1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Upgrades old-style typeless byval attributes by adding the corresponding 642 /// argument's pointee type. 643 void propagateByValTypes(CallBase *CB); 644 645 /// Converts alignment exponent (i.e. power of two (or zero)) to the 646 /// corresponding alignment to use. If alignment is too large, returns 647 /// a corresponding error code. 648 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 649 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 650 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 651 652 Error parseComdatRecord(ArrayRef<uint64_t> Record); 653 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 654 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 655 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 656 ArrayRef<uint64_t> Record); 657 658 Error parseAttributeBlock(); 659 Error parseAttributeGroupBlock(); 660 Error parseTypeTable(); 661 Error parseTypeTableBody(); 662 Error parseOperandBundleTags(); 663 Error parseSyncScopeNames(); 664 665 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 666 unsigned NameIndex, Triple &TT); 667 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 668 ArrayRef<uint64_t> Record); 669 Error parseValueSymbolTable(uint64_t Offset = 0); 670 Error parseGlobalValueSymbolTable(); 671 Error parseConstants(); 672 Error rememberAndSkipFunctionBodies(); 673 Error rememberAndSkipFunctionBody(); 674 /// Save the positions of the Metadata blocks and skip parsing the blocks. 675 Error rememberAndSkipMetadata(); 676 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 677 Error parseFunctionBody(Function *F); 678 Error globalCleanup(); 679 Error resolveGlobalAndIndirectSymbolInits(); 680 Error parseUseLists(); 681 Error findFunctionInStream( 682 Function *F, 683 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 684 685 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 686 }; 687 688 /// Class to manage reading and parsing function summary index bitcode 689 /// files/sections. 690 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 691 /// The module index built during parsing. 692 ModuleSummaryIndex &TheIndex; 693 694 /// Indicates whether we have encountered a global value summary section 695 /// yet during parsing. 696 bool SeenGlobalValSummary = false; 697 698 /// Indicates whether we have already parsed the VST, used for error checking. 699 bool SeenValueSymbolTable = false; 700 701 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 702 /// Used to enable on-demand parsing of the VST. 703 uint64_t VSTOffset = 0; 704 705 // Map to save ValueId to ValueInfo association that was recorded in the 706 // ValueSymbolTable. It is used after the VST is parsed to convert 707 // call graph edges read from the function summary from referencing 708 // callees by their ValueId to using the ValueInfo instead, which is how 709 // they are recorded in the summary index being built. 710 // We save a GUID which refers to the same global as the ValueInfo, but 711 // ignoring the linkage, i.e. for values other than local linkage they are 712 // identical. 713 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 714 ValueIdToValueInfoMap; 715 716 /// Map populated during module path string table parsing, from the 717 /// module ID to a string reference owned by the index's module 718 /// path string table, used to correlate with combined index 719 /// summary records. 720 DenseMap<uint64_t, StringRef> ModuleIdMap; 721 722 /// Original source file name recorded in a bitcode record. 723 std::string SourceFileName; 724 725 /// The string identifier given to this module by the client, normally the 726 /// path to the bitcode file. 727 StringRef ModulePath; 728 729 /// For per-module summary indexes, the unique numerical identifier given to 730 /// this module by the client. 731 unsigned ModuleId; 732 733 public: 734 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 735 ModuleSummaryIndex &TheIndex, 736 StringRef ModulePath, unsigned ModuleId); 737 738 Error parseModule(); 739 740 private: 741 void setValueGUID(uint64_t ValueID, StringRef ValueName, 742 GlobalValue::LinkageTypes Linkage, 743 StringRef SourceFileName); 744 Error parseValueSymbolTable( 745 uint64_t Offset, 746 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 747 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 748 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 749 bool IsOldProfileFormat, 750 bool HasProfile, 751 bool HasRelBF); 752 Error parseEntireSummary(unsigned ID); 753 Error parseModuleStringTable(); 754 755 std::pair<ValueInfo, GlobalValue::GUID> 756 getValueInfoFromValueId(unsigned ValueId); 757 758 void addThisModule(); 759 ModuleSummaryIndex::ModuleInfo *getThisModule(); 760 }; 761 762 } // end anonymous namespace 763 764 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 765 Error Err) { 766 if (Err) { 767 std::error_code EC; 768 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 769 EC = EIB.convertToErrorCode(); 770 Ctx.emitError(EIB.message()); 771 }); 772 return EC; 773 } 774 return std::error_code(); 775 } 776 777 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 778 StringRef ProducerIdentification, 779 LLVMContext &Context) 780 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 781 ValueList(Context) { 782 this->ProducerIdentification = ProducerIdentification; 783 } 784 785 Error BitcodeReader::materializeForwardReferencedFunctions() { 786 if (WillMaterializeAllForwardRefs) 787 return Error::success(); 788 789 // Prevent recursion. 790 WillMaterializeAllForwardRefs = true; 791 792 while (!BasicBlockFwdRefQueue.empty()) { 793 Function *F = BasicBlockFwdRefQueue.front(); 794 BasicBlockFwdRefQueue.pop_front(); 795 assert(F && "Expected valid function"); 796 if (!BasicBlockFwdRefs.count(F)) 797 // Already materialized. 798 continue; 799 800 // Check for a function that isn't materializable to prevent an infinite 801 // loop. When parsing a blockaddress stored in a global variable, there 802 // isn't a trivial way to check if a function will have a body without a 803 // linear search through FunctionsWithBodies, so just check it here. 804 if (!F->isMaterializable()) 805 return error("Never resolved function from blockaddress"); 806 807 // Try to materialize F. 808 if (Error Err = materialize(F)) 809 return Err; 810 } 811 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 812 813 // Reset state. 814 WillMaterializeAllForwardRefs = false; 815 return Error::success(); 816 } 817 818 //===----------------------------------------------------------------------===// 819 // Helper functions to implement forward reference resolution, etc. 820 //===----------------------------------------------------------------------===// 821 822 static bool hasImplicitComdat(size_t Val) { 823 switch (Val) { 824 default: 825 return false; 826 case 1: // Old WeakAnyLinkage 827 case 4: // Old LinkOnceAnyLinkage 828 case 10: // Old WeakODRLinkage 829 case 11: // Old LinkOnceODRLinkage 830 return true; 831 } 832 } 833 834 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 835 switch (Val) { 836 default: // Map unknown/new linkages to external 837 case 0: 838 return GlobalValue::ExternalLinkage; 839 case 2: 840 return GlobalValue::AppendingLinkage; 841 case 3: 842 return GlobalValue::InternalLinkage; 843 case 5: 844 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 845 case 6: 846 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 847 case 7: 848 return GlobalValue::ExternalWeakLinkage; 849 case 8: 850 return GlobalValue::CommonLinkage; 851 case 9: 852 return GlobalValue::PrivateLinkage; 853 case 12: 854 return GlobalValue::AvailableExternallyLinkage; 855 case 13: 856 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 857 case 14: 858 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 859 case 15: 860 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 861 case 1: // Old value with implicit comdat. 862 case 16: 863 return GlobalValue::WeakAnyLinkage; 864 case 10: // Old value with implicit comdat. 865 case 17: 866 return GlobalValue::WeakODRLinkage; 867 case 4: // Old value with implicit comdat. 868 case 18: 869 return GlobalValue::LinkOnceAnyLinkage; 870 case 11: // Old value with implicit comdat. 871 case 19: 872 return GlobalValue::LinkOnceODRLinkage; 873 } 874 } 875 876 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 877 FunctionSummary::FFlags Flags; 878 Flags.ReadNone = RawFlags & 0x1; 879 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 880 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 881 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 882 Flags.NoInline = (RawFlags >> 4) & 0x1; 883 return Flags; 884 } 885 886 /// Decode the flags for GlobalValue in the summary. 887 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 888 uint64_t Version) { 889 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 890 // like getDecodedLinkage() above. Any future change to the linkage enum and 891 // to getDecodedLinkage() will need to be taken into account here as above. 892 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 893 RawFlags = RawFlags >> 4; 894 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 895 // The Live flag wasn't introduced until version 3. For dead stripping 896 // to work correctly on earlier versions, we must conservatively treat all 897 // values as live. 898 bool Live = (RawFlags & 0x2) || Version < 3; 899 bool Local = (RawFlags & 0x4); 900 bool AutoHide = (RawFlags & 0x8); 901 902 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 903 } 904 905 // Decode the flags for GlobalVariable in the summary 906 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 907 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false); 908 } 909 910 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 911 switch (Val) { 912 default: // Map unknown visibilities to default. 913 case 0: return GlobalValue::DefaultVisibility; 914 case 1: return GlobalValue::HiddenVisibility; 915 case 2: return GlobalValue::ProtectedVisibility; 916 } 917 } 918 919 static GlobalValue::DLLStorageClassTypes 920 getDecodedDLLStorageClass(unsigned Val) { 921 switch (Val) { 922 default: // Map unknown values to default. 923 case 0: return GlobalValue::DefaultStorageClass; 924 case 1: return GlobalValue::DLLImportStorageClass; 925 case 2: return GlobalValue::DLLExportStorageClass; 926 } 927 } 928 929 static bool getDecodedDSOLocal(unsigned Val) { 930 switch(Val) { 931 default: // Map unknown values to preemptable. 932 case 0: return false; 933 case 1: return true; 934 } 935 } 936 937 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 938 switch (Val) { 939 case 0: return GlobalVariable::NotThreadLocal; 940 default: // Map unknown non-zero value to general dynamic. 941 case 1: return GlobalVariable::GeneralDynamicTLSModel; 942 case 2: return GlobalVariable::LocalDynamicTLSModel; 943 case 3: return GlobalVariable::InitialExecTLSModel; 944 case 4: return GlobalVariable::LocalExecTLSModel; 945 } 946 } 947 948 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 949 switch (Val) { 950 default: // Map unknown to UnnamedAddr::None. 951 case 0: return GlobalVariable::UnnamedAddr::None; 952 case 1: return GlobalVariable::UnnamedAddr::Global; 953 case 2: return GlobalVariable::UnnamedAddr::Local; 954 } 955 } 956 957 static int getDecodedCastOpcode(unsigned Val) { 958 switch (Val) { 959 default: return -1; 960 case bitc::CAST_TRUNC : return Instruction::Trunc; 961 case bitc::CAST_ZEXT : return Instruction::ZExt; 962 case bitc::CAST_SEXT : return Instruction::SExt; 963 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 964 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 965 case bitc::CAST_UITOFP : return Instruction::UIToFP; 966 case bitc::CAST_SITOFP : return Instruction::SIToFP; 967 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 968 case bitc::CAST_FPEXT : return Instruction::FPExt; 969 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 970 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 971 case bitc::CAST_BITCAST : return Instruction::BitCast; 972 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 973 } 974 } 975 976 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 977 bool IsFP = Ty->isFPOrFPVectorTy(); 978 // UnOps are only valid for int/fp or vector of int/fp types 979 if (!IsFP && !Ty->isIntOrIntVectorTy()) 980 return -1; 981 982 switch (Val) { 983 default: 984 return -1; 985 case bitc::UNOP_NEG: 986 return IsFP ? Instruction::FNeg : -1; 987 } 988 } 989 990 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 991 bool IsFP = Ty->isFPOrFPVectorTy(); 992 // BinOps are only valid for int/fp or vector of int/fp types 993 if (!IsFP && !Ty->isIntOrIntVectorTy()) 994 return -1; 995 996 switch (Val) { 997 default: 998 return -1; 999 case bitc::BINOP_ADD: 1000 return IsFP ? Instruction::FAdd : Instruction::Add; 1001 case bitc::BINOP_SUB: 1002 return IsFP ? Instruction::FSub : Instruction::Sub; 1003 case bitc::BINOP_MUL: 1004 return IsFP ? Instruction::FMul : Instruction::Mul; 1005 case bitc::BINOP_UDIV: 1006 return IsFP ? -1 : Instruction::UDiv; 1007 case bitc::BINOP_SDIV: 1008 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1009 case bitc::BINOP_UREM: 1010 return IsFP ? -1 : Instruction::URem; 1011 case bitc::BINOP_SREM: 1012 return IsFP ? Instruction::FRem : Instruction::SRem; 1013 case bitc::BINOP_SHL: 1014 return IsFP ? -1 : Instruction::Shl; 1015 case bitc::BINOP_LSHR: 1016 return IsFP ? -1 : Instruction::LShr; 1017 case bitc::BINOP_ASHR: 1018 return IsFP ? -1 : Instruction::AShr; 1019 case bitc::BINOP_AND: 1020 return IsFP ? -1 : Instruction::And; 1021 case bitc::BINOP_OR: 1022 return IsFP ? -1 : Instruction::Or; 1023 case bitc::BINOP_XOR: 1024 return IsFP ? -1 : Instruction::Xor; 1025 } 1026 } 1027 1028 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1029 switch (Val) { 1030 default: return AtomicRMWInst::BAD_BINOP; 1031 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1032 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1033 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1034 case bitc::RMW_AND: return AtomicRMWInst::And; 1035 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1036 case bitc::RMW_OR: return AtomicRMWInst::Or; 1037 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1038 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1039 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1040 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1041 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1042 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1043 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1044 } 1045 } 1046 1047 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1048 switch (Val) { 1049 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1050 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1051 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1052 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1053 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1054 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1055 default: // Map unknown orderings to sequentially-consistent. 1056 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1057 } 1058 } 1059 1060 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1061 switch (Val) { 1062 default: // Map unknown selection kinds to any. 1063 case bitc::COMDAT_SELECTION_KIND_ANY: 1064 return Comdat::Any; 1065 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1066 return Comdat::ExactMatch; 1067 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1068 return Comdat::Largest; 1069 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1070 return Comdat::NoDuplicates; 1071 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1072 return Comdat::SameSize; 1073 } 1074 } 1075 1076 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1077 FastMathFlags FMF; 1078 if (0 != (Val & bitc::UnsafeAlgebra)) 1079 FMF.setFast(); 1080 if (0 != (Val & bitc::AllowReassoc)) 1081 FMF.setAllowReassoc(); 1082 if (0 != (Val & bitc::NoNaNs)) 1083 FMF.setNoNaNs(); 1084 if (0 != (Val & bitc::NoInfs)) 1085 FMF.setNoInfs(); 1086 if (0 != (Val & bitc::NoSignedZeros)) 1087 FMF.setNoSignedZeros(); 1088 if (0 != (Val & bitc::AllowReciprocal)) 1089 FMF.setAllowReciprocal(); 1090 if (0 != (Val & bitc::AllowContract)) 1091 FMF.setAllowContract(true); 1092 if (0 != (Val & bitc::ApproxFunc)) 1093 FMF.setApproxFunc(); 1094 return FMF; 1095 } 1096 1097 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1098 switch (Val) { 1099 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1100 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1101 } 1102 } 1103 1104 Type *BitcodeReader::getTypeByID(unsigned ID) { 1105 // The type table size is always specified correctly. 1106 if (ID >= TypeList.size()) 1107 return nullptr; 1108 1109 if (Type *Ty = TypeList[ID]) 1110 return Ty; 1111 1112 // If we have a forward reference, the only possible case is when it is to a 1113 // named struct. Just create a placeholder for now. 1114 return TypeList[ID] = createIdentifiedStructType(Context); 1115 } 1116 1117 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1118 StringRef Name) { 1119 auto *Ret = StructType::create(Context, Name); 1120 IdentifiedStructTypes.push_back(Ret); 1121 return Ret; 1122 } 1123 1124 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1125 auto *Ret = StructType::create(Context); 1126 IdentifiedStructTypes.push_back(Ret); 1127 return Ret; 1128 } 1129 1130 //===----------------------------------------------------------------------===// 1131 // Functions for parsing blocks from the bitcode file 1132 //===----------------------------------------------------------------------===// 1133 1134 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1135 switch (Val) { 1136 case Attribute::EndAttrKinds: 1137 llvm_unreachable("Synthetic enumerators which should never get here"); 1138 1139 case Attribute::None: return 0; 1140 case Attribute::ZExt: return 1 << 0; 1141 case Attribute::SExt: return 1 << 1; 1142 case Attribute::NoReturn: return 1 << 2; 1143 case Attribute::InReg: return 1 << 3; 1144 case Attribute::StructRet: return 1 << 4; 1145 case Attribute::NoUnwind: return 1 << 5; 1146 case Attribute::NoAlias: return 1 << 6; 1147 case Attribute::ByVal: return 1 << 7; 1148 case Attribute::Nest: return 1 << 8; 1149 case Attribute::ReadNone: return 1 << 9; 1150 case Attribute::ReadOnly: return 1 << 10; 1151 case Attribute::NoInline: return 1 << 11; 1152 case Attribute::AlwaysInline: return 1 << 12; 1153 case Attribute::OptimizeForSize: return 1 << 13; 1154 case Attribute::StackProtect: return 1 << 14; 1155 case Attribute::StackProtectReq: return 1 << 15; 1156 case Attribute::Alignment: return 31 << 16; 1157 case Attribute::NoCapture: return 1 << 21; 1158 case Attribute::NoRedZone: return 1 << 22; 1159 case Attribute::NoImplicitFloat: return 1 << 23; 1160 case Attribute::Naked: return 1 << 24; 1161 case Attribute::InlineHint: return 1 << 25; 1162 case Attribute::StackAlignment: return 7 << 26; 1163 case Attribute::ReturnsTwice: return 1 << 29; 1164 case Attribute::UWTable: return 1 << 30; 1165 case Attribute::NonLazyBind: return 1U << 31; 1166 case Attribute::SanitizeAddress: return 1ULL << 32; 1167 case Attribute::MinSize: return 1ULL << 33; 1168 case Attribute::NoDuplicate: return 1ULL << 34; 1169 case Attribute::StackProtectStrong: return 1ULL << 35; 1170 case Attribute::SanitizeThread: return 1ULL << 36; 1171 case Attribute::SanitizeMemory: return 1ULL << 37; 1172 case Attribute::NoBuiltin: return 1ULL << 38; 1173 case Attribute::Returned: return 1ULL << 39; 1174 case Attribute::Cold: return 1ULL << 40; 1175 case Attribute::Builtin: return 1ULL << 41; 1176 case Attribute::OptimizeNone: return 1ULL << 42; 1177 case Attribute::InAlloca: return 1ULL << 43; 1178 case Attribute::NonNull: return 1ULL << 44; 1179 case Attribute::JumpTable: return 1ULL << 45; 1180 case Attribute::Convergent: return 1ULL << 46; 1181 case Attribute::SafeStack: return 1ULL << 47; 1182 case Attribute::NoRecurse: return 1ULL << 48; 1183 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1184 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1185 case Attribute::SwiftSelf: return 1ULL << 51; 1186 case Attribute::SwiftError: return 1ULL << 52; 1187 case Attribute::WriteOnly: return 1ULL << 53; 1188 case Attribute::Speculatable: return 1ULL << 54; 1189 case Attribute::StrictFP: return 1ULL << 55; 1190 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1191 case Attribute::NoCfCheck: return 1ULL << 57; 1192 case Attribute::OptForFuzzing: return 1ULL << 58; 1193 case Attribute::ShadowCallStack: return 1ULL << 59; 1194 case Attribute::SpeculativeLoadHardening: 1195 return 1ULL << 60; 1196 case Attribute::ImmArg: 1197 return 1ULL << 61; 1198 case Attribute::Dereferenceable: 1199 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1200 break; 1201 case Attribute::DereferenceableOrNull: 1202 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1203 "format"); 1204 break; 1205 case Attribute::ArgMemOnly: 1206 llvm_unreachable("argmemonly attribute not supported in raw format"); 1207 break; 1208 case Attribute::AllocSize: 1209 llvm_unreachable("allocsize not supported in raw format"); 1210 break; 1211 } 1212 llvm_unreachable("Unsupported attribute type"); 1213 } 1214 1215 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1216 if (!Val) return; 1217 1218 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1219 I = Attribute::AttrKind(I + 1)) { 1220 if (I == Attribute::Dereferenceable || 1221 I == Attribute::DereferenceableOrNull || 1222 I == Attribute::ArgMemOnly || 1223 I == Attribute::AllocSize) 1224 continue; 1225 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1226 if (I == Attribute::Alignment) 1227 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1228 else if (I == Attribute::StackAlignment) 1229 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1230 else 1231 B.addAttribute(I); 1232 } 1233 } 1234 } 1235 1236 /// This fills an AttrBuilder object with the LLVM attributes that have 1237 /// been decoded from the given integer. This function must stay in sync with 1238 /// 'encodeLLVMAttributesForBitcode'. 1239 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1240 uint64_t EncodedAttrs) { 1241 // FIXME: Remove in 4.0. 1242 1243 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1244 // the bits above 31 down by 11 bits. 1245 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1246 assert((!Alignment || isPowerOf2_32(Alignment)) && 1247 "Alignment must be a power of two."); 1248 1249 if (Alignment) 1250 B.addAlignmentAttr(Alignment); 1251 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1252 (EncodedAttrs & 0xffff)); 1253 } 1254 1255 Error BitcodeReader::parseAttributeBlock() { 1256 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1257 return error("Invalid record"); 1258 1259 if (!MAttributes.empty()) 1260 return error("Invalid multiple blocks"); 1261 1262 SmallVector<uint64_t, 64> Record; 1263 1264 SmallVector<AttributeList, 8> Attrs; 1265 1266 // Read all the records. 1267 while (true) { 1268 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1269 1270 switch (Entry.Kind) { 1271 case BitstreamEntry::SubBlock: // Handled for us already. 1272 case BitstreamEntry::Error: 1273 return error("Malformed block"); 1274 case BitstreamEntry::EndBlock: 1275 return Error::success(); 1276 case BitstreamEntry::Record: 1277 // The interesting case. 1278 break; 1279 } 1280 1281 // Read a record. 1282 Record.clear(); 1283 switch (Stream.readRecord(Entry.ID, Record)) { 1284 default: // Default behavior: ignore. 1285 break; 1286 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1287 // FIXME: Remove in 4.0. 1288 if (Record.size() & 1) 1289 return error("Invalid record"); 1290 1291 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1292 AttrBuilder B; 1293 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1294 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1295 } 1296 1297 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1298 Attrs.clear(); 1299 break; 1300 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1301 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1302 Attrs.push_back(MAttributeGroups[Record[i]]); 1303 1304 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1305 Attrs.clear(); 1306 break; 1307 } 1308 } 1309 } 1310 1311 // Returns Attribute::None on unrecognized codes. 1312 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1313 switch (Code) { 1314 default: 1315 return Attribute::None; 1316 case bitc::ATTR_KIND_ALIGNMENT: 1317 return Attribute::Alignment; 1318 case bitc::ATTR_KIND_ALWAYS_INLINE: 1319 return Attribute::AlwaysInline; 1320 case bitc::ATTR_KIND_ARGMEMONLY: 1321 return Attribute::ArgMemOnly; 1322 case bitc::ATTR_KIND_BUILTIN: 1323 return Attribute::Builtin; 1324 case bitc::ATTR_KIND_BY_VAL: 1325 return Attribute::ByVal; 1326 case bitc::ATTR_KIND_IN_ALLOCA: 1327 return Attribute::InAlloca; 1328 case bitc::ATTR_KIND_COLD: 1329 return Attribute::Cold; 1330 case bitc::ATTR_KIND_CONVERGENT: 1331 return Attribute::Convergent; 1332 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1333 return Attribute::InaccessibleMemOnly; 1334 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1335 return Attribute::InaccessibleMemOrArgMemOnly; 1336 case bitc::ATTR_KIND_INLINE_HINT: 1337 return Attribute::InlineHint; 1338 case bitc::ATTR_KIND_IN_REG: 1339 return Attribute::InReg; 1340 case bitc::ATTR_KIND_JUMP_TABLE: 1341 return Attribute::JumpTable; 1342 case bitc::ATTR_KIND_MIN_SIZE: 1343 return Attribute::MinSize; 1344 case bitc::ATTR_KIND_NAKED: 1345 return Attribute::Naked; 1346 case bitc::ATTR_KIND_NEST: 1347 return Attribute::Nest; 1348 case bitc::ATTR_KIND_NO_ALIAS: 1349 return Attribute::NoAlias; 1350 case bitc::ATTR_KIND_NO_BUILTIN: 1351 return Attribute::NoBuiltin; 1352 case bitc::ATTR_KIND_NO_CAPTURE: 1353 return Attribute::NoCapture; 1354 case bitc::ATTR_KIND_NO_DUPLICATE: 1355 return Attribute::NoDuplicate; 1356 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1357 return Attribute::NoImplicitFloat; 1358 case bitc::ATTR_KIND_NO_INLINE: 1359 return Attribute::NoInline; 1360 case bitc::ATTR_KIND_NO_RECURSE: 1361 return Attribute::NoRecurse; 1362 case bitc::ATTR_KIND_NON_LAZY_BIND: 1363 return Attribute::NonLazyBind; 1364 case bitc::ATTR_KIND_NON_NULL: 1365 return Attribute::NonNull; 1366 case bitc::ATTR_KIND_DEREFERENCEABLE: 1367 return Attribute::Dereferenceable; 1368 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1369 return Attribute::DereferenceableOrNull; 1370 case bitc::ATTR_KIND_ALLOC_SIZE: 1371 return Attribute::AllocSize; 1372 case bitc::ATTR_KIND_NO_RED_ZONE: 1373 return Attribute::NoRedZone; 1374 case bitc::ATTR_KIND_NO_RETURN: 1375 return Attribute::NoReturn; 1376 case bitc::ATTR_KIND_NOCF_CHECK: 1377 return Attribute::NoCfCheck; 1378 case bitc::ATTR_KIND_NO_UNWIND: 1379 return Attribute::NoUnwind; 1380 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1381 return Attribute::OptForFuzzing; 1382 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1383 return Attribute::OptimizeForSize; 1384 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1385 return Attribute::OptimizeNone; 1386 case bitc::ATTR_KIND_READ_NONE: 1387 return Attribute::ReadNone; 1388 case bitc::ATTR_KIND_READ_ONLY: 1389 return Attribute::ReadOnly; 1390 case bitc::ATTR_KIND_RETURNED: 1391 return Attribute::Returned; 1392 case bitc::ATTR_KIND_RETURNS_TWICE: 1393 return Attribute::ReturnsTwice; 1394 case bitc::ATTR_KIND_S_EXT: 1395 return Attribute::SExt; 1396 case bitc::ATTR_KIND_SPECULATABLE: 1397 return Attribute::Speculatable; 1398 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1399 return Attribute::StackAlignment; 1400 case bitc::ATTR_KIND_STACK_PROTECT: 1401 return Attribute::StackProtect; 1402 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1403 return Attribute::StackProtectReq; 1404 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1405 return Attribute::StackProtectStrong; 1406 case bitc::ATTR_KIND_SAFESTACK: 1407 return Attribute::SafeStack; 1408 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1409 return Attribute::ShadowCallStack; 1410 case bitc::ATTR_KIND_STRICT_FP: 1411 return Attribute::StrictFP; 1412 case bitc::ATTR_KIND_STRUCT_RET: 1413 return Attribute::StructRet; 1414 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1415 return Attribute::SanitizeAddress; 1416 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1417 return Attribute::SanitizeHWAddress; 1418 case bitc::ATTR_KIND_SANITIZE_THREAD: 1419 return Attribute::SanitizeThread; 1420 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1421 return Attribute::SanitizeMemory; 1422 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1423 return Attribute::SpeculativeLoadHardening; 1424 case bitc::ATTR_KIND_SWIFT_ERROR: 1425 return Attribute::SwiftError; 1426 case bitc::ATTR_KIND_SWIFT_SELF: 1427 return Attribute::SwiftSelf; 1428 case bitc::ATTR_KIND_UW_TABLE: 1429 return Attribute::UWTable; 1430 case bitc::ATTR_KIND_WRITEONLY: 1431 return Attribute::WriteOnly; 1432 case bitc::ATTR_KIND_Z_EXT: 1433 return Attribute::ZExt; 1434 case bitc::ATTR_KIND_IMMARG: 1435 return Attribute::ImmArg; 1436 } 1437 } 1438 1439 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1440 unsigned &Alignment) { 1441 // Note: Alignment in bitcode files is incremented by 1, so that zero 1442 // can be used for default alignment. 1443 if (Exponent > Value::MaxAlignmentExponent + 1) 1444 return error("Invalid alignment value"); 1445 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1446 return Error::success(); 1447 } 1448 1449 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1450 *Kind = getAttrFromCode(Code); 1451 if (*Kind == Attribute::None) 1452 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1453 return Error::success(); 1454 } 1455 1456 Error BitcodeReader::parseAttributeGroupBlock() { 1457 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1458 return error("Invalid record"); 1459 1460 if (!MAttributeGroups.empty()) 1461 return error("Invalid multiple blocks"); 1462 1463 SmallVector<uint64_t, 64> Record; 1464 1465 // Read all the records. 1466 while (true) { 1467 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1468 1469 switch (Entry.Kind) { 1470 case BitstreamEntry::SubBlock: // Handled for us already. 1471 case BitstreamEntry::Error: 1472 return error("Malformed block"); 1473 case BitstreamEntry::EndBlock: 1474 return Error::success(); 1475 case BitstreamEntry::Record: 1476 // The interesting case. 1477 break; 1478 } 1479 1480 // Read a record. 1481 Record.clear(); 1482 switch (Stream.readRecord(Entry.ID, Record)) { 1483 default: // Default behavior: ignore. 1484 break; 1485 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1486 if (Record.size() < 3) 1487 return error("Invalid record"); 1488 1489 uint64_t GrpID = Record[0]; 1490 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1491 1492 AttrBuilder B; 1493 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1494 if (Record[i] == 0) { // Enum attribute 1495 Attribute::AttrKind Kind; 1496 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1497 return Err; 1498 1499 // Upgrade old-style byval attribute to one with a type, even if it's 1500 // nullptr. We will have to insert the real type when we associate 1501 // this AttributeList with a function. 1502 if (Kind == Attribute::ByVal) 1503 B.addByValAttr(nullptr); 1504 1505 B.addAttribute(Kind); 1506 } else if (Record[i] == 1) { // Integer attribute 1507 Attribute::AttrKind Kind; 1508 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1509 return Err; 1510 if (Kind == Attribute::Alignment) 1511 B.addAlignmentAttr(Record[++i]); 1512 else if (Kind == Attribute::StackAlignment) 1513 B.addStackAlignmentAttr(Record[++i]); 1514 else if (Kind == Attribute::Dereferenceable) 1515 B.addDereferenceableAttr(Record[++i]); 1516 else if (Kind == Attribute::DereferenceableOrNull) 1517 B.addDereferenceableOrNullAttr(Record[++i]); 1518 else if (Kind == Attribute::AllocSize) 1519 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1520 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1521 bool HasValue = (Record[i++] == 4); 1522 SmallString<64> KindStr; 1523 SmallString<64> ValStr; 1524 1525 while (Record[i] != 0 && i != e) 1526 KindStr += Record[i++]; 1527 assert(Record[i] == 0 && "Kind string not null terminated"); 1528 1529 if (HasValue) { 1530 // Has a value associated with it. 1531 ++i; // Skip the '0' that terminates the "kind" string. 1532 while (Record[i] != 0 && i != e) 1533 ValStr += Record[i++]; 1534 assert(Record[i] == 0 && "Value string not null terminated"); 1535 } 1536 1537 B.addAttribute(KindStr.str(), ValStr.str()); 1538 } else { 1539 assert((Record[i] == 5 || Record[i] == 6) && 1540 "Invalid attribute group entry"); 1541 bool HasType = Record[i] == 6; 1542 Attribute::AttrKind Kind; 1543 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1544 return Err; 1545 if (Kind == Attribute::ByVal) 1546 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1547 } 1548 } 1549 1550 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1551 break; 1552 } 1553 } 1554 } 1555 } 1556 1557 Error BitcodeReader::parseTypeTable() { 1558 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1559 return error("Invalid record"); 1560 1561 return parseTypeTableBody(); 1562 } 1563 1564 Error BitcodeReader::parseTypeTableBody() { 1565 if (!TypeList.empty()) 1566 return error("Invalid multiple blocks"); 1567 1568 SmallVector<uint64_t, 64> Record; 1569 unsigned NumRecords = 0; 1570 1571 SmallString<64> TypeName; 1572 1573 // Read all the records for this type table. 1574 while (true) { 1575 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1576 1577 switch (Entry.Kind) { 1578 case BitstreamEntry::SubBlock: // Handled for us already. 1579 case BitstreamEntry::Error: 1580 return error("Malformed block"); 1581 case BitstreamEntry::EndBlock: 1582 if (NumRecords != TypeList.size()) 1583 return error("Malformed block"); 1584 return Error::success(); 1585 case BitstreamEntry::Record: 1586 // The interesting case. 1587 break; 1588 } 1589 1590 // Read a record. 1591 Record.clear(); 1592 Type *ResultTy = nullptr; 1593 switch (Stream.readRecord(Entry.ID, Record)) { 1594 default: 1595 return error("Invalid value"); 1596 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1597 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1598 // type list. This allows us to reserve space. 1599 if (Record.size() < 1) 1600 return error("Invalid record"); 1601 TypeList.resize(Record[0]); 1602 continue; 1603 case bitc::TYPE_CODE_VOID: // VOID 1604 ResultTy = Type::getVoidTy(Context); 1605 break; 1606 case bitc::TYPE_CODE_HALF: // HALF 1607 ResultTy = Type::getHalfTy(Context); 1608 break; 1609 case bitc::TYPE_CODE_FLOAT: // FLOAT 1610 ResultTy = Type::getFloatTy(Context); 1611 break; 1612 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1613 ResultTy = Type::getDoubleTy(Context); 1614 break; 1615 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1616 ResultTy = Type::getX86_FP80Ty(Context); 1617 break; 1618 case bitc::TYPE_CODE_FP128: // FP128 1619 ResultTy = Type::getFP128Ty(Context); 1620 break; 1621 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1622 ResultTy = Type::getPPC_FP128Ty(Context); 1623 break; 1624 case bitc::TYPE_CODE_LABEL: // LABEL 1625 ResultTy = Type::getLabelTy(Context); 1626 break; 1627 case bitc::TYPE_CODE_METADATA: // METADATA 1628 ResultTy = Type::getMetadataTy(Context); 1629 break; 1630 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1631 ResultTy = Type::getX86_MMXTy(Context); 1632 break; 1633 case bitc::TYPE_CODE_TOKEN: // TOKEN 1634 ResultTy = Type::getTokenTy(Context); 1635 break; 1636 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1637 if (Record.size() < 1) 1638 return error("Invalid record"); 1639 1640 uint64_t NumBits = Record[0]; 1641 if (NumBits < IntegerType::MIN_INT_BITS || 1642 NumBits > IntegerType::MAX_INT_BITS) 1643 return error("Bitwidth for integer type out of range"); 1644 ResultTy = IntegerType::get(Context, NumBits); 1645 break; 1646 } 1647 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1648 // [pointee type, address space] 1649 if (Record.size() < 1) 1650 return error("Invalid record"); 1651 unsigned AddressSpace = 0; 1652 if (Record.size() == 2) 1653 AddressSpace = Record[1]; 1654 ResultTy = getTypeByID(Record[0]); 1655 if (!ResultTy || 1656 !PointerType::isValidElementType(ResultTy)) 1657 return error("Invalid type"); 1658 ResultTy = PointerType::get(ResultTy, AddressSpace); 1659 break; 1660 } 1661 case bitc::TYPE_CODE_FUNCTION_OLD: { 1662 // FIXME: attrid is dead, remove it in LLVM 4.0 1663 // FUNCTION: [vararg, attrid, retty, paramty x N] 1664 if (Record.size() < 3) 1665 return error("Invalid record"); 1666 SmallVector<Type*, 8> ArgTys; 1667 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1668 if (Type *T = getTypeByID(Record[i])) 1669 ArgTys.push_back(T); 1670 else 1671 break; 1672 } 1673 1674 ResultTy = getTypeByID(Record[2]); 1675 if (!ResultTy || ArgTys.size() < Record.size()-3) 1676 return error("Invalid type"); 1677 1678 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1679 break; 1680 } 1681 case bitc::TYPE_CODE_FUNCTION: { 1682 // FUNCTION: [vararg, retty, paramty x N] 1683 if (Record.size() < 2) 1684 return error("Invalid record"); 1685 SmallVector<Type*, 8> ArgTys; 1686 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1687 if (Type *T = getTypeByID(Record[i])) { 1688 if (!FunctionType::isValidArgumentType(T)) 1689 return error("Invalid function argument type"); 1690 ArgTys.push_back(T); 1691 } 1692 else 1693 break; 1694 } 1695 1696 ResultTy = getTypeByID(Record[1]); 1697 if (!ResultTy || ArgTys.size() < Record.size()-2) 1698 return error("Invalid type"); 1699 1700 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1701 break; 1702 } 1703 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1704 if (Record.size() < 1) 1705 return error("Invalid record"); 1706 SmallVector<Type*, 8> EltTys; 1707 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1708 if (Type *T = getTypeByID(Record[i])) 1709 EltTys.push_back(T); 1710 else 1711 break; 1712 } 1713 if (EltTys.size() != Record.size()-1) 1714 return error("Invalid type"); 1715 ResultTy = StructType::get(Context, EltTys, Record[0]); 1716 break; 1717 } 1718 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1719 if (convertToString(Record, 0, TypeName)) 1720 return error("Invalid record"); 1721 continue; 1722 1723 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1724 if (Record.size() < 1) 1725 return error("Invalid record"); 1726 1727 if (NumRecords >= TypeList.size()) 1728 return error("Invalid TYPE table"); 1729 1730 // Check to see if this was forward referenced, if so fill in the temp. 1731 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1732 if (Res) { 1733 Res->setName(TypeName); 1734 TypeList[NumRecords] = nullptr; 1735 } else // Otherwise, create a new struct. 1736 Res = createIdentifiedStructType(Context, TypeName); 1737 TypeName.clear(); 1738 1739 SmallVector<Type*, 8> EltTys; 1740 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1741 if (Type *T = getTypeByID(Record[i])) 1742 EltTys.push_back(T); 1743 else 1744 break; 1745 } 1746 if (EltTys.size() != Record.size()-1) 1747 return error("Invalid record"); 1748 Res->setBody(EltTys, Record[0]); 1749 ResultTy = Res; 1750 break; 1751 } 1752 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1753 if (Record.size() != 1) 1754 return error("Invalid record"); 1755 1756 if (NumRecords >= TypeList.size()) 1757 return error("Invalid TYPE table"); 1758 1759 // Check to see if this was forward referenced, if so fill in the temp. 1760 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1761 if (Res) { 1762 Res->setName(TypeName); 1763 TypeList[NumRecords] = nullptr; 1764 } else // Otherwise, create a new struct with no body. 1765 Res = createIdentifiedStructType(Context, TypeName); 1766 TypeName.clear(); 1767 ResultTy = Res; 1768 break; 1769 } 1770 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1771 if (Record.size() < 2) 1772 return error("Invalid record"); 1773 ResultTy = getTypeByID(Record[1]); 1774 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1775 return error("Invalid type"); 1776 ResultTy = ArrayType::get(ResultTy, Record[0]); 1777 break; 1778 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1779 if (Record.size() < 2) 1780 return error("Invalid record"); 1781 if (Record[0] == 0) 1782 return error("Invalid vector length"); 1783 ResultTy = getTypeByID(Record[1]); 1784 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1785 return error("Invalid type"); 1786 ResultTy = VectorType::get(ResultTy, Record[0]); 1787 break; 1788 } 1789 1790 if (NumRecords >= TypeList.size()) 1791 return error("Invalid TYPE table"); 1792 if (TypeList[NumRecords]) 1793 return error( 1794 "Invalid TYPE table: Only named structs can be forward referenced"); 1795 assert(ResultTy && "Didn't read a type?"); 1796 TypeList[NumRecords++] = ResultTy; 1797 } 1798 } 1799 1800 Error BitcodeReader::parseOperandBundleTags() { 1801 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1802 return error("Invalid record"); 1803 1804 if (!BundleTags.empty()) 1805 return error("Invalid multiple blocks"); 1806 1807 SmallVector<uint64_t, 64> Record; 1808 1809 while (true) { 1810 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1811 1812 switch (Entry.Kind) { 1813 case BitstreamEntry::SubBlock: // Handled for us already. 1814 case BitstreamEntry::Error: 1815 return error("Malformed block"); 1816 case BitstreamEntry::EndBlock: 1817 return Error::success(); 1818 case BitstreamEntry::Record: 1819 // The interesting case. 1820 break; 1821 } 1822 1823 // Tags are implicitly mapped to integers by their order. 1824 1825 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1826 return error("Invalid record"); 1827 1828 // OPERAND_BUNDLE_TAG: [strchr x N] 1829 BundleTags.emplace_back(); 1830 if (convertToString(Record, 0, BundleTags.back())) 1831 return error("Invalid record"); 1832 Record.clear(); 1833 } 1834 } 1835 1836 Error BitcodeReader::parseSyncScopeNames() { 1837 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1838 return error("Invalid record"); 1839 1840 if (!SSIDs.empty()) 1841 return error("Invalid multiple synchronization scope names blocks"); 1842 1843 SmallVector<uint64_t, 64> Record; 1844 while (true) { 1845 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1846 switch (Entry.Kind) { 1847 case BitstreamEntry::SubBlock: // Handled for us already. 1848 case BitstreamEntry::Error: 1849 return error("Malformed block"); 1850 case BitstreamEntry::EndBlock: 1851 if (SSIDs.empty()) 1852 return error("Invalid empty synchronization scope names block"); 1853 return Error::success(); 1854 case BitstreamEntry::Record: 1855 // The interesting case. 1856 break; 1857 } 1858 1859 // Synchronization scope names are implicitly mapped to synchronization 1860 // scope IDs by their order. 1861 1862 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1863 return error("Invalid record"); 1864 1865 SmallString<16> SSN; 1866 if (convertToString(Record, 0, SSN)) 1867 return error("Invalid record"); 1868 1869 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1870 Record.clear(); 1871 } 1872 } 1873 1874 /// Associate a value with its name from the given index in the provided record. 1875 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1876 unsigned NameIndex, Triple &TT) { 1877 SmallString<128> ValueName; 1878 if (convertToString(Record, NameIndex, ValueName)) 1879 return error("Invalid record"); 1880 unsigned ValueID = Record[0]; 1881 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1882 return error("Invalid record"); 1883 Value *V = ValueList[ValueID]; 1884 1885 StringRef NameStr(ValueName.data(), ValueName.size()); 1886 if (NameStr.find_first_of(0) != StringRef::npos) 1887 return error("Invalid value name"); 1888 V->setName(NameStr); 1889 auto *GO = dyn_cast<GlobalObject>(V); 1890 if (GO) { 1891 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1892 if (TT.supportsCOMDAT()) 1893 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1894 else 1895 GO->setComdat(nullptr); 1896 } 1897 } 1898 return V; 1899 } 1900 1901 /// Helper to note and return the current location, and jump to the given 1902 /// offset. 1903 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1904 BitstreamCursor &Stream) { 1905 // Save the current parsing location so we can jump back at the end 1906 // of the VST read. 1907 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1908 Stream.JumpToBit(Offset * 32); 1909 #ifndef NDEBUG 1910 // Do some checking if we are in debug mode. 1911 BitstreamEntry Entry = Stream.advance(); 1912 assert(Entry.Kind == BitstreamEntry::SubBlock); 1913 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1914 #else 1915 // In NDEBUG mode ignore the output so we don't get an unused variable 1916 // warning. 1917 Stream.advance(); 1918 #endif 1919 return CurrentBit; 1920 } 1921 1922 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1923 Function *F, 1924 ArrayRef<uint64_t> Record) { 1925 // Note that we subtract 1 here because the offset is relative to one word 1926 // before the start of the identification or module block, which was 1927 // historically always the start of the regular bitcode header. 1928 uint64_t FuncWordOffset = Record[1] - 1; 1929 uint64_t FuncBitOffset = FuncWordOffset * 32; 1930 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1931 // Set the LastFunctionBlockBit to point to the last function block. 1932 // Later when parsing is resumed after function materialization, 1933 // we can simply skip that last function block. 1934 if (FuncBitOffset > LastFunctionBlockBit) 1935 LastFunctionBlockBit = FuncBitOffset; 1936 } 1937 1938 /// Read a new-style GlobalValue symbol table. 1939 Error BitcodeReader::parseGlobalValueSymbolTable() { 1940 unsigned FuncBitcodeOffsetDelta = 1941 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1942 1943 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1944 return error("Invalid record"); 1945 1946 SmallVector<uint64_t, 64> Record; 1947 while (true) { 1948 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1949 1950 switch (Entry.Kind) { 1951 case BitstreamEntry::SubBlock: 1952 case BitstreamEntry::Error: 1953 return error("Malformed block"); 1954 case BitstreamEntry::EndBlock: 1955 return Error::success(); 1956 case BitstreamEntry::Record: 1957 break; 1958 } 1959 1960 Record.clear(); 1961 switch (Stream.readRecord(Entry.ID, Record)) { 1962 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1963 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1964 cast<Function>(ValueList[Record[0]]), Record); 1965 break; 1966 } 1967 } 1968 } 1969 1970 /// Parse the value symbol table at either the current parsing location or 1971 /// at the given bit offset if provided. 1972 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1973 uint64_t CurrentBit; 1974 // Pass in the Offset to distinguish between calling for the module-level 1975 // VST (where we want to jump to the VST offset) and the function-level 1976 // VST (where we don't). 1977 if (Offset > 0) { 1978 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1979 // If this module uses a string table, read this as a module-level VST. 1980 if (UseStrtab) { 1981 if (Error Err = parseGlobalValueSymbolTable()) 1982 return Err; 1983 Stream.JumpToBit(CurrentBit); 1984 return Error::success(); 1985 } 1986 // Otherwise, the VST will be in a similar format to a function-level VST, 1987 // and will contain symbol names. 1988 } 1989 1990 // Compute the delta between the bitcode indices in the VST (the word offset 1991 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1992 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1993 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1994 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1995 // just before entering the VST subblock because: 1) the EnterSubBlock 1996 // changes the AbbrevID width; 2) the VST block is nested within the same 1997 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1998 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1999 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2000 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2001 unsigned FuncBitcodeOffsetDelta = 2002 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2003 2004 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2005 return error("Invalid record"); 2006 2007 SmallVector<uint64_t, 64> Record; 2008 2009 Triple TT(TheModule->getTargetTriple()); 2010 2011 // Read all the records for this value table. 2012 SmallString<128> ValueName; 2013 2014 while (true) { 2015 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2016 2017 switch (Entry.Kind) { 2018 case BitstreamEntry::SubBlock: // Handled for us already. 2019 case BitstreamEntry::Error: 2020 return error("Malformed block"); 2021 case BitstreamEntry::EndBlock: 2022 if (Offset > 0) 2023 Stream.JumpToBit(CurrentBit); 2024 return Error::success(); 2025 case BitstreamEntry::Record: 2026 // The interesting case. 2027 break; 2028 } 2029 2030 // Read a record. 2031 Record.clear(); 2032 switch (Stream.readRecord(Entry.ID, Record)) { 2033 default: // Default behavior: unknown type. 2034 break; 2035 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2036 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2037 if (Error Err = ValOrErr.takeError()) 2038 return Err; 2039 ValOrErr.get(); 2040 break; 2041 } 2042 case bitc::VST_CODE_FNENTRY: { 2043 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2044 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2045 if (Error Err = ValOrErr.takeError()) 2046 return Err; 2047 Value *V = ValOrErr.get(); 2048 2049 // Ignore function offsets emitted for aliases of functions in older 2050 // versions of LLVM. 2051 if (auto *F = dyn_cast<Function>(V)) 2052 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2053 break; 2054 } 2055 case bitc::VST_CODE_BBENTRY: { 2056 if (convertToString(Record, 1, ValueName)) 2057 return error("Invalid record"); 2058 BasicBlock *BB = getBasicBlock(Record[0]); 2059 if (!BB) 2060 return error("Invalid record"); 2061 2062 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2063 ValueName.clear(); 2064 break; 2065 } 2066 } 2067 } 2068 } 2069 2070 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2071 /// encoding. 2072 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2073 if ((V & 1) == 0) 2074 return V >> 1; 2075 if (V != 1) 2076 return -(V >> 1); 2077 // There is no such thing as -0 with integers. "-0" really means MININT. 2078 return 1ULL << 63; 2079 } 2080 2081 /// Resolve all of the initializers for global values and aliases that we can. 2082 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2083 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2084 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2085 IndirectSymbolInitWorklist; 2086 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2087 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2088 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2089 2090 GlobalInitWorklist.swap(GlobalInits); 2091 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2092 FunctionPrefixWorklist.swap(FunctionPrefixes); 2093 FunctionPrologueWorklist.swap(FunctionPrologues); 2094 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2095 2096 while (!GlobalInitWorklist.empty()) { 2097 unsigned ValID = GlobalInitWorklist.back().second; 2098 if (ValID >= ValueList.size()) { 2099 // Not ready to resolve this yet, it requires something later in the file. 2100 GlobalInits.push_back(GlobalInitWorklist.back()); 2101 } else { 2102 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2103 GlobalInitWorklist.back().first->setInitializer(C); 2104 else 2105 return error("Expected a constant"); 2106 } 2107 GlobalInitWorklist.pop_back(); 2108 } 2109 2110 while (!IndirectSymbolInitWorklist.empty()) { 2111 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2112 if (ValID >= ValueList.size()) { 2113 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2114 } else { 2115 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2116 if (!C) 2117 return error("Expected a constant"); 2118 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2119 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2120 return error("Alias and aliasee types don't match"); 2121 GIS->setIndirectSymbol(C); 2122 } 2123 IndirectSymbolInitWorklist.pop_back(); 2124 } 2125 2126 while (!FunctionPrefixWorklist.empty()) { 2127 unsigned ValID = FunctionPrefixWorklist.back().second; 2128 if (ValID >= ValueList.size()) { 2129 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2130 } else { 2131 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2132 FunctionPrefixWorklist.back().first->setPrefixData(C); 2133 else 2134 return error("Expected a constant"); 2135 } 2136 FunctionPrefixWorklist.pop_back(); 2137 } 2138 2139 while (!FunctionPrologueWorklist.empty()) { 2140 unsigned ValID = FunctionPrologueWorklist.back().second; 2141 if (ValID >= ValueList.size()) { 2142 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2143 } else { 2144 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2145 FunctionPrologueWorklist.back().first->setPrologueData(C); 2146 else 2147 return error("Expected a constant"); 2148 } 2149 FunctionPrologueWorklist.pop_back(); 2150 } 2151 2152 while (!FunctionPersonalityFnWorklist.empty()) { 2153 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2154 if (ValID >= ValueList.size()) { 2155 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2156 } else { 2157 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2158 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2159 else 2160 return error("Expected a constant"); 2161 } 2162 FunctionPersonalityFnWorklist.pop_back(); 2163 } 2164 2165 return Error::success(); 2166 } 2167 2168 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2169 SmallVector<uint64_t, 8> Words(Vals.size()); 2170 transform(Vals, Words.begin(), 2171 BitcodeReader::decodeSignRotatedValue); 2172 2173 return APInt(TypeBits, Words); 2174 } 2175 2176 Error BitcodeReader::parseConstants() { 2177 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2178 return error("Invalid record"); 2179 2180 SmallVector<uint64_t, 64> Record; 2181 2182 // Read all the records for this value table. 2183 Type *CurTy = Type::getInt32Ty(Context); 2184 unsigned NextCstNo = ValueList.size(); 2185 2186 while (true) { 2187 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2188 2189 switch (Entry.Kind) { 2190 case BitstreamEntry::SubBlock: // Handled for us already. 2191 case BitstreamEntry::Error: 2192 return error("Malformed block"); 2193 case BitstreamEntry::EndBlock: 2194 if (NextCstNo != ValueList.size()) 2195 return error("Invalid constant reference"); 2196 2197 // Once all the constants have been read, go through and resolve forward 2198 // references. 2199 ValueList.resolveConstantForwardRefs(); 2200 return Error::success(); 2201 case BitstreamEntry::Record: 2202 // The interesting case. 2203 break; 2204 } 2205 2206 // Read a record. 2207 Record.clear(); 2208 Type *VoidType = Type::getVoidTy(Context); 2209 Value *V = nullptr; 2210 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2211 switch (BitCode) { 2212 default: // Default behavior: unknown constant 2213 case bitc::CST_CODE_UNDEF: // UNDEF 2214 V = UndefValue::get(CurTy); 2215 break; 2216 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2217 if (Record.empty()) 2218 return error("Invalid record"); 2219 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2220 return error("Invalid record"); 2221 if (TypeList[Record[0]] == VoidType) 2222 return error("Invalid constant type"); 2223 CurTy = TypeList[Record[0]]; 2224 continue; // Skip the ValueList manipulation. 2225 case bitc::CST_CODE_NULL: // NULL 2226 V = Constant::getNullValue(CurTy); 2227 break; 2228 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2229 if (!CurTy->isIntegerTy() || Record.empty()) 2230 return error("Invalid record"); 2231 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2232 break; 2233 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2234 if (!CurTy->isIntegerTy() || Record.empty()) 2235 return error("Invalid record"); 2236 2237 APInt VInt = 2238 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2239 V = ConstantInt::get(Context, VInt); 2240 2241 break; 2242 } 2243 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2244 if (Record.empty()) 2245 return error("Invalid record"); 2246 if (CurTy->isHalfTy()) 2247 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2248 APInt(16, (uint16_t)Record[0]))); 2249 else if (CurTy->isFloatTy()) 2250 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2251 APInt(32, (uint32_t)Record[0]))); 2252 else if (CurTy->isDoubleTy()) 2253 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2254 APInt(64, Record[0]))); 2255 else if (CurTy->isX86_FP80Ty()) { 2256 // Bits are not stored the same way as a normal i80 APInt, compensate. 2257 uint64_t Rearrange[2]; 2258 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2259 Rearrange[1] = Record[0] >> 48; 2260 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2261 APInt(80, Rearrange))); 2262 } else if (CurTy->isFP128Ty()) 2263 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2264 APInt(128, Record))); 2265 else if (CurTy->isPPC_FP128Ty()) 2266 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2267 APInt(128, Record))); 2268 else 2269 V = UndefValue::get(CurTy); 2270 break; 2271 } 2272 2273 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2274 if (Record.empty()) 2275 return error("Invalid record"); 2276 2277 unsigned Size = Record.size(); 2278 SmallVector<Constant*, 16> Elts; 2279 2280 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2281 for (unsigned i = 0; i != Size; ++i) 2282 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2283 STy->getElementType(i))); 2284 V = ConstantStruct::get(STy, Elts); 2285 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2286 Type *EltTy = ATy->getElementType(); 2287 for (unsigned i = 0; i != Size; ++i) 2288 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2289 V = ConstantArray::get(ATy, Elts); 2290 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2291 Type *EltTy = VTy->getElementType(); 2292 for (unsigned i = 0; i != Size; ++i) 2293 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2294 V = ConstantVector::get(Elts); 2295 } else { 2296 V = UndefValue::get(CurTy); 2297 } 2298 break; 2299 } 2300 case bitc::CST_CODE_STRING: // STRING: [values] 2301 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2302 if (Record.empty()) 2303 return error("Invalid record"); 2304 2305 SmallString<16> Elts(Record.begin(), Record.end()); 2306 V = ConstantDataArray::getString(Context, Elts, 2307 BitCode == bitc::CST_CODE_CSTRING); 2308 break; 2309 } 2310 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2311 if (Record.empty()) 2312 return error("Invalid record"); 2313 2314 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2315 if (EltTy->isIntegerTy(8)) { 2316 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2317 if (isa<VectorType>(CurTy)) 2318 V = ConstantDataVector::get(Context, Elts); 2319 else 2320 V = ConstantDataArray::get(Context, Elts); 2321 } else if (EltTy->isIntegerTy(16)) { 2322 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2323 if (isa<VectorType>(CurTy)) 2324 V = ConstantDataVector::get(Context, Elts); 2325 else 2326 V = ConstantDataArray::get(Context, Elts); 2327 } else if (EltTy->isIntegerTy(32)) { 2328 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2329 if (isa<VectorType>(CurTy)) 2330 V = ConstantDataVector::get(Context, Elts); 2331 else 2332 V = ConstantDataArray::get(Context, Elts); 2333 } else if (EltTy->isIntegerTy(64)) { 2334 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2335 if (isa<VectorType>(CurTy)) 2336 V = ConstantDataVector::get(Context, Elts); 2337 else 2338 V = ConstantDataArray::get(Context, Elts); 2339 } else if (EltTy->isHalfTy()) { 2340 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2341 if (isa<VectorType>(CurTy)) 2342 V = ConstantDataVector::getFP(Context, Elts); 2343 else 2344 V = ConstantDataArray::getFP(Context, Elts); 2345 } else if (EltTy->isFloatTy()) { 2346 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2347 if (isa<VectorType>(CurTy)) 2348 V = ConstantDataVector::getFP(Context, Elts); 2349 else 2350 V = ConstantDataArray::getFP(Context, Elts); 2351 } else if (EltTy->isDoubleTy()) { 2352 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2353 if (isa<VectorType>(CurTy)) 2354 V = ConstantDataVector::getFP(Context, Elts); 2355 else 2356 V = ConstantDataArray::getFP(Context, Elts); 2357 } else { 2358 return error("Invalid type for value"); 2359 } 2360 break; 2361 } 2362 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2363 if (Record.size() < 2) 2364 return error("Invalid record"); 2365 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2366 if (Opc < 0) { 2367 V = UndefValue::get(CurTy); // Unknown unop. 2368 } else { 2369 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2370 unsigned Flags = 0; 2371 V = ConstantExpr::get(Opc, LHS, Flags); 2372 } 2373 break; 2374 } 2375 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2376 if (Record.size() < 3) 2377 return error("Invalid record"); 2378 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2379 if (Opc < 0) { 2380 V = UndefValue::get(CurTy); // Unknown binop. 2381 } else { 2382 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2383 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2384 unsigned Flags = 0; 2385 if (Record.size() >= 4) { 2386 if (Opc == Instruction::Add || 2387 Opc == Instruction::Sub || 2388 Opc == Instruction::Mul || 2389 Opc == Instruction::Shl) { 2390 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2391 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2392 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2393 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2394 } else if (Opc == Instruction::SDiv || 2395 Opc == Instruction::UDiv || 2396 Opc == Instruction::LShr || 2397 Opc == Instruction::AShr) { 2398 if (Record[3] & (1 << bitc::PEO_EXACT)) 2399 Flags |= SDivOperator::IsExact; 2400 } 2401 } 2402 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2403 } 2404 break; 2405 } 2406 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2407 if (Record.size() < 3) 2408 return error("Invalid record"); 2409 int Opc = getDecodedCastOpcode(Record[0]); 2410 if (Opc < 0) { 2411 V = UndefValue::get(CurTy); // Unknown cast. 2412 } else { 2413 Type *OpTy = getTypeByID(Record[1]); 2414 if (!OpTy) 2415 return error("Invalid record"); 2416 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2417 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2418 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2419 } 2420 break; 2421 } 2422 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2423 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2424 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2425 // operands] 2426 unsigned OpNum = 0; 2427 Type *PointeeType = nullptr; 2428 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2429 Record.size() % 2) 2430 PointeeType = getTypeByID(Record[OpNum++]); 2431 2432 bool InBounds = false; 2433 Optional<unsigned> InRangeIndex; 2434 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2435 uint64_t Op = Record[OpNum++]; 2436 InBounds = Op & 1; 2437 InRangeIndex = Op >> 1; 2438 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2439 InBounds = true; 2440 2441 SmallVector<Constant*, 16> Elts; 2442 while (OpNum != Record.size()) { 2443 Type *ElTy = getTypeByID(Record[OpNum++]); 2444 if (!ElTy) 2445 return error("Invalid record"); 2446 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2447 } 2448 2449 if (Elts.size() < 1) 2450 return error("Invalid gep with no operands"); 2451 2452 Type *ImplicitPointeeType = 2453 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2454 ->getElementType(); 2455 if (!PointeeType) 2456 PointeeType = ImplicitPointeeType; 2457 else if (PointeeType != ImplicitPointeeType) 2458 return error("Explicit gep operator type does not match pointee type " 2459 "of pointer operand"); 2460 2461 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2462 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2463 InBounds, InRangeIndex); 2464 break; 2465 } 2466 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2467 if (Record.size() < 3) 2468 return error("Invalid record"); 2469 2470 Type *SelectorTy = Type::getInt1Ty(Context); 2471 2472 // The selector might be an i1 or an <n x i1> 2473 // Get the type from the ValueList before getting a forward ref. 2474 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2475 if (Value *V = ValueList[Record[0]]) 2476 if (SelectorTy != V->getType()) 2477 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2478 2479 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2480 SelectorTy), 2481 ValueList.getConstantFwdRef(Record[1],CurTy), 2482 ValueList.getConstantFwdRef(Record[2],CurTy)); 2483 break; 2484 } 2485 case bitc::CST_CODE_CE_EXTRACTELT 2486 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2487 if (Record.size() < 3) 2488 return error("Invalid record"); 2489 VectorType *OpTy = 2490 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2491 if (!OpTy) 2492 return error("Invalid record"); 2493 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2494 Constant *Op1 = nullptr; 2495 if (Record.size() == 4) { 2496 Type *IdxTy = getTypeByID(Record[2]); 2497 if (!IdxTy) 2498 return error("Invalid record"); 2499 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2500 } else // TODO: Remove with llvm 4.0 2501 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2502 if (!Op1) 2503 return error("Invalid record"); 2504 V = ConstantExpr::getExtractElement(Op0, Op1); 2505 break; 2506 } 2507 case bitc::CST_CODE_CE_INSERTELT 2508 : { // CE_INSERTELT: [opval, opval, opty, opval] 2509 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2510 if (Record.size() < 3 || !OpTy) 2511 return error("Invalid record"); 2512 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2513 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2514 OpTy->getElementType()); 2515 Constant *Op2 = nullptr; 2516 if (Record.size() == 4) { 2517 Type *IdxTy = getTypeByID(Record[2]); 2518 if (!IdxTy) 2519 return error("Invalid record"); 2520 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2521 } else // TODO: Remove with llvm 4.0 2522 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2523 if (!Op2) 2524 return error("Invalid record"); 2525 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2526 break; 2527 } 2528 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2529 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2530 if (Record.size() < 3 || !OpTy) 2531 return error("Invalid record"); 2532 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2533 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2534 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2535 OpTy->getNumElements()); 2536 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2537 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2538 break; 2539 } 2540 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2541 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2542 VectorType *OpTy = 2543 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2544 if (Record.size() < 4 || !RTy || !OpTy) 2545 return error("Invalid record"); 2546 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2547 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2548 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2549 RTy->getNumElements()); 2550 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2551 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2552 break; 2553 } 2554 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2555 if (Record.size() < 4) 2556 return error("Invalid record"); 2557 Type *OpTy = getTypeByID(Record[0]); 2558 if (!OpTy) 2559 return error("Invalid record"); 2560 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2561 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2562 2563 if (OpTy->isFPOrFPVectorTy()) 2564 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2565 else 2566 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2567 break; 2568 } 2569 // This maintains backward compatibility, pre-asm dialect keywords. 2570 // FIXME: Remove with the 4.0 release. 2571 case bitc::CST_CODE_INLINEASM_OLD: { 2572 if (Record.size() < 2) 2573 return error("Invalid record"); 2574 std::string AsmStr, ConstrStr; 2575 bool HasSideEffects = Record[0] & 1; 2576 bool IsAlignStack = Record[0] >> 1; 2577 unsigned AsmStrSize = Record[1]; 2578 if (2+AsmStrSize >= Record.size()) 2579 return error("Invalid record"); 2580 unsigned ConstStrSize = Record[2+AsmStrSize]; 2581 if (3+AsmStrSize+ConstStrSize > Record.size()) 2582 return error("Invalid record"); 2583 2584 for (unsigned i = 0; i != AsmStrSize; ++i) 2585 AsmStr += (char)Record[2+i]; 2586 for (unsigned i = 0; i != ConstStrSize; ++i) 2587 ConstrStr += (char)Record[3+AsmStrSize+i]; 2588 PointerType *PTy = cast<PointerType>(CurTy); 2589 UpgradeInlineAsmString(&AsmStr); 2590 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2591 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2592 break; 2593 } 2594 // This version adds support for the asm dialect keywords (e.g., 2595 // inteldialect). 2596 case bitc::CST_CODE_INLINEASM: { 2597 if (Record.size() < 2) 2598 return error("Invalid record"); 2599 std::string AsmStr, ConstrStr; 2600 bool HasSideEffects = Record[0] & 1; 2601 bool IsAlignStack = (Record[0] >> 1) & 1; 2602 unsigned AsmDialect = Record[0] >> 2; 2603 unsigned AsmStrSize = Record[1]; 2604 if (2+AsmStrSize >= Record.size()) 2605 return error("Invalid record"); 2606 unsigned ConstStrSize = Record[2+AsmStrSize]; 2607 if (3+AsmStrSize+ConstStrSize > Record.size()) 2608 return error("Invalid record"); 2609 2610 for (unsigned i = 0; i != AsmStrSize; ++i) 2611 AsmStr += (char)Record[2+i]; 2612 for (unsigned i = 0; i != ConstStrSize; ++i) 2613 ConstrStr += (char)Record[3+AsmStrSize+i]; 2614 PointerType *PTy = cast<PointerType>(CurTy); 2615 UpgradeInlineAsmString(&AsmStr); 2616 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2617 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2618 InlineAsm::AsmDialect(AsmDialect)); 2619 break; 2620 } 2621 case bitc::CST_CODE_BLOCKADDRESS:{ 2622 if (Record.size() < 3) 2623 return error("Invalid record"); 2624 Type *FnTy = getTypeByID(Record[0]); 2625 if (!FnTy) 2626 return error("Invalid record"); 2627 Function *Fn = 2628 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2629 if (!Fn) 2630 return error("Invalid record"); 2631 2632 // If the function is already parsed we can insert the block address right 2633 // away. 2634 BasicBlock *BB; 2635 unsigned BBID = Record[2]; 2636 if (!BBID) 2637 // Invalid reference to entry block. 2638 return error("Invalid ID"); 2639 if (!Fn->empty()) { 2640 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2641 for (size_t I = 0, E = BBID; I != E; ++I) { 2642 if (BBI == BBE) 2643 return error("Invalid ID"); 2644 ++BBI; 2645 } 2646 BB = &*BBI; 2647 } else { 2648 // Otherwise insert a placeholder and remember it so it can be inserted 2649 // when the function is parsed. 2650 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2651 if (FwdBBs.empty()) 2652 BasicBlockFwdRefQueue.push_back(Fn); 2653 if (FwdBBs.size() < BBID + 1) 2654 FwdBBs.resize(BBID + 1); 2655 if (!FwdBBs[BBID]) 2656 FwdBBs[BBID] = BasicBlock::Create(Context); 2657 BB = FwdBBs[BBID]; 2658 } 2659 V = BlockAddress::get(Fn, BB); 2660 break; 2661 } 2662 } 2663 2664 ValueList.assignValue(V, NextCstNo); 2665 ++NextCstNo; 2666 } 2667 } 2668 2669 Error BitcodeReader::parseUseLists() { 2670 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2671 return error("Invalid record"); 2672 2673 // Read all the records. 2674 SmallVector<uint64_t, 64> Record; 2675 2676 while (true) { 2677 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2678 2679 switch (Entry.Kind) { 2680 case BitstreamEntry::SubBlock: // Handled for us already. 2681 case BitstreamEntry::Error: 2682 return error("Malformed block"); 2683 case BitstreamEntry::EndBlock: 2684 return Error::success(); 2685 case BitstreamEntry::Record: 2686 // The interesting case. 2687 break; 2688 } 2689 2690 // Read a use list record. 2691 Record.clear(); 2692 bool IsBB = false; 2693 switch (Stream.readRecord(Entry.ID, Record)) { 2694 default: // Default behavior: unknown type. 2695 break; 2696 case bitc::USELIST_CODE_BB: 2697 IsBB = true; 2698 LLVM_FALLTHROUGH; 2699 case bitc::USELIST_CODE_DEFAULT: { 2700 unsigned RecordLength = Record.size(); 2701 if (RecordLength < 3) 2702 // Records should have at least an ID and two indexes. 2703 return error("Invalid record"); 2704 unsigned ID = Record.back(); 2705 Record.pop_back(); 2706 2707 Value *V; 2708 if (IsBB) { 2709 assert(ID < FunctionBBs.size() && "Basic block not found"); 2710 V = FunctionBBs[ID]; 2711 } else 2712 V = ValueList[ID]; 2713 unsigned NumUses = 0; 2714 SmallDenseMap<const Use *, unsigned, 16> Order; 2715 for (const Use &U : V->materialized_uses()) { 2716 if (++NumUses > Record.size()) 2717 break; 2718 Order[&U] = Record[NumUses - 1]; 2719 } 2720 if (Order.size() != Record.size() || NumUses > Record.size()) 2721 // Mismatches can happen if the functions are being materialized lazily 2722 // (out-of-order), or a value has been upgraded. 2723 break; 2724 2725 V->sortUseList([&](const Use &L, const Use &R) { 2726 return Order.lookup(&L) < Order.lookup(&R); 2727 }); 2728 break; 2729 } 2730 } 2731 } 2732 } 2733 2734 /// When we see the block for metadata, remember where it is and then skip it. 2735 /// This lets us lazily deserialize the metadata. 2736 Error BitcodeReader::rememberAndSkipMetadata() { 2737 // Save the current stream state. 2738 uint64_t CurBit = Stream.GetCurrentBitNo(); 2739 DeferredMetadataInfo.push_back(CurBit); 2740 2741 // Skip over the block for now. 2742 if (Stream.SkipBlock()) 2743 return error("Invalid record"); 2744 return Error::success(); 2745 } 2746 2747 Error BitcodeReader::materializeMetadata() { 2748 for (uint64_t BitPos : DeferredMetadataInfo) { 2749 // Move the bit stream to the saved position. 2750 Stream.JumpToBit(BitPos); 2751 if (Error Err = MDLoader->parseModuleMetadata()) 2752 return Err; 2753 } 2754 2755 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2756 // metadata. 2757 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2758 NamedMDNode *LinkerOpts = 2759 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2760 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2761 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2762 } 2763 2764 DeferredMetadataInfo.clear(); 2765 return Error::success(); 2766 } 2767 2768 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2769 2770 /// When we see the block for a function body, remember where it is and then 2771 /// skip it. This lets us lazily deserialize the functions. 2772 Error BitcodeReader::rememberAndSkipFunctionBody() { 2773 // Get the function we are talking about. 2774 if (FunctionsWithBodies.empty()) 2775 return error("Insufficient function protos"); 2776 2777 Function *Fn = FunctionsWithBodies.back(); 2778 FunctionsWithBodies.pop_back(); 2779 2780 // Save the current stream state. 2781 uint64_t CurBit = Stream.GetCurrentBitNo(); 2782 assert( 2783 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2784 "Mismatch between VST and scanned function offsets"); 2785 DeferredFunctionInfo[Fn] = CurBit; 2786 2787 // Skip over the function block for now. 2788 if (Stream.SkipBlock()) 2789 return error("Invalid record"); 2790 return Error::success(); 2791 } 2792 2793 Error BitcodeReader::globalCleanup() { 2794 // Patch the initializers for globals and aliases up. 2795 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2796 return Err; 2797 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2798 return error("Malformed global initializer set"); 2799 2800 // Look for intrinsic functions which need to be upgraded at some point 2801 for (Function &F : *TheModule) { 2802 MDLoader->upgradeDebugIntrinsics(F); 2803 Function *NewFn; 2804 if (UpgradeIntrinsicFunction(&F, NewFn)) 2805 UpgradedIntrinsics[&F] = NewFn; 2806 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2807 // Some types could be renamed during loading if several modules are 2808 // loaded in the same LLVMContext (LTO scenario). In this case we should 2809 // remangle intrinsics names as well. 2810 RemangledIntrinsics[&F] = Remangled.getValue(); 2811 } 2812 2813 // Look for global variables which need to be renamed. 2814 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2815 for (GlobalVariable &GV : TheModule->globals()) 2816 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2817 UpgradedVariables.emplace_back(&GV, Upgraded); 2818 for (auto &Pair : UpgradedVariables) { 2819 Pair.first->eraseFromParent(); 2820 TheModule->getGlobalList().push_back(Pair.second); 2821 } 2822 2823 // Force deallocation of memory for these vectors to favor the client that 2824 // want lazy deserialization. 2825 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2826 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2827 IndirectSymbolInits); 2828 return Error::success(); 2829 } 2830 2831 /// Support for lazy parsing of function bodies. This is required if we 2832 /// either have an old bitcode file without a VST forward declaration record, 2833 /// or if we have an anonymous function being materialized, since anonymous 2834 /// functions do not have a name and are therefore not in the VST. 2835 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2836 Stream.JumpToBit(NextUnreadBit); 2837 2838 if (Stream.AtEndOfStream()) 2839 return error("Could not find function in stream"); 2840 2841 if (!SeenFirstFunctionBody) 2842 return error("Trying to materialize functions before seeing function blocks"); 2843 2844 // An old bitcode file with the symbol table at the end would have 2845 // finished the parse greedily. 2846 assert(SeenValueSymbolTable); 2847 2848 SmallVector<uint64_t, 64> Record; 2849 2850 while (true) { 2851 BitstreamEntry Entry = Stream.advance(); 2852 switch (Entry.Kind) { 2853 default: 2854 return error("Expect SubBlock"); 2855 case BitstreamEntry::SubBlock: 2856 switch (Entry.ID) { 2857 default: 2858 return error("Expect function block"); 2859 case bitc::FUNCTION_BLOCK_ID: 2860 if (Error Err = rememberAndSkipFunctionBody()) 2861 return Err; 2862 NextUnreadBit = Stream.GetCurrentBitNo(); 2863 return Error::success(); 2864 } 2865 } 2866 } 2867 } 2868 2869 bool BitcodeReaderBase::readBlockInfo() { 2870 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2871 if (!NewBlockInfo) 2872 return true; 2873 BlockInfo = std::move(*NewBlockInfo); 2874 return false; 2875 } 2876 2877 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2878 // v1: [selection_kind, name] 2879 // v2: [strtab_offset, strtab_size, selection_kind] 2880 StringRef Name; 2881 std::tie(Name, Record) = readNameFromStrtab(Record); 2882 2883 if (Record.empty()) 2884 return error("Invalid record"); 2885 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2886 std::string OldFormatName; 2887 if (!UseStrtab) { 2888 if (Record.size() < 2) 2889 return error("Invalid record"); 2890 unsigned ComdatNameSize = Record[1]; 2891 OldFormatName.reserve(ComdatNameSize); 2892 for (unsigned i = 0; i != ComdatNameSize; ++i) 2893 OldFormatName += (char)Record[2 + i]; 2894 Name = OldFormatName; 2895 } 2896 Comdat *C = TheModule->getOrInsertComdat(Name); 2897 C->setSelectionKind(SK); 2898 ComdatList.push_back(C); 2899 return Error::success(); 2900 } 2901 2902 static void inferDSOLocal(GlobalValue *GV) { 2903 // infer dso_local from linkage and visibility if it is not encoded. 2904 if (GV->hasLocalLinkage() || 2905 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 2906 GV->setDSOLocal(true); 2907 } 2908 2909 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2910 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2911 // visibility, threadlocal, unnamed_addr, externally_initialized, 2912 // dllstorageclass, comdat, attributes, preemption specifier, 2913 // partition strtab offset, partition strtab size] (name in VST) 2914 // v2: [strtab_offset, strtab_size, v1] 2915 StringRef Name; 2916 std::tie(Name, Record) = readNameFromStrtab(Record); 2917 2918 if (Record.size() < 6) 2919 return error("Invalid record"); 2920 Type *Ty = getTypeByID(Record[0]); 2921 if (!Ty) 2922 return error("Invalid record"); 2923 bool isConstant = Record[1] & 1; 2924 bool explicitType = Record[1] & 2; 2925 unsigned AddressSpace; 2926 if (explicitType) { 2927 AddressSpace = Record[1] >> 2; 2928 } else { 2929 if (!Ty->isPointerTy()) 2930 return error("Invalid type for value"); 2931 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2932 Ty = cast<PointerType>(Ty)->getElementType(); 2933 } 2934 2935 uint64_t RawLinkage = Record[3]; 2936 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2937 unsigned Alignment; 2938 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2939 return Err; 2940 std::string Section; 2941 if (Record[5]) { 2942 if (Record[5] - 1 >= SectionTable.size()) 2943 return error("Invalid ID"); 2944 Section = SectionTable[Record[5] - 1]; 2945 } 2946 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2947 // Local linkage must have default visibility. 2948 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2949 // FIXME: Change to an error if non-default in 4.0. 2950 Visibility = getDecodedVisibility(Record[6]); 2951 2952 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2953 if (Record.size() > 7) 2954 TLM = getDecodedThreadLocalMode(Record[7]); 2955 2956 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2957 if (Record.size() > 8) 2958 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2959 2960 bool ExternallyInitialized = false; 2961 if (Record.size() > 9) 2962 ExternallyInitialized = Record[9]; 2963 2964 GlobalVariable *NewGV = 2965 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2966 nullptr, TLM, AddressSpace, ExternallyInitialized); 2967 NewGV->setAlignment(Alignment); 2968 if (!Section.empty()) 2969 NewGV->setSection(Section); 2970 NewGV->setVisibility(Visibility); 2971 NewGV->setUnnamedAddr(UnnamedAddr); 2972 2973 if (Record.size() > 10) 2974 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2975 else 2976 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2977 2978 ValueList.push_back(NewGV); 2979 2980 // Remember which value to use for the global initializer. 2981 if (unsigned InitID = Record[2]) 2982 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2983 2984 if (Record.size() > 11) { 2985 if (unsigned ComdatID = Record[11]) { 2986 if (ComdatID > ComdatList.size()) 2987 return error("Invalid global variable comdat ID"); 2988 NewGV->setComdat(ComdatList[ComdatID - 1]); 2989 } 2990 } else if (hasImplicitComdat(RawLinkage)) { 2991 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2992 } 2993 2994 if (Record.size() > 12) { 2995 auto AS = getAttributes(Record[12]).getFnAttributes(); 2996 NewGV->setAttributes(AS); 2997 } 2998 2999 if (Record.size() > 13) { 3000 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3001 } 3002 inferDSOLocal(NewGV); 3003 3004 // Check whether we have enough values to read a partition name. 3005 if (Record.size() > 15) 3006 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3007 3008 return Error::success(); 3009 } 3010 3011 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3012 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3013 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3014 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3015 // v2: [strtab_offset, strtab_size, v1] 3016 StringRef Name; 3017 std::tie(Name, Record) = readNameFromStrtab(Record); 3018 3019 if (Record.size() < 8) 3020 return error("Invalid record"); 3021 Type *Ty = getTypeByID(Record[0]); 3022 if (!Ty) 3023 return error("Invalid record"); 3024 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3025 Ty = PTy->getElementType(); 3026 auto *FTy = dyn_cast<FunctionType>(Ty); 3027 if (!FTy) 3028 return error("Invalid type for value"); 3029 auto CC = static_cast<CallingConv::ID>(Record[1]); 3030 if (CC & ~CallingConv::MaxID) 3031 return error("Invalid calling convention ID"); 3032 3033 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3034 if (Record.size() > 16) 3035 AddrSpace = Record[16]; 3036 3037 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3038 AddrSpace, Name, TheModule); 3039 3040 Func->setCallingConv(CC); 3041 bool isProto = Record[2]; 3042 uint64_t RawLinkage = Record[3]; 3043 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3044 Func->setAttributes(getAttributes(Record[4])); 3045 3046 // Upgrade any old-style byval without a type by propagating the argument's 3047 // pointee type. There should be no opaque pointers where the byval type is 3048 // implicit. 3049 for (auto &Arg : Func->args()) { 3050 if (Arg.hasByValAttr() && 3051 !Arg.getAttribute(Attribute::ByVal).getValueAsType()) { 3052 Arg.removeAttr(Attribute::ByVal); 3053 Arg.addAttr(Attribute::getWithByValType( 3054 Context, Arg.getType()->getPointerElementType())); 3055 } 3056 } 3057 3058 unsigned Alignment; 3059 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3060 return Err; 3061 Func->setAlignment(Alignment); 3062 if (Record[6]) { 3063 if (Record[6] - 1 >= SectionTable.size()) 3064 return error("Invalid ID"); 3065 Func->setSection(SectionTable[Record[6] - 1]); 3066 } 3067 // Local linkage must have default visibility. 3068 if (!Func->hasLocalLinkage()) 3069 // FIXME: Change to an error if non-default in 4.0. 3070 Func->setVisibility(getDecodedVisibility(Record[7])); 3071 if (Record.size() > 8 && Record[8]) { 3072 if (Record[8] - 1 >= GCTable.size()) 3073 return error("Invalid ID"); 3074 Func->setGC(GCTable[Record[8] - 1]); 3075 } 3076 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3077 if (Record.size() > 9) 3078 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3079 Func->setUnnamedAddr(UnnamedAddr); 3080 if (Record.size() > 10 && Record[10] != 0) 3081 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3082 3083 if (Record.size() > 11) 3084 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3085 else 3086 upgradeDLLImportExportLinkage(Func, RawLinkage); 3087 3088 if (Record.size() > 12) { 3089 if (unsigned ComdatID = Record[12]) { 3090 if (ComdatID > ComdatList.size()) 3091 return error("Invalid function comdat ID"); 3092 Func->setComdat(ComdatList[ComdatID - 1]); 3093 } 3094 } else if (hasImplicitComdat(RawLinkage)) { 3095 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3096 } 3097 3098 if (Record.size() > 13 && Record[13] != 0) 3099 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3100 3101 if (Record.size() > 14 && Record[14] != 0) 3102 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3103 3104 if (Record.size() > 15) { 3105 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3106 } 3107 inferDSOLocal(Func); 3108 3109 // Record[16] is the address space number. 3110 3111 // Check whether we have enough values to read a partition name. 3112 if (Record.size() > 18) 3113 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3114 3115 ValueList.push_back(Func); 3116 3117 // If this is a function with a body, remember the prototype we are 3118 // creating now, so that we can match up the body with them later. 3119 if (!isProto) { 3120 Func->setIsMaterializable(true); 3121 FunctionsWithBodies.push_back(Func); 3122 DeferredFunctionInfo[Func] = 0; 3123 } 3124 return Error::success(); 3125 } 3126 3127 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3128 unsigned BitCode, ArrayRef<uint64_t> Record) { 3129 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3130 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3131 // dllstorageclass, threadlocal, unnamed_addr, 3132 // preemption specifier] (name in VST) 3133 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3134 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3135 // preemption specifier] (name in VST) 3136 // v2: [strtab_offset, strtab_size, v1] 3137 StringRef Name; 3138 std::tie(Name, Record) = readNameFromStrtab(Record); 3139 3140 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3141 if (Record.size() < (3 + (unsigned)NewRecord)) 3142 return error("Invalid record"); 3143 unsigned OpNum = 0; 3144 Type *Ty = getTypeByID(Record[OpNum++]); 3145 if (!Ty) 3146 return error("Invalid record"); 3147 3148 unsigned AddrSpace; 3149 if (!NewRecord) { 3150 auto *PTy = dyn_cast<PointerType>(Ty); 3151 if (!PTy) 3152 return error("Invalid type for value"); 3153 Ty = PTy->getElementType(); 3154 AddrSpace = PTy->getAddressSpace(); 3155 } else { 3156 AddrSpace = Record[OpNum++]; 3157 } 3158 3159 auto Val = Record[OpNum++]; 3160 auto Linkage = Record[OpNum++]; 3161 GlobalIndirectSymbol *NewGA; 3162 if (BitCode == bitc::MODULE_CODE_ALIAS || 3163 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3164 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3165 TheModule); 3166 else 3167 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3168 nullptr, TheModule); 3169 // Old bitcode files didn't have visibility field. 3170 // Local linkage must have default visibility. 3171 if (OpNum != Record.size()) { 3172 auto VisInd = OpNum++; 3173 if (!NewGA->hasLocalLinkage()) 3174 // FIXME: Change to an error if non-default in 4.0. 3175 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3176 } 3177 if (BitCode == bitc::MODULE_CODE_ALIAS || 3178 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3179 if (OpNum != Record.size()) 3180 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3181 else 3182 upgradeDLLImportExportLinkage(NewGA, Linkage); 3183 if (OpNum != Record.size()) 3184 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3185 if (OpNum != Record.size()) 3186 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3187 } 3188 if (OpNum != Record.size()) 3189 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3190 inferDSOLocal(NewGA); 3191 3192 // Check whether we have enough values to read a partition name. 3193 if (OpNum + 1 < Record.size()) { 3194 NewGA->setPartition( 3195 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3196 OpNum += 2; 3197 } 3198 3199 ValueList.push_back(NewGA); 3200 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3201 return Error::success(); 3202 } 3203 3204 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3205 bool ShouldLazyLoadMetadata) { 3206 if (ResumeBit) 3207 Stream.JumpToBit(ResumeBit); 3208 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3209 return error("Invalid record"); 3210 3211 SmallVector<uint64_t, 64> Record; 3212 3213 // Read all the records for this module. 3214 while (true) { 3215 BitstreamEntry Entry = Stream.advance(); 3216 3217 switch (Entry.Kind) { 3218 case BitstreamEntry::Error: 3219 return error("Malformed block"); 3220 case BitstreamEntry::EndBlock: 3221 return globalCleanup(); 3222 3223 case BitstreamEntry::SubBlock: 3224 switch (Entry.ID) { 3225 default: // Skip unknown content. 3226 if (Stream.SkipBlock()) 3227 return error("Invalid record"); 3228 break; 3229 case bitc::BLOCKINFO_BLOCK_ID: 3230 if (readBlockInfo()) 3231 return error("Malformed block"); 3232 break; 3233 case bitc::PARAMATTR_BLOCK_ID: 3234 if (Error Err = parseAttributeBlock()) 3235 return Err; 3236 break; 3237 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3238 if (Error Err = parseAttributeGroupBlock()) 3239 return Err; 3240 break; 3241 case bitc::TYPE_BLOCK_ID_NEW: 3242 if (Error Err = parseTypeTable()) 3243 return Err; 3244 break; 3245 case bitc::VALUE_SYMTAB_BLOCK_ID: 3246 if (!SeenValueSymbolTable) { 3247 // Either this is an old form VST without function index and an 3248 // associated VST forward declaration record (which would have caused 3249 // the VST to be jumped to and parsed before it was encountered 3250 // normally in the stream), or there were no function blocks to 3251 // trigger an earlier parsing of the VST. 3252 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3253 if (Error Err = parseValueSymbolTable()) 3254 return Err; 3255 SeenValueSymbolTable = true; 3256 } else { 3257 // We must have had a VST forward declaration record, which caused 3258 // the parser to jump to and parse the VST earlier. 3259 assert(VSTOffset > 0); 3260 if (Stream.SkipBlock()) 3261 return error("Invalid record"); 3262 } 3263 break; 3264 case bitc::CONSTANTS_BLOCK_ID: 3265 if (Error Err = parseConstants()) 3266 return Err; 3267 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3268 return Err; 3269 break; 3270 case bitc::METADATA_BLOCK_ID: 3271 if (ShouldLazyLoadMetadata) { 3272 if (Error Err = rememberAndSkipMetadata()) 3273 return Err; 3274 break; 3275 } 3276 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3277 if (Error Err = MDLoader->parseModuleMetadata()) 3278 return Err; 3279 break; 3280 case bitc::METADATA_KIND_BLOCK_ID: 3281 if (Error Err = MDLoader->parseMetadataKinds()) 3282 return Err; 3283 break; 3284 case bitc::FUNCTION_BLOCK_ID: 3285 // If this is the first function body we've seen, reverse the 3286 // FunctionsWithBodies list. 3287 if (!SeenFirstFunctionBody) { 3288 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3289 if (Error Err = globalCleanup()) 3290 return Err; 3291 SeenFirstFunctionBody = true; 3292 } 3293 3294 if (VSTOffset > 0) { 3295 // If we have a VST forward declaration record, make sure we 3296 // parse the VST now if we haven't already. It is needed to 3297 // set up the DeferredFunctionInfo vector for lazy reading. 3298 if (!SeenValueSymbolTable) { 3299 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3300 return Err; 3301 SeenValueSymbolTable = true; 3302 // Fall through so that we record the NextUnreadBit below. 3303 // This is necessary in case we have an anonymous function that 3304 // is later materialized. Since it will not have a VST entry we 3305 // need to fall back to the lazy parse to find its offset. 3306 } else { 3307 // If we have a VST forward declaration record, but have already 3308 // parsed the VST (just above, when the first function body was 3309 // encountered here), then we are resuming the parse after 3310 // materializing functions. The ResumeBit points to the 3311 // start of the last function block recorded in the 3312 // DeferredFunctionInfo map. Skip it. 3313 if (Stream.SkipBlock()) 3314 return error("Invalid record"); 3315 continue; 3316 } 3317 } 3318 3319 // Support older bitcode files that did not have the function 3320 // index in the VST, nor a VST forward declaration record, as 3321 // well as anonymous functions that do not have VST entries. 3322 // Build the DeferredFunctionInfo vector on the fly. 3323 if (Error Err = rememberAndSkipFunctionBody()) 3324 return Err; 3325 3326 // Suspend parsing when we reach the function bodies. Subsequent 3327 // materialization calls will resume it when necessary. If the bitcode 3328 // file is old, the symbol table will be at the end instead and will not 3329 // have been seen yet. In this case, just finish the parse now. 3330 if (SeenValueSymbolTable) { 3331 NextUnreadBit = Stream.GetCurrentBitNo(); 3332 // After the VST has been parsed, we need to make sure intrinsic name 3333 // are auto-upgraded. 3334 return globalCleanup(); 3335 } 3336 break; 3337 case bitc::USELIST_BLOCK_ID: 3338 if (Error Err = parseUseLists()) 3339 return Err; 3340 break; 3341 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3342 if (Error Err = parseOperandBundleTags()) 3343 return Err; 3344 break; 3345 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3346 if (Error Err = parseSyncScopeNames()) 3347 return Err; 3348 break; 3349 } 3350 continue; 3351 3352 case BitstreamEntry::Record: 3353 // The interesting case. 3354 break; 3355 } 3356 3357 // Read a record. 3358 auto BitCode = Stream.readRecord(Entry.ID, Record); 3359 switch (BitCode) { 3360 default: break; // Default behavior, ignore unknown content. 3361 case bitc::MODULE_CODE_VERSION: { 3362 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3363 if (!VersionOrErr) 3364 return VersionOrErr.takeError(); 3365 UseRelativeIDs = *VersionOrErr >= 1; 3366 break; 3367 } 3368 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3369 std::string S; 3370 if (convertToString(Record, 0, S)) 3371 return error("Invalid record"); 3372 TheModule->setTargetTriple(S); 3373 break; 3374 } 3375 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3376 std::string S; 3377 if (convertToString(Record, 0, S)) 3378 return error("Invalid record"); 3379 TheModule->setDataLayout(S); 3380 break; 3381 } 3382 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3383 std::string S; 3384 if (convertToString(Record, 0, S)) 3385 return error("Invalid record"); 3386 TheModule->setModuleInlineAsm(S); 3387 break; 3388 } 3389 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3390 // FIXME: Remove in 4.0. 3391 std::string S; 3392 if (convertToString(Record, 0, S)) 3393 return error("Invalid record"); 3394 // Ignore value. 3395 break; 3396 } 3397 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3398 std::string S; 3399 if (convertToString(Record, 0, S)) 3400 return error("Invalid record"); 3401 SectionTable.push_back(S); 3402 break; 3403 } 3404 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3405 std::string S; 3406 if (convertToString(Record, 0, S)) 3407 return error("Invalid record"); 3408 GCTable.push_back(S); 3409 break; 3410 } 3411 case bitc::MODULE_CODE_COMDAT: 3412 if (Error Err = parseComdatRecord(Record)) 3413 return Err; 3414 break; 3415 case bitc::MODULE_CODE_GLOBALVAR: 3416 if (Error Err = parseGlobalVarRecord(Record)) 3417 return Err; 3418 break; 3419 case bitc::MODULE_CODE_FUNCTION: 3420 if (Error Err = parseFunctionRecord(Record)) 3421 return Err; 3422 break; 3423 case bitc::MODULE_CODE_IFUNC: 3424 case bitc::MODULE_CODE_ALIAS: 3425 case bitc::MODULE_CODE_ALIAS_OLD: 3426 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3427 return Err; 3428 break; 3429 /// MODULE_CODE_VSTOFFSET: [offset] 3430 case bitc::MODULE_CODE_VSTOFFSET: 3431 if (Record.size() < 1) 3432 return error("Invalid record"); 3433 // Note that we subtract 1 here because the offset is relative to one word 3434 // before the start of the identification or module block, which was 3435 // historically always the start of the regular bitcode header. 3436 VSTOffset = Record[0] - 1; 3437 break; 3438 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3439 case bitc::MODULE_CODE_SOURCE_FILENAME: 3440 SmallString<128> ValueName; 3441 if (convertToString(Record, 0, ValueName)) 3442 return error("Invalid record"); 3443 TheModule->setSourceFileName(ValueName); 3444 break; 3445 } 3446 Record.clear(); 3447 } 3448 } 3449 3450 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3451 bool IsImporting) { 3452 TheModule = M; 3453 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3454 [&](unsigned ID) { return getTypeByID(ID); }); 3455 return parseModule(0, ShouldLazyLoadMetadata); 3456 } 3457 3458 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3459 if (!isa<PointerType>(PtrType)) 3460 return error("Load/Store operand is not a pointer type"); 3461 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3462 3463 if (ValType && ValType != ElemType) 3464 return error("Explicit load/store type does not match pointee " 3465 "type of pointer operand"); 3466 if (!PointerType::isLoadableOrStorableType(ElemType)) 3467 return error("Cannot load/store from pointer"); 3468 return Error::success(); 3469 } 3470 3471 void BitcodeReader::propagateByValTypes(CallBase *CB) { 3472 for (unsigned i = 0; i < CB->getNumArgOperands(); ++i) { 3473 if (CB->paramHasAttr(i, Attribute::ByVal) && 3474 !CB->getAttribute(i, Attribute::ByVal).getValueAsType()) { 3475 CB->removeParamAttr(i, Attribute::ByVal); 3476 CB->addParamAttr( 3477 i, Attribute::getWithByValType( 3478 Context, 3479 CB->getArgOperand(i)->getType()->getPointerElementType())); 3480 } 3481 } 3482 } 3483 3484 /// Lazily parse the specified function body block. 3485 Error BitcodeReader::parseFunctionBody(Function *F) { 3486 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3487 return error("Invalid record"); 3488 3489 // Unexpected unresolved metadata when parsing function. 3490 if (MDLoader->hasFwdRefs()) 3491 return error("Invalid function metadata: incoming forward references"); 3492 3493 InstructionList.clear(); 3494 unsigned ModuleValueListSize = ValueList.size(); 3495 unsigned ModuleMDLoaderSize = MDLoader->size(); 3496 3497 // Add all the function arguments to the value table. 3498 for (Argument &I : F->args()) 3499 ValueList.push_back(&I); 3500 3501 unsigned NextValueNo = ValueList.size(); 3502 BasicBlock *CurBB = nullptr; 3503 unsigned CurBBNo = 0; 3504 3505 DebugLoc LastLoc; 3506 auto getLastInstruction = [&]() -> Instruction * { 3507 if (CurBB && !CurBB->empty()) 3508 return &CurBB->back(); 3509 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3510 !FunctionBBs[CurBBNo - 1]->empty()) 3511 return &FunctionBBs[CurBBNo - 1]->back(); 3512 return nullptr; 3513 }; 3514 3515 std::vector<OperandBundleDef> OperandBundles; 3516 3517 // Read all the records. 3518 SmallVector<uint64_t, 64> Record; 3519 3520 while (true) { 3521 BitstreamEntry Entry = Stream.advance(); 3522 3523 switch (Entry.Kind) { 3524 case BitstreamEntry::Error: 3525 return error("Malformed block"); 3526 case BitstreamEntry::EndBlock: 3527 goto OutOfRecordLoop; 3528 3529 case BitstreamEntry::SubBlock: 3530 switch (Entry.ID) { 3531 default: // Skip unknown content. 3532 if (Stream.SkipBlock()) 3533 return error("Invalid record"); 3534 break; 3535 case bitc::CONSTANTS_BLOCK_ID: 3536 if (Error Err = parseConstants()) 3537 return Err; 3538 NextValueNo = ValueList.size(); 3539 break; 3540 case bitc::VALUE_SYMTAB_BLOCK_ID: 3541 if (Error Err = parseValueSymbolTable()) 3542 return Err; 3543 break; 3544 case bitc::METADATA_ATTACHMENT_ID: 3545 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3546 return Err; 3547 break; 3548 case bitc::METADATA_BLOCK_ID: 3549 assert(DeferredMetadataInfo.empty() && 3550 "Must read all module-level metadata before function-level"); 3551 if (Error Err = MDLoader->parseFunctionMetadata()) 3552 return Err; 3553 break; 3554 case bitc::USELIST_BLOCK_ID: 3555 if (Error Err = parseUseLists()) 3556 return Err; 3557 break; 3558 } 3559 continue; 3560 3561 case BitstreamEntry::Record: 3562 // The interesting case. 3563 break; 3564 } 3565 3566 // Read a record. 3567 Record.clear(); 3568 Instruction *I = nullptr; 3569 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3570 switch (BitCode) { 3571 default: // Default behavior: reject 3572 return error("Invalid value"); 3573 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3574 if (Record.size() < 1 || Record[0] == 0) 3575 return error("Invalid record"); 3576 // Create all the basic blocks for the function. 3577 FunctionBBs.resize(Record[0]); 3578 3579 // See if anything took the address of blocks in this function. 3580 auto BBFRI = BasicBlockFwdRefs.find(F); 3581 if (BBFRI == BasicBlockFwdRefs.end()) { 3582 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3583 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3584 } else { 3585 auto &BBRefs = BBFRI->second; 3586 // Check for invalid basic block references. 3587 if (BBRefs.size() > FunctionBBs.size()) 3588 return error("Invalid ID"); 3589 assert(!BBRefs.empty() && "Unexpected empty array"); 3590 assert(!BBRefs.front() && "Invalid reference to entry block"); 3591 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3592 ++I) 3593 if (I < RE && BBRefs[I]) { 3594 BBRefs[I]->insertInto(F); 3595 FunctionBBs[I] = BBRefs[I]; 3596 } else { 3597 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3598 } 3599 3600 // Erase from the table. 3601 BasicBlockFwdRefs.erase(BBFRI); 3602 } 3603 3604 CurBB = FunctionBBs[0]; 3605 continue; 3606 } 3607 3608 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3609 // This record indicates that the last instruction is at the same 3610 // location as the previous instruction with a location. 3611 I = getLastInstruction(); 3612 3613 if (!I) 3614 return error("Invalid record"); 3615 I->setDebugLoc(LastLoc); 3616 I = nullptr; 3617 continue; 3618 3619 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3620 I = getLastInstruction(); 3621 if (!I || Record.size() < 4) 3622 return error("Invalid record"); 3623 3624 unsigned Line = Record[0], Col = Record[1]; 3625 unsigned ScopeID = Record[2], IAID = Record[3]; 3626 bool isImplicitCode = Record.size() == 5 && Record[4]; 3627 3628 MDNode *Scope = nullptr, *IA = nullptr; 3629 if (ScopeID) { 3630 Scope = dyn_cast_or_null<MDNode>( 3631 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3632 if (!Scope) 3633 return error("Invalid record"); 3634 } 3635 if (IAID) { 3636 IA = dyn_cast_or_null<MDNode>( 3637 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3638 if (!IA) 3639 return error("Invalid record"); 3640 } 3641 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3642 I->setDebugLoc(LastLoc); 3643 I = nullptr; 3644 continue; 3645 } 3646 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3647 unsigned OpNum = 0; 3648 Value *LHS; 3649 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3650 OpNum+1 > Record.size()) 3651 return error("Invalid record"); 3652 3653 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3654 if (Opc == -1) 3655 return error("Invalid record"); 3656 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3657 InstructionList.push_back(I); 3658 if (OpNum < Record.size()) { 3659 if (isa<FPMathOperator>(I)) { 3660 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3661 if (FMF.any()) 3662 I->setFastMathFlags(FMF); 3663 } 3664 } 3665 break; 3666 } 3667 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3668 unsigned OpNum = 0; 3669 Value *LHS, *RHS; 3670 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3671 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3672 OpNum+1 > Record.size()) 3673 return error("Invalid record"); 3674 3675 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3676 if (Opc == -1) 3677 return error("Invalid record"); 3678 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3679 InstructionList.push_back(I); 3680 if (OpNum < Record.size()) { 3681 if (Opc == Instruction::Add || 3682 Opc == Instruction::Sub || 3683 Opc == Instruction::Mul || 3684 Opc == Instruction::Shl) { 3685 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3686 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3687 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3688 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3689 } else if (Opc == Instruction::SDiv || 3690 Opc == Instruction::UDiv || 3691 Opc == Instruction::LShr || 3692 Opc == Instruction::AShr) { 3693 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3694 cast<BinaryOperator>(I)->setIsExact(true); 3695 } else if (isa<FPMathOperator>(I)) { 3696 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3697 if (FMF.any()) 3698 I->setFastMathFlags(FMF); 3699 } 3700 3701 } 3702 break; 3703 } 3704 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3705 unsigned OpNum = 0; 3706 Value *Op; 3707 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3708 OpNum+2 != Record.size()) 3709 return error("Invalid record"); 3710 3711 Type *ResTy = getTypeByID(Record[OpNum]); 3712 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3713 if (Opc == -1 || !ResTy) 3714 return error("Invalid record"); 3715 Instruction *Temp = nullptr; 3716 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3717 if (Temp) { 3718 InstructionList.push_back(Temp); 3719 CurBB->getInstList().push_back(Temp); 3720 } 3721 } else { 3722 auto CastOp = (Instruction::CastOps)Opc; 3723 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3724 return error("Invalid cast"); 3725 I = CastInst::Create(CastOp, Op, ResTy); 3726 } 3727 InstructionList.push_back(I); 3728 break; 3729 } 3730 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3731 case bitc::FUNC_CODE_INST_GEP_OLD: 3732 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3733 unsigned OpNum = 0; 3734 3735 Type *Ty; 3736 bool InBounds; 3737 3738 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3739 InBounds = Record[OpNum++]; 3740 Ty = getTypeByID(Record[OpNum++]); 3741 } else { 3742 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3743 Ty = nullptr; 3744 } 3745 3746 Value *BasePtr; 3747 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3748 return error("Invalid record"); 3749 3750 if (!Ty) 3751 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3752 ->getElementType(); 3753 else if (Ty != 3754 cast<PointerType>(BasePtr->getType()->getScalarType()) 3755 ->getElementType()) 3756 return error( 3757 "Explicit gep type does not match pointee type of pointer operand"); 3758 3759 SmallVector<Value*, 16> GEPIdx; 3760 while (OpNum != Record.size()) { 3761 Value *Op; 3762 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3763 return error("Invalid record"); 3764 GEPIdx.push_back(Op); 3765 } 3766 3767 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3768 3769 InstructionList.push_back(I); 3770 if (InBounds) 3771 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3772 break; 3773 } 3774 3775 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3776 // EXTRACTVAL: [opty, opval, n x indices] 3777 unsigned OpNum = 0; 3778 Value *Agg; 3779 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3780 return error("Invalid record"); 3781 3782 unsigned RecSize = Record.size(); 3783 if (OpNum == RecSize) 3784 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3785 3786 SmallVector<unsigned, 4> EXTRACTVALIdx; 3787 Type *CurTy = Agg->getType(); 3788 for (; OpNum != RecSize; ++OpNum) { 3789 bool IsArray = CurTy->isArrayTy(); 3790 bool IsStruct = CurTy->isStructTy(); 3791 uint64_t Index = Record[OpNum]; 3792 3793 if (!IsStruct && !IsArray) 3794 return error("EXTRACTVAL: Invalid type"); 3795 if ((unsigned)Index != Index) 3796 return error("Invalid value"); 3797 if (IsStruct && Index >= CurTy->getStructNumElements()) 3798 return error("EXTRACTVAL: Invalid struct index"); 3799 if (IsArray && Index >= CurTy->getArrayNumElements()) 3800 return error("EXTRACTVAL: Invalid array index"); 3801 EXTRACTVALIdx.push_back((unsigned)Index); 3802 3803 if (IsStruct) 3804 CurTy = CurTy->getStructElementType(Index); 3805 else 3806 CurTy = CurTy->getArrayElementType(); 3807 } 3808 3809 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3810 InstructionList.push_back(I); 3811 break; 3812 } 3813 3814 case bitc::FUNC_CODE_INST_INSERTVAL: { 3815 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3816 unsigned OpNum = 0; 3817 Value *Agg; 3818 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3819 return error("Invalid record"); 3820 Value *Val; 3821 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3822 return error("Invalid record"); 3823 3824 unsigned RecSize = Record.size(); 3825 if (OpNum == RecSize) 3826 return error("INSERTVAL: Invalid instruction with 0 indices"); 3827 3828 SmallVector<unsigned, 4> INSERTVALIdx; 3829 Type *CurTy = Agg->getType(); 3830 for (; OpNum != RecSize; ++OpNum) { 3831 bool IsArray = CurTy->isArrayTy(); 3832 bool IsStruct = CurTy->isStructTy(); 3833 uint64_t Index = Record[OpNum]; 3834 3835 if (!IsStruct && !IsArray) 3836 return error("INSERTVAL: Invalid type"); 3837 if ((unsigned)Index != Index) 3838 return error("Invalid value"); 3839 if (IsStruct && Index >= CurTy->getStructNumElements()) 3840 return error("INSERTVAL: Invalid struct index"); 3841 if (IsArray && Index >= CurTy->getArrayNumElements()) 3842 return error("INSERTVAL: Invalid array index"); 3843 3844 INSERTVALIdx.push_back((unsigned)Index); 3845 if (IsStruct) 3846 CurTy = CurTy->getStructElementType(Index); 3847 else 3848 CurTy = CurTy->getArrayElementType(); 3849 } 3850 3851 if (CurTy != Val->getType()) 3852 return error("Inserted value type doesn't match aggregate type"); 3853 3854 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3855 InstructionList.push_back(I); 3856 break; 3857 } 3858 3859 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3860 // obsolete form of select 3861 // handles select i1 ... in old bitcode 3862 unsigned OpNum = 0; 3863 Value *TrueVal, *FalseVal, *Cond; 3864 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3865 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3866 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3867 return error("Invalid record"); 3868 3869 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3870 InstructionList.push_back(I); 3871 break; 3872 } 3873 3874 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3875 // new form of select 3876 // handles select i1 or select [N x i1] 3877 unsigned OpNum = 0; 3878 Value *TrueVal, *FalseVal, *Cond; 3879 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3880 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3881 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3882 return error("Invalid record"); 3883 3884 // select condition can be either i1 or [N x i1] 3885 if (VectorType* vector_type = 3886 dyn_cast<VectorType>(Cond->getType())) { 3887 // expect <n x i1> 3888 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3889 return error("Invalid type for value"); 3890 } else { 3891 // expect i1 3892 if (Cond->getType() != Type::getInt1Ty(Context)) 3893 return error("Invalid type for value"); 3894 } 3895 3896 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3897 InstructionList.push_back(I); 3898 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 3899 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3900 if (FMF.any()) 3901 I->setFastMathFlags(FMF); 3902 } 3903 break; 3904 } 3905 3906 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3907 unsigned OpNum = 0; 3908 Value *Vec, *Idx; 3909 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3910 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3911 return error("Invalid record"); 3912 if (!Vec->getType()->isVectorTy()) 3913 return error("Invalid type for value"); 3914 I = ExtractElementInst::Create(Vec, Idx); 3915 InstructionList.push_back(I); 3916 break; 3917 } 3918 3919 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3920 unsigned OpNum = 0; 3921 Value *Vec, *Elt, *Idx; 3922 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3923 return error("Invalid record"); 3924 if (!Vec->getType()->isVectorTy()) 3925 return error("Invalid type for value"); 3926 if (popValue(Record, OpNum, NextValueNo, 3927 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3928 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3929 return error("Invalid record"); 3930 I = InsertElementInst::Create(Vec, Elt, Idx); 3931 InstructionList.push_back(I); 3932 break; 3933 } 3934 3935 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3936 unsigned OpNum = 0; 3937 Value *Vec1, *Vec2, *Mask; 3938 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3939 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3940 return error("Invalid record"); 3941 3942 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3943 return error("Invalid record"); 3944 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3945 return error("Invalid type for value"); 3946 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3947 InstructionList.push_back(I); 3948 break; 3949 } 3950 3951 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3952 // Old form of ICmp/FCmp returning bool 3953 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3954 // both legal on vectors but had different behaviour. 3955 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3956 // FCmp/ICmp returning bool or vector of bool 3957 3958 unsigned OpNum = 0; 3959 Value *LHS, *RHS; 3960 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3961 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3962 return error("Invalid record"); 3963 3964 unsigned PredVal = Record[OpNum]; 3965 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3966 FastMathFlags FMF; 3967 if (IsFP && Record.size() > OpNum+1) 3968 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3969 3970 if (OpNum+1 != Record.size()) 3971 return error("Invalid record"); 3972 3973 if (LHS->getType()->isFPOrFPVectorTy()) 3974 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3975 else 3976 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3977 3978 if (FMF.any()) 3979 I->setFastMathFlags(FMF); 3980 InstructionList.push_back(I); 3981 break; 3982 } 3983 3984 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3985 { 3986 unsigned Size = Record.size(); 3987 if (Size == 0) { 3988 I = ReturnInst::Create(Context); 3989 InstructionList.push_back(I); 3990 break; 3991 } 3992 3993 unsigned OpNum = 0; 3994 Value *Op = nullptr; 3995 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3996 return error("Invalid record"); 3997 if (OpNum != Record.size()) 3998 return error("Invalid record"); 3999 4000 I = ReturnInst::Create(Context, Op); 4001 InstructionList.push_back(I); 4002 break; 4003 } 4004 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4005 if (Record.size() != 1 && Record.size() != 3) 4006 return error("Invalid record"); 4007 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4008 if (!TrueDest) 4009 return error("Invalid record"); 4010 4011 if (Record.size() == 1) { 4012 I = BranchInst::Create(TrueDest); 4013 InstructionList.push_back(I); 4014 } 4015 else { 4016 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4017 Value *Cond = getValue(Record, 2, NextValueNo, 4018 Type::getInt1Ty(Context)); 4019 if (!FalseDest || !Cond) 4020 return error("Invalid record"); 4021 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4022 InstructionList.push_back(I); 4023 } 4024 break; 4025 } 4026 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4027 if (Record.size() != 1 && Record.size() != 2) 4028 return error("Invalid record"); 4029 unsigned Idx = 0; 4030 Value *CleanupPad = 4031 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4032 if (!CleanupPad) 4033 return error("Invalid record"); 4034 BasicBlock *UnwindDest = nullptr; 4035 if (Record.size() == 2) { 4036 UnwindDest = getBasicBlock(Record[Idx++]); 4037 if (!UnwindDest) 4038 return error("Invalid record"); 4039 } 4040 4041 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4042 InstructionList.push_back(I); 4043 break; 4044 } 4045 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4046 if (Record.size() != 2) 4047 return error("Invalid record"); 4048 unsigned Idx = 0; 4049 Value *CatchPad = 4050 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4051 if (!CatchPad) 4052 return error("Invalid record"); 4053 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4054 if (!BB) 4055 return error("Invalid record"); 4056 4057 I = CatchReturnInst::Create(CatchPad, BB); 4058 InstructionList.push_back(I); 4059 break; 4060 } 4061 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4062 // We must have, at minimum, the outer scope and the number of arguments. 4063 if (Record.size() < 2) 4064 return error("Invalid record"); 4065 4066 unsigned Idx = 0; 4067 4068 Value *ParentPad = 4069 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4070 4071 unsigned NumHandlers = Record[Idx++]; 4072 4073 SmallVector<BasicBlock *, 2> Handlers; 4074 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4075 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4076 if (!BB) 4077 return error("Invalid record"); 4078 Handlers.push_back(BB); 4079 } 4080 4081 BasicBlock *UnwindDest = nullptr; 4082 if (Idx + 1 == Record.size()) { 4083 UnwindDest = getBasicBlock(Record[Idx++]); 4084 if (!UnwindDest) 4085 return error("Invalid record"); 4086 } 4087 4088 if (Record.size() != Idx) 4089 return error("Invalid record"); 4090 4091 auto *CatchSwitch = 4092 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4093 for (BasicBlock *Handler : Handlers) 4094 CatchSwitch->addHandler(Handler); 4095 I = CatchSwitch; 4096 InstructionList.push_back(I); 4097 break; 4098 } 4099 case bitc::FUNC_CODE_INST_CATCHPAD: 4100 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4101 // We must have, at minimum, the outer scope and the number of arguments. 4102 if (Record.size() < 2) 4103 return error("Invalid record"); 4104 4105 unsigned Idx = 0; 4106 4107 Value *ParentPad = 4108 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4109 4110 unsigned NumArgOperands = Record[Idx++]; 4111 4112 SmallVector<Value *, 2> Args; 4113 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4114 Value *Val; 4115 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4116 return error("Invalid record"); 4117 Args.push_back(Val); 4118 } 4119 4120 if (Record.size() != Idx) 4121 return error("Invalid record"); 4122 4123 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4124 I = CleanupPadInst::Create(ParentPad, Args); 4125 else 4126 I = CatchPadInst::Create(ParentPad, Args); 4127 InstructionList.push_back(I); 4128 break; 4129 } 4130 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4131 // Check magic 4132 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4133 // "New" SwitchInst format with case ranges. The changes to write this 4134 // format were reverted but we still recognize bitcode that uses it. 4135 // Hopefully someday we will have support for case ranges and can use 4136 // this format again. 4137 4138 Type *OpTy = getTypeByID(Record[1]); 4139 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4140 4141 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4142 BasicBlock *Default = getBasicBlock(Record[3]); 4143 if (!OpTy || !Cond || !Default) 4144 return error("Invalid record"); 4145 4146 unsigned NumCases = Record[4]; 4147 4148 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4149 InstructionList.push_back(SI); 4150 4151 unsigned CurIdx = 5; 4152 for (unsigned i = 0; i != NumCases; ++i) { 4153 SmallVector<ConstantInt*, 1> CaseVals; 4154 unsigned NumItems = Record[CurIdx++]; 4155 for (unsigned ci = 0; ci != NumItems; ++ci) { 4156 bool isSingleNumber = Record[CurIdx++]; 4157 4158 APInt Low; 4159 unsigned ActiveWords = 1; 4160 if (ValueBitWidth > 64) 4161 ActiveWords = Record[CurIdx++]; 4162 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4163 ValueBitWidth); 4164 CurIdx += ActiveWords; 4165 4166 if (!isSingleNumber) { 4167 ActiveWords = 1; 4168 if (ValueBitWidth > 64) 4169 ActiveWords = Record[CurIdx++]; 4170 APInt High = readWideAPInt( 4171 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4172 CurIdx += ActiveWords; 4173 4174 // FIXME: It is not clear whether values in the range should be 4175 // compared as signed or unsigned values. The partially 4176 // implemented changes that used this format in the past used 4177 // unsigned comparisons. 4178 for ( ; Low.ule(High); ++Low) 4179 CaseVals.push_back(ConstantInt::get(Context, Low)); 4180 } else 4181 CaseVals.push_back(ConstantInt::get(Context, Low)); 4182 } 4183 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4184 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4185 cve = CaseVals.end(); cvi != cve; ++cvi) 4186 SI->addCase(*cvi, DestBB); 4187 } 4188 I = SI; 4189 break; 4190 } 4191 4192 // Old SwitchInst format without case ranges. 4193 4194 if (Record.size() < 3 || (Record.size() & 1) == 0) 4195 return error("Invalid record"); 4196 Type *OpTy = getTypeByID(Record[0]); 4197 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4198 BasicBlock *Default = getBasicBlock(Record[2]); 4199 if (!OpTy || !Cond || !Default) 4200 return error("Invalid record"); 4201 unsigned NumCases = (Record.size()-3)/2; 4202 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4203 InstructionList.push_back(SI); 4204 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4205 ConstantInt *CaseVal = 4206 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4207 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4208 if (!CaseVal || !DestBB) { 4209 delete SI; 4210 return error("Invalid record"); 4211 } 4212 SI->addCase(CaseVal, DestBB); 4213 } 4214 I = SI; 4215 break; 4216 } 4217 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4218 if (Record.size() < 2) 4219 return error("Invalid record"); 4220 Type *OpTy = getTypeByID(Record[0]); 4221 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4222 if (!OpTy || !Address) 4223 return error("Invalid record"); 4224 unsigned NumDests = Record.size()-2; 4225 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4226 InstructionList.push_back(IBI); 4227 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4228 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4229 IBI->addDestination(DestBB); 4230 } else { 4231 delete IBI; 4232 return error("Invalid record"); 4233 } 4234 } 4235 I = IBI; 4236 break; 4237 } 4238 4239 case bitc::FUNC_CODE_INST_INVOKE: { 4240 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4241 if (Record.size() < 4) 4242 return error("Invalid record"); 4243 unsigned OpNum = 0; 4244 AttributeList PAL = getAttributes(Record[OpNum++]); 4245 unsigned CCInfo = Record[OpNum++]; 4246 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4247 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4248 4249 FunctionType *FTy = nullptr; 4250 if (CCInfo >> 13 & 1 && 4251 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4252 return error("Explicit invoke type is not a function type"); 4253 4254 Value *Callee; 4255 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4256 return error("Invalid record"); 4257 4258 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4259 if (!CalleeTy) 4260 return error("Callee is not a pointer"); 4261 if (!FTy) { 4262 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4263 if (!FTy) 4264 return error("Callee is not of pointer to function type"); 4265 } else if (CalleeTy->getElementType() != FTy) 4266 return error("Explicit invoke type does not match pointee type of " 4267 "callee operand"); 4268 if (Record.size() < FTy->getNumParams() + OpNum) 4269 return error("Insufficient operands to call"); 4270 4271 SmallVector<Value*, 16> Ops; 4272 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4273 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4274 FTy->getParamType(i))); 4275 if (!Ops.back()) 4276 return error("Invalid record"); 4277 } 4278 4279 if (!FTy->isVarArg()) { 4280 if (Record.size() != OpNum) 4281 return error("Invalid record"); 4282 } else { 4283 // Read type/value pairs for varargs params. 4284 while (OpNum != Record.size()) { 4285 Value *Op; 4286 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4287 return error("Invalid record"); 4288 Ops.push_back(Op); 4289 } 4290 } 4291 4292 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4293 OperandBundles); 4294 OperandBundles.clear(); 4295 InstructionList.push_back(I); 4296 cast<InvokeInst>(I)->setCallingConv( 4297 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4298 cast<InvokeInst>(I)->setAttributes(PAL); 4299 propagateByValTypes(cast<CallBase>(I)); 4300 4301 break; 4302 } 4303 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4304 unsigned Idx = 0; 4305 Value *Val = nullptr; 4306 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4307 return error("Invalid record"); 4308 I = ResumeInst::Create(Val); 4309 InstructionList.push_back(I); 4310 break; 4311 } 4312 case bitc::FUNC_CODE_INST_CALLBR: { 4313 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4314 unsigned OpNum = 0; 4315 AttributeList PAL = getAttributes(Record[OpNum++]); 4316 unsigned CCInfo = Record[OpNum++]; 4317 4318 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4319 unsigned NumIndirectDests = Record[OpNum++]; 4320 SmallVector<BasicBlock *, 16> IndirectDests; 4321 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4322 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4323 4324 FunctionType *FTy = nullptr; 4325 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4326 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4327 return error("Explicit call type is not a function type"); 4328 4329 Value *Callee; 4330 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4331 return error("Invalid record"); 4332 4333 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4334 if (!OpTy) 4335 return error("Callee is not a pointer type"); 4336 if (!FTy) { 4337 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4338 if (!FTy) 4339 return error("Callee is not of pointer to function type"); 4340 } else if (OpTy->getElementType() != FTy) 4341 return error("Explicit call type does not match pointee type of " 4342 "callee operand"); 4343 if (Record.size() < FTy->getNumParams() + OpNum) 4344 return error("Insufficient operands to call"); 4345 4346 SmallVector<Value*, 16> Args; 4347 // Read the fixed params. 4348 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4349 if (FTy->getParamType(i)->isLabelTy()) 4350 Args.push_back(getBasicBlock(Record[OpNum])); 4351 else 4352 Args.push_back(getValue(Record, OpNum, NextValueNo, 4353 FTy->getParamType(i))); 4354 if (!Args.back()) 4355 return error("Invalid record"); 4356 } 4357 4358 // Read type/value pairs for varargs params. 4359 if (!FTy->isVarArg()) { 4360 if (OpNum != Record.size()) 4361 return error("Invalid record"); 4362 } else { 4363 while (OpNum != Record.size()) { 4364 Value *Op; 4365 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4366 return error("Invalid record"); 4367 Args.push_back(Op); 4368 } 4369 } 4370 4371 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4372 OperandBundles); 4373 OperandBundles.clear(); 4374 InstructionList.push_back(I); 4375 cast<CallBrInst>(I)->setCallingConv( 4376 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4377 cast<CallBrInst>(I)->setAttributes(PAL); 4378 break; 4379 } 4380 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4381 I = new UnreachableInst(Context); 4382 InstructionList.push_back(I); 4383 break; 4384 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4385 if (Record.size() < 1 || ((Record.size()-1)&1)) 4386 return error("Invalid record"); 4387 Type *Ty = getTypeByID(Record[0]); 4388 if (!Ty) 4389 return error("Invalid record"); 4390 4391 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4392 InstructionList.push_back(PN); 4393 4394 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4395 Value *V; 4396 // With the new function encoding, it is possible that operands have 4397 // negative IDs (for forward references). Use a signed VBR 4398 // representation to keep the encoding small. 4399 if (UseRelativeIDs) 4400 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4401 else 4402 V = getValue(Record, 1+i, NextValueNo, Ty); 4403 BasicBlock *BB = getBasicBlock(Record[2+i]); 4404 if (!V || !BB) 4405 return error("Invalid record"); 4406 PN->addIncoming(V, BB); 4407 } 4408 I = PN; 4409 break; 4410 } 4411 4412 case bitc::FUNC_CODE_INST_LANDINGPAD: 4413 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4414 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4415 unsigned Idx = 0; 4416 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4417 if (Record.size() < 3) 4418 return error("Invalid record"); 4419 } else { 4420 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4421 if (Record.size() < 4) 4422 return error("Invalid record"); 4423 } 4424 Type *Ty = getTypeByID(Record[Idx++]); 4425 if (!Ty) 4426 return error("Invalid record"); 4427 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4428 Value *PersFn = nullptr; 4429 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4430 return error("Invalid record"); 4431 4432 if (!F->hasPersonalityFn()) 4433 F->setPersonalityFn(cast<Constant>(PersFn)); 4434 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4435 return error("Personality function mismatch"); 4436 } 4437 4438 bool IsCleanup = !!Record[Idx++]; 4439 unsigned NumClauses = Record[Idx++]; 4440 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4441 LP->setCleanup(IsCleanup); 4442 for (unsigned J = 0; J != NumClauses; ++J) { 4443 LandingPadInst::ClauseType CT = 4444 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4445 Value *Val; 4446 4447 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4448 delete LP; 4449 return error("Invalid record"); 4450 } 4451 4452 assert((CT != LandingPadInst::Catch || 4453 !isa<ArrayType>(Val->getType())) && 4454 "Catch clause has a invalid type!"); 4455 assert((CT != LandingPadInst::Filter || 4456 isa<ArrayType>(Val->getType())) && 4457 "Filter clause has invalid type!"); 4458 LP->addClause(cast<Constant>(Val)); 4459 } 4460 4461 I = LP; 4462 InstructionList.push_back(I); 4463 break; 4464 } 4465 4466 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4467 if (Record.size() != 4) 4468 return error("Invalid record"); 4469 uint64_t AlignRecord = Record[3]; 4470 const uint64_t InAllocaMask = uint64_t(1) << 5; 4471 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4472 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4473 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4474 SwiftErrorMask; 4475 bool InAlloca = AlignRecord & InAllocaMask; 4476 bool SwiftError = AlignRecord & SwiftErrorMask; 4477 Type *Ty = getTypeByID(Record[0]); 4478 if ((AlignRecord & ExplicitTypeMask) == 0) { 4479 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4480 if (!PTy) 4481 return error("Old-style alloca with a non-pointer type"); 4482 Ty = PTy->getElementType(); 4483 } 4484 Type *OpTy = getTypeByID(Record[1]); 4485 Value *Size = getFnValueByID(Record[2], OpTy); 4486 unsigned Align; 4487 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4488 return Err; 4489 } 4490 if (!Ty || !Size) 4491 return error("Invalid record"); 4492 4493 // FIXME: Make this an optional field. 4494 const DataLayout &DL = TheModule->getDataLayout(); 4495 unsigned AS = DL.getAllocaAddrSpace(); 4496 4497 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4498 AI->setUsedWithInAlloca(InAlloca); 4499 AI->setSwiftError(SwiftError); 4500 I = AI; 4501 InstructionList.push_back(I); 4502 break; 4503 } 4504 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4505 unsigned OpNum = 0; 4506 Value *Op; 4507 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4508 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4509 return error("Invalid record"); 4510 4511 Type *Ty = nullptr; 4512 if (OpNum + 3 == Record.size()) 4513 Ty = getTypeByID(Record[OpNum++]); 4514 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4515 return Err; 4516 if (!Ty) 4517 Ty = cast<PointerType>(Op->getType())->getElementType(); 4518 4519 unsigned Align; 4520 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4521 return Err; 4522 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4523 4524 InstructionList.push_back(I); 4525 break; 4526 } 4527 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4528 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4529 unsigned OpNum = 0; 4530 Value *Op; 4531 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4532 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4533 return error("Invalid record"); 4534 4535 Type *Ty = nullptr; 4536 if (OpNum + 5 == Record.size()) 4537 Ty = getTypeByID(Record[OpNum++]); 4538 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4539 return Err; 4540 if (!Ty) 4541 Ty = cast<PointerType>(Op->getType())->getElementType(); 4542 4543 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4544 if (Ordering == AtomicOrdering::NotAtomic || 4545 Ordering == AtomicOrdering::Release || 4546 Ordering == AtomicOrdering::AcquireRelease) 4547 return error("Invalid record"); 4548 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4549 return error("Invalid record"); 4550 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4551 4552 unsigned Align; 4553 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4554 return Err; 4555 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4556 4557 InstructionList.push_back(I); 4558 break; 4559 } 4560 case bitc::FUNC_CODE_INST_STORE: 4561 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4562 unsigned OpNum = 0; 4563 Value *Val, *Ptr; 4564 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4565 (BitCode == bitc::FUNC_CODE_INST_STORE 4566 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4567 : popValue(Record, OpNum, NextValueNo, 4568 cast<PointerType>(Ptr->getType())->getElementType(), 4569 Val)) || 4570 OpNum + 2 != Record.size()) 4571 return error("Invalid record"); 4572 4573 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4574 return Err; 4575 unsigned Align; 4576 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4577 return Err; 4578 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4579 InstructionList.push_back(I); 4580 break; 4581 } 4582 case bitc::FUNC_CODE_INST_STOREATOMIC: 4583 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4584 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4585 unsigned OpNum = 0; 4586 Value *Val, *Ptr; 4587 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4588 !isa<PointerType>(Ptr->getType()) || 4589 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4590 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4591 : popValue(Record, OpNum, NextValueNo, 4592 cast<PointerType>(Ptr->getType())->getElementType(), 4593 Val)) || 4594 OpNum + 4 != Record.size()) 4595 return error("Invalid record"); 4596 4597 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4598 return Err; 4599 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4600 if (Ordering == AtomicOrdering::NotAtomic || 4601 Ordering == AtomicOrdering::Acquire || 4602 Ordering == AtomicOrdering::AcquireRelease) 4603 return error("Invalid record"); 4604 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4605 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4606 return error("Invalid record"); 4607 4608 unsigned Align; 4609 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4610 return Err; 4611 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4612 InstructionList.push_back(I); 4613 break; 4614 } 4615 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4616 case bitc::FUNC_CODE_INST_CMPXCHG: { 4617 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4618 // failureordering?, isweak?] 4619 unsigned OpNum = 0; 4620 Value *Ptr, *Cmp, *New; 4621 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4622 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4623 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4624 : popValue(Record, OpNum, NextValueNo, 4625 cast<PointerType>(Ptr->getType())->getElementType(), 4626 Cmp)) || 4627 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4628 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4629 return error("Invalid record"); 4630 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4631 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4632 SuccessOrdering == AtomicOrdering::Unordered) 4633 return error("Invalid record"); 4634 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4635 4636 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4637 return Err; 4638 AtomicOrdering FailureOrdering; 4639 if (Record.size() < 7) 4640 FailureOrdering = 4641 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4642 else 4643 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4644 4645 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4646 SSID); 4647 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4648 4649 if (Record.size() < 8) { 4650 // Before weak cmpxchgs existed, the instruction simply returned the 4651 // value loaded from memory, so bitcode files from that era will be 4652 // expecting the first component of a modern cmpxchg. 4653 CurBB->getInstList().push_back(I); 4654 I = ExtractValueInst::Create(I, 0); 4655 } else { 4656 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4657 } 4658 4659 InstructionList.push_back(I); 4660 break; 4661 } 4662 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4663 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4664 unsigned OpNum = 0; 4665 Value *Ptr, *Val; 4666 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4667 !isa<PointerType>(Ptr->getType()) || 4668 popValue(Record, OpNum, NextValueNo, 4669 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4670 OpNum+4 != Record.size()) 4671 return error("Invalid record"); 4672 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4673 if (Operation < AtomicRMWInst::FIRST_BINOP || 4674 Operation > AtomicRMWInst::LAST_BINOP) 4675 return error("Invalid record"); 4676 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4677 if (Ordering == AtomicOrdering::NotAtomic || 4678 Ordering == AtomicOrdering::Unordered) 4679 return error("Invalid record"); 4680 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4681 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4682 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4683 InstructionList.push_back(I); 4684 break; 4685 } 4686 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4687 if (2 != Record.size()) 4688 return error("Invalid record"); 4689 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4690 if (Ordering == AtomicOrdering::NotAtomic || 4691 Ordering == AtomicOrdering::Unordered || 4692 Ordering == AtomicOrdering::Monotonic) 4693 return error("Invalid record"); 4694 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4695 I = new FenceInst(Context, Ordering, SSID); 4696 InstructionList.push_back(I); 4697 break; 4698 } 4699 case bitc::FUNC_CODE_INST_CALL: { 4700 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4701 if (Record.size() < 3) 4702 return error("Invalid record"); 4703 4704 unsigned OpNum = 0; 4705 AttributeList PAL = getAttributes(Record[OpNum++]); 4706 unsigned CCInfo = Record[OpNum++]; 4707 4708 FastMathFlags FMF; 4709 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4710 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4711 if (!FMF.any()) 4712 return error("Fast math flags indicator set for call with no FMF"); 4713 } 4714 4715 FunctionType *FTy = nullptr; 4716 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4717 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4718 return error("Explicit call type is not a function type"); 4719 4720 Value *Callee; 4721 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4722 return error("Invalid record"); 4723 4724 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4725 if (!OpTy) 4726 return error("Callee is not a pointer type"); 4727 if (!FTy) { 4728 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4729 if (!FTy) 4730 return error("Callee is not of pointer to function type"); 4731 } else if (OpTy->getElementType() != FTy) 4732 return error("Explicit call type does not match pointee type of " 4733 "callee operand"); 4734 if (Record.size() < FTy->getNumParams() + OpNum) 4735 return error("Insufficient operands to call"); 4736 4737 SmallVector<Value*, 16> Args; 4738 // Read the fixed params. 4739 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4740 if (FTy->getParamType(i)->isLabelTy()) 4741 Args.push_back(getBasicBlock(Record[OpNum])); 4742 else 4743 Args.push_back(getValue(Record, OpNum, NextValueNo, 4744 FTy->getParamType(i))); 4745 if (!Args.back()) 4746 return error("Invalid record"); 4747 } 4748 4749 // Read type/value pairs for varargs params. 4750 if (!FTy->isVarArg()) { 4751 if (OpNum != Record.size()) 4752 return error("Invalid record"); 4753 } else { 4754 while (OpNum != Record.size()) { 4755 Value *Op; 4756 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4757 return error("Invalid record"); 4758 Args.push_back(Op); 4759 } 4760 } 4761 4762 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4763 OperandBundles.clear(); 4764 InstructionList.push_back(I); 4765 cast<CallInst>(I)->setCallingConv( 4766 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4767 CallInst::TailCallKind TCK = CallInst::TCK_None; 4768 if (CCInfo & 1 << bitc::CALL_TAIL) 4769 TCK = CallInst::TCK_Tail; 4770 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4771 TCK = CallInst::TCK_MustTail; 4772 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4773 TCK = CallInst::TCK_NoTail; 4774 cast<CallInst>(I)->setTailCallKind(TCK); 4775 cast<CallInst>(I)->setAttributes(PAL); 4776 propagateByValTypes(cast<CallBase>(I)); 4777 if (FMF.any()) { 4778 if (!isa<FPMathOperator>(I)) 4779 return error("Fast-math-flags specified for call without " 4780 "floating-point scalar or vector return type"); 4781 I->setFastMathFlags(FMF); 4782 } 4783 break; 4784 } 4785 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4786 if (Record.size() < 3) 4787 return error("Invalid record"); 4788 Type *OpTy = getTypeByID(Record[0]); 4789 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4790 Type *ResTy = getTypeByID(Record[2]); 4791 if (!OpTy || !Op || !ResTy) 4792 return error("Invalid record"); 4793 I = new VAArgInst(Op, ResTy); 4794 InstructionList.push_back(I); 4795 break; 4796 } 4797 4798 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4799 // A call or an invoke can be optionally prefixed with some variable 4800 // number of operand bundle blocks. These blocks are read into 4801 // OperandBundles and consumed at the next call or invoke instruction. 4802 4803 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4804 return error("Invalid record"); 4805 4806 std::vector<Value *> Inputs; 4807 4808 unsigned OpNum = 1; 4809 while (OpNum != Record.size()) { 4810 Value *Op; 4811 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4812 return error("Invalid record"); 4813 Inputs.push_back(Op); 4814 } 4815 4816 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4817 continue; 4818 } 4819 } 4820 4821 // Add instruction to end of current BB. If there is no current BB, reject 4822 // this file. 4823 if (!CurBB) { 4824 I->deleteValue(); 4825 return error("Invalid instruction with no BB"); 4826 } 4827 if (!OperandBundles.empty()) { 4828 I->deleteValue(); 4829 return error("Operand bundles found with no consumer"); 4830 } 4831 CurBB->getInstList().push_back(I); 4832 4833 // If this was a terminator instruction, move to the next block. 4834 if (I->isTerminator()) { 4835 ++CurBBNo; 4836 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4837 } 4838 4839 // Non-void values get registered in the value table for future use. 4840 if (I && !I->getType()->isVoidTy()) 4841 ValueList.assignValue(I, NextValueNo++); 4842 } 4843 4844 OutOfRecordLoop: 4845 4846 if (!OperandBundles.empty()) 4847 return error("Operand bundles found with no consumer"); 4848 4849 // Check the function list for unresolved values. 4850 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4851 if (!A->getParent()) { 4852 // We found at least one unresolved value. Nuke them all to avoid leaks. 4853 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4854 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4855 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4856 delete A; 4857 } 4858 } 4859 return error("Never resolved value found in function"); 4860 } 4861 } 4862 4863 // Unexpected unresolved metadata about to be dropped. 4864 if (MDLoader->hasFwdRefs()) 4865 return error("Invalid function metadata: outgoing forward refs"); 4866 4867 // Trim the value list down to the size it was before we parsed this function. 4868 ValueList.shrinkTo(ModuleValueListSize); 4869 MDLoader->shrinkTo(ModuleMDLoaderSize); 4870 std::vector<BasicBlock*>().swap(FunctionBBs); 4871 return Error::success(); 4872 } 4873 4874 /// Find the function body in the bitcode stream 4875 Error BitcodeReader::findFunctionInStream( 4876 Function *F, 4877 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4878 while (DeferredFunctionInfoIterator->second == 0) { 4879 // This is the fallback handling for the old format bitcode that 4880 // didn't contain the function index in the VST, or when we have 4881 // an anonymous function which would not have a VST entry. 4882 // Assert that we have one of those two cases. 4883 assert(VSTOffset == 0 || !F->hasName()); 4884 // Parse the next body in the stream and set its position in the 4885 // DeferredFunctionInfo map. 4886 if (Error Err = rememberAndSkipFunctionBodies()) 4887 return Err; 4888 } 4889 return Error::success(); 4890 } 4891 4892 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4893 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4894 return SyncScope::ID(Val); 4895 if (Val >= SSIDs.size()) 4896 return SyncScope::System; // Map unknown synchronization scopes to system. 4897 return SSIDs[Val]; 4898 } 4899 4900 //===----------------------------------------------------------------------===// 4901 // GVMaterializer implementation 4902 //===----------------------------------------------------------------------===// 4903 4904 Error BitcodeReader::materialize(GlobalValue *GV) { 4905 Function *F = dyn_cast<Function>(GV); 4906 // If it's not a function or is already material, ignore the request. 4907 if (!F || !F->isMaterializable()) 4908 return Error::success(); 4909 4910 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4911 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4912 // If its position is recorded as 0, its body is somewhere in the stream 4913 // but we haven't seen it yet. 4914 if (DFII->second == 0) 4915 if (Error Err = findFunctionInStream(F, DFII)) 4916 return Err; 4917 4918 // Materialize metadata before parsing any function bodies. 4919 if (Error Err = materializeMetadata()) 4920 return Err; 4921 4922 // Move the bit stream to the saved position of the deferred function body. 4923 Stream.JumpToBit(DFII->second); 4924 4925 if (Error Err = parseFunctionBody(F)) 4926 return Err; 4927 F->setIsMaterializable(false); 4928 4929 if (StripDebugInfo) 4930 stripDebugInfo(*F); 4931 4932 // Upgrade any old intrinsic calls in the function. 4933 for (auto &I : UpgradedIntrinsics) { 4934 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4935 UI != UE;) { 4936 User *U = *UI; 4937 ++UI; 4938 if (CallInst *CI = dyn_cast<CallInst>(U)) 4939 UpgradeIntrinsicCall(CI, I.second); 4940 } 4941 } 4942 4943 // Update calls to the remangled intrinsics 4944 for (auto &I : RemangledIntrinsics) 4945 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4946 UI != UE;) 4947 // Don't expect any other users than call sites 4948 CallSite(*UI++).setCalledFunction(I.second); 4949 4950 // Finish fn->subprogram upgrade for materialized functions. 4951 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4952 F->setSubprogram(SP); 4953 4954 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4955 if (!MDLoader->isStrippingTBAA()) { 4956 for (auto &I : instructions(F)) { 4957 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4958 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4959 continue; 4960 MDLoader->setStripTBAA(true); 4961 stripTBAA(F->getParent()); 4962 } 4963 } 4964 4965 // Bring in any functions that this function forward-referenced via 4966 // blockaddresses. 4967 return materializeForwardReferencedFunctions(); 4968 } 4969 4970 Error BitcodeReader::materializeModule() { 4971 if (Error Err = materializeMetadata()) 4972 return Err; 4973 4974 // Promise to materialize all forward references. 4975 WillMaterializeAllForwardRefs = true; 4976 4977 // Iterate over the module, deserializing any functions that are still on 4978 // disk. 4979 for (Function &F : *TheModule) { 4980 if (Error Err = materialize(&F)) 4981 return Err; 4982 } 4983 // At this point, if there are any function bodies, parse the rest of 4984 // the bits in the module past the last function block we have recorded 4985 // through either lazy scanning or the VST. 4986 if (LastFunctionBlockBit || NextUnreadBit) 4987 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4988 ? LastFunctionBlockBit 4989 : NextUnreadBit)) 4990 return Err; 4991 4992 // Check that all block address forward references got resolved (as we 4993 // promised above). 4994 if (!BasicBlockFwdRefs.empty()) 4995 return error("Never resolved function from blockaddress"); 4996 4997 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4998 // delete the old functions to clean up. We can't do this unless the entire 4999 // module is materialized because there could always be another function body 5000 // with calls to the old function. 5001 for (auto &I : UpgradedIntrinsics) { 5002 for (auto *U : I.first->users()) { 5003 if (CallInst *CI = dyn_cast<CallInst>(U)) 5004 UpgradeIntrinsicCall(CI, I.second); 5005 } 5006 if (!I.first->use_empty()) 5007 I.first->replaceAllUsesWith(I.second); 5008 I.first->eraseFromParent(); 5009 } 5010 UpgradedIntrinsics.clear(); 5011 // Do the same for remangled intrinsics 5012 for (auto &I : RemangledIntrinsics) { 5013 I.first->replaceAllUsesWith(I.second); 5014 I.first->eraseFromParent(); 5015 } 5016 RemangledIntrinsics.clear(); 5017 5018 UpgradeDebugInfo(*TheModule); 5019 5020 UpgradeModuleFlags(*TheModule); 5021 5022 UpgradeRetainReleaseMarker(*TheModule); 5023 5024 return Error::success(); 5025 } 5026 5027 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5028 return IdentifiedStructTypes; 5029 } 5030 5031 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5032 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5033 StringRef ModulePath, unsigned ModuleId) 5034 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5035 ModulePath(ModulePath), ModuleId(ModuleId) {} 5036 5037 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5038 TheIndex.addModule(ModulePath, ModuleId); 5039 } 5040 5041 ModuleSummaryIndex::ModuleInfo * 5042 ModuleSummaryIndexBitcodeReader::getThisModule() { 5043 return TheIndex.getModule(ModulePath); 5044 } 5045 5046 std::pair<ValueInfo, GlobalValue::GUID> 5047 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5048 auto VGI = ValueIdToValueInfoMap[ValueId]; 5049 assert(VGI.first); 5050 return VGI; 5051 } 5052 5053 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5054 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5055 StringRef SourceFileName) { 5056 std::string GlobalId = 5057 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5058 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5059 auto OriginalNameID = ValueGUID; 5060 if (GlobalValue::isLocalLinkage(Linkage)) 5061 OriginalNameID = GlobalValue::getGUID(ValueName); 5062 if (PrintSummaryGUIDs) 5063 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5064 << ValueName << "\n"; 5065 5066 // UseStrtab is false for legacy summary formats and value names are 5067 // created on stack. In that case we save the name in a string saver in 5068 // the index so that the value name can be recorded. 5069 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5070 TheIndex.getOrInsertValueInfo( 5071 ValueGUID, 5072 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5073 OriginalNameID); 5074 } 5075 5076 // Specialized value symbol table parser used when reading module index 5077 // blocks where we don't actually create global values. The parsed information 5078 // is saved in the bitcode reader for use when later parsing summaries. 5079 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5080 uint64_t Offset, 5081 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5082 // With a strtab the VST is not required to parse the summary. 5083 if (UseStrtab) 5084 return Error::success(); 5085 5086 assert(Offset > 0 && "Expected non-zero VST offset"); 5087 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5088 5089 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5090 return error("Invalid record"); 5091 5092 SmallVector<uint64_t, 64> Record; 5093 5094 // Read all the records for this value table. 5095 SmallString<128> ValueName; 5096 5097 while (true) { 5098 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5099 5100 switch (Entry.Kind) { 5101 case BitstreamEntry::SubBlock: // Handled for us already. 5102 case BitstreamEntry::Error: 5103 return error("Malformed block"); 5104 case BitstreamEntry::EndBlock: 5105 // Done parsing VST, jump back to wherever we came from. 5106 Stream.JumpToBit(CurrentBit); 5107 return Error::success(); 5108 case BitstreamEntry::Record: 5109 // The interesting case. 5110 break; 5111 } 5112 5113 // Read a record. 5114 Record.clear(); 5115 switch (Stream.readRecord(Entry.ID, Record)) { 5116 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5117 break; 5118 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5119 if (convertToString(Record, 1, ValueName)) 5120 return error("Invalid record"); 5121 unsigned ValueID = Record[0]; 5122 assert(!SourceFileName.empty()); 5123 auto VLI = ValueIdToLinkageMap.find(ValueID); 5124 assert(VLI != ValueIdToLinkageMap.end() && 5125 "No linkage found for VST entry?"); 5126 auto Linkage = VLI->second; 5127 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5128 ValueName.clear(); 5129 break; 5130 } 5131 case bitc::VST_CODE_FNENTRY: { 5132 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5133 if (convertToString(Record, 2, ValueName)) 5134 return error("Invalid record"); 5135 unsigned ValueID = Record[0]; 5136 assert(!SourceFileName.empty()); 5137 auto VLI = ValueIdToLinkageMap.find(ValueID); 5138 assert(VLI != ValueIdToLinkageMap.end() && 5139 "No linkage found for VST entry?"); 5140 auto Linkage = VLI->second; 5141 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5142 ValueName.clear(); 5143 break; 5144 } 5145 case bitc::VST_CODE_COMBINED_ENTRY: { 5146 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5147 unsigned ValueID = Record[0]; 5148 GlobalValue::GUID RefGUID = Record[1]; 5149 // The "original name", which is the second value of the pair will be 5150 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5151 ValueIdToValueInfoMap[ValueID] = 5152 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5153 break; 5154 } 5155 } 5156 } 5157 } 5158 5159 // Parse just the blocks needed for building the index out of the module. 5160 // At the end of this routine the module Index is populated with a map 5161 // from global value id to GlobalValueSummary objects. 5162 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5163 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5164 return error("Invalid record"); 5165 5166 SmallVector<uint64_t, 64> Record; 5167 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5168 unsigned ValueId = 0; 5169 5170 // Read the index for this module. 5171 while (true) { 5172 BitstreamEntry Entry = Stream.advance(); 5173 5174 switch (Entry.Kind) { 5175 case BitstreamEntry::Error: 5176 return error("Malformed block"); 5177 case BitstreamEntry::EndBlock: 5178 return Error::success(); 5179 5180 case BitstreamEntry::SubBlock: 5181 switch (Entry.ID) { 5182 default: // Skip unknown content. 5183 if (Stream.SkipBlock()) 5184 return error("Invalid record"); 5185 break; 5186 case bitc::BLOCKINFO_BLOCK_ID: 5187 // Need to parse these to get abbrev ids (e.g. for VST) 5188 if (readBlockInfo()) 5189 return error("Malformed block"); 5190 break; 5191 case bitc::VALUE_SYMTAB_BLOCK_ID: 5192 // Should have been parsed earlier via VSTOffset, unless there 5193 // is no summary section. 5194 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5195 !SeenGlobalValSummary) && 5196 "Expected early VST parse via VSTOffset record"); 5197 if (Stream.SkipBlock()) 5198 return error("Invalid record"); 5199 break; 5200 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5201 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5202 // Add the module if it is a per-module index (has a source file name). 5203 if (!SourceFileName.empty()) 5204 addThisModule(); 5205 assert(!SeenValueSymbolTable && 5206 "Already read VST when parsing summary block?"); 5207 // We might not have a VST if there were no values in the 5208 // summary. An empty summary block generated when we are 5209 // performing ThinLTO compiles so we don't later invoke 5210 // the regular LTO process on them. 5211 if (VSTOffset > 0) { 5212 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5213 return Err; 5214 SeenValueSymbolTable = true; 5215 } 5216 SeenGlobalValSummary = true; 5217 if (Error Err = parseEntireSummary(Entry.ID)) 5218 return Err; 5219 break; 5220 case bitc::MODULE_STRTAB_BLOCK_ID: 5221 if (Error Err = parseModuleStringTable()) 5222 return Err; 5223 break; 5224 } 5225 continue; 5226 5227 case BitstreamEntry::Record: { 5228 Record.clear(); 5229 auto BitCode = Stream.readRecord(Entry.ID, Record); 5230 switch (BitCode) { 5231 default: 5232 break; // Default behavior, ignore unknown content. 5233 case bitc::MODULE_CODE_VERSION: { 5234 if (Error Err = parseVersionRecord(Record).takeError()) 5235 return Err; 5236 break; 5237 } 5238 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5239 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5240 SmallString<128> ValueName; 5241 if (convertToString(Record, 0, ValueName)) 5242 return error("Invalid record"); 5243 SourceFileName = ValueName.c_str(); 5244 break; 5245 } 5246 /// MODULE_CODE_HASH: [5*i32] 5247 case bitc::MODULE_CODE_HASH: { 5248 if (Record.size() != 5) 5249 return error("Invalid hash length " + Twine(Record.size()).str()); 5250 auto &Hash = getThisModule()->second.second; 5251 int Pos = 0; 5252 for (auto &Val : Record) { 5253 assert(!(Val >> 32) && "Unexpected high bits set"); 5254 Hash[Pos++] = Val; 5255 } 5256 break; 5257 } 5258 /// MODULE_CODE_VSTOFFSET: [offset] 5259 case bitc::MODULE_CODE_VSTOFFSET: 5260 if (Record.size() < 1) 5261 return error("Invalid record"); 5262 // Note that we subtract 1 here because the offset is relative to one 5263 // word before the start of the identification or module block, which 5264 // was historically always the start of the regular bitcode header. 5265 VSTOffset = Record[0] - 1; 5266 break; 5267 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5268 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5269 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5270 // v2: [strtab offset, strtab size, v1] 5271 case bitc::MODULE_CODE_GLOBALVAR: 5272 case bitc::MODULE_CODE_FUNCTION: 5273 case bitc::MODULE_CODE_ALIAS: { 5274 StringRef Name; 5275 ArrayRef<uint64_t> GVRecord; 5276 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5277 if (GVRecord.size() <= 3) 5278 return error("Invalid record"); 5279 uint64_t RawLinkage = GVRecord[3]; 5280 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5281 if (!UseStrtab) { 5282 ValueIdToLinkageMap[ValueId++] = Linkage; 5283 break; 5284 } 5285 5286 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5287 break; 5288 } 5289 } 5290 } 5291 continue; 5292 } 5293 } 5294 } 5295 5296 std::vector<ValueInfo> 5297 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5298 std::vector<ValueInfo> Ret; 5299 Ret.reserve(Record.size()); 5300 for (uint64_t RefValueId : Record) 5301 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5302 return Ret; 5303 } 5304 5305 std::vector<FunctionSummary::EdgeTy> 5306 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5307 bool IsOldProfileFormat, 5308 bool HasProfile, bool HasRelBF) { 5309 std::vector<FunctionSummary::EdgeTy> Ret; 5310 Ret.reserve(Record.size()); 5311 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5312 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5313 uint64_t RelBF = 0; 5314 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5315 if (IsOldProfileFormat) { 5316 I += 1; // Skip old callsitecount field 5317 if (HasProfile) 5318 I += 1; // Skip old profilecount field 5319 } else if (HasProfile) 5320 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5321 else if (HasRelBF) 5322 RelBF = Record[++I]; 5323 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5324 } 5325 return Ret; 5326 } 5327 5328 static void 5329 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5330 WholeProgramDevirtResolution &Wpd) { 5331 uint64_t ArgNum = Record[Slot++]; 5332 WholeProgramDevirtResolution::ByArg &B = 5333 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5334 Slot += ArgNum; 5335 5336 B.TheKind = 5337 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5338 B.Info = Record[Slot++]; 5339 B.Byte = Record[Slot++]; 5340 B.Bit = Record[Slot++]; 5341 } 5342 5343 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5344 StringRef Strtab, size_t &Slot, 5345 TypeIdSummary &TypeId) { 5346 uint64_t Id = Record[Slot++]; 5347 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5348 5349 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5350 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5351 static_cast<size_t>(Record[Slot + 1])}; 5352 Slot += 2; 5353 5354 uint64_t ResByArgNum = Record[Slot++]; 5355 for (uint64_t I = 0; I != ResByArgNum; ++I) 5356 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5357 } 5358 5359 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5360 StringRef Strtab, 5361 ModuleSummaryIndex &TheIndex) { 5362 size_t Slot = 0; 5363 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5364 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5365 Slot += 2; 5366 5367 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5368 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5369 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5370 TypeId.TTRes.SizeM1 = Record[Slot++]; 5371 TypeId.TTRes.BitMask = Record[Slot++]; 5372 TypeId.TTRes.InlineBits = Record[Slot++]; 5373 5374 while (Slot < Record.size()) 5375 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5376 } 5377 5378 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) { 5379 // Read-only refs are in the end of the refs list. 5380 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo) 5381 Refs[RefNo].setReadOnly(); 5382 } 5383 5384 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5385 // objects in the index. 5386 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5387 if (Stream.EnterSubBlock(ID)) 5388 return error("Invalid record"); 5389 SmallVector<uint64_t, 64> Record; 5390 5391 // Parse version 5392 { 5393 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5394 if (Entry.Kind != BitstreamEntry::Record) 5395 return error("Invalid Summary Block: record for version expected"); 5396 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5397 return error("Invalid Summary Block: version expected"); 5398 } 5399 const uint64_t Version = Record[0]; 5400 const bool IsOldProfileFormat = Version == 1; 5401 if (Version < 1 || Version > 6) 5402 return error("Invalid summary version " + Twine(Version) + 5403 ". Version should be in the range [1-6]."); 5404 Record.clear(); 5405 5406 // Keep around the last seen summary to be used when we see an optional 5407 // "OriginalName" attachement. 5408 GlobalValueSummary *LastSeenSummary = nullptr; 5409 GlobalValue::GUID LastSeenGUID = 0; 5410 5411 // We can expect to see any number of type ID information records before 5412 // each function summary records; these variables store the information 5413 // collected so far so that it can be used to create the summary object. 5414 std::vector<GlobalValue::GUID> PendingTypeTests; 5415 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5416 PendingTypeCheckedLoadVCalls; 5417 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5418 PendingTypeCheckedLoadConstVCalls; 5419 5420 while (true) { 5421 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5422 5423 switch (Entry.Kind) { 5424 case BitstreamEntry::SubBlock: // Handled for us already. 5425 case BitstreamEntry::Error: 5426 return error("Malformed block"); 5427 case BitstreamEntry::EndBlock: 5428 return Error::success(); 5429 case BitstreamEntry::Record: 5430 // The interesting case. 5431 break; 5432 } 5433 5434 // Read a record. The record format depends on whether this 5435 // is a per-module index or a combined index file. In the per-module 5436 // case the records contain the associated value's ID for correlation 5437 // with VST entries. In the combined index the correlation is done 5438 // via the bitcode offset of the summary records (which were saved 5439 // in the combined index VST entries). The records also contain 5440 // information used for ThinLTO renaming and importing. 5441 Record.clear(); 5442 auto BitCode = Stream.readRecord(Entry.ID, Record); 5443 switch (BitCode) { 5444 default: // Default behavior: ignore. 5445 break; 5446 case bitc::FS_FLAGS: { // [flags] 5447 uint64_t Flags = Record[0]; 5448 // Scan flags. 5449 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5450 5451 // 1 bit: WithGlobalValueDeadStripping flag. 5452 // Set on combined index only. 5453 if (Flags & 0x1) 5454 TheIndex.setWithGlobalValueDeadStripping(); 5455 // 1 bit: SkipModuleByDistributedBackend flag. 5456 // Set on combined index only. 5457 if (Flags & 0x2) 5458 TheIndex.setSkipModuleByDistributedBackend(); 5459 // 1 bit: HasSyntheticEntryCounts flag. 5460 // Set on combined index only. 5461 if (Flags & 0x4) 5462 TheIndex.setHasSyntheticEntryCounts(); 5463 // 1 bit: DisableSplitLTOUnit flag. 5464 // Set on per module indexes. It is up to the client to validate 5465 // the consistency of this flag across modules being linked. 5466 if (Flags & 0x8) 5467 TheIndex.setEnableSplitLTOUnit(); 5468 // 1 bit: PartiallySplitLTOUnits flag. 5469 // Set on combined index only. 5470 if (Flags & 0x10) 5471 TheIndex.setPartiallySplitLTOUnits(); 5472 break; 5473 } 5474 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5475 uint64_t ValueID = Record[0]; 5476 GlobalValue::GUID RefGUID = Record[1]; 5477 ValueIdToValueInfoMap[ValueID] = 5478 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5479 break; 5480 } 5481 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5482 // numrefs x valueid, n x (valueid)] 5483 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5484 // numrefs x valueid, 5485 // n x (valueid, hotness)] 5486 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5487 // numrefs x valueid, 5488 // n x (valueid, relblockfreq)] 5489 case bitc::FS_PERMODULE: 5490 case bitc::FS_PERMODULE_RELBF: 5491 case bitc::FS_PERMODULE_PROFILE: { 5492 unsigned ValueID = Record[0]; 5493 uint64_t RawFlags = Record[1]; 5494 unsigned InstCount = Record[2]; 5495 uint64_t RawFunFlags = 0; 5496 unsigned NumRefs = Record[3]; 5497 unsigned NumImmutableRefs = 0; 5498 int RefListStartIndex = 4; 5499 if (Version >= 4) { 5500 RawFunFlags = Record[3]; 5501 NumRefs = Record[4]; 5502 RefListStartIndex = 5; 5503 if (Version >= 5) { 5504 NumImmutableRefs = Record[5]; 5505 RefListStartIndex = 6; 5506 } 5507 } 5508 5509 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5510 // The module path string ref set in the summary must be owned by the 5511 // index's module string table. Since we don't have a module path 5512 // string table section in the per-module index, we create a single 5513 // module path string table entry with an empty (0) ID to take 5514 // ownership. 5515 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5516 assert(Record.size() >= RefListStartIndex + NumRefs && 5517 "Record size inconsistent with number of references"); 5518 std::vector<ValueInfo> Refs = makeRefList( 5519 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5520 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5521 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5522 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5523 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5524 IsOldProfileFormat, HasProfile, HasRelBF); 5525 setImmutableRefs(Refs, NumImmutableRefs); 5526 auto FS = llvm::make_unique<FunctionSummary>( 5527 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5528 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5529 std::move(PendingTypeTestAssumeVCalls), 5530 std::move(PendingTypeCheckedLoadVCalls), 5531 std::move(PendingTypeTestAssumeConstVCalls), 5532 std::move(PendingTypeCheckedLoadConstVCalls)); 5533 PendingTypeTests.clear(); 5534 PendingTypeTestAssumeVCalls.clear(); 5535 PendingTypeCheckedLoadVCalls.clear(); 5536 PendingTypeTestAssumeConstVCalls.clear(); 5537 PendingTypeCheckedLoadConstVCalls.clear(); 5538 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5539 FS->setModulePath(getThisModule()->first()); 5540 FS->setOriginalName(VIAndOriginalGUID.second); 5541 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5542 break; 5543 } 5544 // FS_ALIAS: [valueid, flags, valueid] 5545 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5546 // they expect all aliasee summaries to be available. 5547 case bitc::FS_ALIAS: { 5548 unsigned ValueID = Record[0]; 5549 uint64_t RawFlags = Record[1]; 5550 unsigned AliaseeID = Record[2]; 5551 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5552 auto AS = llvm::make_unique<AliasSummary>(Flags); 5553 // The module path string ref set in the summary must be owned by the 5554 // index's module string table. Since we don't have a module path 5555 // string table section in the per-module index, we create a single 5556 // module path string table entry with an empty (0) ID to take 5557 // ownership. 5558 AS->setModulePath(getThisModule()->first()); 5559 5560 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5561 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5562 if (!AliaseeInModule) 5563 return error("Alias expects aliasee summary to be parsed"); 5564 AS->setAliasee(AliaseeVI, AliaseeInModule); 5565 5566 auto GUID = getValueInfoFromValueId(ValueID); 5567 AS->setOriginalName(GUID.second); 5568 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5569 break; 5570 } 5571 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5572 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5573 unsigned ValueID = Record[0]; 5574 uint64_t RawFlags = Record[1]; 5575 unsigned RefArrayStart = 2; 5576 GlobalVarSummary::GVarFlags GVF; 5577 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5578 if (Version >= 5) { 5579 GVF = getDecodedGVarFlags(Record[2]); 5580 RefArrayStart = 3; 5581 } 5582 std::vector<ValueInfo> Refs = 5583 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5584 auto FS = 5585 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5586 FS->setModulePath(getThisModule()->first()); 5587 auto GUID = getValueInfoFromValueId(ValueID); 5588 FS->setOriginalName(GUID.second); 5589 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5590 break; 5591 } 5592 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5593 // numrefs x valueid, n x (valueid)] 5594 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5595 // numrefs x valueid, n x (valueid, hotness)] 5596 case bitc::FS_COMBINED: 5597 case bitc::FS_COMBINED_PROFILE: { 5598 unsigned ValueID = Record[0]; 5599 uint64_t ModuleId = Record[1]; 5600 uint64_t RawFlags = Record[2]; 5601 unsigned InstCount = Record[3]; 5602 uint64_t RawFunFlags = 0; 5603 uint64_t EntryCount = 0; 5604 unsigned NumRefs = Record[4]; 5605 unsigned NumImmutableRefs = 0; 5606 int RefListStartIndex = 5; 5607 5608 if (Version >= 4) { 5609 RawFunFlags = Record[4]; 5610 RefListStartIndex = 6; 5611 size_t NumRefsIndex = 5; 5612 if (Version >= 5) { 5613 RefListStartIndex = 7; 5614 if (Version >= 6) { 5615 NumRefsIndex = 6; 5616 EntryCount = Record[5]; 5617 RefListStartIndex = 8; 5618 } 5619 NumImmutableRefs = Record[RefListStartIndex - 1]; 5620 } 5621 NumRefs = Record[NumRefsIndex]; 5622 } 5623 5624 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5625 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5626 assert(Record.size() >= RefListStartIndex + NumRefs && 5627 "Record size inconsistent with number of references"); 5628 std::vector<ValueInfo> Refs = makeRefList( 5629 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5630 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5631 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5632 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5633 IsOldProfileFormat, HasProfile, false); 5634 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5635 setImmutableRefs(Refs, NumImmutableRefs); 5636 auto FS = llvm::make_unique<FunctionSummary>( 5637 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 5638 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 5639 std::move(PendingTypeTestAssumeVCalls), 5640 std::move(PendingTypeCheckedLoadVCalls), 5641 std::move(PendingTypeTestAssumeConstVCalls), 5642 std::move(PendingTypeCheckedLoadConstVCalls)); 5643 PendingTypeTests.clear(); 5644 PendingTypeTestAssumeVCalls.clear(); 5645 PendingTypeCheckedLoadVCalls.clear(); 5646 PendingTypeTestAssumeConstVCalls.clear(); 5647 PendingTypeCheckedLoadConstVCalls.clear(); 5648 LastSeenSummary = FS.get(); 5649 LastSeenGUID = VI.getGUID(); 5650 FS->setModulePath(ModuleIdMap[ModuleId]); 5651 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5652 break; 5653 } 5654 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5655 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5656 // they expect all aliasee summaries to be available. 5657 case bitc::FS_COMBINED_ALIAS: { 5658 unsigned ValueID = Record[0]; 5659 uint64_t ModuleId = Record[1]; 5660 uint64_t RawFlags = Record[2]; 5661 unsigned AliaseeValueId = Record[3]; 5662 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5663 auto AS = llvm::make_unique<AliasSummary>(Flags); 5664 LastSeenSummary = AS.get(); 5665 AS->setModulePath(ModuleIdMap[ModuleId]); 5666 5667 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 5668 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 5669 AS->setAliasee(AliaseeVI, AliaseeInModule); 5670 5671 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5672 LastSeenGUID = VI.getGUID(); 5673 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5674 break; 5675 } 5676 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5677 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5678 unsigned ValueID = Record[0]; 5679 uint64_t ModuleId = Record[1]; 5680 uint64_t RawFlags = Record[2]; 5681 unsigned RefArrayStart = 3; 5682 GlobalVarSummary::GVarFlags GVF; 5683 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5684 if (Version >= 5) { 5685 GVF = getDecodedGVarFlags(Record[3]); 5686 RefArrayStart = 4; 5687 } 5688 std::vector<ValueInfo> Refs = 5689 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5690 auto FS = 5691 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5692 LastSeenSummary = FS.get(); 5693 FS->setModulePath(ModuleIdMap[ModuleId]); 5694 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5695 LastSeenGUID = VI.getGUID(); 5696 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5697 break; 5698 } 5699 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5700 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5701 uint64_t OriginalName = Record[0]; 5702 if (!LastSeenSummary) 5703 return error("Name attachment that does not follow a combined record"); 5704 LastSeenSummary->setOriginalName(OriginalName); 5705 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5706 // Reset the LastSeenSummary 5707 LastSeenSummary = nullptr; 5708 LastSeenGUID = 0; 5709 break; 5710 } 5711 case bitc::FS_TYPE_TESTS: 5712 assert(PendingTypeTests.empty()); 5713 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5714 Record.end()); 5715 break; 5716 5717 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5718 assert(PendingTypeTestAssumeVCalls.empty()); 5719 for (unsigned I = 0; I != Record.size(); I += 2) 5720 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5721 break; 5722 5723 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5724 assert(PendingTypeCheckedLoadVCalls.empty()); 5725 for (unsigned I = 0; I != Record.size(); I += 2) 5726 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5727 break; 5728 5729 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5730 PendingTypeTestAssumeConstVCalls.push_back( 5731 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5732 break; 5733 5734 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5735 PendingTypeCheckedLoadConstVCalls.push_back( 5736 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5737 break; 5738 5739 case bitc::FS_CFI_FUNCTION_DEFS: { 5740 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5741 for (unsigned I = 0; I != Record.size(); I += 2) 5742 CfiFunctionDefs.insert( 5743 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5744 break; 5745 } 5746 5747 case bitc::FS_CFI_FUNCTION_DECLS: { 5748 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5749 for (unsigned I = 0; I != Record.size(); I += 2) 5750 CfiFunctionDecls.insert( 5751 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5752 break; 5753 } 5754 5755 case bitc::FS_TYPE_ID: 5756 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5757 break; 5758 } 5759 } 5760 llvm_unreachable("Exit infinite loop"); 5761 } 5762 5763 // Parse the module string table block into the Index. 5764 // This populates the ModulePathStringTable map in the index. 5765 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5766 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5767 return error("Invalid record"); 5768 5769 SmallVector<uint64_t, 64> Record; 5770 5771 SmallString<128> ModulePath; 5772 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5773 5774 while (true) { 5775 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5776 5777 switch (Entry.Kind) { 5778 case BitstreamEntry::SubBlock: // Handled for us already. 5779 case BitstreamEntry::Error: 5780 return error("Malformed block"); 5781 case BitstreamEntry::EndBlock: 5782 return Error::success(); 5783 case BitstreamEntry::Record: 5784 // The interesting case. 5785 break; 5786 } 5787 5788 Record.clear(); 5789 switch (Stream.readRecord(Entry.ID, Record)) { 5790 default: // Default behavior: ignore. 5791 break; 5792 case bitc::MST_CODE_ENTRY: { 5793 // MST_ENTRY: [modid, namechar x N] 5794 uint64_t ModuleId = Record[0]; 5795 5796 if (convertToString(Record, 1, ModulePath)) 5797 return error("Invalid record"); 5798 5799 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5800 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5801 5802 ModulePath.clear(); 5803 break; 5804 } 5805 /// MST_CODE_HASH: [5*i32] 5806 case bitc::MST_CODE_HASH: { 5807 if (Record.size() != 5) 5808 return error("Invalid hash length " + Twine(Record.size()).str()); 5809 if (!LastSeenModule) 5810 return error("Invalid hash that does not follow a module path"); 5811 int Pos = 0; 5812 for (auto &Val : Record) { 5813 assert(!(Val >> 32) && "Unexpected high bits set"); 5814 LastSeenModule->second.second[Pos++] = Val; 5815 } 5816 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5817 LastSeenModule = nullptr; 5818 break; 5819 } 5820 } 5821 } 5822 llvm_unreachable("Exit infinite loop"); 5823 } 5824 5825 namespace { 5826 5827 // FIXME: This class is only here to support the transition to llvm::Error. It 5828 // will be removed once this transition is complete. Clients should prefer to 5829 // deal with the Error value directly, rather than converting to error_code. 5830 class BitcodeErrorCategoryType : public std::error_category { 5831 const char *name() const noexcept override { 5832 return "llvm.bitcode"; 5833 } 5834 5835 std::string message(int IE) const override { 5836 BitcodeError E = static_cast<BitcodeError>(IE); 5837 switch (E) { 5838 case BitcodeError::CorruptedBitcode: 5839 return "Corrupted bitcode"; 5840 } 5841 llvm_unreachable("Unknown error type!"); 5842 } 5843 }; 5844 5845 } // end anonymous namespace 5846 5847 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5848 5849 const std::error_category &llvm::BitcodeErrorCategory() { 5850 return *ErrorCategory; 5851 } 5852 5853 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5854 unsigned Block, unsigned RecordID) { 5855 if (Stream.EnterSubBlock(Block)) 5856 return error("Invalid record"); 5857 5858 StringRef Strtab; 5859 while (true) { 5860 BitstreamEntry Entry = Stream.advance(); 5861 switch (Entry.Kind) { 5862 case BitstreamEntry::EndBlock: 5863 return Strtab; 5864 5865 case BitstreamEntry::Error: 5866 return error("Malformed block"); 5867 5868 case BitstreamEntry::SubBlock: 5869 if (Stream.SkipBlock()) 5870 return error("Malformed block"); 5871 break; 5872 5873 case BitstreamEntry::Record: 5874 StringRef Blob; 5875 SmallVector<uint64_t, 1> Record; 5876 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5877 Strtab = Blob; 5878 break; 5879 } 5880 } 5881 } 5882 5883 //===----------------------------------------------------------------------===// 5884 // External interface 5885 //===----------------------------------------------------------------------===// 5886 5887 Expected<std::vector<BitcodeModule>> 5888 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5889 auto FOrErr = getBitcodeFileContents(Buffer); 5890 if (!FOrErr) 5891 return FOrErr.takeError(); 5892 return std::move(FOrErr->Mods); 5893 } 5894 5895 Expected<BitcodeFileContents> 5896 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5897 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5898 if (!StreamOrErr) 5899 return StreamOrErr.takeError(); 5900 BitstreamCursor &Stream = *StreamOrErr; 5901 5902 BitcodeFileContents F; 5903 while (true) { 5904 uint64_t BCBegin = Stream.getCurrentByteNo(); 5905 5906 // We may be consuming bitcode from a client that leaves garbage at the end 5907 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5908 // the end that there cannot possibly be another module, stop looking. 5909 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5910 return F; 5911 5912 BitstreamEntry Entry = Stream.advance(); 5913 switch (Entry.Kind) { 5914 case BitstreamEntry::EndBlock: 5915 case BitstreamEntry::Error: 5916 return error("Malformed block"); 5917 5918 case BitstreamEntry::SubBlock: { 5919 uint64_t IdentificationBit = -1ull; 5920 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5921 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5922 if (Stream.SkipBlock()) 5923 return error("Malformed block"); 5924 5925 Entry = Stream.advance(); 5926 if (Entry.Kind != BitstreamEntry::SubBlock || 5927 Entry.ID != bitc::MODULE_BLOCK_ID) 5928 return error("Malformed block"); 5929 } 5930 5931 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5932 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5933 if (Stream.SkipBlock()) 5934 return error("Malformed block"); 5935 5936 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5937 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5938 Buffer.getBufferIdentifier(), IdentificationBit, 5939 ModuleBit}); 5940 continue; 5941 } 5942 5943 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5944 Expected<StringRef> Strtab = 5945 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5946 if (!Strtab) 5947 return Strtab.takeError(); 5948 // This string table is used by every preceding bitcode module that does 5949 // not have its own string table. A bitcode file may have multiple 5950 // string tables if it was created by binary concatenation, for example 5951 // with "llvm-cat -b". 5952 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5953 if (!I->Strtab.empty()) 5954 break; 5955 I->Strtab = *Strtab; 5956 } 5957 // Similarly, the string table is used by every preceding symbol table; 5958 // normally there will be just one unless the bitcode file was created 5959 // by binary concatenation. 5960 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5961 F.StrtabForSymtab = *Strtab; 5962 continue; 5963 } 5964 5965 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5966 Expected<StringRef> SymtabOrErr = 5967 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5968 if (!SymtabOrErr) 5969 return SymtabOrErr.takeError(); 5970 5971 // We can expect the bitcode file to have multiple symbol tables if it 5972 // was created by binary concatenation. In that case we silently 5973 // ignore any subsequent symbol tables, which is fine because this is a 5974 // low level function. The client is expected to notice that the number 5975 // of modules in the symbol table does not match the number of modules 5976 // in the input file and regenerate the symbol table. 5977 if (F.Symtab.empty()) 5978 F.Symtab = *SymtabOrErr; 5979 continue; 5980 } 5981 5982 if (Stream.SkipBlock()) 5983 return error("Malformed block"); 5984 continue; 5985 } 5986 case BitstreamEntry::Record: 5987 Stream.skipRecord(Entry.ID); 5988 continue; 5989 } 5990 } 5991 } 5992 5993 /// Get a lazy one-at-time loading module from bitcode. 5994 /// 5995 /// This isn't always used in a lazy context. In particular, it's also used by 5996 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5997 /// in forward-referenced functions from block address references. 5998 /// 5999 /// \param[in] MaterializeAll Set to \c true if we should materialize 6000 /// everything. 6001 Expected<std::unique_ptr<Module>> 6002 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6003 bool ShouldLazyLoadMetadata, bool IsImporting) { 6004 BitstreamCursor Stream(Buffer); 6005 6006 std::string ProducerIdentification; 6007 if (IdentificationBit != -1ull) { 6008 Stream.JumpToBit(IdentificationBit); 6009 Expected<std::string> ProducerIdentificationOrErr = 6010 readIdentificationBlock(Stream); 6011 if (!ProducerIdentificationOrErr) 6012 return ProducerIdentificationOrErr.takeError(); 6013 6014 ProducerIdentification = *ProducerIdentificationOrErr; 6015 } 6016 6017 Stream.JumpToBit(ModuleBit); 6018 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6019 Context); 6020 6021 std::unique_ptr<Module> M = 6022 llvm::make_unique<Module>(ModuleIdentifier, Context); 6023 M->setMaterializer(R); 6024 6025 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6026 if (Error Err = 6027 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6028 return std::move(Err); 6029 6030 if (MaterializeAll) { 6031 // Read in the entire module, and destroy the BitcodeReader. 6032 if (Error Err = M->materializeAll()) 6033 return std::move(Err); 6034 } else { 6035 // Resolve forward references from blockaddresses. 6036 if (Error Err = R->materializeForwardReferencedFunctions()) 6037 return std::move(Err); 6038 } 6039 return std::move(M); 6040 } 6041 6042 Expected<std::unique_ptr<Module>> 6043 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6044 bool IsImporting) { 6045 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6046 } 6047 6048 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6049 // We don't use ModuleIdentifier here because the client may need to control the 6050 // module path used in the combined summary (e.g. when reading summaries for 6051 // regular LTO modules). 6052 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6053 StringRef ModulePath, uint64_t ModuleId) { 6054 BitstreamCursor Stream(Buffer); 6055 Stream.JumpToBit(ModuleBit); 6056 6057 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6058 ModulePath, ModuleId); 6059 return R.parseModule(); 6060 } 6061 6062 // Parse the specified bitcode buffer, returning the function info index. 6063 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6064 BitstreamCursor Stream(Buffer); 6065 Stream.JumpToBit(ModuleBit); 6066 6067 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6068 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6069 ModuleIdentifier, 0); 6070 6071 if (Error Err = R.parseModule()) 6072 return std::move(Err); 6073 6074 return std::move(Index); 6075 } 6076 6077 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6078 unsigned ID) { 6079 if (Stream.EnterSubBlock(ID)) 6080 return error("Invalid record"); 6081 SmallVector<uint64_t, 64> Record; 6082 6083 while (true) { 6084 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6085 6086 switch (Entry.Kind) { 6087 case BitstreamEntry::SubBlock: // Handled for us already. 6088 case BitstreamEntry::Error: 6089 return error("Malformed block"); 6090 case BitstreamEntry::EndBlock: 6091 // If no flags record found, conservatively return true to mimic 6092 // behavior before this flag was added. 6093 return true; 6094 case BitstreamEntry::Record: 6095 // The interesting case. 6096 break; 6097 } 6098 6099 // Look for the FS_FLAGS record. 6100 Record.clear(); 6101 auto BitCode = Stream.readRecord(Entry.ID, Record); 6102 switch (BitCode) { 6103 default: // Default behavior: ignore. 6104 break; 6105 case bitc::FS_FLAGS: { // [flags] 6106 uint64_t Flags = Record[0]; 6107 // Scan flags. 6108 assert(Flags <= 0x1f && "Unexpected bits in flag"); 6109 6110 return Flags & 0x8; 6111 } 6112 } 6113 } 6114 llvm_unreachable("Exit infinite loop"); 6115 } 6116 6117 // Check if the given bitcode buffer contains a global value summary block. 6118 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6119 BitstreamCursor Stream(Buffer); 6120 Stream.JumpToBit(ModuleBit); 6121 6122 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6123 return error("Invalid record"); 6124 6125 while (true) { 6126 BitstreamEntry Entry = Stream.advance(); 6127 6128 switch (Entry.Kind) { 6129 case BitstreamEntry::Error: 6130 return error("Malformed block"); 6131 case BitstreamEntry::EndBlock: 6132 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6133 /*EnableSplitLTOUnit=*/false}; 6134 6135 case BitstreamEntry::SubBlock: 6136 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6137 Expected<bool> EnableSplitLTOUnit = 6138 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6139 if (!EnableSplitLTOUnit) 6140 return EnableSplitLTOUnit.takeError(); 6141 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6142 *EnableSplitLTOUnit}; 6143 } 6144 6145 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6146 Expected<bool> EnableSplitLTOUnit = 6147 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6148 if (!EnableSplitLTOUnit) 6149 return EnableSplitLTOUnit.takeError(); 6150 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6151 *EnableSplitLTOUnit}; 6152 } 6153 6154 // Ignore other sub-blocks. 6155 if (Stream.SkipBlock()) 6156 return error("Malformed block"); 6157 continue; 6158 6159 case BitstreamEntry::Record: 6160 Stream.skipRecord(Entry.ID); 6161 continue; 6162 } 6163 } 6164 } 6165 6166 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6167 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6168 if (!MsOrErr) 6169 return MsOrErr.takeError(); 6170 6171 if (MsOrErr->size() != 1) 6172 return error("Expected a single module"); 6173 6174 return (*MsOrErr)[0]; 6175 } 6176 6177 Expected<std::unique_ptr<Module>> 6178 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6179 bool ShouldLazyLoadMetadata, bool IsImporting) { 6180 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6181 if (!BM) 6182 return BM.takeError(); 6183 6184 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6185 } 6186 6187 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6188 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6189 bool ShouldLazyLoadMetadata, bool IsImporting) { 6190 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6191 IsImporting); 6192 if (MOrErr) 6193 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6194 return MOrErr; 6195 } 6196 6197 Expected<std::unique_ptr<Module>> 6198 BitcodeModule::parseModule(LLVMContext &Context) { 6199 return getModuleImpl(Context, true, false, false); 6200 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6201 // written. We must defer until the Module has been fully materialized. 6202 } 6203 6204 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6205 LLVMContext &Context) { 6206 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6207 if (!BM) 6208 return BM.takeError(); 6209 6210 return BM->parseModule(Context); 6211 } 6212 6213 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6214 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6215 if (!StreamOrErr) 6216 return StreamOrErr.takeError(); 6217 6218 return readTriple(*StreamOrErr); 6219 } 6220 6221 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6222 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6223 if (!StreamOrErr) 6224 return StreamOrErr.takeError(); 6225 6226 return hasObjCCategory(*StreamOrErr); 6227 } 6228 6229 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6230 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6231 if (!StreamOrErr) 6232 return StreamOrErr.takeError(); 6233 6234 return readIdentificationCode(*StreamOrErr); 6235 } 6236 6237 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6238 ModuleSummaryIndex &CombinedIndex, 6239 uint64_t ModuleId) { 6240 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6241 if (!BM) 6242 return BM.takeError(); 6243 6244 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6245 } 6246 6247 Expected<std::unique_ptr<ModuleSummaryIndex>> 6248 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6249 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6250 if (!BM) 6251 return BM.takeError(); 6252 6253 return BM->getSummary(); 6254 } 6255 6256 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6257 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6258 if (!BM) 6259 return BM.takeError(); 6260 6261 return BM->getLTOInfo(); 6262 } 6263 6264 Expected<std::unique_ptr<ModuleSummaryIndex>> 6265 llvm::getModuleSummaryIndexForFile(StringRef Path, 6266 bool IgnoreEmptyThinLTOIndexFile) { 6267 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6268 MemoryBuffer::getFileOrSTDIN(Path); 6269 if (!FileOrErr) 6270 return errorCodeToError(FileOrErr.getError()); 6271 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6272 return nullptr; 6273 return getModuleSummaryIndex(**FileOrErr); 6274 } 6275