1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/BitcodeReader.h"
11 #include "MetadataLoader.h"
12 #include "ValueList.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Bitcode/BitstreamReader.h"
25 #include "llvm/Bitcode/LLVMBitCodes.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Comdat.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DebugInfo.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GVMaterializer.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalIndirectSymbol.h"
46 #include "llvm/IR/GlobalObject.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/InstIterator.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/ManagedStatic.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/MemoryBuffer.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <deque>
80 #include <map>
81 #include <memory>
82 #include <set>
83 #include <string>
84 #include <system_error>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 static cl::opt<bool> PrintSummaryGUIDs(
92     "print-summary-global-ids", cl::init(false), cl::Hidden,
93     cl::desc(
94         "Print the global id for each value when reading the module summary"));
95 
96 namespace {
97 
98 enum {
99   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
100 };
101 
102 } // end anonymous namespace
103 
104 static Error error(const Twine &Message) {
105   return make_error<StringError>(
106       Message, make_error_code(BitcodeError::CorruptedBitcode));
107 }
108 
109 /// Helper to read the header common to all bitcode files.
110 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
111   // Sniff for the signature.
112   if (!Stream.canSkipToPos(4) ||
113       Stream.Read(8) != 'B' ||
114       Stream.Read(8) != 'C' ||
115       Stream.Read(4) != 0x0 ||
116       Stream.Read(4) != 0xC ||
117       Stream.Read(4) != 0xE ||
118       Stream.Read(4) != 0xD)
119     return false;
120   return true;
121 }
122 
123 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
124   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
125   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
126 
127   if (Buffer.getBufferSize() & 3)
128     return error("Invalid bitcode signature");
129 
130   // If we have a wrapper header, parse it and ignore the non-bc file contents.
131   // The magic number is 0x0B17C0DE stored in little endian.
132   if (isBitcodeWrapper(BufPtr, BufEnd))
133     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
134       return error("Invalid bitcode wrapper header");
135 
136   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
137   if (!hasValidBitcodeHeader(Stream))
138     return error("Invalid bitcode signature");
139 
140   return std::move(Stream);
141 }
142 
143 /// Convert a string from a record into an std::string, return true on failure.
144 template <typename StrTy>
145 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
146                             StrTy &Result) {
147   if (Idx > Record.size())
148     return true;
149 
150   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
151     Result += (char)Record[i];
152   return false;
153 }
154 
155 // Strip all the TBAA attachment for the module.
156 static void stripTBAA(Module *M) {
157   for (auto &F : *M) {
158     if (F.isMaterializable())
159       continue;
160     for (auto &I : instructions(F))
161       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
162   }
163 }
164 
165 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
166 /// "epoch" encoded in the bitcode, and return the producer name if any.
167 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
168   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
169     return error("Invalid record");
170 
171   // Read all the records.
172   SmallVector<uint64_t, 64> Record;
173 
174   std::string ProducerIdentification;
175 
176   while (true) {
177     BitstreamEntry Entry = Stream.advance();
178 
179     switch (Entry.Kind) {
180     default:
181     case BitstreamEntry::Error:
182       return error("Malformed block");
183     case BitstreamEntry::EndBlock:
184       return ProducerIdentification;
185     case BitstreamEntry::Record:
186       // The interesting case.
187       break;
188     }
189 
190     // Read a record.
191     Record.clear();
192     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
193     switch (BitCode) {
194     default: // Default behavior: reject
195       return error("Invalid value");
196     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
197       convertToString(Record, 0, ProducerIdentification);
198       break;
199     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
200       unsigned epoch = (unsigned)Record[0];
201       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
202         return error(
203           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
204           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
205       }
206     }
207     }
208   }
209 }
210 
211 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
212   // We expect a number of well-defined blocks, though we don't necessarily
213   // need to understand them all.
214   while (true) {
215     if (Stream.AtEndOfStream())
216       return "";
217 
218     BitstreamEntry Entry = Stream.advance();
219     switch (Entry.Kind) {
220     case BitstreamEntry::EndBlock:
221     case BitstreamEntry::Error:
222       return error("Malformed block");
223 
224     case BitstreamEntry::SubBlock:
225       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
226         return readIdentificationBlock(Stream);
227 
228       // Ignore other sub-blocks.
229       if (Stream.SkipBlock())
230         return error("Malformed block");
231       continue;
232     case BitstreamEntry::Record:
233       Stream.skipRecord(Entry.ID);
234       continue;
235     }
236   }
237 }
238 
239 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
240   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
241     return error("Invalid record");
242 
243   SmallVector<uint64_t, 64> Record;
244   // Read all the records for this module.
245 
246   while (true) {
247     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
248 
249     switch (Entry.Kind) {
250     case BitstreamEntry::SubBlock: // Handled for us already.
251     case BitstreamEntry::Error:
252       return error("Malformed block");
253     case BitstreamEntry::EndBlock:
254       return false;
255     case BitstreamEntry::Record:
256       // The interesting case.
257       break;
258     }
259 
260     // Read a record.
261     switch (Stream.readRecord(Entry.ID, Record)) {
262     default:
263       break; // Default behavior, ignore unknown content.
264     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
265       std::string S;
266       if (convertToString(Record, 0, S))
267         return error("Invalid record");
268       // Check for the i386 and other (x86_64, ARM) conventions
269       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
270           S.find("__OBJC,__category") != std::string::npos)
271         return true;
272       break;
273     }
274     }
275     Record.clear();
276   }
277   llvm_unreachable("Exit infinite loop");
278 }
279 
280 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
281   // We expect a number of well-defined blocks, though we don't necessarily
282   // need to understand them all.
283   while (true) {
284     BitstreamEntry Entry = Stream.advance();
285 
286     switch (Entry.Kind) {
287     case BitstreamEntry::Error:
288       return error("Malformed block");
289     case BitstreamEntry::EndBlock:
290       return false;
291 
292     case BitstreamEntry::SubBlock:
293       if (Entry.ID == bitc::MODULE_BLOCK_ID)
294         return hasObjCCategoryInModule(Stream);
295 
296       // Ignore other sub-blocks.
297       if (Stream.SkipBlock())
298         return error("Malformed block");
299       continue;
300 
301     case BitstreamEntry::Record:
302       Stream.skipRecord(Entry.ID);
303       continue;
304     }
305   }
306 }
307 
308 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
309   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
310     return error("Invalid record");
311 
312   SmallVector<uint64_t, 64> Record;
313 
314   std::string Triple;
315 
316   // Read all the records for this module.
317   while (true) {
318     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
319 
320     switch (Entry.Kind) {
321     case BitstreamEntry::SubBlock: // Handled for us already.
322     case BitstreamEntry::Error:
323       return error("Malformed block");
324     case BitstreamEntry::EndBlock:
325       return Triple;
326     case BitstreamEntry::Record:
327       // The interesting case.
328       break;
329     }
330 
331     // Read a record.
332     switch (Stream.readRecord(Entry.ID, Record)) {
333     default: break;  // Default behavior, ignore unknown content.
334     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
335       std::string S;
336       if (convertToString(Record, 0, S))
337         return error("Invalid record");
338       Triple = S;
339       break;
340     }
341     }
342     Record.clear();
343   }
344   llvm_unreachable("Exit infinite loop");
345 }
346 
347 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
348   // We expect a number of well-defined blocks, though we don't necessarily
349   // need to understand them all.
350   while (true) {
351     BitstreamEntry Entry = Stream.advance();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::Error:
355       return error("Malformed block");
356     case BitstreamEntry::EndBlock:
357       return "";
358 
359     case BitstreamEntry::SubBlock:
360       if (Entry.ID == bitc::MODULE_BLOCK_ID)
361         return readModuleTriple(Stream);
362 
363       // Ignore other sub-blocks.
364       if (Stream.SkipBlock())
365         return error("Malformed block");
366       continue;
367 
368     case BitstreamEntry::Record:
369       Stream.skipRecord(Entry.ID);
370       continue;
371     }
372   }
373 }
374 
375 namespace {
376 
377 class BitcodeReaderBase {
378 protected:
379   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
380       : Stream(std::move(Stream)), Strtab(Strtab) {
381     this->Stream.setBlockInfo(&BlockInfo);
382   }
383 
384   BitstreamBlockInfo BlockInfo;
385   BitstreamCursor Stream;
386   StringRef Strtab;
387 
388   /// In version 2 of the bitcode we store names of global values and comdats in
389   /// a string table rather than in the VST.
390   bool UseStrtab = false;
391 
392   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
393 
394   /// If this module uses a string table, pop the reference to the string table
395   /// and return the referenced string and the rest of the record. Otherwise
396   /// just return the record itself.
397   std::pair<StringRef, ArrayRef<uint64_t>>
398   readNameFromStrtab(ArrayRef<uint64_t> Record);
399 
400   bool readBlockInfo();
401 
402   // Contains an arbitrary and optional string identifying the bitcode producer
403   std::string ProducerIdentification;
404 
405   Error error(const Twine &Message);
406 };
407 
408 } // end anonymous namespace
409 
410 Error BitcodeReaderBase::error(const Twine &Message) {
411   std::string FullMsg = Message.str();
412   if (!ProducerIdentification.empty())
413     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
414                LLVM_VERSION_STRING "')";
415   return ::error(FullMsg);
416 }
417 
418 Expected<unsigned>
419 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
420   if (Record.empty())
421     return error("Invalid record");
422   unsigned ModuleVersion = Record[0];
423   if (ModuleVersion > 2)
424     return error("Invalid value");
425   UseStrtab = ModuleVersion >= 2;
426   return ModuleVersion;
427 }
428 
429 std::pair<StringRef, ArrayRef<uint64_t>>
430 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
431   if (!UseStrtab)
432     return {"", Record};
433   // Invalid reference. Let the caller complain about the record being empty.
434   if (Record[0] + Record[1] > Strtab.size())
435     return {"", {}};
436   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
437 }
438 
439 namespace {
440 
441 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
442   LLVMContext &Context;
443   Module *TheModule = nullptr;
444   // Next offset to start scanning for lazy parsing of function bodies.
445   uint64_t NextUnreadBit = 0;
446   // Last function offset found in the VST.
447   uint64_t LastFunctionBlockBit = 0;
448   bool SeenValueSymbolTable = false;
449   uint64_t VSTOffset = 0;
450 
451   std::vector<std::string> SectionTable;
452   std::vector<std::string> GCTable;
453 
454   std::vector<Type*> TypeList;
455   BitcodeReaderValueList ValueList;
456   Optional<MetadataLoader> MDLoader;
457   std::vector<Comdat *> ComdatList;
458   SmallVector<Instruction *, 64> InstructionList;
459 
460   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
461   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
462   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
463   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
464   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
465 
466   /// The set of attributes by index.  Index zero in the file is for null, and
467   /// is thus not represented here.  As such all indices are off by one.
468   std::vector<AttributeList> MAttributes;
469 
470   /// The set of attribute groups.
471   std::map<unsigned, AttributeList> MAttributeGroups;
472 
473   /// While parsing a function body, this is a list of the basic blocks for the
474   /// function.
475   std::vector<BasicBlock*> FunctionBBs;
476 
477   // When reading the module header, this list is populated with functions that
478   // have bodies later in the file.
479   std::vector<Function*> FunctionsWithBodies;
480 
481   // When intrinsic functions are encountered which require upgrading they are
482   // stored here with their replacement function.
483   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
484   UpdatedIntrinsicMap UpgradedIntrinsics;
485   // Intrinsics which were remangled because of types rename
486   UpdatedIntrinsicMap RemangledIntrinsics;
487 
488   // Several operations happen after the module header has been read, but
489   // before function bodies are processed. This keeps track of whether
490   // we've done this yet.
491   bool SeenFirstFunctionBody = false;
492 
493   /// When function bodies are initially scanned, this map contains info about
494   /// where to find deferred function body in the stream.
495   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
496 
497   /// When Metadata block is initially scanned when parsing the module, we may
498   /// choose to defer parsing of the metadata. This vector contains info about
499   /// which Metadata blocks are deferred.
500   std::vector<uint64_t> DeferredMetadataInfo;
501 
502   /// These are basic blocks forward-referenced by block addresses.  They are
503   /// inserted lazily into functions when they're loaded.  The basic block ID is
504   /// its index into the vector.
505   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
506   std::deque<Function *> BasicBlockFwdRefQueue;
507 
508   /// Indicates that we are using a new encoding for instruction operands where
509   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
510   /// instruction number, for a more compact encoding.  Some instruction
511   /// operands are not relative to the instruction ID: basic block numbers, and
512   /// types. Once the old style function blocks have been phased out, we would
513   /// not need this flag.
514   bool UseRelativeIDs = false;
515 
516   /// True if all functions will be materialized, negating the need to process
517   /// (e.g.) blockaddress forward references.
518   bool WillMaterializeAllForwardRefs = false;
519 
520   bool StripDebugInfo = false;
521   TBAAVerifier TBAAVerifyHelper;
522 
523   std::vector<std::string> BundleTags;
524   SmallVector<SyncScope::ID, 8> SSIDs;
525 
526 public:
527   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
528                 StringRef ProducerIdentification, LLVMContext &Context);
529 
530   Error materializeForwardReferencedFunctions();
531 
532   Error materialize(GlobalValue *GV) override;
533   Error materializeModule() override;
534   std::vector<StructType *> getIdentifiedStructTypes() const override;
535 
536   /// Main interface to parsing a bitcode buffer.
537   /// \returns true if an error occurred.
538   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
539                          bool IsImporting = false);
540 
541   static uint64_t decodeSignRotatedValue(uint64_t V);
542 
543   /// Materialize any deferred Metadata block.
544   Error materializeMetadata() override;
545 
546   void setStripDebugInfo() override;
547 
548 private:
549   std::vector<StructType *> IdentifiedStructTypes;
550   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
551   StructType *createIdentifiedStructType(LLVMContext &Context);
552 
553   Type *getTypeByID(unsigned ID);
554 
555   Value *getFnValueByID(unsigned ID, Type *Ty) {
556     if (Ty && Ty->isMetadataTy())
557       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
558     return ValueList.getValueFwdRef(ID, Ty);
559   }
560 
561   Metadata *getFnMetadataByID(unsigned ID) {
562     return MDLoader->getMetadataFwdRefOrLoad(ID);
563   }
564 
565   BasicBlock *getBasicBlock(unsigned ID) const {
566     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
567     return FunctionBBs[ID];
568   }
569 
570   AttributeList getAttributes(unsigned i) const {
571     if (i-1 < MAttributes.size())
572       return MAttributes[i-1];
573     return AttributeList();
574   }
575 
576   /// Read a value/type pair out of the specified record from slot 'Slot'.
577   /// Increment Slot past the number of slots used in the record. Return true on
578   /// failure.
579   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
580                         unsigned InstNum, Value *&ResVal) {
581     if (Slot == Record.size()) return true;
582     unsigned ValNo = (unsigned)Record[Slot++];
583     // Adjust the ValNo, if it was encoded relative to the InstNum.
584     if (UseRelativeIDs)
585       ValNo = InstNum - ValNo;
586     if (ValNo < InstNum) {
587       // If this is not a forward reference, just return the value we already
588       // have.
589       ResVal = getFnValueByID(ValNo, nullptr);
590       return ResVal == nullptr;
591     }
592     if (Slot == Record.size())
593       return true;
594 
595     unsigned TypeNo = (unsigned)Record[Slot++];
596     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
597     return ResVal == nullptr;
598   }
599 
600   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
601   /// past the number of slots used by the value in the record. Return true if
602   /// there is an error.
603   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
604                 unsigned InstNum, Type *Ty, Value *&ResVal) {
605     if (getValue(Record, Slot, InstNum, Ty, ResVal))
606       return true;
607     // All values currently take a single record slot.
608     ++Slot;
609     return false;
610   }
611 
612   /// Like popValue, but does not increment the Slot number.
613   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
614                 unsigned InstNum, Type *Ty, Value *&ResVal) {
615     ResVal = getValue(Record, Slot, InstNum, Ty);
616     return ResVal == nullptr;
617   }
618 
619   /// Version of getValue that returns ResVal directly, or 0 if there is an
620   /// error.
621   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
622                   unsigned InstNum, Type *Ty) {
623     if (Slot == Record.size()) return nullptr;
624     unsigned ValNo = (unsigned)Record[Slot];
625     // Adjust the ValNo, if it was encoded relative to the InstNum.
626     if (UseRelativeIDs)
627       ValNo = InstNum - ValNo;
628     return getFnValueByID(ValNo, Ty);
629   }
630 
631   /// Like getValue, but decodes signed VBRs.
632   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
633                         unsigned InstNum, Type *Ty) {
634     if (Slot == Record.size()) return nullptr;
635     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
636     // Adjust the ValNo, if it was encoded relative to the InstNum.
637     if (UseRelativeIDs)
638       ValNo = InstNum - ValNo;
639     return getFnValueByID(ValNo, Ty);
640   }
641 
642   /// Converts alignment exponent (i.e. power of two (or zero)) to the
643   /// corresponding alignment to use. If alignment is too large, returns
644   /// a corresponding error code.
645   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
646   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
647   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
648 
649   Error parseComdatRecord(ArrayRef<uint64_t> Record);
650   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
651   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
652   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
653                                         ArrayRef<uint64_t> Record);
654 
655   Error parseAttributeBlock();
656   Error parseAttributeGroupBlock();
657   Error parseTypeTable();
658   Error parseTypeTableBody();
659   Error parseOperandBundleTags();
660   Error parseSyncScopeNames();
661 
662   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
663                                 unsigned NameIndex, Triple &TT);
664   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
665                                ArrayRef<uint64_t> Record);
666   Error parseValueSymbolTable(uint64_t Offset = 0);
667   Error parseGlobalValueSymbolTable();
668   Error parseConstants();
669   Error rememberAndSkipFunctionBodies();
670   Error rememberAndSkipFunctionBody();
671   /// Save the positions of the Metadata blocks and skip parsing the blocks.
672   Error rememberAndSkipMetadata();
673   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
674   Error parseFunctionBody(Function *F);
675   Error globalCleanup();
676   Error resolveGlobalAndIndirectSymbolInits();
677   Error parseUseLists();
678   Error findFunctionInStream(
679       Function *F,
680       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
681 
682   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
683 };
684 
685 /// Class to manage reading and parsing function summary index bitcode
686 /// files/sections.
687 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
688   /// The module index built during parsing.
689   ModuleSummaryIndex &TheIndex;
690 
691   /// Indicates whether we have encountered a global value summary section
692   /// yet during parsing.
693   bool SeenGlobalValSummary = false;
694 
695   /// Indicates whether we have already parsed the VST, used for error checking.
696   bool SeenValueSymbolTable = false;
697 
698   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
699   /// Used to enable on-demand parsing of the VST.
700   uint64_t VSTOffset = 0;
701 
702   // Map to save ValueId to ValueInfo association that was recorded in the
703   // ValueSymbolTable. It is used after the VST is parsed to convert
704   // call graph edges read from the function summary from referencing
705   // callees by their ValueId to using the ValueInfo instead, which is how
706   // they are recorded in the summary index being built.
707   // We save a GUID which refers to the same global as the ValueInfo, but
708   // ignoring the linkage, i.e. for values other than local linkage they are
709   // identical.
710   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
711       ValueIdToValueInfoMap;
712 
713   /// Map populated during module path string table parsing, from the
714   /// module ID to a string reference owned by the index's module
715   /// path string table, used to correlate with combined index
716   /// summary records.
717   DenseMap<uint64_t, StringRef> ModuleIdMap;
718 
719   /// Original source file name recorded in a bitcode record.
720   std::string SourceFileName;
721 
722   /// The string identifier given to this module by the client, normally the
723   /// path to the bitcode file.
724   StringRef ModulePath;
725 
726   /// For per-module summary indexes, the unique numerical identifier given to
727   /// this module by the client.
728   unsigned ModuleId;
729 
730 public:
731   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
732                                   ModuleSummaryIndex &TheIndex,
733                                   StringRef ModulePath, unsigned ModuleId);
734 
735   Error parseModule();
736 
737 private:
738   void setValueGUID(uint64_t ValueID, StringRef ValueName,
739                     GlobalValue::LinkageTypes Linkage,
740                     StringRef SourceFileName);
741   Error parseValueSymbolTable(
742       uint64_t Offset,
743       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
744   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
745   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
746                                                     bool IsOldProfileFormat,
747                                                     bool HasProfile,
748                                                     bool HasRelBF);
749   Error parseEntireSummary(unsigned ID);
750   Error parseModuleStringTable();
751 
752   std::pair<ValueInfo, GlobalValue::GUID>
753   getValueInfoFromValueId(unsigned ValueId);
754 
755   void addThisModule();
756   ModuleSummaryIndex::ModuleInfo *getThisModule();
757 };
758 
759 } // end anonymous namespace
760 
761 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
762                                                     Error Err) {
763   if (Err) {
764     std::error_code EC;
765     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
766       EC = EIB.convertToErrorCode();
767       Ctx.emitError(EIB.message());
768     });
769     return EC;
770   }
771   return std::error_code();
772 }
773 
774 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
775                              StringRef ProducerIdentification,
776                              LLVMContext &Context)
777     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
778       ValueList(Context) {
779   this->ProducerIdentification = ProducerIdentification;
780 }
781 
782 Error BitcodeReader::materializeForwardReferencedFunctions() {
783   if (WillMaterializeAllForwardRefs)
784     return Error::success();
785 
786   // Prevent recursion.
787   WillMaterializeAllForwardRefs = true;
788 
789   while (!BasicBlockFwdRefQueue.empty()) {
790     Function *F = BasicBlockFwdRefQueue.front();
791     BasicBlockFwdRefQueue.pop_front();
792     assert(F && "Expected valid function");
793     if (!BasicBlockFwdRefs.count(F))
794       // Already materialized.
795       continue;
796 
797     // Check for a function that isn't materializable to prevent an infinite
798     // loop.  When parsing a blockaddress stored in a global variable, there
799     // isn't a trivial way to check if a function will have a body without a
800     // linear search through FunctionsWithBodies, so just check it here.
801     if (!F->isMaterializable())
802       return error("Never resolved function from blockaddress");
803 
804     // Try to materialize F.
805     if (Error Err = materialize(F))
806       return Err;
807   }
808   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
809 
810   // Reset state.
811   WillMaterializeAllForwardRefs = false;
812   return Error::success();
813 }
814 
815 //===----------------------------------------------------------------------===//
816 //  Helper functions to implement forward reference resolution, etc.
817 //===----------------------------------------------------------------------===//
818 
819 static bool hasImplicitComdat(size_t Val) {
820   switch (Val) {
821   default:
822     return false;
823   case 1:  // Old WeakAnyLinkage
824   case 4:  // Old LinkOnceAnyLinkage
825   case 10: // Old WeakODRLinkage
826   case 11: // Old LinkOnceODRLinkage
827     return true;
828   }
829 }
830 
831 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
832   switch (Val) {
833   default: // Map unknown/new linkages to external
834   case 0:
835     return GlobalValue::ExternalLinkage;
836   case 2:
837     return GlobalValue::AppendingLinkage;
838   case 3:
839     return GlobalValue::InternalLinkage;
840   case 5:
841     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
842   case 6:
843     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
844   case 7:
845     return GlobalValue::ExternalWeakLinkage;
846   case 8:
847     return GlobalValue::CommonLinkage;
848   case 9:
849     return GlobalValue::PrivateLinkage;
850   case 12:
851     return GlobalValue::AvailableExternallyLinkage;
852   case 13:
853     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
854   case 14:
855     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
856   case 15:
857     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
858   case 1: // Old value with implicit comdat.
859   case 16:
860     return GlobalValue::WeakAnyLinkage;
861   case 10: // Old value with implicit comdat.
862   case 17:
863     return GlobalValue::WeakODRLinkage;
864   case 4: // Old value with implicit comdat.
865   case 18:
866     return GlobalValue::LinkOnceAnyLinkage;
867   case 11: // Old value with implicit comdat.
868   case 19:
869     return GlobalValue::LinkOnceODRLinkage;
870   }
871 }
872 
873 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
874   FunctionSummary::FFlags Flags;
875   Flags.ReadNone = RawFlags & 0x1;
876   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
877   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
878   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
879   return Flags;
880 }
881 
882 /// Decode the flags for GlobalValue in the summary.
883 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
884                                                             uint64_t Version) {
885   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
886   // like getDecodedLinkage() above. Any future change to the linkage enum and
887   // to getDecodedLinkage() will need to be taken into account here as above.
888   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
889   RawFlags = RawFlags >> 4;
890   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
891   // The Live flag wasn't introduced until version 3. For dead stripping
892   // to work correctly on earlier versions, we must conservatively treat all
893   // values as live.
894   bool Live = (RawFlags & 0x2) || Version < 3;
895   bool Local = (RawFlags & 0x4);
896 
897   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local);
898 }
899 
900 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
901   switch (Val) {
902   default: // Map unknown visibilities to default.
903   case 0: return GlobalValue::DefaultVisibility;
904   case 1: return GlobalValue::HiddenVisibility;
905   case 2: return GlobalValue::ProtectedVisibility;
906   }
907 }
908 
909 static GlobalValue::DLLStorageClassTypes
910 getDecodedDLLStorageClass(unsigned Val) {
911   switch (Val) {
912   default: // Map unknown values to default.
913   case 0: return GlobalValue::DefaultStorageClass;
914   case 1: return GlobalValue::DLLImportStorageClass;
915   case 2: return GlobalValue::DLLExportStorageClass;
916   }
917 }
918 
919 static bool getDecodedDSOLocal(unsigned Val) {
920   switch(Val) {
921   default: // Map unknown values to preemptable.
922   case 0:  return false;
923   case 1:  return true;
924   }
925 }
926 
927 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
928   switch (Val) {
929     case 0: return GlobalVariable::NotThreadLocal;
930     default: // Map unknown non-zero value to general dynamic.
931     case 1: return GlobalVariable::GeneralDynamicTLSModel;
932     case 2: return GlobalVariable::LocalDynamicTLSModel;
933     case 3: return GlobalVariable::InitialExecTLSModel;
934     case 4: return GlobalVariable::LocalExecTLSModel;
935   }
936 }
937 
938 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
939   switch (Val) {
940     default: // Map unknown to UnnamedAddr::None.
941     case 0: return GlobalVariable::UnnamedAddr::None;
942     case 1: return GlobalVariable::UnnamedAddr::Global;
943     case 2: return GlobalVariable::UnnamedAddr::Local;
944   }
945 }
946 
947 static int getDecodedCastOpcode(unsigned Val) {
948   switch (Val) {
949   default: return -1;
950   case bitc::CAST_TRUNC   : return Instruction::Trunc;
951   case bitc::CAST_ZEXT    : return Instruction::ZExt;
952   case bitc::CAST_SEXT    : return Instruction::SExt;
953   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
954   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
955   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
956   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
957   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
958   case bitc::CAST_FPEXT   : return Instruction::FPExt;
959   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
960   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
961   case bitc::CAST_BITCAST : return Instruction::BitCast;
962   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
963   }
964 }
965 
966 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
967   bool IsFP = Ty->isFPOrFPVectorTy();
968   // BinOps are only valid for int/fp or vector of int/fp types
969   if (!IsFP && !Ty->isIntOrIntVectorTy())
970     return -1;
971 
972   switch (Val) {
973   default:
974     return -1;
975   case bitc::BINOP_ADD:
976     return IsFP ? Instruction::FAdd : Instruction::Add;
977   case bitc::BINOP_SUB:
978     return IsFP ? Instruction::FSub : Instruction::Sub;
979   case bitc::BINOP_MUL:
980     return IsFP ? Instruction::FMul : Instruction::Mul;
981   case bitc::BINOP_UDIV:
982     return IsFP ? -1 : Instruction::UDiv;
983   case bitc::BINOP_SDIV:
984     return IsFP ? Instruction::FDiv : Instruction::SDiv;
985   case bitc::BINOP_UREM:
986     return IsFP ? -1 : Instruction::URem;
987   case bitc::BINOP_SREM:
988     return IsFP ? Instruction::FRem : Instruction::SRem;
989   case bitc::BINOP_SHL:
990     return IsFP ? -1 : Instruction::Shl;
991   case bitc::BINOP_LSHR:
992     return IsFP ? -1 : Instruction::LShr;
993   case bitc::BINOP_ASHR:
994     return IsFP ? -1 : Instruction::AShr;
995   case bitc::BINOP_AND:
996     return IsFP ? -1 : Instruction::And;
997   case bitc::BINOP_OR:
998     return IsFP ? -1 : Instruction::Or;
999   case bitc::BINOP_XOR:
1000     return IsFP ? -1 : Instruction::Xor;
1001   }
1002 }
1003 
1004 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1005   switch (Val) {
1006   default: return AtomicRMWInst::BAD_BINOP;
1007   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1008   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1009   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1010   case bitc::RMW_AND: return AtomicRMWInst::And;
1011   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1012   case bitc::RMW_OR: return AtomicRMWInst::Or;
1013   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1014   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1015   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1016   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1017   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1018   }
1019 }
1020 
1021 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1022   switch (Val) {
1023   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1024   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1025   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1026   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1027   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1028   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1029   default: // Map unknown orderings to sequentially-consistent.
1030   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1031   }
1032 }
1033 
1034 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1035   switch (Val) {
1036   default: // Map unknown selection kinds to any.
1037   case bitc::COMDAT_SELECTION_KIND_ANY:
1038     return Comdat::Any;
1039   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1040     return Comdat::ExactMatch;
1041   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1042     return Comdat::Largest;
1043   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1044     return Comdat::NoDuplicates;
1045   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1046     return Comdat::SameSize;
1047   }
1048 }
1049 
1050 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1051   FastMathFlags FMF;
1052   if (0 != (Val & bitc::UnsafeAlgebra))
1053     FMF.setFast();
1054   if (0 != (Val & bitc::AllowReassoc))
1055     FMF.setAllowReassoc();
1056   if (0 != (Val & bitc::NoNaNs))
1057     FMF.setNoNaNs();
1058   if (0 != (Val & bitc::NoInfs))
1059     FMF.setNoInfs();
1060   if (0 != (Val & bitc::NoSignedZeros))
1061     FMF.setNoSignedZeros();
1062   if (0 != (Val & bitc::AllowReciprocal))
1063     FMF.setAllowReciprocal();
1064   if (0 != (Val & bitc::AllowContract))
1065     FMF.setAllowContract(true);
1066   if (0 != (Val & bitc::ApproxFunc))
1067     FMF.setApproxFunc();
1068   return FMF;
1069 }
1070 
1071 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1072   switch (Val) {
1073   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1074   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1075   }
1076 }
1077 
1078 Type *BitcodeReader::getTypeByID(unsigned ID) {
1079   // The type table size is always specified correctly.
1080   if (ID >= TypeList.size())
1081     return nullptr;
1082 
1083   if (Type *Ty = TypeList[ID])
1084     return Ty;
1085 
1086   // If we have a forward reference, the only possible case is when it is to a
1087   // named struct.  Just create a placeholder for now.
1088   return TypeList[ID] = createIdentifiedStructType(Context);
1089 }
1090 
1091 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1092                                                       StringRef Name) {
1093   auto *Ret = StructType::create(Context, Name);
1094   IdentifiedStructTypes.push_back(Ret);
1095   return Ret;
1096 }
1097 
1098 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1099   auto *Ret = StructType::create(Context);
1100   IdentifiedStructTypes.push_back(Ret);
1101   return Ret;
1102 }
1103 
1104 //===----------------------------------------------------------------------===//
1105 //  Functions for parsing blocks from the bitcode file
1106 //===----------------------------------------------------------------------===//
1107 
1108 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1109   switch (Val) {
1110   case Attribute::EndAttrKinds:
1111     llvm_unreachable("Synthetic enumerators which should never get here");
1112 
1113   case Attribute::None:            return 0;
1114   case Attribute::ZExt:            return 1 << 0;
1115   case Attribute::SExt:            return 1 << 1;
1116   case Attribute::NoReturn:        return 1 << 2;
1117   case Attribute::InReg:           return 1 << 3;
1118   case Attribute::StructRet:       return 1 << 4;
1119   case Attribute::NoUnwind:        return 1 << 5;
1120   case Attribute::NoAlias:         return 1 << 6;
1121   case Attribute::ByVal:           return 1 << 7;
1122   case Attribute::Nest:            return 1 << 8;
1123   case Attribute::ReadNone:        return 1 << 9;
1124   case Attribute::ReadOnly:        return 1 << 10;
1125   case Attribute::NoInline:        return 1 << 11;
1126   case Attribute::AlwaysInline:    return 1 << 12;
1127   case Attribute::OptimizeForSize: return 1 << 13;
1128   case Attribute::StackProtect:    return 1 << 14;
1129   case Attribute::StackProtectReq: return 1 << 15;
1130   case Attribute::Alignment:       return 31 << 16;
1131   case Attribute::NoCapture:       return 1 << 21;
1132   case Attribute::NoRedZone:       return 1 << 22;
1133   case Attribute::NoImplicitFloat: return 1 << 23;
1134   case Attribute::Naked:           return 1 << 24;
1135   case Attribute::InlineHint:      return 1 << 25;
1136   case Attribute::StackAlignment:  return 7 << 26;
1137   case Attribute::ReturnsTwice:    return 1 << 29;
1138   case Attribute::UWTable:         return 1 << 30;
1139   case Attribute::NonLazyBind:     return 1U << 31;
1140   case Attribute::SanitizeAddress: return 1ULL << 32;
1141   case Attribute::MinSize:         return 1ULL << 33;
1142   case Attribute::NoDuplicate:     return 1ULL << 34;
1143   case Attribute::StackProtectStrong: return 1ULL << 35;
1144   case Attribute::SanitizeThread:  return 1ULL << 36;
1145   case Attribute::SanitizeMemory:  return 1ULL << 37;
1146   case Attribute::NoBuiltin:       return 1ULL << 38;
1147   case Attribute::Returned:        return 1ULL << 39;
1148   case Attribute::Cold:            return 1ULL << 40;
1149   case Attribute::Builtin:         return 1ULL << 41;
1150   case Attribute::OptimizeNone:    return 1ULL << 42;
1151   case Attribute::InAlloca:        return 1ULL << 43;
1152   case Attribute::NonNull:         return 1ULL << 44;
1153   case Attribute::JumpTable:       return 1ULL << 45;
1154   case Attribute::Convergent:      return 1ULL << 46;
1155   case Attribute::SafeStack:       return 1ULL << 47;
1156   case Attribute::NoRecurse:       return 1ULL << 48;
1157   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1158   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1159   case Attribute::SwiftSelf:       return 1ULL << 51;
1160   case Attribute::SwiftError:      return 1ULL << 52;
1161   case Attribute::WriteOnly:       return 1ULL << 53;
1162   case Attribute::Speculatable:    return 1ULL << 54;
1163   case Attribute::StrictFP:        return 1ULL << 55;
1164   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1165   case Attribute::NoCfCheck:       return 1ULL << 57;
1166   case Attribute::OptForFuzzing:   return 1ULL << 58;
1167   case Attribute::ShadowCallStack: return 1ULL << 59;
1168   case Attribute::Dereferenceable:
1169     llvm_unreachable("dereferenceable attribute not supported in raw format");
1170     break;
1171   case Attribute::DereferenceableOrNull:
1172     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1173                      "format");
1174     break;
1175   case Attribute::ArgMemOnly:
1176     llvm_unreachable("argmemonly attribute not supported in raw format");
1177     break;
1178   case Attribute::AllocSize:
1179     llvm_unreachable("allocsize not supported in raw format");
1180     break;
1181   }
1182   llvm_unreachable("Unsupported attribute type");
1183 }
1184 
1185 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1186   if (!Val) return;
1187 
1188   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1189        I = Attribute::AttrKind(I + 1)) {
1190     if (I == Attribute::Dereferenceable ||
1191         I == Attribute::DereferenceableOrNull ||
1192         I == Attribute::ArgMemOnly ||
1193         I == Attribute::AllocSize)
1194       continue;
1195     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1196       if (I == Attribute::Alignment)
1197         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1198       else if (I == Attribute::StackAlignment)
1199         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1200       else
1201         B.addAttribute(I);
1202     }
1203   }
1204 }
1205 
1206 /// This fills an AttrBuilder object with the LLVM attributes that have
1207 /// been decoded from the given integer. This function must stay in sync with
1208 /// 'encodeLLVMAttributesForBitcode'.
1209 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1210                                            uint64_t EncodedAttrs) {
1211   // FIXME: Remove in 4.0.
1212 
1213   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1214   // the bits above 31 down by 11 bits.
1215   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1216   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1217          "Alignment must be a power of two.");
1218 
1219   if (Alignment)
1220     B.addAlignmentAttr(Alignment);
1221   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1222                           (EncodedAttrs & 0xffff));
1223 }
1224 
1225 Error BitcodeReader::parseAttributeBlock() {
1226   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1227     return error("Invalid record");
1228 
1229   if (!MAttributes.empty())
1230     return error("Invalid multiple blocks");
1231 
1232   SmallVector<uint64_t, 64> Record;
1233 
1234   SmallVector<AttributeList, 8> Attrs;
1235 
1236   // Read all the records.
1237   while (true) {
1238     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1239 
1240     switch (Entry.Kind) {
1241     case BitstreamEntry::SubBlock: // Handled for us already.
1242     case BitstreamEntry::Error:
1243       return error("Malformed block");
1244     case BitstreamEntry::EndBlock:
1245       return Error::success();
1246     case BitstreamEntry::Record:
1247       // The interesting case.
1248       break;
1249     }
1250 
1251     // Read a record.
1252     Record.clear();
1253     switch (Stream.readRecord(Entry.ID, Record)) {
1254     default:  // Default behavior: ignore.
1255       break;
1256     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1257       // FIXME: Remove in 4.0.
1258       if (Record.size() & 1)
1259         return error("Invalid record");
1260 
1261       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1262         AttrBuilder B;
1263         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1264         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1265       }
1266 
1267       MAttributes.push_back(AttributeList::get(Context, Attrs));
1268       Attrs.clear();
1269       break;
1270     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1271       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1272         Attrs.push_back(MAttributeGroups[Record[i]]);
1273 
1274       MAttributes.push_back(AttributeList::get(Context, Attrs));
1275       Attrs.clear();
1276       break;
1277     }
1278   }
1279 }
1280 
1281 // Returns Attribute::None on unrecognized codes.
1282 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1283   switch (Code) {
1284   default:
1285     return Attribute::None;
1286   case bitc::ATTR_KIND_ALIGNMENT:
1287     return Attribute::Alignment;
1288   case bitc::ATTR_KIND_ALWAYS_INLINE:
1289     return Attribute::AlwaysInline;
1290   case bitc::ATTR_KIND_ARGMEMONLY:
1291     return Attribute::ArgMemOnly;
1292   case bitc::ATTR_KIND_BUILTIN:
1293     return Attribute::Builtin;
1294   case bitc::ATTR_KIND_BY_VAL:
1295     return Attribute::ByVal;
1296   case bitc::ATTR_KIND_IN_ALLOCA:
1297     return Attribute::InAlloca;
1298   case bitc::ATTR_KIND_COLD:
1299     return Attribute::Cold;
1300   case bitc::ATTR_KIND_CONVERGENT:
1301     return Attribute::Convergent;
1302   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1303     return Attribute::InaccessibleMemOnly;
1304   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1305     return Attribute::InaccessibleMemOrArgMemOnly;
1306   case bitc::ATTR_KIND_INLINE_HINT:
1307     return Attribute::InlineHint;
1308   case bitc::ATTR_KIND_IN_REG:
1309     return Attribute::InReg;
1310   case bitc::ATTR_KIND_JUMP_TABLE:
1311     return Attribute::JumpTable;
1312   case bitc::ATTR_KIND_MIN_SIZE:
1313     return Attribute::MinSize;
1314   case bitc::ATTR_KIND_NAKED:
1315     return Attribute::Naked;
1316   case bitc::ATTR_KIND_NEST:
1317     return Attribute::Nest;
1318   case bitc::ATTR_KIND_NO_ALIAS:
1319     return Attribute::NoAlias;
1320   case bitc::ATTR_KIND_NO_BUILTIN:
1321     return Attribute::NoBuiltin;
1322   case bitc::ATTR_KIND_NO_CAPTURE:
1323     return Attribute::NoCapture;
1324   case bitc::ATTR_KIND_NO_DUPLICATE:
1325     return Attribute::NoDuplicate;
1326   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1327     return Attribute::NoImplicitFloat;
1328   case bitc::ATTR_KIND_NO_INLINE:
1329     return Attribute::NoInline;
1330   case bitc::ATTR_KIND_NO_RECURSE:
1331     return Attribute::NoRecurse;
1332   case bitc::ATTR_KIND_NON_LAZY_BIND:
1333     return Attribute::NonLazyBind;
1334   case bitc::ATTR_KIND_NON_NULL:
1335     return Attribute::NonNull;
1336   case bitc::ATTR_KIND_DEREFERENCEABLE:
1337     return Attribute::Dereferenceable;
1338   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1339     return Attribute::DereferenceableOrNull;
1340   case bitc::ATTR_KIND_ALLOC_SIZE:
1341     return Attribute::AllocSize;
1342   case bitc::ATTR_KIND_NO_RED_ZONE:
1343     return Attribute::NoRedZone;
1344   case bitc::ATTR_KIND_NO_RETURN:
1345     return Attribute::NoReturn;
1346   case bitc::ATTR_KIND_NOCF_CHECK:
1347     return Attribute::NoCfCheck;
1348   case bitc::ATTR_KIND_NO_UNWIND:
1349     return Attribute::NoUnwind;
1350   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1351     return Attribute::OptForFuzzing;
1352   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1353     return Attribute::OptimizeForSize;
1354   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1355     return Attribute::OptimizeNone;
1356   case bitc::ATTR_KIND_READ_NONE:
1357     return Attribute::ReadNone;
1358   case bitc::ATTR_KIND_READ_ONLY:
1359     return Attribute::ReadOnly;
1360   case bitc::ATTR_KIND_RETURNED:
1361     return Attribute::Returned;
1362   case bitc::ATTR_KIND_RETURNS_TWICE:
1363     return Attribute::ReturnsTwice;
1364   case bitc::ATTR_KIND_S_EXT:
1365     return Attribute::SExt;
1366   case bitc::ATTR_KIND_SPECULATABLE:
1367     return Attribute::Speculatable;
1368   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1369     return Attribute::StackAlignment;
1370   case bitc::ATTR_KIND_STACK_PROTECT:
1371     return Attribute::StackProtect;
1372   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1373     return Attribute::StackProtectReq;
1374   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1375     return Attribute::StackProtectStrong;
1376   case bitc::ATTR_KIND_SAFESTACK:
1377     return Attribute::SafeStack;
1378   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1379     return Attribute::ShadowCallStack;
1380   case bitc::ATTR_KIND_STRICT_FP:
1381     return Attribute::StrictFP;
1382   case bitc::ATTR_KIND_STRUCT_RET:
1383     return Attribute::StructRet;
1384   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1385     return Attribute::SanitizeAddress;
1386   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1387     return Attribute::SanitizeHWAddress;
1388   case bitc::ATTR_KIND_SANITIZE_THREAD:
1389     return Attribute::SanitizeThread;
1390   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1391     return Attribute::SanitizeMemory;
1392   case bitc::ATTR_KIND_SWIFT_ERROR:
1393     return Attribute::SwiftError;
1394   case bitc::ATTR_KIND_SWIFT_SELF:
1395     return Attribute::SwiftSelf;
1396   case bitc::ATTR_KIND_UW_TABLE:
1397     return Attribute::UWTable;
1398   case bitc::ATTR_KIND_WRITEONLY:
1399     return Attribute::WriteOnly;
1400   case bitc::ATTR_KIND_Z_EXT:
1401     return Attribute::ZExt;
1402   }
1403 }
1404 
1405 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1406                                          unsigned &Alignment) {
1407   // Note: Alignment in bitcode files is incremented by 1, so that zero
1408   // can be used for default alignment.
1409   if (Exponent > Value::MaxAlignmentExponent + 1)
1410     return error("Invalid alignment value");
1411   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1412   return Error::success();
1413 }
1414 
1415 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1416   *Kind = getAttrFromCode(Code);
1417   if (*Kind == Attribute::None)
1418     return error("Unknown attribute kind (" + Twine(Code) + ")");
1419   return Error::success();
1420 }
1421 
1422 Error BitcodeReader::parseAttributeGroupBlock() {
1423   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1424     return error("Invalid record");
1425 
1426   if (!MAttributeGroups.empty())
1427     return error("Invalid multiple blocks");
1428 
1429   SmallVector<uint64_t, 64> Record;
1430 
1431   // Read all the records.
1432   while (true) {
1433     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1434 
1435     switch (Entry.Kind) {
1436     case BitstreamEntry::SubBlock: // Handled for us already.
1437     case BitstreamEntry::Error:
1438       return error("Malformed block");
1439     case BitstreamEntry::EndBlock:
1440       return Error::success();
1441     case BitstreamEntry::Record:
1442       // The interesting case.
1443       break;
1444     }
1445 
1446     // Read a record.
1447     Record.clear();
1448     switch (Stream.readRecord(Entry.ID, Record)) {
1449     default:  // Default behavior: ignore.
1450       break;
1451     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1452       if (Record.size() < 3)
1453         return error("Invalid record");
1454 
1455       uint64_t GrpID = Record[0];
1456       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1457 
1458       AttrBuilder B;
1459       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1460         if (Record[i] == 0) {        // Enum attribute
1461           Attribute::AttrKind Kind;
1462           if (Error Err = parseAttrKind(Record[++i], &Kind))
1463             return Err;
1464 
1465           B.addAttribute(Kind);
1466         } else if (Record[i] == 1) { // Integer attribute
1467           Attribute::AttrKind Kind;
1468           if (Error Err = parseAttrKind(Record[++i], &Kind))
1469             return Err;
1470           if (Kind == Attribute::Alignment)
1471             B.addAlignmentAttr(Record[++i]);
1472           else if (Kind == Attribute::StackAlignment)
1473             B.addStackAlignmentAttr(Record[++i]);
1474           else if (Kind == Attribute::Dereferenceable)
1475             B.addDereferenceableAttr(Record[++i]);
1476           else if (Kind == Attribute::DereferenceableOrNull)
1477             B.addDereferenceableOrNullAttr(Record[++i]);
1478           else if (Kind == Attribute::AllocSize)
1479             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1480         } else {                     // String attribute
1481           assert((Record[i] == 3 || Record[i] == 4) &&
1482                  "Invalid attribute group entry");
1483           bool HasValue = (Record[i++] == 4);
1484           SmallString<64> KindStr;
1485           SmallString<64> ValStr;
1486 
1487           while (Record[i] != 0 && i != e)
1488             KindStr += Record[i++];
1489           assert(Record[i] == 0 && "Kind string not null terminated");
1490 
1491           if (HasValue) {
1492             // Has a value associated with it.
1493             ++i; // Skip the '0' that terminates the "kind" string.
1494             while (Record[i] != 0 && i != e)
1495               ValStr += Record[i++];
1496             assert(Record[i] == 0 && "Value string not null terminated");
1497           }
1498 
1499           B.addAttribute(KindStr.str(), ValStr.str());
1500         }
1501       }
1502 
1503       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1504       break;
1505     }
1506     }
1507   }
1508 }
1509 
1510 Error BitcodeReader::parseTypeTable() {
1511   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1512     return error("Invalid record");
1513 
1514   return parseTypeTableBody();
1515 }
1516 
1517 Error BitcodeReader::parseTypeTableBody() {
1518   if (!TypeList.empty())
1519     return error("Invalid multiple blocks");
1520 
1521   SmallVector<uint64_t, 64> Record;
1522   unsigned NumRecords = 0;
1523 
1524   SmallString<64> TypeName;
1525 
1526   // Read all the records for this type table.
1527   while (true) {
1528     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1529 
1530     switch (Entry.Kind) {
1531     case BitstreamEntry::SubBlock: // Handled for us already.
1532     case BitstreamEntry::Error:
1533       return error("Malformed block");
1534     case BitstreamEntry::EndBlock:
1535       if (NumRecords != TypeList.size())
1536         return error("Malformed block");
1537       return Error::success();
1538     case BitstreamEntry::Record:
1539       // The interesting case.
1540       break;
1541     }
1542 
1543     // Read a record.
1544     Record.clear();
1545     Type *ResultTy = nullptr;
1546     switch (Stream.readRecord(Entry.ID, Record)) {
1547     default:
1548       return error("Invalid value");
1549     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1550       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1551       // type list.  This allows us to reserve space.
1552       if (Record.size() < 1)
1553         return error("Invalid record");
1554       TypeList.resize(Record[0]);
1555       continue;
1556     case bitc::TYPE_CODE_VOID:      // VOID
1557       ResultTy = Type::getVoidTy(Context);
1558       break;
1559     case bitc::TYPE_CODE_HALF:     // HALF
1560       ResultTy = Type::getHalfTy(Context);
1561       break;
1562     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1563       ResultTy = Type::getFloatTy(Context);
1564       break;
1565     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1566       ResultTy = Type::getDoubleTy(Context);
1567       break;
1568     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1569       ResultTy = Type::getX86_FP80Ty(Context);
1570       break;
1571     case bitc::TYPE_CODE_FP128:     // FP128
1572       ResultTy = Type::getFP128Ty(Context);
1573       break;
1574     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1575       ResultTy = Type::getPPC_FP128Ty(Context);
1576       break;
1577     case bitc::TYPE_CODE_LABEL:     // LABEL
1578       ResultTy = Type::getLabelTy(Context);
1579       break;
1580     case bitc::TYPE_CODE_METADATA:  // METADATA
1581       ResultTy = Type::getMetadataTy(Context);
1582       break;
1583     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1584       ResultTy = Type::getX86_MMXTy(Context);
1585       break;
1586     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1587       ResultTy = Type::getTokenTy(Context);
1588       break;
1589     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1590       if (Record.size() < 1)
1591         return error("Invalid record");
1592 
1593       uint64_t NumBits = Record[0];
1594       if (NumBits < IntegerType::MIN_INT_BITS ||
1595           NumBits > IntegerType::MAX_INT_BITS)
1596         return error("Bitwidth for integer type out of range");
1597       ResultTy = IntegerType::get(Context, NumBits);
1598       break;
1599     }
1600     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1601                                     //          [pointee type, address space]
1602       if (Record.size() < 1)
1603         return error("Invalid record");
1604       unsigned AddressSpace = 0;
1605       if (Record.size() == 2)
1606         AddressSpace = Record[1];
1607       ResultTy = getTypeByID(Record[0]);
1608       if (!ResultTy ||
1609           !PointerType::isValidElementType(ResultTy))
1610         return error("Invalid type");
1611       ResultTy = PointerType::get(ResultTy, AddressSpace);
1612       break;
1613     }
1614     case bitc::TYPE_CODE_FUNCTION_OLD: {
1615       // FIXME: attrid is dead, remove it in LLVM 4.0
1616       // FUNCTION: [vararg, attrid, retty, paramty x N]
1617       if (Record.size() < 3)
1618         return error("Invalid record");
1619       SmallVector<Type*, 8> ArgTys;
1620       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1621         if (Type *T = getTypeByID(Record[i]))
1622           ArgTys.push_back(T);
1623         else
1624           break;
1625       }
1626 
1627       ResultTy = getTypeByID(Record[2]);
1628       if (!ResultTy || ArgTys.size() < Record.size()-3)
1629         return error("Invalid type");
1630 
1631       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1632       break;
1633     }
1634     case bitc::TYPE_CODE_FUNCTION: {
1635       // FUNCTION: [vararg, retty, paramty x N]
1636       if (Record.size() < 2)
1637         return error("Invalid record");
1638       SmallVector<Type*, 8> ArgTys;
1639       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1640         if (Type *T = getTypeByID(Record[i])) {
1641           if (!FunctionType::isValidArgumentType(T))
1642             return error("Invalid function argument type");
1643           ArgTys.push_back(T);
1644         }
1645         else
1646           break;
1647       }
1648 
1649       ResultTy = getTypeByID(Record[1]);
1650       if (!ResultTy || ArgTys.size() < Record.size()-2)
1651         return error("Invalid type");
1652 
1653       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1654       break;
1655     }
1656     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1657       if (Record.size() < 1)
1658         return error("Invalid record");
1659       SmallVector<Type*, 8> EltTys;
1660       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1661         if (Type *T = getTypeByID(Record[i]))
1662           EltTys.push_back(T);
1663         else
1664           break;
1665       }
1666       if (EltTys.size() != Record.size()-1)
1667         return error("Invalid type");
1668       ResultTy = StructType::get(Context, EltTys, Record[0]);
1669       break;
1670     }
1671     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1672       if (convertToString(Record, 0, TypeName))
1673         return error("Invalid record");
1674       continue;
1675 
1676     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1677       if (Record.size() < 1)
1678         return error("Invalid record");
1679 
1680       if (NumRecords >= TypeList.size())
1681         return error("Invalid TYPE table");
1682 
1683       // Check to see if this was forward referenced, if so fill in the temp.
1684       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1685       if (Res) {
1686         Res->setName(TypeName);
1687         TypeList[NumRecords] = nullptr;
1688       } else  // Otherwise, create a new struct.
1689         Res = createIdentifiedStructType(Context, TypeName);
1690       TypeName.clear();
1691 
1692       SmallVector<Type*, 8> EltTys;
1693       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1694         if (Type *T = getTypeByID(Record[i]))
1695           EltTys.push_back(T);
1696         else
1697           break;
1698       }
1699       if (EltTys.size() != Record.size()-1)
1700         return error("Invalid record");
1701       Res->setBody(EltTys, Record[0]);
1702       ResultTy = Res;
1703       break;
1704     }
1705     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1706       if (Record.size() != 1)
1707         return error("Invalid record");
1708 
1709       if (NumRecords >= TypeList.size())
1710         return error("Invalid TYPE table");
1711 
1712       // Check to see if this was forward referenced, if so fill in the temp.
1713       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1714       if (Res) {
1715         Res->setName(TypeName);
1716         TypeList[NumRecords] = nullptr;
1717       } else  // Otherwise, create a new struct with no body.
1718         Res = createIdentifiedStructType(Context, TypeName);
1719       TypeName.clear();
1720       ResultTy = Res;
1721       break;
1722     }
1723     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1724       if (Record.size() < 2)
1725         return error("Invalid record");
1726       ResultTy = getTypeByID(Record[1]);
1727       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1728         return error("Invalid type");
1729       ResultTy = ArrayType::get(ResultTy, Record[0]);
1730       break;
1731     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1732       if (Record.size() < 2)
1733         return error("Invalid record");
1734       if (Record[0] == 0)
1735         return error("Invalid vector length");
1736       ResultTy = getTypeByID(Record[1]);
1737       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1738         return error("Invalid type");
1739       ResultTy = VectorType::get(ResultTy, Record[0]);
1740       break;
1741     }
1742 
1743     if (NumRecords >= TypeList.size())
1744       return error("Invalid TYPE table");
1745     if (TypeList[NumRecords])
1746       return error(
1747           "Invalid TYPE table: Only named structs can be forward referenced");
1748     assert(ResultTy && "Didn't read a type?");
1749     TypeList[NumRecords++] = ResultTy;
1750   }
1751 }
1752 
1753 Error BitcodeReader::parseOperandBundleTags() {
1754   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1755     return error("Invalid record");
1756 
1757   if (!BundleTags.empty())
1758     return error("Invalid multiple blocks");
1759 
1760   SmallVector<uint64_t, 64> Record;
1761 
1762   while (true) {
1763     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1764 
1765     switch (Entry.Kind) {
1766     case BitstreamEntry::SubBlock: // Handled for us already.
1767     case BitstreamEntry::Error:
1768       return error("Malformed block");
1769     case BitstreamEntry::EndBlock:
1770       return Error::success();
1771     case BitstreamEntry::Record:
1772       // The interesting case.
1773       break;
1774     }
1775 
1776     // Tags are implicitly mapped to integers by their order.
1777 
1778     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1779       return error("Invalid record");
1780 
1781     // OPERAND_BUNDLE_TAG: [strchr x N]
1782     BundleTags.emplace_back();
1783     if (convertToString(Record, 0, BundleTags.back()))
1784       return error("Invalid record");
1785     Record.clear();
1786   }
1787 }
1788 
1789 Error BitcodeReader::parseSyncScopeNames() {
1790   if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1791     return error("Invalid record");
1792 
1793   if (!SSIDs.empty())
1794     return error("Invalid multiple synchronization scope names blocks");
1795 
1796   SmallVector<uint64_t, 64> Record;
1797   while (true) {
1798     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1799     switch (Entry.Kind) {
1800     case BitstreamEntry::SubBlock: // Handled for us already.
1801     case BitstreamEntry::Error:
1802       return error("Malformed block");
1803     case BitstreamEntry::EndBlock:
1804       if (SSIDs.empty())
1805         return error("Invalid empty synchronization scope names block");
1806       return Error::success();
1807     case BitstreamEntry::Record:
1808       // The interesting case.
1809       break;
1810     }
1811 
1812     // Synchronization scope names are implicitly mapped to synchronization
1813     // scope IDs by their order.
1814 
1815     if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1816       return error("Invalid record");
1817 
1818     SmallString<16> SSN;
1819     if (convertToString(Record, 0, SSN))
1820       return error("Invalid record");
1821 
1822     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1823     Record.clear();
1824   }
1825 }
1826 
1827 /// Associate a value with its name from the given index in the provided record.
1828 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1829                                              unsigned NameIndex, Triple &TT) {
1830   SmallString<128> ValueName;
1831   if (convertToString(Record, NameIndex, ValueName))
1832     return error("Invalid record");
1833   unsigned ValueID = Record[0];
1834   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1835     return error("Invalid record");
1836   Value *V = ValueList[ValueID];
1837 
1838   StringRef NameStr(ValueName.data(), ValueName.size());
1839   if (NameStr.find_first_of(0) != StringRef::npos)
1840     return error("Invalid value name");
1841   V->setName(NameStr);
1842   auto *GO = dyn_cast<GlobalObject>(V);
1843   if (GO) {
1844     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1845       if (TT.supportsCOMDAT())
1846         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1847       else
1848         GO->setComdat(nullptr);
1849     }
1850   }
1851   return V;
1852 }
1853 
1854 /// Helper to note and return the current location, and jump to the given
1855 /// offset.
1856 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1857                                        BitstreamCursor &Stream) {
1858   // Save the current parsing location so we can jump back at the end
1859   // of the VST read.
1860   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1861   Stream.JumpToBit(Offset * 32);
1862 #ifndef NDEBUG
1863   // Do some checking if we are in debug mode.
1864   BitstreamEntry Entry = Stream.advance();
1865   assert(Entry.Kind == BitstreamEntry::SubBlock);
1866   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1867 #else
1868   // In NDEBUG mode ignore the output so we don't get an unused variable
1869   // warning.
1870   Stream.advance();
1871 #endif
1872   return CurrentBit;
1873 }
1874 
1875 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1876                                             Function *F,
1877                                             ArrayRef<uint64_t> Record) {
1878   // Note that we subtract 1 here because the offset is relative to one word
1879   // before the start of the identification or module block, which was
1880   // historically always the start of the regular bitcode header.
1881   uint64_t FuncWordOffset = Record[1] - 1;
1882   uint64_t FuncBitOffset = FuncWordOffset * 32;
1883   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1884   // Set the LastFunctionBlockBit to point to the last function block.
1885   // Later when parsing is resumed after function materialization,
1886   // we can simply skip that last function block.
1887   if (FuncBitOffset > LastFunctionBlockBit)
1888     LastFunctionBlockBit = FuncBitOffset;
1889 }
1890 
1891 /// Read a new-style GlobalValue symbol table.
1892 Error BitcodeReader::parseGlobalValueSymbolTable() {
1893   unsigned FuncBitcodeOffsetDelta =
1894       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1895 
1896   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1897     return error("Invalid record");
1898 
1899   SmallVector<uint64_t, 64> Record;
1900   while (true) {
1901     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1902 
1903     switch (Entry.Kind) {
1904     case BitstreamEntry::SubBlock:
1905     case BitstreamEntry::Error:
1906       return error("Malformed block");
1907     case BitstreamEntry::EndBlock:
1908       return Error::success();
1909     case BitstreamEntry::Record:
1910       break;
1911     }
1912 
1913     Record.clear();
1914     switch (Stream.readRecord(Entry.ID, Record)) {
1915     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1916       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1917                               cast<Function>(ValueList[Record[0]]), Record);
1918       break;
1919     }
1920   }
1921 }
1922 
1923 /// Parse the value symbol table at either the current parsing location or
1924 /// at the given bit offset if provided.
1925 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1926   uint64_t CurrentBit;
1927   // Pass in the Offset to distinguish between calling for the module-level
1928   // VST (where we want to jump to the VST offset) and the function-level
1929   // VST (where we don't).
1930   if (Offset > 0) {
1931     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1932     // If this module uses a string table, read this as a module-level VST.
1933     if (UseStrtab) {
1934       if (Error Err = parseGlobalValueSymbolTable())
1935         return Err;
1936       Stream.JumpToBit(CurrentBit);
1937       return Error::success();
1938     }
1939     // Otherwise, the VST will be in a similar format to a function-level VST,
1940     // and will contain symbol names.
1941   }
1942 
1943   // Compute the delta between the bitcode indices in the VST (the word offset
1944   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1945   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1946   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1947   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1948   // just before entering the VST subblock because: 1) the EnterSubBlock
1949   // changes the AbbrevID width; 2) the VST block is nested within the same
1950   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1951   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1952   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1953   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1954   unsigned FuncBitcodeOffsetDelta =
1955       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1956 
1957   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1958     return error("Invalid record");
1959 
1960   SmallVector<uint64_t, 64> Record;
1961 
1962   Triple TT(TheModule->getTargetTriple());
1963 
1964   // Read all the records for this value table.
1965   SmallString<128> ValueName;
1966 
1967   while (true) {
1968     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1969 
1970     switch (Entry.Kind) {
1971     case BitstreamEntry::SubBlock: // Handled for us already.
1972     case BitstreamEntry::Error:
1973       return error("Malformed block");
1974     case BitstreamEntry::EndBlock:
1975       if (Offset > 0)
1976         Stream.JumpToBit(CurrentBit);
1977       return Error::success();
1978     case BitstreamEntry::Record:
1979       // The interesting case.
1980       break;
1981     }
1982 
1983     // Read a record.
1984     Record.clear();
1985     switch (Stream.readRecord(Entry.ID, Record)) {
1986     default:  // Default behavior: unknown type.
1987       break;
1988     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1989       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
1990       if (Error Err = ValOrErr.takeError())
1991         return Err;
1992       ValOrErr.get();
1993       break;
1994     }
1995     case bitc::VST_CODE_FNENTRY: {
1996       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1997       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
1998       if (Error Err = ValOrErr.takeError())
1999         return Err;
2000       Value *V = ValOrErr.get();
2001 
2002       // Ignore function offsets emitted for aliases of functions in older
2003       // versions of LLVM.
2004       if (auto *F = dyn_cast<Function>(V))
2005         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2006       break;
2007     }
2008     case bitc::VST_CODE_BBENTRY: {
2009       if (convertToString(Record, 1, ValueName))
2010         return error("Invalid record");
2011       BasicBlock *BB = getBasicBlock(Record[0]);
2012       if (!BB)
2013         return error("Invalid record");
2014 
2015       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2016       ValueName.clear();
2017       break;
2018     }
2019     }
2020   }
2021 }
2022 
2023 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2024 /// encoding.
2025 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2026   if ((V & 1) == 0)
2027     return V >> 1;
2028   if (V != 1)
2029     return -(V >> 1);
2030   // There is no such thing as -0 with integers.  "-0" really means MININT.
2031   return 1ULL << 63;
2032 }
2033 
2034 /// Resolve all of the initializers for global values and aliases that we can.
2035 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2036   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2037   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2038       IndirectSymbolInitWorklist;
2039   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2040   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2041   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2042 
2043   GlobalInitWorklist.swap(GlobalInits);
2044   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2045   FunctionPrefixWorklist.swap(FunctionPrefixes);
2046   FunctionPrologueWorklist.swap(FunctionPrologues);
2047   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2048 
2049   while (!GlobalInitWorklist.empty()) {
2050     unsigned ValID = GlobalInitWorklist.back().second;
2051     if (ValID >= ValueList.size()) {
2052       // Not ready to resolve this yet, it requires something later in the file.
2053       GlobalInits.push_back(GlobalInitWorklist.back());
2054     } else {
2055       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2056         GlobalInitWorklist.back().first->setInitializer(C);
2057       else
2058         return error("Expected a constant");
2059     }
2060     GlobalInitWorklist.pop_back();
2061   }
2062 
2063   while (!IndirectSymbolInitWorklist.empty()) {
2064     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2065     if (ValID >= ValueList.size()) {
2066       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2067     } else {
2068       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2069       if (!C)
2070         return error("Expected a constant");
2071       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2072       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2073         return error("Alias and aliasee types don't match");
2074       GIS->setIndirectSymbol(C);
2075     }
2076     IndirectSymbolInitWorklist.pop_back();
2077   }
2078 
2079   while (!FunctionPrefixWorklist.empty()) {
2080     unsigned ValID = FunctionPrefixWorklist.back().second;
2081     if (ValID >= ValueList.size()) {
2082       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2083     } else {
2084       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2085         FunctionPrefixWorklist.back().first->setPrefixData(C);
2086       else
2087         return error("Expected a constant");
2088     }
2089     FunctionPrefixWorklist.pop_back();
2090   }
2091 
2092   while (!FunctionPrologueWorklist.empty()) {
2093     unsigned ValID = FunctionPrologueWorklist.back().second;
2094     if (ValID >= ValueList.size()) {
2095       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2096     } else {
2097       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2098         FunctionPrologueWorklist.back().first->setPrologueData(C);
2099       else
2100         return error("Expected a constant");
2101     }
2102     FunctionPrologueWorklist.pop_back();
2103   }
2104 
2105   while (!FunctionPersonalityFnWorklist.empty()) {
2106     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2107     if (ValID >= ValueList.size()) {
2108       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2109     } else {
2110       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2111         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2112       else
2113         return error("Expected a constant");
2114     }
2115     FunctionPersonalityFnWorklist.pop_back();
2116   }
2117 
2118   return Error::success();
2119 }
2120 
2121 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2122   SmallVector<uint64_t, 8> Words(Vals.size());
2123   transform(Vals, Words.begin(),
2124                  BitcodeReader::decodeSignRotatedValue);
2125 
2126   return APInt(TypeBits, Words);
2127 }
2128 
2129 Error BitcodeReader::parseConstants() {
2130   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2131     return error("Invalid record");
2132 
2133   SmallVector<uint64_t, 64> Record;
2134 
2135   // Read all the records for this value table.
2136   Type *CurTy = Type::getInt32Ty(Context);
2137   unsigned NextCstNo = ValueList.size();
2138 
2139   while (true) {
2140     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2141 
2142     switch (Entry.Kind) {
2143     case BitstreamEntry::SubBlock: // Handled for us already.
2144     case BitstreamEntry::Error:
2145       return error("Malformed block");
2146     case BitstreamEntry::EndBlock:
2147       if (NextCstNo != ValueList.size())
2148         return error("Invalid constant reference");
2149 
2150       // Once all the constants have been read, go through and resolve forward
2151       // references.
2152       ValueList.resolveConstantForwardRefs();
2153       return Error::success();
2154     case BitstreamEntry::Record:
2155       // The interesting case.
2156       break;
2157     }
2158 
2159     // Read a record.
2160     Record.clear();
2161     Type *VoidType = Type::getVoidTy(Context);
2162     Value *V = nullptr;
2163     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2164     switch (BitCode) {
2165     default:  // Default behavior: unknown constant
2166     case bitc::CST_CODE_UNDEF:     // UNDEF
2167       V = UndefValue::get(CurTy);
2168       break;
2169     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2170       if (Record.empty())
2171         return error("Invalid record");
2172       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2173         return error("Invalid record");
2174       if (TypeList[Record[0]] == VoidType)
2175         return error("Invalid constant type");
2176       CurTy = TypeList[Record[0]];
2177       continue;  // Skip the ValueList manipulation.
2178     case bitc::CST_CODE_NULL:      // NULL
2179       V = Constant::getNullValue(CurTy);
2180       break;
2181     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2182       if (!CurTy->isIntegerTy() || Record.empty())
2183         return error("Invalid record");
2184       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2185       break;
2186     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2187       if (!CurTy->isIntegerTy() || Record.empty())
2188         return error("Invalid record");
2189 
2190       APInt VInt =
2191           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2192       V = ConstantInt::get(Context, VInt);
2193 
2194       break;
2195     }
2196     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2197       if (Record.empty())
2198         return error("Invalid record");
2199       if (CurTy->isHalfTy())
2200         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2201                                              APInt(16, (uint16_t)Record[0])));
2202       else if (CurTy->isFloatTy())
2203         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2204                                              APInt(32, (uint32_t)Record[0])));
2205       else if (CurTy->isDoubleTy())
2206         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2207                                              APInt(64, Record[0])));
2208       else if (CurTy->isX86_FP80Ty()) {
2209         // Bits are not stored the same way as a normal i80 APInt, compensate.
2210         uint64_t Rearrange[2];
2211         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2212         Rearrange[1] = Record[0] >> 48;
2213         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2214                                              APInt(80, Rearrange)));
2215       } else if (CurTy->isFP128Ty())
2216         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2217                                              APInt(128, Record)));
2218       else if (CurTy->isPPC_FP128Ty())
2219         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2220                                              APInt(128, Record)));
2221       else
2222         V = UndefValue::get(CurTy);
2223       break;
2224     }
2225 
2226     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2227       if (Record.empty())
2228         return error("Invalid record");
2229 
2230       unsigned Size = Record.size();
2231       SmallVector<Constant*, 16> Elts;
2232 
2233       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2234         for (unsigned i = 0; i != Size; ++i)
2235           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2236                                                      STy->getElementType(i)));
2237         V = ConstantStruct::get(STy, Elts);
2238       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2239         Type *EltTy = ATy->getElementType();
2240         for (unsigned i = 0; i != Size; ++i)
2241           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2242         V = ConstantArray::get(ATy, Elts);
2243       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2244         Type *EltTy = VTy->getElementType();
2245         for (unsigned i = 0; i != Size; ++i)
2246           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2247         V = ConstantVector::get(Elts);
2248       } else {
2249         V = UndefValue::get(CurTy);
2250       }
2251       break;
2252     }
2253     case bitc::CST_CODE_STRING:    // STRING: [values]
2254     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2255       if (Record.empty())
2256         return error("Invalid record");
2257 
2258       SmallString<16> Elts(Record.begin(), Record.end());
2259       V = ConstantDataArray::getString(Context, Elts,
2260                                        BitCode == bitc::CST_CODE_CSTRING);
2261       break;
2262     }
2263     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2264       if (Record.empty())
2265         return error("Invalid record");
2266 
2267       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2268       if (EltTy->isIntegerTy(8)) {
2269         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2270         if (isa<VectorType>(CurTy))
2271           V = ConstantDataVector::get(Context, Elts);
2272         else
2273           V = ConstantDataArray::get(Context, Elts);
2274       } else if (EltTy->isIntegerTy(16)) {
2275         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2276         if (isa<VectorType>(CurTy))
2277           V = ConstantDataVector::get(Context, Elts);
2278         else
2279           V = ConstantDataArray::get(Context, Elts);
2280       } else if (EltTy->isIntegerTy(32)) {
2281         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2282         if (isa<VectorType>(CurTy))
2283           V = ConstantDataVector::get(Context, Elts);
2284         else
2285           V = ConstantDataArray::get(Context, Elts);
2286       } else if (EltTy->isIntegerTy(64)) {
2287         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2288         if (isa<VectorType>(CurTy))
2289           V = ConstantDataVector::get(Context, Elts);
2290         else
2291           V = ConstantDataArray::get(Context, Elts);
2292       } else if (EltTy->isHalfTy()) {
2293         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2294         if (isa<VectorType>(CurTy))
2295           V = ConstantDataVector::getFP(Context, Elts);
2296         else
2297           V = ConstantDataArray::getFP(Context, Elts);
2298       } else if (EltTy->isFloatTy()) {
2299         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2300         if (isa<VectorType>(CurTy))
2301           V = ConstantDataVector::getFP(Context, Elts);
2302         else
2303           V = ConstantDataArray::getFP(Context, Elts);
2304       } else if (EltTy->isDoubleTy()) {
2305         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2306         if (isa<VectorType>(CurTy))
2307           V = ConstantDataVector::getFP(Context, Elts);
2308         else
2309           V = ConstantDataArray::getFP(Context, Elts);
2310       } else {
2311         return error("Invalid type for value");
2312       }
2313       break;
2314     }
2315     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2316       if (Record.size() < 3)
2317         return error("Invalid record");
2318       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2319       if (Opc < 0) {
2320         V = UndefValue::get(CurTy);  // Unknown binop.
2321       } else {
2322         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2323         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2324         unsigned Flags = 0;
2325         if (Record.size() >= 4) {
2326           if (Opc == Instruction::Add ||
2327               Opc == Instruction::Sub ||
2328               Opc == Instruction::Mul ||
2329               Opc == Instruction::Shl) {
2330             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2331               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2332             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2333               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2334           } else if (Opc == Instruction::SDiv ||
2335                      Opc == Instruction::UDiv ||
2336                      Opc == Instruction::LShr ||
2337                      Opc == Instruction::AShr) {
2338             if (Record[3] & (1 << bitc::PEO_EXACT))
2339               Flags |= SDivOperator::IsExact;
2340           }
2341         }
2342         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2343       }
2344       break;
2345     }
2346     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2347       if (Record.size() < 3)
2348         return error("Invalid record");
2349       int Opc = getDecodedCastOpcode(Record[0]);
2350       if (Opc < 0) {
2351         V = UndefValue::get(CurTy);  // Unknown cast.
2352       } else {
2353         Type *OpTy = getTypeByID(Record[1]);
2354         if (!OpTy)
2355           return error("Invalid record");
2356         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2357         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2358         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2359       }
2360       break;
2361     }
2362     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2363     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2364     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2365                                                      // operands]
2366       unsigned OpNum = 0;
2367       Type *PointeeType = nullptr;
2368       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2369           Record.size() % 2)
2370         PointeeType = getTypeByID(Record[OpNum++]);
2371 
2372       bool InBounds = false;
2373       Optional<unsigned> InRangeIndex;
2374       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2375         uint64_t Op = Record[OpNum++];
2376         InBounds = Op & 1;
2377         InRangeIndex = Op >> 1;
2378       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2379         InBounds = true;
2380 
2381       SmallVector<Constant*, 16> Elts;
2382       while (OpNum != Record.size()) {
2383         Type *ElTy = getTypeByID(Record[OpNum++]);
2384         if (!ElTy)
2385           return error("Invalid record");
2386         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2387       }
2388 
2389       if (PointeeType &&
2390           PointeeType !=
2391               cast<PointerType>(Elts[0]->getType()->getScalarType())
2392                   ->getElementType())
2393         return error("Explicit gep operator type does not match pointee type "
2394                      "of pointer operand");
2395 
2396       if (Elts.size() < 1)
2397         return error("Invalid gep with no operands");
2398 
2399       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2400       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2401                                          InBounds, InRangeIndex);
2402       break;
2403     }
2404     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2405       if (Record.size() < 3)
2406         return error("Invalid record");
2407 
2408       Type *SelectorTy = Type::getInt1Ty(Context);
2409 
2410       // The selector might be an i1 or an <n x i1>
2411       // Get the type from the ValueList before getting a forward ref.
2412       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2413         if (Value *V = ValueList[Record[0]])
2414           if (SelectorTy != V->getType())
2415             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2416 
2417       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2418                                                               SelectorTy),
2419                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2420                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2421       break;
2422     }
2423     case bitc::CST_CODE_CE_EXTRACTELT
2424         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2425       if (Record.size() < 3)
2426         return error("Invalid record");
2427       VectorType *OpTy =
2428         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2429       if (!OpTy)
2430         return error("Invalid record");
2431       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2432       Constant *Op1 = nullptr;
2433       if (Record.size() == 4) {
2434         Type *IdxTy = getTypeByID(Record[2]);
2435         if (!IdxTy)
2436           return error("Invalid record");
2437         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2438       } else // TODO: Remove with llvm 4.0
2439         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2440       if (!Op1)
2441         return error("Invalid record");
2442       V = ConstantExpr::getExtractElement(Op0, Op1);
2443       break;
2444     }
2445     case bitc::CST_CODE_CE_INSERTELT
2446         : { // CE_INSERTELT: [opval, opval, opty, opval]
2447       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2448       if (Record.size() < 3 || !OpTy)
2449         return error("Invalid record");
2450       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2451       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2452                                                   OpTy->getElementType());
2453       Constant *Op2 = nullptr;
2454       if (Record.size() == 4) {
2455         Type *IdxTy = getTypeByID(Record[2]);
2456         if (!IdxTy)
2457           return error("Invalid record");
2458         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2459       } else // TODO: Remove with llvm 4.0
2460         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2461       if (!Op2)
2462         return error("Invalid record");
2463       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2464       break;
2465     }
2466     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2467       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2468       if (Record.size() < 3 || !OpTy)
2469         return error("Invalid record");
2470       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2471       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2472       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2473                                                  OpTy->getNumElements());
2474       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2475       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2476       break;
2477     }
2478     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2479       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2480       VectorType *OpTy =
2481         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2482       if (Record.size() < 4 || !RTy || !OpTy)
2483         return error("Invalid record");
2484       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2485       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2486       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2487                                                  RTy->getNumElements());
2488       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2489       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2490       break;
2491     }
2492     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2493       if (Record.size() < 4)
2494         return error("Invalid record");
2495       Type *OpTy = getTypeByID(Record[0]);
2496       if (!OpTy)
2497         return error("Invalid record");
2498       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2499       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2500 
2501       if (OpTy->isFPOrFPVectorTy())
2502         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2503       else
2504         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2505       break;
2506     }
2507     // This maintains backward compatibility, pre-asm dialect keywords.
2508     // FIXME: Remove with the 4.0 release.
2509     case bitc::CST_CODE_INLINEASM_OLD: {
2510       if (Record.size() < 2)
2511         return error("Invalid record");
2512       std::string AsmStr, ConstrStr;
2513       bool HasSideEffects = Record[0] & 1;
2514       bool IsAlignStack = Record[0] >> 1;
2515       unsigned AsmStrSize = Record[1];
2516       if (2+AsmStrSize >= Record.size())
2517         return error("Invalid record");
2518       unsigned ConstStrSize = Record[2+AsmStrSize];
2519       if (3+AsmStrSize+ConstStrSize > Record.size())
2520         return error("Invalid record");
2521 
2522       for (unsigned i = 0; i != AsmStrSize; ++i)
2523         AsmStr += (char)Record[2+i];
2524       for (unsigned i = 0; i != ConstStrSize; ++i)
2525         ConstrStr += (char)Record[3+AsmStrSize+i];
2526       PointerType *PTy = cast<PointerType>(CurTy);
2527       UpgradeInlineAsmString(&AsmStr);
2528       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2529                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2530       break;
2531     }
2532     // This version adds support for the asm dialect keywords (e.g.,
2533     // inteldialect).
2534     case bitc::CST_CODE_INLINEASM: {
2535       if (Record.size() < 2)
2536         return error("Invalid record");
2537       std::string AsmStr, ConstrStr;
2538       bool HasSideEffects = Record[0] & 1;
2539       bool IsAlignStack = (Record[0] >> 1) & 1;
2540       unsigned AsmDialect = Record[0] >> 2;
2541       unsigned AsmStrSize = Record[1];
2542       if (2+AsmStrSize >= Record.size())
2543         return error("Invalid record");
2544       unsigned ConstStrSize = Record[2+AsmStrSize];
2545       if (3+AsmStrSize+ConstStrSize > Record.size())
2546         return error("Invalid record");
2547 
2548       for (unsigned i = 0; i != AsmStrSize; ++i)
2549         AsmStr += (char)Record[2+i];
2550       for (unsigned i = 0; i != ConstStrSize; ++i)
2551         ConstrStr += (char)Record[3+AsmStrSize+i];
2552       PointerType *PTy = cast<PointerType>(CurTy);
2553       UpgradeInlineAsmString(&AsmStr);
2554       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2555                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2556                          InlineAsm::AsmDialect(AsmDialect));
2557       break;
2558     }
2559     case bitc::CST_CODE_BLOCKADDRESS:{
2560       if (Record.size() < 3)
2561         return error("Invalid record");
2562       Type *FnTy = getTypeByID(Record[0]);
2563       if (!FnTy)
2564         return error("Invalid record");
2565       Function *Fn =
2566         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2567       if (!Fn)
2568         return error("Invalid record");
2569 
2570       // If the function is already parsed we can insert the block address right
2571       // away.
2572       BasicBlock *BB;
2573       unsigned BBID = Record[2];
2574       if (!BBID)
2575         // Invalid reference to entry block.
2576         return error("Invalid ID");
2577       if (!Fn->empty()) {
2578         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2579         for (size_t I = 0, E = BBID; I != E; ++I) {
2580           if (BBI == BBE)
2581             return error("Invalid ID");
2582           ++BBI;
2583         }
2584         BB = &*BBI;
2585       } else {
2586         // Otherwise insert a placeholder and remember it so it can be inserted
2587         // when the function is parsed.
2588         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2589         if (FwdBBs.empty())
2590           BasicBlockFwdRefQueue.push_back(Fn);
2591         if (FwdBBs.size() < BBID + 1)
2592           FwdBBs.resize(BBID + 1);
2593         if (!FwdBBs[BBID])
2594           FwdBBs[BBID] = BasicBlock::Create(Context);
2595         BB = FwdBBs[BBID];
2596       }
2597       V = BlockAddress::get(Fn, BB);
2598       break;
2599     }
2600     }
2601 
2602     ValueList.assignValue(V, NextCstNo);
2603     ++NextCstNo;
2604   }
2605 }
2606 
2607 Error BitcodeReader::parseUseLists() {
2608   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2609     return error("Invalid record");
2610 
2611   // Read all the records.
2612   SmallVector<uint64_t, 64> Record;
2613 
2614   while (true) {
2615     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2616 
2617     switch (Entry.Kind) {
2618     case BitstreamEntry::SubBlock: // Handled for us already.
2619     case BitstreamEntry::Error:
2620       return error("Malformed block");
2621     case BitstreamEntry::EndBlock:
2622       return Error::success();
2623     case BitstreamEntry::Record:
2624       // The interesting case.
2625       break;
2626     }
2627 
2628     // Read a use list record.
2629     Record.clear();
2630     bool IsBB = false;
2631     switch (Stream.readRecord(Entry.ID, Record)) {
2632     default:  // Default behavior: unknown type.
2633       break;
2634     case bitc::USELIST_CODE_BB:
2635       IsBB = true;
2636       LLVM_FALLTHROUGH;
2637     case bitc::USELIST_CODE_DEFAULT: {
2638       unsigned RecordLength = Record.size();
2639       if (RecordLength < 3)
2640         // Records should have at least an ID and two indexes.
2641         return error("Invalid record");
2642       unsigned ID = Record.back();
2643       Record.pop_back();
2644 
2645       Value *V;
2646       if (IsBB) {
2647         assert(ID < FunctionBBs.size() && "Basic block not found");
2648         V = FunctionBBs[ID];
2649       } else
2650         V = ValueList[ID];
2651       unsigned NumUses = 0;
2652       SmallDenseMap<const Use *, unsigned, 16> Order;
2653       for (const Use &U : V->materialized_uses()) {
2654         if (++NumUses > Record.size())
2655           break;
2656         Order[&U] = Record[NumUses - 1];
2657       }
2658       if (Order.size() != Record.size() || NumUses > Record.size())
2659         // Mismatches can happen if the functions are being materialized lazily
2660         // (out-of-order), or a value has been upgraded.
2661         break;
2662 
2663       V->sortUseList([&](const Use &L, const Use &R) {
2664         return Order.lookup(&L) < Order.lookup(&R);
2665       });
2666       break;
2667     }
2668     }
2669   }
2670 }
2671 
2672 /// When we see the block for metadata, remember where it is and then skip it.
2673 /// This lets us lazily deserialize the metadata.
2674 Error BitcodeReader::rememberAndSkipMetadata() {
2675   // Save the current stream state.
2676   uint64_t CurBit = Stream.GetCurrentBitNo();
2677   DeferredMetadataInfo.push_back(CurBit);
2678 
2679   // Skip over the block for now.
2680   if (Stream.SkipBlock())
2681     return error("Invalid record");
2682   return Error::success();
2683 }
2684 
2685 Error BitcodeReader::materializeMetadata() {
2686   for (uint64_t BitPos : DeferredMetadataInfo) {
2687     // Move the bit stream to the saved position.
2688     Stream.JumpToBit(BitPos);
2689     if (Error Err = MDLoader->parseModuleMetadata())
2690       return Err;
2691   }
2692 
2693   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2694   // metadata.
2695   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2696     NamedMDNode *LinkerOpts =
2697         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2698     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2699       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2700   }
2701 
2702   DeferredMetadataInfo.clear();
2703   return Error::success();
2704 }
2705 
2706 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2707 
2708 /// When we see the block for a function body, remember where it is and then
2709 /// skip it.  This lets us lazily deserialize the functions.
2710 Error BitcodeReader::rememberAndSkipFunctionBody() {
2711   // Get the function we are talking about.
2712   if (FunctionsWithBodies.empty())
2713     return error("Insufficient function protos");
2714 
2715   Function *Fn = FunctionsWithBodies.back();
2716   FunctionsWithBodies.pop_back();
2717 
2718   // Save the current stream state.
2719   uint64_t CurBit = Stream.GetCurrentBitNo();
2720   assert(
2721       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2722       "Mismatch between VST and scanned function offsets");
2723   DeferredFunctionInfo[Fn] = CurBit;
2724 
2725   // Skip over the function block for now.
2726   if (Stream.SkipBlock())
2727     return error("Invalid record");
2728   return Error::success();
2729 }
2730 
2731 Error BitcodeReader::globalCleanup() {
2732   // Patch the initializers for globals and aliases up.
2733   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2734     return Err;
2735   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2736     return error("Malformed global initializer set");
2737 
2738   // Look for intrinsic functions which need to be upgraded at some point
2739   for (Function &F : *TheModule) {
2740     MDLoader->upgradeDebugIntrinsics(F);
2741     Function *NewFn;
2742     if (UpgradeIntrinsicFunction(&F, NewFn))
2743       UpgradedIntrinsics[&F] = NewFn;
2744     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2745       // Some types could be renamed during loading if several modules are
2746       // loaded in the same LLVMContext (LTO scenario). In this case we should
2747       // remangle intrinsics names as well.
2748       RemangledIntrinsics[&F] = Remangled.getValue();
2749   }
2750 
2751   // Look for global variables which need to be renamed.
2752   for (GlobalVariable &GV : TheModule->globals())
2753     UpgradeGlobalVariable(&GV);
2754 
2755   // Force deallocation of memory for these vectors to favor the client that
2756   // want lazy deserialization.
2757   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2758   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2759       IndirectSymbolInits);
2760   return Error::success();
2761 }
2762 
2763 /// Support for lazy parsing of function bodies. This is required if we
2764 /// either have an old bitcode file without a VST forward declaration record,
2765 /// or if we have an anonymous function being materialized, since anonymous
2766 /// functions do not have a name and are therefore not in the VST.
2767 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2768   Stream.JumpToBit(NextUnreadBit);
2769 
2770   if (Stream.AtEndOfStream())
2771     return error("Could not find function in stream");
2772 
2773   if (!SeenFirstFunctionBody)
2774     return error("Trying to materialize functions before seeing function blocks");
2775 
2776   // An old bitcode file with the symbol table at the end would have
2777   // finished the parse greedily.
2778   assert(SeenValueSymbolTable);
2779 
2780   SmallVector<uint64_t, 64> Record;
2781 
2782   while (true) {
2783     BitstreamEntry Entry = Stream.advance();
2784     switch (Entry.Kind) {
2785     default:
2786       return error("Expect SubBlock");
2787     case BitstreamEntry::SubBlock:
2788       switch (Entry.ID) {
2789       default:
2790         return error("Expect function block");
2791       case bitc::FUNCTION_BLOCK_ID:
2792         if (Error Err = rememberAndSkipFunctionBody())
2793           return Err;
2794         NextUnreadBit = Stream.GetCurrentBitNo();
2795         return Error::success();
2796       }
2797     }
2798   }
2799 }
2800 
2801 bool BitcodeReaderBase::readBlockInfo() {
2802   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2803   if (!NewBlockInfo)
2804     return true;
2805   BlockInfo = std::move(*NewBlockInfo);
2806   return false;
2807 }
2808 
2809 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2810   // v1: [selection_kind, name]
2811   // v2: [strtab_offset, strtab_size, selection_kind]
2812   StringRef Name;
2813   std::tie(Name, Record) = readNameFromStrtab(Record);
2814 
2815   if (Record.empty())
2816     return error("Invalid record");
2817   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2818   std::string OldFormatName;
2819   if (!UseStrtab) {
2820     if (Record.size() < 2)
2821       return error("Invalid record");
2822     unsigned ComdatNameSize = Record[1];
2823     OldFormatName.reserve(ComdatNameSize);
2824     for (unsigned i = 0; i != ComdatNameSize; ++i)
2825       OldFormatName += (char)Record[2 + i];
2826     Name = OldFormatName;
2827   }
2828   Comdat *C = TheModule->getOrInsertComdat(Name);
2829   C->setSelectionKind(SK);
2830   ComdatList.push_back(C);
2831   return Error::success();
2832 }
2833 
2834 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2835   // v1: [pointer type, isconst, initid, linkage, alignment, section,
2836   // visibility, threadlocal, unnamed_addr, externally_initialized,
2837   // dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
2838   // v2: [strtab_offset, strtab_size, v1]
2839   StringRef Name;
2840   std::tie(Name, Record) = readNameFromStrtab(Record);
2841 
2842   if (Record.size() < 6)
2843     return error("Invalid record");
2844   Type *Ty = getTypeByID(Record[0]);
2845   if (!Ty)
2846     return error("Invalid record");
2847   bool isConstant = Record[1] & 1;
2848   bool explicitType = Record[1] & 2;
2849   unsigned AddressSpace;
2850   if (explicitType) {
2851     AddressSpace = Record[1] >> 2;
2852   } else {
2853     if (!Ty->isPointerTy())
2854       return error("Invalid type for value");
2855     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2856     Ty = cast<PointerType>(Ty)->getElementType();
2857   }
2858 
2859   uint64_t RawLinkage = Record[3];
2860   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2861   unsigned Alignment;
2862   if (Error Err = parseAlignmentValue(Record[4], Alignment))
2863     return Err;
2864   std::string Section;
2865   if (Record[5]) {
2866     if (Record[5] - 1 >= SectionTable.size())
2867       return error("Invalid ID");
2868     Section = SectionTable[Record[5] - 1];
2869   }
2870   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2871   // Local linkage must have default visibility.
2872   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2873     // FIXME: Change to an error if non-default in 4.0.
2874     Visibility = getDecodedVisibility(Record[6]);
2875 
2876   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2877   if (Record.size() > 7)
2878     TLM = getDecodedThreadLocalMode(Record[7]);
2879 
2880   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2881   if (Record.size() > 8)
2882     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2883 
2884   bool ExternallyInitialized = false;
2885   if (Record.size() > 9)
2886     ExternallyInitialized = Record[9];
2887 
2888   GlobalVariable *NewGV =
2889       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2890                          nullptr, TLM, AddressSpace, ExternallyInitialized);
2891   NewGV->setAlignment(Alignment);
2892   if (!Section.empty())
2893     NewGV->setSection(Section);
2894   NewGV->setVisibility(Visibility);
2895   NewGV->setUnnamedAddr(UnnamedAddr);
2896 
2897   if (Record.size() > 10)
2898     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2899   else
2900     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2901 
2902   ValueList.push_back(NewGV);
2903 
2904   // Remember which value to use for the global initializer.
2905   if (unsigned InitID = Record[2])
2906     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2907 
2908   if (Record.size() > 11) {
2909     if (unsigned ComdatID = Record[11]) {
2910       if (ComdatID > ComdatList.size())
2911         return error("Invalid global variable comdat ID");
2912       NewGV->setComdat(ComdatList[ComdatID - 1]);
2913     }
2914   } else if (hasImplicitComdat(RawLinkage)) {
2915     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2916   }
2917 
2918   if (Record.size() > 12) {
2919     auto AS = getAttributes(Record[12]).getFnAttributes();
2920     NewGV->setAttributes(AS);
2921   }
2922 
2923   if (Record.size() > 13) {
2924     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
2925   }
2926 
2927   return Error::success();
2928 }
2929 
2930 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2931   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2932   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2933   // prefixdata,  personalityfn, preemption specifier] (name in VST)
2934   // v2: [strtab_offset, strtab_size, v1]
2935   StringRef Name;
2936   std::tie(Name, Record) = readNameFromStrtab(Record);
2937 
2938   if (Record.size() < 8)
2939     return error("Invalid record");
2940   Type *Ty = getTypeByID(Record[0]);
2941   if (!Ty)
2942     return error("Invalid record");
2943   if (auto *PTy = dyn_cast<PointerType>(Ty))
2944     Ty = PTy->getElementType();
2945   auto *FTy = dyn_cast<FunctionType>(Ty);
2946   if (!FTy)
2947     return error("Invalid type for value");
2948   auto CC = static_cast<CallingConv::ID>(Record[1]);
2949   if (CC & ~CallingConv::MaxID)
2950     return error("Invalid calling convention ID");
2951 
2952   Function *Func =
2953       Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule);
2954 
2955   Func->setCallingConv(CC);
2956   bool isProto = Record[2];
2957   uint64_t RawLinkage = Record[3];
2958   Func->setLinkage(getDecodedLinkage(RawLinkage));
2959   Func->setAttributes(getAttributes(Record[4]));
2960 
2961   unsigned Alignment;
2962   if (Error Err = parseAlignmentValue(Record[5], Alignment))
2963     return Err;
2964   Func->setAlignment(Alignment);
2965   if (Record[6]) {
2966     if (Record[6] - 1 >= SectionTable.size())
2967       return error("Invalid ID");
2968     Func->setSection(SectionTable[Record[6] - 1]);
2969   }
2970   // Local linkage must have default visibility.
2971   if (!Func->hasLocalLinkage())
2972     // FIXME: Change to an error if non-default in 4.0.
2973     Func->setVisibility(getDecodedVisibility(Record[7]));
2974   if (Record.size() > 8 && Record[8]) {
2975     if (Record[8] - 1 >= GCTable.size())
2976       return error("Invalid ID");
2977     Func->setGC(GCTable[Record[8] - 1]);
2978   }
2979   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2980   if (Record.size() > 9)
2981     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2982   Func->setUnnamedAddr(UnnamedAddr);
2983   if (Record.size() > 10 && Record[10] != 0)
2984     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
2985 
2986   if (Record.size() > 11)
2987     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
2988   else
2989     upgradeDLLImportExportLinkage(Func, RawLinkage);
2990 
2991   if (Record.size() > 12) {
2992     if (unsigned ComdatID = Record[12]) {
2993       if (ComdatID > ComdatList.size())
2994         return error("Invalid function comdat ID");
2995       Func->setComdat(ComdatList[ComdatID - 1]);
2996     }
2997   } else if (hasImplicitComdat(RawLinkage)) {
2998     Func->setComdat(reinterpret_cast<Comdat *>(1));
2999   }
3000 
3001   if (Record.size() > 13 && Record[13] != 0)
3002     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3003 
3004   if (Record.size() > 14 && Record[14] != 0)
3005     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3006 
3007   if (Record.size() > 15) {
3008     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3009   }
3010 
3011   ValueList.push_back(Func);
3012 
3013   // If this is a function with a body, remember the prototype we are
3014   // creating now, so that we can match up the body with them later.
3015   if (!isProto) {
3016     Func->setIsMaterializable(true);
3017     FunctionsWithBodies.push_back(Func);
3018     DeferredFunctionInfo[Func] = 0;
3019   }
3020   return Error::success();
3021 }
3022 
3023 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3024     unsigned BitCode, ArrayRef<uint64_t> Record) {
3025   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3026   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3027   // dllstorageclass, threadlocal, unnamed_addr,
3028   // preemption specifier] (name in VST)
3029   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3030   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3031   // preemption specifier] (name in VST)
3032   // v2: [strtab_offset, strtab_size, v1]
3033   StringRef Name;
3034   std::tie(Name, Record) = readNameFromStrtab(Record);
3035 
3036   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3037   if (Record.size() < (3 + (unsigned)NewRecord))
3038     return error("Invalid record");
3039   unsigned OpNum = 0;
3040   Type *Ty = getTypeByID(Record[OpNum++]);
3041   if (!Ty)
3042     return error("Invalid record");
3043 
3044   unsigned AddrSpace;
3045   if (!NewRecord) {
3046     auto *PTy = dyn_cast<PointerType>(Ty);
3047     if (!PTy)
3048       return error("Invalid type for value");
3049     Ty = PTy->getElementType();
3050     AddrSpace = PTy->getAddressSpace();
3051   } else {
3052     AddrSpace = Record[OpNum++];
3053   }
3054 
3055   auto Val = Record[OpNum++];
3056   auto Linkage = Record[OpNum++];
3057   GlobalIndirectSymbol *NewGA;
3058   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3059       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3060     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3061                                 TheModule);
3062   else
3063     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3064                                 nullptr, TheModule);
3065   // Old bitcode files didn't have visibility field.
3066   // Local linkage must have default visibility.
3067   if (OpNum != Record.size()) {
3068     auto VisInd = OpNum++;
3069     if (!NewGA->hasLocalLinkage())
3070       // FIXME: Change to an error if non-default in 4.0.
3071       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3072   }
3073   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3074       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3075     if (OpNum != Record.size())
3076       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3077     else
3078       upgradeDLLImportExportLinkage(NewGA, Linkage);
3079     if (OpNum != Record.size())
3080       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3081     if (OpNum != Record.size())
3082       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3083   }
3084   if (OpNum != Record.size())
3085     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3086   ValueList.push_back(NewGA);
3087   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3088   return Error::success();
3089 }
3090 
3091 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3092                                  bool ShouldLazyLoadMetadata) {
3093   if (ResumeBit)
3094     Stream.JumpToBit(ResumeBit);
3095   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3096     return error("Invalid record");
3097 
3098   SmallVector<uint64_t, 64> Record;
3099 
3100   // Read all the records for this module.
3101   while (true) {
3102     BitstreamEntry Entry = Stream.advance();
3103 
3104     switch (Entry.Kind) {
3105     case BitstreamEntry::Error:
3106       return error("Malformed block");
3107     case BitstreamEntry::EndBlock:
3108       return globalCleanup();
3109 
3110     case BitstreamEntry::SubBlock:
3111       switch (Entry.ID) {
3112       default:  // Skip unknown content.
3113         if (Stream.SkipBlock())
3114           return error("Invalid record");
3115         break;
3116       case bitc::BLOCKINFO_BLOCK_ID:
3117         if (readBlockInfo())
3118           return error("Malformed block");
3119         break;
3120       case bitc::PARAMATTR_BLOCK_ID:
3121         if (Error Err = parseAttributeBlock())
3122           return Err;
3123         break;
3124       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3125         if (Error Err = parseAttributeGroupBlock())
3126           return Err;
3127         break;
3128       case bitc::TYPE_BLOCK_ID_NEW:
3129         if (Error Err = parseTypeTable())
3130           return Err;
3131         break;
3132       case bitc::VALUE_SYMTAB_BLOCK_ID:
3133         if (!SeenValueSymbolTable) {
3134           // Either this is an old form VST without function index and an
3135           // associated VST forward declaration record (which would have caused
3136           // the VST to be jumped to and parsed before it was encountered
3137           // normally in the stream), or there were no function blocks to
3138           // trigger an earlier parsing of the VST.
3139           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3140           if (Error Err = parseValueSymbolTable())
3141             return Err;
3142           SeenValueSymbolTable = true;
3143         } else {
3144           // We must have had a VST forward declaration record, which caused
3145           // the parser to jump to and parse the VST earlier.
3146           assert(VSTOffset > 0);
3147           if (Stream.SkipBlock())
3148             return error("Invalid record");
3149         }
3150         break;
3151       case bitc::CONSTANTS_BLOCK_ID:
3152         if (Error Err = parseConstants())
3153           return Err;
3154         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3155           return Err;
3156         break;
3157       case bitc::METADATA_BLOCK_ID:
3158         if (ShouldLazyLoadMetadata) {
3159           if (Error Err = rememberAndSkipMetadata())
3160             return Err;
3161           break;
3162         }
3163         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3164         if (Error Err = MDLoader->parseModuleMetadata())
3165           return Err;
3166         break;
3167       case bitc::METADATA_KIND_BLOCK_ID:
3168         if (Error Err = MDLoader->parseMetadataKinds())
3169           return Err;
3170         break;
3171       case bitc::FUNCTION_BLOCK_ID:
3172         // If this is the first function body we've seen, reverse the
3173         // FunctionsWithBodies list.
3174         if (!SeenFirstFunctionBody) {
3175           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3176           if (Error Err = globalCleanup())
3177             return Err;
3178           SeenFirstFunctionBody = true;
3179         }
3180 
3181         if (VSTOffset > 0) {
3182           // If we have a VST forward declaration record, make sure we
3183           // parse the VST now if we haven't already. It is needed to
3184           // set up the DeferredFunctionInfo vector for lazy reading.
3185           if (!SeenValueSymbolTable) {
3186             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3187               return Err;
3188             SeenValueSymbolTable = true;
3189             // Fall through so that we record the NextUnreadBit below.
3190             // This is necessary in case we have an anonymous function that
3191             // is later materialized. Since it will not have a VST entry we
3192             // need to fall back to the lazy parse to find its offset.
3193           } else {
3194             // If we have a VST forward declaration record, but have already
3195             // parsed the VST (just above, when the first function body was
3196             // encountered here), then we are resuming the parse after
3197             // materializing functions. The ResumeBit points to the
3198             // start of the last function block recorded in the
3199             // DeferredFunctionInfo map. Skip it.
3200             if (Stream.SkipBlock())
3201               return error("Invalid record");
3202             continue;
3203           }
3204         }
3205 
3206         // Support older bitcode files that did not have the function
3207         // index in the VST, nor a VST forward declaration record, as
3208         // well as anonymous functions that do not have VST entries.
3209         // Build the DeferredFunctionInfo vector on the fly.
3210         if (Error Err = rememberAndSkipFunctionBody())
3211           return Err;
3212 
3213         // Suspend parsing when we reach the function bodies. Subsequent
3214         // materialization calls will resume it when necessary. If the bitcode
3215         // file is old, the symbol table will be at the end instead and will not
3216         // have been seen yet. In this case, just finish the parse now.
3217         if (SeenValueSymbolTable) {
3218           NextUnreadBit = Stream.GetCurrentBitNo();
3219           // After the VST has been parsed, we need to make sure intrinsic name
3220           // are auto-upgraded.
3221           return globalCleanup();
3222         }
3223         break;
3224       case bitc::USELIST_BLOCK_ID:
3225         if (Error Err = parseUseLists())
3226           return Err;
3227         break;
3228       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3229         if (Error Err = parseOperandBundleTags())
3230           return Err;
3231         break;
3232       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3233         if (Error Err = parseSyncScopeNames())
3234           return Err;
3235         break;
3236       }
3237       continue;
3238 
3239     case BitstreamEntry::Record:
3240       // The interesting case.
3241       break;
3242     }
3243 
3244     // Read a record.
3245     auto BitCode = Stream.readRecord(Entry.ID, Record);
3246     switch (BitCode) {
3247     default: break;  // Default behavior, ignore unknown content.
3248     case bitc::MODULE_CODE_VERSION: {
3249       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3250       if (!VersionOrErr)
3251         return VersionOrErr.takeError();
3252       UseRelativeIDs = *VersionOrErr >= 1;
3253       break;
3254     }
3255     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3256       std::string S;
3257       if (convertToString(Record, 0, S))
3258         return error("Invalid record");
3259       TheModule->setTargetTriple(S);
3260       break;
3261     }
3262     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3263       std::string S;
3264       if (convertToString(Record, 0, S))
3265         return error("Invalid record");
3266       TheModule->setDataLayout(S);
3267       break;
3268     }
3269     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3270       std::string S;
3271       if (convertToString(Record, 0, S))
3272         return error("Invalid record");
3273       TheModule->setModuleInlineAsm(S);
3274       break;
3275     }
3276     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3277       // FIXME: Remove in 4.0.
3278       std::string S;
3279       if (convertToString(Record, 0, S))
3280         return error("Invalid record");
3281       // Ignore value.
3282       break;
3283     }
3284     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3285       std::string S;
3286       if (convertToString(Record, 0, S))
3287         return error("Invalid record");
3288       SectionTable.push_back(S);
3289       break;
3290     }
3291     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3292       std::string S;
3293       if (convertToString(Record, 0, S))
3294         return error("Invalid record");
3295       GCTable.push_back(S);
3296       break;
3297     }
3298     case bitc::MODULE_CODE_COMDAT:
3299       if (Error Err = parseComdatRecord(Record))
3300         return Err;
3301       break;
3302     case bitc::MODULE_CODE_GLOBALVAR:
3303       if (Error Err = parseGlobalVarRecord(Record))
3304         return Err;
3305       break;
3306     case bitc::MODULE_CODE_FUNCTION:
3307       if (Error Err = parseFunctionRecord(Record))
3308         return Err;
3309       break;
3310     case bitc::MODULE_CODE_IFUNC:
3311     case bitc::MODULE_CODE_ALIAS:
3312     case bitc::MODULE_CODE_ALIAS_OLD:
3313       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3314         return Err;
3315       break;
3316     /// MODULE_CODE_VSTOFFSET: [offset]
3317     case bitc::MODULE_CODE_VSTOFFSET:
3318       if (Record.size() < 1)
3319         return error("Invalid record");
3320       // Note that we subtract 1 here because the offset is relative to one word
3321       // before the start of the identification or module block, which was
3322       // historically always the start of the regular bitcode header.
3323       VSTOffset = Record[0] - 1;
3324       break;
3325     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3326     case bitc::MODULE_CODE_SOURCE_FILENAME:
3327       SmallString<128> ValueName;
3328       if (convertToString(Record, 0, ValueName))
3329         return error("Invalid record");
3330       TheModule->setSourceFileName(ValueName);
3331       break;
3332     }
3333     Record.clear();
3334   }
3335 }
3336 
3337 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3338                                       bool IsImporting) {
3339   TheModule = M;
3340   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3341                             [&](unsigned ID) { return getTypeByID(ID); });
3342   return parseModule(0, ShouldLazyLoadMetadata);
3343 }
3344 
3345 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3346   if (!isa<PointerType>(PtrType))
3347     return error("Load/Store operand is not a pointer type");
3348   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3349 
3350   if (ValType && ValType != ElemType)
3351     return error("Explicit load/store type does not match pointee "
3352                  "type of pointer operand");
3353   if (!PointerType::isLoadableOrStorableType(ElemType))
3354     return error("Cannot load/store from pointer");
3355   return Error::success();
3356 }
3357 
3358 /// Lazily parse the specified function body block.
3359 Error BitcodeReader::parseFunctionBody(Function *F) {
3360   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3361     return error("Invalid record");
3362 
3363   // Unexpected unresolved metadata when parsing function.
3364   if (MDLoader->hasFwdRefs())
3365     return error("Invalid function metadata: incoming forward references");
3366 
3367   InstructionList.clear();
3368   unsigned ModuleValueListSize = ValueList.size();
3369   unsigned ModuleMDLoaderSize = MDLoader->size();
3370 
3371   // Add all the function arguments to the value table.
3372   for (Argument &I : F->args())
3373     ValueList.push_back(&I);
3374 
3375   unsigned NextValueNo = ValueList.size();
3376   BasicBlock *CurBB = nullptr;
3377   unsigned CurBBNo = 0;
3378 
3379   DebugLoc LastLoc;
3380   auto getLastInstruction = [&]() -> Instruction * {
3381     if (CurBB && !CurBB->empty())
3382       return &CurBB->back();
3383     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3384              !FunctionBBs[CurBBNo - 1]->empty())
3385       return &FunctionBBs[CurBBNo - 1]->back();
3386     return nullptr;
3387   };
3388 
3389   std::vector<OperandBundleDef> OperandBundles;
3390 
3391   // Read all the records.
3392   SmallVector<uint64_t, 64> Record;
3393 
3394   while (true) {
3395     BitstreamEntry Entry = Stream.advance();
3396 
3397     switch (Entry.Kind) {
3398     case BitstreamEntry::Error:
3399       return error("Malformed block");
3400     case BitstreamEntry::EndBlock:
3401       goto OutOfRecordLoop;
3402 
3403     case BitstreamEntry::SubBlock:
3404       switch (Entry.ID) {
3405       default:  // Skip unknown content.
3406         if (Stream.SkipBlock())
3407           return error("Invalid record");
3408         break;
3409       case bitc::CONSTANTS_BLOCK_ID:
3410         if (Error Err = parseConstants())
3411           return Err;
3412         NextValueNo = ValueList.size();
3413         break;
3414       case bitc::VALUE_SYMTAB_BLOCK_ID:
3415         if (Error Err = parseValueSymbolTable())
3416           return Err;
3417         break;
3418       case bitc::METADATA_ATTACHMENT_ID:
3419         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3420           return Err;
3421         break;
3422       case bitc::METADATA_BLOCK_ID:
3423         assert(DeferredMetadataInfo.empty() &&
3424                "Must read all module-level metadata before function-level");
3425         if (Error Err = MDLoader->parseFunctionMetadata())
3426           return Err;
3427         break;
3428       case bitc::USELIST_BLOCK_ID:
3429         if (Error Err = parseUseLists())
3430           return Err;
3431         break;
3432       }
3433       continue;
3434 
3435     case BitstreamEntry::Record:
3436       // The interesting case.
3437       break;
3438     }
3439 
3440     // Read a record.
3441     Record.clear();
3442     Instruction *I = nullptr;
3443     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3444     switch (BitCode) {
3445     default: // Default behavior: reject
3446       return error("Invalid value");
3447     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3448       if (Record.size() < 1 || Record[0] == 0)
3449         return error("Invalid record");
3450       // Create all the basic blocks for the function.
3451       FunctionBBs.resize(Record[0]);
3452 
3453       // See if anything took the address of blocks in this function.
3454       auto BBFRI = BasicBlockFwdRefs.find(F);
3455       if (BBFRI == BasicBlockFwdRefs.end()) {
3456         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3457           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3458       } else {
3459         auto &BBRefs = BBFRI->second;
3460         // Check for invalid basic block references.
3461         if (BBRefs.size() > FunctionBBs.size())
3462           return error("Invalid ID");
3463         assert(!BBRefs.empty() && "Unexpected empty array");
3464         assert(!BBRefs.front() && "Invalid reference to entry block");
3465         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3466              ++I)
3467           if (I < RE && BBRefs[I]) {
3468             BBRefs[I]->insertInto(F);
3469             FunctionBBs[I] = BBRefs[I];
3470           } else {
3471             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3472           }
3473 
3474         // Erase from the table.
3475         BasicBlockFwdRefs.erase(BBFRI);
3476       }
3477 
3478       CurBB = FunctionBBs[0];
3479       continue;
3480     }
3481 
3482     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3483       // This record indicates that the last instruction is at the same
3484       // location as the previous instruction with a location.
3485       I = getLastInstruction();
3486 
3487       if (!I)
3488         return error("Invalid record");
3489       I->setDebugLoc(LastLoc);
3490       I = nullptr;
3491       continue;
3492 
3493     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3494       I = getLastInstruction();
3495       if (!I || Record.size() < 4)
3496         return error("Invalid record");
3497 
3498       unsigned Line = Record[0], Col = Record[1];
3499       unsigned ScopeID = Record[2], IAID = Record[3];
3500 
3501       MDNode *Scope = nullptr, *IA = nullptr;
3502       if (ScopeID) {
3503         Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1);
3504         if (!Scope)
3505           return error("Invalid record");
3506       }
3507       if (IAID) {
3508         IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1);
3509         if (!IA)
3510           return error("Invalid record");
3511       }
3512       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
3513       I->setDebugLoc(LastLoc);
3514       I = nullptr;
3515       continue;
3516     }
3517 
3518     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3519       unsigned OpNum = 0;
3520       Value *LHS, *RHS;
3521       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3522           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3523           OpNum+1 > Record.size())
3524         return error("Invalid record");
3525 
3526       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3527       if (Opc == -1)
3528         return error("Invalid record");
3529       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3530       InstructionList.push_back(I);
3531       if (OpNum < Record.size()) {
3532         if (Opc == Instruction::Add ||
3533             Opc == Instruction::Sub ||
3534             Opc == Instruction::Mul ||
3535             Opc == Instruction::Shl) {
3536           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3537             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3538           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3539             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3540         } else if (Opc == Instruction::SDiv ||
3541                    Opc == Instruction::UDiv ||
3542                    Opc == Instruction::LShr ||
3543                    Opc == Instruction::AShr) {
3544           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3545             cast<BinaryOperator>(I)->setIsExact(true);
3546         } else if (isa<FPMathOperator>(I)) {
3547           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3548           if (FMF.any())
3549             I->setFastMathFlags(FMF);
3550         }
3551 
3552       }
3553       break;
3554     }
3555     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3556       unsigned OpNum = 0;
3557       Value *Op;
3558       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3559           OpNum+2 != Record.size())
3560         return error("Invalid record");
3561 
3562       Type *ResTy = getTypeByID(Record[OpNum]);
3563       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3564       if (Opc == -1 || !ResTy)
3565         return error("Invalid record");
3566       Instruction *Temp = nullptr;
3567       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3568         if (Temp) {
3569           InstructionList.push_back(Temp);
3570           CurBB->getInstList().push_back(Temp);
3571         }
3572       } else {
3573         auto CastOp = (Instruction::CastOps)Opc;
3574         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3575           return error("Invalid cast");
3576         I = CastInst::Create(CastOp, Op, ResTy);
3577       }
3578       InstructionList.push_back(I);
3579       break;
3580     }
3581     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3582     case bitc::FUNC_CODE_INST_GEP_OLD:
3583     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3584       unsigned OpNum = 0;
3585 
3586       Type *Ty;
3587       bool InBounds;
3588 
3589       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3590         InBounds = Record[OpNum++];
3591         Ty = getTypeByID(Record[OpNum++]);
3592       } else {
3593         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3594         Ty = nullptr;
3595       }
3596 
3597       Value *BasePtr;
3598       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3599         return error("Invalid record");
3600 
3601       if (!Ty)
3602         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3603                  ->getElementType();
3604       else if (Ty !=
3605                cast<PointerType>(BasePtr->getType()->getScalarType())
3606                    ->getElementType())
3607         return error(
3608             "Explicit gep type does not match pointee type of pointer operand");
3609 
3610       SmallVector<Value*, 16> GEPIdx;
3611       while (OpNum != Record.size()) {
3612         Value *Op;
3613         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3614           return error("Invalid record");
3615         GEPIdx.push_back(Op);
3616       }
3617 
3618       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3619 
3620       InstructionList.push_back(I);
3621       if (InBounds)
3622         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3623       break;
3624     }
3625 
3626     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3627                                        // EXTRACTVAL: [opty, opval, n x indices]
3628       unsigned OpNum = 0;
3629       Value *Agg;
3630       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3631         return error("Invalid record");
3632 
3633       unsigned RecSize = Record.size();
3634       if (OpNum == RecSize)
3635         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3636 
3637       SmallVector<unsigned, 4> EXTRACTVALIdx;
3638       Type *CurTy = Agg->getType();
3639       for (; OpNum != RecSize; ++OpNum) {
3640         bool IsArray = CurTy->isArrayTy();
3641         bool IsStruct = CurTy->isStructTy();
3642         uint64_t Index = Record[OpNum];
3643 
3644         if (!IsStruct && !IsArray)
3645           return error("EXTRACTVAL: Invalid type");
3646         if ((unsigned)Index != Index)
3647           return error("Invalid value");
3648         if (IsStruct && Index >= CurTy->subtypes().size())
3649           return error("EXTRACTVAL: Invalid struct index");
3650         if (IsArray && Index >= CurTy->getArrayNumElements())
3651           return error("EXTRACTVAL: Invalid array index");
3652         EXTRACTVALIdx.push_back((unsigned)Index);
3653 
3654         if (IsStruct)
3655           CurTy = CurTy->subtypes()[Index];
3656         else
3657           CurTy = CurTy->subtypes()[0];
3658       }
3659 
3660       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3661       InstructionList.push_back(I);
3662       break;
3663     }
3664 
3665     case bitc::FUNC_CODE_INST_INSERTVAL: {
3666                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3667       unsigned OpNum = 0;
3668       Value *Agg;
3669       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3670         return error("Invalid record");
3671       Value *Val;
3672       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3673         return error("Invalid record");
3674 
3675       unsigned RecSize = Record.size();
3676       if (OpNum == RecSize)
3677         return error("INSERTVAL: Invalid instruction with 0 indices");
3678 
3679       SmallVector<unsigned, 4> INSERTVALIdx;
3680       Type *CurTy = Agg->getType();
3681       for (; OpNum != RecSize; ++OpNum) {
3682         bool IsArray = CurTy->isArrayTy();
3683         bool IsStruct = CurTy->isStructTy();
3684         uint64_t Index = Record[OpNum];
3685 
3686         if (!IsStruct && !IsArray)
3687           return error("INSERTVAL: Invalid type");
3688         if ((unsigned)Index != Index)
3689           return error("Invalid value");
3690         if (IsStruct && Index >= CurTy->subtypes().size())
3691           return error("INSERTVAL: Invalid struct index");
3692         if (IsArray && Index >= CurTy->getArrayNumElements())
3693           return error("INSERTVAL: Invalid array index");
3694 
3695         INSERTVALIdx.push_back((unsigned)Index);
3696         if (IsStruct)
3697           CurTy = CurTy->subtypes()[Index];
3698         else
3699           CurTy = CurTy->subtypes()[0];
3700       }
3701 
3702       if (CurTy != Val->getType())
3703         return error("Inserted value type doesn't match aggregate type");
3704 
3705       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3706       InstructionList.push_back(I);
3707       break;
3708     }
3709 
3710     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3711       // obsolete form of select
3712       // handles select i1 ... in old bitcode
3713       unsigned OpNum = 0;
3714       Value *TrueVal, *FalseVal, *Cond;
3715       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3716           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3717           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3718         return error("Invalid record");
3719 
3720       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3721       InstructionList.push_back(I);
3722       break;
3723     }
3724 
3725     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3726       // new form of select
3727       // handles select i1 or select [N x i1]
3728       unsigned OpNum = 0;
3729       Value *TrueVal, *FalseVal, *Cond;
3730       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3731           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3732           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3733         return error("Invalid record");
3734 
3735       // select condition can be either i1 or [N x i1]
3736       if (VectorType* vector_type =
3737           dyn_cast<VectorType>(Cond->getType())) {
3738         // expect <n x i1>
3739         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3740           return error("Invalid type for value");
3741       } else {
3742         // expect i1
3743         if (Cond->getType() != Type::getInt1Ty(Context))
3744           return error("Invalid type for value");
3745       }
3746 
3747       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3748       InstructionList.push_back(I);
3749       break;
3750     }
3751 
3752     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3753       unsigned OpNum = 0;
3754       Value *Vec, *Idx;
3755       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3756           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3757         return error("Invalid record");
3758       if (!Vec->getType()->isVectorTy())
3759         return error("Invalid type for value");
3760       I = ExtractElementInst::Create(Vec, Idx);
3761       InstructionList.push_back(I);
3762       break;
3763     }
3764 
3765     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3766       unsigned OpNum = 0;
3767       Value *Vec, *Elt, *Idx;
3768       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3769         return error("Invalid record");
3770       if (!Vec->getType()->isVectorTy())
3771         return error("Invalid type for value");
3772       if (popValue(Record, OpNum, NextValueNo,
3773                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3774           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3775         return error("Invalid record");
3776       I = InsertElementInst::Create(Vec, Elt, Idx);
3777       InstructionList.push_back(I);
3778       break;
3779     }
3780 
3781     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3782       unsigned OpNum = 0;
3783       Value *Vec1, *Vec2, *Mask;
3784       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3785           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3786         return error("Invalid record");
3787 
3788       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3789         return error("Invalid record");
3790       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3791         return error("Invalid type for value");
3792       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3793       InstructionList.push_back(I);
3794       break;
3795     }
3796 
3797     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3798       // Old form of ICmp/FCmp returning bool
3799       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3800       // both legal on vectors but had different behaviour.
3801     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3802       // FCmp/ICmp returning bool or vector of bool
3803 
3804       unsigned OpNum = 0;
3805       Value *LHS, *RHS;
3806       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3807           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3808         return error("Invalid record");
3809 
3810       unsigned PredVal = Record[OpNum];
3811       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3812       FastMathFlags FMF;
3813       if (IsFP && Record.size() > OpNum+1)
3814         FMF = getDecodedFastMathFlags(Record[++OpNum]);
3815 
3816       if (OpNum+1 != Record.size())
3817         return error("Invalid record");
3818 
3819       if (LHS->getType()->isFPOrFPVectorTy())
3820         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3821       else
3822         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3823 
3824       if (FMF.any())
3825         I->setFastMathFlags(FMF);
3826       InstructionList.push_back(I);
3827       break;
3828     }
3829 
3830     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3831       {
3832         unsigned Size = Record.size();
3833         if (Size == 0) {
3834           I = ReturnInst::Create(Context);
3835           InstructionList.push_back(I);
3836           break;
3837         }
3838 
3839         unsigned OpNum = 0;
3840         Value *Op = nullptr;
3841         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3842           return error("Invalid record");
3843         if (OpNum != Record.size())
3844           return error("Invalid record");
3845 
3846         I = ReturnInst::Create(Context, Op);
3847         InstructionList.push_back(I);
3848         break;
3849       }
3850     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3851       if (Record.size() != 1 && Record.size() != 3)
3852         return error("Invalid record");
3853       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3854       if (!TrueDest)
3855         return error("Invalid record");
3856 
3857       if (Record.size() == 1) {
3858         I = BranchInst::Create(TrueDest);
3859         InstructionList.push_back(I);
3860       }
3861       else {
3862         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3863         Value *Cond = getValue(Record, 2, NextValueNo,
3864                                Type::getInt1Ty(Context));
3865         if (!FalseDest || !Cond)
3866           return error("Invalid record");
3867         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3868         InstructionList.push_back(I);
3869       }
3870       break;
3871     }
3872     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3873       if (Record.size() != 1 && Record.size() != 2)
3874         return error("Invalid record");
3875       unsigned Idx = 0;
3876       Value *CleanupPad =
3877           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3878       if (!CleanupPad)
3879         return error("Invalid record");
3880       BasicBlock *UnwindDest = nullptr;
3881       if (Record.size() == 2) {
3882         UnwindDest = getBasicBlock(Record[Idx++]);
3883         if (!UnwindDest)
3884           return error("Invalid record");
3885       }
3886 
3887       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3888       InstructionList.push_back(I);
3889       break;
3890     }
3891     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3892       if (Record.size() != 2)
3893         return error("Invalid record");
3894       unsigned Idx = 0;
3895       Value *CatchPad =
3896           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3897       if (!CatchPad)
3898         return error("Invalid record");
3899       BasicBlock *BB = getBasicBlock(Record[Idx++]);
3900       if (!BB)
3901         return error("Invalid record");
3902 
3903       I = CatchReturnInst::Create(CatchPad, BB);
3904       InstructionList.push_back(I);
3905       break;
3906     }
3907     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3908       // We must have, at minimum, the outer scope and the number of arguments.
3909       if (Record.size() < 2)
3910         return error("Invalid record");
3911 
3912       unsigned Idx = 0;
3913 
3914       Value *ParentPad =
3915           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3916 
3917       unsigned NumHandlers = Record[Idx++];
3918 
3919       SmallVector<BasicBlock *, 2> Handlers;
3920       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3921         BasicBlock *BB = getBasicBlock(Record[Idx++]);
3922         if (!BB)
3923           return error("Invalid record");
3924         Handlers.push_back(BB);
3925       }
3926 
3927       BasicBlock *UnwindDest = nullptr;
3928       if (Idx + 1 == Record.size()) {
3929         UnwindDest = getBasicBlock(Record[Idx++]);
3930         if (!UnwindDest)
3931           return error("Invalid record");
3932       }
3933 
3934       if (Record.size() != Idx)
3935         return error("Invalid record");
3936 
3937       auto *CatchSwitch =
3938           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
3939       for (BasicBlock *Handler : Handlers)
3940         CatchSwitch->addHandler(Handler);
3941       I = CatchSwitch;
3942       InstructionList.push_back(I);
3943       break;
3944     }
3945     case bitc::FUNC_CODE_INST_CATCHPAD:
3946     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
3947       // We must have, at minimum, the outer scope and the number of arguments.
3948       if (Record.size() < 2)
3949         return error("Invalid record");
3950 
3951       unsigned Idx = 0;
3952 
3953       Value *ParentPad =
3954           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3955 
3956       unsigned NumArgOperands = Record[Idx++];
3957 
3958       SmallVector<Value *, 2> Args;
3959       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
3960         Value *Val;
3961         if (getValueTypePair(Record, Idx, NextValueNo, Val))
3962           return error("Invalid record");
3963         Args.push_back(Val);
3964       }
3965 
3966       if (Record.size() != Idx)
3967         return error("Invalid record");
3968 
3969       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
3970         I = CleanupPadInst::Create(ParentPad, Args);
3971       else
3972         I = CatchPadInst::Create(ParentPad, Args);
3973       InstructionList.push_back(I);
3974       break;
3975     }
3976     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3977       // Check magic
3978       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
3979         // "New" SwitchInst format with case ranges. The changes to write this
3980         // format were reverted but we still recognize bitcode that uses it.
3981         // Hopefully someday we will have support for case ranges and can use
3982         // this format again.
3983 
3984         Type *OpTy = getTypeByID(Record[1]);
3985         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
3986 
3987         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
3988         BasicBlock *Default = getBasicBlock(Record[3]);
3989         if (!OpTy || !Cond || !Default)
3990           return error("Invalid record");
3991 
3992         unsigned NumCases = Record[4];
3993 
3994         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3995         InstructionList.push_back(SI);
3996 
3997         unsigned CurIdx = 5;
3998         for (unsigned i = 0; i != NumCases; ++i) {
3999           SmallVector<ConstantInt*, 1> CaseVals;
4000           unsigned NumItems = Record[CurIdx++];
4001           for (unsigned ci = 0; ci != NumItems; ++ci) {
4002             bool isSingleNumber = Record[CurIdx++];
4003 
4004             APInt Low;
4005             unsigned ActiveWords = 1;
4006             if (ValueBitWidth > 64)
4007               ActiveWords = Record[CurIdx++];
4008             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4009                                 ValueBitWidth);
4010             CurIdx += ActiveWords;
4011 
4012             if (!isSingleNumber) {
4013               ActiveWords = 1;
4014               if (ValueBitWidth > 64)
4015                 ActiveWords = Record[CurIdx++];
4016               APInt High = readWideAPInt(
4017                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4018               CurIdx += ActiveWords;
4019 
4020               // FIXME: It is not clear whether values in the range should be
4021               // compared as signed or unsigned values. The partially
4022               // implemented changes that used this format in the past used
4023               // unsigned comparisons.
4024               for ( ; Low.ule(High); ++Low)
4025                 CaseVals.push_back(ConstantInt::get(Context, Low));
4026             } else
4027               CaseVals.push_back(ConstantInt::get(Context, Low));
4028           }
4029           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4030           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4031                  cve = CaseVals.end(); cvi != cve; ++cvi)
4032             SI->addCase(*cvi, DestBB);
4033         }
4034         I = SI;
4035         break;
4036       }
4037 
4038       // Old SwitchInst format without case ranges.
4039 
4040       if (Record.size() < 3 || (Record.size() & 1) == 0)
4041         return error("Invalid record");
4042       Type *OpTy = getTypeByID(Record[0]);
4043       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4044       BasicBlock *Default = getBasicBlock(Record[2]);
4045       if (!OpTy || !Cond || !Default)
4046         return error("Invalid record");
4047       unsigned NumCases = (Record.size()-3)/2;
4048       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4049       InstructionList.push_back(SI);
4050       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4051         ConstantInt *CaseVal =
4052           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4053         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4054         if (!CaseVal || !DestBB) {
4055           delete SI;
4056           return error("Invalid record");
4057         }
4058         SI->addCase(CaseVal, DestBB);
4059       }
4060       I = SI;
4061       break;
4062     }
4063     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4064       if (Record.size() < 2)
4065         return error("Invalid record");
4066       Type *OpTy = getTypeByID(Record[0]);
4067       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4068       if (!OpTy || !Address)
4069         return error("Invalid record");
4070       unsigned NumDests = Record.size()-2;
4071       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4072       InstructionList.push_back(IBI);
4073       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4074         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4075           IBI->addDestination(DestBB);
4076         } else {
4077           delete IBI;
4078           return error("Invalid record");
4079         }
4080       }
4081       I = IBI;
4082       break;
4083     }
4084 
4085     case bitc::FUNC_CODE_INST_INVOKE: {
4086       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4087       if (Record.size() < 4)
4088         return error("Invalid record");
4089       unsigned OpNum = 0;
4090       AttributeList PAL = getAttributes(Record[OpNum++]);
4091       unsigned CCInfo = Record[OpNum++];
4092       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4093       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4094 
4095       FunctionType *FTy = nullptr;
4096       if (CCInfo >> 13 & 1 &&
4097           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4098         return error("Explicit invoke type is not a function type");
4099 
4100       Value *Callee;
4101       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4102         return error("Invalid record");
4103 
4104       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4105       if (!CalleeTy)
4106         return error("Callee is not a pointer");
4107       if (!FTy) {
4108         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4109         if (!FTy)
4110           return error("Callee is not of pointer to function type");
4111       } else if (CalleeTy->getElementType() != FTy)
4112         return error("Explicit invoke type does not match pointee type of "
4113                      "callee operand");
4114       if (Record.size() < FTy->getNumParams() + OpNum)
4115         return error("Insufficient operands to call");
4116 
4117       SmallVector<Value*, 16> Ops;
4118       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4119         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4120                                FTy->getParamType(i)));
4121         if (!Ops.back())
4122           return error("Invalid record");
4123       }
4124 
4125       if (!FTy->isVarArg()) {
4126         if (Record.size() != OpNum)
4127           return error("Invalid record");
4128       } else {
4129         // Read type/value pairs for varargs params.
4130         while (OpNum != Record.size()) {
4131           Value *Op;
4132           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4133             return error("Invalid record");
4134           Ops.push_back(Op);
4135         }
4136       }
4137 
4138       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4139       OperandBundles.clear();
4140       InstructionList.push_back(I);
4141       cast<InvokeInst>(I)->setCallingConv(
4142           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4143       cast<InvokeInst>(I)->setAttributes(PAL);
4144       break;
4145     }
4146     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4147       unsigned Idx = 0;
4148       Value *Val = nullptr;
4149       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4150         return error("Invalid record");
4151       I = ResumeInst::Create(Val);
4152       InstructionList.push_back(I);
4153       break;
4154     }
4155     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4156       I = new UnreachableInst(Context);
4157       InstructionList.push_back(I);
4158       break;
4159     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4160       if (Record.size() < 1 || ((Record.size()-1)&1))
4161         return error("Invalid record");
4162       Type *Ty = getTypeByID(Record[0]);
4163       if (!Ty)
4164         return error("Invalid record");
4165 
4166       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4167       InstructionList.push_back(PN);
4168 
4169       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4170         Value *V;
4171         // With the new function encoding, it is possible that operands have
4172         // negative IDs (for forward references).  Use a signed VBR
4173         // representation to keep the encoding small.
4174         if (UseRelativeIDs)
4175           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4176         else
4177           V = getValue(Record, 1+i, NextValueNo, Ty);
4178         BasicBlock *BB = getBasicBlock(Record[2+i]);
4179         if (!V || !BB)
4180           return error("Invalid record");
4181         PN->addIncoming(V, BB);
4182       }
4183       I = PN;
4184       break;
4185     }
4186 
4187     case bitc::FUNC_CODE_INST_LANDINGPAD:
4188     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4189       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4190       unsigned Idx = 0;
4191       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4192         if (Record.size() < 3)
4193           return error("Invalid record");
4194       } else {
4195         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4196         if (Record.size() < 4)
4197           return error("Invalid record");
4198       }
4199       Type *Ty = getTypeByID(Record[Idx++]);
4200       if (!Ty)
4201         return error("Invalid record");
4202       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4203         Value *PersFn = nullptr;
4204         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4205           return error("Invalid record");
4206 
4207         if (!F->hasPersonalityFn())
4208           F->setPersonalityFn(cast<Constant>(PersFn));
4209         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4210           return error("Personality function mismatch");
4211       }
4212 
4213       bool IsCleanup = !!Record[Idx++];
4214       unsigned NumClauses = Record[Idx++];
4215       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4216       LP->setCleanup(IsCleanup);
4217       for (unsigned J = 0; J != NumClauses; ++J) {
4218         LandingPadInst::ClauseType CT =
4219           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4220         Value *Val;
4221 
4222         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4223           delete LP;
4224           return error("Invalid record");
4225         }
4226 
4227         assert((CT != LandingPadInst::Catch ||
4228                 !isa<ArrayType>(Val->getType())) &&
4229                "Catch clause has a invalid type!");
4230         assert((CT != LandingPadInst::Filter ||
4231                 isa<ArrayType>(Val->getType())) &&
4232                "Filter clause has invalid type!");
4233         LP->addClause(cast<Constant>(Val));
4234       }
4235 
4236       I = LP;
4237       InstructionList.push_back(I);
4238       break;
4239     }
4240 
4241     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4242       if (Record.size() != 4)
4243         return error("Invalid record");
4244       uint64_t AlignRecord = Record[3];
4245       const uint64_t InAllocaMask = uint64_t(1) << 5;
4246       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4247       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4248       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4249                                 SwiftErrorMask;
4250       bool InAlloca = AlignRecord & InAllocaMask;
4251       bool SwiftError = AlignRecord & SwiftErrorMask;
4252       Type *Ty = getTypeByID(Record[0]);
4253       if ((AlignRecord & ExplicitTypeMask) == 0) {
4254         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4255         if (!PTy)
4256           return error("Old-style alloca with a non-pointer type");
4257         Ty = PTy->getElementType();
4258       }
4259       Type *OpTy = getTypeByID(Record[1]);
4260       Value *Size = getFnValueByID(Record[2], OpTy);
4261       unsigned Align;
4262       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4263         return Err;
4264       }
4265       if (!Ty || !Size)
4266         return error("Invalid record");
4267 
4268       // FIXME: Make this an optional field.
4269       const DataLayout &DL = TheModule->getDataLayout();
4270       unsigned AS = DL.getAllocaAddrSpace();
4271 
4272       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4273       AI->setUsedWithInAlloca(InAlloca);
4274       AI->setSwiftError(SwiftError);
4275       I = AI;
4276       InstructionList.push_back(I);
4277       break;
4278     }
4279     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4280       unsigned OpNum = 0;
4281       Value *Op;
4282       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4283           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4284         return error("Invalid record");
4285 
4286       Type *Ty = nullptr;
4287       if (OpNum + 3 == Record.size())
4288         Ty = getTypeByID(Record[OpNum++]);
4289       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4290         return Err;
4291       if (!Ty)
4292         Ty = cast<PointerType>(Op->getType())->getElementType();
4293 
4294       unsigned Align;
4295       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4296         return Err;
4297       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4298 
4299       InstructionList.push_back(I);
4300       break;
4301     }
4302     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4303        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4304       unsigned OpNum = 0;
4305       Value *Op;
4306       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4307           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4308         return error("Invalid record");
4309 
4310       Type *Ty = nullptr;
4311       if (OpNum + 5 == Record.size())
4312         Ty = getTypeByID(Record[OpNum++]);
4313       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4314         return Err;
4315       if (!Ty)
4316         Ty = cast<PointerType>(Op->getType())->getElementType();
4317 
4318       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4319       if (Ordering == AtomicOrdering::NotAtomic ||
4320           Ordering == AtomicOrdering::Release ||
4321           Ordering == AtomicOrdering::AcquireRelease)
4322         return error("Invalid record");
4323       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4324         return error("Invalid record");
4325       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4326 
4327       unsigned Align;
4328       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4329         return Err;
4330       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID);
4331 
4332       InstructionList.push_back(I);
4333       break;
4334     }
4335     case bitc::FUNC_CODE_INST_STORE:
4336     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4337       unsigned OpNum = 0;
4338       Value *Val, *Ptr;
4339       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4340           (BitCode == bitc::FUNC_CODE_INST_STORE
4341                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4342                : popValue(Record, OpNum, NextValueNo,
4343                           cast<PointerType>(Ptr->getType())->getElementType(),
4344                           Val)) ||
4345           OpNum + 2 != Record.size())
4346         return error("Invalid record");
4347 
4348       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4349         return Err;
4350       unsigned Align;
4351       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4352         return Err;
4353       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4354       InstructionList.push_back(I);
4355       break;
4356     }
4357     case bitc::FUNC_CODE_INST_STOREATOMIC:
4358     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4359       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4360       unsigned OpNum = 0;
4361       Value *Val, *Ptr;
4362       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4363           !isa<PointerType>(Ptr->getType()) ||
4364           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4365                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4366                : popValue(Record, OpNum, NextValueNo,
4367                           cast<PointerType>(Ptr->getType())->getElementType(),
4368                           Val)) ||
4369           OpNum + 4 != Record.size())
4370         return error("Invalid record");
4371 
4372       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4373         return Err;
4374       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4375       if (Ordering == AtomicOrdering::NotAtomic ||
4376           Ordering == AtomicOrdering::Acquire ||
4377           Ordering == AtomicOrdering::AcquireRelease)
4378         return error("Invalid record");
4379       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4380       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4381         return error("Invalid record");
4382 
4383       unsigned Align;
4384       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4385         return Err;
4386       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4387       InstructionList.push_back(I);
4388       break;
4389     }
4390     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4391     case bitc::FUNC_CODE_INST_CMPXCHG: {
4392       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4393       //          failureordering?, isweak?]
4394       unsigned OpNum = 0;
4395       Value *Ptr, *Cmp, *New;
4396       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4397           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4398                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4399                : popValue(Record, OpNum, NextValueNo,
4400                           cast<PointerType>(Ptr->getType())->getElementType(),
4401                           Cmp)) ||
4402           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4403           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4404         return error("Invalid record");
4405       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4406       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4407           SuccessOrdering == AtomicOrdering::Unordered)
4408         return error("Invalid record");
4409       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4410 
4411       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4412         return Err;
4413       AtomicOrdering FailureOrdering;
4414       if (Record.size() < 7)
4415         FailureOrdering =
4416             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4417       else
4418         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4419 
4420       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4421                                 SSID);
4422       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4423 
4424       if (Record.size() < 8) {
4425         // Before weak cmpxchgs existed, the instruction simply returned the
4426         // value loaded from memory, so bitcode files from that era will be
4427         // expecting the first component of a modern cmpxchg.
4428         CurBB->getInstList().push_back(I);
4429         I = ExtractValueInst::Create(I, 0);
4430       } else {
4431         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4432       }
4433 
4434       InstructionList.push_back(I);
4435       break;
4436     }
4437     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4438       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4439       unsigned OpNum = 0;
4440       Value *Ptr, *Val;
4441       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4442           !isa<PointerType>(Ptr->getType()) ||
4443           popValue(Record, OpNum, NextValueNo,
4444                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4445           OpNum+4 != Record.size())
4446         return error("Invalid record");
4447       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4448       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4449           Operation > AtomicRMWInst::LAST_BINOP)
4450         return error("Invalid record");
4451       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4452       if (Ordering == AtomicOrdering::NotAtomic ||
4453           Ordering == AtomicOrdering::Unordered)
4454         return error("Invalid record");
4455       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4456       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4457       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4458       InstructionList.push_back(I);
4459       break;
4460     }
4461     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4462       if (2 != Record.size())
4463         return error("Invalid record");
4464       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4465       if (Ordering == AtomicOrdering::NotAtomic ||
4466           Ordering == AtomicOrdering::Unordered ||
4467           Ordering == AtomicOrdering::Monotonic)
4468         return error("Invalid record");
4469       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4470       I = new FenceInst(Context, Ordering, SSID);
4471       InstructionList.push_back(I);
4472       break;
4473     }
4474     case bitc::FUNC_CODE_INST_CALL: {
4475       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4476       if (Record.size() < 3)
4477         return error("Invalid record");
4478 
4479       unsigned OpNum = 0;
4480       AttributeList PAL = getAttributes(Record[OpNum++]);
4481       unsigned CCInfo = Record[OpNum++];
4482 
4483       FastMathFlags FMF;
4484       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4485         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4486         if (!FMF.any())
4487           return error("Fast math flags indicator set for call with no FMF");
4488       }
4489 
4490       FunctionType *FTy = nullptr;
4491       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4492           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4493         return error("Explicit call type is not a function type");
4494 
4495       Value *Callee;
4496       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4497         return error("Invalid record");
4498 
4499       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4500       if (!OpTy)
4501         return error("Callee is not a pointer type");
4502       if (!FTy) {
4503         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4504         if (!FTy)
4505           return error("Callee is not of pointer to function type");
4506       } else if (OpTy->getElementType() != FTy)
4507         return error("Explicit call type does not match pointee type of "
4508                      "callee operand");
4509       if (Record.size() < FTy->getNumParams() + OpNum)
4510         return error("Insufficient operands to call");
4511 
4512       SmallVector<Value*, 16> Args;
4513       // Read the fixed params.
4514       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4515         if (FTy->getParamType(i)->isLabelTy())
4516           Args.push_back(getBasicBlock(Record[OpNum]));
4517         else
4518           Args.push_back(getValue(Record, OpNum, NextValueNo,
4519                                   FTy->getParamType(i)));
4520         if (!Args.back())
4521           return error("Invalid record");
4522       }
4523 
4524       // Read type/value pairs for varargs params.
4525       if (!FTy->isVarArg()) {
4526         if (OpNum != Record.size())
4527           return error("Invalid record");
4528       } else {
4529         while (OpNum != Record.size()) {
4530           Value *Op;
4531           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4532             return error("Invalid record");
4533           Args.push_back(Op);
4534         }
4535       }
4536 
4537       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4538       OperandBundles.clear();
4539       InstructionList.push_back(I);
4540       cast<CallInst>(I)->setCallingConv(
4541           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4542       CallInst::TailCallKind TCK = CallInst::TCK_None;
4543       if (CCInfo & 1 << bitc::CALL_TAIL)
4544         TCK = CallInst::TCK_Tail;
4545       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4546         TCK = CallInst::TCK_MustTail;
4547       if (CCInfo & (1 << bitc::CALL_NOTAIL))
4548         TCK = CallInst::TCK_NoTail;
4549       cast<CallInst>(I)->setTailCallKind(TCK);
4550       cast<CallInst>(I)->setAttributes(PAL);
4551       if (FMF.any()) {
4552         if (!isa<FPMathOperator>(I))
4553           return error("Fast-math-flags specified for call without "
4554                        "floating-point scalar or vector return type");
4555         I->setFastMathFlags(FMF);
4556       }
4557       break;
4558     }
4559     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4560       if (Record.size() < 3)
4561         return error("Invalid record");
4562       Type *OpTy = getTypeByID(Record[0]);
4563       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4564       Type *ResTy = getTypeByID(Record[2]);
4565       if (!OpTy || !Op || !ResTy)
4566         return error("Invalid record");
4567       I = new VAArgInst(Op, ResTy);
4568       InstructionList.push_back(I);
4569       break;
4570     }
4571 
4572     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4573       // A call or an invoke can be optionally prefixed with some variable
4574       // number of operand bundle blocks.  These blocks are read into
4575       // OperandBundles and consumed at the next call or invoke instruction.
4576 
4577       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4578         return error("Invalid record");
4579 
4580       std::vector<Value *> Inputs;
4581 
4582       unsigned OpNum = 1;
4583       while (OpNum != Record.size()) {
4584         Value *Op;
4585         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4586           return error("Invalid record");
4587         Inputs.push_back(Op);
4588       }
4589 
4590       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4591       continue;
4592     }
4593     }
4594 
4595     // Add instruction to end of current BB.  If there is no current BB, reject
4596     // this file.
4597     if (!CurBB) {
4598       I->deleteValue();
4599       return error("Invalid instruction with no BB");
4600     }
4601     if (!OperandBundles.empty()) {
4602       I->deleteValue();
4603       return error("Operand bundles found with no consumer");
4604     }
4605     CurBB->getInstList().push_back(I);
4606 
4607     // If this was a terminator instruction, move to the next block.
4608     if (isa<TerminatorInst>(I)) {
4609       ++CurBBNo;
4610       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4611     }
4612 
4613     // Non-void values get registered in the value table for future use.
4614     if (I && !I->getType()->isVoidTy())
4615       ValueList.assignValue(I, NextValueNo++);
4616   }
4617 
4618 OutOfRecordLoop:
4619 
4620   if (!OperandBundles.empty())
4621     return error("Operand bundles found with no consumer");
4622 
4623   // Check the function list for unresolved values.
4624   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4625     if (!A->getParent()) {
4626       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4627       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4628         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4629           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4630           delete A;
4631         }
4632       }
4633       return error("Never resolved value found in function");
4634     }
4635   }
4636 
4637   // Unexpected unresolved metadata about to be dropped.
4638   if (MDLoader->hasFwdRefs())
4639     return error("Invalid function metadata: outgoing forward refs");
4640 
4641   // Trim the value list down to the size it was before we parsed this function.
4642   ValueList.shrinkTo(ModuleValueListSize);
4643   MDLoader->shrinkTo(ModuleMDLoaderSize);
4644   std::vector<BasicBlock*>().swap(FunctionBBs);
4645   return Error::success();
4646 }
4647 
4648 /// Find the function body in the bitcode stream
4649 Error BitcodeReader::findFunctionInStream(
4650     Function *F,
4651     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4652   while (DeferredFunctionInfoIterator->second == 0) {
4653     // This is the fallback handling for the old format bitcode that
4654     // didn't contain the function index in the VST, or when we have
4655     // an anonymous function which would not have a VST entry.
4656     // Assert that we have one of those two cases.
4657     assert(VSTOffset == 0 || !F->hasName());
4658     // Parse the next body in the stream and set its position in the
4659     // DeferredFunctionInfo map.
4660     if (Error Err = rememberAndSkipFunctionBodies())
4661       return Err;
4662   }
4663   return Error::success();
4664 }
4665 
4666 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4667   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4668     return SyncScope::ID(Val);
4669   if (Val >= SSIDs.size())
4670     return SyncScope::System; // Map unknown synchronization scopes to system.
4671   return SSIDs[Val];
4672 }
4673 
4674 //===----------------------------------------------------------------------===//
4675 // GVMaterializer implementation
4676 //===----------------------------------------------------------------------===//
4677 
4678 Error BitcodeReader::materialize(GlobalValue *GV) {
4679   Function *F = dyn_cast<Function>(GV);
4680   // If it's not a function or is already material, ignore the request.
4681   if (!F || !F->isMaterializable())
4682     return Error::success();
4683 
4684   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4685   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4686   // If its position is recorded as 0, its body is somewhere in the stream
4687   // but we haven't seen it yet.
4688   if (DFII->second == 0)
4689     if (Error Err = findFunctionInStream(F, DFII))
4690       return Err;
4691 
4692   // Materialize metadata before parsing any function bodies.
4693   if (Error Err = materializeMetadata())
4694     return Err;
4695 
4696   // Move the bit stream to the saved position of the deferred function body.
4697   Stream.JumpToBit(DFII->second);
4698 
4699   if (Error Err = parseFunctionBody(F))
4700     return Err;
4701   F->setIsMaterializable(false);
4702 
4703   if (StripDebugInfo)
4704     stripDebugInfo(*F);
4705 
4706   // Upgrade any old intrinsic calls in the function.
4707   for (auto &I : UpgradedIntrinsics) {
4708     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4709          UI != UE;) {
4710       User *U = *UI;
4711       ++UI;
4712       if (CallInst *CI = dyn_cast<CallInst>(U))
4713         UpgradeIntrinsicCall(CI, I.second);
4714     }
4715   }
4716 
4717   // Update calls to the remangled intrinsics
4718   for (auto &I : RemangledIntrinsics)
4719     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4720          UI != UE;)
4721       // Don't expect any other users than call sites
4722       CallSite(*UI++).setCalledFunction(I.second);
4723 
4724   // Finish fn->subprogram upgrade for materialized functions.
4725   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4726     F->setSubprogram(SP);
4727 
4728   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4729   if (!MDLoader->isStrippingTBAA()) {
4730     for (auto &I : instructions(F)) {
4731       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4732       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4733         continue;
4734       MDLoader->setStripTBAA(true);
4735       stripTBAA(F->getParent());
4736     }
4737   }
4738 
4739   // Bring in any functions that this function forward-referenced via
4740   // blockaddresses.
4741   return materializeForwardReferencedFunctions();
4742 }
4743 
4744 Error BitcodeReader::materializeModule() {
4745   if (Error Err = materializeMetadata())
4746     return Err;
4747 
4748   // Promise to materialize all forward references.
4749   WillMaterializeAllForwardRefs = true;
4750 
4751   // Iterate over the module, deserializing any functions that are still on
4752   // disk.
4753   for (Function &F : *TheModule) {
4754     if (Error Err = materialize(&F))
4755       return Err;
4756   }
4757   // At this point, if there are any function bodies, parse the rest of
4758   // the bits in the module past the last function block we have recorded
4759   // through either lazy scanning or the VST.
4760   if (LastFunctionBlockBit || NextUnreadBit)
4761     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4762                                     ? LastFunctionBlockBit
4763                                     : NextUnreadBit))
4764       return Err;
4765 
4766   // Check that all block address forward references got resolved (as we
4767   // promised above).
4768   if (!BasicBlockFwdRefs.empty())
4769     return error("Never resolved function from blockaddress");
4770 
4771   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4772   // delete the old functions to clean up. We can't do this unless the entire
4773   // module is materialized because there could always be another function body
4774   // with calls to the old function.
4775   for (auto &I : UpgradedIntrinsics) {
4776     for (auto *U : I.first->users()) {
4777       if (CallInst *CI = dyn_cast<CallInst>(U))
4778         UpgradeIntrinsicCall(CI, I.second);
4779     }
4780     if (!I.first->use_empty())
4781       I.first->replaceAllUsesWith(I.second);
4782     I.first->eraseFromParent();
4783   }
4784   UpgradedIntrinsics.clear();
4785   // Do the same for remangled intrinsics
4786   for (auto &I : RemangledIntrinsics) {
4787     I.first->replaceAllUsesWith(I.second);
4788     I.first->eraseFromParent();
4789   }
4790   RemangledIntrinsics.clear();
4791 
4792   UpgradeDebugInfo(*TheModule);
4793 
4794   UpgradeModuleFlags(*TheModule);
4795 
4796   UpgradeRetainReleaseMarker(*TheModule);
4797 
4798   return Error::success();
4799 }
4800 
4801 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4802   return IdentifiedStructTypes;
4803 }
4804 
4805 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4806     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4807     StringRef ModulePath, unsigned ModuleId)
4808     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4809       ModulePath(ModulePath), ModuleId(ModuleId) {}
4810 
4811 void ModuleSummaryIndexBitcodeReader::addThisModule() {
4812   TheIndex.addModule(ModulePath, ModuleId);
4813 }
4814 
4815 ModuleSummaryIndex::ModuleInfo *
4816 ModuleSummaryIndexBitcodeReader::getThisModule() {
4817   return TheIndex.getModule(ModulePath);
4818 }
4819 
4820 std::pair<ValueInfo, GlobalValue::GUID>
4821 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4822   auto VGI = ValueIdToValueInfoMap[ValueId];
4823   assert(VGI.first);
4824   return VGI;
4825 }
4826 
4827 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4828     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4829     StringRef SourceFileName) {
4830   std::string GlobalId =
4831       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4832   auto ValueGUID = GlobalValue::getGUID(GlobalId);
4833   auto OriginalNameID = ValueGUID;
4834   if (GlobalValue::isLocalLinkage(Linkage))
4835     OriginalNameID = GlobalValue::getGUID(ValueName);
4836   if (PrintSummaryGUIDs)
4837     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4838            << ValueName << "\n";
4839 
4840   // UseStrtab is false for legacy summary formats and value names are
4841   // created on stack. In that case we save the name in a string saver in
4842   // the index so that the value name can be recorded.
4843   ValueIdToValueInfoMap[ValueID] = std::make_pair(
4844       TheIndex.getOrInsertValueInfo(
4845           ValueGUID,
4846           UseStrtab ? ValueName : TheIndex.saveString(ValueName.str())),
4847       OriginalNameID);
4848 }
4849 
4850 // Specialized value symbol table parser used when reading module index
4851 // blocks where we don't actually create global values. The parsed information
4852 // is saved in the bitcode reader for use when later parsing summaries.
4853 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4854     uint64_t Offset,
4855     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4856   // With a strtab the VST is not required to parse the summary.
4857   if (UseStrtab)
4858     return Error::success();
4859 
4860   assert(Offset > 0 && "Expected non-zero VST offset");
4861   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4862 
4863   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
4864     return error("Invalid record");
4865 
4866   SmallVector<uint64_t, 64> Record;
4867 
4868   // Read all the records for this value table.
4869   SmallString<128> ValueName;
4870 
4871   while (true) {
4872     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4873 
4874     switch (Entry.Kind) {
4875     case BitstreamEntry::SubBlock: // Handled for us already.
4876     case BitstreamEntry::Error:
4877       return error("Malformed block");
4878     case BitstreamEntry::EndBlock:
4879       // Done parsing VST, jump back to wherever we came from.
4880       Stream.JumpToBit(CurrentBit);
4881       return Error::success();
4882     case BitstreamEntry::Record:
4883       // The interesting case.
4884       break;
4885     }
4886 
4887     // Read a record.
4888     Record.clear();
4889     switch (Stream.readRecord(Entry.ID, Record)) {
4890     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4891       break;
4892     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4893       if (convertToString(Record, 1, ValueName))
4894         return error("Invalid record");
4895       unsigned ValueID = Record[0];
4896       assert(!SourceFileName.empty());
4897       auto VLI = ValueIdToLinkageMap.find(ValueID);
4898       assert(VLI != ValueIdToLinkageMap.end() &&
4899              "No linkage found for VST entry?");
4900       auto Linkage = VLI->second;
4901       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4902       ValueName.clear();
4903       break;
4904     }
4905     case bitc::VST_CODE_FNENTRY: {
4906       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4907       if (convertToString(Record, 2, ValueName))
4908         return error("Invalid record");
4909       unsigned ValueID = Record[0];
4910       assert(!SourceFileName.empty());
4911       auto VLI = ValueIdToLinkageMap.find(ValueID);
4912       assert(VLI != ValueIdToLinkageMap.end() &&
4913              "No linkage found for VST entry?");
4914       auto Linkage = VLI->second;
4915       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4916       ValueName.clear();
4917       break;
4918     }
4919     case bitc::VST_CODE_COMBINED_ENTRY: {
4920       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
4921       unsigned ValueID = Record[0];
4922       GlobalValue::GUID RefGUID = Record[1];
4923       // The "original name", which is the second value of the pair will be
4924       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
4925       ValueIdToValueInfoMap[ValueID] =
4926           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
4927       break;
4928     }
4929     }
4930   }
4931 }
4932 
4933 // Parse just the blocks needed for building the index out of the module.
4934 // At the end of this routine the module Index is populated with a map
4935 // from global value id to GlobalValueSummary objects.
4936 Error ModuleSummaryIndexBitcodeReader::parseModule() {
4937   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4938     return error("Invalid record");
4939 
4940   SmallVector<uint64_t, 64> Record;
4941   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
4942   unsigned ValueId = 0;
4943 
4944   // Read the index for this module.
4945   while (true) {
4946     BitstreamEntry Entry = Stream.advance();
4947 
4948     switch (Entry.Kind) {
4949     case BitstreamEntry::Error:
4950       return error("Malformed block");
4951     case BitstreamEntry::EndBlock:
4952       return Error::success();
4953 
4954     case BitstreamEntry::SubBlock:
4955       switch (Entry.ID) {
4956       default: // Skip unknown content.
4957         if (Stream.SkipBlock())
4958           return error("Invalid record");
4959         break;
4960       case bitc::BLOCKINFO_BLOCK_ID:
4961         // Need to parse these to get abbrev ids (e.g. for VST)
4962         if (readBlockInfo())
4963           return error("Malformed block");
4964         break;
4965       case bitc::VALUE_SYMTAB_BLOCK_ID:
4966         // Should have been parsed earlier via VSTOffset, unless there
4967         // is no summary section.
4968         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
4969                 !SeenGlobalValSummary) &&
4970                "Expected early VST parse via VSTOffset record");
4971         if (Stream.SkipBlock())
4972           return error("Invalid record");
4973         break;
4974       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
4975       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
4976         // Add the module if it is a per-module index (has a source file name).
4977         if (!SourceFileName.empty())
4978           addThisModule();
4979         assert(!SeenValueSymbolTable &&
4980                "Already read VST when parsing summary block?");
4981         // We might not have a VST if there were no values in the
4982         // summary. An empty summary block generated when we are
4983         // performing ThinLTO compiles so we don't later invoke
4984         // the regular LTO process on them.
4985         if (VSTOffset > 0) {
4986           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
4987             return Err;
4988           SeenValueSymbolTable = true;
4989         }
4990         SeenGlobalValSummary = true;
4991         if (Error Err = parseEntireSummary(Entry.ID))
4992           return Err;
4993         break;
4994       case bitc::MODULE_STRTAB_BLOCK_ID:
4995         if (Error Err = parseModuleStringTable())
4996           return Err;
4997         break;
4998       }
4999       continue;
5000 
5001     case BitstreamEntry::Record: {
5002         Record.clear();
5003         auto BitCode = Stream.readRecord(Entry.ID, Record);
5004         switch (BitCode) {
5005         default:
5006           break; // Default behavior, ignore unknown content.
5007         case bitc::MODULE_CODE_VERSION: {
5008           if (Error Err = parseVersionRecord(Record).takeError())
5009             return Err;
5010           break;
5011         }
5012         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5013         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5014           SmallString<128> ValueName;
5015           if (convertToString(Record, 0, ValueName))
5016             return error("Invalid record");
5017           SourceFileName = ValueName.c_str();
5018           break;
5019         }
5020         /// MODULE_CODE_HASH: [5*i32]
5021         case bitc::MODULE_CODE_HASH: {
5022           if (Record.size() != 5)
5023             return error("Invalid hash length " + Twine(Record.size()).str());
5024           auto &Hash = getThisModule()->second.second;
5025           int Pos = 0;
5026           for (auto &Val : Record) {
5027             assert(!(Val >> 32) && "Unexpected high bits set");
5028             Hash[Pos++] = Val;
5029           }
5030           break;
5031         }
5032         /// MODULE_CODE_VSTOFFSET: [offset]
5033         case bitc::MODULE_CODE_VSTOFFSET:
5034           if (Record.size() < 1)
5035             return error("Invalid record");
5036           // Note that we subtract 1 here because the offset is relative to one
5037           // word before the start of the identification or module block, which
5038           // was historically always the start of the regular bitcode header.
5039           VSTOffset = Record[0] - 1;
5040           break;
5041         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5042         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5043         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5044         // v2: [strtab offset, strtab size, v1]
5045         case bitc::MODULE_CODE_GLOBALVAR:
5046         case bitc::MODULE_CODE_FUNCTION:
5047         case bitc::MODULE_CODE_ALIAS: {
5048           StringRef Name;
5049           ArrayRef<uint64_t> GVRecord;
5050           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5051           if (GVRecord.size() <= 3)
5052             return error("Invalid record");
5053           uint64_t RawLinkage = GVRecord[3];
5054           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5055           if (!UseStrtab) {
5056             ValueIdToLinkageMap[ValueId++] = Linkage;
5057             break;
5058           }
5059 
5060           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5061           break;
5062         }
5063         }
5064       }
5065       continue;
5066     }
5067   }
5068 }
5069 
5070 std::vector<ValueInfo>
5071 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5072   std::vector<ValueInfo> Ret;
5073   Ret.reserve(Record.size());
5074   for (uint64_t RefValueId : Record)
5075     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5076   return Ret;
5077 }
5078 
5079 std::vector<FunctionSummary::EdgeTy>
5080 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5081                                               bool IsOldProfileFormat,
5082                                               bool HasProfile, bool HasRelBF) {
5083   std::vector<FunctionSummary::EdgeTy> Ret;
5084   Ret.reserve(Record.size());
5085   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5086     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5087     uint64_t RelBF = 0;
5088     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5089     if (IsOldProfileFormat) {
5090       I += 1; // Skip old callsitecount field
5091       if (HasProfile)
5092         I += 1; // Skip old profilecount field
5093     } else if (HasProfile)
5094       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5095     else if (HasRelBF)
5096       RelBF = Record[++I];
5097     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5098   }
5099   return Ret;
5100 }
5101 
5102 static void
5103 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5104                                        WholeProgramDevirtResolution &Wpd) {
5105   uint64_t ArgNum = Record[Slot++];
5106   WholeProgramDevirtResolution::ByArg &B =
5107       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5108   Slot += ArgNum;
5109 
5110   B.TheKind =
5111       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5112   B.Info = Record[Slot++];
5113   B.Byte = Record[Slot++];
5114   B.Bit = Record[Slot++];
5115 }
5116 
5117 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5118                                               StringRef Strtab, size_t &Slot,
5119                                               TypeIdSummary &TypeId) {
5120   uint64_t Id = Record[Slot++];
5121   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5122 
5123   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5124   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5125                         static_cast<size_t>(Record[Slot + 1])};
5126   Slot += 2;
5127 
5128   uint64_t ResByArgNum = Record[Slot++];
5129   for (uint64_t I = 0; I != ResByArgNum; ++I)
5130     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5131 }
5132 
5133 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5134                                      StringRef Strtab,
5135                                      ModuleSummaryIndex &TheIndex) {
5136   size_t Slot = 0;
5137   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5138       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5139   Slot += 2;
5140 
5141   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5142   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5143   TypeId.TTRes.AlignLog2 = Record[Slot++];
5144   TypeId.TTRes.SizeM1 = Record[Slot++];
5145   TypeId.TTRes.BitMask = Record[Slot++];
5146   TypeId.TTRes.InlineBits = Record[Slot++];
5147 
5148   while (Slot < Record.size())
5149     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5150 }
5151 
5152 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5153 // objects in the index.
5154 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5155   if (Stream.EnterSubBlock(ID))
5156     return error("Invalid record");
5157   SmallVector<uint64_t, 64> Record;
5158 
5159   // Parse version
5160   {
5161     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5162     if (Entry.Kind != BitstreamEntry::Record)
5163       return error("Invalid Summary Block: record for version expected");
5164     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5165       return error("Invalid Summary Block: version expected");
5166   }
5167   const uint64_t Version = Record[0];
5168   const bool IsOldProfileFormat = Version == 1;
5169   if (Version < 1 || Version > 4)
5170     return error("Invalid summary version " + Twine(Version) +
5171                  ", 1, 2, 3 or 4 expected");
5172   Record.clear();
5173 
5174   // Keep around the last seen summary to be used when we see an optional
5175   // "OriginalName" attachement.
5176   GlobalValueSummary *LastSeenSummary = nullptr;
5177   GlobalValue::GUID LastSeenGUID = 0;
5178 
5179   // We can expect to see any number of type ID information records before
5180   // each function summary records; these variables store the information
5181   // collected so far so that it can be used to create the summary object.
5182   std::vector<GlobalValue::GUID> PendingTypeTests;
5183   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5184       PendingTypeCheckedLoadVCalls;
5185   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5186       PendingTypeCheckedLoadConstVCalls;
5187 
5188   while (true) {
5189     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5190 
5191     switch (Entry.Kind) {
5192     case BitstreamEntry::SubBlock: // Handled for us already.
5193     case BitstreamEntry::Error:
5194       return error("Malformed block");
5195     case BitstreamEntry::EndBlock:
5196       return Error::success();
5197     case BitstreamEntry::Record:
5198       // The interesting case.
5199       break;
5200     }
5201 
5202     // Read a record. The record format depends on whether this
5203     // is a per-module index or a combined index file. In the per-module
5204     // case the records contain the associated value's ID for correlation
5205     // with VST entries. In the combined index the correlation is done
5206     // via the bitcode offset of the summary records (which were saved
5207     // in the combined index VST entries). The records also contain
5208     // information used for ThinLTO renaming and importing.
5209     Record.clear();
5210     auto BitCode = Stream.readRecord(Entry.ID, Record);
5211     switch (BitCode) {
5212     default: // Default behavior: ignore.
5213       break;
5214     case bitc::FS_FLAGS: {  // [flags]
5215       uint64_t Flags = Record[0];
5216       // Scan flags (set only on the combined index).
5217       assert(Flags <= 0x3 && "Unexpected bits in flag");
5218 
5219       // 1 bit: WithGlobalValueDeadStripping flag.
5220       if (Flags & 0x1)
5221         TheIndex.setWithGlobalValueDeadStripping();
5222       // 1 bit: SkipModuleByDistributedBackend flag.
5223       if (Flags & 0x2)
5224         TheIndex.setSkipModuleByDistributedBackend();
5225       break;
5226     }
5227     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5228       uint64_t ValueID = Record[0];
5229       GlobalValue::GUID RefGUID = Record[1];
5230       ValueIdToValueInfoMap[ValueID] =
5231           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5232       break;
5233     }
5234     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5235     //                numrefs x valueid, n x (valueid)]
5236     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5237     //                        numrefs x valueid,
5238     //                        n x (valueid, hotness)]
5239     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5240     //                      numrefs x valueid,
5241     //                      n x (valueid, relblockfreq)]
5242     case bitc::FS_PERMODULE:
5243     case bitc::FS_PERMODULE_RELBF:
5244     case bitc::FS_PERMODULE_PROFILE: {
5245       unsigned ValueID = Record[0];
5246       uint64_t RawFlags = Record[1];
5247       unsigned InstCount = Record[2];
5248       uint64_t RawFunFlags = 0;
5249       unsigned NumRefs = Record[3];
5250       int RefListStartIndex = 4;
5251       if (Version >= 4) {
5252         RawFunFlags = Record[3];
5253         NumRefs = Record[4];
5254         RefListStartIndex = 5;
5255       }
5256 
5257       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5258       // The module path string ref set in the summary must be owned by the
5259       // index's module string table. Since we don't have a module path
5260       // string table section in the per-module index, we create a single
5261       // module path string table entry with an empty (0) ID to take
5262       // ownership.
5263       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5264       assert(Record.size() >= RefListStartIndex + NumRefs &&
5265              "Record size inconsistent with number of references");
5266       std::vector<ValueInfo> Refs = makeRefList(
5267           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5268       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5269       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5270       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5271           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5272           IsOldProfileFormat, HasProfile, HasRelBF);
5273       auto FS = llvm::make_unique<FunctionSummary>(
5274           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5275           std::move(Calls), std::move(PendingTypeTests),
5276           std::move(PendingTypeTestAssumeVCalls),
5277           std::move(PendingTypeCheckedLoadVCalls),
5278           std::move(PendingTypeTestAssumeConstVCalls),
5279           std::move(PendingTypeCheckedLoadConstVCalls));
5280       PendingTypeTests.clear();
5281       PendingTypeTestAssumeVCalls.clear();
5282       PendingTypeCheckedLoadVCalls.clear();
5283       PendingTypeTestAssumeConstVCalls.clear();
5284       PendingTypeCheckedLoadConstVCalls.clear();
5285       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5286       FS->setModulePath(getThisModule()->first());
5287       FS->setOriginalName(VIAndOriginalGUID.second);
5288       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5289       break;
5290     }
5291     // FS_ALIAS: [valueid, flags, valueid]
5292     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5293     // they expect all aliasee summaries to be available.
5294     case bitc::FS_ALIAS: {
5295       unsigned ValueID = Record[0];
5296       uint64_t RawFlags = Record[1];
5297       unsigned AliaseeID = Record[2];
5298       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5299       auto AS = llvm::make_unique<AliasSummary>(Flags);
5300       // The module path string ref set in the summary must be owned by the
5301       // index's module string table. Since we don't have a module path
5302       // string table section in the per-module index, we create a single
5303       // module path string table entry with an empty (0) ID to take
5304       // ownership.
5305       AS->setModulePath(getThisModule()->first());
5306 
5307       GlobalValue::GUID AliaseeGUID =
5308           getValueInfoFromValueId(AliaseeID).first.getGUID();
5309       auto AliaseeInModule =
5310           TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5311       if (!AliaseeInModule)
5312         return error("Alias expects aliasee summary to be parsed");
5313       AS->setAliasee(AliaseeInModule);
5314       AS->setAliaseeGUID(AliaseeGUID);
5315 
5316       auto GUID = getValueInfoFromValueId(ValueID);
5317       AS->setOriginalName(GUID.second);
5318       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5319       break;
5320     }
5321     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
5322     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5323       unsigned ValueID = Record[0];
5324       uint64_t RawFlags = Record[1];
5325       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5326       std::vector<ValueInfo> Refs =
5327           makeRefList(ArrayRef<uint64_t>(Record).slice(2));
5328       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5329       FS->setModulePath(getThisModule()->first());
5330       auto GUID = getValueInfoFromValueId(ValueID);
5331       FS->setOriginalName(GUID.second);
5332       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5333       break;
5334     }
5335     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5336     //               numrefs x valueid, n x (valueid)]
5337     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5338     //                       numrefs x valueid, n x (valueid, hotness)]
5339     case bitc::FS_COMBINED:
5340     case bitc::FS_COMBINED_PROFILE: {
5341       unsigned ValueID = Record[0];
5342       uint64_t ModuleId = Record[1];
5343       uint64_t RawFlags = Record[2];
5344       unsigned InstCount = Record[3];
5345       uint64_t RawFunFlags = 0;
5346       unsigned NumRefs = Record[4];
5347       int RefListStartIndex = 5;
5348 
5349       if (Version >= 4) {
5350         RawFunFlags = Record[4];
5351         NumRefs = Record[5];
5352         RefListStartIndex = 6;
5353       }
5354 
5355       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5356       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5357       assert(Record.size() >= RefListStartIndex + NumRefs &&
5358              "Record size inconsistent with number of references");
5359       std::vector<ValueInfo> Refs = makeRefList(
5360           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5361       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5362       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5363           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5364           IsOldProfileFormat, HasProfile, false);
5365       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5366       auto FS = llvm::make_unique<FunctionSummary>(
5367           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5368           std::move(Edges), std::move(PendingTypeTests),
5369           std::move(PendingTypeTestAssumeVCalls),
5370           std::move(PendingTypeCheckedLoadVCalls),
5371           std::move(PendingTypeTestAssumeConstVCalls),
5372           std::move(PendingTypeCheckedLoadConstVCalls));
5373       PendingTypeTests.clear();
5374       PendingTypeTestAssumeVCalls.clear();
5375       PendingTypeCheckedLoadVCalls.clear();
5376       PendingTypeTestAssumeConstVCalls.clear();
5377       PendingTypeCheckedLoadConstVCalls.clear();
5378       LastSeenSummary = FS.get();
5379       LastSeenGUID = VI.getGUID();
5380       FS->setModulePath(ModuleIdMap[ModuleId]);
5381       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5382       break;
5383     }
5384     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5385     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5386     // they expect all aliasee summaries to be available.
5387     case bitc::FS_COMBINED_ALIAS: {
5388       unsigned ValueID = Record[0];
5389       uint64_t ModuleId = Record[1];
5390       uint64_t RawFlags = Record[2];
5391       unsigned AliaseeValueId = Record[3];
5392       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5393       auto AS = llvm::make_unique<AliasSummary>(Flags);
5394       LastSeenSummary = AS.get();
5395       AS->setModulePath(ModuleIdMap[ModuleId]);
5396 
5397       auto AliaseeGUID =
5398           getValueInfoFromValueId(AliaseeValueId).first.getGUID();
5399       auto AliaseeInModule =
5400           TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
5401       AS->setAliasee(AliaseeInModule);
5402       AS->setAliaseeGUID(AliaseeGUID);
5403 
5404       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5405       LastSeenGUID = VI.getGUID();
5406       TheIndex.addGlobalValueSummary(VI, std::move(AS));
5407       break;
5408     }
5409     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5410     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5411       unsigned ValueID = Record[0];
5412       uint64_t ModuleId = Record[1];
5413       uint64_t RawFlags = Record[2];
5414       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5415       std::vector<ValueInfo> Refs =
5416           makeRefList(ArrayRef<uint64_t>(Record).slice(3));
5417       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5418       LastSeenSummary = FS.get();
5419       FS->setModulePath(ModuleIdMap[ModuleId]);
5420       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5421       LastSeenGUID = VI.getGUID();
5422       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5423       break;
5424     }
5425     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5426     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5427       uint64_t OriginalName = Record[0];
5428       if (!LastSeenSummary)
5429         return error("Name attachment that does not follow a combined record");
5430       LastSeenSummary->setOriginalName(OriginalName);
5431       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5432       // Reset the LastSeenSummary
5433       LastSeenSummary = nullptr;
5434       LastSeenGUID = 0;
5435       break;
5436     }
5437     case bitc::FS_TYPE_TESTS:
5438       assert(PendingTypeTests.empty());
5439       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5440                               Record.end());
5441       break;
5442 
5443     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
5444       assert(PendingTypeTestAssumeVCalls.empty());
5445       for (unsigned I = 0; I != Record.size(); I += 2)
5446         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5447       break;
5448 
5449     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
5450       assert(PendingTypeCheckedLoadVCalls.empty());
5451       for (unsigned I = 0; I != Record.size(); I += 2)
5452         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5453       break;
5454 
5455     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
5456       PendingTypeTestAssumeConstVCalls.push_back(
5457           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5458       break;
5459 
5460     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
5461       PendingTypeCheckedLoadConstVCalls.push_back(
5462           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5463       break;
5464 
5465     case bitc::FS_CFI_FUNCTION_DEFS: {
5466       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5467       for (unsigned I = 0; I != Record.size(); I += 2)
5468         CfiFunctionDefs.insert(
5469             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5470       break;
5471     }
5472 
5473     case bitc::FS_CFI_FUNCTION_DECLS: {
5474       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5475       for (unsigned I = 0; I != Record.size(); I += 2)
5476         CfiFunctionDecls.insert(
5477             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5478       break;
5479     }
5480 
5481     case bitc::FS_TYPE_ID:
5482       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
5483       break;
5484     }
5485   }
5486   llvm_unreachable("Exit infinite loop");
5487 }
5488 
5489 // Parse the  module string table block into the Index.
5490 // This populates the ModulePathStringTable map in the index.
5491 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5492   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5493     return error("Invalid record");
5494 
5495   SmallVector<uint64_t, 64> Record;
5496 
5497   SmallString<128> ModulePath;
5498   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5499 
5500   while (true) {
5501     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5502 
5503     switch (Entry.Kind) {
5504     case BitstreamEntry::SubBlock: // Handled for us already.
5505     case BitstreamEntry::Error:
5506       return error("Malformed block");
5507     case BitstreamEntry::EndBlock:
5508       return Error::success();
5509     case BitstreamEntry::Record:
5510       // The interesting case.
5511       break;
5512     }
5513 
5514     Record.clear();
5515     switch (Stream.readRecord(Entry.ID, Record)) {
5516     default: // Default behavior: ignore.
5517       break;
5518     case bitc::MST_CODE_ENTRY: {
5519       // MST_ENTRY: [modid, namechar x N]
5520       uint64_t ModuleId = Record[0];
5521 
5522       if (convertToString(Record, 1, ModulePath))
5523         return error("Invalid record");
5524 
5525       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5526       ModuleIdMap[ModuleId] = LastSeenModule->first();
5527 
5528       ModulePath.clear();
5529       break;
5530     }
5531     /// MST_CODE_HASH: [5*i32]
5532     case bitc::MST_CODE_HASH: {
5533       if (Record.size() != 5)
5534         return error("Invalid hash length " + Twine(Record.size()).str());
5535       if (!LastSeenModule)
5536         return error("Invalid hash that does not follow a module path");
5537       int Pos = 0;
5538       for (auto &Val : Record) {
5539         assert(!(Val >> 32) && "Unexpected high bits set");
5540         LastSeenModule->second.second[Pos++] = Val;
5541       }
5542       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5543       LastSeenModule = nullptr;
5544       break;
5545     }
5546     }
5547   }
5548   llvm_unreachable("Exit infinite loop");
5549 }
5550 
5551 namespace {
5552 
5553 // FIXME: This class is only here to support the transition to llvm::Error. It
5554 // will be removed once this transition is complete. Clients should prefer to
5555 // deal with the Error value directly, rather than converting to error_code.
5556 class BitcodeErrorCategoryType : public std::error_category {
5557   const char *name() const noexcept override {
5558     return "llvm.bitcode";
5559   }
5560 
5561   std::string message(int IE) const override {
5562     BitcodeError E = static_cast<BitcodeError>(IE);
5563     switch (E) {
5564     case BitcodeError::CorruptedBitcode:
5565       return "Corrupted bitcode";
5566     }
5567     llvm_unreachable("Unknown error type!");
5568   }
5569 };
5570 
5571 } // end anonymous namespace
5572 
5573 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5574 
5575 const std::error_category &llvm::BitcodeErrorCategory() {
5576   return *ErrorCategory;
5577 }
5578 
5579 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
5580                                             unsigned Block, unsigned RecordID) {
5581   if (Stream.EnterSubBlock(Block))
5582     return error("Invalid record");
5583 
5584   StringRef Strtab;
5585   while (true) {
5586     BitstreamEntry Entry = Stream.advance();
5587     switch (Entry.Kind) {
5588     case BitstreamEntry::EndBlock:
5589       return Strtab;
5590 
5591     case BitstreamEntry::Error:
5592       return error("Malformed block");
5593 
5594     case BitstreamEntry::SubBlock:
5595       if (Stream.SkipBlock())
5596         return error("Malformed block");
5597       break;
5598 
5599     case BitstreamEntry::Record:
5600       StringRef Blob;
5601       SmallVector<uint64_t, 1> Record;
5602       if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
5603         Strtab = Blob;
5604       break;
5605     }
5606   }
5607 }
5608 
5609 //===----------------------------------------------------------------------===//
5610 // External interface
5611 //===----------------------------------------------------------------------===//
5612 
5613 Expected<std::vector<BitcodeModule>>
5614 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5615   auto FOrErr = getBitcodeFileContents(Buffer);
5616   if (!FOrErr)
5617     return FOrErr.takeError();
5618   return std::move(FOrErr->Mods);
5619 }
5620 
5621 Expected<BitcodeFileContents>
5622 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
5623   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5624   if (!StreamOrErr)
5625     return StreamOrErr.takeError();
5626   BitstreamCursor &Stream = *StreamOrErr;
5627 
5628   BitcodeFileContents F;
5629   while (true) {
5630     uint64_t BCBegin = Stream.getCurrentByteNo();
5631 
5632     // We may be consuming bitcode from a client that leaves garbage at the end
5633     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5634     // the end that there cannot possibly be another module, stop looking.
5635     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5636       return F;
5637 
5638     BitstreamEntry Entry = Stream.advance();
5639     switch (Entry.Kind) {
5640     case BitstreamEntry::EndBlock:
5641     case BitstreamEntry::Error:
5642       return error("Malformed block");
5643 
5644     case BitstreamEntry::SubBlock: {
5645       uint64_t IdentificationBit = -1ull;
5646       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5647         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5648         if (Stream.SkipBlock())
5649           return error("Malformed block");
5650 
5651         Entry = Stream.advance();
5652         if (Entry.Kind != BitstreamEntry::SubBlock ||
5653             Entry.ID != bitc::MODULE_BLOCK_ID)
5654           return error("Malformed block");
5655       }
5656 
5657       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5658         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5659         if (Stream.SkipBlock())
5660           return error("Malformed block");
5661 
5662         F.Mods.push_back({Stream.getBitcodeBytes().slice(
5663                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
5664                           Buffer.getBufferIdentifier(), IdentificationBit,
5665                           ModuleBit});
5666         continue;
5667       }
5668 
5669       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
5670         Expected<StringRef> Strtab =
5671             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
5672         if (!Strtab)
5673           return Strtab.takeError();
5674         // This string table is used by every preceding bitcode module that does
5675         // not have its own string table. A bitcode file may have multiple
5676         // string tables if it was created by binary concatenation, for example
5677         // with "llvm-cat -b".
5678         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
5679           if (!I->Strtab.empty())
5680             break;
5681           I->Strtab = *Strtab;
5682         }
5683         // Similarly, the string table is used by every preceding symbol table;
5684         // normally there will be just one unless the bitcode file was created
5685         // by binary concatenation.
5686         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
5687           F.StrtabForSymtab = *Strtab;
5688         continue;
5689       }
5690 
5691       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
5692         Expected<StringRef> SymtabOrErr =
5693             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
5694         if (!SymtabOrErr)
5695           return SymtabOrErr.takeError();
5696 
5697         // We can expect the bitcode file to have multiple symbol tables if it
5698         // was created by binary concatenation. In that case we silently
5699         // ignore any subsequent symbol tables, which is fine because this is a
5700         // low level function. The client is expected to notice that the number
5701         // of modules in the symbol table does not match the number of modules
5702         // in the input file and regenerate the symbol table.
5703         if (F.Symtab.empty())
5704           F.Symtab = *SymtabOrErr;
5705         continue;
5706       }
5707 
5708       if (Stream.SkipBlock())
5709         return error("Malformed block");
5710       continue;
5711     }
5712     case BitstreamEntry::Record:
5713       Stream.skipRecord(Entry.ID);
5714       continue;
5715     }
5716   }
5717 }
5718 
5719 /// Get a lazy one-at-time loading module from bitcode.
5720 ///
5721 /// This isn't always used in a lazy context.  In particular, it's also used by
5722 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
5723 /// in forward-referenced functions from block address references.
5724 ///
5725 /// \param[in] MaterializeAll Set to \c true if we should materialize
5726 /// everything.
5727 Expected<std::unique_ptr<Module>>
5728 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
5729                              bool ShouldLazyLoadMetadata, bool IsImporting) {
5730   BitstreamCursor Stream(Buffer);
5731 
5732   std::string ProducerIdentification;
5733   if (IdentificationBit != -1ull) {
5734     Stream.JumpToBit(IdentificationBit);
5735     Expected<std::string> ProducerIdentificationOrErr =
5736         readIdentificationBlock(Stream);
5737     if (!ProducerIdentificationOrErr)
5738       return ProducerIdentificationOrErr.takeError();
5739 
5740     ProducerIdentification = *ProducerIdentificationOrErr;
5741   }
5742 
5743   Stream.JumpToBit(ModuleBit);
5744   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
5745                               Context);
5746 
5747   std::unique_ptr<Module> M =
5748       llvm::make_unique<Module>(ModuleIdentifier, Context);
5749   M->setMaterializer(R);
5750 
5751   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5752   if (Error Err =
5753           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
5754     return std::move(Err);
5755 
5756   if (MaterializeAll) {
5757     // Read in the entire module, and destroy the BitcodeReader.
5758     if (Error Err = M->materializeAll())
5759       return std::move(Err);
5760   } else {
5761     // Resolve forward references from blockaddresses.
5762     if (Error Err = R->materializeForwardReferencedFunctions())
5763       return std::move(Err);
5764   }
5765   return std::move(M);
5766 }
5767 
5768 Expected<std::unique_ptr<Module>>
5769 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
5770                              bool IsImporting) {
5771   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
5772 }
5773 
5774 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
5775 // We don't use ModuleIdentifier here because the client may need to control the
5776 // module path used in the combined summary (e.g. when reading summaries for
5777 // regular LTO modules).
5778 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
5779                                  StringRef ModulePath, uint64_t ModuleId) {
5780   BitstreamCursor Stream(Buffer);
5781   Stream.JumpToBit(ModuleBit);
5782 
5783   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
5784                                     ModulePath, ModuleId);
5785   return R.parseModule();
5786 }
5787 
5788 // Parse the specified bitcode buffer, returning the function info index.
5789 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
5790   BitstreamCursor Stream(Buffer);
5791   Stream.JumpToBit(ModuleBit);
5792 
5793   auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
5794   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
5795                                     ModuleIdentifier, 0);
5796 
5797   if (Error Err = R.parseModule())
5798     return std::move(Err);
5799 
5800   return std::move(Index);
5801 }
5802 
5803 // Check if the given bitcode buffer contains a global value summary block.
5804 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
5805   BitstreamCursor Stream(Buffer);
5806   Stream.JumpToBit(ModuleBit);
5807 
5808   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5809     return error("Invalid record");
5810 
5811   while (true) {
5812     BitstreamEntry Entry = Stream.advance();
5813 
5814     switch (Entry.Kind) {
5815     case BitstreamEntry::Error:
5816       return error("Malformed block");
5817     case BitstreamEntry::EndBlock:
5818       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false};
5819 
5820     case BitstreamEntry::SubBlock:
5821       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID)
5822         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true};
5823 
5824       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID)
5825         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true};
5826 
5827       // Ignore other sub-blocks.
5828       if (Stream.SkipBlock())
5829         return error("Malformed block");
5830       continue;
5831 
5832     case BitstreamEntry::Record:
5833       Stream.skipRecord(Entry.ID);
5834       continue;
5835     }
5836   }
5837 }
5838 
5839 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
5840   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
5841   if (!MsOrErr)
5842     return MsOrErr.takeError();
5843 
5844   if (MsOrErr->size() != 1)
5845     return error("Expected a single module");
5846 
5847   return (*MsOrErr)[0];
5848 }
5849 
5850 Expected<std::unique_ptr<Module>>
5851 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
5852                            bool ShouldLazyLoadMetadata, bool IsImporting) {
5853   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5854   if (!BM)
5855     return BM.takeError();
5856 
5857   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
5858 }
5859 
5860 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
5861     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
5862     bool ShouldLazyLoadMetadata, bool IsImporting) {
5863   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
5864                                      IsImporting);
5865   if (MOrErr)
5866     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
5867   return MOrErr;
5868 }
5869 
5870 Expected<std::unique_ptr<Module>>
5871 BitcodeModule::parseModule(LLVMContext &Context) {
5872   return getModuleImpl(Context, true, false, false);
5873   // TODO: Restore the use-lists to the in-memory state when the bitcode was
5874   // written.  We must defer until the Module has been fully materialized.
5875 }
5876 
5877 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
5878                                                          LLVMContext &Context) {
5879   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5880   if (!BM)
5881     return BM.takeError();
5882 
5883   return BM->parseModule(Context);
5884 }
5885 
5886 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
5887   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5888   if (!StreamOrErr)
5889     return StreamOrErr.takeError();
5890 
5891   return readTriple(*StreamOrErr);
5892 }
5893 
5894 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
5895   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5896   if (!StreamOrErr)
5897     return StreamOrErr.takeError();
5898 
5899   return hasObjCCategory(*StreamOrErr);
5900 }
5901 
5902 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
5903   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5904   if (!StreamOrErr)
5905     return StreamOrErr.takeError();
5906 
5907   return readIdentificationCode(*StreamOrErr);
5908 }
5909 
5910 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
5911                                    ModuleSummaryIndex &CombinedIndex,
5912                                    uint64_t ModuleId) {
5913   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5914   if (!BM)
5915     return BM.takeError();
5916 
5917   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
5918 }
5919 
5920 Expected<std::unique_ptr<ModuleSummaryIndex>>
5921 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
5922   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5923   if (!BM)
5924     return BM.takeError();
5925 
5926   return BM->getSummary();
5927 }
5928 
5929 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
5930   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5931   if (!BM)
5932     return BM.takeError();
5933 
5934   return BM->getLTOInfo();
5935 }
5936 
5937 Expected<std::unique_ptr<ModuleSummaryIndex>>
5938 llvm::getModuleSummaryIndexForFile(StringRef Path,
5939                                    bool IgnoreEmptyThinLTOIndexFile) {
5940   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
5941       MemoryBuffer::getFileOrSTDIN(Path);
5942   if (!FileOrErr)
5943     return errorCodeToError(FileOrErr.getError());
5944   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
5945     return nullptr;
5946   return getModuleSummaryIndex(**FileOrErr);
5947 }
5948