1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/APFloat.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/ArrayRef.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/None.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitstreamReader.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitcode/ReaderWriter.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/AutoUpgrade.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/Comdat.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/DiagnosticInfo.h"
38 #include "llvm/IR/DiagnosticPrinter.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalIFunc.h"
42 #include "llvm/IR/GlobalIndirectSymbol.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/GVMaterializer.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/OperandTraits.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/TrackingMDRef.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/ValueHandle.h"
60 #include "llvm/Support/AtomicOrdering.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/ErrorOr.h"
67 #include "llvm/Support/ManagedStatic.h"
68 #include "llvm/Support/MemoryBuffer.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <deque>
75 #include <limits>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <system_error>
80 #include <tuple>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 static cl::opt<bool> PrintSummaryGUIDs(
87     "print-summary-global-ids", cl::init(false), cl::Hidden,
88     cl::desc(
89         "Print the global id for each value when reading the module summary"));
90 
91 namespace {
92 
93 enum {
94   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
95 };
96 
97 class BitcodeReaderValueList {
98   std::vector<WeakVH> ValuePtrs;
99 
100   /// As we resolve forward-referenced constants, we add information about them
101   /// to this vector.  This allows us to resolve them in bulk instead of
102   /// resolving each reference at a time.  See the code in
103   /// ResolveConstantForwardRefs for more information about this.
104   ///
105   /// The key of this vector is the placeholder constant, the value is the slot
106   /// number that holds the resolved value.
107   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
108   ResolveConstantsTy ResolveConstants;
109   LLVMContext &Context;
110 
111 public:
112   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
113   ~BitcodeReaderValueList() {
114     assert(ResolveConstants.empty() && "Constants not resolved?");
115   }
116 
117   // vector compatibility methods
118   unsigned size() const { return ValuePtrs.size(); }
119   void resize(unsigned N) { ValuePtrs.resize(N); }
120   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
121 
122   void clear() {
123     assert(ResolveConstants.empty() && "Constants not resolved?");
124     ValuePtrs.clear();
125   }
126 
127   Value *operator[](unsigned i) const {
128     assert(i < ValuePtrs.size());
129     return ValuePtrs[i];
130   }
131 
132   Value *back() const { return ValuePtrs.back(); }
133   void pop_back() { ValuePtrs.pop_back(); }
134   bool empty() const { return ValuePtrs.empty(); }
135 
136   void shrinkTo(unsigned N) {
137     assert(N <= size() && "Invalid shrinkTo request!");
138     ValuePtrs.resize(N);
139   }
140 
141   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
142   Value *getValueFwdRef(unsigned Idx, Type *Ty);
143 
144   void assignValue(Value *V, unsigned Idx);
145 
146   /// Once all constants are read, this method bulk resolves any forward
147   /// references.
148   void resolveConstantForwardRefs();
149 };
150 
151 class BitcodeReaderMetadataList {
152   unsigned NumFwdRefs;
153   bool AnyFwdRefs;
154   unsigned MinFwdRef;
155   unsigned MaxFwdRef;
156 
157   /// Array of metadata references.
158   ///
159   /// Don't use std::vector here.  Some versions of libc++ copy (instead of
160   /// move) on resize, and TrackingMDRef is very expensive to copy.
161   SmallVector<TrackingMDRef, 1> MetadataPtrs;
162 
163   /// Structures for resolving old type refs.
164   struct {
165     SmallDenseMap<MDString *, TempMDTuple, 1> Unknown;
166     SmallDenseMap<MDString *, DICompositeType *, 1> Final;
167     SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls;
168     SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays;
169   } OldTypeRefs;
170 
171   LLVMContext &Context;
172 
173 public:
174   BitcodeReaderMetadataList(LLVMContext &C)
175       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
176 
177   // vector compatibility methods
178   unsigned size() const { return MetadataPtrs.size(); }
179   void resize(unsigned N) { MetadataPtrs.resize(N); }
180   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
181   void clear() { MetadataPtrs.clear(); }
182   Metadata *back() const { return MetadataPtrs.back(); }
183   void pop_back() { MetadataPtrs.pop_back(); }
184   bool empty() const { return MetadataPtrs.empty(); }
185 
186   Metadata *operator[](unsigned i) const {
187     assert(i < MetadataPtrs.size());
188     return MetadataPtrs[i];
189   }
190 
191   Metadata *lookup(unsigned I) const {
192     if (I < MetadataPtrs.size())
193       return MetadataPtrs[I];
194     return nullptr;
195   }
196 
197   void shrinkTo(unsigned N) {
198     assert(N <= size() && "Invalid shrinkTo request!");
199     assert(!AnyFwdRefs && "Unexpected forward refs");
200     MetadataPtrs.resize(N);
201   }
202 
203   /// Return the given metadata, creating a replaceable forward reference if
204   /// necessary.
205   Metadata *getMetadataFwdRef(unsigned Idx);
206 
207   /// Return the the given metadata only if it is fully resolved.
208   ///
209   /// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
210   /// would give \c false.
211   Metadata *getMetadataIfResolved(unsigned Idx);
212 
213   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
214   void assignValue(Metadata *MD, unsigned Idx);
215   void tryToResolveCycles();
216   bool hasFwdRefs() const { return AnyFwdRefs; }
217 
218   /// Upgrade a type that had an MDString reference.
219   void addTypeRef(MDString &UUID, DICompositeType &CT);
220 
221   /// Upgrade a type that had an MDString reference.
222   Metadata *upgradeTypeRef(Metadata *MaybeUUID);
223 
224   /// Upgrade a type ref array that may have MDString references.
225   Metadata *upgradeTypeRefArray(Metadata *MaybeTuple);
226 
227 private:
228   Metadata *resolveTypeRefArray(Metadata *MaybeTuple);
229 };
230 
231 class BitcodeReaderBase {
232 protected:
233   BitcodeReaderBase(MemoryBuffer *Buffer) : Buffer(Buffer) {}
234 
235   std::unique_ptr<MemoryBuffer> Buffer;
236   BitstreamBlockInfo BlockInfo;
237   BitstreamCursor Stream;
238 
239   std::error_code initStream();
240   bool readBlockInfo();
241 
242   virtual std::error_code error(const Twine &Message) = 0;
243   virtual ~BitcodeReaderBase() = default;
244 };
245 
246 std::error_code BitcodeReaderBase::initStream() {
247   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
248   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
249 
250   if (Buffer->getBufferSize() & 3)
251     return error("Invalid bitcode signature");
252 
253   // If we have a wrapper header, parse it and ignore the non-bc file contents.
254   // The magic number is 0x0B17C0DE stored in little endian.
255   if (isBitcodeWrapper(BufPtr, BufEnd))
256     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
257       return error("Invalid bitcode wrapper header");
258 
259   Stream = BitstreamCursor(ArrayRef<uint8_t>(BufPtr, BufEnd));
260   Stream.setBlockInfo(&BlockInfo);
261 
262   return std::error_code();
263 }
264 
265 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
266   LLVMContext &Context;
267   Module *TheModule = nullptr;
268   // Next offset to start scanning for lazy parsing of function bodies.
269   uint64_t NextUnreadBit = 0;
270   // Last function offset found in the VST.
271   uint64_t LastFunctionBlockBit = 0;
272   bool SeenValueSymbolTable = false;
273   uint64_t VSTOffset = 0;
274   // Contains an arbitrary and optional string identifying the bitcode producer
275   std::string ProducerIdentification;
276 
277   std::vector<Type*> TypeList;
278   BitcodeReaderValueList ValueList;
279   BitcodeReaderMetadataList MetadataList;
280   std::vector<Comdat *> ComdatList;
281   SmallVector<Instruction *, 64> InstructionList;
282 
283   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
284   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
285   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
286   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
287   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
288 
289   bool HasSeenOldLoopTags = false;
290 
291   /// The set of attributes by index.  Index zero in the file is for null, and
292   /// is thus not represented here.  As such all indices are off by one.
293   std::vector<AttributeSet> MAttributes;
294 
295   /// The set of attribute groups.
296   std::map<unsigned, AttributeSet> MAttributeGroups;
297 
298   /// While parsing a function body, this is a list of the basic blocks for the
299   /// function.
300   std::vector<BasicBlock*> FunctionBBs;
301 
302   // When reading the module header, this list is populated with functions that
303   // have bodies later in the file.
304   std::vector<Function*> FunctionsWithBodies;
305 
306   // When intrinsic functions are encountered which require upgrading they are
307   // stored here with their replacement function.
308   typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap;
309   UpdatedIntrinsicMap UpgradedIntrinsics;
310   // Intrinsics which were remangled because of types rename
311   UpdatedIntrinsicMap RemangledIntrinsics;
312 
313   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
314   DenseMap<unsigned, unsigned> MDKindMap;
315 
316   // Several operations happen after the module header has been read, but
317   // before function bodies are processed. This keeps track of whether
318   // we've done this yet.
319   bool SeenFirstFunctionBody = false;
320 
321   /// When function bodies are initially scanned, this map contains info about
322   /// where to find deferred function body in the stream.
323   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
324 
325   /// When Metadata block is initially scanned when parsing the module, we may
326   /// choose to defer parsing of the metadata. This vector contains info about
327   /// which Metadata blocks are deferred.
328   std::vector<uint64_t> DeferredMetadataInfo;
329 
330   /// These are basic blocks forward-referenced by block addresses.  They are
331   /// inserted lazily into functions when they're loaded.  The basic block ID is
332   /// its index into the vector.
333   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
334   std::deque<Function *> BasicBlockFwdRefQueue;
335 
336   /// Indicates that we are using a new encoding for instruction operands where
337   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
338   /// instruction number, for a more compact encoding.  Some instruction
339   /// operands are not relative to the instruction ID: basic block numbers, and
340   /// types. Once the old style function blocks have been phased out, we would
341   /// not need this flag.
342   bool UseRelativeIDs = false;
343 
344   /// True if all functions will be materialized, negating the need to process
345   /// (e.g.) blockaddress forward references.
346   bool WillMaterializeAllForwardRefs = false;
347 
348   /// True if any Metadata block has been materialized.
349   bool IsMetadataMaterialized = false;
350 
351   bool StripDebugInfo = false;
352 
353   /// Functions that need to be matched with subprograms when upgrading old
354   /// metadata.
355   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
356 
357   std::vector<std::string> BundleTags;
358 
359 public:
360   std::error_code error(BitcodeError E, const Twine &Message);
361   std::error_code error(const Twine &Message) override;
362 
363   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
364   ~BitcodeReader() override { freeState(); }
365 
366   std::error_code materializeForwardReferencedFunctions();
367 
368   void freeState();
369 
370   void releaseBuffer();
371 
372   std::error_code materialize(GlobalValue *GV) override;
373   std::error_code materializeModule() override;
374   std::vector<StructType *> getIdentifiedStructTypes() const override;
375 
376   /// \brief Main interface to parsing a bitcode buffer.
377   /// \returns true if an error occurred.
378   std::error_code parseBitcodeInto(Module *M,
379                                    bool ShouldLazyLoadMetadata = false);
380 
381   /// \brief Cheap mechanism to just extract module triple
382   /// \returns true if an error occurred.
383   ErrorOr<std::string> parseTriple();
384 
385   /// Cheap mechanism to just extract the identification block out of bitcode.
386   ErrorOr<std::string> parseIdentificationBlock();
387 
388   /// Peak at the module content and return true if any ObjC category or class
389   /// is found.
390   ErrorOr<bool> hasObjCCategory();
391 
392   static uint64_t decodeSignRotatedValue(uint64_t V);
393 
394   /// Materialize any deferred Metadata block.
395   std::error_code materializeMetadata() override;
396 
397   void setStripDebugInfo() override;
398 
399 private:
400   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
401   // ProducerIdentification data member, and do some basic enforcement on the
402   // "epoch" encoded in the bitcode.
403   std::error_code parseBitcodeVersion();
404 
405   std::vector<StructType *> IdentifiedStructTypes;
406   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
407   StructType *createIdentifiedStructType(LLVMContext &Context);
408 
409   Type *getTypeByID(unsigned ID);
410 
411   Value *getFnValueByID(unsigned ID, Type *Ty) {
412     if (Ty && Ty->isMetadataTy())
413       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
414     return ValueList.getValueFwdRef(ID, Ty);
415   }
416 
417   Metadata *getFnMetadataByID(unsigned ID) {
418     return MetadataList.getMetadataFwdRef(ID);
419   }
420 
421   BasicBlock *getBasicBlock(unsigned ID) const {
422     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
423     return FunctionBBs[ID];
424   }
425 
426   AttributeSet getAttributes(unsigned i) const {
427     if (i-1 < MAttributes.size())
428       return MAttributes[i-1];
429     return AttributeSet();
430   }
431 
432   /// Read a value/type pair out of the specified record from slot 'Slot'.
433   /// Increment Slot past the number of slots used in the record. Return true on
434   /// failure.
435   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
436                         unsigned InstNum, Value *&ResVal) {
437     if (Slot == Record.size()) return true;
438     unsigned ValNo = (unsigned)Record[Slot++];
439     // Adjust the ValNo, if it was encoded relative to the InstNum.
440     if (UseRelativeIDs)
441       ValNo = InstNum - ValNo;
442     if (ValNo < InstNum) {
443       // If this is not a forward reference, just return the value we already
444       // have.
445       ResVal = getFnValueByID(ValNo, nullptr);
446       return ResVal == nullptr;
447     }
448     if (Slot == Record.size())
449       return true;
450 
451     unsigned TypeNo = (unsigned)Record[Slot++];
452     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
453     return ResVal == nullptr;
454   }
455 
456   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
457   /// past the number of slots used by the value in the record. Return true if
458   /// there is an error.
459   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
460                 unsigned InstNum, Type *Ty, Value *&ResVal) {
461     if (getValue(Record, Slot, InstNum, Ty, ResVal))
462       return true;
463     // All values currently take a single record slot.
464     ++Slot;
465     return false;
466   }
467 
468   /// Like popValue, but does not increment the Slot number.
469   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
470                 unsigned InstNum, Type *Ty, Value *&ResVal) {
471     ResVal = getValue(Record, Slot, InstNum, Ty);
472     return ResVal == nullptr;
473   }
474 
475   /// Version of getValue that returns ResVal directly, or 0 if there is an
476   /// error.
477   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
478                   unsigned InstNum, Type *Ty) {
479     if (Slot == Record.size()) return nullptr;
480     unsigned ValNo = (unsigned)Record[Slot];
481     // Adjust the ValNo, if it was encoded relative to the InstNum.
482     if (UseRelativeIDs)
483       ValNo = InstNum - ValNo;
484     return getFnValueByID(ValNo, Ty);
485   }
486 
487   /// Like getValue, but decodes signed VBRs.
488   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
489                         unsigned InstNum, Type *Ty) {
490     if (Slot == Record.size()) return nullptr;
491     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
492     // Adjust the ValNo, if it was encoded relative to the InstNum.
493     if (UseRelativeIDs)
494       ValNo = InstNum - ValNo;
495     return getFnValueByID(ValNo, Ty);
496   }
497 
498   /// Converts alignment exponent (i.e. power of two (or zero)) to the
499   /// corresponding alignment to use. If alignment is too large, returns
500   /// a corresponding error code.
501   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
502   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
503   std::error_code parseModule(uint64_t ResumeBit,
504                               bool ShouldLazyLoadMetadata = false);
505   std::error_code parseAttributeBlock();
506   std::error_code parseAttributeGroupBlock();
507   std::error_code parseTypeTable();
508   std::error_code parseTypeTableBody();
509   std::error_code parseOperandBundleTags();
510 
511   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
512                                unsigned NameIndex, Triple &TT);
513   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
514   std::error_code parseConstants();
515   std::error_code rememberAndSkipFunctionBodies();
516   std::error_code rememberAndSkipFunctionBody();
517   /// Save the positions of the Metadata blocks and skip parsing the blocks.
518   std::error_code rememberAndSkipMetadata();
519   std::error_code parseFunctionBody(Function *F);
520   std::error_code globalCleanup();
521   std::error_code resolveGlobalAndIndirectSymbolInits();
522   std::error_code parseMetadata(bool ModuleLevel = false);
523   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
524                                        StringRef Blob,
525                                        unsigned &NextMetadataNo);
526   std::error_code parseMetadataKinds();
527   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
528   std::error_code
529   parseGlobalObjectAttachment(GlobalObject &GO,
530                               ArrayRef<uint64_t> Record);
531   std::error_code parseMetadataAttachment(Function &F);
532   ErrorOr<std::string> parseModuleTriple();
533   ErrorOr<bool> hasObjCCategoryInModule();
534   std::error_code parseUseLists();
535   std::error_code findFunctionInStream(
536       Function *F,
537       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
538 };
539 
540 /// Class to manage reading and parsing function summary index bitcode
541 /// files/sections.
542 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
543   DiagnosticHandlerFunction DiagnosticHandler;
544 
545   /// Eventually points to the module index built during parsing.
546   ModuleSummaryIndex *TheIndex = nullptr;
547 
548   /// Used to indicate whether caller only wants to check for the presence
549   /// of the global value summary bitcode section. All blocks are skipped,
550   /// but the SeenGlobalValSummary boolean is set.
551   bool CheckGlobalValSummaryPresenceOnly = false;
552 
553   /// Indicates whether we have encountered a global value summary section
554   /// yet during parsing, used when checking if file contains global value
555   /// summary section.
556   bool SeenGlobalValSummary = false;
557 
558   /// Indicates whether we have already parsed the VST, used for error checking.
559   bool SeenValueSymbolTable = false;
560 
561   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
562   /// Used to enable on-demand parsing of the VST.
563   uint64_t VSTOffset = 0;
564 
565   // Map to save ValueId to GUID association that was recorded in the
566   // ValueSymbolTable. It is used after the VST is parsed to convert
567   // call graph edges read from the function summary from referencing
568   // callees by their ValueId to using the GUID instead, which is how
569   // they are recorded in the summary index being built.
570   // We save a second GUID which is the same as the first one, but ignoring the
571   // linkage, i.e. for value other than local linkage they are identical.
572   DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>>
573       ValueIdToCallGraphGUIDMap;
574 
575   /// Map populated during module path string table parsing, from the
576   /// module ID to a string reference owned by the index's module
577   /// path string table, used to correlate with combined index
578   /// summary records.
579   DenseMap<uint64_t, StringRef> ModuleIdMap;
580 
581   /// Original source file name recorded in a bitcode record.
582   std::string SourceFileName;
583 
584 public:
585   std::error_code error(const Twine &Message);
586 
587   ModuleSummaryIndexBitcodeReader(
588       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
589       bool CheckGlobalValSummaryPresenceOnly = false);
590   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
591 
592   void freeState();
593 
594   void releaseBuffer();
595 
596   /// Check if the parser has encountered a summary section.
597   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
598 
599   /// \brief Main interface to parsing a bitcode buffer.
600   /// \returns true if an error occurred.
601   std::error_code parseSummaryIndexInto(ModuleSummaryIndex *I);
602 
603 private:
604   std::error_code parseModule();
605   std::error_code parseValueSymbolTable(
606       uint64_t Offset,
607       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
608   std::error_code parseEntireSummary();
609   std::error_code parseModuleStringTable();
610   std::pair<GlobalValue::GUID, GlobalValue::GUID>
611 
612   getGUIDFromValueId(unsigned ValueId);
613   std::pair<GlobalValue::GUID, CalleeInfo::HotnessType>
614   readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I,
615                     bool IsOldProfileFormat, bool HasProfile);
616 };
617 
618 } // end anonymous namespace
619 
620 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
621                                              DiagnosticSeverity Severity,
622                                              const Twine &Msg)
623     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
624 
625 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
626 
627 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler,
628                              std::error_code EC, const Twine &Message) {
629   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
630   DiagnosticHandler(DI);
631   return EC;
632 }
633 
634 static std::error_code error(LLVMContext &Context, std::error_code EC,
635                              const Twine &Message) {
636   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
637                Message);
638 }
639 
640 static std::error_code error(LLVMContext &Context, const Twine &Message) {
641   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
642                Message);
643 }
644 
645 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
646   if (!ProducerIdentification.empty()) {
647     return ::error(Context, make_error_code(E),
648                    Message + " (Producer: '" + ProducerIdentification +
649                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
650   }
651   return ::error(Context, make_error_code(E), Message);
652 }
653 
654 std::error_code BitcodeReader::error(const Twine &Message) {
655   if (!ProducerIdentification.empty()) {
656     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
657                    Message + " (Producer: '" + ProducerIdentification +
658                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
659   }
660   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
661                  Message);
662 }
663 
664 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
665     : BitcodeReaderBase(Buffer), Context(Context), ValueList(Context),
666       MetadataList(Context) {}
667 
668 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
669   if (WillMaterializeAllForwardRefs)
670     return std::error_code();
671 
672   // Prevent recursion.
673   WillMaterializeAllForwardRefs = true;
674 
675   while (!BasicBlockFwdRefQueue.empty()) {
676     Function *F = BasicBlockFwdRefQueue.front();
677     BasicBlockFwdRefQueue.pop_front();
678     assert(F && "Expected valid function");
679     if (!BasicBlockFwdRefs.count(F))
680       // Already materialized.
681       continue;
682 
683     // Check for a function that isn't materializable to prevent an infinite
684     // loop.  When parsing a blockaddress stored in a global variable, there
685     // isn't a trivial way to check if a function will have a body without a
686     // linear search through FunctionsWithBodies, so just check it here.
687     if (!F->isMaterializable())
688       return error("Never resolved function from blockaddress");
689 
690     // Try to materialize F.
691     if (std::error_code EC = materialize(F))
692       return EC;
693   }
694   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
695 
696   // Reset state.
697   WillMaterializeAllForwardRefs = false;
698   return std::error_code();
699 }
700 
701 void BitcodeReader::freeState() {
702   Buffer = nullptr;
703   std::vector<Type*>().swap(TypeList);
704   ValueList.clear();
705   MetadataList.clear();
706   std::vector<Comdat *>().swap(ComdatList);
707 
708   std::vector<AttributeSet>().swap(MAttributes);
709   std::vector<BasicBlock*>().swap(FunctionBBs);
710   std::vector<Function*>().swap(FunctionsWithBodies);
711   DeferredFunctionInfo.clear();
712   DeferredMetadataInfo.clear();
713   MDKindMap.clear();
714 
715   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
716   BasicBlockFwdRefQueue.clear();
717 }
718 
719 //===----------------------------------------------------------------------===//
720 //  Helper functions to implement forward reference resolution, etc.
721 //===----------------------------------------------------------------------===//
722 
723 /// Convert a string from a record into an std::string, return true on failure.
724 template <typename StrTy>
725 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
726                             StrTy &Result) {
727   if (Idx > Record.size())
728     return true;
729 
730   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
731     Result += (char)Record[i];
732   return false;
733 }
734 
735 static bool hasImplicitComdat(size_t Val) {
736   switch (Val) {
737   default:
738     return false;
739   case 1:  // Old WeakAnyLinkage
740   case 4:  // Old LinkOnceAnyLinkage
741   case 10: // Old WeakODRLinkage
742   case 11: // Old LinkOnceODRLinkage
743     return true;
744   }
745 }
746 
747 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
748   switch (Val) {
749   default: // Map unknown/new linkages to external
750   case 0:
751     return GlobalValue::ExternalLinkage;
752   case 2:
753     return GlobalValue::AppendingLinkage;
754   case 3:
755     return GlobalValue::InternalLinkage;
756   case 5:
757     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
758   case 6:
759     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
760   case 7:
761     return GlobalValue::ExternalWeakLinkage;
762   case 8:
763     return GlobalValue::CommonLinkage;
764   case 9:
765     return GlobalValue::PrivateLinkage;
766   case 12:
767     return GlobalValue::AvailableExternallyLinkage;
768   case 13:
769     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
770   case 14:
771     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
772   case 15:
773     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
774   case 1: // Old value with implicit comdat.
775   case 16:
776     return GlobalValue::WeakAnyLinkage;
777   case 10: // Old value with implicit comdat.
778   case 17:
779     return GlobalValue::WeakODRLinkage;
780   case 4: // Old value with implicit comdat.
781   case 18:
782     return GlobalValue::LinkOnceAnyLinkage;
783   case 11: // Old value with implicit comdat.
784   case 19:
785     return GlobalValue::LinkOnceODRLinkage;
786   }
787 }
788 
789 /// Decode the flags for GlobalValue in the summary.
790 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
791                                                             uint64_t Version) {
792   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
793   // like getDecodedLinkage() above. Any future change to the linkage enum and
794   // to getDecodedLinkage() will need to be taken into account here as above.
795   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
796   RawFlags = RawFlags >> 4;
797   bool NoRename = RawFlags & 0x1;
798   bool IsNotViableToInline = RawFlags & 0x2;
799   return GlobalValueSummary::GVFlags(Linkage, NoRename, IsNotViableToInline);
800 }
801 
802 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
803   switch (Val) {
804   default: // Map unknown visibilities to default.
805   case 0: return GlobalValue::DefaultVisibility;
806   case 1: return GlobalValue::HiddenVisibility;
807   case 2: return GlobalValue::ProtectedVisibility;
808   }
809 }
810 
811 static GlobalValue::DLLStorageClassTypes
812 getDecodedDLLStorageClass(unsigned Val) {
813   switch (Val) {
814   default: // Map unknown values to default.
815   case 0: return GlobalValue::DefaultStorageClass;
816   case 1: return GlobalValue::DLLImportStorageClass;
817   case 2: return GlobalValue::DLLExportStorageClass;
818   }
819 }
820 
821 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
822   switch (Val) {
823     case 0: return GlobalVariable::NotThreadLocal;
824     default: // Map unknown non-zero value to general dynamic.
825     case 1: return GlobalVariable::GeneralDynamicTLSModel;
826     case 2: return GlobalVariable::LocalDynamicTLSModel;
827     case 3: return GlobalVariable::InitialExecTLSModel;
828     case 4: return GlobalVariable::LocalExecTLSModel;
829   }
830 }
831 
832 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
833   switch (Val) {
834     default: // Map unknown to UnnamedAddr::None.
835     case 0: return GlobalVariable::UnnamedAddr::None;
836     case 1: return GlobalVariable::UnnamedAddr::Global;
837     case 2: return GlobalVariable::UnnamedAddr::Local;
838   }
839 }
840 
841 static int getDecodedCastOpcode(unsigned Val) {
842   switch (Val) {
843   default: return -1;
844   case bitc::CAST_TRUNC   : return Instruction::Trunc;
845   case bitc::CAST_ZEXT    : return Instruction::ZExt;
846   case bitc::CAST_SEXT    : return Instruction::SExt;
847   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
848   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
849   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
850   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
851   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
852   case bitc::CAST_FPEXT   : return Instruction::FPExt;
853   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
854   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
855   case bitc::CAST_BITCAST : return Instruction::BitCast;
856   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
857   }
858 }
859 
860 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
861   bool IsFP = Ty->isFPOrFPVectorTy();
862   // BinOps are only valid for int/fp or vector of int/fp types
863   if (!IsFP && !Ty->isIntOrIntVectorTy())
864     return -1;
865 
866   switch (Val) {
867   default:
868     return -1;
869   case bitc::BINOP_ADD:
870     return IsFP ? Instruction::FAdd : Instruction::Add;
871   case bitc::BINOP_SUB:
872     return IsFP ? Instruction::FSub : Instruction::Sub;
873   case bitc::BINOP_MUL:
874     return IsFP ? Instruction::FMul : Instruction::Mul;
875   case bitc::BINOP_UDIV:
876     return IsFP ? -1 : Instruction::UDiv;
877   case bitc::BINOP_SDIV:
878     return IsFP ? Instruction::FDiv : Instruction::SDiv;
879   case bitc::BINOP_UREM:
880     return IsFP ? -1 : Instruction::URem;
881   case bitc::BINOP_SREM:
882     return IsFP ? Instruction::FRem : Instruction::SRem;
883   case bitc::BINOP_SHL:
884     return IsFP ? -1 : Instruction::Shl;
885   case bitc::BINOP_LSHR:
886     return IsFP ? -1 : Instruction::LShr;
887   case bitc::BINOP_ASHR:
888     return IsFP ? -1 : Instruction::AShr;
889   case bitc::BINOP_AND:
890     return IsFP ? -1 : Instruction::And;
891   case bitc::BINOP_OR:
892     return IsFP ? -1 : Instruction::Or;
893   case bitc::BINOP_XOR:
894     return IsFP ? -1 : Instruction::Xor;
895   }
896 }
897 
898 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
899   switch (Val) {
900   default: return AtomicRMWInst::BAD_BINOP;
901   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
902   case bitc::RMW_ADD: return AtomicRMWInst::Add;
903   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
904   case bitc::RMW_AND: return AtomicRMWInst::And;
905   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
906   case bitc::RMW_OR: return AtomicRMWInst::Or;
907   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
908   case bitc::RMW_MAX: return AtomicRMWInst::Max;
909   case bitc::RMW_MIN: return AtomicRMWInst::Min;
910   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
911   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
912   }
913 }
914 
915 static AtomicOrdering getDecodedOrdering(unsigned Val) {
916   switch (Val) {
917   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
918   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
919   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
920   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
921   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
922   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
923   default: // Map unknown orderings to sequentially-consistent.
924   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
925   }
926 }
927 
928 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
929   switch (Val) {
930   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
931   default: // Map unknown scopes to cross-thread.
932   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
933   }
934 }
935 
936 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
937   switch (Val) {
938   default: // Map unknown selection kinds to any.
939   case bitc::COMDAT_SELECTION_KIND_ANY:
940     return Comdat::Any;
941   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
942     return Comdat::ExactMatch;
943   case bitc::COMDAT_SELECTION_KIND_LARGEST:
944     return Comdat::Largest;
945   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
946     return Comdat::NoDuplicates;
947   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
948     return Comdat::SameSize;
949   }
950 }
951 
952 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
953   FastMathFlags FMF;
954   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
955     FMF.setUnsafeAlgebra();
956   if (0 != (Val & FastMathFlags::NoNaNs))
957     FMF.setNoNaNs();
958   if (0 != (Val & FastMathFlags::NoInfs))
959     FMF.setNoInfs();
960   if (0 != (Val & FastMathFlags::NoSignedZeros))
961     FMF.setNoSignedZeros();
962   if (0 != (Val & FastMathFlags::AllowReciprocal))
963     FMF.setAllowReciprocal();
964   return FMF;
965 }
966 
967 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
968   switch (Val) {
969   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
970   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
971   }
972 }
973 
974 namespace llvm {
975 namespace {
976 
977 /// \brief A class for maintaining the slot number definition
978 /// as a placeholder for the actual definition for forward constants defs.
979 class ConstantPlaceHolder : public ConstantExpr {
980   void operator=(const ConstantPlaceHolder &) = delete;
981 
982 public:
983   // allocate space for exactly one operand
984   void *operator new(size_t s) { return User::operator new(s, 1); }
985   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
986       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
987     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
988   }
989 
990   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
991   static bool classof(const Value *V) {
992     return isa<ConstantExpr>(V) &&
993            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
994   }
995 
996   /// Provide fast operand accessors
997   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
998 };
999 
1000 } // end anonymous namespace
1001 
1002 // FIXME: can we inherit this from ConstantExpr?
1003 template <>
1004 struct OperandTraits<ConstantPlaceHolder> :
1005   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
1006 };
1007 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
1008 
1009 } // end namespace llvm
1010 
1011 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
1012   if (Idx == size()) {
1013     push_back(V);
1014     return;
1015   }
1016 
1017   if (Idx >= size())
1018     resize(Idx+1);
1019 
1020   WeakVH &OldV = ValuePtrs[Idx];
1021   if (!OldV) {
1022     OldV = V;
1023     return;
1024   }
1025 
1026   // Handle constants and non-constants (e.g. instrs) differently for
1027   // efficiency.
1028   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
1029     ResolveConstants.push_back(std::make_pair(PHC, Idx));
1030     OldV = V;
1031   } else {
1032     // If there was a forward reference to this value, replace it.
1033     Value *PrevVal = OldV;
1034     OldV->replaceAllUsesWith(V);
1035     delete PrevVal;
1036   }
1037 }
1038 
1039 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
1040                                                     Type *Ty) {
1041   if (Idx >= size())
1042     resize(Idx + 1);
1043 
1044   if (Value *V = ValuePtrs[Idx]) {
1045     if (Ty != V->getType())
1046       report_fatal_error("Type mismatch in constant table!");
1047     return cast<Constant>(V);
1048   }
1049 
1050   // Create and return a placeholder, which will later be RAUW'd.
1051   Constant *C = new ConstantPlaceHolder(Ty, Context);
1052   ValuePtrs[Idx] = C;
1053   return C;
1054 }
1055 
1056 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
1057   // Bail out for a clearly invalid value. This would make us call resize(0)
1058   if (Idx == std::numeric_limits<unsigned>::max())
1059     return nullptr;
1060 
1061   if (Idx >= size())
1062     resize(Idx + 1);
1063 
1064   if (Value *V = ValuePtrs[Idx]) {
1065     // If the types don't match, it's invalid.
1066     if (Ty && Ty != V->getType())
1067       return nullptr;
1068     return V;
1069   }
1070 
1071   // No type specified, must be invalid reference.
1072   if (!Ty) return nullptr;
1073 
1074   // Create and return a placeholder, which will later be RAUW'd.
1075   Value *V = new Argument(Ty);
1076   ValuePtrs[Idx] = V;
1077   return V;
1078 }
1079 
1080 /// Once all constants are read, this method bulk resolves any forward
1081 /// references.  The idea behind this is that we sometimes get constants (such
1082 /// as large arrays) which reference *many* forward ref constants.  Replacing
1083 /// each of these causes a lot of thrashing when building/reuniquing the
1084 /// constant.  Instead of doing this, we look at all the uses and rewrite all
1085 /// the place holders at once for any constant that uses a placeholder.
1086 void BitcodeReaderValueList::resolveConstantForwardRefs() {
1087   // Sort the values by-pointer so that they are efficient to look up with a
1088   // binary search.
1089   std::sort(ResolveConstants.begin(), ResolveConstants.end());
1090 
1091   SmallVector<Constant*, 64> NewOps;
1092 
1093   while (!ResolveConstants.empty()) {
1094     Value *RealVal = operator[](ResolveConstants.back().second);
1095     Constant *Placeholder = ResolveConstants.back().first;
1096     ResolveConstants.pop_back();
1097 
1098     // Loop over all users of the placeholder, updating them to reference the
1099     // new value.  If they reference more than one placeholder, update them all
1100     // at once.
1101     while (!Placeholder->use_empty()) {
1102       auto UI = Placeholder->user_begin();
1103       User *U = *UI;
1104 
1105       // If the using object isn't uniqued, just update the operands.  This
1106       // handles instructions and initializers for global variables.
1107       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
1108         UI.getUse().set(RealVal);
1109         continue;
1110       }
1111 
1112       // Otherwise, we have a constant that uses the placeholder.  Replace that
1113       // constant with a new constant that has *all* placeholder uses updated.
1114       Constant *UserC = cast<Constant>(U);
1115       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1116            I != E; ++I) {
1117         Value *NewOp;
1118         if (!isa<ConstantPlaceHolder>(*I)) {
1119           // Not a placeholder reference.
1120           NewOp = *I;
1121         } else if (*I == Placeholder) {
1122           // Common case is that it just references this one placeholder.
1123           NewOp = RealVal;
1124         } else {
1125           // Otherwise, look up the placeholder in ResolveConstants.
1126           ResolveConstantsTy::iterator It =
1127             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1128                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1129                                                             0));
1130           assert(It != ResolveConstants.end() && It->first == *I);
1131           NewOp = operator[](It->second);
1132         }
1133 
1134         NewOps.push_back(cast<Constant>(NewOp));
1135       }
1136 
1137       // Make the new constant.
1138       Constant *NewC;
1139       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1140         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1141       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1142         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1143       } else if (isa<ConstantVector>(UserC)) {
1144         NewC = ConstantVector::get(NewOps);
1145       } else {
1146         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1147         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1148       }
1149 
1150       UserC->replaceAllUsesWith(NewC);
1151       UserC->destroyConstant();
1152       NewOps.clear();
1153     }
1154 
1155     // Update all ValueHandles, they should be the only users at this point.
1156     Placeholder->replaceAllUsesWith(RealVal);
1157     delete Placeholder;
1158   }
1159 }
1160 
1161 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1162   if (Idx == size()) {
1163     push_back(MD);
1164     return;
1165   }
1166 
1167   if (Idx >= size())
1168     resize(Idx+1);
1169 
1170   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1171   if (!OldMD) {
1172     OldMD.reset(MD);
1173     return;
1174   }
1175 
1176   // If there was a forward reference to this value, replace it.
1177   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1178   PrevMD->replaceAllUsesWith(MD);
1179   --NumFwdRefs;
1180 }
1181 
1182 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1183   if (Idx >= size())
1184     resize(Idx + 1);
1185 
1186   if (Metadata *MD = MetadataPtrs[Idx])
1187     return MD;
1188 
1189   // Track forward refs to be resolved later.
1190   if (AnyFwdRefs) {
1191     MinFwdRef = std::min(MinFwdRef, Idx);
1192     MaxFwdRef = std::max(MaxFwdRef, Idx);
1193   } else {
1194     AnyFwdRefs = true;
1195     MinFwdRef = MaxFwdRef = Idx;
1196   }
1197   ++NumFwdRefs;
1198 
1199   // Create and return a placeholder, which will later be RAUW'd.
1200   Metadata *MD = MDNode::getTemporary(Context, None).release();
1201   MetadataPtrs[Idx].reset(MD);
1202   return MD;
1203 }
1204 
1205 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
1206   Metadata *MD = lookup(Idx);
1207   if (auto *N = dyn_cast_or_null<MDNode>(MD))
1208     if (!N->isResolved())
1209       return nullptr;
1210   return MD;
1211 }
1212 
1213 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1214   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1215 }
1216 
1217 void BitcodeReaderMetadataList::tryToResolveCycles() {
1218   if (NumFwdRefs)
1219     // Still forward references... can't resolve cycles.
1220     return;
1221 
1222   bool DidReplaceTypeRefs = false;
1223 
1224   // Give up on finding a full definition for any forward decls that remain.
1225   for (const auto &Ref : OldTypeRefs.FwdDecls)
1226     OldTypeRefs.Final.insert(Ref);
1227   OldTypeRefs.FwdDecls.clear();
1228 
1229   // Upgrade from old type ref arrays.  In strange cases, this could add to
1230   // OldTypeRefs.Unknown.
1231   for (const auto &Array : OldTypeRefs.Arrays) {
1232     DidReplaceTypeRefs = true;
1233     Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get()));
1234   }
1235   OldTypeRefs.Arrays.clear();
1236 
1237   // Replace old string-based type refs with the resolved node, if possible.
1238   // If we haven't seen the node, leave it to the verifier to complain about
1239   // the invalid string reference.
1240   for (const auto &Ref : OldTypeRefs.Unknown) {
1241     DidReplaceTypeRefs = true;
1242     if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first))
1243       Ref.second->replaceAllUsesWith(CT);
1244     else
1245       Ref.second->replaceAllUsesWith(Ref.first);
1246   }
1247   OldTypeRefs.Unknown.clear();
1248 
1249   // Make sure all the upgraded types are resolved.
1250   if (DidReplaceTypeRefs) {
1251     AnyFwdRefs = true;
1252     MinFwdRef = 0;
1253     MaxFwdRef = MetadataPtrs.size() - 1;
1254   }
1255 
1256   if (!AnyFwdRefs)
1257     // Nothing to do.
1258     return;
1259 
1260   // Resolve any cycles.
1261   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1262     auto &MD = MetadataPtrs[I];
1263     auto *N = dyn_cast_or_null<MDNode>(MD);
1264     if (!N)
1265       continue;
1266 
1267     assert(!N->isTemporary() && "Unexpected forward reference");
1268     N->resolveCycles();
1269   }
1270 
1271   // Make sure we return early again until there's another forward ref.
1272   AnyFwdRefs = false;
1273 }
1274 
1275 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID,
1276                                            DICompositeType &CT) {
1277   assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID");
1278   if (CT.isForwardDecl())
1279     OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT));
1280   else
1281     OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT));
1282 }
1283 
1284 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) {
1285   auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID);
1286   if (LLVM_LIKELY(!UUID))
1287     return MaybeUUID;
1288 
1289   if (auto *CT = OldTypeRefs.Final.lookup(UUID))
1290     return CT;
1291 
1292   auto &Ref = OldTypeRefs.Unknown[UUID];
1293   if (!Ref)
1294     Ref = MDNode::getTemporary(Context, None);
1295   return Ref.get();
1296 }
1297 
1298 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) {
1299   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1300   if (!Tuple || Tuple->isDistinct())
1301     return MaybeTuple;
1302 
1303   // Look through the array immediately if possible.
1304   if (!Tuple->isTemporary())
1305     return resolveTypeRefArray(Tuple);
1306 
1307   // Create and return a placeholder to use for now.  Eventually
1308   // resolveTypeRefArrays() will be resolve this forward reference.
1309   OldTypeRefs.Arrays.emplace_back(
1310       std::piecewise_construct, std::forward_as_tuple(Tuple),
1311       std::forward_as_tuple(MDTuple::getTemporary(Context, None)));
1312   return OldTypeRefs.Arrays.back().second.get();
1313 }
1314 
1315 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) {
1316   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1317   if (!Tuple || Tuple->isDistinct())
1318     return MaybeTuple;
1319 
1320   // Look through the DITypeRefArray, upgrading each DITypeRef.
1321   SmallVector<Metadata *, 32> Ops;
1322   Ops.reserve(Tuple->getNumOperands());
1323   for (Metadata *MD : Tuple->operands())
1324     Ops.push_back(upgradeTypeRef(MD));
1325 
1326   return MDTuple::get(Context, Ops);
1327 }
1328 
1329 Type *BitcodeReader::getTypeByID(unsigned ID) {
1330   // The type table size is always specified correctly.
1331   if (ID >= TypeList.size())
1332     return nullptr;
1333 
1334   if (Type *Ty = TypeList[ID])
1335     return Ty;
1336 
1337   // If we have a forward reference, the only possible case is when it is to a
1338   // named struct.  Just create a placeholder for now.
1339   return TypeList[ID] = createIdentifiedStructType(Context);
1340 }
1341 
1342 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1343                                                       StringRef Name) {
1344   auto *Ret = StructType::create(Context, Name);
1345   IdentifiedStructTypes.push_back(Ret);
1346   return Ret;
1347 }
1348 
1349 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1350   auto *Ret = StructType::create(Context);
1351   IdentifiedStructTypes.push_back(Ret);
1352   return Ret;
1353 }
1354 
1355 //===----------------------------------------------------------------------===//
1356 //  Functions for parsing blocks from the bitcode file
1357 //===----------------------------------------------------------------------===//
1358 
1359 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1360   switch (Val) {
1361   case Attribute::EndAttrKinds:
1362     llvm_unreachable("Synthetic enumerators which should never get here");
1363 
1364   case Attribute::None:            return 0;
1365   case Attribute::ZExt:            return 1 << 0;
1366   case Attribute::SExt:            return 1 << 1;
1367   case Attribute::NoReturn:        return 1 << 2;
1368   case Attribute::InReg:           return 1 << 3;
1369   case Attribute::StructRet:       return 1 << 4;
1370   case Attribute::NoUnwind:        return 1 << 5;
1371   case Attribute::NoAlias:         return 1 << 6;
1372   case Attribute::ByVal:           return 1 << 7;
1373   case Attribute::Nest:            return 1 << 8;
1374   case Attribute::ReadNone:        return 1 << 9;
1375   case Attribute::ReadOnly:        return 1 << 10;
1376   case Attribute::NoInline:        return 1 << 11;
1377   case Attribute::AlwaysInline:    return 1 << 12;
1378   case Attribute::OptimizeForSize: return 1 << 13;
1379   case Attribute::StackProtect:    return 1 << 14;
1380   case Attribute::StackProtectReq: return 1 << 15;
1381   case Attribute::Alignment:       return 31 << 16;
1382   case Attribute::NoCapture:       return 1 << 21;
1383   case Attribute::NoRedZone:       return 1 << 22;
1384   case Attribute::NoImplicitFloat: return 1 << 23;
1385   case Attribute::Naked:           return 1 << 24;
1386   case Attribute::InlineHint:      return 1 << 25;
1387   case Attribute::StackAlignment:  return 7 << 26;
1388   case Attribute::ReturnsTwice:    return 1 << 29;
1389   case Attribute::UWTable:         return 1 << 30;
1390   case Attribute::NonLazyBind:     return 1U << 31;
1391   case Attribute::SanitizeAddress: return 1ULL << 32;
1392   case Attribute::MinSize:         return 1ULL << 33;
1393   case Attribute::NoDuplicate:     return 1ULL << 34;
1394   case Attribute::StackProtectStrong: return 1ULL << 35;
1395   case Attribute::SanitizeThread:  return 1ULL << 36;
1396   case Attribute::SanitizeMemory:  return 1ULL << 37;
1397   case Attribute::NoBuiltin:       return 1ULL << 38;
1398   case Attribute::Returned:        return 1ULL << 39;
1399   case Attribute::Cold:            return 1ULL << 40;
1400   case Attribute::Builtin:         return 1ULL << 41;
1401   case Attribute::OptimizeNone:    return 1ULL << 42;
1402   case Attribute::InAlloca:        return 1ULL << 43;
1403   case Attribute::NonNull:         return 1ULL << 44;
1404   case Attribute::JumpTable:       return 1ULL << 45;
1405   case Attribute::Convergent:      return 1ULL << 46;
1406   case Attribute::SafeStack:       return 1ULL << 47;
1407   case Attribute::NoRecurse:       return 1ULL << 48;
1408   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1409   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1410   case Attribute::SwiftSelf:       return 1ULL << 51;
1411   case Attribute::SwiftError:      return 1ULL << 52;
1412   case Attribute::WriteOnly:       return 1ULL << 53;
1413   case Attribute::Dereferenceable:
1414     llvm_unreachable("dereferenceable attribute not supported in raw format");
1415     break;
1416   case Attribute::DereferenceableOrNull:
1417     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1418                      "format");
1419     break;
1420   case Attribute::ArgMemOnly:
1421     llvm_unreachable("argmemonly attribute not supported in raw format");
1422     break;
1423   case Attribute::AllocSize:
1424     llvm_unreachable("allocsize not supported in raw format");
1425     break;
1426   }
1427   llvm_unreachable("Unsupported attribute type");
1428 }
1429 
1430 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1431   if (!Val) return;
1432 
1433   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1434        I = Attribute::AttrKind(I + 1)) {
1435     if (I == Attribute::Dereferenceable ||
1436         I == Attribute::DereferenceableOrNull ||
1437         I == Attribute::ArgMemOnly ||
1438         I == Attribute::AllocSize)
1439       continue;
1440     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1441       if (I == Attribute::Alignment)
1442         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1443       else if (I == Attribute::StackAlignment)
1444         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1445       else
1446         B.addAttribute(I);
1447     }
1448   }
1449 }
1450 
1451 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1452 /// been decoded from the given integer. This function must stay in sync with
1453 /// 'encodeLLVMAttributesForBitcode'.
1454 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1455                                            uint64_t EncodedAttrs) {
1456   // FIXME: Remove in 4.0.
1457 
1458   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1459   // the bits above 31 down by 11 bits.
1460   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1461   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1462          "Alignment must be a power of two.");
1463 
1464   if (Alignment)
1465     B.addAlignmentAttr(Alignment);
1466   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1467                           (EncodedAttrs & 0xffff));
1468 }
1469 
1470 std::error_code BitcodeReader::parseAttributeBlock() {
1471   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1472     return error("Invalid record");
1473 
1474   if (!MAttributes.empty())
1475     return error("Invalid multiple blocks");
1476 
1477   SmallVector<uint64_t, 64> Record;
1478 
1479   SmallVector<AttributeSet, 8> Attrs;
1480 
1481   // Read all the records.
1482   while (true) {
1483     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1484 
1485     switch (Entry.Kind) {
1486     case BitstreamEntry::SubBlock: // Handled for us already.
1487     case BitstreamEntry::Error:
1488       return error("Malformed block");
1489     case BitstreamEntry::EndBlock:
1490       return std::error_code();
1491     case BitstreamEntry::Record:
1492       // The interesting case.
1493       break;
1494     }
1495 
1496     // Read a record.
1497     Record.clear();
1498     switch (Stream.readRecord(Entry.ID, Record)) {
1499     default:  // Default behavior: ignore.
1500       break;
1501     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1502       // FIXME: Remove in 4.0.
1503       if (Record.size() & 1)
1504         return error("Invalid record");
1505 
1506       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1507         AttrBuilder B;
1508         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1509         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1510       }
1511 
1512       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1513       Attrs.clear();
1514       break;
1515     }
1516     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1517       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1518         Attrs.push_back(MAttributeGroups[Record[i]]);
1519 
1520       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1521       Attrs.clear();
1522       break;
1523     }
1524     }
1525   }
1526 }
1527 
1528 // Returns Attribute::None on unrecognized codes.
1529 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1530   switch (Code) {
1531   default:
1532     return Attribute::None;
1533   case bitc::ATTR_KIND_ALIGNMENT:
1534     return Attribute::Alignment;
1535   case bitc::ATTR_KIND_ALWAYS_INLINE:
1536     return Attribute::AlwaysInline;
1537   case bitc::ATTR_KIND_ARGMEMONLY:
1538     return Attribute::ArgMemOnly;
1539   case bitc::ATTR_KIND_BUILTIN:
1540     return Attribute::Builtin;
1541   case bitc::ATTR_KIND_BY_VAL:
1542     return Attribute::ByVal;
1543   case bitc::ATTR_KIND_IN_ALLOCA:
1544     return Attribute::InAlloca;
1545   case bitc::ATTR_KIND_COLD:
1546     return Attribute::Cold;
1547   case bitc::ATTR_KIND_CONVERGENT:
1548     return Attribute::Convergent;
1549   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1550     return Attribute::InaccessibleMemOnly;
1551   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1552     return Attribute::InaccessibleMemOrArgMemOnly;
1553   case bitc::ATTR_KIND_INLINE_HINT:
1554     return Attribute::InlineHint;
1555   case bitc::ATTR_KIND_IN_REG:
1556     return Attribute::InReg;
1557   case bitc::ATTR_KIND_JUMP_TABLE:
1558     return Attribute::JumpTable;
1559   case bitc::ATTR_KIND_MIN_SIZE:
1560     return Attribute::MinSize;
1561   case bitc::ATTR_KIND_NAKED:
1562     return Attribute::Naked;
1563   case bitc::ATTR_KIND_NEST:
1564     return Attribute::Nest;
1565   case bitc::ATTR_KIND_NO_ALIAS:
1566     return Attribute::NoAlias;
1567   case bitc::ATTR_KIND_NO_BUILTIN:
1568     return Attribute::NoBuiltin;
1569   case bitc::ATTR_KIND_NO_CAPTURE:
1570     return Attribute::NoCapture;
1571   case bitc::ATTR_KIND_NO_DUPLICATE:
1572     return Attribute::NoDuplicate;
1573   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1574     return Attribute::NoImplicitFloat;
1575   case bitc::ATTR_KIND_NO_INLINE:
1576     return Attribute::NoInline;
1577   case bitc::ATTR_KIND_NO_RECURSE:
1578     return Attribute::NoRecurse;
1579   case bitc::ATTR_KIND_NON_LAZY_BIND:
1580     return Attribute::NonLazyBind;
1581   case bitc::ATTR_KIND_NON_NULL:
1582     return Attribute::NonNull;
1583   case bitc::ATTR_KIND_DEREFERENCEABLE:
1584     return Attribute::Dereferenceable;
1585   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1586     return Attribute::DereferenceableOrNull;
1587   case bitc::ATTR_KIND_ALLOC_SIZE:
1588     return Attribute::AllocSize;
1589   case bitc::ATTR_KIND_NO_RED_ZONE:
1590     return Attribute::NoRedZone;
1591   case bitc::ATTR_KIND_NO_RETURN:
1592     return Attribute::NoReturn;
1593   case bitc::ATTR_KIND_NO_UNWIND:
1594     return Attribute::NoUnwind;
1595   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1596     return Attribute::OptimizeForSize;
1597   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1598     return Attribute::OptimizeNone;
1599   case bitc::ATTR_KIND_READ_NONE:
1600     return Attribute::ReadNone;
1601   case bitc::ATTR_KIND_READ_ONLY:
1602     return Attribute::ReadOnly;
1603   case bitc::ATTR_KIND_RETURNED:
1604     return Attribute::Returned;
1605   case bitc::ATTR_KIND_RETURNS_TWICE:
1606     return Attribute::ReturnsTwice;
1607   case bitc::ATTR_KIND_S_EXT:
1608     return Attribute::SExt;
1609   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1610     return Attribute::StackAlignment;
1611   case bitc::ATTR_KIND_STACK_PROTECT:
1612     return Attribute::StackProtect;
1613   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1614     return Attribute::StackProtectReq;
1615   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1616     return Attribute::StackProtectStrong;
1617   case bitc::ATTR_KIND_SAFESTACK:
1618     return Attribute::SafeStack;
1619   case bitc::ATTR_KIND_STRUCT_RET:
1620     return Attribute::StructRet;
1621   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1622     return Attribute::SanitizeAddress;
1623   case bitc::ATTR_KIND_SANITIZE_THREAD:
1624     return Attribute::SanitizeThread;
1625   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1626     return Attribute::SanitizeMemory;
1627   case bitc::ATTR_KIND_SWIFT_ERROR:
1628     return Attribute::SwiftError;
1629   case bitc::ATTR_KIND_SWIFT_SELF:
1630     return Attribute::SwiftSelf;
1631   case bitc::ATTR_KIND_UW_TABLE:
1632     return Attribute::UWTable;
1633   case bitc::ATTR_KIND_WRITEONLY:
1634     return Attribute::WriteOnly;
1635   case bitc::ATTR_KIND_Z_EXT:
1636     return Attribute::ZExt;
1637   }
1638 }
1639 
1640 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1641                                                    unsigned &Alignment) {
1642   // Note: Alignment in bitcode files is incremented by 1, so that zero
1643   // can be used for default alignment.
1644   if (Exponent > Value::MaxAlignmentExponent + 1)
1645     return error("Invalid alignment value");
1646   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1647   return std::error_code();
1648 }
1649 
1650 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1651                                              Attribute::AttrKind *Kind) {
1652   *Kind = getAttrFromCode(Code);
1653   if (*Kind == Attribute::None)
1654     return error(BitcodeError::CorruptedBitcode,
1655                  "Unknown attribute kind (" + Twine(Code) + ")");
1656   return std::error_code();
1657 }
1658 
1659 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1660   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1661     return error("Invalid record");
1662 
1663   if (!MAttributeGroups.empty())
1664     return error("Invalid multiple blocks");
1665 
1666   SmallVector<uint64_t, 64> Record;
1667 
1668   // Read all the records.
1669   while (true) {
1670     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1671 
1672     switch (Entry.Kind) {
1673     case BitstreamEntry::SubBlock: // Handled for us already.
1674     case BitstreamEntry::Error:
1675       return error("Malformed block");
1676     case BitstreamEntry::EndBlock:
1677       return std::error_code();
1678     case BitstreamEntry::Record:
1679       // The interesting case.
1680       break;
1681     }
1682 
1683     // Read a record.
1684     Record.clear();
1685     switch (Stream.readRecord(Entry.ID, Record)) {
1686     default:  // Default behavior: ignore.
1687       break;
1688     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1689       if (Record.size() < 3)
1690         return error("Invalid record");
1691 
1692       uint64_t GrpID = Record[0];
1693       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1694 
1695       AttrBuilder B;
1696       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1697         if (Record[i] == 0) {        // Enum attribute
1698           Attribute::AttrKind Kind;
1699           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1700             return EC;
1701 
1702           B.addAttribute(Kind);
1703         } else if (Record[i] == 1) { // Integer attribute
1704           Attribute::AttrKind Kind;
1705           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1706             return EC;
1707           if (Kind == Attribute::Alignment)
1708             B.addAlignmentAttr(Record[++i]);
1709           else if (Kind == Attribute::StackAlignment)
1710             B.addStackAlignmentAttr(Record[++i]);
1711           else if (Kind == Attribute::Dereferenceable)
1712             B.addDereferenceableAttr(Record[++i]);
1713           else if (Kind == Attribute::DereferenceableOrNull)
1714             B.addDereferenceableOrNullAttr(Record[++i]);
1715           else if (Kind == Attribute::AllocSize)
1716             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1717         } else {                     // String attribute
1718           assert((Record[i] == 3 || Record[i] == 4) &&
1719                  "Invalid attribute group entry");
1720           bool HasValue = (Record[i++] == 4);
1721           SmallString<64> KindStr;
1722           SmallString<64> ValStr;
1723 
1724           while (Record[i] != 0 && i != e)
1725             KindStr += Record[i++];
1726           assert(Record[i] == 0 && "Kind string not null terminated");
1727 
1728           if (HasValue) {
1729             // Has a value associated with it.
1730             ++i; // Skip the '0' that terminates the "kind" string.
1731             while (Record[i] != 0 && i != e)
1732               ValStr += Record[i++];
1733             assert(Record[i] == 0 && "Value string not null terminated");
1734           }
1735 
1736           B.addAttribute(KindStr.str(), ValStr.str());
1737         }
1738       }
1739 
1740       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1741       break;
1742     }
1743     }
1744   }
1745 }
1746 
1747 std::error_code BitcodeReader::parseTypeTable() {
1748   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1749     return error("Invalid record");
1750 
1751   return parseTypeTableBody();
1752 }
1753 
1754 std::error_code BitcodeReader::parseTypeTableBody() {
1755   if (!TypeList.empty())
1756     return error("Invalid multiple blocks");
1757 
1758   SmallVector<uint64_t, 64> Record;
1759   unsigned NumRecords = 0;
1760 
1761   SmallString<64> TypeName;
1762 
1763   // Read all the records for this type table.
1764   while (true) {
1765     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1766 
1767     switch (Entry.Kind) {
1768     case BitstreamEntry::SubBlock: // Handled for us already.
1769     case BitstreamEntry::Error:
1770       return error("Malformed block");
1771     case BitstreamEntry::EndBlock:
1772       if (NumRecords != TypeList.size())
1773         return error("Malformed block");
1774       return std::error_code();
1775     case BitstreamEntry::Record:
1776       // The interesting case.
1777       break;
1778     }
1779 
1780     // Read a record.
1781     Record.clear();
1782     Type *ResultTy = nullptr;
1783     switch (Stream.readRecord(Entry.ID, Record)) {
1784     default:
1785       return error("Invalid value");
1786     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1787       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1788       // type list.  This allows us to reserve space.
1789       if (Record.size() < 1)
1790         return error("Invalid record");
1791       TypeList.resize(Record[0]);
1792       continue;
1793     case bitc::TYPE_CODE_VOID:      // VOID
1794       ResultTy = Type::getVoidTy(Context);
1795       break;
1796     case bitc::TYPE_CODE_HALF:     // HALF
1797       ResultTy = Type::getHalfTy(Context);
1798       break;
1799     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1800       ResultTy = Type::getFloatTy(Context);
1801       break;
1802     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1803       ResultTy = Type::getDoubleTy(Context);
1804       break;
1805     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1806       ResultTy = Type::getX86_FP80Ty(Context);
1807       break;
1808     case bitc::TYPE_CODE_FP128:     // FP128
1809       ResultTy = Type::getFP128Ty(Context);
1810       break;
1811     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1812       ResultTy = Type::getPPC_FP128Ty(Context);
1813       break;
1814     case bitc::TYPE_CODE_LABEL:     // LABEL
1815       ResultTy = Type::getLabelTy(Context);
1816       break;
1817     case bitc::TYPE_CODE_METADATA:  // METADATA
1818       ResultTy = Type::getMetadataTy(Context);
1819       break;
1820     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1821       ResultTy = Type::getX86_MMXTy(Context);
1822       break;
1823     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1824       ResultTy = Type::getTokenTy(Context);
1825       break;
1826     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1827       if (Record.size() < 1)
1828         return error("Invalid record");
1829 
1830       uint64_t NumBits = Record[0];
1831       if (NumBits < IntegerType::MIN_INT_BITS ||
1832           NumBits > IntegerType::MAX_INT_BITS)
1833         return error("Bitwidth for integer type out of range");
1834       ResultTy = IntegerType::get(Context, NumBits);
1835       break;
1836     }
1837     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1838                                     //          [pointee type, address space]
1839       if (Record.size() < 1)
1840         return error("Invalid record");
1841       unsigned AddressSpace = 0;
1842       if (Record.size() == 2)
1843         AddressSpace = Record[1];
1844       ResultTy = getTypeByID(Record[0]);
1845       if (!ResultTy ||
1846           !PointerType::isValidElementType(ResultTy))
1847         return error("Invalid type");
1848       ResultTy = PointerType::get(ResultTy, AddressSpace);
1849       break;
1850     }
1851     case bitc::TYPE_CODE_FUNCTION_OLD: {
1852       // FIXME: attrid is dead, remove it in LLVM 4.0
1853       // FUNCTION: [vararg, attrid, retty, paramty x N]
1854       if (Record.size() < 3)
1855         return error("Invalid record");
1856       SmallVector<Type*, 8> ArgTys;
1857       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1858         if (Type *T = getTypeByID(Record[i]))
1859           ArgTys.push_back(T);
1860         else
1861           break;
1862       }
1863 
1864       ResultTy = getTypeByID(Record[2]);
1865       if (!ResultTy || ArgTys.size() < Record.size()-3)
1866         return error("Invalid type");
1867 
1868       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1869       break;
1870     }
1871     case bitc::TYPE_CODE_FUNCTION: {
1872       // FUNCTION: [vararg, retty, paramty x N]
1873       if (Record.size() < 2)
1874         return error("Invalid record");
1875       SmallVector<Type*, 8> ArgTys;
1876       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1877         if (Type *T = getTypeByID(Record[i])) {
1878           if (!FunctionType::isValidArgumentType(T))
1879             return error("Invalid function argument type");
1880           ArgTys.push_back(T);
1881         }
1882         else
1883           break;
1884       }
1885 
1886       ResultTy = getTypeByID(Record[1]);
1887       if (!ResultTy || ArgTys.size() < Record.size()-2)
1888         return error("Invalid type");
1889 
1890       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1891       break;
1892     }
1893     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1894       if (Record.size() < 1)
1895         return error("Invalid record");
1896       SmallVector<Type*, 8> EltTys;
1897       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1898         if (Type *T = getTypeByID(Record[i]))
1899           EltTys.push_back(T);
1900         else
1901           break;
1902       }
1903       if (EltTys.size() != Record.size()-1)
1904         return error("Invalid type");
1905       ResultTy = StructType::get(Context, EltTys, Record[0]);
1906       break;
1907     }
1908     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1909       if (convertToString(Record, 0, TypeName))
1910         return error("Invalid record");
1911       continue;
1912 
1913     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1914       if (Record.size() < 1)
1915         return error("Invalid record");
1916 
1917       if (NumRecords >= TypeList.size())
1918         return error("Invalid TYPE table");
1919 
1920       // Check to see if this was forward referenced, if so fill in the temp.
1921       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1922       if (Res) {
1923         Res->setName(TypeName);
1924         TypeList[NumRecords] = nullptr;
1925       } else  // Otherwise, create a new struct.
1926         Res = createIdentifiedStructType(Context, TypeName);
1927       TypeName.clear();
1928 
1929       SmallVector<Type*, 8> EltTys;
1930       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1931         if (Type *T = getTypeByID(Record[i]))
1932           EltTys.push_back(T);
1933         else
1934           break;
1935       }
1936       if (EltTys.size() != Record.size()-1)
1937         return error("Invalid record");
1938       Res->setBody(EltTys, Record[0]);
1939       ResultTy = Res;
1940       break;
1941     }
1942     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1943       if (Record.size() != 1)
1944         return error("Invalid record");
1945 
1946       if (NumRecords >= TypeList.size())
1947         return error("Invalid TYPE table");
1948 
1949       // Check to see if this was forward referenced, if so fill in the temp.
1950       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1951       if (Res) {
1952         Res->setName(TypeName);
1953         TypeList[NumRecords] = nullptr;
1954       } else  // Otherwise, create a new struct with no body.
1955         Res = createIdentifiedStructType(Context, TypeName);
1956       TypeName.clear();
1957       ResultTy = Res;
1958       break;
1959     }
1960     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1961       if (Record.size() < 2)
1962         return error("Invalid record");
1963       ResultTy = getTypeByID(Record[1]);
1964       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1965         return error("Invalid type");
1966       ResultTy = ArrayType::get(ResultTy, Record[0]);
1967       break;
1968     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1969       if (Record.size() < 2)
1970         return error("Invalid record");
1971       if (Record[0] == 0)
1972         return error("Invalid vector length");
1973       ResultTy = getTypeByID(Record[1]);
1974       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1975         return error("Invalid type");
1976       ResultTy = VectorType::get(ResultTy, Record[0]);
1977       break;
1978     }
1979 
1980     if (NumRecords >= TypeList.size())
1981       return error("Invalid TYPE table");
1982     if (TypeList[NumRecords])
1983       return error(
1984           "Invalid TYPE table: Only named structs can be forward referenced");
1985     assert(ResultTy && "Didn't read a type?");
1986     TypeList[NumRecords++] = ResultTy;
1987   }
1988 }
1989 
1990 std::error_code BitcodeReader::parseOperandBundleTags() {
1991   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1992     return error("Invalid record");
1993 
1994   if (!BundleTags.empty())
1995     return error("Invalid multiple blocks");
1996 
1997   SmallVector<uint64_t, 64> Record;
1998 
1999   while (true) {
2000     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2001 
2002     switch (Entry.Kind) {
2003     case BitstreamEntry::SubBlock: // Handled for us already.
2004     case BitstreamEntry::Error:
2005       return error("Malformed block");
2006     case BitstreamEntry::EndBlock:
2007       return std::error_code();
2008     case BitstreamEntry::Record:
2009       // The interesting case.
2010       break;
2011     }
2012 
2013     // Tags are implicitly mapped to integers by their order.
2014 
2015     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
2016       return error("Invalid record");
2017 
2018     // OPERAND_BUNDLE_TAG: [strchr x N]
2019     BundleTags.emplace_back();
2020     if (convertToString(Record, 0, BundleTags.back()))
2021       return error("Invalid record");
2022     Record.clear();
2023   }
2024 }
2025 
2026 /// Associate a value with its name from the given index in the provided record.
2027 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2028                                             unsigned NameIndex, Triple &TT) {
2029   SmallString<128> ValueName;
2030   if (convertToString(Record, NameIndex, ValueName))
2031     return error("Invalid record");
2032   unsigned ValueID = Record[0];
2033   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2034     return error("Invalid record");
2035   Value *V = ValueList[ValueID];
2036 
2037   StringRef NameStr(ValueName.data(), ValueName.size());
2038   if (NameStr.find_first_of(0) != StringRef::npos)
2039     return error("Invalid value name");
2040   V->setName(NameStr);
2041   auto *GO = dyn_cast<GlobalObject>(V);
2042   if (GO) {
2043     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2044       if (TT.isOSBinFormatMachO())
2045         GO->setComdat(nullptr);
2046       else
2047         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2048     }
2049   }
2050   return V;
2051 }
2052 
2053 /// Helper to note and return the current location, and jump to the given
2054 /// offset.
2055 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
2056                                        BitstreamCursor &Stream) {
2057   // Save the current parsing location so we can jump back at the end
2058   // of the VST read.
2059   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2060   Stream.JumpToBit(Offset * 32);
2061 #ifndef NDEBUG
2062   // Do some checking if we are in debug mode.
2063   BitstreamEntry Entry = Stream.advance();
2064   assert(Entry.Kind == BitstreamEntry::SubBlock);
2065   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2066 #else
2067   // In NDEBUG mode ignore the output so we don't get an unused variable
2068   // warning.
2069   Stream.advance();
2070 #endif
2071   return CurrentBit;
2072 }
2073 
2074 /// Parse the value symbol table at either the current parsing location or
2075 /// at the given bit offset if provided.
2076 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2077   uint64_t CurrentBit;
2078   // Pass in the Offset to distinguish between calling for the module-level
2079   // VST (where we want to jump to the VST offset) and the function-level
2080   // VST (where we don't).
2081   if (Offset > 0)
2082     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
2083 
2084   // Compute the delta between the bitcode indices in the VST (the word offset
2085   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2086   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2087   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2088   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2089   // just before entering the VST subblock because: 1) the EnterSubBlock
2090   // changes the AbbrevID width; 2) the VST block is nested within the same
2091   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2092   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2093   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2094   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2095   unsigned FuncBitcodeOffsetDelta =
2096       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2097 
2098   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2099     return error("Invalid record");
2100 
2101   SmallVector<uint64_t, 64> Record;
2102 
2103   Triple TT(TheModule->getTargetTriple());
2104 
2105   // Read all the records for this value table.
2106   SmallString<128> ValueName;
2107 
2108   while (true) {
2109     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2110 
2111     switch (Entry.Kind) {
2112     case BitstreamEntry::SubBlock: // Handled for us already.
2113     case BitstreamEntry::Error:
2114       return error("Malformed block");
2115     case BitstreamEntry::EndBlock:
2116       if (Offset > 0)
2117         Stream.JumpToBit(CurrentBit);
2118       return std::error_code();
2119     case BitstreamEntry::Record:
2120       // The interesting case.
2121       break;
2122     }
2123 
2124     // Read a record.
2125     Record.clear();
2126     switch (Stream.readRecord(Entry.ID, Record)) {
2127     default:  // Default behavior: unknown type.
2128       break;
2129     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2130       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
2131       if (std::error_code EC = ValOrErr.getError())
2132         return EC;
2133       ValOrErr.get();
2134       break;
2135     }
2136     case bitc::VST_CODE_FNENTRY: {
2137       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2138       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
2139       if (std::error_code EC = ValOrErr.getError())
2140         return EC;
2141       Value *V = ValOrErr.get();
2142 
2143       auto *GO = dyn_cast<GlobalObject>(V);
2144       if (!GO) {
2145         // If this is an alias, need to get the actual Function object
2146         // it aliases, in order to set up the DeferredFunctionInfo entry below.
2147         auto *GA = dyn_cast<GlobalAlias>(V);
2148         if (GA)
2149           GO = GA->getBaseObject();
2150         assert(GO);
2151       }
2152 
2153       uint64_t FuncWordOffset = Record[1];
2154       Function *F = dyn_cast<Function>(GO);
2155       assert(F);
2156       uint64_t FuncBitOffset = FuncWordOffset * 32;
2157       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2158       // Set the LastFunctionBlockBit to point to the last function block.
2159       // Later when parsing is resumed after function materialization,
2160       // we can simply skip that last function block.
2161       if (FuncBitOffset > LastFunctionBlockBit)
2162         LastFunctionBlockBit = FuncBitOffset;
2163       break;
2164     }
2165     case bitc::VST_CODE_BBENTRY: {
2166       if (convertToString(Record, 1, ValueName))
2167         return error("Invalid record");
2168       BasicBlock *BB = getBasicBlock(Record[0]);
2169       if (!BB)
2170         return error("Invalid record");
2171 
2172       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2173       ValueName.clear();
2174       break;
2175     }
2176     }
2177   }
2178 }
2179 
2180 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
2181 std::error_code
2182 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
2183   if (Record.size() < 2)
2184     return error("Invalid record");
2185 
2186   unsigned Kind = Record[0];
2187   SmallString<8> Name(Record.begin() + 1, Record.end());
2188 
2189   unsigned NewKind = TheModule->getMDKindID(Name.str());
2190   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
2191     return error("Conflicting METADATA_KIND records");
2192   return std::error_code();
2193 }
2194 
2195 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
2196 
2197 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
2198                                                     StringRef Blob,
2199                                                     unsigned &NextMetadataNo) {
2200   // All the MDStrings in the block are emitted together in a single
2201   // record.  The strings are concatenated and stored in a blob along with
2202   // their sizes.
2203   if (Record.size() != 2)
2204     return error("Invalid record: metadata strings layout");
2205 
2206   unsigned NumStrings = Record[0];
2207   unsigned StringsOffset = Record[1];
2208   if (!NumStrings)
2209     return error("Invalid record: metadata strings with no strings");
2210   if (StringsOffset > Blob.size())
2211     return error("Invalid record: metadata strings corrupt offset");
2212 
2213   StringRef Lengths = Blob.slice(0, StringsOffset);
2214   SimpleBitstreamCursor R(Lengths);
2215 
2216   StringRef Strings = Blob.drop_front(StringsOffset);
2217   do {
2218     if (R.AtEndOfStream())
2219       return error("Invalid record: metadata strings bad length");
2220 
2221     unsigned Size = R.ReadVBR(6);
2222     if (Strings.size() < Size)
2223       return error("Invalid record: metadata strings truncated chars");
2224 
2225     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
2226                              NextMetadataNo++);
2227     Strings = Strings.drop_front(Size);
2228   } while (--NumStrings);
2229 
2230   return std::error_code();
2231 }
2232 
2233 namespace {
2234 
2235 class PlaceholderQueue {
2236   // Placeholders would thrash around when moved, so store in a std::deque
2237   // instead of some sort of vector.
2238   std::deque<DistinctMDOperandPlaceholder> PHs;
2239 
2240 public:
2241   DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
2242   void flush(BitcodeReaderMetadataList &MetadataList);
2243 };
2244 
2245 } // end anonymous namespace
2246 
2247 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
2248   PHs.emplace_back(ID);
2249   return PHs.back();
2250 }
2251 
2252 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
2253   while (!PHs.empty()) {
2254     PHs.front().replaceUseWith(
2255         MetadataList.getMetadataFwdRef(PHs.front().getID()));
2256     PHs.pop_front();
2257   }
2258 }
2259 
2260 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
2261 /// module level metadata.
2262 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
2263   assert((ModuleLevel || DeferredMetadataInfo.empty()) &&
2264          "Must read all module-level metadata before function-level");
2265 
2266   IsMetadataMaterialized = true;
2267   unsigned NextMetadataNo = MetadataList.size();
2268 
2269   if (!ModuleLevel && MetadataList.hasFwdRefs())
2270     return error("Invalid metadata: fwd refs into function blocks");
2271 
2272   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
2273     return error("Invalid record");
2274 
2275   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
2276   SmallVector<uint64_t, 64> Record;
2277 
2278   PlaceholderQueue Placeholders;
2279   bool IsDistinct;
2280   auto getMD = [&](unsigned ID) -> Metadata * {
2281     if (!IsDistinct)
2282       return MetadataList.getMetadataFwdRef(ID);
2283     if (auto *MD = MetadataList.getMetadataIfResolved(ID))
2284       return MD;
2285     return &Placeholders.getPlaceholderOp(ID);
2286   };
2287   auto getMDOrNull = [&](unsigned ID) -> Metadata * {
2288     if (ID)
2289       return getMD(ID - 1);
2290     return nullptr;
2291   };
2292   auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
2293     if (ID)
2294       return MetadataList.getMetadataFwdRef(ID - 1);
2295     return nullptr;
2296   };
2297   auto getMDString = [&](unsigned ID) -> MDString *{
2298     // This requires that the ID is not really a forward reference.  In
2299     // particular, the MDString must already have been resolved.
2300     return cast_or_null<MDString>(getMDOrNull(ID));
2301   };
2302 
2303   // Support for old type refs.
2304   auto getDITypeRefOrNull = [&](unsigned ID) {
2305     return MetadataList.upgradeTypeRef(getMDOrNull(ID));
2306   };
2307 
2308 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
2309   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
2310 
2311   // Read all the records.
2312   while (true) {
2313     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2314 
2315     switch (Entry.Kind) {
2316     case BitstreamEntry::SubBlock: // Handled for us already.
2317     case BitstreamEntry::Error:
2318       return error("Malformed block");
2319     case BitstreamEntry::EndBlock:
2320       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
2321       for (auto CU_SP : CUSubprograms)
2322         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
2323           for (auto &Op : SPs->operands())
2324             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
2325               SP->replaceOperandWith(7, CU_SP.first);
2326 
2327       MetadataList.tryToResolveCycles();
2328       Placeholders.flush(MetadataList);
2329       return std::error_code();
2330     case BitstreamEntry::Record:
2331       // The interesting case.
2332       break;
2333     }
2334 
2335     // Read a record.
2336     Record.clear();
2337     StringRef Blob;
2338     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
2339     IsDistinct = false;
2340     switch (Code) {
2341     default:  // Default behavior: ignore.
2342       break;
2343     case bitc::METADATA_NAME: {
2344       // Read name of the named metadata.
2345       SmallString<8> Name(Record.begin(), Record.end());
2346       Record.clear();
2347       Code = Stream.ReadCode();
2348 
2349       unsigned NextBitCode = Stream.readRecord(Code, Record);
2350       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2351         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2352 
2353       // Read named metadata elements.
2354       unsigned Size = Record.size();
2355       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2356       for (unsigned i = 0; i != Size; ++i) {
2357         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2358         if (!MD)
2359           return error("Invalid record");
2360         NMD->addOperand(MD);
2361       }
2362       break;
2363     }
2364     case bitc::METADATA_OLD_FN_NODE: {
2365       // FIXME: Remove in 4.0.
2366       // This is a LocalAsMetadata record, the only type of function-local
2367       // metadata.
2368       if (Record.size() % 2 == 1)
2369         return error("Invalid record");
2370 
2371       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2372       // to be legal, but there's no upgrade path.
2373       auto dropRecord = [&] {
2374         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2375       };
2376       if (Record.size() != 2) {
2377         dropRecord();
2378         break;
2379       }
2380 
2381       Type *Ty = getTypeByID(Record[0]);
2382       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2383         dropRecord();
2384         break;
2385       }
2386 
2387       MetadataList.assignValue(
2388           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2389           NextMetadataNo++);
2390       break;
2391     }
2392     case bitc::METADATA_OLD_NODE: {
2393       // FIXME: Remove in 4.0.
2394       if (Record.size() % 2 == 1)
2395         return error("Invalid record");
2396 
2397       unsigned Size = Record.size();
2398       SmallVector<Metadata *, 8> Elts;
2399       for (unsigned i = 0; i != Size; i += 2) {
2400         Type *Ty = getTypeByID(Record[i]);
2401         if (!Ty)
2402           return error("Invalid record");
2403         if (Ty->isMetadataTy())
2404           Elts.push_back(getMD(Record[i + 1]));
2405         else if (!Ty->isVoidTy()) {
2406           auto *MD =
2407               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2408           assert(isa<ConstantAsMetadata>(MD) &&
2409                  "Expected non-function-local metadata");
2410           Elts.push_back(MD);
2411         } else
2412           Elts.push_back(nullptr);
2413       }
2414       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2415       break;
2416     }
2417     case bitc::METADATA_VALUE: {
2418       if (Record.size() != 2)
2419         return error("Invalid record");
2420 
2421       Type *Ty = getTypeByID(Record[0]);
2422       if (Ty->isMetadataTy() || Ty->isVoidTy())
2423         return error("Invalid record");
2424 
2425       MetadataList.assignValue(
2426           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2427           NextMetadataNo++);
2428       break;
2429     }
2430     case bitc::METADATA_DISTINCT_NODE:
2431       IsDistinct = true;
2432       LLVM_FALLTHROUGH;
2433     case bitc::METADATA_NODE: {
2434       SmallVector<Metadata *, 8> Elts;
2435       Elts.reserve(Record.size());
2436       for (unsigned ID : Record)
2437         Elts.push_back(getMDOrNull(ID));
2438       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2439                                           : MDNode::get(Context, Elts),
2440                                NextMetadataNo++);
2441       break;
2442     }
2443     case bitc::METADATA_LOCATION: {
2444       if (Record.size() != 5)
2445         return error("Invalid record");
2446 
2447       IsDistinct = Record[0];
2448       unsigned Line = Record[1];
2449       unsigned Column = Record[2];
2450       Metadata *Scope = getMD(Record[3]);
2451       Metadata *InlinedAt = getMDOrNull(Record[4]);
2452       MetadataList.assignValue(
2453           GET_OR_DISTINCT(DILocation,
2454                           (Context, Line, Column, Scope, InlinedAt)),
2455           NextMetadataNo++);
2456       break;
2457     }
2458     case bitc::METADATA_GENERIC_DEBUG: {
2459       if (Record.size() < 4)
2460         return error("Invalid record");
2461 
2462       IsDistinct = Record[0];
2463       unsigned Tag = Record[1];
2464       unsigned Version = Record[2];
2465 
2466       if (Tag >= 1u << 16 || Version != 0)
2467         return error("Invalid record");
2468 
2469       auto *Header = getMDString(Record[3]);
2470       SmallVector<Metadata *, 8> DwarfOps;
2471       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2472         DwarfOps.push_back(getMDOrNull(Record[I]));
2473       MetadataList.assignValue(
2474           GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
2475           NextMetadataNo++);
2476       break;
2477     }
2478     case bitc::METADATA_SUBRANGE: {
2479       if (Record.size() != 3)
2480         return error("Invalid record");
2481 
2482       IsDistinct = Record[0];
2483       MetadataList.assignValue(
2484           GET_OR_DISTINCT(DISubrange,
2485                           (Context, Record[1], unrotateSign(Record[2]))),
2486           NextMetadataNo++);
2487       break;
2488     }
2489     case bitc::METADATA_ENUMERATOR: {
2490       if (Record.size() != 3)
2491         return error("Invalid record");
2492 
2493       IsDistinct = Record[0];
2494       MetadataList.assignValue(
2495           GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
2496                                          getMDString(Record[2]))),
2497           NextMetadataNo++);
2498       break;
2499     }
2500     case bitc::METADATA_BASIC_TYPE: {
2501       if (Record.size() != 6)
2502         return error("Invalid record");
2503 
2504       IsDistinct = Record[0];
2505       MetadataList.assignValue(
2506           GET_OR_DISTINCT(DIBasicType,
2507                           (Context, Record[1], getMDString(Record[2]),
2508                            Record[3], Record[4], Record[5])),
2509           NextMetadataNo++);
2510       break;
2511     }
2512     case bitc::METADATA_DERIVED_TYPE: {
2513       if (Record.size() != 12)
2514         return error("Invalid record");
2515 
2516       IsDistinct = Record[0];
2517       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
2518       MetadataList.assignValue(
2519           GET_OR_DISTINCT(DIDerivedType,
2520                           (Context, Record[1], getMDString(Record[2]),
2521                            getMDOrNull(Record[3]), Record[4],
2522                            getDITypeRefOrNull(Record[5]),
2523                            getDITypeRefOrNull(Record[6]), Record[7], Record[8],
2524                            Record[9], Flags, getDITypeRefOrNull(Record[11]))),
2525           NextMetadataNo++);
2526       break;
2527     }
2528     case bitc::METADATA_COMPOSITE_TYPE: {
2529       if (Record.size() != 16)
2530         return error("Invalid record");
2531 
2532       // If we have a UUID and this is not a forward declaration, lookup the
2533       // mapping.
2534       IsDistinct = Record[0] & 0x1;
2535       bool IsNotUsedInTypeRef = Record[0] >= 2;
2536       unsigned Tag = Record[1];
2537       MDString *Name = getMDString(Record[2]);
2538       Metadata *File = getMDOrNull(Record[3]);
2539       unsigned Line = Record[4];
2540       Metadata *Scope = getDITypeRefOrNull(Record[5]);
2541       Metadata *BaseType = getDITypeRefOrNull(Record[6]);
2542       uint64_t SizeInBits = Record[7];
2543       if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max())
2544         return error("Alignment value is too large");
2545       uint32_t AlignInBits = Record[8];
2546       uint64_t OffsetInBits = Record[9];
2547       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
2548       Metadata *Elements = getMDOrNull(Record[11]);
2549       unsigned RuntimeLang = Record[12];
2550       Metadata *VTableHolder = getDITypeRefOrNull(Record[13]);
2551       Metadata *TemplateParams = getMDOrNull(Record[14]);
2552       auto *Identifier = getMDString(Record[15]);
2553       DICompositeType *CT = nullptr;
2554       if (Identifier)
2555         CT = DICompositeType::buildODRType(
2556             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2557             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2558             VTableHolder, TemplateParams);
2559 
2560       // Create a node if we didn't get a lazy ODR type.
2561       if (!CT)
2562         CT = GET_OR_DISTINCT(DICompositeType,
2563                              (Context, Tag, Name, File, Line, Scope, BaseType,
2564                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2565                               Elements, RuntimeLang, VTableHolder,
2566                               TemplateParams, Identifier));
2567       if (!IsNotUsedInTypeRef && Identifier)
2568         MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT));
2569 
2570       MetadataList.assignValue(CT, NextMetadataNo++);
2571       break;
2572     }
2573     case bitc::METADATA_SUBROUTINE_TYPE: {
2574       if (Record.size() < 3 || Record.size() > 4)
2575         return error("Invalid record");
2576       bool IsOldTypeRefArray = Record[0] < 2;
2577       unsigned CC = (Record.size() > 3) ? Record[3] : 0;
2578 
2579       IsDistinct = Record[0] & 0x1;
2580       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]);
2581       Metadata *Types = getMDOrNull(Record[2]);
2582       if (LLVM_UNLIKELY(IsOldTypeRefArray))
2583         Types = MetadataList.upgradeTypeRefArray(Types);
2584 
2585       MetadataList.assignValue(
2586           GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)),
2587           NextMetadataNo++);
2588       break;
2589     }
2590 
2591     case bitc::METADATA_MODULE: {
2592       if (Record.size() != 6)
2593         return error("Invalid record");
2594 
2595       IsDistinct = Record[0];
2596       MetadataList.assignValue(
2597           GET_OR_DISTINCT(DIModule,
2598                           (Context, getMDOrNull(Record[1]),
2599                            getMDString(Record[2]), getMDString(Record[3]),
2600                            getMDString(Record[4]), getMDString(Record[5]))),
2601           NextMetadataNo++);
2602       break;
2603     }
2604 
2605     case bitc::METADATA_FILE: {
2606       if (Record.size() != 3)
2607         return error("Invalid record");
2608 
2609       IsDistinct = Record[0];
2610       MetadataList.assignValue(
2611           GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]),
2612                                    getMDString(Record[2]))),
2613           NextMetadataNo++);
2614       break;
2615     }
2616     case bitc::METADATA_COMPILE_UNIT: {
2617       if (Record.size() < 14 || Record.size() > 17)
2618         return error("Invalid record");
2619 
2620       // Ignore Record[0], which indicates whether this compile unit is
2621       // distinct.  It's always distinct.
2622       IsDistinct = true;
2623       auto *CU = DICompileUnit::getDistinct(
2624           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2625           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2626           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2627           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2628           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2629           Record.size() <= 14 ? 0 : Record[14],
2630           Record.size() <= 16 ? true : Record[16]);
2631 
2632       MetadataList.assignValue(CU, NextMetadataNo++);
2633 
2634       // Move the Upgrade the list of subprograms.
2635       if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
2636         CUSubprograms.push_back({CU, SPs});
2637       break;
2638     }
2639     case bitc::METADATA_SUBPROGRAM: {
2640       if (Record.size() < 18 || Record.size() > 20)
2641         return error("Invalid record");
2642 
2643       IsDistinct =
2644           (Record[0] & 1) || Record[8]; // All definitions should be distinct.
2645       // Version 1 has a Function as Record[15].
2646       // Version 2 has removed Record[15].
2647       // Version 3 has the Unit as Record[15].
2648       // Version 4 added thisAdjustment.
2649       bool HasUnit = Record[0] >= 2;
2650       if (HasUnit && Record.size() < 19)
2651         return error("Invalid record");
2652       Metadata *CUorFn = getMDOrNull(Record[15]);
2653       unsigned Offset = Record.size() >= 19 ? 1 : 0;
2654       bool HasFn = Offset && !HasUnit;
2655       bool HasThisAdj = Record.size() >= 20;
2656       DISubprogram *SP = GET_OR_DISTINCT(
2657           DISubprogram, (Context,
2658                          getDITypeRefOrNull(Record[1]),  // scope
2659                          getMDString(Record[2]),         // name
2660                          getMDString(Record[3]),         // linkageName
2661                          getMDOrNull(Record[4]),         // file
2662                          Record[5],                      // line
2663                          getMDOrNull(Record[6]),         // type
2664                          Record[7],                      // isLocal
2665                          Record[8],                      // isDefinition
2666                          Record[9],                      // scopeLine
2667                          getDITypeRefOrNull(Record[10]), // containingType
2668                          Record[11],                     // virtuality
2669                          Record[12],                     // virtualIndex
2670                          HasThisAdj ? Record[19] : 0,    // thisAdjustment
2671                          static_cast<DINode::DIFlags>(Record[13] // flags
2672                                                       ),
2673                          Record[14],                       // isOptimized
2674                          HasUnit ? CUorFn : nullptr,       // unit
2675                          getMDOrNull(Record[15 + Offset]), // templateParams
2676                          getMDOrNull(Record[16 + Offset]), // declaration
2677                          getMDOrNull(Record[17 + Offset])  // variables
2678                          ));
2679       MetadataList.assignValue(SP, NextMetadataNo++);
2680 
2681       // Upgrade sp->function mapping to function->sp mapping.
2682       if (HasFn) {
2683         if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn))
2684           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2685             if (F->isMaterializable())
2686               // Defer until materialized; unmaterialized functions may not have
2687               // metadata.
2688               FunctionsWithSPs[F] = SP;
2689             else if (!F->empty())
2690               F->setSubprogram(SP);
2691           }
2692       }
2693       break;
2694     }
2695     case bitc::METADATA_LEXICAL_BLOCK: {
2696       if (Record.size() != 5)
2697         return error("Invalid record");
2698 
2699       IsDistinct = Record[0];
2700       MetadataList.assignValue(
2701           GET_OR_DISTINCT(DILexicalBlock,
2702                           (Context, getMDOrNull(Record[1]),
2703                            getMDOrNull(Record[2]), Record[3], Record[4])),
2704           NextMetadataNo++);
2705       break;
2706     }
2707     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2708       if (Record.size() != 4)
2709         return error("Invalid record");
2710 
2711       IsDistinct = Record[0];
2712       MetadataList.assignValue(
2713           GET_OR_DISTINCT(DILexicalBlockFile,
2714                           (Context, getMDOrNull(Record[1]),
2715                            getMDOrNull(Record[2]), Record[3])),
2716           NextMetadataNo++);
2717       break;
2718     }
2719     case bitc::METADATA_NAMESPACE: {
2720       if (Record.size() != 5)
2721         return error("Invalid record");
2722 
2723       IsDistinct = Record[0] & 1;
2724       bool ExportSymbols = Record[0] & 2;
2725       MetadataList.assignValue(
2726           GET_OR_DISTINCT(DINamespace,
2727                           (Context, getMDOrNull(Record[1]),
2728                            getMDOrNull(Record[2]), getMDString(Record[3]),
2729                            Record[4], ExportSymbols)),
2730           NextMetadataNo++);
2731       break;
2732     }
2733     case bitc::METADATA_MACRO: {
2734       if (Record.size() != 5)
2735         return error("Invalid record");
2736 
2737       IsDistinct = Record[0];
2738       MetadataList.assignValue(
2739           GET_OR_DISTINCT(DIMacro,
2740                           (Context, Record[1], Record[2],
2741                            getMDString(Record[3]), getMDString(Record[4]))),
2742           NextMetadataNo++);
2743       break;
2744     }
2745     case bitc::METADATA_MACRO_FILE: {
2746       if (Record.size() != 5)
2747         return error("Invalid record");
2748 
2749       IsDistinct = Record[0];
2750       MetadataList.assignValue(
2751           GET_OR_DISTINCT(DIMacroFile,
2752                           (Context, Record[1], Record[2],
2753                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2754           NextMetadataNo++);
2755       break;
2756     }
2757     case bitc::METADATA_TEMPLATE_TYPE: {
2758       if (Record.size() != 3)
2759         return error("Invalid record");
2760 
2761       IsDistinct = Record[0];
2762       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2763                                                (Context, getMDString(Record[1]),
2764                                                 getDITypeRefOrNull(Record[2]))),
2765                                NextMetadataNo++);
2766       break;
2767     }
2768     case bitc::METADATA_TEMPLATE_VALUE: {
2769       if (Record.size() != 5)
2770         return error("Invalid record");
2771 
2772       IsDistinct = Record[0];
2773       MetadataList.assignValue(
2774           GET_OR_DISTINCT(DITemplateValueParameter,
2775                           (Context, Record[1], getMDString(Record[2]),
2776                            getDITypeRefOrNull(Record[3]),
2777                            getMDOrNull(Record[4]))),
2778           NextMetadataNo++);
2779       break;
2780     }
2781     case bitc::METADATA_GLOBAL_VAR: {
2782       if (Record.size() < 11 || Record.size() > 12)
2783         return error("Invalid record");
2784 
2785       IsDistinct = Record[0];
2786 
2787       // Upgrade old metadata, which stored a global variable reference or a
2788       // ConstantInt here.
2789       Metadata *Expr = getMDOrNull(Record[9]);
2790       uint32_t AlignInBits = 0;
2791       if (Record.size() > 11) {
2792         if (Record[11] > (uint64_t)std::numeric_limits<uint32_t>::max())
2793           return error("Alignment value is too large");
2794         AlignInBits = Record[11];
2795       }
2796       GlobalVariable *Attach = nullptr;
2797       if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) {
2798         if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) {
2799           Attach = GV;
2800           Expr = nullptr;
2801         } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) {
2802           Expr = DIExpression::get(Context,
2803                                    {dwarf::DW_OP_constu, CI->getZExtValue(),
2804                                     dwarf::DW_OP_stack_value});
2805         } else {
2806           Expr = nullptr;
2807         }
2808       }
2809 
2810       DIGlobalVariable *DGV = GET_OR_DISTINCT(
2811           DIGlobalVariable,
2812           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2813            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2814            getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr,
2815            getMDOrNull(Record[10]), AlignInBits));
2816       MetadataList.assignValue(DGV, NextMetadataNo++);
2817 
2818       if (Attach)
2819         Attach->addDebugInfo(DGV);
2820 
2821       break;
2822     }
2823     case bitc::METADATA_LOCAL_VAR: {
2824       // 10th field is for the obseleted 'inlinedAt:' field.
2825       if (Record.size() < 8 || Record.size() > 10)
2826         return error("Invalid record");
2827 
2828       IsDistinct = Record[0] & 1;
2829       bool HasAlignment = Record[0] & 2;
2830       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2831       // DW_TAG_arg_variable, if we have alignment flag encoded it means, that
2832       // this is newer version of record which doesn't have artifical tag.
2833       bool HasTag = !HasAlignment && Record.size() > 8;
2834       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]);
2835       uint32_t AlignInBits = 0;
2836       if (HasAlignment) {
2837         if (Record[8 + HasTag] >
2838             (uint64_t)std::numeric_limits<uint32_t>::max())
2839           return error("Alignment value is too large");
2840         AlignInBits = Record[8 + HasTag];
2841       }
2842       MetadataList.assignValue(
2843           GET_OR_DISTINCT(DILocalVariable,
2844                           (Context, getMDOrNull(Record[1 + HasTag]),
2845                            getMDString(Record[2 + HasTag]),
2846                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2847                            getDITypeRefOrNull(Record[5 + HasTag]),
2848                            Record[6 + HasTag], Flags, AlignInBits)),
2849           NextMetadataNo++);
2850       break;
2851     }
2852     case bitc::METADATA_EXPRESSION: {
2853       if (Record.size() < 1)
2854         return error("Invalid record");
2855 
2856       IsDistinct = Record[0];
2857       MetadataList.assignValue(
2858           GET_OR_DISTINCT(DIExpression,
2859                           (Context, makeArrayRef(Record).slice(1))),
2860           NextMetadataNo++);
2861       break;
2862     }
2863     case bitc::METADATA_OBJC_PROPERTY: {
2864       if (Record.size() != 8)
2865         return error("Invalid record");
2866 
2867       IsDistinct = Record[0];
2868       MetadataList.assignValue(
2869           GET_OR_DISTINCT(DIObjCProperty,
2870                           (Context, getMDString(Record[1]),
2871                            getMDOrNull(Record[2]), Record[3],
2872                            getMDString(Record[4]), getMDString(Record[5]),
2873                            Record[6], getDITypeRefOrNull(Record[7]))),
2874           NextMetadataNo++);
2875       break;
2876     }
2877     case bitc::METADATA_IMPORTED_ENTITY: {
2878       if (Record.size() != 6)
2879         return error("Invalid record");
2880 
2881       IsDistinct = Record[0];
2882       MetadataList.assignValue(
2883           GET_OR_DISTINCT(DIImportedEntity,
2884                           (Context, Record[1], getMDOrNull(Record[2]),
2885                            getDITypeRefOrNull(Record[3]), Record[4],
2886                            getMDString(Record[5]))),
2887           NextMetadataNo++);
2888       break;
2889     }
2890     case bitc::METADATA_STRING_OLD: {
2891       std::string String(Record.begin(), Record.end());
2892 
2893       // Test for upgrading !llvm.loop.
2894       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2895 
2896       Metadata *MD = MDString::get(Context, String);
2897       MetadataList.assignValue(MD, NextMetadataNo++);
2898       break;
2899     }
2900     case bitc::METADATA_STRINGS:
2901       if (std::error_code EC =
2902               parseMetadataStrings(Record, Blob, NextMetadataNo))
2903         return EC;
2904       break;
2905     case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
2906       if (Record.size() % 2 == 0)
2907         return error("Invalid record");
2908       unsigned ValueID = Record[0];
2909       if (ValueID >= ValueList.size())
2910         return error("Invalid record");
2911       if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
2912         parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1));
2913       break;
2914     }
2915     case bitc::METADATA_KIND: {
2916       // Support older bitcode files that had METADATA_KIND records in a
2917       // block with METADATA_BLOCK_ID.
2918       if (std::error_code EC = parseMetadataKindRecord(Record))
2919         return EC;
2920       break;
2921     }
2922     }
2923   }
2924 
2925 #undef GET_OR_DISTINCT
2926 }
2927 
2928 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2929 std::error_code BitcodeReader::parseMetadataKinds() {
2930   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2931     return error("Invalid record");
2932 
2933   SmallVector<uint64_t, 64> Record;
2934 
2935   // Read all the records.
2936   while (true) {
2937     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2938 
2939     switch (Entry.Kind) {
2940     case BitstreamEntry::SubBlock: // Handled for us already.
2941     case BitstreamEntry::Error:
2942       return error("Malformed block");
2943     case BitstreamEntry::EndBlock:
2944       return std::error_code();
2945     case BitstreamEntry::Record:
2946       // The interesting case.
2947       break;
2948     }
2949 
2950     // Read a record.
2951     Record.clear();
2952     unsigned Code = Stream.readRecord(Entry.ID, Record);
2953     switch (Code) {
2954     default: // Default behavior: ignore.
2955       break;
2956     case bitc::METADATA_KIND: {
2957       if (std::error_code EC = parseMetadataKindRecord(Record))
2958         return EC;
2959       break;
2960     }
2961     }
2962   }
2963 }
2964 
2965 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2966 /// encoding.
2967 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2968   if ((V & 1) == 0)
2969     return V >> 1;
2970   if (V != 1)
2971     return -(V >> 1);
2972   // There is no such thing as -0 with integers.  "-0" really means MININT.
2973   return 1ULL << 63;
2974 }
2975 
2976 /// Resolve all of the initializers for global values and aliases that we can.
2977 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2978   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2979   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
2980       IndirectSymbolInitWorklist;
2981   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2982   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2983   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2984 
2985   GlobalInitWorklist.swap(GlobalInits);
2986   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2987   FunctionPrefixWorklist.swap(FunctionPrefixes);
2988   FunctionPrologueWorklist.swap(FunctionPrologues);
2989   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2990 
2991   while (!GlobalInitWorklist.empty()) {
2992     unsigned ValID = GlobalInitWorklist.back().second;
2993     if (ValID >= ValueList.size()) {
2994       // Not ready to resolve this yet, it requires something later in the file.
2995       GlobalInits.push_back(GlobalInitWorklist.back());
2996     } else {
2997       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2998         GlobalInitWorklist.back().first->setInitializer(C);
2999       else
3000         return error("Expected a constant");
3001     }
3002     GlobalInitWorklist.pop_back();
3003   }
3004 
3005   while (!IndirectSymbolInitWorklist.empty()) {
3006     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3007     if (ValID >= ValueList.size()) {
3008       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3009     } else {
3010       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
3011       if (!C)
3012         return error("Expected a constant");
3013       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
3014       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
3015         return error("Alias and aliasee types don't match");
3016       GIS->setIndirectSymbol(C);
3017     }
3018     IndirectSymbolInitWorklist.pop_back();
3019   }
3020 
3021   while (!FunctionPrefixWorklist.empty()) {
3022     unsigned ValID = FunctionPrefixWorklist.back().second;
3023     if (ValID >= ValueList.size()) {
3024       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
3025     } else {
3026       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3027         FunctionPrefixWorklist.back().first->setPrefixData(C);
3028       else
3029         return error("Expected a constant");
3030     }
3031     FunctionPrefixWorklist.pop_back();
3032   }
3033 
3034   while (!FunctionPrologueWorklist.empty()) {
3035     unsigned ValID = FunctionPrologueWorklist.back().second;
3036     if (ValID >= ValueList.size()) {
3037       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
3038     } else {
3039       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3040         FunctionPrologueWorklist.back().first->setPrologueData(C);
3041       else
3042         return error("Expected a constant");
3043     }
3044     FunctionPrologueWorklist.pop_back();
3045   }
3046 
3047   while (!FunctionPersonalityFnWorklist.empty()) {
3048     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
3049     if (ValID >= ValueList.size()) {
3050       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
3051     } else {
3052       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3053         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
3054       else
3055         return error("Expected a constant");
3056     }
3057     FunctionPersonalityFnWorklist.pop_back();
3058   }
3059 
3060   return std::error_code();
3061 }
3062 
3063 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3064   SmallVector<uint64_t, 8> Words(Vals.size());
3065   transform(Vals, Words.begin(),
3066                  BitcodeReader::decodeSignRotatedValue);
3067 
3068   return APInt(TypeBits, Words);
3069 }
3070 
3071 std::error_code BitcodeReader::parseConstants() {
3072   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3073     return error("Invalid record");
3074 
3075   SmallVector<uint64_t, 64> Record;
3076 
3077   // Read all the records for this value table.
3078   Type *CurTy = Type::getInt32Ty(Context);
3079   unsigned NextCstNo = ValueList.size();
3080 
3081   while (true) {
3082     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3083 
3084     switch (Entry.Kind) {
3085     case BitstreamEntry::SubBlock: // Handled for us already.
3086     case BitstreamEntry::Error:
3087       return error("Malformed block");
3088     case BitstreamEntry::EndBlock:
3089       if (NextCstNo != ValueList.size())
3090         return error("Invalid constant reference");
3091 
3092       // Once all the constants have been read, go through and resolve forward
3093       // references.
3094       ValueList.resolveConstantForwardRefs();
3095       return std::error_code();
3096     case BitstreamEntry::Record:
3097       // The interesting case.
3098       break;
3099     }
3100 
3101     // Read a record.
3102     Record.clear();
3103     Type *VoidType = Type::getVoidTy(Context);
3104     Value *V = nullptr;
3105     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3106     switch (BitCode) {
3107     default:  // Default behavior: unknown constant
3108     case bitc::CST_CODE_UNDEF:     // UNDEF
3109       V = UndefValue::get(CurTy);
3110       break;
3111     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3112       if (Record.empty())
3113         return error("Invalid record");
3114       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3115         return error("Invalid record");
3116       if (TypeList[Record[0]] == VoidType)
3117         return error("Invalid constant type");
3118       CurTy = TypeList[Record[0]];
3119       continue;  // Skip the ValueList manipulation.
3120     case bitc::CST_CODE_NULL:      // NULL
3121       V = Constant::getNullValue(CurTy);
3122       break;
3123     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3124       if (!CurTy->isIntegerTy() || Record.empty())
3125         return error("Invalid record");
3126       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3127       break;
3128     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3129       if (!CurTy->isIntegerTy() || Record.empty())
3130         return error("Invalid record");
3131 
3132       APInt VInt =
3133           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3134       V = ConstantInt::get(Context, VInt);
3135 
3136       break;
3137     }
3138     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3139       if (Record.empty())
3140         return error("Invalid record");
3141       if (CurTy->isHalfTy())
3142         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
3143                                              APInt(16, (uint16_t)Record[0])));
3144       else if (CurTy->isFloatTy())
3145         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
3146                                              APInt(32, (uint32_t)Record[0])));
3147       else if (CurTy->isDoubleTy())
3148         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
3149                                              APInt(64, Record[0])));
3150       else if (CurTy->isX86_FP80Ty()) {
3151         // Bits are not stored the same way as a normal i80 APInt, compensate.
3152         uint64_t Rearrange[2];
3153         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3154         Rearrange[1] = Record[0] >> 48;
3155         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
3156                                              APInt(80, Rearrange)));
3157       } else if (CurTy->isFP128Ty())
3158         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
3159                                              APInt(128, Record)));
3160       else if (CurTy->isPPC_FP128Ty())
3161         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
3162                                              APInt(128, Record)));
3163       else
3164         V = UndefValue::get(CurTy);
3165       break;
3166     }
3167 
3168     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3169       if (Record.empty())
3170         return error("Invalid record");
3171 
3172       unsigned Size = Record.size();
3173       SmallVector<Constant*, 16> Elts;
3174 
3175       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3176         for (unsigned i = 0; i != Size; ++i)
3177           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
3178                                                      STy->getElementType(i)));
3179         V = ConstantStruct::get(STy, Elts);
3180       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
3181         Type *EltTy = ATy->getElementType();
3182         for (unsigned i = 0; i != Size; ++i)
3183           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
3184         V = ConstantArray::get(ATy, Elts);
3185       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
3186         Type *EltTy = VTy->getElementType();
3187         for (unsigned i = 0; i != Size; ++i)
3188           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
3189         V = ConstantVector::get(Elts);
3190       } else {
3191         V = UndefValue::get(CurTy);
3192       }
3193       break;
3194     }
3195     case bitc::CST_CODE_STRING:    // STRING: [values]
3196     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3197       if (Record.empty())
3198         return error("Invalid record");
3199 
3200       SmallString<16> Elts(Record.begin(), Record.end());
3201       V = ConstantDataArray::getString(Context, Elts,
3202                                        BitCode == bitc::CST_CODE_CSTRING);
3203       break;
3204     }
3205     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3206       if (Record.empty())
3207         return error("Invalid record");
3208 
3209       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
3210       if (EltTy->isIntegerTy(8)) {
3211         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3212         if (isa<VectorType>(CurTy))
3213           V = ConstantDataVector::get(Context, Elts);
3214         else
3215           V = ConstantDataArray::get(Context, Elts);
3216       } else if (EltTy->isIntegerTy(16)) {
3217         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3218         if (isa<VectorType>(CurTy))
3219           V = ConstantDataVector::get(Context, Elts);
3220         else
3221           V = ConstantDataArray::get(Context, Elts);
3222       } else if (EltTy->isIntegerTy(32)) {
3223         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3224         if (isa<VectorType>(CurTy))
3225           V = ConstantDataVector::get(Context, Elts);
3226         else
3227           V = ConstantDataArray::get(Context, Elts);
3228       } else if (EltTy->isIntegerTy(64)) {
3229         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3230         if (isa<VectorType>(CurTy))
3231           V = ConstantDataVector::get(Context, Elts);
3232         else
3233           V = ConstantDataArray::get(Context, Elts);
3234       } else if (EltTy->isHalfTy()) {
3235         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3236         if (isa<VectorType>(CurTy))
3237           V = ConstantDataVector::getFP(Context, Elts);
3238         else
3239           V = ConstantDataArray::getFP(Context, Elts);
3240       } else if (EltTy->isFloatTy()) {
3241         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3242         if (isa<VectorType>(CurTy))
3243           V = ConstantDataVector::getFP(Context, Elts);
3244         else
3245           V = ConstantDataArray::getFP(Context, Elts);
3246       } else if (EltTy->isDoubleTy()) {
3247         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3248         if (isa<VectorType>(CurTy))
3249           V = ConstantDataVector::getFP(Context, Elts);
3250         else
3251           V = ConstantDataArray::getFP(Context, Elts);
3252       } else {
3253         return error("Invalid type for value");
3254       }
3255       break;
3256     }
3257     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3258       if (Record.size() < 3)
3259         return error("Invalid record");
3260       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3261       if (Opc < 0) {
3262         V = UndefValue::get(CurTy);  // Unknown binop.
3263       } else {
3264         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
3265         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
3266         unsigned Flags = 0;
3267         if (Record.size() >= 4) {
3268           if (Opc == Instruction::Add ||
3269               Opc == Instruction::Sub ||
3270               Opc == Instruction::Mul ||
3271               Opc == Instruction::Shl) {
3272             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3273               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3274             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3275               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3276           } else if (Opc == Instruction::SDiv ||
3277                      Opc == Instruction::UDiv ||
3278                      Opc == Instruction::LShr ||
3279                      Opc == Instruction::AShr) {
3280             if (Record[3] & (1 << bitc::PEO_EXACT))
3281               Flags |= SDivOperator::IsExact;
3282           }
3283         }
3284         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
3285       }
3286       break;
3287     }
3288     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3289       if (Record.size() < 3)
3290         return error("Invalid record");
3291       int Opc = getDecodedCastOpcode(Record[0]);
3292       if (Opc < 0) {
3293         V = UndefValue::get(CurTy);  // Unknown cast.
3294       } else {
3295         Type *OpTy = getTypeByID(Record[1]);
3296         if (!OpTy)
3297           return error("Invalid record");
3298         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
3299         V = UpgradeBitCastExpr(Opc, Op, CurTy);
3300         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
3301       }
3302       break;
3303     }
3304     case bitc::CST_CODE_CE_INBOUNDS_GEP:
3305     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
3306       unsigned OpNum = 0;
3307       Type *PointeeType = nullptr;
3308       if (Record.size() % 2)
3309         PointeeType = getTypeByID(Record[OpNum++]);
3310       SmallVector<Constant*, 16> Elts;
3311       while (OpNum != Record.size()) {
3312         Type *ElTy = getTypeByID(Record[OpNum++]);
3313         if (!ElTy)
3314           return error("Invalid record");
3315         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
3316       }
3317 
3318       if (PointeeType &&
3319           PointeeType !=
3320               cast<SequentialType>(Elts[0]->getType()->getScalarType())
3321                   ->getElementType())
3322         return error("Explicit gep operator type does not match pointee type "
3323                      "of pointer operand");
3324 
3325       if (Elts.size() < 1)
3326         return error("Invalid gep with no operands");
3327 
3328       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3329       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
3330                                          BitCode ==
3331                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
3332       break;
3333     }
3334     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3335       if (Record.size() < 3)
3336         return error("Invalid record");
3337 
3338       Type *SelectorTy = Type::getInt1Ty(Context);
3339 
3340       // The selector might be an i1 or an <n x i1>
3341       // Get the type from the ValueList before getting a forward ref.
3342       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
3343         if (Value *V = ValueList[Record[0]])
3344           if (SelectorTy != V->getType())
3345             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
3346 
3347       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
3348                                                               SelectorTy),
3349                                   ValueList.getConstantFwdRef(Record[1],CurTy),
3350                                   ValueList.getConstantFwdRef(Record[2],CurTy));
3351       break;
3352     }
3353     case bitc::CST_CODE_CE_EXTRACTELT
3354         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3355       if (Record.size() < 3)
3356         return error("Invalid record");
3357       VectorType *OpTy =
3358         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3359       if (!OpTy)
3360         return error("Invalid record");
3361       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3362       Constant *Op1 = nullptr;
3363       if (Record.size() == 4) {
3364         Type *IdxTy = getTypeByID(Record[2]);
3365         if (!IdxTy)
3366           return error("Invalid record");
3367         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3368       } else // TODO: Remove with llvm 4.0
3369         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3370       if (!Op1)
3371         return error("Invalid record");
3372       V = ConstantExpr::getExtractElement(Op0, Op1);
3373       break;
3374     }
3375     case bitc::CST_CODE_CE_INSERTELT
3376         : { // CE_INSERTELT: [opval, opval, opty, opval]
3377       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3378       if (Record.size() < 3 || !OpTy)
3379         return error("Invalid record");
3380       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3381       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
3382                                                   OpTy->getElementType());
3383       Constant *Op2 = nullptr;
3384       if (Record.size() == 4) {
3385         Type *IdxTy = getTypeByID(Record[2]);
3386         if (!IdxTy)
3387           return error("Invalid record");
3388         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3389       } else // TODO: Remove with llvm 4.0
3390         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3391       if (!Op2)
3392         return error("Invalid record");
3393       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
3394       break;
3395     }
3396     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3397       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3398       if (Record.size() < 3 || !OpTy)
3399         return error("Invalid record");
3400       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3401       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
3402       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3403                                                  OpTy->getNumElements());
3404       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
3405       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3406       break;
3407     }
3408     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3409       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3410       VectorType *OpTy =
3411         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3412       if (Record.size() < 4 || !RTy || !OpTy)
3413         return error("Invalid record");
3414       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3415       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3416       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3417                                                  RTy->getNumElements());
3418       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
3419       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3420       break;
3421     }
3422     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3423       if (Record.size() < 4)
3424         return error("Invalid record");
3425       Type *OpTy = getTypeByID(Record[0]);
3426       if (!OpTy)
3427         return error("Invalid record");
3428       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3429       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3430 
3431       if (OpTy->isFPOrFPVectorTy())
3432         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
3433       else
3434         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
3435       break;
3436     }
3437     // This maintains backward compatibility, pre-asm dialect keywords.
3438     // FIXME: Remove with the 4.0 release.
3439     case bitc::CST_CODE_INLINEASM_OLD: {
3440       if (Record.size() < 2)
3441         return error("Invalid record");
3442       std::string AsmStr, ConstrStr;
3443       bool HasSideEffects = Record[0] & 1;
3444       bool IsAlignStack = Record[0] >> 1;
3445       unsigned AsmStrSize = Record[1];
3446       if (2+AsmStrSize >= Record.size())
3447         return error("Invalid record");
3448       unsigned ConstStrSize = Record[2+AsmStrSize];
3449       if (3+AsmStrSize+ConstStrSize > Record.size())
3450         return error("Invalid record");
3451 
3452       for (unsigned i = 0; i != AsmStrSize; ++i)
3453         AsmStr += (char)Record[2+i];
3454       for (unsigned i = 0; i != ConstStrSize; ++i)
3455         ConstrStr += (char)Record[3+AsmStrSize+i];
3456       PointerType *PTy = cast<PointerType>(CurTy);
3457       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3458                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3459       break;
3460     }
3461     // This version adds support for the asm dialect keywords (e.g.,
3462     // inteldialect).
3463     case bitc::CST_CODE_INLINEASM: {
3464       if (Record.size() < 2)
3465         return error("Invalid record");
3466       std::string AsmStr, ConstrStr;
3467       bool HasSideEffects = Record[0] & 1;
3468       bool IsAlignStack = (Record[0] >> 1) & 1;
3469       unsigned AsmDialect = Record[0] >> 2;
3470       unsigned AsmStrSize = Record[1];
3471       if (2+AsmStrSize >= Record.size())
3472         return error("Invalid record");
3473       unsigned ConstStrSize = Record[2+AsmStrSize];
3474       if (3+AsmStrSize+ConstStrSize > Record.size())
3475         return error("Invalid record");
3476 
3477       for (unsigned i = 0; i != AsmStrSize; ++i)
3478         AsmStr += (char)Record[2+i];
3479       for (unsigned i = 0; i != ConstStrSize; ++i)
3480         ConstrStr += (char)Record[3+AsmStrSize+i];
3481       PointerType *PTy = cast<PointerType>(CurTy);
3482       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3483                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3484                          InlineAsm::AsmDialect(AsmDialect));
3485       break;
3486     }
3487     case bitc::CST_CODE_BLOCKADDRESS:{
3488       if (Record.size() < 3)
3489         return error("Invalid record");
3490       Type *FnTy = getTypeByID(Record[0]);
3491       if (!FnTy)
3492         return error("Invalid record");
3493       Function *Fn =
3494         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3495       if (!Fn)
3496         return error("Invalid record");
3497 
3498       // If the function is already parsed we can insert the block address right
3499       // away.
3500       BasicBlock *BB;
3501       unsigned BBID = Record[2];
3502       if (!BBID)
3503         // Invalid reference to entry block.
3504         return error("Invalid ID");
3505       if (!Fn->empty()) {
3506         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3507         for (size_t I = 0, E = BBID; I != E; ++I) {
3508           if (BBI == BBE)
3509             return error("Invalid ID");
3510           ++BBI;
3511         }
3512         BB = &*BBI;
3513       } else {
3514         // Otherwise insert a placeholder and remember it so it can be inserted
3515         // when the function is parsed.
3516         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3517         if (FwdBBs.empty())
3518           BasicBlockFwdRefQueue.push_back(Fn);
3519         if (FwdBBs.size() < BBID + 1)
3520           FwdBBs.resize(BBID + 1);
3521         if (!FwdBBs[BBID])
3522           FwdBBs[BBID] = BasicBlock::Create(Context);
3523         BB = FwdBBs[BBID];
3524       }
3525       V = BlockAddress::get(Fn, BB);
3526       break;
3527     }
3528     }
3529 
3530     ValueList.assignValue(V, NextCstNo);
3531     ++NextCstNo;
3532   }
3533 }
3534 
3535 std::error_code BitcodeReader::parseUseLists() {
3536   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3537     return error("Invalid record");
3538 
3539   // Read all the records.
3540   SmallVector<uint64_t, 64> Record;
3541 
3542   while (true) {
3543     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3544 
3545     switch (Entry.Kind) {
3546     case BitstreamEntry::SubBlock: // Handled for us already.
3547     case BitstreamEntry::Error:
3548       return error("Malformed block");
3549     case BitstreamEntry::EndBlock:
3550       return std::error_code();
3551     case BitstreamEntry::Record:
3552       // The interesting case.
3553       break;
3554     }
3555 
3556     // Read a use list record.
3557     Record.clear();
3558     bool IsBB = false;
3559     switch (Stream.readRecord(Entry.ID, Record)) {
3560     default:  // Default behavior: unknown type.
3561       break;
3562     case bitc::USELIST_CODE_BB:
3563       IsBB = true;
3564       LLVM_FALLTHROUGH;
3565     case bitc::USELIST_CODE_DEFAULT: {
3566       unsigned RecordLength = Record.size();
3567       if (RecordLength < 3)
3568         // Records should have at least an ID and two indexes.
3569         return error("Invalid record");
3570       unsigned ID = Record.back();
3571       Record.pop_back();
3572 
3573       Value *V;
3574       if (IsBB) {
3575         assert(ID < FunctionBBs.size() && "Basic block not found");
3576         V = FunctionBBs[ID];
3577       } else
3578         V = ValueList[ID];
3579       unsigned NumUses = 0;
3580       SmallDenseMap<const Use *, unsigned, 16> Order;
3581       for (const Use &U : V->materialized_uses()) {
3582         if (++NumUses > Record.size())
3583           break;
3584         Order[&U] = Record[NumUses - 1];
3585       }
3586       if (Order.size() != Record.size() || NumUses > Record.size())
3587         // Mismatches can happen if the functions are being materialized lazily
3588         // (out-of-order), or a value has been upgraded.
3589         break;
3590 
3591       V->sortUseList([&](const Use &L, const Use &R) {
3592         return Order.lookup(&L) < Order.lookup(&R);
3593       });
3594       break;
3595     }
3596     }
3597   }
3598 }
3599 
3600 /// When we see the block for metadata, remember where it is and then skip it.
3601 /// This lets us lazily deserialize the metadata.
3602 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3603   // Save the current stream state.
3604   uint64_t CurBit = Stream.GetCurrentBitNo();
3605   DeferredMetadataInfo.push_back(CurBit);
3606 
3607   // Skip over the block for now.
3608   if (Stream.SkipBlock())
3609     return error("Invalid record");
3610   return std::error_code();
3611 }
3612 
3613 std::error_code BitcodeReader::materializeMetadata() {
3614   for (uint64_t BitPos : DeferredMetadataInfo) {
3615     // Move the bit stream to the saved position.
3616     Stream.JumpToBit(BitPos);
3617     if (std::error_code EC = parseMetadata(true))
3618       return EC;
3619   }
3620   DeferredMetadataInfo.clear();
3621   return std::error_code();
3622 }
3623 
3624 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3625 
3626 /// When we see the block for a function body, remember where it is and then
3627 /// skip it.  This lets us lazily deserialize the functions.
3628 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3629   // Get the function we are talking about.
3630   if (FunctionsWithBodies.empty())
3631     return error("Insufficient function protos");
3632 
3633   Function *Fn = FunctionsWithBodies.back();
3634   FunctionsWithBodies.pop_back();
3635 
3636   // Save the current stream state.
3637   uint64_t CurBit = Stream.GetCurrentBitNo();
3638   assert(
3639       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3640       "Mismatch between VST and scanned function offsets");
3641   DeferredFunctionInfo[Fn] = CurBit;
3642 
3643   // Skip over the function block for now.
3644   if (Stream.SkipBlock())
3645     return error("Invalid record");
3646   return std::error_code();
3647 }
3648 
3649 std::error_code BitcodeReader::globalCleanup() {
3650   // Patch the initializers for globals and aliases up.
3651   resolveGlobalAndIndirectSymbolInits();
3652   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3653     return error("Malformed global initializer set");
3654 
3655   // Look for intrinsic functions which need to be upgraded at some point
3656   for (Function &F : *TheModule) {
3657     Function *NewFn;
3658     if (UpgradeIntrinsicFunction(&F, NewFn))
3659       UpgradedIntrinsics[&F] = NewFn;
3660     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3661       // Some types could be renamed during loading if several modules are
3662       // loaded in the same LLVMContext (LTO scenario). In this case we should
3663       // remangle intrinsics names as well.
3664       RemangledIntrinsics[&F] = Remangled.getValue();
3665   }
3666 
3667   // Look for global variables which need to be renamed.
3668   for (GlobalVariable &GV : TheModule->globals())
3669     UpgradeGlobalVariable(&GV);
3670 
3671   // Force deallocation of memory for these vectors to favor the client that
3672   // want lazy deserialization.
3673   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3674   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3675       IndirectSymbolInits);
3676   return std::error_code();
3677 }
3678 
3679 /// Support for lazy parsing of function bodies. This is required if we
3680 /// either have an old bitcode file without a VST forward declaration record,
3681 /// or if we have an anonymous function being materialized, since anonymous
3682 /// functions do not have a name and are therefore not in the VST.
3683 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3684   Stream.JumpToBit(NextUnreadBit);
3685 
3686   if (Stream.AtEndOfStream())
3687     return error("Could not find function in stream");
3688 
3689   if (!SeenFirstFunctionBody)
3690     return error("Trying to materialize functions before seeing function blocks");
3691 
3692   // An old bitcode file with the symbol table at the end would have
3693   // finished the parse greedily.
3694   assert(SeenValueSymbolTable);
3695 
3696   SmallVector<uint64_t, 64> Record;
3697 
3698   while (true) {
3699     BitstreamEntry Entry = Stream.advance();
3700     switch (Entry.Kind) {
3701     default:
3702       return error("Expect SubBlock");
3703     case BitstreamEntry::SubBlock:
3704       switch (Entry.ID) {
3705       default:
3706         return error("Expect function block");
3707       case bitc::FUNCTION_BLOCK_ID:
3708         if (std::error_code EC = rememberAndSkipFunctionBody())
3709           return EC;
3710         NextUnreadBit = Stream.GetCurrentBitNo();
3711         return std::error_code();
3712       }
3713     }
3714   }
3715 }
3716 
3717 std::error_code BitcodeReader::parseBitcodeVersion() {
3718   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3719     return error("Invalid record");
3720 
3721   // Read all the records.
3722   SmallVector<uint64_t, 64> Record;
3723 
3724   while (true) {
3725     BitstreamEntry Entry = Stream.advance();
3726 
3727     switch (Entry.Kind) {
3728     default:
3729     case BitstreamEntry::Error:
3730       return error("Malformed block");
3731     case BitstreamEntry::EndBlock:
3732       return std::error_code();
3733     case BitstreamEntry::Record:
3734       // The interesting case.
3735       break;
3736     }
3737 
3738     // Read a record.
3739     Record.clear();
3740     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3741     switch (BitCode) {
3742     default: // Default behavior: reject
3743       return error("Invalid value");
3744     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3745                                              // N]
3746       convertToString(Record, 0, ProducerIdentification);
3747       break;
3748     }
3749     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3750       unsigned epoch = (unsigned)Record[0];
3751       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3752         return error(
3753           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3754           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3755       }
3756     }
3757     }
3758   }
3759 }
3760 
3761 bool BitcodeReaderBase::readBlockInfo() {
3762   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
3763   if (!NewBlockInfo)
3764     return true;
3765   BlockInfo = std::move(*NewBlockInfo);
3766   return false;
3767 }
3768 
3769 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3770                                            bool ShouldLazyLoadMetadata) {
3771   if (ResumeBit)
3772     Stream.JumpToBit(ResumeBit);
3773   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3774     return error("Invalid record");
3775 
3776   SmallVector<uint64_t, 64> Record;
3777   std::vector<std::string> SectionTable;
3778   std::vector<std::string> GCTable;
3779 
3780   // Read all the records for this module.
3781   while (true) {
3782     BitstreamEntry Entry = Stream.advance();
3783 
3784     switch (Entry.Kind) {
3785     case BitstreamEntry::Error:
3786       return error("Malformed block");
3787     case BitstreamEntry::EndBlock:
3788       return globalCleanup();
3789 
3790     case BitstreamEntry::SubBlock:
3791       switch (Entry.ID) {
3792       default:  // Skip unknown content.
3793         if (Stream.SkipBlock())
3794           return error("Invalid record");
3795         break;
3796       case bitc::BLOCKINFO_BLOCK_ID:
3797         if (readBlockInfo())
3798           return error("Malformed block");
3799         break;
3800       case bitc::PARAMATTR_BLOCK_ID:
3801         if (std::error_code EC = parseAttributeBlock())
3802           return EC;
3803         break;
3804       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3805         if (std::error_code EC = parseAttributeGroupBlock())
3806           return EC;
3807         break;
3808       case bitc::TYPE_BLOCK_ID_NEW:
3809         if (std::error_code EC = parseTypeTable())
3810           return EC;
3811         break;
3812       case bitc::VALUE_SYMTAB_BLOCK_ID:
3813         if (!SeenValueSymbolTable) {
3814           // Either this is an old form VST without function index and an
3815           // associated VST forward declaration record (which would have caused
3816           // the VST to be jumped to and parsed before it was encountered
3817           // normally in the stream), or there were no function blocks to
3818           // trigger an earlier parsing of the VST.
3819           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3820           if (std::error_code EC = parseValueSymbolTable())
3821             return EC;
3822           SeenValueSymbolTable = true;
3823         } else {
3824           // We must have had a VST forward declaration record, which caused
3825           // the parser to jump to and parse the VST earlier.
3826           assert(VSTOffset > 0);
3827           if (Stream.SkipBlock())
3828             return error("Invalid record");
3829         }
3830         break;
3831       case bitc::CONSTANTS_BLOCK_ID:
3832         if (std::error_code EC = parseConstants())
3833           return EC;
3834         if (std::error_code EC = resolveGlobalAndIndirectSymbolInits())
3835           return EC;
3836         break;
3837       case bitc::METADATA_BLOCK_ID:
3838         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3839           if (std::error_code EC = rememberAndSkipMetadata())
3840             return EC;
3841           break;
3842         }
3843         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3844         if (std::error_code EC = parseMetadata(true))
3845           return EC;
3846         break;
3847       case bitc::METADATA_KIND_BLOCK_ID:
3848         if (std::error_code EC = parseMetadataKinds())
3849           return EC;
3850         break;
3851       case bitc::FUNCTION_BLOCK_ID:
3852         // If this is the first function body we've seen, reverse the
3853         // FunctionsWithBodies list.
3854         if (!SeenFirstFunctionBody) {
3855           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3856           if (std::error_code EC = globalCleanup())
3857             return EC;
3858           SeenFirstFunctionBody = true;
3859         }
3860 
3861         if (VSTOffset > 0) {
3862           // If we have a VST forward declaration record, make sure we
3863           // parse the VST now if we haven't already. It is needed to
3864           // set up the DeferredFunctionInfo vector for lazy reading.
3865           if (!SeenValueSymbolTable) {
3866             if (std::error_code EC =
3867                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3868               return EC;
3869             SeenValueSymbolTable = true;
3870             // Fall through so that we record the NextUnreadBit below.
3871             // This is necessary in case we have an anonymous function that
3872             // is later materialized. Since it will not have a VST entry we
3873             // need to fall back to the lazy parse to find its offset.
3874           } else {
3875             // If we have a VST forward declaration record, but have already
3876             // parsed the VST (just above, when the first function body was
3877             // encountered here), then we are resuming the parse after
3878             // materializing functions. The ResumeBit points to the
3879             // start of the last function block recorded in the
3880             // DeferredFunctionInfo map. Skip it.
3881             if (Stream.SkipBlock())
3882               return error("Invalid record");
3883             continue;
3884           }
3885         }
3886 
3887         // Support older bitcode files that did not have the function
3888         // index in the VST, nor a VST forward declaration record, as
3889         // well as anonymous functions that do not have VST entries.
3890         // Build the DeferredFunctionInfo vector on the fly.
3891         if (std::error_code EC = rememberAndSkipFunctionBody())
3892           return EC;
3893 
3894         // Suspend parsing when we reach the function bodies. Subsequent
3895         // materialization calls will resume it when necessary. If the bitcode
3896         // file is old, the symbol table will be at the end instead and will not
3897         // have been seen yet. In this case, just finish the parse now.
3898         if (SeenValueSymbolTable) {
3899           NextUnreadBit = Stream.GetCurrentBitNo();
3900           // After the VST has been parsed, we need to make sure intrinsic name
3901           // are auto-upgraded.
3902           return globalCleanup();
3903         }
3904         break;
3905       case bitc::USELIST_BLOCK_ID:
3906         if (std::error_code EC = parseUseLists())
3907           return EC;
3908         break;
3909       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3910         if (std::error_code EC = parseOperandBundleTags())
3911           return EC;
3912         break;
3913       }
3914       continue;
3915 
3916     case BitstreamEntry::Record:
3917       // The interesting case.
3918       break;
3919     }
3920 
3921     // Read a record.
3922     auto BitCode = Stream.readRecord(Entry.ID, Record);
3923     switch (BitCode) {
3924     default: break;  // Default behavior, ignore unknown content.
3925     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3926       if (Record.size() < 1)
3927         return error("Invalid record");
3928       // Only version #0 and #1 are supported so far.
3929       unsigned module_version = Record[0];
3930       switch (module_version) {
3931         default:
3932           return error("Invalid value");
3933         case 0:
3934           UseRelativeIDs = false;
3935           break;
3936         case 1:
3937           UseRelativeIDs = true;
3938           break;
3939       }
3940       break;
3941     }
3942     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3943       std::string S;
3944       if (convertToString(Record, 0, S))
3945         return error("Invalid record");
3946       TheModule->setTargetTriple(S);
3947       break;
3948     }
3949     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3950       std::string S;
3951       if (convertToString(Record, 0, S))
3952         return error("Invalid record");
3953       TheModule->setDataLayout(S);
3954       break;
3955     }
3956     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3957       std::string S;
3958       if (convertToString(Record, 0, S))
3959         return error("Invalid record");
3960       TheModule->setModuleInlineAsm(S);
3961       break;
3962     }
3963     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3964       // FIXME: Remove in 4.0.
3965       std::string S;
3966       if (convertToString(Record, 0, S))
3967         return error("Invalid record");
3968       // Ignore value.
3969       break;
3970     }
3971     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3972       std::string S;
3973       if (convertToString(Record, 0, S))
3974         return error("Invalid record");
3975       SectionTable.push_back(S);
3976       break;
3977     }
3978     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3979       std::string S;
3980       if (convertToString(Record, 0, S))
3981         return error("Invalid record");
3982       GCTable.push_back(S);
3983       break;
3984     }
3985     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3986       if (Record.size() < 2)
3987         return error("Invalid record");
3988       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3989       unsigned ComdatNameSize = Record[1];
3990       std::string ComdatName;
3991       ComdatName.reserve(ComdatNameSize);
3992       for (unsigned i = 0; i != ComdatNameSize; ++i)
3993         ComdatName += (char)Record[2 + i];
3994       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3995       C->setSelectionKind(SK);
3996       ComdatList.push_back(C);
3997       break;
3998     }
3999     // GLOBALVAR: [pointer type, isconst, initid,
4000     //             linkage, alignment, section, visibility, threadlocal,
4001     //             unnamed_addr, externally_initialized, dllstorageclass,
4002     //             comdat]
4003     case bitc::MODULE_CODE_GLOBALVAR: {
4004       if (Record.size() < 6)
4005         return error("Invalid record");
4006       Type *Ty = getTypeByID(Record[0]);
4007       if (!Ty)
4008         return error("Invalid record");
4009       bool isConstant = Record[1] & 1;
4010       bool explicitType = Record[1] & 2;
4011       unsigned AddressSpace;
4012       if (explicitType) {
4013         AddressSpace = Record[1] >> 2;
4014       } else {
4015         if (!Ty->isPointerTy())
4016           return error("Invalid type for value");
4017         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
4018         Ty = cast<PointerType>(Ty)->getElementType();
4019       }
4020 
4021       uint64_t RawLinkage = Record[3];
4022       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4023       unsigned Alignment;
4024       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
4025         return EC;
4026       std::string Section;
4027       if (Record[5]) {
4028         if (Record[5]-1 >= SectionTable.size())
4029           return error("Invalid ID");
4030         Section = SectionTable[Record[5]-1];
4031       }
4032       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4033       // Local linkage must have default visibility.
4034       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4035         // FIXME: Change to an error if non-default in 4.0.
4036         Visibility = getDecodedVisibility(Record[6]);
4037 
4038       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4039       if (Record.size() > 7)
4040         TLM = getDecodedThreadLocalMode(Record[7]);
4041 
4042       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4043       if (Record.size() > 8)
4044         UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4045 
4046       bool ExternallyInitialized = false;
4047       if (Record.size() > 9)
4048         ExternallyInitialized = Record[9];
4049 
4050       GlobalVariable *NewGV =
4051         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
4052                            TLM, AddressSpace, ExternallyInitialized);
4053       NewGV->setAlignment(Alignment);
4054       if (!Section.empty())
4055         NewGV->setSection(Section);
4056       NewGV->setVisibility(Visibility);
4057       NewGV->setUnnamedAddr(UnnamedAddr);
4058 
4059       if (Record.size() > 10)
4060         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4061       else
4062         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4063 
4064       ValueList.push_back(NewGV);
4065 
4066       // Remember which value to use for the global initializer.
4067       if (unsigned InitID = Record[2])
4068         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
4069 
4070       if (Record.size() > 11) {
4071         if (unsigned ComdatID = Record[11]) {
4072           if (ComdatID > ComdatList.size())
4073             return error("Invalid global variable comdat ID");
4074           NewGV->setComdat(ComdatList[ComdatID - 1]);
4075         }
4076       } else if (hasImplicitComdat(RawLinkage)) {
4077         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
4078       }
4079 
4080       break;
4081     }
4082     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
4083     //             alignment, section, visibility, gc, unnamed_addr,
4084     //             prologuedata, dllstorageclass, comdat, prefixdata]
4085     case bitc::MODULE_CODE_FUNCTION: {
4086       if (Record.size() < 8)
4087         return error("Invalid record");
4088       Type *Ty = getTypeByID(Record[0]);
4089       if (!Ty)
4090         return error("Invalid record");
4091       if (auto *PTy = dyn_cast<PointerType>(Ty))
4092         Ty = PTy->getElementType();
4093       auto *FTy = dyn_cast<FunctionType>(Ty);
4094       if (!FTy)
4095         return error("Invalid type for value");
4096       auto CC = static_cast<CallingConv::ID>(Record[1]);
4097       if (CC & ~CallingConv::MaxID)
4098         return error("Invalid calling convention ID");
4099 
4100       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
4101                                         "", TheModule);
4102 
4103       Func->setCallingConv(CC);
4104       bool isProto = Record[2];
4105       uint64_t RawLinkage = Record[3];
4106       Func->setLinkage(getDecodedLinkage(RawLinkage));
4107       Func->setAttributes(getAttributes(Record[4]));
4108 
4109       unsigned Alignment;
4110       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
4111         return EC;
4112       Func->setAlignment(Alignment);
4113       if (Record[6]) {
4114         if (Record[6]-1 >= SectionTable.size())
4115           return error("Invalid ID");
4116         Func->setSection(SectionTable[Record[6]-1]);
4117       }
4118       // Local linkage must have default visibility.
4119       if (!Func->hasLocalLinkage())
4120         // FIXME: Change to an error if non-default in 4.0.
4121         Func->setVisibility(getDecodedVisibility(Record[7]));
4122       if (Record.size() > 8 && Record[8]) {
4123         if (Record[8]-1 >= GCTable.size())
4124           return error("Invalid ID");
4125         Func->setGC(GCTable[Record[8] - 1]);
4126       }
4127       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4128       if (Record.size() > 9)
4129         UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4130       Func->setUnnamedAddr(UnnamedAddr);
4131       if (Record.size() > 10 && Record[10] != 0)
4132         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
4133 
4134       if (Record.size() > 11)
4135         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4136       else
4137         upgradeDLLImportExportLinkage(Func, RawLinkage);
4138 
4139       if (Record.size() > 12) {
4140         if (unsigned ComdatID = Record[12]) {
4141           if (ComdatID > ComdatList.size())
4142             return error("Invalid function comdat ID");
4143           Func->setComdat(ComdatList[ComdatID - 1]);
4144         }
4145       } else if (hasImplicitComdat(RawLinkage)) {
4146         Func->setComdat(reinterpret_cast<Comdat *>(1));
4147       }
4148 
4149       if (Record.size() > 13 && Record[13] != 0)
4150         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
4151 
4152       if (Record.size() > 14 && Record[14] != 0)
4153         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
4154 
4155       ValueList.push_back(Func);
4156 
4157       // If this is a function with a body, remember the prototype we are
4158       // creating now, so that we can match up the body with them later.
4159       if (!isProto) {
4160         Func->setIsMaterializable(true);
4161         FunctionsWithBodies.push_back(Func);
4162         DeferredFunctionInfo[Func] = 0;
4163       }
4164       break;
4165     }
4166     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
4167     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
4168     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
4169     case bitc::MODULE_CODE_IFUNC:
4170     case bitc::MODULE_CODE_ALIAS:
4171     case bitc::MODULE_CODE_ALIAS_OLD: {
4172       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4173       if (Record.size() < (3 + (unsigned)NewRecord))
4174         return error("Invalid record");
4175       unsigned OpNum = 0;
4176       Type *Ty = getTypeByID(Record[OpNum++]);
4177       if (!Ty)
4178         return error("Invalid record");
4179 
4180       unsigned AddrSpace;
4181       if (!NewRecord) {
4182         auto *PTy = dyn_cast<PointerType>(Ty);
4183         if (!PTy)
4184           return error("Invalid type for value");
4185         Ty = PTy->getElementType();
4186         AddrSpace = PTy->getAddressSpace();
4187       } else {
4188         AddrSpace = Record[OpNum++];
4189       }
4190 
4191       auto Val = Record[OpNum++];
4192       auto Linkage = Record[OpNum++];
4193       GlobalIndirectSymbol *NewGA;
4194       if (BitCode == bitc::MODULE_CODE_ALIAS ||
4195           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4196         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
4197                                     "", TheModule);
4198       else
4199         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
4200                                     "", nullptr, TheModule);
4201       // Old bitcode files didn't have visibility field.
4202       // Local linkage must have default visibility.
4203       if (OpNum != Record.size()) {
4204         auto VisInd = OpNum++;
4205         if (!NewGA->hasLocalLinkage())
4206           // FIXME: Change to an error if non-default in 4.0.
4207           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4208       }
4209       if (OpNum != Record.size())
4210         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
4211       else
4212         upgradeDLLImportExportLinkage(NewGA, Linkage);
4213       if (OpNum != Record.size())
4214         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4215       if (OpNum != Record.size())
4216         NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4217       ValueList.push_back(NewGA);
4218       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4219       break;
4220     }
4221     /// MODULE_CODE_PURGEVALS: [numvals]
4222     case bitc::MODULE_CODE_PURGEVALS:
4223       // Trim down the value list to the specified size.
4224       if (Record.size() < 1 || Record[0] > ValueList.size())
4225         return error("Invalid record");
4226       ValueList.shrinkTo(Record[0]);
4227       break;
4228     /// MODULE_CODE_VSTOFFSET: [offset]
4229     case bitc::MODULE_CODE_VSTOFFSET:
4230       if (Record.size() < 1)
4231         return error("Invalid record");
4232       VSTOffset = Record[0];
4233       break;
4234     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4235     case bitc::MODULE_CODE_SOURCE_FILENAME:
4236       SmallString<128> ValueName;
4237       if (convertToString(Record, 0, ValueName))
4238         return error("Invalid record");
4239       TheModule->setSourceFileName(ValueName);
4240       break;
4241     }
4242     Record.clear();
4243   }
4244 }
4245 
4246 /// Helper to read the header common to all bitcode files.
4247 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
4248   // Sniff for the signature.
4249   if (!Stream.canSkipToPos(4) ||
4250       Stream.Read(8) != 'B' ||
4251       Stream.Read(8) != 'C' ||
4252       Stream.Read(4) != 0x0 ||
4253       Stream.Read(4) != 0xC ||
4254       Stream.Read(4) != 0xE ||
4255       Stream.Read(4) != 0xD)
4256     return false;
4257   return true;
4258 }
4259 
4260 std::error_code BitcodeReader::parseBitcodeInto(Module *M,
4261                                                 bool ShouldLazyLoadMetadata) {
4262   TheModule = M;
4263 
4264   if (std::error_code EC = initStream())
4265     return EC;
4266 
4267   // Sniff for the signature.
4268   if (!hasValidBitcodeHeader(Stream))
4269     return error("Invalid bitcode signature");
4270 
4271   // We expect a number of well-defined blocks, though we don't necessarily
4272   // need to understand them all.
4273   while (true) {
4274     if (Stream.AtEndOfStream()) {
4275       // We didn't really read a proper Module.
4276       return error("Malformed IR file");
4277     }
4278 
4279     BitstreamEntry Entry =
4280       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
4281 
4282     if (Entry.Kind != BitstreamEntry::SubBlock)
4283       return error("Malformed block");
4284 
4285     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4286       parseBitcodeVersion();
4287       continue;
4288     }
4289 
4290     if (Entry.ID == bitc::MODULE_BLOCK_ID)
4291       return parseModule(0, ShouldLazyLoadMetadata);
4292 
4293     if (Stream.SkipBlock())
4294       return error("Invalid record");
4295   }
4296 }
4297 
4298 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
4299   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4300     return error("Invalid record");
4301 
4302   SmallVector<uint64_t, 64> Record;
4303 
4304   std::string Triple;
4305 
4306   // Read all the records for this module.
4307   while (true) {
4308     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4309 
4310     switch (Entry.Kind) {
4311     case BitstreamEntry::SubBlock: // Handled for us already.
4312     case BitstreamEntry::Error:
4313       return error("Malformed block");
4314     case BitstreamEntry::EndBlock:
4315       return Triple;
4316     case BitstreamEntry::Record:
4317       // The interesting case.
4318       break;
4319     }
4320 
4321     // Read a record.
4322     switch (Stream.readRecord(Entry.ID, Record)) {
4323     default: break;  // Default behavior, ignore unknown content.
4324     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4325       std::string S;
4326       if (convertToString(Record, 0, S))
4327         return error("Invalid record");
4328       Triple = S;
4329       break;
4330     }
4331     }
4332     Record.clear();
4333   }
4334   llvm_unreachable("Exit infinite loop");
4335 }
4336 
4337 ErrorOr<std::string> BitcodeReader::parseTriple() {
4338   if (std::error_code EC = initStream())
4339     return EC;
4340 
4341   // Sniff for the signature.
4342   if (!hasValidBitcodeHeader(Stream))
4343     return error("Invalid bitcode signature");
4344 
4345   // We expect a number of well-defined blocks, though we don't necessarily
4346   // need to understand them all.
4347   while (true) {
4348     BitstreamEntry Entry = Stream.advance();
4349 
4350     switch (Entry.Kind) {
4351     case BitstreamEntry::Error:
4352       return error("Malformed block");
4353     case BitstreamEntry::EndBlock:
4354       return std::error_code();
4355 
4356     case BitstreamEntry::SubBlock:
4357       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4358         return parseModuleTriple();
4359 
4360       // Ignore other sub-blocks.
4361       if (Stream.SkipBlock())
4362         return error("Malformed block");
4363       continue;
4364 
4365     case BitstreamEntry::Record:
4366       Stream.skipRecord(Entry.ID);
4367       continue;
4368     }
4369   }
4370 }
4371 
4372 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
4373   if (std::error_code EC = initStream())
4374     return EC;
4375 
4376   // Sniff for the signature.
4377   if (!hasValidBitcodeHeader(Stream))
4378     return error("Invalid bitcode signature");
4379 
4380   // We expect a number of well-defined blocks, though we don't necessarily
4381   // need to understand them all.
4382   while (true) {
4383     BitstreamEntry Entry = Stream.advance();
4384     switch (Entry.Kind) {
4385     case BitstreamEntry::Error:
4386       return error("Malformed block");
4387     case BitstreamEntry::EndBlock:
4388       return std::error_code();
4389 
4390     case BitstreamEntry::SubBlock:
4391       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4392         if (std::error_code EC = parseBitcodeVersion())
4393           return EC;
4394         return ProducerIdentification;
4395       }
4396       // Ignore other sub-blocks.
4397       if (Stream.SkipBlock())
4398         return error("Malformed block");
4399       continue;
4400     case BitstreamEntry::Record:
4401       Stream.skipRecord(Entry.ID);
4402       continue;
4403     }
4404   }
4405 }
4406 
4407 std::error_code BitcodeReader::parseGlobalObjectAttachment(
4408     GlobalObject &GO, ArrayRef<uint64_t> Record) {
4409   assert(Record.size() % 2 == 0);
4410   for (unsigned I = 0, E = Record.size(); I != E; I += 2) {
4411     auto K = MDKindMap.find(Record[I]);
4412     if (K == MDKindMap.end())
4413       return error("Invalid ID");
4414     MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
4415     if (!MD)
4416       return error("Invalid metadata attachment");
4417     GO.addMetadata(K->second, *MD);
4418   }
4419   return std::error_code();
4420 }
4421 
4422 ErrorOr<bool> BitcodeReader::hasObjCCategory() {
4423   if (std::error_code EC = initStream())
4424     return EC;
4425 
4426   // Sniff for the signature.
4427   if (!hasValidBitcodeHeader(Stream))
4428     return error("Invalid bitcode signature");
4429 
4430   // We expect a number of well-defined blocks, though we don't necessarily
4431   // need to understand them all.
4432   while (true) {
4433     BitstreamEntry Entry = Stream.advance();
4434 
4435     switch (Entry.Kind) {
4436     case BitstreamEntry::Error:
4437       return error("Malformed block");
4438     case BitstreamEntry::EndBlock:
4439       return std::error_code();
4440 
4441     case BitstreamEntry::SubBlock:
4442       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4443         return hasObjCCategoryInModule();
4444 
4445       // Ignore other sub-blocks.
4446       if (Stream.SkipBlock())
4447         return error("Malformed block");
4448       continue;
4449 
4450     case BitstreamEntry::Record:
4451       Stream.skipRecord(Entry.ID);
4452       continue;
4453     }
4454   }
4455 }
4456 
4457 ErrorOr<bool> BitcodeReader::hasObjCCategoryInModule() {
4458   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4459     return error("Invalid record");
4460 
4461   SmallVector<uint64_t, 64> Record;
4462   // Read all the records for this module.
4463 
4464   while (true) {
4465     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4466 
4467     switch (Entry.Kind) {
4468     case BitstreamEntry::SubBlock: // Handled for us already.
4469     case BitstreamEntry::Error:
4470       return error("Malformed block");
4471     case BitstreamEntry::EndBlock:
4472       return false;
4473     case BitstreamEntry::Record:
4474       // The interesting case.
4475       break;
4476     }
4477 
4478     // Read a record.
4479     switch (Stream.readRecord(Entry.ID, Record)) {
4480     default:
4481       break; // Default behavior, ignore unknown content.
4482     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
4483       std::string S;
4484       if (convertToString(Record, 0, S))
4485         return error("Invalid record");
4486       // Check for the i386 and other (x86_64, ARM) conventions
4487       if (S.find("__DATA, __objc_catlist") != std::string::npos ||
4488           S.find("__OBJC,__category") != std::string::npos)
4489         return true;
4490       break;
4491     }
4492     }
4493     Record.clear();
4494   }
4495   llvm_unreachable("Exit infinite loop");
4496 }
4497 
4498 /// Parse metadata attachments.
4499 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
4500   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
4501     return error("Invalid record");
4502 
4503   SmallVector<uint64_t, 64> Record;
4504 
4505   while (true) {
4506     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4507 
4508     switch (Entry.Kind) {
4509     case BitstreamEntry::SubBlock: // Handled for us already.
4510     case BitstreamEntry::Error:
4511       return error("Malformed block");
4512     case BitstreamEntry::EndBlock:
4513       return std::error_code();
4514     case BitstreamEntry::Record:
4515       // The interesting case.
4516       break;
4517     }
4518 
4519     // Read a metadata attachment record.
4520     Record.clear();
4521     switch (Stream.readRecord(Entry.ID, Record)) {
4522     default:  // Default behavior: ignore.
4523       break;
4524     case bitc::METADATA_ATTACHMENT: {
4525       unsigned RecordLength = Record.size();
4526       if (Record.empty())
4527         return error("Invalid record");
4528       if (RecordLength % 2 == 0) {
4529         // A function attachment.
4530         if (std::error_code EC = parseGlobalObjectAttachment(F, Record))
4531           return EC;
4532         continue;
4533       }
4534 
4535       // An instruction attachment.
4536       Instruction *Inst = InstructionList[Record[0]];
4537       for (unsigned i = 1; i != RecordLength; i = i+2) {
4538         unsigned Kind = Record[i];
4539         DenseMap<unsigned, unsigned>::iterator I =
4540           MDKindMap.find(Kind);
4541         if (I == MDKindMap.end())
4542           return error("Invalid ID");
4543         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
4544         if (isa<LocalAsMetadata>(Node))
4545           // Drop the attachment.  This used to be legal, but there's no
4546           // upgrade path.
4547           break;
4548         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4549         if (!MD)
4550           return error("Invalid metadata attachment");
4551 
4552         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4553           MD = upgradeInstructionLoopAttachment(*MD);
4554 
4555         if (I->second == LLVMContext::MD_tbaa) {
4556           assert(!MD->isTemporary() && "should load MDs before attachments");
4557           MD = UpgradeTBAANode(*MD);
4558         }
4559         Inst->setMetadata(I->second, MD);
4560       }
4561       break;
4562     }
4563     }
4564   }
4565 }
4566 
4567 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4568   LLVMContext &Context = PtrType->getContext();
4569   if (!isa<PointerType>(PtrType))
4570     return error(Context, "Load/Store operand is not a pointer type");
4571   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4572 
4573   if (ValType && ValType != ElemType)
4574     return error(Context, "Explicit load/store type does not match pointee "
4575                           "type of pointer operand");
4576   if (!PointerType::isLoadableOrStorableType(ElemType))
4577     return error(Context, "Cannot load/store from pointer");
4578   return std::error_code();
4579 }
4580 
4581 /// Lazily parse the specified function body block.
4582 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
4583   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4584     return error("Invalid record");
4585 
4586   // Unexpected unresolved metadata when parsing function.
4587   if (MetadataList.hasFwdRefs())
4588     return error("Invalid function metadata: incoming forward references");
4589 
4590   InstructionList.clear();
4591   unsigned ModuleValueListSize = ValueList.size();
4592   unsigned ModuleMetadataListSize = MetadataList.size();
4593 
4594   // Add all the function arguments to the value table.
4595   for (Argument &I : F->args())
4596     ValueList.push_back(&I);
4597 
4598   unsigned NextValueNo = ValueList.size();
4599   BasicBlock *CurBB = nullptr;
4600   unsigned CurBBNo = 0;
4601 
4602   DebugLoc LastLoc;
4603   auto getLastInstruction = [&]() -> Instruction * {
4604     if (CurBB && !CurBB->empty())
4605       return &CurBB->back();
4606     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4607              !FunctionBBs[CurBBNo - 1]->empty())
4608       return &FunctionBBs[CurBBNo - 1]->back();
4609     return nullptr;
4610   };
4611 
4612   std::vector<OperandBundleDef> OperandBundles;
4613 
4614   // Read all the records.
4615   SmallVector<uint64_t, 64> Record;
4616 
4617   while (true) {
4618     BitstreamEntry Entry = Stream.advance();
4619 
4620     switch (Entry.Kind) {
4621     case BitstreamEntry::Error:
4622       return error("Malformed block");
4623     case BitstreamEntry::EndBlock:
4624       goto OutOfRecordLoop;
4625 
4626     case BitstreamEntry::SubBlock:
4627       switch (Entry.ID) {
4628       default:  // Skip unknown content.
4629         if (Stream.SkipBlock())
4630           return error("Invalid record");
4631         break;
4632       case bitc::CONSTANTS_BLOCK_ID:
4633         if (std::error_code EC = parseConstants())
4634           return EC;
4635         NextValueNo = ValueList.size();
4636         break;
4637       case bitc::VALUE_SYMTAB_BLOCK_ID:
4638         if (std::error_code EC = parseValueSymbolTable())
4639           return EC;
4640         break;
4641       case bitc::METADATA_ATTACHMENT_ID:
4642         if (std::error_code EC = parseMetadataAttachment(*F))
4643           return EC;
4644         break;
4645       case bitc::METADATA_BLOCK_ID:
4646         if (std::error_code EC = parseMetadata())
4647           return EC;
4648         break;
4649       case bitc::USELIST_BLOCK_ID:
4650         if (std::error_code EC = parseUseLists())
4651           return EC;
4652         break;
4653       }
4654       continue;
4655 
4656     case BitstreamEntry::Record:
4657       // The interesting case.
4658       break;
4659     }
4660 
4661     // Read a record.
4662     Record.clear();
4663     Instruction *I = nullptr;
4664     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4665     switch (BitCode) {
4666     default: // Default behavior: reject
4667       return error("Invalid value");
4668     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4669       if (Record.size() < 1 || Record[0] == 0)
4670         return error("Invalid record");
4671       // Create all the basic blocks for the function.
4672       FunctionBBs.resize(Record[0]);
4673 
4674       // See if anything took the address of blocks in this function.
4675       auto BBFRI = BasicBlockFwdRefs.find(F);
4676       if (BBFRI == BasicBlockFwdRefs.end()) {
4677         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4678           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4679       } else {
4680         auto &BBRefs = BBFRI->second;
4681         // Check for invalid basic block references.
4682         if (BBRefs.size() > FunctionBBs.size())
4683           return error("Invalid ID");
4684         assert(!BBRefs.empty() && "Unexpected empty array");
4685         assert(!BBRefs.front() && "Invalid reference to entry block");
4686         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4687              ++I)
4688           if (I < RE && BBRefs[I]) {
4689             BBRefs[I]->insertInto(F);
4690             FunctionBBs[I] = BBRefs[I];
4691           } else {
4692             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4693           }
4694 
4695         // Erase from the table.
4696         BasicBlockFwdRefs.erase(BBFRI);
4697       }
4698 
4699       CurBB = FunctionBBs[0];
4700       continue;
4701     }
4702 
4703     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4704       // This record indicates that the last instruction is at the same
4705       // location as the previous instruction with a location.
4706       I = getLastInstruction();
4707 
4708       if (!I)
4709         return error("Invalid record");
4710       I->setDebugLoc(LastLoc);
4711       I = nullptr;
4712       continue;
4713 
4714     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4715       I = getLastInstruction();
4716       if (!I || Record.size() < 4)
4717         return error("Invalid record");
4718 
4719       unsigned Line = Record[0], Col = Record[1];
4720       unsigned ScopeID = Record[2], IAID = Record[3];
4721 
4722       MDNode *Scope = nullptr, *IA = nullptr;
4723       if (ScopeID) {
4724         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4725         if (!Scope)
4726           return error("Invalid record");
4727       }
4728       if (IAID) {
4729         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4730         if (!IA)
4731           return error("Invalid record");
4732       }
4733       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4734       I->setDebugLoc(LastLoc);
4735       I = nullptr;
4736       continue;
4737     }
4738 
4739     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4740       unsigned OpNum = 0;
4741       Value *LHS, *RHS;
4742       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4743           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4744           OpNum+1 > Record.size())
4745         return error("Invalid record");
4746 
4747       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4748       if (Opc == -1)
4749         return error("Invalid record");
4750       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4751       InstructionList.push_back(I);
4752       if (OpNum < Record.size()) {
4753         if (Opc == Instruction::Add ||
4754             Opc == Instruction::Sub ||
4755             Opc == Instruction::Mul ||
4756             Opc == Instruction::Shl) {
4757           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4758             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4759           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4760             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4761         } else if (Opc == Instruction::SDiv ||
4762                    Opc == Instruction::UDiv ||
4763                    Opc == Instruction::LShr ||
4764                    Opc == Instruction::AShr) {
4765           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4766             cast<BinaryOperator>(I)->setIsExact(true);
4767         } else if (isa<FPMathOperator>(I)) {
4768           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4769           if (FMF.any())
4770             I->setFastMathFlags(FMF);
4771         }
4772 
4773       }
4774       break;
4775     }
4776     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4777       unsigned OpNum = 0;
4778       Value *Op;
4779       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4780           OpNum+2 != Record.size())
4781         return error("Invalid record");
4782 
4783       Type *ResTy = getTypeByID(Record[OpNum]);
4784       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4785       if (Opc == -1 || !ResTy)
4786         return error("Invalid record");
4787       Instruction *Temp = nullptr;
4788       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4789         if (Temp) {
4790           InstructionList.push_back(Temp);
4791           CurBB->getInstList().push_back(Temp);
4792         }
4793       } else {
4794         auto CastOp = (Instruction::CastOps)Opc;
4795         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4796           return error("Invalid cast");
4797         I = CastInst::Create(CastOp, Op, ResTy);
4798       }
4799       InstructionList.push_back(I);
4800       break;
4801     }
4802     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4803     case bitc::FUNC_CODE_INST_GEP_OLD:
4804     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4805       unsigned OpNum = 0;
4806 
4807       Type *Ty;
4808       bool InBounds;
4809 
4810       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4811         InBounds = Record[OpNum++];
4812         Ty = getTypeByID(Record[OpNum++]);
4813       } else {
4814         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4815         Ty = nullptr;
4816       }
4817 
4818       Value *BasePtr;
4819       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4820         return error("Invalid record");
4821 
4822       if (!Ty)
4823         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4824                  ->getElementType();
4825       else if (Ty !=
4826                cast<SequentialType>(BasePtr->getType()->getScalarType())
4827                    ->getElementType())
4828         return error(
4829             "Explicit gep type does not match pointee type of pointer operand");
4830 
4831       SmallVector<Value*, 16> GEPIdx;
4832       while (OpNum != Record.size()) {
4833         Value *Op;
4834         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4835           return error("Invalid record");
4836         GEPIdx.push_back(Op);
4837       }
4838 
4839       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4840 
4841       InstructionList.push_back(I);
4842       if (InBounds)
4843         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4844       break;
4845     }
4846 
4847     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4848                                        // EXTRACTVAL: [opty, opval, n x indices]
4849       unsigned OpNum = 0;
4850       Value *Agg;
4851       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4852         return error("Invalid record");
4853 
4854       unsigned RecSize = Record.size();
4855       if (OpNum == RecSize)
4856         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4857 
4858       SmallVector<unsigned, 4> EXTRACTVALIdx;
4859       Type *CurTy = Agg->getType();
4860       for (; OpNum != RecSize; ++OpNum) {
4861         bool IsArray = CurTy->isArrayTy();
4862         bool IsStruct = CurTy->isStructTy();
4863         uint64_t Index = Record[OpNum];
4864 
4865         if (!IsStruct && !IsArray)
4866           return error("EXTRACTVAL: Invalid type");
4867         if ((unsigned)Index != Index)
4868           return error("Invalid value");
4869         if (IsStruct && Index >= CurTy->subtypes().size())
4870           return error("EXTRACTVAL: Invalid struct index");
4871         if (IsArray && Index >= CurTy->getArrayNumElements())
4872           return error("EXTRACTVAL: Invalid array index");
4873         EXTRACTVALIdx.push_back((unsigned)Index);
4874 
4875         if (IsStruct)
4876           CurTy = CurTy->subtypes()[Index];
4877         else
4878           CurTy = CurTy->subtypes()[0];
4879       }
4880 
4881       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4882       InstructionList.push_back(I);
4883       break;
4884     }
4885 
4886     case bitc::FUNC_CODE_INST_INSERTVAL: {
4887                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4888       unsigned OpNum = 0;
4889       Value *Agg;
4890       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4891         return error("Invalid record");
4892       Value *Val;
4893       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4894         return error("Invalid record");
4895 
4896       unsigned RecSize = Record.size();
4897       if (OpNum == RecSize)
4898         return error("INSERTVAL: Invalid instruction with 0 indices");
4899 
4900       SmallVector<unsigned, 4> INSERTVALIdx;
4901       Type *CurTy = Agg->getType();
4902       for (; OpNum != RecSize; ++OpNum) {
4903         bool IsArray = CurTy->isArrayTy();
4904         bool IsStruct = CurTy->isStructTy();
4905         uint64_t Index = Record[OpNum];
4906 
4907         if (!IsStruct && !IsArray)
4908           return error("INSERTVAL: Invalid type");
4909         if ((unsigned)Index != Index)
4910           return error("Invalid value");
4911         if (IsStruct && Index >= CurTy->subtypes().size())
4912           return error("INSERTVAL: Invalid struct index");
4913         if (IsArray && Index >= CurTy->getArrayNumElements())
4914           return error("INSERTVAL: Invalid array index");
4915 
4916         INSERTVALIdx.push_back((unsigned)Index);
4917         if (IsStruct)
4918           CurTy = CurTy->subtypes()[Index];
4919         else
4920           CurTy = CurTy->subtypes()[0];
4921       }
4922 
4923       if (CurTy != Val->getType())
4924         return error("Inserted value type doesn't match aggregate type");
4925 
4926       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4927       InstructionList.push_back(I);
4928       break;
4929     }
4930 
4931     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4932       // obsolete form of select
4933       // handles select i1 ... in old bitcode
4934       unsigned OpNum = 0;
4935       Value *TrueVal, *FalseVal, *Cond;
4936       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4937           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4938           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4939         return error("Invalid record");
4940 
4941       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4942       InstructionList.push_back(I);
4943       break;
4944     }
4945 
4946     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4947       // new form of select
4948       // handles select i1 or select [N x i1]
4949       unsigned OpNum = 0;
4950       Value *TrueVal, *FalseVal, *Cond;
4951       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4952           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4953           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4954         return error("Invalid record");
4955 
4956       // select condition can be either i1 or [N x i1]
4957       if (VectorType* vector_type =
4958           dyn_cast<VectorType>(Cond->getType())) {
4959         // expect <n x i1>
4960         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4961           return error("Invalid type for value");
4962       } else {
4963         // expect i1
4964         if (Cond->getType() != Type::getInt1Ty(Context))
4965           return error("Invalid type for value");
4966       }
4967 
4968       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4969       InstructionList.push_back(I);
4970       break;
4971     }
4972 
4973     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4974       unsigned OpNum = 0;
4975       Value *Vec, *Idx;
4976       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4977           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4978         return error("Invalid record");
4979       if (!Vec->getType()->isVectorTy())
4980         return error("Invalid type for value");
4981       I = ExtractElementInst::Create(Vec, Idx);
4982       InstructionList.push_back(I);
4983       break;
4984     }
4985 
4986     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4987       unsigned OpNum = 0;
4988       Value *Vec, *Elt, *Idx;
4989       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4990         return error("Invalid record");
4991       if (!Vec->getType()->isVectorTy())
4992         return error("Invalid type for value");
4993       if (popValue(Record, OpNum, NextValueNo,
4994                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4995           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4996         return error("Invalid record");
4997       I = InsertElementInst::Create(Vec, Elt, Idx);
4998       InstructionList.push_back(I);
4999       break;
5000     }
5001 
5002     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5003       unsigned OpNum = 0;
5004       Value *Vec1, *Vec2, *Mask;
5005       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
5006           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
5007         return error("Invalid record");
5008 
5009       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
5010         return error("Invalid record");
5011       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5012         return error("Invalid type for value");
5013       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5014       InstructionList.push_back(I);
5015       break;
5016     }
5017 
5018     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5019       // Old form of ICmp/FCmp returning bool
5020       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5021       // both legal on vectors but had different behaviour.
5022     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5023       // FCmp/ICmp returning bool or vector of bool
5024 
5025       unsigned OpNum = 0;
5026       Value *LHS, *RHS;
5027       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
5028           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
5029         return error("Invalid record");
5030 
5031       unsigned PredVal = Record[OpNum];
5032       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5033       FastMathFlags FMF;
5034       if (IsFP && Record.size() > OpNum+1)
5035         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5036 
5037       if (OpNum+1 != Record.size())
5038         return error("Invalid record");
5039 
5040       if (LHS->getType()->isFPOrFPVectorTy())
5041         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5042       else
5043         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5044 
5045       if (FMF.any())
5046         I->setFastMathFlags(FMF);
5047       InstructionList.push_back(I);
5048       break;
5049     }
5050 
5051     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5052       {
5053         unsigned Size = Record.size();
5054         if (Size == 0) {
5055           I = ReturnInst::Create(Context);
5056           InstructionList.push_back(I);
5057           break;
5058         }
5059 
5060         unsigned OpNum = 0;
5061         Value *Op = nullptr;
5062         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5063           return error("Invalid record");
5064         if (OpNum != Record.size())
5065           return error("Invalid record");
5066 
5067         I = ReturnInst::Create(Context, Op);
5068         InstructionList.push_back(I);
5069         break;
5070       }
5071     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5072       if (Record.size() != 1 && Record.size() != 3)
5073         return error("Invalid record");
5074       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5075       if (!TrueDest)
5076         return error("Invalid record");
5077 
5078       if (Record.size() == 1) {
5079         I = BranchInst::Create(TrueDest);
5080         InstructionList.push_back(I);
5081       }
5082       else {
5083         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5084         Value *Cond = getValue(Record, 2, NextValueNo,
5085                                Type::getInt1Ty(Context));
5086         if (!FalseDest || !Cond)
5087           return error("Invalid record");
5088         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5089         InstructionList.push_back(I);
5090       }
5091       break;
5092     }
5093     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5094       if (Record.size() != 1 && Record.size() != 2)
5095         return error("Invalid record");
5096       unsigned Idx = 0;
5097       Value *CleanupPad =
5098           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5099       if (!CleanupPad)
5100         return error("Invalid record");
5101       BasicBlock *UnwindDest = nullptr;
5102       if (Record.size() == 2) {
5103         UnwindDest = getBasicBlock(Record[Idx++]);
5104         if (!UnwindDest)
5105           return error("Invalid record");
5106       }
5107 
5108       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5109       InstructionList.push_back(I);
5110       break;
5111     }
5112     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5113       if (Record.size() != 2)
5114         return error("Invalid record");
5115       unsigned Idx = 0;
5116       Value *CatchPad =
5117           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5118       if (!CatchPad)
5119         return error("Invalid record");
5120       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5121       if (!BB)
5122         return error("Invalid record");
5123 
5124       I = CatchReturnInst::Create(CatchPad, BB);
5125       InstructionList.push_back(I);
5126       break;
5127     }
5128     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5129       // We must have, at minimum, the outer scope and the number of arguments.
5130       if (Record.size() < 2)
5131         return error("Invalid record");
5132 
5133       unsigned Idx = 0;
5134 
5135       Value *ParentPad =
5136           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5137 
5138       unsigned NumHandlers = Record[Idx++];
5139 
5140       SmallVector<BasicBlock *, 2> Handlers;
5141       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5142         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5143         if (!BB)
5144           return error("Invalid record");
5145         Handlers.push_back(BB);
5146       }
5147 
5148       BasicBlock *UnwindDest = nullptr;
5149       if (Idx + 1 == Record.size()) {
5150         UnwindDest = getBasicBlock(Record[Idx++]);
5151         if (!UnwindDest)
5152           return error("Invalid record");
5153       }
5154 
5155       if (Record.size() != Idx)
5156         return error("Invalid record");
5157 
5158       auto *CatchSwitch =
5159           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5160       for (BasicBlock *Handler : Handlers)
5161         CatchSwitch->addHandler(Handler);
5162       I = CatchSwitch;
5163       InstructionList.push_back(I);
5164       break;
5165     }
5166     case bitc::FUNC_CODE_INST_CATCHPAD:
5167     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5168       // We must have, at minimum, the outer scope and the number of arguments.
5169       if (Record.size() < 2)
5170         return error("Invalid record");
5171 
5172       unsigned Idx = 0;
5173 
5174       Value *ParentPad =
5175           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5176 
5177       unsigned NumArgOperands = Record[Idx++];
5178 
5179       SmallVector<Value *, 2> Args;
5180       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5181         Value *Val;
5182         if (getValueTypePair(Record, Idx, NextValueNo, Val))
5183           return error("Invalid record");
5184         Args.push_back(Val);
5185       }
5186 
5187       if (Record.size() != Idx)
5188         return error("Invalid record");
5189 
5190       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5191         I = CleanupPadInst::Create(ParentPad, Args);
5192       else
5193         I = CatchPadInst::Create(ParentPad, Args);
5194       InstructionList.push_back(I);
5195       break;
5196     }
5197     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5198       // Check magic
5199       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5200         // "New" SwitchInst format with case ranges. The changes to write this
5201         // format were reverted but we still recognize bitcode that uses it.
5202         // Hopefully someday we will have support for case ranges and can use
5203         // this format again.
5204 
5205         Type *OpTy = getTypeByID(Record[1]);
5206         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5207 
5208         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
5209         BasicBlock *Default = getBasicBlock(Record[3]);
5210         if (!OpTy || !Cond || !Default)
5211           return error("Invalid record");
5212 
5213         unsigned NumCases = Record[4];
5214 
5215         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5216         InstructionList.push_back(SI);
5217 
5218         unsigned CurIdx = 5;
5219         for (unsigned i = 0; i != NumCases; ++i) {
5220           SmallVector<ConstantInt*, 1> CaseVals;
5221           unsigned NumItems = Record[CurIdx++];
5222           for (unsigned ci = 0; ci != NumItems; ++ci) {
5223             bool isSingleNumber = Record[CurIdx++];
5224 
5225             APInt Low;
5226             unsigned ActiveWords = 1;
5227             if (ValueBitWidth > 64)
5228               ActiveWords = Record[CurIdx++];
5229             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
5230                                 ValueBitWidth);
5231             CurIdx += ActiveWords;
5232 
5233             if (!isSingleNumber) {
5234               ActiveWords = 1;
5235               if (ValueBitWidth > 64)
5236                 ActiveWords = Record[CurIdx++];
5237               APInt High = readWideAPInt(
5238                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5239               CurIdx += ActiveWords;
5240 
5241               // FIXME: It is not clear whether values in the range should be
5242               // compared as signed or unsigned values. The partially
5243               // implemented changes that used this format in the past used
5244               // unsigned comparisons.
5245               for ( ; Low.ule(High); ++Low)
5246                 CaseVals.push_back(ConstantInt::get(Context, Low));
5247             } else
5248               CaseVals.push_back(ConstantInt::get(Context, Low));
5249           }
5250           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5251           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
5252                  cve = CaseVals.end(); cvi != cve; ++cvi)
5253             SI->addCase(*cvi, DestBB);
5254         }
5255         I = SI;
5256         break;
5257       }
5258 
5259       // Old SwitchInst format without case ranges.
5260 
5261       if (Record.size() < 3 || (Record.size() & 1) == 0)
5262         return error("Invalid record");
5263       Type *OpTy = getTypeByID(Record[0]);
5264       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
5265       BasicBlock *Default = getBasicBlock(Record[2]);
5266       if (!OpTy || !Cond || !Default)
5267         return error("Invalid record");
5268       unsigned NumCases = (Record.size()-3)/2;
5269       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5270       InstructionList.push_back(SI);
5271       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5272         ConstantInt *CaseVal =
5273           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
5274         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5275         if (!CaseVal || !DestBB) {
5276           delete SI;
5277           return error("Invalid record");
5278         }
5279         SI->addCase(CaseVal, DestBB);
5280       }
5281       I = SI;
5282       break;
5283     }
5284     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5285       if (Record.size() < 2)
5286         return error("Invalid record");
5287       Type *OpTy = getTypeByID(Record[0]);
5288       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
5289       if (!OpTy || !Address)
5290         return error("Invalid record");
5291       unsigned NumDests = Record.size()-2;
5292       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5293       InstructionList.push_back(IBI);
5294       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5295         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5296           IBI->addDestination(DestBB);
5297         } else {
5298           delete IBI;
5299           return error("Invalid record");
5300         }
5301       }
5302       I = IBI;
5303       break;
5304     }
5305 
5306     case bitc::FUNC_CODE_INST_INVOKE: {
5307       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5308       if (Record.size() < 4)
5309         return error("Invalid record");
5310       unsigned OpNum = 0;
5311       AttributeSet PAL = getAttributes(Record[OpNum++]);
5312       unsigned CCInfo = Record[OpNum++];
5313       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5314       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5315 
5316       FunctionType *FTy = nullptr;
5317       if (CCInfo >> 13 & 1 &&
5318           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5319         return error("Explicit invoke type is not a function type");
5320 
5321       Value *Callee;
5322       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5323         return error("Invalid record");
5324 
5325       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5326       if (!CalleeTy)
5327         return error("Callee is not a pointer");
5328       if (!FTy) {
5329         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
5330         if (!FTy)
5331           return error("Callee is not of pointer to function type");
5332       } else if (CalleeTy->getElementType() != FTy)
5333         return error("Explicit invoke type does not match pointee type of "
5334                      "callee operand");
5335       if (Record.size() < FTy->getNumParams() + OpNum)
5336         return error("Insufficient operands to call");
5337 
5338       SmallVector<Value*, 16> Ops;
5339       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5340         Ops.push_back(getValue(Record, OpNum, NextValueNo,
5341                                FTy->getParamType(i)));
5342         if (!Ops.back())
5343           return error("Invalid record");
5344       }
5345 
5346       if (!FTy->isVarArg()) {
5347         if (Record.size() != OpNum)
5348           return error("Invalid record");
5349       } else {
5350         // Read type/value pairs for varargs params.
5351         while (OpNum != Record.size()) {
5352           Value *Op;
5353           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5354             return error("Invalid record");
5355           Ops.push_back(Op);
5356         }
5357       }
5358 
5359       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
5360       OperandBundles.clear();
5361       InstructionList.push_back(I);
5362       cast<InvokeInst>(I)->setCallingConv(
5363           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5364       cast<InvokeInst>(I)->setAttributes(PAL);
5365       break;
5366     }
5367     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5368       unsigned Idx = 0;
5369       Value *Val = nullptr;
5370       if (getValueTypePair(Record, Idx, NextValueNo, Val))
5371         return error("Invalid record");
5372       I = ResumeInst::Create(Val);
5373       InstructionList.push_back(I);
5374       break;
5375     }
5376     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5377       I = new UnreachableInst(Context);
5378       InstructionList.push_back(I);
5379       break;
5380     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5381       if (Record.size() < 1 || ((Record.size()-1)&1))
5382         return error("Invalid record");
5383       Type *Ty = getTypeByID(Record[0]);
5384       if (!Ty)
5385         return error("Invalid record");
5386 
5387       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
5388       InstructionList.push_back(PN);
5389 
5390       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
5391         Value *V;
5392         // With the new function encoding, it is possible that operands have
5393         // negative IDs (for forward references).  Use a signed VBR
5394         // representation to keep the encoding small.
5395         if (UseRelativeIDs)
5396           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
5397         else
5398           V = getValue(Record, 1+i, NextValueNo, Ty);
5399         BasicBlock *BB = getBasicBlock(Record[2+i]);
5400         if (!V || !BB)
5401           return error("Invalid record");
5402         PN->addIncoming(V, BB);
5403       }
5404       I = PN;
5405       break;
5406     }
5407 
5408     case bitc::FUNC_CODE_INST_LANDINGPAD:
5409     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5410       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5411       unsigned Idx = 0;
5412       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5413         if (Record.size() < 3)
5414           return error("Invalid record");
5415       } else {
5416         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5417         if (Record.size() < 4)
5418           return error("Invalid record");
5419       }
5420       Type *Ty = getTypeByID(Record[Idx++]);
5421       if (!Ty)
5422         return error("Invalid record");
5423       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5424         Value *PersFn = nullptr;
5425         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
5426           return error("Invalid record");
5427 
5428         if (!F->hasPersonalityFn())
5429           F->setPersonalityFn(cast<Constant>(PersFn));
5430         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5431           return error("Personality function mismatch");
5432       }
5433 
5434       bool IsCleanup = !!Record[Idx++];
5435       unsigned NumClauses = Record[Idx++];
5436       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5437       LP->setCleanup(IsCleanup);
5438       for (unsigned J = 0; J != NumClauses; ++J) {
5439         LandingPadInst::ClauseType CT =
5440           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5441         Value *Val;
5442 
5443         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
5444           delete LP;
5445           return error("Invalid record");
5446         }
5447 
5448         assert((CT != LandingPadInst::Catch ||
5449                 !isa<ArrayType>(Val->getType())) &&
5450                "Catch clause has a invalid type!");
5451         assert((CT != LandingPadInst::Filter ||
5452                 isa<ArrayType>(Val->getType())) &&
5453                "Filter clause has invalid type!");
5454         LP->addClause(cast<Constant>(Val));
5455       }
5456 
5457       I = LP;
5458       InstructionList.push_back(I);
5459       break;
5460     }
5461 
5462     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5463       if (Record.size() != 4)
5464         return error("Invalid record");
5465       uint64_t AlignRecord = Record[3];
5466       const uint64_t InAllocaMask = uint64_t(1) << 5;
5467       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
5468       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
5469       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
5470                                 SwiftErrorMask;
5471       bool InAlloca = AlignRecord & InAllocaMask;
5472       bool SwiftError = AlignRecord & SwiftErrorMask;
5473       Type *Ty = getTypeByID(Record[0]);
5474       if ((AlignRecord & ExplicitTypeMask) == 0) {
5475         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5476         if (!PTy)
5477           return error("Old-style alloca with a non-pointer type");
5478         Ty = PTy->getElementType();
5479       }
5480       Type *OpTy = getTypeByID(Record[1]);
5481       Value *Size = getFnValueByID(Record[2], OpTy);
5482       unsigned Align;
5483       if (std::error_code EC =
5484               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
5485         return EC;
5486       }
5487       if (!Ty || !Size)
5488         return error("Invalid record");
5489       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
5490       AI->setUsedWithInAlloca(InAlloca);
5491       AI->setSwiftError(SwiftError);
5492       I = AI;
5493       InstructionList.push_back(I);
5494       break;
5495     }
5496     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5497       unsigned OpNum = 0;
5498       Value *Op;
5499       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5500           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5501         return error("Invalid record");
5502 
5503       Type *Ty = nullptr;
5504       if (OpNum + 3 == Record.size())
5505         Ty = getTypeByID(Record[OpNum++]);
5506       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5507         return EC;
5508       if (!Ty)
5509         Ty = cast<PointerType>(Op->getType())->getElementType();
5510 
5511       unsigned Align;
5512       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5513         return EC;
5514       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
5515 
5516       InstructionList.push_back(I);
5517       break;
5518     }
5519     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5520        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
5521       unsigned OpNum = 0;
5522       Value *Op;
5523       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5524           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5525         return error("Invalid record");
5526 
5527       Type *Ty = nullptr;
5528       if (OpNum + 5 == Record.size())
5529         Ty = getTypeByID(Record[OpNum++]);
5530       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5531         return EC;
5532       if (!Ty)
5533         Ty = cast<PointerType>(Op->getType())->getElementType();
5534 
5535       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5536       if (Ordering == AtomicOrdering::NotAtomic ||
5537           Ordering == AtomicOrdering::Release ||
5538           Ordering == AtomicOrdering::AcquireRelease)
5539         return error("Invalid record");
5540       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5541         return error("Invalid record");
5542       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5543 
5544       unsigned Align;
5545       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5546         return EC;
5547       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
5548 
5549       InstructionList.push_back(I);
5550       break;
5551     }
5552     case bitc::FUNC_CODE_INST_STORE:
5553     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5554       unsigned OpNum = 0;
5555       Value *Val, *Ptr;
5556       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5557           (BitCode == bitc::FUNC_CODE_INST_STORE
5558                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5559                : popValue(Record, OpNum, NextValueNo,
5560                           cast<PointerType>(Ptr->getType())->getElementType(),
5561                           Val)) ||
5562           OpNum + 2 != Record.size())
5563         return error("Invalid record");
5564 
5565       if (std::error_code EC =
5566               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5567         return EC;
5568       unsigned Align;
5569       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5570         return EC;
5571       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5572       InstructionList.push_back(I);
5573       break;
5574     }
5575     case bitc::FUNC_CODE_INST_STOREATOMIC:
5576     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5577       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5578       unsigned OpNum = 0;
5579       Value *Val, *Ptr;
5580       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5581           !isa<PointerType>(Ptr->getType()) ||
5582           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5583                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5584                : popValue(Record, OpNum, NextValueNo,
5585                           cast<PointerType>(Ptr->getType())->getElementType(),
5586                           Val)) ||
5587           OpNum + 4 != Record.size())
5588         return error("Invalid record");
5589 
5590       if (std::error_code EC =
5591               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5592         return EC;
5593       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5594       if (Ordering == AtomicOrdering::NotAtomic ||
5595           Ordering == AtomicOrdering::Acquire ||
5596           Ordering == AtomicOrdering::AcquireRelease)
5597         return error("Invalid record");
5598       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5599       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5600         return error("Invalid record");
5601 
5602       unsigned Align;
5603       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5604         return EC;
5605       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5606       InstructionList.push_back(I);
5607       break;
5608     }
5609     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5610     case bitc::FUNC_CODE_INST_CMPXCHG: {
5611       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5612       //          failureordering?, isweak?]
5613       unsigned OpNum = 0;
5614       Value *Ptr, *Cmp, *New;
5615       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5616           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5617                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5618                : popValue(Record, OpNum, NextValueNo,
5619                           cast<PointerType>(Ptr->getType())->getElementType(),
5620                           Cmp)) ||
5621           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5622           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5623         return error("Invalid record");
5624       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5625       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5626           SuccessOrdering == AtomicOrdering::Unordered)
5627         return error("Invalid record");
5628       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5629 
5630       if (std::error_code EC =
5631               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5632         return EC;
5633       AtomicOrdering FailureOrdering;
5634       if (Record.size() < 7)
5635         FailureOrdering =
5636             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5637       else
5638         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5639 
5640       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5641                                 SynchScope);
5642       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5643 
5644       if (Record.size() < 8) {
5645         // Before weak cmpxchgs existed, the instruction simply returned the
5646         // value loaded from memory, so bitcode files from that era will be
5647         // expecting the first component of a modern cmpxchg.
5648         CurBB->getInstList().push_back(I);
5649         I = ExtractValueInst::Create(I, 0);
5650       } else {
5651         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5652       }
5653 
5654       InstructionList.push_back(I);
5655       break;
5656     }
5657     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5658       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5659       unsigned OpNum = 0;
5660       Value *Ptr, *Val;
5661       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5662           !isa<PointerType>(Ptr->getType()) ||
5663           popValue(Record, OpNum, NextValueNo,
5664                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5665           OpNum+4 != Record.size())
5666         return error("Invalid record");
5667       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5668       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5669           Operation > AtomicRMWInst::LAST_BINOP)
5670         return error("Invalid record");
5671       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5672       if (Ordering == AtomicOrdering::NotAtomic ||
5673           Ordering == AtomicOrdering::Unordered)
5674         return error("Invalid record");
5675       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5676       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5677       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5678       InstructionList.push_back(I);
5679       break;
5680     }
5681     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5682       if (2 != Record.size())
5683         return error("Invalid record");
5684       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5685       if (Ordering == AtomicOrdering::NotAtomic ||
5686           Ordering == AtomicOrdering::Unordered ||
5687           Ordering == AtomicOrdering::Monotonic)
5688         return error("Invalid record");
5689       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5690       I = new FenceInst(Context, Ordering, SynchScope);
5691       InstructionList.push_back(I);
5692       break;
5693     }
5694     case bitc::FUNC_CODE_INST_CALL: {
5695       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5696       if (Record.size() < 3)
5697         return error("Invalid record");
5698 
5699       unsigned OpNum = 0;
5700       AttributeSet PAL = getAttributes(Record[OpNum++]);
5701       unsigned CCInfo = Record[OpNum++];
5702 
5703       FastMathFlags FMF;
5704       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5705         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5706         if (!FMF.any())
5707           return error("Fast math flags indicator set for call with no FMF");
5708       }
5709 
5710       FunctionType *FTy = nullptr;
5711       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5712           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5713         return error("Explicit call type is not a function type");
5714 
5715       Value *Callee;
5716       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5717         return error("Invalid record");
5718 
5719       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5720       if (!OpTy)
5721         return error("Callee is not a pointer type");
5722       if (!FTy) {
5723         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5724         if (!FTy)
5725           return error("Callee is not of pointer to function type");
5726       } else if (OpTy->getElementType() != FTy)
5727         return error("Explicit call type does not match pointee type of "
5728                      "callee operand");
5729       if (Record.size() < FTy->getNumParams() + OpNum)
5730         return error("Insufficient operands to call");
5731 
5732       SmallVector<Value*, 16> Args;
5733       // Read the fixed params.
5734       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5735         if (FTy->getParamType(i)->isLabelTy())
5736           Args.push_back(getBasicBlock(Record[OpNum]));
5737         else
5738           Args.push_back(getValue(Record, OpNum, NextValueNo,
5739                                   FTy->getParamType(i)));
5740         if (!Args.back())
5741           return error("Invalid record");
5742       }
5743 
5744       // Read type/value pairs for varargs params.
5745       if (!FTy->isVarArg()) {
5746         if (OpNum != Record.size())
5747           return error("Invalid record");
5748       } else {
5749         while (OpNum != Record.size()) {
5750           Value *Op;
5751           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5752             return error("Invalid record");
5753           Args.push_back(Op);
5754         }
5755       }
5756 
5757       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5758       OperandBundles.clear();
5759       InstructionList.push_back(I);
5760       cast<CallInst>(I)->setCallingConv(
5761           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5762       CallInst::TailCallKind TCK = CallInst::TCK_None;
5763       if (CCInfo & 1 << bitc::CALL_TAIL)
5764         TCK = CallInst::TCK_Tail;
5765       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5766         TCK = CallInst::TCK_MustTail;
5767       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5768         TCK = CallInst::TCK_NoTail;
5769       cast<CallInst>(I)->setTailCallKind(TCK);
5770       cast<CallInst>(I)->setAttributes(PAL);
5771       if (FMF.any()) {
5772         if (!isa<FPMathOperator>(I))
5773           return error("Fast-math-flags specified for call without "
5774                        "floating-point scalar or vector return type");
5775         I->setFastMathFlags(FMF);
5776       }
5777       break;
5778     }
5779     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5780       if (Record.size() < 3)
5781         return error("Invalid record");
5782       Type *OpTy = getTypeByID(Record[0]);
5783       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5784       Type *ResTy = getTypeByID(Record[2]);
5785       if (!OpTy || !Op || !ResTy)
5786         return error("Invalid record");
5787       I = new VAArgInst(Op, ResTy);
5788       InstructionList.push_back(I);
5789       break;
5790     }
5791 
5792     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5793       // A call or an invoke can be optionally prefixed with some variable
5794       // number of operand bundle blocks.  These blocks are read into
5795       // OperandBundles and consumed at the next call or invoke instruction.
5796 
5797       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5798         return error("Invalid record");
5799 
5800       std::vector<Value *> Inputs;
5801 
5802       unsigned OpNum = 1;
5803       while (OpNum != Record.size()) {
5804         Value *Op;
5805         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5806           return error("Invalid record");
5807         Inputs.push_back(Op);
5808       }
5809 
5810       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5811       continue;
5812     }
5813     }
5814 
5815     // Add instruction to end of current BB.  If there is no current BB, reject
5816     // this file.
5817     if (!CurBB) {
5818       delete I;
5819       return error("Invalid instruction with no BB");
5820     }
5821     if (!OperandBundles.empty()) {
5822       delete I;
5823       return error("Operand bundles found with no consumer");
5824     }
5825     CurBB->getInstList().push_back(I);
5826 
5827     // If this was a terminator instruction, move to the next block.
5828     if (isa<TerminatorInst>(I)) {
5829       ++CurBBNo;
5830       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5831     }
5832 
5833     // Non-void values get registered in the value table for future use.
5834     if (I && !I->getType()->isVoidTy())
5835       ValueList.assignValue(I, NextValueNo++);
5836   }
5837 
5838 OutOfRecordLoop:
5839 
5840   if (!OperandBundles.empty())
5841     return error("Operand bundles found with no consumer");
5842 
5843   // Check the function list for unresolved values.
5844   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5845     if (!A->getParent()) {
5846       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5847       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5848         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5849           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5850           delete A;
5851         }
5852       }
5853       return error("Never resolved value found in function");
5854     }
5855   }
5856 
5857   // Unexpected unresolved metadata about to be dropped.
5858   if (MetadataList.hasFwdRefs())
5859     return error("Invalid function metadata: outgoing forward refs");
5860 
5861   // Trim the value list down to the size it was before we parsed this function.
5862   ValueList.shrinkTo(ModuleValueListSize);
5863   MetadataList.shrinkTo(ModuleMetadataListSize);
5864   std::vector<BasicBlock*>().swap(FunctionBBs);
5865   return std::error_code();
5866 }
5867 
5868 /// Find the function body in the bitcode stream
5869 std::error_code BitcodeReader::findFunctionInStream(
5870     Function *F,
5871     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5872   while (DeferredFunctionInfoIterator->second == 0) {
5873     // This is the fallback handling for the old format bitcode that
5874     // didn't contain the function index in the VST, or when we have
5875     // an anonymous function which would not have a VST entry.
5876     // Assert that we have one of those two cases.
5877     assert(VSTOffset == 0 || !F->hasName());
5878     // Parse the next body in the stream and set its position in the
5879     // DeferredFunctionInfo map.
5880     if (std::error_code EC = rememberAndSkipFunctionBodies())
5881       return EC;
5882   }
5883   return std::error_code();
5884 }
5885 
5886 //===----------------------------------------------------------------------===//
5887 // GVMaterializer implementation
5888 //===----------------------------------------------------------------------===//
5889 
5890 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5891 
5892 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5893   Function *F = dyn_cast<Function>(GV);
5894   // If it's not a function or is already material, ignore the request.
5895   if (!F || !F->isMaterializable())
5896     return std::error_code();
5897 
5898   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5899   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5900   // If its position is recorded as 0, its body is somewhere in the stream
5901   // but we haven't seen it yet.
5902   if (DFII->second == 0)
5903     if (std::error_code EC = findFunctionInStream(F, DFII))
5904       return EC;
5905 
5906   // Materialize metadata before parsing any function bodies.
5907   if (std::error_code EC = materializeMetadata())
5908     return EC;
5909 
5910   // Move the bit stream to the saved position of the deferred function body.
5911   Stream.JumpToBit(DFII->second);
5912 
5913   if (std::error_code EC = parseFunctionBody(F))
5914     return EC;
5915   F->setIsMaterializable(false);
5916 
5917   if (StripDebugInfo)
5918     stripDebugInfo(*F);
5919 
5920   // Upgrade any old intrinsic calls in the function.
5921   for (auto &I : UpgradedIntrinsics) {
5922     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5923          UI != UE;) {
5924       User *U = *UI;
5925       ++UI;
5926       if (CallInst *CI = dyn_cast<CallInst>(U))
5927         UpgradeIntrinsicCall(CI, I.second);
5928     }
5929   }
5930 
5931   // Update calls to the remangled intrinsics
5932   for (auto &I : RemangledIntrinsics)
5933     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5934          UI != UE;)
5935       // Don't expect any other users than call sites
5936       CallSite(*UI++).setCalledFunction(I.second);
5937 
5938   // Finish fn->subprogram upgrade for materialized functions.
5939   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5940     F->setSubprogram(SP);
5941 
5942   // Bring in any functions that this function forward-referenced via
5943   // blockaddresses.
5944   return materializeForwardReferencedFunctions();
5945 }
5946 
5947 std::error_code BitcodeReader::materializeModule() {
5948   if (std::error_code EC = materializeMetadata())
5949     return EC;
5950 
5951   // Promise to materialize all forward references.
5952   WillMaterializeAllForwardRefs = true;
5953 
5954   // Iterate over the module, deserializing any functions that are still on
5955   // disk.
5956   for (Function &F : *TheModule) {
5957     if (std::error_code EC = materialize(&F))
5958       return EC;
5959   }
5960   // At this point, if there are any function bodies, parse the rest of
5961   // the bits in the module past the last function block we have recorded
5962   // through either lazy scanning or the VST.
5963   if (LastFunctionBlockBit || NextUnreadBit)
5964     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5965                                                      : NextUnreadBit);
5966 
5967   // Check that all block address forward references got resolved (as we
5968   // promised above).
5969   if (!BasicBlockFwdRefs.empty())
5970     return error("Never resolved function from blockaddress");
5971 
5972   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5973   // delete the old functions to clean up. We can't do this unless the entire
5974   // module is materialized because there could always be another function body
5975   // with calls to the old function.
5976   for (auto &I : UpgradedIntrinsics) {
5977     for (auto *U : I.first->users()) {
5978       if (CallInst *CI = dyn_cast<CallInst>(U))
5979         UpgradeIntrinsicCall(CI, I.second);
5980     }
5981     if (!I.first->use_empty())
5982       I.first->replaceAllUsesWith(I.second);
5983     I.first->eraseFromParent();
5984   }
5985   UpgradedIntrinsics.clear();
5986   // Do the same for remangled intrinsics
5987   for (auto &I : RemangledIntrinsics) {
5988     I.first->replaceAllUsesWith(I.second);
5989     I.first->eraseFromParent();
5990   }
5991   RemangledIntrinsics.clear();
5992 
5993   UpgradeDebugInfo(*TheModule);
5994 
5995   UpgradeModuleFlags(*TheModule);
5996   return std::error_code();
5997 }
5998 
5999 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6000   return IdentifiedStructTypes;
6001 }
6002 
6003 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
6004   return ::error(DiagnosticHandler,
6005                  make_error_code(BitcodeError::CorruptedBitcode), Message);
6006 }
6007 
6008 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6009     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
6010     bool CheckGlobalValSummaryPresenceOnly)
6011     : BitcodeReaderBase(Buffer),
6012       DiagnosticHandler(std::move(DiagnosticHandler)),
6013       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
6014 
6015 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
6016 
6017 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
6018 
6019 std::pair<GlobalValue::GUID, GlobalValue::GUID>
6020 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
6021   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
6022   assert(VGI != ValueIdToCallGraphGUIDMap.end());
6023   return VGI->second;
6024 }
6025 
6026 // Specialized value symbol table parser used when reading module index
6027 // blocks where we don't actually create global values. The parsed information
6028 // is saved in the bitcode reader for use when later parsing summaries.
6029 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6030     uint64_t Offset,
6031     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6032   assert(Offset > 0 && "Expected non-zero VST offset");
6033   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
6034 
6035   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6036     return error("Invalid record");
6037 
6038   SmallVector<uint64_t, 64> Record;
6039 
6040   // Read all the records for this value table.
6041   SmallString<128> ValueName;
6042 
6043   while (true) {
6044     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6045 
6046     switch (Entry.Kind) {
6047     case BitstreamEntry::SubBlock: // Handled for us already.
6048     case BitstreamEntry::Error:
6049       return error("Malformed block");
6050     case BitstreamEntry::EndBlock:
6051       // Done parsing VST, jump back to wherever we came from.
6052       Stream.JumpToBit(CurrentBit);
6053       return std::error_code();
6054     case BitstreamEntry::Record:
6055       // The interesting case.
6056       break;
6057     }
6058 
6059     // Read a record.
6060     Record.clear();
6061     switch (Stream.readRecord(Entry.ID, Record)) {
6062     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6063       break;
6064     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6065       if (convertToString(Record, 1, ValueName))
6066         return error("Invalid record");
6067       unsigned ValueID = Record[0];
6068       assert(!SourceFileName.empty());
6069       auto VLI = ValueIdToLinkageMap.find(ValueID);
6070       assert(VLI != ValueIdToLinkageMap.end() &&
6071              "No linkage found for VST entry?");
6072       auto Linkage = VLI->second;
6073       std::string GlobalId =
6074           GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6075       auto ValueGUID = GlobalValue::getGUID(GlobalId);
6076       auto OriginalNameID = ValueGUID;
6077       if (GlobalValue::isLocalLinkage(Linkage))
6078         OriginalNameID = GlobalValue::getGUID(ValueName);
6079       if (PrintSummaryGUIDs)
6080         dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6081                << ValueName << "\n";
6082       ValueIdToCallGraphGUIDMap[ValueID] =
6083           std::make_pair(ValueGUID, OriginalNameID);
6084       ValueName.clear();
6085       break;
6086     }
6087     case bitc::VST_CODE_FNENTRY: {
6088       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6089       if (convertToString(Record, 2, ValueName))
6090         return error("Invalid record");
6091       unsigned ValueID = Record[0];
6092       assert(!SourceFileName.empty());
6093       auto VLI = ValueIdToLinkageMap.find(ValueID);
6094       assert(VLI != ValueIdToLinkageMap.end() &&
6095              "No linkage found for VST entry?");
6096       auto Linkage = VLI->second;
6097       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
6098           ValueName, VLI->second, SourceFileName);
6099       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
6100       auto OriginalNameID = FunctionGUID;
6101       if (GlobalValue::isLocalLinkage(Linkage))
6102         OriginalNameID = GlobalValue::getGUID(ValueName);
6103       if (PrintSummaryGUIDs)
6104         dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is "
6105                << ValueName << "\n";
6106       ValueIdToCallGraphGUIDMap[ValueID] =
6107           std::make_pair(FunctionGUID, OriginalNameID);
6108 
6109       ValueName.clear();
6110       break;
6111     }
6112     case bitc::VST_CODE_COMBINED_ENTRY: {
6113       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6114       unsigned ValueID = Record[0];
6115       GlobalValue::GUID RefGUID = Record[1];
6116       // The "original name", which is the second value of the pair will be
6117       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6118       ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID);
6119       break;
6120     }
6121     }
6122   }
6123 }
6124 
6125 // Parse just the blocks needed for building the index out of the module.
6126 // At the end of this routine the module Index is populated with a map
6127 // from global value id to GlobalValueSummary objects.
6128 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
6129   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6130     return error("Invalid record");
6131 
6132   SmallVector<uint64_t, 64> Record;
6133   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6134   unsigned ValueId = 0;
6135 
6136   // Read the index for this module.
6137   while (true) {
6138     BitstreamEntry Entry = Stream.advance();
6139 
6140     switch (Entry.Kind) {
6141     case BitstreamEntry::Error:
6142       return error("Malformed block");
6143     case BitstreamEntry::EndBlock:
6144       return std::error_code();
6145 
6146     case BitstreamEntry::SubBlock:
6147       if (CheckGlobalValSummaryPresenceOnly) {
6148         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6149           SeenGlobalValSummary = true;
6150           // No need to parse the rest since we found the summary.
6151           return std::error_code();
6152         }
6153         if (Stream.SkipBlock())
6154           return error("Invalid record");
6155         continue;
6156       }
6157       switch (Entry.ID) {
6158       default: // Skip unknown content.
6159         if (Stream.SkipBlock())
6160           return error("Invalid record");
6161         break;
6162       case bitc::BLOCKINFO_BLOCK_ID:
6163         // Need to parse these to get abbrev ids (e.g. for VST)
6164         if (readBlockInfo())
6165           return error("Malformed block");
6166         break;
6167       case bitc::VALUE_SYMTAB_BLOCK_ID:
6168         // Should have been parsed earlier via VSTOffset, unless there
6169         // is no summary section.
6170         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6171                 !SeenGlobalValSummary) &&
6172                "Expected early VST parse via VSTOffset record");
6173         if (Stream.SkipBlock())
6174           return error("Invalid record");
6175         break;
6176       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6177         assert(!SeenValueSymbolTable &&
6178                "Already read VST when parsing summary block?");
6179         // We might not have a VST if there were no values in the
6180         // summary. An empty summary block generated when we are
6181         // performing ThinLTO compiles so we don't later invoke
6182         // the regular LTO process on them.
6183         if (VSTOffset > 0) {
6184           if (std::error_code EC =
6185                   parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6186             return EC;
6187           SeenValueSymbolTable = true;
6188         }
6189         SeenGlobalValSummary = true;
6190         if (std::error_code EC = parseEntireSummary())
6191           return EC;
6192         break;
6193       case bitc::MODULE_STRTAB_BLOCK_ID:
6194         if (std::error_code EC = parseModuleStringTable())
6195           return EC;
6196         break;
6197       }
6198       continue;
6199 
6200     case BitstreamEntry::Record: {
6201         Record.clear();
6202         auto BitCode = Stream.readRecord(Entry.ID, Record);
6203         switch (BitCode) {
6204         default:
6205           break; // Default behavior, ignore unknown content.
6206         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6207         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6208           SmallString<128> ValueName;
6209           if (convertToString(Record, 0, ValueName))
6210             return error("Invalid record");
6211           SourceFileName = ValueName.c_str();
6212           break;
6213         }
6214         /// MODULE_CODE_HASH: [5*i32]
6215         case bitc::MODULE_CODE_HASH: {
6216           if (Record.size() != 5)
6217             return error("Invalid hash length " + Twine(Record.size()).str());
6218           if (!TheIndex)
6219             break;
6220           if (TheIndex->modulePaths().empty())
6221             // We always seed the index with the module.
6222             TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0);
6223           if (TheIndex->modulePaths().size() != 1)
6224             return error("Don't expect multiple modules defined?");
6225           auto &Hash = TheIndex->modulePaths().begin()->second.second;
6226           int Pos = 0;
6227           for (auto &Val : Record) {
6228             assert(!(Val >> 32) && "Unexpected high bits set");
6229             Hash[Pos++] = Val;
6230           }
6231           break;
6232         }
6233         /// MODULE_CODE_VSTOFFSET: [offset]
6234         case bitc::MODULE_CODE_VSTOFFSET:
6235           if (Record.size() < 1)
6236             return error("Invalid record");
6237           VSTOffset = Record[0];
6238           break;
6239         // GLOBALVAR: [pointer type, isconst, initid,
6240         //             linkage, alignment, section, visibility, threadlocal,
6241         //             unnamed_addr, externally_initialized, dllstorageclass,
6242         //             comdat]
6243         case bitc::MODULE_CODE_GLOBALVAR: {
6244           if (Record.size() < 6)
6245             return error("Invalid record");
6246           uint64_t RawLinkage = Record[3];
6247           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6248           ValueIdToLinkageMap[ValueId++] = Linkage;
6249           break;
6250         }
6251         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
6252         //             alignment, section, visibility, gc, unnamed_addr,
6253         //             prologuedata, dllstorageclass, comdat, prefixdata]
6254         case bitc::MODULE_CODE_FUNCTION: {
6255           if (Record.size() < 8)
6256             return error("Invalid record");
6257           uint64_t RawLinkage = Record[3];
6258           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6259           ValueIdToLinkageMap[ValueId++] = Linkage;
6260           break;
6261         }
6262         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
6263         // dllstorageclass]
6264         case bitc::MODULE_CODE_ALIAS: {
6265           if (Record.size() < 6)
6266             return error("Invalid record");
6267           uint64_t RawLinkage = Record[3];
6268           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6269           ValueIdToLinkageMap[ValueId++] = Linkage;
6270           break;
6271         }
6272         }
6273       }
6274       continue;
6275     }
6276   }
6277 }
6278 
6279 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6280 // objects in the index.
6281 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
6282   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
6283     return error("Invalid record");
6284   SmallVector<uint64_t, 64> Record;
6285 
6286   // Parse version
6287   {
6288     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6289     if (Entry.Kind != BitstreamEntry::Record)
6290       return error("Invalid Summary Block: record for version expected");
6291     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
6292       return error("Invalid Summary Block: version expected");
6293   }
6294   const uint64_t Version = Record[0];
6295   const bool IsOldProfileFormat = Version == 1;
6296   if (!IsOldProfileFormat && Version != 2)
6297     return error("Invalid summary version " + Twine(Version) +
6298                  ", 1 or 2 expected");
6299   Record.clear();
6300 
6301   // Keep around the last seen summary to be used when we see an optional
6302   // "OriginalName" attachement.
6303   GlobalValueSummary *LastSeenSummary = nullptr;
6304   bool Combined = false;
6305 
6306   while (true) {
6307     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6308 
6309     switch (Entry.Kind) {
6310     case BitstreamEntry::SubBlock: // Handled for us already.
6311     case BitstreamEntry::Error:
6312       return error("Malformed block");
6313     case BitstreamEntry::EndBlock:
6314       // For a per-module index, remove any entries that still have empty
6315       // summaries. The VST parsing creates entries eagerly for all symbols,
6316       // but not all have associated summaries (e.g. it doesn't know how to
6317       // distinguish between VST_CODE_ENTRY for function declarations vs global
6318       // variables with initializers that end up with a summary). Remove those
6319       // entries now so that we don't need to rely on the combined index merger
6320       // to clean them up (especially since that may not run for the first
6321       // module's index if we merge into that).
6322       if (!Combined)
6323         TheIndex->removeEmptySummaryEntries();
6324       return std::error_code();
6325     case BitstreamEntry::Record:
6326       // The interesting case.
6327       break;
6328     }
6329 
6330     // Read a record. The record format depends on whether this
6331     // is a per-module index or a combined index file. In the per-module
6332     // case the records contain the associated value's ID for correlation
6333     // with VST entries. In the combined index the correlation is done
6334     // via the bitcode offset of the summary records (which were saved
6335     // in the combined index VST entries). The records also contain
6336     // information used for ThinLTO renaming and importing.
6337     Record.clear();
6338     auto BitCode = Stream.readRecord(Entry.ID, Record);
6339     switch (BitCode) {
6340     default: // Default behavior: ignore.
6341       break;
6342     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
6343     //                n x (valueid)]
6344     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
6345     //                        numrefs x valueid,
6346     //                        n x (valueid, hotness)]
6347     case bitc::FS_PERMODULE:
6348     case bitc::FS_PERMODULE_PROFILE: {
6349       unsigned ValueID = Record[0];
6350       uint64_t RawFlags = Record[1];
6351       unsigned InstCount = Record[2];
6352       unsigned NumRefs = Record[3];
6353       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6354       std::unique_ptr<FunctionSummary> FS =
6355           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6356       // The module path string ref set in the summary must be owned by the
6357       // index's module string table. Since we don't have a module path
6358       // string table section in the per-module index, we create a single
6359       // module path string table entry with an empty (0) ID to take
6360       // ownership.
6361       FS->setModulePath(
6362           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6363       static int RefListStartIndex = 4;
6364       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6365       assert(Record.size() >= RefListStartIndex + NumRefs &&
6366              "Record size inconsistent with number of references");
6367       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
6368         unsigned RefValueId = Record[I];
6369         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6370         FS->addRefEdge(RefGUID);
6371       }
6372       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6373       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6374            ++I) {
6375         CalleeInfo::HotnessType Hotness;
6376         GlobalValue::GUID CalleeGUID;
6377         std::tie(CalleeGUID, Hotness) =
6378             readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile);
6379         FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness));
6380       }
6381       auto GUID = getGUIDFromValueId(ValueID);
6382       FS->setOriginalName(GUID.second);
6383       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6384       break;
6385     }
6386     // FS_ALIAS: [valueid, flags, valueid]
6387     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6388     // they expect all aliasee summaries to be available.
6389     case bitc::FS_ALIAS: {
6390       unsigned ValueID = Record[0];
6391       uint64_t RawFlags = Record[1];
6392       unsigned AliaseeID = Record[2];
6393       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6394       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6395       // The module path string ref set in the summary must be owned by the
6396       // index's module string table. Since we don't have a module path
6397       // string table section in the per-module index, we create a single
6398       // module path string table entry with an empty (0) ID to take
6399       // ownership.
6400       AS->setModulePath(
6401           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6402 
6403       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first;
6404       auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID);
6405       if (!AliaseeSummary)
6406         return error("Alias expects aliasee summary to be parsed");
6407       AS->setAliasee(AliaseeSummary);
6408 
6409       auto GUID = getGUIDFromValueId(ValueID);
6410       AS->setOriginalName(GUID.second);
6411       TheIndex->addGlobalValueSummary(GUID.first, std::move(AS));
6412       break;
6413     }
6414     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
6415     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6416       unsigned ValueID = Record[0];
6417       uint64_t RawFlags = Record[1];
6418       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6419       std::unique_ptr<GlobalVarSummary> FS =
6420           llvm::make_unique<GlobalVarSummary>(Flags);
6421       FS->setModulePath(
6422           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6423       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6424         unsigned RefValueId = Record[I];
6425         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6426         FS->addRefEdge(RefGUID);
6427       }
6428       auto GUID = getGUIDFromValueId(ValueID);
6429       FS->setOriginalName(GUID.second);
6430       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6431       break;
6432     }
6433     // FS_COMBINED: [valueid, modid, flags, instcount, numrefs,
6434     //               numrefs x valueid, n x (valueid)]
6435     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs,
6436     //                       numrefs x valueid, n x (valueid, hotness)]
6437     case bitc::FS_COMBINED:
6438     case bitc::FS_COMBINED_PROFILE: {
6439       unsigned ValueID = Record[0];
6440       uint64_t ModuleId = Record[1];
6441       uint64_t RawFlags = Record[2];
6442       unsigned InstCount = Record[3];
6443       unsigned NumRefs = Record[4];
6444       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6445       std::unique_ptr<FunctionSummary> FS =
6446           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6447       LastSeenSummary = FS.get();
6448       FS->setModulePath(ModuleIdMap[ModuleId]);
6449       static int RefListStartIndex = 5;
6450       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6451       assert(Record.size() >= RefListStartIndex + NumRefs &&
6452              "Record size inconsistent with number of references");
6453       for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E;
6454            ++I) {
6455         unsigned RefValueId = Record[I];
6456         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6457         FS->addRefEdge(RefGUID);
6458       }
6459       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6460       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6461            ++I) {
6462         CalleeInfo::HotnessType Hotness;
6463         GlobalValue::GUID CalleeGUID;
6464         std::tie(CalleeGUID, Hotness) =
6465             readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile);
6466         FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness));
6467       }
6468       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6469       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6470       Combined = true;
6471       break;
6472     }
6473     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6474     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6475     // they expect all aliasee summaries to be available.
6476     case bitc::FS_COMBINED_ALIAS: {
6477       unsigned ValueID = Record[0];
6478       uint64_t ModuleId = Record[1];
6479       uint64_t RawFlags = Record[2];
6480       unsigned AliaseeValueId = Record[3];
6481       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6482       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6483       LastSeenSummary = AS.get();
6484       AS->setModulePath(ModuleIdMap[ModuleId]);
6485 
6486       auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first;
6487       auto AliaseeInModule =
6488           TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath());
6489       if (!AliaseeInModule)
6490         return error("Alias expects aliasee summary to be parsed");
6491       AS->setAliasee(AliaseeInModule);
6492 
6493       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6494       TheIndex->addGlobalValueSummary(GUID, std::move(AS));
6495       Combined = true;
6496       break;
6497     }
6498     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6499     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6500       unsigned ValueID = Record[0];
6501       uint64_t ModuleId = Record[1];
6502       uint64_t RawFlags = Record[2];
6503       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6504       std::unique_ptr<GlobalVarSummary> FS =
6505           llvm::make_unique<GlobalVarSummary>(Flags);
6506       LastSeenSummary = FS.get();
6507       FS->setModulePath(ModuleIdMap[ModuleId]);
6508       for (unsigned I = 3, E = Record.size(); I != E; ++I) {
6509         unsigned RefValueId = Record[I];
6510         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6511         FS->addRefEdge(RefGUID);
6512       }
6513       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6514       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6515       Combined = true;
6516       break;
6517     }
6518     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6519     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6520       uint64_t OriginalName = Record[0];
6521       if (!LastSeenSummary)
6522         return error("Name attachment that does not follow a combined record");
6523       LastSeenSummary->setOriginalName(OriginalName);
6524       // Reset the LastSeenSummary
6525       LastSeenSummary = nullptr;
6526     }
6527     }
6528   }
6529   llvm_unreachable("Exit infinite loop");
6530 }
6531 
6532 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType>
6533 ModuleSummaryIndexBitcodeReader::readCallGraphEdge(
6534     const SmallVector<uint64_t, 64> &Record, unsigned int &I,
6535     const bool IsOldProfileFormat, const bool HasProfile) {
6536 
6537   auto Hotness = CalleeInfo::HotnessType::Unknown;
6538   unsigned CalleeValueId = Record[I];
6539   GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6540   if (IsOldProfileFormat) {
6541     I += 1; // Skip old callsitecount field
6542     if (HasProfile)
6543       I += 1; // Skip old profilecount field
6544   } else if (HasProfile)
6545     Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6546   return {CalleeGUID, Hotness};
6547 }
6548 
6549 // Parse the  module string table block into the Index.
6550 // This populates the ModulePathStringTable map in the index.
6551 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6552   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6553     return error("Invalid record");
6554 
6555   SmallVector<uint64_t, 64> Record;
6556 
6557   SmallString<128> ModulePath;
6558   ModulePathStringTableTy::iterator LastSeenModulePath;
6559 
6560   while (true) {
6561     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6562 
6563     switch (Entry.Kind) {
6564     case BitstreamEntry::SubBlock: // Handled for us already.
6565     case BitstreamEntry::Error:
6566       return error("Malformed block");
6567     case BitstreamEntry::EndBlock:
6568       return std::error_code();
6569     case BitstreamEntry::Record:
6570       // The interesting case.
6571       break;
6572     }
6573 
6574     Record.clear();
6575     switch (Stream.readRecord(Entry.ID, Record)) {
6576     default: // Default behavior: ignore.
6577       break;
6578     case bitc::MST_CODE_ENTRY: {
6579       // MST_ENTRY: [modid, namechar x N]
6580       uint64_t ModuleId = Record[0];
6581 
6582       if (convertToString(Record, 1, ModulePath))
6583         return error("Invalid record");
6584 
6585       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
6586       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6587 
6588       ModulePath.clear();
6589       break;
6590     }
6591     /// MST_CODE_HASH: [5*i32]
6592     case bitc::MST_CODE_HASH: {
6593       if (Record.size() != 5)
6594         return error("Invalid hash length " + Twine(Record.size()).str());
6595       if (LastSeenModulePath == TheIndex->modulePaths().end())
6596         return error("Invalid hash that does not follow a module path");
6597       int Pos = 0;
6598       for (auto &Val : Record) {
6599         assert(!(Val >> 32) && "Unexpected high bits set");
6600         LastSeenModulePath->second.second[Pos++] = Val;
6601       }
6602       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6603       LastSeenModulePath = TheIndex->modulePaths().end();
6604       break;
6605     }
6606     }
6607   }
6608   llvm_unreachable("Exit infinite loop");
6609 }
6610 
6611 // Parse the function info index from the bitcode streamer into the given index.
6612 std::error_code
6613 ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(ModuleSummaryIndex *I) {
6614   TheIndex = I;
6615 
6616   if (std::error_code EC = initStream())
6617     return EC;
6618 
6619   // Sniff for the signature.
6620   if (!hasValidBitcodeHeader(Stream))
6621     return error("Invalid bitcode signature");
6622 
6623   // We expect a number of well-defined blocks, though we don't necessarily
6624   // need to understand them all.
6625   while (true) {
6626     if (Stream.AtEndOfStream()) {
6627       // We didn't really read a proper Module block.
6628       return error("Malformed block");
6629     }
6630 
6631     BitstreamEntry Entry =
6632         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6633 
6634     if (Entry.Kind != BitstreamEntry::SubBlock)
6635       return error("Malformed block");
6636 
6637     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6638     // building the function summary index.
6639     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6640       return parseModule();
6641 
6642     if (Stream.SkipBlock())
6643       return error("Invalid record");
6644   }
6645 }
6646 
6647 namespace {
6648 
6649 // FIXME: This class is only here to support the transition to llvm::Error. It
6650 // will be removed once this transition is complete. Clients should prefer to
6651 // deal with the Error value directly, rather than converting to error_code.
6652 class BitcodeErrorCategoryType : public std::error_category {
6653   const char *name() const noexcept override {
6654     return "llvm.bitcode";
6655   }
6656   std::string message(int IE) const override {
6657     BitcodeError E = static_cast<BitcodeError>(IE);
6658     switch (E) {
6659     case BitcodeError::InvalidBitcodeSignature:
6660       return "Invalid bitcode signature";
6661     case BitcodeError::CorruptedBitcode:
6662       return "Corrupted bitcode";
6663     }
6664     llvm_unreachable("Unknown error type!");
6665   }
6666 };
6667 
6668 } // end anonymous namespace
6669 
6670 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6671 
6672 const std::error_category &llvm::BitcodeErrorCategory() {
6673   return *ErrorCategory;
6674 }
6675 
6676 //===----------------------------------------------------------------------===//
6677 // External interface
6678 //===----------------------------------------------------------------------===//
6679 
6680 static ErrorOr<std::unique_ptr<Module>>
6681 getBitcodeModuleImpl(StringRef Name, BitcodeReader *R, LLVMContext &Context,
6682                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6683   std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context);
6684   M->setMaterializer(R);
6685 
6686   auto cleanupOnError = [&](std::error_code EC) {
6687     R->releaseBuffer(); // Never take ownership on error.
6688     return EC;
6689   };
6690 
6691   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6692   if (std::error_code EC = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata))
6693     return cleanupOnError(EC);
6694 
6695   if (MaterializeAll) {
6696     // Read in the entire module, and destroy the BitcodeReader.
6697     if (std::error_code EC = M->materializeAll())
6698       return cleanupOnError(EC);
6699   } else {
6700     // Resolve forward references from blockaddresses.
6701     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6702       return cleanupOnError(EC);
6703   }
6704   return std::move(M);
6705 }
6706 
6707 /// \brief Get a lazy one-at-time loading module from bitcode.
6708 ///
6709 /// This isn't always used in a lazy context.  In particular, it's also used by
6710 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6711 /// in forward-referenced functions from block address references.
6712 ///
6713 /// \param[in] MaterializeAll Set to \c true if we should materialize
6714 /// everything.
6715 static ErrorOr<std::unique_ptr<Module>>
6716 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6717                          LLVMContext &Context, bool MaterializeAll,
6718                          bool ShouldLazyLoadMetadata = false) {
6719   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6720 
6721   ErrorOr<std::unique_ptr<Module>> Ret =
6722       getBitcodeModuleImpl(Buffer->getBufferIdentifier(), R, Context,
6723                            MaterializeAll, ShouldLazyLoadMetadata);
6724   if (!Ret)
6725     return Ret;
6726 
6727   Buffer.release(); // The BitcodeReader owns it now.
6728   return Ret;
6729 }
6730 
6731 ErrorOr<std::unique_ptr<Module>>
6732 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6733                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6734   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6735                                   ShouldLazyLoadMetadata);
6736 }
6737 
6738 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6739                                                         LLVMContext &Context) {
6740   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6741   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6742   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6743   // written.  We must defer until the Module has been fully materialized.
6744 }
6745 
6746 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6747                                          LLVMContext &Context) {
6748   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6749   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6750   ErrorOr<std::string> Triple = R->parseTriple();
6751   if (Triple.getError())
6752     return "";
6753   return Triple.get();
6754 }
6755 
6756 bool llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer,
6757                                            LLVMContext &Context) {
6758   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6759   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6760   ErrorOr<bool> hasObjCCategory = R->hasObjCCategory();
6761   if (hasObjCCategory.getError())
6762     return false;
6763   return hasObjCCategory.get();
6764 }
6765 
6766 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6767                                            LLVMContext &Context) {
6768   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6769   BitcodeReader R(Buf.release(), Context);
6770   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6771   if (ProducerString.getError())
6772     return "";
6773   return ProducerString.get();
6774 }
6775 
6776 // Parse the specified bitcode buffer, returning the function info index.
6777 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex(
6778     MemoryBufferRef Buffer,
6779     const DiagnosticHandlerFunction &DiagnosticHandler) {
6780   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6781   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6782 
6783   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6784 
6785   auto cleanupOnError = [&](std::error_code EC) {
6786     R.releaseBuffer(); // Never take ownership on error.
6787     return EC;
6788   };
6789 
6790   if (std::error_code EC = R.parseSummaryIndexInto(Index.get()))
6791     return cleanupOnError(EC);
6792 
6793   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6794   return std::move(Index);
6795 }
6796 
6797 // Check if the given bitcode buffer contains a global value summary block.
6798 bool llvm::hasGlobalValueSummary(
6799     MemoryBufferRef Buffer,
6800     const DiagnosticHandlerFunction &DiagnosticHandler) {
6801   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6802   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true);
6803 
6804   auto cleanupOnError = [&](std::error_code EC) {
6805     R.releaseBuffer(); // Never take ownership on error.
6806     return false;
6807   };
6808 
6809   if (std::error_code EC = R.parseSummaryIndexInto(nullptr))
6810     return cleanupOnError(EC);
6811 
6812   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6813   return R.foundGlobalValSummary();
6814 }
6815