1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(
581       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval or sret attributes by adding the
719   /// corresponding argument's pointee type.
720   void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(
728       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
729       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
730 
731   Error parseComdatRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
733   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
734   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
735                                         ArrayRef<uint64_t> Record);
736 
737   Error parseAttributeBlock();
738   Error parseAttributeGroupBlock();
739   Error parseTypeTable();
740   Error parseTypeTableBody();
741   Error parseOperandBundleTags();
742   Error parseSyncScopeNames();
743 
744   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
745                                 unsigned NameIndex, Triple &TT);
746   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
747                                ArrayRef<uint64_t> Record);
748   Error parseValueSymbolTable(uint64_t Offset = 0);
749   Error parseGlobalValueSymbolTable();
750   Error parseConstants();
751   Error rememberAndSkipFunctionBodies();
752   Error rememberAndSkipFunctionBody();
753   /// Save the positions of the Metadata blocks and skip parsing the blocks.
754   Error rememberAndSkipMetadata();
755   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
756   Error parseFunctionBody(Function *F);
757   Error globalCleanup();
758   Error resolveGlobalAndIndirectSymbolInits();
759   Error parseUseLists();
760   Error findFunctionInStream(
761       Function *F,
762       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
763 
764   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
765 };
766 
767 /// Class to manage reading and parsing function summary index bitcode
768 /// files/sections.
769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
770   /// The module index built during parsing.
771   ModuleSummaryIndex &TheIndex;
772 
773   /// Indicates whether we have encountered a global value summary section
774   /// yet during parsing.
775   bool SeenGlobalValSummary = false;
776 
777   /// Indicates whether we have already parsed the VST, used for error checking.
778   bool SeenValueSymbolTable = false;
779 
780   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
781   /// Used to enable on-demand parsing of the VST.
782   uint64_t VSTOffset = 0;
783 
784   // Map to save ValueId to ValueInfo association that was recorded in the
785   // ValueSymbolTable. It is used after the VST is parsed to convert
786   // call graph edges read from the function summary from referencing
787   // callees by their ValueId to using the ValueInfo instead, which is how
788   // they are recorded in the summary index being built.
789   // We save a GUID which refers to the same global as the ValueInfo, but
790   // ignoring the linkage, i.e. for values other than local linkage they are
791   // identical.
792   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
793       ValueIdToValueInfoMap;
794 
795   /// Map populated during module path string table parsing, from the
796   /// module ID to a string reference owned by the index's module
797   /// path string table, used to correlate with combined index
798   /// summary records.
799   DenseMap<uint64_t, StringRef> ModuleIdMap;
800 
801   /// Original source file name recorded in a bitcode record.
802   std::string SourceFileName;
803 
804   /// The string identifier given to this module by the client, normally the
805   /// path to the bitcode file.
806   StringRef ModulePath;
807 
808   /// For per-module summary indexes, the unique numerical identifier given to
809   /// this module by the client.
810   unsigned ModuleId;
811 
812 public:
813   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
814                                   ModuleSummaryIndex &TheIndex,
815                                   StringRef ModulePath, unsigned ModuleId);
816 
817   Error parseModule();
818 
819 private:
820   void setValueGUID(uint64_t ValueID, StringRef ValueName,
821                     GlobalValue::LinkageTypes Linkage,
822                     StringRef SourceFileName);
823   Error parseValueSymbolTable(
824       uint64_t Offset,
825       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
826   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
827   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
828                                                     bool IsOldProfileFormat,
829                                                     bool HasProfile,
830                                                     bool HasRelBF);
831   Error parseEntireSummary(unsigned ID);
832   Error parseModuleStringTable();
833   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
834   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
835                                        TypeIdCompatibleVtableInfo &TypeId);
836   std::vector<FunctionSummary::ParamAccess>
837   parseParamAccesses(ArrayRef<uint64_t> Record);
838 
839   std::pair<ValueInfo, GlobalValue::GUID>
840   getValueInfoFromValueId(unsigned ValueId);
841 
842   void addThisModule();
843   ModuleSummaryIndex::ModuleInfo *getThisModule();
844 };
845 
846 } // end anonymous namespace
847 
848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
849                                                     Error Err) {
850   if (Err) {
851     std::error_code EC;
852     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
853       EC = EIB.convertToErrorCode();
854       Ctx.emitError(EIB.message());
855     });
856     return EC;
857   }
858   return std::error_code();
859 }
860 
861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
862                              StringRef ProducerIdentification,
863                              LLVMContext &Context)
864     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
865       ValueList(Context, Stream.SizeInBytes()) {
866   this->ProducerIdentification = std::string(ProducerIdentification);
867 }
868 
869 Error BitcodeReader::materializeForwardReferencedFunctions() {
870   if (WillMaterializeAllForwardRefs)
871     return Error::success();
872 
873   // Prevent recursion.
874   WillMaterializeAllForwardRefs = true;
875 
876   while (!BasicBlockFwdRefQueue.empty()) {
877     Function *F = BasicBlockFwdRefQueue.front();
878     BasicBlockFwdRefQueue.pop_front();
879     assert(F && "Expected valid function");
880     if (!BasicBlockFwdRefs.count(F))
881       // Already materialized.
882       continue;
883 
884     // Check for a function that isn't materializable to prevent an infinite
885     // loop.  When parsing a blockaddress stored in a global variable, there
886     // isn't a trivial way to check if a function will have a body without a
887     // linear search through FunctionsWithBodies, so just check it here.
888     if (!F->isMaterializable())
889       return error("Never resolved function from blockaddress");
890 
891     // Try to materialize F.
892     if (Error Err = materialize(F))
893       return Err;
894   }
895   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
896 
897   // Reset state.
898   WillMaterializeAllForwardRefs = false;
899   return Error::success();
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //  Helper functions to implement forward reference resolution, etc.
904 //===----------------------------------------------------------------------===//
905 
906 static bool hasImplicitComdat(size_t Val) {
907   switch (Val) {
908   default:
909     return false;
910   case 1:  // Old WeakAnyLinkage
911   case 4:  // Old LinkOnceAnyLinkage
912   case 10: // Old WeakODRLinkage
913   case 11: // Old LinkOnceODRLinkage
914     return true;
915   }
916 }
917 
918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
919   switch (Val) {
920   default: // Map unknown/new linkages to external
921   case 0:
922     return GlobalValue::ExternalLinkage;
923   case 2:
924     return GlobalValue::AppendingLinkage;
925   case 3:
926     return GlobalValue::InternalLinkage;
927   case 5:
928     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
929   case 6:
930     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
931   case 7:
932     return GlobalValue::ExternalWeakLinkage;
933   case 8:
934     return GlobalValue::CommonLinkage;
935   case 9:
936     return GlobalValue::PrivateLinkage;
937   case 12:
938     return GlobalValue::AvailableExternallyLinkage;
939   case 13:
940     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
941   case 14:
942     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
943   case 15:
944     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
945   case 1: // Old value with implicit comdat.
946   case 16:
947     return GlobalValue::WeakAnyLinkage;
948   case 10: // Old value with implicit comdat.
949   case 17:
950     return GlobalValue::WeakODRLinkage;
951   case 4: // Old value with implicit comdat.
952   case 18:
953     return GlobalValue::LinkOnceAnyLinkage;
954   case 11: // Old value with implicit comdat.
955   case 19:
956     return GlobalValue::LinkOnceODRLinkage;
957   }
958 }
959 
960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
961   FunctionSummary::FFlags Flags;
962   Flags.ReadNone = RawFlags & 0x1;
963   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
964   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
965   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
966   Flags.NoInline = (RawFlags >> 4) & 0x1;
967   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
968   return Flags;
969 }
970 
971 /// Decode the flags for GlobalValue in the summary.
972 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
973                                                             uint64_t Version) {
974   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
975   // like getDecodedLinkage() above. Any future change to the linkage enum and
976   // to getDecodedLinkage() will need to be taken into account here as above.
977   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
978   RawFlags = RawFlags >> 4;
979   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
980   // The Live flag wasn't introduced until version 3. For dead stripping
981   // to work correctly on earlier versions, we must conservatively treat all
982   // values as live.
983   bool Live = (RawFlags & 0x2) || Version < 3;
984   bool Local = (RawFlags & 0x4);
985   bool AutoHide = (RawFlags & 0x8);
986 
987   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
988 }
989 
990 // Decode the flags for GlobalVariable in the summary
991 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
992   return GlobalVarSummary::GVarFlags(
993       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
994       (RawFlags & 0x4) ? true : false,
995       (GlobalObject::VCallVisibility)(RawFlags >> 3));
996 }
997 
998 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
999   switch (Val) {
1000   default: // Map unknown visibilities to default.
1001   case 0: return GlobalValue::DefaultVisibility;
1002   case 1: return GlobalValue::HiddenVisibility;
1003   case 2: return GlobalValue::ProtectedVisibility;
1004   }
1005 }
1006 
1007 static GlobalValue::DLLStorageClassTypes
1008 getDecodedDLLStorageClass(unsigned Val) {
1009   switch (Val) {
1010   default: // Map unknown values to default.
1011   case 0: return GlobalValue::DefaultStorageClass;
1012   case 1: return GlobalValue::DLLImportStorageClass;
1013   case 2: return GlobalValue::DLLExportStorageClass;
1014   }
1015 }
1016 
1017 static bool getDecodedDSOLocal(unsigned Val) {
1018   switch(Val) {
1019   default: // Map unknown values to preemptable.
1020   case 0:  return false;
1021   case 1:  return true;
1022   }
1023 }
1024 
1025 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1026   switch (Val) {
1027     case 0: return GlobalVariable::NotThreadLocal;
1028     default: // Map unknown non-zero value to general dynamic.
1029     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1030     case 2: return GlobalVariable::LocalDynamicTLSModel;
1031     case 3: return GlobalVariable::InitialExecTLSModel;
1032     case 4: return GlobalVariable::LocalExecTLSModel;
1033   }
1034 }
1035 
1036 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1037   switch (Val) {
1038     default: // Map unknown to UnnamedAddr::None.
1039     case 0: return GlobalVariable::UnnamedAddr::None;
1040     case 1: return GlobalVariable::UnnamedAddr::Global;
1041     case 2: return GlobalVariable::UnnamedAddr::Local;
1042   }
1043 }
1044 
1045 static int getDecodedCastOpcode(unsigned Val) {
1046   switch (Val) {
1047   default: return -1;
1048   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1049   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1050   case bitc::CAST_SEXT    : return Instruction::SExt;
1051   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1052   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1053   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1054   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1055   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1056   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1057   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1058   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1059   case bitc::CAST_BITCAST : return Instruction::BitCast;
1060   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1061   }
1062 }
1063 
1064 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1065   bool IsFP = Ty->isFPOrFPVectorTy();
1066   // UnOps are only valid for int/fp or vector of int/fp types
1067   if (!IsFP && !Ty->isIntOrIntVectorTy())
1068     return -1;
1069 
1070   switch (Val) {
1071   default:
1072     return -1;
1073   case bitc::UNOP_FNEG:
1074     return IsFP ? Instruction::FNeg : -1;
1075   }
1076 }
1077 
1078 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1079   bool IsFP = Ty->isFPOrFPVectorTy();
1080   // BinOps are only valid for int/fp or vector of int/fp types
1081   if (!IsFP && !Ty->isIntOrIntVectorTy())
1082     return -1;
1083 
1084   switch (Val) {
1085   default:
1086     return -1;
1087   case bitc::BINOP_ADD:
1088     return IsFP ? Instruction::FAdd : Instruction::Add;
1089   case bitc::BINOP_SUB:
1090     return IsFP ? Instruction::FSub : Instruction::Sub;
1091   case bitc::BINOP_MUL:
1092     return IsFP ? Instruction::FMul : Instruction::Mul;
1093   case bitc::BINOP_UDIV:
1094     return IsFP ? -1 : Instruction::UDiv;
1095   case bitc::BINOP_SDIV:
1096     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1097   case bitc::BINOP_UREM:
1098     return IsFP ? -1 : Instruction::URem;
1099   case bitc::BINOP_SREM:
1100     return IsFP ? Instruction::FRem : Instruction::SRem;
1101   case bitc::BINOP_SHL:
1102     return IsFP ? -1 : Instruction::Shl;
1103   case bitc::BINOP_LSHR:
1104     return IsFP ? -1 : Instruction::LShr;
1105   case bitc::BINOP_ASHR:
1106     return IsFP ? -1 : Instruction::AShr;
1107   case bitc::BINOP_AND:
1108     return IsFP ? -1 : Instruction::And;
1109   case bitc::BINOP_OR:
1110     return IsFP ? -1 : Instruction::Or;
1111   case bitc::BINOP_XOR:
1112     return IsFP ? -1 : Instruction::Xor;
1113   }
1114 }
1115 
1116 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1117   switch (Val) {
1118   default: return AtomicRMWInst::BAD_BINOP;
1119   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1120   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1121   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1122   case bitc::RMW_AND: return AtomicRMWInst::And;
1123   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1124   case bitc::RMW_OR: return AtomicRMWInst::Or;
1125   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1126   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1127   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1128   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1129   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1130   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1131   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1132   }
1133 }
1134 
1135 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1136   switch (Val) {
1137   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1138   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1139   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1140   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1141   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1142   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1143   default: // Map unknown orderings to sequentially-consistent.
1144   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1145   }
1146 }
1147 
1148 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1149   switch (Val) {
1150   default: // Map unknown selection kinds to any.
1151   case bitc::COMDAT_SELECTION_KIND_ANY:
1152     return Comdat::Any;
1153   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1154     return Comdat::ExactMatch;
1155   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1156     return Comdat::Largest;
1157   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1158     return Comdat::NoDuplicates;
1159   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1160     return Comdat::SameSize;
1161   }
1162 }
1163 
1164 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1165   FastMathFlags FMF;
1166   if (0 != (Val & bitc::UnsafeAlgebra))
1167     FMF.setFast();
1168   if (0 != (Val & bitc::AllowReassoc))
1169     FMF.setAllowReassoc();
1170   if (0 != (Val & bitc::NoNaNs))
1171     FMF.setNoNaNs();
1172   if (0 != (Val & bitc::NoInfs))
1173     FMF.setNoInfs();
1174   if (0 != (Val & bitc::NoSignedZeros))
1175     FMF.setNoSignedZeros();
1176   if (0 != (Val & bitc::AllowReciprocal))
1177     FMF.setAllowReciprocal();
1178   if (0 != (Val & bitc::AllowContract))
1179     FMF.setAllowContract(true);
1180   if (0 != (Val & bitc::ApproxFunc))
1181     FMF.setApproxFunc();
1182   return FMF;
1183 }
1184 
1185 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1186   switch (Val) {
1187   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1188   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1189   }
1190 }
1191 
1192 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1193   // The type table size is always specified correctly.
1194   if (ID >= TypeList.size())
1195     return nullptr;
1196 
1197   if (Type *Ty = TypeList[ID])
1198     return Ty;
1199 
1200   // If we have a forward reference, the only possible case is when it is to a
1201   // named struct.  Just create a placeholder for now.
1202   return TypeList[ID] = createIdentifiedStructType(Context);
1203 }
1204 
1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1206                                                       StringRef Name) {
1207   auto *Ret = StructType::create(Context, Name);
1208   IdentifiedStructTypes.push_back(Ret);
1209   return Ret;
1210 }
1211 
1212 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1213   auto *Ret = StructType::create(Context);
1214   IdentifiedStructTypes.push_back(Ret);
1215   return Ret;
1216 }
1217 
1218 //===----------------------------------------------------------------------===//
1219 //  Functions for parsing blocks from the bitcode file
1220 //===----------------------------------------------------------------------===//
1221 
1222 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1223   switch (Val) {
1224   case Attribute::EndAttrKinds:
1225   case Attribute::EmptyKey:
1226   case Attribute::TombstoneKey:
1227     llvm_unreachable("Synthetic enumerators which should never get here");
1228 
1229   case Attribute::None:            return 0;
1230   case Attribute::ZExt:            return 1 << 0;
1231   case Attribute::SExt:            return 1 << 1;
1232   case Attribute::NoReturn:        return 1 << 2;
1233   case Attribute::InReg:           return 1 << 3;
1234   case Attribute::StructRet:       return 1 << 4;
1235   case Attribute::NoUnwind:        return 1 << 5;
1236   case Attribute::NoAlias:         return 1 << 6;
1237   case Attribute::ByVal:           return 1 << 7;
1238   case Attribute::Nest:            return 1 << 8;
1239   case Attribute::ReadNone:        return 1 << 9;
1240   case Attribute::ReadOnly:        return 1 << 10;
1241   case Attribute::NoInline:        return 1 << 11;
1242   case Attribute::AlwaysInline:    return 1 << 12;
1243   case Attribute::OptimizeForSize: return 1 << 13;
1244   case Attribute::StackProtect:    return 1 << 14;
1245   case Attribute::StackProtectReq: return 1 << 15;
1246   case Attribute::Alignment:       return 31 << 16;
1247   case Attribute::NoCapture:       return 1 << 21;
1248   case Attribute::NoRedZone:       return 1 << 22;
1249   case Attribute::NoImplicitFloat: return 1 << 23;
1250   case Attribute::Naked:           return 1 << 24;
1251   case Attribute::InlineHint:      return 1 << 25;
1252   case Attribute::StackAlignment:  return 7 << 26;
1253   case Attribute::ReturnsTwice:    return 1 << 29;
1254   case Attribute::UWTable:         return 1 << 30;
1255   case Attribute::NonLazyBind:     return 1U << 31;
1256   case Attribute::SanitizeAddress: return 1ULL << 32;
1257   case Attribute::MinSize:         return 1ULL << 33;
1258   case Attribute::NoDuplicate:     return 1ULL << 34;
1259   case Attribute::StackProtectStrong: return 1ULL << 35;
1260   case Attribute::SanitizeThread:  return 1ULL << 36;
1261   case Attribute::SanitizeMemory:  return 1ULL << 37;
1262   case Attribute::NoBuiltin:       return 1ULL << 38;
1263   case Attribute::Returned:        return 1ULL << 39;
1264   case Attribute::Cold:            return 1ULL << 40;
1265   case Attribute::Builtin:         return 1ULL << 41;
1266   case Attribute::OptimizeNone:    return 1ULL << 42;
1267   case Attribute::InAlloca:        return 1ULL << 43;
1268   case Attribute::NonNull:         return 1ULL << 44;
1269   case Attribute::JumpTable:       return 1ULL << 45;
1270   case Attribute::Convergent:      return 1ULL << 46;
1271   case Attribute::SafeStack:       return 1ULL << 47;
1272   case Attribute::NoRecurse:       return 1ULL << 48;
1273   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1274   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1275   case Attribute::SwiftSelf:       return 1ULL << 51;
1276   case Attribute::SwiftError:      return 1ULL << 52;
1277   case Attribute::WriteOnly:       return 1ULL << 53;
1278   case Attribute::Speculatable:    return 1ULL << 54;
1279   case Attribute::StrictFP:        return 1ULL << 55;
1280   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1281   case Attribute::NoCfCheck:       return 1ULL << 57;
1282   case Attribute::OptForFuzzing:   return 1ULL << 58;
1283   case Attribute::ShadowCallStack: return 1ULL << 59;
1284   case Attribute::SpeculativeLoadHardening:
1285     return 1ULL << 60;
1286   case Attribute::ImmArg:
1287     return 1ULL << 61;
1288   case Attribute::WillReturn:
1289     return 1ULL << 62;
1290   case Attribute::NoFree:
1291     return 1ULL << 63;
1292   default:
1293     // Other attributes are not supported in the raw format,
1294     // as we ran out of space.
1295     return 0;
1296   }
1297   llvm_unreachable("Unsupported attribute type");
1298 }
1299 
1300 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1301   if (!Val) return;
1302 
1303   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1304        I = Attribute::AttrKind(I + 1)) {
1305     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1306       if (I == Attribute::Alignment)
1307         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1308       else if (I == Attribute::StackAlignment)
1309         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1310       else
1311         B.addAttribute(I);
1312     }
1313   }
1314 }
1315 
1316 /// This fills an AttrBuilder object with the LLVM attributes that have
1317 /// been decoded from the given integer. This function must stay in sync with
1318 /// 'encodeLLVMAttributesForBitcode'.
1319 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1320                                            uint64_t EncodedAttrs) {
1321   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1322   // the bits above 31 down by 11 bits.
1323   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1324   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1325          "Alignment must be a power of two.");
1326 
1327   if (Alignment)
1328     B.addAlignmentAttr(Alignment);
1329   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1330                           (EncodedAttrs & 0xffff));
1331 }
1332 
1333 Error BitcodeReader::parseAttributeBlock() {
1334   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1335     return Err;
1336 
1337   if (!MAttributes.empty())
1338     return error("Invalid multiple blocks");
1339 
1340   SmallVector<uint64_t, 64> Record;
1341 
1342   SmallVector<AttributeList, 8> Attrs;
1343 
1344   // Read all the records.
1345   while (true) {
1346     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1347     if (!MaybeEntry)
1348       return MaybeEntry.takeError();
1349     BitstreamEntry Entry = MaybeEntry.get();
1350 
1351     switch (Entry.Kind) {
1352     case BitstreamEntry::SubBlock: // Handled for us already.
1353     case BitstreamEntry::Error:
1354       return error("Malformed block");
1355     case BitstreamEntry::EndBlock:
1356       return Error::success();
1357     case BitstreamEntry::Record:
1358       // The interesting case.
1359       break;
1360     }
1361 
1362     // Read a record.
1363     Record.clear();
1364     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1365     if (!MaybeRecord)
1366       return MaybeRecord.takeError();
1367     switch (MaybeRecord.get()) {
1368     default:  // Default behavior: ignore.
1369       break;
1370     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1371       // Deprecated, but still needed to read old bitcode files.
1372       if (Record.size() & 1)
1373         return error("Invalid record");
1374 
1375       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1376         AttrBuilder B;
1377         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1378         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1379       }
1380 
1381       MAttributes.push_back(AttributeList::get(Context, Attrs));
1382       Attrs.clear();
1383       break;
1384     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1385       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1386         Attrs.push_back(MAttributeGroups[Record[i]]);
1387 
1388       MAttributes.push_back(AttributeList::get(Context, Attrs));
1389       Attrs.clear();
1390       break;
1391     }
1392   }
1393 }
1394 
1395 // Returns Attribute::None on unrecognized codes.
1396 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1397   switch (Code) {
1398   default:
1399     return Attribute::None;
1400   case bitc::ATTR_KIND_ALIGNMENT:
1401     return Attribute::Alignment;
1402   case bitc::ATTR_KIND_ALWAYS_INLINE:
1403     return Attribute::AlwaysInline;
1404   case bitc::ATTR_KIND_ARGMEMONLY:
1405     return Attribute::ArgMemOnly;
1406   case bitc::ATTR_KIND_BUILTIN:
1407     return Attribute::Builtin;
1408   case bitc::ATTR_KIND_BY_VAL:
1409     return Attribute::ByVal;
1410   case bitc::ATTR_KIND_IN_ALLOCA:
1411     return Attribute::InAlloca;
1412   case bitc::ATTR_KIND_COLD:
1413     return Attribute::Cold;
1414   case bitc::ATTR_KIND_CONVERGENT:
1415     return Attribute::Convergent;
1416   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1417     return Attribute::InaccessibleMemOnly;
1418   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1419     return Attribute::InaccessibleMemOrArgMemOnly;
1420   case bitc::ATTR_KIND_INLINE_HINT:
1421     return Attribute::InlineHint;
1422   case bitc::ATTR_KIND_IN_REG:
1423     return Attribute::InReg;
1424   case bitc::ATTR_KIND_JUMP_TABLE:
1425     return Attribute::JumpTable;
1426   case bitc::ATTR_KIND_MIN_SIZE:
1427     return Attribute::MinSize;
1428   case bitc::ATTR_KIND_NAKED:
1429     return Attribute::Naked;
1430   case bitc::ATTR_KIND_NEST:
1431     return Attribute::Nest;
1432   case bitc::ATTR_KIND_NO_ALIAS:
1433     return Attribute::NoAlias;
1434   case bitc::ATTR_KIND_NO_BUILTIN:
1435     return Attribute::NoBuiltin;
1436   case bitc::ATTR_KIND_NO_CALLBACK:
1437     return Attribute::NoCallback;
1438   case bitc::ATTR_KIND_NO_CAPTURE:
1439     return Attribute::NoCapture;
1440   case bitc::ATTR_KIND_NO_DUPLICATE:
1441     return Attribute::NoDuplicate;
1442   case bitc::ATTR_KIND_NOFREE:
1443     return Attribute::NoFree;
1444   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1445     return Attribute::NoImplicitFloat;
1446   case bitc::ATTR_KIND_NO_INLINE:
1447     return Attribute::NoInline;
1448   case bitc::ATTR_KIND_NO_RECURSE:
1449     return Attribute::NoRecurse;
1450   case bitc::ATTR_KIND_NO_MERGE:
1451     return Attribute::NoMerge;
1452   case bitc::ATTR_KIND_NON_LAZY_BIND:
1453     return Attribute::NonLazyBind;
1454   case bitc::ATTR_KIND_NON_NULL:
1455     return Attribute::NonNull;
1456   case bitc::ATTR_KIND_DEREFERENCEABLE:
1457     return Attribute::Dereferenceable;
1458   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1459     return Attribute::DereferenceableOrNull;
1460   case bitc::ATTR_KIND_ALLOC_SIZE:
1461     return Attribute::AllocSize;
1462   case bitc::ATTR_KIND_NO_RED_ZONE:
1463     return Attribute::NoRedZone;
1464   case bitc::ATTR_KIND_NO_RETURN:
1465     return Attribute::NoReturn;
1466   case bitc::ATTR_KIND_NOSYNC:
1467     return Attribute::NoSync;
1468   case bitc::ATTR_KIND_NOCF_CHECK:
1469     return Attribute::NoCfCheck;
1470   case bitc::ATTR_KIND_NO_UNWIND:
1471     return Attribute::NoUnwind;
1472   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1473     return Attribute::NullPointerIsValid;
1474   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1475     return Attribute::OptForFuzzing;
1476   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1477     return Attribute::OptimizeForSize;
1478   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1479     return Attribute::OptimizeNone;
1480   case bitc::ATTR_KIND_READ_NONE:
1481     return Attribute::ReadNone;
1482   case bitc::ATTR_KIND_READ_ONLY:
1483     return Attribute::ReadOnly;
1484   case bitc::ATTR_KIND_RETURNED:
1485     return Attribute::Returned;
1486   case bitc::ATTR_KIND_RETURNS_TWICE:
1487     return Attribute::ReturnsTwice;
1488   case bitc::ATTR_KIND_S_EXT:
1489     return Attribute::SExt;
1490   case bitc::ATTR_KIND_SPECULATABLE:
1491     return Attribute::Speculatable;
1492   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1493     return Attribute::StackAlignment;
1494   case bitc::ATTR_KIND_STACK_PROTECT:
1495     return Attribute::StackProtect;
1496   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1497     return Attribute::StackProtectReq;
1498   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1499     return Attribute::StackProtectStrong;
1500   case bitc::ATTR_KIND_SAFESTACK:
1501     return Attribute::SafeStack;
1502   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1503     return Attribute::ShadowCallStack;
1504   case bitc::ATTR_KIND_STRICT_FP:
1505     return Attribute::StrictFP;
1506   case bitc::ATTR_KIND_STRUCT_RET:
1507     return Attribute::StructRet;
1508   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1509     return Attribute::SanitizeAddress;
1510   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1511     return Attribute::SanitizeHWAddress;
1512   case bitc::ATTR_KIND_SANITIZE_THREAD:
1513     return Attribute::SanitizeThread;
1514   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1515     return Attribute::SanitizeMemory;
1516   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1517     return Attribute::SpeculativeLoadHardening;
1518   case bitc::ATTR_KIND_SWIFT_ERROR:
1519     return Attribute::SwiftError;
1520   case bitc::ATTR_KIND_SWIFT_SELF:
1521     return Attribute::SwiftSelf;
1522   case bitc::ATTR_KIND_UW_TABLE:
1523     return Attribute::UWTable;
1524   case bitc::ATTR_KIND_WILLRETURN:
1525     return Attribute::WillReturn;
1526   case bitc::ATTR_KIND_WRITEONLY:
1527     return Attribute::WriteOnly;
1528   case bitc::ATTR_KIND_Z_EXT:
1529     return Attribute::ZExt;
1530   case bitc::ATTR_KIND_IMMARG:
1531     return Attribute::ImmArg;
1532   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1533     return Attribute::SanitizeMemTag;
1534   case bitc::ATTR_KIND_PREALLOCATED:
1535     return Attribute::Preallocated;
1536   case bitc::ATTR_KIND_NOUNDEF:
1537     return Attribute::NoUndef;
1538   case bitc::ATTR_KIND_BYREF:
1539     return Attribute::ByRef;
1540   case bitc::ATTR_KIND_MUSTPROGRESS:
1541     return Attribute::MustProgress;
1542   }
1543 }
1544 
1545 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1546                                          MaybeAlign &Alignment) {
1547   // Note: Alignment in bitcode files is incremented by 1, so that zero
1548   // can be used for default alignment.
1549   if (Exponent > Value::MaxAlignmentExponent + 1)
1550     return error("Invalid alignment value");
1551   Alignment = decodeMaybeAlign(Exponent);
1552   return Error::success();
1553 }
1554 
1555 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1556   *Kind = getAttrFromCode(Code);
1557   if (*Kind == Attribute::None)
1558     return error("Unknown attribute kind (" + Twine(Code) + ")");
1559   return Error::success();
1560 }
1561 
1562 Error BitcodeReader::parseAttributeGroupBlock() {
1563   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1564     return Err;
1565 
1566   if (!MAttributeGroups.empty())
1567     return error("Invalid multiple blocks");
1568 
1569   SmallVector<uint64_t, 64> Record;
1570 
1571   // Read all the records.
1572   while (true) {
1573     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1574     if (!MaybeEntry)
1575       return MaybeEntry.takeError();
1576     BitstreamEntry Entry = MaybeEntry.get();
1577 
1578     switch (Entry.Kind) {
1579     case BitstreamEntry::SubBlock: // Handled for us already.
1580     case BitstreamEntry::Error:
1581       return error("Malformed block");
1582     case BitstreamEntry::EndBlock:
1583       return Error::success();
1584     case BitstreamEntry::Record:
1585       // The interesting case.
1586       break;
1587     }
1588 
1589     // Read a record.
1590     Record.clear();
1591     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1592     if (!MaybeRecord)
1593       return MaybeRecord.takeError();
1594     switch (MaybeRecord.get()) {
1595     default:  // Default behavior: ignore.
1596       break;
1597     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1598       if (Record.size() < 3)
1599         return error("Invalid record");
1600 
1601       uint64_t GrpID = Record[0];
1602       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1603 
1604       AttrBuilder B;
1605       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1606         if (Record[i] == 0) {        // Enum attribute
1607           Attribute::AttrKind Kind;
1608           if (Error Err = parseAttrKind(Record[++i], &Kind))
1609             return Err;
1610 
1611           // Upgrade old-style byval attribute to one with a type, even if it's
1612           // nullptr. We will have to insert the real type when we associate
1613           // this AttributeList with a function.
1614           if (Kind == Attribute::ByVal)
1615             B.addByValAttr(nullptr);
1616           else if (Kind == Attribute::StructRet)
1617             B.addStructRetAttr(nullptr);
1618 
1619           B.addAttribute(Kind);
1620         } else if (Record[i] == 1) { // Integer attribute
1621           Attribute::AttrKind Kind;
1622           if (Error Err = parseAttrKind(Record[++i], &Kind))
1623             return Err;
1624           if (Kind == Attribute::Alignment)
1625             B.addAlignmentAttr(Record[++i]);
1626           else if (Kind == Attribute::StackAlignment)
1627             B.addStackAlignmentAttr(Record[++i]);
1628           else if (Kind == Attribute::Dereferenceable)
1629             B.addDereferenceableAttr(Record[++i]);
1630           else if (Kind == Attribute::DereferenceableOrNull)
1631             B.addDereferenceableOrNullAttr(Record[++i]);
1632           else if (Kind == Attribute::AllocSize)
1633             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1634         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1635           bool HasValue = (Record[i++] == 4);
1636           SmallString<64> KindStr;
1637           SmallString<64> ValStr;
1638 
1639           while (Record[i] != 0 && i != e)
1640             KindStr += Record[i++];
1641           assert(Record[i] == 0 && "Kind string not null terminated");
1642 
1643           if (HasValue) {
1644             // Has a value associated with it.
1645             ++i; // Skip the '0' that terminates the "kind" string.
1646             while (Record[i] != 0 && i != e)
1647               ValStr += Record[i++];
1648             assert(Record[i] == 0 && "Value string not null terminated");
1649           }
1650 
1651           B.addAttribute(KindStr.str(), ValStr.str());
1652         } else {
1653           assert((Record[i] == 5 || Record[i] == 6) &&
1654                  "Invalid attribute group entry");
1655           bool HasType = Record[i] == 6;
1656           Attribute::AttrKind Kind;
1657           if (Error Err = parseAttrKind(Record[++i], &Kind))
1658             return Err;
1659           if (Kind == Attribute::ByVal) {
1660             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1661           } else if (Kind == Attribute::StructRet) {
1662             B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1663           } else if (Kind == Attribute::ByRef) {
1664             B.addByRefAttr(getTypeByID(Record[++i]));
1665           } else if (Kind == Attribute::Preallocated) {
1666             B.addPreallocatedAttr(getTypeByID(Record[++i]));
1667           }
1668         }
1669       }
1670 
1671       UpgradeAttributes(B);
1672       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1673       break;
1674     }
1675     }
1676   }
1677 }
1678 
1679 Error BitcodeReader::parseTypeTable() {
1680   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1681     return Err;
1682 
1683   return parseTypeTableBody();
1684 }
1685 
1686 Error BitcodeReader::parseTypeTableBody() {
1687   if (!TypeList.empty())
1688     return error("Invalid multiple blocks");
1689 
1690   SmallVector<uint64_t, 64> Record;
1691   unsigned NumRecords = 0;
1692 
1693   SmallString<64> TypeName;
1694 
1695   // Read all the records for this type table.
1696   while (true) {
1697     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1698     if (!MaybeEntry)
1699       return MaybeEntry.takeError();
1700     BitstreamEntry Entry = MaybeEntry.get();
1701 
1702     switch (Entry.Kind) {
1703     case BitstreamEntry::SubBlock: // Handled for us already.
1704     case BitstreamEntry::Error:
1705       return error("Malformed block");
1706     case BitstreamEntry::EndBlock:
1707       if (NumRecords != TypeList.size())
1708         return error("Malformed block");
1709       return Error::success();
1710     case BitstreamEntry::Record:
1711       // The interesting case.
1712       break;
1713     }
1714 
1715     // Read a record.
1716     Record.clear();
1717     Type *ResultTy = nullptr;
1718     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1719     if (!MaybeRecord)
1720       return MaybeRecord.takeError();
1721     switch (MaybeRecord.get()) {
1722     default:
1723       return error("Invalid value");
1724     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1725       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1726       // type list.  This allows us to reserve space.
1727       if (Record.empty())
1728         return error("Invalid record");
1729       TypeList.resize(Record[0]);
1730       continue;
1731     case bitc::TYPE_CODE_VOID:      // VOID
1732       ResultTy = Type::getVoidTy(Context);
1733       break;
1734     case bitc::TYPE_CODE_HALF:     // HALF
1735       ResultTy = Type::getHalfTy(Context);
1736       break;
1737     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1738       ResultTy = Type::getBFloatTy(Context);
1739       break;
1740     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1741       ResultTy = Type::getFloatTy(Context);
1742       break;
1743     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1744       ResultTy = Type::getDoubleTy(Context);
1745       break;
1746     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1747       ResultTy = Type::getX86_FP80Ty(Context);
1748       break;
1749     case bitc::TYPE_CODE_FP128:     // FP128
1750       ResultTy = Type::getFP128Ty(Context);
1751       break;
1752     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1753       ResultTy = Type::getPPC_FP128Ty(Context);
1754       break;
1755     case bitc::TYPE_CODE_LABEL:     // LABEL
1756       ResultTy = Type::getLabelTy(Context);
1757       break;
1758     case bitc::TYPE_CODE_METADATA:  // METADATA
1759       ResultTy = Type::getMetadataTy(Context);
1760       break;
1761     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1762       ResultTy = Type::getX86_MMXTy(Context);
1763       break;
1764     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1765       ResultTy = Type::getTokenTy(Context);
1766       break;
1767     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1768       if (Record.empty())
1769         return error("Invalid record");
1770 
1771       uint64_t NumBits = Record[0];
1772       if (NumBits < IntegerType::MIN_INT_BITS ||
1773           NumBits > IntegerType::MAX_INT_BITS)
1774         return error("Bitwidth for integer type out of range");
1775       ResultTy = IntegerType::get(Context, NumBits);
1776       break;
1777     }
1778     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1779                                     //          [pointee type, address space]
1780       if (Record.empty())
1781         return error("Invalid record");
1782       unsigned AddressSpace = 0;
1783       if (Record.size() == 2)
1784         AddressSpace = Record[1];
1785       ResultTy = getTypeByID(Record[0]);
1786       if (!ResultTy ||
1787           !PointerType::isValidElementType(ResultTy))
1788         return error("Invalid type");
1789       ResultTy = PointerType::get(ResultTy, AddressSpace);
1790       break;
1791     }
1792     case bitc::TYPE_CODE_FUNCTION_OLD: {
1793       // Deprecated, but still needed to read old bitcode files.
1794       // FUNCTION: [vararg, attrid, retty, paramty x N]
1795       if (Record.size() < 3)
1796         return error("Invalid record");
1797       SmallVector<Type*, 8> ArgTys;
1798       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1799         if (Type *T = getTypeByID(Record[i]))
1800           ArgTys.push_back(T);
1801         else
1802           break;
1803       }
1804 
1805       ResultTy = getTypeByID(Record[2]);
1806       if (!ResultTy || ArgTys.size() < Record.size()-3)
1807         return error("Invalid type");
1808 
1809       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1810       break;
1811     }
1812     case bitc::TYPE_CODE_FUNCTION: {
1813       // FUNCTION: [vararg, retty, paramty x N]
1814       if (Record.size() < 2)
1815         return error("Invalid record");
1816       SmallVector<Type*, 8> ArgTys;
1817       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1818         if (Type *T = getTypeByID(Record[i])) {
1819           if (!FunctionType::isValidArgumentType(T))
1820             return error("Invalid function argument type");
1821           ArgTys.push_back(T);
1822         }
1823         else
1824           break;
1825       }
1826 
1827       ResultTy = getTypeByID(Record[1]);
1828       if (!ResultTy || ArgTys.size() < Record.size()-2)
1829         return error("Invalid type");
1830 
1831       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1832       break;
1833     }
1834     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1835       if (Record.empty())
1836         return error("Invalid record");
1837       SmallVector<Type*, 8> EltTys;
1838       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1839         if (Type *T = getTypeByID(Record[i]))
1840           EltTys.push_back(T);
1841         else
1842           break;
1843       }
1844       if (EltTys.size() != Record.size()-1)
1845         return error("Invalid type");
1846       ResultTy = StructType::get(Context, EltTys, Record[0]);
1847       break;
1848     }
1849     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1850       if (convertToString(Record, 0, TypeName))
1851         return error("Invalid record");
1852       continue;
1853 
1854     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1855       if (Record.empty())
1856         return error("Invalid record");
1857 
1858       if (NumRecords >= TypeList.size())
1859         return error("Invalid TYPE table");
1860 
1861       // Check to see if this was forward referenced, if so fill in the temp.
1862       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1863       if (Res) {
1864         Res->setName(TypeName);
1865         TypeList[NumRecords] = nullptr;
1866       } else  // Otherwise, create a new struct.
1867         Res = createIdentifiedStructType(Context, TypeName);
1868       TypeName.clear();
1869 
1870       SmallVector<Type*, 8> EltTys;
1871       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1872         if (Type *T = getTypeByID(Record[i]))
1873           EltTys.push_back(T);
1874         else
1875           break;
1876       }
1877       if (EltTys.size() != Record.size()-1)
1878         return error("Invalid record");
1879       Res->setBody(EltTys, Record[0]);
1880       ResultTy = Res;
1881       break;
1882     }
1883     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1884       if (Record.size() != 1)
1885         return error("Invalid record");
1886 
1887       if (NumRecords >= TypeList.size())
1888         return error("Invalid TYPE table");
1889 
1890       // Check to see if this was forward referenced, if so fill in the temp.
1891       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1892       if (Res) {
1893         Res->setName(TypeName);
1894         TypeList[NumRecords] = nullptr;
1895       } else  // Otherwise, create a new struct with no body.
1896         Res = createIdentifiedStructType(Context, TypeName);
1897       TypeName.clear();
1898       ResultTy = Res;
1899       break;
1900     }
1901     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1902       if (Record.size() < 2)
1903         return error("Invalid record");
1904       ResultTy = getTypeByID(Record[1]);
1905       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1906         return error("Invalid type");
1907       ResultTy = ArrayType::get(ResultTy, Record[0]);
1908       break;
1909     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1910                                     //         [numelts, eltty, scalable]
1911       if (Record.size() < 2)
1912         return error("Invalid record");
1913       if (Record[0] == 0)
1914         return error("Invalid vector length");
1915       ResultTy = getTypeByID(Record[1]);
1916       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1917         return error("Invalid type");
1918       bool Scalable = Record.size() > 2 ? Record[2] : false;
1919       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1920       break;
1921     }
1922 
1923     if (NumRecords >= TypeList.size())
1924       return error("Invalid TYPE table");
1925     if (TypeList[NumRecords])
1926       return error(
1927           "Invalid TYPE table: Only named structs can be forward referenced");
1928     assert(ResultTy && "Didn't read a type?");
1929     TypeList[NumRecords++] = ResultTy;
1930   }
1931 }
1932 
1933 Error BitcodeReader::parseOperandBundleTags() {
1934   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1935     return Err;
1936 
1937   if (!BundleTags.empty())
1938     return error("Invalid multiple blocks");
1939 
1940   SmallVector<uint64_t, 64> Record;
1941 
1942   while (true) {
1943     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1944     if (!MaybeEntry)
1945       return MaybeEntry.takeError();
1946     BitstreamEntry Entry = MaybeEntry.get();
1947 
1948     switch (Entry.Kind) {
1949     case BitstreamEntry::SubBlock: // Handled for us already.
1950     case BitstreamEntry::Error:
1951       return error("Malformed block");
1952     case BitstreamEntry::EndBlock:
1953       return Error::success();
1954     case BitstreamEntry::Record:
1955       // The interesting case.
1956       break;
1957     }
1958 
1959     // Tags are implicitly mapped to integers by their order.
1960 
1961     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1962     if (!MaybeRecord)
1963       return MaybeRecord.takeError();
1964     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1965       return error("Invalid record");
1966 
1967     // OPERAND_BUNDLE_TAG: [strchr x N]
1968     BundleTags.emplace_back();
1969     if (convertToString(Record, 0, BundleTags.back()))
1970       return error("Invalid record");
1971     Record.clear();
1972   }
1973 }
1974 
1975 Error BitcodeReader::parseSyncScopeNames() {
1976   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1977     return Err;
1978 
1979   if (!SSIDs.empty())
1980     return error("Invalid multiple synchronization scope names blocks");
1981 
1982   SmallVector<uint64_t, 64> Record;
1983   while (true) {
1984     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1985     if (!MaybeEntry)
1986       return MaybeEntry.takeError();
1987     BitstreamEntry Entry = MaybeEntry.get();
1988 
1989     switch (Entry.Kind) {
1990     case BitstreamEntry::SubBlock: // Handled for us already.
1991     case BitstreamEntry::Error:
1992       return error("Malformed block");
1993     case BitstreamEntry::EndBlock:
1994       if (SSIDs.empty())
1995         return error("Invalid empty synchronization scope names block");
1996       return Error::success();
1997     case BitstreamEntry::Record:
1998       // The interesting case.
1999       break;
2000     }
2001 
2002     // Synchronization scope names are implicitly mapped to synchronization
2003     // scope IDs by their order.
2004 
2005     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2006     if (!MaybeRecord)
2007       return MaybeRecord.takeError();
2008     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2009       return error("Invalid record");
2010 
2011     SmallString<16> SSN;
2012     if (convertToString(Record, 0, SSN))
2013       return error("Invalid record");
2014 
2015     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2016     Record.clear();
2017   }
2018 }
2019 
2020 /// Associate a value with its name from the given index in the provided record.
2021 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2022                                              unsigned NameIndex, Triple &TT) {
2023   SmallString<128> ValueName;
2024   if (convertToString(Record, NameIndex, ValueName))
2025     return error("Invalid record");
2026   unsigned ValueID = Record[0];
2027   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2028     return error("Invalid record");
2029   Value *V = ValueList[ValueID];
2030 
2031   StringRef NameStr(ValueName.data(), ValueName.size());
2032   if (NameStr.find_first_of(0) != StringRef::npos)
2033     return error("Invalid value name");
2034   V->setName(NameStr);
2035   auto *GO = dyn_cast<GlobalObject>(V);
2036   if (GO) {
2037     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2038       if (TT.supportsCOMDAT())
2039         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2040       else
2041         GO->setComdat(nullptr);
2042     }
2043   }
2044   return V;
2045 }
2046 
2047 /// Helper to note and return the current location, and jump to the given
2048 /// offset.
2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2050                                                  BitstreamCursor &Stream) {
2051   // Save the current parsing location so we can jump back at the end
2052   // of the VST read.
2053   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2054   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2055     return std::move(JumpFailed);
2056   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2057   if (!MaybeEntry)
2058     return MaybeEntry.takeError();
2059   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2060   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2061   return CurrentBit;
2062 }
2063 
2064 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2065                                             Function *F,
2066                                             ArrayRef<uint64_t> Record) {
2067   // Note that we subtract 1 here because the offset is relative to one word
2068   // before the start of the identification or module block, which was
2069   // historically always the start of the regular bitcode header.
2070   uint64_t FuncWordOffset = Record[1] - 1;
2071   uint64_t FuncBitOffset = FuncWordOffset * 32;
2072   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2073   // Set the LastFunctionBlockBit to point to the last function block.
2074   // Later when parsing is resumed after function materialization,
2075   // we can simply skip that last function block.
2076   if (FuncBitOffset > LastFunctionBlockBit)
2077     LastFunctionBlockBit = FuncBitOffset;
2078 }
2079 
2080 /// Read a new-style GlobalValue symbol table.
2081 Error BitcodeReader::parseGlobalValueSymbolTable() {
2082   unsigned FuncBitcodeOffsetDelta =
2083       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2084 
2085   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2086     return Err;
2087 
2088   SmallVector<uint64_t, 64> Record;
2089   while (true) {
2090     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2091     if (!MaybeEntry)
2092       return MaybeEntry.takeError();
2093     BitstreamEntry Entry = MaybeEntry.get();
2094 
2095     switch (Entry.Kind) {
2096     case BitstreamEntry::SubBlock:
2097     case BitstreamEntry::Error:
2098       return error("Malformed block");
2099     case BitstreamEntry::EndBlock:
2100       return Error::success();
2101     case BitstreamEntry::Record:
2102       break;
2103     }
2104 
2105     Record.clear();
2106     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2107     if (!MaybeRecord)
2108       return MaybeRecord.takeError();
2109     switch (MaybeRecord.get()) {
2110     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2111       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2112                               cast<Function>(ValueList[Record[0]]), Record);
2113       break;
2114     }
2115   }
2116 }
2117 
2118 /// Parse the value symbol table at either the current parsing location or
2119 /// at the given bit offset if provided.
2120 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2121   uint64_t CurrentBit;
2122   // Pass in the Offset to distinguish between calling for the module-level
2123   // VST (where we want to jump to the VST offset) and the function-level
2124   // VST (where we don't).
2125   if (Offset > 0) {
2126     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2127     if (!MaybeCurrentBit)
2128       return MaybeCurrentBit.takeError();
2129     CurrentBit = MaybeCurrentBit.get();
2130     // If this module uses a string table, read this as a module-level VST.
2131     if (UseStrtab) {
2132       if (Error Err = parseGlobalValueSymbolTable())
2133         return Err;
2134       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2135         return JumpFailed;
2136       return Error::success();
2137     }
2138     // Otherwise, the VST will be in a similar format to a function-level VST,
2139     // and will contain symbol names.
2140   }
2141 
2142   // Compute the delta between the bitcode indices in the VST (the word offset
2143   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2144   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2145   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2146   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2147   // just before entering the VST subblock because: 1) the EnterSubBlock
2148   // changes the AbbrevID width; 2) the VST block is nested within the same
2149   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2150   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2151   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2152   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2153   unsigned FuncBitcodeOffsetDelta =
2154       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2155 
2156   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2157     return Err;
2158 
2159   SmallVector<uint64_t, 64> Record;
2160 
2161   Triple TT(TheModule->getTargetTriple());
2162 
2163   // Read all the records for this value table.
2164   SmallString<128> ValueName;
2165 
2166   while (true) {
2167     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2168     if (!MaybeEntry)
2169       return MaybeEntry.takeError();
2170     BitstreamEntry Entry = MaybeEntry.get();
2171 
2172     switch (Entry.Kind) {
2173     case BitstreamEntry::SubBlock: // Handled for us already.
2174     case BitstreamEntry::Error:
2175       return error("Malformed block");
2176     case BitstreamEntry::EndBlock:
2177       if (Offset > 0)
2178         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2179           return JumpFailed;
2180       return Error::success();
2181     case BitstreamEntry::Record:
2182       // The interesting case.
2183       break;
2184     }
2185 
2186     // Read a record.
2187     Record.clear();
2188     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2189     if (!MaybeRecord)
2190       return MaybeRecord.takeError();
2191     switch (MaybeRecord.get()) {
2192     default:  // Default behavior: unknown type.
2193       break;
2194     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2195       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2196       if (Error Err = ValOrErr.takeError())
2197         return Err;
2198       ValOrErr.get();
2199       break;
2200     }
2201     case bitc::VST_CODE_FNENTRY: {
2202       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2203       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2204       if (Error Err = ValOrErr.takeError())
2205         return Err;
2206       Value *V = ValOrErr.get();
2207 
2208       // Ignore function offsets emitted for aliases of functions in older
2209       // versions of LLVM.
2210       if (auto *F = dyn_cast<Function>(V))
2211         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2212       break;
2213     }
2214     case bitc::VST_CODE_BBENTRY: {
2215       if (convertToString(Record, 1, ValueName))
2216         return error("Invalid record");
2217       BasicBlock *BB = getBasicBlock(Record[0]);
2218       if (!BB)
2219         return error("Invalid record");
2220 
2221       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2222       ValueName.clear();
2223       break;
2224     }
2225     }
2226   }
2227 }
2228 
2229 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2230 /// encoding.
2231 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2232   if ((V & 1) == 0)
2233     return V >> 1;
2234   if (V != 1)
2235     return -(V >> 1);
2236   // There is no such thing as -0 with integers.  "-0" really means MININT.
2237   return 1ULL << 63;
2238 }
2239 
2240 /// Resolve all of the initializers for global values and aliases that we can.
2241 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2242   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2243   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2244       IndirectSymbolInitWorklist;
2245   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2246   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2247   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2248 
2249   GlobalInitWorklist.swap(GlobalInits);
2250   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2251   FunctionPrefixWorklist.swap(FunctionPrefixes);
2252   FunctionPrologueWorklist.swap(FunctionPrologues);
2253   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2254 
2255   while (!GlobalInitWorklist.empty()) {
2256     unsigned ValID = GlobalInitWorklist.back().second;
2257     if (ValID >= ValueList.size()) {
2258       // Not ready to resolve this yet, it requires something later in the file.
2259       GlobalInits.push_back(GlobalInitWorklist.back());
2260     } else {
2261       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2262         GlobalInitWorklist.back().first->setInitializer(C);
2263       else
2264         return error("Expected a constant");
2265     }
2266     GlobalInitWorklist.pop_back();
2267   }
2268 
2269   while (!IndirectSymbolInitWorklist.empty()) {
2270     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2271     if (ValID >= ValueList.size()) {
2272       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2273     } else {
2274       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2275       if (!C)
2276         return error("Expected a constant");
2277       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2278       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2279         return error("Alias and aliasee types don't match");
2280       GIS->setIndirectSymbol(C);
2281     }
2282     IndirectSymbolInitWorklist.pop_back();
2283   }
2284 
2285   while (!FunctionPrefixWorklist.empty()) {
2286     unsigned ValID = FunctionPrefixWorklist.back().second;
2287     if (ValID >= ValueList.size()) {
2288       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2289     } else {
2290       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2291         FunctionPrefixWorklist.back().first->setPrefixData(C);
2292       else
2293         return error("Expected a constant");
2294     }
2295     FunctionPrefixWorklist.pop_back();
2296   }
2297 
2298   while (!FunctionPrologueWorklist.empty()) {
2299     unsigned ValID = FunctionPrologueWorklist.back().second;
2300     if (ValID >= ValueList.size()) {
2301       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2302     } else {
2303       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2304         FunctionPrologueWorklist.back().first->setPrologueData(C);
2305       else
2306         return error("Expected a constant");
2307     }
2308     FunctionPrologueWorklist.pop_back();
2309   }
2310 
2311   while (!FunctionPersonalityFnWorklist.empty()) {
2312     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2313     if (ValID >= ValueList.size()) {
2314       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2315     } else {
2316       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2317         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2318       else
2319         return error("Expected a constant");
2320     }
2321     FunctionPersonalityFnWorklist.pop_back();
2322   }
2323 
2324   return Error::success();
2325 }
2326 
2327 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2328   SmallVector<uint64_t, 8> Words(Vals.size());
2329   transform(Vals, Words.begin(),
2330                  BitcodeReader::decodeSignRotatedValue);
2331 
2332   return APInt(TypeBits, Words);
2333 }
2334 
2335 Error BitcodeReader::parseConstants() {
2336   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2337     return Err;
2338 
2339   SmallVector<uint64_t, 64> Record;
2340 
2341   // Read all the records for this value table.
2342   Type *CurTy = Type::getInt32Ty(Context);
2343   Type *CurFullTy = Type::getInt32Ty(Context);
2344   unsigned NextCstNo = ValueList.size();
2345 
2346   struct DelayedShufTy {
2347     VectorType *OpTy;
2348     VectorType *RTy;
2349     Type *CurFullTy;
2350     uint64_t Op0Idx;
2351     uint64_t Op1Idx;
2352     uint64_t Op2Idx;
2353     unsigned CstNo;
2354   };
2355   std::vector<DelayedShufTy> DelayedShuffles;
2356   while (true) {
2357     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2358     if (!MaybeEntry)
2359       return MaybeEntry.takeError();
2360     BitstreamEntry Entry = MaybeEntry.get();
2361 
2362     switch (Entry.Kind) {
2363     case BitstreamEntry::SubBlock: // Handled for us already.
2364     case BitstreamEntry::Error:
2365       return error("Malformed block");
2366     case BitstreamEntry::EndBlock:
2367       // Once all the constants have been read, go through and resolve forward
2368       // references.
2369       //
2370       // We have to treat shuffles specially because they don't have three
2371       // operands anymore.  We need to convert the shuffle mask into an array,
2372       // and we can't convert a forward reference.
2373       for (auto &DelayedShuffle : DelayedShuffles) {
2374         VectorType *OpTy = DelayedShuffle.OpTy;
2375         VectorType *RTy = DelayedShuffle.RTy;
2376         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2377         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2378         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2379         uint64_t CstNo = DelayedShuffle.CstNo;
2380         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2381         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2382         Type *ShufTy =
2383             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2384         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2385         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2386           return error("Invalid shufflevector operands");
2387         SmallVector<int, 16> Mask;
2388         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2389         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2390         ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy);
2391       }
2392 
2393       if (NextCstNo != ValueList.size())
2394         return error("Invalid constant reference");
2395 
2396       ValueList.resolveConstantForwardRefs();
2397       return Error::success();
2398     case BitstreamEntry::Record:
2399       // The interesting case.
2400       break;
2401     }
2402 
2403     // Read a record.
2404     Record.clear();
2405     Type *VoidType = Type::getVoidTy(Context);
2406     Value *V = nullptr;
2407     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2408     if (!MaybeBitCode)
2409       return MaybeBitCode.takeError();
2410     switch (unsigned BitCode = MaybeBitCode.get()) {
2411     default:  // Default behavior: unknown constant
2412     case bitc::CST_CODE_UNDEF:     // UNDEF
2413       V = UndefValue::get(CurTy);
2414       break;
2415     case bitc::CST_CODE_POISON:    // POISON
2416       V = PoisonValue::get(CurTy);
2417       break;
2418     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2419       if (Record.empty())
2420         return error("Invalid record");
2421       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2422         return error("Invalid record");
2423       if (TypeList[Record[0]] == VoidType)
2424         return error("Invalid constant type");
2425       CurFullTy = TypeList[Record[0]];
2426       CurTy = flattenPointerTypes(CurFullTy);
2427       continue;  // Skip the ValueList manipulation.
2428     case bitc::CST_CODE_NULL:      // NULL
2429       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2430         return error("Invalid type for a constant null value");
2431       V = Constant::getNullValue(CurTy);
2432       break;
2433     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2434       if (!CurTy->isIntegerTy() || Record.empty())
2435         return error("Invalid record");
2436       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2437       break;
2438     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2439       if (!CurTy->isIntegerTy() || Record.empty())
2440         return error("Invalid record");
2441 
2442       APInt VInt =
2443           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2444       V = ConstantInt::get(Context, VInt);
2445 
2446       break;
2447     }
2448     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2449       if (Record.empty())
2450         return error("Invalid record");
2451       if (CurTy->isHalfTy())
2452         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2453                                              APInt(16, (uint16_t)Record[0])));
2454       else if (CurTy->isBFloatTy())
2455         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2456                                              APInt(16, (uint32_t)Record[0])));
2457       else if (CurTy->isFloatTy())
2458         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2459                                              APInt(32, (uint32_t)Record[0])));
2460       else if (CurTy->isDoubleTy())
2461         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2462                                              APInt(64, Record[0])));
2463       else if (CurTy->isX86_FP80Ty()) {
2464         // Bits are not stored the same way as a normal i80 APInt, compensate.
2465         uint64_t Rearrange[2];
2466         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2467         Rearrange[1] = Record[0] >> 48;
2468         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2469                                              APInt(80, Rearrange)));
2470       } else if (CurTy->isFP128Ty())
2471         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2472                                              APInt(128, Record)));
2473       else if (CurTy->isPPC_FP128Ty())
2474         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2475                                              APInt(128, Record)));
2476       else
2477         V = UndefValue::get(CurTy);
2478       break;
2479     }
2480 
2481     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2482       if (Record.empty())
2483         return error("Invalid record");
2484 
2485       unsigned Size = Record.size();
2486       SmallVector<Constant*, 16> Elts;
2487 
2488       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2489         for (unsigned i = 0; i != Size; ++i)
2490           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2491                                                      STy->getElementType(i)));
2492         V = ConstantStruct::get(STy, Elts);
2493       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2494         Type *EltTy = ATy->getElementType();
2495         for (unsigned i = 0; i != Size; ++i)
2496           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2497         V = ConstantArray::get(ATy, Elts);
2498       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2499         Type *EltTy = VTy->getElementType();
2500         for (unsigned i = 0; i != Size; ++i)
2501           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2502         V = ConstantVector::get(Elts);
2503       } else {
2504         V = UndefValue::get(CurTy);
2505       }
2506       break;
2507     }
2508     case bitc::CST_CODE_STRING:    // STRING: [values]
2509     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2510       if (Record.empty())
2511         return error("Invalid record");
2512 
2513       SmallString<16> Elts(Record.begin(), Record.end());
2514       V = ConstantDataArray::getString(Context, Elts,
2515                                        BitCode == bitc::CST_CODE_CSTRING);
2516       break;
2517     }
2518     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2519       if (Record.empty())
2520         return error("Invalid record");
2521 
2522       Type *EltTy;
2523       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2524         EltTy = Array->getElementType();
2525       else
2526         EltTy = cast<VectorType>(CurTy)->getElementType();
2527       if (EltTy->isIntegerTy(8)) {
2528         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2529         if (isa<VectorType>(CurTy))
2530           V = ConstantDataVector::get(Context, Elts);
2531         else
2532           V = ConstantDataArray::get(Context, Elts);
2533       } else if (EltTy->isIntegerTy(16)) {
2534         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2535         if (isa<VectorType>(CurTy))
2536           V = ConstantDataVector::get(Context, Elts);
2537         else
2538           V = ConstantDataArray::get(Context, Elts);
2539       } else if (EltTy->isIntegerTy(32)) {
2540         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2541         if (isa<VectorType>(CurTy))
2542           V = ConstantDataVector::get(Context, Elts);
2543         else
2544           V = ConstantDataArray::get(Context, Elts);
2545       } else if (EltTy->isIntegerTy(64)) {
2546         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2547         if (isa<VectorType>(CurTy))
2548           V = ConstantDataVector::get(Context, Elts);
2549         else
2550           V = ConstantDataArray::get(Context, Elts);
2551       } else if (EltTy->isHalfTy()) {
2552         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2553         if (isa<VectorType>(CurTy))
2554           V = ConstantDataVector::getFP(EltTy, Elts);
2555         else
2556           V = ConstantDataArray::getFP(EltTy, Elts);
2557       } else if (EltTy->isBFloatTy()) {
2558         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2559         if (isa<VectorType>(CurTy))
2560           V = ConstantDataVector::getFP(EltTy, Elts);
2561         else
2562           V = ConstantDataArray::getFP(EltTy, Elts);
2563       } else if (EltTy->isFloatTy()) {
2564         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2565         if (isa<VectorType>(CurTy))
2566           V = ConstantDataVector::getFP(EltTy, Elts);
2567         else
2568           V = ConstantDataArray::getFP(EltTy, Elts);
2569       } else if (EltTy->isDoubleTy()) {
2570         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2571         if (isa<VectorType>(CurTy))
2572           V = ConstantDataVector::getFP(EltTy, Elts);
2573         else
2574           V = ConstantDataArray::getFP(EltTy, Elts);
2575       } else {
2576         return error("Invalid type for value");
2577       }
2578       break;
2579     }
2580     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2581       if (Record.size() < 2)
2582         return error("Invalid record");
2583       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2584       if (Opc < 0) {
2585         V = UndefValue::get(CurTy);  // Unknown unop.
2586       } else {
2587         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2588         unsigned Flags = 0;
2589         V = ConstantExpr::get(Opc, LHS, Flags);
2590       }
2591       break;
2592     }
2593     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2594       if (Record.size() < 3)
2595         return error("Invalid record");
2596       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2597       if (Opc < 0) {
2598         V = UndefValue::get(CurTy);  // Unknown binop.
2599       } else {
2600         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2601         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2602         unsigned Flags = 0;
2603         if (Record.size() >= 4) {
2604           if (Opc == Instruction::Add ||
2605               Opc == Instruction::Sub ||
2606               Opc == Instruction::Mul ||
2607               Opc == Instruction::Shl) {
2608             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2609               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2610             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2611               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2612           } else if (Opc == Instruction::SDiv ||
2613                      Opc == Instruction::UDiv ||
2614                      Opc == Instruction::LShr ||
2615                      Opc == Instruction::AShr) {
2616             if (Record[3] & (1 << bitc::PEO_EXACT))
2617               Flags |= SDivOperator::IsExact;
2618           }
2619         }
2620         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2621       }
2622       break;
2623     }
2624     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2625       if (Record.size() < 3)
2626         return error("Invalid record");
2627       int Opc = getDecodedCastOpcode(Record[0]);
2628       if (Opc < 0) {
2629         V = UndefValue::get(CurTy);  // Unknown cast.
2630       } else {
2631         Type *OpTy = getTypeByID(Record[1]);
2632         if (!OpTy)
2633           return error("Invalid record");
2634         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2635         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2636         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2637       }
2638       break;
2639     }
2640     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2641     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2642     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2643                                                      // operands]
2644       unsigned OpNum = 0;
2645       Type *PointeeType = nullptr;
2646       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2647           Record.size() % 2)
2648         PointeeType = getTypeByID(Record[OpNum++]);
2649 
2650       bool InBounds = false;
2651       Optional<unsigned> InRangeIndex;
2652       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2653         uint64_t Op = Record[OpNum++];
2654         InBounds = Op & 1;
2655         InRangeIndex = Op >> 1;
2656       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2657         InBounds = true;
2658 
2659       SmallVector<Constant*, 16> Elts;
2660       Type *Elt0FullTy = nullptr;
2661       while (OpNum != Record.size()) {
2662         if (!Elt0FullTy)
2663           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2664         Type *ElTy = getTypeByID(Record[OpNum++]);
2665         if (!ElTy)
2666           return error("Invalid record");
2667         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2668       }
2669 
2670       if (Elts.size() < 1)
2671         return error("Invalid gep with no operands");
2672 
2673       Type *ImplicitPointeeType =
2674           getPointerElementFlatType(Elt0FullTy->getScalarType());
2675       if (!PointeeType)
2676         PointeeType = ImplicitPointeeType;
2677       else if (PointeeType != ImplicitPointeeType)
2678         return error("Explicit gep operator type does not match pointee type "
2679                      "of pointer operand");
2680 
2681       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2682       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2683                                          InBounds, InRangeIndex);
2684       break;
2685     }
2686     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2687       if (Record.size() < 3)
2688         return error("Invalid record");
2689 
2690       Type *SelectorTy = Type::getInt1Ty(Context);
2691 
2692       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2693       // Get the type from the ValueList before getting a forward ref.
2694       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2695         if (Value *V = ValueList[Record[0]])
2696           if (SelectorTy != V->getType())
2697             SelectorTy = VectorType::get(SelectorTy,
2698                                          VTy->getElementCount());
2699 
2700       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2701                                                               SelectorTy),
2702                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2703                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2704       break;
2705     }
2706     case bitc::CST_CODE_CE_EXTRACTELT
2707         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2708       if (Record.size() < 3)
2709         return error("Invalid record");
2710       VectorType *OpTy =
2711         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2712       if (!OpTy)
2713         return error("Invalid record");
2714       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2715       Constant *Op1 = nullptr;
2716       if (Record.size() == 4) {
2717         Type *IdxTy = getTypeByID(Record[2]);
2718         if (!IdxTy)
2719           return error("Invalid record");
2720         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2721       } else {
2722         // Deprecated, but still needed to read old bitcode files.
2723         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2724       }
2725       if (!Op1)
2726         return error("Invalid record");
2727       V = ConstantExpr::getExtractElement(Op0, Op1);
2728       break;
2729     }
2730     case bitc::CST_CODE_CE_INSERTELT
2731         : { // CE_INSERTELT: [opval, opval, opty, opval]
2732       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2733       if (Record.size() < 3 || !OpTy)
2734         return error("Invalid record");
2735       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2736       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2737                                                   OpTy->getElementType());
2738       Constant *Op2 = nullptr;
2739       if (Record.size() == 4) {
2740         Type *IdxTy = getTypeByID(Record[2]);
2741         if (!IdxTy)
2742           return error("Invalid record");
2743         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2744       } else {
2745         // Deprecated, but still needed to read old bitcode files.
2746         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2747       }
2748       if (!Op2)
2749         return error("Invalid record");
2750       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2751       break;
2752     }
2753     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2754       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2755       if (Record.size() < 3 || !OpTy)
2756         return error("Invalid record");
2757       DelayedShuffles.push_back(
2758           {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo});
2759       ++NextCstNo;
2760       continue;
2761     }
2762     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2763       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2764       VectorType *OpTy =
2765         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2766       if (Record.size() < 4 || !RTy || !OpTy)
2767         return error("Invalid record");
2768       DelayedShuffles.push_back(
2769           {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo});
2770       ++NextCstNo;
2771       continue;
2772     }
2773     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2774       if (Record.size() < 4)
2775         return error("Invalid record");
2776       Type *OpTy = getTypeByID(Record[0]);
2777       if (!OpTy)
2778         return error("Invalid record");
2779       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2780       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2781 
2782       if (OpTy->isFPOrFPVectorTy())
2783         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2784       else
2785         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2786       break;
2787     }
2788     // This maintains backward compatibility, pre-asm dialect keywords.
2789     // Deprecated, but still needed to read old bitcode files.
2790     case bitc::CST_CODE_INLINEASM_OLD: {
2791       if (Record.size() < 2)
2792         return error("Invalid record");
2793       std::string AsmStr, ConstrStr;
2794       bool HasSideEffects = Record[0] & 1;
2795       bool IsAlignStack = Record[0] >> 1;
2796       unsigned AsmStrSize = Record[1];
2797       if (2+AsmStrSize >= Record.size())
2798         return error("Invalid record");
2799       unsigned ConstStrSize = Record[2+AsmStrSize];
2800       if (3+AsmStrSize+ConstStrSize > Record.size())
2801         return error("Invalid record");
2802 
2803       for (unsigned i = 0; i != AsmStrSize; ++i)
2804         AsmStr += (char)Record[2+i];
2805       for (unsigned i = 0; i != ConstStrSize; ++i)
2806         ConstrStr += (char)Record[3+AsmStrSize+i];
2807       UpgradeInlineAsmString(&AsmStr);
2808       V = InlineAsm::get(
2809           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2810           ConstrStr, HasSideEffects, IsAlignStack);
2811       break;
2812     }
2813     // This version adds support for the asm dialect keywords (e.g.,
2814     // inteldialect).
2815     case bitc::CST_CODE_INLINEASM: {
2816       if (Record.size() < 2)
2817         return error("Invalid record");
2818       std::string AsmStr, ConstrStr;
2819       bool HasSideEffects = Record[0] & 1;
2820       bool IsAlignStack = (Record[0] >> 1) & 1;
2821       unsigned AsmDialect = Record[0] >> 2;
2822       unsigned AsmStrSize = Record[1];
2823       if (2+AsmStrSize >= Record.size())
2824         return error("Invalid record");
2825       unsigned ConstStrSize = Record[2+AsmStrSize];
2826       if (3+AsmStrSize+ConstStrSize > Record.size())
2827         return error("Invalid record");
2828 
2829       for (unsigned i = 0; i != AsmStrSize; ++i)
2830         AsmStr += (char)Record[2+i];
2831       for (unsigned i = 0; i != ConstStrSize; ++i)
2832         ConstrStr += (char)Record[3+AsmStrSize+i];
2833       UpgradeInlineAsmString(&AsmStr);
2834       V = InlineAsm::get(
2835           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2836           ConstrStr, HasSideEffects, IsAlignStack,
2837           InlineAsm::AsmDialect(AsmDialect));
2838       break;
2839     }
2840     case bitc::CST_CODE_BLOCKADDRESS:{
2841       if (Record.size() < 3)
2842         return error("Invalid record");
2843       Type *FnTy = getTypeByID(Record[0]);
2844       if (!FnTy)
2845         return error("Invalid record");
2846       Function *Fn =
2847         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2848       if (!Fn)
2849         return error("Invalid record");
2850 
2851       // If the function is already parsed we can insert the block address right
2852       // away.
2853       BasicBlock *BB;
2854       unsigned BBID = Record[2];
2855       if (!BBID)
2856         // Invalid reference to entry block.
2857         return error("Invalid ID");
2858       if (!Fn->empty()) {
2859         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2860         for (size_t I = 0, E = BBID; I != E; ++I) {
2861           if (BBI == BBE)
2862             return error("Invalid ID");
2863           ++BBI;
2864         }
2865         BB = &*BBI;
2866       } else {
2867         // Otherwise insert a placeholder and remember it so it can be inserted
2868         // when the function is parsed.
2869         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2870         if (FwdBBs.empty())
2871           BasicBlockFwdRefQueue.push_back(Fn);
2872         if (FwdBBs.size() < BBID + 1)
2873           FwdBBs.resize(BBID + 1);
2874         if (!FwdBBs[BBID])
2875           FwdBBs[BBID] = BasicBlock::Create(Context);
2876         BB = FwdBBs[BBID];
2877       }
2878       V = BlockAddress::get(Fn, BB);
2879       break;
2880     }
2881     }
2882 
2883     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2884            "Incorrect fully structured type provided for Constant");
2885     ValueList.assignValue(V, NextCstNo, CurFullTy);
2886     ++NextCstNo;
2887   }
2888 }
2889 
2890 Error BitcodeReader::parseUseLists() {
2891   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2892     return Err;
2893 
2894   // Read all the records.
2895   SmallVector<uint64_t, 64> Record;
2896 
2897   while (true) {
2898     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2899     if (!MaybeEntry)
2900       return MaybeEntry.takeError();
2901     BitstreamEntry Entry = MaybeEntry.get();
2902 
2903     switch (Entry.Kind) {
2904     case BitstreamEntry::SubBlock: // Handled for us already.
2905     case BitstreamEntry::Error:
2906       return error("Malformed block");
2907     case BitstreamEntry::EndBlock:
2908       return Error::success();
2909     case BitstreamEntry::Record:
2910       // The interesting case.
2911       break;
2912     }
2913 
2914     // Read a use list record.
2915     Record.clear();
2916     bool IsBB = false;
2917     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2918     if (!MaybeRecord)
2919       return MaybeRecord.takeError();
2920     switch (MaybeRecord.get()) {
2921     default:  // Default behavior: unknown type.
2922       break;
2923     case bitc::USELIST_CODE_BB:
2924       IsBB = true;
2925       LLVM_FALLTHROUGH;
2926     case bitc::USELIST_CODE_DEFAULT: {
2927       unsigned RecordLength = Record.size();
2928       if (RecordLength < 3)
2929         // Records should have at least an ID and two indexes.
2930         return error("Invalid record");
2931       unsigned ID = Record.back();
2932       Record.pop_back();
2933 
2934       Value *V;
2935       if (IsBB) {
2936         assert(ID < FunctionBBs.size() && "Basic block not found");
2937         V = FunctionBBs[ID];
2938       } else
2939         V = ValueList[ID];
2940       unsigned NumUses = 0;
2941       SmallDenseMap<const Use *, unsigned, 16> Order;
2942       for (const Use &U : V->materialized_uses()) {
2943         if (++NumUses > Record.size())
2944           break;
2945         Order[&U] = Record[NumUses - 1];
2946       }
2947       if (Order.size() != Record.size() || NumUses > Record.size())
2948         // Mismatches can happen if the functions are being materialized lazily
2949         // (out-of-order), or a value has been upgraded.
2950         break;
2951 
2952       V->sortUseList([&](const Use &L, const Use &R) {
2953         return Order.lookup(&L) < Order.lookup(&R);
2954       });
2955       break;
2956     }
2957     }
2958   }
2959 }
2960 
2961 /// When we see the block for metadata, remember where it is and then skip it.
2962 /// This lets us lazily deserialize the metadata.
2963 Error BitcodeReader::rememberAndSkipMetadata() {
2964   // Save the current stream state.
2965   uint64_t CurBit = Stream.GetCurrentBitNo();
2966   DeferredMetadataInfo.push_back(CurBit);
2967 
2968   // Skip over the block for now.
2969   if (Error Err = Stream.SkipBlock())
2970     return Err;
2971   return Error::success();
2972 }
2973 
2974 Error BitcodeReader::materializeMetadata() {
2975   for (uint64_t BitPos : DeferredMetadataInfo) {
2976     // Move the bit stream to the saved position.
2977     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2978       return JumpFailed;
2979     if (Error Err = MDLoader->parseModuleMetadata())
2980       return Err;
2981   }
2982 
2983   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2984   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
2985   // multiple times.
2986   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
2987     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2988       NamedMDNode *LinkerOpts =
2989           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2990       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2991         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2992     }
2993   }
2994 
2995   DeferredMetadataInfo.clear();
2996   return Error::success();
2997 }
2998 
2999 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3000 
3001 /// When we see the block for a function body, remember where it is and then
3002 /// skip it.  This lets us lazily deserialize the functions.
3003 Error BitcodeReader::rememberAndSkipFunctionBody() {
3004   // Get the function we are talking about.
3005   if (FunctionsWithBodies.empty())
3006     return error("Insufficient function protos");
3007 
3008   Function *Fn = FunctionsWithBodies.back();
3009   FunctionsWithBodies.pop_back();
3010 
3011   // Save the current stream state.
3012   uint64_t CurBit = Stream.GetCurrentBitNo();
3013   assert(
3014       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3015       "Mismatch between VST and scanned function offsets");
3016   DeferredFunctionInfo[Fn] = CurBit;
3017 
3018   // Skip over the function block for now.
3019   if (Error Err = Stream.SkipBlock())
3020     return Err;
3021   return Error::success();
3022 }
3023 
3024 Error BitcodeReader::globalCleanup() {
3025   // Patch the initializers for globals and aliases up.
3026   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3027     return Err;
3028   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3029     return error("Malformed global initializer set");
3030 
3031   // Look for intrinsic functions which need to be upgraded at some point
3032   // and functions that need to have their function attributes upgraded.
3033   for (Function &F : *TheModule) {
3034     MDLoader->upgradeDebugIntrinsics(F);
3035     Function *NewFn;
3036     if (UpgradeIntrinsicFunction(&F, NewFn))
3037       UpgradedIntrinsics[&F] = NewFn;
3038     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3039       // Some types could be renamed during loading if several modules are
3040       // loaded in the same LLVMContext (LTO scenario). In this case we should
3041       // remangle intrinsics names as well.
3042       RemangledIntrinsics[&F] = Remangled.getValue();
3043     // Look for functions that rely on old function attribute behavior.
3044     UpgradeFunctionAttributes(F);
3045   }
3046 
3047   // Look for global variables which need to be renamed.
3048   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3049   for (GlobalVariable &GV : TheModule->globals())
3050     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3051       UpgradedVariables.emplace_back(&GV, Upgraded);
3052   for (auto &Pair : UpgradedVariables) {
3053     Pair.first->eraseFromParent();
3054     TheModule->getGlobalList().push_back(Pair.second);
3055   }
3056 
3057   // Force deallocation of memory for these vectors to favor the client that
3058   // want lazy deserialization.
3059   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3060   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3061       IndirectSymbolInits);
3062   return Error::success();
3063 }
3064 
3065 /// Support for lazy parsing of function bodies. This is required if we
3066 /// either have an old bitcode file without a VST forward declaration record,
3067 /// or if we have an anonymous function being materialized, since anonymous
3068 /// functions do not have a name and are therefore not in the VST.
3069 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3070   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3071     return JumpFailed;
3072 
3073   if (Stream.AtEndOfStream())
3074     return error("Could not find function in stream");
3075 
3076   if (!SeenFirstFunctionBody)
3077     return error("Trying to materialize functions before seeing function blocks");
3078 
3079   // An old bitcode file with the symbol table at the end would have
3080   // finished the parse greedily.
3081   assert(SeenValueSymbolTable);
3082 
3083   SmallVector<uint64_t, 64> Record;
3084 
3085   while (true) {
3086     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3087     if (!MaybeEntry)
3088       return MaybeEntry.takeError();
3089     llvm::BitstreamEntry Entry = MaybeEntry.get();
3090 
3091     switch (Entry.Kind) {
3092     default:
3093       return error("Expect SubBlock");
3094     case BitstreamEntry::SubBlock:
3095       switch (Entry.ID) {
3096       default:
3097         return error("Expect function block");
3098       case bitc::FUNCTION_BLOCK_ID:
3099         if (Error Err = rememberAndSkipFunctionBody())
3100           return Err;
3101         NextUnreadBit = Stream.GetCurrentBitNo();
3102         return Error::success();
3103       }
3104     }
3105   }
3106 }
3107 
3108 bool BitcodeReaderBase::readBlockInfo() {
3109   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3110       Stream.ReadBlockInfoBlock();
3111   if (!MaybeNewBlockInfo)
3112     return true; // FIXME Handle the error.
3113   Optional<BitstreamBlockInfo> NewBlockInfo =
3114       std::move(MaybeNewBlockInfo.get());
3115   if (!NewBlockInfo)
3116     return true;
3117   BlockInfo = std::move(*NewBlockInfo);
3118   return false;
3119 }
3120 
3121 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3122   // v1: [selection_kind, name]
3123   // v2: [strtab_offset, strtab_size, selection_kind]
3124   StringRef Name;
3125   std::tie(Name, Record) = readNameFromStrtab(Record);
3126 
3127   if (Record.empty())
3128     return error("Invalid record");
3129   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3130   std::string OldFormatName;
3131   if (!UseStrtab) {
3132     if (Record.size() < 2)
3133       return error("Invalid record");
3134     unsigned ComdatNameSize = Record[1];
3135     OldFormatName.reserve(ComdatNameSize);
3136     for (unsigned i = 0; i != ComdatNameSize; ++i)
3137       OldFormatName += (char)Record[2 + i];
3138     Name = OldFormatName;
3139   }
3140   Comdat *C = TheModule->getOrInsertComdat(Name);
3141   C->setSelectionKind(SK);
3142   ComdatList.push_back(C);
3143   return Error::success();
3144 }
3145 
3146 static void inferDSOLocal(GlobalValue *GV) {
3147   // infer dso_local from linkage and visibility if it is not encoded.
3148   if (GV->hasLocalLinkage() ||
3149       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3150     GV->setDSOLocal(true);
3151 }
3152 
3153 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3154   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3155   // visibility, threadlocal, unnamed_addr, externally_initialized,
3156   // dllstorageclass, comdat, attributes, preemption specifier,
3157   // partition strtab offset, partition strtab size] (name in VST)
3158   // v2: [strtab_offset, strtab_size, v1]
3159   StringRef Name;
3160   std::tie(Name, Record) = readNameFromStrtab(Record);
3161 
3162   if (Record.size() < 6)
3163     return error("Invalid record");
3164   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3165   Type *Ty = flattenPointerTypes(FullTy);
3166   if (!Ty)
3167     return error("Invalid record");
3168   bool isConstant = Record[1] & 1;
3169   bool explicitType = Record[1] & 2;
3170   unsigned AddressSpace;
3171   if (explicitType) {
3172     AddressSpace = Record[1] >> 2;
3173   } else {
3174     if (!Ty->isPointerTy())
3175       return error("Invalid type for value");
3176     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3177     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3178   }
3179 
3180   uint64_t RawLinkage = Record[3];
3181   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3182   MaybeAlign Alignment;
3183   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3184     return Err;
3185   std::string Section;
3186   if (Record[5]) {
3187     if (Record[5] - 1 >= SectionTable.size())
3188       return error("Invalid ID");
3189     Section = SectionTable[Record[5] - 1];
3190   }
3191   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3192   // Local linkage must have default visibility.
3193   // auto-upgrade `hidden` and `protected` for old bitcode.
3194   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3195     Visibility = getDecodedVisibility(Record[6]);
3196 
3197   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3198   if (Record.size() > 7)
3199     TLM = getDecodedThreadLocalMode(Record[7]);
3200 
3201   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3202   if (Record.size() > 8)
3203     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3204 
3205   bool ExternallyInitialized = false;
3206   if (Record.size() > 9)
3207     ExternallyInitialized = Record[9];
3208 
3209   GlobalVariable *NewGV =
3210       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3211                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3212   NewGV->setAlignment(Alignment);
3213   if (!Section.empty())
3214     NewGV->setSection(Section);
3215   NewGV->setVisibility(Visibility);
3216   NewGV->setUnnamedAddr(UnnamedAddr);
3217 
3218   if (Record.size() > 10)
3219     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3220   else
3221     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3222 
3223   FullTy = PointerType::get(FullTy, AddressSpace);
3224   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3225          "Incorrect fully specified type for GlobalVariable");
3226   ValueList.push_back(NewGV, FullTy);
3227 
3228   // Remember which value to use for the global initializer.
3229   if (unsigned InitID = Record[2])
3230     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3231 
3232   if (Record.size() > 11) {
3233     if (unsigned ComdatID = Record[11]) {
3234       if (ComdatID > ComdatList.size())
3235         return error("Invalid global variable comdat ID");
3236       NewGV->setComdat(ComdatList[ComdatID - 1]);
3237     }
3238   } else if (hasImplicitComdat(RawLinkage)) {
3239     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3240   }
3241 
3242   if (Record.size() > 12) {
3243     auto AS = getAttributes(Record[12]).getFnAttributes();
3244     NewGV->setAttributes(AS);
3245   }
3246 
3247   if (Record.size() > 13) {
3248     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3249   }
3250   inferDSOLocal(NewGV);
3251 
3252   // Check whether we have enough values to read a partition name.
3253   if (Record.size() > 15)
3254     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3255 
3256   return Error::success();
3257 }
3258 
3259 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3260   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3261   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3262   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3263   // v2: [strtab_offset, strtab_size, v1]
3264   StringRef Name;
3265   std::tie(Name, Record) = readNameFromStrtab(Record);
3266 
3267   if (Record.size() < 8)
3268     return error("Invalid record");
3269   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3270   Type *FTy = flattenPointerTypes(FullFTy);
3271   if (!FTy)
3272     return error("Invalid record");
3273   if (isa<PointerType>(FTy))
3274     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3275 
3276   if (!isa<FunctionType>(FTy))
3277     return error("Invalid type for value");
3278   auto CC = static_cast<CallingConv::ID>(Record[1]);
3279   if (CC & ~CallingConv::MaxID)
3280     return error("Invalid calling convention ID");
3281 
3282   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3283   if (Record.size() > 16)
3284     AddrSpace = Record[16];
3285 
3286   Function *Func =
3287       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3288                        AddrSpace, Name, TheModule);
3289 
3290   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3291          "Incorrect fully specified type provided for function");
3292   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3293 
3294   Func->setCallingConv(CC);
3295   bool isProto = Record[2];
3296   uint64_t RawLinkage = Record[3];
3297   Func->setLinkage(getDecodedLinkage(RawLinkage));
3298   Func->setAttributes(getAttributes(Record[4]));
3299 
3300   // Upgrade any old-style byval or sret without a type by propagating the
3301   // argument's pointee type. There should be no opaque pointers where the byval
3302   // type is implicit.
3303   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3304     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) {
3305       if (!Func->hasParamAttribute(i, Kind))
3306         continue;
3307 
3308       Func->removeParamAttr(i, Kind);
3309 
3310       Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3311       Type *PtrEltTy = getPointerElementFlatType(PTy);
3312       Attribute NewAttr =
3313           Kind == Attribute::ByVal
3314               ? Attribute::getWithByValType(Context, PtrEltTy)
3315               : Attribute::getWithStructRetType(Context, PtrEltTy);
3316       Func->addParamAttr(i, NewAttr);
3317     }
3318   }
3319 
3320   MaybeAlign Alignment;
3321   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3322     return Err;
3323   Func->setAlignment(Alignment);
3324   if (Record[6]) {
3325     if (Record[6] - 1 >= SectionTable.size())
3326       return error("Invalid ID");
3327     Func->setSection(SectionTable[Record[6] - 1]);
3328   }
3329   // Local linkage must have default visibility.
3330   // auto-upgrade `hidden` and `protected` for old bitcode.
3331   if (!Func->hasLocalLinkage())
3332     Func->setVisibility(getDecodedVisibility(Record[7]));
3333   if (Record.size() > 8 && Record[8]) {
3334     if (Record[8] - 1 >= GCTable.size())
3335       return error("Invalid ID");
3336     Func->setGC(GCTable[Record[8] - 1]);
3337   }
3338   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3339   if (Record.size() > 9)
3340     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3341   Func->setUnnamedAddr(UnnamedAddr);
3342   if (Record.size() > 10 && Record[10] != 0)
3343     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3344 
3345   if (Record.size() > 11)
3346     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3347   else
3348     upgradeDLLImportExportLinkage(Func, RawLinkage);
3349 
3350   if (Record.size() > 12) {
3351     if (unsigned ComdatID = Record[12]) {
3352       if (ComdatID > ComdatList.size())
3353         return error("Invalid function comdat ID");
3354       Func->setComdat(ComdatList[ComdatID - 1]);
3355     }
3356   } else if (hasImplicitComdat(RawLinkage)) {
3357     Func->setComdat(reinterpret_cast<Comdat *>(1));
3358   }
3359 
3360   if (Record.size() > 13 && Record[13] != 0)
3361     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3362 
3363   if (Record.size() > 14 && Record[14] != 0)
3364     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3365 
3366   if (Record.size() > 15) {
3367     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3368   }
3369   inferDSOLocal(Func);
3370 
3371   // Record[16] is the address space number.
3372 
3373   // Check whether we have enough values to read a partition name.
3374   if (Record.size() > 18)
3375     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3376 
3377   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3378   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3379          "Incorrect fully specified type provided for Function");
3380   ValueList.push_back(Func, FullTy);
3381 
3382   // If this is a function with a body, remember the prototype we are
3383   // creating now, so that we can match up the body with them later.
3384   if (!isProto) {
3385     Func->setIsMaterializable(true);
3386     FunctionsWithBodies.push_back(Func);
3387     DeferredFunctionInfo[Func] = 0;
3388   }
3389   return Error::success();
3390 }
3391 
3392 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3393     unsigned BitCode, ArrayRef<uint64_t> Record) {
3394   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3395   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3396   // dllstorageclass, threadlocal, unnamed_addr,
3397   // preemption specifier] (name in VST)
3398   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3399   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3400   // preemption specifier] (name in VST)
3401   // v2: [strtab_offset, strtab_size, v1]
3402   StringRef Name;
3403   std::tie(Name, Record) = readNameFromStrtab(Record);
3404 
3405   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3406   if (Record.size() < (3 + (unsigned)NewRecord))
3407     return error("Invalid record");
3408   unsigned OpNum = 0;
3409   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3410   Type *Ty = flattenPointerTypes(FullTy);
3411   if (!Ty)
3412     return error("Invalid record");
3413 
3414   unsigned AddrSpace;
3415   if (!NewRecord) {
3416     auto *PTy = dyn_cast<PointerType>(Ty);
3417     if (!PTy)
3418       return error("Invalid type for value");
3419     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3420     AddrSpace = PTy->getAddressSpace();
3421   } else {
3422     AddrSpace = Record[OpNum++];
3423   }
3424 
3425   auto Val = Record[OpNum++];
3426   auto Linkage = Record[OpNum++];
3427   GlobalIndirectSymbol *NewGA;
3428   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3429       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3430     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3431                                 TheModule);
3432   else
3433     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3434                                 nullptr, TheModule);
3435 
3436   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3437          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3438   // Local linkage must have default visibility.
3439   // auto-upgrade `hidden` and `protected` for old bitcode.
3440   if (OpNum != Record.size()) {
3441     auto VisInd = OpNum++;
3442     if (!NewGA->hasLocalLinkage())
3443       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3444   }
3445   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3446       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3447     if (OpNum != Record.size())
3448       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3449     else
3450       upgradeDLLImportExportLinkage(NewGA, Linkage);
3451     if (OpNum != Record.size())
3452       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3453     if (OpNum != Record.size())
3454       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3455   }
3456   if (OpNum != Record.size())
3457     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3458   inferDSOLocal(NewGA);
3459 
3460   // Check whether we have enough values to read a partition name.
3461   if (OpNum + 1 < Record.size()) {
3462     NewGA->setPartition(
3463         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3464     OpNum += 2;
3465   }
3466 
3467   FullTy = PointerType::get(FullTy, AddrSpace);
3468   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3469          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3470   ValueList.push_back(NewGA, FullTy);
3471   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3472   return Error::success();
3473 }
3474 
3475 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3476                                  bool ShouldLazyLoadMetadata,
3477                                  DataLayoutCallbackTy DataLayoutCallback) {
3478   if (ResumeBit) {
3479     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3480       return JumpFailed;
3481   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3482     return Err;
3483 
3484   SmallVector<uint64_t, 64> Record;
3485 
3486   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3487   // finalize the datalayout before we run any of that code.
3488   bool ResolvedDataLayout = false;
3489   auto ResolveDataLayout = [&] {
3490     if (ResolvedDataLayout)
3491       return;
3492 
3493     // datalayout and triple can't be parsed after this point.
3494     ResolvedDataLayout = true;
3495 
3496     // Upgrade data layout string.
3497     std::string DL = llvm::UpgradeDataLayoutString(
3498         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3499     TheModule->setDataLayout(DL);
3500 
3501     if (auto LayoutOverride =
3502             DataLayoutCallback(TheModule->getTargetTriple()))
3503       TheModule->setDataLayout(*LayoutOverride);
3504   };
3505 
3506   // Read all the records for this module.
3507   while (true) {
3508     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3509     if (!MaybeEntry)
3510       return MaybeEntry.takeError();
3511     llvm::BitstreamEntry Entry = MaybeEntry.get();
3512 
3513     switch (Entry.Kind) {
3514     case BitstreamEntry::Error:
3515       return error("Malformed block");
3516     case BitstreamEntry::EndBlock:
3517       ResolveDataLayout();
3518       return globalCleanup();
3519 
3520     case BitstreamEntry::SubBlock:
3521       switch (Entry.ID) {
3522       default:  // Skip unknown content.
3523         if (Error Err = Stream.SkipBlock())
3524           return Err;
3525         break;
3526       case bitc::BLOCKINFO_BLOCK_ID:
3527         if (readBlockInfo())
3528           return error("Malformed block");
3529         break;
3530       case bitc::PARAMATTR_BLOCK_ID:
3531         if (Error Err = parseAttributeBlock())
3532           return Err;
3533         break;
3534       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3535         if (Error Err = parseAttributeGroupBlock())
3536           return Err;
3537         break;
3538       case bitc::TYPE_BLOCK_ID_NEW:
3539         if (Error Err = parseTypeTable())
3540           return Err;
3541         break;
3542       case bitc::VALUE_SYMTAB_BLOCK_ID:
3543         if (!SeenValueSymbolTable) {
3544           // Either this is an old form VST without function index and an
3545           // associated VST forward declaration record (which would have caused
3546           // the VST to be jumped to and parsed before it was encountered
3547           // normally in the stream), or there were no function blocks to
3548           // trigger an earlier parsing of the VST.
3549           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3550           if (Error Err = parseValueSymbolTable())
3551             return Err;
3552           SeenValueSymbolTable = true;
3553         } else {
3554           // We must have had a VST forward declaration record, which caused
3555           // the parser to jump to and parse the VST earlier.
3556           assert(VSTOffset > 0);
3557           if (Error Err = Stream.SkipBlock())
3558             return Err;
3559         }
3560         break;
3561       case bitc::CONSTANTS_BLOCK_ID:
3562         if (Error Err = parseConstants())
3563           return Err;
3564         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3565           return Err;
3566         break;
3567       case bitc::METADATA_BLOCK_ID:
3568         if (ShouldLazyLoadMetadata) {
3569           if (Error Err = rememberAndSkipMetadata())
3570             return Err;
3571           break;
3572         }
3573         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3574         if (Error Err = MDLoader->parseModuleMetadata())
3575           return Err;
3576         break;
3577       case bitc::METADATA_KIND_BLOCK_ID:
3578         if (Error Err = MDLoader->parseMetadataKinds())
3579           return Err;
3580         break;
3581       case bitc::FUNCTION_BLOCK_ID:
3582         ResolveDataLayout();
3583 
3584         // If this is the first function body we've seen, reverse the
3585         // FunctionsWithBodies list.
3586         if (!SeenFirstFunctionBody) {
3587           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3588           if (Error Err = globalCleanup())
3589             return Err;
3590           SeenFirstFunctionBody = true;
3591         }
3592 
3593         if (VSTOffset > 0) {
3594           // If we have a VST forward declaration record, make sure we
3595           // parse the VST now if we haven't already. It is needed to
3596           // set up the DeferredFunctionInfo vector for lazy reading.
3597           if (!SeenValueSymbolTable) {
3598             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3599               return Err;
3600             SeenValueSymbolTable = true;
3601             // Fall through so that we record the NextUnreadBit below.
3602             // This is necessary in case we have an anonymous function that
3603             // is later materialized. Since it will not have a VST entry we
3604             // need to fall back to the lazy parse to find its offset.
3605           } else {
3606             // If we have a VST forward declaration record, but have already
3607             // parsed the VST (just above, when the first function body was
3608             // encountered here), then we are resuming the parse after
3609             // materializing functions. The ResumeBit points to the
3610             // start of the last function block recorded in the
3611             // DeferredFunctionInfo map. Skip it.
3612             if (Error Err = Stream.SkipBlock())
3613               return Err;
3614             continue;
3615           }
3616         }
3617 
3618         // Support older bitcode files that did not have the function
3619         // index in the VST, nor a VST forward declaration record, as
3620         // well as anonymous functions that do not have VST entries.
3621         // Build the DeferredFunctionInfo vector on the fly.
3622         if (Error Err = rememberAndSkipFunctionBody())
3623           return Err;
3624 
3625         // Suspend parsing when we reach the function bodies. Subsequent
3626         // materialization calls will resume it when necessary. If the bitcode
3627         // file is old, the symbol table will be at the end instead and will not
3628         // have been seen yet. In this case, just finish the parse now.
3629         if (SeenValueSymbolTable) {
3630           NextUnreadBit = Stream.GetCurrentBitNo();
3631           // After the VST has been parsed, we need to make sure intrinsic name
3632           // are auto-upgraded.
3633           return globalCleanup();
3634         }
3635         break;
3636       case bitc::USELIST_BLOCK_ID:
3637         if (Error Err = parseUseLists())
3638           return Err;
3639         break;
3640       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3641         if (Error Err = parseOperandBundleTags())
3642           return Err;
3643         break;
3644       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3645         if (Error Err = parseSyncScopeNames())
3646           return Err;
3647         break;
3648       }
3649       continue;
3650 
3651     case BitstreamEntry::Record:
3652       // The interesting case.
3653       break;
3654     }
3655 
3656     // Read a record.
3657     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3658     if (!MaybeBitCode)
3659       return MaybeBitCode.takeError();
3660     switch (unsigned BitCode = MaybeBitCode.get()) {
3661     default: break;  // Default behavior, ignore unknown content.
3662     case bitc::MODULE_CODE_VERSION: {
3663       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3664       if (!VersionOrErr)
3665         return VersionOrErr.takeError();
3666       UseRelativeIDs = *VersionOrErr >= 1;
3667       break;
3668     }
3669     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3670       if (ResolvedDataLayout)
3671         return error("target triple too late in module");
3672       std::string S;
3673       if (convertToString(Record, 0, S))
3674         return error("Invalid record");
3675       TheModule->setTargetTriple(S);
3676       break;
3677     }
3678     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3679       if (ResolvedDataLayout)
3680         return error("datalayout too late in module");
3681       std::string S;
3682       if (convertToString(Record, 0, S))
3683         return error("Invalid record");
3684       TheModule->setDataLayout(S);
3685       break;
3686     }
3687     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3688       std::string S;
3689       if (convertToString(Record, 0, S))
3690         return error("Invalid record");
3691       TheModule->setModuleInlineAsm(S);
3692       break;
3693     }
3694     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3695       // Deprecated, but still needed to read old bitcode files.
3696       std::string S;
3697       if (convertToString(Record, 0, S))
3698         return error("Invalid record");
3699       // Ignore value.
3700       break;
3701     }
3702     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3703       std::string S;
3704       if (convertToString(Record, 0, S))
3705         return error("Invalid record");
3706       SectionTable.push_back(S);
3707       break;
3708     }
3709     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3710       std::string S;
3711       if (convertToString(Record, 0, S))
3712         return error("Invalid record");
3713       GCTable.push_back(S);
3714       break;
3715     }
3716     case bitc::MODULE_CODE_COMDAT:
3717       if (Error Err = parseComdatRecord(Record))
3718         return Err;
3719       break;
3720     case bitc::MODULE_CODE_GLOBALVAR:
3721       if (Error Err = parseGlobalVarRecord(Record))
3722         return Err;
3723       break;
3724     case bitc::MODULE_CODE_FUNCTION:
3725       ResolveDataLayout();
3726       if (Error Err = parseFunctionRecord(Record))
3727         return Err;
3728       break;
3729     case bitc::MODULE_CODE_IFUNC:
3730     case bitc::MODULE_CODE_ALIAS:
3731     case bitc::MODULE_CODE_ALIAS_OLD:
3732       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3733         return Err;
3734       break;
3735     /// MODULE_CODE_VSTOFFSET: [offset]
3736     case bitc::MODULE_CODE_VSTOFFSET:
3737       if (Record.empty())
3738         return error("Invalid record");
3739       // Note that we subtract 1 here because the offset is relative to one word
3740       // before the start of the identification or module block, which was
3741       // historically always the start of the regular bitcode header.
3742       VSTOffset = Record[0] - 1;
3743       break;
3744     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3745     case bitc::MODULE_CODE_SOURCE_FILENAME:
3746       SmallString<128> ValueName;
3747       if (convertToString(Record, 0, ValueName))
3748         return error("Invalid record");
3749       TheModule->setSourceFileName(ValueName);
3750       break;
3751     }
3752     Record.clear();
3753   }
3754 }
3755 
3756 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3757                                       bool IsImporting,
3758                                       DataLayoutCallbackTy DataLayoutCallback) {
3759   TheModule = M;
3760   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3761                             [&](unsigned ID) { return getTypeByID(ID); });
3762   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3763 }
3764 
3765 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3766   if (!isa<PointerType>(PtrType))
3767     return error("Load/Store operand is not a pointer type");
3768   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3769 
3770   if (ValType && ValType != ElemType)
3771     return error("Explicit load/store type does not match pointee "
3772                  "type of pointer operand");
3773   if (!PointerType::isLoadableOrStorableType(ElemType))
3774     return error("Cannot load/store from pointer");
3775   return Error::success();
3776 }
3777 
3778 void BitcodeReader::propagateByValSRetTypes(CallBase *CB,
3779                                             ArrayRef<Type *> ArgsFullTys) {
3780   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3781     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) {
3782       if (!CB->paramHasAttr(i, Kind))
3783         continue;
3784 
3785       CB->removeParamAttr(i, Kind);
3786 
3787       Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]);
3788       Attribute NewAttr =
3789           Kind == Attribute::ByVal
3790               ? Attribute::getWithByValType(Context, PtrEltTy)
3791               : Attribute::getWithStructRetType(Context, PtrEltTy);
3792       CB->addParamAttr(i, NewAttr);
3793     }
3794   }
3795 }
3796 
3797 /// Lazily parse the specified function body block.
3798 Error BitcodeReader::parseFunctionBody(Function *F) {
3799   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3800     return Err;
3801 
3802   // Unexpected unresolved metadata when parsing function.
3803   if (MDLoader->hasFwdRefs())
3804     return error("Invalid function metadata: incoming forward references");
3805 
3806   InstructionList.clear();
3807   unsigned ModuleValueListSize = ValueList.size();
3808   unsigned ModuleMDLoaderSize = MDLoader->size();
3809 
3810   // Add all the function arguments to the value table.
3811   unsigned ArgNo = 0;
3812   FunctionType *FullFTy = FunctionTypes[F];
3813   for (Argument &I : F->args()) {
3814     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3815            "Incorrect fully specified type for Function Argument");
3816     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3817   }
3818   unsigned NextValueNo = ValueList.size();
3819   BasicBlock *CurBB = nullptr;
3820   unsigned CurBBNo = 0;
3821 
3822   DebugLoc LastLoc;
3823   auto getLastInstruction = [&]() -> Instruction * {
3824     if (CurBB && !CurBB->empty())
3825       return &CurBB->back();
3826     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3827              !FunctionBBs[CurBBNo - 1]->empty())
3828       return &FunctionBBs[CurBBNo - 1]->back();
3829     return nullptr;
3830   };
3831 
3832   std::vector<OperandBundleDef> OperandBundles;
3833 
3834   // Read all the records.
3835   SmallVector<uint64_t, 64> Record;
3836 
3837   while (true) {
3838     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3839     if (!MaybeEntry)
3840       return MaybeEntry.takeError();
3841     llvm::BitstreamEntry Entry = MaybeEntry.get();
3842 
3843     switch (Entry.Kind) {
3844     case BitstreamEntry::Error:
3845       return error("Malformed block");
3846     case BitstreamEntry::EndBlock:
3847       goto OutOfRecordLoop;
3848 
3849     case BitstreamEntry::SubBlock:
3850       switch (Entry.ID) {
3851       default:  // Skip unknown content.
3852         if (Error Err = Stream.SkipBlock())
3853           return Err;
3854         break;
3855       case bitc::CONSTANTS_BLOCK_ID:
3856         if (Error Err = parseConstants())
3857           return Err;
3858         NextValueNo = ValueList.size();
3859         break;
3860       case bitc::VALUE_SYMTAB_BLOCK_ID:
3861         if (Error Err = parseValueSymbolTable())
3862           return Err;
3863         break;
3864       case bitc::METADATA_ATTACHMENT_ID:
3865         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3866           return Err;
3867         break;
3868       case bitc::METADATA_BLOCK_ID:
3869         assert(DeferredMetadataInfo.empty() &&
3870                "Must read all module-level metadata before function-level");
3871         if (Error Err = MDLoader->parseFunctionMetadata())
3872           return Err;
3873         break;
3874       case bitc::USELIST_BLOCK_ID:
3875         if (Error Err = parseUseLists())
3876           return Err;
3877         break;
3878       }
3879       continue;
3880 
3881     case BitstreamEntry::Record:
3882       // The interesting case.
3883       break;
3884     }
3885 
3886     // Read a record.
3887     Record.clear();
3888     Instruction *I = nullptr;
3889     Type *FullTy = nullptr;
3890     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3891     if (!MaybeBitCode)
3892       return MaybeBitCode.takeError();
3893     switch (unsigned BitCode = MaybeBitCode.get()) {
3894     default: // Default behavior: reject
3895       return error("Invalid value");
3896     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3897       if (Record.empty() || Record[0] == 0)
3898         return error("Invalid record");
3899       // Create all the basic blocks for the function.
3900       FunctionBBs.resize(Record[0]);
3901 
3902       // See if anything took the address of blocks in this function.
3903       auto BBFRI = BasicBlockFwdRefs.find(F);
3904       if (BBFRI == BasicBlockFwdRefs.end()) {
3905         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3906           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3907       } else {
3908         auto &BBRefs = BBFRI->second;
3909         // Check for invalid basic block references.
3910         if (BBRefs.size() > FunctionBBs.size())
3911           return error("Invalid ID");
3912         assert(!BBRefs.empty() && "Unexpected empty array");
3913         assert(!BBRefs.front() && "Invalid reference to entry block");
3914         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3915              ++I)
3916           if (I < RE && BBRefs[I]) {
3917             BBRefs[I]->insertInto(F);
3918             FunctionBBs[I] = BBRefs[I];
3919           } else {
3920             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3921           }
3922 
3923         // Erase from the table.
3924         BasicBlockFwdRefs.erase(BBFRI);
3925       }
3926 
3927       CurBB = FunctionBBs[0];
3928       continue;
3929     }
3930 
3931     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3932       // This record indicates that the last instruction is at the same
3933       // location as the previous instruction with a location.
3934       I = getLastInstruction();
3935 
3936       if (!I)
3937         return error("Invalid record");
3938       I->setDebugLoc(LastLoc);
3939       I = nullptr;
3940       continue;
3941 
3942     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3943       I = getLastInstruction();
3944       if (!I || Record.size() < 4)
3945         return error("Invalid record");
3946 
3947       unsigned Line = Record[0], Col = Record[1];
3948       unsigned ScopeID = Record[2], IAID = Record[3];
3949       bool isImplicitCode = Record.size() == 5 && Record[4];
3950 
3951       MDNode *Scope = nullptr, *IA = nullptr;
3952       if (ScopeID) {
3953         Scope = dyn_cast_or_null<MDNode>(
3954             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3955         if (!Scope)
3956           return error("Invalid record");
3957       }
3958       if (IAID) {
3959         IA = dyn_cast_or_null<MDNode>(
3960             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3961         if (!IA)
3962           return error("Invalid record");
3963       }
3964       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
3965                                 isImplicitCode);
3966       I->setDebugLoc(LastLoc);
3967       I = nullptr;
3968       continue;
3969     }
3970     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3971       unsigned OpNum = 0;
3972       Value *LHS;
3973       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3974           OpNum+1 > Record.size())
3975         return error("Invalid record");
3976 
3977       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3978       if (Opc == -1)
3979         return error("Invalid record");
3980       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3981       InstructionList.push_back(I);
3982       if (OpNum < Record.size()) {
3983         if (isa<FPMathOperator>(I)) {
3984           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3985           if (FMF.any())
3986             I->setFastMathFlags(FMF);
3987         }
3988       }
3989       break;
3990     }
3991     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3992       unsigned OpNum = 0;
3993       Value *LHS, *RHS;
3994       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3995           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3996           OpNum+1 > Record.size())
3997         return error("Invalid record");
3998 
3999       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4000       if (Opc == -1)
4001         return error("Invalid record");
4002       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4003       InstructionList.push_back(I);
4004       if (OpNum < Record.size()) {
4005         if (Opc == Instruction::Add ||
4006             Opc == Instruction::Sub ||
4007             Opc == Instruction::Mul ||
4008             Opc == Instruction::Shl) {
4009           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4010             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4011           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4012             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4013         } else if (Opc == Instruction::SDiv ||
4014                    Opc == Instruction::UDiv ||
4015                    Opc == Instruction::LShr ||
4016                    Opc == Instruction::AShr) {
4017           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4018             cast<BinaryOperator>(I)->setIsExact(true);
4019         } else if (isa<FPMathOperator>(I)) {
4020           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4021           if (FMF.any())
4022             I->setFastMathFlags(FMF);
4023         }
4024 
4025       }
4026       break;
4027     }
4028     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4029       unsigned OpNum = 0;
4030       Value *Op;
4031       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4032           OpNum+2 != Record.size())
4033         return error("Invalid record");
4034 
4035       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
4036       Type *ResTy = flattenPointerTypes(FullTy);
4037       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4038       if (Opc == -1 || !ResTy)
4039         return error("Invalid record");
4040       Instruction *Temp = nullptr;
4041       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4042         if (Temp) {
4043           InstructionList.push_back(Temp);
4044           assert(CurBB && "No current BB?");
4045           CurBB->getInstList().push_back(Temp);
4046         }
4047       } else {
4048         auto CastOp = (Instruction::CastOps)Opc;
4049         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4050           return error("Invalid cast");
4051         I = CastInst::Create(CastOp, Op, ResTy);
4052       }
4053       InstructionList.push_back(I);
4054       break;
4055     }
4056     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4057     case bitc::FUNC_CODE_INST_GEP_OLD:
4058     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4059       unsigned OpNum = 0;
4060 
4061       Type *Ty;
4062       bool InBounds;
4063 
4064       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4065         InBounds = Record[OpNum++];
4066         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4067         Ty = flattenPointerTypes(FullTy);
4068       } else {
4069         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4070         Ty = nullptr;
4071       }
4072 
4073       Value *BasePtr;
4074       Type *FullBaseTy = nullptr;
4075       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4076         return error("Invalid record");
4077 
4078       if (!Ty) {
4079         std::tie(FullTy, Ty) =
4080             getPointerElementTypes(FullBaseTy->getScalarType());
4081       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
4082         return error(
4083             "Explicit gep type does not match pointee type of pointer operand");
4084 
4085       SmallVector<Value*, 16> GEPIdx;
4086       while (OpNum != Record.size()) {
4087         Value *Op;
4088         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4089           return error("Invalid record");
4090         GEPIdx.push_back(Op);
4091       }
4092 
4093       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4094       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4095 
4096       InstructionList.push_back(I);
4097       if (InBounds)
4098         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4099       break;
4100     }
4101 
4102     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4103                                        // EXTRACTVAL: [opty, opval, n x indices]
4104       unsigned OpNum = 0;
4105       Value *Agg;
4106       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4107         return error("Invalid record");
4108 
4109       unsigned RecSize = Record.size();
4110       if (OpNum == RecSize)
4111         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4112 
4113       SmallVector<unsigned, 4> EXTRACTVALIdx;
4114       for (; OpNum != RecSize; ++OpNum) {
4115         bool IsArray = FullTy->isArrayTy();
4116         bool IsStruct = FullTy->isStructTy();
4117         uint64_t Index = Record[OpNum];
4118 
4119         if (!IsStruct && !IsArray)
4120           return error("EXTRACTVAL: Invalid type");
4121         if ((unsigned)Index != Index)
4122           return error("Invalid value");
4123         if (IsStruct && Index >= FullTy->getStructNumElements())
4124           return error("EXTRACTVAL: Invalid struct index");
4125         if (IsArray && Index >= FullTy->getArrayNumElements())
4126           return error("EXTRACTVAL: Invalid array index");
4127         EXTRACTVALIdx.push_back((unsigned)Index);
4128 
4129         if (IsStruct)
4130           FullTy = FullTy->getStructElementType(Index);
4131         else
4132           FullTy = FullTy->getArrayElementType();
4133       }
4134 
4135       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4136       InstructionList.push_back(I);
4137       break;
4138     }
4139 
4140     case bitc::FUNC_CODE_INST_INSERTVAL: {
4141                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4142       unsigned OpNum = 0;
4143       Value *Agg;
4144       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4145         return error("Invalid record");
4146       Value *Val;
4147       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4148         return error("Invalid record");
4149 
4150       unsigned RecSize = Record.size();
4151       if (OpNum == RecSize)
4152         return error("INSERTVAL: Invalid instruction with 0 indices");
4153 
4154       SmallVector<unsigned, 4> INSERTVALIdx;
4155       Type *CurTy = Agg->getType();
4156       for (; OpNum != RecSize; ++OpNum) {
4157         bool IsArray = CurTy->isArrayTy();
4158         bool IsStruct = CurTy->isStructTy();
4159         uint64_t Index = Record[OpNum];
4160 
4161         if (!IsStruct && !IsArray)
4162           return error("INSERTVAL: Invalid type");
4163         if ((unsigned)Index != Index)
4164           return error("Invalid value");
4165         if (IsStruct && Index >= CurTy->getStructNumElements())
4166           return error("INSERTVAL: Invalid struct index");
4167         if (IsArray && Index >= CurTy->getArrayNumElements())
4168           return error("INSERTVAL: Invalid array index");
4169 
4170         INSERTVALIdx.push_back((unsigned)Index);
4171         if (IsStruct)
4172           CurTy = CurTy->getStructElementType(Index);
4173         else
4174           CurTy = CurTy->getArrayElementType();
4175       }
4176 
4177       if (CurTy != Val->getType())
4178         return error("Inserted value type doesn't match aggregate type");
4179 
4180       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4181       InstructionList.push_back(I);
4182       break;
4183     }
4184 
4185     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4186       // obsolete form of select
4187       // handles select i1 ... in old bitcode
4188       unsigned OpNum = 0;
4189       Value *TrueVal, *FalseVal, *Cond;
4190       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4191           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4192           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4193         return error("Invalid record");
4194 
4195       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4196       InstructionList.push_back(I);
4197       break;
4198     }
4199 
4200     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4201       // new form of select
4202       // handles select i1 or select [N x i1]
4203       unsigned OpNum = 0;
4204       Value *TrueVal, *FalseVal, *Cond;
4205       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4206           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4207           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4208         return error("Invalid record");
4209 
4210       // select condition can be either i1 or [N x i1]
4211       if (VectorType* vector_type =
4212           dyn_cast<VectorType>(Cond->getType())) {
4213         // expect <n x i1>
4214         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4215           return error("Invalid type for value");
4216       } else {
4217         // expect i1
4218         if (Cond->getType() != Type::getInt1Ty(Context))
4219           return error("Invalid type for value");
4220       }
4221 
4222       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4223       InstructionList.push_back(I);
4224       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4225         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4226         if (FMF.any())
4227           I->setFastMathFlags(FMF);
4228       }
4229       break;
4230     }
4231 
4232     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4233       unsigned OpNum = 0;
4234       Value *Vec, *Idx;
4235       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4236           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4237         return error("Invalid record");
4238       if (!Vec->getType()->isVectorTy())
4239         return error("Invalid type for value");
4240       I = ExtractElementInst::Create(Vec, Idx);
4241       FullTy = cast<VectorType>(FullTy)->getElementType();
4242       InstructionList.push_back(I);
4243       break;
4244     }
4245 
4246     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4247       unsigned OpNum = 0;
4248       Value *Vec, *Elt, *Idx;
4249       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4250         return error("Invalid record");
4251       if (!Vec->getType()->isVectorTy())
4252         return error("Invalid type for value");
4253       if (popValue(Record, OpNum, NextValueNo,
4254                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4255           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4256         return error("Invalid record");
4257       I = InsertElementInst::Create(Vec, Elt, Idx);
4258       InstructionList.push_back(I);
4259       break;
4260     }
4261 
4262     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4263       unsigned OpNum = 0;
4264       Value *Vec1, *Vec2, *Mask;
4265       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4266           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4267         return error("Invalid record");
4268 
4269       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4270         return error("Invalid record");
4271       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4272         return error("Invalid type for value");
4273 
4274       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4275       FullTy =
4276           VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4277                           cast<VectorType>(Mask->getType())->getElementCount());
4278       InstructionList.push_back(I);
4279       break;
4280     }
4281 
4282     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4283       // Old form of ICmp/FCmp returning bool
4284       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4285       // both legal on vectors but had different behaviour.
4286     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4287       // FCmp/ICmp returning bool or vector of bool
4288 
4289       unsigned OpNum = 0;
4290       Value *LHS, *RHS;
4291       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4292           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4293         return error("Invalid record");
4294 
4295       if (OpNum >= Record.size())
4296         return error(
4297             "Invalid record: operand number exceeded available operands");
4298 
4299       unsigned PredVal = Record[OpNum];
4300       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4301       FastMathFlags FMF;
4302       if (IsFP && Record.size() > OpNum+1)
4303         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4304 
4305       if (OpNum+1 != Record.size())
4306         return error("Invalid record");
4307 
4308       if (LHS->getType()->isFPOrFPVectorTy())
4309         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4310       else
4311         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4312 
4313       if (FMF.any())
4314         I->setFastMathFlags(FMF);
4315       InstructionList.push_back(I);
4316       break;
4317     }
4318 
4319     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4320       {
4321         unsigned Size = Record.size();
4322         if (Size == 0) {
4323           I = ReturnInst::Create(Context);
4324           InstructionList.push_back(I);
4325           break;
4326         }
4327 
4328         unsigned OpNum = 0;
4329         Value *Op = nullptr;
4330         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4331           return error("Invalid record");
4332         if (OpNum != Record.size())
4333           return error("Invalid record");
4334 
4335         I = ReturnInst::Create(Context, Op);
4336         InstructionList.push_back(I);
4337         break;
4338       }
4339     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4340       if (Record.size() != 1 && Record.size() != 3)
4341         return error("Invalid record");
4342       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4343       if (!TrueDest)
4344         return error("Invalid record");
4345 
4346       if (Record.size() == 1) {
4347         I = BranchInst::Create(TrueDest);
4348         InstructionList.push_back(I);
4349       }
4350       else {
4351         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4352         Value *Cond = getValue(Record, 2, NextValueNo,
4353                                Type::getInt1Ty(Context));
4354         if (!FalseDest || !Cond)
4355           return error("Invalid record");
4356         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4357         InstructionList.push_back(I);
4358       }
4359       break;
4360     }
4361     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4362       if (Record.size() != 1 && Record.size() != 2)
4363         return error("Invalid record");
4364       unsigned Idx = 0;
4365       Value *CleanupPad =
4366           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4367       if (!CleanupPad)
4368         return error("Invalid record");
4369       BasicBlock *UnwindDest = nullptr;
4370       if (Record.size() == 2) {
4371         UnwindDest = getBasicBlock(Record[Idx++]);
4372         if (!UnwindDest)
4373           return error("Invalid record");
4374       }
4375 
4376       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4377       InstructionList.push_back(I);
4378       break;
4379     }
4380     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4381       if (Record.size() != 2)
4382         return error("Invalid record");
4383       unsigned Idx = 0;
4384       Value *CatchPad =
4385           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4386       if (!CatchPad)
4387         return error("Invalid record");
4388       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4389       if (!BB)
4390         return error("Invalid record");
4391 
4392       I = CatchReturnInst::Create(CatchPad, BB);
4393       InstructionList.push_back(I);
4394       break;
4395     }
4396     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4397       // We must have, at minimum, the outer scope and the number of arguments.
4398       if (Record.size() < 2)
4399         return error("Invalid record");
4400 
4401       unsigned Idx = 0;
4402 
4403       Value *ParentPad =
4404           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4405 
4406       unsigned NumHandlers = Record[Idx++];
4407 
4408       SmallVector<BasicBlock *, 2> Handlers;
4409       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4410         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4411         if (!BB)
4412           return error("Invalid record");
4413         Handlers.push_back(BB);
4414       }
4415 
4416       BasicBlock *UnwindDest = nullptr;
4417       if (Idx + 1 == Record.size()) {
4418         UnwindDest = getBasicBlock(Record[Idx++]);
4419         if (!UnwindDest)
4420           return error("Invalid record");
4421       }
4422 
4423       if (Record.size() != Idx)
4424         return error("Invalid record");
4425 
4426       auto *CatchSwitch =
4427           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4428       for (BasicBlock *Handler : Handlers)
4429         CatchSwitch->addHandler(Handler);
4430       I = CatchSwitch;
4431       InstructionList.push_back(I);
4432       break;
4433     }
4434     case bitc::FUNC_CODE_INST_CATCHPAD:
4435     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4436       // We must have, at minimum, the outer scope and the number of arguments.
4437       if (Record.size() < 2)
4438         return error("Invalid record");
4439 
4440       unsigned Idx = 0;
4441 
4442       Value *ParentPad =
4443           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4444 
4445       unsigned NumArgOperands = Record[Idx++];
4446 
4447       SmallVector<Value *, 2> Args;
4448       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4449         Value *Val;
4450         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4451           return error("Invalid record");
4452         Args.push_back(Val);
4453       }
4454 
4455       if (Record.size() != Idx)
4456         return error("Invalid record");
4457 
4458       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4459         I = CleanupPadInst::Create(ParentPad, Args);
4460       else
4461         I = CatchPadInst::Create(ParentPad, Args);
4462       InstructionList.push_back(I);
4463       break;
4464     }
4465     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4466       // Check magic
4467       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4468         // "New" SwitchInst format with case ranges. The changes to write this
4469         // format were reverted but we still recognize bitcode that uses it.
4470         // Hopefully someday we will have support for case ranges and can use
4471         // this format again.
4472 
4473         Type *OpTy = getTypeByID(Record[1]);
4474         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4475 
4476         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4477         BasicBlock *Default = getBasicBlock(Record[3]);
4478         if (!OpTy || !Cond || !Default)
4479           return error("Invalid record");
4480 
4481         unsigned NumCases = Record[4];
4482 
4483         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4484         InstructionList.push_back(SI);
4485 
4486         unsigned CurIdx = 5;
4487         for (unsigned i = 0; i != NumCases; ++i) {
4488           SmallVector<ConstantInt*, 1> CaseVals;
4489           unsigned NumItems = Record[CurIdx++];
4490           for (unsigned ci = 0; ci != NumItems; ++ci) {
4491             bool isSingleNumber = Record[CurIdx++];
4492 
4493             APInt Low;
4494             unsigned ActiveWords = 1;
4495             if (ValueBitWidth > 64)
4496               ActiveWords = Record[CurIdx++];
4497             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4498                                 ValueBitWidth);
4499             CurIdx += ActiveWords;
4500 
4501             if (!isSingleNumber) {
4502               ActiveWords = 1;
4503               if (ValueBitWidth > 64)
4504                 ActiveWords = Record[CurIdx++];
4505               APInt High = readWideAPInt(
4506                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4507               CurIdx += ActiveWords;
4508 
4509               // FIXME: It is not clear whether values in the range should be
4510               // compared as signed or unsigned values. The partially
4511               // implemented changes that used this format in the past used
4512               // unsigned comparisons.
4513               for ( ; Low.ule(High); ++Low)
4514                 CaseVals.push_back(ConstantInt::get(Context, Low));
4515             } else
4516               CaseVals.push_back(ConstantInt::get(Context, Low));
4517           }
4518           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4519           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4520                  cve = CaseVals.end(); cvi != cve; ++cvi)
4521             SI->addCase(*cvi, DestBB);
4522         }
4523         I = SI;
4524         break;
4525       }
4526 
4527       // Old SwitchInst format without case ranges.
4528 
4529       if (Record.size() < 3 || (Record.size() & 1) == 0)
4530         return error("Invalid record");
4531       Type *OpTy = getTypeByID(Record[0]);
4532       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4533       BasicBlock *Default = getBasicBlock(Record[2]);
4534       if (!OpTy || !Cond || !Default)
4535         return error("Invalid record");
4536       unsigned NumCases = (Record.size()-3)/2;
4537       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4538       InstructionList.push_back(SI);
4539       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4540         ConstantInt *CaseVal =
4541           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4542         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4543         if (!CaseVal || !DestBB) {
4544           delete SI;
4545           return error("Invalid record");
4546         }
4547         SI->addCase(CaseVal, DestBB);
4548       }
4549       I = SI;
4550       break;
4551     }
4552     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4553       if (Record.size() < 2)
4554         return error("Invalid record");
4555       Type *OpTy = getTypeByID(Record[0]);
4556       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4557       if (!OpTy || !Address)
4558         return error("Invalid record");
4559       unsigned NumDests = Record.size()-2;
4560       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4561       InstructionList.push_back(IBI);
4562       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4563         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4564           IBI->addDestination(DestBB);
4565         } else {
4566           delete IBI;
4567           return error("Invalid record");
4568         }
4569       }
4570       I = IBI;
4571       break;
4572     }
4573 
4574     case bitc::FUNC_CODE_INST_INVOKE: {
4575       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4576       if (Record.size() < 4)
4577         return error("Invalid record");
4578       unsigned OpNum = 0;
4579       AttributeList PAL = getAttributes(Record[OpNum++]);
4580       unsigned CCInfo = Record[OpNum++];
4581       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4582       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4583 
4584       FunctionType *FTy = nullptr;
4585       FunctionType *FullFTy = nullptr;
4586       if ((CCInfo >> 13) & 1) {
4587         FullFTy =
4588             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4589         if (!FullFTy)
4590           return error("Explicit invoke type is not a function type");
4591         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4592       }
4593 
4594       Value *Callee;
4595       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4596         return error("Invalid record");
4597 
4598       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4599       if (!CalleeTy)
4600         return error("Callee is not a pointer");
4601       if (!FTy) {
4602         FullFTy =
4603             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4604         if (!FullFTy)
4605           return error("Callee is not of pointer to function type");
4606         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4607       } else if (getPointerElementFlatType(FullTy) != FTy)
4608         return error("Explicit invoke type does not match pointee type of "
4609                      "callee operand");
4610       if (Record.size() < FTy->getNumParams() + OpNum)
4611         return error("Insufficient operands to call");
4612 
4613       SmallVector<Value*, 16> Ops;
4614       SmallVector<Type *, 16> ArgsFullTys;
4615       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4616         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4617                                FTy->getParamType(i)));
4618         ArgsFullTys.push_back(FullFTy->getParamType(i));
4619         if (!Ops.back())
4620           return error("Invalid record");
4621       }
4622 
4623       if (!FTy->isVarArg()) {
4624         if (Record.size() != OpNum)
4625           return error("Invalid record");
4626       } else {
4627         // Read type/value pairs for varargs params.
4628         while (OpNum != Record.size()) {
4629           Value *Op;
4630           Type *FullTy;
4631           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4632             return error("Invalid record");
4633           Ops.push_back(Op);
4634           ArgsFullTys.push_back(FullTy);
4635         }
4636       }
4637 
4638       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4639                              OperandBundles);
4640       FullTy = FullFTy->getReturnType();
4641       OperandBundles.clear();
4642       InstructionList.push_back(I);
4643       cast<InvokeInst>(I)->setCallingConv(
4644           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4645       cast<InvokeInst>(I)->setAttributes(PAL);
4646       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
4647 
4648       break;
4649     }
4650     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4651       unsigned Idx = 0;
4652       Value *Val = nullptr;
4653       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4654         return error("Invalid record");
4655       I = ResumeInst::Create(Val);
4656       InstructionList.push_back(I);
4657       break;
4658     }
4659     case bitc::FUNC_CODE_INST_CALLBR: {
4660       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4661       unsigned OpNum = 0;
4662       AttributeList PAL = getAttributes(Record[OpNum++]);
4663       unsigned CCInfo = Record[OpNum++];
4664 
4665       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4666       unsigned NumIndirectDests = Record[OpNum++];
4667       SmallVector<BasicBlock *, 16> IndirectDests;
4668       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4669         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4670 
4671       FunctionType *FTy = nullptr;
4672       FunctionType *FullFTy = nullptr;
4673       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4674         FullFTy =
4675             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4676         if (!FullFTy)
4677           return error("Explicit call type is not a function type");
4678         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4679       }
4680 
4681       Value *Callee;
4682       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4683         return error("Invalid record");
4684 
4685       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4686       if (!OpTy)
4687         return error("Callee is not a pointer type");
4688       if (!FTy) {
4689         FullFTy =
4690             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4691         if (!FullFTy)
4692           return error("Callee is not of pointer to function type");
4693         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4694       } else if (getPointerElementFlatType(FullTy) != FTy)
4695         return error("Explicit call type does not match pointee type of "
4696                      "callee operand");
4697       if (Record.size() < FTy->getNumParams() + OpNum)
4698         return error("Insufficient operands to call");
4699 
4700       SmallVector<Value*, 16> Args;
4701       // Read the fixed params.
4702       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4703         if (FTy->getParamType(i)->isLabelTy())
4704           Args.push_back(getBasicBlock(Record[OpNum]));
4705         else
4706           Args.push_back(getValue(Record, OpNum, NextValueNo,
4707                                   FTy->getParamType(i)));
4708         if (!Args.back())
4709           return error("Invalid record");
4710       }
4711 
4712       // Read type/value pairs for varargs params.
4713       if (!FTy->isVarArg()) {
4714         if (OpNum != Record.size())
4715           return error("Invalid record");
4716       } else {
4717         while (OpNum != Record.size()) {
4718           Value *Op;
4719           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4720             return error("Invalid record");
4721           Args.push_back(Op);
4722         }
4723       }
4724 
4725       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4726                              OperandBundles);
4727       FullTy = FullFTy->getReturnType();
4728       OperandBundles.clear();
4729       InstructionList.push_back(I);
4730       cast<CallBrInst>(I)->setCallingConv(
4731           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4732       cast<CallBrInst>(I)->setAttributes(PAL);
4733       break;
4734     }
4735     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4736       I = new UnreachableInst(Context);
4737       InstructionList.push_back(I);
4738       break;
4739     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4740       if (Record.empty())
4741         return error("Invalid record");
4742       // The first record specifies the type.
4743       FullTy = getFullyStructuredTypeByID(Record[0]);
4744       Type *Ty = flattenPointerTypes(FullTy);
4745       if (!Ty)
4746         return error("Invalid record");
4747 
4748       // Phi arguments are pairs of records of [value, basic block].
4749       // There is an optional final record for fast-math-flags if this phi has a
4750       // floating-point type.
4751       size_t NumArgs = (Record.size() - 1) / 2;
4752       PHINode *PN = PHINode::Create(Ty, NumArgs);
4753       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4754         return error("Invalid record");
4755       InstructionList.push_back(PN);
4756 
4757       for (unsigned i = 0; i != NumArgs; i++) {
4758         Value *V;
4759         // With the new function encoding, it is possible that operands have
4760         // negative IDs (for forward references).  Use a signed VBR
4761         // representation to keep the encoding small.
4762         if (UseRelativeIDs)
4763           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4764         else
4765           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4766         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4767         if (!V || !BB)
4768           return error("Invalid record");
4769         PN->addIncoming(V, BB);
4770       }
4771       I = PN;
4772 
4773       // If there are an even number of records, the final record must be FMF.
4774       if (Record.size() % 2 == 0) {
4775         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4776         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4777         if (FMF.any())
4778           I->setFastMathFlags(FMF);
4779       }
4780 
4781       break;
4782     }
4783 
4784     case bitc::FUNC_CODE_INST_LANDINGPAD:
4785     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4786       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4787       unsigned Idx = 0;
4788       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4789         if (Record.size() < 3)
4790           return error("Invalid record");
4791       } else {
4792         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4793         if (Record.size() < 4)
4794           return error("Invalid record");
4795       }
4796       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4797       Type *Ty = flattenPointerTypes(FullTy);
4798       if (!Ty)
4799         return error("Invalid record");
4800       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4801         Value *PersFn = nullptr;
4802         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4803           return error("Invalid record");
4804 
4805         if (!F->hasPersonalityFn())
4806           F->setPersonalityFn(cast<Constant>(PersFn));
4807         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4808           return error("Personality function mismatch");
4809       }
4810 
4811       bool IsCleanup = !!Record[Idx++];
4812       unsigned NumClauses = Record[Idx++];
4813       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4814       LP->setCleanup(IsCleanup);
4815       for (unsigned J = 0; J != NumClauses; ++J) {
4816         LandingPadInst::ClauseType CT =
4817           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4818         Value *Val;
4819 
4820         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4821           delete LP;
4822           return error("Invalid record");
4823         }
4824 
4825         assert((CT != LandingPadInst::Catch ||
4826                 !isa<ArrayType>(Val->getType())) &&
4827                "Catch clause has a invalid type!");
4828         assert((CT != LandingPadInst::Filter ||
4829                 isa<ArrayType>(Val->getType())) &&
4830                "Filter clause has invalid type!");
4831         LP->addClause(cast<Constant>(Val));
4832       }
4833 
4834       I = LP;
4835       InstructionList.push_back(I);
4836       break;
4837     }
4838 
4839     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4840       if (Record.size() != 4)
4841         return error("Invalid record");
4842       using APV = AllocaPackedValues;
4843       const uint64_t Rec = Record[3];
4844       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4845       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4846       FullTy = getFullyStructuredTypeByID(Record[0]);
4847       Type *Ty = flattenPointerTypes(FullTy);
4848       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4849         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4850         if (!PTy)
4851           return error("Old-style alloca with a non-pointer type");
4852         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4853       }
4854       Type *OpTy = getTypeByID(Record[1]);
4855       Value *Size = getFnValueByID(Record[2], OpTy);
4856       MaybeAlign Align;
4857       if (Error Err =
4858               parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4859         return Err;
4860       }
4861       if (!Ty || !Size)
4862         return error("Invalid record");
4863 
4864       // FIXME: Make this an optional field.
4865       const DataLayout &DL = TheModule->getDataLayout();
4866       unsigned AS = DL.getAllocaAddrSpace();
4867 
4868       SmallPtrSet<Type *, 4> Visited;
4869       if (!Align && !Ty->isSized(&Visited))
4870         return error("alloca of unsized type");
4871       if (!Align)
4872         Align = DL.getPrefTypeAlign(Ty);
4873 
4874       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4875       AI->setUsedWithInAlloca(InAlloca);
4876       AI->setSwiftError(SwiftError);
4877       I = AI;
4878       FullTy = PointerType::get(FullTy, AS);
4879       InstructionList.push_back(I);
4880       break;
4881     }
4882     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4883       unsigned OpNum = 0;
4884       Value *Op;
4885       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4886           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4887         return error("Invalid record");
4888 
4889       if (!isa<PointerType>(Op->getType()))
4890         return error("Load operand is not a pointer type");
4891 
4892       Type *Ty = nullptr;
4893       if (OpNum + 3 == Record.size()) {
4894         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4895         Ty = flattenPointerTypes(FullTy);
4896       } else
4897         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4898 
4899       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4900         return Err;
4901 
4902       MaybeAlign Align;
4903       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4904         return Err;
4905       SmallPtrSet<Type *, 4> Visited;
4906       if (!Align && !Ty->isSized(&Visited))
4907         return error("load of unsized type");
4908       if (!Align)
4909         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4910       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4911       InstructionList.push_back(I);
4912       break;
4913     }
4914     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4915        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4916       unsigned OpNum = 0;
4917       Value *Op;
4918       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4919           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4920         return error("Invalid record");
4921 
4922       if (!isa<PointerType>(Op->getType()))
4923         return error("Load operand is not a pointer type");
4924 
4925       Type *Ty = nullptr;
4926       if (OpNum + 5 == Record.size()) {
4927         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4928         Ty = flattenPointerTypes(FullTy);
4929       } else
4930         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4931 
4932       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4933         return Err;
4934 
4935       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4936       if (Ordering == AtomicOrdering::NotAtomic ||
4937           Ordering == AtomicOrdering::Release ||
4938           Ordering == AtomicOrdering::AcquireRelease)
4939         return error("Invalid record");
4940       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4941         return error("Invalid record");
4942       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4943 
4944       MaybeAlign Align;
4945       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4946         return Err;
4947       if (!Align)
4948         return error("Alignment missing from atomic load");
4949       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4950       InstructionList.push_back(I);
4951       break;
4952     }
4953     case bitc::FUNC_CODE_INST_STORE:
4954     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4955       unsigned OpNum = 0;
4956       Value *Val, *Ptr;
4957       Type *FullTy;
4958       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4959           (BitCode == bitc::FUNC_CODE_INST_STORE
4960                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4961                : popValue(Record, OpNum, NextValueNo,
4962                           getPointerElementFlatType(FullTy), Val)) ||
4963           OpNum + 2 != Record.size())
4964         return error("Invalid record");
4965 
4966       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4967         return Err;
4968       MaybeAlign Align;
4969       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4970         return Err;
4971       SmallPtrSet<Type *, 4> Visited;
4972       if (!Align && !Val->getType()->isSized(&Visited))
4973         return error("store of unsized type");
4974       if (!Align)
4975         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
4976       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
4977       InstructionList.push_back(I);
4978       break;
4979     }
4980     case bitc::FUNC_CODE_INST_STOREATOMIC:
4981     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4982       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4983       unsigned OpNum = 0;
4984       Value *Val, *Ptr;
4985       Type *FullTy;
4986       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4987           !isa<PointerType>(Ptr->getType()) ||
4988           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4989                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4990                : popValue(Record, OpNum, NextValueNo,
4991                           getPointerElementFlatType(FullTy), Val)) ||
4992           OpNum + 4 != Record.size())
4993         return error("Invalid record");
4994 
4995       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4996         return Err;
4997       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4998       if (Ordering == AtomicOrdering::NotAtomic ||
4999           Ordering == AtomicOrdering::Acquire ||
5000           Ordering == AtomicOrdering::AcquireRelease)
5001         return error("Invalid record");
5002       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5003       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5004         return error("Invalid record");
5005 
5006       MaybeAlign Align;
5007       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5008         return Err;
5009       if (!Align)
5010         return error("Alignment missing from atomic store");
5011       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5012       InstructionList.push_back(I);
5013       break;
5014     }
5015     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5016       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5017       // failure_ordering?, weak?]
5018       const size_t NumRecords = Record.size();
5019       unsigned OpNum = 0;
5020       Value *Ptr = nullptr;
5021       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5022         return error("Invalid record");
5023 
5024       if (!isa<PointerType>(Ptr->getType()))
5025         return error("Cmpxchg operand is not a pointer type");
5026 
5027       Value *Cmp = nullptr;
5028       if (popValue(Record, OpNum, NextValueNo,
5029                    getPointerElementFlatType(FullTy), Cmp))
5030         return error("Invalid record");
5031 
5032       FullTy = cast<PointerType>(FullTy)->getElementType();
5033 
5034       Value *New = nullptr;
5035       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5036           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5037         return error("Invalid record");
5038 
5039       const AtomicOrdering SuccessOrdering =
5040           getDecodedOrdering(Record[OpNum + 1]);
5041       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5042           SuccessOrdering == AtomicOrdering::Unordered)
5043         return error("Invalid record");
5044 
5045       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5046 
5047       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5048         return Err;
5049 
5050       const AtomicOrdering FailureOrdering =
5051           NumRecords < 7
5052               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5053               : getDecodedOrdering(Record[OpNum + 3]);
5054 
5055       const Align Alignment(
5056           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5057 
5058       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5059                                 FailureOrdering, SSID);
5060       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5061       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5062 
5063       if (NumRecords < 8) {
5064         // Before weak cmpxchgs existed, the instruction simply returned the
5065         // value loaded from memory, so bitcode files from that era will be
5066         // expecting the first component of a modern cmpxchg.
5067         CurBB->getInstList().push_back(I);
5068         I = ExtractValueInst::Create(I, 0);
5069         FullTy = cast<StructType>(FullTy)->getElementType(0);
5070       } else {
5071         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5072       }
5073 
5074       InstructionList.push_back(I);
5075       break;
5076     }
5077     case bitc::FUNC_CODE_INST_CMPXCHG: {
5078       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5079       // failure_ordering, weak]
5080       const size_t NumRecords = Record.size();
5081       unsigned OpNum = 0;
5082       Value *Ptr = nullptr;
5083       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5084         return error("Invalid record");
5085 
5086       if (!isa<PointerType>(Ptr->getType()))
5087         return error("Cmpxchg operand is not a pointer type");
5088 
5089       Value *Cmp = nullptr;
5090       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
5091         return error("Invalid record");
5092 
5093       Value *Val = nullptr;
5094       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val) ||
5095           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5096         return error("Invalid record");
5097 
5098       const AtomicOrdering SuccessOrdering =
5099           getDecodedOrdering(Record[OpNum + 1]);
5100       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5101           SuccessOrdering == AtomicOrdering::Unordered)
5102         return error("Invalid record");
5103 
5104       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5105 
5106       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5107         return Err;
5108 
5109       const AtomicOrdering FailureOrdering =
5110           getDecodedOrdering(Record[OpNum + 3]);
5111 
5112       const Align Alignment(
5113           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5114 
5115       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, Alignment, SuccessOrdering,
5116                                 FailureOrdering, SSID);
5117       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5118       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5119       cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5120 
5121       InstructionList.push_back(I);
5122       break;
5123     }
5124     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5125       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
5126       unsigned OpNum = 0;
5127       Value *Ptr, *Val;
5128       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5129           !isa<PointerType>(Ptr->getType()) ||
5130           popValue(Record, OpNum, NextValueNo,
5131                    getPointerElementFlatType(FullTy), Val) ||
5132           OpNum + 4 != Record.size())
5133         return error("Invalid record");
5134       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5135       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5136           Operation > AtomicRMWInst::LAST_BINOP)
5137         return error("Invalid record");
5138       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5139       if (Ordering == AtomicOrdering::NotAtomic ||
5140           Ordering == AtomicOrdering::Unordered)
5141         return error("Invalid record");
5142       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5143       Align Alignment(
5144           TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5145       I = new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID);
5146       FullTy = getPointerElementFlatType(FullTy);
5147       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5148       InstructionList.push_back(I);
5149       break;
5150     }
5151     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5152       if (2 != Record.size())
5153         return error("Invalid record");
5154       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5155       if (Ordering == AtomicOrdering::NotAtomic ||
5156           Ordering == AtomicOrdering::Unordered ||
5157           Ordering == AtomicOrdering::Monotonic)
5158         return error("Invalid record");
5159       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5160       I = new FenceInst(Context, Ordering, SSID);
5161       InstructionList.push_back(I);
5162       break;
5163     }
5164     case bitc::FUNC_CODE_INST_CALL: {
5165       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5166       if (Record.size() < 3)
5167         return error("Invalid record");
5168 
5169       unsigned OpNum = 0;
5170       AttributeList PAL = getAttributes(Record[OpNum++]);
5171       unsigned CCInfo = Record[OpNum++];
5172 
5173       FastMathFlags FMF;
5174       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5175         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5176         if (!FMF.any())
5177           return error("Fast math flags indicator set for call with no FMF");
5178       }
5179 
5180       FunctionType *FTy = nullptr;
5181       FunctionType *FullFTy = nullptr;
5182       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5183         FullFTy =
5184             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5185         if (!FullFTy)
5186           return error("Explicit call type is not a function type");
5187         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5188       }
5189 
5190       Value *Callee;
5191       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5192         return error("Invalid record");
5193 
5194       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5195       if (!OpTy)
5196         return error("Callee is not a pointer type");
5197       if (!FTy) {
5198         FullFTy =
5199             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5200         if (!FullFTy)
5201           return error("Callee is not of pointer to function type");
5202         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5203       } else if (getPointerElementFlatType(FullTy) != FTy)
5204         return error("Explicit call type does not match pointee type of "
5205                      "callee operand");
5206       if (Record.size() < FTy->getNumParams() + OpNum)
5207         return error("Insufficient operands to call");
5208 
5209       SmallVector<Value*, 16> Args;
5210       SmallVector<Type*, 16> ArgsFullTys;
5211       // Read the fixed params.
5212       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5213         if (FTy->getParamType(i)->isLabelTy())
5214           Args.push_back(getBasicBlock(Record[OpNum]));
5215         else
5216           Args.push_back(getValue(Record, OpNum, NextValueNo,
5217                                   FTy->getParamType(i)));
5218         ArgsFullTys.push_back(FullFTy->getParamType(i));
5219         if (!Args.back())
5220           return error("Invalid record");
5221       }
5222 
5223       // Read type/value pairs for varargs params.
5224       if (!FTy->isVarArg()) {
5225         if (OpNum != Record.size())
5226           return error("Invalid record");
5227       } else {
5228         while (OpNum != Record.size()) {
5229           Value *Op;
5230           Type *FullTy;
5231           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5232             return error("Invalid record");
5233           Args.push_back(Op);
5234           ArgsFullTys.push_back(FullTy);
5235         }
5236       }
5237 
5238       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5239       FullTy = FullFTy->getReturnType();
5240       OperandBundles.clear();
5241       InstructionList.push_back(I);
5242       cast<CallInst>(I)->setCallingConv(
5243           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5244       CallInst::TailCallKind TCK = CallInst::TCK_None;
5245       if (CCInfo & 1 << bitc::CALL_TAIL)
5246         TCK = CallInst::TCK_Tail;
5247       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5248         TCK = CallInst::TCK_MustTail;
5249       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5250         TCK = CallInst::TCK_NoTail;
5251       cast<CallInst>(I)->setTailCallKind(TCK);
5252       cast<CallInst>(I)->setAttributes(PAL);
5253       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
5254       if (FMF.any()) {
5255         if (!isa<FPMathOperator>(I))
5256           return error("Fast-math-flags specified for call without "
5257                        "floating-point scalar or vector return type");
5258         I->setFastMathFlags(FMF);
5259       }
5260       break;
5261     }
5262     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5263       if (Record.size() < 3)
5264         return error("Invalid record");
5265       Type *OpTy = getTypeByID(Record[0]);
5266       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5267       FullTy = getFullyStructuredTypeByID(Record[2]);
5268       Type *ResTy = flattenPointerTypes(FullTy);
5269       if (!OpTy || !Op || !ResTy)
5270         return error("Invalid record");
5271       I = new VAArgInst(Op, ResTy);
5272       InstructionList.push_back(I);
5273       break;
5274     }
5275 
5276     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5277       // A call or an invoke can be optionally prefixed with some variable
5278       // number of operand bundle blocks.  These blocks are read into
5279       // OperandBundles and consumed at the next call or invoke instruction.
5280 
5281       if (Record.empty() || Record[0] >= BundleTags.size())
5282         return error("Invalid record");
5283 
5284       std::vector<Value *> Inputs;
5285 
5286       unsigned OpNum = 1;
5287       while (OpNum != Record.size()) {
5288         Value *Op;
5289         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5290           return error("Invalid record");
5291         Inputs.push_back(Op);
5292       }
5293 
5294       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5295       continue;
5296     }
5297 
5298     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5299       unsigned OpNum = 0;
5300       Value *Op = nullptr;
5301       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5302         return error("Invalid record");
5303       if (OpNum != Record.size())
5304         return error("Invalid record");
5305 
5306       I = new FreezeInst(Op);
5307       InstructionList.push_back(I);
5308       break;
5309     }
5310     }
5311 
5312     // Add instruction to end of current BB.  If there is no current BB, reject
5313     // this file.
5314     if (!CurBB) {
5315       I->deleteValue();
5316       return error("Invalid instruction with no BB");
5317     }
5318     if (!OperandBundles.empty()) {
5319       I->deleteValue();
5320       return error("Operand bundles found with no consumer");
5321     }
5322     CurBB->getInstList().push_back(I);
5323 
5324     // If this was a terminator instruction, move to the next block.
5325     if (I->isTerminator()) {
5326       ++CurBBNo;
5327       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5328     }
5329 
5330     // Non-void values get registered in the value table for future use.
5331     if (!I->getType()->isVoidTy()) {
5332       if (!FullTy) {
5333         FullTy = I->getType();
5334         assert(
5335             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5336             !isa<ArrayType>(FullTy) &&
5337             (!isa<VectorType>(FullTy) ||
5338              cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5339              cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5340             "Structured types must be assigned with corresponding non-opaque "
5341             "pointer type");
5342       }
5343 
5344       assert(I->getType() == flattenPointerTypes(FullTy) &&
5345              "Incorrect fully structured type provided for Instruction");
5346       ValueList.assignValue(I, NextValueNo++, FullTy);
5347     }
5348   }
5349 
5350 OutOfRecordLoop:
5351 
5352   if (!OperandBundles.empty())
5353     return error("Operand bundles found with no consumer");
5354 
5355   // Check the function list for unresolved values.
5356   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5357     if (!A->getParent()) {
5358       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5359       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5360         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5361           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5362           delete A;
5363         }
5364       }
5365       return error("Never resolved value found in function");
5366     }
5367   }
5368 
5369   // Unexpected unresolved metadata about to be dropped.
5370   if (MDLoader->hasFwdRefs())
5371     return error("Invalid function metadata: outgoing forward refs");
5372 
5373   // Trim the value list down to the size it was before we parsed this function.
5374   ValueList.shrinkTo(ModuleValueListSize);
5375   MDLoader->shrinkTo(ModuleMDLoaderSize);
5376   std::vector<BasicBlock*>().swap(FunctionBBs);
5377   return Error::success();
5378 }
5379 
5380 /// Find the function body in the bitcode stream
5381 Error BitcodeReader::findFunctionInStream(
5382     Function *F,
5383     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5384   while (DeferredFunctionInfoIterator->second == 0) {
5385     // This is the fallback handling for the old format bitcode that
5386     // didn't contain the function index in the VST, or when we have
5387     // an anonymous function which would not have a VST entry.
5388     // Assert that we have one of those two cases.
5389     assert(VSTOffset == 0 || !F->hasName());
5390     // Parse the next body in the stream and set its position in the
5391     // DeferredFunctionInfo map.
5392     if (Error Err = rememberAndSkipFunctionBodies())
5393       return Err;
5394   }
5395   return Error::success();
5396 }
5397 
5398 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5399   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5400     return SyncScope::ID(Val);
5401   if (Val >= SSIDs.size())
5402     return SyncScope::System; // Map unknown synchronization scopes to system.
5403   return SSIDs[Val];
5404 }
5405 
5406 //===----------------------------------------------------------------------===//
5407 // GVMaterializer implementation
5408 //===----------------------------------------------------------------------===//
5409 
5410 Error BitcodeReader::materialize(GlobalValue *GV) {
5411   Function *F = dyn_cast<Function>(GV);
5412   // If it's not a function or is already material, ignore the request.
5413   if (!F || !F->isMaterializable())
5414     return Error::success();
5415 
5416   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5417   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5418   // If its position is recorded as 0, its body is somewhere in the stream
5419   // but we haven't seen it yet.
5420   if (DFII->second == 0)
5421     if (Error Err = findFunctionInStream(F, DFII))
5422       return Err;
5423 
5424   // Materialize metadata before parsing any function bodies.
5425   if (Error Err = materializeMetadata())
5426     return Err;
5427 
5428   // Move the bit stream to the saved position of the deferred function body.
5429   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5430     return JumpFailed;
5431   if (Error Err = parseFunctionBody(F))
5432     return Err;
5433   F->setIsMaterializable(false);
5434 
5435   if (StripDebugInfo)
5436     stripDebugInfo(*F);
5437 
5438   // Upgrade any old intrinsic calls in the function.
5439   for (auto &I : UpgradedIntrinsics) {
5440     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5441          UI != UE;) {
5442       User *U = *UI;
5443       ++UI;
5444       if (CallInst *CI = dyn_cast<CallInst>(U))
5445         UpgradeIntrinsicCall(CI, I.second);
5446     }
5447   }
5448 
5449   // Update calls to the remangled intrinsics
5450   for (auto &I : RemangledIntrinsics)
5451     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5452          UI != UE;)
5453       // Don't expect any other users than call sites
5454       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5455 
5456   // Finish fn->subprogram upgrade for materialized functions.
5457   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5458     F->setSubprogram(SP);
5459 
5460   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5461   if (!MDLoader->isStrippingTBAA()) {
5462     for (auto &I : instructions(F)) {
5463       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5464       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5465         continue;
5466       MDLoader->setStripTBAA(true);
5467       stripTBAA(F->getParent());
5468     }
5469   }
5470 
5471   // "Upgrade" older incorrect branch weights by dropping them.
5472   for (auto &I : instructions(F)) {
5473     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5474       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5475         MDString *MDS = cast<MDString>(MD->getOperand(0));
5476         StringRef ProfName = MDS->getString();
5477         // Check consistency of !prof branch_weights metadata.
5478         if (!ProfName.equals("branch_weights"))
5479           continue;
5480         unsigned ExpectedNumOperands = 0;
5481         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5482           ExpectedNumOperands = BI->getNumSuccessors();
5483         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5484           ExpectedNumOperands = SI->getNumSuccessors();
5485         else if (isa<CallInst>(&I))
5486           ExpectedNumOperands = 1;
5487         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5488           ExpectedNumOperands = IBI->getNumDestinations();
5489         else if (isa<SelectInst>(&I))
5490           ExpectedNumOperands = 2;
5491         else
5492           continue; // ignore and continue.
5493 
5494         // If branch weight doesn't match, just strip branch weight.
5495         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5496           I.setMetadata(LLVMContext::MD_prof, nullptr);
5497       }
5498     }
5499   }
5500 
5501   // Look for functions that rely on old function attribute behavior.
5502   UpgradeFunctionAttributes(*F);
5503 
5504   // Bring in any functions that this function forward-referenced via
5505   // blockaddresses.
5506   return materializeForwardReferencedFunctions();
5507 }
5508 
5509 Error BitcodeReader::materializeModule() {
5510   if (Error Err = materializeMetadata())
5511     return Err;
5512 
5513   // Promise to materialize all forward references.
5514   WillMaterializeAllForwardRefs = true;
5515 
5516   // Iterate over the module, deserializing any functions that are still on
5517   // disk.
5518   for (Function &F : *TheModule) {
5519     if (Error Err = materialize(&F))
5520       return Err;
5521   }
5522   // At this point, if there are any function bodies, parse the rest of
5523   // the bits in the module past the last function block we have recorded
5524   // through either lazy scanning or the VST.
5525   if (LastFunctionBlockBit || NextUnreadBit)
5526     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5527                                     ? LastFunctionBlockBit
5528                                     : NextUnreadBit))
5529       return Err;
5530 
5531   // Check that all block address forward references got resolved (as we
5532   // promised above).
5533   if (!BasicBlockFwdRefs.empty())
5534     return error("Never resolved function from blockaddress");
5535 
5536   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5537   // delete the old functions to clean up. We can't do this unless the entire
5538   // module is materialized because there could always be another function body
5539   // with calls to the old function.
5540   for (auto &I : UpgradedIntrinsics) {
5541     for (auto *U : I.first->users()) {
5542       if (CallInst *CI = dyn_cast<CallInst>(U))
5543         UpgradeIntrinsicCall(CI, I.second);
5544     }
5545     if (!I.first->use_empty())
5546       I.first->replaceAllUsesWith(I.second);
5547     I.first->eraseFromParent();
5548   }
5549   UpgradedIntrinsics.clear();
5550   // Do the same for remangled intrinsics
5551   for (auto &I : RemangledIntrinsics) {
5552     I.first->replaceAllUsesWith(I.second);
5553     I.first->eraseFromParent();
5554   }
5555   RemangledIntrinsics.clear();
5556 
5557   UpgradeDebugInfo(*TheModule);
5558 
5559   UpgradeModuleFlags(*TheModule);
5560 
5561   UpgradeARCRuntime(*TheModule);
5562 
5563   return Error::success();
5564 }
5565 
5566 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5567   return IdentifiedStructTypes;
5568 }
5569 
5570 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5571     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5572     StringRef ModulePath, unsigned ModuleId)
5573     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5574       ModulePath(ModulePath), ModuleId(ModuleId) {}
5575 
5576 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5577   TheIndex.addModule(ModulePath, ModuleId);
5578 }
5579 
5580 ModuleSummaryIndex::ModuleInfo *
5581 ModuleSummaryIndexBitcodeReader::getThisModule() {
5582   return TheIndex.getModule(ModulePath);
5583 }
5584 
5585 std::pair<ValueInfo, GlobalValue::GUID>
5586 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5587   auto VGI = ValueIdToValueInfoMap[ValueId];
5588   assert(VGI.first);
5589   return VGI;
5590 }
5591 
5592 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5593     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5594     StringRef SourceFileName) {
5595   std::string GlobalId =
5596       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5597   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5598   auto OriginalNameID = ValueGUID;
5599   if (GlobalValue::isLocalLinkage(Linkage))
5600     OriginalNameID = GlobalValue::getGUID(ValueName);
5601   if (PrintSummaryGUIDs)
5602     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5603            << ValueName << "\n";
5604 
5605   // UseStrtab is false for legacy summary formats and value names are
5606   // created on stack. In that case we save the name in a string saver in
5607   // the index so that the value name can be recorded.
5608   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5609       TheIndex.getOrInsertValueInfo(
5610           ValueGUID,
5611           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5612       OriginalNameID);
5613 }
5614 
5615 // Specialized value symbol table parser used when reading module index
5616 // blocks where we don't actually create global values. The parsed information
5617 // is saved in the bitcode reader for use when later parsing summaries.
5618 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5619     uint64_t Offset,
5620     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5621   // With a strtab the VST is not required to parse the summary.
5622   if (UseStrtab)
5623     return Error::success();
5624 
5625   assert(Offset > 0 && "Expected non-zero VST offset");
5626   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5627   if (!MaybeCurrentBit)
5628     return MaybeCurrentBit.takeError();
5629   uint64_t CurrentBit = MaybeCurrentBit.get();
5630 
5631   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5632     return Err;
5633 
5634   SmallVector<uint64_t, 64> Record;
5635 
5636   // Read all the records for this value table.
5637   SmallString<128> ValueName;
5638 
5639   while (true) {
5640     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5641     if (!MaybeEntry)
5642       return MaybeEntry.takeError();
5643     BitstreamEntry Entry = MaybeEntry.get();
5644 
5645     switch (Entry.Kind) {
5646     case BitstreamEntry::SubBlock: // Handled for us already.
5647     case BitstreamEntry::Error:
5648       return error("Malformed block");
5649     case BitstreamEntry::EndBlock:
5650       // Done parsing VST, jump back to wherever we came from.
5651       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5652         return JumpFailed;
5653       return Error::success();
5654     case BitstreamEntry::Record:
5655       // The interesting case.
5656       break;
5657     }
5658 
5659     // Read a record.
5660     Record.clear();
5661     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5662     if (!MaybeRecord)
5663       return MaybeRecord.takeError();
5664     switch (MaybeRecord.get()) {
5665     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5666       break;
5667     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5668       if (convertToString(Record, 1, ValueName))
5669         return error("Invalid record");
5670       unsigned ValueID = Record[0];
5671       assert(!SourceFileName.empty());
5672       auto VLI = ValueIdToLinkageMap.find(ValueID);
5673       assert(VLI != ValueIdToLinkageMap.end() &&
5674              "No linkage found for VST entry?");
5675       auto Linkage = VLI->second;
5676       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5677       ValueName.clear();
5678       break;
5679     }
5680     case bitc::VST_CODE_FNENTRY: {
5681       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5682       if (convertToString(Record, 2, ValueName))
5683         return error("Invalid record");
5684       unsigned ValueID = Record[0];
5685       assert(!SourceFileName.empty());
5686       auto VLI = ValueIdToLinkageMap.find(ValueID);
5687       assert(VLI != ValueIdToLinkageMap.end() &&
5688              "No linkage found for VST entry?");
5689       auto Linkage = VLI->second;
5690       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5691       ValueName.clear();
5692       break;
5693     }
5694     case bitc::VST_CODE_COMBINED_ENTRY: {
5695       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5696       unsigned ValueID = Record[0];
5697       GlobalValue::GUID RefGUID = Record[1];
5698       // The "original name", which is the second value of the pair will be
5699       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5700       ValueIdToValueInfoMap[ValueID] =
5701           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5702       break;
5703     }
5704     }
5705   }
5706 }
5707 
5708 // Parse just the blocks needed for building the index out of the module.
5709 // At the end of this routine the module Index is populated with a map
5710 // from global value id to GlobalValueSummary objects.
5711 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5712   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5713     return Err;
5714 
5715   SmallVector<uint64_t, 64> Record;
5716   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5717   unsigned ValueId = 0;
5718 
5719   // Read the index for this module.
5720   while (true) {
5721     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5722     if (!MaybeEntry)
5723       return MaybeEntry.takeError();
5724     llvm::BitstreamEntry Entry = MaybeEntry.get();
5725 
5726     switch (Entry.Kind) {
5727     case BitstreamEntry::Error:
5728       return error("Malformed block");
5729     case BitstreamEntry::EndBlock:
5730       return Error::success();
5731 
5732     case BitstreamEntry::SubBlock:
5733       switch (Entry.ID) {
5734       default: // Skip unknown content.
5735         if (Error Err = Stream.SkipBlock())
5736           return Err;
5737         break;
5738       case bitc::BLOCKINFO_BLOCK_ID:
5739         // Need to parse these to get abbrev ids (e.g. for VST)
5740         if (readBlockInfo())
5741           return error("Malformed block");
5742         break;
5743       case bitc::VALUE_SYMTAB_BLOCK_ID:
5744         // Should have been parsed earlier via VSTOffset, unless there
5745         // is no summary section.
5746         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5747                 !SeenGlobalValSummary) &&
5748                "Expected early VST parse via VSTOffset record");
5749         if (Error Err = Stream.SkipBlock())
5750           return Err;
5751         break;
5752       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5753       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5754         // Add the module if it is a per-module index (has a source file name).
5755         if (!SourceFileName.empty())
5756           addThisModule();
5757         assert(!SeenValueSymbolTable &&
5758                "Already read VST when parsing summary block?");
5759         // We might not have a VST if there were no values in the
5760         // summary. An empty summary block generated when we are
5761         // performing ThinLTO compiles so we don't later invoke
5762         // the regular LTO process on them.
5763         if (VSTOffset > 0) {
5764           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5765             return Err;
5766           SeenValueSymbolTable = true;
5767         }
5768         SeenGlobalValSummary = true;
5769         if (Error Err = parseEntireSummary(Entry.ID))
5770           return Err;
5771         break;
5772       case bitc::MODULE_STRTAB_BLOCK_ID:
5773         if (Error Err = parseModuleStringTable())
5774           return Err;
5775         break;
5776       }
5777       continue;
5778 
5779     case BitstreamEntry::Record: {
5780         Record.clear();
5781         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5782         if (!MaybeBitCode)
5783           return MaybeBitCode.takeError();
5784         switch (MaybeBitCode.get()) {
5785         default:
5786           break; // Default behavior, ignore unknown content.
5787         case bitc::MODULE_CODE_VERSION: {
5788           if (Error Err = parseVersionRecord(Record).takeError())
5789             return Err;
5790           break;
5791         }
5792         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5793         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5794           SmallString<128> ValueName;
5795           if (convertToString(Record, 0, ValueName))
5796             return error("Invalid record");
5797           SourceFileName = ValueName.c_str();
5798           break;
5799         }
5800         /// MODULE_CODE_HASH: [5*i32]
5801         case bitc::MODULE_CODE_HASH: {
5802           if (Record.size() != 5)
5803             return error("Invalid hash length " + Twine(Record.size()).str());
5804           auto &Hash = getThisModule()->second.second;
5805           int Pos = 0;
5806           for (auto &Val : Record) {
5807             assert(!(Val >> 32) && "Unexpected high bits set");
5808             Hash[Pos++] = Val;
5809           }
5810           break;
5811         }
5812         /// MODULE_CODE_VSTOFFSET: [offset]
5813         case bitc::MODULE_CODE_VSTOFFSET:
5814           if (Record.empty())
5815             return error("Invalid record");
5816           // Note that we subtract 1 here because the offset is relative to one
5817           // word before the start of the identification or module block, which
5818           // was historically always the start of the regular bitcode header.
5819           VSTOffset = Record[0] - 1;
5820           break;
5821         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5822         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5823         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5824         // v2: [strtab offset, strtab size, v1]
5825         case bitc::MODULE_CODE_GLOBALVAR:
5826         case bitc::MODULE_CODE_FUNCTION:
5827         case bitc::MODULE_CODE_ALIAS: {
5828           StringRef Name;
5829           ArrayRef<uint64_t> GVRecord;
5830           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5831           if (GVRecord.size() <= 3)
5832             return error("Invalid record");
5833           uint64_t RawLinkage = GVRecord[3];
5834           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5835           if (!UseStrtab) {
5836             ValueIdToLinkageMap[ValueId++] = Linkage;
5837             break;
5838           }
5839 
5840           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5841           break;
5842         }
5843         }
5844       }
5845       continue;
5846     }
5847   }
5848 }
5849 
5850 std::vector<ValueInfo>
5851 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5852   std::vector<ValueInfo> Ret;
5853   Ret.reserve(Record.size());
5854   for (uint64_t RefValueId : Record)
5855     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5856   return Ret;
5857 }
5858 
5859 std::vector<FunctionSummary::EdgeTy>
5860 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5861                                               bool IsOldProfileFormat,
5862                                               bool HasProfile, bool HasRelBF) {
5863   std::vector<FunctionSummary::EdgeTy> Ret;
5864   Ret.reserve(Record.size());
5865   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5866     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5867     uint64_t RelBF = 0;
5868     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5869     if (IsOldProfileFormat) {
5870       I += 1; // Skip old callsitecount field
5871       if (HasProfile)
5872         I += 1; // Skip old profilecount field
5873     } else if (HasProfile)
5874       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5875     else if (HasRelBF)
5876       RelBF = Record[++I];
5877     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5878   }
5879   return Ret;
5880 }
5881 
5882 static void
5883 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5884                                        WholeProgramDevirtResolution &Wpd) {
5885   uint64_t ArgNum = Record[Slot++];
5886   WholeProgramDevirtResolution::ByArg &B =
5887       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5888   Slot += ArgNum;
5889 
5890   B.TheKind =
5891       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5892   B.Info = Record[Slot++];
5893   B.Byte = Record[Slot++];
5894   B.Bit = Record[Slot++];
5895 }
5896 
5897 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5898                                               StringRef Strtab, size_t &Slot,
5899                                               TypeIdSummary &TypeId) {
5900   uint64_t Id = Record[Slot++];
5901   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5902 
5903   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5904   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5905                         static_cast<size_t>(Record[Slot + 1])};
5906   Slot += 2;
5907 
5908   uint64_t ResByArgNum = Record[Slot++];
5909   for (uint64_t I = 0; I != ResByArgNum; ++I)
5910     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5911 }
5912 
5913 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5914                                      StringRef Strtab,
5915                                      ModuleSummaryIndex &TheIndex) {
5916   size_t Slot = 0;
5917   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5918       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5919   Slot += 2;
5920 
5921   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5922   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5923   TypeId.TTRes.AlignLog2 = Record[Slot++];
5924   TypeId.TTRes.SizeM1 = Record[Slot++];
5925   TypeId.TTRes.BitMask = Record[Slot++];
5926   TypeId.TTRes.InlineBits = Record[Slot++];
5927 
5928   while (Slot < Record.size())
5929     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5930 }
5931 
5932 std::vector<FunctionSummary::ParamAccess>
5933 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
5934   auto ReadRange = [&]() {
5935     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
5936                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5937     Record = Record.drop_front();
5938     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
5939                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5940     Record = Record.drop_front();
5941     ConstantRange Range{Lower, Upper};
5942     assert(!Range.isFullSet());
5943     assert(!Range.isUpperSignWrapped());
5944     return Range;
5945   };
5946 
5947   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
5948   while (!Record.empty()) {
5949     PendingParamAccesses.emplace_back();
5950     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
5951     ParamAccess.ParamNo = Record.front();
5952     Record = Record.drop_front();
5953     ParamAccess.Use = ReadRange();
5954     ParamAccess.Calls.resize(Record.front());
5955     Record = Record.drop_front();
5956     for (auto &Call : ParamAccess.Calls) {
5957       Call.ParamNo = Record.front();
5958       Record = Record.drop_front();
5959       Call.Callee = getValueInfoFromValueId(Record.front()).first;
5960       Record = Record.drop_front();
5961       Call.Offsets = ReadRange();
5962     }
5963   }
5964   return PendingParamAccesses;
5965 }
5966 
5967 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5968     ArrayRef<uint64_t> Record, size_t &Slot,
5969     TypeIdCompatibleVtableInfo &TypeId) {
5970   uint64_t Offset = Record[Slot++];
5971   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5972   TypeId.push_back({Offset, Callee});
5973 }
5974 
5975 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5976     ArrayRef<uint64_t> Record) {
5977   size_t Slot = 0;
5978   TypeIdCompatibleVtableInfo &TypeId =
5979       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5980           {Strtab.data() + Record[Slot],
5981            static_cast<size_t>(Record[Slot + 1])});
5982   Slot += 2;
5983 
5984   while (Slot < Record.size())
5985     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5986 }
5987 
5988 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5989                            unsigned WOCnt) {
5990   // Readonly and writeonly refs are in the end of the refs list.
5991   assert(ROCnt + WOCnt <= Refs.size());
5992   unsigned FirstWORef = Refs.size() - WOCnt;
5993   unsigned RefNo = FirstWORef - ROCnt;
5994   for (; RefNo < FirstWORef; ++RefNo)
5995     Refs[RefNo].setReadOnly();
5996   for (; RefNo < Refs.size(); ++RefNo)
5997     Refs[RefNo].setWriteOnly();
5998 }
5999 
6000 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6001 // objects in the index.
6002 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6003   if (Error Err = Stream.EnterSubBlock(ID))
6004     return Err;
6005   SmallVector<uint64_t, 64> Record;
6006 
6007   // Parse version
6008   {
6009     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6010     if (!MaybeEntry)
6011       return MaybeEntry.takeError();
6012     BitstreamEntry Entry = MaybeEntry.get();
6013 
6014     if (Entry.Kind != BitstreamEntry::Record)
6015       return error("Invalid Summary Block: record for version expected");
6016     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6017     if (!MaybeRecord)
6018       return MaybeRecord.takeError();
6019     if (MaybeRecord.get() != bitc::FS_VERSION)
6020       return error("Invalid Summary Block: version expected");
6021   }
6022   const uint64_t Version = Record[0];
6023   const bool IsOldProfileFormat = Version == 1;
6024   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6025     return error("Invalid summary version " + Twine(Version) +
6026                  ". Version should be in the range [1-" +
6027                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6028                  "].");
6029   Record.clear();
6030 
6031   // Keep around the last seen summary to be used when we see an optional
6032   // "OriginalName" attachement.
6033   GlobalValueSummary *LastSeenSummary = nullptr;
6034   GlobalValue::GUID LastSeenGUID = 0;
6035 
6036   // We can expect to see any number of type ID information records before
6037   // each function summary records; these variables store the information
6038   // collected so far so that it can be used to create the summary object.
6039   std::vector<GlobalValue::GUID> PendingTypeTests;
6040   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6041       PendingTypeCheckedLoadVCalls;
6042   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6043       PendingTypeCheckedLoadConstVCalls;
6044   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6045 
6046   while (true) {
6047     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6048     if (!MaybeEntry)
6049       return MaybeEntry.takeError();
6050     BitstreamEntry Entry = MaybeEntry.get();
6051 
6052     switch (Entry.Kind) {
6053     case BitstreamEntry::SubBlock: // Handled for us already.
6054     case BitstreamEntry::Error:
6055       return error("Malformed block");
6056     case BitstreamEntry::EndBlock:
6057       return Error::success();
6058     case BitstreamEntry::Record:
6059       // The interesting case.
6060       break;
6061     }
6062 
6063     // Read a record. The record format depends on whether this
6064     // is a per-module index or a combined index file. In the per-module
6065     // case the records contain the associated value's ID for correlation
6066     // with VST entries. In the combined index the correlation is done
6067     // via the bitcode offset of the summary records (which were saved
6068     // in the combined index VST entries). The records also contain
6069     // information used for ThinLTO renaming and importing.
6070     Record.clear();
6071     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6072     if (!MaybeBitCode)
6073       return MaybeBitCode.takeError();
6074     switch (unsigned BitCode = MaybeBitCode.get()) {
6075     default: // Default behavior: ignore.
6076       break;
6077     case bitc::FS_FLAGS: {  // [flags]
6078       TheIndex.setFlags(Record[0]);
6079       break;
6080     }
6081     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6082       uint64_t ValueID = Record[0];
6083       GlobalValue::GUID RefGUID = Record[1];
6084       ValueIdToValueInfoMap[ValueID] =
6085           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6086       break;
6087     }
6088     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6089     //                numrefs x valueid, n x (valueid)]
6090     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6091     //                        numrefs x valueid,
6092     //                        n x (valueid, hotness)]
6093     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6094     //                      numrefs x valueid,
6095     //                      n x (valueid, relblockfreq)]
6096     case bitc::FS_PERMODULE:
6097     case bitc::FS_PERMODULE_RELBF:
6098     case bitc::FS_PERMODULE_PROFILE: {
6099       unsigned ValueID = Record[0];
6100       uint64_t RawFlags = Record[1];
6101       unsigned InstCount = Record[2];
6102       uint64_t RawFunFlags = 0;
6103       unsigned NumRefs = Record[3];
6104       unsigned NumRORefs = 0, NumWORefs = 0;
6105       int RefListStartIndex = 4;
6106       if (Version >= 4) {
6107         RawFunFlags = Record[3];
6108         NumRefs = Record[4];
6109         RefListStartIndex = 5;
6110         if (Version >= 5) {
6111           NumRORefs = Record[5];
6112           RefListStartIndex = 6;
6113           if (Version >= 7) {
6114             NumWORefs = Record[6];
6115             RefListStartIndex = 7;
6116           }
6117         }
6118       }
6119 
6120       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6121       // The module path string ref set in the summary must be owned by the
6122       // index's module string table. Since we don't have a module path
6123       // string table section in the per-module index, we create a single
6124       // module path string table entry with an empty (0) ID to take
6125       // ownership.
6126       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6127       assert(Record.size() >= RefListStartIndex + NumRefs &&
6128              "Record size inconsistent with number of references");
6129       std::vector<ValueInfo> Refs = makeRefList(
6130           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6131       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6132       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6133       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6134           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6135           IsOldProfileFormat, HasProfile, HasRelBF);
6136       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6137       auto FS = std::make_unique<FunctionSummary>(
6138           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6139           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6140           std::move(PendingTypeTestAssumeVCalls),
6141           std::move(PendingTypeCheckedLoadVCalls),
6142           std::move(PendingTypeTestAssumeConstVCalls),
6143           std::move(PendingTypeCheckedLoadConstVCalls),
6144           std::move(PendingParamAccesses));
6145       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6146       FS->setModulePath(getThisModule()->first());
6147       FS->setOriginalName(VIAndOriginalGUID.second);
6148       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6149       break;
6150     }
6151     // FS_ALIAS: [valueid, flags, valueid]
6152     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6153     // they expect all aliasee summaries to be available.
6154     case bitc::FS_ALIAS: {
6155       unsigned ValueID = Record[0];
6156       uint64_t RawFlags = Record[1];
6157       unsigned AliaseeID = Record[2];
6158       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6159       auto AS = std::make_unique<AliasSummary>(Flags);
6160       // The module path string ref set in the summary must be owned by the
6161       // index's module string table. Since we don't have a module path
6162       // string table section in the per-module index, we create a single
6163       // module path string table entry with an empty (0) ID to take
6164       // ownership.
6165       AS->setModulePath(getThisModule()->first());
6166 
6167       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6168       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6169       if (!AliaseeInModule)
6170         return error("Alias expects aliasee summary to be parsed");
6171       AS->setAliasee(AliaseeVI, AliaseeInModule);
6172 
6173       auto GUID = getValueInfoFromValueId(ValueID);
6174       AS->setOriginalName(GUID.second);
6175       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6176       break;
6177     }
6178     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6179     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6180       unsigned ValueID = Record[0];
6181       uint64_t RawFlags = Record[1];
6182       unsigned RefArrayStart = 2;
6183       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6184                                       /* WriteOnly */ false,
6185                                       /* Constant */ false,
6186                                       GlobalObject::VCallVisibilityPublic);
6187       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6188       if (Version >= 5) {
6189         GVF = getDecodedGVarFlags(Record[2]);
6190         RefArrayStart = 3;
6191       }
6192       std::vector<ValueInfo> Refs =
6193           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6194       auto FS =
6195           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6196       FS->setModulePath(getThisModule()->first());
6197       auto GUID = getValueInfoFromValueId(ValueID);
6198       FS->setOriginalName(GUID.second);
6199       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6200       break;
6201     }
6202     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6203     //                        numrefs, numrefs x valueid,
6204     //                        n x (valueid, offset)]
6205     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6206       unsigned ValueID = Record[0];
6207       uint64_t RawFlags = Record[1];
6208       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6209       unsigned NumRefs = Record[3];
6210       unsigned RefListStartIndex = 4;
6211       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6212       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6213       std::vector<ValueInfo> Refs = makeRefList(
6214           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6215       VTableFuncList VTableFuncs;
6216       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6217         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6218         uint64_t Offset = Record[++I];
6219         VTableFuncs.push_back({Callee, Offset});
6220       }
6221       auto VS =
6222           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6223       VS->setModulePath(getThisModule()->first());
6224       VS->setVTableFuncs(VTableFuncs);
6225       auto GUID = getValueInfoFromValueId(ValueID);
6226       VS->setOriginalName(GUID.second);
6227       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6228       break;
6229     }
6230     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6231     //               numrefs x valueid, n x (valueid)]
6232     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6233     //                       numrefs x valueid, n x (valueid, hotness)]
6234     case bitc::FS_COMBINED:
6235     case bitc::FS_COMBINED_PROFILE: {
6236       unsigned ValueID = Record[0];
6237       uint64_t ModuleId = Record[1];
6238       uint64_t RawFlags = Record[2];
6239       unsigned InstCount = Record[3];
6240       uint64_t RawFunFlags = 0;
6241       uint64_t EntryCount = 0;
6242       unsigned NumRefs = Record[4];
6243       unsigned NumRORefs = 0, NumWORefs = 0;
6244       int RefListStartIndex = 5;
6245 
6246       if (Version >= 4) {
6247         RawFunFlags = Record[4];
6248         RefListStartIndex = 6;
6249         size_t NumRefsIndex = 5;
6250         if (Version >= 5) {
6251           unsigned NumRORefsOffset = 1;
6252           RefListStartIndex = 7;
6253           if (Version >= 6) {
6254             NumRefsIndex = 6;
6255             EntryCount = Record[5];
6256             RefListStartIndex = 8;
6257             if (Version >= 7) {
6258               RefListStartIndex = 9;
6259               NumWORefs = Record[8];
6260               NumRORefsOffset = 2;
6261             }
6262           }
6263           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6264         }
6265         NumRefs = Record[NumRefsIndex];
6266       }
6267 
6268       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6269       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6270       assert(Record.size() >= RefListStartIndex + NumRefs &&
6271              "Record size inconsistent with number of references");
6272       std::vector<ValueInfo> Refs = makeRefList(
6273           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6274       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6275       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6276           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6277           IsOldProfileFormat, HasProfile, false);
6278       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6279       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6280       auto FS = std::make_unique<FunctionSummary>(
6281           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6282           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6283           std::move(PendingTypeTestAssumeVCalls),
6284           std::move(PendingTypeCheckedLoadVCalls),
6285           std::move(PendingTypeTestAssumeConstVCalls),
6286           std::move(PendingTypeCheckedLoadConstVCalls),
6287           std::move(PendingParamAccesses));
6288       LastSeenSummary = FS.get();
6289       LastSeenGUID = VI.getGUID();
6290       FS->setModulePath(ModuleIdMap[ModuleId]);
6291       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6292       break;
6293     }
6294     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6295     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6296     // they expect all aliasee summaries to be available.
6297     case bitc::FS_COMBINED_ALIAS: {
6298       unsigned ValueID = Record[0];
6299       uint64_t ModuleId = Record[1];
6300       uint64_t RawFlags = Record[2];
6301       unsigned AliaseeValueId = Record[3];
6302       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6303       auto AS = std::make_unique<AliasSummary>(Flags);
6304       LastSeenSummary = AS.get();
6305       AS->setModulePath(ModuleIdMap[ModuleId]);
6306 
6307       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6308       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6309       AS->setAliasee(AliaseeVI, AliaseeInModule);
6310 
6311       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6312       LastSeenGUID = VI.getGUID();
6313       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6314       break;
6315     }
6316     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6317     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6318       unsigned ValueID = Record[0];
6319       uint64_t ModuleId = Record[1];
6320       uint64_t RawFlags = Record[2];
6321       unsigned RefArrayStart = 3;
6322       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6323                                       /* WriteOnly */ false,
6324                                       /* Constant */ false,
6325                                       GlobalObject::VCallVisibilityPublic);
6326       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6327       if (Version >= 5) {
6328         GVF = getDecodedGVarFlags(Record[3]);
6329         RefArrayStart = 4;
6330       }
6331       std::vector<ValueInfo> Refs =
6332           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6333       auto FS =
6334           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6335       LastSeenSummary = FS.get();
6336       FS->setModulePath(ModuleIdMap[ModuleId]);
6337       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6338       LastSeenGUID = VI.getGUID();
6339       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6340       break;
6341     }
6342     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6343     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6344       uint64_t OriginalName = Record[0];
6345       if (!LastSeenSummary)
6346         return error("Name attachment that does not follow a combined record");
6347       LastSeenSummary->setOriginalName(OriginalName);
6348       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6349       // Reset the LastSeenSummary
6350       LastSeenSummary = nullptr;
6351       LastSeenGUID = 0;
6352       break;
6353     }
6354     case bitc::FS_TYPE_TESTS:
6355       assert(PendingTypeTests.empty());
6356       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6357                               Record.end());
6358       break;
6359 
6360     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6361       assert(PendingTypeTestAssumeVCalls.empty());
6362       for (unsigned I = 0; I != Record.size(); I += 2)
6363         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6364       break;
6365 
6366     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6367       assert(PendingTypeCheckedLoadVCalls.empty());
6368       for (unsigned I = 0; I != Record.size(); I += 2)
6369         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6370       break;
6371 
6372     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6373       PendingTypeTestAssumeConstVCalls.push_back(
6374           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6375       break;
6376 
6377     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6378       PendingTypeCheckedLoadConstVCalls.push_back(
6379           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6380       break;
6381 
6382     case bitc::FS_CFI_FUNCTION_DEFS: {
6383       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6384       for (unsigned I = 0; I != Record.size(); I += 2)
6385         CfiFunctionDefs.insert(
6386             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6387       break;
6388     }
6389 
6390     case bitc::FS_CFI_FUNCTION_DECLS: {
6391       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6392       for (unsigned I = 0; I != Record.size(); I += 2)
6393         CfiFunctionDecls.insert(
6394             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6395       break;
6396     }
6397 
6398     case bitc::FS_TYPE_ID:
6399       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6400       break;
6401 
6402     case bitc::FS_TYPE_ID_METADATA:
6403       parseTypeIdCompatibleVtableSummaryRecord(Record);
6404       break;
6405 
6406     case bitc::FS_BLOCK_COUNT:
6407       TheIndex.addBlockCount(Record[0]);
6408       break;
6409 
6410     case bitc::FS_PARAM_ACCESS: {
6411       PendingParamAccesses = parseParamAccesses(Record);
6412       break;
6413     }
6414     }
6415   }
6416   llvm_unreachable("Exit infinite loop");
6417 }
6418 
6419 // Parse the  module string table block into the Index.
6420 // This populates the ModulePathStringTable map in the index.
6421 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6422   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6423     return Err;
6424 
6425   SmallVector<uint64_t, 64> Record;
6426 
6427   SmallString<128> ModulePath;
6428   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6429 
6430   while (true) {
6431     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6432     if (!MaybeEntry)
6433       return MaybeEntry.takeError();
6434     BitstreamEntry Entry = MaybeEntry.get();
6435 
6436     switch (Entry.Kind) {
6437     case BitstreamEntry::SubBlock: // Handled for us already.
6438     case BitstreamEntry::Error:
6439       return error("Malformed block");
6440     case BitstreamEntry::EndBlock:
6441       return Error::success();
6442     case BitstreamEntry::Record:
6443       // The interesting case.
6444       break;
6445     }
6446 
6447     Record.clear();
6448     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6449     if (!MaybeRecord)
6450       return MaybeRecord.takeError();
6451     switch (MaybeRecord.get()) {
6452     default: // Default behavior: ignore.
6453       break;
6454     case bitc::MST_CODE_ENTRY: {
6455       // MST_ENTRY: [modid, namechar x N]
6456       uint64_t ModuleId = Record[0];
6457 
6458       if (convertToString(Record, 1, ModulePath))
6459         return error("Invalid record");
6460 
6461       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6462       ModuleIdMap[ModuleId] = LastSeenModule->first();
6463 
6464       ModulePath.clear();
6465       break;
6466     }
6467     /// MST_CODE_HASH: [5*i32]
6468     case bitc::MST_CODE_HASH: {
6469       if (Record.size() != 5)
6470         return error("Invalid hash length " + Twine(Record.size()).str());
6471       if (!LastSeenModule)
6472         return error("Invalid hash that does not follow a module path");
6473       int Pos = 0;
6474       for (auto &Val : Record) {
6475         assert(!(Val >> 32) && "Unexpected high bits set");
6476         LastSeenModule->second.second[Pos++] = Val;
6477       }
6478       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6479       LastSeenModule = nullptr;
6480       break;
6481     }
6482     }
6483   }
6484   llvm_unreachable("Exit infinite loop");
6485 }
6486 
6487 namespace {
6488 
6489 // FIXME: This class is only here to support the transition to llvm::Error. It
6490 // will be removed once this transition is complete. Clients should prefer to
6491 // deal with the Error value directly, rather than converting to error_code.
6492 class BitcodeErrorCategoryType : public std::error_category {
6493   const char *name() const noexcept override {
6494     return "llvm.bitcode";
6495   }
6496 
6497   std::string message(int IE) const override {
6498     BitcodeError E = static_cast<BitcodeError>(IE);
6499     switch (E) {
6500     case BitcodeError::CorruptedBitcode:
6501       return "Corrupted bitcode";
6502     }
6503     llvm_unreachable("Unknown error type!");
6504   }
6505 };
6506 
6507 } // end anonymous namespace
6508 
6509 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6510 
6511 const std::error_category &llvm::BitcodeErrorCategory() {
6512   return *ErrorCategory;
6513 }
6514 
6515 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6516                                             unsigned Block, unsigned RecordID) {
6517   if (Error Err = Stream.EnterSubBlock(Block))
6518     return std::move(Err);
6519 
6520   StringRef Strtab;
6521   while (true) {
6522     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6523     if (!MaybeEntry)
6524       return MaybeEntry.takeError();
6525     llvm::BitstreamEntry Entry = MaybeEntry.get();
6526 
6527     switch (Entry.Kind) {
6528     case BitstreamEntry::EndBlock:
6529       return Strtab;
6530 
6531     case BitstreamEntry::Error:
6532       return error("Malformed block");
6533 
6534     case BitstreamEntry::SubBlock:
6535       if (Error Err = Stream.SkipBlock())
6536         return std::move(Err);
6537       break;
6538 
6539     case BitstreamEntry::Record:
6540       StringRef Blob;
6541       SmallVector<uint64_t, 1> Record;
6542       Expected<unsigned> MaybeRecord =
6543           Stream.readRecord(Entry.ID, Record, &Blob);
6544       if (!MaybeRecord)
6545         return MaybeRecord.takeError();
6546       if (MaybeRecord.get() == RecordID)
6547         Strtab = Blob;
6548       break;
6549     }
6550   }
6551 }
6552 
6553 //===----------------------------------------------------------------------===//
6554 // External interface
6555 //===----------------------------------------------------------------------===//
6556 
6557 Expected<std::vector<BitcodeModule>>
6558 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6559   auto FOrErr = getBitcodeFileContents(Buffer);
6560   if (!FOrErr)
6561     return FOrErr.takeError();
6562   return std::move(FOrErr->Mods);
6563 }
6564 
6565 Expected<BitcodeFileContents>
6566 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6567   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6568   if (!StreamOrErr)
6569     return StreamOrErr.takeError();
6570   BitstreamCursor &Stream = *StreamOrErr;
6571 
6572   BitcodeFileContents F;
6573   while (true) {
6574     uint64_t BCBegin = Stream.getCurrentByteNo();
6575 
6576     // We may be consuming bitcode from a client that leaves garbage at the end
6577     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6578     // the end that there cannot possibly be another module, stop looking.
6579     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6580       return F;
6581 
6582     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6583     if (!MaybeEntry)
6584       return MaybeEntry.takeError();
6585     llvm::BitstreamEntry Entry = MaybeEntry.get();
6586 
6587     switch (Entry.Kind) {
6588     case BitstreamEntry::EndBlock:
6589     case BitstreamEntry::Error:
6590       return error("Malformed block");
6591 
6592     case BitstreamEntry::SubBlock: {
6593       uint64_t IdentificationBit = -1ull;
6594       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6595         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6596         if (Error Err = Stream.SkipBlock())
6597           return std::move(Err);
6598 
6599         {
6600           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6601           if (!MaybeEntry)
6602             return MaybeEntry.takeError();
6603           Entry = MaybeEntry.get();
6604         }
6605 
6606         if (Entry.Kind != BitstreamEntry::SubBlock ||
6607             Entry.ID != bitc::MODULE_BLOCK_ID)
6608           return error("Malformed block");
6609       }
6610 
6611       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6612         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6613         if (Error Err = Stream.SkipBlock())
6614           return std::move(Err);
6615 
6616         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6617                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6618                           Buffer.getBufferIdentifier(), IdentificationBit,
6619                           ModuleBit});
6620         continue;
6621       }
6622 
6623       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6624         Expected<StringRef> Strtab =
6625             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6626         if (!Strtab)
6627           return Strtab.takeError();
6628         // This string table is used by every preceding bitcode module that does
6629         // not have its own string table. A bitcode file may have multiple
6630         // string tables if it was created by binary concatenation, for example
6631         // with "llvm-cat -b".
6632         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6633           if (!I->Strtab.empty())
6634             break;
6635           I->Strtab = *Strtab;
6636         }
6637         // Similarly, the string table is used by every preceding symbol table;
6638         // normally there will be just one unless the bitcode file was created
6639         // by binary concatenation.
6640         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6641           F.StrtabForSymtab = *Strtab;
6642         continue;
6643       }
6644 
6645       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6646         Expected<StringRef> SymtabOrErr =
6647             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6648         if (!SymtabOrErr)
6649           return SymtabOrErr.takeError();
6650 
6651         // We can expect the bitcode file to have multiple symbol tables if it
6652         // was created by binary concatenation. In that case we silently
6653         // ignore any subsequent symbol tables, which is fine because this is a
6654         // low level function. The client is expected to notice that the number
6655         // of modules in the symbol table does not match the number of modules
6656         // in the input file and regenerate the symbol table.
6657         if (F.Symtab.empty())
6658           F.Symtab = *SymtabOrErr;
6659         continue;
6660       }
6661 
6662       if (Error Err = Stream.SkipBlock())
6663         return std::move(Err);
6664       continue;
6665     }
6666     case BitstreamEntry::Record:
6667       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6668         continue;
6669       else
6670         return StreamFailed.takeError();
6671     }
6672   }
6673 }
6674 
6675 /// Get a lazy one-at-time loading module from bitcode.
6676 ///
6677 /// This isn't always used in a lazy context.  In particular, it's also used by
6678 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6679 /// in forward-referenced functions from block address references.
6680 ///
6681 /// \param[in] MaterializeAll Set to \c true if we should materialize
6682 /// everything.
6683 Expected<std::unique_ptr<Module>>
6684 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6685                              bool ShouldLazyLoadMetadata, bool IsImporting,
6686                              DataLayoutCallbackTy DataLayoutCallback) {
6687   BitstreamCursor Stream(Buffer);
6688 
6689   std::string ProducerIdentification;
6690   if (IdentificationBit != -1ull) {
6691     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6692       return std::move(JumpFailed);
6693     Expected<std::string> ProducerIdentificationOrErr =
6694         readIdentificationBlock(Stream);
6695     if (!ProducerIdentificationOrErr)
6696       return ProducerIdentificationOrErr.takeError();
6697 
6698     ProducerIdentification = *ProducerIdentificationOrErr;
6699   }
6700 
6701   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6702     return std::move(JumpFailed);
6703   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6704                               Context);
6705 
6706   std::unique_ptr<Module> M =
6707       std::make_unique<Module>(ModuleIdentifier, Context);
6708   M->setMaterializer(R);
6709 
6710   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6711   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6712                                       IsImporting, DataLayoutCallback))
6713     return std::move(Err);
6714 
6715   if (MaterializeAll) {
6716     // Read in the entire module, and destroy the BitcodeReader.
6717     if (Error Err = M->materializeAll())
6718       return std::move(Err);
6719   } else {
6720     // Resolve forward references from blockaddresses.
6721     if (Error Err = R->materializeForwardReferencedFunctions())
6722       return std::move(Err);
6723   }
6724   return std::move(M);
6725 }
6726 
6727 Expected<std::unique_ptr<Module>>
6728 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6729                              bool IsImporting) {
6730   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6731                        [](StringRef) { return None; });
6732 }
6733 
6734 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6735 // We don't use ModuleIdentifier here because the client may need to control the
6736 // module path used in the combined summary (e.g. when reading summaries for
6737 // regular LTO modules).
6738 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6739                                  StringRef ModulePath, uint64_t ModuleId) {
6740   BitstreamCursor Stream(Buffer);
6741   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6742     return JumpFailed;
6743 
6744   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6745                                     ModulePath, ModuleId);
6746   return R.parseModule();
6747 }
6748 
6749 // Parse the specified bitcode buffer, returning the function info index.
6750 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6751   BitstreamCursor Stream(Buffer);
6752   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6753     return std::move(JumpFailed);
6754 
6755   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6756   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6757                                     ModuleIdentifier, 0);
6758 
6759   if (Error Err = R.parseModule())
6760     return std::move(Err);
6761 
6762   return std::move(Index);
6763 }
6764 
6765 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6766                                                 unsigned ID) {
6767   if (Error Err = Stream.EnterSubBlock(ID))
6768     return std::move(Err);
6769   SmallVector<uint64_t, 64> Record;
6770 
6771   while (true) {
6772     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6773     if (!MaybeEntry)
6774       return MaybeEntry.takeError();
6775     BitstreamEntry Entry = MaybeEntry.get();
6776 
6777     switch (Entry.Kind) {
6778     case BitstreamEntry::SubBlock: // Handled for us already.
6779     case BitstreamEntry::Error:
6780       return error("Malformed block");
6781     case BitstreamEntry::EndBlock:
6782       // If no flags record found, conservatively return true to mimic
6783       // behavior before this flag was added.
6784       return true;
6785     case BitstreamEntry::Record:
6786       // The interesting case.
6787       break;
6788     }
6789 
6790     // Look for the FS_FLAGS record.
6791     Record.clear();
6792     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6793     if (!MaybeBitCode)
6794       return MaybeBitCode.takeError();
6795     switch (MaybeBitCode.get()) {
6796     default: // Default behavior: ignore.
6797       break;
6798     case bitc::FS_FLAGS: { // [flags]
6799       uint64_t Flags = Record[0];
6800       // Scan flags.
6801       assert(Flags <= 0x3f && "Unexpected bits in flag");
6802 
6803       return Flags & 0x8;
6804     }
6805     }
6806   }
6807   llvm_unreachable("Exit infinite loop");
6808 }
6809 
6810 // Check if the given bitcode buffer contains a global value summary block.
6811 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6812   BitstreamCursor Stream(Buffer);
6813   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6814     return std::move(JumpFailed);
6815 
6816   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6817     return std::move(Err);
6818 
6819   while (true) {
6820     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6821     if (!MaybeEntry)
6822       return MaybeEntry.takeError();
6823     llvm::BitstreamEntry Entry = MaybeEntry.get();
6824 
6825     switch (Entry.Kind) {
6826     case BitstreamEntry::Error:
6827       return error("Malformed block");
6828     case BitstreamEntry::EndBlock:
6829       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6830                             /*EnableSplitLTOUnit=*/false};
6831 
6832     case BitstreamEntry::SubBlock:
6833       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6834         Expected<bool> EnableSplitLTOUnit =
6835             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6836         if (!EnableSplitLTOUnit)
6837           return EnableSplitLTOUnit.takeError();
6838         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6839                               *EnableSplitLTOUnit};
6840       }
6841 
6842       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6843         Expected<bool> EnableSplitLTOUnit =
6844             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6845         if (!EnableSplitLTOUnit)
6846           return EnableSplitLTOUnit.takeError();
6847         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6848                               *EnableSplitLTOUnit};
6849       }
6850 
6851       // Ignore other sub-blocks.
6852       if (Error Err = Stream.SkipBlock())
6853         return std::move(Err);
6854       continue;
6855 
6856     case BitstreamEntry::Record:
6857       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6858         continue;
6859       else
6860         return StreamFailed.takeError();
6861     }
6862   }
6863 }
6864 
6865 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6866   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6867   if (!MsOrErr)
6868     return MsOrErr.takeError();
6869 
6870   if (MsOrErr->size() != 1)
6871     return error("Expected a single module");
6872 
6873   return (*MsOrErr)[0];
6874 }
6875 
6876 Expected<std::unique_ptr<Module>>
6877 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6878                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6879   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6880   if (!BM)
6881     return BM.takeError();
6882 
6883   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6884 }
6885 
6886 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6887     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6888     bool ShouldLazyLoadMetadata, bool IsImporting) {
6889   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6890                                      IsImporting);
6891   if (MOrErr)
6892     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6893   return MOrErr;
6894 }
6895 
6896 Expected<std::unique_ptr<Module>>
6897 BitcodeModule::parseModule(LLVMContext &Context,
6898                            DataLayoutCallbackTy DataLayoutCallback) {
6899   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6900   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6901   // written.  We must defer until the Module has been fully materialized.
6902 }
6903 
6904 Expected<std::unique_ptr<Module>>
6905 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6906                        DataLayoutCallbackTy DataLayoutCallback) {
6907   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6908   if (!BM)
6909     return BM.takeError();
6910 
6911   return BM->parseModule(Context, DataLayoutCallback);
6912 }
6913 
6914 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6915   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6916   if (!StreamOrErr)
6917     return StreamOrErr.takeError();
6918 
6919   return readTriple(*StreamOrErr);
6920 }
6921 
6922 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6923   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6924   if (!StreamOrErr)
6925     return StreamOrErr.takeError();
6926 
6927   return hasObjCCategory(*StreamOrErr);
6928 }
6929 
6930 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6931   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6932   if (!StreamOrErr)
6933     return StreamOrErr.takeError();
6934 
6935   return readIdentificationCode(*StreamOrErr);
6936 }
6937 
6938 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6939                                    ModuleSummaryIndex &CombinedIndex,
6940                                    uint64_t ModuleId) {
6941   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6942   if (!BM)
6943     return BM.takeError();
6944 
6945   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6946 }
6947 
6948 Expected<std::unique_ptr<ModuleSummaryIndex>>
6949 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6950   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6951   if (!BM)
6952     return BM.takeError();
6953 
6954   return BM->getSummary();
6955 }
6956 
6957 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6958   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6959   if (!BM)
6960     return BM.takeError();
6961 
6962   return BM->getLTOInfo();
6963 }
6964 
6965 Expected<std::unique_ptr<ModuleSummaryIndex>>
6966 llvm::getModuleSummaryIndexForFile(StringRef Path,
6967                                    bool IgnoreEmptyThinLTOIndexFile) {
6968   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6969       MemoryBuffer::getFileOrSTDIN(Path);
6970   if (!FileOrErr)
6971     return errorCodeToError(FileOrErr.getError());
6972   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6973     return nullptr;
6974   return getModuleSummaryIndex(**FileOrErr);
6975 }
6976