1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 // Strip all the TBAA attachment for the module. 162 static void stripTBAA(Module *M) { 163 for (auto &F : *M) { 164 if (F.isMaterializable()) 165 continue; 166 for (auto &I : instructions(F)) 167 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 168 } 169 } 170 171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 172 /// "epoch" encoded in the bitcode, and return the producer name if any. 173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 174 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 175 return std::move(Err); 176 177 // Read all the records. 178 SmallVector<uint64_t, 64> Record; 179 180 std::string ProducerIdentification; 181 182 while (true) { 183 BitstreamEntry Entry; 184 if (Expected<BitstreamEntry> Res = Stream.advance()) 185 Entry = Res.get(); 186 else 187 return Res.takeError(); 188 189 switch (Entry.Kind) { 190 default: 191 case BitstreamEntry::Error: 192 return error("Malformed block"); 193 case BitstreamEntry::EndBlock: 194 return ProducerIdentification; 195 case BitstreamEntry::Record: 196 // The interesting case. 197 break; 198 } 199 200 // Read a record. 201 Record.clear(); 202 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 203 if (!MaybeBitCode) 204 return MaybeBitCode.takeError(); 205 switch (MaybeBitCode.get()) { 206 default: // Default behavior: reject 207 return error("Invalid value"); 208 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 209 convertToString(Record, 0, ProducerIdentification); 210 break; 211 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 212 unsigned epoch = (unsigned)Record[0]; 213 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 214 return error( 215 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 216 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 217 } 218 } 219 } 220 } 221 } 222 223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 224 // We expect a number of well-defined blocks, though we don't necessarily 225 // need to understand them all. 226 while (true) { 227 if (Stream.AtEndOfStream()) 228 return ""; 229 230 BitstreamEntry Entry; 231 if (Expected<BitstreamEntry> Res = Stream.advance()) 232 Entry = std::move(Res.get()); 233 else 234 return Res.takeError(); 235 236 switch (Entry.Kind) { 237 case BitstreamEntry::EndBlock: 238 case BitstreamEntry::Error: 239 return error("Malformed block"); 240 241 case BitstreamEntry::SubBlock: 242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 243 return readIdentificationBlock(Stream); 244 245 // Ignore other sub-blocks. 246 if (Error Err = Stream.SkipBlock()) 247 return std::move(Err); 248 continue; 249 case BitstreamEntry::Record: 250 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 251 continue; 252 else 253 return Skipped.takeError(); 254 } 255 } 256 } 257 258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 260 return std::move(Err); 261 262 SmallVector<uint64_t, 64> Record; 263 // Read all the records for this module. 264 265 while (true) { 266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 267 if (!MaybeEntry) 268 return MaybeEntry.takeError(); 269 BitstreamEntry Entry = MaybeEntry.get(); 270 271 switch (Entry.Kind) { 272 case BitstreamEntry::SubBlock: // Handled for us already. 273 case BitstreamEntry::Error: 274 return error("Malformed block"); 275 case BitstreamEntry::EndBlock: 276 return false; 277 case BitstreamEntry::Record: 278 // The interesting case. 279 break; 280 } 281 282 // Read a record. 283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 284 if (!MaybeRecord) 285 return MaybeRecord.takeError(); 286 switch (MaybeRecord.get()) { 287 default: 288 break; // Default behavior, ignore unknown content. 289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 290 std::string S; 291 if (convertToString(Record, 0, S)) 292 return error("Invalid record"); 293 // Check for the i386 and other (x86_64, ARM) conventions 294 if (S.find("__DATA,__objc_catlist") != std::string::npos || 295 S.find("__OBJC,__category") != std::string::npos) 296 return true; 297 break; 298 } 299 } 300 Record.clear(); 301 } 302 llvm_unreachable("Exit infinite loop"); 303 } 304 305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 306 // We expect a number of well-defined blocks, though we don't necessarily 307 // need to understand them all. 308 while (true) { 309 BitstreamEntry Entry; 310 if (Expected<BitstreamEntry> Res = Stream.advance()) 311 Entry = std::move(Res.get()); 312 else 313 return Res.takeError(); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 332 continue; 333 else 334 return Skipped.takeError(); 335 } 336 } 337 } 338 339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 340 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 341 return std::move(Err); 342 343 SmallVector<uint64_t, 64> Record; 344 345 std::string Triple; 346 347 // Read all the records for this module. 348 while (true) { 349 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 350 if (!MaybeEntry) 351 return MaybeEntry.takeError(); 352 BitstreamEntry Entry = MaybeEntry.get(); 353 354 switch (Entry.Kind) { 355 case BitstreamEntry::SubBlock: // Handled for us already. 356 case BitstreamEntry::Error: 357 return error("Malformed block"); 358 case BitstreamEntry::EndBlock: 359 return Triple; 360 case BitstreamEntry::Record: 361 // The interesting case. 362 break; 363 } 364 365 // Read a record. 366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 367 if (!MaybeRecord) 368 return MaybeRecord.takeError(); 369 switch (MaybeRecord.get()) { 370 default: break; // Default behavior, ignore unknown content. 371 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 372 std::string S; 373 if (convertToString(Record, 0, S)) 374 return error("Invalid record"); 375 Triple = S; 376 break; 377 } 378 } 379 Record.clear(); 380 } 381 llvm_unreachable("Exit infinite loop"); 382 } 383 384 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 385 // We expect a number of well-defined blocks, though we don't necessarily 386 // need to understand them all. 387 while (true) { 388 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 389 if (!MaybeEntry) 390 return MaybeEntry.takeError(); 391 BitstreamEntry Entry = MaybeEntry.get(); 392 393 switch (Entry.Kind) { 394 case BitstreamEntry::Error: 395 return error("Malformed block"); 396 case BitstreamEntry::EndBlock: 397 return ""; 398 399 case BitstreamEntry::SubBlock: 400 if (Entry.ID == bitc::MODULE_BLOCK_ID) 401 return readModuleTriple(Stream); 402 403 // Ignore other sub-blocks. 404 if (Error Err = Stream.SkipBlock()) 405 return std::move(Err); 406 continue; 407 408 case BitstreamEntry::Record: 409 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 410 continue; 411 else 412 return Skipped.takeError(); 413 } 414 } 415 } 416 417 namespace { 418 419 class BitcodeReaderBase { 420 protected: 421 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 422 : Stream(std::move(Stream)), Strtab(Strtab) { 423 this->Stream.setBlockInfo(&BlockInfo); 424 } 425 426 BitstreamBlockInfo BlockInfo; 427 BitstreamCursor Stream; 428 StringRef Strtab; 429 430 /// In version 2 of the bitcode we store names of global values and comdats in 431 /// a string table rather than in the VST. 432 bool UseStrtab = false; 433 434 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 435 436 /// If this module uses a string table, pop the reference to the string table 437 /// and return the referenced string and the rest of the record. Otherwise 438 /// just return the record itself. 439 std::pair<StringRef, ArrayRef<uint64_t>> 440 readNameFromStrtab(ArrayRef<uint64_t> Record); 441 442 bool readBlockInfo(); 443 444 // Contains an arbitrary and optional string identifying the bitcode producer 445 std::string ProducerIdentification; 446 447 Error error(const Twine &Message); 448 }; 449 450 } // end anonymous namespace 451 452 Error BitcodeReaderBase::error(const Twine &Message) { 453 std::string FullMsg = Message.str(); 454 if (!ProducerIdentification.empty()) 455 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 456 LLVM_VERSION_STRING "')"; 457 return ::error(FullMsg); 458 } 459 460 Expected<unsigned> 461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 462 if (Record.empty()) 463 return error("Invalid record"); 464 unsigned ModuleVersion = Record[0]; 465 if (ModuleVersion > 2) 466 return error("Invalid value"); 467 UseStrtab = ModuleVersion >= 2; 468 return ModuleVersion; 469 } 470 471 std::pair<StringRef, ArrayRef<uint64_t>> 472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 473 if (!UseStrtab) 474 return {"", Record}; 475 // Invalid reference. Let the caller complain about the record being empty. 476 if (Record[0] + Record[1] > Strtab.size()) 477 return {"", {}}; 478 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 479 } 480 481 namespace { 482 483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 484 LLVMContext &Context; 485 Module *TheModule = nullptr; 486 // Next offset to start scanning for lazy parsing of function bodies. 487 uint64_t NextUnreadBit = 0; 488 // Last function offset found in the VST. 489 uint64_t LastFunctionBlockBit = 0; 490 bool SeenValueSymbolTable = false; 491 uint64_t VSTOffset = 0; 492 493 std::vector<std::string> SectionTable; 494 std::vector<std::string> GCTable; 495 496 std::vector<Type*> TypeList; 497 DenseMap<Function *, FunctionType *> FunctionTypes; 498 BitcodeReaderValueList ValueList; 499 Optional<MetadataLoader> MDLoader; 500 std::vector<Comdat *> ComdatList; 501 SmallVector<Instruction *, 64> InstructionList; 502 503 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 504 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 506 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 507 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 508 509 /// The set of attributes by index. Index zero in the file is for null, and 510 /// is thus not represented here. As such all indices are off by one. 511 std::vector<AttributeList> MAttributes; 512 513 /// The set of attribute groups. 514 std::map<unsigned, AttributeList> MAttributeGroups; 515 516 /// While parsing a function body, this is a list of the basic blocks for the 517 /// function. 518 std::vector<BasicBlock*> FunctionBBs; 519 520 // When reading the module header, this list is populated with functions that 521 // have bodies later in the file. 522 std::vector<Function*> FunctionsWithBodies; 523 524 // When intrinsic functions are encountered which require upgrading they are 525 // stored here with their replacement function. 526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 527 UpdatedIntrinsicMap UpgradedIntrinsics; 528 // Intrinsics which were remangled because of types rename 529 UpdatedIntrinsicMap RemangledIntrinsics; 530 531 // Several operations happen after the module header has been read, but 532 // before function bodies are processed. This keeps track of whether 533 // we've done this yet. 534 bool SeenFirstFunctionBody = false; 535 536 /// When function bodies are initially scanned, this map contains info about 537 /// where to find deferred function body in the stream. 538 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 539 540 /// When Metadata block is initially scanned when parsing the module, we may 541 /// choose to defer parsing of the metadata. This vector contains info about 542 /// which Metadata blocks are deferred. 543 std::vector<uint64_t> DeferredMetadataInfo; 544 545 /// These are basic blocks forward-referenced by block addresses. They are 546 /// inserted lazily into functions when they're loaded. The basic block ID is 547 /// its index into the vector. 548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 549 std::deque<Function *> BasicBlockFwdRefQueue; 550 551 /// Indicates that we are using a new encoding for instruction operands where 552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 553 /// instruction number, for a more compact encoding. Some instruction 554 /// operands are not relative to the instruction ID: basic block numbers, and 555 /// types. Once the old style function blocks have been phased out, we would 556 /// not need this flag. 557 bool UseRelativeIDs = false; 558 559 /// True if all functions will be materialized, negating the need to process 560 /// (e.g.) blockaddress forward references. 561 bool WillMaterializeAllForwardRefs = false; 562 563 bool StripDebugInfo = false; 564 TBAAVerifier TBAAVerifyHelper; 565 566 std::vector<std::string> BundleTags; 567 SmallVector<SyncScope::ID, 8> SSIDs; 568 569 public: 570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 571 StringRef ProducerIdentification, LLVMContext &Context); 572 573 Error materializeForwardReferencedFunctions(); 574 575 Error materialize(GlobalValue *GV) override; 576 Error materializeModule() override; 577 std::vector<StructType *> getIdentifiedStructTypes() const override; 578 579 /// Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 582 bool IsImporting = false); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID. 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID. 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval attributes by adding the corresponding 719 /// argument's pointee type. 720 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 728 729 Error parseComdatRecord(ArrayRef<uint64_t> Record); 730 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 731 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 733 ArrayRef<uint64_t> Record); 734 735 Error parseAttributeBlock(); 736 Error parseAttributeGroupBlock(); 737 Error parseTypeTable(); 738 Error parseTypeTableBody(); 739 Error parseOperandBundleTags(); 740 Error parseSyncScopeNames(); 741 742 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 743 unsigned NameIndex, Triple &TT); 744 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 745 ArrayRef<uint64_t> Record); 746 Error parseValueSymbolTable(uint64_t Offset = 0); 747 Error parseGlobalValueSymbolTable(); 748 Error parseConstants(); 749 Error rememberAndSkipFunctionBodies(); 750 Error rememberAndSkipFunctionBody(); 751 /// Save the positions of the Metadata blocks and skip parsing the blocks. 752 Error rememberAndSkipMetadata(); 753 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 754 Error parseFunctionBody(Function *F); 755 Error globalCleanup(); 756 Error resolveGlobalAndIndirectSymbolInits(); 757 Error parseUseLists(); 758 Error findFunctionInStream( 759 Function *F, 760 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 761 762 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 763 }; 764 765 /// Class to manage reading and parsing function summary index bitcode 766 /// files/sections. 767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 768 /// The module index built during parsing. 769 ModuleSummaryIndex &TheIndex; 770 771 /// Indicates whether we have encountered a global value summary section 772 /// yet during parsing. 773 bool SeenGlobalValSummary = false; 774 775 /// Indicates whether we have already parsed the VST, used for error checking. 776 bool SeenValueSymbolTable = false; 777 778 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 779 /// Used to enable on-demand parsing of the VST. 780 uint64_t VSTOffset = 0; 781 782 // Map to save ValueId to ValueInfo association that was recorded in the 783 // ValueSymbolTable. It is used after the VST is parsed to convert 784 // call graph edges read from the function summary from referencing 785 // callees by their ValueId to using the ValueInfo instead, which is how 786 // they are recorded in the summary index being built. 787 // We save a GUID which refers to the same global as the ValueInfo, but 788 // ignoring the linkage, i.e. for values other than local linkage they are 789 // identical. 790 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 791 ValueIdToValueInfoMap; 792 793 /// Map populated during module path string table parsing, from the 794 /// module ID to a string reference owned by the index's module 795 /// path string table, used to correlate with combined index 796 /// summary records. 797 DenseMap<uint64_t, StringRef> ModuleIdMap; 798 799 /// Original source file name recorded in a bitcode record. 800 std::string SourceFileName; 801 802 /// The string identifier given to this module by the client, normally the 803 /// path to the bitcode file. 804 StringRef ModulePath; 805 806 /// For per-module summary indexes, the unique numerical identifier given to 807 /// this module by the client. 808 unsigned ModuleId; 809 810 public: 811 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 812 ModuleSummaryIndex &TheIndex, 813 StringRef ModulePath, unsigned ModuleId); 814 815 Error parseModule(); 816 817 private: 818 void setValueGUID(uint64_t ValueID, StringRef ValueName, 819 GlobalValue::LinkageTypes Linkage, 820 StringRef SourceFileName); 821 Error parseValueSymbolTable( 822 uint64_t Offset, 823 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 824 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 825 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 826 bool IsOldProfileFormat, 827 bool HasProfile, 828 bool HasRelBF); 829 Error parseEntireSummary(unsigned ID); 830 Error parseModuleStringTable(); 831 832 std::pair<ValueInfo, GlobalValue::GUID> 833 getValueInfoFromValueId(unsigned ValueId); 834 835 void addThisModule(); 836 ModuleSummaryIndex::ModuleInfo *getThisModule(); 837 }; 838 839 } // end anonymous namespace 840 841 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 842 Error Err) { 843 if (Err) { 844 std::error_code EC; 845 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 846 EC = EIB.convertToErrorCode(); 847 Ctx.emitError(EIB.message()); 848 }); 849 return EC; 850 } 851 return std::error_code(); 852 } 853 854 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 855 StringRef ProducerIdentification, 856 LLVMContext &Context) 857 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 858 ValueList(Context) { 859 this->ProducerIdentification = ProducerIdentification; 860 } 861 862 Error BitcodeReader::materializeForwardReferencedFunctions() { 863 if (WillMaterializeAllForwardRefs) 864 return Error::success(); 865 866 // Prevent recursion. 867 WillMaterializeAllForwardRefs = true; 868 869 while (!BasicBlockFwdRefQueue.empty()) { 870 Function *F = BasicBlockFwdRefQueue.front(); 871 BasicBlockFwdRefQueue.pop_front(); 872 assert(F && "Expected valid function"); 873 if (!BasicBlockFwdRefs.count(F)) 874 // Already materialized. 875 continue; 876 877 // Check for a function that isn't materializable to prevent an infinite 878 // loop. When parsing a blockaddress stored in a global variable, there 879 // isn't a trivial way to check if a function will have a body without a 880 // linear search through FunctionsWithBodies, so just check it here. 881 if (!F->isMaterializable()) 882 return error("Never resolved function from blockaddress"); 883 884 // Try to materialize F. 885 if (Error Err = materialize(F)) 886 return Err; 887 } 888 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 889 890 // Reset state. 891 WillMaterializeAllForwardRefs = false; 892 return Error::success(); 893 } 894 895 //===----------------------------------------------------------------------===// 896 // Helper functions to implement forward reference resolution, etc. 897 //===----------------------------------------------------------------------===// 898 899 static bool hasImplicitComdat(size_t Val) { 900 switch (Val) { 901 default: 902 return false; 903 case 1: // Old WeakAnyLinkage 904 case 4: // Old LinkOnceAnyLinkage 905 case 10: // Old WeakODRLinkage 906 case 11: // Old LinkOnceODRLinkage 907 return true; 908 } 909 } 910 911 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 912 switch (Val) { 913 default: // Map unknown/new linkages to external 914 case 0: 915 return GlobalValue::ExternalLinkage; 916 case 2: 917 return GlobalValue::AppendingLinkage; 918 case 3: 919 return GlobalValue::InternalLinkage; 920 case 5: 921 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 922 case 6: 923 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 924 case 7: 925 return GlobalValue::ExternalWeakLinkage; 926 case 8: 927 return GlobalValue::CommonLinkage; 928 case 9: 929 return GlobalValue::PrivateLinkage; 930 case 12: 931 return GlobalValue::AvailableExternallyLinkage; 932 case 13: 933 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 934 case 14: 935 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 936 case 15: 937 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 938 case 1: // Old value with implicit comdat. 939 case 16: 940 return GlobalValue::WeakAnyLinkage; 941 case 10: // Old value with implicit comdat. 942 case 17: 943 return GlobalValue::WeakODRLinkage; 944 case 4: // Old value with implicit comdat. 945 case 18: 946 return GlobalValue::LinkOnceAnyLinkage; 947 case 11: // Old value with implicit comdat. 948 case 19: 949 return GlobalValue::LinkOnceODRLinkage; 950 } 951 } 952 953 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 954 FunctionSummary::FFlags Flags; 955 Flags.ReadNone = RawFlags & 0x1; 956 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 957 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 958 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 959 Flags.NoInline = (RawFlags >> 4) & 0x1; 960 return Flags; 961 } 962 963 /// Decode the flags for GlobalValue in the summary. 964 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 965 uint64_t Version) { 966 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 967 // like getDecodedLinkage() above. Any future change to the linkage enum and 968 // to getDecodedLinkage() will need to be taken into account here as above. 969 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 970 RawFlags = RawFlags >> 4; 971 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 972 // The Live flag wasn't introduced until version 3. For dead stripping 973 // to work correctly on earlier versions, we must conservatively treat all 974 // values as live. 975 bool Live = (RawFlags & 0x2) || Version < 3; 976 bool Local = (RawFlags & 0x4); 977 bool AutoHide = (RawFlags & 0x8); 978 979 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 980 } 981 982 // Decode the flags for GlobalVariable in the summary 983 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 984 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false); 985 } 986 987 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 988 switch (Val) { 989 default: // Map unknown visibilities to default. 990 case 0: return GlobalValue::DefaultVisibility; 991 case 1: return GlobalValue::HiddenVisibility; 992 case 2: return GlobalValue::ProtectedVisibility; 993 } 994 } 995 996 static GlobalValue::DLLStorageClassTypes 997 getDecodedDLLStorageClass(unsigned Val) { 998 switch (Val) { 999 default: // Map unknown values to default. 1000 case 0: return GlobalValue::DefaultStorageClass; 1001 case 1: return GlobalValue::DLLImportStorageClass; 1002 case 2: return GlobalValue::DLLExportStorageClass; 1003 } 1004 } 1005 1006 static bool getDecodedDSOLocal(unsigned Val) { 1007 switch(Val) { 1008 default: // Map unknown values to preemptable. 1009 case 0: return false; 1010 case 1: return true; 1011 } 1012 } 1013 1014 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1015 switch (Val) { 1016 case 0: return GlobalVariable::NotThreadLocal; 1017 default: // Map unknown non-zero value to general dynamic. 1018 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1019 case 2: return GlobalVariable::LocalDynamicTLSModel; 1020 case 3: return GlobalVariable::InitialExecTLSModel; 1021 case 4: return GlobalVariable::LocalExecTLSModel; 1022 } 1023 } 1024 1025 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1026 switch (Val) { 1027 default: // Map unknown to UnnamedAddr::None. 1028 case 0: return GlobalVariable::UnnamedAddr::None; 1029 case 1: return GlobalVariable::UnnamedAddr::Global; 1030 case 2: return GlobalVariable::UnnamedAddr::Local; 1031 } 1032 } 1033 1034 static int getDecodedCastOpcode(unsigned Val) { 1035 switch (Val) { 1036 default: return -1; 1037 case bitc::CAST_TRUNC : return Instruction::Trunc; 1038 case bitc::CAST_ZEXT : return Instruction::ZExt; 1039 case bitc::CAST_SEXT : return Instruction::SExt; 1040 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1041 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1042 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1043 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1044 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1045 case bitc::CAST_FPEXT : return Instruction::FPExt; 1046 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1047 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1048 case bitc::CAST_BITCAST : return Instruction::BitCast; 1049 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1050 } 1051 } 1052 1053 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1054 bool IsFP = Ty->isFPOrFPVectorTy(); 1055 // UnOps are only valid for int/fp or vector of int/fp types 1056 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1057 return -1; 1058 1059 switch (Val) { 1060 default: 1061 return -1; 1062 case bitc::UNOP_NEG: 1063 return IsFP ? Instruction::FNeg : -1; 1064 } 1065 } 1066 1067 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1068 bool IsFP = Ty->isFPOrFPVectorTy(); 1069 // BinOps are only valid for int/fp or vector of int/fp types 1070 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1071 return -1; 1072 1073 switch (Val) { 1074 default: 1075 return -1; 1076 case bitc::BINOP_ADD: 1077 return IsFP ? Instruction::FAdd : Instruction::Add; 1078 case bitc::BINOP_SUB: 1079 return IsFP ? Instruction::FSub : Instruction::Sub; 1080 case bitc::BINOP_MUL: 1081 return IsFP ? Instruction::FMul : Instruction::Mul; 1082 case bitc::BINOP_UDIV: 1083 return IsFP ? -1 : Instruction::UDiv; 1084 case bitc::BINOP_SDIV: 1085 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1086 case bitc::BINOP_UREM: 1087 return IsFP ? -1 : Instruction::URem; 1088 case bitc::BINOP_SREM: 1089 return IsFP ? Instruction::FRem : Instruction::SRem; 1090 case bitc::BINOP_SHL: 1091 return IsFP ? -1 : Instruction::Shl; 1092 case bitc::BINOP_LSHR: 1093 return IsFP ? -1 : Instruction::LShr; 1094 case bitc::BINOP_ASHR: 1095 return IsFP ? -1 : Instruction::AShr; 1096 case bitc::BINOP_AND: 1097 return IsFP ? -1 : Instruction::And; 1098 case bitc::BINOP_OR: 1099 return IsFP ? -1 : Instruction::Or; 1100 case bitc::BINOP_XOR: 1101 return IsFP ? -1 : Instruction::Xor; 1102 } 1103 } 1104 1105 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1106 switch (Val) { 1107 default: return AtomicRMWInst::BAD_BINOP; 1108 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1109 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1110 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1111 case bitc::RMW_AND: return AtomicRMWInst::And; 1112 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1113 case bitc::RMW_OR: return AtomicRMWInst::Or; 1114 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1115 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1116 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1117 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1118 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1119 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1120 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1121 } 1122 } 1123 1124 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1125 switch (Val) { 1126 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1127 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1128 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1129 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1130 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1131 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1132 default: // Map unknown orderings to sequentially-consistent. 1133 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1134 } 1135 } 1136 1137 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1138 switch (Val) { 1139 default: // Map unknown selection kinds to any. 1140 case bitc::COMDAT_SELECTION_KIND_ANY: 1141 return Comdat::Any; 1142 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1143 return Comdat::ExactMatch; 1144 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1145 return Comdat::Largest; 1146 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1147 return Comdat::NoDuplicates; 1148 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1149 return Comdat::SameSize; 1150 } 1151 } 1152 1153 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1154 FastMathFlags FMF; 1155 if (0 != (Val & bitc::UnsafeAlgebra)) 1156 FMF.setFast(); 1157 if (0 != (Val & bitc::AllowReassoc)) 1158 FMF.setAllowReassoc(); 1159 if (0 != (Val & bitc::NoNaNs)) 1160 FMF.setNoNaNs(); 1161 if (0 != (Val & bitc::NoInfs)) 1162 FMF.setNoInfs(); 1163 if (0 != (Val & bitc::NoSignedZeros)) 1164 FMF.setNoSignedZeros(); 1165 if (0 != (Val & bitc::AllowReciprocal)) 1166 FMF.setAllowReciprocal(); 1167 if (0 != (Val & bitc::AllowContract)) 1168 FMF.setAllowContract(true); 1169 if (0 != (Val & bitc::ApproxFunc)) 1170 FMF.setApproxFunc(); 1171 return FMF; 1172 } 1173 1174 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1175 switch (Val) { 1176 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1177 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1178 } 1179 } 1180 1181 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1182 // The type table size is always specified correctly. 1183 if (ID >= TypeList.size()) 1184 return nullptr; 1185 1186 if (Type *Ty = TypeList[ID]) 1187 return Ty; 1188 1189 // If we have a forward reference, the only possible case is when it is to a 1190 // named struct. Just create a placeholder for now. 1191 return TypeList[ID] = createIdentifiedStructType(Context); 1192 } 1193 1194 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1195 StringRef Name) { 1196 auto *Ret = StructType::create(Context, Name); 1197 IdentifiedStructTypes.push_back(Ret); 1198 return Ret; 1199 } 1200 1201 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1202 auto *Ret = StructType::create(Context); 1203 IdentifiedStructTypes.push_back(Ret); 1204 return Ret; 1205 } 1206 1207 //===----------------------------------------------------------------------===// 1208 // Functions for parsing blocks from the bitcode file 1209 //===----------------------------------------------------------------------===// 1210 1211 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1212 switch (Val) { 1213 case Attribute::EndAttrKinds: 1214 llvm_unreachable("Synthetic enumerators which should never get here"); 1215 1216 case Attribute::None: return 0; 1217 case Attribute::ZExt: return 1 << 0; 1218 case Attribute::SExt: return 1 << 1; 1219 case Attribute::NoReturn: return 1 << 2; 1220 case Attribute::InReg: return 1 << 3; 1221 case Attribute::StructRet: return 1 << 4; 1222 case Attribute::NoUnwind: return 1 << 5; 1223 case Attribute::NoAlias: return 1 << 6; 1224 case Attribute::ByVal: return 1 << 7; 1225 case Attribute::Nest: return 1 << 8; 1226 case Attribute::ReadNone: return 1 << 9; 1227 case Attribute::ReadOnly: return 1 << 10; 1228 case Attribute::NoInline: return 1 << 11; 1229 case Attribute::AlwaysInline: return 1 << 12; 1230 case Attribute::OptimizeForSize: return 1 << 13; 1231 case Attribute::StackProtect: return 1 << 14; 1232 case Attribute::StackProtectReq: return 1 << 15; 1233 case Attribute::Alignment: return 31 << 16; 1234 case Attribute::NoCapture: return 1 << 21; 1235 case Attribute::NoRedZone: return 1 << 22; 1236 case Attribute::NoImplicitFloat: return 1 << 23; 1237 case Attribute::Naked: return 1 << 24; 1238 case Attribute::InlineHint: return 1 << 25; 1239 case Attribute::StackAlignment: return 7 << 26; 1240 case Attribute::ReturnsTwice: return 1 << 29; 1241 case Attribute::UWTable: return 1 << 30; 1242 case Attribute::NonLazyBind: return 1U << 31; 1243 case Attribute::SanitizeAddress: return 1ULL << 32; 1244 case Attribute::MinSize: return 1ULL << 33; 1245 case Attribute::NoDuplicate: return 1ULL << 34; 1246 case Attribute::StackProtectStrong: return 1ULL << 35; 1247 case Attribute::SanitizeThread: return 1ULL << 36; 1248 case Attribute::SanitizeMemory: return 1ULL << 37; 1249 case Attribute::NoBuiltin: return 1ULL << 38; 1250 case Attribute::Returned: return 1ULL << 39; 1251 case Attribute::Cold: return 1ULL << 40; 1252 case Attribute::Builtin: return 1ULL << 41; 1253 case Attribute::OptimizeNone: return 1ULL << 42; 1254 case Attribute::InAlloca: return 1ULL << 43; 1255 case Attribute::NonNull: return 1ULL << 44; 1256 case Attribute::JumpTable: return 1ULL << 45; 1257 case Attribute::Convergent: return 1ULL << 46; 1258 case Attribute::SafeStack: return 1ULL << 47; 1259 case Attribute::NoRecurse: return 1ULL << 48; 1260 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1261 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1262 case Attribute::SwiftSelf: return 1ULL << 51; 1263 case Attribute::SwiftError: return 1ULL << 52; 1264 case Attribute::WriteOnly: return 1ULL << 53; 1265 case Attribute::Speculatable: return 1ULL << 54; 1266 case Attribute::StrictFP: return 1ULL << 55; 1267 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1268 case Attribute::NoCfCheck: return 1ULL << 57; 1269 case Attribute::OptForFuzzing: return 1ULL << 58; 1270 case Attribute::ShadowCallStack: return 1ULL << 59; 1271 case Attribute::SpeculativeLoadHardening: 1272 return 1ULL << 60; 1273 case Attribute::ImmArg: 1274 return 1ULL << 61; 1275 case Attribute::WillReturn: 1276 return 1ULL << 62; 1277 case Attribute::Dereferenceable: 1278 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1279 break; 1280 case Attribute::DereferenceableOrNull: 1281 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1282 "format"); 1283 break; 1284 case Attribute::ArgMemOnly: 1285 llvm_unreachable("argmemonly attribute not supported in raw format"); 1286 break; 1287 case Attribute::AllocSize: 1288 llvm_unreachable("allocsize not supported in raw format"); 1289 break; 1290 } 1291 llvm_unreachable("Unsupported attribute type"); 1292 } 1293 1294 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1295 if (!Val) return; 1296 1297 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1298 I = Attribute::AttrKind(I + 1)) { 1299 if (I == Attribute::Dereferenceable || 1300 I == Attribute::DereferenceableOrNull || 1301 I == Attribute::ArgMemOnly || 1302 I == Attribute::AllocSize) 1303 continue; 1304 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1305 if (I == Attribute::Alignment) 1306 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1307 else if (I == Attribute::StackAlignment) 1308 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1309 else 1310 B.addAttribute(I); 1311 } 1312 } 1313 } 1314 1315 /// This fills an AttrBuilder object with the LLVM attributes that have 1316 /// been decoded from the given integer. This function must stay in sync with 1317 /// 'encodeLLVMAttributesForBitcode'. 1318 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1319 uint64_t EncodedAttrs) { 1320 // FIXME: Remove in 4.0. 1321 1322 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1323 // the bits above 31 down by 11 bits. 1324 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1325 assert((!Alignment || isPowerOf2_32(Alignment)) && 1326 "Alignment must be a power of two."); 1327 1328 if (Alignment) 1329 B.addAlignmentAttr(Alignment); 1330 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1331 (EncodedAttrs & 0xffff)); 1332 } 1333 1334 Error BitcodeReader::parseAttributeBlock() { 1335 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1336 return Err; 1337 1338 if (!MAttributes.empty()) 1339 return error("Invalid multiple blocks"); 1340 1341 SmallVector<uint64_t, 64> Record; 1342 1343 SmallVector<AttributeList, 8> Attrs; 1344 1345 // Read all the records. 1346 while (true) { 1347 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1348 if (!MaybeEntry) 1349 return MaybeEntry.takeError(); 1350 BitstreamEntry Entry = MaybeEntry.get(); 1351 1352 switch (Entry.Kind) { 1353 case BitstreamEntry::SubBlock: // Handled for us already. 1354 case BitstreamEntry::Error: 1355 return error("Malformed block"); 1356 case BitstreamEntry::EndBlock: 1357 return Error::success(); 1358 case BitstreamEntry::Record: 1359 // The interesting case. 1360 break; 1361 } 1362 1363 // Read a record. 1364 Record.clear(); 1365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1366 if (!MaybeRecord) 1367 return MaybeRecord.takeError(); 1368 switch (MaybeRecord.get()) { 1369 default: // Default behavior: ignore. 1370 break; 1371 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1372 // FIXME: Remove in 4.0. 1373 if (Record.size() & 1) 1374 return error("Invalid record"); 1375 1376 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1377 AttrBuilder B; 1378 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1379 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1380 } 1381 1382 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1383 Attrs.clear(); 1384 break; 1385 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1386 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1387 Attrs.push_back(MAttributeGroups[Record[i]]); 1388 1389 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1390 Attrs.clear(); 1391 break; 1392 } 1393 } 1394 } 1395 1396 // Returns Attribute::None on unrecognized codes. 1397 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1398 switch (Code) { 1399 default: 1400 return Attribute::None; 1401 case bitc::ATTR_KIND_ALIGNMENT: 1402 return Attribute::Alignment; 1403 case bitc::ATTR_KIND_ALWAYS_INLINE: 1404 return Attribute::AlwaysInline; 1405 case bitc::ATTR_KIND_ARGMEMONLY: 1406 return Attribute::ArgMemOnly; 1407 case bitc::ATTR_KIND_BUILTIN: 1408 return Attribute::Builtin; 1409 case bitc::ATTR_KIND_BY_VAL: 1410 return Attribute::ByVal; 1411 case bitc::ATTR_KIND_IN_ALLOCA: 1412 return Attribute::InAlloca; 1413 case bitc::ATTR_KIND_COLD: 1414 return Attribute::Cold; 1415 case bitc::ATTR_KIND_CONVERGENT: 1416 return Attribute::Convergent; 1417 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1418 return Attribute::InaccessibleMemOnly; 1419 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1420 return Attribute::InaccessibleMemOrArgMemOnly; 1421 case bitc::ATTR_KIND_INLINE_HINT: 1422 return Attribute::InlineHint; 1423 case bitc::ATTR_KIND_IN_REG: 1424 return Attribute::InReg; 1425 case bitc::ATTR_KIND_JUMP_TABLE: 1426 return Attribute::JumpTable; 1427 case bitc::ATTR_KIND_MIN_SIZE: 1428 return Attribute::MinSize; 1429 case bitc::ATTR_KIND_NAKED: 1430 return Attribute::Naked; 1431 case bitc::ATTR_KIND_NEST: 1432 return Attribute::Nest; 1433 case bitc::ATTR_KIND_NO_ALIAS: 1434 return Attribute::NoAlias; 1435 case bitc::ATTR_KIND_NO_BUILTIN: 1436 return Attribute::NoBuiltin; 1437 case bitc::ATTR_KIND_NO_CAPTURE: 1438 return Attribute::NoCapture; 1439 case bitc::ATTR_KIND_NO_DUPLICATE: 1440 return Attribute::NoDuplicate; 1441 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1442 return Attribute::NoImplicitFloat; 1443 case bitc::ATTR_KIND_NO_INLINE: 1444 return Attribute::NoInline; 1445 case bitc::ATTR_KIND_NO_RECURSE: 1446 return Attribute::NoRecurse; 1447 case bitc::ATTR_KIND_NON_LAZY_BIND: 1448 return Attribute::NonLazyBind; 1449 case bitc::ATTR_KIND_NON_NULL: 1450 return Attribute::NonNull; 1451 case bitc::ATTR_KIND_DEREFERENCEABLE: 1452 return Attribute::Dereferenceable; 1453 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1454 return Attribute::DereferenceableOrNull; 1455 case bitc::ATTR_KIND_ALLOC_SIZE: 1456 return Attribute::AllocSize; 1457 case bitc::ATTR_KIND_NO_RED_ZONE: 1458 return Attribute::NoRedZone; 1459 case bitc::ATTR_KIND_NO_RETURN: 1460 return Attribute::NoReturn; 1461 case bitc::ATTR_KIND_NOCF_CHECK: 1462 return Attribute::NoCfCheck; 1463 case bitc::ATTR_KIND_NO_UNWIND: 1464 return Attribute::NoUnwind; 1465 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1466 return Attribute::OptForFuzzing; 1467 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1468 return Attribute::OptimizeForSize; 1469 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1470 return Attribute::OptimizeNone; 1471 case bitc::ATTR_KIND_READ_NONE: 1472 return Attribute::ReadNone; 1473 case bitc::ATTR_KIND_READ_ONLY: 1474 return Attribute::ReadOnly; 1475 case bitc::ATTR_KIND_RETURNED: 1476 return Attribute::Returned; 1477 case bitc::ATTR_KIND_RETURNS_TWICE: 1478 return Attribute::ReturnsTwice; 1479 case bitc::ATTR_KIND_S_EXT: 1480 return Attribute::SExt; 1481 case bitc::ATTR_KIND_SPECULATABLE: 1482 return Attribute::Speculatable; 1483 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1484 return Attribute::StackAlignment; 1485 case bitc::ATTR_KIND_STACK_PROTECT: 1486 return Attribute::StackProtect; 1487 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1488 return Attribute::StackProtectReq; 1489 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1490 return Attribute::StackProtectStrong; 1491 case bitc::ATTR_KIND_SAFESTACK: 1492 return Attribute::SafeStack; 1493 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1494 return Attribute::ShadowCallStack; 1495 case bitc::ATTR_KIND_STRICT_FP: 1496 return Attribute::StrictFP; 1497 case bitc::ATTR_KIND_STRUCT_RET: 1498 return Attribute::StructRet; 1499 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1500 return Attribute::SanitizeAddress; 1501 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1502 return Attribute::SanitizeHWAddress; 1503 case bitc::ATTR_KIND_SANITIZE_THREAD: 1504 return Attribute::SanitizeThread; 1505 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1506 return Attribute::SanitizeMemory; 1507 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1508 return Attribute::SpeculativeLoadHardening; 1509 case bitc::ATTR_KIND_SWIFT_ERROR: 1510 return Attribute::SwiftError; 1511 case bitc::ATTR_KIND_SWIFT_SELF: 1512 return Attribute::SwiftSelf; 1513 case bitc::ATTR_KIND_UW_TABLE: 1514 return Attribute::UWTable; 1515 case bitc::ATTR_KIND_WILLRETURN: 1516 return Attribute::WillReturn; 1517 case bitc::ATTR_KIND_WRITEONLY: 1518 return Attribute::WriteOnly; 1519 case bitc::ATTR_KIND_Z_EXT: 1520 return Attribute::ZExt; 1521 case bitc::ATTR_KIND_IMMARG: 1522 return Attribute::ImmArg; 1523 } 1524 } 1525 1526 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1527 unsigned &Alignment) { 1528 // Note: Alignment in bitcode files is incremented by 1, so that zero 1529 // can be used for default alignment. 1530 if (Exponent > Value::MaxAlignmentExponent + 1) 1531 return error("Invalid alignment value"); 1532 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1533 return Error::success(); 1534 } 1535 1536 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1537 *Kind = getAttrFromCode(Code); 1538 if (*Kind == Attribute::None) 1539 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1540 return Error::success(); 1541 } 1542 1543 Error BitcodeReader::parseAttributeGroupBlock() { 1544 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1545 return Err; 1546 1547 if (!MAttributeGroups.empty()) 1548 return error("Invalid multiple blocks"); 1549 1550 SmallVector<uint64_t, 64> Record; 1551 1552 // Read all the records. 1553 while (true) { 1554 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1555 if (!MaybeEntry) 1556 return MaybeEntry.takeError(); 1557 BitstreamEntry Entry = MaybeEntry.get(); 1558 1559 switch (Entry.Kind) { 1560 case BitstreamEntry::SubBlock: // Handled for us already. 1561 case BitstreamEntry::Error: 1562 return error("Malformed block"); 1563 case BitstreamEntry::EndBlock: 1564 return Error::success(); 1565 case BitstreamEntry::Record: 1566 // The interesting case. 1567 break; 1568 } 1569 1570 // Read a record. 1571 Record.clear(); 1572 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1573 if (!MaybeRecord) 1574 return MaybeRecord.takeError(); 1575 switch (MaybeRecord.get()) { 1576 default: // Default behavior: ignore. 1577 break; 1578 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1579 if (Record.size() < 3) 1580 return error("Invalid record"); 1581 1582 uint64_t GrpID = Record[0]; 1583 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1584 1585 AttrBuilder B; 1586 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1587 if (Record[i] == 0) { // Enum attribute 1588 Attribute::AttrKind Kind; 1589 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1590 return Err; 1591 1592 // Upgrade old-style byval attribute to one with a type, even if it's 1593 // nullptr. We will have to insert the real type when we associate 1594 // this AttributeList with a function. 1595 if (Kind == Attribute::ByVal) 1596 B.addByValAttr(nullptr); 1597 1598 B.addAttribute(Kind); 1599 } else if (Record[i] == 1) { // Integer attribute 1600 Attribute::AttrKind Kind; 1601 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1602 return Err; 1603 if (Kind == Attribute::Alignment) 1604 B.addAlignmentAttr(Record[++i]); 1605 else if (Kind == Attribute::StackAlignment) 1606 B.addStackAlignmentAttr(Record[++i]); 1607 else if (Kind == Attribute::Dereferenceable) 1608 B.addDereferenceableAttr(Record[++i]); 1609 else if (Kind == Attribute::DereferenceableOrNull) 1610 B.addDereferenceableOrNullAttr(Record[++i]); 1611 else if (Kind == Attribute::AllocSize) 1612 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1613 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1614 bool HasValue = (Record[i++] == 4); 1615 SmallString<64> KindStr; 1616 SmallString<64> ValStr; 1617 1618 while (Record[i] != 0 && i != e) 1619 KindStr += Record[i++]; 1620 assert(Record[i] == 0 && "Kind string not null terminated"); 1621 1622 if (HasValue) { 1623 // Has a value associated with it. 1624 ++i; // Skip the '0' that terminates the "kind" string. 1625 while (Record[i] != 0 && i != e) 1626 ValStr += Record[i++]; 1627 assert(Record[i] == 0 && "Value string not null terminated"); 1628 } 1629 1630 B.addAttribute(KindStr.str(), ValStr.str()); 1631 } else { 1632 assert((Record[i] == 5 || Record[i] == 6) && 1633 "Invalid attribute group entry"); 1634 bool HasType = Record[i] == 6; 1635 Attribute::AttrKind Kind; 1636 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1637 return Err; 1638 if (Kind == Attribute::ByVal) 1639 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1640 } 1641 } 1642 1643 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1644 break; 1645 } 1646 } 1647 } 1648 } 1649 1650 Error BitcodeReader::parseTypeTable() { 1651 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1652 return Err; 1653 1654 return parseTypeTableBody(); 1655 } 1656 1657 Error BitcodeReader::parseTypeTableBody() { 1658 if (!TypeList.empty()) 1659 return error("Invalid multiple blocks"); 1660 1661 SmallVector<uint64_t, 64> Record; 1662 unsigned NumRecords = 0; 1663 1664 SmallString<64> TypeName; 1665 1666 // Read all the records for this type table. 1667 while (true) { 1668 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1669 if (!MaybeEntry) 1670 return MaybeEntry.takeError(); 1671 BitstreamEntry Entry = MaybeEntry.get(); 1672 1673 switch (Entry.Kind) { 1674 case BitstreamEntry::SubBlock: // Handled for us already. 1675 case BitstreamEntry::Error: 1676 return error("Malformed block"); 1677 case BitstreamEntry::EndBlock: 1678 if (NumRecords != TypeList.size()) 1679 return error("Malformed block"); 1680 return Error::success(); 1681 case BitstreamEntry::Record: 1682 // The interesting case. 1683 break; 1684 } 1685 1686 // Read a record. 1687 Record.clear(); 1688 Type *ResultTy = nullptr; 1689 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1690 if (!MaybeRecord) 1691 return MaybeRecord.takeError(); 1692 switch (MaybeRecord.get()) { 1693 default: 1694 return error("Invalid value"); 1695 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1696 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1697 // type list. This allows us to reserve space. 1698 if (Record.size() < 1) 1699 return error("Invalid record"); 1700 TypeList.resize(Record[0]); 1701 continue; 1702 case bitc::TYPE_CODE_VOID: // VOID 1703 ResultTy = Type::getVoidTy(Context); 1704 break; 1705 case bitc::TYPE_CODE_HALF: // HALF 1706 ResultTy = Type::getHalfTy(Context); 1707 break; 1708 case bitc::TYPE_CODE_FLOAT: // FLOAT 1709 ResultTy = Type::getFloatTy(Context); 1710 break; 1711 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1712 ResultTy = Type::getDoubleTy(Context); 1713 break; 1714 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1715 ResultTy = Type::getX86_FP80Ty(Context); 1716 break; 1717 case bitc::TYPE_CODE_FP128: // FP128 1718 ResultTy = Type::getFP128Ty(Context); 1719 break; 1720 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1721 ResultTy = Type::getPPC_FP128Ty(Context); 1722 break; 1723 case bitc::TYPE_CODE_LABEL: // LABEL 1724 ResultTy = Type::getLabelTy(Context); 1725 break; 1726 case bitc::TYPE_CODE_METADATA: // METADATA 1727 ResultTy = Type::getMetadataTy(Context); 1728 break; 1729 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1730 ResultTy = Type::getX86_MMXTy(Context); 1731 break; 1732 case bitc::TYPE_CODE_TOKEN: // TOKEN 1733 ResultTy = Type::getTokenTy(Context); 1734 break; 1735 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1736 if (Record.size() < 1) 1737 return error("Invalid record"); 1738 1739 uint64_t NumBits = Record[0]; 1740 if (NumBits < IntegerType::MIN_INT_BITS || 1741 NumBits > IntegerType::MAX_INT_BITS) 1742 return error("Bitwidth for integer type out of range"); 1743 ResultTy = IntegerType::get(Context, NumBits); 1744 break; 1745 } 1746 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1747 // [pointee type, address space] 1748 if (Record.size() < 1) 1749 return error("Invalid record"); 1750 unsigned AddressSpace = 0; 1751 if (Record.size() == 2) 1752 AddressSpace = Record[1]; 1753 ResultTy = getTypeByID(Record[0]); 1754 if (!ResultTy || 1755 !PointerType::isValidElementType(ResultTy)) 1756 return error("Invalid type"); 1757 ResultTy = PointerType::get(ResultTy, AddressSpace); 1758 break; 1759 } 1760 case bitc::TYPE_CODE_FUNCTION_OLD: { 1761 // FIXME: attrid is dead, remove it in LLVM 4.0 1762 // FUNCTION: [vararg, attrid, retty, paramty x N] 1763 if (Record.size() < 3) 1764 return error("Invalid record"); 1765 SmallVector<Type*, 8> ArgTys; 1766 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1767 if (Type *T = getTypeByID(Record[i])) 1768 ArgTys.push_back(T); 1769 else 1770 break; 1771 } 1772 1773 ResultTy = getTypeByID(Record[2]); 1774 if (!ResultTy || ArgTys.size() < Record.size()-3) 1775 return error("Invalid type"); 1776 1777 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1778 break; 1779 } 1780 case bitc::TYPE_CODE_FUNCTION: { 1781 // FUNCTION: [vararg, retty, paramty x N] 1782 if (Record.size() < 2) 1783 return error("Invalid record"); 1784 SmallVector<Type*, 8> ArgTys; 1785 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1786 if (Type *T = getTypeByID(Record[i])) { 1787 if (!FunctionType::isValidArgumentType(T)) 1788 return error("Invalid function argument type"); 1789 ArgTys.push_back(T); 1790 } 1791 else 1792 break; 1793 } 1794 1795 ResultTy = getTypeByID(Record[1]); 1796 if (!ResultTy || ArgTys.size() < Record.size()-2) 1797 return error("Invalid type"); 1798 1799 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1800 break; 1801 } 1802 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1803 if (Record.size() < 1) 1804 return error("Invalid record"); 1805 SmallVector<Type*, 8> EltTys; 1806 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1807 if (Type *T = getTypeByID(Record[i])) 1808 EltTys.push_back(T); 1809 else 1810 break; 1811 } 1812 if (EltTys.size() != Record.size()-1) 1813 return error("Invalid type"); 1814 ResultTy = StructType::get(Context, EltTys, Record[0]); 1815 break; 1816 } 1817 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1818 if (convertToString(Record, 0, TypeName)) 1819 return error("Invalid record"); 1820 continue; 1821 1822 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1823 if (Record.size() < 1) 1824 return error("Invalid record"); 1825 1826 if (NumRecords >= TypeList.size()) 1827 return error("Invalid TYPE table"); 1828 1829 // Check to see if this was forward referenced, if so fill in the temp. 1830 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1831 if (Res) { 1832 Res->setName(TypeName); 1833 TypeList[NumRecords] = nullptr; 1834 } else // Otherwise, create a new struct. 1835 Res = createIdentifiedStructType(Context, TypeName); 1836 TypeName.clear(); 1837 1838 SmallVector<Type*, 8> EltTys; 1839 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1840 if (Type *T = getTypeByID(Record[i])) 1841 EltTys.push_back(T); 1842 else 1843 break; 1844 } 1845 if (EltTys.size() != Record.size()-1) 1846 return error("Invalid record"); 1847 Res->setBody(EltTys, Record[0]); 1848 ResultTy = Res; 1849 break; 1850 } 1851 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1852 if (Record.size() != 1) 1853 return error("Invalid record"); 1854 1855 if (NumRecords >= TypeList.size()) 1856 return error("Invalid TYPE table"); 1857 1858 // Check to see if this was forward referenced, if so fill in the temp. 1859 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1860 if (Res) { 1861 Res->setName(TypeName); 1862 TypeList[NumRecords] = nullptr; 1863 } else // Otherwise, create a new struct with no body. 1864 Res = createIdentifiedStructType(Context, TypeName); 1865 TypeName.clear(); 1866 ResultTy = Res; 1867 break; 1868 } 1869 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1870 if (Record.size() < 2) 1871 return error("Invalid record"); 1872 ResultTy = getTypeByID(Record[1]); 1873 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1874 return error("Invalid type"); 1875 ResultTy = ArrayType::get(ResultTy, Record[0]); 1876 break; 1877 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1878 if (Record.size() < 2) 1879 return error("Invalid record"); 1880 if (Record[0] == 0) 1881 return error("Invalid vector length"); 1882 ResultTy = getTypeByID(Record[1]); 1883 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1884 return error("Invalid type"); 1885 ResultTy = VectorType::get(ResultTy, Record[0]); 1886 break; 1887 } 1888 1889 if (NumRecords >= TypeList.size()) 1890 return error("Invalid TYPE table"); 1891 if (TypeList[NumRecords]) 1892 return error( 1893 "Invalid TYPE table: Only named structs can be forward referenced"); 1894 assert(ResultTy && "Didn't read a type?"); 1895 TypeList[NumRecords++] = ResultTy; 1896 } 1897 } 1898 1899 Error BitcodeReader::parseOperandBundleTags() { 1900 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1901 return Err; 1902 1903 if (!BundleTags.empty()) 1904 return error("Invalid multiple blocks"); 1905 1906 SmallVector<uint64_t, 64> Record; 1907 1908 while (true) { 1909 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1910 if (!MaybeEntry) 1911 return MaybeEntry.takeError(); 1912 BitstreamEntry Entry = MaybeEntry.get(); 1913 1914 switch (Entry.Kind) { 1915 case BitstreamEntry::SubBlock: // Handled for us already. 1916 case BitstreamEntry::Error: 1917 return error("Malformed block"); 1918 case BitstreamEntry::EndBlock: 1919 return Error::success(); 1920 case BitstreamEntry::Record: 1921 // The interesting case. 1922 break; 1923 } 1924 1925 // Tags are implicitly mapped to integers by their order. 1926 1927 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1928 if (!MaybeRecord) 1929 return MaybeRecord.takeError(); 1930 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1931 return error("Invalid record"); 1932 1933 // OPERAND_BUNDLE_TAG: [strchr x N] 1934 BundleTags.emplace_back(); 1935 if (convertToString(Record, 0, BundleTags.back())) 1936 return error("Invalid record"); 1937 Record.clear(); 1938 } 1939 } 1940 1941 Error BitcodeReader::parseSyncScopeNames() { 1942 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1943 return Err; 1944 1945 if (!SSIDs.empty()) 1946 return error("Invalid multiple synchronization scope names blocks"); 1947 1948 SmallVector<uint64_t, 64> Record; 1949 while (true) { 1950 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1951 if (!MaybeEntry) 1952 return MaybeEntry.takeError(); 1953 BitstreamEntry Entry = MaybeEntry.get(); 1954 1955 switch (Entry.Kind) { 1956 case BitstreamEntry::SubBlock: // Handled for us already. 1957 case BitstreamEntry::Error: 1958 return error("Malformed block"); 1959 case BitstreamEntry::EndBlock: 1960 if (SSIDs.empty()) 1961 return error("Invalid empty synchronization scope names block"); 1962 return Error::success(); 1963 case BitstreamEntry::Record: 1964 // The interesting case. 1965 break; 1966 } 1967 1968 // Synchronization scope names are implicitly mapped to synchronization 1969 // scope IDs by their order. 1970 1971 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1972 if (!MaybeRecord) 1973 return MaybeRecord.takeError(); 1974 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1975 return error("Invalid record"); 1976 1977 SmallString<16> SSN; 1978 if (convertToString(Record, 0, SSN)) 1979 return error("Invalid record"); 1980 1981 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1982 Record.clear(); 1983 } 1984 } 1985 1986 /// Associate a value with its name from the given index in the provided record. 1987 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1988 unsigned NameIndex, Triple &TT) { 1989 SmallString<128> ValueName; 1990 if (convertToString(Record, NameIndex, ValueName)) 1991 return error("Invalid record"); 1992 unsigned ValueID = Record[0]; 1993 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1994 return error("Invalid record"); 1995 Value *V = ValueList[ValueID]; 1996 1997 StringRef NameStr(ValueName.data(), ValueName.size()); 1998 if (NameStr.find_first_of(0) != StringRef::npos) 1999 return error("Invalid value name"); 2000 V->setName(NameStr); 2001 auto *GO = dyn_cast<GlobalObject>(V); 2002 if (GO) { 2003 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2004 if (TT.supportsCOMDAT()) 2005 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2006 else 2007 GO->setComdat(nullptr); 2008 } 2009 } 2010 return V; 2011 } 2012 2013 /// Helper to note and return the current location, and jump to the given 2014 /// offset. 2015 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2016 BitstreamCursor &Stream) { 2017 // Save the current parsing location so we can jump back at the end 2018 // of the VST read. 2019 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2020 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2021 return std::move(JumpFailed); 2022 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2023 if (!MaybeEntry) 2024 return MaybeEntry.takeError(); 2025 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2026 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2027 return CurrentBit; 2028 } 2029 2030 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2031 Function *F, 2032 ArrayRef<uint64_t> Record) { 2033 // Note that we subtract 1 here because the offset is relative to one word 2034 // before the start of the identification or module block, which was 2035 // historically always the start of the regular bitcode header. 2036 uint64_t FuncWordOffset = Record[1] - 1; 2037 uint64_t FuncBitOffset = FuncWordOffset * 32; 2038 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2039 // Set the LastFunctionBlockBit to point to the last function block. 2040 // Later when parsing is resumed after function materialization, 2041 // we can simply skip that last function block. 2042 if (FuncBitOffset > LastFunctionBlockBit) 2043 LastFunctionBlockBit = FuncBitOffset; 2044 } 2045 2046 /// Read a new-style GlobalValue symbol table. 2047 Error BitcodeReader::parseGlobalValueSymbolTable() { 2048 unsigned FuncBitcodeOffsetDelta = 2049 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2050 2051 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2052 return Err; 2053 2054 SmallVector<uint64_t, 64> Record; 2055 while (true) { 2056 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2057 if (!MaybeEntry) 2058 return MaybeEntry.takeError(); 2059 BitstreamEntry Entry = MaybeEntry.get(); 2060 2061 switch (Entry.Kind) { 2062 case BitstreamEntry::SubBlock: 2063 case BitstreamEntry::Error: 2064 return error("Malformed block"); 2065 case BitstreamEntry::EndBlock: 2066 return Error::success(); 2067 case BitstreamEntry::Record: 2068 break; 2069 } 2070 2071 Record.clear(); 2072 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2073 if (!MaybeRecord) 2074 return MaybeRecord.takeError(); 2075 switch (MaybeRecord.get()) { 2076 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2077 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2078 cast<Function>(ValueList[Record[0]]), Record); 2079 break; 2080 } 2081 } 2082 } 2083 2084 /// Parse the value symbol table at either the current parsing location or 2085 /// at the given bit offset if provided. 2086 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2087 uint64_t CurrentBit; 2088 // Pass in the Offset to distinguish between calling for the module-level 2089 // VST (where we want to jump to the VST offset) and the function-level 2090 // VST (where we don't). 2091 if (Offset > 0) { 2092 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2093 if (!MaybeCurrentBit) 2094 return MaybeCurrentBit.takeError(); 2095 CurrentBit = MaybeCurrentBit.get(); 2096 // If this module uses a string table, read this as a module-level VST. 2097 if (UseStrtab) { 2098 if (Error Err = parseGlobalValueSymbolTable()) 2099 return Err; 2100 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2101 return JumpFailed; 2102 return Error::success(); 2103 } 2104 // Otherwise, the VST will be in a similar format to a function-level VST, 2105 // and will contain symbol names. 2106 } 2107 2108 // Compute the delta between the bitcode indices in the VST (the word offset 2109 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2110 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2111 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2112 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2113 // just before entering the VST subblock because: 1) the EnterSubBlock 2114 // changes the AbbrevID width; 2) the VST block is nested within the same 2115 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2116 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2117 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2118 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2119 unsigned FuncBitcodeOffsetDelta = 2120 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2121 2122 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2123 return Err; 2124 2125 SmallVector<uint64_t, 64> Record; 2126 2127 Triple TT(TheModule->getTargetTriple()); 2128 2129 // Read all the records for this value table. 2130 SmallString<128> ValueName; 2131 2132 while (true) { 2133 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2134 if (!MaybeEntry) 2135 return MaybeEntry.takeError(); 2136 BitstreamEntry Entry = MaybeEntry.get(); 2137 2138 switch (Entry.Kind) { 2139 case BitstreamEntry::SubBlock: // Handled for us already. 2140 case BitstreamEntry::Error: 2141 return error("Malformed block"); 2142 case BitstreamEntry::EndBlock: 2143 if (Offset > 0) 2144 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2145 return JumpFailed; 2146 return Error::success(); 2147 case BitstreamEntry::Record: 2148 // The interesting case. 2149 break; 2150 } 2151 2152 // Read a record. 2153 Record.clear(); 2154 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2155 if (!MaybeRecord) 2156 return MaybeRecord.takeError(); 2157 switch (MaybeRecord.get()) { 2158 default: // Default behavior: unknown type. 2159 break; 2160 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2161 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2162 if (Error Err = ValOrErr.takeError()) 2163 return Err; 2164 ValOrErr.get(); 2165 break; 2166 } 2167 case bitc::VST_CODE_FNENTRY: { 2168 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2169 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2170 if (Error Err = ValOrErr.takeError()) 2171 return Err; 2172 Value *V = ValOrErr.get(); 2173 2174 // Ignore function offsets emitted for aliases of functions in older 2175 // versions of LLVM. 2176 if (auto *F = dyn_cast<Function>(V)) 2177 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2178 break; 2179 } 2180 case bitc::VST_CODE_BBENTRY: { 2181 if (convertToString(Record, 1, ValueName)) 2182 return error("Invalid record"); 2183 BasicBlock *BB = getBasicBlock(Record[0]); 2184 if (!BB) 2185 return error("Invalid record"); 2186 2187 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2188 ValueName.clear(); 2189 break; 2190 } 2191 } 2192 } 2193 } 2194 2195 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2196 /// encoding. 2197 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2198 if ((V & 1) == 0) 2199 return V >> 1; 2200 if (V != 1) 2201 return -(V >> 1); 2202 // There is no such thing as -0 with integers. "-0" really means MININT. 2203 return 1ULL << 63; 2204 } 2205 2206 /// Resolve all of the initializers for global values and aliases that we can. 2207 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2208 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2209 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2210 IndirectSymbolInitWorklist; 2211 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2212 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2213 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2214 2215 GlobalInitWorklist.swap(GlobalInits); 2216 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2217 FunctionPrefixWorklist.swap(FunctionPrefixes); 2218 FunctionPrologueWorklist.swap(FunctionPrologues); 2219 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2220 2221 while (!GlobalInitWorklist.empty()) { 2222 unsigned ValID = GlobalInitWorklist.back().second; 2223 if (ValID >= ValueList.size()) { 2224 // Not ready to resolve this yet, it requires something later in the file. 2225 GlobalInits.push_back(GlobalInitWorklist.back()); 2226 } else { 2227 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2228 GlobalInitWorklist.back().first->setInitializer(C); 2229 else 2230 return error("Expected a constant"); 2231 } 2232 GlobalInitWorklist.pop_back(); 2233 } 2234 2235 while (!IndirectSymbolInitWorklist.empty()) { 2236 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2237 if (ValID >= ValueList.size()) { 2238 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2239 } else { 2240 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2241 if (!C) 2242 return error("Expected a constant"); 2243 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2244 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2245 return error("Alias and aliasee types don't match"); 2246 GIS->setIndirectSymbol(C); 2247 } 2248 IndirectSymbolInitWorklist.pop_back(); 2249 } 2250 2251 while (!FunctionPrefixWorklist.empty()) { 2252 unsigned ValID = FunctionPrefixWorklist.back().second; 2253 if (ValID >= ValueList.size()) { 2254 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2255 } else { 2256 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2257 FunctionPrefixWorklist.back().first->setPrefixData(C); 2258 else 2259 return error("Expected a constant"); 2260 } 2261 FunctionPrefixWorklist.pop_back(); 2262 } 2263 2264 while (!FunctionPrologueWorklist.empty()) { 2265 unsigned ValID = FunctionPrologueWorklist.back().second; 2266 if (ValID >= ValueList.size()) { 2267 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2268 } else { 2269 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2270 FunctionPrologueWorklist.back().first->setPrologueData(C); 2271 else 2272 return error("Expected a constant"); 2273 } 2274 FunctionPrologueWorklist.pop_back(); 2275 } 2276 2277 while (!FunctionPersonalityFnWorklist.empty()) { 2278 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2279 if (ValID >= ValueList.size()) { 2280 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2281 } else { 2282 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2283 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2284 else 2285 return error("Expected a constant"); 2286 } 2287 FunctionPersonalityFnWorklist.pop_back(); 2288 } 2289 2290 return Error::success(); 2291 } 2292 2293 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2294 SmallVector<uint64_t, 8> Words(Vals.size()); 2295 transform(Vals, Words.begin(), 2296 BitcodeReader::decodeSignRotatedValue); 2297 2298 return APInt(TypeBits, Words); 2299 } 2300 2301 Error BitcodeReader::parseConstants() { 2302 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2303 return Err; 2304 2305 SmallVector<uint64_t, 64> Record; 2306 2307 // Read all the records for this value table. 2308 Type *CurTy = Type::getInt32Ty(Context); 2309 Type *CurFullTy = Type::getInt32Ty(Context); 2310 unsigned NextCstNo = ValueList.size(); 2311 2312 while (true) { 2313 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2314 if (!MaybeEntry) 2315 return MaybeEntry.takeError(); 2316 BitstreamEntry Entry = MaybeEntry.get(); 2317 2318 switch (Entry.Kind) { 2319 case BitstreamEntry::SubBlock: // Handled for us already. 2320 case BitstreamEntry::Error: 2321 return error("Malformed block"); 2322 case BitstreamEntry::EndBlock: 2323 if (NextCstNo != ValueList.size()) 2324 return error("Invalid constant reference"); 2325 2326 // Once all the constants have been read, go through and resolve forward 2327 // references. 2328 ValueList.resolveConstantForwardRefs(); 2329 return Error::success(); 2330 case BitstreamEntry::Record: 2331 // The interesting case. 2332 break; 2333 } 2334 2335 // Read a record. 2336 Record.clear(); 2337 Type *VoidType = Type::getVoidTy(Context); 2338 Value *V = nullptr; 2339 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2340 if (!MaybeBitCode) 2341 return MaybeBitCode.takeError(); 2342 switch (unsigned BitCode = MaybeBitCode.get()) { 2343 default: // Default behavior: unknown constant 2344 case bitc::CST_CODE_UNDEF: // UNDEF 2345 V = UndefValue::get(CurTy); 2346 break; 2347 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2348 if (Record.empty()) 2349 return error("Invalid record"); 2350 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2351 return error("Invalid record"); 2352 if (TypeList[Record[0]] == VoidType) 2353 return error("Invalid constant type"); 2354 CurFullTy = TypeList[Record[0]]; 2355 CurTy = flattenPointerTypes(CurFullTy); 2356 continue; // Skip the ValueList manipulation. 2357 case bitc::CST_CODE_NULL: // NULL 2358 V = Constant::getNullValue(CurTy); 2359 break; 2360 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2361 if (!CurTy->isIntegerTy() || Record.empty()) 2362 return error("Invalid record"); 2363 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2364 break; 2365 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2366 if (!CurTy->isIntegerTy() || Record.empty()) 2367 return error("Invalid record"); 2368 2369 APInt VInt = 2370 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2371 V = ConstantInt::get(Context, VInt); 2372 2373 break; 2374 } 2375 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2376 if (Record.empty()) 2377 return error("Invalid record"); 2378 if (CurTy->isHalfTy()) 2379 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2380 APInt(16, (uint16_t)Record[0]))); 2381 else if (CurTy->isFloatTy()) 2382 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2383 APInt(32, (uint32_t)Record[0]))); 2384 else if (CurTy->isDoubleTy()) 2385 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2386 APInt(64, Record[0]))); 2387 else if (CurTy->isX86_FP80Ty()) { 2388 // Bits are not stored the same way as a normal i80 APInt, compensate. 2389 uint64_t Rearrange[2]; 2390 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2391 Rearrange[1] = Record[0] >> 48; 2392 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2393 APInt(80, Rearrange))); 2394 } else if (CurTy->isFP128Ty()) 2395 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2396 APInt(128, Record))); 2397 else if (CurTy->isPPC_FP128Ty()) 2398 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2399 APInt(128, Record))); 2400 else 2401 V = UndefValue::get(CurTy); 2402 break; 2403 } 2404 2405 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2406 if (Record.empty()) 2407 return error("Invalid record"); 2408 2409 unsigned Size = Record.size(); 2410 SmallVector<Constant*, 16> Elts; 2411 2412 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2413 for (unsigned i = 0; i != Size; ++i) 2414 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2415 STy->getElementType(i))); 2416 V = ConstantStruct::get(STy, Elts); 2417 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2418 Type *EltTy = ATy->getElementType(); 2419 for (unsigned i = 0; i != Size; ++i) 2420 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2421 V = ConstantArray::get(ATy, Elts); 2422 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2423 Type *EltTy = VTy->getElementType(); 2424 for (unsigned i = 0; i != Size; ++i) 2425 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2426 V = ConstantVector::get(Elts); 2427 } else { 2428 V = UndefValue::get(CurTy); 2429 } 2430 break; 2431 } 2432 case bitc::CST_CODE_STRING: // STRING: [values] 2433 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2434 if (Record.empty()) 2435 return error("Invalid record"); 2436 2437 SmallString<16> Elts(Record.begin(), Record.end()); 2438 V = ConstantDataArray::getString(Context, Elts, 2439 BitCode == bitc::CST_CODE_CSTRING); 2440 break; 2441 } 2442 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2443 if (Record.empty()) 2444 return error("Invalid record"); 2445 2446 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2447 if (EltTy->isIntegerTy(8)) { 2448 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2449 if (isa<VectorType>(CurTy)) 2450 V = ConstantDataVector::get(Context, Elts); 2451 else 2452 V = ConstantDataArray::get(Context, Elts); 2453 } else if (EltTy->isIntegerTy(16)) { 2454 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2455 if (isa<VectorType>(CurTy)) 2456 V = ConstantDataVector::get(Context, Elts); 2457 else 2458 V = ConstantDataArray::get(Context, Elts); 2459 } else if (EltTy->isIntegerTy(32)) { 2460 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2461 if (isa<VectorType>(CurTy)) 2462 V = ConstantDataVector::get(Context, Elts); 2463 else 2464 V = ConstantDataArray::get(Context, Elts); 2465 } else if (EltTy->isIntegerTy(64)) { 2466 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2467 if (isa<VectorType>(CurTy)) 2468 V = ConstantDataVector::get(Context, Elts); 2469 else 2470 V = ConstantDataArray::get(Context, Elts); 2471 } else if (EltTy->isHalfTy()) { 2472 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2473 if (isa<VectorType>(CurTy)) 2474 V = ConstantDataVector::getFP(Context, Elts); 2475 else 2476 V = ConstantDataArray::getFP(Context, Elts); 2477 } else if (EltTy->isFloatTy()) { 2478 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2479 if (isa<VectorType>(CurTy)) 2480 V = ConstantDataVector::getFP(Context, Elts); 2481 else 2482 V = ConstantDataArray::getFP(Context, Elts); 2483 } else if (EltTy->isDoubleTy()) { 2484 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2485 if (isa<VectorType>(CurTy)) 2486 V = ConstantDataVector::getFP(Context, Elts); 2487 else 2488 V = ConstantDataArray::getFP(Context, Elts); 2489 } else { 2490 return error("Invalid type for value"); 2491 } 2492 break; 2493 } 2494 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2495 if (Record.size() < 2) 2496 return error("Invalid record"); 2497 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2498 if (Opc < 0) { 2499 V = UndefValue::get(CurTy); // Unknown unop. 2500 } else { 2501 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2502 unsigned Flags = 0; 2503 V = ConstantExpr::get(Opc, LHS, Flags); 2504 } 2505 break; 2506 } 2507 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2508 if (Record.size() < 3) 2509 return error("Invalid record"); 2510 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2511 if (Opc < 0) { 2512 V = UndefValue::get(CurTy); // Unknown binop. 2513 } else { 2514 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2515 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2516 unsigned Flags = 0; 2517 if (Record.size() >= 4) { 2518 if (Opc == Instruction::Add || 2519 Opc == Instruction::Sub || 2520 Opc == Instruction::Mul || 2521 Opc == Instruction::Shl) { 2522 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2523 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2524 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2525 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2526 } else if (Opc == Instruction::SDiv || 2527 Opc == Instruction::UDiv || 2528 Opc == Instruction::LShr || 2529 Opc == Instruction::AShr) { 2530 if (Record[3] & (1 << bitc::PEO_EXACT)) 2531 Flags |= SDivOperator::IsExact; 2532 } 2533 } 2534 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2535 } 2536 break; 2537 } 2538 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2539 if (Record.size() < 3) 2540 return error("Invalid record"); 2541 int Opc = getDecodedCastOpcode(Record[0]); 2542 if (Opc < 0) { 2543 V = UndefValue::get(CurTy); // Unknown cast. 2544 } else { 2545 Type *OpTy = getTypeByID(Record[1]); 2546 if (!OpTy) 2547 return error("Invalid record"); 2548 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2549 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2550 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2551 } 2552 break; 2553 } 2554 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2555 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2556 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2557 // operands] 2558 unsigned OpNum = 0; 2559 Type *PointeeType = nullptr; 2560 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2561 Record.size() % 2) 2562 PointeeType = getTypeByID(Record[OpNum++]); 2563 2564 bool InBounds = false; 2565 Optional<unsigned> InRangeIndex; 2566 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2567 uint64_t Op = Record[OpNum++]; 2568 InBounds = Op & 1; 2569 InRangeIndex = Op >> 1; 2570 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2571 InBounds = true; 2572 2573 SmallVector<Constant*, 16> Elts; 2574 Type *Elt0FullTy = nullptr; 2575 while (OpNum != Record.size()) { 2576 if (!Elt0FullTy) 2577 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2578 Type *ElTy = getTypeByID(Record[OpNum++]); 2579 if (!ElTy) 2580 return error("Invalid record"); 2581 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2582 } 2583 2584 if (Elts.size() < 1) 2585 return error("Invalid gep with no operands"); 2586 2587 Type *ImplicitPointeeType = 2588 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2589 if (!PointeeType) 2590 PointeeType = ImplicitPointeeType; 2591 else if (PointeeType != ImplicitPointeeType) 2592 return error("Explicit gep operator type does not match pointee type " 2593 "of pointer operand"); 2594 2595 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2596 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2597 InBounds, InRangeIndex); 2598 break; 2599 } 2600 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2601 if (Record.size() < 3) 2602 return error("Invalid record"); 2603 2604 Type *SelectorTy = Type::getInt1Ty(Context); 2605 2606 // The selector might be an i1 or an <n x i1> 2607 // Get the type from the ValueList before getting a forward ref. 2608 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2609 if (Value *V = ValueList[Record[0]]) 2610 if (SelectorTy != V->getType()) 2611 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2612 2613 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2614 SelectorTy), 2615 ValueList.getConstantFwdRef(Record[1],CurTy), 2616 ValueList.getConstantFwdRef(Record[2],CurTy)); 2617 break; 2618 } 2619 case bitc::CST_CODE_CE_EXTRACTELT 2620 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2621 if (Record.size() < 3) 2622 return error("Invalid record"); 2623 VectorType *OpTy = 2624 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2625 if (!OpTy) 2626 return error("Invalid record"); 2627 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2628 Constant *Op1 = nullptr; 2629 if (Record.size() == 4) { 2630 Type *IdxTy = getTypeByID(Record[2]); 2631 if (!IdxTy) 2632 return error("Invalid record"); 2633 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2634 } else // TODO: Remove with llvm 4.0 2635 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2636 if (!Op1) 2637 return error("Invalid record"); 2638 V = ConstantExpr::getExtractElement(Op0, Op1); 2639 break; 2640 } 2641 case bitc::CST_CODE_CE_INSERTELT 2642 : { // CE_INSERTELT: [opval, opval, opty, opval] 2643 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2644 if (Record.size() < 3 || !OpTy) 2645 return error("Invalid record"); 2646 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2647 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2648 OpTy->getElementType()); 2649 Constant *Op2 = nullptr; 2650 if (Record.size() == 4) { 2651 Type *IdxTy = getTypeByID(Record[2]); 2652 if (!IdxTy) 2653 return error("Invalid record"); 2654 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2655 } else // TODO: Remove with llvm 4.0 2656 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2657 if (!Op2) 2658 return error("Invalid record"); 2659 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2660 break; 2661 } 2662 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2663 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2664 if (Record.size() < 3 || !OpTy) 2665 return error("Invalid record"); 2666 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2667 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2668 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2669 OpTy->getNumElements()); 2670 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2671 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2672 break; 2673 } 2674 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2675 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2676 VectorType *OpTy = 2677 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2678 if (Record.size() < 4 || !RTy || !OpTy) 2679 return error("Invalid record"); 2680 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2681 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2682 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2683 RTy->getNumElements()); 2684 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2685 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2686 break; 2687 } 2688 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2689 if (Record.size() < 4) 2690 return error("Invalid record"); 2691 Type *OpTy = getTypeByID(Record[0]); 2692 if (!OpTy) 2693 return error("Invalid record"); 2694 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2695 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2696 2697 if (OpTy->isFPOrFPVectorTy()) 2698 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2699 else 2700 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2701 break; 2702 } 2703 // This maintains backward compatibility, pre-asm dialect keywords. 2704 // FIXME: Remove with the 4.0 release. 2705 case bitc::CST_CODE_INLINEASM_OLD: { 2706 if (Record.size() < 2) 2707 return error("Invalid record"); 2708 std::string AsmStr, ConstrStr; 2709 bool HasSideEffects = Record[0] & 1; 2710 bool IsAlignStack = Record[0] >> 1; 2711 unsigned AsmStrSize = Record[1]; 2712 if (2+AsmStrSize >= Record.size()) 2713 return error("Invalid record"); 2714 unsigned ConstStrSize = Record[2+AsmStrSize]; 2715 if (3+AsmStrSize+ConstStrSize > Record.size()) 2716 return error("Invalid record"); 2717 2718 for (unsigned i = 0; i != AsmStrSize; ++i) 2719 AsmStr += (char)Record[2+i]; 2720 for (unsigned i = 0; i != ConstStrSize; ++i) 2721 ConstrStr += (char)Record[3+AsmStrSize+i]; 2722 UpgradeInlineAsmString(&AsmStr); 2723 V = InlineAsm::get( 2724 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2725 ConstrStr, HasSideEffects, IsAlignStack); 2726 break; 2727 } 2728 // This version adds support for the asm dialect keywords (e.g., 2729 // inteldialect). 2730 case bitc::CST_CODE_INLINEASM: { 2731 if (Record.size() < 2) 2732 return error("Invalid record"); 2733 std::string AsmStr, ConstrStr; 2734 bool HasSideEffects = Record[0] & 1; 2735 bool IsAlignStack = (Record[0] >> 1) & 1; 2736 unsigned AsmDialect = Record[0] >> 2; 2737 unsigned AsmStrSize = Record[1]; 2738 if (2+AsmStrSize >= Record.size()) 2739 return error("Invalid record"); 2740 unsigned ConstStrSize = Record[2+AsmStrSize]; 2741 if (3+AsmStrSize+ConstStrSize > Record.size()) 2742 return error("Invalid record"); 2743 2744 for (unsigned i = 0; i != AsmStrSize; ++i) 2745 AsmStr += (char)Record[2+i]; 2746 for (unsigned i = 0; i != ConstStrSize; ++i) 2747 ConstrStr += (char)Record[3+AsmStrSize+i]; 2748 UpgradeInlineAsmString(&AsmStr); 2749 V = InlineAsm::get( 2750 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2751 ConstrStr, HasSideEffects, IsAlignStack, 2752 InlineAsm::AsmDialect(AsmDialect)); 2753 break; 2754 } 2755 case bitc::CST_CODE_BLOCKADDRESS:{ 2756 if (Record.size() < 3) 2757 return error("Invalid record"); 2758 Type *FnTy = getTypeByID(Record[0]); 2759 if (!FnTy) 2760 return error("Invalid record"); 2761 Function *Fn = 2762 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2763 if (!Fn) 2764 return error("Invalid record"); 2765 2766 // If the function is already parsed we can insert the block address right 2767 // away. 2768 BasicBlock *BB; 2769 unsigned BBID = Record[2]; 2770 if (!BBID) 2771 // Invalid reference to entry block. 2772 return error("Invalid ID"); 2773 if (!Fn->empty()) { 2774 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2775 for (size_t I = 0, E = BBID; I != E; ++I) { 2776 if (BBI == BBE) 2777 return error("Invalid ID"); 2778 ++BBI; 2779 } 2780 BB = &*BBI; 2781 } else { 2782 // Otherwise insert a placeholder and remember it so it can be inserted 2783 // when the function is parsed. 2784 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2785 if (FwdBBs.empty()) 2786 BasicBlockFwdRefQueue.push_back(Fn); 2787 if (FwdBBs.size() < BBID + 1) 2788 FwdBBs.resize(BBID + 1); 2789 if (!FwdBBs[BBID]) 2790 FwdBBs[BBID] = BasicBlock::Create(Context); 2791 BB = FwdBBs[BBID]; 2792 } 2793 V = BlockAddress::get(Fn, BB); 2794 break; 2795 } 2796 } 2797 2798 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2799 "Incorrect fully structured type provided for Constant"); 2800 ValueList.assignValue(V, NextCstNo, CurFullTy); 2801 ++NextCstNo; 2802 } 2803 } 2804 2805 Error BitcodeReader::parseUseLists() { 2806 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2807 return Err; 2808 2809 // Read all the records. 2810 SmallVector<uint64_t, 64> Record; 2811 2812 while (true) { 2813 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2814 if (!MaybeEntry) 2815 return MaybeEntry.takeError(); 2816 BitstreamEntry Entry = MaybeEntry.get(); 2817 2818 switch (Entry.Kind) { 2819 case BitstreamEntry::SubBlock: // Handled for us already. 2820 case BitstreamEntry::Error: 2821 return error("Malformed block"); 2822 case BitstreamEntry::EndBlock: 2823 return Error::success(); 2824 case BitstreamEntry::Record: 2825 // The interesting case. 2826 break; 2827 } 2828 2829 // Read a use list record. 2830 Record.clear(); 2831 bool IsBB = false; 2832 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2833 if (!MaybeRecord) 2834 return MaybeRecord.takeError(); 2835 switch (MaybeRecord.get()) { 2836 default: // Default behavior: unknown type. 2837 break; 2838 case bitc::USELIST_CODE_BB: 2839 IsBB = true; 2840 LLVM_FALLTHROUGH; 2841 case bitc::USELIST_CODE_DEFAULT: { 2842 unsigned RecordLength = Record.size(); 2843 if (RecordLength < 3) 2844 // Records should have at least an ID and two indexes. 2845 return error("Invalid record"); 2846 unsigned ID = Record.back(); 2847 Record.pop_back(); 2848 2849 Value *V; 2850 if (IsBB) { 2851 assert(ID < FunctionBBs.size() && "Basic block not found"); 2852 V = FunctionBBs[ID]; 2853 } else 2854 V = ValueList[ID]; 2855 unsigned NumUses = 0; 2856 SmallDenseMap<const Use *, unsigned, 16> Order; 2857 for (const Use &U : V->materialized_uses()) { 2858 if (++NumUses > Record.size()) 2859 break; 2860 Order[&U] = Record[NumUses - 1]; 2861 } 2862 if (Order.size() != Record.size() || NumUses > Record.size()) 2863 // Mismatches can happen if the functions are being materialized lazily 2864 // (out-of-order), or a value has been upgraded. 2865 break; 2866 2867 V->sortUseList([&](const Use &L, const Use &R) { 2868 return Order.lookup(&L) < Order.lookup(&R); 2869 }); 2870 break; 2871 } 2872 } 2873 } 2874 } 2875 2876 /// When we see the block for metadata, remember where it is and then skip it. 2877 /// This lets us lazily deserialize the metadata. 2878 Error BitcodeReader::rememberAndSkipMetadata() { 2879 // Save the current stream state. 2880 uint64_t CurBit = Stream.GetCurrentBitNo(); 2881 DeferredMetadataInfo.push_back(CurBit); 2882 2883 // Skip over the block for now. 2884 if (Error Err = Stream.SkipBlock()) 2885 return Err; 2886 return Error::success(); 2887 } 2888 2889 Error BitcodeReader::materializeMetadata() { 2890 for (uint64_t BitPos : DeferredMetadataInfo) { 2891 // Move the bit stream to the saved position. 2892 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2893 return JumpFailed; 2894 if (Error Err = MDLoader->parseModuleMetadata()) 2895 return Err; 2896 } 2897 2898 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2899 // metadata. 2900 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2901 NamedMDNode *LinkerOpts = 2902 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2903 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2904 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2905 } 2906 2907 DeferredMetadataInfo.clear(); 2908 return Error::success(); 2909 } 2910 2911 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2912 2913 /// When we see the block for a function body, remember where it is and then 2914 /// skip it. This lets us lazily deserialize the functions. 2915 Error BitcodeReader::rememberAndSkipFunctionBody() { 2916 // Get the function we are talking about. 2917 if (FunctionsWithBodies.empty()) 2918 return error("Insufficient function protos"); 2919 2920 Function *Fn = FunctionsWithBodies.back(); 2921 FunctionsWithBodies.pop_back(); 2922 2923 // Save the current stream state. 2924 uint64_t CurBit = Stream.GetCurrentBitNo(); 2925 assert( 2926 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2927 "Mismatch between VST and scanned function offsets"); 2928 DeferredFunctionInfo[Fn] = CurBit; 2929 2930 // Skip over the function block for now. 2931 if (Error Err = Stream.SkipBlock()) 2932 return Err; 2933 return Error::success(); 2934 } 2935 2936 Error BitcodeReader::globalCleanup() { 2937 // Patch the initializers for globals and aliases up. 2938 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2939 return Err; 2940 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2941 return error("Malformed global initializer set"); 2942 2943 // Look for intrinsic functions which need to be upgraded at some point 2944 for (Function &F : *TheModule) { 2945 MDLoader->upgradeDebugIntrinsics(F); 2946 Function *NewFn; 2947 if (UpgradeIntrinsicFunction(&F, NewFn)) 2948 UpgradedIntrinsics[&F] = NewFn; 2949 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2950 // Some types could be renamed during loading if several modules are 2951 // loaded in the same LLVMContext (LTO scenario). In this case we should 2952 // remangle intrinsics names as well. 2953 RemangledIntrinsics[&F] = Remangled.getValue(); 2954 } 2955 2956 // Look for global variables which need to be renamed. 2957 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2958 for (GlobalVariable &GV : TheModule->globals()) 2959 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2960 UpgradedVariables.emplace_back(&GV, Upgraded); 2961 for (auto &Pair : UpgradedVariables) { 2962 Pair.first->eraseFromParent(); 2963 TheModule->getGlobalList().push_back(Pair.second); 2964 } 2965 2966 // Force deallocation of memory for these vectors to favor the client that 2967 // want lazy deserialization. 2968 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2969 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2970 IndirectSymbolInits); 2971 return Error::success(); 2972 } 2973 2974 /// Support for lazy parsing of function bodies. This is required if we 2975 /// either have an old bitcode file without a VST forward declaration record, 2976 /// or if we have an anonymous function being materialized, since anonymous 2977 /// functions do not have a name and are therefore not in the VST. 2978 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2979 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 2980 return JumpFailed; 2981 2982 if (Stream.AtEndOfStream()) 2983 return error("Could not find function in stream"); 2984 2985 if (!SeenFirstFunctionBody) 2986 return error("Trying to materialize functions before seeing function blocks"); 2987 2988 // An old bitcode file with the symbol table at the end would have 2989 // finished the parse greedily. 2990 assert(SeenValueSymbolTable); 2991 2992 SmallVector<uint64_t, 64> Record; 2993 2994 while (true) { 2995 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 2996 if (!MaybeEntry) 2997 return MaybeEntry.takeError(); 2998 llvm::BitstreamEntry Entry = MaybeEntry.get(); 2999 3000 switch (Entry.Kind) { 3001 default: 3002 return error("Expect SubBlock"); 3003 case BitstreamEntry::SubBlock: 3004 switch (Entry.ID) { 3005 default: 3006 return error("Expect function block"); 3007 case bitc::FUNCTION_BLOCK_ID: 3008 if (Error Err = rememberAndSkipFunctionBody()) 3009 return Err; 3010 NextUnreadBit = Stream.GetCurrentBitNo(); 3011 return Error::success(); 3012 } 3013 } 3014 } 3015 } 3016 3017 bool BitcodeReaderBase::readBlockInfo() { 3018 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3019 Stream.ReadBlockInfoBlock(); 3020 if (!MaybeNewBlockInfo) 3021 return true; // FIXME Handle the error. 3022 Optional<BitstreamBlockInfo> NewBlockInfo = 3023 std::move(MaybeNewBlockInfo.get()); 3024 if (!NewBlockInfo) 3025 return true; 3026 BlockInfo = std::move(*NewBlockInfo); 3027 return false; 3028 } 3029 3030 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3031 // v1: [selection_kind, name] 3032 // v2: [strtab_offset, strtab_size, selection_kind] 3033 StringRef Name; 3034 std::tie(Name, Record) = readNameFromStrtab(Record); 3035 3036 if (Record.empty()) 3037 return error("Invalid record"); 3038 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3039 std::string OldFormatName; 3040 if (!UseStrtab) { 3041 if (Record.size() < 2) 3042 return error("Invalid record"); 3043 unsigned ComdatNameSize = Record[1]; 3044 OldFormatName.reserve(ComdatNameSize); 3045 for (unsigned i = 0; i != ComdatNameSize; ++i) 3046 OldFormatName += (char)Record[2 + i]; 3047 Name = OldFormatName; 3048 } 3049 Comdat *C = TheModule->getOrInsertComdat(Name); 3050 C->setSelectionKind(SK); 3051 ComdatList.push_back(C); 3052 return Error::success(); 3053 } 3054 3055 static void inferDSOLocal(GlobalValue *GV) { 3056 // infer dso_local from linkage and visibility if it is not encoded. 3057 if (GV->hasLocalLinkage() || 3058 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3059 GV->setDSOLocal(true); 3060 } 3061 3062 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3063 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3064 // visibility, threadlocal, unnamed_addr, externally_initialized, 3065 // dllstorageclass, comdat, attributes, preemption specifier, 3066 // partition strtab offset, partition strtab size] (name in VST) 3067 // v2: [strtab_offset, strtab_size, v1] 3068 StringRef Name; 3069 std::tie(Name, Record) = readNameFromStrtab(Record); 3070 3071 if (Record.size() < 6) 3072 return error("Invalid record"); 3073 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3074 Type *Ty = flattenPointerTypes(FullTy); 3075 if (!Ty) 3076 return error("Invalid record"); 3077 bool isConstant = Record[1] & 1; 3078 bool explicitType = Record[1] & 2; 3079 unsigned AddressSpace; 3080 if (explicitType) { 3081 AddressSpace = Record[1] >> 2; 3082 } else { 3083 if (!Ty->isPointerTy()) 3084 return error("Invalid type for value"); 3085 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3086 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3087 } 3088 3089 uint64_t RawLinkage = Record[3]; 3090 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3091 unsigned Alignment; 3092 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3093 return Err; 3094 std::string Section; 3095 if (Record[5]) { 3096 if (Record[5] - 1 >= SectionTable.size()) 3097 return error("Invalid ID"); 3098 Section = SectionTable[Record[5] - 1]; 3099 } 3100 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3101 // Local linkage must have default visibility. 3102 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3103 // FIXME: Change to an error if non-default in 4.0. 3104 Visibility = getDecodedVisibility(Record[6]); 3105 3106 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3107 if (Record.size() > 7) 3108 TLM = getDecodedThreadLocalMode(Record[7]); 3109 3110 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3111 if (Record.size() > 8) 3112 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3113 3114 bool ExternallyInitialized = false; 3115 if (Record.size() > 9) 3116 ExternallyInitialized = Record[9]; 3117 3118 GlobalVariable *NewGV = 3119 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3120 nullptr, TLM, AddressSpace, ExternallyInitialized); 3121 NewGV->setAlignment(Alignment); 3122 if (!Section.empty()) 3123 NewGV->setSection(Section); 3124 NewGV->setVisibility(Visibility); 3125 NewGV->setUnnamedAddr(UnnamedAddr); 3126 3127 if (Record.size() > 10) 3128 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3129 else 3130 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3131 3132 FullTy = PointerType::get(FullTy, AddressSpace); 3133 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3134 "Incorrect fully specified type for GlobalVariable"); 3135 ValueList.push_back(NewGV, FullTy); 3136 3137 // Remember which value to use for the global initializer. 3138 if (unsigned InitID = Record[2]) 3139 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3140 3141 if (Record.size() > 11) { 3142 if (unsigned ComdatID = Record[11]) { 3143 if (ComdatID > ComdatList.size()) 3144 return error("Invalid global variable comdat ID"); 3145 NewGV->setComdat(ComdatList[ComdatID - 1]); 3146 } 3147 } else if (hasImplicitComdat(RawLinkage)) { 3148 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3149 } 3150 3151 if (Record.size() > 12) { 3152 auto AS = getAttributes(Record[12]).getFnAttributes(); 3153 NewGV->setAttributes(AS); 3154 } 3155 3156 if (Record.size() > 13) { 3157 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3158 } 3159 inferDSOLocal(NewGV); 3160 3161 // Check whether we have enough values to read a partition name. 3162 if (Record.size() > 15) 3163 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3164 3165 return Error::success(); 3166 } 3167 3168 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3169 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3170 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3171 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3172 // v2: [strtab_offset, strtab_size, v1] 3173 StringRef Name; 3174 std::tie(Name, Record) = readNameFromStrtab(Record); 3175 3176 if (Record.size() < 8) 3177 return error("Invalid record"); 3178 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3179 Type *FTy = flattenPointerTypes(FullFTy); 3180 if (!FTy) 3181 return error("Invalid record"); 3182 if (isa<PointerType>(FTy)) 3183 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3184 3185 if (!isa<FunctionType>(FTy)) 3186 return error("Invalid type for value"); 3187 auto CC = static_cast<CallingConv::ID>(Record[1]); 3188 if (CC & ~CallingConv::MaxID) 3189 return error("Invalid calling convention ID"); 3190 3191 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3192 if (Record.size() > 16) 3193 AddrSpace = Record[16]; 3194 3195 Function *Func = 3196 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3197 AddrSpace, Name, TheModule); 3198 3199 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3200 "Incorrect fully specified type provided for function"); 3201 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3202 3203 Func->setCallingConv(CC); 3204 bool isProto = Record[2]; 3205 uint64_t RawLinkage = Record[3]; 3206 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3207 Func->setAttributes(getAttributes(Record[4])); 3208 3209 // Upgrade any old-style byval without a type by propagating the argument's 3210 // pointee type. There should be no opaque pointers where the byval type is 3211 // implicit. 3212 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3213 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3214 continue; 3215 3216 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3217 Func->removeParamAttr(i, Attribute::ByVal); 3218 Func->addParamAttr(i, Attribute::getWithByValType( 3219 Context, getPointerElementFlatType(PTy))); 3220 } 3221 3222 unsigned Alignment; 3223 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3224 return Err; 3225 Func->setAlignment(Alignment); 3226 if (Record[6]) { 3227 if (Record[6] - 1 >= SectionTable.size()) 3228 return error("Invalid ID"); 3229 Func->setSection(SectionTable[Record[6] - 1]); 3230 } 3231 // Local linkage must have default visibility. 3232 if (!Func->hasLocalLinkage()) 3233 // FIXME: Change to an error if non-default in 4.0. 3234 Func->setVisibility(getDecodedVisibility(Record[7])); 3235 if (Record.size() > 8 && Record[8]) { 3236 if (Record[8] - 1 >= GCTable.size()) 3237 return error("Invalid ID"); 3238 Func->setGC(GCTable[Record[8] - 1]); 3239 } 3240 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3241 if (Record.size() > 9) 3242 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3243 Func->setUnnamedAddr(UnnamedAddr); 3244 if (Record.size() > 10 && Record[10] != 0) 3245 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3246 3247 if (Record.size() > 11) 3248 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3249 else 3250 upgradeDLLImportExportLinkage(Func, RawLinkage); 3251 3252 if (Record.size() > 12) { 3253 if (unsigned ComdatID = Record[12]) { 3254 if (ComdatID > ComdatList.size()) 3255 return error("Invalid function comdat ID"); 3256 Func->setComdat(ComdatList[ComdatID - 1]); 3257 } 3258 } else if (hasImplicitComdat(RawLinkage)) { 3259 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3260 } 3261 3262 if (Record.size() > 13 && Record[13] != 0) 3263 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3264 3265 if (Record.size() > 14 && Record[14] != 0) 3266 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3267 3268 if (Record.size() > 15) { 3269 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3270 } 3271 inferDSOLocal(Func); 3272 3273 // Record[16] is the address space number. 3274 3275 // Check whether we have enough values to read a partition name. 3276 if (Record.size() > 18) 3277 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3278 3279 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3280 assert(Func->getType() == flattenPointerTypes(FullTy) && 3281 "Incorrect fully specified type provided for Function"); 3282 ValueList.push_back(Func, FullTy); 3283 3284 // If this is a function with a body, remember the prototype we are 3285 // creating now, so that we can match up the body with them later. 3286 if (!isProto) { 3287 Func->setIsMaterializable(true); 3288 FunctionsWithBodies.push_back(Func); 3289 DeferredFunctionInfo[Func] = 0; 3290 } 3291 return Error::success(); 3292 } 3293 3294 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3295 unsigned BitCode, ArrayRef<uint64_t> Record) { 3296 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3297 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3298 // dllstorageclass, threadlocal, unnamed_addr, 3299 // preemption specifier] (name in VST) 3300 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3301 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3302 // preemption specifier] (name in VST) 3303 // v2: [strtab_offset, strtab_size, v1] 3304 StringRef Name; 3305 std::tie(Name, Record) = readNameFromStrtab(Record); 3306 3307 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3308 if (Record.size() < (3 + (unsigned)NewRecord)) 3309 return error("Invalid record"); 3310 unsigned OpNum = 0; 3311 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3312 Type *Ty = flattenPointerTypes(FullTy); 3313 if (!Ty) 3314 return error("Invalid record"); 3315 3316 unsigned AddrSpace; 3317 if (!NewRecord) { 3318 auto *PTy = dyn_cast<PointerType>(Ty); 3319 if (!PTy) 3320 return error("Invalid type for value"); 3321 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3322 AddrSpace = PTy->getAddressSpace(); 3323 } else { 3324 AddrSpace = Record[OpNum++]; 3325 } 3326 3327 auto Val = Record[OpNum++]; 3328 auto Linkage = Record[OpNum++]; 3329 GlobalIndirectSymbol *NewGA; 3330 if (BitCode == bitc::MODULE_CODE_ALIAS || 3331 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3332 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3333 TheModule); 3334 else 3335 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3336 nullptr, TheModule); 3337 3338 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3339 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3340 // Old bitcode files didn't have visibility field. 3341 // Local linkage must have default visibility. 3342 if (OpNum != Record.size()) { 3343 auto VisInd = OpNum++; 3344 if (!NewGA->hasLocalLinkage()) 3345 // FIXME: Change to an error if non-default in 4.0. 3346 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3347 } 3348 if (BitCode == bitc::MODULE_CODE_ALIAS || 3349 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3350 if (OpNum != Record.size()) 3351 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3352 else 3353 upgradeDLLImportExportLinkage(NewGA, Linkage); 3354 if (OpNum != Record.size()) 3355 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3356 if (OpNum != Record.size()) 3357 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3358 } 3359 if (OpNum != Record.size()) 3360 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3361 inferDSOLocal(NewGA); 3362 3363 // Check whether we have enough values to read a partition name. 3364 if (OpNum + 1 < Record.size()) { 3365 NewGA->setPartition( 3366 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3367 OpNum += 2; 3368 } 3369 3370 FullTy = PointerType::get(FullTy, AddrSpace); 3371 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3372 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3373 ValueList.push_back(NewGA, FullTy); 3374 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3375 return Error::success(); 3376 } 3377 3378 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3379 bool ShouldLazyLoadMetadata) { 3380 if (ResumeBit) { 3381 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3382 return JumpFailed; 3383 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3384 return Err; 3385 3386 SmallVector<uint64_t, 64> Record; 3387 3388 // Read all the records for this module. 3389 while (true) { 3390 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3391 if (!MaybeEntry) 3392 return MaybeEntry.takeError(); 3393 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3394 3395 switch (Entry.Kind) { 3396 case BitstreamEntry::Error: 3397 return error("Malformed block"); 3398 case BitstreamEntry::EndBlock: 3399 return globalCleanup(); 3400 3401 case BitstreamEntry::SubBlock: 3402 switch (Entry.ID) { 3403 default: // Skip unknown content. 3404 if (Error Err = Stream.SkipBlock()) 3405 return Err; 3406 break; 3407 case bitc::BLOCKINFO_BLOCK_ID: 3408 if (readBlockInfo()) 3409 return error("Malformed block"); 3410 break; 3411 case bitc::PARAMATTR_BLOCK_ID: 3412 if (Error Err = parseAttributeBlock()) 3413 return Err; 3414 break; 3415 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3416 if (Error Err = parseAttributeGroupBlock()) 3417 return Err; 3418 break; 3419 case bitc::TYPE_BLOCK_ID_NEW: 3420 if (Error Err = parseTypeTable()) 3421 return Err; 3422 break; 3423 case bitc::VALUE_SYMTAB_BLOCK_ID: 3424 if (!SeenValueSymbolTable) { 3425 // Either this is an old form VST without function index and an 3426 // associated VST forward declaration record (which would have caused 3427 // the VST to be jumped to and parsed before it was encountered 3428 // normally in the stream), or there were no function blocks to 3429 // trigger an earlier parsing of the VST. 3430 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3431 if (Error Err = parseValueSymbolTable()) 3432 return Err; 3433 SeenValueSymbolTable = true; 3434 } else { 3435 // We must have had a VST forward declaration record, which caused 3436 // the parser to jump to and parse the VST earlier. 3437 assert(VSTOffset > 0); 3438 if (Error Err = Stream.SkipBlock()) 3439 return Err; 3440 } 3441 break; 3442 case bitc::CONSTANTS_BLOCK_ID: 3443 if (Error Err = parseConstants()) 3444 return Err; 3445 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3446 return Err; 3447 break; 3448 case bitc::METADATA_BLOCK_ID: 3449 if (ShouldLazyLoadMetadata) { 3450 if (Error Err = rememberAndSkipMetadata()) 3451 return Err; 3452 break; 3453 } 3454 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3455 if (Error Err = MDLoader->parseModuleMetadata()) 3456 return Err; 3457 break; 3458 case bitc::METADATA_KIND_BLOCK_ID: 3459 if (Error Err = MDLoader->parseMetadataKinds()) 3460 return Err; 3461 break; 3462 case bitc::FUNCTION_BLOCK_ID: 3463 // If this is the first function body we've seen, reverse the 3464 // FunctionsWithBodies list. 3465 if (!SeenFirstFunctionBody) { 3466 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3467 if (Error Err = globalCleanup()) 3468 return Err; 3469 SeenFirstFunctionBody = true; 3470 } 3471 3472 if (VSTOffset > 0) { 3473 // If we have a VST forward declaration record, make sure we 3474 // parse the VST now if we haven't already. It is needed to 3475 // set up the DeferredFunctionInfo vector for lazy reading. 3476 if (!SeenValueSymbolTable) { 3477 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3478 return Err; 3479 SeenValueSymbolTable = true; 3480 // Fall through so that we record the NextUnreadBit below. 3481 // This is necessary in case we have an anonymous function that 3482 // is later materialized. Since it will not have a VST entry we 3483 // need to fall back to the lazy parse to find its offset. 3484 } else { 3485 // If we have a VST forward declaration record, but have already 3486 // parsed the VST (just above, when the first function body was 3487 // encountered here), then we are resuming the parse after 3488 // materializing functions. The ResumeBit points to the 3489 // start of the last function block recorded in the 3490 // DeferredFunctionInfo map. Skip it. 3491 if (Error Err = Stream.SkipBlock()) 3492 return Err; 3493 continue; 3494 } 3495 } 3496 3497 // Support older bitcode files that did not have the function 3498 // index in the VST, nor a VST forward declaration record, as 3499 // well as anonymous functions that do not have VST entries. 3500 // Build the DeferredFunctionInfo vector on the fly. 3501 if (Error Err = rememberAndSkipFunctionBody()) 3502 return Err; 3503 3504 // Suspend parsing when we reach the function bodies. Subsequent 3505 // materialization calls will resume it when necessary. If the bitcode 3506 // file is old, the symbol table will be at the end instead and will not 3507 // have been seen yet. In this case, just finish the parse now. 3508 if (SeenValueSymbolTable) { 3509 NextUnreadBit = Stream.GetCurrentBitNo(); 3510 // After the VST has been parsed, we need to make sure intrinsic name 3511 // are auto-upgraded. 3512 return globalCleanup(); 3513 } 3514 break; 3515 case bitc::USELIST_BLOCK_ID: 3516 if (Error Err = parseUseLists()) 3517 return Err; 3518 break; 3519 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3520 if (Error Err = parseOperandBundleTags()) 3521 return Err; 3522 break; 3523 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3524 if (Error Err = parseSyncScopeNames()) 3525 return Err; 3526 break; 3527 } 3528 continue; 3529 3530 case BitstreamEntry::Record: 3531 // The interesting case. 3532 break; 3533 } 3534 3535 // Read a record. 3536 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3537 if (!MaybeBitCode) 3538 return MaybeBitCode.takeError(); 3539 switch (unsigned BitCode = MaybeBitCode.get()) { 3540 default: break; // Default behavior, ignore unknown content. 3541 case bitc::MODULE_CODE_VERSION: { 3542 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3543 if (!VersionOrErr) 3544 return VersionOrErr.takeError(); 3545 UseRelativeIDs = *VersionOrErr >= 1; 3546 break; 3547 } 3548 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3549 std::string S; 3550 if (convertToString(Record, 0, S)) 3551 return error("Invalid record"); 3552 TheModule->setTargetTriple(S); 3553 break; 3554 } 3555 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3556 std::string S; 3557 if (convertToString(Record, 0, S)) 3558 return error("Invalid record"); 3559 TheModule->setDataLayout(S); 3560 break; 3561 } 3562 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3563 std::string S; 3564 if (convertToString(Record, 0, S)) 3565 return error("Invalid record"); 3566 TheModule->setModuleInlineAsm(S); 3567 break; 3568 } 3569 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3570 // FIXME: Remove in 4.0. 3571 std::string S; 3572 if (convertToString(Record, 0, S)) 3573 return error("Invalid record"); 3574 // Ignore value. 3575 break; 3576 } 3577 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3578 std::string S; 3579 if (convertToString(Record, 0, S)) 3580 return error("Invalid record"); 3581 SectionTable.push_back(S); 3582 break; 3583 } 3584 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3585 std::string S; 3586 if (convertToString(Record, 0, S)) 3587 return error("Invalid record"); 3588 GCTable.push_back(S); 3589 break; 3590 } 3591 case bitc::MODULE_CODE_COMDAT: 3592 if (Error Err = parseComdatRecord(Record)) 3593 return Err; 3594 break; 3595 case bitc::MODULE_CODE_GLOBALVAR: 3596 if (Error Err = parseGlobalVarRecord(Record)) 3597 return Err; 3598 break; 3599 case bitc::MODULE_CODE_FUNCTION: 3600 if (Error Err = parseFunctionRecord(Record)) 3601 return Err; 3602 break; 3603 case bitc::MODULE_CODE_IFUNC: 3604 case bitc::MODULE_CODE_ALIAS: 3605 case bitc::MODULE_CODE_ALIAS_OLD: 3606 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3607 return Err; 3608 break; 3609 /// MODULE_CODE_VSTOFFSET: [offset] 3610 case bitc::MODULE_CODE_VSTOFFSET: 3611 if (Record.size() < 1) 3612 return error("Invalid record"); 3613 // Note that we subtract 1 here because the offset is relative to one word 3614 // before the start of the identification or module block, which was 3615 // historically always the start of the regular bitcode header. 3616 VSTOffset = Record[0] - 1; 3617 break; 3618 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3619 case bitc::MODULE_CODE_SOURCE_FILENAME: 3620 SmallString<128> ValueName; 3621 if (convertToString(Record, 0, ValueName)) 3622 return error("Invalid record"); 3623 TheModule->setSourceFileName(ValueName); 3624 break; 3625 } 3626 Record.clear(); 3627 } 3628 } 3629 3630 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3631 bool IsImporting) { 3632 TheModule = M; 3633 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3634 [&](unsigned ID) { return getTypeByID(ID); }); 3635 return parseModule(0, ShouldLazyLoadMetadata); 3636 } 3637 3638 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3639 if (!isa<PointerType>(PtrType)) 3640 return error("Load/Store operand is not a pointer type"); 3641 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3642 3643 if (ValType && ValType != ElemType) 3644 return error("Explicit load/store type does not match pointee " 3645 "type of pointer operand"); 3646 if (!PointerType::isLoadableOrStorableType(ElemType)) 3647 return error("Cannot load/store from pointer"); 3648 return Error::success(); 3649 } 3650 3651 void BitcodeReader::propagateByValTypes(CallBase *CB, 3652 ArrayRef<Type *> ArgsFullTys) { 3653 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3654 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3655 continue; 3656 3657 CB->removeParamAttr(i, Attribute::ByVal); 3658 CB->addParamAttr( 3659 i, Attribute::getWithByValType( 3660 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3661 } 3662 } 3663 3664 /// Lazily parse the specified function body block. 3665 Error BitcodeReader::parseFunctionBody(Function *F) { 3666 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3667 return Err; 3668 3669 // Unexpected unresolved metadata when parsing function. 3670 if (MDLoader->hasFwdRefs()) 3671 return error("Invalid function metadata: incoming forward references"); 3672 3673 InstructionList.clear(); 3674 unsigned ModuleValueListSize = ValueList.size(); 3675 unsigned ModuleMDLoaderSize = MDLoader->size(); 3676 3677 // Add all the function arguments to the value table. 3678 unsigned ArgNo = 0; 3679 FunctionType *FullFTy = FunctionTypes[F]; 3680 for (Argument &I : F->args()) { 3681 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3682 "Incorrect fully specified type for Function Argument"); 3683 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3684 } 3685 unsigned NextValueNo = ValueList.size(); 3686 BasicBlock *CurBB = nullptr; 3687 unsigned CurBBNo = 0; 3688 3689 DebugLoc LastLoc; 3690 auto getLastInstruction = [&]() -> Instruction * { 3691 if (CurBB && !CurBB->empty()) 3692 return &CurBB->back(); 3693 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3694 !FunctionBBs[CurBBNo - 1]->empty()) 3695 return &FunctionBBs[CurBBNo - 1]->back(); 3696 return nullptr; 3697 }; 3698 3699 std::vector<OperandBundleDef> OperandBundles; 3700 3701 // Read all the records. 3702 SmallVector<uint64_t, 64> Record; 3703 3704 while (true) { 3705 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3706 if (!MaybeEntry) 3707 return MaybeEntry.takeError(); 3708 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3709 3710 switch (Entry.Kind) { 3711 case BitstreamEntry::Error: 3712 return error("Malformed block"); 3713 case BitstreamEntry::EndBlock: 3714 goto OutOfRecordLoop; 3715 3716 case BitstreamEntry::SubBlock: 3717 switch (Entry.ID) { 3718 default: // Skip unknown content. 3719 if (Error Err = Stream.SkipBlock()) 3720 return Err; 3721 break; 3722 case bitc::CONSTANTS_BLOCK_ID: 3723 if (Error Err = parseConstants()) 3724 return Err; 3725 NextValueNo = ValueList.size(); 3726 break; 3727 case bitc::VALUE_SYMTAB_BLOCK_ID: 3728 if (Error Err = parseValueSymbolTable()) 3729 return Err; 3730 break; 3731 case bitc::METADATA_ATTACHMENT_ID: 3732 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3733 return Err; 3734 break; 3735 case bitc::METADATA_BLOCK_ID: 3736 assert(DeferredMetadataInfo.empty() && 3737 "Must read all module-level metadata before function-level"); 3738 if (Error Err = MDLoader->parseFunctionMetadata()) 3739 return Err; 3740 break; 3741 case bitc::USELIST_BLOCK_ID: 3742 if (Error Err = parseUseLists()) 3743 return Err; 3744 break; 3745 } 3746 continue; 3747 3748 case BitstreamEntry::Record: 3749 // The interesting case. 3750 break; 3751 } 3752 3753 // Read a record. 3754 Record.clear(); 3755 Instruction *I = nullptr; 3756 Type *FullTy = nullptr; 3757 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3758 if (!MaybeBitCode) 3759 return MaybeBitCode.takeError(); 3760 switch (unsigned BitCode = MaybeBitCode.get()) { 3761 default: // Default behavior: reject 3762 return error("Invalid value"); 3763 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3764 if (Record.size() < 1 || Record[0] == 0) 3765 return error("Invalid record"); 3766 // Create all the basic blocks for the function. 3767 FunctionBBs.resize(Record[0]); 3768 3769 // See if anything took the address of blocks in this function. 3770 auto BBFRI = BasicBlockFwdRefs.find(F); 3771 if (BBFRI == BasicBlockFwdRefs.end()) { 3772 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3773 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3774 } else { 3775 auto &BBRefs = BBFRI->second; 3776 // Check for invalid basic block references. 3777 if (BBRefs.size() > FunctionBBs.size()) 3778 return error("Invalid ID"); 3779 assert(!BBRefs.empty() && "Unexpected empty array"); 3780 assert(!BBRefs.front() && "Invalid reference to entry block"); 3781 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3782 ++I) 3783 if (I < RE && BBRefs[I]) { 3784 BBRefs[I]->insertInto(F); 3785 FunctionBBs[I] = BBRefs[I]; 3786 } else { 3787 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3788 } 3789 3790 // Erase from the table. 3791 BasicBlockFwdRefs.erase(BBFRI); 3792 } 3793 3794 CurBB = FunctionBBs[0]; 3795 continue; 3796 } 3797 3798 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3799 // This record indicates that the last instruction is at the same 3800 // location as the previous instruction with a location. 3801 I = getLastInstruction(); 3802 3803 if (!I) 3804 return error("Invalid record"); 3805 I->setDebugLoc(LastLoc); 3806 I = nullptr; 3807 continue; 3808 3809 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3810 I = getLastInstruction(); 3811 if (!I || Record.size() < 4) 3812 return error("Invalid record"); 3813 3814 unsigned Line = Record[0], Col = Record[1]; 3815 unsigned ScopeID = Record[2], IAID = Record[3]; 3816 bool isImplicitCode = Record.size() == 5 && Record[4]; 3817 3818 MDNode *Scope = nullptr, *IA = nullptr; 3819 if (ScopeID) { 3820 Scope = dyn_cast_or_null<MDNode>( 3821 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3822 if (!Scope) 3823 return error("Invalid record"); 3824 } 3825 if (IAID) { 3826 IA = dyn_cast_or_null<MDNode>( 3827 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3828 if (!IA) 3829 return error("Invalid record"); 3830 } 3831 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3832 I->setDebugLoc(LastLoc); 3833 I = nullptr; 3834 continue; 3835 } 3836 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3837 unsigned OpNum = 0; 3838 Value *LHS; 3839 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3840 OpNum+1 > Record.size()) 3841 return error("Invalid record"); 3842 3843 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3844 if (Opc == -1) 3845 return error("Invalid record"); 3846 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3847 InstructionList.push_back(I); 3848 if (OpNum < Record.size()) { 3849 if (isa<FPMathOperator>(I)) { 3850 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3851 if (FMF.any()) 3852 I->setFastMathFlags(FMF); 3853 } 3854 } 3855 break; 3856 } 3857 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3858 unsigned OpNum = 0; 3859 Value *LHS, *RHS; 3860 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3861 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3862 OpNum+1 > Record.size()) 3863 return error("Invalid record"); 3864 3865 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3866 if (Opc == -1) 3867 return error("Invalid record"); 3868 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3869 InstructionList.push_back(I); 3870 if (OpNum < Record.size()) { 3871 if (Opc == Instruction::Add || 3872 Opc == Instruction::Sub || 3873 Opc == Instruction::Mul || 3874 Opc == Instruction::Shl) { 3875 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3876 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3877 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3878 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3879 } else if (Opc == Instruction::SDiv || 3880 Opc == Instruction::UDiv || 3881 Opc == Instruction::LShr || 3882 Opc == Instruction::AShr) { 3883 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3884 cast<BinaryOperator>(I)->setIsExact(true); 3885 } else if (isa<FPMathOperator>(I)) { 3886 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3887 if (FMF.any()) 3888 I->setFastMathFlags(FMF); 3889 } 3890 3891 } 3892 break; 3893 } 3894 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3895 unsigned OpNum = 0; 3896 Value *Op; 3897 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3898 OpNum+2 != Record.size()) 3899 return error("Invalid record"); 3900 3901 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3902 Type *ResTy = flattenPointerTypes(FullTy); 3903 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3904 if (Opc == -1 || !ResTy) 3905 return error("Invalid record"); 3906 Instruction *Temp = nullptr; 3907 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3908 if (Temp) { 3909 InstructionList.push_back(Temp); 3910 CurBB->getInstList().push_back(Temp); 3911 } 3912 } else { 3913 auto CastOp = (Instruction::CastOps)Opc; 3914 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3915 return error("Invalid cast"); 3916 I = CastInst::Create(CastOp, Op, ResTy); 3917 } 3918 InstructionList.push_back(I); 3919 break; 3920 } 3921 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3922 case bitc::FUNC_CODE_INST_GEP_OLD: 3923 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3924 unsigned OpNum = 0; 3925 3926 Type *Ty; 3927 bool InBounds; 3928 3929 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3930 InBounds = Record[OpNum++]; 3931 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3932 Ty = flattenPointerTypes(FullTy); 3933 } else { 3934 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3935 Ty = nullptr; 3936 } 3937 3938 Value *BasePtr; 3939 Type *FullBaseTy = nullptr; 3940 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 3941 return error("Invalid record"); 3942 3943 if (!Ty) { 3944 std::tie(FullTy, Ty) = 3945 getPointerElementTypes(FullBaseTy->getScalarType()); 3946 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 3947 return error( 3948 "Explicit gep type does not match pointee type of pointer operand"); 3949 3950 SmallVector<Value*, 16> GEPIdx; 3951 while (OpNum != Record.size()) { 3952 Value *Op; 3953 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3954 return error("Invalid record"); 3955 GEPIdx.push_back(Op); 3956 } 3957 3958 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3959 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 3960 3961 InstructionList.push_back(I); 3962 if (InBounds) 3963 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3964 break; 3965 } 3966 3967 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3968 // EXTRACTVAL: [opty, opval, n x indices] 3969 unsigned OpNum = 0; 3970 Value *Agg; 3971 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 3972 return error("Invalid record"); 3973 3974 unsigned RecSize = Record.size(); 3975 if (OpNum == RecSize) 3976 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3977 3978 SmallVector<unsigned, 4> EXTRACTVALIdx; 3979 for (; OpNum != RecSize; ++OpNum) { 3980 bool IsArray = FullTy->isArrayTy(); 3981 bool IsStruct = FullTy->isStructTy(); 3982 uint64_t Index = Record[OpNum]; 3983 3984 if (!IsStruct && !IsArray) 3985 return error("EXTRACTVAL: Invalid type"); 3986 if ((unsigned)Index != Index) 3987 return error("Invalid value"); 3988 if (IsStruct && Index >= FullTy->getStructNumElements()) 3989 return error("EXTRACTVAL: Invalid struct index"); 3990 if (IsArray && Index >= FullTy->getArrayNumElements()) 3991 return error("EXTRACTVAL: Invalid array index"); 3992 EXTRACTVALIdx.push_back((unsigned)Index); 3993 3994 if (IsStruct) 3995 FullTy = FullTy->getStructElementType(Index); 3996 else 3997 FullTy = FullTy->getArrayElementType(); 3998 } 3999 4000 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4001 InstructionList.push_back(I); 4002 break; 4003 } 4004 4005 case bitc::FUNC_CODE_INST_INSERTVAL: { 4006 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4007 unsigned OpNum = 0; 4008 Value *Agg; 4009 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4010 return error("Invalid record"); 4011 Value *Val; 4012 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4013 return error("Invalid record"); 4014 4015 unsigned RecSize = Record.size(); 4016 if (OpNum == RecSize) 4017 return error("INSERTVAL: Invalid instruction with 0 indices"); 4018 4019 SmallVector<unsigned, 4> INSERTVALIdx; 4020 Type *CurTy = Agg->getType(); 4021 for (; OpNum != RecSize; ++OpNum) { 4022 bool IsArray = CurTy->isArrayTy(); 4023 bool IsStruct = CurTy->isStructTy(); 4024 uint64_t Index = Record[OpNum]; 4025 4026 if (!IsStruct && !IsArray) 4027 return error("INSERTVAL: Invalid type"); 4028 if ((unsigned)Index != Index) 4029 return error("Invalid value"); 4030 if (IsStruct && Index >= CurTy->getStructNumElements()) 4031 return error("INSERTVAL: Invalid struct index"); 4032 if (IsArray && Index >= CurTy->getArrayNumElements()) 4033 return error("INSERTVAL: Invalid array index"); 4034 4035 INSERTVALIdx.push_back((unsigned)Index); 4036 if (IsStruct) 4037 CurTy = CurTy->getStructElementType(Index); 4038 else 4039 CurTy = CurTy->getArrayElementType(); 4040 } 4041 4042 if (CurTy != Val->getType()) 4043 return error("Inserted value type doesn't match aggregate type"); 4044 4045 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4046 InstructionList.push_back(I); 4047 break; 4048 } 4049 4050 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4051 // obsolete form of select 4052 // handles select i1 ... in old bitcode 4053 unsigned OpNum = 0; 4054 Value *TrueVal, *FalseVal, *Cond; 4055 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4056 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4057 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4058 return error("Invalid record"); 4059 4060 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4061 InstructionList.push_back(I); 4062 break; 4063 } 4064 4065 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4066 // new form of select 4067 // handles select i1 or select [N x i1] 4068 unsigned OpNum = 0; 4069 Value *TrueVal, *FalseVal, *Cond; 4070 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4071 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4072 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4073 return error("Invalid record"); 4074 4075 // select condition can be either i1 or [N x i1] 4076 if (VectorType* vector_type = 4077 dyn_cast<VectorType>(Cond->getType())) { 4078 // expect <n x i1> 4079 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4080 return error("Invalid type for value"); 4081 } else { 4082 // expect i1 4083 if (Cond->getType() != Type::getInt1Ty(Context)) 4084 return error("Invalid type for value"); 4085 } 4086 4087 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4088 InstructionList.push_back(I); 4089 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4090 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4091 if (FMF.any()) 4092 I->setFastMathFlags(FMF); 4093 } 4094 break; 4095 } 4096 4097 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4098 unsigned OpNum = 0; 4099 Value *Vec, *Idx; 4100 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4101 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4102 return error("Invalid record"); 4103 if (!Vec->getType()->isVectorTy()) 4104 return error("Invalid type for value"); 4105 I = ExtractElementInst::Create(Vec, Idx); 4106 FullTy = FullTy->getVectorElementType(); 4107 InstructionList.push_back(I); 4108 break; 4109 } 4110 4111 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4112 unsigned OpNum = 0; 4113 Value *Vec, *Elt, *Idx; 4114 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4115 return error("Invalid record"); 4116 if (!Vec->getType()->isVectorTy()) 4117 return error("Invalid type for value"); 4118 if (popValue(Record, OpNum, NextValueNo, 4119 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4120 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4121 return error("Invalid record"); 4122 I = InsertElementInst::Create(Vec, Elt, Idx); 4123 InstructionList.push_back(I); 4124 break; 4125 } 4126 4127 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4128 unsigned OpNum = 0; 4129 Value *Vec1, *Vec2, *Mask; 4130 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4131 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4132 return error("Invalid record"); 4133 4134 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4135 return error("Invalid record"); 4136 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4137 return error("Invalid type for value"); 4138 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4139 FullTy = VectorType::get(FullTy->getVectorElementType(), 4140 Mask->getType()->getVectorNumElements()); 4141 InstructionList.push_back(I); 4142 break; 4143 } 4144 4145 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4146 // Old form of ICmp/FCmp returning bool 4147 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4148 // both legal on vectors but had different behaviour. 4149 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4150 // FCmp/ICmp returning bool or vector of bool 4151 4152 unsigned OpNum = 0; 4153 Value *LHS, *RHS; 4154 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4155 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4156 return error("Invalid record"); 4157 4158 unsigned PredVal = Record[OpNum]; 4159 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4160 FastMathFlags FMF; 4161 if (IsFP && Record.size() > OpNum+1) 4162 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4163 4164 if (OpNum+1 != Record.size()) 4165 return error("Invalid record"); 4166 4167 if (LHS->getType()->isFPOrFPVectorTy()) 4168 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4169 else 4170 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4171 4172 if (FMF.any()) 4173 I->setFastMathFlags(FMF); 4174 InstructionList.push_back(I); 4175 break; 4176 } 4177 4178 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4179 { 4180 unsigned Size = Record.size(); 4181 if (Size == 0) { 4182 I = ReturnInst::Create(Context); 4183 InstructionList.push_back(I); 4184 break; 4185 } 4186 4187 unsigned OpNum = 0; 4188 Value *Op = nullptr; 4189 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4190 return error("Invalid record"); 4191 if (OpNum != Record.size()) 4192 return error("Invalid record"); 4193 4194 I = ReturnInst::Create(Context, Op); 4195 InstructionList.push_back(I); 4196 break; 4197 } 4198 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4199 if (Record.size() != 1 && Record.size() != 3) 4200 return error("Invalid record"); 4201 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4202 if (!TrueDest) 4203 return error("Invalid record"); 4204 4205 if (Record.size() == 1) { 4206 I = BranchInst::Create(TrueDest); 4207 InstructionList.push_back(I); 4208 } 4209 else { 4210 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4211 Value *Cond = getValue(Record, 2, NextValueNo, 4212 Type::getInt1Ty(Context)); 4213 if (!FalseDest || !Cond) 4214 return error("Invalid record"); 4215 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4216 InstructionList.push_back(I); 4217 } 4218 break; 4219 } 4220 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4221 if (Record.size() != 1 && Record.size() != 2) 4222 return error("Invalid record"); 4223 unsigned Idx = 0; 4224 Value *CleanupPad = 4225 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4226 if (!CleanupPad) 4227 return error("Invalid record"); 4228 BasicBlock *UnwindDest = nullptr; 4229 if (Record.size() == 2) { 4230 UnwindDest = getBasicBlock(Record[Idx++]); 4231 if (!UnwindDest) 4232 return error("Invalid record"); 4233 } 4234 4235 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4236 InstructionList.push_back(I); 4237 break; 4238 } 4239 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4240 if (Record.size() != 2) 4241 return error("Invalid record"); 4242 unsigned Idx = 0; 4243 Value *CatchPad = 4244 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4245 if (!CatchPad) 4246 return error("Invalid record"); 4247 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4248 if (!BB) 4249 return error("Invalid record"); 4250 4251 I = CatchReturnInst::Create(CatchPad, BB); 4252 InstructionList.push_back(I); 4253 break; 4254 } 4255 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4256 // We must have, at minimum, the outer scope and the number of arguments. 4257 if (Record.size() < 2) 4258 return error("Invalid record"); 4259 4260 unsigned Idx = 0; 4261 4262 Value *ParentPad = 4263 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4264 4265 unsigned NumHandlers = Record[Idx++]; 4266 4267 SmallVector<BasicBlock *, 2> Handlers; 4268 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4269 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4270 if (!BB) 4271 return error("Invalid record"); 4272 Handlers.push_back(BB); 4273 } 4274 4275 BasicBlock *UnwindDest = nullptr; 4276 if (Idx + 1 == Record.size()) { 4277 UnwindDest = getBasicBlock(Record[Idx++]); 4278 if (!UnwindDest) 4279 return error("Invalid record"); 4280 } 4281 4282 if (Record.size() != Idx) 4283 return error("Invalid record"); 4284 4285 auto *CatchSwitch = 4286 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4287 for (BasicBlock *Handler : Handlers) 4288 CatchSwitch->addHandler(Handler); 4289 I = CatchSwitch; 4290 InstructionList.push_back(I); 4291 break; 4292 } 4293 case bitc::FUNC_CODE_INST_CATCHPAD: 4294 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4295 // We must have, at minimum, the outer scope and the number of arguments. 4296 if (Record.size() < 2) 4297 return error("Invalid record"); 4298 4299 unsigned Idx = 0; 4300 4301 Value *ParentPad = 4302 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4303 4304 unsigned NumArgOperands = Record[Idx++]; 4305 4306 SmallVector<Value *, 2> Args; 4307 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4308 Value *Val; 4309 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4310 return error("Invalid record"); 4311 Args.push_back(Val); 4312 } 4313 4314 if (Record.size() != Idx) 4315 return error("Invalid record"); 4316 4317 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4318 I = CleanupPadInst::Create(ParentPad, Args); 4319 else 4320 I = CatchPadInst::Create(ParentPad, Args); 4321 InstructionList.push_back(I); 4322 break; 4323 } 4324 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4325 // Check magic 4326 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4327 // "New" SwitchInst format with case ranges. The changes to write this 4328 // format were reverted but we still recognize bitcode that uses it. 4329 // Hopefully someday we will have support for case ranges and can use 4330 // this format again. 4331 4332 Type *OpTy = getTypeByID(Record[1]); 4333 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4334 4335 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4336 BasicBlock *Default = getBasicBlock(Record[3]); 4337 if (!OpTy || !Cond || !Default) 4338 return error("Invalid record"); 4339 4340 unsigned NumCases = Record[4]; 4341 4342 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4343 InstructionList.push_back(SI); 4344 4345 unsigned CurIdx = 5; 4346 for (unsigned i = 0; i != NumCases; ++i) { 4347 SmallVector<ConstantInt*, 1> CaseVals; 4348 unsigned NumItems = Record[CurIdx++]; 4349 for (unsigned ci = 0; ci != NumItems; ++ci) { 4350 bool isSingleNumber = Record[CurIdx++]; 4351 4352 APInt Low; 4353 unsigned ActiveWords = 1; 4354 if (ValueBitWidth > 64) 4355 ActiveWords = Record[CurIdx++]; 4356 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4357 ValueBitWidth); 4358 CurIdx += ActiveWords; 4359 4360 if (!isSingleNumber) { 4361 ActiveWords = 1; 4362 if (ValueBitWidth > 64) 4363 ActiveWords = Record[CurIdx++]; 4364 APInt High = readWideAPInt( 4365 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4366 CurIdx += ActiveWords; 4367 4368 // FIXME: It is not clear whether values in the range should be 4369 // compared as signed or unsigned values. The partially 4370 // implemented changes that used this format in the past used 4371 // unsigned comparisons. 4372 for ( ; Low.ule(High); ++Low) 4373 CaseVals.push_back(ConstantInt::get(Context, Low)); 4374 } else 4375 CaseVals.push_back(ConstantInt::get(Context, Low)); 4376 } 4377 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4378 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4379 cve = CaseVals.end(); cvi != cve; ++cvi) 4380 SI->addCase(*cvi, DestBB); 4381 } 4382 I = SI; 4383 break; 4384 } 4385 4386 // Old SwitchInst format without case ranges. 4387 4388 if (Record.size() < 3 || (Record.size() & 1) == 0) 4389 return error("Invalid record"); 4390 Type *OpTy = getTypeByID(Record[0]); 4391 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4392 BasicBlock *Default = getBasicBlock(Record[2]); 4393 if (!OpTy || !Cond || !Default) 4394 return error("Invalid record"); 4395 unsigned NumCases = (Record.size()-3)/2; 4396 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4397 InstructionList.push_back(SI); 4398 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4399 ConstantInt *CaseVal = 4400 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4401 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4402 if (!CaseVal || !DestBB) { 4403 delete SI; 4404 return error("Invalid record"); 4405 } 4406 SI->addCase(CaseVal, DestBB); 4407 } 4408 I = SI; 4409 break; 4410 } 4411 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4412 if (Record.size() < 2) 4413 return error("Invalid record"); 4414 Type *OpTy = getTypeByID(Record[0]); 4415 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4416 if (!OpTy || !Address) 4417 return error("Invalid record"); 4418 unsigned NumDests = Record.size()-2; 4419 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4420 InstructionList.push_back(IBI); 4421 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4422 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4423 IBI->addDestination(DestBB); 4424 } else { 4425 delete IBI; 4426 return error("Invalid record"); 4427 } 4428 } 4429 I = IBI; 4430 break; 4431 } 4432 4433 case bitc::FUNC_CODE_INST_INVOKE: { 4434 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4435 if (Record.size() < 4) 4436 return error("Invalid record"); 4437 unsigned OpNum = 0; 4438 AttributeList PAL = getAttributes(Record[OpNum++]); 4439 unsigned CCInfo = Record[OpNum++]; 4440 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4441 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4442 4443 FunctionType *FTy = nullptr; 4444 FunctionType *FullFTy = nullptr; 4445 if ((CCInfo >> 13) & 1) { 4446 FullFTy = 4447 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4448 if (!FullFTy) 4449 return error("Explicit invoke type is not a function type"); 4450 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4451 } 4452 4453 Value *Callee; 4454 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4455 return error("Invalid record"); 4456 4457 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4458 if (!CalleeTy) 4459 return error("Callee is not a pointer"); 4460 if (!FTy) { 4461 FullFTy = 4462 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4463 if (!FullFTy) 4464 return error("Callee is not of pointer to function type"); 4465 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4466 } else if (getPointerElementFlatType(FullTy) != FTy) 4467 return error("Explicit invoke type does not match pointee type of " 4468 "callee operand"); 4469 if (Record.size() < FTy->getNumParams() + OpNum) 4470 return error("Insufficient operands to call"); 4471 4472 SmallVector<Value*, 16> Ops; 4473 SmallVector<Type *, 16> ArgsFullTys; 4474 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4475 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4476 FTy->getParamType(i))); 4477 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4478 if (!Ops.back()) 4479 return error("Invalid record"); 4480 } 4481 4482 if (!FTy->isVarArg()) { 4483 if (Record.size() != OpNum) 4484 return error("Invalid record"); 4485 } else { 4486 // Read type/value pairs for varargs params. 4487 while (OpNum != Record.size()) { 4488 Value *Op; 4489 Type *FullTy; 4490 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4491 return error("Invalid record"); 4492 Ops.push_back(Op); 4493 ArgsFullTys.push_back(FullTy); 4494 } 4495 } 4496 4497 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4498 OperandBundles); 4499 FullTy = FullFTy->getReturnType(); 4500 OperandBundles.clear(); 4501 InstructionList.push_back(I); 4502 cast<InvokeInst>(I)->setCallingConv( 4503 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4504 cast<InvokeInst>(I)->setAttributes(PAL); 4505 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4506 4507 break; 4508 } 4509 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4510 unsigned Idx = 0; 4511 Value *Val = nullptr; 4512 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4513 return error("Invalid record"); 4514 I = ResumeInst::Create(Val); 4515 InstructionList.push_back(I); 4516 break; 4517 } 4518 case bitc::FUNC_CODE_INST_CALLBR: { 4519 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4520 unsigned OpNum = 0; 4521 AttributeList PAL = getAttributes(Record[OpNum++]); 4522 unsigned CCInfo = Record[OpNum++]; 4523 4524 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4525 unsigned NumIndirectDests = Record[OpNum++]; 4526 SmallVector<BasicBlock *, 16> IndirectDests; 4527 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4528 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4529 4530 FunctionType *FTy = nullptr; 4531 FunctionType *FullFTy = nullptr; 4532 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4533 FullFTy = 4534 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4535 if (!FullFTy) 4536 return error("Explicit call type is not a function type"); 4537 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4538 } 4539 4540 Value *Callee; 4541 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4542 return error("Invalid record"); 4543 4544 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4545 if (!OpTy) 4546 return error("Callee is not a pointer type"); 4547 if (!FTy) { 4548 FullFTy = 4549 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4550 if (!FullFTy) 4551 return error("Callee is not of pointer to function type"); 4552 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4553 } else if (getPointerElementFlatType(FullTy) != FTy) 4554 return error("Explicit call type does not match pointee type of " 4555 "callee operand"); 4556 if (Record.size() < FTy->getNumParams() + OpNum) 4557 return error("Insufficient operands to call"); 4558 4559 SmallVector<Value*, 16> Args; 4560 // Read the fixed params. 4561 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4562 if (FTy->getParamType(i)->isLabelTy()) 4563 Args.push_back(getBasicBlock(Record[OpNum])); 4564 else 4565 Args.push_back(getValue(Record, OpNum, NextValueNo, 4566 FTy->getParamType(i))); 4567 if (!Args.back()) 4568 return error("Invalid record"); 4569 } 4570 4571 // Read type/value pairs for varargs params. 4572 if (!FTy->isVarArg()) { 4573 if (OpNum != Record.size()) 4574 return error("Invalid record"); 4575 } else { 4576 while (OpNum != Record.size()) { 4577 Value *Op; 4578 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4579 return error("Invalid record"); 4580 Args.push_back(Op); 4581 } 4582 } 4583 4584 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4585 OperandBundles); 4586 FullTy = FullFTy->getReturnType(); 4587 OperandBundles.clear(); 4588 InstructionList.push_back(I); 4589 cast<CallBrInst>(I)->setCallingConv( 4590 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4591 cast<CallBrInst>(I)->setAttributes(PAL); 4592 break; 4593 } 4594 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4595 I = new UnreachableInst(Context); 4596 InstructionList.push_back(I); 4597 break; 4598 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4599 if (Record.size() < 1 || ((Record.size()-1)&1)) 4600 return error("Invalid record"); 4601 FullTy = getFullyStructuredTypeByID(Record[0]); 4602 Type *Ty = flattenPointerTypes(FullTy); 4603 if (!Ty) 4604 return error("Invalid record"); 4605 4606 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4607 InstructionList.push_back(PN); 4608 4609 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4610 Value *V; 4611 // With the new function encoding, it is possible that operands have 4612 // negative IDs (for forward references). Use a signed VBR 4613 // representation to keep the encoding small. 4614 if (UseRelativeIDs) 4615 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4616 else 4617 V = getValue(Record, 1+i, NextValueNo, Ty); 4618 BasicBlock *BB = getBasicBlock(Record[2+i]); 4619 if (!V || !BB) 4620 return error("Invalid record"); 4621 PN->addIncoming(V, BB); 4622 } 4623 I = PN; 4624 break; 4625 } 4626 4627 case bitc::FUNC_CODE_INST_LANDINGPAD: 4628 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4629 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4630 unsigned Idx = 0; 4631 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4632 if (Record.size() < 3) 4633 return error("Invalid record"); 4634 } else { 4635 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4636 if (Record.size() < 4) 4637 return error("Invalid record"); 4638 } 4639 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4640 Type *Ty = flattenPointerTypes(FullTy); 4641 if (!Ty) 4642 return error("Invalid record"); 4643 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4644 Value *PersFn = nullptr; 4645 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4646 return error("Invalid record"); 4647 4648 if (!F->hasPersonalityFn()) 4649 F->setPersonalityFn(cast<Constant>(PersFn)); 4650 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4651 return error("Personality function mismatch"); 4652 } 4653 4654 bool IsCleanup = !!Record[Idx++]; 4655 unsigned NumClauses = Record[Idx++]; 4656 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4657 LP->setCleanup(IsCleanup); 4658 for (unsigned J = 0; J != NumClauses; ++J) { 4659 LandingPadInst::ClauseType CT = 4660 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4661 Value *Val; 4662 4663 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4664 delete LP; 4665 return error("Invalid record"); 4666 } 4667 4668 assert((CT != LandingPadInst::Catch || 4669 !isa<ArrayType>(Val->getType())) && 4670 "Catch clause has a invalid type!"); 4671 assert((CT != LandingPadInst::Filter || 4672 isa<ArrayType>(Val->getType())) && 4673 "Filter clause has invalid type!"); 4674 LP->addClause(cast<Constant>(Val)); 4675 } 4676 4677 I = LP; 4678 InstructionList.push_back(I); 4679 break; 4680 } 4681 4682 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4683 if (Record.size() != 4) 4684 return error("Invalid record"); 4685 uint64_t AlignRecord = Record[3]; 4686 const uint64_t InAllocaMask = uint64_t(1) << 5; 4687 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4688 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4689 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4690 SwiftErrorMask; 4691 bool InAlloca = AlignRecord & InAllocaMask; 4692 bool SwiftError = AlignRecord & SwiftErrorMask; 4693 FullTy = getFullyStructuredTypeByID(Record[0]); 4694 Type *Ty = flattenPointerTypes(FullTy); 4695 if ((AlignRecord & ExplicitTypeMask) == 0) { 4696 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4697 if (!PTy) 4698 return error("Old-style alloca with a non-pointer type"); 4699 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4700 } 4701 Type *OpTy = getTypeByID(Record[1]); 4702 Value *Size = getFnValueByID(Record[2], OpTy); 4703 unsigned Align; 4704 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4705 return Err; 4706 } 4707 if (!Ty || !Size) 4708 return error("Invalid record"); 4709 4710 // FIXME: Make this an optional field. 4711 const DataLayout &DL = TheModule->getDataLayout(); 4712 unsigned AS = DL.getAllocaAddrSpace(); 4713 4714 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4715 AI->setUsedWithInAlloca(InAlloca); 4716 AI->setSwiftError(SwiftError); 4717 I = AI; 4718 FullTy = PointerType::get(FullTy, AS); 4719 InstructionList.push_back(I); 4720 break; 4721 } 4722 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4723 unsigned OpNum = 0; 4724 Value *Op; 4725 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4726 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4727 return error("Invalid record"); 4728 4729 if (!isa<PointerType>(Op->getType())) 4730 return error("Load operand is not a pointer type"); 4731 4732 Type *Ty = nullptr; 4733 if (OpNum + 3 == Record.size()) { 4734 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4735 Ty = flattenPointerTypes(FullTy); 4736 } else 4737 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4738 4739 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4740 return Err; 4741 4742 unsigned Align; 4743 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4744 return Err; 4745 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4746 InstructionList.push_back(I); 4747 break; 4748 } 4749 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4750 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4751 unsigned OpNum = 0; 4752 Value *Op; 4753 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4754 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4755 return error("Invalid record"); 4756 4757 if (!isa<PointerType>(Op->getType())) 4758 return error("Load operand is not a pointer type"); 4759 4760 Type *Ty = nullptr; 4761 if (OpNum + 5 == Record.size()) { 4762 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4763 Ty = flattenPointerTypes(FullTy); 4764 } else 4765 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4766 4767 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4768 return Err; 4769 4770 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4771 if (Ordering == AtomicOrdering::NotAtomic || 4772 Ordering == AtomicOrdering::Release || 4773 Ordering == AtomicOrdering::AcquireRelease) 4774 return error("Invalid record"); 4775 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4776 return error("Invalid record"); 4777 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4778 4779 unsigned Align; 4780 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4781 return Err; 4782 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4783 InstructionList.push_back(I); 4784 break; 4785 } 4786 case bitc::FUNC_CODE_INST_STORE: 4787 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4788 unsigned OpNum = 0; 4789 Value *Val, *Ptr; 4790 Type *FullTy; 4791 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4792 (BitCode == bitc::FUNC_CODE_INST_STORE 4793 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4794 : popValue(Record, OpNum, NextValueNo, 4795 getPointerElementFlatType(FullTy), Val)) || 4796 OpNum + 2 != Record.size()) 4797 return error("Invalid record"); 4798 4799 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4800 return Err; 4801 unsigned Align; 4802 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4803 return Err; 4804 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4805 InstructionList.push_back(I); 4806 break; 4807 } 4808 case bitc::FUNC_CODE_INST_STOREATOMIC: 4809 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4810 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4811 unsigned OpNum = 0; 4812 Value *Val, *Ptr; 4813 Type *FullTy; 4814 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4815 !isa<PointerType>(Ptr->getType()) || 4816 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4817 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4818 : popValue(Record, OpNum, NextValueNo, 4819 getPointerElementFlatType(FullTy), Val)) || 4820 OpNum + 4 != Record.size()) 4821 return error("Invalid record"); 4822 4823 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4824 return Err; 4825 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4826 if (Ordering == AtomicOrdering::NotAtomic || 4827 Ordering == AtomicOrdering::Acquire || 4828 Ordering == AtomicOrdering::AcquireRelease) 4829 return error("Invalid record"); 4830 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4831 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4832 return error("Invalid record"); 4833 4834 unsigned Align; 4835 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4836 return Err; 4837 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4838 InstructionList.push_back(I); 4839 break; 4840 } 4841 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4842 case bitc::FUNC_CODE_INST_CMPXCHG: { 4843 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4844 // failureordering?, isweak?] 4845 unsigned OpNum = 0; 4846 Value *Ptr, *Cmp, *New; 4847 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4848 return error("Invalid record"); 4849 4850 if (!isa<PointerType>(Ptr->getType())) 4851 return error("Cmpxchg operand is not a pointer type"); 4852 4853 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4854 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4855 return error("Invalid record"); 4856 } else if (popValue(Record, OpNum, NextValueNo, 4857 getPointerElementFlatType(FullTy), Cmp)) 4858 return error("Invalid record"); 4859 else 4860 FullTy = cast<PointerType>(FullTy)->getElementType(); 4861 4862 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4863 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4864 return error("Invalid record"); 4865 4866 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4867 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4868 SuccessOrdering == AtomicOrdering::Unordered) 4869 return error("Invalid record"); 4870 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4871 4872 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4873 return Err; 4874 AtomicOrdering FailureOrdering; 4875 if (Record.size() < 7) 4876 FailureOrdering = 4877 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4878 else 4879 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4880 4881 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4882 SSID); 4883 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 4884 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4885 4886 if (Record.size() < 8) { 4887 // Before weak cmpxchgs existed, the instruction simply returned the 4888 // value loaded from memory, so bitcode files from that era will be 4889 // expecting the first component of a modern cmpxchg. 4890 CurBB->getInstList().push_back(I); 4891 I = ExtractValueInst::Create(I, 0); 4892 FullTy = cast<StructType>(FullTy)->getElementType(0); 4893 } else { 4894 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4895 } 4896 4897 InstructionList.push_back(I); 4898 break; 4899 } 4900 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4901 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4902 unsigned OpNum = 0; 4903 Value *Ptr, *Val; 4904 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4905 !isa<PointerType>(Ptr->getType()) || 4906 popValue(Record, OpNum, NextValueNo, 4907 getPointerElementFlatType(FullTy), Val) || 4908 OpNum + 4 != Record.size()) 4909 return error("Invalid record"); 4910 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4911 if (Operation < AtomicRMWInst::FIRST_BINOP || 4912 Operation > AtomicRMWInst::LAST_BINOP) 4913 return error("Invalid record"); 4914 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4915 if (Ordering == AtomicOrdering::NotAtomic || 4916 Ordering == AtomicOrdering::Unordered) 4917 return error("Invalid record"); 4918 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4919 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4920 FullTy = getPointerElementFlatType(FullTy); 4921 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4922 InstructionList.push_back(I); 4923 break; 4924 } 4925 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4926 if (2 != Record.size()) 4927 return error("Invalid record"); 4928 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4929 if (Ordering == AtomicOrdering::NotAtomic || 4930 Ordering == AtomicOrdering::Unordered || 4931 Ordering == AtomicOrdering::Monotonic) 4932 return error("Invalid record"); 4933 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4934 I = new FenceInst(Context, Ordering, SSID); 4935 InstructionList.push_back(I); 4936 break; 4937 } 4938 case bitc::FUNC_CODE_INST_CALL: { 4939 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4940 if (Record.size() < 3) 4941 return error("Invalid record"); 4942 4943 unsigned OpNum = 0; 4944 AttributeList PAL = getAttributes(Record[OpNum++]); 4945 unsigned CCInfo = Record[OpNum++]; 4946 4947 FastMathFlags FMF; 4948 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4949 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4950 if (!FMF.any()) 4951 return error("Fast math flags indicator set for call with no FMF"); 4952 } 4953 4954 FunctionType *FTy = nullptr; 4955 FunctionType *FullFTy = nullptr; 4956 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4957 FullFTy = 4958 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4959 if (!FullFTy) 4960 return error("Explicit call type is not a function type"); 4961 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4962 } 4963 4964 Value *Callee; 4965 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4966 return error("Invalid record"); 4967 4968 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4969 if (!OpTy) 4970 return error("Callee is not a pointer type"); 4971 if (!FTy) { 4972 FullFTy = 4973 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4974 if (!FullFTy) 4975 return error("Callee is not of pointer to function type"); 4976 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4977 } else if (getPointerElementFlatType(FullTy) != FTy) 4978 return error("Explicit call type does not match pointee type of " 4979 "callee operand"); 4980 if (Record.size() < FTy->getNumParams() + OpNum) 4981 return error("Insufficient operands to call"); 4982 4983 SmallVector<Value*, 16> Args; 4984 SmallVector<Type*, 16> ArgsFullTys; 4985 // Read the fixed params. 4986 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4987 if (FTy->getParamType(i)->isLabelTy()) 4988 Args.push_back(getBasicBlock(Record[OpNum])); 4989 else 4990 Args.push_back(getValue(Record, OpNum, NextValueNo, 4991 FTy->getParamType(i))); 4992 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4993 if (!Args.back()) 4994 return error("Invalid record"); 4995 } 4996 4997 // Read type/value pairs for varargs params. 4998 if (!FTy->isVarArg()) { 4999 if (OpNum != Record.size()) 5000 return error("Invalid record"); 5001 } else { 5002 while (OpNum != Record.size()) { 5003 Value *Op; 5004 Type *FullTy; 5005 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5006 return error("Invalid record"); 5007 Args.push_back(Op); 5008 ArgsFullTys.push_back(FullTy); 5009 } 5010 } 5011 5012 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5013 FullTy = FullFTy->getReturnType(); 5014 OperandBundles.clear(); 5015 InstructionList.push_back(I); 5016 cast<CallInst>(I)->setCallingConv( 5017 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5018 CallInst::TailCallKind TCK = CallInst::TCK_None; 5019 if (CCInfo & 1 << bitc::CALL_TAIL) 5020 TCK = CallInst::TCK_Tail; 5021 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5022 TCK = CallInst::TCK_MustTail; 5023 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5024 TCK = CallInst::TCK_NoTail; 5025 cast<CallInst>(I)->setTailCallKind(TCK); 5026 cast<CallInst>(I)->setAttributes(PAL); 5027 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5028 if (FMF.any()) { 5029 if (!isa<FPMathOperator>(I)) 5030 return error("Fast-math-flags specified for call without " 5031 "floating-point scalar or vector return type"); 5032 I->setFastMathFlags(FMF); 5033 } 5034 break; 5035 } 5036 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5037 if (Record.size() < 3) 5038 return error("Invalid record"); 5039 Type *OpTy = getTypeByID(Record[0]); 5040 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5041 FullTy = getFullyStructuredTypeByID(Record[2]); 5042 Type *ResTy = flattenPointerTypes(FullTy); 5043 if (!OpTy || !Op || !ResTy) 5044 return error("Invalid record"); 5045 I = new VAArgInst(Op, ResTy); 5046 InstructionList.push_back(I); 5047 break; 5048 } 5049 5050 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5051 // A call or an invoke can be optionally prefixed with some variable 5052 // number of operand bundle blocks. These blocks are read into 5053 // OperandBundles and consumed at the next call or invoke instruction. 5054 5055 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5056 return error("Invalid record"); 5057 5058 std::vector<Value *> Inputs; 5059 5060 unsigned OpNum = 1; 5061 while (OpNum != Record.size()) { 5062 Value *Op; 5063 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5064 return error("Invalid record"); 5065 Inputs.push_back(Op); 5066 } 5067 5068 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5069 continue; 5070 } 5071 } 5072 5073 // Add instruction to end of current BB. If there is no current BB, reject 5074 // this file. 5075 if (!CurBB) { 5076 I->deleteValue(); 5077 return error("Invalid instruction with no BB"); 5078 } 5079 if (!OperandBundles.empty()) { 5080 I->deleteValue(); 5081 return error("Operand bundles found with no consumer"); 5082 } 5083 CurBB->getInstList().push_back(I); 5084 5085 // If this was a terminator instruction, move to the next block. 5086 if (I->isTerminator()) { 5087 ++CurBBNo; 5088 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5089 } 5090 5091 // Non-void values get registered in the value table for future use. 5092 if (I && !I->getType()->isVoidTy()) { 5093 if (!FullTy) { 5094 FullTy = I->getType(); 5095 assert( 5096 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5097 !isa<ArrayType>(FullTy) && 5098 (!isa<VectorType>(FullTy) || 5099 FullTy->getVectorElementType()->isFloatingPointTy() || 5100 FullTy->getVectorElementType()->isIntegerTy()) && 5101 "Structured types must be assigned with corresponding non-opaque " 5102 "pointer type"); 5103 } 5104 5105 assert(I->getType() == flattenPointerTypes(FullTy) && 5106 "Incorrect fully structured type provided for Instruction"); 5107 ValueList.assignValue(I, NextValueNo++, FullTy); 5108 } 5109 } 5110 5111 OutOfRecordLoop: 5112 5113 if (!OperandBundles.empty()) 5114 return error("Operand bundles found with no consumer"); 5115 5116 // Check the function list for unresolved values. 5117 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5118 if (!A->getParent()) { 5119 // We found at least one unresolved value. Nuke them all to avoid leaks. 5120 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5121 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5122 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5123 delete A; 5124 } 5125 } 5126 return error("Never resolved value found in function"); 5127 } 5128 } 5129 5130 // Unexpected unresolved metadata about to be dropped. 5131 if (MDLoader->hasFwdRefs()) 5132 return error("Invalid function metadata: outgoing forward refs"); 5133 5134 // Trim the value list down to the size it was before we parsed this function. 5135 ValueList.shrinkTo(ModuleValueListSize); 5136 MDLoader->shrinkTo(ModuleMDLoaderSize); 5137 std::vector<BasicBlock*>().swap(FunctionBBs); 5138 return Error::success(); 5139 } 5140 5141 /// Find the function body in the bitcode stream 5142 Error BitcodeReader::findFunctionInStream( 5143 Function *F, 5144 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5145 while (DeferredFunctionInfoIterator->second == 0) { 5146 // This is the fallback handling for the old format bitcode that 5147 // didn't contain the function index in the VST, or when we have 5148 // an anonymous function which would not have a VST entry. 5149 // Assert that we have one of those two cases. 5150 assert(VSTOffset == 0 || !F->hasName()); 5151 // Parse the next body in the stream and set its position in the 5152 // DeferredFunctionInfo map. 5153 if (Error Err = rememberAndSkipFunctionBodies()) 5154 return Err; 5155 } 5156 return Error::success(); 5157 } 5158 5159 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5160 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5161 return SyncScope::ID(Val); 5162 if (Val >= SSIDs.size()) 5163 return SyncScope::System; // Map unknown synchronization scopes to system. 5164 return SSIDs[Val]; 5165 } 5166 5167 //===----------------------------------------------------------------------===// 5168 // GVMaterializer implementation 5169 //===----------------------------------------------------------------------===// 5170 5171 Error BitcodeReader::materialize(GlobalValue *GV) { 5172 Function *F = dyn_cast<Function>(GV); 5173 // If it's not a function or is already material, ignore the request. 5174 if (!F || !F->isMaterializable()) 5175 return Error::success(); 5176 5177 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5178 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5179 // If its position is recorded as 0, its body is somewhere in the stream 5180 // but we haven't seen it yet. 5181 if (DFII->second == 0) 5182 if (Error Err = findFunctionInStream(F, DFII)) 5183 return Err; 5184 5185 // Materialize metadata before parsing any function bodies. 5186 if (Error Err = materializeMetadata()) 5187 return Err; 5188 5189 // Move the bit stream to the saved position of the deferred function body. 5190 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5191 return JumpFailed; 5192 if (Error Err = parseFunctionBody(F)) 5193 return Err; 5194 F->setIsMaterializable(false); 5195 5196 if (StripDebugInfo) 5197 stripDebugInfo(*F); 5198 5199 // Upgrade any old intrinsic calls in the function. 5200 for (auto &I : UpgradedIntrinsics) { 5201 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5202 UI != UE;) { 5203 User *U = *UI; 5204 ++UI; 5205 if (CallInst *CI = dyn_cast<CallInst>(U)) 5206 UpgradeIntrinsicCall(CI, I.second); 5207 } 5208 } 5209 5210 // Update calls to the remangled intrinsics 5211 for (auto &I : RemangledIntrinsics) 5212 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5213 UI != UE;) 5214 // Don't expect any other users than call sites 5215 CallSite(*UI++).setCalledFunction(I.second); 5216 5217 // Finish fn->subprogram upgrade for materialized functions. 5218 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5219 F->setSubprogram(SP); 5220 5221 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5222 if (!MDLoader->isStrippingTBAA()) { 5223 for (auto &I : instructions(F)) { 5224 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5225 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5226 continue; 5227 MDLoader->setStripTBAA(true); 5228 stripTBAA(F->getParent()); 5229 } 5230 } 5231 5232 // Bring in any functions that this function forward-referenced via 5233 // blockaddresses. 5234 return materializeForwardReferencedFunctions(); 5235 } 5236 5237 Error BitcodeReader::materializeModule() { 5238 if (Error Err = materializeMetadata()) 5239 return Err; 5240 5241 // Promise to materialize all forward references. 5242 WillMaterializeAllForwardRefs = true; 5243 5244 // Iterate over the module, deserializing any functions that are still on 5245 // disk. 5246 for (Function &F : *TheModule) { 5247 if (Error Err = materialize(&F)) 5248 return Err; 5249 } 5250 // At this point, if there are any function bodies, parse the rest of 5251 // the bits in the module past the last function block we have recorded 5252 // through either lazy scanning or the VST. 5253 if (LastFunctionBlockBit || NextUnreadBit) 5254 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5255 ? LastFunctionBlockBit 5256 : NextUnreadBit)) 5257 return Err; 5258 5259 // Check that all block address forward references got resolved (as we 5260 // promised above). 5261 if (!BasicBlockFwdRefs.empty()) 5262 return error("Never resolved function from blockaddress"); 5263 5264 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5265 // delete the old functions to clean up. We can't do this unless the entire 5266 // module is materialized because there could always be another function body 5267 // with calls to the old function. 5268 for (auto &I : UpgradedIntrinsics) { 5269 for (auto *U : I.first->users()) { 5270 if (CallInst *CI = dyn_cast<CallInst>(U)) 5271 UpgradeIntrinsicCall(CI, I.second); 5272 } 5273 if (!I.first->use_empty()) 5274 I.first->replaceAllUsesWith(I.second); 5275 I.first->eraseFromParent(); 5276 } 5277 UpgradedIntrinsics.clear(); 5278 // Do the same for remangled intrinsics 5279 for (auto &I : RemangledIntrinsics) { 5280 I.first->replaceAllUsesWith(I.second); 5281 I.first->eraseFromParent(); 5282 } 5283 RemangledIntrinsics.clear(); 5284 5285 UpgradeDebugInfo(*TheModule); 5286 5287 UpgradeModuleFlags(*TheModule); 5288 5289 UpgradeRetainReleaseMarker(*TheModule); 5290 5291 return Error::success(); 5292 } 5293 5294 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5295 return IdentifiedStructTypes; 5296 } 5297 5298 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5299 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5300 StringRef ModulePath, unsigned ModuleId) 5301 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5302 ModulePath(ModulePath), ModuleId(ModuleId) {} 5303 5304 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5305 TheIndex.addModule(ModulePath, ModuleId); 5306 } 5307 5308 ModuleSummaryIndex::ModuleInfo * 5309 ModuleSummaryIndexBitcodeReader::getThisModule() { 5310 return TheIndex.getModule(ModulePath); 5311 } 5312 5313 std::pair<ValueInfo, GlobalValue::GUID> 5314 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5315 auto VGI = ValueIdToValueInfoMap[ValueId]; 5316 assert(VGI.first); 5317 return VGI; 5318 } 5319 5320 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5321 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5322 StringRef SourceFileName) { 5323 std::string GlobalId = 5324 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5325 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5326 auto OriginalNameID = ValueGUID; 5327 if (GlobalValue::isLocalLinkage(Linkage)) 5328 OriginalNameID = GlobalValue::getGUID(ValueName); 5329 if (PrintSummaryGUIDs) 5330 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5331 << ValueName << "\n"; 5332 5333 // UseStrtab is false for legacy summary formats and value names are 5334 // created on stack. In that case we save the name in a string saver in 5335 // the index so that the value name can be recorded. 5336 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5337 TheIndex.getOrInsertValueInfo( 5338 ValueGUID, 5339 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5340 OriginalNameID); 5341 } 5342 5343 // Specialized value symbol table parser used when reading module index 5344 // blocks where we don't actually create global values. The parsed information 5345 // is saved in the bitcode reader for use when later parsing summaries. 5346 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5347 uint64_t Offset, 5348 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5349 // With a strtab the VST is not required to parse the summary. 5350 if (UseStrtab) 5351 return Error::success(); 5352 5353 assert(Offset > 0 && "Expected non-zero VST offset"); 5354 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5355 if (!MaybeCurrentBit) 5356 return MaybeCurrentBit.takeError(); 5357 uint64_t CurrentBit = MaybeCurrentBit.get(); 5358 5359 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5360 return Err; 5361 5362 SmallVector<uint64_t, 64> Record; 5363 5364 // Read all the records for this value table. 5365 SmallString<128> ValueName; 5366 5367 while (true) { 5368 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5369 if (!MaybeEntry) 5370 return MaybeEntry.takeError(); 5371 BitstreamEntry Entry = MaybeEntry.get(); 5372 5373 switch (Entry.Kind) { 5374 case BitstreamEntry::SubBlock: // Handled for us already. 5375 case BitstreamEntry::Error: 5376 return error("Malformed block"); 5377 case BitstreamEntry::EndBlock: 5378 // Done parsing VST, jump back to wherever we came from. 5379 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5380 return JumpFailed; 5381 return Error::success(); 5382 case BitstreamEntry::Record: 5383 // The interesting case. 5384 break; 5385 } 5386 5387 // Read a record. 5388 Record.clear(); 5389 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5390 if (!MaybeRecord) 5391 return MaybeRecord.takeError(); 5392 switch (MaybeRecord.get()) { 5393 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5394 break; 5395 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5396 if (convertToString(Record, 1, ValueName)) 5397 return error("Invalid record"); 5398 unsigned ValueID = Record[0]; 5399 assert(!SourceFileName.empty()); 5400 auto VLI = ValueIdToLinkageMap.find(ValueID); 5401 assert(VLI != ValueIdToLinkageMap.end() && 5402 "No linkage found for VST entry?"); 5403 auto Linkage = VLI->second; 5404 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5405 ValueName.clear(); 5406 break; 5407 } 5408 case bitc::VST_CODE_FNENTRY: { 5409 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5410 if (convertToString(Record, 2, ValueName)) 5411 return error("Invalid record"); 5412 unsigned ValueID = Record[0]; 5413 assert(!SourceFileName.empty()); 5414 auto VLI = ValueIdToLinkageMap.find(ValueID); 5415 assert(VLI != ValueIdToLinkageMap.end() && 5416 "No linkage found for VST entry?"); 5417 auto Linkage = VLI->second; 5418 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5419 ValueName.clear(); 5420 break; 5421 } 5422 case bitc::VST_CODE_COMBINED_ENTRY: { 5423 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5424 unsigned ValueID = Record[0]; 5425 GlobalValue::GUID RefGUID = Record[1]; 5426 // The "original name", which is the second value of the pair will be 5427 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5428 ValueIdToValueInfoMap[ValueID] = 5429 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5430 break; 5431 } 5432 } 5433 } 5434 } 5435 5436 // Parse just the blocks needed for building the index out of the module. 5437 // At the end of this routine the module Index is populated with a map 5438 // from global value id to GlobalValueSummary objects. 5439 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5440 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5441 return Err; 5442 5443 SmallVector<uint64_t, 64> Record; 5444 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5445 unsigned ValueId = 0; 5446 5447 // Read the index for this module. 5448 while (true) { 5449 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5450 if (!MaybeEntry) 5451 return MaybeEntry.takeError(); 5452 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5453 5454 switch (Entry.Kind) { 5455 case BitstreamEntry::Error: 5456 return error("Malformed block"); 5457 case BitstreamEntry::EndBlock: 5458 return Error::success(); 5459 5460 case BitstreamEntry::SubBlock: 5461 switch (Entry.ID) { 5462 default: // Skip unknown content. 5463 if (Error Err = Stream.SkipBlock()) 5464 return Err; 5465 break; 5466 case bitc::BLOCKINFO_BLOCK_ID: 5467 // Need to parse these to get abbrev ids (e.g. for VST) 5468 if (readBlockInfo()) 5469 return error("Malformed block"); 5470 break; 5471 case bitc::VALUE_SYMTAB_BLOCK_ID: 5472 // Should have been parsed earlier via VSTOffset, unless there 5473 // is no summary section. 5474 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5475 !SeenGlobalValSummary) && 5476 "Expected early VST parse via VSTOffset record"); 5477 if (Error Err = Stream.SkipBlock()) 5478 return Err; 5479 break; 5480 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5481 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5482 // Add the module if it is a per-module index (has a source file name). 5483 if (!SourceFileName.empty()) 5484 addThisModule(); 5485 assert(!SeenValueSymbolTable && 5486 "Already read VST when parsing summary block?"); 5487 // We might not have a VST if there were no values in the 5488 // summary. An empty summary block generated when we are 5489 // performing ThinLTO compiles so we don't later invoke 5490 // the regular LTO process on them. 5491 if (VSTOffset > 0) { 5492 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5493 return Err; 5494 SeenValueSymbolTable = true; 5495 } 5496 SeenGlobalValSummary = true; 5497 if (Error Err = parseEntireSummary(Entry.ID)) 5498 return Err; 5499 break; 5500 case bitc::MODULE_STRTAB_BLOCK_ID: 5501 if (Error Err = parseModuleStringTable()) 5502 return Err; 5503 break; 5504 } 5505 continue; 5506 5507 case BitstreamEntry::Record: { 5508 Record.clear(); 5509 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5510 if (!MaybeBitCode) 5511 return MaybeBitCode.takeError(); 5512 switch (MaybeBitCode.get()) { 5513 default: 5514 break; // Default behavior, ignore unknown content. 5515 case bitc::MODULE_CODE_VERSION: { 5516 if (Error Err = parseVersionRecord(Record).takeError()) 5517 return Err; 5518 break; 5519 } 5520 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5521 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5522 SmallString<128> ValueName; 5523 if (convertToString(Record, 0, ValueName)) 5524 return error("Invalid record"); 5525 SourceFileName = ValueName.c_str(); 5526 break; 5527 } 5528 /// MODULE_CODE_HASH: [5*i32] 5529 case bitc::MODULE_CODE_HASH: { 5530 if (Record.size() != 5) 5531 return error("Invalid hash length " + Twine(Record.size()).str()); 5532 auto &Hash = getThisModule()->second.second; 5533 int Pos = 0; 5534 for (auto &Val : Record) { 5535 assert(!(Val >> 32) && "Unexpected high bits set"); 5536 Hash[Pos++] = Val; 5537 } 5538 break; 5539 } 5540 /// MODULE_CODE_VSTOFFSET: [offset] 5541 case bitc::MODULE_CODE_VSTOFFSET: 5542 if (Record.size() < 1) 5543 return error("Invalid record"); 5544 // Note that we subtract 1 here because the offset is relative to one 5545 // word before the start of the identification or module block, which 5546 // was historically always the start of the regular bitcode header. 5547 VSTOffset = Record[0] - 1; 5548 break; 5549 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5550 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5551 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5552 // v2: [strtab offset, strtab size, v1] 5553 case bitc::MODULE_CODE_GLOBALVAR: 5554 case bitc::MODULE_CODE_FUNCTION: 5555 case bitc::MODULE_CODE_ALIAS: { 5556 StringRef Name; 5557 ArrayRef<uint64_t> GVRecord; 5558 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5559 if (GVRecord.size() <= 3) 5560 return error("Invalid record"); 5561 uint64_t RawLinkage = GVRecord[3]; 5562 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5563 if (!UseStrtab) { 5564 ValueIdToLinkageMap[ValueId++] = Linkage; 5565 break; 5566 } 5567 5568 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5569 break; 5570 } 5571 } 5572 } 5573 continue; 5574 } 5575 } 5576 } 5577 5578 std::vector<ValueInfo> 5579 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5580 std::vector<ValueInfo> Ret; 5581 Ret.reserve(Record.size()); 5582 for (uint64_t RefValueId : Record) 5583 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5584 return Ret; 5585 } 5586 5587 std::vector<FunctionSummary::EdgeTy> 5588 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5589 bool IsOldProfileFormat, 5590 bool HasProfile, bool HasRelBF) { 5591 std::vector<FunctionSummary::EdgeTy> Ret; 5592 Ret.reserve(Record.size()); 5593 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5594 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5595 uint64_t RelBF = 0; 5596 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5597 if (IsOldProfileFormat) { 5598 I += 1; // Skip old callsitecount field 5599 if (HasProfile) 5600 I += 1; // Skip old profilecount field 5601 } else if (HasProfile) 5602 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5603 else if (HasRelBF) 5604 RelBF = Record[++I]; 5605 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5606 } 5607 return Ret; 5608 } 5609 5610 static void 5611 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5612 WholeProgramDevirtResolution &Wpd) { 5613 uint64_t ArgNum = Record[Slot++]; 5614 WholeProgramDevirtResolution::ByArg &B = 5615 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5616 Slot += ArgNum; 5617 5618 B.TheKind = 5619 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5620 B.Info = Record[Slot++]; 5621 B.Byte = Record[Slot++]; 5622 B.Bit = Record[Slot++]; 5623 } 5624 5625 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5626 StringRef Strtab, size_t &Slot, 5627 TypeIdSummary &TypeId) { 5628 uint64_t Id = Record[Slot++]; 5629 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5630 5631 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5632 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5633 static_cast<size_t>(Record[Slot + 1])}; 5634 Slot += 2; 5635 5636 uint64_t ResByArgNum = Record[Slot++]; 5637 for (uint64_t I = 0; I != ResByArgNum; ++I) 5638 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5639 } 5640 5641 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5642 StringRef Strtab, 5643 ModuleSummaryIndex &TheIndex) { 5644 size_t Slot = 0; 5645 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5646 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5647 Slot += 2; 5648 5649 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5650 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5651 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5652 TypeId.TTRes.SizeM1 = Record[Slot++]; 5653 TypeId.TTRes.BitMask = Record[Slot++]; 5654 TypeId.TTRes.InlineBits = Record[Slot++]; 5655 5656 while (Slot < Record.size()) 5657 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5658 } 5659 5660 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) { 5661 // Read-only refs are in the end of the refs list. 5662 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo) 5663 Refs[RefNo].setReadOnly(); 5664 } 5665 5666 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5667 // objects in the index. 5668 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5669 if (Error Err = Stream.EnterSubBlock(ID)) 5670 return Err; 5671 SmallVector<uint64_t, 64> Record; 5672 5673 // Parse version 5674 { 5675 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5676 if (!MaybeEntry) 5677 return MaybeEntry.takeError(); 5678 BitstreamEntry Entry = MaybeEntry.get(); 5679 5680 if (Entry.Kind != BitstreamEntry::Record) 5681 return error("Invalid Summary Block: record for version expected"); 5682 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5683 if (!MaybeRecord) 5684 return MaybeRecord.takeError(); 5685 if (MaybeRecord.get() != bitc::FS_VERSION) 5686 return error("Invalid Summary Block: version expected"); 5687 } 5688 const uint64_t Version = Record[0]; 5689 const bool IsOldProfileFormat = Version == 1; 5690 if (Version < 1 || Version > 6) 5691 return error("Invalid summary version " + Twine(Version) + 5692 ". Version should be in the range [1-6]."); 5693 Record.clear(); 5694 5695 // Keep around the last seen summary to be used when we see an optional 5696 // "OriginalName" attachement. 5697 GlobalValueSummary *LastSeenSummary = nullptr; 5698 GlobalValue::GUID LastSeenGUID = 0; 5699 5700 // We can expect to see any number of type ID information records before 5701 // each function summary records; these variables store the information 5702 // collected so far so that it can be used to create the summary object. 5703 std::vector<GlobalValue::GUID> PendingTypeTests; 5704 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5705 PendingTypeCheckedLoadVCalls; 5706 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5707 PendingTypeCheckedLoadConstVCalls; 5708 5709 while (true) { 5710 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5711 if (!MaybeEntry) 5712 return MaybeEntry.takeError(); 5713 BitstreamEntry Entry = MaybeEntry.get(); 5714 5715 switch (Entry.Kind) { 5716 case BitstreamEntry::SubBlock: // Handled for us already. 5717 case BitstreamEntry::Error: 5718 return error("Malformed block"); 5719 case BitstreamEntry::EndBlock: 5720 return Error::success(); 5721 case BitstreamEntry::Record: 5722 // The interesting case. 5723 break; 5724 } 5725 5726 // Read a record. The record format depends on whether this 5727 // is a per-module index or a combined index file. In the per-module 5728 // case the records contain the associated value's ID for correlation 5729 // with VST entries. In the combined index the correlation is done 5730 // via the bitcode offset of the summary records (which were saved 5731 // in the combined index VST entries). The records also contain 5732 // information used for ThinLTO renaming and importing. 5733 Record.clear(); 5734 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5735 if (!MaybeBitCode) 5736 return MaybeBitCode.takeError(); 5737 switch (unsigned BitCode = MaybeBitCode.get()) { 5738 default: // Default behavior: ignore. 5739 break; 5740 case bitc::FS_FLAGS: { // [flags] 5741 uint64_t Flags = Record[0]; 5742 // Scan flags. 5743 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5744 5745 // 1 bit: WithGlobalValueDeadStripping flag. 5746 // Set on combined index only. 5747 if (Flags & 0x1) 5748 TheIndex.setWithGlobalValueDeadStripping(); 5749 // 1 bit: SkipModuleByDistributedBackend flag. 5750 // Set on combined index only. 5751 if (Flags & 0x2) 5752 TheIndex.setSkipModuleByDistributedBackend(); 5753 // 1 bit: HasSyntheticEntryCounts flag. 5754 // Set on combined index only. 5755 if (Flags & 0x4) 5756 TheIndex.setHasSyntheticEntryCounts(); 5757 // 1 bit: DisableSplitLTOUnit flag. 5758 // Set on per module indexes. It is up to the client to validate 5759 // the consistency of this flag across modules being linked. 5760 if (Flags & 0x8) 5761 TheIndex.setEnableSplitLTOUnit(); 5762 // 1 bit: PartiallySplitLTOUnits flag. 5763 // Set on combined index only. 5764 if (Flags & 0x10) 5765 TheIndex.setPartiallySplitLTOUnits(); 5766 break; 5767 } 5768 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5769 uint64_t ValueID = Record[0]; 5770 GlobalValue::GUID RefGUID = Record[1]; 5771 ValueIdToValueInfoMap[ValueID] = 5772 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5773 break; 5774 } 5775 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5776 // numrefs x valueid, n x (valueid)] 5777 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5778 // numrefs x valueid, 5779 // n x (valueid, hotness)] 5780 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5781 // numrefs x valueid, 5782 // n x (valueid, relblockfreq)] 5783 case bitc::FS_PERMODULE: 5784 case bitc::FS_PERMODULE_RELBF: 5785 case bitc::FS_PERMODULE_PROFILE: { 5786 unsigned ValueID = Record[0]; 5787 uint64_t RawFlags = Record[1]; 5788 unsigned InstCount = Record[2]; 5789 uint64_t RawFunFlags = 0; 5790 unsigned NumRefs = Record[3]; 5791 unsigned NumImmutableRefs = 0; 5792 int RefListStartIndex = 4; 5793 if (Version >= 4) { 5794 RawFunFlags = Record[3]; 5795 NumRefs = Record[4]; 5796 RefListStartIndex = 5; 5797 if (Version >= 5) { 5798 NumImmutableRefs = Record[5]; 5799 RefListStartIndex = 6; 5800 } 5801 } 5802 5803 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5804 // The module path string ref set in the summary must be owned by the 5805 // index's module string table. Since we don't have a module path 5806 // string table section in the per-module index, we create a single 5807 // module path string table entry with an empty (0) ID to take 5808 // ownership. 5809 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5810 assert(Record.size() >= RefListStartIndex + NumRefs && 5811 "Record size inconsistent with number of references"); 5812 std::vector<ValueInfo> Refs = makeRefList( 5813 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5814 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5815 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5816 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5817 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5818 IsOldProfileFormat, HasProfile, HasRelBF); 5819 setImmutableRefs(Refs, NumImmutableRefs); 5820 auto FS = llvm::make_unique<FunctionSummary>( 5821 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5822 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5823 std::move(PendingTypeTestAssumeVCalls), 5824 std::move(PendingTypeCheckedLoadVCalls), 5825 std::move(PendingTypeTestAssumeConstVCalls), 5826 std::move(PendingTypeCheckedLoadConstVCalls)); 5827 PendingTypeTests.clear(); 5828 PendingTypeTestAssumeVCalls.clear(); 5829 PendingTypeCheckedLoadVCalls.clear(); 5830 PendingTypeTestAssumeConstVCalls.clear(); 5831 PendingTypeCheckedLoadConstVCalls.clear(); 5832 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5833 FS->setModulePath(getThisModule()->first()); 5834 FS->setOriginalName(VIAndOriginalGUID.second); 5835 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5836 break; 5837 } 5838 // FS_ALIAS: [valueid, flags, valueid] 5839 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5840 // they expect all aliasee summaries to be available. 5841 case bitc::FS_ALIAS: { 5842 unsigned ValueID = Record[0]; 5843 uint64_t RawFlags = Record[1]; 5844 unsigned AliaseeID = Record[2]; 5845 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5846 auto AS = llvm::make_unique<AliasSummary>(Flags); 5847 // The module path string ref set in the summary must be owned by the 5848 // index's module string table. Since we don't have a module path 5849 // string table section in the per-module index, we create a single 5850 // module path string table entry with an empty (0) ID to take 5851 // ownership. 5852 AS->setModulePath(getThisModule()->first()); 5853 5854 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5855 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5856 if (!AliaseeInModule) 5857 return error("Alias expects aliasee summary to be parsed"); 5858 AS->setAliasee(AliaseeVI, AliaseeInModule); 5859 5860 auto GUID = getValueInfoFromValueId(ValueID); 5861 AS->setOriginalName(GUID.second); 5862 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5863 break; 5864 } 5865 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5866 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5867 unsigned ValueID = Record[0]; 5868 uint64_t RawFlags = Record[1]; 5869 unsigned RefArrayStart = 2; 5870 GlobalVarSummary::GVarFlags GVF; 5871 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5872 if (Version >= 5) { 5873 GVF = getDecodedGVarFlags(Record[2]); 5874 RefArrayStart = 3; 5875 } 5876 std::vector<ValueInfo> Refs = 5877 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5878 auto FS = 5879 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5880 FS->setModulePath(getThisModule()->first()); 5881 auto GUID = getValueInfoFromValueId(ValueID); 5882 FS->setOriginalName(GUID.second); 5883 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5884 break; 5885 } 5886 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5887 // numrefs x valueid, n x (valueid)] 5888 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5889 // numrefs x valueid, n x (valueid, hotness)] 5890 case bitc::FS_COMBINED: 5891 case bitc::FS_COMBINED_PROFILE: { 5892 unsigned ValueID = Record[0]; 5893 uint64_t ModuleId = Record[1]; 5894 uint64_t RawFlags = Record[2]; 5895 unsigned InstCount = Record[3]; 5896 uint64_t RawFunFlags = 0; 5897 uint64_t EntryCount = 0; 5898 unsigned NumRefs = Record[4]; 5899 unsigned NumImmutableRefs = 0; 5900 int RefListStartIndex = 5; 5901 5902 if (Version >= 4) { 5903 RawFunFlags = Record[4]; 5904 RefListStartIndex = 6; 5905 size_t NumRefsIndex = 5; 5906 if (Version >= 5) { 5907 RefListStartIndex = 7; 5908 if (Version >= 6) { 5909 NumRefsIndex = 6; 5910 EntryCount = Record[5]; 5911 RefListStartIndex = 8; 5912 } 5913 NumImmutableRefs = Record[RefListStartIndex - 1]; 5914 } 5915 NumRefs = Record[NumRefsIndex]; 5916 } 5917 5918 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5919 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5920 assert(Record.size() >= RefListStartIndex + NumRefs && 5921 "Record size inconsistent with number of references"); 5922 std::vector<ValueInfo> Refs = makeRefList( 5923 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5924 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5925 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5926 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5927 IsOldProfileFormat, HasProfile, false); 5928 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5929 setImmutableRefs(Refs, NumImmutableRefs); 5930 auto FS = llvm::make_unique<FunctionSummary>( 5931 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 5932 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 5933 std::move(PendingTypeTestAssumeVCalls), 5934 std::move(PendingTypeCheckedLoadVCalls), 5935 std::move(PendingTypeTestAssumeConstVCalls), 5936 std::move(PendingTypeCheckedLoadConstVCalls)); 5937 PendingTypeTests.clear(); 5938 PendingTypeTestAssumeVCalls.clear(); 5939 PendingTypeCheckedLoadVCalls.clear(); 5940 PendingTypeTestAssumeConstVCalls.clear(); 5941 PendingTypeCheckedLoadConstVCalls.clear(); 5942 LastSeenSummary = FS.get(); 5943 LastSeenGUID = VI.getGUID(); 5944 FS->setModulePath(ModuleIdMap[ModuleId]); 5945 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5946 break; 5947 } 5948 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5949 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5950 // they expect all aliasee summaries to be available. 5951 case bitc::FS_COMBINED_ALIAS: { 5952 unsigned ValueID = Record[0]; 5953 uint64_t ModuleId = Record[1]; 5954 uint64_t RawFlags = Record[2]; 5955 unsigned AliaseeValueId = Record[3]; 5956 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5957 auto AS = llvm::make_unique<AliasSummary>(Flags); 5958 LastSeenSummary = AS.get(); 5959 AS->setModulePath(ModuleIdMap[ModuleId]); 5960 5961 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 5962 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 5963 AS->setAliasee(AliaseeVI, AliaseeInModule); 5964 5965 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5966 LastSeenGUID = VI.getGUID(); 5967 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5968 break; 5969 } 5970 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5971 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5972 unsigned ValueID = Record[0]; 5973 uint64_t ModuleId = Record[1]; 5974 uint64_t RawFlags = Record[2]; 5975 unsigned RefArrayStart = 3; 5976 GlobalVarSummary::GVarFlags GVF; 5977 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5978 if (Version >= 5) { 5979 GVF = getDecodedGVarFlags(Record[3]); 5980 RefArrayStart = 4; 5981 } 5982 std::vector<ValueInfo> Refs = 5983 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5984 auto FS = 5985 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5986 LastSeenSummary = FS.get(); 5987 FS->setModulePath(ModuleIdMap[ModuleId]); 5988 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5989 LastSeenGUID = VI.getGUID(); 5990 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5991 break; 5992 } 5993 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5994 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5995 uint64_t OriginalName = Record[0]; 5996 if (!LastSeenSummary) 5997 return error("Name attachment that does not follow a combined record"); 5998 LastSeenSummary->setOriginalName(OriginalName); 5999 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6000 // Reset the LastSeenSummary 6001 LastSeenSummary = nullptr; 6002 LastSeenGUID = 0; 6003 break; 6004 } 6005 case bitc::FS_TYPE_TESTS: 6006 assert(PendingTypeTests.empty()); 6007 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6008 Record.end()); 6009 break; 6010 6011 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6012 assert(PendingTypeTestAssumeVCalls.empty()); 6013 for (unsigned I = 0; I != Record.size(); I += 2) 6014 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6015 break; 6016 6017 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6018 assert(PendingTypeCheckedLoadVCalls.empty()); 6019 for (unsigned I = 0; I != Record.size(); I += 2) 6020 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6021 break; 6022 6023 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6024 PendingTypeTestAssumeConstVCalls.push_back( 6025 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6026 break; 6027 6028 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6029 PendingTypeCheckedLoadConstVCalls.push_back( 6030 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6031 break; 6032 6033 case bitc::FS_CFI_FUNCTION_DEFS: { 6034 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6035 for (unsigned I = 0; I != Record.size(); I += 2) 6036 CfiFunctionDefs.insert( 6037 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6038 break; 6039 } 6040 6041 case bitc::FS_CFI_FUNCTION_DECLS: { 6042 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6043 for (unsigned I = 0; I != Record.size(); I += 2) 6044 CfiFunctionDecls.insert( 6045 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6046 break; 6047 } 6048 6049 case bitc::FS_TYPE_ID: 6050 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6051 break; 6052 } 6053 } 6054 llvm_unreachable("Exit infinite loop"); 6055 } 6056 6057 // Parse the module string table block into the Index. 6058 // This populates the ModulePathStringTable map in the index. 6059 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6060 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6061 return Err; 6062 6063 SmallVector<uint64_t, 64> Record; 6064 6065 SmallString<128> ModulePath; 6066 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6067 6068 while (true) { 6069 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6070 if (!MaybeEntry) 6071 return MaybeEntry.takeError(); 6072 BitstreamEntry Entry = MaybeEntry.get(); 6073 6074 switch (Entry.Kind) { 6075 case BitstreamEntry::SubBlock: // Handled for us already. 6076 case BitstreamEntry::Error: 6077 return error("Malformed block"); 6078 case BitstreamEntry::EndBlock: 6079 return Error::success(); 6080 case BitstreamEntry::Record: 6081 // The interesting case. 6082 break; 6083 } 6084 6085 Record.clear(); 6086 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6087 if (!MaybeRecord) 6088 return MaybeRecord.takeError(); 6089 switch (MaybeRecord.get()) { 6090 default: // Default behavior: ignore. 6091 break; 6092 case bitc::MST_CODE_ENTRY: { 6093 // MST_ENTRY: [modid, namechar x N] 6094 uint64_t ModuleId = Record[0]; 6095 6096 if (convertToString(Record, 1, ModulePath)) 6097 return error("Invalid record"); 6098 6099 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6100 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6101 6102 ModulePath.clear(); 6103 break; 6104 } 6105 /// MST_CODE_HASH: [5*i32] 6106 case bitc::MST_CODE_HASH: { 6107 if (Record.size() != 5) 6108 return error("Invalid hash length " + Twine(Record.size()).str()); 6109 if (!LastSeenModule) 6110 return error("Invalid hash that does not follow a module path"); 6111 int Pos = 0; 6112 for (auto &Val : Record) { 6113 assert(!(Val >> 32) && "Unexpected high bits set"); 6114 LastSeenModule->second.second[Pos++] = Val; 6115 } 6116 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6117 LastSeenModule = nullptr; 6118 break; 6119 } 6120 } 6121 } 6122 llvm_unreachable("Exit infinite loop"); 6123 } 6124 6125 namespace { 6126 6127 // FIXME: This class is only here to support the transition to llvm::Error. It 6128 // will be removed once this transition is complete. Clients should prefer to 6129 // deal with the Error value directly, rather than converting to error_code. 6130 class BitcodeErrorCategoryType : public std::error_category { 6131 const char *name() const noexcept override { 6132 return "llvm.bitcode"; 6133 } 6134 6135 std::string message(int IE) const override { 6136 BitcodeError E = static_cast<BitcodeError>(IE); 6137 switch (E) { 6138 case BitcodeError::CorruptedBitcode: 6139 return "Corrupted bitcode"; 6140 } 6141 llvm_unreachable("Unknown error type!"); 6142 } 6143 }; 6144 6145 } // end anonymous namespace 6146 6147 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6148 6149 const std::error_category &llvm::BitcodeErrorCategory() { 6150 return *ErrorCategory; 6151 } 6152 6153 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6154 unsigned Block, unsigned RecordID) { 6155 if (Error Err = Stream.EnterSubBlock(Block)) 6156 return std::move(Err); 6157 6158 StringRef Strtab; 6159 while (true) { 6160 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6161 if (!MaybeEntry) 6162 return MaybeEntry.takeError(); 6163 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6164 6165 switch (Entry.Kind) { 6166 case BitstreamEntry::EndBlock: 6167 return Strtab; 6168 6169 case BitstreamEntry::Error: 6170 return error("Malformed block"); 6171 6172 case BitstreamEntry::SubBlock: 6173 if (Error Err = Stream.SkipBlock()) 6174 return std::move(Err); 6175 break; 6176 6177 case BitstreamEntry::Record: 6178 StringRef Blob; 6179 SmallVector<uint64_t, 1> Record; 6180 Expected<unsigned> MaybeRecord = 6181 Stream.readRecord(Entry.ID, Record, &Blob); 6182 if (!MaybeRecord) 6183 return MaybeRecord.takeError(); 6184 if (MaybeRecord.get() == RecordID) 6185 Strtab = Blob; 6186 break; 6187 } 6188 } 6189 } 6190 6191 //===----------------------------------------------------------------------===// 6192 // External interface 6193 //===----------------------------------------------------------------------===// 6194 6195 Expected<std::vector<BitcodeModule>> 6196 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6197 auto FOrErr = getBitcodeFileContents(Buffer); 6198 if (!FOrErr) 6199 return FOrErr.takeError(); 6200 return std::move(FOrErr->Mods); 6201 } 6202 6203 Expected<BitcodeFileContents> 6204 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6205 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6206 if (!StreamOrErr) 6207 return StreamOrErr.takeError(); 6208 BitstreamCursor &Stream = *StreamOrErr; 6209 6210 BitcodeFileContents F; 6211 while (true) { 6212 uint64_t BCBegin = Stream.getCurrentByteNo(); 6213 6214 // We may be consuming bitcode from a client that leaves garbage at the end 6215 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6216 // the end that there cannot possibly be another module, stop looking. 6217 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6218 return F; 6219 6220 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6221 if (!MaybeEntry) 6222 return MaybeEntry.takeError(); 6223 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6224 6225 switch (Entry.Kind) { 6226 case BitstreamEntry::EndBlock: 6227 case BitstreamEntry::Error: 6228 return error("Malformed block"); 6229 6230 case BitstreamEntry::SubBlock: { 6231 uint64_t IdentificationBit = -1ull; 6232 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6233 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6234 if (Error Err = Stream.SkipBlock()) 6235 return std::move(Err); 6236 6237 { 6238 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6239 if (!MaybeEntry) 6240 return MaybeEntry.takeError(); 6241 Entry = MaybeEntry.get(); 6242 } 6243 6244 if (Entry.Kind != BitstreamEntry::SubBlock || 6245 Entry.ID != bitc::MODULE_BLOCK_ID) 6246 return error("Malformed block"); 6247 } 6248 6249 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6250 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6251 if (Error Err = Stream.SkipBlock()) 6252 return std::move(Err); 6253 6254 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6255 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6256 Buffer.getBufferIdentifier(), IdentificationBit, 6257 ModuleBit}); 6258 continue; 6259 } 6260 6261 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6262 Expected<StringRef> Strtab = 6263 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6264 if (!Strtab) 6265 return Strtab.takeError(); 6266 // This string table is used by every preceding bitcode module that does 6267 // not have its own string table. A bitcode file may have multiple 6268 // string tables if it was created by binary concatenation, for example 6269 // with "llvm-cat -b". 6270 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6271 if (!I->Strtab.empty()) 6272 break; 6273 I->Strtab = *Strtab; 6274 } 6275 // Similarly, the string table is used by every preceding symbol table; 6276 // normally there will be just one unless the bitcode file was created 6277 // by binary concatenation. 6278 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6279 F.StrtabForSymtab = *Strtab; 6280 continue; 6281 } 6282 6283 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6284 Expected<StringRef> SymtabOrErr = 6285 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6286 if (!SymtabOrErr) 6287 return SymtabOrErr.takeError(); 6288 6289 // We can expect the bitcode file to have multiple symbol tables if it 6290 // was created by binary concatenation. In that case we silently 6291 // ignore any subsequent symbol tables, which is fine because this is a 6292 // low level function. The client is expected to notice that the number 6293 // of modules in the symbol table does not match the number of modules 6294 // in the input file and regenerate the symbol table. 6295 if (F.Symtab.empty()) 6296 F.Symtab = *SymtabOrErr; 6297 continue; 6298 } 6299 6300 if (Error Err = Stream.SkipBlock()) 6301 return std::move(Err); 6302 continue; 6303 } 6304 case BitstreamEntry::Record: 6305 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6306 continue; 6307 else 6308 return StreamFailed.takeError(); 6309 } 6310 } 6311 } 6312 6313 /// Get a lazy one-at-time loading module from bitcode. 6314 /// 6315 /// This isn't always used in a lazy context. In particular, it's also used by 6316 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6317 /// in forward-referenced functions from block address references. 6318 /// 6319 /// \param[in] MaterializeAll Set to \c true if we should materialize 6320 /// everything. 6321 Expected<std::unique_ptr<Module>> 6322 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6323 bool ShouldLazyLoadMetadata, bool IsImporting) { 6324 BitstreamCursor Stream(Buffer); 6325 6326 std::string ProducerIdentification; 6327 if (IdentificationBit != -1ull) { 6328 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6329 return std::move(JumpFailed); 6330 Expected<std::string> ProducerIdentificationOrErr = 6331 readIdentificationBlock(Stream); 6332 if (!ProducerIdentificationOrErr) 6333 return ProducerIdentificationOrErr.takeError(); 6334 6335 ProducerIdentification = *ProducerIdentificationOrErr; 6336 } 6337 6338 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6339 return std::move(JumpFailed); 6340 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6341 Context); 6342 6343 std::unique_ptr<Module> M = 6344 llvm::make_unique<Module>(ModuleIdentifier, Context); 6345 M->setMaterializer(R); 6346 6347 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6348 if (Error Err = 6349 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6350 return std::move(Err); 6351 6352 if (MaterializeAll) { 6353 // Read in the entire module, and destroy the BitcodeReader. 6354 if (Error Err = M->materializeAll()) 6355 return std::move(Err); 6356 } else { 6357 // Resolve forward references from blockaddresses. 6358 if (Error Err = R->materializeForwardReferencedFunctions()) 6359 return std::move(Err); 6360 } 6361 return std::move(M); 6362 } 6363 6364 Expected<std::unique_ptr<Module>> 6365 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6366 bool IsImporting) { 6367 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6368 } 6369 6370 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6371 // We don't use ModuleIdentifier here because the client may need to control the 6372 // module path used in the combined summary (e.g. when reading summaries for 6373 // regular LTO modules). 6374 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6375 StringRef ModulePath, uint64_t ModuleId) { 6376 BitstreamCursor Stream(Buffer); 6377 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6378 return JumpFailed; 6379 6380 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6381 ModulePath, ModuleId); 6382 return R.parseModule(); 6383 } 6384 6385 // Parse the specified bitcode buffer, returning the function info index. 6386 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6387 BitstreamCursor Stream(Buffer); 6388 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6389 return std::move(JumpFailed); 6390 6391 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6392 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6393 ModuleIdentifier, 0); 6394 6395 if (Error Err = R.parseModule()) 6396 return std::move(Err); 6397 6398 return std::move(Index); 6399 } 6400 6401 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6402 unsigned ID) { 6403 if (Error Err = Stream.EnterSubBlock(ID)) 6404 return std::move(Err); 6405 SmallVector<uint64_t, 64> Record; 6406 6407 while (true) { 6408 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6409 if (!MaybeEntry) 6410 return MaybeEntry.takeError(); 6411 BitstreamEntry Entry = MaybeEntry.get(); 6412 6413 switch (Entry.Kind) { 6414 case BitstreamEntry::SubBlock: // Handled for us already. 6415 case BitstreamEntry::Error: 6416 return error("Malformed block"); 6417 case BitstreamEntry::EndBlock: 6418 // If no flags record found, conservatively return true to mimic 6419 // behavior before this flag was added. 6420 return true; 6421 case BitstreamEntry::Record: 6422 // The interesting case. 6423 break; 6424 } 6425 6426 // Look for the FS_FLAGS record. 6427 Record.clear(); 6428 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6429 if (!MaybeBitCode) 6430 return MaybeBitCode.takeError(); 6431 switch (MaybeBitCode.get()) { 6432 default: // Default behavior: ignore. 6433 break; 6434 case bitc::FS_FLAGS: { // [flags] 6435 uint64_t Flags = Record[0]; 6436 // Scan flags. 6437 assert(Flags <= 0x1f && "Unexpected bits in flag"); 6438 6439 return Flags & 0x8; 6440 } 6441 } 6442 } 6443 llvm_unreachable("Exit infinite loop"); 6444 } 6445 6446 // Check if the given bitcode buffer contains a global value summary block. 6447 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6448 BitstreamCursor Stream(Buffer); 6449 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6450 return std::move(JumpFailed); 6451 6452 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6453 return std::move(Err); 6454 6455 while (true) { 6456 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6457 if (!MaybeEntry) 6458 return MaybeEntry.takeError(); 6459 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6460 6461 switch (Entry.Kind) { 6462 case BitstreamEntry::Error: 6463 return error("Malformed block"); 6464 case BitstreamEntry::EndBlock: 6465 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6466 /*EnableSplitLTOUnit=*/false}; 6467 6468 case BitstreamEntry::SubBlock: 6469 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6470 Expected<bool> EnableSplitLTOUnit = 6471 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6472 if (!EnableSplitLTOUnit) 6473 return EnableSplitLTOUnit.takeError(); 6474 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6475 *EnableSplitLTOUnit}; 6476 } 6477 6478 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6479 Expected<bool> EnableSplitLTOUnit = 6480 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6481 if (!EnableSplitLTOUnit) 6482 return EnableSplitLTOUnit.takeError(); 6483 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6484 *EnableSplitLTOUnit}; 6485 } 6486 6487 // Ignore other sub-blocks. 6488 if (Error Err = Stream.SkipBlock()) 6489 return std::move(Err); 6490 continue; 6491 6492 case BitstreamEntry::Record: 6493 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6494 continue; 6495 else 6496 return StreamFailed.takeError(); 6497 } 6498 } 6499 } 6500 6501 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6502 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6503 if (!MsOrErr) 6504 return MsOrErr.takeError(); 6505 6506 if (MsOrErr->size() != 1) 6507 return error("Expected a single module"); 6508 6509 return (*MsOrErr)[0]; 6510 } 6511 6512 Expected<std::unique_ptr<Module>> 6513 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6514 bool ShouldLazyLoadMetadata, bool IsImporting) { 6515 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6516 if (!BM) 6517 return BM.takeError(); 6518 6519 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6520 } 6521 6522 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6523 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6524 bool ShouldLazyLoadMetadata, bool IsImporting) { 6525 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6526 IsImporting); 6527 if (MOrErr) 6528 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6529 return MOrErr; 6530 } 6531 6532 Expected<std::unique_ptr<Module>> 6533 BitcodeModule::parseModule(LLVMContext &Context) { 6534 return getModuleImpl(Context, true, false, false); 6535 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6536 // written. We must defer until the Module has been fully materialized. 6537 } 6538 6539 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6540 LLVMContext &Context) { 6541 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6542 if (!BM) 6543 return BM.takeError(); 6544 6545 return BM->parseModule(Context); 6546 } 6547 6548 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6549 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6550 if (!StreamOrErr) 6551 return StreamOrErr.takeError(); 6552 6553 return readTriple(*StreamOrErr); 6554 } 6555 6556 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6557 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6558 if (!StreamOrErr) 6559 return StreamOrErr.takeError(); 6560 6561 return hasObjCCategory(*StreamOrErr); 6562 } 6563 6564 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6565 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6566 if (!StreamOrErr) 6567 return StreamOrErr.takeError(); 6568 6569 return readIdentificationCode(*StreamOrErr); 6570 } 6571 6572 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6573 ModuleSummaryIndex &CombinedIndex, 6574 uint64_t ModuleId) { 6575 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6576 if (!BM) 6577 return BM.takeError(); 6578 6579 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6580 } 6581 6582 Expected<std::unique_ptr<ModuleSummaryIndex>> 6583 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6584 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6585 if (!BM) 6586 return BM.takeError(); 6587 6588 return BM->getSummary(); 6589 } 6590 6591 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6592 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6593 if (!BM) 6594 return BM.takeError(); 6595 6596 return BM->getLTOInfo(); 6597 } 6598 6599 Expected<std::unique_ptr<ModuleSummaryIndex>> 6600 llvm::getModuleSummaryIndexForFile(StringRef Path, 6601 bool IgnoreEmptyThinLTOIndexFile) { 6602 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6603 MemoryBuffer::getFileOrSTDIN(Path); 6604 if (!FileOrErr) 6605 return errorCodeToError(FileOrErr.getError()); 6606 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6607 return nullptr; 6608 return getModuleSummaryIndex(**FileOrErr); 6609 } 6610