1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 39 using namespace llvm; 40 41 namespace { 42 enum { 43 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 44 }; 45 46 class BitcodeReaderValueList { 47 std::vector<WeakVH> ValuePtrs; 48 49 /// As we resolve forward-referenced constants, we add information about them 50 /// to this vector. This allows us to resolve them in bulk instead of 51 /// resolving each reference at a time. See the code in 52 /// ResolveConstantForwardRefs for more information about this. 53 /// 54 /// The key of this vector is the placeholder constant, the value is the slot 55 /// number that holds the resolved value. 56 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 57 ResolveConstantsTy ResolveConstants; 58 LLVMContext &Context; 59 public: 60 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 61 ~BitcodeReaderValueList() { 62 assert(ResolveConstants.empty() && "Constants not resolved?"); 63 } 64 65 // vector compatibility methods 66 unsigned size() const { return ValuePtrs.size(); } 67 void resize(unsigned N) { ValuePtrs.resize(N); } 68 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void assignValue(Value *V, unsigned Idx); 92 93 /// Once all constants are read, this method bulk resolves any forward 94 /// references. 95 void resolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMetadataList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MetadataPtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMetadataList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MetadataPtrs.size(); } 112 void resize(unsigned N) { MetadataPtrs.resize(N); } 113 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 114 void clear() { MetadataPtrs.clear(); } 115 Metadata *back() const { return MetadataPtrs.back(); } 116 void pop_back() { MetadataPtrs.pop_back(); } 117 bool empty() const { return MetadataPtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MetadataPtrs.size()); 121 return MetadataPtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MetadataPtrs.resize(N); 127 } 128 129 Metadata *getValueFwdRef(unsigned Idx); 130 void assignValue(Metadata *MD, unsigned Idx); 131 void tryToResolveCycles(); 132 }; 133 134 class BitcodeReader : public GVMaterializer { 135 LLVMContext &Context; 136 Module *TheModule = nullptr; 137 std::unique_ptr<MemoryBuffer> Buffer; 138 std::unique_ptr<BitstreamReader> StreamFile; 139 BitstreamCursor Stream; 140 // Next offset to start scanning for lazy parsing of function bodies. 141 uint64_t NextUnreadBit = 0; 142 // Last function offset found in the VST. 143 uint64_t LastFunctionBlockBit = 0; 144 bool SeenValueSymbolTable = false; 145 uint64_t VSTOffset = 0; 146 // Contains an arbitrary and optional string identifying the bitcode producer 147 std::string ProducerIdentification; 148 // Number of module level metadata records specified by the 149 // MODULE_CODE_METADATA_VALUES record. 150 unsigned NumModuleMDs = 0; 151 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. 152 bool SeenModuleValuesRecord = false; 153 154 std::vector<Type*> TypeList; 155 BitcodeReaderValueList ValueList; 156 BitcodeReaderMetadataList MetadataList; 157 std::vector<Comdat *> ComdatList; 158 SmallVector<Instruction *, 64> InstructionList; 159 160 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 161 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 162 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 163 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 164 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 165 166 SmallVector<Instruction*, 64> InstsWithTBAATag; 167 168 /// The set of attributes by index. Index zero in the file is for null, and 169 /// is thus not represented here. As such all indices are off by one. 170 std::vector<AttributeSet> MAttributes; 171 172 /// The set of attribute groups. 173 std::map<unsigned, AttributeSet> MAttributeGroups; 174 175 /// While parsing a function body, this is a list of the basic blocks for the 176 /// function. 177 std::vector<BasicBlock*> FunctionBBs; 178 179 // When reading the module header, this list is populated with functions that 180 // have bodies later in the file. 181 std::vector<Function*> FunctionsWithBodies; 182 183 // When intrinsic functions are encountered which require upgrading they are 184 // stored here with their replacement function. 185 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 186 UpgradedIntrinsicMap UpgradedIntrinsics; 187 188 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 189 DenseMap<unsigned, unsigned> MDKindMap; 190 191 // Several operations happen after the module header has been read, but 192 // before function bodies are processed. This keeps track of whether 193 // we've done this yet. 194 bool SeenFirstFunctionBody = false; 195 196 /// When function bodies are initially scanned, this map contains info about 197 /// where to find deferred function body in the stream. 198 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 199 200 /// When Metadata block is initially scanned when parsing the module, we may 201 /// choose to defer parsing of the metadata. This vector contains info about 202 /// which Metadata blocks are deferred. 203 std::vector<uint64_t> DeferredMetadataInfo; 204 205 /// These are basic blocks forward-referenced by block addresses. They are 206 /// inserted lazily into functions when they're loaded. The basic block ID is 207 /// its index into the vector. 208 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 209 std::deque<Function *> BasicBlockFwdRefQueue; 210 211 /// Indicates that we are using a new encoding for instruction operands where 212 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 213 /// instruction number, for a more compact encoding. Some instruction 214 /// operands are not relative to the instruction ID: basic block numbers, and 215 /// types. Once the old style function blocks have been phased out, we would 216 /// not need this flag. 217 bool UseRelativeIDs = false; 218 219 /// True if all functions will be materialized, negating the need to process 220 /// (e.g.) blockaddress forward references. 221 bool WillMaterializeAllForwardRefs = false; 222 223 /// True if any Metadata block has been materialized. 224 bool IsMetadataMaterialized = false; 225 226 bool StripDebugInfo = false; 227 228 /// Functions that need to be matched with subprograms when upgrading old 229 /// metadata. 230 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 231 232 std::vector<std::string> BundleTags; 233 234 public: 235 std::error_code error(BitcodeError E, const Twine &Message); 236 std::error_code error(BitcodeError E); 237 std::error_code error(const Twine &Message); 238 239 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 240 BitcodeReader(LLVMContext &Context); 241 ~BitcodeReader() override { freeState(); } 242 243 std::error_code materializeForwardReferencedFunctions(); 244 245 void freeState(); 246 247 void releaseBuffer(); 248 249 std::error_code materialize(GlobalValue *GV) override; 250 std::error_code materializeModule() override; 251 std::vector<StructType *> getIdentifiedStructTypes() const override; 252 253 /// \brief Main interface to parsing a bitcode buffer. 254 /// \returns true if an error occurred. 255 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 256 Module *M, 257 bool ShouldLazyLoadMetadata = false); 258 259 /// \brief Cheap mechanism to just extract module triple 260 /// \returns true if an error occurred. 261 ErrorOr<std::string> parseTriple(); 262 263 /// Cheap mechanism to just extract the identification block out of bitcode. 264 ErrorOr<std::string> parseIdentificationBlock(); 265 266 static uint64_t decodeSignRotatedValue(uint64_t V); 267 268 /// Materialize any deferred Metadata block. 269 std::error_code materializeMetadata() override; 270 271 void setStripDebugInfo() override; 272 273 /// Save the mapping between the metadata values and the corresponding 274 /// value id that were recorded in the MetadataList during parsing. If 275 /// OnlyTempMD is true, then only record those entries that are still 276 /// temporary metadata. This interface is used when metadata linking is 277 /// performed as a postpass, such as during function importing. 278 void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs, 279 bool OnlyTempMD) override; 280 281 private: 282 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 283 // ProducerIdentification data member, and do some basic enforcement on the 284 // "epoch" encoded in the bitcode. 285 std::error_code parseBitcodeVersion(); 286 287 std::vector<StructType *> IdentifiedStructTypes; 288 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 289 StructType *createIdentifiedStructType(LLVMContext &Context); 290 291 Type *getTypeByID(unsigned ID); 292 Value *getFnValueByID(unsigned ID, Type *Ty) { 293 if (Ty && Ty->isMetadataTy()) 294 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 295 return ValueList.getValueFwdRef(ID, Ty); 296 } 297 Metadata *getFnMetadataByID(unsigned ID) { 298 return MetadataList.getValueFwdRef(ID); 299 } 300 BasicBlock *getBasicBlock(unsigned ID) const { 301 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 302 return FunctionBBs[ID]; 303 } 304 AttributeSet getAttributes(unsigned i) const { 305 if (i-1 < MAttributes.size()) 306 return MAttributes[i-1]; 307 return AttributeSet(); 308 } 309 310 /// Read a value/type pair out of the specified record from slot 'Slot'. 311 /// Increment Slot past the number of slots used in the record. Return true on 312 /// failure. 313 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 314 unsigned InstNum, Value *&ResVal) { 315 if (Slot == Record.size()) return true; 316 unsigned ValNo = (unsigned)Record[Slot++]; 317 // Adjust the ValNo, if it was encoded relative to the InstNum. 318 if (UseRelativeIDs) 319 ValNo = InstNum - ValNo; 320 if (ValNo < InstNum) { 321 // If this is not a forward reference, just return the value we already 322 // have. 323 ResVal = getFnValueByID(ValNo, nullptr); 324 return ResVal == nullptr; 325 } 326 if (Slot == Record.size()) 327 return true; 328 329 unsigned TypeNo = (unsigned)Record[Slot++]; 330 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 331 return ResVal == nullptr; 332 } 333 334 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 335 /// past the number of slots used by the value in the record. Return true if 336 /// there is an error. 337 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 338 unsigned InstNum, Type *Ty, Value *&ResVal) { 339 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 340 return true; 341 // All values currently take a single record slot. 342 ++Slot; 343 return false; 344 } 345 346 /// Like popValue, but does not increment the Slot number. 347 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 348 unsigned InstNum, Type *Ty, Value *&ResVal) { 349 ResVal = getValue(Record, Slot, InstNum, Ty); 350 return ResVal == nullptr; 351 } 352 353 /// Version of getValue that returns ResVal directly, or 0 if there is an 354 /// error. 355 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 356 unsigned InstNum, Type *Ty) { 357 if (Slot == Record.size()) return nullptr; 358 unsigned ValNo = (unsigned)Record[Slot]; 359 // Adjust the ValNo, if it was encoded relative to the InstNum. 360 if (UseRelativeIDs) 361 ValNo = InstNum - ValNo; 362 return getFnValueByID(ValNo, Ty); 363 } 364 365 /// Like getValue, but decodes signed VBRs. 366 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 367 unsigned InstNum, Type *Ty) { 368 if (Slot == Record.size()) return nullptr; 369 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 370 // Adjust the ValNo, if it was encoded relative to the InstNum. 371 if (UseRelativeIDs) 372 ValNo = InstNum - ValNo; 373 return getFnValueByID(ValNo, Ty); 374 } 375 376 /// Converts alignment exponent (i.e. power of two (or zero)) to the 377 /// corresponding alignment to use. If alignment is too large, returns 378 /// a corresponding error code. 379 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 380 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 381 std::error_code parseModule(uint64_t ResumeBit, 382 bool ShouldLazyLoadMetadata = false); 383 std::error_code parseAttributeBlock(); 384 std::error_code parseAttributeGroupBlock(); 385 std::error_code parseTypeTable(); 386 std::error_code parseTypeTableBody(); 387 std::error_code parseOperandBundleTags(); 388 389 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 390 unsigned NameIndex, Triple &TT); 391 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 392 std::error_code parseConstants(); 393 std::error_code rememberAndSkipFunctionBodies(); 394 std::error_code rememberAndSkipFunctionBody(); 395 /// Save the positions of the Metadata blocks and skip parsing the blocks. 396 std::error_code rememberAndSkipMetadata(); 397 std::error_code parseFunctionBody(Function *F); 398 std::error_code globalCleanup(); 399 std::error_code resolveGlobalAndAliasInits(); 400 std::error_code parseMetadata(bool ModuleLevel = false); 401 std::error_code parseMetadataKinds(); 402 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 403 std::error_code parseMetadataAttachment(Function &F); 404 ErrorOr<std::string> parseModuleTriple(); 405 std::error_code parseUseLists(); 406 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 407 std::error_code initStreamFromBuffer(); 408 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 409 std::error_code findFunctionInStream( 410 Function *F, 411 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 412 }; 413 414 /// Class to manage reading and parsing function summary index bitcode 415 /// files/sections. 416 class FunctionIndexBitcodeReader { 417 DiagnosticHandlerFunction DiagnosticHandler; 418 419 /// Eventually points to the module index built during parsing. 420 FunctionInfoIndex *TheIndex = nullptr; 421 422 std::unique_ptr<MemoryBuffer> Buffer; 423 std::unique_ptr<BitstreamReader> StreamFile; 424 BitstreamCursor Stream; 425 426 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 427 /// 428 /// If false, the summary section is fully parsed into the index during 429 /// the initial parse. Otherwise, if true, the caller is expected to 430 /// invoke \a readFunctionSummary for each summary needed, and the summary 431 /// section is thus parsed lazily. 432 bool IsLazy = false; 433 434 /// Used to indicate whether caller only wants to check for the presence 435 /// of the global value summary bitcode section. All blocks are skipped, 436 /// but the SeenGlobalValSummary boolean is set. 437 bool CheckGlobalValSummaryPresenceOnly = false; 438 439 /// Indicates whether we have encountered a global value summary section 440 /// yet during parsing, used when checking if file contains global value 441 /// summary section. 442 bool SeenGlobalValSummary = false; 443 444 /// Indicates whether we have already parsed the VST, used for error checking. 445 bool SeenValueSymbolTable = false; 446 447 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 448 /// Used to enable on-demand parsing of the VST. 449 uint64_t VSTOffset = 0; 450 451 // Map to save ValueId to GUID association that was recorded in the 452 // ValueSymbolTable. It is used after the VST is parsed to convert 453 // call graph edges read from the function summary from referencing 454 // callees by their ValueId to using the GUID instead, which is how 455 // they are recorded in the function index being built. 456 DenseMap<unsigned, uint64_t> ValueIdToCallGraphGUIDMap; 457 458 /// Map to save the association between summary offset in the VST to the 459 /// GlobalValueInfo object created when parsing it. Used to access the 460 /// info object when parsing the summary section. 461 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 462 463 /// Map populated during module path string table parsing, from the 464 /// module ID to a string reference owned by the index's module 465 /// path string table, used to correlate with combined index 466 /// summary records. 467 DenseMap<uint64_t, StringRef> ModuleIdMap; 468 469 /// Original source file name recorded in a bitcode record. 470 std::string SourceFileName; 471 472 public: 473 std::error_code error(BitcodeError E, const Twine &Message); 474 std::error_code error(BitcodeError E); 475 std::error_code error(const Twine &Message); 476 477 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, 478 DiagnosticHandlerFunction DiagnosticHandler, 479 bool IsLazy = false, 480 bool CheckGlobalValSummaryPresenceOnly = false); 481 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler, 482 bool IsLazy = false, 483 bool CheckGlobalValSummaryPresenceOnly = false); 484 ~FunctionIndexBitcodeReader() { freeState(); } 485 486 void freeState(); 487 488 void releaseBuffer(); 489 490 /// Check if the parser has encountered a summary section. 491 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 492 493 /// \brief Main interface to parsing a bitcode buffer. 494 /// \returns true if an error occurred. 495 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 496 FunctionInfoIndex *I); 497 498 /// \brief Interface for parsing a summary lazily. 499 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 500 FunctionInfoIndex *I, 501 size_t FunctionSummaryOffset); 502 503 private: 504 std::error_code parseModule(); 505 std::error_code parseValueSymbolTable( 506 uint64_t Offset, 507 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 508 std::error_code parseEntireSummary(); 509 std::error_code parseModuleStringTable(); 510 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 511 std::error_code initStreamFromBuffer(); 512 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 513 uint64_t getGUIDFromValueId(unsigned ValueId); 514 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 515 }; 516 } // end anonymous namespace 517 518 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 519 DiagnosticSeverity Severity, 520 const Twine &Msg) 521 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 522 523 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 524 525 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 526 std::error_code EC, const Twine &Message) { 527 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 528 DiagnosticHandler(DI); 529 return EC; 530 } 531 532 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 533 std::error_code EC) { 534 return error(DiagnosticHandler, EC, EC.message()); 535 } 536 537 static std::error_code error(LLVMContext &Context, std::error_code EC, 538 const Twine &Message) { 539 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 540 Message); 541 } 542 543 static std::error_code error(LLVMContext &Context, std::error_code EC) { 544 return error(Context, EC, EC.message()); 545 } 546 547 static std::error_code error(LLVMContext &Context, const Twine &Message) { 548 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 549 Message); 550 } 551 552 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 553 if (!ProducerIdentification.empty()) { 554 return ::error(Context, make_error_code(E), 555 Message + " (Producer: '" + ProducerIdentification + 556 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 557 } 558 return ::error(Context, make_error_code(E), Message); 559 } 560 561 std::error_code BitcodeReader::error(const Twine &Message) { 562 if (!ProducerIdentification.empty()) { 563 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 564 Message + " (Producer: '" + ProducerIdentification + 565 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 566 } 567 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 568 Message); 569 } 570 571 std::error_code BitcodeReader::error(BitcodeError E) { 572 return ::error(Context, make_error_code(E)); 573 } 574 575 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 576 : Context(Context), Buffer(Buffer), ValueList(Context), 577 MetadataList(Context) {} 578 579 BitcodeReader::BitcodeReader(LLVMContext &Context) 580 : Context(Context), Buffer(nullptr), ValueList(Context), 581 MetadataList(Context) {} 582 583 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 584 if (WillMaterializeAllForwardRefs) 585 return std::error_code(); 586 587 // Prevent recursion. 588 WillMaterializeAllForwardRefs = true; 589 590 while (!BasicBlockFwdRefQueue.empty()) { 591 Function *F = BasicBlockFwdRefQueue.front(); 592 BasicBlockFwdRefQueue.pop_front(); 593 assert(F && "Expected valid function"); 594 if (!BasicBlockFwdRefs.count(F)) 595 // Already materialized. 596 continue; 597 598 // Check for a function that isn't materializable to prevent an infinite 599 // loop. When parsing a blockaddress stored in a global variable, there 600 // isn't a trivial way to check if a function will have a body without a 601 // linear search through FunctionsWithBodies, so just check it here. 602 if (!F->isMaterializable()) 603 return error("Never resolved function from blockaddress"); 604 605 // Try to materialize F. 606 if (std::error_code EC = materialize(F)) 607 return EC; 608 } 609 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 610 611 // Reset state. 612 WillMaterializeAllForwardRefs = false; 613 return std::error_code(); 614 } 615 616 void BitcodeReader::freeState() { 617 Buffer = nullptr; 618 std::vector<Type*>().swap(TypeList); 619 ValueList.clear(); 620 MetadataList.clear(); 621 std::vector<Comdat *>().swap(ComdatList); 622 623 std::vector<AttributeSet>().swap(MAttributes); 624 std::vector<BasicBlock*>().swap(FunctionBBs); 625 std::vector<Function*>().swap(FunctionsWithBodies); 626 DeferredFunctionInfo.clear(); 627 DeferredMetadataInfo.clear(); 628 MDKindMap.clear(); 629 630 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 631 BasicBlockFwdRefQueue.clear(); 632 } 633 634 //===----------------------------------------------------------------------===// 635 // Helper functions to implement forward reference resolution, etc. 636 //===----------------------------------------------------------------------===// 637 638 /// Convert a string from a record into an std::string, return true on failure. 639 template <typename StrTy> 640 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 641 StrTy &Result) { 642 if (Idx > Record.size()) 643 return true; 644 645 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 646 Result += (char)Record[i]; 647 return false; 648 } 649 650 static bool hasImplicitComdat(size_t Val) { 651 switch (Val) { 652 default: 653 return false; 654 case 1: // Old WeakAnyLinkage 655 case 4: // Old LinkOnceAnyLinkage 656 case 10: // Old WeakODRLinkage 657 case 11: // Old LinkOnceODRLinkage 658 return true; 659 } 660 } 661 662 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 663 switch (Val) { 664 default: // Map unknown/new linkages to external 665 case 0: 666 return GlobalValue::ExternalLinkage; 667 case 2: 668 return GlobalValue::AppendingLinkage; 669 case 3: 670 return GlobalValue::InternalLinkage; 671 case 5: 672 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 673 case 6: 674 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 675 case 7: 676 return GlobalValue::ExternalWeakLinkage; 677 case 8: 678 return GlobalValue::CommonLinkage; 679 case 9: 680 return GlobalValue::PrivateLinkage; 681 case 12: 682 return GlobalValue::AvailableExternallyLinkage; 683 case 13: 684 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 685 case 14: 686 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 687 case 15: 688 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 689 case 1: // Old value with implicit comdat. 690 case 16: 691 return GlobalValue::WeakAnyLinkage; 692 case 10: // Old value with implicit comdat. 693 case 17: 694 return GlobalValue::WeakODRLinkage; 695 case 4: // Old value with implicit comdat. 696 case 18: 697 return GlobalValue::LinkOnceAnyLinkage; 698 case 11: // Old value with implicit comdat. 699 case 19: 700 return GlobalValue::LinkOnceODRLinkage; 701 } 702 } 703 704 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 705 switch (Val) { 706 default: // Map unknown visibilities to default. 707 case 0: return GlobalValue::DefaultVisibility; 708 case 1: return GlobalValue::HiddenVisibility; 709 case 2: return GlobalValue::ProtectedVisibility; 710 } 711 } 712 713 static GlobalValue::DLLStorageClassTypes 714 getDecodedDLLStorageClass(unsigned Val) { 715 switch (Val) { 716 default: // Map unknown values to default. 717 case 0: return GlobalValue::DefaultStorageClass; 718 case 1: return GlobalValue::DLLImportStorageClass; 719 case 2: return GlobalValue::DLLExportStorageClass; 720 } 721 } 722 723 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 724 switch (Val) { 725 case 0: return GlobalVariable::NotThreadLocal; 726 default: // Map unknown non-zero value to general dynamic. 727 case 1: return GlobalVariable::GeneralDynamicTLSModel; 728 case 2: return GlobalVariable::LocalDynamicTLSModel; 729 case 3: return GlobalVariable::InitialExecTLSModel; 730 case 4: return GlobalVariable::LocalExecTLSModel; 731 } 732 } 733 734 static int getDecodedCastOpcode(unsigned Val) { 735 switch (Val) { 736 default: return -1; 737 case bitc::CAST_TRUNC : return Instruction::Trunc; 738 case bitc::CAST_ZEXT : return Instruction::ZExt; 739 case bitc::CAST_SEXT : return Instruction::SExt; 740 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 741 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 742 case bitc::CAST_UITOFP : return Instruction::UIToFP; 743 case bitc::CAST_SITOFP : return Instruction::SIToFP; 744 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 745 case bitc::CAST_FPEXT : return Instruction::FPExt; 746 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 747 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 748 case bitc::CAST_BITCAST : return Instruction::BitCast; 749 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 750 } 751 } 752 753 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 754 bool IsFP = Ty->isFPOrFPVectorTy(); 755 // BinOps are only valid for int/fp or vector of int/fp types 756 if (!IsFP && !Ty->isIntOrIntVectorTy()) 757 return -1; 758 759 switch (Val) { 760 default: 761 return -1; 762 case bitc::BINOP_ADD: 763 return IsFP ? Instruction::FAdd : Instruction::Add; 764 case bitc::BINOP_SUB: 765 return IsFP ? Instruction::FSub : Instruction::Sub; 766 case bitc::BINOP_MUL: 767 return IsFP ? Instruction::FMul : Instruction::Mul; 768 case bitc::BINOP_UDIV: 769 return IsFP ? -1 : Instruction::UDiv; 770 case bitc::BINOP_SDIV: 771 return IsFP ? Instruction::FDiv : Instruction::SDiv; 772 case bitc::BINOP_UREM: 773 return IsFP ? -1 : Instruction::URem; 774 case bitc::BINOP_SREM: 775 return IsFP ? Instruction::FRem : Instruction::SRem; 776 case bitc::BINOP_SHL: 777 return IsFP ? -1 : Instruction::Shl; 778 case bitc::BINOP_LSHR: 779 return IsFP ? -1 : Instruction::LShr; 780 case bitc::BINOP_ASHR: 781 return IsFP ? -1 : Instruction::AShr; 782 case bitc::BINOP_AND: 783 return IsFP ? -1 : Instruction::And; 784 case bitc::BINOP_OR: 785 return IsFP ? -1 : Instruction::Or; 786 case bitc::BINOP_XOR: 787 return IsFP ? -1 : Instruction::Xor; 788 } 789 } 790 791 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 792 switch (Val) { 793 default: return AtomicRMWInst::BAD_BINOP; 794 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 795 case bitc::RMW_ADD: return AtomicRMWInst::Add; 796 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 797 case bitc::RMW_AND: return AtomicRMWInst::And; 798 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 799 case bitc::RMW_OR: return AtomicRMWInst::Or; 800 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 801 case bitc::RMW_MAX: return AtomicRMWInst::Max; 802 case bitc::RMW_MIN: return AtomicRMWInst::Min; 803 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 804 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 805 } 806 } 807 808 static AtomicOrdering getDecodedOrdering(unsigned Val) { 809 switch (Val) { 810 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 811 case bitc::ORDERING_UNORDERED: return Unordered; 812 case bitc::ORDERING_MONOTONIC: return Monotonic; 813 case bitc::ORDERING_ACQUIRE: return Acquire; 814 case bitc::ORDERING_RELEASE: return Release; 815 case bitc::ORDERING_ACQREL: return AcquireRelease; 816 default: // Map unknown orderings to sequentially-consistent. 817 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 818 } 819 } 820 821 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 822 switch (Val) { 823 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 824 default: // Map unknown scopes to cross-thread. 825 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 826 } 827 } 828 829 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 830 switch (Val) { 831 default: // Map unknown selection kinds to any. 832 case bitc::COMDAT_SELECTION_KIND_ANY: 833 return Comdat::Any; 834 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 835 return Comdat::ExactMatch; 836 case bitc::COMDAT_SELECTION_KIND_LARGEST: 837 return Comdat::Largest; 838 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 839 return Comdat::NoDuplicates; 840 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 841 return Comdat::SameSize; 842 } 843 } 844 845 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 846 FastMathFlags FMF; 847 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 848 FMF.setUnsafeAlgebra(); 849 if (0 != (Val & FastMathFlags::NoNaNs)) 850 FMF.setNoNaNs(); 851 if (0 != (Val & FastMathFlags::NoInfs)) 852 FMF.setNoInfs(); 853 if (0 != (Val & FastMathFlags::NoSignedZeros)) 854 FMF.setNoSignedZeros(); 855 if (0 != (Val & FastMathFlags::AllowReciprocal)) 856 FMF.setAllowReciprocal(); 857 return FMF; 858 } 859 860 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 861 switch (Val) { 862 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 863 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 864 } 865 } 866 867 namespace llvm { 868 namespace { 869 /// \brief A class for maintaining the slot number definition 870 /// as a placeholder for the actual definition for forward constants defs. 871 class ConstantPlaceHolder : public ConstantExpr { 872 void operator=(const ConstantPlaceHolder &) = delete; 873 874 public: 875 // allocate space for exactly one operand 876 void *operator new(size_t s) { return User::operator new(s, 1); } 877 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 878 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 879 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 880 } 881 882 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 883 static bool classof(const Value *V) { 884 return isa<ConstantExpr>(V) && 885 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 886 } 887 888 /// Provide fast operand accessors 889 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 890 }; 891 } // end anonymous namespace 892 893 // FIXME: can we inherit this from ConstantExpr? 894 template <> 895 struct OperandTraits<ConstantPlaceHolder> : 896 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 897 }; 898 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 899 } // end namespace llvm 900 901 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 902 if (Idx == size()) { 903 push_back(V); 904 return; 905 } 906 907 if (Idx >= size()) 908 resize(Idx+1); 909 910 WeakVH &OldV = ValuePtrs[Idx]; 911 if (!OldV) { 912 OldV = V; 913 return; 914 } 915 916 // Handle constants and non-constants (e.g. instrs) differently for 917 // efficiency. 918 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 919 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 920 OldV = V; 921 } else { 922 // If there was a forward reference to this value, replace it. 923 Value *PrevVal = OldV; 924 OldV->replaceAllUsesWith(V); 925 delete PrevVal; 926 } 927 } 928 929 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 930 Type *Ty) { 931 if (Idx >= size()) 932 resize(Idx + 1); 933 934 if (Value *V = ValuePtrs[Idx]) { 935 if (Ty != V->getType()) 936 report_fatal_error("Type mismatch in constant table!"); 937 return cast<Constant>(V); 938 } 939 940 // Create and return a placeholder, which will later be RAUW'd. 941 Constant *C = new ConstantPlaceHolder(Ty, Context); 942 ValuePtrs[Idx] = C; 943 return C; 944 } 945 946 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 947 // Bail out for a clearly invalid value. This would make us call resize(0) 948 if (Idx == UINT_MAX) 949 return nullptr; 950 951 if (Idx >= size()) 952 resize(Idx + 1); 953 954 if (Value *V = ValuePtrs[Idx]) { 955 // If the types don't match, it's invalid. 956 if (Ty && Ty != V->getType()) 957 return nullptr; 958 return V; 959 } 960 961 // No type specified, must be invalid reference. 962 if (!Ty) return nullptr; 963 964 // Create and return a placeholder, which will later be RAUW'd. 965 Value *V = new Argument(Ty); 966 ValuePtrs[Idx] = V; 967 return V; 968 } 969 970 /// Once all constants are read, this method bulk resolves any forward 971 /// references. The idea behind this is that we sometimes get constants (such 972 /// as large arrays) which reference *many* forward ref constants. Replacing 973 /// each of these causes a lot of thrashing when building/reuniquing the 974 /// constant. Instead of doing this, we look at all the uses and rewrite all 975 /// the place holders at once for any constant that uses a placeholder. 976 void BitcodeReaderValueList::resolveConstantForwardRefs() { 977 // Sort the values by-pointer so that they are efficient to look up with a 978 // binary search. 979 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 980 981 SmallVector<Constant*, 64> NewOps; 982 983 while (!ResolveConstants.empty()) { 984 Value *RealVal = operator[](ResolveConstants.back().second); 985 Constant *Placeholder = ResolveConstants.back().first; 986 ResolveConstants.pop_back(); 987 988 // Loop over all users of the placeholder, updating them to reference the 989 // new value. If they reference more than one placeholder, update them all 990 // at once. 991 while (!Placeholder->use_empty()) { 992 auto UI = Placeholder->user_begin(); 993 User *U = *UI; 994 995 // If the using object isn't uniqued, just update the operands. This 996 // handles instructions and initializers for global variables. 997 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 998 UI.getUse().set(RealVal); 999 continue; 1000 } 1001 1002 // Otherwise, we have a constant that uses the placeholder. Replace that 1003 // constant with a new constant that has *all* placeholder uses updated. 1004 Constant *UserC = cast<Constant>(U); 1005 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1006 I != E; ++I) { 1007 Value *NewOp; 1008 if (!isa<ConstantPlaceHolder>(*I)) { 1009 // Not a placeholder reference. 1010 NewOp = *I; 1011 } else if (*I == Placeholder) { 1012 // Common case is that it just references this one placeholder. 1013 NewOp = RealVal; 1014 } else { 1015 // Otherwise, look up the placeholder in ResolveConstants. 1016 ResolveConstantsTy::iterator It = 1017 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1018 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1019 0)); 1020 assert(It != ResolveConstants.end() && It->first == *I); 1021 NewOp = operator[](It->second); 1022 } 1023 1024 NewOps.push_back(cast<Constant>(NewOp)); 1025 } 1026 1027 // Make the new constant. 1028 Constant *NewC; 1029 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1030 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1031 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1032 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1033 } else if (isa<ConstantVector>(UserC)) { 1034 NewC = ConstantVector::get(NewOps); 1035 } else { 1036 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1037 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1038 } 1039 1040 UserC->replaceAllUsesWith(NewC); 1041 UserC->destroyConstant(); 1042 NewOps.clear(); 1043 } 1044 1045 // Update all ValueHandles, they should be the only users at this point. 1046 Placeholder->replaceAllUsesWith(RealVal); 1047 delete Placeholder; 1048 } 1049 } 1050 1051 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1052 if (Idx == size()) { 1053 push_back(MD); 1054 return; 1055 } 1056 1057 if (Idx >= size()) 1058 resize(Idx+1); 1059 1060 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1061 if (!OldMD) { 1062 OldMD.reset(MD); 1063 return; 1064 } 1065 1066 // If there was a forward reference to this value, replace it. 1067 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1068 PrevMD->replaceAllUsesWith(MD); 1069 --NumFwdRefs; 1070 } 1071 1072 Metadata *BitcodeReaderMetadataList::getValueFwdRef(unsigned Idx) { 1073 if (Idx >= size()) 1074 resize(Idx + 1); 1075 1076 if (Metadata *MD = MetadataPtrs[Idx]) 1077 return MD; 1078 1079 // Track forward refs to be resolved later. 1080 if (AnyFwdRefs) { 1081 MinFwdRef = std::min(MinFwdRef, Idx); 1082 MaxFwdRef = std::max(MaxFwdRef, Idx); 1083 } else { 1084 AnyFwdRefs = true; 1085 MinFwdRef = MaxFwdRef = Idx; 1086 } 1087 ++NumFwdRefs; 1088 1089 // Create and return a placeholder, which will later be RAUW'd. 1090 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1091 MetadataPtrs[Idx].reset(MD); 1092 return MD; 1093 } 1094 1095 void BitcodeReaderMetadataList::tryToResolveCycles() { 1096 if (!AnyFwdRefs) 1097 // Nothing to do. 1098 return; 1099 1100 if (NumFwdRefs) 1101 // Still forward references... can't resolve cycles. 1102 return; 1103 1104 // Resolve any cycles. 1105 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1106 auto &MD = MetadataPtrs[I]; 1107 auto *N = dyn_cast_or_null<MDNode>(MD); 1108 if (!N) 1109 continue; 1110 1111 assert(!N->isTemporary() && "Unexpected forward reference"); 1112 N->resolveCycles(); 1113 } 1114 1115 // Make sure we return early again until there's another forward ref. 1116 AnyFwdRefs = false; 1117 } 1118 1119 Type *BitcodeReader::getTypeByID(unsigned ID) { 1120 // The type table size is always specified correctly. 1121 if (ID >= TypeList.size()) 1122 return nullptr; 1123 1124 if (Type *Ty = TypeList[ID]) 1125 return Ty; 1126 1127 // If we have a forward reference, the only possible case is when it is to a 1128 // named struct. Just create a placeholder for now. 1129 return TypeList[ID] = createIdentifiedStructType(Context); 1130 } 1131 1132 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1133 StringRef Name) { 1134 auto *Ret = StructType::create(Context, Name); 1135 IdentifiedStructTypes.push_back(Ret); 1136 return Ret; 1137 } 1138 1139 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1140 auto *Ret = StructType::create(Context); 1141 IdentifiedStructTypes.push_back(Ret); 1142 return Ret; 1143 } 1144 1145 //===----------------------------------------------------------------------===// 1146 // Functions for parsing blocks from the bitcode file 1147 //===----------------------------------------------------------------------===// 1148 1149 1150 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1151 /// been decoded from the given integer. This function must stay in sync with 1152 /// 'encodeLLVMAttributesForBitcode'. 1153 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1154 uint64_t EncodedAttrs) { 1155 // FIXME: Remove in 4.0. 1156 1157 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1158 // the bits above 31 down by 11 bits. 1159 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1160 assert((!Alignment || isPowerOf2_32(Alignment)) && 1161 "Alignment must be a power of two."); 1162 1163 if (Alignment) 1164 B.addAlignmentAttr(Alignment); 1165 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1166 (EncodedAttrs & 0xffff)); 1167 } 1168 1169 std::error_code BitcodeReader::parseAttributeBlock() { 1170 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1171 return error("Invalid record"); 1172 1173 if (!MAttributes.empty()) 1174 return error("Invalid multiple blocks"); 1175 1176 SmallVector<uint64_t, 64> Record; 1177 1178 SmallVector<AttributeSet, 8> Attrs; 1179 1180 // Read all the records. 1181 while (1) { 1182 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1183 1184 switch (Entry.Kind) { 1185 case BitstreamEntry::SubBlock: // Handled for us already. 1186 case BitstreamEntry::Error: 1187 return error("Malformed block"); 1188 case BitstreamEntry::EndBlock: 1189 return std::error_code(); 1190 case BitstreamEntry::Record: 1191 // The interesting case. 1192 break; 1193 } 1194 1195 // Read a record. 1196 Record.clear(); 1197 switch (Stream.readRecord(Entry.ID, Record)) { 1198 default: // Default behavior: ignore. 1199 break; 1200 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1201 // FIXME: Remove in 4.0. 1202 if (Record.size() & 1) 1203 return error("Invalid record"); 1204 1205 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1206 AttrBuilder B; 1207 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1208 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1209 } 1210 1211 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1212 Attrs.clear(); 1213 break; 1214 } 1215 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1216 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1217 Attrs.push_back(MAttributeGroups[Record[i]]); 1218 1219 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1220 Attrs.clear(); 1221 break; 1222 } 1223 } 1224 } 1225 } 1226 1227 // Returns Attribute::None on unrecognized codes. 1228 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1229 switch (Code) { 1230 default: 1231 return Attribute::None; 1232 case bitc::ATTR_KIND_ALIGNMENT: 1233 return Attribute::Alignment; 1234 case bitc::ATTR_KIND_ALWAYS_INLINE: 1235 return Attribute::AlwaysInline; 1236 case bitc::ATTR_KIND_ARGMEMONLY: 1237 return Attribute::ArgMemOnly; 1238 case bitc::ATTR_KIND_BUILTIN: 1239 return Attribute::Builtin; 1240 case bitc::ATTR_KIND_BY_VAL: 1241 return Attribute::ByVal; 1242 case bitc::ATTR_KIND_IN_ALLOCA: 1243 return Attribute::InAlloca; 1244 case bitc::ATTR_KIND_COLD: 1245 return Attribute::Cold; 1246 case bitc::ATTR_KIND_CONVERGENT: 1247 return Attribute::Convergent; 1248 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1249 return Attribute::InaccessibleMemOnly; 1250 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1251 return Attribute::InaccessibleMemOrArgMemOnly; 1252 case bitc::ATTR_KIND_INLINE_HINT: 1253 return Attribute::InlineHint; 1254 case bitc::ATTR_KIND_IN_REG: 1255 return Attribute::InReg; 1256 case bitc::ATTR_KIND_JUMP_TABLE: 1257 return Attribute::JumpTable; 1258 case bitc::ATTR_KIND_MIN_SIZE: 1259 return Attribute::MinSize; 1260 case bitc::ATTR_KIND_NAKED: 1261 return Attribute::Naked; 1262 case bitc::ATTR_KIND_NEST: 1263 return Attribute::Nest; 1264 case bitc::ATTR_KIND_NO_ALIAS: 1265 return Attribute::NoAlias; 1266 case bitc::ATTR_KIND_NO_BUILTIN: 1267 return Attribute::NoBuiltin; 1268 case bitc::ATTR_KIND_NO_CAPTURE: 1269 return Attribute::NoCapture; 1270 case bitc::ATTR_KIND_NO_DUPLICATE: 1271 return Attribute::NoDuplicate; 1272 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1273 return Attribute::NoImplicitFloat; 1274 case bitc::ATTR_KIND_NO_INLINE: 1275 return Attribute::NoInline; 1276 case bitc::ATTR_KIND_NO_RECURSE: 1277 return Attribute::NoRecurse; 1278 case bitc::ATTR_KIND_NON_LAZY_BIND: 1279 return Attribute::NonLazyBind; 1280 case bitc::ATTR_KIND_NON_NULL: 1281 return Attribute::NonNull; 1282 case bitc::ATTR_KIND_DEREFERENCEABLE: 1283 return Attribute::Dereferenceable; 1284 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1285 return Attribute::DereferenceableOrNull; 1286 case bitc::ATTR_KIND_NO_RED_ZONE: 1287 return Attribute::NoRedZone; 1288 case bitc::ATTR_KIND_NO_RETURN: 1289 return Attribute::NoReturn; 1290 case bitc::ATTR_KIND_NO_UNWIND: 1291 return Attribute::NoUnwind; 1292 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1293 return Attribute::OptimizeForSize; 1294 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1295 return Attribute::OptimizeNone; 1296 case bitc::ATTR_KIND_READ_NONE: 1297 return Attribute::ReadNone; 1298 case bitc::ATTR_KIND_READ_ONLY: 1299 return Attribute::ReadOnly; 1300 case bitc::ATTR_KIND_RETURNED: 1301 return Attribute::Returned; 1302 case bitc::ATTR_KIND_RETURNS_TWICE: 1303 return Attribute::ReturnsTwice; 1304 case bitc::ATTR_KIND_S_EXT: 1305 return Attribute::SExt; 1306 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1307 return Attribute::StackAlignment; 1308 case bitc::ATTR_KIND_STACK_PROTECT: 1309 return Attribute::StackProtect; 1310 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1311 return Attribute::StackProtectReq; 1312 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1313 return Attribute::StackProtectStrong; 1314 case bitc::ATTR_KIND_SAFESTACK: 1315 return Attribute::SafeStack; 1316 case bitc::ATTR_KIND_STRUCT_RET: 1317 return Attribute::StructRet; 1318 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1319 return Attribute::SanitizeAddress; 1320 case bitc::ATTR_KIND_SANITIZE_THREAD: 1321 return Attribute::SanitizeThread; 1322 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1323 return Attribute::SanitizeMemory; 1324 case bitc::ATTR_KIND_UW_TABLE: 1325 return Attribute::UWTable; 1326 case bitc::ATTR_KIND_Z_EXT: 1327 return Attribute::ZExt; 1328 } 1329 } 1330 1331 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1332 unsigned &Alignment) { 1333 // Note: Alignment in bitcode files is incremented by 1, so that zero 1334 // can be used for default alignment. 1335 if (Exponent > Value::MaxAlignmentExponent + 1) 1336 return error("Invalid alignment value"); 1337 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1338 return std::error_code(); 1339 } 1340 1341 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1342 Attribute::AttrKind *Kind) { 1343 *Kind = getAttrFromCode(Code); 1344 if (*Kind == Attribute::None) 1345 return error(BitcodeError::CorruptedBitcode, 1346 "Unknown attribute kind (" + Twine(Code) + ")"); 1347 return std::error_code(); 1348 } 1349 1350 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1351 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1352 return error("Invalid record"); 1353 1354 if (!MAttributeGroups.empty()) 1355 return error("Invalid multiple blocks"); 1356 1357 SmallVector<uint64_t, 64> Record; 1358 1359 // Read all the records. 1360 while (1) { 1361 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1362 1363 switch (Entry.Kind) { 1364 case BitstreamEntry::SubBlock: // Handled for us already. 1365 case BitstreamEntry::Error: 1366 return error("Malformed block"); 1367 case BitstreamEntry::EndBlock: 1368 return std::error_code(); 1369 case BitstreamEntry::Record: 1370 // The interesting case. 1371 break; 1372 } 1373 1374 // Read a record. 1375 Record.clear(); 1376 switch (Stream.readRecord(Entry.ID, Record)) { 1377 default: // Default behavior: ignore. 1378 break; 1379 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1380 if (Record.size() < 3) 1381 return error("Invalid record"); 1382 1383 uint64_t GrpID = Record[0]; 1384 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1385 1386 AttrBuilder B; 1387 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1388 if (Record[i] == 0) { // Enum attribute 1389 Attribute::AttrKind Kind; 1390 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1391 return EC; 1392 1393 B.addAttribute(Kind); 1394 } else if (Record[i] == 1) { // Integer attribute 1395 Attribute::AttrKind Kind; 1396 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1397 return EC; 1398 if (Kind == Attribute::Alignment) 1399 B.addAlignmentAttr(Record[++i]); 1400 else if (Kind == Attribute::StackAlignment) 1401 B.addStackAlignmentAttr(Record[++i]); 1402 else if (Kind == Attribute::Dereferenceable) 1403 B.addDereferenceableAttr(Record[++i]); 1404 else if (Kind == Attribute::DereferenceableOrNull) 1405 B.addDereferenceableOrNullAttr(Record[++i]); 1406 } else { // String attribute 1407 assert((Record[i] == 3 || Record[i] == 4) && 1408 "Invalid attribute group entry"); 1409 bool HasValue = (Record[i++] == 4); 1410 SmallString<64> KindStr; 1411 SmallString<64> ValStr; 1412 1413 while (Record[i] != 0 && i != e) 1414 KindStr += Record[i++]; 1415 assert(Record[i] == 0 && "Kind string not null terminated"); 1416 1417 if (HasValue) { 1418 // Has a value associated with it. 1419 ++i; // Skip the '0' that terminates the "kind" string. 1420 while (Record[i] != 0 && i != e) 1421 ValStr += Record[i++]; 1422 assert(Record[i] == 0 && "Value string not null terminated"); 1423 } 1424 1425 B.addAttribute(KindStr.str(), ValStr.str()); 1426 } 1427 } 1428 1429 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1430 break; 1431 } 1432 } 1433 } 1434 } 1435 1436 std::error_code BitcodeReader::parseTypeTable() { 1437 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1438 return error("Invalid record"); 1439 1440 return parseTypeTableBody(); 1441 } 1442 1443 std::error_code BitcodeReader::parseTypeTableBody() { 1444 if (!TypeList.empty()) 1445 return error("Invalid multiple blocks"); 1446 1447 SmallVector<uint64_t, 64> Record; 1448 unsigned NumRecords = 0; 1449 1450 SmallString<64> TypeName; 1451 1452 // Read all the records for this type table. 1453 while (1) { 1454 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1455 1456 switch (Entry.Kind) { 1457 case BitstreamEntry::SubBlock: // Handled for us already. 1458 case BitstreamEntry::Error: 1459 return error("Malformed block"); 1460 case BitstreamEntry::EndBlock: 1461 if (NumRecords != TypeList.size()) 1462 return error("Malformed block"); 1463 return std::error_code(); 1464 case BitstreamEntry::Record: 1465 // The interesting case. 1466 break; 1467 } 1468 1469 // Read a record. 1470 Record.clear(); 1471 Type *ResultTy = nullptr; 1472 switch (Stream.readRecord(Entry.ID, Record)) { 1473 default: 1474 return error("Invalid value"); 1475 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1476 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1477 // type list. This allows us to reserve space. 1478 if (Record.size() < 1) 1479 return error("Invalid record"); 1480 TypeList.resize(Record[0]); 1481 continue; 1482 case bitc::TYPE_CODE_VOID: // VOID 1483 ResultTy = Type::getVoidTy(Context); 1484 break; 1485 case bitc::TYPE_CODE_HALF: // HALF 1486 ResultTy = Type::getHalfTy(Context); 1487 break; 1488 case bitc::TYPE_CODE_FLOAT: // FLOAT 1489 ResultTy = Type::getFloatTy(Context); 1490 break; 1491 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1492 ResultTy = Type::getDoubleTy(Context); 1493 break; 1494 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1495 ResultTy = Type::getX86_FP80Ty(Context); 1496 break; 1497 case bitc::TYPE_CODE_FP128: // FP128 1498 ResultTy = Type::getFP128Ty(Context); 1499 break; 1500 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1501 ResultTy = Type::getPPC_FP128Ty(Context); 1502 break; 1503 case bitc::TYPE_CODE_LABEL: // LABEL 1504 ResultTy = Type::getLabelTy(Context); 1505 break; 1506 case bitc::TYPE_CODE_METADATA: // METADATA 1507 ResultTy = Type::getMetadataTy(Context); 1508 break; 1509 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1510 ResultTy = Type::getX86_MMXTy(Context); 1511 break; 1512 case bitc::TYPE_CODE_TOKEN: // TOKEN 1513 ResultTy = Type::getTokenTy(Context); 1514 break; 1515 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1516 if (Record.size() < 1) 1517 return error("Invalid record"); 1518 1519 uint64_t NumBits = Record[0]; 1520 if (NumBits < IntegerType::MIN_INT_BITS || 1521 NumBits > IntegerType::MAX_INT_BITS) 1522 return error("Bitwidth for integer type out of range"); 1523 ResultTy = IntegerType::get(Context, NumBits); 1524 break; 1525 } 1526 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1527 // [pointee type, address space] 1528 if (Record.size() < 1) 1529 return error("Invalid record"); 1530 unsigned AddressSpace = 0; 1531 if (Record.size() == 2) 1532 AddressSpace = Record[1]; 1533 ResultTy = getTypeByID(Record[0]); 1534 if (!ResultTy || 1535 !PointerType::isValidElementType(ResultTy)) 1536 return error("Invalid type"); 1537 ResultTy = PointerType::get(ResultTy, AddressSpace); 1538 break; 1539 } 1540 case bitc::TYPE_CODE_FUNCTION_OLD: { 1541 // FIXME: attrid is dead, remove it in LLVM 4.0 1542 // FUNCTION: [vararg, attrid, retty, paramty x N] 1543 if (Record.size() < 3) 1544 return error("Invalid record"); 1545 SmallVector<Type*, 8> ArgTys; 1546 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1547 if (Type *T = getTypeByID(Record[i])) 1548 ArgTys.push_back(T); 1549 else 1550 break; 1551 } 1552 1553 ResultTy = getTypeByID(Record[2]); 1554 if (!ResultTy || ArgTys.size() < Record.size()-3) 1555 return error("Invalid type"); 1556 1557 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1558 break; 1559 } 1560 case bitc::TYPE_CODE_FUNCTION: { 1561 // FUNCTION: [vararg, retty, paramty x N] 1562 if (Record.size() < 2) 1563 return error("Invalid record"); 1564 SmallVector<Type*, 8> ArgTys; 1565 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1566 if (Type *T = getTypeByID(Record[i])) { 1567 if (!FunctionType::isValidArgumentType(T)) 1568 return error("Invalid function argument type"); 1569 ArgTys.push_back(T); 1570 } 1571 else 1572 break; 1573 } 1574 1575 ResultTy = getTypeByID(Record[1]); 1576 if (!ResultTy || ArgTys.size() < Record.size()-2) 1577 return error("Invalid type"); 1578 1579 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1580 break; 1581 } 1582 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1583 if (Record.size() < 1) 1584 return error("Invalid record"); 1585 SmallVector<Type*, 8> EltTys; 1586 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1587 if (Type *T = getTypeByID(Record[i])) 1588 EltTys.push_back(T); 1589 else 1590 break; 1591 } 1592 if (EltTys.size() != Record.size()-1) 1593 return error("Invalid type"); 1594 ResultTy = StructType::get(Context, EltTys, Record[0]); 1595 break; 1596 } 1597 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1598 if (convertToString(Record, 0, TypeName)) 1599 return error("Invalid record"); 1600 continue; 1601 1602 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1603 if (Record.size() < 1) 1604 return error("Invalid record"); 1605 1606 if (NumRecords >= TypeList.size()) 1607 return error("Invalid TYPE table"); 1608 1609 // Check to see if this was forward referenced, if so fill in the temp. 1610 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1611 if (Res) { 1612 Res->setName(TypeName); 1613 TypeList[NumRecords] = nullptr; 1614 } else // Otherwise, create a new struct. 1615 Res = createIdentifiedStructType(Context, TypeName); 1616 TypeName.clear(); 1617 1618 SmallVector<Type*, 8> EltTys; 1619 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1620 if (Type *T = getTypeByID(Record[i])) 1621 EltTys.push_back(T); 1622 else 1623 break; 1624 } 1625 if (EltTys.size() != Record.size()-1) 1626 return error("Invalid record"); 1627 Res->setBody(EltTys, Record[0]); 1628 ResultTy = Res; 1629 break; 1630 } 1631 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1632 if (Record.size() != 1) 1633 return error("Invalid record"); 1634 1635 if (NumRecords >= TypeList.size()) 1636 return error("Invalid TYPE table"); 1637 1638 // Check to see if this was forward referenced, if so fill in the temp. 1639 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1640 if (Res) { 1641 Res->setName(TypeName); 1642 TypeList[NumRecords] = nullptr; 1643 } else // Otherwise, create a new struct with no body. 1644 Res = createIdentifiedStructType(Context, TypeName); 1645 TypeName.clear(); 1646 ResultTy = Res; 1647 break; 1648 } 1649 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1650 if (Record.size() < 2) 1651 return error("Invalid record"); 1652 ResultTy = getTypeByID(Record[1]); 1653 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1654 return error("Invalid type"); 1655 ResultTy = ArrayType::get(ResultTy, Record[0]); 1656 break; 1657 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1658 if (Record.size() < 2) 1659 return error("Invalid record"); 1660 if (Record[0] == 0) 1661 return error("Invalid vector length"); 1662 ResultTy = getTypeByID(Record[1]); 1663 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1664 return error("Invalid type"); 1665 ResultTy = VectorType::get(ResultTy, Record[0]); 1666 break; 1667 } 1668 1669 if (NumRecords >= TypeList.size()) 1670 return error("Invalid TYPE table"); 1671 if (TypeList[NumRecords]) 1672 return error( 1673 "Invalid TYPE table: Only named structs can be forward referenced"); 1674 assert(ResultTy && "Didn't read a type?"); 1675 TypeList[NumRecords++] = ResultTy; 1676 } 1677 } 1678 1679 std::error_code BitcodeReader::parseOperandBundleTags() { 1680 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1681 return error("Invalid record"); 1682 1683 if (!BundleTags.empty()) 1684 return error("Invalid multiple blocks"); 1685 1686 SmallVector<uint64_t, 64> Record; 1687 1688 while (1) { 1689 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1690 1691 switch (Entry.Kind) { 1692 case BitstreamEntry::SubBlock: // Handled for us already. 1693 case BitstreamEntry::Error: 1694 return error("Malformed block"); 1695 case BitstreamEntry::EndBlock: 1696 return std::error_code(); 1697 case BitstreamEntry::Record: 1698 // The interesting case. 1699 break; 1700 } 1701 1702 // Tags are implicitly mapped to integers by their order. 1703 1704 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1705 return error("Invalid record"); 1706 1707 // OPERAND_BUNDLE_TAG: [strchr x N] 1708 BundleTags.emplace_back(); 1709 if (convertToString(Record, 0, BundleTags.back())) 1710 return error("Invalid record"); 1711 Record.clear(); 1712 } 1713 } 1714 1715 /// Associate a value with its name from the given index in the provided record. 1716 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1717 unsigned NameIndex, Triple &TT) { 1718 SmallString<128> ValueName; 1719 if (convertToString(Record, NameIndex, ValueName)) 1720 return error("Invalid record"); 1721 unsigned ValueID = Record[0]; 1722 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1723 return error("Invalid record"); 1724 Value *V = ValueList[ValueID]; 1725 1726 StringRef NameStr(ValueName.data(), ValueName.size()); 1727 if (NameStr.find_first_of(0) != StringRef::npos) 1728 return error("Invalid value name"); 1729 V->setName(NameStr); 1730 auto *GO = dyn_cast<GlobalObject>(V); 1731 if (GO) { 1732 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1733 if (TT.isOSBinFormatMachO()) 1734 GO->setComdat(nullptr); 1735 else 1736 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1737 } 1738 } 1739 return V; 1740 } 1741 1742 /// Helper to note and return the current location, and jump to the given 1743 /// offset. 1744 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1745 BitstreamCursor &Stream) { 1746 // Save the current parsing location so we can jump back at the end 1747 // of the VST read. 1748 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1749 Stream.JumpToBit(Offset * 32); 1750 #ifndef NDEBUG 1751 // Do some checking if we are in debug mode. 1752 BitstreamEntry Entry = Stream.advance(); 1753 assert(Entry.Kind == BitstreamEntry::SubBlock); 1754 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1755 #else 1756 // In NDEBUG mode ignore the output so we don't get an unused variable 1757 // warning. 1758 Stream.advance(); 1759 #endif 1760 return CurrentBit; 1761 } 1762 1763 /// Parse the value symbol table at either the current parsing location or 1764 /// at the given bit offset if provided. 1765 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1766 uint64_t CurrentBit; 1767 // Pass in the Offset to distinguish between calling for the module-level 1768 // VST (where we want to jump to the VST offset) and the function-level 1769 // VST (where we don't). 1770 if (Offset > 0) 1771 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1772 1773 // Compute the delta between the bitcode indices in the VST (the word offset 1774 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1775 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1776 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1777 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1778 // just before entering the VST subblock because: 1) the EnterSubBlock 1779 // changes the AbbrevID width; 2) the VST block is nested within the same 1780 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1781 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1782 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1783 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1784 unsigned FuncBitcodeOffsetDelta = 1785 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1786 1787 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1788 return error("Invalid record"); 1789 1790 SmallVector<uint64_t, 64> Record; 1791 1792 Triple TT(TheModule->getTargetTriple()); 1793 1794 // Read all the records for this value table. 1795 SmallString<128> ValueName; 1796 while (1) { 1797 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1798 1799 switch (Entry.Kind) { 1800 case BitstreamEntry::SubBlock: // Handled for us already. 1801 case BitstreamEntry::Error: 1802 return error("Malformed block"); 1803 case BitstreamEntry::EndBlock: 1804 if (Offset > 0) 1805 Stream.JumpToBit(CurrentBit); 1806 return std::error_code(); 1807 case BitstreamEntry::Record: 1808 // The interesting case. 1809 break; 1810 } 1811 1812 // Read a record. 1813 Record.clear(); 1814 switch (Stream.readRecord(Entry.ID, Record)) { 1815 default: // Default behavior: unknown type. 1816 break; 1817 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1818 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1819 if (std::error_code EC = ValOrErr.getError()) 1820 return EC; 1821 ValOrErr.get(); 1822 break; 1823 } 1824 case bitc::VST_CODE_FNENTRY: { 1825 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1826 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1827 if (std::error_code EC = ValOrErr.getError()) 1828 return EC; 1829 Value *V = ValOrErr.get(); 1830 1831 auto *GO = dyn_cast<GlobalObject>(V); 1832 if (!GO) { 1833 // If this is an alias, need to get the actual Function object 1834 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1835 auto *GA = dyn_cast<GlobalAlias>(V); 1836 if (GA) 1837 GO = GA->getBaseObject(); 1838 assert(GO); 1839 } 1840 1841 uint64_t FuncWordOffset = Record[1]; 1842 Function *F = dyn_cast<Function>(GO); 1843 assert(F); 1844 uint64_t FuncBitOffset = FuncWordOffset * 32; 1845 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1846 // Set the LastFunctionBlockBit to point to the last function block. 1847 // Later when parsing is resumed after function materialization, 1848 // we can simply skip that last function block. 1849 if (FuncBitOffset > LastFunctionBlockBit) 1850 LastFunctionBlockBit = FuncBitOffset; 1851 break; 1852 } 1853 case bitc::VST_CODE_BBENTRY: { 1854 if (convertToString(Record, 1, ValueName)) 1855 return error("Invalid record"); 1856 BasicBlock *BB = getBasicBlock(Record[0]); 1857 if (!BB) 1858 return error("Invalid record"); 1859 1860 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1861 ValueName.clear(); 1862 break; 1863 } 1864 } 1865 } 1866 } 1867 1868 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1869 std::error_code 1870 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1871 if (Record.size() < 2) 1872 return error("Invalid record"); 1873 1874 unsigned Kind = Record[0]; 1875 SmallString<8> Name(Record.begin() + 1, Record.end()); 1876 1877 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1878 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1879 return error("Conflicting METADATA_KIND records"); 1880 return std::error_code(); 1881 } 1882 1883 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1884 1885 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1886 /// module level metadata. 1887 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1888 IsMetadataMaterialized = true; 1889 unsigned NextMetadataNo = MetadataList.size(); 1890 if (ModuleLevel && SeenModuleValuesRecord) { 1891 // Now that we are parsing the module level metadata, we want to restart 1892 // the numbering of the MD values, and replace temp MD created earlier 1893 // with their real values. If we saw a METADATA_VALUE record then we 1894 // would have set the MetadataList size to the number specified in that 1895 // record, to support parsing function-level metadata first, and we need 1896 // to reset back to 0 to fill the MetadataList in with the parsed module 1897 // The function-level metadata parsing should have reset the MetadataList 1898 // size back to the value reported by the METADATA_VALUE record, saved in 1899 // NumModuleMDs. 1900 assert(NumModuleMDs == MetadataList.size() && 1901 "Expected MetadataList to only contain module level values"); 1902 NextMetadataNo = 0; 1903 } 1904 1905 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1906 return error("Invalid record"); 1907 1908 SmallVector<uint64_t, 64> Record; 1909 1910 auto getMD = [&](unsigned ID) -> Metadata * { 1911 return MetadataList.getValueFwdRef(ID); 1912 }; 1913 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1914 if (ID) 1915 return getMD(ID - 1); 1916 return nullptr; 1917 }; 1918 auto getMDString = [&](unsigned ID) -> MDString *{ 1919 // This requires that the ID is not really a forward reference. In 1920 // particular, the MDString must already have been resolved. 1921 return cast_or_null<MDString>(getMDOrNull(ID)); 1922 }; 1923 1924 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1925 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1926 1927 // Read all the records. 1928 while (1) { 1929 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1930 1931 switch (Entry.Kind) { 1932 case BitstreamEntry::SubBlock: // Handled for us already. 1933 case BitstreamEntry::Error: 1934 return error("Malformed block"); 1935 case BitstreamEntry::EndBlock: 1936 MetadataList.tryToResolveCycles(); 1937 assert((!(ModuleLevel && SeenModuleValuesRecord) || 1938 NumModuleMDs == MetadataList.size()) && 1939 "Inconsistent bitcode: METADATA_VALUES mismatch"); 1940 return std::error_code(); 1941 case BitstreamEntry::Record: 1942 // The interesting case. 1943 break; 1944 } 1945 1946 // Read a record. 1947 Record.clear(); 1948 unsigned Code = Stream.readRecord(Entry.ID, Record); 1949 bool IsDistinct = false; 1950 switch (Code) { 1951 default: // Default behavior: ignore. 1952 break; 1953 case bitc::METADATA_NAME: { 1954 // Read name of the named metadata. 1955 SmallString<8> Name(Record.begin(), Record.end()); 1956 Record.clear(); 1957 Code = Stream.ReadCode(); 1958 1959 unsigned NextBitCode = Stream.readRecord(Code, Record); 1960 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1961 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1962 1963 // Read named metadata elements. 1964 unsigned Size = Record.size(); 1965 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1966 for (unsigned i = 0; i != Size; ++i) { 1967 MDNode *MD = 1968 dyn_cast_or_null<MDNode>(MetadataList.getValueFwdRef(Record[i])); 1969 if (!MD) 1970 return error("Invalid record"); 1971 NMD->addOperand(MD); 1972 } 1973 break; 1974 } 1975 case bitc::METADATA_OLD_FN_NODE: { 1976 // FIXME: Remove in 4.0. 1977 // This is a LocalAsMetadata record, the only type of function-local 1978 // metadata. 1979 if (Record.size() % 2 == 1) 1980 return error("Invalid record"); 1981 1982 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1983 // to be legal, but there's no upgrade path. 1984 auto dropRecord = [&] { 1985 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 1986 }; 1987 if (Record.size() != 2) { 1988 dropRecord(); 1989 break; 1990 } 1991 1992 Type *Ty = getTypeByID(Record[0]); 1993 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1994 dropRecord(); 1995 break; 1996 } 1997 1998 MetadataList.assignValue( 1999 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2000 NextMetadataNo++); 2001 break; 2002 } 2003 case bitc::METADATA_OLD_NODE: { 2004 // FIXME: Remove in 4.0. 2005 if (Record.size() % 2 == 1) 2006 return error("Invalid record"); 2007 2008 unsigned Size = Record.size(); 2009 SmallVector<Metadata *, 8> Elts; 2010 for (unsigned i = 0; i != Size; i += 2) { 2011 Type *Ty = getTypeByID(Record[i]); 2012 if (!Ty) 2013 return error("Invalid record"); 2014 if (Ty->isMetadataTy()) 2015 Elts.push_back(MetadataList.getValueFwdRef(Record[i + 1])); 2016 else if (!Ty->isVoidTy()) { 2017 auto *MD = 2018 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2019 assert(isa<ConstantAsMetadata>(MD) && 2020 "Expected non-function-local metadata"); 2021 Elts.push_back(MD); 2022 } else 2023 Elts.push_back(nullptr); 2024 } 2025 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2026 break; 2027 } 2028 case bitc::METADATA_VALUE: { 2029 if (Record.size() != 2) 2030 return error("Invalid record"); 2031 2032 Type *Ty = getTypeByID(Record[0]); 2033 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2034 return error("Invalid record"); 2035 2036 MetadataList.assignValue( 2037 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2038 NextMetadataNo++); 2039 break; 2040 } 2041 case bitc::METADATA_DISTINCT_NODE: 2042 IsDistinct = true; 2043 // fallthrough... 2044 case bitc::METADATA_NODE: { 2045 SmallVector<Metadata *, 8> Elts; 2046 Elts.reserve(Record.size()); 2047 for (unsigned ID : Record) 2048 Elts.push_back(ID ? MetadataList.getValueFwdRef(ID - 1) : nullptr); 2049 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2050 : MDNode::get(Context, Elts), 2051 NextMetadataNo++); 2052 break; 2053 } 2054 case bitc::METADATA_LOCATION: { 2055 if (Record.size() != 5) 2056 return error("Invalid record"); 2057 2058 unsigned Line = Record[1]; 2059 unsigned Column = Record[2]; 2060 MDNode *Scope = cast<MDNode>(MetadataList.getValueFwdRef(Record[3])); 2061 Metadata *InlinedAt = 2062 Record[4] ? MetadataList.getValueFwdRef(Record[4] - 1) : nullptr; 2063 MetadataList.assignValue( 2064 GET_OR_DISTINCT(DILocation, Record[0], 2065 (Context, Line, Column, Scope, InlinedAt)), 2066 NextMetadataNo++); 2067 break; 2068 } 2069 case bitc::METADATA_GENERIC_DEBUG: { 2070 if (Record.size() < 4) 2071 return error("Invalid record"); 2072 2073 unsigned Tag = Record[1]; 2074 unsigned Version = Record[2]; 2075 2076 if (Tag >= 1u << 16 || Version != 0) 2077 return error("Invalid record"); 2078 2079 auto *Header = getMDString(Record[3]); 2080 SmallVector<Metadata *, 8> DwarfOps; 2081 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2082 DwarfOps.push_back( 2083 Record[I] ? MetadataList.getValueFwdRef(Record[I] - 1) : nullptr); 2084 MetadataList.assignValue( 2085 GET_OR_DISTINCT(GenericDINode, Record[0], 2086 (Context, Tag, Header, DwarfOps)), 2087 NextMetadataNo++); 2088 break; 2089 } 2090 case bitc::METADATA_SUBRANGE: { 2091 if (Record.size() != 3) 2092 return error("Invalid record"); 2093 2094 MetadataList.assignValue( 2095 GET_OR_DISTINCT(DISubrange, Record[0], 2096 (Context, Record[1], unrotateSign(Record[2]))), 2097 NextMetadataNo++); 2098 break; 2099 } 2100 case bitc::METADATA_ENUMERATOR: { 2101 if (Record.size() != 3) 2102 return error("Invalid record"); 2103 2104 MetadataList.assignValue( 2105 GET_OR_DISTINCT( 2106 DIEnumerator, Record[0], 2107 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2108 NextMetadataNo++); 2109 break; 2110 } 2111 case bitc::METADATA_BASIC_TYPE: { 2112 if (Record.size() != 6) 2113 return error("Invalid record"); 2114 2115 MetadataList.assignValue( 2116 GET_OR_DISTINCT(DIBasicType, Record[0], 2117 (Context, Record[1], getMDString(Record[2]), 2118 Record[3], Record[4], Record[5])), 2119 NextMetadataNo++); 2120 break; 2121 } 2122 case bitc::METADATA_DERIVED_TYPE: { 2123 if (Record.size() != 12) 2124 return error("Invalid record"); 2125 2126 MetadataList.assignValue( 2127 GET_OR_DISTINCT(DIDerivedType, Record[0], 2128 (Context, Record[1], getMDString(Record[2]), 2129 getMDOrNull(Record[3]), Record[4], 2130 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2131 Record[7], Record[8], Record[9], Record[10], 2132 getMDOrNull(Record[11]))), 2133 NextMetadataNo++); 2134 break; 2135 } 2136 case bitc::METADATA_COMPOSITE_TYPE: { 2137 if (Record.size() != 16) 2138 return error("Invalid record"); 2139 2140 MetadataList.assignValue( 2141 GET_OR_DISTINCT(DICompositeType, Record[0], 2142 (Context, Record[1], getMDString(Record[2]), 2143 getMDOrNull(Record[3]), Record[4], 2144 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2145 Record[7], Record[8], Record[9], Record[10], 2146 getMDOrNull(Record[11]), Record[12], 2147 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2148 getMDString(Record[15]))), 2149 NextMetadataNo++); 2150 break; 2151 } 2152 case bitc::METADATA_SUBROUTINE_TYPE: { 2153 if (Record.size() != 3) 2154 return error("Invalid record"); 2155 2156 MetadataList.assignValue( 2157 GET_OR_DISTINCT(DISubroutineType, Record[0], 2158 (Context, Record[1], getMDOrNull(Record[2]))), 2159 NextMetadataNo++); 2160 break; 2161 } 2162 2163 case bitc::METADATA_MODULE: { 2164 if (Record.size() != 6) 2165 return error("Invalid record"); 2166 2167 MetadataList.assignValue( 2168 GET_OR_DISTINCT(DIModule, Record[0], 2169 (Context, getMDOrNull(Record[1]), 2170 getMDString(Record[2]), getMDString(Record[3]), 2171 getMDString(Record[4]), getMDString(Record[5]))), 2172 NextMetadataNo++); 2173 break; 2174 } 2175 2176 case bitc::METADATA_FILE: { 2177 if (Record.size() != 3) 2178 return error("Invalid record"); 2179 2180 MetadataList.assignValue( 2181 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2182 getMDString(Record[2]))), 2183 NextMetadataNo++); 2184 break; 2185 } 2186 case bitc::METADATA_COMPILE_UNIT: { 2187 if (Record.size() < 14 || Record.size() > 16) 2188 return error("Invalid record"); 2189 2190 // Ignore Record[0], which indicates whether this compile unit is 2191 // distinct. It's always distinct. 2192 MetadataList.assignValue( 2193 DICompileUnit::getDistinct( 2194 Context, Record[1], getMDOrNull(Record[2]), 2195 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2196 Record[6], getMDString(Record[7]), Record[8], 2197 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2198 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2199 getMDOrNull(Record[13]), 2200 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2201 Record.size() <= 14 ? 0 : Record[14]), 2202 NextMetadataNo++); 2203 break; 2204 } 2205 case bitc::METADATA_SUBPROGRAM: { 2206 if (Record.size() != 18 && Record.size() != 19) 2207 return error("Invalid record"); 2208 2209 bool HasFn = Record.size() == 19; 2210 DISubprogram *SP = GET_OR_DISTINCT( 2211 DISubprogram, 2212 Record[0] || Record[8], // All definitions should be distinct. 2213 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2214 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2215 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2216 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2217 Record[14], getMDOrNull(Record[15 + HasFn]), 2218 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2219 MetadataList.assignValue(SP, NextMetadataNo++); 2220 2221 // Upgrade sp->function mapping to function->sp mapping. 2222 if (HasFn && Record[15]) { 2223 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2224 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2225 if (F->isMaterializable()) 2226 // Defer until materialized; unmaterialized functions may not have 2227 // metadata. 2228 FunctionsWithSPs[F] = SP; 2229 else if (!F->empty()) 2230 F->setSubprogram(SP); 2231 } 2232 } 2233 break; 2234 } 2235 case bitc::METADATA_LEXICAL_BLOCK: { 2236 if (Record.size() != 5) 2237 return error("Invalid record"); 2238 2239 MetadataList.assignValue( 2240 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2241 (Context, getMDOrNull(Record[1]), 2242 getMDOrNull(Record[2]), Record[3], Record[4])), 2243 NextMetadataNo++); 2244 break; 2245 } 2246 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2247 if (Record.size() != 4) 2248 return error("Invalid record"); 2249 2250 MetadataList.assignValue( 2251 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2252 (Context, getMDOrNull(Record[1]), 2253 getMDOrNull(Record[2]), Record[3])), 2254 NextMetadataNo++); 2255 break; 2256 } 2257 case bitc::METADATA_NAMESPACE: { 2258 if (Record.size() != 5) 2259 return error("Invalid record"); 2260 2261 MetadataList.assignValue( 2262 GET_OR_DISTINCT(DINamespace, Record[0], 2263 (Context, getMDOrNull(Record[1]), 2264 getMDOrNull(Record[2]), getMDString(Record[3]), 2265 Record[4])), 2266 NextMetadataNo++); 2267 break; 2268 } 2269 case bitc::METADATA_MACRO: { 2270 if (Record.size() != 5) 2271 return error("Invalid record"); 2272 2273 MetadataList.assignValue( 2274 GET_OR_DISTINCT(DIMacro, Record[0], 2275 (Context, Record[1], Record[2], 2276 getMDString(Record[3]), getMDString(Record[4]))), 2277 NextMetadataNo++); 2278 break; 2279 } 2280 case bitc::METADATA_MACRO_FILE: { 2281 if (Record.size() != 5) 2282 return error("Invalid record"); 2283 2284 MetadataList.assignValue( 2285 GET_OR_DISTINCT(DIMacroFile, Record[0], 2286 (Context, Record[1], Record[2], 2287 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2288 NextMetadataNo++); 2289 break; 2290 } 2291 case bitc::METADATA_TEMPLATE_TYPE: { 2292 if (Record.size() != 3) 2293 return error("Invalid record"); 2294 2295 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2296 Record[0], 2297 (Context, getMDString(Record[1]), 2298 getMDOrNull(Record[2]))), 2299 NextMetadataNo++); 2300 break; 2301 } 2302 case bitc::METADATA_TEMPLATE_VALUE: { 2303 if (Record.size() != 5) 2304 return error("Invalid record"); 2305 2306 MetadataList.assignValue( 2307 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2308 (Context, Record[1], getMDString(Record[2]), 2309 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2310 NextMetadataNo++); 2311 break; 2312 } 2313 case bitc::METADATA_GLOBAL_VAR: { 2314 if (Record.size() != 11) 2315 return error("Invalid record"); 2316 2317 MetadataList.assignValue( 2318 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2319 (Context, getMDOrNull(Record[1]), 2320 getMDString(Record[2]), getMDString(Record[3]), 2321 getMDOrNull(Record[4]), Record[5], 2322 getMDOrNull(Record[6]), Record[7], Record[8], 2323 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2324 NextMetadataNo++); 2325 break; 2326 } 2327 case bitc::METADATA_LOCAL_VAR: { 2328 // 10th field is for the obseleted 'inlinedAt:' field. 2329 if (Record.size() < 8 || Record.size() > 10) 2330 return error("Invalid record"); 2331 2332 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2333 // DW_TAG_arg_variable. 2334 bool HasTag = Record.size() > 8; 2335 MetadataList.assignValue( 2336 GET_OR_DISTINCT(DILocalVariable, Record[0], 2337 (Context, getMDOrNull(Record[1 + HasTag]), 2338 getMDString(Record[2 + HasTag]), 2339 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2340 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2341 Record[7 + HasTag])), 2342 NextMetadataNo++); 2343 break; 2344 } 2345 case bitc::METADATA_EXPRESSION: { 2346 if (Record.size() < 1) 2347 return error("Invalid record"); 2348 2349 MetadataList.assignValue( 2350 GET_OR_DISTINCT(DIExpression, Record[0], 2351 (Context, makeArrayRef(Record).slice(1))), 2352 NextMetadataNo++); 2353 break; 2354 } 2355 case bitc::METADATA_OBJC_PROPERTY: { 2356 if (Record.size() != 8) 2357 return error("Invalid record"); 2358 2359 MetadataList.assignValue( 2360 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2361 (Context, getMDString(Record[1]), 2362 getMDOrNull(Record[2]), Record[3], 2363 getMDString(Record[4]), getMDString(Record[5]), 2364 Record[6], getMDOrNull(Record[7]))), 2365 NextMetadataNo++); 2366 break; 2367 } 2368 case bitc::METADATA_IMPORTED_ENTITY: { 2369 if (Record.size() != 6) 2370 return error("Invalid record"); 2371 2372 MetadataList.assignValue( 2373 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2374 (Context, Record[1], getMDOrNull(Record[2]), 2375 getMDOrNull(Record[3]), Record[4], 2376 getMDString(Record[5]))), 2377 NextMetadataNo++); 2378 break; 2379 } 2380 case bitc::METADATA_STRING: { 2381 std::string String(Record.begin(), Record.end()); 2382 llvm::UpgradeMDStringConstant(String); 2383 Metadata *MD = MDString::get(Context, String); 2384 MetadataList.assignValue(MD, NextMetadataNo++); 2385 break; 2386 } 2387 case bitc::METADATA_KIND: { 2388 // Support older bitcode files that had METADATA_KIND records in a 2389 // block with METADATA_BLOCK_ID. 2390 if (std::error_code EC = parseMetadataKindRecord(Record)) 2391 return EC; 2392 break; 2393 } 2394 } 2395 } 2396 #undef GET_OR_DISTINCT 2397 } 2398 2399 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2400 std::error_code BitcodeReader::parseMetadataKinds() { 2401 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2402 return error("Invalid record"); 2403 2404 SmallVector<uint64_t, 64> Record; 2405 2406 // Read all the records. 2407 while (1) { 2408 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2409 2410 switch (Entry.Kind) { 2411 case BitstreamEntry::SubBlock: // Handled for us already. 2412 case BitstreamEntry::Error: 2413 return error("Malformed block"); 2414 case BitstreamEntry::EndBlock: 2415 return std::error_code(); 2416 case BitstreamEntry::Record: 2417 // The interesting case. 2418 break; 2419 } 2420 2421 // Read a record. 2422 Record.clear(); 2423 unsigned Code = Stream.readRecord(Entry.ID, Record); 2424 switch (Code) { 2425 default: // Default behavior: ignore. 2426 break; 2427 case bitc::METADATA_KIND: { 2428 if (std::error_code EC = parseMetadataKindRecord(Record)) 2429 return EC; 2430 break; 2431 } 2432 } 2433 } 2434 } 2435 2436 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2437 /// encoding. 2438 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2439 if ((V & 1) == 0) 2440 return V >> 1; 2441 if (V != 1) 2442 return -(V >> 1); 2443 // There is no such thing as -0 with integers. "-0" really means MININT. 2444 return 1ULL << 63; 2445 } 2446 2447 /// Resolve all of the initializers for global values and aliases that we can. 2448 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2449 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2450 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2451 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2452 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2453 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2454 2455 GlobalInitWorklist.swap(GlobalInits); 2456 AliasInitWorklist.swap(AliasInits); 2457 FunctionPrefixWorklist.swap(FunctionPrefixes); 2458 FunctionPrologueWorklist.swap(FunctionPrologues); 2459 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2460 2461 while (!GlobalInitWorklist.empty()) { 2462 unsigned ValID = GlobalInitWorklist.back().second; 2463 if (ValID >= ValueList.size()) { 2464 // Not ready to resolve this yet, it requires something later in the file. 2465 GlobalInits.push_back(GlobalInitWorklist.back()); 2466 } else { 2467 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2468 GlobalInitWorklist.back().first->setInitializer(C); 2469 else 2470 return error("Expected a constant"); 2471 } 2472 GlobalInitWorklist.pop_back(); 2473 } 2474 2475 while (!AliasInitWorklist.empty()) { 2476 unsigned ValID = AliasInitWorklist.back().second; 2477 if (ValID >= ValueList.size()) { 2478 AliasInits.push_back(AliasInitWorklist.back()); 2479 } else { 2480 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2481 if (!C) 2482 return error("Expected a constant"); 2483 GlobalAlias *Alias = AliasInitWorklist.back().first; 2484 if (C->getType() != Alias->getType()) 2485 return error("Alias and aliasee types don't match"); 2486 Alias->setAliasee(C); 2487 } 2488 AliasInitWorklist.pop_back(); 2489 } 2490 2491 while (!FunctionPrefixWorklist.empty()) { 2492 unsigned ValID = FunctionPrefixWorklist.back().second; 2493 if (ValID >= ValueList.size()) { 2494 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2495 } else { 2496 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2497 FunctionPrefixWorklist.back().first->setPrefixData(C); 2498 else 2499 return error("Expected a constant"); 2500 } 2501 FunctionPrefixWorklist.pop_back(); 2502 } 2503 2504 while (!FunctionPrologueWorklist.empty()) { 2505 unsigned ValID = FunctionPrologueWorklist.back().second; 2506 if (ValID >= ValueList.size()) { 2507 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2508 } else { 2509 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2510 FunctionPrologueWorklist.back().first->setPrologueData(C); 2511 else 2512 return error("Expected a constant"); 2513 } 2514 FunctionPrologueWorklist.pop_back(); 2515 } 2516 2517 while (!FunctionPersonalityFnWorklist.empty()) { 2518 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2519 if (ValID >= ValueList.size()) { 2520 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2521 } else { 2522 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2523 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2524 else 2525 return error("Expected a constant"); 2526 } 2527 FunctionPersonalityFnWorklist.pop_back(); 2528 } 2529 2530 return std::error_code(); 2531 } 2532 2533 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2534 SmallVector<uint64_t, 8> Words(Vals.size()); 2535 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2536 BitcodeReader::decodeSignRotatedValue); 2537 2538 return APInt(TypeBits, Words); 2539 } 2540 2541 std::error_code BitcodeReader::parseConstants() { 2542 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2543 return error("Invalid record"); 2544 2545 SmallVector<uint64_t, 64> Record; 2546 2547 // Read all the records for this value table. 2548 Type *CurTy = Type::getInt32Ty(Context); 2549 unsigned NextCstNo = ValueList.size(); 2550 while (1) { 2551 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2552 2553 switch (Entry.Kind) { 2554 case BitstreamEntry::SubBlock: // Handled for us already. 2555 case BitstreamEntry::Error: 2556 return error("Malformed block"); 2557 case BitstreamEntry::EndBlock: 2558 if (NextCstNo != ValueList.size()) 2559 return error("Invalid constant reference"); 2560 2561 // Once all the constants have been read, go through and resolve forward 2562 // references. 2563 ValueList.resolveConstantForwardRefs(); 2564 return std::error_code(); 2565 case BitstreamEntry::Record: 2566 // The interesting case. 2567 break; 2568 } 2569 2570 // Read a record. 2571 Record.clear(); 2572 Value *V = nullptr; 2573 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2574 switch (BitCode) { 2575 default: // Default behavior: unknown constant 2576 case bitc::CST_CODE_UNDEF: // UNDEF 2577 V = UndefValue::get(CurTy); 2578 break; 2579 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2580 if (Record.empty()) 2581 return error("Invalid record"); 2582 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2583 return error("Invalid record"); 2584 CurTy = TypeList[Record[0]]; 2585 continue; // Skip the ValueList manipulation. 2586 case bitc::CST_CODE_NULL: // NULL 2587 V = Constant::getNullValue(CurTy); 2588 break; 2589 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2590 if (!CurTy->isIntegerTy() || Record.empty()) 2591 return error("Invalid record"); 2592 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2593 break; 2594 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2595 if (!CurTy->isIntegerTy() || Record.empty()) 2596 return error("Invalid record"); 2597 2598 APInt VInt = 2599 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2600 V = ConstantInt::get(Context, VInt); 2601 2602 break; 2603 } 2604 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2605 if (Record.empty()) 2606 return error("Invalid record"); 2607 if (CurTy->isHalfTy()) 2608 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2609 APInt(16, (uint16_t)Record[0]))); 2610 else if (CurTy->isFloatTy()) 2611 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2612 APInt(32, (uint32_t)Record[0]))); 2613 else if (CurTy->isDoubleTy()) 2614 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2615 APInt(64, Record[0]))); 2616 else if (CurTy->isX86_FP80Ty()) { 2617 // Bits are not stored the same way as a normal i80 APInt, compensate. 2618 uint64_t Rearrange[2]; 2619 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2620 Rearrange[1] = Record[0] >> 48; 2621 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2622 APInt(80, Rearrange))); 2623 } else if (CurTy->isFP128Ty()) 2624 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2625 APInt(128, Record))); 2626 else if (CurTy->isPPC_FP128Ty()) 2627 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2628 APInt(128, Record))); 2629 else 2630 V = UndefValue::get(CurTy); 2631 break; 2632 } 2633 2634 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2635 if (Record.empty()) 2636 return error("Invalid record"); 2637 2638 unsigned Size = Record.size(); 2639 SmallVector<Constant*, 16> Elts; 2640 2641 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2642 for (unsigned i = 0; i != Size; ++i) 2643 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2644 STy->getElementType(i))); 2645 V = ConstantStruct::get(STy, Elts); 2646 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2647 Type *EltTy = ATy->getElementType(); 2648 for (unsigned i = 0; i != Size; ++i) 2649 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2650 V = ConstantArray::get(ATy, Elts); 2651 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2652 Type *EltTy = VTy->getElementType(); 2653 for (unsigned i = 0; i != Size; ++i) 2654 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2655 V = ConstantVector::get(Elts); 2656 } else { 2657 V = UndefValue::get(CurTy); 2658 } 2659 break; 2660 } 2661 case bitc::CST_CODE_STRING: // STRING: [values] 2662 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2663 if (Record.empty()) 2664 return error("Invalid record"); 2665 2666 SmallString<16> Elts(Record.begin(), Record.end()); 2667 V = ConstantDataArray::getString(Context, Elts, 2668 BitCode == bitc::CST_CODE_CSTRING); 2669 break; 2670 } 2671 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2672 if (Record.empty()) 2673 return error("Invalid record"); 2674 2675 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2676 if (EltTy->isIntegerTy(8)) { 2677 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2678 if (isa<VectorType>(CurTy)) 2679 V = ConstantDataVector::get(Context, Elts); 2680 else 2681 V = ConstantDataArray::get(Context, Elts); 2682 } else if (EltTy->isIntegerTy(16)) { 2683 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2684 if (isa<VectorType>(CurTy)) 2685 V = ConstantDataVector::get(Context, Elts); 2686 else 2687 V = ConstantDataArray::get(Context, Elts); 2688 } else if (EltTy->isIntegerTy(32)) { 2689 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2690 if (isa<VectorType>(CurTy)) 2691 V = ConstantDataVector::get(Context, Elts); 2692 else 2693 V = ConstantDataArray::get(Context, Elts); 2694 } else if (EltTy->isIntegerTy(64)) { 2695 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2696 if (isa<VectorType>(CurTy)) 2697 V = ConstantDataVector::get(Context, Elts); 2698 else 2699 V = ConstantDataArray::get(Context, Elts); 2700 } else if (EltTy->isHalfTy()) { 2701 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2702 if (isa<VectorType>(CurTy)) 2703 V = ConstantDataVector::getFP(Context, Elts); 2704 else 2705 V = ConstantDataArray::getFP(Context, Elts); 2706 } else if (EltTy->isFloatTy()) { 2707 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2708 if (isa<VectorType>(CurTy)) 2709 V = ConstantDataVector::getFP(Context, Elts); 2710 else 2711 V = ConstantDataArray::getFP(Context, Elts); 2712 } else if (EltTy->isDoubleTy()) { 2713 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2714 if (isa<VectorType>(CurTy)) 2715 V = ConstantDataVector::getFP(Context, Elts); 2716 else 2717 V = ConstantDataArray::getFP(Context, Elts); 2718 } else { 2719 return error("Invalid type for value"); 2720 } 2721 break; 2722 } 2723 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2724 if (Record.size() < 3) 2725 return error("Invalid record"); 2726 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2727 if (Opc < 0) { 2728 V = UndefValue::get(CurTy); // Unknown binop. 2729 } else { 2730 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2731 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2732 unsigned Flags = 0; 2733 if (Record.size() >= 4) { 2734 if (Opc == Instruction::Add || 2735 Opc == Instruction::Sub || 2736 Opc == Instruction::Mul || 2737 Opc == Instruction::Shl) { 2738 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2739 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2740 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2741 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2742 } else if (Opc == Instruction::SDiv || 2743 Opc == Instruction::UDiv || 2744 Opc == Instruction::LShr || 2745 Opc == Instruction::AShr) { 2746 if (Record[3] & (1 << bitc::PEO_EXACT)) 2747 Flags |= SDivOperator::IsExact; 2748 } 2749 } 2750 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2751 } 2752 break; 2753 } 2754 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2755 if (Record.size() < 3) 2756 return error("Invalid record"); 2757 int Opc = getDecodedCastOpcode(Record[0]); 2758 if (Opc < 0) { 2759 V = UndefValue::get(CurTy); // Unknown cast. 2760 } else { 2761 Type *OpTy = getTypeByID(Record[1]); 2762 if (!OpTy) 2763 return error("Invalid record"); 2764 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2765 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2766 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2767 } 2768 break; 2769 } 2770 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2771 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2772 unsigned OpNum = 0; 2773 Type *PointeeType = nullptr; 2774 if (Record.size() % 2) 2775 PointeeType = getTypeByID(Record[OpNum++]); 2776 SmallVector<Constant*, 16> Elts; 2777 while (OpNum != Record.size()) { 2778 Type *ElTy = getTypeByID(Record[OpNum++]); 2779 if (!ElTy) 2780 return error("Invalid record"); 2781 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2782 } 2783 2784 if (PointeeType && 2785 PointeeType != 2786 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2787 ->getElementType()) 2788 return error("Explicit gep operator type does not match pointee type " 2789 "of pointer operand"); 2790 2791 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2792 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2793 BitCode == 2794 bitc::CST_CODE_CE_INBOUNDS_GEP); 2795 break; 2796 } 2797 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2798 if (Record.size() < 3) 2799 return error("Invalid record"); 2800 2801 Type *SelectorTy = Type::getInt1Ty(Context); 2802 2803 // The selector might be an i1 or an <n x i1> 2804 // Get the type from the ValueList before getting a forward ref. 2805 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2806 if (Value *V = ValueList[Record[0]]) 2807 if (SelectorTy != V->getType()) 2808 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2809 2810 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2811 SelectorTy), 2812 ValueList.getConstantFwdRef(Record[1],CurTy), 2813 ValueList.getConstantFwdRef(Record[2],CurTy)); 2814 break; 2815 } 2816 case bitc::CST_CODE_CE_EXTRACTELT 2817 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2818 if (Record.size() < 3) 2819 return error("Invalid record"); 2820 VectorType *OpTy = 2821 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2822 if (!OpTy) 2823 return error("Invalid record"); 2824 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2825 Constant *Op1 = nullptr; 2826 if (Record.size() == 4) { 2827 Type *IdxTy = getTypeByID(Record[2]); 2828 if (!IdxTy) 2829 return error("Invalid record"); 2830 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2831 } else // TODO: Remove with llvm 4.0 2832 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2833 if (!Op1) 2834 return error("Invalid record"); 2835 V = ConstantExpr::getExtractElement(Op0, Op1); 2836 break; 2837 } 2838 case bitc::CST_CODE_CE_INSERTELT 2839 : { // CE_INSERTELT: [opval, opval, opty, opval] 2840 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2841 if (Record.size() < 3 || !OpTy) 2842 return error("Invalid record"); 2843 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2844 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2845 OpTy->getElementType()); 2846 Constant *Op2 = nullptr; 2847 if (Record.size() == 4) { 2848 Type *IdxTy = getTypeByID(Record[2]); 2849 if (!IdxTy) 2850 return error("Invalid record"); 2851 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2852 } else // TODO: Remove with llvm 4.0 2853 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2854 if (!Op2) 2855 return error("Invalid record"); 2856 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2857 break; 2858 } 2859 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2860 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2861 if (Record.size() < 3 || !OpTy) 2862 return error("Invalid record"); 2863 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2864 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2865 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2866 OpTy->getNumElements()); 2867 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2868 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2869 break; 2870 } 2871 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2872 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2873 VectorType *OpTy = 2874 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2875 if (Record.size() < 4 || !RTy || !OpTy) 2876 return error("Invalid record"); 2877 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2878 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2879 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2880 RTy->getNumElements()); 2881 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2882 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2883 break; 2884 } 2885 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2886 if (Record.size() < 4) 2887 return error("Invalid record"); 2888 Type *OpTy = getTypeByID(Record[0]); 2889 if (!OpTy) 2890 return error("Invalid record"); 2891 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2892 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2893 2894 if (OpTy->isFPOrFPVectorTy()) 2895 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2896 else 2897 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2898 break; 2899 } 2900 // This maintains backward compatibility, pre-asm dialect keywords. 2901 // FIXME: Remove with the 4.0 release. 2902 case bitc::CST_CODE_INLINEASM_OLD: { 2903 if (Record.size() < 2) 2904 return error("Invalid record"); 2905 std::string AsmStr, ConstrStr; 2906 bool HasSideEffects = Record[0] & 1; 2907 bool IsAlignStack = Record[0] >> 1; 2908 unsigned AsmStrSize = Record[1]; 2909 if (2+AsmStrSize >= Record.size()) 2910 return error("Invalid record"); 2911 unsigned ConstStrSize = Record[2+AsmStrSize]; 2912 if (3+AsmStrSize+ConstStrSize > Record.size()) 2913 return error("Invalid record"); 2914 2915 for (unsigned i = 0; i != AsmStrSize; ++i) 2916 AsmStr += (char)Record[2+i]; 2917 for (unsigned i = 0; i != ConstStrSize; ++i) 2918 ConstrStr += (char)Record[3+AsmStrSize+i]; 2919 PointerType *PTy = cast<PointerType>(CurTy); 2920 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2921 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2922 break; 2923 } 2924 // This version adds support for the asm dialect keywords (e.g., 2925 // inteldialect). 2926 case bitc::CST_CODE_INLINEASM: { 2927 if (Record.size() < 2) 2928 return error("Invalid record"); 2929 std::string AsmStr, ConstrStr; 2930 bool HasSideEffects = Record[0] & 1; 2931 bool IsAlignStack = (Record[0] >> 1) & 1; 2932 unsigned AsmDialect = Record[0] >> 2; 2933 unsigned AsmStrSize = Record[1]; 2934 if (2+AsmStrSize >= Record.size()) 2935 return error("Invalid record"); 2936 unsigned ConstStrSize = Record[2+AsmStrSize]; 2937 if (3+AsmStrSize+ConstStrSize > Record.size()) 2938 return error("Invalid record"); 2939 2940 for (unsigned i = 0; i != AsmStrSize; ++i) 2941 AsmStr += (char)Record[2+i]; 2942 for (unsigned i = 0; i != ConstStrSize; ++i) 2943 ConstrStr += (char)Record[3+AsmStrSize+i]; 2944 PointerType *PTy = cast<PointerType>(CurTy); 2945 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2946 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2947 InlineAsm::AsmDialect(AsmDialect)); 2948 break; 2949 } 2950 case bitc::CST_CODE_BLOCKADDRESS:{ 2951 if (Record.size() < 3) 2952 return error("Invalid record"); 2953 Type *FnTy = getTypeByID(Record[0]); 2954 if (!FnTy) 2955 return error("Invalid record"); 2956 Function *Fn = 2957 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2958 if (!Fn) 2959 return error("Invalid record"); 2960 2961 // If the function is already parsed we can insert the block address right 2962 // away. 2963 BasicBlock *BB; 2964 unsigned BBID = Record[2]; 2965 if (!BBID) 2966 // Invalid reference to entry block. 2967 return error("Invalid ID"); 2968 if (!Fn->empty()) { 2969 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2970 for (size_t I = 0, E = BBID; I != E; ++I) { 2971 if (BBI == BBE) 2972 return error("Invalid ID"); 2973 ++BBI; 2974 } 2975 BB = &*BBI; 2976 } else { 2977 // Otherwise insert a placeholder and remember it so it can be inserted 2978 // when the function is parsed. 2979 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2980 if (FwdBBs.empty()) 2981 BasicBlockFwdRefQueue.push_back(Fn); 2982 if (FwdBBs.size() < BBID + 1) 2983 FwdBBs.resize(BBID + 1); 2984 if (!FwdBBs[BBID]) 2985 FwdBBs[BBID] = BasicBlock::Create(Context); 2986 BB = FwdBBs[BBID]; 2987 } 2988 V = BlockAddress::get(Fn, BB); 2989 break; 2990 } 2991 } 2992 2993 ValueList.assignValue(V, NextCstNo); 2994 ++NextCstNo; 2995 } 2996 } 2997 2998 std::error_code BitcodeReader::parseUseLists() { 2999 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3000 return error("Invalid record"); 3001 3002 // Read all the records. 3003 SmallVector<uint64_t, 64> Record; 3004 while (1) { 3005 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3006 3007 switch (Entry.Kind) { 3008 case BitstreamEntry::SubBlock: // Handled for us already. 3009 case BitstreamEntry::Error: 3010 return error("Malformed block"); 3011 case BitstreamEntry::EndBlock: 3012 return std::error_code(); 3013 case BitstreamEntry::Record: 3014 // The interesting case. 3015 break; 3016 } 3017 3018 // Read a use list record. 3019 Record.clear(); 3020 bool IsBB = false; 3021 switch (Stream.readRecord(Entry.ID, Record)) { 3022 default: // Default behavior: unknown type. 3023 break; 3024 case bitc::USELIST_CODE_BB: 3025 IsBB = true; 3026 // fallthrough 3027 case bitc::USELIST_CODE_DEFAULT: { 3028 unsigned RecordLength = Record.size(); 3029 if (RecordLength < 3) 3030 // Records should have at least an ID and two indexes. 3031 return error("Invalid record"); 3032 unsigned ID = Record.back(); 3033 Record.pop_back(); 3034 3035 Value *V; 3036 if (IsBB) { 3037 assert(ID < FunctionBBs.size() && "Basic block not found"); 3038 V = FunctionBBs[ID]; 3039 } else 3040 V = ValueList[ID]; 3041 unsigned NumUses = 0; 3042 SmallDenseMap<const Use *, unsigned, 16> Order; 3043 for (const Use &U : V->materialized_uses()) { 3044 if (++NumUses > Record.size()) 3045 break; 3046 Order[&U] = Record[NumUses - 1]; 3047 } 3048 if (Order.size() != Record.size() || NumUses > Record.size()) 3049 // Mismatches can happen if the functions are being materialized lazily 3050 // (out-of-order), or a value has been upgraded. 3051 break; 3052 3053 V->sortUseList([&](const Use &L, const Use &R) { 3054 return Order.lookup(&L) < Order.lookup(&R); 3055 }); 3056 break; 3057 } 3058 } 3059 } 3060 } 3061 3062 /// When we see the block for metadata, remember where it is and then skip it. 3063 /// This lets us lazily deserialize the metadata. 3064 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3065 // Save the current stream state. 3066 uint64_t CurBit = Stream.GetCurrentBitNo(); 3067 DeferredMetadataInfo.push_back(CurBit); 3068 3069 // Skip over the block for now. 3070 if (Stream.SkipBlock()) 3071 return error("Invalid record"); 3072 return std::error_code(); 3073 } 3074 3075 std::error_code BitcodeReader::materializeMetadata() { 3076 for (uint64_t BitPos : DeferredMetadataInfo) { 3077 // Move the bit stream to the saved position. 3078 Stream.JumpToBit(BitPos); 3079 if (std::error_code EC = parseMetadata(true)) 3080 return EC; 3081 } 3082 DeferredMetadataInfo.clear(); 3083 return std::error_code(); 3084 } 3085 3086 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3087 3088 void BitcodeReader::saveMetadataList( 3089 DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) { 3090 for (unsigned ID = 0; ID < MetadataList.size(); ++ID) { 3091 Metadata *MD = MetadataList[ID]; 3092 auto *N = dyn_cast_or_null<MDNode>(MD); 3093 assert((!N || (N->isResolved() || N->isTemporary())) && 3094 "Found non-resolved non-temp MDNode while saving metadata"); 3095 // Save all values if !OnlyTempMD, otherwise just the temporary metadata. 3096 // Note that in the !OnlyTempMD case we need to save all Metadata, not 3097 // just MDNode, as we may have references to other types of module-level 3098 // metadata (e.g. ValueAsMetadata) from instructions. 3099 if (!OnlyTempMD || (N && N->isTemporary())) { 3100 // Will call this after materializing each function, in order to 3101 // handle remapping of the function's instructions/metadata. 3102 auto IterBool = MetadataToIDs.insert(std::make_pair(MD, ID)); 3103 // See if we already have an entry in that case. 3104 if (OnlyTempMD && !IterBool.second) { 3105 assert(IterBool.first->second == ID && 3106 "Inconsistent metadata value id"); 3107 continue; 3108 } 3109 if (N && N->isTemporary()) 3110 // Ensure that we assert if someone tries to RAUW this temporary 3111 // metadata while it is the key of a map. The flag will be set back 3112 // to true when the saved metadata list is destroyed. 3113 N->setCanReplace(false); 3114 } 3115 } 3116 } 3117 3118 /// When we see the block for a function body, remember where it is and then 3119 /// skip it. This lets us lazily deserialize the functions. 3120 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3121 // Get the function we are talking about. 3122 if (FunctionsWithBodies.empty()) 3123 return error("Insufficient function protos"); 3124 3125 Function *Fn = FunctionsWithBodies.back(); 3126 FunctionsWithBodies.pop_back(); 3127 3128 // Save the current stream state. 3129 uint64_t CurBit = Stream.GetCurrentBitNo(); 3130 assert( 3131 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3132 "Mismatch between VST and scanned function offsets"); 3133 DeferredFunctionInfo[Fn] = CurBit; 3134 3135 // Skip over the function block for now. 3136 if (Stream.SkipBlock()) 3137 return error("Invalid record"); 3138 return std::error_code(); 3139 } 3140 3141 std::error_code BitcodeReader::globalCleanup() { 3142 // Patch the initializers for globals and aliases up. 3143 resolveGlobalAndAliasInits(); 3144 if (!GlobalInits.empty() || !AliasInits.empty()) 3145 return error("Malformed global initializer set"); 3146 3147 // Look for intrinsic functions which need to be upgraded at some point 3148 for (Function &F : *TheModule) { 3149 Function *NewFn; 3150 if (UpgradeIntrinsicFunction(&F, NewFn)) 3151 UpgradedIntrinsics[&F] = NewFn; 3152 } 3153 3154 // Look for global variables which need to be renamed. 3155 for (GlobalVariable &GV : TheModule->globals()) 3156 UpgradeGlobalVariable(&GV); 3157 3158 // Force deallocation of memory for these vectors to favor the client that 3159 // want lazy deserialization. 3160 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3161 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3162 return std::error_code(); 3163 } 3164 3165 /// Support for lazy parsing of function bodies. This is required if we 3166 /// either have an old bitcode file without a VST forward declaration record, 3167 /// or if we have an anonymous function being materialized, since anonymous 3168 /// functions do not have a name and are therefore not in the VST. 3169 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3170 Stream.JumpToBit(NextUnreadBit); 3171 3172 if (Stream.AtEndOfStream()) 3173 return error("Could not find function in stream"); 3174 3175 if (!SeenFirstFunctionBody) 3176 return error("Trying to materialize functions before seeing function blocks"); 3177 3178 // An old bitcode file with the symbol table at the end would have 3179 // finished the parse greedily. 3180 assert(SeenValueSymbolTable); 3181 3182 SmallVector<uint64_t, 64> Record; 3183 3184 while (1) { 3185 BitstreamEntry Entry = Stream.advance(); 3186 switch (Entry.Kind) { 3187 default: 3188 return error("Expect SubBlock"); 3189 case BitstreamEntry::SubBlock: 3190 switch (Entry.ID) { 3191 default: 3192 return error("Expect function block"); 3193 case bitc::FUNCTION_BLOCK_ID: 3194 if (std::error_code EC = rememberAndSkipFunctionBody()) 3195 return EC; 3196 NextUnreadBit = Stream.GetCurrentBitNo(); 3197 return std::error_code(); 3198 } 3199 } 3200 } 3201 } 3202 3203 std::error_code BitcodeReader::parseBitcodeVersion() { 3204 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3205 return error("Invalid record"); 3206 3207 // Read all the records. 3208 SmallVector<uint64_t, 64> Record; 3209 while (1) { 3210 BitstreamEntry Entry = Stream.advance(); 3211 3212 switch (Entry.Kind) { 3213 default: 3214 case BitstreamEntry::Error: 3215 return error("Malformed block"); 3216 case BitstreamEntry::EndBlock: 3217 return std::error_code(); 3218 case BitstreamEntry::Record: 3219 // The interesting case. 3220 break; 3221 } 3222 3223 // Read a record. 3224 Record.clear(); 3225 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3226 switch (BitCode) { 3227 default: // Default behavior: reject 3228 return error("Invalid value"); 3229 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3230 // N] 3231 convertToString(Record, 0, ProducerIdentification); 3232 break; 3233 } 3234 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3235 unsigned epoch = (unsigned)Record[0]; 3236 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3237 return error( 3238 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3239 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3240 } 3241 } 3242 } 3243 } 3244 } 3245 3246 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3247 bool ShouldLazyLoadMetadata) { 3248 if (ResumeBit) 3249 Stream.JumpToBit(ResumeBit); 3250 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3251 return error("Invalid record"); 3252 3253 SmallVector<uint64_t, 64> Record; 3254 std::vector<std::string> SectionTable; 3255 std::vector<std::string> GCTable; 3256 3257 // Read all the records for this module. 3258 while (1) { 3259 BitstreamEntry Entry = Stream.advance(); 3260 3261 switch (Entry.Kind) { 3262 case BitstreamEntry::Error: 3263 return error("Malformed block"); 3264 case BitstreamEntry::EndBlock: 3265 return globalCleanup(); 3266 3267 case BitstreamEntry::SubBlock: 3268 switch (Entry.ID) { 3269 default: // Skip unknown content. 3270 if (Stream.SkipBlock()) 3271 return error("Invalid record"); 3272 break; 3273 case bitc::BLOCKINFO_BLOCK_ID: 3274 if (Stream.ReadBlockInfoBlock()) 3275 return error("Malformed block"); 3276 break; 3277 case bitc::PARAMATTR_BLOCK_ID: 3278 if (std::error_code EC = parseAttributeBlock()) 3279 return EC; 3280 break; 3281 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3282 if (std::error_code EC = parseAttributeGroupBlock()) 3283 return EC; 3284 break; 3285 case bitc::TYPE_BLOCK_ID_NEW: 3286 if (std::error_code EC = parseTypeTable()) 3287 return EC; 3288 break; 3289 case bitc::VALUE_SYMTAB_BLOCK_ID: 3290 if (!SeenValueSymbolTable) { 3291 // Either this is an old form VST without function index and an 3292 // associated VST forward declaration record (which would have caused 3293 // the VST to be jumped to and parsed before it was encountered 3294 // normally in the stream), or there were no function blocks to 3295 // trigger an earlier parsing of the VST. 3296 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3297 if (std::error_code EC = parseValueSymbolTable()) 3298 return EC; 3299 SeenValueSymbolTable = true; 3300 } else { 3301 // We must have had a VST forward declaration record, which caused 3302 // the parser to jump to and parse the VST earlier. 3303 assert(VSTOffset > 0); 3304 if (Stream.SkipBlock()) 3305 return error("Invalid record"); 3306 } 3307 break; 3308 case bitc::CONSTANTS_BLOCK_ID: 3309 if (std::error_code EC = parseConstants()) 3310 return EC; 3311 if (std::error_code EC = resolveGlobalAndAliasInits()) 3312 return EC; 3313 break; 3314 case bitc::METADATA_BLOCK_ID: 3315 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3316 if (std::error_code EC = rememberAndSkipMetadata()) 3317 return EC; 3318 break; 3319 } 3320 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3321 if (std::error_code EC = parseMetadata(true)) 3322 return EC; 3323 break; 3324 case bitc::METADATA_KIND_BLOCK_ID: 3325 if (std::error_code EC = parseMetadataKinds()) 3326 return EC; 3327 break; 3328 case bitc::FUNCTION_BLOCK_ID: 3329 // If this is the first function body we've seen, reverse the 3330 // FunctionsWithBodies list. 3331 if (!SeenFirstFunctionBody) { 3332 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3333 if (std::error_code EC = globalCleanup()) 3334 return EC; 3335 SeenFirstFunctionBody = true; 3336 } 3337 3338 if (VSTOffset > 0) { 3339 // If we have a VST forward declaration record, make sure we 3340 // parse the VST now if we haven't already. It is needed to 3341 // set up the DeferredFunctionInfo vector for lazy reading. 3342 if (!SeenValueSymbolTable) { 3343 if (std::error_code EC = 3344 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3345 return EC; 3346 SeenValueSymbolTable = true; 3347 // Fall through so that we record the NextUnreadBit below. 3348 // This is necessary in case we have an anonymous function that 3349 // is later materialized. Since it will not have a VST entry we 3350 // need to fall back to the lazy parse to find its offset. 3351 } else { 3352 // If we have a VST forward declaration record, but have already 3353 // parsed the VST (just above, when the first function body was 3354 // encountered here), then we are resuming the parse after 3355 // materializing functions. The ResumeBit points to the 3356 // start of the last function block recorded in the 3357 // DeferredFunctionInfo map. Skip it. 3358 if (Stream.SkipBlock()) 3359 return error("Invalid record"); 3360 continue; 3361 } 3362 } 3363 3364 // Support older bitcode files that did not have the function 3365 // index in the VST, nor a VST forward declaration record, as 3366 // well as anonymous functions that do not have VST entries. 3367 // Build the DeferredFunctionInfo vector on the fly. 3368 if (std::error_code EC = rememberAndSkipFunctionBody()) 3369 return EC; 3370 3371 // Suspend parsing when we reach the function bodies. Subsequent 3372 // materialization calls will resume it when necessary. If the bitcode 3373 // file is old, the symbol table will be at the end instead and will not 3374 // have been seen yet. In this case, just finish the parse now. 3375 if (SeenValueSymbolTable) { 3376 NextUnreadBit = Stream.GetCurrentBitNo(); 3377 return std::error_code(); 3378 } 3379 break; 3380 case bitc::USELIST_BLOCK_ID: 3381 if (std::error_code EC = parseUseLists()) 3382 return EC; 3383 break; 3384 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3385 if (std::error_code EC = parseOperandBundleTags()) 3386 return EC; 3387 break; 3388 } 3389 continue; 3390 3391 case BitstreamEntry::Record: 3392 // The interesting case. 3393 break; 3394 } 3395 3396 // Read a record. 3397 auto BitCode = Stream.readRecord(Entry.ID, Record); 3398 switch (BitCode) { 3399 default: break; // Default behavior, ignore unknown content. 3400 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3401 if (Record.size() < 1) 3402 return error("Invalid record"); 3403 // Only version #0 and #1 are supported so far. 3404 unsigned module_version = Record[0]; 3405 switch (module_version) { 3406 default: 3407 return error("Invalid value"); 3408 case 0: 3409 UseRelativeIDs = false; 3410 break; 3411 case 1: 3412 UseRelativeIDs = true; 3413 break; 3414 } 3415 break; 3416 } 3417 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3418 std::string S; 3419 if (convertToString(Record, 0, S)) 3420 return error("Invalid record"); 3421 TheModule->setTargetTriple(S); 3422 break; 3423 } 3424 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3425 std::string S; 3426 if (convertToString(Record, 0, S)) 3427 return error("Invalid record"); 3428 TheModule->setDataLayout(S); 3429 break; 3430 } 3431 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3432 std::string S; 3433 if (convertToString(Record, 0, S)) 3434 return error("Invalid record"); 3435 TheModule->setModuleInlineAsm(S); 3436 break; 3437 } 3438 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3439 // FIXME: Remove in 4.0. 3440 std::string S; 3441 if (convertToString(Record, 0, S)) 3442 return error("Invalid record"); 3443 // Ignore value. 3444 break; 3445 } 3446 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3447 std::string S; 3448 if (convertToString(Record, 0, S)) 3449 return error("Invalid record"); 3450 SectionTable.push_back(S); 3451 break; 3452 } 3453 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3454 std::string S; 3455 if (convertToString(Record, 0, S)) 3456 return error("Invalid record"); 3457 GCTable.push_back(S); 3458 break; 3459 } 3460 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3461 if (Record.size() < 2) 3462 return error("Invalid record"); 3463 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3464 unsigned ComdatNameSize = Record[1]; 3465 std::string ComdatName; 3466 ComdatName.reserve(ComdatNameSize); 3467 for (unsigned i = 0; i != ComdatNameSize; ++i) 3468 ComdatName += (char)Record[2 + i]; 3469 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3470 C->setSelectionKind(SK); 3471 ComdatList.push_back(C); 3472 break; 3473 } 3474 // GLOBALVAR: [pointer type, isconst, initid, 3475 // linkage, alignment, section, visibility, threadlocal, 3476 // unnamed_addr, externally_initialized, dllstorageclass, 3477 // comdat] 3478 case bitc::MODULE_CODE_GLOBALVAR: { 3479 if (Record.size() < 6) 3480 return error("Invalid record"); 3481 Type *Ty = getTypeByID(Record[0]); 3482 if (!Ty) 3483 return error("Invalid record"); 3484 bool isConstant = Record[1] & 1; 3485 bool explicitType = Record[1] & 2; 3486 unsigned AddressSpace; 3487 if (explicitType) { 3488 AddressSpace = Record[1] >> 2; 3489 } else { 3490 if (!Ty->isPointerTy()) 3491 return error("Invalid type for value"); 3492 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3493 Ty = cast<PointerType>(Ty)->getElementType(); 3494 } 3495 3496 uint64_t RawLinkage = Record[3]; 3497 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3498 unsigned Alignment; 3499 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3500 return EC; 3501 std::string Section; 3502 if (Record[5]) { 3503 if (Record[5]-1 >= SectionTable.size()) 3504 return error("Invalid ID"); 3505 Section = SectionTable[Record[5]-1]; 3506 } 3507 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3508 // Local linkage must have default visibility. 3509 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3510 // FIXME: Change to an error if non-default in 4.0. 3511 Visibility = getDecodedVisibility(Record[6]); 3512 3513 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3514 if (Record.size() > 7) 3515 TLM = getDecodedThreadLocalMode(Record[7]); 3516 3517 bool UnnamedAddr = false; 3518 if (Record.size() > 8) 3519 UnnamedAddr = Record[8]; 3520 3521 bool ExternallyInitialized = false; 3522 if (Record.size() > 9) 3523 ExternallyInitialized = Record[9]; 3524 3525 GlobalVariable *NewGV = 3526 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3527 TLM, AddressSpace, ExternallyInitialized); 3528 NewGV->setAlignment(Alignment); 3529 if (!Section.empty()) 3530 NewGV->setSection(Section); 3531 NewGV->setVisibility(Visibility); 3532 NewGV->setUnnamedAddr(UnnamedAddr); 3533 3534 if (Record.size() > 10) 3535 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3536 else 3537 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3538 3539 ValueList.push_back(NewGV); 3540 3541 // Remember which value to use for the global initializer. 3542 if (unsigned InitID = Record[2]) 3543 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3544 3545 if (Record.size() > 11) { 3546 if (unsigned ComdatID = Record[11]) { 3547 if (ComdatID > ComdatList.size()) 3548 return error("Invalid global variable comdat ID"); 3549 NewGV->setComdat(ComdatList[ComdatID - 1]); 3550 } 3551 } else if (hasImplicitComdat(RawLinkage)) { 3552 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3553 } 3554 break; 3555 } 3556 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3557 // alignment, section, visibility, gc, unnamed_addr, 3558 // prologuedata, dllstorageclass, comdat, prefixdata] 3559 case bitc::MODULE_CODE_FUNCTION: { 3560 if (Record.size() < 8) 3561 return error("Invalid record"); 3562 Type *Ty = getTypeByID(Record[0]); 3563 if (!Ty) 3564 return error("Invalid record"); 3565 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3566 Ty = PTy->getElementType(); 3567 auto *FTy = dyn_cast<FunctionType>(Ty); 3568 if (!FTy) 3569 return error("Invalid type for value"); 3570 auto CC = static_cast<CallingConv::ID>(Record[1]); 3571 if (CC & ~CallingConv::MaxID) 3572 return error("Invalid calling convention ID"); 3573 3574 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3575 "", TheModule); 3576 3577 Func->setCallingConv(CC); 3578 bool isProto = Record[2]; 3579 uint64_t RawLinkage = Record[3]; 3580 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3581 Func->setAttributes(getAttributes(Record[4])); 3582 3583 unsigned Alignment; 3584 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3585 return EC; 3586 Func->setAlignment(Alignment); 3587 if (Record[6]) { 3588 if (Record[6]-1 >= SectionTable.size()) 3589 return error("Invalid ID"); 3590 Func->setSection(SectionTable[Record[6]-1]); 3591 } 3592 // Local linkage must have default visibility. 3593 if (!Func->hasLocalLinkage()) 3594 // FIXME: Change to an error if non-default in 4.0. 3595 Func->setVisibility(getDecodedVisibility(Record[7])); 3596 if (Record.size() > 8 && Record[8]) { 3597 if (Record[8]-1 >= GCTable.size()) 3598 return error("Invalid ID"); 3599 Func->setGC(GCTable[Record[8]-1].c_str()); 3600 } 3601 bool UnnamedAddr = false; 3602 if (Record.size() > 9) 3603 UnnamedAddr = Record[9]; 3604 Func->setUnnamedAddr(UnnamedAddr); 3605 if (Record.size() > 10 && Record[10] != 0) 3606 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3607 3608 if (Record.size() > 11) 3609 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3610 else 3611 upgradeDLLImportExportLinkage(Func, RawLinkage); 3612 3613 if (Record.size() > 12) { 3614 if (unsigned ComdatID = Record[12]) { 3615 if (ComdatID > ComdatList.size()) 3616 return error("Invalid function comdat ID"); 3617 Func->setComdat(ComdatList[ComdatID - 1]); 3618 } 3619 } else if (hasImplicitComdat(RawLinkage)) { 3620 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3621 } 3622 3623 if (Record.size() > 13 && Record[13] != 0) 3624 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3625 3626 if (Record.size() > 14 && Record[14] != 0) 3627 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3628 3629 ValueList.push_back(Func); 3630 3631 // If this is a function with a body, remember the prototype we are 3632 // creating now, so that we can match up the body with them later. 3633 if (!isProto) { 3634 Func->setIsMaterializable(true); 3635 FunctionsWithBodies.push_back(Func); 3636 DeferredFunctionInfo[Func] = 0; 3637 } 3638 break; 3639 } 3640 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3641 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3642 case bitc::MODULE_CODE_ALIAS: 3643 case bitc::MODULE_CODE_ALIAS_OLD: { 3644 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3645 if (Record.size() < (3 + (unsigned)NewRecord)) 3646 return error("Invalid record"); 3647 unsigned OpNum = 0; 3648 Type *Ty = getTypeByID(Record[OpNum++]); 3649 if (!Ty) 3650 return error("Invalid record"); 3651 3652 unsigned AddrSpace; 3653 if (!NewRecord) { 3654 auto *PTy = dyn_cast<PointerType>(Ty); 3655 if (!PTy) 3656 return error("Invalid type for value"); 3657 Ty = PTy->getElementType(); 3658 AddrSpace = PTy->getAddressSpace(); 3659 } else { 3660 AddrSpace = Record[OpNum++]; 3661 } 3662 3663 auto Val = Record[OpNum++]; 3664 auto Linkage = Record[OpNum++]; 3665 auto *NewGA = GlobalAlias::create( 3666 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3667 // Old bitcode files didn't have visibility field. 3668 // Local linkage must have default visibility. 3669 if (OpNum != Record.size()) { 3670 auto VisInd = OpNum++; 3671 if (!NewGA->hasLocalLinkage()) 3672 // FIXME: Change to an error if non-default in 4.0. 3673 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3674 } 3675 if (OpNum != Record.size()) 3676 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3677 else 3678 upgradeDLLImportExportLinkage(NewGA, Linkage); 3679 if (OpNum != Record.size()) 3680 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3681 if (OpNum != Record.size()) 3682 NewGA->setUnnamedAddr(Record[OpNum++]); 3683 ValueList.push_back(NewGA); 3684 AliasInits.push_back(std::make_pair(NewGA, Val)); 3685 break; 3686 } 3687 /// MODULE_CODE_PURGEVALS: [numvals] 3688 case bitc::MODULE_CODE_PURGEVALS: 3689 // Trim down the value list to the specified size. 3690 if (Record.size() < 1 || Record[0] > ValueList.size()) 3691 return error("Invalid record"); 3692 ValueList.shrinkTo(Record[0]); 3693 break; 3694 /// MODULE_CODE_VSTOFFSET: [offset] 3695 case bitc::MODULE_CODE_VSTOFFSET: 3696 if (Record.size() < 1) 3697 return error("Invalid record"); 3698 VSTOffset = Record[0]; 3699 break; 3700 /// MODULE_CODE_METADATA_VALUES: [numvals] 3701 case bitc::MODULE_CODE_METADATA_VALUES: 3702 if (Record.size() < 1) 3703 return error("Invalid record"); 3704 assert(!IsMetadataMaterialized); 3705 // This record contains the number of metadata values in the module-level 3706 // METADATA_BLOCK. It is used to support lazy parsing of metadata as 3707 // a postpass, where we will parse function-level metadata first. 3708 // This is needed because the ids of metadata are assigned implicitly 3709 // based on their ordering in the bitcode, with the function-level 3710 // metadata ids starting after the module-level metadata ids. Otherwise, 3711 // we would have to parse the module-level metadata block to prime the 3712 // MetadataList when we are lazy loading metadata during function 3713 // importing. Initialize the MetadataList size here based on the 3714 // record value, regardless of whether we are doing lazy metadata 3715 // loading, so that we have consistent handling and assertion 3716 // checking in parseMetadata for module-level metadata. 3717 NumModuleMDs = Record[0]; 3718 SeenModuleValuesRecord = true; 3719 assert(MetadataList.size() == 0); 3720 MetadataList.resize(NumModuleMDs); 3721 break; 3722 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3723 case bitc::MODULE_CODE_SOURCE_FILENAME: 3724 SmallString<128> ValueName; 3725 if (convertToString(Record, 0, ValueName)) 3726 return error("Invalid record"); 3727 TheModule->setSourceFileName(ValueName); 3728 break; 3729 } 3730 Record.clear(); 3731 } 3732 } 3733 3734 /// Helper to read the header common to all bitcode files. 3735 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3736 // Sniff for the signature. 3737 if (Stream.Read(8) != 'B' || 3738 Stream.Read(8) != 'C' || 3739 Stream.Read(4) != 0x0 || 3740 Stream.Read(4) != 0xC || 3741 Stream.Read(4) != 0xE || 3742 Stream.Read(4) != 0xD) 3743 return false; 3744 return true; 3745 } 3746 3747 std::error_code 3748 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3749 Module *M, bool ShouldLazyLoadMetadata) { 3750 TheModule = M; 3751 3752 if (std::error_code EC = initStream(std::move(Streamer))) 3753 return EC; 3754 3755 // Sniff for the signature. 3756 if (!hasValidBitcodeHeader(Stream)) 3757 return error("Invalid bitcode signature"); 3758 3759 // We expect a number of well-defined blocks, though we don't necessarily 3760 // need to understand them all. 3761 while (1) { 3762 if (Stream.AtEndOfStream()) { 3763 // We didn't really read a proper Module. 3764 return error("Malformed IR file"); 3765 } 3766 3767 BitstreamEntry Entry = 3768 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3769 3770 if (Entry.Kind != BitstreamEntry::SubBlock) 3771 return error("Malformed block"); 3772 3773 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3774 parseBitcodeVersion(); 3775 continue; 3776 } 3777 3778 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3779 return parseModule(0, ShouldLazyLoadMetadata); 3780 3781 if (Stream.SkipBlock()) 3782 return error("Invalid record"); 3783 } 3784 } 3785 3786 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3787 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3788 return error("Invalid record"); 3789 3790 SmallVector<uint64_t, 64> Record; 3791 3792 std::string Triple; 3793 // Read all the records for this module. 3794 while (1) { 3795 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3796 3797 switch (Entry.Kind) { 3798 case BitstreamEntry::SubBlock: // Handled for us already. 3799 case BitstreamEntry::Error: 3800 return error("Malformed block"); 3801 case BitstreamEntry::EndBlock: 3802 return Triple; 3803 case BitstreamEntry::Record: 3804 // The interesting case. 3805 break; 3806 } 3807 3808 // Read a record. 3809 switch (Stream.readRecord(Entry.ID, Record)) { 3810 default: break; // Default behavior, ignore unknown content. 3811 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3812 std::string S; 3813 if (convertToString(Record, 0, S)) 3814 return error("Invalid record"); 3815 Triple = S; 3816 break; 3817 } 3818 } 3819 Record.clear(); 3820 } 3821 llvm_unreachable("Exit infinite loop"); 3822 } 3823 3824 ErrorOr<std::string> BitcodeReader::parseTriple() { 3825 if (std::error_code EC = initStream(nullptr)) 3826 return EC; 3827 3828 // Sniff for the signature. 3829 if (!hasValidBitcodeHeader(Stream)) 3830 return error("Invalid bitcode signature"); 3831 3832 // We expect a number of well-defined blocks, though we don't necessarily 3833 // need to understand them all. 3834 while (1) { 3835 BitstreamEntry Entry = Stream.advance(); 3836 3837 switch (Entry.Kind) { 3838 case BitstreamEntry::Error: 3839 return error("Malformed block"); 3840 case BitstreamEntry::EndBlock: 3841 return std::error_code(); 3842 3843 case BitstreamEntry::SubBlock: 3844 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3845 return parseModuleTriple(); 3846 3847 // Ignore other sub-blocks. 3848 if (Stream.SkipBlock()) 3849 return error("Malformed block"); 3850 continue; 3851 3852 case BitstreamEntry::Record: 3853 Stream.skipRecord(Entry.ID); 3854 continue; 3855 } 3856 } 3857 } 3858 3859 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3860 if (std::error_code EC = initStream(nullptr)) 3861 return EC; 3862 3863 // Sniff for the signature. 3864 if (!hasValidBitcodeHeader(Stream)) 3865 return error("Invalid bitcode signature"); 3866 3867 // We expect a number of well-defined blocks, though we don't necessarily 3868 // need to understand them all. 3869 while (1) { 3870 BitstreamEntry Entry = Stream.advance(); 3871 switch (Entry.Kind) { 3872 case BitstreamEntry::Error: 3873 return error("Malformed block"); 3874 case BitstreamEntry::EndBlock: 3875 return std::error_code(); 3876 3877 case BitstreamEntry::SubBlock: 3878 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3879 if (std::error_code EC = parseBitcodeVersion()) 3880 return EC; 3881 return ProducerIdentification; 3882 } 3883 // Ignore other sub-blocks. 3884 if (Stream.SkipBlock()) 3885 return error("Malformed block"); 3886 continue; 3887 case BitstreamEntry::Record: 3888 Stream.skipRecord(Entry.ID); 3889 continue; 3890 } 3891 } 3892 } 3893 3894 /// Parse metadata attachments. 3895 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3896 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3897 return error("Invalid record"); 3898 3899 SmallVector<uint64_t, 64> Record; 3900 while (1) { 3901 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3902 3903 switch (Entry.Kind) { 3904 case BitstreamEntry::SubBlock: // Handled for us already. 3905 case BitstreamEntry::Error: 3906 return error("Malformed block"); 3907 case BitstreamEntry::EndBlock: 3908 return std::error_code(); 3909 case BitstreamEntry::Record: 3910 // The interesting case. 3911 break; 3912 } 3913 3914 // Read a metadata attachment record. 3915 Record.clear(); 3916 switch (Stream.readRecord(Entry.ID, Record)) { 3917 default: // Default behavior: ignore. 3918 break; 3919 case bitc::METADATA_ATTACHMENT: { 3920 unsigned RecordLength = Record.size(); 3921 if (Record.empty()) 3922 return error("Invalid record"); 3923 if (RecordLength % 2 == 0) { 3924 // A function attachment. 3925 for (unsigned I = 0; I != RecordLength; I += 2) { 3926 auto K = MDKindMap.find(Record[I]); 3927 if (K == MDKindMap.end()) 3928 return error("Invalid ID"); 3929 Metadata *MD = MetadataList.getValueFwdRef(Record[I + 1]); 3930 F.setMetadata(K->second, cast<MDNode>(MD)); 3931 } 3932 continue; 3933 } 3934 3935 // An instruction attachment. 3936 Instruction *Inst = InstructionList[Record[0]]; 3937 for (unsigned i = 1; i != RecordLength; i = i+2) { 3938 unsigned Kind = Record[i]; 3939 DenseMap<unsigned, unsigned>::iterator I = 3940 MDKindMap.find(Kind); 3941 if (I == MDKindMap.end()) 3942 return error("Invalid ID"); 3943 Metadata *Node = MetadataList.getValueFwdRef(Record[i + 1]); 3944 if (isa<LocalAsMetadata>(Node)) 3945 // Drop the attachment. This used to be legal, but there's no 3946 // upgrade path. 3947 break; 3948 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3949 if (I->second == LLVMContext::MD_tbaa) 3950 InstsWithTBAATag.push_back(Inst); 3951 } 3952 break; 3953 } 3954 } 3955 } 3956 } 3957 3958 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3959 LLVMContext &Context = PtrType->getContext(); 3960 if (!isa<PointerType>(PtrType)) 3961 return error(Context, "Load/Store operand is not a pointer type"); 3962 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3963 3964 if (ValType && ValType != ElemType) 3965 return error(Context, "Explicit load/store type does not match pointee " 3966 "type of pointer operand"); 3967 if (!PointerType::isLoadableOrStorableType(ElemType)) 3968 return error(Context, "Cannot load/store from pointer"); 3969 return std::error_code(); 3970 } 3971 3972 /// Lazily parse the specified function body block. 3973 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3974 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3975 return error("Invalid record"); 3976 3977 InstructionList.clear(); 3978 unsigned ModuleValueListSize = ValueList.size(); 3979 unsigned ModuleMetadataListSize = MetadataList.size(); 3980 3981 // Add all the function arguments to the value table. 3982 for (Argument &I : F->args()) 3983 ValueList.push_back(&I); 3984 3985 unsigned NextValueNo = ValueList.size(); 3986 BasicBlock *CurBB = nullptr; 3987 unsigned CurBBNo = 0; 3988 3989 DebugLoc LastLoc; 3990 auto getLastInstruction = [&]() -> Instruction * { 3991 if (CurBB && !CurBB->empty()) 3992 return &CurBB->back(); 3993 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3994 !FunctionBBs[CurBBNo - 1]->empty()) 3995 return &FunctionBBs[CurBBNo - 1]->back(); 3996 return nullptr; 3997 }; 3998 3999 std::vector<OperandBundleDef> OperandBundles; 4000 4001 // Read all the records. 4002 SmallVector<uint64_t, 64> Record; 4003 while (1) { 4004 BitstreamEntry Entry = Stream.advance(); 4005 4006 switch (Entry.Kind) { 4007 case BitstreamEntry::Error: 4008 return error("Malformed block"); 4009 case BitstreamEntry::EndBlock: 4010 goto OutOfRecordLoop; 4011 4012 case BitstreamEntry::SubBlock: 4013 switch (Entry.ID) { 4014 default: // Skip unknown content. 4015 if (Stream.SkipBlock()) 4016 return error("Invalid record"); 4017 break; 4018 case bitc::CONSTANTS_BLOCK_ID: 4019 if (std::error_code EC = parseConstants()) 4020 return EC; 4021 NextValueNo = ValueList.size(); 4022 break; 4023 case bitc::VALUE_SYMTAB_BLOCK_ID: 4024 if (std::error_code EC = parseValueSymbolTable()) 4025 return EC; 4026 break; 4027 case bitc::METADATA_ATTACHMENT_ID: 4028 if (std::error_code EC = parseMetadataAttachment(*F)) 4029 return EC; 4030 break; 4031 case bitc::METADATA_BLOCK_ID: 4032 if (std::error_code EC = parseMetadata()) 4033 return EC; 4034 break; 4035 case bitc::USELIST_BLOCK_ID: 4036 if (std::error_code EC = parseUseLists()) 4037 return EC; 4038 break; 4039 } 4040 continue; 4041 4042 case BitstreamEntry::Record: 4043 // The interesting case. 4044 break; 4045 } 4046 4047 // Read a record. 4048 Record.clear(); 4049 Instruction *I = nullptr; 4050 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4051 switch (BitCode) { 4052 default: // Default behavior: reject 4053 return error("Invalid value"); 4054 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4055 if (Record.size() < 1 || Record[0] == 0) 4056 return error("Invalid record"); 4057 // Create all the basic blocks for the function. 4058 FunctionBBs.resize(Record[0]); 4059 4060 // See if anything took the address of blocks in this function. 4061 auto BBFRI = BasicBlockFwdRefs.find(F); 4062 if (BBFRI == BasicBlockFwdRefs.end()) { 4063 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4064 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4065 } else { 4066 auto &BBRefs = BBFRI->second; 4067 // Check for invalid basic block references. 4068 if (BBRefs.size() > FunctionBBs.size()) 4069 return error("Invalid ID"); 4070 assert(!BBRefs.empty() && "Unexpected empty array"); 4071 assert(!BBRefs.front() && "Invalid reference to entry block"); 4072 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4073 ++I) 4074 if (I < RE && BBRefs[I]) { 4075 BBRefs[I]->insertInto(F); 4076 FunctionBBs[I] = BBRefs[I]; 4077 } else { 4078 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4079 } 4080 4081 // Erase from the table. 4082 BasicBlockFwdRefs.erase(BBFRI); 4083 } 4084 4085 CurBB = FunctionBBs[0]; 4086 continue; 4087 } 4088 4089 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4090 // This record indicates that the last instruction is at the same 4091 // location as the previous instruction with a location. 4092 I = getLastInstruction(); 4093 4094 if (!I) 4095 return error("Invalid record"); 4096 I->setDebugLoc(LastLoc); 4097 I = nullptr; 4098 continue; 4099 4100 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4101 I = getLastInstruction(); 4102 if (!I || Record.size() < 4) 4103 return error("Invalid record"); 4104 4105 unsigned Line = Record[0], Col = Record[1]; 4106 unsigned ScopeID = Record[2], IAID = Record[3]; 4107 4108 MDNode *Scope = nullptr, *IA = nullptr; 4109 if (ScopeID) 4110 Scope = cast<MDNode>(MetadataList.getValueFwdRef(ScopeID - 1)); 4111 if (IAID) 4112 IA = cast<MDNode>(MetadataList.getValueFwdRef(IAID - 1)); 4113 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4114 I->setDebugLoc(LastLoc); 4115 I = nullptr; 4116 continue; 4117 } 4118 4119 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4120 unsigned OpNum = 0; 4121 Value *LHS, *RHS; 4122 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4123 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4124 OpNum+1 > Record.size()) 4125 return error("Invalid record"); 4126 4127 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4128 if (Opc == -1) 4129 return error("Invalid record"); 4130 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4131 InstructionList.push_back(I); 4132 if (OpNum < Record.size()) { 4133 if (Opc == Instruction::Add || 4134 Opc == Instruction::Sub || 4135 Opc == Instruction::Mul || 4136 Opc == Instruction::Shl) { 4137 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4138 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4139 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4140 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4141 } else if (Opc == Instruction::SDiv || 4142 Opc == Instruction::UDiv || 4143 Opc == Instruction::LShr || 4144 Opc == Instruction::AShr) { 4145 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4146 cast<BinaryOperator>(I)->setIsExact(true); 4147 } else if (isa<FPMathOperator>(I)) { 4148 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4149 if (FMF.any()) 4150 I->setFastMathFlags(FMF); 4151 } 4152 4153 } 4154 break; 4155 } 4156 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4157 unsigned OpNum = 0; 4158 Value *Op; 4159 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4160 OpNum+2 != Record.size()) 4161 return error("Invalid record"); 4162 4163 Type *ResTy = getTypeByID(Record[OpNum]); 4164 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4165 if (Opc == -1 || !ResTy) 4166 return error("Invalid record"); 4167 Instruction *Temp = nullptr; 4168 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4169 if (Temp) { 4170 InstructionList.push_back(Temp); 4171 CurBB->getInstList().push_back(Temp); 4172 } 4173 } else { 4174 auto CastOp = (Instruction::CastOps)Opc; 4175 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4176 return error("Invalid cast"); 4177 I = CastInst::Create(CastOp, Op, ResTy); 4178 } 4179 InstructionList.push_back(I); 4180 break; 4181 } 4182 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4183 case bitc::FUNC_CODE_INST_GEP_OLD: 4184 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4185 unsigned OpNum = 0; 4186 4187 Type *Ty; 4188 bool InBounds; 4189 4190 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4191 InBounds = Record[OpNum++]; 4192 Ty = getTypeByID(Record[OpNum++]); 4193 } else { 4194 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4195 Ty = nullptr; 4196 } 4197 4198 Value *BasePtr; 4199 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4200 return error("Invalid record"); 4201 4202 if (!Ty) 4203 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4204 ->getElementType(); 4205 else if (Ty != 4206 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4207 ->getElementType()) 4208 return error( 4209 "Explicit gep type does not match pointee type of pointer operand"); 4210 4211 SmallVector<Value*, 16> GEPIdx; 4212 while (OpNum != Record.size()) { 4213 Value *Op; 4214 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4215 return error("Invalid record"); 4216 GEPIdx.push_back(Op); 4217 } 4218 4219 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4220 4221 InstructionList.push_back(I); 4222 if (InBounds) 4223 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4224 break; 4225 } 4226 4227 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4228 // EXTRACTVAL: [opty, opval, n x indices] 4229 unsigned OpNum = 0; 4230 Value *Agg; 4231 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4232 return error("Invalid record"); 4233 4234 unsigned RecSize = Record.size(); 4235 if (OpNum == RecSize) 4236 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4237 4238 SmallVector<unsigned, 4> EXTRACTVALIdx; 4239 Type *CurTy = Agg->getType(); 4240 for (; OpNum != RecSize; ++OpNum) { 4241 bool IsArray = CurTy->isArrayTy(); 4242 bool IsStruct = CurTy->isStructTy(); 4243 uint64_t Index = Record[OpNum]; 4244 4245 if (!IsStruct && !IsArray) 4246 return error("EXTRACTVAL: Invalid type"); 4247 if ((unsigned)Index != Index) 4248 return error("Invalid value"); 4249 if (IsStruct && Index >= CurTy->subtypes().size()) 4250 return error("EXTRACTVAL: Invalid struct index"); 4251 if (IsArray && Index >= CurTy->getArrayNumElements()) 4252 return error("EXTRACTVAL: Invalid array index"); 4253 EXTRACTVALIdx.push_back((unsigned)Index); 4254 4255 if (IsStruct) 4256 CurTy = CurTy->subtypes()[Index]; 4257 else 4258 CurTy = CurTy->subtypes()[0]; 4259 } 4260 4261 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4262 InstructionList.push_back(I); 4263 break; 4264 } 4265 4266 case bitc::FUNC_CODE_INST_INSERTVAL: { 4267 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4268 unsigned OpNum = 0; 4269 Value *Agg; 4270 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4271 return error("Invalid record"); 4272 Value *Val; 4273 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4274 return error("Invalid record"); 4275 4276 unsigned RecSize = Record.size(); 4277 if (OpNum == RecSize) 4278 return error("INSERTVAL: Invalid instruction with 0 indices"); 4279 4280 SmallVector<unsigned, 4> INSERTVALIdx; 4281 Type *CurTy = Agg->getType(); 4282 for (; OpNum != RecSize; ++OpNum) { 4283 bool IsArray = CurTy->isArrayTy(); 4284 bool IsStruct = CurTy->isStructTy(); 4285 uint64_t Index = Record[OpNum]; 4286 4287 if (!IsStruct && !IsArray) 4288 return error("INSERTVAL: Invalid type"); 4289 if ((unsigned)Index != Index) 4290 return error("Invalid value"); 4291 if (IsStruct && Index >= CurTy->subtypes().size()) 4292 return error("INSERTVAL: Invalid struct index"); 4293 if (IsArray && Index >= CurTy->getArrayNumElements()) 4294 return error("INSERTVAL: Invalid array index"); 4295 4296 INSERTVALIdx.push_back((unsigned)Index); 4297 if (IsStruct) 4298 CurTy = CurTy->subtypes()[Index]; 4299 else 4300 CurTy = CurTy->subtypes()[0]; 4301 } 4302 4303 if (CurTy != Val->getType()) 4304 return error("Inserted value type doesn't match aggregate type"); 4305 4306 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4307 InstructionList.push_back(I); 4308 break; 4309 } 4310 4311 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4312 // obsolete form of select 4313 // handles select i1 ... in old bitcode 4314 unsigned OpNum = 0; 4315 Value *TrueVal, *FalseVal, *Cond; 4316 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4317 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4318 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4319 return error("Invalid record"); 4320 4321 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4322 InstructionList.push_back(I); 4323 break; 4324 } 4325 4326 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4327 // new form of select 4328 // handles select i1 or select [N x i1] 4329 unsigned OpNum = 0; 4330 Value *TrueVal, *FalseVal, *Cond; 4331 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4332 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4333 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4334 return error("Invalid record"); 4335 4336 // select condition can be either i1 or [N x i1] 4337 if (VectorType* vector_type = 4338 dyn_cast<VectorType>(Cond->getType())) { 4339 // expect <n x i1> 4340 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4341 return error("Invalid type for value"); 4342 } else { 4343 // expect i1 4344 if (Cond->getType() != Type::getInt1Ty(Context)) 4345 return error("Invalid type for value"); 4346 } 4347 4348 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4349 InstructionList.push_back(I); 4350 break; 4351 } 4352 4353 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4354 unsigned OpNum = 0; 4355 Value *Vec, *Idx; 4356 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4357 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4358 return error("Invalid record"); 4359 if (!Vec->getType()->isVectorTy()) 4360 return error("Invalid type for value"); 4361 I = ExtractElementInst::Create(Vec, Idx); 4362 InstructionList.push_back(I); 4363 break; 4364 } 4365 4366 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4367 unsigned OpNum = 0; 4368 Value *Vec, *Elt, *Idx; 4369 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4370 return error("Invalid record"); 4371 if (!Vec->getType()->isVectorTy()) 4372 return error("Invalid type for value"); 4373 if (popValue(Record, OpNum, NextValueNo, 4374 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4375 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4376 return error("Invalid record"); 4377 I = InsertElementInst::Create(Vec, Elt, Idx); 4378 InstructionList.push_back(I); 4379 break; 4380 } 4381 4382 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4383 unsigned OpNum = 0; 4384 Value *Vec1, *Vec2, *Mask; 4385 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4386 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4387 return error("Invalid record"); 4388 4389 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4390 return error("Invalid record"); 4391 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4392 return error("Invalid type for value"); 4393 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4394 InstructionList.push_back(I); 4395 break; 4396 } 4397 4398 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4399 // Old form of ICmp/FCmp returning bool 4400 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4401 // both legal on vectors but had different behaviour. 4402 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4403 // FCmp/ICmp returning bool or vector of bool 4404 4405 unsigned OpNum = 0; 4406 Value *LHS, *RHS; 4407 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4408 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4409 return error("Invalid record"); 4410 4411 unsigned PredVal = Record[OpNum]; 4412 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4413 FastMathFlags FMF; 4414 if (IsFP && Record.size() > OpNum+1) 4415 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4416 4417 if (OpNum+1 != Record.size()) 4418 return error("Invalid record"); 4419 4420 if (LHS->getType()->isFPOrFPVectorTy()) 4421 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4422 else 4423 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4424 4425 if (FMF.any()) 4426 I->setFastMathFlags(FMF); 4427 InstructionList.push_back(I); 4428 break; 4429 } 4430 4431 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4432 { 4433 unsigned Size = Record.size(); 4434 if (Size == 0) { 4435 I = ReturnInst::Create(Context); 4436 InstructionList.push_back(I); 4437 break; 4438 } 4439 4440 unsigned OpNum = 0; 4441 Value *Op = nullptr; 4442 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4443 return error("Invalid record"); 4444 if (OpNum != Record.size()) 4445 return error("Invalid record"); 4446 4447 I = ReturnInst::Create(Context, Op); 4448 InstructionList.push_back(I); 4449 break; 4450 } 4451 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4452 if (Record.size() != 1 && Record.size() != 3) 4453 return error("Invalid record"); 4454 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4455 if (!TrueDest) 4456 return error("Invalid record"); 4457 4458 if (Record.size() == 1) { 4459 I = BranchInst::Create(TrueDest); 4460 InstructionList.push_back(I); 4461 } 4462 else { 4463 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4464 Value *Cond = getValue(Record, 2, NextValueNo, 4465 Type::getInt1Ty(Context)); 4466 if (!FalseDest || !Cond) 4467 return error("Invalid record"); 4468 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4469 InstructionList.push_back(I); 4470 } 4471 break; 4472 } 4473 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4474 if (Record.size() != 1 && Record.size() != 2) 4475 return error("Invalid record"); 4476 unsigned Idx = 0; 4477 Value *CleanupPad = 4478 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4479 if (!CleanupPad) 4480 return error("Invalid record"); 4481 BasicBlock *UnwindDest = nullptr; 4482 if (Record.size() == 2) { 4483 UnwindDest = getBasicBlock(Record[Idx++]); 4484 if (!UnwindDest) 4485 return error("Invalid record"); 4486 } 4487 4488 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4489 InstructionList.push_back(I); 4490 break; 4491 } 4492 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4493 if (Record.size() != 2) 4494 return error("Invalid record"); 4495 unsigned Idx = 0; 4496 Value *CatchPad = 4497 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4498 if (!CatchPad) 4499 return error("Invalid record"); 4500 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4501 if (!BB) 4502 return error("Invalid record"); 4503 4504 I = CatchReturnInst::Create(CatchPad, BB); 4505 InstructionList.push_back(I); 4506 break; 4507 } 4508 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4509 // We must have, at minimum, the outer scope and the number of arguments. 4510 if (Record.size() < 2) 4511 return error("Invalid record"); 4512 4513 unsigned Idx = 0; 4514 4515 Value *ParentPad = 4516 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4517 4518 unsigned NumHandlers = Record[Idx++]; 4519 4520 SmallVector<BasicBlock *, 2> Handlers; 4521 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4522 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4523 if (!BB) 4524 return error("Invalid record"); 4525 Handlers.push_back(BB); 4526 } 4527 4528 BasicBlock *UnwindDest = nullptr; 4529 if (Idx + 1 == Record.size()) { 4530 UnwindDest = getBasicBlock(Record[Idx++]); 4531 if (!UnwindDest) 4532 return error("Invalid record"); 4533 } 4534 4535 if (Record.size() != Idx) 4536 return error("Invalid record"); 4537 4538 auto *CatchSwitch = 4539 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4540 for (BasicBlock *Handler : Handlers) 4541 CatchSwitch->addHandler(Handler); 4542 I = CatchSwitch; 4543 InstructionList.push_back(I); 4544 break; 4545 } 4546 case bitc::FUNC_CODE_INST_CATCHPAD: 4547 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4548 // We must have, at minimum, the outer scope and the number of arguments. 4549 if (Record.size() < 2) 4550 return error("Invalid record"); 4551 4552 unsigned Idx = 0; 4553 4554 Value *ParentPad = 4555 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4556 4557 unsigned NumArgOperands = Record[Idx++]; 4558 4559 SmallVector<Value *, 2> Args; 4560 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4561 Value *Val; 4562 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4563 return error("Invalid record"); 4564 Args.push_back(Val); 4565 } 4566 4567 if (Record.size() != Idx) 4568 return error("Invalid record"); 4569 4570 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4571 I = CleanupPadInst::Create(ParentPad, Args); 4572 else 4573 I = CatchPadInst::Create(ParentPad, Args); 4574 InstructionList.push_back(I); 4575 break; 4576 } 4577 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4578 // Check magic 4579 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4580 // "New" SwitchInst format with case ranges. The changes to write this 4581 // format were reverted but we still recognize bitcode that uses it. 4582 // Hopefully someday we will have support for case ranges and can use 4583 // this format again. 4584 4585 Type *OpTy = getTypeByID(Record[1]); 4586 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4587 4588 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4589 BasicBlock *Default = getBasicBlock(Record[3]); 4590 if (!OpTy || !Cond || !Default) 4591 return error("Invalid record"); 4592 4593 unsigned NumCases = Record[4]; 4594 4595 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4596 InstructionList.push_back(SI); 4597 4598 unsigned CurIdx = 5; 4599 for (unsigned i = 0; i != NumCases; ++i) { 4600 SmallVector<ConstantInt*, 1> CaseVals; 4601 unsigned NumItems = Record[CurIdx++]; 4602 for (unsigned ci = 0; ci != NumItems; ++ci) { 4603 bool isSingleNumber = Record[CurIdx++]; 4604 4605 APInt Low; 4606 unsigned ActiveWords = 1; 4607 if (ValueBitWidth > 64) 4608 ActiveWords = Record[CurIdx++]; 4609 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4610 ValueBitWidth); 4611 CurIdx += ActiveWords; 4612 4613 if (!isSingleNumber) { 4614 ActiveWords = 1; 4615 if (ValueBitWidth > 64) 4616 ActiveWords = Record[CurIdx++]; 4617 APInt High = readWideAPInt( 4618 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4619 CurIdx += ActiveWords; 4620 4621 // FIXME: It is not clear whether values in the range should be 4622 // compared as signed or unsigned values. The partially 4623 // implemented changes that used this format in the past used 4624 // unsigned comparisons. 4625 for ( ; Low.ule(High); ++Low) 4626 CaseVals.push_back(ConstantInt::get(Context, Low)); 4627 } else 4628 CaseVals.push_back(ConstantInt::get(Context, Low)); 4629 } 4630 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4631 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4632 cve = CaseVals.end(); cvi != cve; ++cvi) 4633 SI->addCase(*cvi, DestBB); 4634 } 4635 I = SI; 4636 break; 4637 } 4638 4639 // Old SwitchInst format without case ranges. 4640 4641 if (Record.size() < 3 || (Record.size() & 1) == 0) 4642 return error("Invalid record"); 4643 Type *OpTy = getTypeByID(Record[0]); 4644 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4645 BasicBlock *Default = getBasicBlock(Record[2]); 4646 if (!OpTy || !Cond || !Default) 4647 return error("Invalid record"); 4648 unsigned NumCases = (Record.size()-3)/2; 4649 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4650 InstructionList.push_back(SI); 4651 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4652 ConstantInt *CaseVal = 4653 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4654 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4655 if (!CaseVal || !DestBB) { 4656 delete SI; 4657 return error("Invalid record"); 4658 } 4659 SI->addCase(CaseVal, DestBB); 4660 } 4661 I = SI; 4662 break; 4663 } 4664 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4665 if (Record.size() < 2) 4666 return error("Invalid record"); 4667 Type *OpTy = getTypeByID(Record[0]); 4668 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4669 if (!OpTy || !Address) 4670 return error("Invalid record"); 4671 unsigned NumDests = Record.size()-2; 4672 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4673 InstructionList.push_back(IBI); 4674 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4675 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4676 IBI->addDestination(DestBB); 4677 } else { 4678 delete IBI; 4679 return error("Invalid record"); 4680 } 4681 } 4682 I = IBI; 4683 break; 4684 } 4685 4686 case bitc::FUNC_CODE_INST_INVOKE: { 4687 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4688 if (Record.size() < 4) 4689 return error("Invalid record"); 4690 unsigned OpNum = 0; 4691 AttributeSet PAL = getAttributes(Record[OpNum++]); 4692 unsigned CCInfo = Record[OpNum++]; 4693 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4694 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4695 4696 FunctionType *FTy = nullptr; 4697 if (CCInfo >> 13 & 1 && 4698 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4699 return error("Explicit invoke type is not a function type"); 4700 4701 Value *Callee; 4702 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4703 return error("Invalid record"); 4704 4705 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4706 if (!CalleeTy) 4707 return error("Callee is not a pointer"); 4708 if (!FTy) { 4709 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4710 if (!FTy) 4711 return error("Callee is not of pointer to function type"); 4712 } else if (CalleeTy->getElementType() != FTy) 4713 return error("Explicit invoke type does not match pointee type of " 4714 "callee operand"); 4715 if (Record.size() < FTy->getNumParams() + OpNum) 4716 return error("Insufficient operands to call"); 4717 4718 SmallVector<Value*, 16> Ops; 4719 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4720 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4721 FTy->getParamType(i))); 4722 if (!Ops.back()) 4723 return error("Invalid record"); 4724 } 4725 4726 if (!FTy->isVarArg()) { 4727 if (Record.size() != OpNum) 4728 return error("Invalid record"); 4729 } else { 4730 // Read type/value pairs for varargs params. 4731 while (OpNum != Record.size()) { 4732 Value *Op; 4733 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4734 return error("Invalid record"); 4735 Ops.push_back(Op); 4736 } 4737 } 4738 4739 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4740 OperandBundles.clear(); 4741 InstructionList.push_back(I); 4742 cast<InvokeInst>(I)->setCallingConv( 4743 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4744 cast<InvokeInst>(I)->setAttributes(PAL); 4745 break; 4746 } 4747 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4748 unsigned Idx = 0; 4749 Value *Val = nullptr; 4750 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4751 return error("Invalid record"); 4752 I = ResumeInst::Create(Val); 4753 InstructionList.push_back(I); 4754 break; 4755 } 4756 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4757 I = new UnreachableInst(Context); 4758 InstructionList.push_back(I); 4759 break; 4760 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4761 if (Record.size() < 1 || ((Record.size()-1)&1)) 4762 return error("Invalid record"); 4763 Type *Ty = getTypeByID(Record[0]); 4764 if (!Ty) 4765 return error("Invalid record"); 4766 4767 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4768 InstructionList.push_back(PN); 4769 4770 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4771 Value *V; 4772 // With the new function encoding, it is possible that operands have 4773 // negative IDs (for forward references). Use a signed VBR 4774 // representation to keep the encoding small. 4775 if (UseRelativeIDs) 4776 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4777 else 4778 V = getValue(Record, 1+i, NextValueNo, Ty); 4779 BasicBlock *BB = getBasicBlock(Record[2+i]); 4780 if (!V || !BB) 4781 return error("Invalid record"); 4782 PN->addIncoming(V, BB); 4783 } 4784 I = PN; 4785 break; 4786 } 4787 4788 case bitc::FUNC_CODE_INST_LANDINGPAD: 4789 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4790 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4791 unsigned Idx = 0; 4792 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4793 if (Record.size() < 3) 4794 return error("Invalid record"); 4795 } else { 4796 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4797 if (Record.size() < 4) 4798 return error("Invalid record"); 4799 } 4800 Type *Ty = getTypeByID(Record[Idx++]); 4801 if (!Ty) 4802 return error("Invalid record"); 4803 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4804 Value *PersFn = nullptr; 4805 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4806 return error("Invalid record"); 4807 4808 if (!F->hasPersonalityFn()) 4809 F->setPersonalityFn(cast<Constant>(PersFn)); 4810 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4811 return error("Personality function mismatch"); 4812 } 4813 4814 bool IsCleanup = !!Record[Idx++]; 4815 unsigned NumClauses = Record[Idx++]; 4816 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4817 LP->setCleanup(IsCleanup); 4818 for (unsigned J = 0; J != NumClauses; ++J) { 4819 LandingPadInst::ClauseType CT = 4820 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4821 Value *Val; 4822 4823 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4824 delete LP; 4825 return error("Invalid record"); 4826 } 4827 4828 assert((CT != LandingPadInst::Catch || 4829 !isa<ArrayType>(Val->getType())) && 4830 "Catch clause has a invalid type!"); 4831 assert((CT != LandingPadInst::Filter || 4832 isa<ArrayType>(Val->getType())) && 4833 "Filter clause has invalid type!"); 4834 LP->addClause(cast<Constant>(Val)); 4835 } 4836 4837 I = LP; 4838 InstructionList.push_back(I); 4839 break; 4840 } 4841 4842 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4843 if (Record.size() != 4) 4844 return error("Invalid record"); 4845 uint64_t AlignRecord = Record[3]; 4846 const uint64_t InAllocaMask = uint64_t(1) << 5; 4847 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4848 // Reserve bit 7 for SwiftError flag. 4849 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4850 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4851 bool InAlloca = AlignRecord & InAllocaMask; 4852 Type *Ty = getTypeByID(Record[0]); 4853 if ((AlignRecord & ExplicitTypeMask) == 0) { 4854 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4855 if (!PTy) 4856 return error("Old-style alloca with a non-pointer type"); 4857 Ty = PTy->getElementType(); 4858 } 4859 Type *OpTy = getTypeByID(Record[1]); 4860 Value *Size = getFnValueByID(Record[2], OpTy); 4861 unsigned Align; 4862 if (std::error_code EC = 4863 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4864 return EC; 4865 } 4866 if (!Ty || !Size) 4867 return error("Invalid record"); 4868 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4869 AI->setUsedWithInAlloca(InAlloca); 4870 I = AI; 4871 InstructionList.push_back(I); 4872 break; 4873 } 4874 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4875 unsigned OpNum = 0; 4876 Value *Op; 4877 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4878 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4879 return error("Invalid record"); 4880 4881 Type *Ty = nullptr; 4882 if (OpNum + 3 == Record.size()) 4883 Ty = getTypeByID(Record[OpNum++]); 4884 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4885 return EC; 4886 if (!Ty) 4887 Ty = cast<PointerType>(Op->getType())->getElementType(); 4888 4889 unsigned Align; 4890 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4891 return EC; 4892 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4893 4894 InstructionList.push_back(I); 4895 break; 4896 } 4897 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4898 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4899 unsigned OpNum = 0; 4900 Value *Op; 4901 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4902 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4903 return error("Invalid record"); 4904 4905 Type *Ty = nullptr; 4906 if (OpNum + 5 == Record.size()) 4907 Ty = getTypeByID(Record[OpNum++]); 4908 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4909 return EC; 4910 if (!Ty) 4911 Ty = cast<PointerType>(Op->getType())->getElementType(); 4912 4913 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4914 if (Ordering == NotAtomic || Ordering == Release || 4915 Ordering == AcquireRelease) 4916 return error("Invalid record"); 4917 if (Ordering != NotAtomic && Record[OpNum] == 0) 4918 return error("Invalid record"); 4919 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4920 4921 unsigned Align; 4922 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4923 return EC; 4924 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4925 4926 InstructionList.push_back(I); 4927 break; 4928 } 4929 case bitc::FUNC_CODE_INST_STORE: 4930 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4931 unsigned OpNum = 0; 4932 Value *Val, *Ptr; 4933 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4934 (BitCode == bitc::FUNC_CODE_INST_STORE 4935 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4936 : popValue(Record, OpNum, NextValueNo, 4937 cast<PointerType>(Ptr->getType())->getElementType(), 4938 Val)) || 4939 OpNum + 2 != Record.size()) 4940 return error("Invalid record"); 4941 4942 if (std::error_code EC = 4943 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4944 return EC; 4945 unsigned Align; 4946 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4947 return EC; 4948 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4949 InstructionList.push_back(I); 4950 break; 4951 } 4952 case bitc::FUNC_CODE_INST_STOREATOMIC: 4953 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4954 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4955 unsigned OpNum = 0; 4956 Value *Val, *Ptr; 4957 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4958 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4959 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4960 : popValue(Record, OpNum, NextValueNo, 4961 cast<PointerType>(Ptr->getType())->getElementType(), 4962 Val)) || 4963 OpNum + 4 != Record.size()) 4964 return error("Invalid record"); 4965 4966 if (std::error_code EC = 4967 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4968 return EC; 4969 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4970 if (Ordering == NotAtomic || Ordering == Acquire || 4971 Ordering == AcquireRelease) 4972 return error("Invalid record"); 4973 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4974 if (Ordering != NotAtomic && Record[OpNum] == 0) 4975 return error("Invalid record"); 4976 4977 unsigned Align; 4978 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4979 return EC; 4980 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4981 InstructionList.push_back(I); 4982 break; 4983 } 4984 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4985 case bitc::FUNC_CODE_INST_CMPXCHG: { 4986 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4987 // failureordering?, isweak?] 4988 unsigned OpNum = 0; 4989 Value *Ptr, *Cmp, *New; 4990 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4991 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4992 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4993 : popValue(Record, OpNum, NextValueNo, 4994 cast<PointerType>(Ptr->getType())->getElementType(), 4995 Cmp)) || 4996 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4997 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4998 return error("Invalid record"); 4999 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5000 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 5001 return error("Invalid record"); 5002 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5003 5004 if (std::error_code EC = 5005 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5006 return EC; 5007 AtomicOrdering FailureOrdering; 5008 if (Record.size() < 7) 5009 FailureOrdering = 5010 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5011 else 5012 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5013 5014 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5015 SynchScope); 5016 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5017 5018 if (Record.size() < 8) { 5019 // Before weak cmpxchgs existed, the instruction simply returned the 5020 // value loaded from memory, so bitcode files from that era will be 5021 // expecting the first component of a modern cmpxchg. 5022 CurBB->getInstList().push_back(I); 5023 I = ExtractValueInst::Create(I, 0); 5024 } else { 5025 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5026 } 5027 5028 InstructionList.push_back(I); 5029 break; 5030 } 5031 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5032 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5033 unsigned OpNum = 0; 5034 Value *Ptr, *Val; 5035 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5036 popValue(Record, OpNum, NextValueNo, 5037 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5038 OpNum+4 != Record.size()) 5039 return error("Invalid record"); 5040 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5041 if (Operation < AtomicRMWInst::FIRST_BINOP || 5042 Operation > AtomicRMWInst::LAST_BINOP) 5043 return error("Invalid record"); 5044 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5045 if (Ordering == NotAtomic || Ordering == Unordered) 5046 return error("Invalid record"); 5047 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5048 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5049 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5050 InstructionList.push_back(I); 5051 break; 5052 } 5053 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5054 if (2 != Record.size()) 5055 return error("Invalid record"); 5056 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5057 if (Ordering == NotAtomic || Ordering == Unordered || 5058 Ordering == Monotonic) 5059 return error("Invalid record"); 5060 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5061 I = new FenceInst(Context, Ordering, SynchScope); 5062 InstructionList.push_back(I); 5063 break; 5064 } 5065 case bitc::FUNC_CODE_INST_CALL: { 5066 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5067 if (Record.size() < 3) 5068 return error("Invalid record"); 5069 5070 unsigned OpNum = 0; 5071 AttributeSet PAL = getAttributes(Record[OpNum++]); 5072 unsigned CCInfo = Record[OpNum++]; 5073 5074 FastMathFlags FMF; 5075 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5076 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5077 if (!FMF.any()) 5078 return error("Fast math flags indicator set for call with no FMF"); 5079 } 5080 5081 FunctionType *FTy = nullptr; 5082 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5083 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5084 return error("Explicit call type is not a function type"); 5085 5086 Value *Callee; 5087 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5088 return error("Invalid record"); 5089 5090 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5091 if (!OpTy) 5092 return error("Callee is not a pointer type"); 5093 if (!FTy) { 5094 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5095 if (!FTy) 5096 return error("Callee is not of pointer to function type"); 5097 } else if (OpTy->getElementType() != FTy) 5098 return error("Explicit call type does not match pointee type of " 5099 "callee operand"); 5100 if (Record.size() < FTy->getNumParams() + OpNum) 5101 return error("Insufficient operands to call"); 5102 5103 SmallVector<Value*, 16> Args; 5104 // Read the fixed params. 5105 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5106 if (FTy->getParamType(i)->isLabelTy()) 5107 Args.push_back(getBasicBlock(Record[OpNum])); 5108 else 5109 Args.push_back(getValue(Record, OpNum, NextValueNo, 5110 FTy->getParamType(i))); 5111 if (!Args.back()) 5112 return error("Invalid record"); 5113 } 5114 5115 // Read type/value pairs for varargs params. 5116 if (!FTy->isVarArg()) { 5117 if (OpNum != Record.size()) 5118 return error("Invalid record"); 5119 } else { 5120 while (OpNum != Record.size()) { 5121 Value *Op; 5122 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5123 return error("Invalid record"); 5124 Args.push_back(Op); 5125 } 5126 } 5127 5128 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5129 OperandBundles.clear(); 5130 InstructionList.push_back(I); 5131 cast<CallInst>(I)->setCallingConv( 5132 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5133 CallInst::TailCallKind TCK = CallInst::TCK_None; 5134 if (CCInfo & 1 << bitc::CALL_TAIL) 5135 TCK = CallInst::TCK_Tail; 5136 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5137 TCK = CallInst::TCK_MustTail; 5138 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5139 TCK = CallInst::TCK_NoTail; 5140 cast<CallInst>(I)->setTailCallKind(TCK); 5141 cast<CallInst>(I)->setAttributes(PAL); 5142 if (FMF.any()) { 5143 if (!isa<FPMathOperator>(I)) 5144 return error("Fast-math-flags specified for call without " 5145 "floating-point scalar or vector return type"); 5146 I->setFastMathFlags(FMF); 5147 } 5148 break; 5149 } 5150 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5151 if (Record.size() < 3) 5152 return error("Invalid record"); 5153 Type *OpTy = getTypeByID(Record[0]); 5154 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5155 Type *ResTy = getTypeByID(Record[2]); 5156 if (!OpTy || !Op || !ResTy) 5157 return error("Invalid record"); 5158 I = new VAArgInst(Op, ResTy); 5159 InstructionList.push_back(I); 5160 break; 5161 } 5162 5163 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5164 // A call or an invoke can be optionally prefixed with some variable 5165 // number of operand bundle blocks. These blocks are read into 5166 // OperandBundles and consumed at the next call or invoke instruction. 5167 5168 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5169 return error("Invalid record"); 5170 5171 std::vector<Value *> Inputs; 5172 5173 unsigned OpNum = 1; 5174 while (OpNum != Record.size()) { 5175 Value *Op; 5176 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5177 return error("Invalid record"); 5178 Inputs.push_back(Op); 5179 } 5180 5181 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5182 continue; 5183 } 5184 } 5185 5186 // Add instruction to end of current BB. If there is no current BB, reject 5187 // this file. 5188 if (!CurBB) { 5189 delete I; 5190 return error("Invalid instruction with no BB"); 5191 } 5192 if (!OperandBundles.empty()) { 5193 delete I; 5194 return error("Operand bundles found with no consumer"); 5195 } 5196 CurBB->getInstList().push_back(I); 5197 5198 // If this was a terminator instruction, move to the next block. 5199 if (isa<TerminatorInst>(I)) { 5200 ++CurBBNo; 5201 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5202 } 5203 5204 // Non-void values get registered in the value table for future use. 5205 if (I && !I->getType()->isVoidTy()) 5206 ValueList.assignValue(I, NextValueNo++); 5207 } 5208 5209 OutOfRecordLoop: 5210 5211 if (!OperandBundles.empty()) 5212 return error("Operand bundles found with no consumer"); 5213 5214 // Check the function list for unresolved values. 5215 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5216 if (!A->getParent()) { 5217 // We found at least one unresolved value. Nuke them all to avoid leaks. 5218 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5219 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5220 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5221 delete A; 5222 } 5223 } 5224 return error("Never resolved value found in function"); 5225 } 5226 } 5227 5228 // FIXME: Check for unresolved forward-declared metadata references 5229 // and clean up leaks. 5230 5231 // Trim the value list down to the size it was before we parsed this function. 5232 ValueList.shrinkTo(ModuleValueListSize); 5233 MetadataList.shrinkTo(ModuleMetadataListSize); 5234 std::vector<BasicBlock*>().swap(FunctionBBs); 5235 return std::error_code(); 5236 } 5237 5238 /// Find the function body in the bitcode stream 5239 std::error_code BitcodeReader::findFunctionInStream( 5240 Function *F, 5241 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5242 while (DeferredFunctionInfoIterator->second == 0) { 5243 // This is the fallback handling for the old format bitcode that 5244 // didn't contain the function index in the VST, or when we have 5245 // an anonymous function which would not have a VST entry. 5246 // Assert that we have one of those two cases. 5247 assert(VSTOffset == 0 || !F->hasName()); 5248 // Parse the next body in the stream and set its position in the 5249 // DeferredFunctionInfo map. 5250 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5251 return EC; 5252 } 5253 return std::error_code(); 5254 } 5255 5256 //===----------------------------------------------------------------------===// 5257 // GVMaterializer implementation 5258 //===----------------------------------------------------------------------===// 5259 5260 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5261 5262 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5263 // In older bitcode we must materialize the metadata before parsing 5264 // any functions, in order to set up the MetadataList properly. 5265 if (!SeenModuleValuesRecord) { 5266 if (std::error_code EC = materializeMetadata()) 5267 return EC; 5268 } 5269 5270 Function *F = dyn_cast<Function>(GV); 5271 // If it's not a function or is already material, ignore the request. 5272 if (!F || !F->isMaterializable()) 5273 return std::error_code(); 5274 5275 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5276 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5277 // If its position is recorded as 0, its body is somewhere in the stream 5278 // but we haven't seen it yet. 5279 if (DFII->second == 0) 5280 if (std::error_code EC = findFunctionInStream(F, DFII)) 5281 return EC; 5282 5283 // Move the bit stream to the saved position of the deferred function body. 5284 Stream.JumpToBit(DFII->second); 5285 5286 if (std::error_code EC = parseFunctionBody(F)) 5287 return EC; 5288 F->setIsMaterializable(false); 5289 5290 if (StripDebugInfo) 5291 stripDebugInfo(*F); 5292 5293 // Upgrade any old intrinsic calls in the function. 5294 for (auto &I : UpgradedIntrinsics) { 5295 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5296 UI != UE;) { 5297 User *U = *UI; 5298 ++UI; 5299 if (CallInst *CI = dyn_cast<CallInst>(U)) 5300 UpgradeIntrinsicCall(CI, I.second); 5301 } 5302 } 5303 5304 // Finish fn->subprogram upgrade for materialized functions. 5305 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5306 F->setSubprogram(SP); 5307 5308 // Bring in any functions that this function forward-referenced via 5309 // blockaddresses. 5310 return materializeForwardReferencedFunctions(); 5311 } 5312 5313 std::error_code BitcodeReader::materializeModule() { 5314 if (std::error_code EC = materializeMetadata()) 5315 return EC; 5316 5317 // Promise to materialize all forward references. 5318 WillMaterializeAllForwardRefs = true; 5319 5320 // Iterate over the module, deserializing any functions that are still on 5321 // disk. 5322 for (Function &F : *TheModule) { 5323 if (std::error_code EC = materialize(&F)) 5324 return EC; 5325 } 5326 // At this point, if there are any function bodies, parse the rest of 5327 // the bits in the module past the last function block we have recorded 5328 // through either lazy scanning or the VST. 5329 if (LastFunctionBlockBit || NextUnreadBit) 5330 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5331 : NextUnreadBit); 5332 5333 // Check that all block address forward references got resolved (as we 5334 // promised above). 5335 if (!BasicBlockFwdRefs.empty()) 5336 return error("Never resolved function from blockaddress"); 5337 5338 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5339 // delete the old functions to clean up. We can't do this unless the entire 5340 // module is materialized because there could always be another function body 5341 // with calls to the old function. 5342 for (auto &I : UpgradedIntrinsics) { 5343 for (auto *U : I.first->users()) { 5344 if (CallInst *CI = dyn_cast<CallInst>(U)) 5345 UpgradeIntrinsicCall(CI, I.second); 5346 } 5347 if (!I.first->use_empty()) 5348 I.first->replaceAllUsesWith(I.second); 5349 I.first->eraseFromParent(); 5350 } 5351 UpgradedIntrinsics.clear(); 5352 5353 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5354 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5355 5356 UpgradeDebugInfo(*TheModule); 5357 return std::error_code(); 5358 } 5359 5360 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5361 return IdentifiedStructTypes; 5362 } 5363 5364 std::error_code 5365 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5366 if (Streamer) 5367 return initLazyStream(std::move(Streamer)); 5368 return initStreamFromBuffer(); 5369 } 5370 5371 std::error_code BitcodeReader::initStreamFromBuffer() { 5372 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5373 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5374 5375 if (Buffer->getBufferSize() & 3) 5376 return error("Invalid bitcode signature"); 5377 5378 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5379 // The magic number is 0x0B17C0DE stored in little endian. 5380 if (isBitcodeWrapper(BufPtr, BufEnd)) 5381 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5382 return error("Invalid bitcode wrapper header"); 5383 5384 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5385 Stream.init(&*StreamFile); 5386 5387 return std::error_code(); 5388 } 5389 5390 std::error_code 5391 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5392 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5393 // see it. 5394 auto OwnedBytes = 5395 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5396 StreamingMemoryObject &Bytes = *OwnedBytes; 5397 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5398 Stream.init(&*StreamFile); 5399 5400 unsigned char buf[16]; 5401 if (Bytes.readBytes(buf, 16, 0) != 16) 5402 return error("Invalid bitcode signature"); 5403 5404 if (!isBitcode(buf, buf + 16)) 5405 return error("Invalid bitcode signature"); 5406 5407 if (isBitcodeWrapper(buf, buf + 4)) { 5408 const unsigned char *bitcodeStart = buf; 5409 const unsigned char *bitcodeEnd = buf + 16; 5410 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5411 Bytes.dropLeadingBytes(bitcodeStart - buf); 5412 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5413 } 5414 return std::error_code(); 5415 } 5416 5417 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5418 const Twine &Message) { 5419 return ::error(DiagnosticHandler, make_error_code(E), Message); 5420 } 5421 5422 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5423 return ::error(DiagnosticHandler, 5424 make_error_code(BitcodeError::CorruptedBitcode), Message); 5425 } 5426 5427 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5428 return ::error(DiagnosticHandler, make_error_code(E)); 5429 } 5430 5431 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5432 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5433 bool IsLazy, bool CheckGlobalValSummaryPresenceOnly) 5434 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5435 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5436 5437 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5438 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5439 bool CheckGlobalValSummaryPresenceOnly) 5440 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5441 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5442 5443 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5444 5445 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5446 5447 uint64_t FunctionIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5448 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5449 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5450 return VGI->second; 5451 } 5452 5453 GlobalValueInfo * 5454 FunctionIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5455 auto I = SummaryOffsetToInfoMap.find(Offset); 5456 assert(I != SummaryOffsetToInfoMap.end()); 5457 return I->second; 5458 } 5459 5460 // Specialized value symbol table parser used when reading module index 5461 // blocks where we don't actually create global values. 5462 // At the end of this routine the module index is populated with a map 5463 // from global value name to GlobalValueInfo. The global value info contains 5464 // the function block's bitcode offset (if applicable), or the offset into the 5465 // summary section for the combined index. 5466 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable( 5467 uint64_t Offset, 5468 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5469 assert(Offset > 0 && "Expected non-zero VST offset"); 5470 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5471 5472 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5473 return error("Invalid record"); 5474 5475 SmallVector<uint64_t, 64> Record; 5476 5477 // Read all the records for this value table. 5478 SmallString<128> ValueName; 5479 while (1) { 5480 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5481 5482 switch (Entry.Kind) { 5483 case BitstreamEntry::SubBlock: // Handled for us already. 5484 case BitstreamEntry::Error: 5485 return error("Malformed block"); 5486 case BitstreamEntry::EndBlock: 5487 // Done parsing VST, jump back to wherever we came from. 5488 Stream.JumpToBit(CurrentBit); 5489 return std::error_code(); 5490 case BitstreamEntry::Record: 5491 // The interesting case. 5492 break; 5493 } 5494 5495 // Read a record. 5496 Record.clear(); 5497 switch (Stream.readRecord(Entry.ID, Record)) { 5498 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5499 break; 5500 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5501 if (convertToString(Record, 1, ValueName)) 5502 return error("Invalid record"); 5503 unsigned ValueID = Record[0]; 5504 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5505 llvm::make_unique<GlobalValueInfo>(); 5506 assert(!SourceFileName.empty()); 5507 auto VLI = ValueIdToLinkageMap.find(ValueID); 5508 assert(VLI != ValueIdToLinkageMap.end() && 5509 "No linkage found for VST entry?"); 5510 std::string GlobalId = 5511 Function::getGlobalIdentifier(ValueName, VLI->second, SourceFileName); 5512 TheIndex->addGlobalValueInfo(GlobalId, std::move(GlobalValInfo)); 5513 ValueIdToCallGraphGUIDMap[ValueID] = Function::getGUID(GlobalId); 5514 ValueName.clear(); 5515 break; 5516 } 5517 case bitc::VST_CODE_FNENTRY: { 5518 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5519 if (convertToString(Record, 2, ValueName)) 5520 return error("Invalid record"); 5521 unsigned ValueID = Record[0]; 5522 uint64_t FuncOffset = Record[1]; 5523 assert(!IsLazy && "Lazy summary read only supported for combined index"); 5524 std::unique_ptr<GlobalValueInfo> FuncInfo = 5525 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5526 assert(!SourceFileName.empty()); 5527 auto VLI = ValueIdToLinkageMap.find(ValueID); 5528 assert(VLI != ValueIdToLinkageMap.end() && 5529 "No linkage found for VST entry?"); 5530 std::string FunctionGlobalId = 5531 Function::getGlobalIdentifier(ValueName, VLI->second, SourceFileName); 5532 TheIndex->addGlobalValueInfo(FunctionGlobalId, std::move(FuncInfo)); 5533 ValueIdToCallGraphGUIDMap[ValueID] = Function::getGUID(FunctionGlobalId); 5534 5535 ValueName.clear(); 5536 break; 5537 } 5538 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5539 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5540 unsigned ValueID = Record[0]; 5541 uint64_t GlobalValSummaryOffset = Record[1]; 5542 uint64_t GlobalValGUID = Record[2]; 5543 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5544 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5545 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5546 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5547 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5548 break; 5549 } 5550 case bitc::VST_CODE_COMBINED_ENTRY: { 5551 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5552 unsigned ValueID = Record[0]; 5553 uint64_t RefGUID = Record[1]; 5554 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5555 break; 5556 } 5557 } 5558 } 5559 } 5560 5561 // Parse just the blocks needed for building the index out of the module. 5562 // At the end of this routine the module Index is populated with a map 5563 // from global value name to GlobalValueInfo. The global value info contains 5564 // either the parsed summary information (when parsing summaries 5565 // eagerly), or just to the summary record's offset 5566 // if parsing lazily (IsLazy). 5567 std::error_code FunctionIndexBitcodeReader::parseModule() { 5568 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5569 return error("Invalid record"); 5570 5571 SmallVector<uint64_t, 64> Record; 5572 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5573 unsigned ValueId = 0; 5574 5575 // Read the index for this module. 5576 while (1) { 5577 BitstreamEntry Entry = Stream.advance(); 5578 5579 switch (Entry.Kind) { 5580 case BitstreamEntry::Error: 5581 return error("Malformed block"); 5582 case BitstreamEntry::EndBlock: 5583 return std::error_code(); 5584 5585 case BitstreamEntry::SubBlock: 5586 if (CheckGlobalValSummaryPresenceOnly) { 5587 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5588 SeenGlobalValSummary = true; 5589 // No need to parse the rest since we found the summary. 5590 return std::error_code(); 5591 } 5592 if (Stream.SkipBlock()) 5593 return error("Invalid record"); 5594 continue; 5595 } 5596 switch (Entry.ID) { 5597 default: // Skip unknown content. 5598 if (Stream.SkipBlock()) 5599 return error("Invalid record"); 5600 break; 5601 case bitc::BLOCKINFO_BLOCK_ID: 5602 // Need to parse these to get abbrev ids (e.g. for VST) 5603 if (Stream.ReadBlockInfoBlock()) 5604 return error("Malformed block"); 5605 break; 5606 case bitc::VALUE_SYMTAB_BLOCK_ID: 5607 // Should have been parsed earlier via VSTOffset, unless there 5608 // is no summary section. 5609 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5610 !SeenGlobalValSummary) && 5611 "Expected early VST parse via VSTOffset record"); 5612 if (Stream.SkipBlock()) 5613 return error("Invalid record"); 5614 break; 5615 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5616 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5617 assert(!SeenValueSymbolTable && 5618 "Already read VST when parsing summary block?"); 5619 if (std::error_code EC = 5620 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5621 return EC; 5622 SeenValueSymbolTable = true; 5623 SeenGlobalValSummary = true; 5624 if (IsLazy) { 5625 // Lazy parsing of summary info, skip it. 5626 if (Stream.SkipBlock()) 5627 return error("Invalid record"); 5628 } else if (std::error_code EC = parseEntireSummary()) 5629 return EC; 5630 break; 5631 case bitc::MODULE_STRTAB_BLOCK_ID: 5632 if (std::error_code EC = parseModuleStringTable()) 5633 return EC; 5634 break; 5635 } 5636 continue; 5637 5638 case BitstreamEntry::Record: 5639 // Once we find the last record of interest, skip the rest. 5640 if (VSTOffset > 0) 5641 Stream.skipRecord(Entry.ID); 5642 else { 5643 Record.clear(); 5644 auto BitCode = Stream.readRecord(Entry.ID, Record); 5645 switch (BitCode) { 5646 default: 5647 break; // Default behavior, ignore unknown content. 5648 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5649 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5650 SmallString<128> ValueName; 5651 if (convertToString(Record, 0, ValueName)) 5652 return error("Invalid record"); 5653 SourceFileName = ValueName.c_str(); 5654 break; 5655 } 5656 /// MODULE_CODE_VSTOFFSET: [offset] 5657 case bitc::MODULE_CODE_VSTOFFSET: 5658 if (Record.size() < 1) 5659 return error("Invalid record"); 5660 VSTOffset = Record[0]; 5661 break; 5662 // GLOBALVAR: [pointer type, isconst, initid, 5663 // linkage, alignment, section, visibility, threadlocal, 5664 // unnamed_addr, externally_initialized, dllstorageclass, 5665 // comdat] 5666 case bitc::MODULE_CODE_GLOBALVAR: { 5667 if (Record.size() < 6) 5668 return error("Invalid record"); 5669 uint64_t RawLinkage = Record[3]; 5670 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5671 ValueIdToLinkageMap[ValueId++] = Linkage; 5672 break; 5673 } 5674 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5675 // alignment, section, visibility, gc, unnamed_addr, 5676 // prologuedata, dllstorageclass, comdat, prefixdata] 5677 case bitc::MODULE_CODE_FUNCTION: { 5678 if (Record.size() < 8) 5679 return error("Invalid record"); 5680 uint64_t RawLinkage = Record[3]; 5681 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5682 ValueIdToLinkageMap[ValueId++] = Linkage; 5683 break; 5684 } 5685 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5686 // dllstorageclass] 5687 case bitc::MODULE_CODE_ALIAS: { 5688 if (Record.size() < 6) 5689 return error("Invalid record"); 5690 uint64_t RawLinkage = Record[3]; 5691 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5692 ValueIdToLinkageMap[ValueId++] = Linkage; 5693 break; 5694 } 5695 } 5696 } 5697 continue; 5698 } 5699 } 5700 } 5701 5702 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5703 // objects in the index. 5704 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5705 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5706 return error("Invalid record"); 5707 5708 SmallVector<uint64_t, 64> Record; 5709 5710 bool Combined = false; 5711 while (1) { 5712 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5713 5714 switch (Entry.Kind) { 5715 case BitstreamEntry::SubBlock: // Handled for us already. 5716 case BitstreamEntry::Error: 5717 return error("Malformed block"); 5718 case BitstreamEntry::EndBlock: 5719 // For a per-module index, remove any entries that still have empty 5720 // summaries. The VST parsing creates entries eagerly for all symbols, 5721 // but not all have associated summaries (e.g. it doesn't know how to 5722 // distinguish between VST_CODE_ENTRY for function declarations vs global 5723 // variables with initializers that end up with a summary). Remove those 5724 // entries now so that we don't need to rely on the combined index merger 5725 // to clean them up (especially since that may not run for the first 5726 // module's index if we merge into that). 5727 if (!Combined) 5728 TheIndex->removeEmptySummaryEntries(); 5729 return std::error_code(); 5730 case BitstreamEntry::Record: 5731 // The interesting case. 5732 break; 5733 } 5734 5735 // Read a record. The record format depends on whether this 5736 // is a per-module index or a combined index file. In the per-module 5737 // case the records contain the associated value's ID for correlation 5738 // with VST entries. In the combined index the correlation is done 5739 // via the bitcode offset of the summary records (which were saved 5740 // in the combined index VST entries). The records also contain 5741 // information used for ThinLTO renaming and importing. 5742 Record.clear(); 5743 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5744 auto BitCode = Stream.readRecord(Entry.ID, Record); 5745 switch (BitCode) { 5746 default: // Default behavior: ignore. 5747 break; 5748 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5749 // n x (valueid, callsitecount)] 5750 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5751 // numrefs x valueid, 5752 // n x (valueid, callsitecount, profilecount)] 5753 case bitc::FS_PERMODULE: 5754 case bitc::FS_PERMODULE_PROFILE: { 5755 unsigned ValueID = Record[0]; 5756 uint64_t RawLinkage = Record[1]; 5757 unsigned InstCount = Record[2]; 5758 unsigned NumRefs = Record[3]; 5759 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5760 getDecodedLinkage(RawLinkage), InstCount); 5761 // The module path string ref set in the summary must be owned by the 5762 // index's module string table. Since we don't have a module path 5763 // string table section in the per-module index, we create a single 5764 // module path string table entry with an empty (0) ID to take 5765 // ownership. 5766 FS->setModulePath( 5767 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5768 static int RefListStartIndex = 4; 5769 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5770 assert(Record.size() >= RefListStartIndex + NumRefs && 5771 "Record size inconsistent with number of references"); 5772 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5773 unsigned RefValueId = Record[I]; 5774 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5775 FS->addRefEdge(RefGUID); 5776 } 5777 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5778 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5779 ++I) { 5780 unsigned CalleeValueId = Record[I]; 5781 unsigned CallsiteCount = Record[++I]; 5782 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5783 uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId); 5784 FS->addCallGraphEdge(CalleeGUID, 5785 CalleeInfo(CallsiteCount, ProfileCount)); 5786 } 5787 uint64_t GUID = getGUIDFromValueId(ValueID); 5788 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5789 assert(InfoList != TheIndex->end() && 5790 "Expected VST parse to create GlobalValueInfo entry"); 5791 assert(InfoList->second.size() == 1 && 5792 "Expected a single GlobalValueInfo per GUID in module"); 5793 auto &Info = InfoList->second[0]; 5794 assert(!Info->summary() && "Expected a single summary per VST entry"); 5795 Info->setSummary(std::move(FS)); 5796 break; 5797 } 5798 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5799 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5800 unsigned ValueID = Record[0]; 5801 uint64_t RawLinkage = Record[1]; 5802 std::unique_ptr<GlobalVarSummary> FS = 5803 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5804 FS->setModulePath( 5805 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5806 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5807 unsigned RefValueId = Record[I]; 5808 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5809 FS->addRefEdge(RefGUID); 5810 } 5811 uint64_t GUID = getGUIDFromValueId(ValueID); 5812 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5813 assert(InfoList != TheIndex->end() && 5814 "Expected VST parse to create GlobalValueInfo entry"); 5815 assert(InfoList->second.size() == 1 && 5816 "Expected a single GlobalValueInfo per GUID in module"); 5817 auto &Info = InfoList->second[0]; 5818 assert(!Info->summary() && "Expected a single summary per VST entry"); 5819 Info->setSummary(std::move(FS)); 5820 break; 5821 } 5822 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 5823 // n x (valueid, callsitecount)] 5824 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 5825 // numrefs x valueid, 5826 // n x (valueid, callsitecount, profilecount)] 5827 case bitc::FS_COMBINED: 5828 case bitc::FS_COMBINED_PROFILE: { 5829 uint64_t ModuleId = Record[0]; 5830 uint64_t RawLinkage = Record[1]; 5831 unsigned InstCount = Record[2]; 5832 unsigned NumRefs = Record[3]; 5833 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5834 getDecodedLinkage(RawLinkage), InstCount); 5835 FS->setModulePath(ModuleIdMap[ModuleId]); 5836 static int RefListStartIndex = 4; 5837 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5838 assert(Record.size() >= RefListStartIndex + NumRefs && 5839 "Record size inconsistent with number of references"); 5840 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5841 unsigned RefValueId = Record[I]; 5842 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5843 FS->addRefEdge(RefGUID); 5844 } 5845 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5846 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5847 ++I) { 5848 unsigned CalleeValueId = Record[I]; 5849 unsigned CallsiteCount = Record[++I]; 5850 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5851 uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId); 5852 FS->addCallGraphEdge(CalleeGUID, 5853 CalleeInfo(CallsiteCount, ProfileCount)); 5854 } 5855 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5856 assert(!Info->summary() && "Expected a single summary per VST entry"); 5857 Info->setSummary(std::move(FS)); 5858 Combined = true; 5859 break; 5860 } 5861 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 5862 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5863 uint64_t ModuleId = Record[0]; 5864 uint64_t RawLinkage = Record[1]; 5865 std::unique_ptr<GlobalVarSummary> FS = 5866 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5867 FS->setModulePath(ModuleIdMap[ModuleId]); 5868 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5869 unsigned RefValueId = Record[I]; 5870 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5871 FS->addRefEdge(RefGUID); 5872 } 5873 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5874 assert(!Info->summary() && "Expected a single summary per VST entry"); 5875 Info->setSummary(std::move(FS)); 5876 Combined = true; 5877 break; 5878 } 5879 } 5880 } 5881 llvm_unreachable("Exit infinite loop"); 5882 } 5883 5884 // Parse the module string table block into the Index. 5885 // This populates the ModulePathStringTable map in the index. 5886 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5887 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5888 return error("Invalid record"); 5889 5890 SmallVector<uint64_t, 64> Record; 5891 5892 SmallString<128> ModulePath; 5893 while (1) { 5894 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5895 5896 switch (Entry.Kind) { 5897 case BitstreamEntry::SubBlock: // Handled for us already. 5898 case BitstreamEntry::Error: 5899 return error("Malformed block"); 5900 case BitstreamEntry::EndBlock: 5901 return std::error_code(); 5902 case BitstreamEntry::Record: 5903 // The interesting case. 5904 break; 5905 } 5906 5907 Record.clear(); 5908 switch (Stream.readRecord(Entry.ID, Record)) { 5909 default: // Default behavior: ignore. 5910 break; 5911 case bitc::MST_CODE_ENTRY: { 5912 // MST_ENTRY: [modid, namechar x N] 5913 if (convertToString(Record, 1, ModulePath)) 5914 return error("Invalid record"); 5915 uint64_t ModuleId = Record[0]; 5916 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5917 ModuleIdMap[ModuleId] = ModulePathInMap; 5918 ModulePath.clear(); 5919 break; 5920 } 5921 } 5922 } 5923 llvm_unreachable("Exit infinite loop"); 5924 } 5925 5926 // Parse the function info index from the bitcode streamer into the given index. 5927 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5928 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5929 TheIndex = I; 5930 5931 if (std::error_code EC = initStream(std::move(Streamer))) 5932 return EC; 5933 5934 // Sniff for the signature. 5935 if (!hasValidBitcodeHeader(Stream)) 5936 return error("Invalid bitcode signature"); 5937 5938 // We expect a number of well-defined blocks, though we don't necessarily 5939 // need to understand them all. 5940 while (1) { 5941 if (Stream.AtEndOfStream()) { 5942 // We didn't really read a proper Module block. 5943 return error("Malformed block"); 5944 } 5945 5946 BitstreamEntry Entry = 5947 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5948 5949 if (Entry.Kind != BitstreamEntry::SubBlock) 5950 return error("Malformed block"); 5951 5952 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5953 // building the function summary index. 5954 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5955 return parseModule(); 5956 5957 if (Stream.SkipBlock()) 5958 return error("Invalid record"); 5959 } 5960 } 5961 5962 // Parse the function information at the given offset in the buffer into 5963 // the index. Used to support lazy parsing of function summaries from the 5964 // combined index during importing. 5965 // TODO: This function is not yet complete as it won't have a consumer 5966 // until ThinLTO function importing is added. 5967 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5968 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5969 size_t FunctionSummaryOffset) { 5970 TheIndex = I; 5971 5972 if (std::error_code EC = initStream(std::move(Streamer))) 5973 return EC; 5974 5975 // Sniff for the signature. 5976 if (!hasValidBitcodeHeader(Stream)) 5977 return error("Invalid bitcode signature"); 5978 5979 Stream.JumpToBit(FunctionSummaryOffset); 5980 5981 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5982 5983 switch (Entry.Kind) { 5984 default: 5985 return error("Malformed block"); 5986 case BitstreamEntry::Record: 5987 // The expected case. 5988 break; 5989 } 5990 5991 // TODO: Read a record. This interface will be completed when ThinLTO 5992 // importing is added so that it can be tested. 5993 SmallVector<uint64_t, 64> Record; 5994 switch (Stream.readRecord(Entry.ID, Record)) { 5995 case bitc::FS_COMBINED: 5996 case bitc::FS_COMBINED_PROFILE: 5997 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 5998 default: 5999 return error("Invalid record"); 6000 } 6001 6002 return std::error_code(); 6003 } 6004 6005 std::error_code 6006 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 6007 if (Streamer) 6008 return initLazyStream(std::move(Streamer)); 6009 return initStreamFromBuffer(); 6010 } 6011 6012 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 6013 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6014 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6015 6016 if (Buffer->getBufferSize() & 3) 6017 return error("Invalid bitcode signature"); 6018 6019 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6020 // The magic number is 0x0B17C0DE stored in little endian. 6021 if (isBitcodeWrapper(BufPtr, BufEnd)) 6022 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6023 return error("Invalid bitcode wrapper header"); 6024 6025 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6026 Stream.init(&*StreamFile); 6027 6028 return std::error_code(); 6029 } 6030 6031 std::error_code FunctionIndexBitcodeReader::initLazyStream( 6032 std::unique_ptr<DataStreamer> Streamer) { 6033 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6034 // see it. 6035 auto OwnedBytes = 6036 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6037 StreamingMemoryObject &Bytes = *OwnedBytes; 6038 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6039 Stream.init(&*StreamFile); 6040 6041 unsigned char buf[16]; 6042 if (Bytes.readBytes(buf, 16, 0) != 16) 6043 return error("Invalid bitcode signature"); 6044 6045 if (!isBitcode(buf, buf + 16)) 6046 return error("Invalid bitcode signature"); 6047 6048 if (isBitcodeWrapper(buf, buf + 4)) { 6049 const unsigned char *bitcodeStart = buf; 6050 const unsigned char *bitcodeEnd = buf + 16; 6051 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6052 Bytes.dropLeadingBytes(bitcodeStart - buf); 6053 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6054 } 6055 return std::error_code(); 6056 } 6057 6058 namespace { 6059 class BitcodeErrorCategoryType : public std::error_category { 6060 const char *name() const LLVM_NOEXCEPT override { 6061 return "llvm.bitcode"; 6062 } 6063 std::string message(int IE) const override { 6064 BitcodeError E = static_cast<BitcodeError>(IE); 6065 switch (E) { 6066 case BitcodeError::InvalidBitcodeSignature: 6067 return "Invalid bitcode signature"; 6068 case BitcodeError::CorruptedBitcode: 6069 return "Corrupted bitcode"; 6070 } 6071 llvm_unreachable("Unknown error type!"); 6072 } 6073 }; 6074 } // end anonymous namespace 6075 6076 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6077 6078 const std::error_category &llvm::BitcodeErrorCategory() { 6079 return *ErrorCategory; 6080 } 6081 6082 //===----------------------------------------------------------------------===// 6083 // External interface 6084 //===----------------------------------------------------------------------===// 6085 6086 static ErrorOr<std::unique_ptr<Module>> 6087 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6088 BitcodeReader *R, LLVMContext &Context, 6089 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6090 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6091 M->setMaterializer(R); 6092 6093 auto cleanupOnError = [&](std::error_code EC) { 6094 R->releaseBuffer(); // Never take ownership on error. 6095 return EC; 6096 }; 6097 6098 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6099 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6100 ShouldLazyLoadMetadata)) 6101 return cleanupOnError(EC); 6102 6103 if (MaterializeAll) { 6104 // Read in the entire module, and destroy the BitcodeReader. 6105 if (std::error_code EC = M->materializeAll()) 6106 return cleanupOnError(EC); 6107 } else { 6108 // Resolve forward references from blockaddresses. 6109 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6110 return cleanupOnError(EC); 6111 } 6112 return std::move(M); 6113 } 6114 6115 /// \brief Get a lazy one-at-time loading module from bitcode. 6116 /// 6117 /// This isn't always used in a lazy context. In particular, it's also used by 6118 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6119 /// in forward-referenced functions from block address references. 6120 /// 6121 /// \param[in] MaterializeAll Set to \c true if we should materialize 6122 /// everything. 6123 static ErrorOr<std::unique_ptr<Module>> 6124 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6125 LLVMContext &Context, bool MaterializeAll, 6126 bool ShouldLazyLoadMetadata = false) { 6127 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6128 6129 ErrorOr<std::unique_ptr<Module>> Ret = 6130 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6131 MaterializeAll, ShouldLazyLoadMetadata); 6132 if (!Ret) 6133 return Ret; 6134 6135 Buffer.release(); // The BitcodeReader owns it now. 6136 return Ret; 6137 } 6138 6139 ErrorOr<std::unique_ptr<Module>> 6140 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6141 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6142 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6143 ShouldLazyLoadMetadata); 6144 } 6145 6146 ErrorOr<std::unique_ptr<Module>> 6147 llvm::getStreamedBitcodeModule(StringRef Name, 6148 std::unique_ptr<DataStreamer> Streamer, 6149 LLVMContext &Context) { 6150 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6151 BitcodeReader *R = new BitcodeReader(Context); 6152 6153 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6154 false); 6155 } 6156 6157 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6158 LLVMContext &Context) { 6159 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6160 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6161 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6162 // written. We must defer until the Module has been fully materialized. 6163 } 6164 6165 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6166 LLVMContext &Context) { 6167 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6168 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6169 ErrorOr<std::string> Triple = R->parseTriple(); 6170 if (Triple.getError()) 6171 return ""; 6172 return Triple.get(); 6173 } 6174 6175 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6176 LLVMContext &Context) { 6177 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6178 BitcodeReader R(Buf.release(), Context); 6179 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6180 if (ProducerString.getError()) 6181 return ""; 6182 return ProducerString.get(); 6183 } 6184 6185 // Parse the specified bitcode buffer, returning the function info index. 6186 // If IsLazy is false, parse the entire function summary into 6187 // the index. Otherwise skip the function summary section, and only create 6188 // an index object with a map from function name to function summary offset. 6189 // The index is used to perform lazy function summary reading later. 6190 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 6191 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, 6192 DiagnosticHandlerFunction DiagnosticHandler, 6193 bool IsLazy) { 6194 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6195 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 6196 6197 auto Index = llvm::make_unique<FunctionInfoIndex>(); 6198 6199 auto cleanupOnError = [&](std::error_code EC) { 6200 R.releaseBuffer(); // Never take ownership on error. 6201 return EC; 6202 }; 6203 6204 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6205 return cleanupOnError(EC); 6206 6207 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6208 return std::move(Index); 6209 } 6210 6211 // Check if the given bitcode buffer contains a global value summary block. 6212 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6213 DiagnosticHandlerFunction DiagnosticHandler) { 6214 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6215 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 6216 6217 auto cleanupOnError = [&](std::error_code EC) { 6218 R.releaseBuffer(); // Never take ownership on error. 6219 return false; 6220 }; 6221 6222 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6223 return cleanupOnError(EC); 6224 6225 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6226 return R.foundGlobalValSummary(); 6227 } 6228 6229 // This method supports lazy reading of function summary data from the combined 6230 // index during ThinLTO function importing. When reading the combined index 6231 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 6232 // Then this method is called for each function considered for importing, 6233 // to parse the summary information for the given function name into 6234 // the index. 6235 std::error_code llvm::readFunctionSummary( 6236 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6237 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) { 6238 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6239 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6240 6241 auto cleanupOnError = [&](std::error_code EC) { 6242 R.releaseBuffer(); // Never take ownership on error. 6243 return EC; 6244 }; 6245 6246 // Lookup the given function name in the FunctionMap, which may 6247 // contain a list of function infos in the case of a COMDAT. Walk through 6248 // and parse each function summary info at the function summary offset 6249 // recorded when parsing the value symbol table. 6250 for (const auto &FI : Index->getGlobalValueInfoList(FunctionName)) { 6251 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 6252 if (std::error_code EC = 6253 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 6254 return cleanupOnError(EC); 6255 } 6256 6257 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6258 return std::error_code(); 6259 } 6260