::Global;
1034     case 2: return GlobalVariable::UnnamedAddr::Local;
1035   }
1036 }
1037 
1038 static int getDecodedCastOpcode(unsigned Val) {
1039   switch (Val) {
1040   default: return -1;
1041   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1042   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1043   case bitc::CAST_SEXT    : return Instruction::SExt;
1044   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1045   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1046   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1047   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1048   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1049   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1050   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1051   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1052   case bitc::CAST_BITCAST : return Instruction::BitCast;
1053   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1054   }
1055 }
1056 
1057 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1058   bool IsFP = Ty->isFPOrFPVectorTy();
1059   // UnOps are only valid for int/fp or vector of int/fp types
1060   if (!IsFP && !Ty->isIntOrIntVectorTy())
1061     return -1;
1062 
1063   switch (Val) {
1064   default:
1065     return -1;
1066   case bitc::UNOP_NEG:
1067     return IsFP ? Instruction::FNeg : -1;
1068   }
1069 }
1070 
1071 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1072   bool IsFP = Ty->isFPOrFPVectorTy();
1073   // BinOps are only valid for int/fp or vector of int/fp types
1074   if (!IsFP && !Ty->isIntOrIntVectorTy())
1075     return -1;
1076 
1077   switch (Val) {
1078   default:
1079     return -1;
1080   case bitc::BINOP_ADD:
1081     return IsFP ? Instruction::FAdd : Instruction::Add;
1082   case bitc::BINOP_SUB:
1083     return IsFP ? Instruction::FSub : Instruction::Sub;
1084   case bitc::BINOP_MUL:
1085     return IsFP ? Instruction::FMul : Instruction::Mul;
1086   case bitc::BINOP_UDIV:
1087     return IsFP ? -1 : Instruction::UDiv;
1088   case bitc::BINOP_SDIV:
1089     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1090   case bitc::BINOP_UREM:
1091     return IsFP ? -1 : Instruction::URem;
1092   case bitc::BINOP_SREM:
1093     return IsFP ? Instruction::FRem : Instruction::SRem;
1094   case bitc::BINOP_SHL:
1095     return IsFP ? -1 : Instruction::Shl;
1096   case bitc::BINOP_LSHR:
1097     return IsFP ? -1 : Instruction::LShr;
1098   case bitc::BINOP_ASHR:
1099     return IsFP ? -1 : Instruction::AShr;
1100   case bitc::BINOP_AND:
1101     return IsFP ? -1 : Instruction::And;
1102   case bitc::BINOP_OR:
1103     return IsFP ? -1 : Instruction::Or;
1104   case bitc::BINOP_XOR:
1105     return IsFP ? -1 : Instruction::Xor;
1106   }
1107 }
1108 
1109 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1110   switch (Val) {
1111   default: return AtomicRMWInst::BAD_BINOP;
1112   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1113   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1114   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1115   case bitc::RMW_AND: return AtomicRMWInst::And;
1116   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1117   case bitc::RMW_OR: return AtomicRMWInst::Or;
1118   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1119   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1120   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1121   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1122   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1123   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1124   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1125   }
1126 }
1127 
1128 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1129   switch (Val) {
1130   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1131   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1132   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1133   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1134   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1135   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1136   default: // Map unknown orderings to sequentially-consistent.
1137   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1138   }
1139 }
1140 
1141 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1142   switch (Val) {
1143   default: // Map unknown selection kinds to any.
1144   case bitc::COMDAT_SELECTION_KIND_ANY:
1145     return Comdat::Any;
1146   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1147     return Comdat::ExactMatch;
1148   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1149     return Comdat::Largest;
1150   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1151     return Comdat::NoDuplicates;
1152   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1153     return Comdat::SameSize;
1154   }
1155 }
1156 
1157 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1158   FastMathFlags FMF;
1159   if (0 != (Val & bitc::UnsafeAlgebra))
1160     FMF.setFast();
1161   if (0 != (Val & bitc::AllowReassoc))
1162     FMF.setAllowReassoc();
1163   if (0 != (Val & bitc::NoNaNs))
1164     FMF.setNoNaNs();
1165   if (0 != (Val & bitc::NoInfs))
1166     FMF.setNoInfs();
1167   if (0 != (Val & bitc::NoSignedZeros))
1168     FMF.setNoSignedZeros();
1169   if (0 != (Val & bitc::AllowReciprocal))
1170     FMF.setAllowReciprocal();
1171   if (0 != (Val & bitc::AllowContract))
1172     FMF.setAllowContract(true);
1173   if (0 != (Val & bitc::ApproxFunc))
1174     FMF.setApproxFunc();
1175   return FMF;
1176 }
1177 
1178 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1179   switch (Val) {
1180   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1181   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1182   }
1183 }
1184 
1185 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1186   // The type table size is always specified correctly.
1187   if (ID >= TypeList.size())
1188     return nullptr;
1189 
1190   if (Type *Ty = TypeList[ID])
1191     return Ty;
1192 
1193   // If we have a forward reference, the only possible case is when it is to a
1194   // named struct.  Just create a placeholder for now.
1195   return TypeList[ID] = createIdentifiedStructType(Context);
1196 }
1197 
1198 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1199                                                       StringRef Name) {
1200   auto *Ret = StructType::create(Context, Name);
1201   IdentifiedStructTypes.push_back(Ret);
1202   return Ret;
1203 }
1204 
1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1206   auto *Ret = StructType::create(Context);
1207   IdentifiedStructTypes.push_back(Ret);
1208   return Ret;
1209 }
1210 
1211 //===----------------------------------------------------------------------===//
1212 //  Functions for parsing blocks from the bitcode file
1213 //===----------------------------------------------------------------------===//
1214 
1215 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1216   switch (Val) {
1217   case Attribute::EndAttrKinds:
1218     llvm_unreachable("Synthetic enumerators which should never get here");
1219 
1220   case Attribute::None:            return 0;
1221   case Attribute::ZExt:            return 1 << 0;
1222   case Attribute::SExt:            return 1 << 1;
1223   case Attribute::NoReturn:        return 1 << 2;
1224   case Attribute::InReg:           return 1 << 3;
1225   case Attribute::StructRet:       return 1 << 4;
1226   case Attribute::NoUnwind:        return 1 << 5;
1227   case Attribute::NoAlias:         return 1 << 6;
1228   case Attribute::ByVal:           return 1 << 7;
1229   case Attribute::Nest:            return 1 << 8;
1230   case Attribute::ReadNone:        return 1 << 9;
1231   case Attribute::ReadOnly:        return 1 << 10;
1232   case Attribute::NoInline:        return 1 << 11;
1233   case Attribute::AlwaysInline:    return 1 << 12;
1234   case Attribute::OptimizeForSize: return 1 << 13;
1235   case Attribute::StackProtect:    return 1 << 14;
1236   case Attribute::StackProtectReq: return 1 << 15;
1237   case Attribute::Alignment:       return 31 << 16;
1238   case Attribute::NoCapture:       return 1 << 21;
1239   case Attribute::NoRedZone:       return 1 << 22;
1240   case Attribute::NoImplicitFloat: return 1 << 23;
1241   case Attribute::Naked:           return 1 << 24;
1242   case Attribute::InlineHint:      return 1 << 25;
1243   case Attribute::StackAlignment:  return 7 << 26;
1244   case Attribute::ReturnsTwice:    return 1 << 29;
1245   case Attribute::UWTable:         return 1 << 30;
1246   case Attribute::NonLazyBind:     return 1U << 31;
1247   case Attribute::SanitizeAddress: return 1ULL << 32;
1248   case Attribute::MinSize:         return 1ULL << 33;
1249   case Attribute::NoDuplicate:     return 1ULL << 34;
1250   case Attribute::StackProtectStrong: return 1ULL << 35;
1251   case Attribute::SanitizeThread:  return 1ULL << 36;
1252   case Attribute::SanitizeMemory:  return 1ULL << 37;
1253   case Attribute::NoBuiltin:       return 1ULL << 38;
1254   case Attribute::Returned:        return 1ULL << 39;
1255   case Attribute::Cold:            return 1ULL << 40;
1256   case Attribute::Builtin:         return 1ULL << 41;
1257   case Attribute::OptimizeNone:    return 1ULL << 42;
1258   case Attribute::InAlloca:        return 1ULL << 43;
1259   case Attribute::NonNull:         return 1ULL << 44;
1260   case Attribute::JumpTable:       return 1ULL << 45;
1261   case Attribute::Convergent:      return 1ULL << 46;
1262   case Attribute::SafeStack:       return 1ULL << 47;
1263   case Attribute::NoRecurse:       return 1ULL << 48;
1264   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1265   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1266   case Attribute::SwiftSelf:       return 1ULL << 51;
1267   case Attribute::SwiftError:      return 1ULL << 52;
1268   case Attribute::WriteOnly:       return 1ULL << 53;
1269   case Attribute::Speculatable:    return 1ULL << 54;
1270   case Attribute::StrictFP:        return 1ULL << 55;
1271   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1272   case Attribute::NoCfCheck:       return 1ULL << 57;
1273   case Attribute::OptForFuzzing:   return 1ULL << 58;
1274   case Attribute::ShadowCallStack: return 1ULL << 59;
1275   case Attribute::SpeculativeLoadHardening:
1276     return 1ULL << 60;
1277   case Attribute::ImmArg:
1278     return 1ULL << 61;
1279   case Attribute::WillReturn:
1280     return 1ULL << 62;
1281   case Attribute::Dereferenceable:
1282     llvm_unreachable("dereferenceable attribute not supported in raw format");
1283     break;
1284   case Attribute::DereferenceableOrNull:
1285     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1286                      "format");
1287     break;
1288   case Attribute::ArgMemOnly:
1289     llvm_unreachable("argmemonly attribute not supported in raw format");
1290     break;
1291   case Attribute::AllocSize:
1292     llvm_unreachable("allocsize not supported in raw format");
1293     break;
1294   }
1295   llvm_unreachable("Unsupported attribute type");
1296 }
1297 
1298 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1299   if (!Val) return;
1300 
1301   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1302        I = Attribute::AttrKind(I + 1)) {
1303     if (I == Attribute::Dereferenceable ||
1304         I == Attribute::DereferenceableOrNull ||
1305         I == Attribute::ArgMemOnly ||
1306         I == Attribute::AllocSize)
1307       continue;
1308     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1309       if (I == Attribute::Alignment)
1310         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1311       else if (I == Attribute::StackAlignment)
1312         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1313       else
1314         B.addAttribute(I);
1315     }
1316   }
1317 }
1318 
1319 /// This fills an AttrBuilder object with the LLVM attributes that have
1320 /// been decoded from the given integer. This function must stay in sync with
1321 /// 'encodeLLVMAttributesForBitcode'.
1322 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1323                                            uint64_t EncodedAttrs) {
1324   // FIXME: Remove in 4.0.
1325 
1326   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1327   // the bits above 31 down by 11 bits.
1328   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1329   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1330          "Alignment must be a power of two.");
1331 
1332   if (Alignment)
1333     B.addAlignmentAttr(Alignment);
1334   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1335                           (EncodedAttrs & 0xffff));
1336 }
1337 
1338 Error BitcodeReader::parseAttributeBlock() {
1339   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1340     return Err;
1341 
1342   if (!MAttributes.empty())
1343     return error("Invalid multiple blocks");
1344 
1345   SmallVector<uint64_t, 64> Record;
1346 
1347   SmallVector<AttributeList, 8> Attrs;
1348 
1349   // Read all the records.
1350   while (true) {
1351     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1352     if (!MaybeEntry)
1353       return MaybeEntry.takeError();
1354     BitstreamEntry Entry = MaybeEntry.get();
1355 
1356     switch (Entry.Kind) {
1357     case BitstreamEntry::SubBlock: // Handled for us already.
1358     case BitstreamEntry::Error:
1359       return error("Malformed block");
1360     case BitstreamEntry::EndBlock:
1361       return Error::success();
1362     case BitstreamEntry::Record:
1363       // The interesting case.
1364       break;
1365     }
1366 
1367     // Read a record.
1368     Record.clear();
1369     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1370     if (!MaybeRecord)
1371       return MaybeRecord.takeError();
1372     switch (MaybeRecord.get()) {
1373     default:  // Default behavior: ignore.
1374       break;
1375     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1376       // FIXME: Remove in 4.0.
1377       if (Record.size() & 1)
1378         return error("Invalid record");
1379 
1380       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1381         AttrBuilder B;
1382         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1383         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1384       }
1385 
1386       MAttributes.push_back(AttributeList::get(Context, Attrs));
1387       Attrs.clear();
1388       break;
1389     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1390       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1391         Attrs.push_back(MAttributeGroups[Record[i]]);
1392 
1393       MAttributes.push_back(AttributeList::get(Context, Attrs));
1394       Attrs.clear();
1395       break;
1396     }
1397   }
1398 }
1399 
1400 // Returns Attribute::None on unrecognized codes.
1401 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1402   switch (Code) {
1403   default:
1404     return Attribute::None;
1405   case bitc::ATTR_KIND_ALIGNMENT:
1406     return Attribute::Alignment;
1407   case bitc::ATTR_KIND_ALWAYS_INLINE:
1408     return Attribute::AlwaysInline;
1409   case bitc::ATTR_KIND_ARGMEMONLY:
1410     return Attribute::ArgMemOnly;
1411   case bitc::ATTR_KIND_BUILTIN:
1412     return Attribute::Builtin;
1413   case bitc::ATTR_KIND_BY_VAL:
1414     return Attribute::ByVal;
1415   case bitc::ATTR_KIND_IN_ALLOCA:
1416     return Attribute::InAlloca;
1417   case bitc::ATTR_KIND_COLD:
1418     return Attribute::Cold;
1419   case bitc::ATTR_KIND_CONVERGENT:
1420     return Attribute::Convergent;
1421   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1422     return Attribute::InaccessibleMemOnly;
1423   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1424     return Attribute::InaccessibleMemOrArgMemOnly;
1425   case bitc::ATTR_KIND_INLINE_HINT:
1426     return Attribute::InlineHint;
1427   case bitc::ATTR_KIND_IN_REG:
1428     return Attribute::InReg;
1429   case bitc::ATTR_KIND_JUMP_TABLE:
1430     return Attribute::JumpTable;
1431   case bitc::ATTR_KIND_MIN_SIZE:
1432     return Attribute::MinSize;
1433   case bitc::ATTR_KIND_NAKED:
1434     return Attribute::Naked;
1435   case bitc::ATTR_KIND_NEST:
1436     return Attribute::Nest;
1437   case bitc::ATTR_KIND_NO_ALIAS:
1438     return Attribute::NoAlias;
1439   case bitc::ATTR_KIND_NO_BUILTIN:
1440     return Attribute::NoBuiltin;
1441   case bitc::ATTR_KIND_NO_CAPTURE:
1442     return Attribute::NoCapture;
1443   case bitc::ATTR_KIND_NO_DUPLICATE:
1444     return Attribute::NoDuplicate;
1445   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1446     return Attribute::NoImplicitFloat;
1447   case bitc::ATTR_KIND_NO_INLINE:
1448     return Attribute::NoInline;
1449   case bitc::ATTR_KIND_NO_RECURSE:
1450     return Attribute::NoRecurse;
1451   case bitc::ATTR_KIND_NON_LAZY_BIND:
1452     return Attribute::NonLazyBind;
1453   case bitc::ATTR_KIND_NON_NULL:
1454     return Attribute::NonNull;
1455   case bitc::ATTR_KIND_DEREFERENCEABLE:
1456     return Attribute::Dereferenceable;
1457   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1458     return Attribute::DereferenceableOrNull;
1459   case bitc::ATTR_KIND_ALLOC_SIZE:
1460     return Attribute::AllocSize;
1461   case bitc::ATTR_KIND_NO_RED_ZONE:
1462     return Attribute::NoRedZone;
1463   case bitc::ATTR_KIND_NO_RETURN:
1464     return Attribute::NoReturn;
1465   case bitc::ATTR_KIND_NOCF_CHECK:
1466     return Attribute::NoCfCheck;
1467   case bitc::ATTR_KIND_NO_UNWIND:
1468     return Attribute::NoUnwind;
1469   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1470     return Attribute::OptForFuzzing;
1471   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1472     return Attribute::OptimizeForSize;
1473   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1474     return Attribute::OptimizeNone;
1475   case bitc::ATTR_KIND_READ_NONE:
1476     return Attribute::ReadNone;
1477   case bitc::ATTR_KIND_READ_ONLY:
1478     return Attribute::ReadOnly;
1479   case bitc::ATTR_KIND_RETURNED:
1480     return Attribute::Returned;
1481   case bitc::ATTR_KIND_RETURNS_TWICE:
1482     return Attribute::ReturnsTwice;
1483   case bitc::ATTR_KIND_S_EXT:
1484     return Attribute::SExt;
1485   case bitc::ATTR_KIND_SPECULATABLE:
1486     return Attribute::Speculatable;
1487   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1488     return Attribute::StackAlignment;
1489   case bitc::ATTR_KIND_STACK_PROTECT:
1490     return Attribute::StackProtect;
1491   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1492     return Attribute::StackProtectReq;
1493   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1494     return Attribute::StackProtectStrong;
1495   case bitc::ATTR_KIND_SAFESTACK:
1496     return Attribute::SafeStack;
1497   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1498     return Attribute::ShadowCallStack;
1499   case bitc::ATTR_KIND_STRICT_FP:
1500     return Attribute::StrictFP;
1501   case bitc::ATTR_KIND_STRUCT_RET:
1502     return Attribute::StructRet;
1503   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1504     return Attribute::SanitizeAddress;
1505   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1506     return Attribute::SanitizeHWAddress;
1507   case bitc::ATTR_KIND_SANITIZE_THREAD:
1508     return Attribute::SanitizeThread;
1509   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1510     return Attribute::SanitizeMemory;
1511   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1512     return Attribute::SpeculativeLoadHardening;
1513   case bitc::ATTR_KIND_SWIFT_ERROR:
1514     return Attribute::SwiftError;
1515   case bitc::ATTR_KIND_SWIFT_SELF:
1516     return Attribute::SwiftSelf;
1517   case bitc::ATTR_KIND_UW_TABLE:
1518     return Attribute::UWTable;
1519   case bitc::ATTR_KIND_WILLRETURN:
1520     return Attribute::WillReturn;
1521   case bitc::ATTR_KIND_WRITEONLY:
1522     return Attribute::WriteOnly;
1523   case bitc::ATTR_KIND_Z_EXT:
1524     return Attribute::ZExt;
1525   case bitc::ATTR_KIND_IMMARG:
1526     return Attribute::ImmArg;
1527   }
1528 }
1529 
1530 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1531                                          unsigned &Alignment) {
1532   // Note: Alignment in bitcode files is incremented by 1, so that zero
1533   // can be used for default alignment.
1534   if (Exponent > Value::MaxAlignmentExponent + 1)
1535     return error("Invalid alignment value");
1536   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1537   return Error::success();
1538 }
1539 
1540 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1541   *Kind = getAttrFromCode(Code);
1542   if (*Kind == Attribute::None)
1543     return error("Unknown attribute kind (" + Twine(Code) + ")");
1544   return Error::success();
1545 }
1546 
1547 Error BitcodeReader::parseAttributeGroupBlock() {
1548   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1549     return Err;
1550 
1551   if (!MAttributeGroups.empty())
1552     return error("Invalid multiple blocks");
1553 
1554   SmallVector<uint64_t, 64> Record;
1555 
1556   // Read all the records.
1557   while (true) {
1558     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1559     if (!MaybeEntry)
1560       return MaybeEntry.takeError();
1561     BitstreamEntry Entry = MaybeEntry.get();
1562 
1563     switch (Entry.Kind) {
1564     case BitstreamEntry::SubBlock: // Handled for us already.
1565     case BitstreamEntry::Error:
1566       return error("Malformed block");
1567     case BitstreamEntry::EndBlock:
1568       return Error::success();
1569     case BitstreamEntry::Record:
1570       // The interesting case.
1571       break;
1572     }
1573 
1574     // Read a record.
1575     Record.clear();
1576     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1577     if (!MaybeRecord)
1578       return MaybeRecord.takeError();
1579     switch (MaybeRecord.get()) {
1580     default:  // Default behavior: ignore.
1581       break;
1582     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1583       if (Record.size() < 3)
1584         return error("Invalid record");
1585 
1586       uint64_t GrpID = Record[0];
1587       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1588 
1589       AttrBuilder B;
1590       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1591         if (Record[i] == 0) {        // Enum attribute
1592           Attribute::AttrKind Kind;
1593           if (Error Err = parseAttrKind(Record[++i], &Kind))
1594             return Err;
1595 
1596           // Upgrade old-style byval attribute to one with a type, even if it's
1597           // nullptr. We will have to insert the real type when we associate
1598           // this AttributeList with a function.
1599           if (Kind == Attribute::ByVal)
1600             B.addByValAttr(nullptr);
1601 
1602           B.addAttribute(Kind);
1603         } else if (Record[i] == 1) { // Integer attribute
1604           Attribute::AttrKind Kind;
1605           if (Error Err = parseAttrKind(Record[++i], &Kind))
1606             return Err;
1607           if (Kind == Attribute::Alignment)
1608             B.addAlignmentAttr(Record[++i]);
1609           else if (Kind == Attribute::StackAlignment)
1610             B.addStackAlignmentAttr(Record[++i]);
1611           else if (Kind == Attribute::Dereferenceable)
1612             B.addDereferenceableAttr(Record[++i]);
1613           else if (Kind == Attribute::DereferenceableOrNull)
1614             B.addDereferenceableOrNullAttr(Record[++i]);
1615           else if (Kind == Attribute::AllocSize)
1616             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1617         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1618           bool HasValue = (Record[i++] == 4);
1619           SmallString<64> KindStr;
1620           SmallString<64> ValStr;
1621 
1622           while (Record[i] != 0 && i != e)
1623             KindStr += Record[i++];
1624           assert(Record[i] == 0 && "Kind string not null terminated");
1625 
1626           if (HasValue) {
1627             // Has a value associated with it.
1628             ++i; // Skip the '0' that terminates the "kind" string.
1629             while (Record[i] != 0 && i != e)
1630               ValStr += Record[i++];
1631             assert(Record[i] == 0 && "Value string not null terminated");
1632           }
1633 
1634           B.addAttribute(KindStr.str(), ValStr.str());
1635         } else {
1636           assert((Record[i] == 5 || Record[i] == 6) &&
1637                  "Invalid attribute group entry");
1638           bool HasType = Record[i] == 6;
1639           Attribute::AttrKind Kind;
1640           if (Error Err = parseAttrKind(Record[++i], &Kind))
1641             return Err;
1642           if (Kind == Attribute::ByVal)
1643             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1644         }
1645       }
1646 
1647       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1648       break;
1649     }
1650     }
1651   }
1652 }
1653 
1654 Error BitcodeReader::parseTypeTable() {
1655   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1656     return Err;
1657 
1658   return parseTypeTableBody();
1659 }
1660 
1661 Error BitcodeReader::parseTypeTableBody() {
1662   if (!TypeList.empty())
1663     return error("Invalid multiple blocks");
1664 
1665   SmallVector<uint64_t, 64> Record;
1666   unsigned NumRecords = 0;
1667 
1668   SmallString<64> TypeName;
1669 
1670   // Read all the records for this type table.
1671   while (true) {
1672     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1673     if (!MaybeEntry)
1674       return MaybeEntry.takeError();
1675     BitstreamEntry Entry = MaybeEntry.get();
1676 
1677     switch (Entry.Kind) {
1678     case BitstreamEntry::SubBlock: // Handled for us already.
1679     case BitstreamEntry::Error:
1680       return error("Malformed block");
1681     case BitstreamEntry::EndBlock:
1682       if (NumRecords != TypeList.size())
1683         return error("Malformed block");
1684       return Error::success();
1685     case BitstreamEntry::Record:
1686       // The interesting case.
1687       break;
1688     }
1689 
1690     // Read a record.
1691     Record.clear();
1692     Type *ResultTy = nullptr;
1693     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1694     if (!MaybeRecord)
1695       return MaybeRecord.takeError();
1696     switch (MaybeRecord.get()) {
1697     default:
1698       return error("Invalid value");
1699     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1700       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1701       // type list.  This allows us to reserve space.
1702       if (Record.size() < 1)
1703         return error("Invalid record");
1704       TypeList.resize(Record[0]);
1705       continue;
1706     case bitc::TYPE_CODE_VOID:      // VOID
1707       ResultTy = Type::getVoidTy(Context);
1708       break;
1709     case bitc::TYPE_CODE_HALF:     // HALF
1710       ResultTy = Type::getHalfTy(Context);
1711       break;
1712     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1713       ResultTy = Type::getFloatTy(Context);
1714       break;
1715     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1716       ResultTy = Type::getDoubleTy(Context);
1717       break;
1718     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1719       ResultTy = Type::getX86_FP80Ty(Context);
1720       break;
1721     case bitc::TYPE_CODE_FP128:     // FP128
1722       ResultTy = Type::getFP128Ty(Context);
1723       break;
1724     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1725       ResultTy = Type::getPPC_FP128Ty(Context);
1726       break;
1727     case bitc::TYPE_CODE_LABEL:     // LABEL
1728       ResultTy = Type::getLabelTy(Context);
1729       break;
1730     case bitc::TYPE_CODE_METADATA:  // METADATA
1731       ResultTy = Type::getMetadataTy(Context);
1732       break;
1733     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1734       ResultTy = Type::getX86_MMXTy(Context);
1735       break;
1736     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1737       ResultTy = Type::getTokenTy(Context);
1738       break;
1739     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1740       if (Record.size() < 1)
1741         return error("Invalid record");
1742 
1743       uint64_t NumBits = Record[0];
1744       if (NumBits < IntegerType::MIN_INT_BITS ||
1745           NumBits > IntegerType::MAX_INT_BITS)
1746         return error("Bitwidth for integer type out of range");
1747       ResultTy = IntegerType::get(Context, NumBits);
1748       break;
1749     }
1750     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1751                                     //          [pointee type, address space]
1752       if (Record.size() < 1)
1753         return error("Invalid record");
1754       unsigned AddressSpace = 0;
1755       if (Record.size() == 2)
1756         AddressSpace = Record[1];
1757       ResultTy = getTypeByID(Record[0]);
1758       if (!ResultTy ||
1759           !PointerType::isValidElementType(ResultTy))
1760         return error("Invalid type");
1761       ResultTy = PointerType::get(ResultTy, AddressSpace);
1762       break;
1763     }
1764     case bitc::TYPE_CODE_FUNCTION_OLD: {
1765       // FIXME: attrid is dead, remove it in LLVM 4.0
1766       // FUNCTION: [vararg, attrid, retty, paramty x N]
1767       if (Record.size() < 3)
1768         return error("Invalid record");
1769       SmallVector<Type*, 8> ArgTys;
1770       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1771         if (Type *T = getTypeByID(Record[i]))
1772           ArgTys.push_back(T);
1773         else
1774           break;
1775       }
1776 
1777       ResultTy = getTypeByID(Record[2]);
1778       if (!ResultTy || ArgTys.size() < Record.size()-3)
1779         return error("Invalid type");
1780 
1781       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1782       break;
1783     }
1784     case bitc::TYPE_CODE_FUNCTION: {
1785       // FUNCTION: [vararg, retty, paramty x N]
1786       if (Record.size() < 2)
1787         return error("Invalid record");
1788       SmallVector<Type*, 8> ArgTys;
1789       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1790         if (Type *T = getTypeByID(Record[i])) {
1791           if (!FunctionType::isValidArgumentType(T))
1792             return error("Invalid function argument type");
1793           ArgTys.push_back(T);
1794         }
1795         else
1796           break;
1797       }
1798 
1799       ResultTy = getTypeByID(Record[1]);
1800       if (!ResultTy || ArgTys.size() < Record.size()-2)
1801         return error("Invalid type");
1802 
1803       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1804       break;
1805     }
1806     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1807       if (Record.size() < 1)
1808         return error("Invalid record");
1809       SmallVector<Type*, 8> EltTys;
1810       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1811         if (Type *T = getTypeByID(Record[i]))
1812           EltTys.push_back(T);
1813         else
1814           break;
1815       }
1816       if (EltTys.size() != Record.size()-1)
1817         return error("Invalid type");
1818       ResultTy = StructType::get(Context, EltTys, Record[0]);
1819       break;
1820     }
1821     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1822       if (convertToString(Record, 0, TypeName))
1823         return error("Invalid record");
1824       continue;
1825 
1826     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1827       if (Record.size() < 1)
1828         return error("Invalid record");
1829 
1830       if (NumRecords >= TypeList.size())
1831         return error("Invalid TYPE table");
1832 
1833       // Check to see if this was forward referenced, if so fill in the temp.
1834       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1835       if (Res) {
1836         Res->setName(TypeName);
1837         TypeList[NumRecords] = nullptr;
1838       } else  // Otherwise, create a new struct.
1839         Res = createIdentifiedStructType(Context, TypeName);
1840       TypeName.clear();
1841 
1842       SmallVector<Type*, 8> EltTys;
1843       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1844         if (Type *T = getTypeByID(Record[i]))
1845           EltTys.push_back(T);
1846         else
1847           break;
1848       }
1849       if (EltTys.size() != Record.size()-1)
1850         return error("Invalid record");
1851       Res->setBody(EltTys, Record[0]);
1852       ResultTy = Res;
1853       break;
1854     }
1855     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1856       if (Record.size() != 1)
1857         return error("Invalid record");
1858 
1859       if (NumRecords >= TypeList.size())
1860         return error("Invalid TYPE table");
1861 
1862       // Check to see if this was forward referenced, if so fill in the temp.
1863       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1864       if (Res) {
1865         Res->setName(TypeName);
1866         TypeList[NumRecords] = nullptr;
1867       } else  // Otherwise, create a new struct with no body.
1868         Res = createIdentifiedStructType(Context, TypeName);
1869       TypeName.clear();
1870       ResultTy = Res;
1871       break;
1872     }
1873     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1874       if (Record.size() < 2)
1875         return error("Invalid record");
1876       ResultTy = getTypeByID(Record[1]);
1877       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1878         return error("Invalid type");
1879       ResultTy = ArrayType::get(ResultTy, Record[0]);
1880       break;
1881     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1882       if (Record.size() < 2)
1883         return error("Invalid record");
1884       if (Record[0] == 0)
1885         return error("Invalid vector length");
1886       ResultTy = getTypeByID(Record[1]);
1887       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1888         return error("Invalid type");
1889       ResultTy = VectorType::get(ResultTy, Record[0]);
1890       break;
1891     }
1892 
1893     if (NumRecords >= TypeList.size())
1894       return error("Invalid TYPE table");
1895     if (TypeList[NumRecords])
1896       return error(
1897           "Invalid TYPE table: Only named structs can be forward referenced");
1898     assert(ResultTy && "Didn't read a type?");
1899     TypeList[NumRecords++] = ResultTy;
1900   }
1901 }
1902 
1903 Error BitcodeReader::parseOperandBundleTags() {
1904   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1905     return Err;
1906 
1907   if (!BundleTags.empty())
1908     return error("Invalid multiple blocks");
1909 
1910   SmallVector<uint64_t, 64> Record;
1911 
1912   while (true) {
1913     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1914     if (!MaybeEntry)
1915       return MaybeEntry.takeError();
1916     BitstreamEntry Entry = MaybeEntry.get();
1917 
1918     switch (Entry.Kind) {
1919     case BitstreamEntry::SubBlock: // Handled for us already.
1920     case BitstreamEntry::Error:
1921       return error("Malformed block");
1922     case BitstreamEntry::EndBlock:
1923       return Error::success();
1924     case BitstreamEntry::Record:
1925       // The interesting case.
1926       break;
1927     }
1928 
1929     // Tags are implicitly mapped to integers by their order.
1930 
1931     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1932     if (!MaybeRecord)
1933       return MaybeRecord.takeError();
1934     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1935       return error("Invalid record");
1936 
1937     // OPERAND_BUNDLE_TAG: [strchr x N]
1938     BundleTags.emplace_back();
1939     if (convertToString(Record, 0, BundleTags.back()))
1940       return error("Invalid record");
1941     Record.clear();
1942   }
1943 }
1944 
1945 Error BitcodeReader::parseSyncScopeNames() {
1946   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1947     return Err;
1948 
1949   if (!SSIDs.empty())
1950     return error("Invalid multiple synchronization scope names blocks");
1951 
1952   SmallVector<uint64_t, 64> Record;
1953   while (true) {
1954     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1955     if (!MaybeEntry)
1956       return MaybeEntry.takeError();
1957     BitstreamEntry Entry = MaybeEntry.get();
1958 
1959     switch (Entry.Kind) {
1960     case BitstreamEntry::SubBlock: // Handled for us already.
1961     case BitstreamEntry::Error:
1962       return error("Malformed block");
1963     case BitstreamEntry::EndBlock:
1964       if (SSIDs.empty())
1965         return error("Invalid empty synchronization scope names block");
1966       return Error::success();
1967     case BitstreamEntry::Record:
1968       // The interesting case.
1969       break;
1970     }
1971 
1972     // Synchronization scope names are implicitly mapped to synchronization
1973     // scope IDs by their order.
1974 
1975     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1976     if (!MaybeRecord)
1977       return MaybeRecord.takeError();
1978     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
1979       return error("Invalid record");
1980 
1981     SmallString<16> SSN;
1982     if (convertToString(Record, 0, SSN))
1983       return error("Invalid record");
1984 
1985     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1986     Record.clear();
1987   }
1988 }
1989 
1990 /// Associate a value with its name from the given index in the provided record.
1991 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1992                                              unsigned NameIndex, Triple &TT) {
1993   SmallString<128> ValueName;
1994   if (convertToString(Record, NameIndex, ValueName))
1995     return error("Invalid record");
1996   unsigned ValueID = Record[0];
1997   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1998     return error("Invalid record");
1999   Value *V = ValueList[ValueID];
2000 
2001   StringRef NameStr(ValueName.data(), ValueName.size());
2002   if (NameStr.find_first_of(0) != StringRef::npos)
2003     return error("Invalid value name");
2004   V->setName(NameStr);
2005   auto *GO = dyn_cast<GlobalObject>(V);
2006   if (GO) {
2007     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2008       if (TT.supportsCOMDAT())
2009         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2010       else
2011         GO->setComdat(nullptr);
2012     }
2013   }
2014   return V;
2015 }
2016 
2017 /// Helper to note and return the current location, and jump to the given
2018 /// offset.
2019 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2020                                                  BitstreamCursor &Stream) {
2021   // Save the current parsing location so we can jump back at the end
2022   // of the VST read.
2023   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2024   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2025     return std::move(JumpFailed);
2026   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2027   if (!MaybeEntry)
2028     return MaybeEntry.takeError();
2029   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2030   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2031   return CurrentBit;
2032 }
2033 
2034 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2035                                             Function *F,
2036                                             ArrayRef<uint64_t> Record) {
2037   // Note that we subtract 1 here because the offset is relative to one word
2038   // before the start of the identification or module block, which was
2039   // historically always the start of the regular bitcode header.
2040   uint64_t FuncWordOffset = Record[1] - 1;
2041   uint64_t FuncBitOffset = FuncWordOffset * 32;
2042   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2043   // Set the LastFunctionBlockBit to point to the last function block.
2044   // Later when parsing is resumed after function materialization,
2045   // we can simply skip that last function block.
2046   if (FuncBitOffset > LastFunctionBlockBit)
2047     LastFunctionBlockBit = FuncBitOffset;
2048 }
2049 
2050 /// Read a new-style GlobalValue symbol table.
2051 Error BitcodeReader::parseGlobalValueSymbolTable() {
2052   unsigned FuncBitcodeOffsetDelta =
2053       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2054 
2055   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2056     return Err;
2057 
2058   SmallVector<uint64_t, 64> Record;
2059   while (true) {
2060     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2061     if (!MaybeEntry)
2062       return MaybeEntry.takeError();
2063     BitstreamEntry Entry = MaybeEntry.get();
2064 
2065     switch (Entry.Kind) {
2066     case BitstreamEntry::SubBlock:
2067     case BitstreamEntry::Error:
2068       return error("Malformed block");
2069     case BitstreamEntry::EndBlock:
2070       return Error::success();
2071     case BitstreamEntry::Record:
2072       break;
2073     }
2074 
2075     Record.clear();
2076     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2077     if (!MaybeRecord)
2078       return MaybeRecord.takeError();
2079     switch (MaybeRecord.get()) {
2080     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2081       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2082                               cast<Function>(ValueList[Record[0]]), Record);
2083       break;
2084     }
2085   }
2086 }
2087 
2088 /// Parse the value symbol table at either the current parsing location or
2089 /// at the given bit offset if provided.
2090 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2091   uint64_t CurrentBit;
2092   // Pass in the Offset to distinguish between calling for the module-level
2093   // VST (where we want to jump to the VST offset) and the function-level
2094   // VST (where we don't).
2095   if (Offset > 0) {
2096     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2097     if (!MaybeCurrentBit)
2098       return MaybeCurrentBit.takeError();
2099     CurrentBit = MaybeCurrentBit.get();
2100     // If this module uses a string table, read this as a module-level VST.
2101     if (UseStrtab) {
2102       if (Error Err = parseGlobalValueSymbolTable())
2103         return Err;
2104       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2105         return JumpFailed;
2106       return Error::success();
2107     }
2108     // Otherwise, the VST will be in a similar format to a function-level VST,
2109     // and will contain symbol names.
2110   }
2111 
2112   // Compute the delta between the bitcode indices in the VST (the word offset
2113   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2114   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2115   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2116   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2117   // just before entering the VST subblock because: 1) the EnterSubBlock
2118   // changes the AbbrevID width; 2) the VST block is nested within the same
2119   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2120   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2121   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2122   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2123   unsigned FuncBitcodeOffsetDelta =
2124       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2125 
2126   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2127     return Err;
2128 
2129   SmallVector<uint64_t, 64> Record;
2130 
2131   Triple TT(TheModule->getTargetTriple());
2132 
2133   // Read all the records for this value table.
2134   SmallString<128> ValueName;
2135 
2136   while (true) {
2137     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2138     if (!MaybeEntry)
2139       return MaybeEntry.takeError();
2140     BitstreamEntry Entry = MaybeEntry.get();
2141 
2142     switch (Entry.Kind) {
2143     case BitstreamEntry::SubBlock: // Handled for us already.
2144     case BitstreamEntry::Error:
2145       return error("Malformed block");
2146     case BitstreamEntry::EndBlock:
2147       if (Offset > 0)
2148         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2149           return JumpFailed;
2150       return Error::success();
2151     case BitstreamEntry::Record:
2152       // The interesting case.
2153       break;
2154     }
2155 
2156     // Read a record.
2157     Record.clear();
2158     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2159     if (!MaybeRecord)
2160       return MaybeRecord.takeError();
2161     switch (MaybeRecord.get()) {
2162     default:  // Default behavior: unknown type.
2163       break;
2164     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2165       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2166       if (Error Err = ValOrErr.takeError())
2167         return Err;
2168       ValOrErr.get();
2169       break;
2170     }
2171     case bitc::VST_CODE_FNENTRY: {
2172       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2173       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2174       if (Error Err = ValOrErr.takeError())
2175         return Err;
2176       Value *V = ValOrErr.get();
2177 
2178       // Ignore function offsets emitted for aliases of functions in older
2179       // versions of LLVM.
2180       if (auto *F = dyn_cast<Function>(V))
2181         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2182       break;
2183     }
2184     case bitc::VST_CODE_BBENTRY: {
2185       if (convertToString(Record, 1, ValueName))
2186         return error("Invalid record");
2187       BasicBlock *BB = getBasicBlock(Record[0]);
2188       if (!BB)
2189         return error("Invalid record");
2190 
2191       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2192       ValueName.clear();
2193       break;
2194     }
2195     }
2196   }
2197 }
2198 
2199 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2200 /// encoding.
2201 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2202   if ((V & 1) == 0)
2203     return V >> 1;
2204   if (V != 1)
2205     return -(V >> 1);
2206   // There is no such thing as -0 with integers.  "-0" really means MININT.
2207   return 1ULL << 63;
2208 }
2209 
2210 /// Resolve all of the initializers for global values and aliases that we can.
2211 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2212   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2213   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2214       IndirectSymbolInitWorklist;
2215   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2216   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2217   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2218 
2219   GlobalInitWorklist.swap(GlobalInits);
2220   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2221   FunctionPrefixWorklist.swap(FunctionPrefixes);
2222   FunctionPrologueWorklist.swap(FunctionPrologues);
2223   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2224 
2225   while (!GlobalInitWorklist.empty()) {
2226     unsigned ValID = GlobalInitWorklist.back().second;
2227     if (ValID >= ValueList.size()) {
2228       // Not ready to resolve this yet, it requires something later in the file.
2229       GlobalInits.push_back(GlobalInitWorklist.back());
2230     } else {
2231       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2232         GlobalInitWorklist.back().first->setInitializer(C);
2233       else
2234         return error("Expected a constant");
2235     }
2236     GlobalInitWorklist.pop_back();
2237   }
2238 
2239   while (!IndirectSymbolInitWorklist.empty()) {
2240     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2241     if (ValID >= ValueList.size()) {
2242       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2243     } else {
2244       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2245       if (!C)
2246         return error("Expected a constant");
2247       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2248       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2249         return error("Alias and aliasee types don't match");
2250       GIS->setIndirectSymbol(C);
2251     }
2252     IndirectSymbolInitWorklist.pop_back();
2253   }
2254 
2255   while (!FunctionPrefixWorklist.empty()) {
2256     unsigned ValID = FunctionPrefixWorklist.back().second;
2257     if (ValID >= ValueList.size()) {
2258       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2259     } else {
2260       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2261         FunctionPrefixWorklist.back().first->setPrefixData(C);
2262       else
2263         return error("Expected a constant");
2264     }
2265     FunctionPrefixWorklist.pop_back();
2266   }
2267 
2268   while (!FunctionPrologueWorklist.empty()) {
2269     unsigned ValID = FunctionPrologueWorklist.back().second;
2270     if (ValID >= ValueList.size()) {
2271       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2272     } else {
2273       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2274         FunctionPrologueWorklist.back().first->setPrologueData(C);
2275       else
2276         return error("Expected a constant");
2277     }
2278     FunctionPrologueWorklist.pop_back();
2279   }
2280 
2281   while (!FunctionPersonalityFnWorklist.empty()) {
2282     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2283     if (ValID >= ValueList.size()) {
2284       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2285     } else {
2286       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2287         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2288       else
2289         return error("Expected a constant");
2290     }
2291     FunctionPersonalityFnWorklist.pop_back();
2292   }
2293 
2294   return Error::success();
2295 }
2296 
2297 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2298   SmallVector<uint64_t, 8> Words(Vals.size());
2299   transform(Vals, Words.begin(),
2300                  BitcodeReader::decodeSignRotatedValue);
2301 
2302   return APInt(TypeBits, Words);
2303 }
2304 
2305 Error BitcodeReader::parseConstants() {
2306   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2307     return Err;
2308 
2309   SmallVector<uint64_t, 64> Record;
2310 
2311   // Read all the records for this value table.
2312   Type *CurTy = Type::getInt32Ty(Context);
2313   Type *CurFullTy = Type::getInt32Ty(Context);
2314   unsigned NextCstNo = ValueList.size();
2315 
2316   while (true) {
2317     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2318     if (!MaybeEntry)
2319       return MaybeEntry.takeError();
2320     BitstreamEntry Entry = MaybeEntry.get();
2321 
2322     switch (Entry.Kind) {
2323     case BitstreamEntry::SubBlock: // Handled for us already.
2324     case BitstreamEntry::Error:
2325       return error("Malformed block");
2326     case BitstreamEntry::EndBlock:
2327       if (NextCstNo != ValueList.size())
2328         return error("Invalid constant reference");
2329 
2330       // Once all the constants have been read, go through and resolve forward
2331       // references.
2332       ValueList.resolveConstantForwardRefs();
2333       return Error::success();
2334     case BitstreamEntry::Record:
2335       // The interesting case.
2336       break;
2337     }
2338 
2339     // Read a record.
2340     Record.clear();
2341     Type *VoidType = Type::getVoidTy(Context);
2342     Value *V = nullptr;
2343     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2344     if (!MaybeBitCode)
2345       return MaybeBitCode.takeError();
2346     switch (unsigned BitCode = MaybeBitCode.get()) {
2347     default:  // Default behavior: unknown constant
2348     case bitc::CST_CODE_UNDEF:     // UNDEF
2349       V = UndefValue::get(CurTy);
2350       break;
2351     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2352       if (Record.empty())
2353         return error("Invalid record");
2354       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2355         return error("Invalid record");
2356       if (TypeList[Record[0]] == VoidType)
2357         return error("Invalid constant type");
2358       CurFullTy = TypeList[Record[0]];
2359       CurTy = flattenPointerTypes(CurFullTy);
2360       continue;  // Skip the ValueList manipulation.
2361     case bitc::CST_CODE_NULL:      // NULL
2362       V = Constant::getNullValue(CurTy);
2363       break;
2364     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2365       if (!CurTy->isIntegerTy() || Record.empty())
2366         return error("Invalid record");
2367       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2368       break;
2369     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2370       if (!CurTy->isIntegerTy() || Record.empty())
2371         return error("Invalid record");
2372 
2373       APInt VInt =
2374           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2375       V = ConstantInt::get(Context, VInt);
2376 
2377       break;
2378     }
2379     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2380       if (Record.empty())
2381         return error("Invalid record");
2382       if (CurTy->isHalfTy())
2383         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2384                                              APInt(16, (uint16_t)Record[0])));
2385       else if (CurTy->isFloatTy())
2386         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2387                                              APInt(32, (uint32_t)Record[0])));
2388       else if (CurTy->isDoubleTy())
2389         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2390                                              APInt(64, Record[0])));
2391       else if (CurTy->isX86_FP80Ty()) {
2392         // Bits are not stored the same way as a normal i80 APInt, compensate.
2393         uint64_t Rearrange[2];
2394         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2395         Rearrange[1] = Record[0] >> 48;
2396         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2397                                              APInt(80, Rearrange)));
2398       } else if (CurTy->isFP128Ty())
2399         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2400                                              APInt(128, Record)));
2401       else if (CurTy->isPPC_FP128Ty())
2402         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2403                                              APInt(128, Record)));
2404       else
2405         V = UndefValue::get(CurTy);
2406       break;
2407     }
2408 
2409     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2410       if (Record.empty())
2411         return error("Invalid record");
2412 
2413       unsigned Size = Record.size();
2414       SmallVector<Constant*, 16> Elts;
2415 
2416       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2417         for (unsigned i = 0; i != Size; ++i)
2418           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2419                                                      STy->getElementType(i)));
2420         V = ConstantStruct::get(STy, Elts);
2421       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2422         Type *EltTy = ATy->getElementType();
2423         for (unsigned i = 0; i != Size; ++i)
2424           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2425         V = ConstantArray::get(ATy, Elts);
2426       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2427         Type *EltTy = VTy->getElementType();
2428         for (unsigned i = 0; i != Size; ++i)
2429           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2430         V = ConstantVector::get(Elts);
2431       } else {
2432         V = UndefValue::get(CurTy);
2433       }
2434       break;
2435     }
2436     case bitc::CST_CODE_STRING:    // STRING: [values]
2437     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2438       if (Record.empty())
2439         return error("Invalid record");
2440 
2441       SmallString<16> Elts(Record.begin(), Record.end());
2442       V = ConstantDataArray::getString(Context, Elts,
2443                                        BitCode == bitc::CST_CODE_CSTRING);
2444       break;
2445     }
2446     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2447       if (Record.empty())
2448         return error("Invalid record");
2449 
2450       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2451       if (EltTy->isIntegerTy(8)) {
2452         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2453         if (isa<VectorType>(CurTy))
2454           V = ConstantDataVector::get(Context, Elts);
2455         else
2456           V = ConstantDataArray::get(Context, Elts);
2457       } else if (EltTy->isIntegerTy(16)) {
2458         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2459         if (isa<VectorType>(CurTy))
2460           V = ConstantDataVector::get(Context, Elts);
2461         else
2462           V = ConstantDataArray::get(Context, Elts);
2463       } else if (EltTy->isIntegerTy(32)) {
2464         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2465         if (isa<VectorType>(CurTy))
2466           V = ConstantDataVector::get(Context, Elts);
2467         else
2468           V = ConstantDataArray::get(Context, Elts);
2469       } else if (EltTy->isIntegerTy(64)) {
2470         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2471         if (isa<VectorType>(CurTy))
2472           V = ConstantDataVector::get(Context, Elts);
2473         else
2474           V = ConstantDataArray::get(Context, Elts);
2475       } else if (EltTy->isHalfTy()) {
2476         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2477         if (isa<VectorType>(CurTy))
2478           V = ConstantDataVector::getFP(Context, Elts);
2479         else
2480           V = ConstantDataArray::getFP(Context, Elts);
2481       } else if (EltTy->isFloatTy()) {
2482         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2483         if (isa<VectorType>(CurTy))
2484           V = ConstantDataVector::getFP(Context, Elts);
2485         else
2486           V = ConstantDataArray::getFP(Context, Elts);
2487       } else if (EltTy->isDoubleTy()) {
2488         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2489         if (isa<VectorType>(CurTy))
2490           V = ConstantDataVector::getFP(Context, Elts);
2491         else
2492           V = ConstantDataArray::getFP(Context, Elts);
2493       } else {
2494         return error("Invalid type for value");
2495       }
2496       break;
2497     }
2498     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2499       if (Record.size() < 2)
2500         return error("Invalid record");
2501       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2502       if (Opc < 0) {
2503         V = UndefValue::get(CurTy);  // Unknown unop.
2504       } else {
2505         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2506         unsigned Flags = 0;
2507         V = ConstantExpr::get(Opc, LHS, Flags);
2508       }
2509       break;
2510     }
2511     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2512       if (Record.size() < 3)
2513         return error("Invalid record");
2514       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2515       if (Opc < 0) {
2516         V = UndefValue::get(CurTy);  // Unknown binop.
2517       } else {
2518         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2519         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2520         unsigned Flags = 0;
2521         if (Record.size() >= 4) {
2522           if (Opc == Instruction::Add ||
2523               Opc == Instruction::Sub ||
2524               Opc == Instruction::Mul ||
2525               Opc == Instruction::Shl) {
2526             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2527               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2528             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2529               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2530           } else if (Opc == Instruction::SDiv ||
2531                      Opc == Instruction::UDiv ||
2532                      Opc == Instruction::LShr ||
2533                      Opc == Instruction::AShr) {
2534             if (Record[3] & (1 << bitc::PEO_EXACT))
2535               Flags |= SDivOperator::IsExact;
2536           }
2537         }
2538         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2539       }
2540       break;
2541     }
2542     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2543       if (Record.size() < 3)
2544         return error("Invalid record");
2545       int Opc = getDecodedCastOpcode(Record[0]);
2546       if (Opc < 0) {
2547         V = UndefValue::get(CurTy);  // Unknown cast.
2548       } else {
2549         Type *OpTy = getTypeByID(Record[1]);
2550         if (!OpTy)
2551           return error("Invalid record");
2552         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2553         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2554         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2555       }
2556       break;
2557     }
2558     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2559     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2560     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2561                                                      // operands]
2562       unsigned OpNum = 0;
2563       Type *PointeeType = nullptr;
2564       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2565           Record.size() % 2)
2566         PointeeType = getTypeByID(Record[OpNum++]);
2567 
2568       bool InBounds = false;
2569       Optional<unsigned> InRangeIndex;
2570       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2571         uint64_t Op = Record[OpNum++];
2572         InBounds = Op & 1;
2573         InRangeIndex = Op >> 1;
2574       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2575         InBounds = true;
2576 
2577       SmallVector<Constant*, 16> Elts;
2578       Type *Elt0FullTy = nullptr;
2579       while (OpNum != Record.size()) {
2580         if (!Elt0FullTy)
2581           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2582         Type *ElTy = getTypeByID(Record[OpNum++]);
2583         if (!ElTy)
2584           return error("Invalid record");
2585         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2586       }
2587 
2588       if (Elts.size() < 1)
2589         return error("Invalid gep with no operands");
2590 
2591       Type *ImplicitPointeeType =
2592           getPointerElementFlatType(Elt0FullTy->getScalarType());
2593       if (!PointeeType)
2594         PointeeType = ImplicitPointeeType;
2595       else if (PointeeType != ImplicitPointeeType)
2596         return error("Explicit gep operator type does not match pointee type "
2597                      "of pointer operand");
2598 
2599       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2600       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2601                                          InBounds, InRangeIndex);
2602       break;
2603     }
2604     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2605       if (Record.size() < 3)
2606         return error("Invalid record");
2607 
2608       Type *SelectorTy = Type::getInt1Ty(Context);
2609 
2610       // The selector might be an i1 or an <n x i1>
2611       // Get the type from the ValueList before getting a forward ref.
2612       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2613         if (Value *V = ValueList[Record[0]])
2614           if (SelectorTy != V->getType())
2615             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2616 
2617       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2618                                                               SelectorTy),
2619                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2620                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2621       break;
2622     }
2623     case bitc::CST_CODE_CE_EXTRACTELT
2624         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2625       if (Record.size() < 3)
2626         return error("Invalid record");
2627       VectorType *OpTy =
2628         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2629       if (!OpTy)
2630         return error("Invalid record");
2631       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2632       Constant *Op1 = nullptr;
2633       if (Record.size() == 4) {
2634         Type *IdxTy = getTypeByID(Record[2]);
2635         if (!IdxTy)
2636           return error("Invalid record");
2637         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2638       } else // TODO: Remove with llvm 4.0
2639         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2640       if (!Op1)
2641         return error("Invalid record");
2642       V = ConstantExpr::getExtractElement(Op0, Op1);
2643       break;
2644     }
2645     case bitc::CST_CODE_CE_INSERTELT
2646         : { // CE_INSERTELT: [opval, opval, opty, opval]
2647       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2648       if (Record.size() < 3 || !OpTy)
2649         return error("Invalid record");
2650       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2651       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2652                                                   OpTy->getElementType());
2653       Constant *Op2 = nullptr;
2654       if (Record.size() == 4) {
2655         Type *IdxTy = getTypeByID(Record[2]);
2656         if (!IdxTy)
2657           return error("Invalid record");
2658         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2659       } else // TODO: Remove with llvm 4.0
2660         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2661       if (!Op2)
2662         return error("Invalid record");
2663       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2664       break;
2665     }
2666     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2667       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2668       if (Record.size() < 3 || !OpTy)
2669         return error("Invalid record");
2670       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2671       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2672       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2673                                                  OpTy->getNumElements());
2674       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2675       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2676       break;
2677     }
2678     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2679       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2680       VectorType *OpTy =
2681         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2682       if (Record.size() < 4 || !RTy || !OpTy)
2683         return error("Invalid record");
2684       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2685       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2686       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2687                                                  RTy->getNumElements());
2688       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2689       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2690       break;
2691     }
2692     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2693       if (Record.size() < 4)
2694         return error("Invalid record");
2695       Type *OpTy = getTypeByID(Record[0]);
2696       if (!OpTy)
2697         return error("Invalid record");
2698       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2699       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2700 
2701       if (OpTy->isFPOrFPVectorTy())
2702         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2703       else
2704         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2705       break;
2706     }
2707     // This maintains backward compatibility, pre-asm dialect keywords.
2708     // FIXME: Remove with the 4.0 release.
2709     case bitc::CST_CODE_INLINEASM_OLD: {
2710       if (Record.size() < 2)
2711         return error("Invalid record");
2712       std::string AsmStr, ConstrStr;
2713       bool HasSideEffects = Record[0] & 1;
2714       bool IsAlignStack = Record[0] >> 1;
2715       unsigned AsmStrSize = Record[1];
2716       if (2+AsmStrSize >= Record.size())
2717         return error("Invalid record");
2718       unsigned ConstStrSize = Record[2+AsmStrSize];
2719       if (3+AsmStrSize+ConstStrSize > Record.size())
2720         return error("Invalid record");
2721 
2722       for (unsigned i = 0; i != AsmStrSize; ++i)
2723         AsmStr += (char)Record[2+i];
2724       for (unsigned i = 0; i != ConstStrSize; ++i)
2725         ConstrStr += (char)Record[3+AsmStrSize+i];
2726       UpgradeInlineAsmString(&AsmStr);
2727       V = InlineAsm::get(
2728           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2729           ConstrStr, HasSideEffects, IsAlignStack);
2730       break;
2731     }
2732     // This version adds support for the asm dialect keywords (e.g.,
2733     // inteldialect).
2734     case bitc::CST_CODE_INLINEASM: {
2735       if (Record.size() < 2)
2736         return error("Invalid record");
2737       std::string AsmStr, ConstrStr;
2738       bool HasSideEffects = Record[0] & 1;
2739       bool IsAlignStack = (Record[0] >> 1) & 1;
2740       unsigned AsmDialect = Record[0] >> 2;
2741       unsigned AsmStrSize = Record[1];
2742       if (2+AsmStrSize >= Record.size())
2743         return error("Invalid record");
2744       unsigned ConstStrSize = Record[2+AsmStrSize];
2745       if (3+AsmStrSize+ConstStrSize > Record.size())
2746         return error("Invalid record");
2747 
2748       for (unsigned i = 0; i != AsmStrSize; ++i)
2749         AsmStr += (char)Record[2+i];
2750       for (unsigned i = 0; i != ConstStrSize; ++i)
2751         ConstrStr += (char)Record[3+AsmStrSize+i];
2752       UpgradeInlineAsmString(&AsmStr);
2753       V = InlineAsm::get(
2754           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2755           ConstrStr, HasSideEffects, IsAlignStack,
2756           InlineAsm::AsmDialect(AsmDialect));
2757       break;
2758     }
2759     case bitc::CST_CODE_BLOCKADDRESS:{
2760       if (Record.size() < 3)
2761         return error("Invalid record");
2762       Type *FnTy = getTypeByID(Record[0]);
2763       if (!FnTy)
2764         return error("Invalid record");
2765       Function *Fn =
2766         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2767       if (!Fn)
2768         return error("Invalid record");
2769 
2770       // If the function is already parsed we can insert the block address right
2771       // away.
2772       BasicBlock *BB;
2773       unsigned BBID = Record[2];
2774       if (!BBID)
2775         // Invalid reference to entry block.
2776         return error("Invalid ID");
2777       if (!Fn->empty()) {
2778         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2779         for (size_t I = 0, E = BBID; I != E; ++I) {
2780           if (BBI == BBE)
2781             return error("Invalid ID");
2782           ++BBI;
2783         }
2784         BB = &*BBI;
2785       } else {
2786         // Otherwise insert a placeholder and remember it so it can be inserted
2787         // when the function is parsed.
2788         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2789         if (FwdBBs.empty())
2790           BasicBlockFwdRefQueue.push_back(Fn);
2791         if (FwdBBs.size() < BBID + 1)
2792           FwdBBs.resize(BBID + 1);
2793         if (!FwdBBs[BBID])
2794           FwdBBs[BBID] = BasicBlock::Create(Context);
2795         BB = FwdBBs[BBID];
2796       }
2797       V = BlockAddress::get(Fn, BB);
2798       break;
2799     }
2800     }
2801 
2802     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2803            "Incorrect fully structured type provided for Constant");
2804     ValueList.assignValue(V, NextCstNo, CurFullTy);
2805     ++NextCstNo;
2806   }
2807 }
2808 
2809 Error BitcodeReader::parseUseLists() {
2810   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2811     return Err;
2812 
2813   // Read all the records.
2814   SmallVector<uint64_t, 64> Record;
2815 
2816   while (true) {
2817     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2818     if (!MaybeEntry)
2819       return MaybeEntry.takeError();
2820     BitstreamEntry Entry = MaybeEntry.get();
2821 
2822     switch (Entry.Kind) {
2823     case BitstreamEntry::SubBlock: // Handled for us already.
2824     case BitstreamEntry::Error:
2825       return error("Malformed block");
2826     case BitstreamEntry::EndBlock:
2827       return Error::success();
2828     case BitstreamEntry::Record:
2829       // The interesting case.
2830       break;
2831     }
2832 
2833     // Read a use list record.
2834     Record.clear();
2835     bool IsBB = false;
2836     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2837     if (!MaybeRecord)
2838       return MaybeRecord.takeError();
2839     switch (MaybeRecord.get()) {
2840     default:  // Default behavior: unknown type.
2841       break;
2842     case bitc::USELIST_CODE_BB:
2843       IsBB = true;
2844       LLVM_FALLTHROUGH;
2845     case bitc::USELIST_CODE_DEFAULT: {
2846       unsigned RecordLength = Record.size();
2847       if (RecordLength < 3)
2848         // Records should have at least an ID and two indexes.
2849         return error("Invalid record");
2850       unsigned ID = Record.back();
2851       Record.pop_back();
2852 
2853       Value *V;
2854       if (IsBB) {
2855         assert(ID < FunctionBBs.size() && "Basic block not found");
2856         V = FunctionBBs[ID];
2857       } else
2858         V = ValueList[ID];
2859       unsigned NumUses = 0;
2860       SmallDenseMap<const Use *, unsigned, 16> Order;
2861       for (const Use &U : V->materialized_uses()) {
2862         if (++NumUses > Record.size())
2863           break;
2864         Order[&U] = Record[NumUses - 1];
2865       }
2866       if (Order.size() != Record.size() || NumUses > Record.size())
2867         // Mismatches can happen if the functions are being materialized lazily
2868         // (out-of-order), or a value has been upgraded.
2869         break;
2870 
2871       V->sortUseList([&](const Use &L, const Use &R) {
2872         return Order.lookup(&L) < Order.lookup(&R);
2873       });
2874       break;
2875     }
2876     }
2877   }
2878 }
2879 
2880 /// When we see the block for metadata, remember where it is and then skip it.
2881 /// This lets us lazily deserialize the metadata.
2882 Error BitcodeReader::rememberAndSkipMetadata() {
2883   // Save the current stream state.
2884   uint64_t CurBit = Stream.GetCurrentBitNo();
2885   DeferredMetadataInfo.push_back(CurBit);
2886 
2887   // Skip over the block for now.
2888   if (Error Err = Stream.SkipBlock())
2889     return Err;
2890   return Error::success();
2891 }
2892 
2893 Error BitcodeReader::materializeMetadata() {
2894   for (uint64_t BitPos : DeferredMetadataInfo) {
2895     // Move the bit stream to the saved position.
2896     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2897       return JumpFailed;
2898     if (Error Err = MDLoader->parseModuleMetadata())
2899       return Err;
2900   }
2901 
2902   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2903   // metadata.
2904   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2905     NamedMDNode *LinkerOpts =
2906         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2907     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2908       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2909   }
2910 
2911   DeferredMetadataInfo.clear();
2912   return Error::success();
2913 }
2914 
2915 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2916 
2917 /// When we see the block for a function body, remember where it is and then
2918 /// skip it.  This lets us lazily deserialize the functions.
2919 Error BitcodeReader::rememberAndSkipFunctionBody() {
2920   // Get the function we are talking about.
2921   if (FunctionsWithBodies.empty())
2922     return error("Insufficient function protos");
2923 
2924   Function *Fn = FunctionsWithBodies.back();
2925   FunctionsWithBodies.pop_back();
2926 
2927   // Save the current stream state.
2928   uint64_t CurBit = Stream.GetCurrentBitNo();
2929   assert(
2930       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2931       "Mismatch between VST and scanned function offsets");
2932   DeferredFunctionInfo[Fn] = CurBit;
2933 
2934   // Skip over the function block for now.
2935   if (Error Err = Stream.SkipBlock())
2936     return Err;
2937   return Error::success();
2938 }
2939 
2940 Error BitcodeReader::globalCleanup() {
2941   // Patch the initializers for globals and aliases up.
2942   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2943     return Err;
2944   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2945     return error("Malformed global initializer set");
2946 
2947   // Look for intrinsic functions which need to be upgraded at some point
2948   for (Function &F : *TheModule) {
2949     MDLoader->upgradeDebugIntrinsics(F);
2950     Function *NewFn;
2951     if (UpgradeIntrinsicFunction(&F, NewFn))
2952       UpgradedIntrinsics[&F] = NewFn;
2953     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2954       // Some types could be renamed during loading if several modules are
2955       // loaded in the same LLVMContext (LTO scenario). In this case we should
2956       // remangle intrinsics names as well.
2957       RemangledIntrinsics[&F] = Remangled.getValue();
2958   }
2959 
2960   // Look for global variables which need to be renamed.
2961   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2962   for (GlobalVariable &GV : TheModule->globals())
2963     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
2964       UpgradedVariables.emplace_back(&GV, Upgraded);
2965   for (auto &Pair : UpgradedVariables) {
2966     Pair.first->eraseFromParent();
2967     TheModule->getGlobalList().push_back(Pair.second);
2968   }
2969 
2970   // Force deallocation of memory for these vectors to favor the client that
2971   // want lazy deserialization.
2972   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2973   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2974       IndirectSymbolInits);
2975   return Error::success();
2976 }
2977 
2978 /// Support for lazy parsing of function bodies. This is required if we
2979 /// either have an old bitcode file without a VST forward declaration record,
2980 /// or if we have an anonymous function being materialized, since anonymous
2981 /// functions do not have a name and are therefore not in the VST.
2982 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2983   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
2984     return JumpFailed;
2985 
2986   if (Stream.AtEndOfStream())
2987     return error("Could not find function in stream");
2988 
2989   if (!SeenFirstFunctionBody)
2990     return error("Trying to materialize functions before seeing function blocks");
2991 
2992   // An old bitcode file with the symbol table at the end would have
2993   // finished the parse greedily.
2994   assert(SeenValueSymbolTable);
2995 
2996   SmallVector<uint64_t, 64> Record;
2997 
2998   while (true) {
2999     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3000     if (!MaybeEntry)
3001       return MaybeEntry.takeError();
3002     llvm::BitstreamEntry Entry = MaybeEntry.get();
3003 
3004     switch (Entry.Kind) {
3005     default:
3006       return error("Expect SubBlock");
3007     case BitstreamEntry::SubBlock:
3008       switch (Entry.ID) {
3009       default:
3010         return error("Expect function block");
3011       case bitc::FUNCTION_BLOCK_ID:
3012         if (Error Err = rememberAndSkipFunctionBody())
3013           return Err;
3014         NextUnreadBit = Stream.GetCurrentBitNo();
3015         return Error::success();
3016       }
3017     }
3018   }
3019 }
3020 
3021 bool BitcodeReaderBase::readBlockInfo() {
3022   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3023       Stream.ReadBlockInfoBlock();
3024   if (!MaybeNewBlockInfo)
3025     return true; // FIXME Handle the error.
3026   Optional<BitstreamBlockInfo> NewBlockInfo =
3027       std::move(MaybeNewBlockInfo.get());
3028   if (!NewBlockInfo)
3029     return true;
3030   BlockInfo = std::move(*NewBlockInfo);
3031   return false;
3032 }
3033 
3034 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3035   // v1: [selection_kind, name]
3036   // v2: [strtab_offset, strtab_size, selection_kind]
3037   StringRef Name;
3038   std::tie(Name, Record) = readNameFromStrtab(Record);
3039 
3040   if (Record.empty())
3041     return error("Invalid record");
3042   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3043   std::string OldFormatName;
3044   if (!UseStrtab) {
3045     if (Record.size() < 2)
3046       return error("Invalid record");
3047     unsigned ComdatNameSize = Record[1];
3048     OldFormatName.reserve(ComdatNameSize);
3049     for (unsigned i = 0; i != ComdatNameSize; ++i)
3050       OldFormatName += (char)Record[2 + i];
3051     Name = OldFormatName;
3052   }
3053   Comdat *C = TheModule->getOrInsertComdat(Name);
3054   C->setSelectionKind(SK);
3055   ComdatList.push_back(C);
3056   return Error::success();
3057 }
3058 
3059 static void inferDSOLocal(GlobalValue *GV) {
3060   // infer dso_local from linkage and visibility if it is not encoded.
3061   if (GV->hasLocalLinkage() ||
3062       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3063     GV->setDSOLocal(true);
3064 }
3065 
3066 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3067   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3068   // visibility, threadlocal, unnamed_addr, externally_initialized,
3069   // dllstorageclass, comdat, attributes, preemption specifier,
3070   // partition strtab offset, partition strtab size] (name in VST)
3071   // v2: [strtab_offset, strtab_size, v1]
3072   StringRef Name;
3073   std::tie(Name, Record) = readNameFromStrtab(Record);
3074 
3075   if (Record.size() < 6)
3076     return error("Invalid record");
3077   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3078   Type *Ty = flattenPointerTypes(FullTy);
3079   if (!Ty)
3080     return error("Invalid record");
3081   bool isConstant = Record[1] & 1;
3082   bool explicitType = Record[1] & 2;
3083   unsigned AddressSpace;
3084   if (explicitType) {
3085     AddressSpace = Record[1] >> 2;
3086   } else {
3087     if (!Ty->isPointerTy())
3088       return error("Invalid type for value");
3089     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3090     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3091   }
3092 
3093   uint64_t RawLinkage = Record[3];
3094   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3095   unsigned Alignment;
3096   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3097     return Err;
3098   std::string Section;
3099   if (Record[5]) {
3100     if (Record[5] - 1 >= SectionTable.size())
3101       return error("Invalid ID");
3102     Section = SectionTable[Record[5] - 1];
3103   }
3104   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3105   // Local linkage must have default visibility.
3106   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3107     // FIXME: Change to an error if non-default in 4.0.
3108     Visibility = getDecodedVisibility(Record[6]);
3109 
3110   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3111   if (Record.size() > 7)
3112     TLM = getDecodedThreadLocalMode(Record[7]);
3113 
3114   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3115   if (Record.size() > 8)
3116     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3117 
3118   bool ExternallyInitialized = false;
3119   if (Record.size() > 9)
3120     ExternallyInitialized = Record[9];
3121 
3122   GlobalVariable *NewGV =
3123       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3124                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3125   NewGV->setAlignment(Alignment);
3126   if (!Section.empty())
3127     NewGV->setSection(Section);
3128   NewGV->setVisibility(Visibility);
3129   NewGV->setUnnamedAddr(UnnamedAddr);
3130 
3131   if (Record.size() > 10)
3132     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3133   else
3134     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3135 
3136   FullTy = PointerType::get(FullTy, AddressSpace);
3137   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3138          "Incorrect fully specified type for GlobalVariable");
3139   ValueList.push_back(NewGV, FullTy);
3140 
3141   // Remember which value to use for the global initializer.
3142   if (unsigned InitID = Record[2])
3143     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3144 
3145   if (Record.size() > 11) {
3146     if (unsigned ComdatID = Record[11]) {
3147       if (ComdatID > ComdatList.size())
3148         return error("Invalid global variable comdat ID");
3149       NewGV->setComdat(ComdatList[ComdatID - 1]);
3150     }
3151   } else if (hasImplicitComdat(RawLinkage)) {
3152     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3153   }
3154 
3155   if (Record.size() > 12) {
3156     auto AS = getAttributes(Record[12]).getFnAttributes();
3157     NewGV->setAttributes(AS);
3158   }
3159 
3160   if (Record.size() > 13) {
3161     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3162   }
3163   inferDSOLocal(NewGV);
3164 
3165   // Check whether we have enough values to read a partition name.
3166   if (Record.size() > 15)
3167     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3168 
3169   return Error::success();
3170 }
3171 
3172 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3173   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3174   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3175   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3176   // v2: [strtab_offset, strtab_size, v1]
3177   StringRef Name;
3178   std::tie(Name, Record) = readNameFromStrtab(Record);
3179 
3180   if (Record.size() < 8)
3181     return error("Invalid record");
3182   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3183   Type *FTy = flattenPointerTypes(FullFTy);
3184   if (!FTy)
3185     return error("Invalid record");
3186   if (isa<PointerType>(FTy))
3187     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3188 
3189   if (!isa<FunctionType>(FTy))
3190     return error("Invalid type for value");
3191   auto CC = static_cast<CallingConv::ID>(Record[1]);
3192   if (CC & ~CallingConv::MaxID)
3193     return error("Invalid calling convention ID");
3194 
3195   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3196   if (Record.size() > 16)
3197     AddrSpace = Record[16];
3198 
3199   Function *Func =
3200       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3201                        AddrSpace, Name, TheModule);
3202 
3203   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3204          "Incorrect fully specified type provided for function");
3205   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3206 
3207   Func->setCallingConv(CC);
3208   bool isProto = Record[2];
3209   uint64_t RawLinkage = Record[3];
3210   Func->setLinkage(getDecodedLinkage(RawLinkage));
3211   Func->setAttributes(getAttributes(Record[4]));
3212 
3213   // Upgrade any old-style byval without a type by propagating the argument's
3214   // pointee type. There should be no opaque pointers where the byval type is
3215   // implicit.
3216   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3217     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3218       continue;
3219 
3220     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3221     Func->removeParamAttr(i, Attribute::ByVal);
3222     Func->addParamAttr(i, Attribute::getWithByValType(
3223                               Context, getPointerElementFlatType(PTy)));
3224   }
3225 
3226   unsigned Alignment;
3227   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3228     return Err;
3229   Func->setAlignment(Alignment);
3230   if (Record[6]) {
3231     if (Record[6] - 1 >= SectionTable.size())
3232       return error("Invalid ID");
3233     Func->setSection(SectionTable[Record[6] - 1]);
3234   }
3235   // Local linkage must have default visibility.
3236   if (!Func->hasLocalLinkage())
3237     // FIXME: Change to an error if non-default in 4.0.
3238     Func->setVisibility(getDecodedVisibility(Record[7]));
3239   if (Record.size() > 8 && Record[8]) {
3240     if (Record[8] - 1 >= GCTable.size())
3241       return error("Invalid ID");
3242     Func->setGC(GCTable[Record[8] - 1]);
3243   }
3244   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3245   if (Record.size() > 9)
3246     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3247   Func->setUnnamedAddr(UnnamedAddr);
3248   if (Record.size() > 10 && Record[10] != 0)
3249     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3250 
3251   if (Record.size() > 11)
3252     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3253   else
3254     upgradeDLLImportExportLinkage(Func, RawLinkage);
3255 
3256   if (Record.size() > 12) {
3257     if (unsigned ComdatID = Record[12]) {
3258       if (ComdatID > ComdatList.size())
3259         return error("Invalid function comdat ID");
3260       Func->setComdat(ComdatList[ComdatID - 1]);
3261     }
3262   } else if (hasImplicitComdat(RawLinkage)) {
3263     Func->setComdat(reinterpret_cast<Comdat *>(1));
3264   }
3265 
3266   if (Record.size() > 13 && Record[13] != 0)
3267     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3268 
3269   if (Record.size() > 14 && Record[14] != 0)
3270     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3271 
3272   if (Record.size() > 15) {
3273     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3274   }
3275   inferDSOLocal(Func);
3276 
3277   // Record[16] is the address space number.
3278 
3279   // Check whether we have enough values to read a partition name.
3280   if (Record.size() > 18)
3281     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3282 
3283   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3284   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3285          "Incorrect fully specified type provided for Function");
3286   ValueList.push_back(Func, FullTy);
3287 
3288   // If this is a function with a body, remember the prototype we are
3289   // creating now, so that we can match up the body with them later.
3290   if (!isProto) {
3291     Func->setIsMaterializable(true);
3292     FunctionsWithBodies.push_back(Func);
3293     DeferredFunctionInfo[Func] = 0;
3294   }
3295   return Error::success();
3296 }
3297 
3298 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3299     unsigned BitCode, ArrayRef<uint64_t> Record) {
3300   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3301   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3302   // dllstorageclass, threadlocal, unnamed_addr,
3303   // preemption specifier] (name in VST)
3304   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3305   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3306   // preemption specifier] (name in VST)
3307   // v2: [strtab_offset, strtab_size, v1]
3308   StringRef Name;
3309   std::tie(Name, Record) = readNameFromStrtab(Record);
3310 
3311   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3312   if (Record.size() < (3 + (unsigned)NewRecord))
3313     return error("Invalid record");
3314   unsigned OpNum = 0;
3315   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3316   Type *Ty = flattenPointerTypes(FullTy);
3317   if (!Ty)
3318     return error("Invalid record");
3319 
3320   unsigned AddrSpace;
3321   if (!NewRecord) {
3322     auto *PTy = dyn_cast<PointerType>(Ty);
3323     if (!PTy)
3324       return error("Invalid type for value");
3325     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3326     AddrSpace = PTy->getAddressSpace();
3327   } else {
3328     AddrSpace = Record[OpNum++];
3329   }
3330 
3331   auto Val = Record[OpNum++];
3332   auto Linkage = Record[OpNum++];
3333   GlobalIndirectSymbol *NewGA;
3334   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3335       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3336     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3337                                 TheModule);
3338   else
3339     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3340                                 nullptr, TheModule);
3341 
3342   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3343          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3344   // Old bitcode files didn't have visibility field.
3345   // Local linkage must have default visibility.
3346   if (OpNum != Record.size()) {
3347     auto VisInd = OpNum++;
3348     if (!NewGA->hasLocalLinkage())
3349       // FIXME: Change to an error if non-default in 4.0.
3350       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3351   }
3352   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3353       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3354     if (OpNum != Record.size())
3355       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3356     else
3357       upgradeDLLImportExportLinkage(NewGA, Linkage);
3358     if (OpNum != Record.size())
3359       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3360     if (OpNum != Record.size())
3361       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3362   }
3363   if (OpNum != Record.size())
3364     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3365   inferDSOLocal(NewGA);
3366 
3367   // Check whether we have enough values to read a partition name.
3368   if (OpNum + 1 < Record.size()) {
3369     NewGA->setPartition(
3370         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3371     OpNum += 2;
3372   }
3373 
3374   FullTy = PointerType::get(FullTy, AddrSpace);
3375   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3376          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3377   ValueList.push_back(NewGA, FullTy);
3378   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3379   return Error::success();
3380 }
3381 
3382 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3383                                  bool ShouldLazyLoadMetadata) {
3384   if (ResumeBit) {
3385     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3386       return JumpFailed;
3387   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3388     return Err;
3389 
3390   SmallVector<uint64_t, 64> Record;
3391 
3392   // Read all the records for this module.
3393   while (true) {
3394     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3395     if (!MaybeEntry)
3396       return MaybeEntry.takeError();
3397     llvm::BitstreamEntry Entry = MaybeEntry.get();
3398 
3399     switch (Entry.Kind) {
3400     case BitstreamEntry::Error:
3401       return error("Malformed block");
3402     case BitstreamEntry::EndBlock:
3403       return globalCleanup();
3404 
3405     case BitstreamEntry::SubBlock:
3406       switch (Entry.ID) {
3407       default:  // Skip unknown content.
3408         if (Error Err = Stream.SkipBlock())
3409           return Err;
3410         break;
3411       case bitc::BLOCKINFO_BLOCK_ID:
3412         if (readBlockInfo())
3413           return error("Malformed block");
3414         break;
3415       case bitc::PARAMATTR_BLOCK_ID:
3416         if (Error Err = parseAttributeBlock())
3417           return Err;
3418         break;
3419       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3420         if (Error Err = parseAttributeGroupBlock())
3421           return Err;
3422         break;
3423       case bitc::TYPE_BLOCK_ID_NEW:
3424         if (Error Err = parseTypeTable())
3425           return Err;
3426         break;
3427       case bitc::VALUE_SYMTAB_BLOCK_ID:
3428         if (!SeenValueSymbolTable) {
3429           // Either this is an old form VST without function index and an
3430           // associated VST forward declaration record (which would have caused
3431           // the VST to be jumped to and parsed before it was encountered
3432           // normally in the stream), or there were no function blocks to
3433           // trigger an earlier parsing of the VST.
3434           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3435           if (Error Err = parseValueSymbolTable())
3436             return Err;
3437           SeenValueSymbolTable = true;
3438         } else {
3439           // We must have had a VST forward declaration record, which caused
3440           // the parser to jump to and parse the VST earlier.
3441           assert(VSTOffset > 0);
3442           if (Error Err = Stream.SkipBlock())
3443             return Err;
3444         }
3445         break;
3446       case bitc::CONSTANTS_BLOCK_ID:
3447         if (Error Err = parseConstants())
3448           return Err;
3449         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3450           return Err;
3451         break;
3452       case bitc::METADATA_BLOCK_ID:
3453         if (ShouldLazyLoadMetadata) {
3454           if (Error Err = rememberAndSkipMetadata())
3455             return Err;
3456           break;
3457         }
3458         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3459         if (Error Err = MDLoader->parseModuleMetadata())
3460           return Err;
3461         break;
3462       case bitc::METADATA_KIND_BLOCK_ID:
3463         if (Error Err = MDLoader->parseMetadataKinds())
3464           return Err;
3465         break;
3466       case bitc::FUNCTION_BLOCK_ID:
3467         // If this is the first function body we've seen, reverse the
3468         // FunctionsWithBodies list.
3469         if (!SeenFirstFunctionBody) {
3470           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3471           if (Error Err = globalCleanup())
3472             return Err;
3473           SeenFirstFunctionBody = true;
3474         }
3475 
3476         if (VSTOffset > 0) {
3477           // If we have a VST forward declaration record, make sure we
3478           // parse the VST now if we haven't already. It is needed to
3479           // set up the DeferredFunctionInfo vector for lazy reading.
3480           if (!SeenValueSymbolTable) {
3481             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3482               return Err;
3483             SeenValueSymbolTable = true;
3484             // Fall through so that we record the NextUnreadBit below.
3485             // This is necessary in case we have an anonymous function that
3486             // is later materialized. Since it will not have a VST entry we
3487             // need to fall back to the lazy parse to find its offset.
3488           } else {
3489             // If we have a VST forward declaration record, but have already
3490             // parsed the VST (just above, when the first function body was
3491             // encountered here), then we are resuming the parse after
3492             // materializing functions. The ResumeBit points to the
3493             // start of the last function block recorded in the
3494             // DeferredFunctionInfo map. Skip it.
3495             if (Error Err = Stream.SkipBlock())
3496               return Err;
3497             continue;
3498           }
3499         }
3500 
3501         // Support older bitcode files that did not have the function
3502         // index in the VST, nor a VST forward declaration record, as
3503         // well as anonymous functions that do not have VST entries.
3504         // Build the DeferredFunctionInfo vector on the fly.
3505         if (Error Err = rememberAndSkipFunctionBody())
3506           return Err;
3507 
3508         // Suspend parsing when we reach the function bodies. Subsequent
3509         // materialization calls will resume it when necessary. If the bitcode
3510         // file is old, the symbol table will be at the end instead and will not
3511         // have been seen yet. In this case, just finish the parse now.
3512         if (SeenValueSymbolTable) {
3513           NextUnreadBit = Stream.GetCurrentBitNo();
3514           // After the VST has been parsed, we need to make sure intrinsic name
3515           // are auto-upgraded.
3516           return globalCleanup();
3517         }
3518         break;
3519       case bitc::USELIST_BLOCK_ID:
3520         if (Error Err = parseUseLists())
3521           return Err;
3522         break;
3523       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3524         if (Error Err = parseOperandBundleTags())
3525           return Err;
3526         break;
3527       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3528         if (Error Err = parseSyncScopeNames())
3529           return Err;
3530         break;
3531       }
3532       continue;
3533 
3534     case BitstreamEntry::Record:
3535       // The interesting case.
3536       break;
3537     }
3538 
3539     // Read a record.
3540     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3541     if (!MaybeBitCode)
3542       return MaybeBitCode.takeError();
3543     switch (unsigned BitCode = MaybeBitCode.get()) {
3544     default: break;  // Default behavior, ignore unknown content.
3545     case bitc::MODULE_CODE_VERSION: {
3546       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3547       if (!VersionOrErr)
3548         return VersionOrErr.takeError();
3549       UseRelativeIDs = *VersionOrErr >= 1;
3550       break;
3551     }
3552     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3553       std::string S;
3554       if (convertToString(Record, 0, S))
3555         return error("Invalid record");
3556       TheModule->setTargetTriple(S);
3557       break;
3558     }
3559     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3560       std::string S;
3561       if (convertToString(Record, 0, S))
3562         return error("Invalid record");
3563       TheModule->setDataLayout(S);
3564       break;
3565     }
3566     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3567       std::string S;
3568       if (convertToString(Record, 0, S))
3569         return error("Invalid record");
3570       TheModule->setModuleInlineAsm(S);
3571       break;
3572     }
3573     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3574       // FIXME: Remove in 4.0.
3575       std::string S;
3576       if (convertToString(Record, 0, S))
3577         return error("Invalid record");
3578       // Ignore value.
3579       break;
3580     }
3581     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3582       std::string S;
3583       if (convertToString(Record, 0, S))
3584         return error("Invalid record");
3585       SectionTable.push_back(S);
3586       break;
3587     }
3588     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3589       std::string S;
3590       if (convertToString(Record, 0, S))
3591         return error("Invalid record");
3592       GCTable.push_back(S);
3593       break;
3594     }
3595     case bitc::MODULE_CODE_COMDAT:
3596       if (Error Err = parseComdatRecord(Record))
3597         return Err;
3598       break;
3599     case bitc::MODULE_CODE_GLOBALVAR:
3600       if (Error Err = parseGlobalVarRecord(Record))
3601         return Err;
3602       break;
3603     case bitc::MODULE_CODE_FUNCTION:
3604       if (Error Err = parseFunctionRecord(Record))
3605         return Err;
3606       break;
3607     case bitc::MODULE_CODE_IFUNC:
3608     case bitc::MODULE_CODE_ALIAS:
3609     case bitc::MODULE_CODE_ALIAS_OLD:
3610       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3611         return Err;
3612       break;
3613     /// MODULE_CODE_VSTOFFSET: [offset]
3614     case bitc::MODULE_CODE_VSTOFFSET:
3615       if (Record.size() < 1)
3616         return error("Invalid record");
3617       // Note that we subtract 1 here because the offset is relative to one word
3618       // before the start of the identification or module block, which was
3619       // historically always the start of the regular bitcode header.
3620       VSTOffset = Record[0] - 1;
3621       break;
3622     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3623     case bitc::MODULE_CODE_SOURCE_FILENAME:
3624       SmallString<128> ValueName;
3625       if (convertToString(Record, 0, ValueName))
3626         return error("Invalid record");
3627       TheModule->setSourceFileName(ValueName);
3628       break;
3629     }
3630     Record.clear();
3631   }
3632 }
3633 
3634 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3635                                       bool IsImporting) {
3636   TheModule = M;
3637   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3638                             [&](unsigned ID) { return getTypeByID(ID); });
3639   return parseModule(0, ShouldLazyLoadMetadata);
3640 }
3641 
3642 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3643   if (!isa<PointerType>(PtrType))
3644     return error("Load/Store operand is not a pointer type");
3645   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3646 
3647   if (ValType && ValType != ElemType)
3648     return error("Explicit load/store type does not match pointee "
3649                  "type of pointer operand");
3650   if (!PointerType::isLoadableOrStorableType(ElemType))
3651     return error("Cannot load/store from pointer");
3652   return Error::success();
3653 }
3654 
3655 void BitcodeReader::propagateByValTypes(CallBase *CB,
3656                                         ArrayRef<Type *> ArgsFullTys) {
3657   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3658     if (!CB->paramHasAttr(i, Attribute::ByVal))
3659       continue;
3660 
3661     CB->removeParamAttr(i, Attribute::ByVal);
3662     CB->addParamAttr(
3663         i, Attribute::getWithByValType(
3664                Context, getPointerElementFlatType(ArgsFullTys[i])));
3665   }
3666 }
3667 
3668 /// Lazily parse the specified function body block.
3669 Error BitcodeReader::parseFunctionBody(Function *F) {
3670   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3671     return Err;
3672 
3673   // Unexpected unresolved metadata when parsing function.
3674   if (MDLoader->hasFwdRefs())
3675     return error("Invalid function metadata: incoming forward references");
3676 
3677   InstructionList.clear();
3678   unsigned ModuleValueListSize = ValueList.size();
3679   unsigned ModuleMDLoaderSize = MDLoader->size();
3680 
3681   // Add all the function arguments to the value table.
3682   unsigned ArgNo = 0;
3683   FunctionType *FullFTy = FunctionTypes[F];
3684   for (Argument &I : F->args()) {
3685     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3686            "Incorrect fully specified type for Function Argument");
3687     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3688   }
3689   unsigned NextValueNo = ValueList.size();
3690   BasicBlock *CurBB = nullptr;
3691   unsigned CurBBNo = 0;
3692 
3693   DebugLoc LastLoc;
3694   auto getLastInstruction = [&]() -> Instruction * {
3695     if (CurBB && !CurBB->empty())
3696       return &CurBB->back();
3697     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3698              !FunctionBBs[CurBBNo - 1]->empty())
3699       return &FunctionBBs[CurBBNo - 1]->back();
3700     return nullptr;
3701   };
3702 
3703   std::vector<OperandBundleDef> OperandBundles;
3704 
3705   // Read all the records.
3706   SmallVector<uint64_t, 64> Record;
3707 
3708   while (true) {
3709     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3710     if (!MaybeEntry)
3711       return MaybeEntry.takeError();
3712     llvm::BitstreamEntry Entry = MaybeEntry.get();
3713 
3714     switch (Entry.Kind) {
3715     case BitstreamEntry::Error:
3716       return error("Malformed block");
3717     case BitstreamEntry::EndBlock:
3718       goto OutOfRecordLoop;
3719 
3720     case BitstreamEntry::SubBlock:
3721       switch (Entry.ID) {
3722       default:  // Skip unknown content.
3723         if (Error Err = Stream.SkipBlock())
3724           return Err;
3725         break;
3726       case bitc::CONSTANTS_BLOCK_ID:
3727         if (Error Err = parseConstants())
3728           return Err;
3729         NextValueNo = ValueList.size();
3730         break;
3731       case bitc::VALUE_SYMTAB_BLOCK_ID:
3732         if (Error Err = parseValueSymbolTable())
3733           return Err;
3734         break;
3735       case bitc::METADATA_ATTACHMENT_ID:
3736         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3737           return Err;
3738         break;
3739       case bitc::METADATA_BLOCK_ID:
3740         assert(DeferredMetadataInfo.empty() &&
3741                "Must read all module-level metadata before function-level");
3742         if (Error Err = MDLoader->parseFunctionMetadata())
3743           return Err;
3744         break;
3745       case bitc::USELIST_BLOCK_ID:
3746         if (Error Err = parseUseLists())
3747           return Err;
3748         break;
3749       }
3750       continue;
3751 
3752     case BitstreamEntry::Record:
3753       // The interesting case.
3754       break;
3755     }
3756 
3757     // Read a record.
3758     Record.clear();
3759     Instruction *I = nullptr;
3760     Type *FullTy = nullptr;
3761     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3762     if (!MaybeBitCode)
3763       return MaybeBitCode.takeError();
3764     switch (unsigned BitCode = MaybeBitCode.get()) {
3765     default: // Default behavior: reject
3766       return error("Invalid value");
3767     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3768       if (Record.size() < 1 || Record[0] == 0)
3769         return error("Invalid record");
3770       // Create all the basic blocks for the function.
3771       FunctionBBs.resize(Record[0]);
3772 
3773       // See if anything took the address of blocks in this function.
3774       auto BBFRI = BasicBlockFwdRefs.find(F);
3775       if (BBFRI == BasicBlockFwdRefs.end()) {
3776         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3777           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3778       } else {
3779         auto &BBRefs = BBFRI->second;
3780         // Check for invalid basic block references.
3781         if (BBRefs.size() > FunctionBBs.size())
3782           return error("Invalid ID");
3783         assert(!BBRefs.empty() && "Unexpected empty array");
3784         assert(!BBRefs.front() && "Invalid reference to entry block");
3785         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3786              ++I)
3787           if (I < RE && BBRefs[I]) {
3788             BBRefs[I]->insertInto(F);
3789             FunctionBBs[I] = BBRefs[I];
3790           } else {
3791             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3792           }
3793 
3794         // Erase from the table.
3795         BasicBlockFwdRefs.erase(BBFRI);
3796       }
3797 
3798       CurBB = FunctionBBs[0];
3799       continue;
3800     }
3801 
3802     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3803       // This record indicates that the last instruction is at the same
3804       // location as the previous instruction with a location.
3805       I = getLastInstruction();
3806 
3807       if (!I)
3808         return error("Invalid record");
3809       I->setDebugLoc(LastLoc);
3810       I = nullptr;
3811       continue;
3812 
3813     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3814       I = getLastInstruction();
3815       if (!I || Record.size() < 4)
3816         return error("Invalid record");
3817 
3818       unsigned Line = Record[0], Col = Record[1];
3819       unsigned ScopeID = Record[2], IAID = Record[3];
3820       bool isImplicitCode = Record.size() == 5 && Record[4];
3821 
3822       MDNode *Scope = nullptr, *IA = nullptr;
3823       if (ScopeID) {
3824         Scope = dyn_cast_or_null<MDNode>(
3825             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3826         if (!Scope)
3827           return error("Invalid record");
3828       }
3829       if (IAID) {
3830         IA = dyn_cast_or_null<MDNode>(
3831             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3832         if (!IA)
3833           return error("Invalid record");
3834       }
3835       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3836       I->setDebugLoc(LastLoc);
3837       I = nullptr;
3838       continue;
3839     }
3840     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3841       unsigned OpNum = 0;
3842       Value *LHS;
3843       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3844           OpNum+1 > Record.size())
3845         return error("Invalid record");
3846 
3847       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3848       if (Opc == -1)
3849         return error("Invalid record");
3850       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3851       InstructionList.push_back(I);
3852       if (OpNum < Record.size()) {
3853         if (isa<FPMathOperator>(I)) {
3854           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3855           if (FMF.any())
3856             I->setFastMathFlags(FMF);
3857         }
3858       }
3859       break;
3860     }
3861     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3862       unsigned OpNum = 0;
3863       Value *LHS, *RHS;
3864       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3865           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3866           OpNum+1 > Record.size())
3867         return error("Invalid record");
3868 
3869       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3870       if (Opc == -1)
3871         return error("Invalid record");
3872       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3873       InstructionList.push_back(I);
3874       if (OpNum < Record.size()) {
3875         if (Opc == Instruction::Add ||
3876             Opc == Instruction::Sub ||
3877             Opc == Instruction::Mul ||
3878             Opc == Instruction::Shl) {
3879           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3880             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3881           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3882             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3883         } else if (Opc == Instruction::SDiv ||
3884                    Opc == Instruction::UDiv ||
3885                    Opc == Instruction::LShr ||
3886                    Opc == Instruction::AShr) {
3887           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3888             cast<BinaryOperator>(I)->setIsExact(true);
3889         } else if (isa<FPMathOperator>(I)) {
3890           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3891           if (FMF.any())
3892             I->setFastMathFlags(FMF);
3893         }
3894 
3895       }
3896       break;
3897     }
3898     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3899       unsigned OpNum = 0;
3900       Value *Op;
3901       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3902           OpNum+2 != Record.size())
3903         return error("Invalid record");
3904 
3905       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
3906       Type *ResTy = flattenPointerTypes(FullTy);
3907       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3908       if (Opc == -1 || !ResTy)
3909         return error("Invalid record");
3910       Instruction *Temp = nullptr;
3911       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3912         if (Temp) {
3913           InstructionList.push_back(Temp);
3914           CurBB->getInstList().push_back(Temp);
3915         }
3916       } else {
3917         auto CastOp = (Instruction::CastOps)Opc;
3918         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3919           return error("Invalid cast");
3920         I = CastInst::Create(CastOp, Op, ResTy);
3921       }
3922       InstructionList.push_back(I);
3923       break;
3924     }
3925     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3926     case bitc::FUNC_CODE_INST_GEP_OLD:
3927     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3928       unsigned OpNum = 0;
3929 
3930       Type *Ty;
3931       bool InBounds;
3932 
3933       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3934         InBounds = Record[OpNum++];
3935         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3936         Ty = flattenPointerTypes(FullTy);
3937       } else {
3938         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3939         Ty = nullptr;
3940       }
3941 
3942       Value *BasePtr;
3943       Type *FullBaseTy = nullptr;
3944       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
3945         return error("Invalid record");
3946 
3947       if (!Ty) {
3948         std::tie(FullTy, Ty) =
3949             getPointerElementTypes(FullBaseTy->getScalarType());
3950       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
3951         return error(
3952             "Explicit gep type does not match pointee type of pointer operand");
3953 
3954       SmallVector<Value*, 16> GEPIdx;
3955       while (OpNum != Record.size()) {
3956         Value *Op;
3957         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3958           return error("Invalid record");
3959         GEPIdx.push_back(Op);
3960       }
3961 
3962       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3963       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
3964 
3965       InstructionList.push_back(I);
3966       if (InBounds)
3967         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3968       break;
3969     }
3970 
3971     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3972                                        // EXTRACTVAL: [opty, opval, n x indices]
3973       unsigned OpNum = 0;
3974       Value *Agg;
3975       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
3976         return error("Invalid record");
3977 
3978       unsigned RecSize = Record.size();
3979       if (OpNum == RecSize)
3980         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3981 
3982       SmallVector<unsigned, 4> EXTRACTVALIdx;
3983       for (; OpNum != RecSize; ++OpNum) {
3984         bool IsArray = FullTy->isArrayTy();
3985         bool IsStruct = FullTy->isStructTy();
3986         uint64_t Index = Record[OpNum];
3987 
3988         if (!IsStruct && !IsArray)
3989           return error("EXTRACTVAL: Invalid type");
3990         if ((unsigned)Index != Index)
3991           return error("Invalid value");
3992         if (IsStruct && Index >= FullTy->getStructNumElements())
3993           return error("EXTRACTVAL: Invalid struct index");
3994         if (IsArray && Index >= FullTy->getArrayNumElements())
3995           return error("EXTRACTVAL: Invalid array index");
3996         EXTRACTVALIdx.push_back((unsigned)Index);
3997 
3998         if (IsStruct)
3999           FullTy = FullTy->getStructElementType(Index);
4000         else
4001           FullTy = FullTy->getArrayElementType();
4002       }
4003 
4004       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4005       InstructionList.push_back(I);
4006       break;
4007     }
4008 
4009     case bitc::FUNC_CODE_INST_INSERTVAL: {
4010                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4011       unsigned OpNum = 0;
4012       Value *Agg;
4013       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4014         return error("Invalid record");
4015       Value *Val;
4016       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4017         return error("Invalid record");
4018 
4019       unsigned RecSize = Record.size();
4020       if (OpNum == RecSize)
4021         return error("INSERTVAL: Invalid instruction with 0 indices");
4022 
4023       SmallVector<unsigned, 4> INSERTVALIdx;
4024       Type *CurTy = Agg->getType();
4025       for (; OpNum != RecSize; ++OpNum) {
4026         bool IsArray = CurTy->isArrayTy();
4027         bool IsStruct = CurTy->isStructTy();
4028         uint64_t Index = Record[OpNum];
4029 
4030         if (!IsStruct && !IsArray)
4031           return error("INSERTVAL: Invalid type");
4032         if ((unsigned)Index != Index)
4033           return error("Invalid value");
4034         if (IsStruct && Index >= CurTy->getStructNumElements())
4035           return error("INSERTVAL: Invalid struct index");
4036         if (IsArray && Index >= CurTy->getArrayNumElements())
4037           return error("INSERTVAL: Invalid array index");
4038 
4039         INSERTVALIdx.push_back((unsigned)Index);
4040         if (IsStruct)
4041           CurTy = CurTy->getStructElementType(Index);
4042         else
4043           CurTy = CurTy->getArrayElementType();
4044       }
4045 
4046       if (CurTy != Val->getType())
4047         return error("Inserted value type doesn't match aggregate type");
4048 
4049       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4050       InstructionList.push_back(I);
4051       break;
4052     }
4053 
4054     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4055       // obsolete form of select
4056       // handles select i1 ... in old bitcode
4057       unsigned OpNum = 0;
4058       Value *TrueVal, *FalseVal, *Cond;
4059       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4060           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4061           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4062         return error("Invalid record");
4063 
4064       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4065       InstructionList.push_back(I);
4066       break;
4067     }
4068 
4069     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4070       // new form of select
4071       // handles select i1 or select [N x i1]
4072       unsigned OpNum = 0;
4073       Value *TrueVal, *FalseVal, *Cond;
4074       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4075           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4076           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4077         return error("Invalid record");
4078 
4079       // select condition can be either i1 or [N x i1]
4080       if (VectorType* vector_type =
4081           dyn_cast<VectorType>(Cond->getType())) {
4082         // expect <n x i1>
4083         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4084           return error("Invalid type for value");
4085       } else {
4086         // expect i1
4087         if (Cond->getType() != Type::getInt1Ty(Context))
4088           return error("Invalid type for value");
4089       }
4090 
4091       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4092       InstructionList.push_back(I);
4093       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4094         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4095         if (FMF.any())
4096           I->setFastMathFlags(FMF);
4097       }
4098       break;
4099     }
4100 
4101     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4102       unsigned OpNum = 0;
4103       Value *Vec, *Idx;
4104       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4105           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4106         return error("Invalid record");
4107       if (!Vec->getType()->isVectorTy())
4108         return error("Invalid type for value");
4109       I = ExtractElementInst::Create(Vec, Idx);
4110       FullTy = FullTy->getVectorElementType();
4111       InstructionList.push_back(I);
4112       break;
4113     }
4114 
4115     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4116       unsigned OpNum = 0;
4117       Value *Vec, *Elt, *Idx;
4118       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4119         return error("Invalid record");
4120       if (!Vec->getType()->isVectorTy())
4121         return error("Invalid type for value");
4122       if (popValue(Record, OpNum, NextValueNo,
4123                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4124           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4125         return error("Invalid record");
4126       I = InsertElementInst::Create(Vec, Elt, Idx);
4127       InstructionList.push_back(I);
4128       break;
4129     }
4130 
4131     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4132       unsigned OpNum = 0;
4133       Value *Vec1, *Vec2, *Mask;
4134       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4135           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4136         return error("Invalid record");
4137 
4138       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4139         return error("Invalid record");
4140       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4141         return error("Invalid type for value");
4142       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4143       FullTy = VectorType::get(FullTy->getVectorElementType(),
4144                                Mask->getType()->getVectorNumElements());
4145       InstructionList.push_back(I);
4146       break;
4147     }
4148 
4149     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4150       // Old form of ICmp/FCmp returning bool
4151       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4152       // both legal on vectors but had different behaviour.
4153     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4154       // FCmp/ICmp returning bool or vector of bool
4155 
4156       unsigned OpNum = 0;
4157       Value *LHS, *RHS;
4158       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4159           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4160         return error("Invalid record");
4161 
4162       unsigned PredVal = Record[OpNum];
4163       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4164       FastMathFlags FMF;
4165       if (IsFP && Record.size() > OpNum+1)
4166         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4167 
4168       if (OpNum+1 != Record.size())
4169         return error("Invalid record");
4170 
4171       if (LHS->getType()->isFPOrFPVectorTy())
4172         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4173       else
4174         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4175 
4176       if (FMF.any())
4177         I->setFastMathFlags(FMF);
4178       InstructionList.push_back(I);
4179       break;
4180     }
4181 
4182     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4183       {
4184         unsigned Size = Record.size();
4185         if (Size == 0) {
4186           I = ReturnInst::Create(Context);
4187           InstructionList.push_back(I);
4188           break;
4189         }
4190 
4191         unsigned OpNum = 0;
4192         Value *Op = nullptr;
4193         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4194           return error("Invalid record");
4195         if (OpNum != Record.size())
4196           return error("Invalid record");
4197 
4198         I = ReturnInst::Create(Context, Op);
4199         InstructionList.push_back(I);
4200         break;
4201       }
4202     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4203       if (Record.size() != 1 && Record.size() != 3)
4204         return error("Invalid record");
4205       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4206       if (!TrueDest)
4207         return error("Invalid record");
4208 
4209       if (Record.size() == 1) {
4210         I = BranchInst::Create(TrueDest);
4211         InstructionList.push_back(I);
4212       }
4213       else {
4214         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4215         Value *Cond = getValue(Record, 2, NextValueNo,
4216                                Type::getInt1Ty(Context));
4217         if (!FalseDest || !Cond)
4218           return error("Invalid record");
4219         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4220         InstructionList.push_back(I);
4221       }
4222       break;
4223     }
4224     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4225       if (Record.size() != 1 && Record.size() != 2)
4226         return error("Invalid record");
4227       unsigned Idx = 0;
4228       Value *CleanupPad =
4229           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4230       if (!CleanupPad)
4231         return error("Invalid record");
4232       BasicBlock *UnwindDest = nullptr;
4233       if (Record.size() == 2) {
4234         UnwindDest = getBasicBlock(Record[Idx++]);
4235         if (!UnwindDest)
4236           return error("Invalid record");
4237       }
4238 
4239       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4240       InstructionList.push_back(I);
4241       break;
4242     }
4243     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4244       if (Record.size() != 2)
4245         return error("Invalid record");
4246       unsigned Idx = 0;
4247       Value *CatchPad =
4248           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4249       if (!CatchPad)
4250         return error("Invalid record");
4251       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4252       if (!BB)
4253         return error("Invalid record");
4254 
4255       I = CatchReturnInst::Create(CatchPad, BB);
4256       InstructionList.push_back(I);
4257       break;
4258     }
4259     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4260       // We must have, at minimum, the outer scope and the number of arguments.
4261       if (Record.size() < 2)
4262         return error("Invalid record");
4263 
4264       unsigned Idx = 0;
4265 
4266       Value *ParentPad =
4267           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4268 
4269       unsigned NumHandlers = Record[Idx++];
4270 
4271       SmallVector<BasicBlock *, 2> Handlers;
4272       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4273         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4274         if (!BB)
4275           return error("Invalid record");
4276         Handlers.push_back(BB);
4277       }
4278 
4279       BasicBlock *UnwindDest = nullptr;
4280       if (Idx + 1 == Record.size()) {
4281         UnwindDest = getBasicBlock(Record[Idx++]);
4282         if (!UnwindDest)
4283           return error("Invalid record");
4284       }
4285 
4286       if (Record.size() != Idx)
4287         return error("Invalid record");
4288 
4289       auto *CatchSwitch =
4290           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4291       for (BasicBlock *Handler : Handlers)
4292         CatchSwitch->addHandler(Handler);
4293       I = CatchSwitch;
4294       InstructionList.push_back(I);
4295       break;
4296     }
4297     case bitc::FUNC_CODE_INST_CATCHPAD:
4298     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4299       // We must have, at minimum, the outer scope and the number of arguments.
4300       if (Record.size() < 2)
4301         return error("Invalid record");
4302 
4303       unsigned Idx = 0;
4304 
4305       Value *ParentPad =
4306           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4307 
4308       unsigned NumArgOperands = Record[Idx++];
4309 
4310       SmallVector<Value *, 2> Args;
4311       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4312         Value *Val;
4313         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4314           return error("Invalid record");
4315         Args.push_back(Val);
4316       }
4317 
4318       if (Record.size() != Idx)
4319         return error("Invalid record");
4320 
4321       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4322         I = CleanupPadInst::Create(ParentPad, Args);
4323       else
4324         I = CatchPadInst::Create(ParentPad, Args);
4325       InstructionList.push_back(I);
4326       break;
4327     }
4328     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4329       // Check magic
4330       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4331         // "New" SwitchInst format with case ranges. The changes to write this
4332         // format were reverted but we still recognize bitcode that uses it.
4333         // Hopefully someday we will have support for case ranges and can use
4334         // this format again.
4335 
4336         Type *OpTy = getTypeByID(Record[1]);
4337         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4338 
4339         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4340         BasicBlock *Default = getBasicBlock(Record[3]);
4341         if (!OpTy || !Cond || !Default)
4342           return error("Invalid record");
4343 
4344         unsigned NumCases = Record[4];
4345 
4346         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4347         InstructionList.push_back(SI);
4348 
4349         unsigned CurIdx = 5;
4350         for (unsigned i = 0; i != NumCases; ++i) {
4351           SmallVector<ConstantInt*, 1> CaseVals;
4352           unsigned NumItems = Record[CurIdx++];
4353           for (unsigned ci = 0; ci != NumItems; ++ci) {
4354             bool isSingleNumber = Record[CurIdx++];
4355 
4356             APInt Low;
4357             unsigned ActiveWords = 1;
4358             if (ValueBitWidth > 64)
4359               ActiveWords = Record[CurIdx++];
4360             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4361                                 ValueBitWidth);
4362             CurIdx += ActiveWords;
4363 
4364             if (!isSingleNumber) {
4365               ActiveWords = 1;
4366               if (ValueBitWidth > 64)
4367                 ActiveWords = Record[CurIdx++];
4368               APInt High = readWideAPInt(
4369                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4370               CurIdx += ActiveWords;
4371 
4372               // FIXME: It is not clear whether values in the range should be
4373               // compared as signed or unsigned values. The partially
4374               // implemented changes that used this format in the past used
4375               // unsigned comparisons.
4376               for ( ; Low.ule(High); ++Low)
4377                 CaseVals.push_back(ConstantInt::get(Context, Low));
4378             } else
4379               CaseVals.push_back(ConstantInt::get(Context, Low));
4380           }
4381           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4382           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4383                  cve = CaseVals.end(); cvi != cve; ++cvi)
4384             SI->addCase(*cvi, DestBB);
4385         }
4386         I = SI;
4387         break;
4388       }
4389 
4390       // Old SwitchInst format without case ranges.
4391 
4392       if (Record.size() < 3 || (Record.size() & 1) == 0)
4393         return error("Invalid record");
4394       Type *OpTy = getTypeByID(Record[0]);
4395       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4396       BasicBlock *Default = getBasicBlock(Record[2]);
4397       if (!OpTy || !Cond || !Default)
4398         return error("Invalid record");
4399       unsigned NumCases = (Record.size()-3)/2;
4400       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4401       InstructionList.push_back(SI);
4402       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4403         ConstantInt *CaseVal =
4404           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4405         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4406         if (!CaseVal || !DestBB) {
4407           delete SI;
4408           return error("Invalid record");
4409         }
4410         SI->addCase(CaseVal, DestBB);
4411       }
4412       I = SI;
4413       break;
4414     }
4415     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4416       if (Record.size() < 2)
4417         return error("Invalid record");
4418       Type *OpTy = getTypeByID(Record[0]);
4419       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4420       if (!OpTy || !Address)
4421         return error("Invalid record");
4422       unsigned NumDests = Record.size()-2;
4423       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4424       InstructionList.push_back(IBI);
4425       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4426         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4427           IBI->addDestination(DestBB);
4428         } else {
4429           delete IBI;
4430           return error("Invalid record");
4431         }
4432       }
4433       I = IBI;
4434       break;
4435     }
4436 
4437     case bitc::FUNC_CODE_INST_INVOKE: {
4438       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4439       if (Record.size() < 4)
4440         return error("Invalid record");
4441       unsigned OpNum = 0;
4442       AttributeList PAL = getAttributes(Record[OpNum++]);
4443       unsigned CCInfo = Record[OpNum++];
4444       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4445       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4446 
4447       FunctionType *FTy = nullptr;
4448       FunctionType *FullFTy = nullptr;
4449       if ((CCInfo >> 13) & 1) {
4450         FullFTy =
4451             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4452         if (!FullFTy)
4453           return error("Explicit invoke type is not a function type");
4454         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4455       }
4456 
4457       Value *Callee;
4458       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4459         return error("Invalid record");
4460 
4461       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4462       if (!CalleeTy)
4463         return error("Callee is not a pointer");
4464       if (!FTy) {
4465         FullFTy =
4466             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4467         if (!FullFTy)
4468           return error("Callee is not of pointer to function type");
4469         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4470       } else if (getPointerElementFlatType(FullTy) != FTy)
4471         return error("Explicit invoke type does not match pointee type of "
4472                      "callee operand");
4473       if (Record.size() < FTy->getNumParams() + OpNum)
4474         return error("Insufficient operands to call");
4475 
4476       SmallVector<Value*, 16> Ops;
4477       SmallVector<Type *, 16> ArgsFullTys;
4478       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4479         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4480                                FTy->getParamType(i)));
4481         ArgsFullTys.push_back(FullFTy->getParamType(i));
4482         if (!Ops.back())
4483           return error("Invalid record");
4484       }
4485 
4486       if (!FTy->isVarArg()) {
4487         if (Record.size() != OpNum)
4488           return error("Invalid record");
4489       } else {
4490         // Read type/value pairs for varargs params.
4491         while (OpNum != Record.size()) {
4492           Value *Op;
4493           Type *FullTy;
4494           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4495             return error("Invalid record");
4496           Ops.push_back(Op);
4497           ArgsFullTys.push_back(FullTy);
4498         }
4499       }
4500 
4501       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4502                              OperandBundles);
4503       FullTy = FullFTy->getReturnType();
4504       OperandBundles.clear();
4505       InstructionList.push_back(I);
4506       cast<InvokeInst>(I)->setCallingConv(
4507           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4508       cast<InvokeInst>(I)->setAttributes(PAL);
4509       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4510 
4511       break;
4512     }
4513     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4514       unsigned Idx = 0;
4515       Value *Val = nullptr;
4516       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4517         return error("Invalid record");
4518       I = ResumeInst::Create(Val);
4519       InstructionList.push_back(I);
4520       break;
4521     }
4522     case bitc::FUNC_CODE_INST_CALLBR: {
4523       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4524       unsigned OpNum = 0;
4525       AttributeList PAL = getAttributes(Record[OpNum++]);
4526       unsigned CCInfo = Record[OpNum++];
4527 
4528       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4529       unsigned NumIndirectDests = Record[OpNum++];
4530       SmallVector<BasicBlock *, 16> IndirectDests;
4531       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4532         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4533 
4534       FunctionType *FTy = nullptr;
4535       FunctionType *FullFTy = nullptr;
4536       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4537         FullFTy =
4538             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4539         if (!FullFTy)
4540           return error("Explicit call type is not a function type");
4541         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4542       }
4543 
4544       Value *Callee;
4545       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4546         return error("Invalid record");
4547 
4548       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4549       if (!OpTy)
4550         return error("Callee is not a pointer type");
4551       if (!FTy) {
4552         FullFTy =
4553             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4554         if (!FullFTy)
4555           return error("Callee is not of pointer to function type");
4556         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4557       } else if (getPointerElementFlatType(FullTy) != FTy)
4558         return error("Explicit call type does not match pointee type of "
4559                      "callee operand");
4560       if (Record.size() < FTy->getNumParams() + OpNum)
4561         return error("Insufficient operands to call");
4562 
4563       SmallVector<Value*, 16> Args;
4564       // Read the fixed params.
4565       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4566         if (FTy->getParamType(i)->isLabelTy())
4567           Args.push_back(getBasicBlock(Record[OpNum]));
4568         else
4569           Args.push_back(getValue(Record, OpNum, NextValueNo,
4570                                   FTy->getParamType(i)));
4571         if (!Args.back())
4572           return error("Invalid record");
4573       }
4574 
4575       // Read type/value pairs for varargs params.
4576       if (!FTy->isVarArg()) {
4577         if (OpNum != Record.size())
4578           return error("Invalid record");
4579       } else {
4580         while (OpNum != Record.size()) {
4581           Value *Op;
4582           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4583             return error("Invalid record");
4584           Args.push_back(Op);
4585         }
4586       }
4587 
4588       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4589                              OperandBundles);
4590       FullTy = FullFTy->getReturnType();
4591       OperandBundles.clear();
4592       InstructionList.push_back(I);
4593       cast<CallBrInst>(I)->setCallingConv(
4594           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4595       cast<CallBrInst>(I)->setAttributes(PAL);
4596       break;
4597     }
4598     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4599       I = new UnreachableInst(Context);
4600       InstructionList.push_back(I);
4601       break;
4602     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4603       if (Record.size() < 1 || ((Record.size()-1)&1))
4604         return error("Invalid record");
4605       FullTy = getFullyStructuredTypeByID(Record[0]);
4606       Type *Ty = flattenPointerTypes(FullTy);
4607       if (!Ty)
4608         return error("Invalid record");
4609 
4610       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4611       InstructionList.push_back(PN);
4612 
4613       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4614         Value *V;
4615         // With the new function encoding, it is possible that operands have
4616         // negative IDs (for forward references).  Use a signed VBR
4617         // representation to keep the encoding small.
4618         if (UseRelativeIDs)
4619           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4620         else
4621           V = getValue(Record, 1+i, NextValueNo, Ty);
4622         BasicBlock *BB = getBasicBlock(Record[2+i]);
4623         if (!V || !BB)
4624           return error("Invalid record");
4625         PN->addIncoming(V, BB);
4626       }
4627       I = PN;
4628       break;
4629     }
4630 
4631     case bitc::FUNC_CODE_INST_LANDINGPAD:
4632     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4633       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4634       unsigned Idx = 0;
4635       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4636         if (Record.size() < 3)
4637           return error("Invalid record");
4638       } else {
4639         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4640         if (Record.size() < 4)
4641           return error("Invalid record");
4642       }
4643       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4644       Type *Ty = flattenPointerTypes(FullTy);
4645       if (!Ty)
4646         return error("Invalid record");
4647       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4648         Value *PersFn = nullptr;
4649         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4650           return error("Invalid record");
4651 
4652         if (!F->hasPersonalityFn())
4653           F->setPersonalityFn(cast<Constant>(PersFn));
4654         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4655           return error("Personality function mismatch");
4656       }
4657 
4658       bool IsCleanup = !!Record[Idx++];
4659       unsigned NumClauses = Record[Idx++];
4660       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4661       LP->setCleanup(IsCleanup);
4662       for (unsigned J = 0; J != NumClauses; ++J) {
4663         LandingPadInst::ClauseType CT =
4664           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4665         Value *Val;
4666 
4667         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4668           delete LP;
4669           return error("Invalid record");
4670         }
4671 
4672         assert((CT != LandingPadInst::Catch ||
4673                 !isa<ArrayType>(Val->getType())) &&
4674                "Catch clause has a invalid type!");
4675         assert((CT != LandingPadInst::Filter ||
4676                 isa<ArrayType>(Val->getType())) &&
4677                "Filter clause has invalid type!");
4678         LP->addClause(cast<Constant>(Val));
4679       }
4680 
4681       I = LP;
4682       InstructionList.push_back(I);
4683       break;
4684     }
4685 
4686     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4687       if (Record.size() != 4)
4688         return error("Invalid record");
4689       uint64_t AlignRecord = Record[3];
4690       const uint64_t InAllocaMask = uint64_t(1) << 5;
4691       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4692       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4693       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4694                                 SwiftErrorMask;
4695       bool InAlloca = AlignRecord & InAllocaMask;
4696       bool SwiftError = AlignRecord & SwiftErrorMask;
4697       FullTy = getFullyStructuredTypeByID(Record[0]);
4698       Type *Ty = flattenPointerTypes(FullTy);
4699       if ((AlignRecord & ExplicitTypeMask) == 0) {
4700         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4701         if (!PTy)
4702           return error("Old-style alloca with a non-pointer type");
4703         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4704       }
4705       Type *OpTy = getTypeByID(Record[1]);
4706       Value *Size = getFnValueByID(Record[2], OpTy);
4707       unsigned Align;
4708       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4709         return Err;
4710       }
4711       if (!Ty || !Size)
4712         return error("Invalid record");
4713 
4714       // FIXME: Make this an optional field.
4715       const DataLayout &DL = TheModule->getDataLayout();
4716       unsigned AS = DL.getAllocaAddrSpace();
4717 
4718       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4719       AI->setUsedWithInAlloca(InAlloca);
4720       AI->setSwiftError(SwiftError);
4721       I = AI;
4722       FullTy = PointerType::get(FullTy, AS);
4723       InstructionList.push_back(I);
4724       break;
4725     }
4726     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4727       unsigned OpNum = 0;
4728       Value *Op;
4729       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4730           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4731         return error("Invalid record");
4732 
4733       if (!isa<PointerType>(Op->getType()))
4734         return error("Load operand is not a pointer type");
4735 
4736       Type *Ty = nullptr;
4737       if (OpNum + 3 == Record.size()) {
4738         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4739         Ty = flattenPointerTypes(FullTy);
4740       } else
4741         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4742 
4743       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4744         return Err;
4745 
4746       unsigned Align;
4747       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4748         return Err;
4749       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4750       InstructionList.push_back(I);
4751       break;
4752     }
4753     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4754        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4755       unsigned OpNum = 0;
4756       Value *Op;
4757       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4758           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4759         return error("Invalid record");
4760 
4761       if (!isa<PointerType>(Op->getType()))
4762         return error("Load operand is not a pointer type");
4763 
4764       Type *Ty = nullptr;
4765       if (OpNum + 5 == Record.size()) {
4766         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4767         Ty = flattenPointerTypes(FullTy);
4768       } else
4769         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4770 
4771       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4772         return Err;
4773 
4774       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4775       if (Ordering == AtomicOrdering::NotAtomic ||
4776           Ordering == AtomicOrdering::Release ||
4777           Ordering == AtomicOrdering::AcquireRelease)
4778         return error("Invalid record");
4779       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4780         return error("Invalid record");
4781       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4782 
4783       unsigned Align;
4784       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4785         return Err;
4786       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4787       InstructionList.push_back(I);
4788       break;
4789     }
4790     case bitc::FUNC_CODE_INST_STORE:
4791     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4792       unsigned OpNum = 0;
4793       Value *Val, *Ptr;
4794       Type *FullTy;
4795       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4796           (BitCode == bitc::FUNC_CODE_INST_STORE
4797                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4798                : popValue(Record, OpNum, NextValueNo,
4799                           getPointerElementFlatType(FullTy), Val)) ||
4800           OpNum + 2 != Record.size())
4801         return error("Invalid record");
4802 
4803       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4804         return Err;
4805       unsigned Align;
4806       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4807         return Err;
4808       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4809       InstructionList.push_back(I);
4810       break;
4811     }
4812     case bitc::FUNC_CODE_INST_STOREATOMIC:
4813     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4814       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4815       unsigned OpNum = 0;
4816       Value *Val, *Ptr;
4817       Type *FullTy;
4818       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4819           !isa<PointerType>(Ptr->getType()) ||
4820           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4821                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4822                : popValue(Record, OpNum, NextValueNo,
4823                           getPointerElementFlatType(FullTy), Val)) ||
4824           OpNum + 4 != Record.size())
4825         return error("Invalid record");
4826 
4827       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4828         return Err;
4829       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4830       if (Ordering == AtomicOrdering::NotAtomic ||
4831           Ordering == AtomicOrdering::Acquire ||
4832           Ordering == AtomicOrdering::AcquireRelease)
4833         return error("Invalid record");
4834       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4835       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4836         return error("Invalid record");
4837 
4838       unsigned Align;
4839       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4840         return Err;
4841       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4842       InstructionList.push_back(I);
4843       break;
4844     }
4845     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4846     case bitc::FUNC_CODE_INST_CMPXCHG: {
4847       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4848       //          failureordering?, isweak?]
4849       unsigned OpNum = 0;
4850       Value *Ptr, *Cmp, *New;
4851       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4852         return error("Invalid record");
4853 
4854       if (!isa<PointerType>(Ptr->getType()))
4855         return error("Cmpxchg operand is not a pointer type");
4856 
4857       if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4858         if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4859           return error("Invalid record");
4860       } else if (popValue(Record, OpNum, NextValueNo,
4861                           getPointerElementFlatType(FullTy), Cmp))
4862         return error("Invalid record");
4863       else
4864         FullTy = cast<PointerType>(FullTy)->getElementType();
4865 
4866       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4867           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4868         return error("Invalid record");
4869 
4870       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4871       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4872           SuccessOrdering == AtomicOrdering::Unordered)
4873         return error("Invalid record");
4874       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4875 
4876       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4877         return Err;
4878       AtomicOrdering FailureOrdering;
4879       if (Record.size() < 7)
4880         FailureOrdering =
4881             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4882       else
4883         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4884 
4885       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4886                                 SSID);
4887       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
4888       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4889 
4890       if (Record.size() < 8) {
4891         // Before weak cmpxchgs existed, the instruction simply returned the
4892         // value loaded from memory, so bitcode files from that era will be
4893         // expecting the first component of a modern cmpxchg.
4894         CurBB->getInstList().push_back(I);
4895         I = ExtractValueInst::Create(I, 0);
4896         FullTy = cast<StructType>(FullTy)->getElementType(0);
4897       } else {
4898         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4899       }
4900 
4901       InstructionList.push_back(I);
4902       break;
4903     }
4904     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4905       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4906       unsigned OpNum = 0;
4907       Value *Ptr, *Val;
4908       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4909           !isa<PointerType>(Ptr->getType()) ||
4910           popValue(Record, OpNum, NextValueNo,
4911                    getPointerElementFlatType(FullTy), Val) ||
4912           OpNum + 4 != Record.size())
4913         return error("Invalid record");
4914       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4915       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4916           Operation > AtomicRMWInst::LAST_BINOP)
4917         return error("Invalid record");
4918       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4919       if (Ordering == AtomicOrdering::NotAtomic ||
4920           Ordering == AtomicOrdering::Unordered)
4921         return error("Invalid record");
4922       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4923       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4924       FullTy = getPointerElementFlatType(FullTy);
4925       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4926       InstructionList.push_back(I);
4927       break;
4928     }
4929     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4930       if (2 != Record.size())
4931         return error("Invalid record");
4932       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4933       if (Ordering == AtomicOrdering::NotAtomic ||
4934           Ordering == AtomicOrdering::Unordered ||
4935           Ordering == AtomicOrdering::Monotonic)
4936         return error("Invalid record");
4937       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4938       I = new FenceInst(Context, Ordering, SSID);
4939       InstructionList.push_back(I);
4940       break;
4941     }
4942     case bitc::FUNC_CODE_INST_CALL: {
4943       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4944       if (Record.size() < 3)
4945         return error("Invalid record");
4946 
4947       unsigned OpNum = 0;
4948       AttributeList PAL = getAttributes(Record[OpNum++]);
4949       unsigned CCInfo = Record[OpNum++];
4950 
4951       FastMathFlags FMF;
4952       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4953         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4954         if (!FMF.any())
4955           return error("Fast math flags indicator set for call with no FMF");
4956       }
4957 
4958       FunctionType *FTy = nullptr;
4959       FunctionType *FullFTy = nullptr;
4960       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4961         FullFTy =
4962             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4963         if (!FullFTy)
4964           return error("Explicit call type is not a function type");
4965         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4966       }
4967 
4968       Value *Callee;
4969       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4970         return error("Invalid record");
4971 
4972       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4973       if (!OpTy)
4974         return error("Callee is not a pointer type");
4975       if (!FTy) {
4976         FullFTy =
4977             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4978         if (!FullFTy)
4979           return error("Callee is not of pointer to function type");
4980         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4981       } else if (getPointerElementFlatType(FullTy) != FTy)
4982         return error("Explicit call type does not match pointee type of "
4983                      "callee operand");
4984       if (Record.size() < FTy->getNumParams() + OpNum)
4985         return error("Insufficient operands to call");
4986 
4987       SmallVector<Value*, 16> Args;
4988       SmallVector<Type*, 16> ArgsFullTys;
4989       // Read the fixed params.
4990       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4991         if (FTy->getParamType(i)->isLabelTy())
4992           Args.push_back(getBasicBlock(Record[OpNum]));
4993         else
4994           Args.push_back(getValue(Record, OpNum, NextValueNo,
4995                                   FTy->getParamType(i)));
4996         ArgsFullTys.push_back(FullFTy->getParamType(i));
4997         if (!Args.back())
4998           return error("Invalid record");
4999       }
5000 
5001       // Read type/value pairs for varargs params.
5002       if (!FTy->isVarArg()) {
5003         if (OpNum != Record.size())
5004           return error("Invalid record");
5005       } else {
5006         while (OpNum != Record.size()) {
5007           Value *Op;
5008           Type *FullTy;
5009           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5010             return error("Invalid record");
5011           Args.push_back(Op);
5012           ArgsFullTys.push_back(FullTy);
5013         }
5014       }
5015 
5016       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5017       FullTy = FullFTy->getReturnType();
5018       OperandBundles.clear();
5019       InstructionList.push_back(I);
5020       cast<CallInst>(I)->setCallingConv(
5021           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5022       CallInst::TailCallKind TCK = CallInst::TCK_None;
5023       if (CCInfo & 1 << bitc::CALL_TAIL)
5024         TCK = CallInst::TCK_Tail;
5025       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5026         TCK = CallInst::TCK_MustTail;
5027       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5028         TCK = CallInst::TCK_NoTail;
5029       cast<CallInst>(I)->setTailCallKind(TCK);
5030       cast<CallInst>(I)->setAttributes(PAL);
5031       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5032       if (FMF.any()) {
5033         if (!isa<FPMathOperator>(I))
5034           return error("Fast-math-flags specified for call without "
5035                        "floating-point scalar or vector return type");
5036         I->setFastMathFlags(FMF);
5037       }
5038       break;
5039     }
5040     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5041       if (Record.size() < 3)
5042         return error("Invalid record");
5043       Type *OpTy = getTypeByID(Record[0]);
5044       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5045       FullTy = getFullyStructuredTypeByID(Record[2]);
5046       Type *ResTy = flattenPointerTypes(FullTy);
5047       if (!OpTy || !Op || !ResTy)
5048         return error("Invalid record");
5049       I = new VAArgInst(Op, ResTy);
5050       InstructionList.push_back(I);
5051       break;
5052     }
5053 
5054     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5055       // A call or an invoke can be optionally prefixed with some variable
5056       // number of operand bundle blocks.  These blocks are read into
5057       // OperandBundles and consumed at the next call or invoke instruction.
5058 
5059       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5060         return error("Invalid record");
5061 
5062       std::vector<Value *> Inputs;
5063 
5064       unsigned OpNum = 1;
5065       while (OpNum != Record.size()) {
5066         Value *Op;
5067         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5068           return error("Invalid record");
5069         Inputs.push_back(Op);
5070       }
5071 
5072       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5073       continue;
5074     }
5075     }
5076 
5077     // Add instruction to end of current BB.  If there is no current BB, reject
5078     // this file.
5079     if (!CurBB) {
5080       I->deleteValue();
5081       return error("Invalid instruction with no BB");
5082     }
5083     if (!OperandBundles.empty()) {
5084       I->deleteValue();
5085       return error("Operand bundles found with no consumer");
5086     }
5087     CurBB->getInstList().push_back(I);
5088 
5089     // If this was a terminator instruction, move to the next block.
5090     if (I->isTerminator()) {
5091       ++CurBBNo;
5092       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5093     }
5094 
5095     // Non-void values get registered in the value table for future use.
5096     if (I && !I->getType()->isVoidTy()) {
5097       if (!FullTy) {
5098         FullTy = I->getType();
5099         assert(
5100             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5101             !isa<ArrayType>(FullTy) &&
5102             (!isa<VectorType>(FullTy) ||
5103              FullTy->getVectorElementType()->isFloatingPointTy() ||
5104              FullTy->getVectorElementType()->isIntegerTy()) &&
5105             "Structured types must be assigned with corresponding non-opaque "
5106             "pointer type");
5107       }
5108 
5109       assert(I->getType() == flattenPointerTypes(FullTy) &&
5110              "Incorrect fully structured type provided for Instruction");
5111       ValueList.assignValue(I, NextValueNo++, FullTy);
5112     }
5113   }
5114 
5115 OutOfRecordLoop:
5116 
5117   if (!OperandBundles.empty())
5118     return error("Operand bundles found with no consumer");
5119 
5120   // Check the function list for unresolved values.
5121   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5122     if (!A->getParent()) {
5123       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5124       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5125         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5126           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5127           delete A;
5128         }
5129       }
5130       return error("Never resolved value found in function");
5131     }
5132   }
5133 
5134   // Unexpected unresolved metadata about to be dropped.
5135   if (MDLoader->hasFwdRefs())
5136     return error("Invalid function metadata: outgoing forward refs");
5137 
5138   // Trim the value list down to the size it was before we parsed this function.
5139   ValueList.shrinkTo(ModuleValueListSize);
5140   MDLoader->shrinkTo(ModuleMDLoaderSize);
5141   std::vector<BasicBlock*>().swap(FunctionBBs);
5142   return Error::success();
5143 }
5144 
5145 /// Find the function body in the bitcode stream
5146 Error BitcodeReader::findFunctionInStream(
5147     Function *F,
5148     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5149   while (DeferredFunctionInfoIterator->second == 0) {
5150     // This is the fallback handling for the old format bitcode that
5151     // didn't contain the function index in the VST, or when we have
5152     // an anonymous function which would not have a VST entry.
5153     // Assert that we have one of those two cases.
5154     assert(VSTOffset == 0 || !F->hasName());
5155     // Parse the next body in the stream and set its position in the
5156     // DeferredFunctionInfo map.
5157     if (Error Err = rememberAndSkipFunctionBodies())
5158       return Err;
5159   }
5160   return Error::success();
5161 }
5162 
5163 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5164   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5165     return SyncScope::ID(Val);
5166   if (Val >= SSIDs.size())
5167     return SyncScope::System; // Map unknown synchronization scopes to system.
5168   return SSIDs[Val];
5169 }
5170 
5171 //===----------------------------------------------------------------------===//
5172 // GVMaterializer implementation
5173 //===----------------------------------------------------------------------===//
5174 
5175 Error BitcodeReader::materialize(GlobalValue *GV) {
5176   Function *F = dyn_cast<Function>(GV);
5177   // If it's not a function or is already material, ignore the request.
5178   if (!F || !F->isMaterializable())
5179     return Error::success();
5180 
5181   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5182   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5183   // If its position is recorded as 0, its body is somewhere in the stream
5184   // but we haven't seen it yet.
5185   if (DFII->second == 0)
5186     if (Error Err = findFunctionInStream(F, DFII))
5187       return Err;
5188 
5189   // Materialize metadata before parsing any function bodies.
5190   if (Error Err = materializeMetadata())
5191     return Err;
5192 
5193   // Move the bit stream to the saved position of the deferred function body.
5194   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5195     return JumpFailed;
5196   if (Error Err = parseFunctionBody(F))
5197     return Err;
5198   F->setIsMaterializable(false);
5199 
5200   if (StripDebugInfo)
5201     stripDebugInfo(*F);
5202 
5203   // Upgrade any old intrinsic calls in the function.
5204   for (auto &I : UpgradedIntrinsics) {
5205     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5206          UI != UE;) {
5207       User *U = *UI;
5208       ++UI;
5209       if (CallInst *CI = dyn_cast<CallInst>(U))
5210         UpgradeIntrinsicCall(CI, I.second);
5211     }
5212   }
5213 
5214   // Update calls to the remangled intrinsics
5215   for (auto &I : RemangledIntrinsics)
5216     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5217          UI != UE;)
5218       // Don't expect any other users than call sites
5219       CallSite(*UI++).setCalledFunction(I.second);
5220 
5221   // Finish fn->subprogram upgrade for materialized functions.
5222   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5223     F->setSubprogram(SP);
5224 
5225   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5226   if (!MDLoader->isStrippingTBAA()) {
5227     for (auto &I : instructions(F)) {
5228       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5229       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5230         continue;
5231       MDLoader->setStripTBAA(true);
5232       stripTBAA(F->getParent());
5233     }
5234   }
5235 
5236   // Bring in any functions that this function forward-referenced via
5237   // blockaddresses.
5238   return materializeForwardReferencedFunctions();
5239 }
5240 
5241 Error BitcodeReader::materializeModule() {
5242   if (Error Err = materializeMetadata())
5243     return Err;
5244 
5245   // Promise to materialize all forward references.
5246   WillMaterializeAllForwardRefs = true;
5247 
5248   // Iterate over the module, deserializing any functions that are still on
5249   // disk.
5250   for (Function &F : *TheModule) {
5251     if (Error Err = materialize(&F))
5252       return Err;
5253   }
5254   // At this point, if there are any function bodies, parse the rest of
5255   // the bits in the module past the last function block we have recorded
5256   // through either lazy scanning or the VST.
5257   if (LastFunctionBlockBit || NextUnreadBit)
5258     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5259                                     ? LastFunctionBlockBit
5260                                     : NextUnreadBit))
5261       return Err;
5262 
5263   // Check that all block address forward references got resolved (as we
5264   // promised above).
5265   if (!BasicBlockFwdRefs.empty())
5266     return error("Never resolved function from blockaddress");
5267 
5268   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5269   // delete the old functions to clean up. We can't do this unless the entire
5270   // module is materialized because there could always be another function body
5271   // with calls to the old function.
5272   for (auto &I : UpgradedIntrinsics) {
5273     for (auto *U : I.first->users()) {
5274       if (CallInst *CI = dyn_cast<CallInst>(U))
5275         UpgradeIntrinsicCall(CI, I.second);
5276     }
5277     if (!I.first->use_empty())
5278       I.first->replaceAllUsesWith(I.second);
5279     I.first->eraseFromParent();
5280   }
5281   UpgradedIntrinsics.clear();
5282   // Do the same for remangled intrinsics
5283   for (auto &I : RemangledIntrinsics) {
5284     I.first->replaceAllUsesWith(I.second);
5285     I.first->eraseFromParent();
5286   }
5287   RemangledIntrinsics.clear();
5288 
5289   UpgradeDebugInfo(*TheModule);
5290 
5291   UpgradeModuleFlags(*TheModule);
5292 
5293   UpgradeRetainReleaseMarker(*TheModule);
5294 
5295   return Error::success();
5296 }
5297 
5298 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5299   return IdentifiedStructTypes;
5300 }
5301 
5302 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5303     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5304     StringRef ModulePath, unsigned ModuleId)
5305     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5306       ModulePath(ModulePath), ModuleId(ModuleId) {}
5307 
5308 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5309   TheIndex.addModule(ModulePath, ModuleId);
5310 }
5311 
5312 ModuleSummaryIndex::ModuleInfo *
5313 ModuleSummaryIndexBitcodeReader::getThisModule() {
5314   return TheIndex.getModule(ModulePath);
5315 }
5316 
5317 std::pair<ValueInfo, GlobalValue::GUID>
5318 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5319   auto VGI = ValueIdToValueInfoMap[ValueId];
5320   assert(VGI.first);
5321   return VGI;
5322 }
5323 
5324 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5325     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5326     StringRef SourceFileName) {
5327   std::string GlobalId =
5328       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5329   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5330   auto OriginalNameID = ValueGUID;
5331   if (GlobalValue::isLocalLinkage(Linkage))
5332     OriginalNameID = GlobalValue::getGUID(ValueName);
5333   if (PrintSummaryGUIDs)
5334     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5335            << ValueName << "\n";
5336 
5337   // UseStrtab is false for legacy summary formats and value names are
5338   // created on stack. In that case we save the name in a string saver in
5339   // the index so that the value name can be recorded.
5340   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5341       TheIndex.getOrInsertValueInfo(
5342           ValueGUID,
5343           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5344       OriginalNameID);
5345 }
5346 
5347 // Specialized value symbol table parser used when reading module index
5348 // blocks where we don't actually create global values. The parsed information
5349 // is saved in the bitcode reader for use when later parsing summaries.
5350 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5351     uint64_t Offset,
5352     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5353   // With a strtab the VST is not required to parse the summary.
5354   if (UseStrtab)
5355     return Error::success();
5356 
5357   assert(Offset > 0 && "Expected non-zero VST offset");
5358   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5359   if (!MaybeCurrentBit)
5360     return MaybeCurrentBit.takeError();
5361   uint64_t CurrentBit = MaybeCurrentBit.get();
5362 
5363   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5364     return Err;
5365 
5366   SmallVector<uint64_t, 64> Record;
5367 
5368   // Read all the records for this value table.
5369   SmallString<128> ValueName;
5370 
5371   while (true) {
5372     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5373     if (!MaybeEntry)
5374       return MaybeEntry.takeError();
5375     BitstreamEntry Entry = MaybeEntry.get();
5376 
5377     switch (Entry.Kind) {
5378     case BitstreamEntry::SubBlock: // Handled for us already.
5379     case BitstreamEntry::Error:
5380       return error("Malformed block");
5381     case BitstreamEntry::EndBlock:
5382       // Done parsing VST, jump back to wherever we came from.
5383       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5384         return JumpFailed;
5385       return Error::success();
5386     case BitstreamEntry::Record:
5387       // The interesting case.
5388       break;
5389     }
5390 
5391     // Read a record.
5392     Record.clear();
5393     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5394     if (!MaybeRecord)
5395       return MaybeRecord.takeError();
5396     switch (MaybeRecord.get()) {
5397     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5398       break;
5399     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5400       if (convertToString(Record, 1, ValueName))
5401         return error("Invalid record");
5402       unsigned ValueID = Record[0];
5403       assert(!SourceFileName.empty());
5404       auto VLI = ValueIdToLinkageMap.find(ValueID);
5405       assert(VLI != ValueIdToLinkageMap.end() &&
5406              "No linkage found for VST entry?");
5407       auto Linkage = VLI->second;
5408       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5409       ValueName.clear();
5410       break;
5411     }
5412     case bitc::VST_CODE_FNENTRY: {
5413       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5414       if (convertToString(Record, 2, ValueName))
5415         return error("Invalid record");
5416       unsigned ValueID = Record[0];
5417       assert(!SourceFileName.empty());
5418       auto VLI = ValueIdToLinkageMap.find(ValueID);
5419       assert(VLI != ValueIdToLinkageMap.end() &&
5420              "No linkage found for VST entry?");
5421       auto Linkage = VLI->second;
5422       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5423       ValueName.clear();
5424       break;
5425     }
5426     case bitc::VST_CODE_COMBINED_ENTRY: {
5427       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5428       unsigned ValueID = Record[0];
5429       GlobalValue::GUID RefGUID = Record[1];
5430       // The "original name", which is the second value of the pair will be
5431       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5432       ValueIdToValueInfoMap[ValueID] =
5433           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5434       break;
5435     }
5436     }
5437   }
5438 }
5439 
5440 // Parse just the blocks needed for building the index out of the module.
5441 // At the end of this routine the module Index is populated with a map
5442 // from global value id to GlobalValueSummary objects.
5443 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5444   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5445     return Err;
5446 
5447   SmallVector<uint64_t, 64> Record;
5448   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5449   unsigned ValueId = 0;
5450 
5451   // Read the index for this module.
5452   while (true) {
5453     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5454     if (!MaybeEntry)
5455       return MaybeEntry.takeError();
5456     llvm::BitstreamEntry Entry = MaybeEntry.get();
5457 
5458     switch (Entry.Kind) {
5459     case BitstreamEntry::Error:
5460       return error("Malformed block");
5461     case BitstreamEntry::EndBlock:
5462       return Error::success();
5463 
5464     case BitstreamEntry::SubBlock:
5465       switch (Entry.ID) {
5466       default: // Skip unknown content.
5467         if (Error Err = Stream.SkipBlock())
5468           return Err;
5469         break;
5470       case bitc::BLOCKINFO_BLOCK_ID:
5471         // Need to parse these to get abbrev ids (e.g. for VST)
5472         if (readBlockInfo())
5473           return error("Malformed block");
5474         break;
5475       case bitc::VALUE_SYMTAB_BLOCK_ID:
5476         // Should have been parsed earlier via VSTOffset, unless there
5477         // is no summary section.
5478         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5479                 !SeenGlobalValSummary) &&
5480                "Expected early VST parse via VSTOffset record");
5481         if (Error Err = Stream.SkipBlock())
5482           return Err;
5483         break;
5484       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5485       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5486         // Add the module if it is a per-module index (has a source file name).
5487         if (!SourceFileName.empty())
5488           addThisModule();
5489         assert(!SeenValueSymbolTable &&
5490                "Already read VST when parsing summary block?");
5491         // We might not have a VST if there were no values in the
5492         // summary. An empty summary block generated when we are
5493         // performing ThinLTO compiles so we don't later invoke
5494         // the regular LTO process on them.
5495         if (VSTOffset > 0) {
5496           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5497             return Err;
5498           SeenValueSymbolTable = true;
5499         }
5500         SeenGlobalValSummary = true;
5501         if (Error Err = parseEntireSummary(Entry.ID))
5502           return Err;
5503         break;
5504       case bitc::MODULE_STRTAB_BLOCK_ID:
5505         if (Error Err = parseModuleStringTable())
5506           return Err;
5507         break;
5508       }
5509       continue;
5510 
5511     case BitstreamEntry::Record: {
5512         Record.clear();
5513         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5514         if (!MaybeBitCode)
5515           return MaybeBitCode.takeError();
5516         switch (MaybeBitCode.get()) {
5517         default:
5518           break; // Default behavior, ignore unknown content.
5519         case bitc::MODULE_CODE_VERSION: {
5520           if (Error Err = parseVersionRecord(Record).takeError())
5521             return Err;
5522           break;
5523         }
5524         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5525         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5526           SmallString<128> ValueName;
5527           if (convertToString(Record, 0, ValueName))
5528             return error("Invalid record");
5529           SourceFileName = ValueName.c_str();
5530           break;
5531         }
5532         /// MODULE_CODE_HASH: [5*i32]
5533         case bitc::MODULE_CODE_HASH: {
5534           if (Record.size() != 5)
5535             return error("Invalid hash length " + Twine(Record.size()).str());
5536           auto &Hash = getThisModule()->second.second;
5537           int Pos = 0;
5538           for (auto &Val : Record) {
5539             assert(!(Val >> 32) && "Unexpected high bits set");
5540             Hash[Pos++] = Val;
5541           }
5542           break;
5543         }
5544         /// MODULE_CODE_VSTOFFSET: [offset]
5545         case bitc::MODULE_CODE_VSTOFFSET:
5546           if (Record.size() < 1)
5547             return error("Invalid record");
5548           // Note that we subtract 1 here because the offset is relative to one
5549           // word before the start of the identification or module block, which
5550           // was historically always the start of the regular bitcode header.
5551           VSTOffset = Record[0] - 1;
5552           break;
5553         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5554         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5555         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5556         // v2: [strtab offset, strtab size, v1]
5557         case bitc::MODULE_CODE_GLOBALVAR:
5558         case bitc::MODULE_CODE_FUNCTION:
5559         case bitc::MODULE_CODE_ALIAS: {
5560           StringRef Name;
5561           ArrayRef<uint64_t> GVRecord;
5562           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5563           if (GVRecord.size() <= 3)
5564             return error("Invalid record");
5565           uint64_t RawLinkage = GVRecord[3];
5566           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5567           if (!UseStrtab) {
5568             ValueIdToLinkageMap[ValueId++] = Linkage;
5569             break;
5570           }
5571 
5572           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5573           break;
5574         }
5575         }
5576       }
5577       continue;
5578     }
5579   }
5580 }
5581 
5582 std::vector<ValueInfo>
5583 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5584   std::vector<ValueInfo> Ret;
5585   Ret.reserve(Record.size());
5586   for (uint64_t RefValueId : Record)
5587     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5588   return Ret;
5589 }
5590 
5591 std::vector<FunctionSummary::EdgeTy>
5592 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5593                                               bool IsOldProfileFormat,
5594                                               bool HasProfile, bool HasRelBF) {
5595   std::vector<FunctionSummary::EdgeTy> Ret;
5596   Ret.reserve(Record.size());
5597   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5598     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5599     uint64_t RelBF = 0;
5600     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5601     if (IsOldProfileFormat) {
5602       I += 1; // Skip old callsitecount field
5603       if (HasProfile)
5604         I += 1; // Skip old profilecount field
5605     } else if (HasProfile)
5606       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5607     else if (HasRelBF)
5608       RelBF = Record[++I];
5609     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5610   }
5611   return Ret;
5612 }
5613 
5614 static void
5615 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5616                                        WholeProgramDevirtResolution &Wpd) {
5617   uint64_t ArgNum = Record[Slot++];
5618   WholeProgramDevirtResolution::ByArg &B =
5619       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5620   Slot += ArgNum;
5621 
5622   B.TheKind =
5623       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5624   B.Info = Record[Slot++];
5625   B.Byte = Record[Slot++];
5626   B.Bit = Record[Slot++];
5627 }
5628 
5629 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5630                                               StringRef Strtab, size_t &Slot,
5631                                               TypeIdSummary &TypeId) {
5632   uint64_t Id = Record[Slot++];
5633   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5634 
5635   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5636   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5637                         static_cast<size_t>(Record[Slot + 1])};
5638   Slot += 2;
5639 
5640   uint64_t ResByArgNum = Record[Slot++];
5641   for (uint64_t I = 0; I != ResByArgNum; ++I)
5642     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5643 }
5644 
5645 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5646                                      StringRef Strtab,
5647                                      ModuleSummaryIndex &TheIndex) {
5648   size_t Slot = 0;
5649   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5650       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5651   Slot += 2;
5652 
5653   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5654   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5655   TypeId.TTRes.AlignLog2 = Record[Slot++];
5656   TypeId.TTRes.SizeM1 = Record[Slot++];
5657   TypeId.TTRes.BitMask = Record[Slot++];
5658   TypeId.TTRes.InlineBits = Record[Slot++];
5659 
5660   while (Slot < Record.size())
5661     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5662 }
5663 
5664 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5665     ArrayRef<uint64_t> Record, size_t &Slot,
5666     TypeIdCompatibleVtableInfo &TypeId) {
5667   uint64_t Offset = Record[Slot++];
5668   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5669   TypeId.push_back({Offset, Callee});
5670 }
5671 
5672 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5673     ArrayRef<uint64_t> Record) {
5674   size_t Slot = 0;
5675   TypeIdCompatibleVtableInfo &TypeId =
5676       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5677           {Strtab.data() + Record[Slot],
5678            static_cast<size_t>(Record[Slot + 1])});
5679   Slot += 2;
5680 
5681   while (Slot < Record.size())
5682     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5683 }
5684 
5685 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5686                            unsigned WOCnt) {
5687   // Readonly and writeonly refs are in the end of the refs list.
5688   assert(ROCnt + WOCnt <= Refs.size());
5689   unsigned FirstWORef = Refs.size() - WOCnt;
5690   unsigned RefNo = FirstWORef - ROCnt;
5691   for (; RefNo < FirstWORef; ++RefNo)
5692     Refs[RefNo].setReadOnly();
5693   for (; RefNo < Refs.size(); ++RefNo)
5694     Refs[RefNo].setWriteOnly();
5695 }
5696 
5697 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5698 // objects in the index.
5699 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5700   if (Error Err = Stream.EnterSubBlock(ID))
5701     return Err;
5702   SmallVector<uint64_t, 64> Record;
5703 
5704   // Parse version
5705   {
5706     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5707     if (!MaybeEntry)
5708       return MaybeEntry.takeError();
5709     BitstreamEntry Entry = MaybeEntry.get();
5710 
5711     if (Entry.Kind != BitstreamEntry::Record)
5712       return error("Invalid Summary Block: record for version expected");
5713     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5714     if (!MaybeRecord)
5715       return MaybeRecord.takeError();
5716     if (MaybeRecord.get() != bitc::FS_VERSION)
5717       return error("Invalid Summary Block: version expected");
5718   }
5719   const uint64_t Version = Record[0];
5720   const bool IsOldProfileFormat = Version == 1;
5721   if (Version < 1 || Version > 7)
5722     return error("Invalid summary version " + Twine(Version) +
5723                  ". Version should be in the range [1-7].");
5724   Record.clear();
5725 
5726   // Keep around the last seen summary to be used when we see an optional
5727   // "OriginalName" attachement.
5728   GlobalValueSummary *LastSeenSummary = nullptr;
5729   GlobalValue::GUID LastSeenGUID = 0;
5730 
5731   // We can expect to see any number of type ID information records before
5732   // each function summary records; these variables store the information
5733   // collected so far so that it can be used to create the summary object.
5734   std::vector<GlobalValue::GUID> PendingTypeTests;
5735   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5736       PendingTypeCheckedLoadVCalls;
5737   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5738       PendingTypeCheckedLoadConstVCalls;
5739 
5740   while (true) {
5741     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5742     if (!MaybeEntry)
5743       return MaybeEntry.takeError();
5744     BitstreamEntry Entry = MaybeEntry.get();
5745 
5746     switch (Entry.Kind) {
5747     case BitstreamEntry::SubBlock: // Handled for us already.
5748     case BitstreamEntry::Error:
5749       return error("Malformed block");
5750     case BitstreamEntry::EndBlock:
5751       return Error::success();
5752     case BitstreamEntry::Record:
5753       // The interesting case.
5754       break;
5755     }
5756 
5757     // Read a record. The record format depends on whether this
5758     // is a per-module index or a combined index file. In the per-module
5759     // case the records contain the associated value's ID for correlation
5760     // with VST entries. In the combined index the correlation is done
5761     // via the bitcode offset of the summary records (which were saved
5762     // in the combined index VST entries). The records also contain
5763     // information used for ThinLTO renaming and importing.
5764     Record.clear();
5765     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5766     if (!MaybeBitCode)
5767       return MaybeBitCode.takeError();
5768     switch (unsigned BitCode = MaybeBitCode.get()) {
5769     default: // Default behavior: ignore.
5770       break;
5771     case bitc::FS_FLAGS: {  // [flags]
5772       uint64_t Flags = Record[0];
5773       // Scan flags.
5774       assert(Flags <= 0x1f && "Unexpected bits in flag");
5775 
5776       // 1 bit: WithGlobalValueDeadStripping flag.
5777       // Set on combined index only.
5778       if (Flags & 0x1)
5779         TheIndex.setWithGlobalValueDeadStripping();
5780       // 1 bit: SkipModuleByDistributedBackend flag.
5781       // Set on combined index only.
5782       if (Flags & 0x2)
5783         TheIndex.setSkipModuleByDistributedBackend();
5784       // 1 bit: HasSyntheticEntryCounts flag.
5785       // Set on combined index only.
5786       if (Flags & 0x4)
5787         TheIndex.setHasSyntheticEntryCounts();
5788       // 1 bit: DisableSplitLTOUnit flag.
5789       // Set on per module indexes. It is up to the client to validate
5790       // the consistency of this flag across modules being linked.
5791       if (Flags & 0x8)
5792         TheIndex.setEnableSplitLTOUnit();
5793       // 1 bit: PartiallySplitLTOUnits flag.
5794       // Set on combined index only.
5795       if (Flags & 0x10)
5796         TheIndex.setPartiallySplitLTOUnits();
5797       break;
5798     }
5799     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5800       uint64_t ValueID = Record[0];
5801       GlobalValue::GUID RefGUID = Record[1];
5802       ValueIdToValueInfoMap[ValueID] =
5803           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5804       break;
5805     }
5806     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5807     //                numrefs x valueid, n x (valueid)]
5808     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5809     //                        numrefs x valueid,
5810     //                        n x (valueid, hotness)]
5811     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5812     //                      numrefs x valueid,
5813     //                      n x (valueid, relblockfreq)]
5814     case bitc::FS_PERMODULE:
5815     case bitc::FS_PERMODULE_RELBF:
5816     case bitc::FS_PERMODULE_PROFILE: {
5817       unsigned ValueID = Record[0];
5818       uint64_t RawFlags = Record[1];
5819       unsigned InstCount = Record[2];
5820       uint64_t RawFunFlags = 0;
5821       unsigned NumRefs = Record[3];
5822       unsigned NumRORefs = 0, NumWORefs = 0;
5823       int RefListStartIndex = 4;
5824       if (Version >= 4) {
5825         RawFunFlags = Record[3];
5826         NumRefs = Record[4];
5827         RefListStartIndex = 5;
5828         if (Version >= 5) {
5829           NumRORefs = Record[5];
5830           RefListStartIndex = 6;
5831           if (Version >= 7) {
5832             NumWORefs = Record[6];
5833             RefListStartIndex = 7;
5834           }
5835         }
5836       }
5837 
5838       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5839       // The module path string ref set in the summary must be owned by the
5840       // index's module string table. Since we don't have a module path
5841       // string table section in the per-module index, we create a single
5842       // module path string table entry with an empty (0) ID to take
5843       // ownership.
5844       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5845       assert(Record.size() >= RefListStartIndex + NumRefs &&
5846              "Record size inconsistent with number of references");
5847       std::vector<ValueInfo> Refs = makeRefList(
5848           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5849       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5850       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5851       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5852           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5853           IsOldProfileFormat, HasProfile, HasRelBF);
5854       setSpecialRefs(Refs, NumRORefs, NumWORefs);
5855       auto FS = llvm::make_unique<FunctionSummary>(
5856           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5857           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5858           std::move(PendingTypeTestAssumeVCalls),
5859           std::move(PendingTypeCheckedLoadVCalls),
5860           std::move(PendingTypeTestAssumeConstVCalls),
5861           std::move(PendingTypeCheckedLoadConstVCalls));
5862       PendingTypeTests.clear();
5863       PendingTypeTestAssumeVCalls.clear();
5864       PendingTypeCheckedLoadVCalls.clear();
5865       PendingTypeTestAssumeConstVCalls.clear();
5866       PendingTypeCheckedLoadConstVCalls.clear();
5867       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5868       FS->setModulePath(getThisModule()->first());
5869       FS->setOriginalName(VIAndOriginalGUID.second);
5870       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5871       break;
5872     }
5873     // FS_ALIAS: [valueid, flags, valueid]
5874     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5875     // they expect all aliasee summaries to be available.
5876     case bitc::FS_ALIAS: {
5877       unsigned ValueID = Record[0];
5878       uint64_t RawFlags = Record[1];
5879       unsigned AliaseeID = Record[2];
5880       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5881       auto AS = llvm::make_unique<AliasSummary>(Flags);
5882       // The module path string ref set in the summary must be owned by the
5883       // index's module string table. Since we don't have a module path
5884       // string table section in the per-module index, we create a single
5885       // module path string table entry with an empty (0) ID to take
5886       // ownership.
5887       AS->setModulePath(getThisModule()->first());
5888 
5889       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5890       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5891       if (!AliaseeInModule)
5892         return error("Alias expects aliasee summary to be parsed");
5893       AS->setAliasee(AliaseeVI, AliaseeInModule);
5894 
5895       auto GUID = getValueInfoFromValueId(ValueID);
5896       AS->setOriginalName(GUID.second);
5897       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5898       break;
5899     }
5900     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5901     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5902       unsigned ValueID = Record[0];
5903       uint64_t RawFlags = Record[1];
5904       unsigned RefArrayStart = 2;
5905       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
5906                                       /* WriteOnly */ false);
5907       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5908       if (Version >= 5) {
5909         GVF = getDecodedGVarFlags(Record[2]);
5910         RefArrayStart = 3;
5911       }
5912       std::vector<ValueInfo> Refs =
5913           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5914       auto FS =
5915           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5916       FS->setModulePath(getThisModule()->first());
5917       auto GUID = getValueInfoFromValueId(ValueID);
5918       FS->setOriginalName(GUID.second);
5919       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5920       break;
5921     }
5922     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
5923     //                        numrefs, numrefs x valueid,
5924     //                        n x (valueid, offset)]
5925     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
5926       unsigned ValueID = Record[0];
5927       uint64_t RawFlags = Record[1];
5928       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
5929       unsigned NumRefs = Record[3];
5930       unsigned RefListStartIndex = 4;
5931       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
5932       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5933       std::vector<ValueInfo> Refs = makeRefList(
5934           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5935       VTableFuncList VTableFuncs;
5936       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
5937         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5938         uint64_t Offset = Record[++I];
5939         VTableFuncs.push_back({Callee, Offset});
5940       }
5941       auto VS =
5942           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5943       VS->setModulePath(getThisModule()->first());
5944       VS->setVTableFuncs(VTableFuncs);
5945       auto GUID = getValueInfoFromValueId(ValueID);
5946       VS->setOriginalName(GUID.second);
5947       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
5948       break;
5949     }
5950     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5951     //               numrefs x valueid, n x (valueid)]
5952     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5953     //                       numrefs x valueid, n x (valueid, hotness)]
5954     case bitc::FS_COMBINED:
5955     case bitc::FS_COMBINED_PROFILE: {
5956       unsigned ValueID = Record[0];
5957       uint64_t ModuleId = Record[1];
5958       uint64_t RawFlags = Record[2];
5959       unsigned InstCount = Record[3];
5960       uint64_t RawFunFlags = 0;
5961       uint64_t EntryCount = 0;
5962       unsigned NumRefs = Record[4];
5963       unsigned NumRORefs = 0, NumWORefs = 0;
5964       int RefListStartIndex = 5;
5965 
5966       if (Version >= 4) {
5967         RawFunFlags = Record[4];
5968         RefListStartIndex = 6;
5969         size_t NumRefsIndex = 5;
5970         if (Version >= 5) {
5971           unsigned NumRORefsOffset = 1;
5972           RefListStartIndex = 7;
5973           if (Version >= 6) {
5974             NumRefsIndex = 6;
5975             EntryCount = Record[5];
5976             RefListStartIndex = 8;
5977             if (Version >= 7) {
5978               RefListStartIndex = 9;
5979               NumWORefs = Record[8];
5980               NumRORefsOffset = 2;
5981             }
5982           }
5983           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
5984         }
5985         NumRefs = Record[NumRefsIndex];
5986       }
5987 
5988       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5989       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5990       assert(Record.size() >= RefListStartIndex + NumRefs &&
5991              "Record size inconsistent with number of references");
5992       std::vector<ValueInfo> Refs = makeRefList(
5993           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5994       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5995       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5996           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5997           IsOldProfileFormat, HasProfile, false);
5998       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5999       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6000       auto FS = llvm::make_unique<FunctionSummary>(
6001           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6002           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6003           std::move(PendingTypeTestAssumeVCalls),
6004           std::move(PendingTypeCheckedLoadVCalls),
6005           std::move(PendingTypeTestAssumeConstVCalls),
6006           std::move(PendingTypeCheckedLoadConstVCalls));
6007       PendingTypeTests.clear();
6008       PendingTypeTestAssumeVCalls.clear();
6009       PendingTypeCheckedLoadVCalls.clear();
6010       PendingTypeTestAssumeConstVCalls.clear();
6011       PendingTypeCheckedLoadConstVCalls.clear();
6012       LastSeenSummary = FS.get();
6013       LastSeenGUID = VI.getGUID();
6014       FS->setModulePath(ModuleIdMap[ModuleId]);
6015       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6016       break;
6017     }
6018     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6019     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6020     // they expect all aliasee summaries to be available.
6021     case bitc::FS_COMBINED_ALIAS: {
6022       unsigned ValueID = Record[0];
6023       uint64_t ModuleId = Record[1];
6024       uint64_t RawFlags = Record[2];
6025       unsigned AliaseeValueId = Record[3];
6026       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6027       auto AS = llvm::make_unique<AliasSummary>(Flags);
6028       LastSeenSummary = AS.get();
6029       AS->setModulePath(ModuleIdMap[ModuleId]);
6030 
6031       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6032       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6033       AS->setAliasee(AliaseeVI, AliaseeInModule);
6034 
6035       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6036       LastSeenGUID = VI.getGUID();
6037       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6038       break;
6039     }
6040     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6041     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6042       unsigned ValueID = Record[0];
6043       uint64_t ModuleId = Record[1];
6044       uint64_t RawFlags = Record[2];
6045       unsigned RefArrayStart = 3;
6046       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6047                                       /* WriteOnly */ false);
6048       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6049       if (Version >= 5) {
6050         GVF = getDecodedGVarFlags(Record[3]);
6051         RefArrayStart = 4;
6052       }
6053       std::vector<ValueInfo> Refs =
6054           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6055       auto FS =
6056           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6057       LastSeenSummary = FS.get();
6058       FS->setModulePath(ModuleIdMap[ModuleId]);
6059       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6060       LastSeenGUID = VI.getGUID();
6061       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6062       break;
6063     }
6064     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6065     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6066       uint64_t OriginalName = Record[0];
6067       if (!LastSeenSummary)
6068         return error("Name attachment that does not follow a combined record");
6069       LastSeenSummary->setOriginalName(OriginalName);
6070       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6071       // Reset the LastSeenSummary
6072       LastSeenSummary = nullptr;
6073       LastSeenGUID = 0;
6074       break;
6075     }
6076     case bitc::FS_TYPE_TESTS:
6077       assert(PendingTypeTests.empty());
6078       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6079                               Record.end());
6080       break;
6081 
6082     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6083       assert(PendingTypeTestAssumeVCalls.empty());
6084       for (unsigned I = 0; I != Record.size(); I += 2)
6085         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6086       break;
6087 
6088     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6089       assert(PendingTypeCheckedLoadVCalls.empty());
6090       for (unsigned I = 0; I != Record.size(); I += 2)
6091         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6092       break;
6093 
6094     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6095       PendingTypeTestAssumeConstVCalls.push_back(
6096           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6097       break;
6098 
6099     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6100       PendingTypeCheckedLoadConstVCalls.push_back(
6101           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6102       break;
6103 
6104     case bitc::FS_CFI_FUNCTION_DEFS: {
6105       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6106       for (unsigned I = 0; I != Record.size(); I += 2)
6107         CfiFunctionDefs.insert(
6108             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6109       break;
6110     }
6111 
6112     case bitc::FS_CFI_FUNCTION_DECLS: {
6113       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6114       for (unsigned I = 0; I != Record.size(); I += 2)
6115         CfiFunctionDecls.insert(
6116             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6117       break;
6118     }
6119 
6120     case bitc::FS_TYPE_ID:
6121       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6122       break;
6123 
6124     case bitc::FS_TYPE_ID_METADATA:
6125       parseTypeIdCompatibleVtableSummaryRecord(Record);
6126       break;
6127     }
6128   }
6129   llvm_unreachable("Exit infinite loop");
6130 }
6131 
6132 // Parse the  module string table block into the Index.
6133 // This populates the ModulePathStringTable map in the index.
6134 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6135   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6136     return Err;
6137 
6138   SmallVector<uint64_t, 64> Record;
6139 
6140   SmallString<128> ModulePath;
6141   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6142 
6143   while (true) {
6144     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6145     if (!MaybeEntry)
6146       return MaybeEntry.takeError();
6147     BitstreamEntry Entry = MaybeEntry.get();
6148 
6149     switch (Entry.Kind) {
6150     case BitstreamEntry::SubBlock: // Handled for us already.
6151     case BitstreamEntry::Error:
6152       return error("Malformed block");
6153     case BitstreamEntry::EndBlock:
6154       return Error::success();
6155     case BitstreamEntry::Record:
6156       // The interesting case.
6157       break;
6158     }
6159 
6160     Record.clear();
6161     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6162     if (!MaybeRecord)
6163       return MaybeRecord.takeError();
6164     switch (MaybeRecord.get()) {
6165     default: // Default behavior: ignore.
6166       break;
6167     case bitc::MST_CODE_ENTRY: {
6168       // MST_ENTRY: [modid, namechar x N]
6169       uint64_t ModuleId = Record[0];
6170 
6171       if (convertToString(Record, 1, ModulePath))
6172         return error("Invalid record");
6173 
6174       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6175       ModuleIdMap[ModuleId] = LastSeenModule->first();
6176 
6177       ModulePath.clear();
6178       break;
6179     }
6180     /// MST_CODE_HASH: [5*i32]
6181     case bitc::MST_CODE_HASH: {
6182       if (Record.size() != 5)
6183         return error("Invalid hash length " + Twine(Record.size()).str());
6184       if (!LastSeenModule)
6185         return error("Invalid hash that does not follow a module path");
6186       int Pos = 0;
6187       for (auto &Val : Record) {
6188         assert(!(Val >> 32) && "Unexpected high bits set");
6189         LastSeenModule->second.second[Pos++] = Val;
6190       }
6191       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6192       LastSeenModule = nullptr;
6193       break;
6194     }
6195     }
6196   }
6197   llvm_unreachable("Exit infinite loop");
6198 }
6199 
6200 namespace {
6201 
6202 // FIXME: This class is only here to support the transition to llvm::Error. It
6203 // will be removed once this transition is complete. Clients should prefer to
6204 // deal with the Error value directly, rather than converting to error_code.
6205 class BitcodeErrorCategoryType : public std::error_category {
6206   const char *name() const noexcept override {
6207     return "llvm.bitcode";
6208   }
6209 
6210   std::string message(int IE) const override {
6211     BitcodeError E = static_cast<BitcodeError>(IE);
6212     switch (E) {
6213     case BitcodeError::CorruptedBitcode:
6214       return "Corrupted bitcode";
6215     }
6216     llvm_unreachable("Unknown error type!");
6217   }
6218 };
6219 
6220 } // end anonymous namespace
6221 
6222 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6223 
6224 const std::error_category &llvm::BitcodeErrorCategory() {
6225   return *ErrorCategory;
6226 }
6227 
6228 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6229                                             unsigned Block, unsigned RecordID) {
6230   if (Error Err = Stream.EnterSubBlock(Block))
6231     return std::move(Err);
6232 
6233   StringRef Strtab;
6234   while (true) {
6235     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6236     if (!MaybeEntry)
6237       return MaybeEntry.takeError();
6238     llvm::BitstreamEntry Entry = MaybeEntry.get();
6239 
6240     switch (Entry.Kind) {
6241     case BitstreamEntry::EndBlock:
6242       return Strtab;
6243 
6244     case BitstreamEntry::Error:
6245       return error("Malformed block");
6246 
6247     case BitstreamEntry::SubBlock:
6248       if (Error Err = Stream.SkipBlock())
6249         return std::move(Err);
6250       break;
6251 
6252     case BitstreamEntry::Record:
6253       StringRef Blob;
6254       SmallVector<uint64_t, 1> Record;
6255       Expected<unsigned> MaybeRecord =
6256           Stream.readRecord(Entry.ID, Record, &Blob);
6257       if (!MaybeRecord)
6258         return MaybeRecord.takeError();
6259       if (MaybeRecord.get() == RecordID)
6260         Strtab = Blob;
6261       break;
6262     }
6263   }
6264 }
6265 
6266 //===----------------------------------------------------------------------===//
6267 // External interface
6268 //===----------------------------------------------------------------------===//
6269 
6270 Expected<std::vector<BitcodeModule>>
6271 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6272   auto FOrErr = getBitcodeFileContents(Buffer);
6273   if (!FOrErr)
6274     return FOrErr.takeError();
6275   return std::move(FOrErr->Mods);
6276 }
6277 
6278 Expected<BitcodeFileContents>
6279 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6280   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6281   if (!StreamOrErr)
6282     return StreamOrErr.takeError();
6283   BitstreamCursor &Stream = *StreamOrErr;
6284 
6285   BitcodeFileContents F;
6286   while (true) {
6287     uint64_t BCBegin = Stream.getCurrentByteNo();
6288 
6289     // We may be consuming bitcode from a client that leaves garbage at the end
6290     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6291     // the end that there cannot possibly be another module, stop looking.
6292     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6293       return F;
6294 
6295     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6296     if (!MaybeEntry)
6297       return MaybeEntry.takeError();
6298     llvm::BitstreamEntry Entry = MaybeEntry.get();
6299 
6300     switch (Entry.Kind) {
6301     case BitstreamEntry::EndBlock:
6302     case BitstreamEntry::Error:
6303       return error("Malformed block");
6304 
6305     case BitstreamEntry::SubBlock: {
6306       uint64_t IdentificationBit = -1ull;
6307       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6308         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6309         if (Error Err = Stream.SkipBlock())
6310           return std::move(Err);
6311 
6312         {
6313           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6314           if (!MaybeEntry)
6315             return MaybeEntry.takeError();
6316           Entry = MaybeEntry.get();
6317         }
6318 
6319         if (Entry.Kind != BitstreamEntry::SubBlock ||
6320             Entry.ID != bitc::MODULE_BLOCK_ID)
6321           return error("Malformed block");
6322       }
6323 
6324       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6325         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6326         if (Error Err = Stream.SkipBlock())
6327           return std::move(Err);
6328 
6329         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6330                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6331                           Buffer.getBufferIdentifier(), IdentificationBit,
6332                           ModuleBit});
6333         continue;
6334       }
6335 
6336       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6337         Expected<StringRef> Strtab =
6338             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6339         if (!Strtab)
6340           return Strtab.takeError();
6341         // This string table is used by every preceding bitcode module that does
6342         // not have its own string table. A bitcode file may have multiple
6343         // string tables if it was created by binary concatenation, for example
6344         // with "llvm-cat -b".
6345         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6346           if (!I->Strtab.empty())
6347             break;
6348           I->Strtab = *Strtab;
6349         }
6350         // Similarly, the string table is used by every preceding symbol table;
6351         // normally there will be just one unless the bitcode file was created
6352         // by binary concatenation.
6353         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6354           F.StrtabForSymtab = *Strtab;
6355         continue;
6356       }
6357 
6358       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6359         Expected<StringRef> SymtabOrErr =
6360             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6361         if (!SymtabOrErr)
6362           return SymtabOrErr.takeError();
6363 
6364         // We can expect the bitcode file to have multiple symbol tables if it
6365         // was created by binary concatenation. In that case we silently
6366         // ignore any subsequent symbol tables, which is fine because this is a
6367         // low level function. The client is expected to notice that the number
6368         // of modules in the symbol table does not match the number of modules
6369         // in the input file and regenerate the symbol table.
6370         if (F.Symtab.empty())
6371           F.Symtab = *SymtabOrErr;
6372         continue;
6373       }
6374 
6375       if (Error Err = Stream.SkipBlock())
6376         return std::move(Err);
6377       continue;
6378     }
6379     case BitstreamEntry::Record:
6380       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6381         continue;
6382       else
6383         return StreamFailed.takeError();
6384     }
6385   }
6386 }
6387 
6388 /// Get a lazy one-at-time loading module from bitcode.
6389 ///
6390 /// This isn't always used in a lazy context.  In particular, it's also used by
6391 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6392 /// in forward-referenced functions from block address references.
6393 ///
6394 /// \param[in] MaterializeAll Set to \c true if we should materialize
6395 /// everything.
6396 Expected<std::unique_ptr<Module>>
6397 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6398                              bool ShouldLazyLoadMetadata, bool IsImporting) {
6399   BitstreamCursor Stream(Buffer);
6400 
6401   std::string ProducerIdentification;
6402   if (IdentificationBit != -1ull) {
6403     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6404       return std::move(JumpFailed);
6405     Expected<std::string> ProducerIdentificationOrErr =
6406         readIdentificationBlock(Stream);
6407     if (!ProducerIdentificationOrErr)
6408       return ProducerIdentificationOrErr.takeError();
6409 
6410     ProducerIdentification = *ProducerIdentificationOrErr;
6411   }
6412 
6413   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6414     return std::move(JumpFailed);
6415   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6416                               Context);
6417 
6418   std::unique_ptr<Module> M =
6419       llvm::make_unique<Module>(ModuleIdentifier, Context);
6420   M->setMaterializer(R);
6421 
6422   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6423   if (Error Err =
6424           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6425     return std::move(Err);
6426 
6427   if (MaterializeAll) {
6428     // Read in the entire module, and destroy the BitcodeReader.
6429     if (Error Err = M->materializeAll())
6430       return std::move(Err);
6431   } else {
6432     // Resolve forward references from blockaddresses.
6433     if (Error Err = R->materializeForwardReferencedFunctions())
6434       return std::move(Err);
6435   }
6436   return std::move(M);
6437 }
6438 
6439 Expected<std::unique_ptr<Module>>
6440 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6441                              bool IsImporting) {
6442   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6443 }
6444 
6445 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6446 // We don't use ModuleIdentifier here because the client may need to control the
6447 // module path used in the combined summary (e.g. when reading summaries for
6448 // regular LTO modules).
6449 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6450                                  StringRef ModulePath, uint64_t ModuleId) {
6451   BitstreamCursor Stream(Buffer);
6452   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6453     return JumpFailed;
6454 
6455   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6456                                     ModulePath, ModuleId);
6457   return R.parseModule();
6458 }
6459 
6460 // Parse the specified bitcode buffer, returning the function info index.
6461 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6462   BitstreamCursor Stream(Buffer);
6463   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6464     return std::move(JumpFailed);
6465 
6466   auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6467   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6468                                     ModuleIdentifier, 0);
6469 
6470   if (Error Err = R.parseModule())
6471     return std::move(Err);
6472 
6473   return std::move(Index);
6474 }
6475 
6476 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6477                                                 unsigned ID) {
6478   if (Error Err = Stream.EnterSubBlock(ID))
6479     return std::move(Err);
6480   SmallVector<uint64_t, 64> Record;
6481 
6482   while (true) {
6483     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6484     if (!MaybeEntry)
6485       return MaybeEntry.takeError();
6486     BitstreamEntry Entry = MaybeEntry.get();
6487 
6488     switch (Entry.Kind) {
6489     case BitstreamEntry::SubBlock: // Handled for us already.
6490     case BitstreamEntry::Error:
6491       return error("Malformed block");
6492     case BitstreamEntry::EndBlock:
6493       // If no flags record found, conservatively return true to mimic
6494       // behavior before this flag was added.
6495       return true;
6496     case BitstreamEntry::Record:
6497       // The interesting case.
6498       break;
6499     }
6500 
6501     // Look for the FS_FLAGS record.
6502     Record.clear();
6503     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6504     if (!MaybeBitCode)
6505       return MaybeBitCode.takeError();
6506     switch (MaybeBitCode.get()) {
6507     default: // Default behavior: ignore.
6508       break;
6509     case bitc::FS_FLAGS: { // [flags]
6510       uint64_t Flags = Record[0];
6511       // Scan flags.
6512       assert(Flags <= 0x1f && "Unexpected bits in flag");
6513 
6514       return Flags & 0x8;
6515     }
6516     }
6517   }
6518   llvm_unreachable("Exit infinite loop");
6519 }
6520 
6521 // Check if the given bitcode buffer contains a global value summary block.
6522 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6523   BitstreamCursor Stream(Buffer);
6524   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6525     return std::move(JumpFailed);
6526 
6527   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6528     return std::move(Err);
6529 
6530   while (true) {
6531     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6532     if (!MaybeEntry)
6533       return MaybeEntry.takeError();
6534     llvm::BitstreamEntry Entry = MaybeEntry.get();
6535 
6536     switch (Entry.Kind) {
6537     case BitstreamEntry::Error:
6538       return error("Malformed block");
6539     case BitstreamEntry::EndBlock:
6540       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6541                             /*EnableSplitLTOUnit=*/false};
6542 
6543     case BitstreamEntry::SubBlock:
6544       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6545         Expected<bool> EnableSplitLTOUnit =
6546             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6547         if (!EnableSplitLTOUnit)
6548           return EnableSplitLTOUnit.takeError();
6549         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6550                               *EnableSplitLTOUnit};
6551       }
6552 
6553       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6554         Expected<bool> EnableSplitLTOUnit =
6555             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6556         if (!EnableSplitLTOUnit)
6557           return EnableSplitLTOUnit.takeError();
6558         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6559                               *EnableSplitLTOUnit};
6560       }
6561 
6562       // Ignore other sub-blocks.
6563       if (Error Err = Stream.SkipBlock())
6564         return std::move(Err);
6565       continue;
6566 
6567     case BitstreamEntry::Record:
6568       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6569         continue;
6570       else
6571         return StreamFailed.takeError();
6572     }
6573   }
6574 }
6575 
6576 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6577   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6578   if (!MsOrErr)
6579     return MsOrErr.takeError();
6580 
6581   if (MsOrErr->size() != 1)
6582     return error("Expected a single module");
6583 
6584   return (*MsOrErr)[0];
6585 }
6586 
6587 Expected<std::unique_ptr<Module>>
6588 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6589                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6590   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6591   if (!BM)
6592     return BM.takeError();
6593 
6594   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6595 }
6596 
6597 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6598     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6599     bool ShouldLazyLoadMetadata, bool IsImporting) {
6600   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6601                                      IsImporting);
6602   if (MOrErr)
6603     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6604   return MOrErr;
6605 }
6606 
6607 Expected<std::unique_ptr<Module>>
6608 BitcodeModule::parseModule(LLVMContext &Context) {
6609   return getModuleImpl(Context, true, false, false);
6610   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6611   // written.  We must defer until the Module has been fully materialized.
6612 }
6613 
6614 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6615                                                          LLVMContext &Context) {
6616   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6617   if (!BM)
6618     return BM.takeError();
6619 
6620   return BM->parseModule(Context);
6621 }
6622 
6623 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6624   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6625   if (!StreamOrErr)
6626     return StreamOrErr.takeError();
6627 
6628   return readTriple(*StreamOrErr);
6629 }
6630 
6631 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6632   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6633   if (!StreamOrErr)
6634     return StreamOrErr.takeError();
6635 
6636   return hasObjCCategory(*StreamOrErr);
6637 }
6638 
6639 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6640   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6641   if (!StreamOrErr)
6642     return StreamOrErr.takeError();
6643 
6644   return readIdentificationCode(*StreamOrErr);
6645 }
6646 
6647 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6648                                    ModuleSummaryIndex &CombinedIndex,
6649                                    uint64_t ModuleId) {
6650   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6651   if (!BM)
6652     return BM.takeError();
6653 
6654   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6655 }
6656 
6657 Expected<std::unique_ptr<ModuleSummaryIndex>>
6658 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6659   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6660   if (!BM)
6661     return BM.takeError();
6662 
6663   return BM->getSummary();
6664 }
6665 
6666 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6667   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6668   if (!BM)
6669     return BM.takeError();
6670 
6671   return BM->getLTOInfo();
6672 }
6673 
6674 Expected<std::unique_ptr<ModuleSummaryIndex>>
6675 llvm::getModuleSummaryIndexForFile(StringRef Path,
6676                                    bool IgnoreEmptyThinLTOIndexFile) {
6677   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6678       MemoryBuffer::getFileOrSTDIN(Path);
6679   if (!FileOrErr)
6680     return errorCodeToError(FileOrErr.getError());
6681   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6682     return nullptr;
6683   return getModuleSummaryIndex(**FileOrErr);
6684 }
6685