1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 505 struct FunctionOperandInfo { 506 Function *F; 507 unsigned PersonalityFn; 508 unsigned Prefix; 509 unsigned Prologue; 510 }; 511 std::vector<FunctionOperandInfo> FunctionOperands; 512 513 /// The set of attributes by index. Index zero in the file is for null, and 514 /// is thus not represented here. As such all indices are off by one. 515 std::vector<AttributeList> MAttributes; 516 517 /// The set of attribute groups. 518 std::map<unsigned, AttributeList> MAttributeGroups; 519 520 /// While parsing a function body, this is a list of the basic blocks for the 521 /// function. 522 std::vector<BasicBlock*> FunctionBBs; 523 524 // When reading the module header, this list is populated with functions that 525 // have bodies later in the file. 526 std::vector<Function*> FunctionsWithBodies; 527 528 // When intrinsic functions are encountered which require upgrading they are 529 // stored here with their replacement function. 530 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 531 UpdatedIntrinsicMap UpgradedIntrinsics; 532 // Intrinsics which were remangled because of types rename 533 UpdatedIntrinsicMap RemangledIntrinsics; 534 535 // Several operations happen after the module header has been read, but 536 // before function bodies are processed. This keeps track of whether 537 // we've done this yet. 538 bool SeenFirstFunctionBody = false; 539 540 /// When function bodies are initially scanned, this map contains info about 541 /// where to find deferred function body in the stream. 542 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 543 544 /// When Metadata block is initially scanned when parsing the module, we may 545 /// choose to defer parsing of the metadata. This vector contains info about 546 /// which Metadata blocks are deferred. 547 std::vector<uint64_t> DeferredMetadataInfo; 548 549 /// These are basic blocks forward-referenced by block addresses. They are 550 /// inserted lazily into functions when they're loaded. The basic block ID is 551 /// its index into the vector. 552 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 553 std::deque<Function *> BasicBlockFwdRefQueue; 554 555 /// Indicates that we are using a new encoding for instruction operands where 556 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 557 /// instruction number, for a more compact encoding. Some instruction 558 /// operands are not relative to the instruction ID: basic block numbers, and 559 /// types. Once the old style function blocks have been phased out, we would 560 /// not need this flag. 561 bool UseRelativeIDs = false; 562 563 /// True if all functions will be materialized, negating the need to process 564 /// (e.g.) blockaddress forward references. 565 bool WillMaterializeAllForwardRefs = false; 566 567 bool StripDebugInfo = false; 568 TBAAVerifier TBAAVerifyHelper; 569 570 std::vector<std::string> BundleTags; 571 SmallVector<SyncScope::ID, 8> SSIDs; 572 573 public: 574 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 575 StringRef ProducerIdentification, LLVMContext &Context); 576 577 Error materializeForwardReferencedFunctions(); 578 579 Error materialize(GlobalValue *GV) override; 580 Error materializeModule() override; 581 std::vector<StructType *> getIdentifiedStructTypes() const override; 582 583 /// Main interface to parsing a bitcode buffer. 584 /// \returns true if an error occurred. 585 Error parseBitcodeInto( 586 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 587 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 588 589 static uint64_t decodeSignRotatedValue(uint64_t V); 590 591 /// Materialize any deferred Metadata block. 592 Error materializeMetadata() override; 593 594 void setStripDebugInfo() override; 595 596 private: 597 std::vector<StructType *> IdentifiedStructTypes; 598 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 599 StructType *createIdentifiedStructType(LLVMContext &Context); 600 601 Type *getTypeByID(unsigned ID); 602 603 Value *getFnValueByID(unsigned ID, Type *Ty) { 604 if (Ty && Ty->isMetadataTy()) 605 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 606 return ValueList.getValueFwdRef(ID, Ty); 607 } 608 609 Metadata *getFnMetadataByID(unsigned ID) { 610 return MDLoader->getMetadataFwdRefOrLoad(ID); 611 } 612 613 BasicBlock *getBasicBlock(unsigned ID) const { 614 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 615 return FunctionBBs[ID]; 616 } 617 618 AttributeList getAttributes(unsigned i) const { 619 if (i-1 < MAttributes.size()) 620 return MAttributes[i-1]; 621 return AttributeList(); 622 } 623 624 /// Read a value/type pair out of the specified record from slot 'Slot'. 625 /// Increment Slot past the number of slots used in the record. Return true on 626 /// failure. 627 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 628 unsigned InstNum, Value *&ResVal) { 629 if (Slot == Record.size()) return true; 630 unsigned ValNo = (unsigned)Record[Slot++]; 631 // Adjust the ValNo, if it was encoded relative to the InstNum. 632 if (UseRelativeIDs) 633 ValNo = InstNum - ValNo; 634 if (ValNo < InstNum) { 635 // If this is not a forward reference, just return the value we already 636 // have. 637 ResVal = getFnValueByID(ValNo, nullptr); 638 return ResVal == nullptr; 639 } 640 if (Slot == Record.size()) 641 return true; 642 643 unsigned TypeNo = (unsigned)Record[Slot++]; 644 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 645 return ResVal == nullptr; 646 } 647 648 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 649 /// past the number of slots used by the value in the record. Return true if 650 /// there is an error. 651 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 652 unsigned InstNum, Type *Ty, Value *&ResVal) { 653 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 654 return true; 655 // All values currently take a single record slot. 656 ++Slot; 657 return false; 658 } 659 660 /// Like popValue, but does not increment the Slot number. 661 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 662 unsigned InstNum, Type *Ty, Value *&ResVal) { 663 ResVal = getValue(Record, Slot, InstNum, Ty); 664 return ResVal == nullptr; 665 } 666 667 /// Version of getValue that returns ResVal directly, or 0 if there is an 668 /// error. 669 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 670 unsigned InstNum, Type *Ty) { 671 if (Slot == Record.size()) return nullptr; 672 unsigned ValNo = (unsigned)Record[Slot]; 673 // Adjust the ValNo, if it was encoded relative to the InstNum. 674 if (UseRelativeIDs) 675 ValNo = InstNum - ValNo; 676 return getFnValueByID(ValNo, Ty); 677 } 678 679 /// Like getValue, but decodes signed VBRs. 680 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 681 unsigned InstNum, Type *Ty) { 682 if (Slot == Record.size()) return nullptr; 683 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 684 // Adjust the ValNo, if it was encoded relative to the InstNum. 685 if (UseRelativeIDs) 686 ValNo = InstNum - ValNo; 687 return getFnValueByID(ValNo, Ty); 688 } 689 690 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 691 /// corresponding argument's pointee type. Also upgrades intrinsics that now 692 /// require an elementtype attribute. 693 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 694 695 /// Converts alignment exponent (i.e. power of two (or zero)) to the 696 /// corresponding alignment to use. If alignment is too large, returns 697 /// a corresponding error code. 698 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 699 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 700 Error parseModule( 701 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 702 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 703 704 Error parseComdatRecord(ArrayRef<uint64_t> Record); 705 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 706 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 707 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 708 ArrayRef<uint64_t> Record); 709 710 Error parseAttributeBlock(); 711 Error parseAttributeGroupBlock(); 712 Error parseTypeTable(); 713 Error parseTypeTableBody(); 714 Error parseOperandBundleTags(); 715 Error parseSyncScopeNames(); 716 717 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 718 unsigned NameIndex, Triple &TT); 719 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 720 ArrayRef<uint64_t> Record); 721 Error parseValueSymbolTable(uint64_t Offset = 0); 722 Error parseGlobalValueSymbolTable(); 723 Error parseConstants(); 724 Error rememberAndSkipFunctionBodies(); 725 Error rememberAndSkipFunctionBody(); 726 /// Save the positions of the Metadata blocks and skip parsing the blocks. 727 Error rememberAndSkipMetadata(); 728 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 729 Error parseFunctionBody(Function *F); 730 Error globalCleanup(); 731 Error resolveGlobalAndIndirectSymbolInits(); 732 Error parseUseLists(); 733 Error findFunctionInStream( 734 Function *F, 735 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 736 737 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 738 }; 739 740 /// Class to manage reading and parsing function summary index bitcode 741 /// files/sections. 742 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 743 /// The module index built during parsing. 744 ModuleSummaryIndex &TheIndex; 745 746 /// Indicates whether we have encountered a global value summary section 747 /// yet during parsing. 748 bool SeenGlobalValSummary = false; 749 750 /// Indicates whether we have already parsed the VST, used for error checking. 751 bool SeenValueSymbolTable = false; 752 753 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 754 /// Used to enable on-demand parsing of the VST. 755 uint64_t VSTOffset = 0; 756 757 // Map to save ValueId to ValueInfo association that was recorded in the 758 // ValueSymbolTable. It is used after the VST is parsed to convert 759 // call graph edges read from the function summary from referencing 760 // callees by their ValueId to using the ValueInfo instead, which is how 761 // they are recorded in the summary index being built. 762 // We save a GUID which refers to the same global as the ValueInfo, but 763 // ignoring the linkage, i.e. for values other than local linkage they are 764 // identical. 765 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 766 ValueIdToValueInfoMap; 767 768 /// Map populated during module path string table parsing, from the 769 /// module ID to a string reference owned by the index's module 770 /// path string table, used to correlate with combined index 771 /// summary records. 772 DenseMap<uint64_t, StringRef> ModuleIdMap; 773 774 /// Original source file name recorded in a bitcode record. 775 std::string SourceFileName; 776 777 /// The string identifier given to this module by the client, normally the 778 /// path to the bitcode file. 779 StringRef ModulePath; 780 781 /// For per-module summary indexes, the unique numerical identifier given to 782 /// this module by the client. 783 unsigned ModuleId; 784 785 public: 786 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 787 ModuleSummaryIndex &TheIndex, 788 StringRef ModulePath, unsigned ModuleId); 789 790 Error parseModule(); 791 792 private: 793 void setValueGUID(uint64_t ValueID, StringRef ValueName, 794 GlobalValue::LinkageTypes Linkage, 795 StringRef SourceFileName); 796 Error parseValueSymbolTable( 797 uint64_t Offset, 798 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 799 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 800 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 801 bool IsOldProfileFormat, 802 bool HasProfile, 803 bool HasRelBF); 804 Error parseEntireSummary(unsigned ID); 805 Error parseModuleStringTable(); 806 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 807 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 808 TypeIdCompatibleVtableInfo &TypeId); 809 std::vector<FunctionSummary::ParamAccess> 810 parseParamAccesses(ArrayRef<uint64_t> Record); 811 812 std::pair<ValueInfo, GlobalValue::GUID> 813 getValueInfoFromValueId(unsigned ValueId); 814 815 void addThisModule(); 816 ModuleSummaryIndex::ModuleInfo *getThisModule(); 817 }; 818 819 } // end anonymous namespace 820 821 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 822 Error Err) { 823 if (Err) { 824 std::error_code EC; 825 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 826 EC = EIB.convertToErrorCode(); 827 Ctx.emitError(EIB.message()); 828 }); 829 return EC; 830 } 831 return std::error_code(); 832 } 833 834 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 835 StringRef ProducerIdentification, 836 LLVMContext &Context) 837 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 838 ValueList(Context, Stream.SizeInBytes()) { 839 this->ProducerIdentification = std::string(ProducerIdentification); 840 } 841 842 Error BitcodeReader::materializeForwardReferencedFunctions() { 843 if (WillMaterializeAllForwardRefs) 844 return Error::success(); 845 846 // Prevent recursion. 847 WillMaterializeAllForwardRefs = true; 848 849 while (!BasicBlockFwdRefQueue.empty()) { 850 Function *F = BasicBlockFwdRefQueue.front(); 851 BasicBlockFwdRefQueue.pop_front(); 852 assert(F && "Expected valid function"); 853 if (!BasicBlockFwdRefs.count(F)) 854 // Already materialized. 855 continue; 856 857 // Check for a function that isn't materializable to prevent an infinite 858 // loop. When parsing a blockaddress stored in a global variable, there 859 // isn't a trivial way to check if a function will have a body without a 860 // linear search through FunctionsWithBodies, so just check it here. 861 if (!F->isMaterializable()) 862 return error("Never resolved function from blockaddress"); 863 864 // Try to materialize F. 865 if (Error Err = materialize(F)) 866 return Err; 867 } 868 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 869 870 // Reset state. 871 WillMaterializeAllForwardRefs = false; 872 return Error::success(); 873 } 874 875 //===----------------------------------------------------------------------===// 876 // Helper functions to implement forward reference resolution, etc. 877 //===----------------------------------------------------------------------===// 878 879 static bool hasImplicitComdat(size_t Val) { 880 switch (Val) { 881 default: 882 return false; 883 case 1: // Old WeakAnyLinkage 884 case 4: // Old LinkOnceAnyLinkage 885 case 10: // Old WeakODRLinkage 886 case 11: // Old LinkOnceODRLinkage 887 return true; 888 } 889 } 890 891 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 892 switch (Val) { 893 default: // Map unknown/new linkages to external 894 case 0: 895 return GlobalValue::ExternalLinkage; 896 case 2: 897 return GlobalValue::AppendingLinkage; 898 case 3: 899 return GlobalValue::InternalLinkage; 900 case 5: 901 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 902 case 6: 903 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 904 case 7: 905 return GlobalValue::ExternalWeakLinkage; 906 case 8: 907 return GlobalValue::CommonLinkage; 908 case 9: 909 return GlobalValue::PrivateLinkage; 910 case 12: 911 return GlobalValue::AvailableExternallyLinkage; 912 case 13: 913 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 914 case 14: 915 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 916 case 15: 917 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 918 case 1: // Old value with implicit comdat. 919 case 16: 920 return GlobalValue::WeakAnyLinkage; 921 case 10: // Old value with implicit comdat. 922 case 17: 923 return GlobalValue::WeakODRLinkage; 924 case 4: // Old value with implicit comdat. 925 case 18: 926 return GlobalValue::LinkOnceAnyLinkage; 927 case 11: // Old value with implicit comdat. 928 case 19: 929 return GlobalValue::LinkOnceODRLinkage; 930 } 931 } 932 933 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 934 FunctionSummary::FFlags Flags; 935 Flags.ReadNone = RawFlags & 0x1; 936 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 937 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 938 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 939 Flags.NoInline = (RawFlags >> 4) & 0x1; 940 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 941 return Flags; 942 } 943 944 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 945 // 946 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 947 // visibility: [8, 10). 948 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 949 uint64_t Version) { 950 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 951 // like getDecodedLinkage() above. Any future change to the linkage enum and 952 // to getDecodedLinkage() will need to be taken into account here as above. 953 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 954 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 955 RawFlags = RawFlags >> 4; 956 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 957 // The Live flag wasn't introduced until version 3. For dead stripping 958 // to work correctly on earlier versions, we must conservatively treat all 959 // values as live. 960 bool Live = (RawFlags & 0x2) || Version < 3; 961 bool Local = (RawFlags & 0x4); 962 bool AutoHide = (RawFlags & 0x8); 963 964 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 965 Live, Local, AutoHide); 966 } 967 968 // Decode the flags for GlobalVariable in the summary 969 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 970 return GlobalVarSummary::GVarFlags( 971 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 972 (RawFlags & 0x4) ? true : false, 973 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 974 } 975 976 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 977 switch (Val) { 978 default: // Map unknown visibilities to default. 979 case 0: return GlobalValue::DefaultVisibility; 980 case 1: return GlobalValue::HiddenVisibility; 981 case 2: return GlobalValue::ProtectedVisibility; 982 } 983 } 984 985 static GlobalValue::DLLStorageClassTypes 986 getDecodedDLLStorageClass(unsigned Val) { 987 switch (Val) { 988 default: // Map unknown values to default. 989 case 0: return GlobalValue::DefaultStorageClass; 990 case 1: return GlobalValue::DLLImportStorageClass; 991 case 2: return GlobalValue::DLLExportStorageClass; 992 } 993 } 994 995 static bool getDecodedDSOLocal(unsigned Val) { 996 switch(Val) { 997 default: // Map unknown values to preemptable. 998 case 0: return false; 999 case 1: return true; 1000 } 1001 } 1002 1003 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1004 switch (Val) { 1005 case 0: return GlobalVariable::NotThreadLocal; 1006 default: // Map unknown non-zero value to general dynamic. 1007 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1008 case 2: return GlobalVariable::LocalDynamicTLSModel; 1009 case 3: return GlobalVariable::InitialExecTLSModel; 1010 case 4: return GlobalVariable::LocalExecTLSModel; 1011 } 1012 } 1013 1014 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1015 switch (Val) { 1016 default: // Map unknown to UnnamedAddr::None. 1017 case 0: return GlobalVariable::UnnamedAddr::None; 1018 case 1: return GlobalVariable::UnnamedAddr::Global; 1019 case 2: return GlobalVariable::UnnamedAddr::Local; 1020 } 1021 } 1022 1023 static int getDecodedCastOpcode(unsigned Val) { 1024 switch (Val) { 1025 default: return -1; 1026 case bitc::CAST_TRUNC : return Instruction::Trunc; 1027 case bitc::CAST_ZEXT : return Instruction::ZExt; 1028 case bitc::CAST_SEXT : return Instruction::SExt; 1029 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1030 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1031 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1032 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1033 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1034 case bitc::CAST_FPEXT : return Instruction::FPExt; 1035 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1036 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1037 case bitc::CAST_BITCAST : return Instruction::BitCast; 1038 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1039 } 1040 } 1041 1042 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1043 bool IsFP = Ty->isFPOrFPVectorTy(); 1044 // UnOps are only valid for int/fp or vector of int/fp types 1045 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1046 return -1; 1047 1048 switch (Val) { 1049 default: 1050 return -1; 1051 case bitc::UNOP_FNEG: 1052 return IsFP ? Instruction::FNeg : -1; 1053 } 1054 } 1055 1056 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1057 bool IsFP = Ty->isFPOrFPVectorTy(); 1058 // BinOps are only valid for int/fp or vector of int/fp types 1059 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1060 return -1; 1061 1062 switch (Val) { 1063 default: 1064 return -1; 1065 case bitc::BINOP_ADD: 1066 return IsFP ? Instruction::FAdd : Instruction::Add; 1067 case bitc::BINOP_SUB: 1068 return IsFP ? Instruction::FSub : Instruction::Sub; 1069 case bitc::BINOP_MUL: 1070 return IsFP ? Instruction::FMul : Instruction::Mul; 1071 case bitc::BINOP_UDIV: 1072 return IsFP ? -1 : Instruction::UDiv; 1073 case bitc::BINOP_SDIV: 1074 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1075 case bitc::BINOP_UREM: 1076 return IsFP ? -1 : Instruction::URem; 1077 case bitc::BINOP_SREM: 1078 return IsFP ? Instruction::FRem : Instruction::SRem; 1079 case bitc::BINOP_SHL: 1080 return IsFP ? -1 : Instruction::Shl; 1081 case bitc::BINOP_LSHR: 1082 return IsFP ? -1 : Instruction::LShr; 1083 case bitc::BINOP_ASHR: 1084 return IsFP ? -1 : Instruction::AShr; 1085 case bitc::BINOP_AND: 1086 return IsFP ? -1 : Instruction::And; 1087 case bitc::BINOP_OR: 1088 return IsFP ? -1 : Instruction::Or; 1089 case bitc::BINOP_XOR: 1090 return IsFP ? -1 : Instruction::Xor; 1091 } 1092 } 1093 1094 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1095 switch (Val) { 1096 default: return AtomicRMWInst::BAD_BINOP; 1097 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1098 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1099 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1100 case bitc::RMW_AND: return AtomicRMWInst::And; 1101 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1102 case bitc::RMW_OR: return AtomicRMWInst::Or; 1103 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1104 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1105 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1106 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1107 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1108 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1109 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1110 } 1111 } 1112 1113 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1114 switch (Val) { 1115 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1116 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1117 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1118 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1119 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1120 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1121 default: // Map unknown orderings to sequentially-consistent. 1122 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1123 } 1124 } 1125 1126 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1127 switch (Val) { 1128 default: // Map unknown selection kinds to any. 1129 case bitc::COMDAT_SELECTION_KIND_ANY: 1130 return Comdat::Any; 1131 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1132 return Comdat::ExactMatch; 1133 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1134 return Comdat::Largest; 1135 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1136 return Comdat::NoDeduplicate; 1137 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1138 return Comdat::SameSize; 1139 } 1140 } 1141 1142 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1143 FastMathFlags FMF; 1144 if (0 != (Val & bitc::UnsafeAlgebra)) 1145 FMF.setFast(); 1146 if (0 != (Val & bitc::AllowReassoc)) 1147 FMF.setAllowReassoc(); 1148 if (0 != (Val & bitc::NoNaNs)) 1149 FMF.setNoNaNs(); 1150 if (0 != (Val & bitc::NoInfs)) 1151 FMF.setNoInfs(); 1152 if (0 != (Val & bitc::NoSignedZeros)) 1153 FMF.setNoSignedZeros(); 1154 if (0 != (Val & bitc::AllowReciprocal)) 1155 FMF.setAllowReciprocal(); 1156 if (0 != (Val & bitc::AllowContract)) 1157 FMF.setAllowContract(true); 1158 if (0 != (Val & bitc::ApproxFunc)) 1159 FMF.setApproxFunc(); 1160 return FMF; 1161 } 1162 1163 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1164 switch (Val) { 1165 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1166 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1167 } 1168 } 1169 1170 Type *BitcodeReader::getTypeByID(unsigned ID) { 1171 // The type table size is always specified correctly. 1172 if (ID >= TypeList.size()) 1173 return nullptr; 1174 1175 if (Type *Ty = TypeList[ID]) 1176 return Ty; 1177 1178 // If we have a forward reference, the only possible case is when it is to a 1179 // named struct. Just create a placeholder for now. 1180 return TypeList[ID] = createIdentifiedStructType(Context); 1181 } 1182 1183 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1184 StringRef Name) { 1185 auto *Ret = StructType::create(Context, Name); 1186 IdentifiedStructTypes.push_back(Ret); 1187 return Ret; 1188 } 1189 1190 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1191 auto *Ret = StructType::create(Context); 1192 IdentifiedStructTypes.push_back(Ret); 1193 return Ret; 1194 } 1195 1196 //===----------------------------------------------------------------------===// 1197 // Functions for parsing blocks from the bitcode file 1198 //===----------------------------------------------------------------------===// 1199 1200 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1201 switch (Val) { 1202 case Attribute::EndAttrKinds: 1203 case Attribute::EmptyKey: 1204 case Attribute::TombstoneKey: 1205 llvm_unreachable("Synthetic enumerators which should never get here"); 1206 1207 case Attribute::None: return 0; 1208 case Attribute::ZExt: return 1 << 0; 1209 case Attribute::SExt: return 1 << 1; 1210 case Attribute::NoReturn: return 1 << 2; 1211 case Attribute::InReg: return 1 << 3; 1212 case Attribute::StructRet: return 1 << 4; 1213 case Attribute::NoUnwind: return 1 << 5; 1214 case Attribute::NoAlias: return 1 << 6; 1215 case Attribute::ByVal: return 1 << 7; 1216 case Attribute::Nest: return 1 << 8; 1217 case Attribute::ReadNone: return 1 << 9; 1218 case Attribute::ReadOnly: return 1 << 10; 1219 case Attribute::NoInline: return 1 << 11; 1220 case Attribute::AlwaysInline: return 1 << 12; 1221 case Attribute::OptimizeForSize: return 1 << 13; 1222 case Attribute::StackProtect: return 1 << 14; 1223 case Attribute::StackProtectReq: return 1 << 15; 1224 case Attribute::Alignment: return 31 << 16; 1225 case Attribute::NoCapture: return 1 << 21; 1226 case Attribute::NoRedZone: return 1 << 22; 1227 case Attribute::NoImplicitFloat: return 1 << 23; 1228 case Attribute::Naked: return 1 << 24; 1229 case Attribute::InlineHint: return 1 << 25; 1230 case Attribute::StackAlignment: return 7 << 26; 1231 case Attribute::ReturnsTwice: return 1 << 29; 1232 case Attribute::UWTable: return 1 << 30; 1233 case Attribute::NonLazyBind: return 1U << 31; 1234 case Attribute::SanitizeAddress: return 1ULL << 32; 1235 case Attribute::MinSize: return 1ULL << 33; 1236 case Attribute::NoDuplicate: return 1ULL << 34; 1237 case Attribute::StackProtectStrong: return 1ULL << 35; 1238 case Attribute::SanitizeThread: return 1ULL << 36; 1239 case Attribute::SanitizeMemory: return 1ULL << 37; 1240 case Attribute::NoBuiltin: return 1ULL << 38; 1241 case Attribute::Returned: return 1ULL << 39; 1242 case Attribute::Cold: return 1ULL << 40; 1243 case Attribute::Builtin: return 1ULL << 41; 1244 case Attribute::OptimizeNone: return 1ULL << 42; 1245 case Attribute::InAlloca: return 1ULL << 43; 1246 case Attribute::NonNull: return 1ULL << 44; 1247 case Attribute::JumpTable: return 1ULL << 45; 1248 case Attribute::Convergent: return 1ULL << 46; 1249 case Attribute::SafeStack: return 1ULL << 47; 1250 case Attribute::NoRecurse: return 1ULL << 48; 1251 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1252 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1253 case Attribute::SwiftSelf: return 1ULL << 51; 1254 case Attribute::SwiftError: return 1ULL << 52; 1255 case Attribute::WriteOnly: return 1ULL << 53; 1256 case Attribute::Speculatable: return 1ULL << 54; 1257 case Attribute::StrictFP: return 1ULL << 55; 1258 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1259 case Attribute::NoCfCheck: return 1ULL << 57; 1260 case Attribute::OptForFuzzing: return 1ULL << 58; 1261 case Attribute::ShadowCallStack: return 1ULL << 59; 1262 case Attribute::SpeculativeLoadHardening: 1263 return 1ULL << 60; 1264 case Attribute::ImmArg: 1265 return 1ULL << 61; 1266 case Attribute::WillReturn: 1267 return 1ULL << 62; 1268 case Attribute::NoFree: 1269 return 1ULL << 63; 1270 default: 1271 // Other attributes are not supported in the raw format, 1272 // as we ran out of space. 1273 return 0; 1274 } 1275 llvm_unreachable("Unsupported attribute type"); 1276 } 1277 1278 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1279 if (!Val) return; 1280 1281 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1282 I = Attribute::AttrKind(I + 1)) { 1283 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1284 if (I == Attribute::Alignment) 1285 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1286 else if (I == Attribute::StackAlignment) 1287 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1288 else if (Attribute::isTypeAttrKind(I)) 1289 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1290 else 1291 B.addAttribute(I); 1292 } 1293 } 1294 } 1295 1296 /// This fills an AttrBuilder object with the LLVM attributes that have 1297 /// been decoded from the given integer. This function must stay in sync with 1298 /// 'encodeLLVMAttributesForBitcode'. 1299 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1300 uint64_t EncodedAttrs) { 1301 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1302 // the bits above 31 down by 11 bits. 1303 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1304 assert((!Alignment || isPowerOf2_32(Alignment)) && 1305 "Alignment must be a power of two."); 1306 1307 if (Alignment) 1308 B.addAlignmentAttr(Alignment); 1309 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1310 (EncodedAttrs & 0xffff)); 1311 } 1312 1313 Error BitcodeReader::parseAttributeBlock() { 1314 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1315 return Err; 1316 1317 if (!MAttributes.empty()) 1318 return error("Invalid multiple blocks"); 1319 1320 SmallVector<uint64_t, 64> Record; 1321 1322 SmallVector<AttributeList, 8> Attrs; 1323 1324 // Read all the records. 1325 while (true) { 1326 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1327 if (!MaybeEntry) 1328 return MaybeEntry.takeError(); 1329 BitstreamEntry Entry = MaybeEntry.get(); 1330 1331 switch (Entry.Kind) { 1332 case BitstreamEntry::SubBlock: // Handled for us already. 1333 case BitstreamEntry::Error: 1334 return error("Malformed block"); 1335 case BitstreamEntry::EndBlock: 1336 return Error::success(); 1337 case BitstreamEntry::Record: 1338 // The interesting case. 1339 break; 1340 } 1341 1342 // Read a record. 1343 Record.clear(); 1344 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1345 if (!MaybeRecord) 1346 return MaybeRecord.takeError(); 1347 switch (MaybeRecord.get()) { 1348 default: // Default behavior: ignore. 1349 break; 1350 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1351 // Deprecated, but still needed to read old bitcode files. 1352 if (Record.size() & 1) 1353 return error("Invalid record"); 1354 1355 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1356 AttrBuilder B; 1357 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1358 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1359 } 1360 1361 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1362 Attrs.clear(); 1363 break; 1364 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1365 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1366 Attrs.push_back(MAttributeGroups[Record[i]]); 1367 1368 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1369 Attrs.clear(); 1370 break; 1371 } 1372 } 1373 } 1374 1375 // Returns Attribute::None on unrecognized codes. 1376 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1377 switch (Code) { 1378 default: 1379 return Attribute::None; 1380 case bitc::ATTR_KIND_ALIGNMENT: 1381 return Attribute::Alignment; 1382 case bitc::ATTR_KIND_ALWAYS_INLINE: 1383 return Attribute::AlwaysInline; 1384 case bitc::ATTR_KIND_ARGMEMONLY: 1385 return Attribute::ArgMemOnly; 1386 case bitc::ATTR_KIND_BUILTIN: 1387 return Attribute::Builtin; 1388 case bitc::ATTR_KIND_BY_VAL: 1389 return Attribute::ByVal; 1390 case bitc::ATTR_KIND_IN_ALLOCA: 1391 return Attribute::InAlloca; 1392 case bitc::ATTR_KIND_COLD: 1393 return Attribute::Cold; 1394 case bitc::ATTR_KIND_CONVERGENT: 1395 return Attribute::Convergent; 1396 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1397 return Attribute::DisableSanitizerInstrumentation; 1398 case bitc::ATTR_KIND_ELEMENTTYPE: 1399 return Attribute::ElementType; 1400 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1401 return Attribute::InaccessibleMemOnly; 1402 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1403 return Attribute::InaccessibleMemOrArgMemOnly; 1404 case bitc::ATTR_KIND_INLINE_HINT: 1405 return Attribute::InlineHint; 1406 case bitc::ATTR_KIND_IN_REG: 1407 return Attribute::InReg; 1408 case bitc::ATTR_KIND_JUMP_TABLE: 1409 return Attribute::JumpTable; 1410 case bitc::ATTR_KIND_MIN_SIZE: 1411 return Attribute::MinSize; 1412 case bitc::ATTR_KIND_NAKED: 1413 return Attribute::Naked; 1414 case bitc::ATTR_KIND_NEST: 1415 return Attribute::Nest; 1416 case bitc::ATTR_KIND_NO_ALIAS: 1417 return Attribute::NoAlias; 1418 case bitc::ATTR_KIND_NO_BUILTIN: 1419 return Attribute::NoBuiltin; 1420 case bitc::ATTR_KIND_NO_CALLBACK: 1421 return Attribute::NoCallback; 1422 case bitc::ATTR_KIND_NO_CAPTURE: 1423 return Attribute::NoCapture; 1424 case bitc::ATTR_KIND_NO_DUPLICATE: 1425 return Attribute::NoDuplicate; 1426 case bitc::ATTR_KIND_NOFREE: 1427 return Attribute::NoFree; 1428 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1429 return Attribute::NoImplicitFloat; 1430 case bitc::ATTR_KIND_NO_INLINE: 1431 return Attribute::NoInline; 1432 case bitc::ATTR_KIND_NO_RECURSE: 1433 return Attribute::NoRecurse; 1434 case bitc::ATTR_KIND_NO_MERGE: 1435 return Attribute::NoMerge; 1436 case bitc::ATTR_KIND_NON_LAZY_BIND: 1437 return Attribute::NonLazyBind; 1438 case bitc::ATTR_KIND_NON_NULL: 1439 return Attribute::NonNull; 1440 case bitc::ATTR_KIND_DEREFERENCEABLE: 1441 return Attribute::Dereferenceable; 1442 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1443 return Attribute::DereferenceableOrNull; 1444 case bitc::ATTR_KIND_ALLOC_SIZE: 1445 return Attribute::AllocSize; 1446 case bitc::ATTR_KIND_NO_RED_ZONE: 1447 return Attribute::NoRedZone; 1448 case bitc::ATTR_KIND_NO_RETURN: 1449 return Attribute::NoReturn; 1450 case bitc::ATTR_KIND_NOSYNC: 1451 return Attribute::NoSync; 1452 case bitc::ATTR_KIND_NOCF_CHECK: 1453 return Attribute::NoCfCheck; 1454 case bitc::ATTR_KIND_NO_PROFILE: 1455 return Attribute::NoProfile; 1456 case bitc::ATTR_KIND_NO_UNWIND: 1457 return Attribute::NoUnwind; 1458 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1459 return Attribute::NoSanitizeCoverage; 1460 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1461 return Attribute::NullPointerIsValid; 1462 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1463 return Attribute::OptForFuzzing; 1464 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1465 return Attribute::OptimizeForSize; 1466 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1467 return Attribute::OptimizeNone; 1468 case bitc::ATTR_KIND_READ_NONE: 1469 return Attribute::ReadNone; 1470 case bitc::ATTR_KIND_READ_ONLY: 1471 return Attribute::ReadOnly; 1472 case bitc::ATTR_KIND_RETURNED: 1473 return Attribute::Returned; 1474 case bitc::ATTR_KIND_RETURNS_TWICE: 1475 return Attribute::ReturnsTwice; 1476 case bitc::ATTR_KIND_S_EXT: 1477 return Attribute::SExt; 1478 case bitc::ATTR_KIND_SPECULATABLE: 1479 return Attribute::Speculatable; 1480 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1481 return Attribute::StackAlignment; 1482 case bitc::ATTR_KIND_STACK_PROTECT: 1483 return Attribute::StackProtect; 1484 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1485 return Attribute::StackProtectReq; 1486 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1487 return Attribute::StackProtectStrong; 1488 case bitc::ATTR_KIND_SAFESTACK: 1489 return Attribute::SafeStack; 1490 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1491 return Attribute::ShadowCallStack; 1492 case bitc::ATTR_KIND_STRICT_FP: 1493 return Attribute::StrictFP; 1494 case bitc::ATTR_KIND_STRUCT_RET: 1495 return Attribute::StructRet; 1496 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1497 return Attribute::SanitizeAddress; 1498 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1499 return Attribute::SanitizeHWAddress; 1500 case bitc::ATTR_KIND_SANITIZE_THREAD: 1501 return Attribute::SanitizeThread; 1502 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1503 return Attribute::SanitizeMemory; 1504 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1505 return Attribute::SpeculativeLoadHardening; 1506 case bitc::ATTR_KIND_SWIFT_ERROR: 1507 return Attribute::SwiftError; 1508 case bitc::ATTR_KIND_SWIFT_SELF: 1509 return Attribute::SwiftSelf; 1510 case bitc::ATTR_KIND_SWIFT_ASYNC: 1511 return Attribute::SwiftAsync; 1512 case bitc::ATTR_KIND_UW_TABLE: 1513 return Attribute::UWTable; 1514 case bitc::ATTR_KIND_VSCALE_RANGE: 1515 return Attribute::VScaleRange; 1516 case bitc::ATTR_KIND_WILLRETURN: 1517 return Attribute::WillReturn; 1518 case bitc::ATTR_KIND_WRITEONLY: 1519 return Attribute::WriteOnly; 1520 case bitc::ATTR_KIND_Z_EXT: 1521 return Attribute::ZExt; 1522 case bitc::ATTR_KIND_IMMARG: 1523 return Attribute::ImmArg; 1524 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1525 return Attribute::SanitizeMemTag; 1526 case bitc::ATTR_KIND_PREALLOCATED: 1527 return Attribute::Preallocated; 1528 case bitc::ATTR_KIND_NOUNDEF: 1529 return Attribute::NoUndef; 1530 case bitc::ATTR_KIND_BYREF: 1531 return Attribute::ByRef; 1532 case bitc::ATTR_KIND_MUSTPROGRESS: 1533 return Attribute::MustProgress; 1534 case bitc::ATTR_KIND_HOT: 1535 return Attribute::Hot; 1536 } 1537 } 1538 1539 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1540 MaybeAlign &Alignment) { 1541 // Note: Alignment in bitcode files is incremented by 1, so that zero 1542 // can be used for default alignment. 1543 if (Exponent > Value::MaxAlignmentExponent + 1) 1544 return error("Invalid alignment value"); 1545 Alignment = decodeMaybeAlign(Exponent); 1546 return Error::success(); 1547 } 1548 1549 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1550 *Kind = getAttrFromCode(Code); 1551 if (*Kind == Attribute::None) 1552 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1553 return Error::success(); 1554 } 1555 1556 Error BitcodeReader::parseAttributeGroupBlock() { 1557 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1558 return Err; 1559 1560 if (!MAttributeGroups.empty()) 1561 return error("Invalid multiple blocks"); 1562 1563 SmallVector<uint64_t, 64> Record; 1564 1565 // Read all the records. 1566 while (true) { 1567 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1568 if (!MaybeEntry) 1569 return MaybeEntry.takeError(); 1570 BitstreamEntry Entry = MaybeEntry.get(); 1571 1572 switch (Entry.Kind) { 1573 case BitstreamEntry::SubBlock: // Handled for us already. 1574 case BitstreamEntry::Error: 1575 return error("Malformed block"); 1576 case BitstreamEntry::EndBlock: 1577 return Error::success(); 1578 case BitstreamEntry::Record: 1579 // The interesting case. 1580 break; 1581 } 1582 1583 // Read a record. 1584 Record.clear(); 1585 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1586 if (!MaybeRecord) 1587 return MaybeRecord.takeError(); 1588 switch (MaybeRecord.get()) { 1589 default: // Default behavior: ignore. 1590 break; 1591 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1592 if (Record.size() < 3) 1593 return error("Invalid record"); 1594 1595 uint64_t GrpID = Record[0]; 1596 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1597 1598 AttrBuilder B; 1599 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1600 if (Record[i] == 0) { // Enum attribute 1601 Attribute::AttrKind Kind; 1602 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1603 return Err; 1604 1605 // Upgrade old-style byval attribute to one with a type, even if it's 1606 // nullptr. We will have to insert the real type when we associate 1607 // this AttributeList with a function. 1608 if (Kind == Attribute::ByVal) 1609 B.addByValAttr(nullptr); 1610 else if (Kind == Attribute::StructRet) 1611 B.addStructRetAttr(nullptr); 1612 else if (Kind == Attribute::InAlloca) 1613 B.addInAllocaAttr(nullptr); 1614 else if (Attribute::isEnumAttrKind(Kind)) 1615 B.addAttribute(Kind); 1616 else 1617 return error("Not an enum attribute"); 1618 } else if (Record[i] == 1) { // Integer attribute 1619 Attribute::AttrKind Kind; 1620 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1621 return Err; 1622 if (!Attribute::isIntAttrKind(Kind)) 1623 return error("Not an int attribute"); 1624 if (Kind == Attribute::Alignment) 1625 B.addAlignmentAttr(Record[++i]); 1626 else if (Kind == Attribute::StackAlignment) 1627 B.addStackAlignmentAttr(Record[++i]); 1628 else if (Kind == Attribute::Dereferenceable) 1629 B.addDereferenceableAttr(Record[++i]); 1630 else if (Kind == Attribute::DereferenceableOrNull) 1631 B.addDereferenceableOrNullAttr(Record[++i]); 1632 else if (Kind == Attribute::AllocSize) 1633 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1634 else if (Kind == Attribute::VScaleRange) 1635 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1636 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1637 bool HasValue = (Record[i++] == 4); 1638 SmallString<64> KindStr; 1639 SmallString<64> ValStr; 1640 1641 while (Record[i] != 0 && i != e) 1642 KindStr += Record[i++]; 1643 assert(Record[i] == 0 && "Kind string not null terminated"); 1644 1645 if (HasValue) { 1646 // Has a value associated with it. 1647 ++i; // Skip the '0' that terminates the "kind" string. 1648 while (Record[i] != 0 && i != e) 1649 ValStr += Record[i++]; 1650 assert(Record[i] == 0 && "Value string not null terminated"); 1651 } 1652 1653 B.addAttribute(KindStr.str(), ValStr.str()); 1654 } else { 1655 assert((Record[i] == 5 || Record[i] == 6) && 1656 "Invalid attribute group entry"); 1657 bool HasType = Record[i] == 6; 1658 Attribute::AttrKind Kind; 1659 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1660 return Err; 1661 if (!Attribute::isTypeAttrKind(Kind)) 1662 return error("Not a type attribute"); 1663 1664 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1665 } 1666 } 1667 1668 UpgradeAttributes(B); 1669 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1670 break; 1671 } 1672 } 1673 } 1674 } 1675 1676 Error BitcodeReader::parseTypeTable() { 1677 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1678 return Err; 1679 1680 return parseTypeTableBody(); 1681 } 1682 1683 Error BitcodeReader::parseTypeTableBody() { 1684 if (!TypeList.empty()) 1685 return error("Invalid multiple blocks"); 1686 1687 SmallVector<uint64_t, 64> Record; 1688 unsigned NumRecords = 0; 1689 1690 SmallString<64> TypeName; 1691 1692 // Read all the records for this type table. 1693 while (true) { 1694 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1695 if (!MaybeEntry) 1696 return MaybeEntry.takeError(); 1697 BitstreamEntry Entry = MaybeEntry.get(); 1698 1699 switch (Entry.Kind) { 1700 case BitstreamEntry::SubBlock: // Handled for us already. 1701 case BitstreamEntry::Error: 1702 return error("Malformed block"); 1703 case BitstreamEntry::EndBlock: 1704 if (NumRecords != TypeList.size()) 1705 return error("Malformed block"); 1706 return Error::success(); 1707 case BitstreamEntry::Record: 1708 // The interesting case. 1709 break; 1710 } 1711 1712 // Read a record. 1713 Record.clear(); 1714 Type *ResultTy = nullptr; 1715 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1716 if (!MaybeRecord) 1717 return MaybeRecord.takeError(); 1718 switch (MaybeRecord.get()) { 1719 default: 1720 return error("Invalid value"); 1721 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1722 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1723 // type list. This allows us to reserve space. 1724 if (Record.empty()) 1725 return error("Invalid record"); 1726 TypeList.resize(Record[0]); 1727 continue; 1728 case bitc::TYPE_CODE_VOID: // VOID 1729 ResultTy = Type::getVoidTy(Context); 1730 break; 1731 case bitc::TYPE_CODE_HALF: // HALF 1732 ResultTy = Type::getHalfTy(Context); 1733 break; 1734 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1735 ResultTy = Type::getBFloatTy(Context); 1736 break; 1737 case bitc::TYPE_CODE_FLOAT: // FLOAT 1738 ResultTy = Type::getFloatTy(Context); 1739 break; 1740 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1741 ResultTy = Type::getDoubleTy(Context); 1742 break; 1743 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1744 ResultTy = Type::getX86_FP80Ty(Context); 1745 break; 1746 case bitc::TYPE_CODE_FP128: // FP128 1747 ResultTy = Type::getFP128Ty(Context); 1748 break; 1749 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1750 ResultTy = Type::getPPC_FP128Ty(Context); 1751 break; 1752 case bitc::TYPE_CODE_LABEL: // LABEL 1753 ResultTy = Type::getLabelTy(Context); 1754 break; 1755 case bitc::TYPE_CODE_METADATA: // METADATA 1756 ResultTy = Type::getMetadataTy(Context); 1757 break; 1758 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1759 ResultTy = Type::getX86_MMXTy(Context); 1760 break; 1761 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1762 ResultTy = Type::getX86_AMXTy(Context); 1763 break; 1764 case bitc::TYPE_CODE_TOKEN: // TOKEN 1765 ResultTy = Type::getTokenTy(Context); 1766 break; 1767 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1768 if (Record.empty()) 1769 return error("Invalid record"); 1770 1771 uint64_t NumBits = Record[0]; 1772 if (NumBits < IntegerType::MIN_INT_BITS || 1773 NumBits > IntegerType::MAX_INT_BITS) 1774 return error("Bitwidth for integer type out of range"); 1775 ResultTy = IntegerType::get(Context, NumBits); 1776 break; 1777 } 1778 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1779 // [pointee type, address space] 1780 if (Record.empty()) 1781 return error("Invalid record"); 1782 unsigned AddressSpace = 0; 1783 if (Record.size() == 2) 1784 AddressSpace = Record[1]; 1785 ResultTy = getTypeByID(Record[0]); 1786 if (!ResultTy || 1787 !PointerType::isValidElementType(ResultTy)) 1788 return error("Invalid type"); 1789 ResultTy = PointerType::get(ResultTy, AddressSpace); 1790 break; 1791 } 1792 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1793 if (Record.size() != 1) 1794 return error("Invalid record"); 1795 if (Context.supportsTypedPointers()) 1796 return error( 1797 "Opaque pointers are only supported in -opaque-pointers mode"); 1798 unsigned AddressSpace = Record[0]; 1799 ResultTy = PointerType::get(Context, AddressSpace); 1800 break; 1801 } 1802 case bitc::TYPE_CODE_FUNCTION_OLD: { 1803 // Deprecated, but still needed to read old bitcode files. 1804 // FUNCTION: [vararg, attrid, retty, paramty x N] 1805 if (Record.size() < 3) 1806 return error("Invalid record"); 1807 SmallVector<Type*, 8> ArgTys; 1808 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1809 if (Type *T = getTypeByID(Record[i])) 1810 ArgTys.push_back(T); 1811 else 1812 break; 1813 } 1814 1815 ResultTy = getTypeByID(Record[2]); 1816 if (!ResultTy || ArgTys.size() < Record.size()-3) 1817 return error("Invalid type"); 1818 1819 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1820 break; 1821 } 1822 case bitc::TYPE_CODE_FUNCTION: { 1823 // FUNCTION: [vararg, retty, paramty x N] 1824 if (Record.size() < 2) 1825 return error("Invalid record"); 1826 SmallVector<Type*, 8> ArgTys; 1827 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1828 if (Type *T = getTypeByID(Record[i])) { 1829 if (!FunctionType::isValidArgumentType(T)) 1830 return error("Invalid function argument type"); 1831 ArgTys.push_back(T); 1832 } 1833 else 1834 break; 1835 } 1836 1837 ResultTy = getTypeByID(Record[1]); 1838 if (!ResultTy || ArgTys.size() < Record.size()-2) 1839 return error("Invalid type"); 1840 1841 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1842 break; 1843 } 1844 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1845 if (Record.empty()) 1846 return error("Invalid record"); 1847 SmallVector<Type*, 8> EltTys; 1848 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1849 if (Type *T = getTypeByID(Record[i])) 1850 EltTys.push_back(T); 1851 else 1852 break; 1853 } 1854 if (EltTys.size() != Record.size()-1) 1855 return error("Invalid type"); 1856 ResultTy = StructType::get(Context, EltTys, Record[0]); 1857 break; 1858 } 1859 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1860 if (convertToString(Record, 0, TypeName)) 1861 return error("Invalid record"); 1862 continue; 1863 1864 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1865 if (Record.empty()) 1866 return error("Invalid record"); 1867 1868 if (NumRecords >= TypeList.size()) 1869 return error("Invalid TYPE table"); 1870 1871 // Check to see if this was forward referenced, if so fill in the temp. 1872 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1873 if (Res) { 1874 Res->setName(TypeName); 1875 TypeList[NumRecords] = nullptr; 1876 } else // Otherwise, create a new struct. 1877 Res = createIdentifiedStructType(Context, TypeName); 1878 TypeName.clear(); 1879 1880 SmallVector<Type*, 8> EltTys; 1881 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1882 if (Type *T = getTypeByID(Record[i])) 1883 EltTys.push_back(T); 1884 else 1885 break; 1886 } 1887 if (EltTys.size() != Record.size()-1) 1888 return error("Invalid record"); 1889 Res->setBody(EltTys, Record[0]); 1890 ResultTy = Res; 1891 break; 1892 } 1893 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1894 if (Record.size() != 1) 1895 return error("Invalid record"); 1896 1897 if (NumRecords >= TypeList.size()) 1898 return error("Invalid TYPE table"); 1899 1900 // Check to see if this was forward referenced, if so fill in the temp. 1901 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1902 if (Res) { 1903 Res->setName(TypeName); 1904 TypeList[NumRecords] = nullptr; 1905 } else // Otherwise, create a new struct with no body. 1906 Res = createIdentifiedStructType(Context, TypeName); 1907 TypeName.clear(); 1908 ResultTy = Res; 1909 break; 1910 } 1911 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1912 if (Record.size() < 2) 1913 return error("Invalid record"); 1914 ResultTy = getTypeByID(Record[1]); 1915 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1916 return error("Invalid type"); 1917 ResultTy = ArrayType::get(ResultTy, Record[0]); 1918 break; 1919 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1920 // [numelts, eltty, scalable] 1921 if (Record.size() < 2) 1922 return error("Invalid record"); 1923 if (Record[0] == 0) 1924 return error("Invalid vector length"); 1925 ResultTy = getTypeByID(Record[1]); 1926 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1927 return error("Invalid type"); 1928 bool Scalable = Record.size() > 2 ? Record[2] : false; 1929 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1930 break; 1931 } 1932 1933 if (NumRecords >= TypeList.size()) 1934 return error("Invalid TYPE table"); 1935 if (TypeList[NumRecords]) 1936 return error( 1937 "Invalid TYPE table: Only named structs can be forward referenced"); 1938 assert(ResultTy && "Didn't read a type?"); 1939 TypeList[NumRecords++] = ResultTy; 1940 } 1941 } 1942 1943 Error BitcodeReader::parseOperandBundleTags() { 1944 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1945 return Err; 1946 1947 if (!BundleTags.empty()) 1948 return error("Invalid multiple blocks"); 1949 1950 SmallVector<uint64_t, 64> Record; 1951 1952 while (true) { 1953 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1954 if (!MaybeEntry) 1955 return MaybeEntry.takeError(); 1956 BitstreamEntry Entry = MaybeEntry.get(); 1957 1958 switch (Entry.Kind) { 1959 case BitstreamEntry::SubBlock: // Handled for us already. 1960 case BitstreamEntry::Error: 1961 return error("Malformed block"); 1962 case BitstreamEntry::EndBlock: 1963 return Error::success(); 1964 case BitstreamEntry::Record: 1965 // The interesting case. 1966 break; 1967 } 1968 1969 // Tags are implicitly mapped to integers by their order. 1970 1971 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1972 if (!MaybeRecord) 1973 return MaybeRecord.takeError(); 1974 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1975 return error("Invalid record"); 1976 1977 // OPERAND_BUNDLE_TAG: [strchr x N] 1978 BundleTags.emplace_back(); 1979 if (convertToString(Record, 0, BundleTags.back())) 1980 return error("Invalid record"); 1981 Record.clear(); 1982 } 1983 } 1984 1985 Error BitcodeReader::parseSyncScopeNames() { 1986 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1987 return Err; 1988 1989 if (!SSIDs.empty()) 1990 return error("Invalid multiple synchronization scope names blocks"); 1991 1992 SmallVector<uint64_t, 64> Record; 1993 while (true) { 1994 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1995 if (!MaybeEntry) 1996 return MaybeEntry.takeError(); 1997 BitstreamEntry Entry = MaybeEntry.get(); 1998 1999 switch (Entry.Kind) { 2000 case BitstreamEntry::SubBlock: // Handled for us already. 2001 case BitstreamEntry::Error: 2002 return error("Malformed block"); 2003 case BitstreamEntry::EndBlock: 2004 if (SSIDs.empty()) 2005 return error("Invalid empty synchronization scope names block"); 2006 return Error::success(); 2007 case BitstreamEntry::Record: 2008 // The interesting case. 2009 break; 2010 } 2011 2012 // Synchronization scope names are implicitly mapped to synchronization 2013 // scope IDs by their order. 2014 2015 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2016 if (!MaybeRecord) 2017 return MaybeRecord.takeError(); 2018 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2019 return error("Invalid record"); 2020 2021 SmallString<16> SSN; 2022 if (convertToString(Record, 0, SSN)) 2023 return error("Invalid record"); 2024 2025 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2026 Record.clear(); 2027 } 2028 } 2029 2030 /// Associate a value with its name from the given index in the provided record. 2031 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2032 unsigned NameIndex, Triple &TT) { 2033 SmallString<128> ValueName; 2034 if (convertToString(Record, NameIndex, ValueName)) 2035 return error("Invalid record"); 2036 unsigned ValueID = Record[0]; 2037 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2038 return error("Invalid record"); 2039 Value *V = ValueList[ValueID]; 2040 2041 StringRef NameStr(ValueName.data(), ValueName.size()); 2042 if (NameStr.find_first_of(0) != StringRef::npos) 2043 return error("Invalid value name"); 2044 V->setName(NameStr); 2045 auto *GO = dyn_cast<GlobalObject>(V); 2046 if (GO) { 2047 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2048 if (TT.supportsCOMDAT()) 2049 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2050 else 2051 GO->setComdat(nullptr); 2052 } 2053 } 2054 return V; 2055 } 2056 2057 /// Helper to note and return the current location, and jump to the given 2058 /// offset. 2059 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2060 BitstreamCursor &Stream) { 2061 // Save the current parsing location so we can jump back at the end 2062 // of the VST read. 2063 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2064 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2065 return std::move(JumpFailed); 2066 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2067 if (!MaybeEntry) 2068 return MaybeEntry.takeError(); 2069 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2070 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2071 return CurrentBit; 2072 } 2073 2074 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2075 Function *F, 2076 ArrayRef<uint64_t> Record) { 2077 // Note that we subtract 1 here because the offset is relative to one word 2078 // before the start of the identification or module block, which was 2079 // historically always the start of the regular bitcode header. 2080 uint64_t FuncWordOffset = Record[1] - 1; 2081 uint64_t FuncBitOffset = FuncWordOffset * 32; 2082 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2083 // Set the LastFunctionBlockBit to point to the last function block. 2084 // Later when parsing is resumed after function materialization, 2085 // we can simply skip that last function block. 2086 if (FuncBitOffset > LastFunctionBlockBit) 2087 LastFunctionBlockBit = FuncBitOffset; 2088 } 2089 2090 /// Read a new-style GlobalValue symbol table. 2091 Error BitcodeReader::parseGlobalValueSymbolTable() { 2092 unsigned FuncBitcodeOffsetDelta = 2093 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2094 2095 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2096 return Err; 2097 2098 SmallVector<uint64_t, 64> Record; 2099 while (true) { 2100 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2101 if (!MaybeEntry) 2102 return MaybeEntry.takeError(); 2103 BitstreamEntry Entry = MaybeEntry.get(); 2104 2105 switch (Entry.Kind) { 2106 case BitstreamEntry::SubBlock: 2107 case BitstreamEntry::Error: 2108 return error("Malformed block"); 2109 case BitstreamEntry::EndBlock: 2110 return Error::success(); 2111 case BitstreamEntry::Record: 2112 break; 2113 } 2114 2115 Record.clear(); 2116 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2117 if (!MaybeRecord) 2118 return MaybeRecord.takeError(); 2119 switch (MaybeRecord.get()) { 2120 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2121 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2122 cast<Function>(ValueList[Record[0]]), Record); 2123 break; 2124 } 2125 } 2126 } 2127 2128 /// Parse the value symbol table at either the current parsing location or 2129 /// at the given bit offset if provided. 2130 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2131 uint64_t CurrentBit; 2132 // Pass in the Offset to distinguish between calling for the module-level 2133 // VST (where we want to jump to the VST offset) and the function-level 2134 // VST (where we don't). 2135 if (Offset > 0) { 2136 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2137 if (!MaybeCurrentBit) 2138 return MaybeCurrentBit.takeError(); 2139 CurrentBit = MaybeCurrentBit.get(); 2140 // If this module uses a string table, read this as a module-level VST. 2141 if (UseStrtab) { 2142 if (Error Err = parseGlobalValueSymbolTable()) 2143 return Err; 2144 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2145 return JumpFailed; 2146 return Error::success(); 2147 } 2148 // Otherwise, the VST will be in a similar format to a function-level VST, 2149 // and will contain symbol names. 2150 } 2151 2152 // Compute the delta between the bitcode indices in the VST (the word offset 2153 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2154 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2155 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2156 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2157 // just before entering the VST subblock because: 1) the EnterSubBlock 2158 // changes the AbbrevID width; 2) the VST block is nested within the same 2159 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2160 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2161 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2162 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2163 unsigned FuncBitcodeOffsetDelta = 2164 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2165 2166 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2167 return Err; 2168 2169 SmallVector<uint64_t, 64> Record; 2170 2171 Triple TT(TheModule->getTargetTriple()); 2172 2173 // Read all the records for this value table. 2174 SmallString<128> ValueName; 2175 2176 while (true) { 2177 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2178 if (!MaybeEntry) 2179 return MaybeEntry.takeError(); 2180 BitstreamEntry Entry = MaybeEntry.get(); 2181 2182 switch (Entry.Kind) { 2183 case BitstreamEntry::SubBlock: // Handled for us already. 2184 case BitstreamEntry::Error: 2185 return error("Malformed block"); 2186 case BitstreamEntry::EndBlock: 2187 if (Offset > 0) 2188 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2189 return JumpFailed; 2190 return Error::success(); 2191 case BitstreamEntry::Record: 2192 // The interesting case. 2193 break; 2194 } 2195 2196 // Read a record. 2197 Record.clear(); 2198 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2199 if (!MaybeRecord) 2200 return MaybeRecord.takeError(); 2201 switch (MaybeRecord.get()) { 2202 default: // Default behavior: unknown type. 2203 break; 2204 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2205 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2206 if (Error Err = ValOrErr.takeError()) 2207 return Err; 2208 ValOrErr.get(); 2209 break; 2210 } 2211 case bitc::VST_CODE_FNENTRY: { 2212 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2213 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2214 if (Error Err = ValOrErr.takeError()) 2215 return Err; 2216 Value *V = ValOrErr.get(); 2217 2218 // Ignore function offsets emitted for aliases of functions in older 2219 // versions of LLVM. 2220 if (auto *F = dyn_cast<Function>(V)) 2221 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2222 break; 2223 } 2224 case bitc::VST_CODE_BBENTRY: { 2225 if (convertToString(Record, 1, ValueName)) 2226 return error("Invalid record"); 2227 BasicBlock *BB = getBasicBlock(Record[0]); 2228 if (!BB) 2229 return error("Invalid record"); 2230 2231 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2232 ValueName.clear(); 2233 break; 2234 } 2235 } 2236 } 2237 } 2238 2239 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2240 /// encoding. 2241 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2242 if ((V & 1) == 0) 2243 return V >> 1; 2244 if (V != 1) 2245 return -(V >> 1); 2246 // There is no such thing as -0 with integers. "-0" really means MININT. 2247 return 1ULL << 63; 2248 } 2249 2250 /// Resolve all of the initializers for global values and aliases that we can. 2251 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2252 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2253 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2254 IndirectSymbolInitWorklist; 2255 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2256 2257 GlobalInitWorklist.swap(GlobalInits); 2258 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2259 FunctionOperandWorklist.swap(FunctionOperands); 2260 2261 while (!GlobalInitWorklist.empty()) { 2262 unsigned ValID = GlobalInitWorklist.back().second; 2263 if (ValID >= ValueList.size()) { 2264 // Not ready to resolve this yet, it requires something later in the file. 2265 GlobalInits.push_back(GlobalInitWorklist.back()); 2266 } else { 2267 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2268 GlobalInitWorklist.back().first->setInitializer(C); 2269 else 2270 return error("Expected a constant"); 2271 } 2272 GlobalInitWorklist.pop_back(); 2273 } 2274 2275 while (!IndirectSymbolInitWorklist.empty()) { 2276 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2277 if (ValID >= ValueList.size()) { 2278 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2279 } else { 2280 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2281 if (!C) 2282 return error("Expected a constant"); 2283 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2284 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2285 return error("Alias and aliasee types don't match"); 2286 GIS->setIndirectSymbol(C); 2287 } 2288 IndirectSymbolInitWorklist.pop_back(); 2289 } 2290 2291 while (!FunctionOperandWorklist.empty()) { 2292 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2293 if (Info.PersonalityFn) { 2294 unsigned ValID = Info.PersonalityFn - 1; 2295 if (ValID < ValueList.size()) { 2296 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2297 Info.F->setPersonalityFn(C); 2298 else 2299 return error("Expected a constant"); 2300 Info.PersonalityFn = 0; 2301 } 2302 } 2303 if (Info.Prefix) { 2304 unsigned ValID = Info.Prefix - 1; 2305 if (ValID < ValueList.size()) { 2306 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2307 Info.F->setPrefixData(C); 2308 else 2309 return error("Expected a constant"); 2310 Info.Prefix = 0; 2311 } 2312 } 2313 if (Info.Prologue) { 2314 unsigned ValID = Info.Prologue - 1; 2315 if (ValID < ValueList.size()) { 2316 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2317 Info.F->setPrologueData(C); 2318 else 2319 return error("Expected a constant"); 2320 Info.Prologue = 0; 2321 } 2322 } 2323 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2324 FunctionOperands.push_back(Info); 2325 FunctionOperandWorklist.pop_back(); 2326 } 2327 2328 return Error::success(); 2329 } 2330 2331 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2332 SmallVector<uint64_t, 8> Words(Vals.size()); 2333 transform(Vals, Words.begin(), 2334 BitcodeReader::decodeSignRotatedValue); 2335 2336 return APInt(TypeBits, Words); 2337 } 2338 2339 Error BitcodeReader::parseConstants() { 2340 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2341 return Err; 2342 2343 SmallVector<uint64_t, 64> Record; 2344 2345 // Read all the records for this value table. 2346 Type *CurTy = Type::getInt32Ty(Context); 2347 unsigned NextCstNo = ValueList.size(); 2348 2349 struct DelayedShufTy { 2350 VectorType *OpTy; 2351 VectorType *RTy; 2352 uint64_t Op0Idx; 2353 uint64_t Op1Idx; 2354 uint64_t Op2Idx; 2355 unsigned CstNo; 2356 }; 2357 std::vector<DelayedShufTy> DelayedShuffles; 2358 struct DelayedSelTy { 2359 Type *OpTy; 2360 uint64_t Op0Idx; 2361 uint64_t Op1Idx; 2362 uint64_t Op2Idx; 2363 unsigned CstNo; 2364 }; 2365 std::vector<DelayedSelTy> DelayedSelectors; 2366 2367 while (true) { 2368 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2369 if (!MaybeEntry) 2370 return MaybeEntry.takeError(); 2371 BitstreamEntry Entry = MaybeEntry.get(); 2372 2373 switch (Entry.Kind) { 2374 case BitstreamEntry::SubBlock: // Handled for us already. 2375 case BitstreamEntry::Error: 2376 return error("Malformed block"); 2377 case BitstreamEntry::EndBlock: 2378 // Once all the constants have been read, go through and resolve forward 2379 // references. 2380 // 2381 // We have to treat shuffles specially because they don't have three 2382 // operands anymore. We need to convert the shuffle mask into an array, 2383 // and we can't convert a forward reference. 2384 for (auto &DelayedShuffle : DelayedShuffles) { 2385 VectorType *OpTy = DelayedShuffle.OpTy; 2386 VectorType *RTy = DelayedShuffle.RTy; 2387 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2388 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2389 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2390 uint64_t CstNo = DelayedShuffle.CstNo; 2391 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2392 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2393 Type *ShufTy = 2394 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2395 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2396 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2397 return error("Invalid shufflevector operands"); 2398 SmallVector<int, 16> Mask; 2399 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2400 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2401 ValueList.assignValue(V, CstNo); 2402 } 2403 for (auto &DelayedSelector : DelayedSelectors) { 2404 Type *OpTy = DelayedSelector.OpTy; 2405 Type *SelectorTy = Type::getInt1Ty(Context); 2406 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2407 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2408 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2409 uint64_t CstNo = DelayedSelector.CstNo; 2410 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2411 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy); 2412 // The selector might be an i1 or an <n x i1> 2413 // Get the type from the ValueList before getting a forward ref. 2414 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2415 Value *V = ValueList[Op0Idx]; 2416 assert(V); 2417 if (SelectorTy != V->getType()) 2418 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2419 } 2420 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy); 2421 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2422 ValueList.assignValue(V, CstNo); 2423 } 2424 2425 if (NextCstNo != ValueList.size()) 2426 return error("Invalid constant reference"); 2427 2428 ValueList.resolveConstantForwardRefs(); 2429 return Error::success(); 2430 case BitstreamEntry::Record: 2431 // The interesting case. 2432 break; 2433 } 2434 2435 // Read a record. 2436 Record.clear(); 2437 Type *VoidType = Type::getVoidTy(Context); 2438 Value *V = nullptr; 2439 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2440 if (!MaybeBitCode) 2441 return MaybeBitCode.takeError(); 2442 switch (unsigned BitCode = MaybeBitCode.get()) { 2443 default: // Default behavior: unknown constant 2444 case bitc::CST_CODE_UNDEF: // UNDEF 2445 V = UndefValue::get(CurTy); 2446 break; 2447 case bitc::CST_CODE_POISON: // POISON 2448 V = PoisonValue::get(CurTy); 2449 break; 2450 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2451 if (Record.empty()) 2452 return error("Invalid record"); 2453 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2454 return error("Invalid record"); 2455 if (TypeList[Record[0]] == VoidType) 2456 return error("Invalid constant type"); 2457 CurTy = TypeList[Record[0]]; 2458 continue; // Skip the ValueList manipulation. 2459 case bitc::CST_CODE_NULL: // NULL 2460 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2461 return error("Invalid type for a constant null value"); 2462 V = Constant::getNullValue(CurTy); 2463 break; 2464 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2465 if (!CurTy->isIntegerTy() || Record.empty()) 2466 return error("Invalid record"); 2467 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2468 break; 2469 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2470 if (!CurTy->isIntegerTy() || Record.empty()) 2471 return error("Invalid record"); 2472 2473 APInt VInt = 2474 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2475 V = ConstantInt::get(Context, VInt); 2476 2477 break; 2478 } 2479 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2480 if (Record.empty()) 2481 return error("Invalid record"); 2482 if (CurTy->isHalfTy()) 2483 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2484 APInt(16, (uint16_t)Record[0]))); 2485 else if (CurTy->isBFloatTy()) 2486 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2487 APInt(16, (uint32_t)Record[0]))); 2488 else if (CurTy->isFloatTy()) 2489 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2490 APInt(32, (uint32_t)Record[0]))); 2491 else if (CurTy->isDoubleTy()) 2492 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2493 APInt(64, Record[0]))); 2494 else if (CurTy->isX86_FP80Ty()) { 2495 // Bits are not stored the same way as a normal i80 APInt, compensate. 2496 uint64_t Rearrange[2]; 2497 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2498 Rearrange[1] = Record[0] >> 48; 2499 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2500 APInt(80, Rearrange))); 2501 } else if (CurTy->isFP128Ty()) 2502 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2503 APInt(128, Record))); 2504 else if (CurTy->isPPC_FP128Ty()) 2505 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2506 APInt(128, Record))); 2507 else 2508 V = UndefValue::get(CurTy); 2509 break; 2510 } 2511 2512 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2513 if (Record.empty()) 2514 return error("Invalid record"); 2515 2516 unsigned Size = Record.size(); 2517 SmallVector<Constant*, 16> Elts; 2518 2519 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2520 for (unsigned i = 0; i != Size; ++i) 2521 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2522 STy->getElementType(i))); 2523 V = ConstantStruct::get(STy, Elts); 2524 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2525 Type *EltTy = ATy->getElementType(); 2526 for (unsigned i = 0; i != Size; ++i) 2527 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2528 V = ConstantArray::get(ATy, Elts); 2529 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2530 Type *EltTy = VTy->getElementType(); 2531 for (unsigned i = 0; i != Size; ++i) 2532 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2533 V = ConstantVector::get(Elts); 2534 } else { 2535 V = UndefValue::get(CurTy); 2536 } 2537 break; 2538 } 2539 case bitc::CST_CODE_STRING: // STRING: [values] 2540 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2541 if (Record.empty()) 2542 return error("Invalid record"); 2543 2544 SmallString<16> Elts(Record.begin(), Record.end()); 2545 V = ConstantDataArray::getString(Context, Elts, 2546 BitCode == bitc::CST_CODE_CSTRING); 2547 break; 2548 } 2549 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2550 if (Record.empty()) 2551 return error("Invalid record"); 2552 2553 Type *EltTy; 2554 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2555 EltTy = Array->getElementType(); 2556 else 2557 EltTy = cast<VectorType>(CurTy)->getElementType(); 2558 if (EltTy->isIntegerTy(8)) { 2559 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2560 if (isa<VectorType>(CurTy)) 2561 V = ConstantDataVector::get(Context, Elts); 2562 else 2563 V = ConstantDataArray::get(Context, Elts); 2564 } else if (EltTy->isIntegerTy(16)) { 2565 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2566 if (isa<VectorType>(CurTy)) 2567 V = ConstantDataVector::get(Context, Elts); 2568 else 2569 V = ConstantDataArray::get(Context, Elts); 2570 } else if (EltTy->isIntegerTy(32)) { 2571 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2572 if (isa<VectorType>(CurTy)) 2573 V = ConstantDataVector::get(Context, Elts); 2574 else 2575 V = ConstantDataArray::get(Context, Elts); 2576 } else if (EltTy->isIntegerTy(64)) { 2577 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2578 if (isa<VectorType>(CurTy)) 2579 V = ConstantDataVector::get(Context, Elts); 2580 else 2581 V = ConstantDataArray::get(Context, Elts); 2582 } else if (EltTy->isHalfTy()) { 2583 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2584 if (isa<VectorType>(CurTy)) 2585 V = ConstantDataVector::getFP(EltTy, Elts); 2586 else 2587 V = ConstantDataArray::getFP(EltTy, Elts); 2588 } else if (EltTy->isBFloatTy()) { 2589 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2590 if (isa<VectorType>(CurTy)) 2591 V = ConstantDataVector::getFP(EltTy, Elts); 2592 else 2593 V = ConstantDataArray::getFP(EltTy, Elts); 2594 } else if (EltTy->isFloatTy()) { 2595 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2596 if (isa<VectorType>(CurTy)) 2597 V = ConstantDataVector::getFP(EltTy, Elts); 2598 else 2599 V = ConstantDataArray::getFP(EltTy, Elts); 2600 } else if (EltTy->isDoubleTy()) { 2601 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2602 if (isa<VectorType>(CurTy)) 2603 V = ConstantDataVector::getFP(EltTy, Elts); 2604 else 2605 V = ConstantDataArray::getFP(EltTy, Elts); 2606 } else { 2607 return error("Invalid type for value"); 2608 } 2609 break; 2610 } 2611 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2612 if (Record.size() < 2) 2613 return error("Invalid record"); 2614 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2615 if (Opc < 0) { 2616 V = UndefValue::get(CurTy); // Unknown unop. 2617 } else { 2618 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2619 unsigned Flags = 0; 2620 V = ConstantExpr::get(Opc, LHS, Flags); 2621 } 2622 break; 2623 } 2624 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2625 if (Record.size() < 3) 2626 return error("Invalid record"); 2627 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2628 if (Opc < 0) { 2629 V = UndefValue::get(CurTy); // Unknown binop. 2630 } else { 2631 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2632 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2633 unsigned Flags = 0; 2634 if (Record.size() >= 4) { 2635 if (Opc == Instruction::Add || 2636 Opc == Instruction::Sub || 2637 Opc == Instruction::Mul || 2638 Opc == Instruction::Shl) { 2639 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2640 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2641 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2642 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2643 } else if (Opc == Instruction::SDiv || 2644 Opc == Instruction::UDiv || 2645 Opc == Instruction::LShr || 2646 Opc == Instruction::AShr) { 2647 if (Record[3] & (1 << bitc::PEO_EXACT)) 2648 Flags |= SDivOperator::IsExact; 2649 } 2650 } 2651 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2652 } 2653 break; 2654 } 2655 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2656 if (Record.size() < 3) 2657 return error("Invalid record"); 2658 int Opc = getDecodedCastOpcode(Record[0]); 2659 if (Opc < 0) { 2660 V = UndefValue::get(CurTy); // Unknown cast. 2661 } else { 2662 Type *OpTy = getTypeByID(Record[1]); 2663 if (!OpTy) 2664 return error("Invalid record"); 2665 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2666 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2667 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2668 } 2669 break; 2670 } 2671 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2672 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2673 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2674 // operands] 2675 unsigned OpNum = 0; 2676 Type *PointeeType = nullptr; 2677 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2678 Record.size() % 2) 2679 PointeeType = getTypeByID(Record[OpNum++]); 2680 2681 bool InBounds = false; 2682 Optional<unsigned> InRangeIndex; 2683 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2684 uint64_t Op = Record[OpNum++]; 2685 InBounds = Op & 1; 2686 InRangeIndex = Op >> 1; 2687 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2688 InBounds = true; 2689 2690 SmallVector<Constant*, 16> Elts; 2691 Type *Elt0FullTy = nullptr; 2692 while (OpNum != Record.size()) { 2693 if (!Elt0FullTy) 2694 Elt0FullTy = getTypeByID(Record[OpNum]); 2695 Type *ElTy = getTypeByID(Record[OpNum++]); 2696 if (!ElTy) 2697 return error("Invalid record"); 2698 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2699 } 2700 2701 if (Elts.size() < 1) 2702 return error("Invalid gep with no operands"); 2703 2704 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2705 if (!PointeeType) 2706 PointeeType = OrigPtrTy->getElementType(); 2707 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2708 return error("Explicit gep operator type does not match pointee type " 2709 "of pointer operand"); 2710 2711 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2712 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2713 InBounds, InRangeIndex); 2714 break; 2715 } 2716 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2717 if (Record.size() < 3) 2718 return error("Invalid record"); 2719 2720 DelayedSelectors.push_back( 2721 {CurTy, Record[0], Record[1], Record[2], NextCstNo}); 2722 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy); 2723 ++NextCstNo; 2724 continue; 2725 } 2726 case bitc::CST_CODE_CE_EXTRACTELT 2727 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2728 if (Record.size() < 3) 2729 return error("Invalid record"); 2730 VectorType *OpTy = 2731 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2732 if (!OpTy) 2733 return error("Invalid record"); 2734 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2735 Constant *Op1 = nullptr; 2736 if (Record.size() == 4) { 2737 Type *IdxTy = getTypeByID(Record[2]); 2738 if (!IdxTy) 2739 return error("Invalid record"); 2740 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2741 } else { 2742 // Deprecated, but still needed to read old bitcode files. 2743 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2744 } 2745 if (!Op1) 2746 return error("Invalid record"); 2747 V = ConstantExpr::getExtractElement(Op0, Op1); 2748 break; 2749 } 2750 case bitc::CST_CODE_CE_INSERTELT 2751 : { // CE_INSERTELT: [opval, opval, opty, opval] 2752 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2753 if (Record.size() < 3 || !OpTy) 2754 return error("Invalid record"); 2755 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2756 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2757 OpTy->getElementType()); 2758 Constant *Op2 = nullptr; 2759 if (Record.size() == 4) { 2760 Type *IdxTy = getTypeByID(Record[2]); 2761 if (!IdxTy) 2762 return error("Invalid record"); 2763 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2764 } else { 2765 // Deprecated, but still needed to read old bitcode files. 2766 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2767 } 2768 if (!Op2) 2769 return error("Invalid record"); 2770 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2771 break; 2772 } 2773 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2774 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2775 if (Record.size() < 3 || !OpTy) 2776 return error("Invalid record"); 2777 DelayedShuffles.push_back( 2778 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2779 ++NextCstNo; 2780 continue; 2781 } 2782 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2783 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2784 VectorType *OpTy = 2785 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2786 if (Record.size() < 4 || !RTy || !OpTy) 2787 return error("Invalid record"); 2788 DelayedShuffles.push_back( 2789 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2790 ++NextCstNo; 2791 continue; 2792 } 2793 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2794 if (Record.size() < 4) 2795 return error("Invalid record"); 2796 Type *OpTy = getTypeByID(Record[0]); 2797 if (!OpTy) 2798 return error("Invalid record"); 2799 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2800 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2801 2802 if (OpTy->isFPOrFPVectorTy()) 2803 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2804 else 2805 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2806 break; 2807 } 2808 // This maintains backward compatibility, pre-asm dialect keywords. 2809 // Deprecated, but still needed to read old bitcode files. 2810 case bitc::CST_CODE_INLINEASM_OLD: { 2811 if (Record.size() < 2) 2812 return error("Invalid record"); 2813 std::string AsmStr, ConstrStr; 2814 bool HasSideEffects = Record[0] & 1; 2815 bool IsAlignStack = Record[0] >> 1; 2816 unsigned AsmStrSize = Record[1]; 2817 if (2+AsmStrSize >= Record.size()) 2818 return error("Invalid record"); 2819 unsigned ConstStrSize = Record[2+AsmStrSize]; 2820 if (3+AsmStrSize+ConstStrSize > Record.size()) 2821 return error("Invalid record"); 2822 2823 for (unsigned i = 0; i != AsmStrSize; ++i) 2824 AsmStr += (char)Record[2+i]; 2825 for (unsigned i = 0; i != ConstStrSize; ++i) 2826 ConstrStr += (char)Record[3+AsmStrSize+i]; 2827 UpgradeInlineAsmString(&AsmStr); 2828 V = InlineAsm::get( 2829 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2830 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2831 break; 2832 } 2833 // This version adds support for the asm dialect keywords (e.g., 2834 // inteldialect). 2835 case bitc::CST_CODE_INLINEASM_OLD2: { 2836 if (Record.size() < 2) 2837 return error("Invalid record"); 2838 std::string AsmStr, ConstrStr; 2839 bool HasSideEffects = Record[0] & 1; 2840 bool IsAlignStack = (Record[0] >> 1) & 1; 2841 unsigned AsmDialect = Record[0] >> 2; 2842 unsigned AsmStrSize = Record[1]; 2843 if (2+AsmStrSize >= Record.size()) 2844 return error("Invalid record"); 2845 unsigned ConstStrSize = Record[2+AsmStrSize]; 2846 if (3+AsmStrSize+ConstStrSize > Record.size()) 2847 return error("Invalid record"); 2848 2849 for (unsigned i = 0; i != AsmStrSize; ++i) 2850 AsmStr += (char)Record[2+i]; 2851 for (unsigned i = 0; i != ConstStrSize; ++i) 2852 ConstrStr += (char)Record[3+AsmStrSize+i]; 2853 UpgradeInlineAsmString(&AsmStr); 2854 V = InlineAsm::get( 2855 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2856 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2857 InlineAsm::AsmDialect(AsmDialect)); 2858 break; 2859 } 2860 // This version adds support for the unwind keyword. 2861 case bitc::CST_CODE_INLINEASM: { 2862 if (Record.size() < 2) 2863 return error("Invalid record"); 2864 std::string AsmStr, ConstrStr; 2865 bool HasSideEffects = Record[0] & 1; 2866 bool IsAlignStack = (Record[0] >> 1) & 1; 2867 unsigned AsmDialect = (Record[0] >> 2) & 1; 2868 bool CanThrow = (Record[0] >> 3) & 1; 2869 unsigned AsmStrSize = Record[1]; 2870 if (2 + AsmStrSize >= Record.size()) 2871 return error("Invalid record"); 2872 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2873 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2874 return error("Invalid record"); 2875 2876 for (unsigned i = 0; i != AsmStrSize; ++i) 2877 AsmStr += (char)Record[2 + i]; 2878 for (unsigned i = 0; i != ConstStrSize; ++i) 2879 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2880 UpgradeInlineAsmString(&AsmStr); 2881 V = InlineAsm::get( 2882 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2883 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2884 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2885 break; 2886 } 2887 case bitc::CST_CODE_BLOCKADDRESS:{ 2888 if (Record.size() < 3) 2889 return error("Invalid record"); 2890 Type *FnTy = getTypeByID(Record[0]); 2891 if (!FnTy) 2892 return error("Invalid record"); 2893 Function *Fn = 2894 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2895 if (!Fn) 2896 return error("Invalid record"); 2897 2898 // If the function is already parsed we can insert the block address right 2899 // away. 2900 BasicBlock *BB; 2901 unsigned BBID = Record[2]; 2902 if (!BBID) 2903 // Invalid reference to entry block. 2904 return error("Invalid ID"); 2905 if (!Fn->empty()) { 2906 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2907 for (size_t I = 0, E = BBID; I != E; ++I) { 2908 if (BBI == BBE) 2909 return error("Invalid ID"); 2910 ++BBI; 2911 } 2912 BB = &*BBI; 2913 } else { 2914 // Otherwise insert a placeholder and remember it so it can be inserted 2915 // when the function is parsed. 2916 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2917 if (FwdBBs.empty()) 2918 BasicBlockFwdRefQueue.push_back(Fn); 2919 if (FwdBBs.size() < BBID + 1) 2920 FwdBBs.resize(BBID + 1); 2921 if (!FwdBBs[BBID]) 2922 FwdBBs[BBID] = BasicBlock::Create(Context); 2923 BB = FwdBBs[BBID]; 2924 } 2925 V = BlockAddress::get(Fn, BB); 2926 break; 2927 } 2928 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2929 if (Record.size() < 2) 2930 return error("Invalid record"); 2931 Type *GVTy = getTypeByID(Record[0]); 2932 if (!GVTy) 2933 return error("Invalid record"); 2934 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2935 ValueList.getConstantFwdRef(Record[1], GVTy)); 2936 if (!GV) 2937 return error("Invalid record"); 2938 2939 V = DSOLocalEquivalent::get(GV); 2940 break; 2941 } 2942 } 2943 2944 ValueList.assignValue(V, NextCstNo); 2945 ++NextCstNo; 2946 } 2947 } 2948 2949 Error BitcodeReader::parseUseLists() { 2950 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2951 return Err; 2952 2953 // Read all the records. 2954 SmallVector<uint64_t, 64> Record; 2955 2956 while (true) { 2957 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2958 if (!MaybeEntry) 2959 return MaybeEntry.takeError(); 2960 BitstreamEntry Entry = MaybeEntry.get(); 2961 2962 switch (Entry.Kind) { 2963 case BitstreamEntry::SubBlock: // Handled for us already. 2964 case BitstreamEntry::Error: 2965 return error("Malformed block"); 2966 case BitstreamEntry::EndBlock: 2967 return Error::success(); 2968 case BitstreamEntry::Record: 2969 // The interesting case. 2970 break; 2971 } 2972 2973 // Read a use list record. 2974 Record.clear(); 2975 bool IsBB = false; 2976 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2977 if (!MaybeRecord) 2978 return MaybeRecord.takeError(); 2979 switch (MaybeRecord.get()) { 2980 default: // Default behavior: unknown type. 2981 break; 2982 case bitc::USELIST_CODE_BB: 2983 IsBB = true; 2984 LLVM_FALLTHROUGH; 2985 case bitc::USELIST_CODE_DEFAULT: { 2986 unsigned RecordLength = Record.size(); 2987 if (RecordLength < 3) 2988 // Records should have at least an ID and two indexes. 2989 return error("Invalid record"); 2990 unsigned ID = Record.pop_back_val(); 2991 2992 Value *V; 2993 if (IsBB) { 2994 assert(ID < FunctionBBs.size() && "Basic block not found"); 2995 V = FunctionBBs[ID]; 2996 } else 2997 V = ValueList[ID]; 2998 unsigned NumUses = 0; 2999 SmallDenseMap<const Use *, unsigned, 16> Order; 3000 for (const Use &U : V->materialized_uses()) { 3001 if (++NumUses > Record.size()) 3002 break; 3003 Order[&U] = Record[NumUses - 1]; 3004 } 3005 if (Order.size() != Record.size() || NumUses > Record.size()) 3006 // Mismatches can happen if the functions are being materialized lazily 3007 // (out-of-order), or a value has been upgraded. 3008 break; 3009 3010 V->sortUseList([&](const Use &L, const Use &R) { 3011 return Order.lookup(&L) < Order.lookup(&R); 3012 }); 3013 break; 3014 } 3015 } 3016 } 3017 } 3018 3019 /// When we see the block for metadata, remember where it is and then skip it. 3020 /// This lets us lazily deserialize the metadata. 3021 Error BitcodeReader::rememberAndSkipMetadata() { 3022 // Save the current stream state. 3023 uint64_t CurBit = Stream.GetCurrentBitNo(); 3024 DeferredMetadataInfo.push_back(CurBit); 3025 3026 // Skip over the block for now. 3027 if (Error Err = Stream.SkipBlock()) 3028 return Err; 3029 return Error::success(); 3030 } 3031 3032 Error BitcodeReader::materializeMetadata() { 3033 for (uint64_t BitPos : DeferredMetadataInfo) { 3034 // Move the bit stream to the saved position. 3035 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3036 return JumpFailed; 3037 if (Error Err = MDLoader->parseModuleMetadata()) 3038 return Err; 3039 } 3040 3041 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3042 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3043 // multiple times. 3044 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3045 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3046 NamedMDNode *LinkerOpts = 3047 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3048 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3049 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3050 } 3051 } 3052 3053 DeferredMetadataInfo.clear(); 3054 return Error::success(); 3055 } 3056 3057 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3058 3059 /// When we see the block for a function body, remember where it is and then 3060 /// skip it. This lets us lazily deserialize the functions. 3061 Error BitcodeReader::rememberAndSkipFunctionBody() { 3062 // Get the function we are talking about. 3063 if (FunctionsWithBodies.empty()) 3064 return error("Insufficient function protos"); 3065 3066 Function *Fn = FunctionsWithBodies.back(); 3067 FunctionsWithBodies.pop_back(); 3068 3069 // Save the current stream state. 3070 uint64_t CurBit = Stream.GetCurrentBitNo(); 3071 assert( 3072 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3073 "Mismatch between VST and scanned function offsets"); 3074 DeferredFunctionInfo[Fn] = CurBit; 3075 3076 // Skip over the function block for now. 3077 if (Error Err = Stream.SkipBlock()) 3078 return Err; 3079 return Error::success(); 3080 } 3081 3082 Error BitcodeReader::globalCleanup() { 3083 // Patch the initializers for globals and aliases up. 3084 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3085 return Err; 3086 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3087 return error("Malformed global initializer set"); 3088 3089 // Look for intrinsic functions which need to be upgraded at some point 3090 // and functions that need to have their function attributes upgraded. 3091 for (Function &F : *TheModule) { 3092 MDLoader->upgradeDebugIntrinsics(F); 3093 Function *NewFn; 3094 if (UpgradeIntrinsicFunction(&F, NewFn)) 3095 UpgradedIntrinsics[&F] = NewFn; 3096 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3097 // Some types could be renamed during loading if several modules are 3098 // loaded in the same LLVMContext (LTO scenario). In this case we should 3099 // remangle intrinsics names as well. 3100 RemangledIntrinsics[&F] = Remangled.getValue(); 3101 // Look for functions that rely on old function attribute behavior. 3102 UpgradeFunctionAttributes(F); 3103 } 3104 3105 // Look for global variables which need to be renamed. 3106 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3107 for (GlobalVariable &GV : TheModule->globals()) 3108 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3109 UpgradedVariables.emplace_back(&GV, Upgraded); 3110 for (auto &Pair : UpgradedVariables) { 3111 Pair.first->eraseFromParent(); 3112 TheModule->getGlobalList().push_back(Pair.second); 3113 } 3114 3115 // Force deallocation of memory for these vectors to favor the client that 3116 // want lazy deserialization. 3117 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3118 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3119 IndirectSymbolInits); 3120 return Error::success(); 3121 } 3122 3123 /// Support for lazy parsing of function bodies. This is required if we 3124 /// either have an old bitcode file without a VST forward declaration record, 3125 /// or if we have an anonymous function being materialized, since anonymous 3126 /// functions do not have a name and are therefore not in the VST. 3127 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3128 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3129 return JumpFailed; 3130 3131 if (Stream.AtEndOfStream()) 3132 return error("Could not find function in stream"); 3133 3134 if (!SeenFirstFunctionBody) 3135 return error("Trying to materialize functions before seeing function blocks"); 3136 3137 // An old bitcode file with the symbol table at the end would have 3138 // finished the parse greedily. 3139 assert(SeenValueSymbolTable); 3140 3141 SmallVector<uint64_t, 64> Record; 3142 3143 while (true) { 3144 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3145 if (!MaybeEntry) 3146 return MaybeEntry.takeError(); 3147 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3148 3149 switch (Entry.Kind) { 3150 default: 3151 return error("Expect SubBlock"); 3152 case BitstreamEntry::SubBlock: 3153 switch (Entry.ID) { 3154 default: 3155 return error("Expect function block"); 3156 case bitc::FUNCTION_BLOCK_ID: 3157 if (Error Err = rememberAndSkipFunctionBody()) 3158 return Err; 3159 NextUnreadBit = Stream.GetCurrentBitNo(); 3160 return Error::success(); 3161 } 3162 } 3163 } 3164 } 3165 3166 bool BitcodeReaderBase::readBlockInfo() { 3167 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3168 Stream.ReadBlockInfoBlock(); 3169 if (!MaybeNewBlockInfo) 3170 return true; // FIXME Handle the error. 3171 Optional<BitstreamBlockInfo> NewBlockInfo = 3172 std::move(MaybeNewBlockInfo.get()); 3173 if (!NewBlockInfo) 3174 return true; 3175 BlockInfo = std::move(*NewBlockInfo); 3176 return false; 3177 } 3178 3179 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3180 // v1: [selection_kind, name] 3181 // v2: [strtab_offset, strtab_size, selection_kind] 3182 StringRef Name; 3183 std::tie(Name, Record) = readNameFromStrtab(Record); 3184 3185 if (Record.empty()) 3186 return error("Invalid record"); 3187 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3188 std::string OldFormatName; 3189 if (!UseStrtab) { 3190 if (Record.size() < 2) 3191 return error("Invalid record"); 3192 unsigned ComdatNameSize = Record[1]; 3193 OldFormatName.reserve(ComdatNameSize); 3194 for (unsigned i = 0; i != ComdatNameSize; ++i) 3195 OldFormatName += (char)Record[2 + i]; 3196 Name = OldFormatName; 3197 } 3198 Comdat *C = TheModule->getOrInsertComdat(Name); 3199 C->setSelectionKind(SK); 3200 ComdatList.push_back(C); 3201 return Error::success(); 3202 } 3203 3204 static void inferDSOLocal(GlobalValue *GV) { 3205 // infer dso_local from linkage and visibility if it is not encoded. 3206 if (GV->hasLocalLinkage() || 3207 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3208 GV->setDSOLocal(true); 3209 } 3210 3211 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3212 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3213 // visibility, threadlocal, unnamed_addr, externally_initialized, 3214 // dllstorageclass, comdat, attributes, preemption specifier, 3215 // partition strtab offset, partition strtab size] (name in VST) 3216 // v2: [strtab_offset, strtab_size, v1] 3217 StringRef Name; 3218 std::tie(Name, Record) = readNameFromStrtab(Record); 3219 3220 if (Record.size() < 6) 3221 return error("Invalid record"); 3222 Type *Ty = getTypeByID(Record[0]); 3223 if (!Ty) 3224 return error("Invalid record"); 3225 bool isConstant = Record[1] & 1; 3226 bool explicitType = Record[1] & 2; 3227 unsigned AddressSpace; 3228 if (explicitType) { 3229 AddressSpace = Record[1] >> 2; 3230 } else { 3231 if (!Ty->isPointerTy()) 3232 return error("Invalid type for value"); 3233 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3234 Ty = cast<PointerType>(Ty)->getElementType(); 3235 } 3236 3237 uint64_t RawLinkage = Record[3]; 3238 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3239 MaybeAlign Alignment; 3240 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3241 return Err; 3242 std::string Section; 3243 if (Record[5]) { 3244 if (Record[5] - 1 >= SectionTable.size()) 3245 return error("Invalid ID"); 3246 Section = SectionTable[Record[5] - 1]; 3247 } 3248 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3249 // Local linkage must have default visibility. 3250 // auto-upgrade `hidden` and `protected` for old bitcode. 3251 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3252 Visibility = getDecodedVisibility(Record[6]); 3253 3254 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3255 if (Record.size() > 7) 3256 TLM = getDecodedThreadLocalMode(Record[7]); 3257 3258 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3259 if (Record.size() > 8) 3260 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3261 3262 bool ExternallyInitialized = false; 3263 if (Record.size() > 9) 3264 ExternallyInitialized = Record[9]; 3265 3266 GlobalVariable *NewGV = 3267 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3268 nullptr, TLM, AddressSpace, ExternallyInitialized); 3269 NewGV->setAlignment(Alignment); 3270 if (!Section.empty()) 3271 NewGV->setSection(Section); 3272 NewGV->setVisibility(Visibility); 3273 NewGV->setUnnamedAddr(UnnamedAddr); 3274 3275 if (Record.size() > 10) 3276 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3277 else 3278 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3279 3280 ValueList.push_back(NewGV); 3281 3282 // Remember which value to use for the global initializer. 3283 if (unsigned InitID = Record[2]) 3284 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3285 3286 if (Record.size() > 11) { 3287 if (unsigned ComdatID = Record[11]) { 3288 if (ComdatID > ComdatList.size()) 3289 return error("Invalid global variable comdat ID"); 3290 NewGV->setComdat(ComdatList[ComdatID - 1]); 3291 } 3292 } else if (hasImplicitComdat(RawLinkage)) { 3293 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3294 } 3295 3296 if (Record.size() > 12) { 3297 auto AS = getAttributes(Record[12]).getFnAttrs(); 3298 NewGV->setAttributes(AS); 3299 } 3300 3301 if (Record.size() > 13) { 3302 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3303 } 3304 inferDSOLocal(NewGV); 3305 3306 // Check whether we have enough values to read a partition name. 3307 if (Record.size() > 15) 3308 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3309 3310 return Error::success(); 3311 } 3312 3313 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3314 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3315 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3316 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3317 // v2: [strtab_offset, strtab_size, v1] 3318 StringRef Name; 3319 std::tie(Name, Record) = readNameFromStrtab(Record); 3320 3321 if (Record.size() < 8) 3322 return error("Invalid record"); 3323 Type *FTy = getTypeByID(Record[0]); 3324 if (!FTy) 3325 return error("Invalid record"); 3326 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3327 FTy = PTy->getElementType(); 3328 3329 if (!isa<FunctionType>(FTy)) 3330 return error("Invalid type for value"); 3331 auto CC = static_cast<CallingConv::ID>(Record[1]); 3332 if (CC & ~CallingConv::MaxID) 3333 return error("Invalid calling convention ID"); 3334 3335 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3336 if (Record.size() > 16) 3337 AddrSpace = Record[16]; 3338 3339 Function *Func = 3340 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3341 AddrSpace, Name, TheModule); 3342 3343 assert(Func->getFunctionType() == FTy && 3344 "Incorrect fully specified type provided for function"); 3345 FunctionTypes[Func] = cast<FunctionType>(FTy); 3346 3347 Func->setCallingConv(CC); 3348 bool isProto = Record[2]; 3349 uint64_t RawLinkage = Record[3]; 3350 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3351 Func->setAttributes(getAttributes(Record[4])); 3352 3353 // Upgrade any old-style byval or sret without a type by propagating the 3354 // argument's pointee type. There should be no opaque pointers where the byval 3355 // type is implicit. 3356 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3357 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3358 Attribute::InAlloca}) { 3359 if (!Func->hasParamAttribute(i, Kind)) 3360 continue; 3361 3362 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3363 continue; 3364 3365 Func->removeParamAttr(i, Kind); 3366 3367 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3368 Type *PtrEltTy = cast<PointerType>(PTy)->getElementType(); 3369 Attribute NewAttr; 3370 switch (Kind) { 3371 case Attribute::ByVal: 3372 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3373 break; 3374 case Attribute::StructRet: 3375 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3376 break; 3377 case Attribute::InAlloca: 3378 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3379 break; 3380 default: 3381 llvm_unreachable("not an upgraded type attribute"); 3382 } 3383 3384 Func->addParamAttr(i, NewAttr); 3385 } 3386 } 3387 3388 MaybeAlign Alignment; 3389 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3390 return Err; 3391 Func->setAlignment(Alignment); 3392 if (Record[6]) { 3393 if (Record[6] - 1 >= SectionTable.size()) 3394 return error("Invalid ID"); 3395 Func->setSection(SectionTable[Record[6] - 1]); 3396 } 3397 // Local linkage must have default visibility. 3398 // auto-upgrade `hidden` and `protected` for old bitcode. 3399 if (!Func->hasLocalLinkage()) 3400 Func->setVisibility(getDecodedVisibility(Record[7])); 3401 if (Record.size() > 8 && Record[8]) { 3402 if (Record[8] - 1 >= GCTable.size()) 3403 return error("Invalid ID"); 3404 Func->setGC(GCTable[Record[8] - 1]); 3405 } 3406 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3407 if (Record.size() > 9) 3408 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3409 Func->setUnnamedAddr(UnnamedAddr); 3410 3411 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3412 if (Record.size() > 10) 3413 OperandInfo.Prologue = Record[10]; 3414 3415 if (Record.size() > 11) 3416 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3417 else 3418 upgradeDLLImportExportLinkage(Func, RawLinkage); 3419 3420 if (Record.size() > 12) { 3421 if (unsigned ComdatID = Record[12]) { 3422 if (ComdatID > ComdatList.size()) 3423 return error("Invalid function comdat ID"); 3424 Func->setComdat(ComdatList[ComdatID - 1]); 3425 } 3426 } else if (hasImplicitComdat(RawLinkage)) { 3427 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3428 } 3429 3430 if (Record.size() > 13) 3431 OperandInfo.Prefix = Record[13]; 3432 3433 if (Record.size() > 14) 3434 OperandInfo.PersonalityFn = Record[14]; 3435 3436 if (Record.size() > 15) { 3437 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3438 } 3439 inferDSOLocal(Func); 3440 3441 // Record[16] is the address space number. 3442 3443 // Check whether we have enough values to read a partition name. Also make 3444 // sure Strtab has enough values. 3445 if (Record.size() > 18 && Strtab.data() && 3446 Record[17] + Record[18] <= Strtab.size()) { 3447 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3448 } 3449 3450 ValueList.push_back(Func); 3451 3452 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3453 FunctionOperands.push_back(OperandInfo); 3454 3455 // If this is a function with a body, remember the prototype we are 3456 // creating now, so that we can match up the body with them later. 3457 if (!isProto) { 3458 Func->setIsMaterializable(true); 3459 FunctionsWithBodies.push_back(Func); 3460 DeferredFunctionInfo[Func] = 0; 3461 } 3462 return Error::success(); 3463 } 3464 3465 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3466 unsigned BitCode, ArrayRef<uint64_t> Record) { 3467 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3468 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3469 // dllstorageclass, threadlocal, unnamed_addr, 3470 // preemption specifier] (name in VST) 3471 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3472 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3473 // preemption specifier] (name in VST) 3474 // v2: [strtab_offset, strtab_size, v1] 3475 StringRef Name; 3476 std::tie(Name, Record) = readNameFromStrtab(Record); 3477 3478 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3479 if (Record.size() < (3 + (unsigned)NewRecord)) 3480 return error("Invalid record"); 3481 unsigned OpNum = 0; 3482 Type *Ty = getTypeByID(Record[OpNum++]); 3483 if (!Ty) 3484 return error("Invalid record"); 3485 3486 unsigned AddrSpace; 3487 if (!NewRecord) { 3488 auto *PTy = dyn_cast<PointerType>(Ty); 3489 if (!PTy) 3490 return error("Invalid type for value"); 3491 Ty = PTy->getElementType(); 3492 AddrSpace = PTy->getAddressSpace(); 3493 } else { 3494 AddrSpace = Record[OpNum++]; 3495 } 3496 3497 auto Val = Record[OpNum++]; 3498 auto Linkage = Record[OpNum++]; 3499 GlobalIndirectSymbol *NewGA; 3500 if (BitCode == bitc::MODULE_CODE_ALIAS || 3501 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3502 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3503 TheModule); 3504 else 3505 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3506 nullptr, TheModule); 3507 3508 // Local linkage must have default visibility. 3509 // auto-upgrade `hidden` and `protected` for old bitcode. 3510 if (OpNum != Record.size()) { 3511 auto VisInd = OpNum++; 3512 if (!NewGA->hasLocalLinkage()) 3513 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3514 } 3515 if (BitCode == bitc::MODULE_CODE_ALIAS || 3516 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3517 if (OpNum != Record.size()) 3518 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3519 else 3520 upgradeDLLImportExportLinkage(NewGA, Linkage); 3521 if (OpNum != Record.size()) 3522 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3523 if (OpNum != Record.size()) 3524 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3525 } 3526 if (OpNum != Record.size()) 3527 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3528 inferDSOLocal(NewGA); 3529 3530 // Check whether we have enough values to read a partition name. 3531 if (OpNum + 1 < Record.size()) { 3532 NewGA->setPartition( 3533 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3534 OpNum += 2; 3535 } 3536 3537 ValueList.push_back(NewGA); 3538 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3539 return Error::success(); 3540 } 3541 3542 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3543 bool ShouldLazyLoadMetadata, 3544 DataLayoutCallbackTy DataLayoutCallback) { 3545 if (ResumeBit) { 3546 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3547 return JumpFailed; 3548 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3549 return Err; 3550 3551 SmallVector<uint64_t, 64> Record; 3552 3553 // Parts of bitcode parsing depend on the datalayout. Make sure we 3554 // finalize the datalayout before we run any of that code. 3555 bool ResolvedDataLayout = false; 3556 auto ResolveDataLayout = [&] { 3557 if (ResolvedDataLayout) 3558 return; 3559 3560 // datalayout and triple can't be parsed after this point. 3561 ResolvedDataLayout = true; 3562 3563 // Upgrade data layout string. 3564 std::string DL = llvm::UpgradeDataLayoutString( 3565 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3566 TheModule->setDataLayout(DL); 3567 3568 if (auto LayoutOverride = 3569 DataLayoutCallback(TheModule->getTargetTriple())) 3570 TheModule->setDataLayout(*LayoutOverride); 3571 }; 3572 3573 // Read all the records for this module. 3574 while (true) { 3575 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3576 if (!MaybeEntry) 3577 return MaybeEntry.takeError(); 3578 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3579 3580 switch (Entry.Kind) { 3581 case BitstreamEntry::Error: 3582 return error("Malformed block"); 3583 case BitstreamEntry::EndBlock: 3584 ResolveDataLayout(); 3585 return globalCleanup(); 3586 3587 case BitstreamEntry::SubBlock: 3588 switch (Entry.ID) { 3589 default: // Skip unknown content. 3590 if (Error Err = Stream.SkipBlock()) 3591 return Err; 3592 break; 3593 case bitc::BLOCKINFO_BLOCK_ID: 3594 if (readBlockInfo()) 3595 return error("Malformed block"); 3596 break; 3597 case bitc::PARAMATTR_BLOCK_ID: 3598 if (Error Err = parseAttributeBlock()) 3599 return Err; 3600 break; 3601 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3602 if (Error Err = parseAttributeGroupBlock()) 3603 return Err; 3604 break; 3605 case bitc::TYPE_BLOCK_ID_NEW: 3606 if (Error Err = parseTypeTable()) 3607 return Err; 3608 break; 3609 case bitc::VALUE_SYMTAB_BLOCK_ID: 3610 if (!SeenValueSymbolTable) { 3611 // Either this is an old form VST without function index and an 3612 // associated VST forward declaration record (which would have caused 3613 // the VST to be jumped to and parsed before it was encountered 3614 // normally in the stream), or there were no function blocks to 3615 // trigger an earlier parsing of the VST. 3616 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3617 if (Error Err = parseValueSymbolTable()) 3618 return Err; 3619 SeenValueSymbolTable = true; 3620 } else { 3621 // We must have had a VST forward declaration record, which caused 3622 // the parser to jump to and parse the VST earlier. 3623 assert(VSTOffset > 0); 3624 if (Error Err = Stream.SkipBlock()) 3625 return Err; 3626 } 3627 break; 3628 case bitc::CONSTANTS_BLOCK_ID: 3629 if (Error Err = parseConstants()) 3630 return Err; 3631 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3632 return Err; 3633 break; 3634 case bitc::METADATA_BLOCK_ID: 3635 if (ShouldLazyLoadMetadata) { 3636 if (Error Err = rememberAndSkipMetadata()) 3637 return Err; 3638 break; 3639 } 3640 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3641 if (Error Err = MDLoader->parseModuleMetadata()) 3642 return Err; 3643 break; 3644 case bitc::METADATA_KIND_BLOCK_ID: 3645 if (Error Err = MDLoader->parseMetadataKinds()) 3646 return Err; 3647 break; 3648 case bitc::FUNCTION_BLOCK_ID: 3649 ResolveDataLayout(); 3650 3651 // If this is the first function body we've seen, reverse the 3652 // FunctionsWithBodies list. 3653 if (!SeenFirstFunctionBody) { 3654 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3655 if (Error Err = globalCleanup()) 3656 return Err; 3657 SeenFirstFunctionBody = true; 3658 } 3659 3660 if (VSTOffset > 0) { 3661 // If we have a VST forward declaration record, make sure we 3662 // parse the VST now if we haven't already. It is needed to 3663 // set up the DeferredFunctionInfo vector for lazy reading. 3664 if (!SeenValueSymbolTable) { 3665 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3666 return Err; 3667 SeenValueSymbolTable = true; 3668 // Fall through so that we record the NextUnreadBit below. 3669 // This is necessary in case we have an anonymous function that 3670 // is later materialized. Since it will not have a VST entry we 3671 // need to fall back to the lazy parse to find its offset. 3672 } else { 3673 // If we have a VST forward declaration record, but have already 3674 // parsed the VST (just above, when the first function body was 3675 // encountered here), then we are resuming the parse after 3676 // materializing functions. The ResumeBit points to the 3677 // start of the last function block recorded in the 3678 // DeferredFunctionInfo map. Skip it. 3679 if (Error Err = Stream.SkipBlock()) 3680 return Err; 3681 continue; 3682 } 3683 } 3684 3685 // Support older bitcode files that did not have the function 3686 // index in the VST, nor a VST forward declaration record, as 3687 // well as anonymous functions that do not have VST entries. 3688 // Build the DeferredFunctionInfo vector on the fly. 3689 if (Error Err = rememberAndSkipFunctionBody()) 3690 return Err; 3691 3692 // Suspend parsing when we reach the function bodies. Subsequent 3693 // materialization calls will resume it when necessary. If the bitcode 3694 // file is old, the symbol table will be at the end instead and will not 3695 // have been seen yet. In this case, just finish the parse now. 3696 if (SeenValueSymbolTable) { 3697 NextUnreadBit = Stream.GetCurrentBitNo(); 3698 // After the VST has been parsed, we need to make sure intrinsic name 3699 // are auto-upgraded. 3700 return globalCleanup(); 3701 } 3702 break; 3703 case bitc::USELIST_BLOCK_ID: 3704 if (Error Err = parseUseLists()) 3705 return Err; 3706 break; 3707 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3708 if (Error Err = parseOperandBundleTags()) 3709 return Err; 3710 break; 3711 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3712 if (Error Err = parseSyncScopeNames()) 3713 return Err; 3714 break; 3715 } 3716 continue; 3717 3718 case BitstreamEntry::Record: 3719 // The interesting case. 3720 break; 3721 } 3722 3723 // Read a record. 3724 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3725 if (!MaybeBitCode) 3726 return MaybeBitCode.takeError(); 3727 switch (unsigned BitCode = MaybeBitCode.get()) { 3728 default: break; // Default behavior, ignore unknown content. 3729 case bitc::MODULE_CODE_VERSION: { 3730 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3731 if (!VersionOrErr) 3732 return VersionOrErr.takeError(); 3733 UseRelativeIDs = *VersionOrErr >= 1; 3734 break; 3735 } 3736 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3737 if (ResolvedDataLayout) 3738 return error("target triple too late in module"); 3739 std::string S; 3740 if (convertToString(Record, 0, S)) 3741 return error("Invalid record"); 3742 TheModule->setTargetTriple(S); 3743 break; 3744 } 3745 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3746 if (ResolvedDataLayout) 3747 return error("datalayout too late in module"); 3748 std::string S; 3749 if (convertToString(Record, 0, S)) 3750 return error("Invalid record"); 3751 TheModule->setDataLayout(S); 3752 break; 3753 } 3754 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3755 std::string S; 3756 if (convertToString(Record, 0, S)) 3757 return error("Invalid record"); 3758 TheModule->setModuleInlineAsm(S); 3759 break; 3760 } 3761 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3762 // Deprecated, but still needed to read old bitcode files. 3763 std::string S; 3764 if (convertToString(Record, 0, S)) 3765 return error("Invalid record"); 3766 // Ignore value. 3767 break; 3768 } 3769 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3770 std::string S; 3771 if (convertToString(Record, 0, S)) 3772 return error("Invalid record"); 3773 SectionTable.push_back(S); 3774 break; 3775 } 3776 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3777 std::string S; 3778 if (convertToString(Record, 0, S)) 3779 return error("Invalid record"); 3780 GCTable.push_back(S); 3781 break; 3782 } 3783 case bitc::MODULE_CODE_COMDAT: 3784 if (Error Err = parseComdatRecord(Record)) 3785 return Err; 3786 break; 3787 case bitc::MODULE_CODE_GLOBALVAR: 3788 if (Error Err = parseGlobalVarRecord(Record)) 3789 return Err; 3790 break; 3791 case bitc::MODULE_CODE_FUNCTION: 3792 ResolveDataLayout(); 3793 if (Error Err = parseFunctionRecord(Record)) 3794 return Err; 3795 break; 3796 case bitc::MODULE_CODE_IFUNC: 3797 case bitc::MODULE_CODE_ALIAS: 3798 case bitc::MODULE_CODE_ALIAS_OLD: 3799 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3800 return Err; 3801 break; 3802 /// MODULE_CODE_VSTOFFSET: [offset] 3803 case bitc::MODULE_CODE_VSTOFFSET: 3804 if (Record.empty()) 3805 return error("Invalid record"); 3806 // Note that we subtract 1 here because the offset is relative to one word 3807 // before the start of the identification or module block, which was 3808 // historically always the start of the regular bitcode header. 3809 VSTOffset = Record[0] - 1; 3810 break; 3811 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3812 case bitc::MODULE_CODE_SOURCE_FILENAME: 3813 SmallString<128> ValueName; 3814 if (convertToString(Record, 0, ValueName)) 3815 return error("Invalid record"); 3816 TheModule->setSourceFileName(ValueName); 3817 break; 3818 } 3819 Record.clear(); 3820 } 3821 } 3822 3823 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3824 bool IsImporting, 3825 DataLayoutCallbackTy DataLayoutCallback) { 3826 TheModule = M; 3827 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3828 [&](unsigned ID) { return getTypeByID(ID); }); 3829 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3830 } 3831 3832 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3833 if (!isa<PointerType>(PtrType)) 3834 return error("Load/Store operand is not a pointer type"); 3835 3836 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3837 return error("Explicit load/store type does not match pointee " 3838 "type of pointer operand"); 3839 if (!PointerType::isLoadableOrStorableType(ValType)) 3840 return error("Cannot load/store from pointer"); 3841 return Error::success(); 3842 } 3843 3844 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 3845 ArrayRef<Type *> ArgsTys) { 3846 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3847 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3848 Attribute::InAlloca}) { 3849 if (!CB->paramHasAttr(i, Kind)) 3850 continue; 3851 3852 CB->removeParamAttr(i, Kind); 3853 3854 Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType(); 3855 Attribute NewAttr; 3856 switch (Kind) { 3857 case Attribute::ByVal: 3858 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3859 break; 3860 case Attribute::StructRet: 3861 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3862 break; 3863 case Attribute::InAlloca: 3864 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3865 break; 3866 default: 3867 llvm_unreachable("not an upgraded type attribute"); 3868 } 3869 3870 CB->addParamAttr(i, NewAttr); 3871 } 3872 } 3873 3874 switch (CB->getIntrinsicID()) { 3875 case Intrinsic::preserve_array_access_index: 3876 case Intrinsic::preserve_struct_access_index: 3877 if (!CB->getAttributes().getParamElementType(0)) { 3878 Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType(); 3879 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 3880 CB->addParamAttr(0, NewAttr); 3881 } 3882 break; 3883 default: 3884 break; 3885 } 3886 } 3887 3888 /// Lazily parse the specified function body block. 3889 Error BitcodeReader::parseFunctionBody(Function *F) { 3890 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3891 return Err; 3892 3893 // Unexpected unresolved metadata when parsing function. 3894 if (MDLoader->hasFwdRefs()) 3895 return error("Invalid function metadata: incoming forward references"); 3896 3897 InstructionList.clear(); 3898 unsigned ModuleValueListSize = ValueList.size(); 3899 unsigned ModuleMDLoaderSize = MDLoader->size(); 3900 3901 // Add all the function arguments to the value table. 3902 #ifndef NDEBUG 3903 unsigned ArgNo = 0; 3904 FunctionType *FTy = FunctionTypes[F]; 3905 #endif 3906 for (Argument &I : F->args()) { 3907 assert(I.getType() == FTy->getParamType(ArgNo++) && 3908 "Incorrect fully specified type for Function Argument"); 3909 ValueList.push_back(&I); 3910 } 3911 unsigned NextValueNo = ValueList.size(); 3912 BasicBlock *CurBB = nullptr; 3913 unsigned CurBBNo = 0; 3914 3915 DebugLoc LastLoc; 3916 auto getLastInstruction = [&]() -> Instruction * { 3917 if (CurBB && !CurBB->empty()) 3918 return &CurBB->back(); 3919 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3920 !FunctionBBs[CurBBNo - 1]->empty()) 3921 return &FunctionBBs[CurBBNo - 1]->back(); 3922 return nullptr; 3923 }; 3924 3925 std::vector<OperandBundleDef> OperandBundles; 3926 3927 // Read all the records. 3928 SmallVector<uint64_t, 64> Record; 3929 3930 while (true) { 3931 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3932 if (!MaybeEntry) 3933 return MaybeEntry.takeError(); 3934 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3935 3936 switch (Entry.Kind) { 3937 case BitstreamEntry::Error: 3938 return error("Malformed block"); 3939 case BitstreamEntry::EndBlock: 3940 goto OutOfRecordLoop; 3941 3942 case BitstreamEntry::SubBlock: 3943 switch (Entry.ID) { 3944 default: // Skip unknown content. 3945 if (Error Err = Stream.SkipBlock()) 3946 return Err; 3947 break; 3948 case bitc::CONSTANTS_BLOCK_ID: 3949 if (Error Err = parseConstants()) 3950 return Err; 3951 NextValueNo = ValueList.size(); 3952 break; 3953 case bitc::VALUE_SYMTAB_BLOCK_ID: 3954 if (Error Err = parseValueSymbolTable()) 3955 return Err; 3956 break; 3957 case bitc::METADATA_ATTACHMENT_ID: 3958 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3959 return Err; 3960 break; 3961 case bitc::METADATA_BLOCK_ID: 3962 assert(DeferredMetadataInfo.empty() && 3963 "Must read all module-level metadata before function-level"); 3964 if (Error Err = MDLoader->parseFunctionMetadata()) 3965 return Err; 3966 break; 3967 case bitc::USELIST_BLOCK_ID: 3968 if (Error Err = parseUseLists()) 3969 return Err; 3970 break; 3971 } 3972 continue; 3973 3974 case BitstreamEntry::Record: 3975 // The interesting case. 3976 break; 3977 } 3978 3979 // Read a record. 3980 Record.clear(); 3981 Instruction *I = nullptr; 3982 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3983 if (!MaybeBitCode) 3984 return MaybeBitCode.takeError(); 3985 switch (unsigned BitCode = MaybeBitCode.get()) { 3986 default: // Default behavior: reject 3987 return error("Invalid value"); 3988 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3989 if (Record.empty() || Record[0] == 0) 3990 return error("Invalid record"); 3991 // Create all the basic blocks for the function. 3992 FunctionBBs.resize(Record[0]); 3993 3994 // See if anything took the address of blocks in this function. 3995 auto BBFRI = BasicBlockFwdRefs.find(F); 3996 if (BBFRI == BasicBlockFwdRefs.end()) { 3997 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3998 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3999 } else { 4000 auto &BBRefs = BBFRI->second; 4001 // Check for invalid basic block references. 4002 if (BBRefs.size() > FunctionBBs.size()) 4003 return error("Invalid ID"); 4004 assert(!BBRefs.empty() && "Unexpected empty array"); 4005 assert(!BBRefs.front() && "Invalid reference to entry block"); 4006 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4007 ++I) 4008 if (I < RE && BBRefs[I]) { 4009 BBRefs[I]->insertInto(F); 4010 FunctionBBs[I] = BBRefs[I]; 4011 } else { 4012 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4013 } 4014 4015 // Erase from the table. 4016 BasicBlockFwdRefs.erase(BBFRI); 4017 } 4018 4019 CurBB = FunctionBBs[0]; 4020 continue; 4021 } 4022 4023 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4024 // This record indicates that the last instruction is at the same 4025 // location as the previous instruction with a location. 4026 I = getLastInstruction(); 4027 4028 if (!I) 4029 return error("Invalid record"); 4030 I->setDebugLoc(LastLoc); 4031 I = nullptr; 4032 continue; 4033 4034 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4035 I = getLastInstruction(); 4036 if (!I || Record.size() < 4) 4037 return error("Invalid record"); 4038 4039 unsigned Line = Record[0], Col = Record[1]; 4040 unsigned ScopeID = Record[2], IAID = Record[3]; 4041 bool isImplicitCode = Record.size() == 5 && Record[4]; 4042 4043 MDNode *Scope = nullptr, *IA = nullptr; 4044 if (ScopeID) { 4045 Scope = dyn_cast_or_null<MDNode>( 4046 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4047 if (!Scope) 4048 return error("Invalid record"); 4049 } 4050 if (IAID) { 4051 IA = dyn_cast_or_null<MDNode>( 4052 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4053 if (!IA) 4054 return error("Invalid record"); 4055 } 4056 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4057 isImplicitCode); 4058 I->setDebugLoc(LastLoc); 4059 I = nullptr; 4060 continue; 4061 } 4062 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4063 unsigned OpNum = 0; 4064 Value *LHS; 4065 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4066 OpNum+1 > Record.size()) 4067 return error("Invalid record"); 4068 4069 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4070 if (Opc == -1) 4071 return error("Invalid record"); 4072 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4073 InstructionList.push_back(I); 4074 if (OpNum < Record.size()) { 4075 if (isa<FPMathOperator>(I)) { 4076 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4077 if (FMF.any()) 4078 I->setFastMathFlags(FMF); 4079 } 4080 } 4081 break; 4082 } 4083 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4084 unsigned OpNum = 0; 4085 Value *LHS, *RHS; 4086 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4087 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4088 OpNum+1 > Record.size()) 4089 return error("Invalid record"); 4090 4091 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4092 if (Opc == -1) 4093 return error("Invalid record"); 4094 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4095 InstructionList.push_back(I); 4096 if (OpNum < Record.size()) { 4097 if (Opc == Instruction::Add || 4098 Opc == Instruction::Sub || 4099 Opc == Instruction::Mul || 4100 Opc == Instruction::Shl) { 4101 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4102 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4103 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4104 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4105 } else if (Opc == Instruction::SDiv || 4106 Opc == Instruction::UDiv || 4107 Opc == Instruction::LShr || 4108 Opc == Instruction::AShr) { 4109 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4110 cast<BinaryOperator>(I)->setIsExact(true); 4111 } else if (isa<FPMathOperator>(I)) { 4112 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4113 if (FMF.any()) 4114 I->setFastMathFlags(FMF); 4115 } 4116 4117 } 4118 break; 4119 } 4120 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4121 unsigned OpNum = 0; 4122 Value *Op; 4123 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4124 OpNum+2 != Record.size()) 4125 return error("Invalid record"); 4126 4127 Type *ResTy = getTypeByID(Record[OpNum]); 4128 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4129 if (Opc == -1 || !ResTy) 4130 return error("Invalid record"); 4131 Instruction *Temp = nullptr; 4132 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4133 if (Temp) { 4134 InstructionList.push_back(Temp); 4135 assert(CurBB && "No current BB?"); 4136 CurBB->getInstList().push_back(Temp); 4137 } 4138 } else { 4139 auto CastOp = (Instruction::CastOps)Opc; 4140 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4141 return error("Invalid cast"); 4142 I = CastInst::Create(CastOp, Op, ResTy); 4143 } 4144 InstructionList.push_back(I); 4145 break; 4146 } 4147 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4148 case bitc::FUNC_CODE_INST_GEP_OLD: 4149 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4150 unsigned OpNum = 0; 4151 4152 Type *Ty; 4153 bool InBounds; 4154 4155 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4156 InBounds = Record[OpNum++]; 4157 Ty = getTypeByID(Record[OpNum++]); 4158 } else { 4159 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4160 Ty = nullptr; 4161 } 4162 4163 Value *BasePtr; 4164 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4165 return error("Invalid record"); 4166 4167 if (!Ty) { 4168 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4169 ->getElementType(); 4170 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4171 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4172 return error( 4173 "Explicit gep type does not match pointee type of pointer operand"); 4174 } 4175 4176 SmallVector<Value*, 16> GEPIdx; 4177 while (OpNum != Record.size()) { 4178 Value *Op; 4179 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4180 return error("Invalid record"); 4181 GEPIdx.push_back(Op); 4182 } 4183 4184 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4185 4186 InstructionList.push_back(I); 4187 if (InBounds) 4188 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4189 break; 4190 } 4191 4192 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4193 // EXTRACTVAL: [opty, opval, n x indices] 4194 unsigned OpNum = 0; 4195 Value *Agg; 4196 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4197 return error("Invalid record"); 4198 Type *Ty = Agg->getType(); 4199 4200 unsigned RecSize = Record.size(); 4201 if (OpNum == RecSize) 4202 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4203 4204 SmallVector<unsigned, 4> EXTRACTVALIdx; 4205 for (; OpNum != RecSize; ++OpNum) { 4206 bool IsArray = Ty->isArrayTy(); 4207 bool IsStruct = Ty->isStructTy(); 4208 uint64_t Index = Record[OpNum]; 4209 4210 if (!IsStruct && !IsArray) 4211 return error("EXTRACTVAL: Invalid type"); 4212 if ((unsigned)Index != Index) 4213 return error("Invalid value"); 4214 if (IsStruct && Index >= Ty->getStructNumElements()) 4215 return error("EXTRACTVAL: Invalid struct index"); 4216 if (IsArray && Index >= Ty->getArrayNumElements()) 4217 return error("EXTRACTVAL: Invalid array index"); 4218 EXTRACTVALIdx.push_back((unsigned)Index); 4219 4220 if (IsStruct) 4221 Ty = Ty->getStructElementType(Index); 4222 else 4223 Ty = Ty->getArrayElementType(); 4224 } 4225 4226 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4227 InstructionList.push_back(I); 4228 break; 4229 } 4230 4231 case bitc::FUNC_CODE_INST_INSERTVAL: { 4232 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4233 unsigned OpNum = 0; 4234 Value *Agg; 4235 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4236 return error("Invalid record"); 4237 Value *Val; 4238 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4239 return error("Invalid record"); 4240 4241 unsigned RecSize = Record.size(); 4242 if (OpNum == RecSize) 4243 return error("INSERTVAL: Invalid instruction with 0 indices"); 4244 4245 SmallVector<unsigned, 4> INSERTVALIdx; 4246 Type *CurTy = Agg->getType(); 4247 for (; OpNum != RecSize; ++OpNum) { 4248 bool IsArray = CurTy->isArrayTy(); 4249 bool IsStruct = CurTy->isStructTy(); 4250 uint64_t Index = Record[OpNum]; 4251 4252 if (!IsStruct && !IsArray) 4253 return error("INSERTVAL: Invalid type"); 4254 if ((unsigned)Index != Index) 4255 return error("Invalid value"); 4256 if (IsStruct && Index >= CurTy->getStructNumElements()) 4257 return error("INSERTVAL: Invalid struct index"); 4258 if (IsArray && Index >= CurTy->getArrayNumElements()) 4259 return error("INSERTVAL: Invalid array index"); 4260 4261 INSERTVALIdx.push_back((unsigned)Index); 4262 if (IsStruct) 4263 CurTy = CurTy->getStructElementType(Index); 4264 else 4265 CurTy = CurTy->getArrayElementType(); 4266 } 4267 4268 if (CurTy != Val->getType()) 4269 return error("Inserted value type doesn't match aggregate type"); 4270 4271 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4272 InstructionList.push_back(I); 4273 break; 4274 } 4275 4276 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4277 // obsolete form of select 4278 // handles select i1 ... in old bitcode 4279 unsigned OpNum = 0; 4280 Value *TrueVal, *FalseVal, *Cond; 4281 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4282 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4283 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4284 return error("Invalid record"); 4285 4286 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4287 InstructionList.push_back(I); 4288 break; 4289 } 4290 4291 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4292 // new form of select 4293 // handles select i1 or select [N x i1] 4294 unsigned OpNum = 0; 4295 Value *TrueVal, *FalseVal, *Cond; 4296 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4297 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4298 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4299 return error("Invalid record"); 4300 4301 // select condition can be either i1 or [N x i1] 4302 if (VectorType* vector_type = 4303 dyn_cast<VectorType>(Cond->getType())) { 4304 // expect <n x i1> 4305 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4306 return error("Invalid type for value"); 4307 } else { 4308 // expect i1 4309 if (Cond->getType() != Type::getInt1Ty(Context)) 4310 return error("Invalid type for value"); 4311 } 4312 4313 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4314 InstructionList.push_back(I); 4315 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4316 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4317 if (FMF.any()) 4318 I->setFastMathFlags(FMF); 4319 } 4320 break; 4321 } 4322 4323 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4324 unsigned OpNum = 0; 4325 Value *Vec, *Idx; 4326 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4327 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4328 return error("Invalid record"); 4329 if (!Vec->getType()->isVectorTy()) 4330 return error("Invalid type for value"); 4331 I = ExtractElementInst::Create(Vec, Idx); 4332 InstructionList.push_back(I); 4333 break; 4334 } 4335 4336 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4337 unsigned OpNum = 0; 4338 Value *Vec, *Elt, *Idx; 4339 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4340 return error("Invalid record"); 4341 if (!Vec->getType()->isVectorTy()) 4342 return error("Invalid type for value"); 4343 if (popValue(Record, OpNum, NextValueNo, 4344 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4345 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4346 return error("Invalid record"); 4347 I = InsertElementInst::Create(Vec, Elt, Idx); 4348 InstructionList.push_back(I); 4349 break; 4350 } 4351 4352 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4353 unsigned OpNum = 0; 4354 Value *Vec1, *Vec2, *Mask; 4355 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4356 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4357 return error("Invalid record"); 4358 4359 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4360 return error("Invalid record"); 4361 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4362 return error("Invalid type for value"); 4363 4364 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4365 InstructionList.push_back(I); 4366 break; 4367 } 4368 4369 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4370 // Old form of ICmp/FCmp returning bool 4371 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4372 // both legal on vectors but had different behaviour. 4373 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4374 // FCmp/ICmp returning bool or vector of bool 4375 4376 unsigned OpNum = 0; 4377 Value *LHS, *RHS; 4378 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4379 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4380 return error("Invalid record"); 4381 4382 if (OpNum >= Record.size()) 4383 return error( 4384 "Invalid record: operand number exceeded available operands"); 4385 4386 unsigned PredVal = Record[OpNum]; 4387 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4388 FastMathFlags FMF; 4389 if (IsFP && Record.size() > OpNum+1) 4390 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4391 4392 if (OpNum+1 != Record.size()) 4393 return error("Invalid record"); 4394 4395 if (LHS->getType()->isFPOrFPVectorTy()) 4396 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4397 else 4398 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4399 4400 if (FMF.any()) 4401 I->setFastMathFlags(FMF); 4402 InstructionList.push_back(I); 4403 break; 4404 } 4405 4406 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4407 { 4408 unsigned Size = Record.size(); 4409 if (Size == 0) { 4410 I = ReturnInst::Create(Context); 4411 InstructionList.push_back(I); 4412 break; 4413 } 4414 4415 unsigned OpNum = 0; 4416 Value *Op = nullptr; 4417 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4418 return error("Invalid record"); 4419 if (OpNum != Record.size()) 4420 return error("Invalid record"); 4421 4422 I = ReturnInst::Create(Context, Op); 4423 InstructionList.push_back(I); 4424 break; 4425 } 4426 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4427 if (Record.size() != 1 && Record.size() != 3) 4428 return error("Invalid record"); 4429 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4430 if (!TrueDest) 4431 return error("Invalid record"); 4432 4433 if (Record.size() == 1) { 4434 I = BranchInst::Create(TrueDest); 4435 InstructionList.push_back(I); 4436 } 4437 else { 4438 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4439 Value *Cond = getValue(Record, 2, NextValueNo, 4440 Type::getInt1Ty(Context)); 4441 if (!FalseDest || !Cond) 4442 return error("Invalid record"); 4443 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4444 InstructionList.push_back(I); 4445 } 4446 break; 4447 } 4448 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4449 if (Record.size() != 1 && Record.size() != 2) 4450 return error("Invalid record"); 4451 unsigned Idx = 0; 4452 Value *CleanupPad = 4453 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4454 if (!CleanupPad) 4455 return error("Invalid record"); 4456 BasicBlock *UnwindDest = nullptr; 4457 if (Record.size() == 2) { 4458 UnwindDest = getBasicBlock(Record[Idx++]); 4459 if (!UnwindDest) 4460 return error("Invalid record"); 4461 } 4462 4463 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4464 InstructionList.push_back(I); 4465 break; 4466 } 4467 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4468 if (Record.size() != 2) 4469 return error("Invalid record"); 4470 unsigned Idx = 0; 4471 Value *CatchPad = 4472 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4473 if (!CatchPad) 4474 return error("Invalid record"); 4475 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4476 if (!BB) 4477 return error("Invalid record"); 4478 4479 I = CatchReturnInst::Create(CatchPad, BB); 4480 InstructionList.push_back(I); 4481 break; 4482 } 4483 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4484 // We must have, at minimum, the outer scope and the number of arguments. 4485 if (Record.size() < 2) 4486 return error("Invalid record"); 4487 4488 unsigned Idx = 0; 4489 4490 Value *ParentPad = 4491 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4492 4493 unsigned NumHandlers = Record[Idx++]; 4494 4495 SmallVector<BasicBlock *, 2> Handlers; 4496 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4497 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4498 if (!BB) 4499 return error("Invalid record"); 4500 Handlers.push_back(BB); 4501 } 4502 4503 BasicBlock *UnwindDest = nullptr; 4504 if (Idx + 1 == Record.size()) { 4505 UnwindDest = getBasicBlock(Record[Idx++]); 4506 if (!UnwindDest) 4507 return error("Invalid record"); 4508 } 4509 4510 if (Record.size() != Idx) 4511 return error("Invalid record"); 4512 4513 auto *CatchSwitch = 4514 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4515 for (BasicBlock *Handler : Handlers) 4516 CatchSwitch->addHandler(Handler); 4517 I = CatchSwitch; 4518 InstructionList.push_back(I); 4519 break; 4520 } 4521 case bitc::FUNC_CODE_INST_CATCHPAD: 4522 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4523 // We must have, at minimum, the outer scope and the number of arguments. 4524 if (Record.size() < 2) 4525 return error("Invalid record"); 4526 4527 unsigned Idx = 0; 4528 4529 Value *ParentPad = 4530 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4531 4532 unsigned NumArgOperands = Record[Idx++]; 4533 4534 SmallVector<Value *, 2> Args; 4535 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4536 Value *Val; 4537 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4538 return error("Invalid record"); 4539 Args.push_back(Val); 4540 } 4541 4542 if (Record.size() != Idx) 4543 return error("Invalid record"); 4544 4545 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4546 I = CleanupPadInst::Create(ParentPad, Args); 4547 else 4548 I = CatchPadInst::Create(ParentPad, Args); 4549 InstructionList.push_back(I); 4550 break; 4551 } 4552 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4553 // Check magic 4554 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4555 // "New" SwitchInst format with case ranges. The changes to write this 4556 // format were reverted but we still recognize bitcode that uses it. 4557 // Hopefully someday we will have support for case ranges and can use 4558 // this format again. 4559 4560 Type *OpTy = getTypeByID(Record[1]); 4561 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4562 4563 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4564 BasicBlock *Default = getBasicBlock(Record[3]); 4565 if (!OpTy || !Cond || !Default) 4566 return error("Invalid record"); 4567 4568 unsigned NumCases = Record[4]; 4569 4570 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4571 InstructionList.push_back(SI); 4572 4573 unsigned CurIdx = 5; 4574 for (unsigned i = 0; i != NumCases; ++i) { 4575 SmallVector<ConstantInt*, 1> CaseVals; 4576 unsigned NumItems = Record[CurIdx++]; 4577 for (unsigned ci = 0; ci != NumItems; ++ci) { 4578 bool isSingleNumber = Record[CurIdx++]; 4579 4580 APInt Low; 4581 unsigned ActiveWords = 1; 4582 if (ValueBitWidth > 64) 4583 ActiveWords = Record[CurIdx++]; 4584 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4585 ValueBitWidth); 4586 CurIdx += ActiveWords; 4587 4588 if (!isSingleNumber) { 4589 ActiveWords = 1; 4590 if (ValueBitWidth > 64) 4591 ActiveWords = Record[CurIdx++]; 4592 APInt High = readWideAPInt( 4593 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4594 CurIdx += ActiveWords; 4595 4596 // FIXME: It is not clear whether values in the range should be 4597 // compared as signed or unsigned values. The partially 4598 // implemented changes that used this format in the past used 4599 // unsigned comparisons. 4600 for ( ; Low.ule(High); ++Low) 4601 CaseVals.push_back(ConstantInt::get(Context, Low)); 4602 } else 4603 CaseVals.push_back(ConstantInt::get(Context, Low)); 4604 } 4605 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4606 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4607 cve = CaseVals.end(); cvi != cve; ++cvi) 4608 SI->addCase(*cvi, DestBB); 4609 } 4610 I = SI; 4611 break; 4612 } 4613 4614 // Old SwitchInst format without case ranges. 4615 4616 if (Record.size() < 3 || (Record.size() & 1) == 0) 4617 return error("Invalid record"); 4618 Type *OpTy = getTypeByID(Record[0]); 4619 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4620 BasicBlock *Default = getBasicBlock(Record[2]); 4621 if (!OpTy || !Cond || !Default) 4622 return error("Invalid record"); 4623 unsigned NumCases = (Record.size()-3)/2; 4624 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4625 InstructionList.push_back(SI); 4626 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4627 ConstantInt *CaseVal = 4628 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4629 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4630 if (!CaseVal || !DestBB) { 4631 delete SI; 4632 return error("Invalid record"); 4633 } 4634 SI->addCase(CaseVal, DestBB); 4635 } 4636 I = SI; 4637 break; 4638 } 4639 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4640 if (Record.size() < 2) 4641 return error("Invalid record"); 4642 Type *OpTy = getTypeByID(Record[0]); 4643 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4644 if (!OpTy || !Address) 4645 return error("Invalid record"); 4646 unsigned NumDests = Record.size()-2; 4647 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4648 InstructionList.push_back(IBI); 4649 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4650 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4651 IBI->addDestination(DestBB); 4652 } else { 4653 delete IBI; 4654 return error("Invalid record"); 4655 } 4656 } 4657 I = IBI; 4658 break; 4659 } 4660 4661 case bitc::FUNC_CODE_INST_INVOKE: { 4662 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4663 if (Record.size() < 4) 4664 return error("Invalid record"); 4665 unsigned OpNum = 0; 4666 AttributeList PAL = getAttributes(Record[OpNum++]); 4667 unsigned CCInfo = Record[OpNum++]; 4668 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4669 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4670 4671 FunctionType *FTy = nullptr; 4672 if ((CCInfo >> 13) & 1) { 4673 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4674 if (!FTy) 4675 return error("Explicit invoke type is not a function type"); 4676 } 4677 4678 Value *Callee; 4679 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4680 return error("Invalid record"); 4681 4682 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4683 if (!CalleeTy) 4684 return error("Callee is not a pointer"); 4685 if (!FTy) { 4686 FTy = dyn_cast<FunctionType>( 4687 cast<PointerType>(Callee->getType())->getElementType()); 4688 if (!FTy) 4689 return error("Callee is not of pointer to function type"); 4690 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4691 return error("Explicit invoke type does not match pointee type of " 4692 "callee operand"); 4693 if (Record.size() < FTy->getNumParams() + OpNum) 4694 return error("Insufficient operands to call"); 4695 4696 SmallVector<Value*, 16> Ops; 4697 SmallVector<Type *, 16> ArgsTys; 4698 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4699 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4700 FTy->getParamType(i))); 4701 ArgsTys.push_back(FTy->getParamType(i)); 4702 if (!Ops.back()) 4703 return error("Invalid record"); 4704 } 4705 4706 if (!FTy->isVarArg()) { 4707 if (Record.size() != OpNum) 4708 return error("Invalid record"); 4709 } else { 4710 // Read type/value pairs for varargs params. 4711 while (OpNum != Record.size()) { 4712 Value *Op; 4713 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4714 return error("Invalid record"); 4715 Ops.push_back(Op); 4716 ArgsTys.push_back(Op->getType()); 4717 } 4718 } 4719 4720 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4721 OperandBundles); 4722 OperandBundles.clear(); 4723 InstructionList.push_back(I); 4724 cast<InvokeInst>(I)->setCallingConv( 4725 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4726 cast<InvokeInst>(I)->setAttributes(PAL); 4727 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4728 4729 break; 4730 } 4731 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4732 unsigned Idx = 0; 4733 Value *Val = nullptr; 4734 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4735 return error("Invalid record"); 4736 I = ResumeInst::Create(Val); 4737 InstructionList.push_back(I); 4738 break; 4739 } 4740 case bitc::FUNC_CODE_INST_CALLBR: { 4741 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4742 unsigned OpNum = 0; 4743 AttributeList PAL = getAttributes(Record[OpNum++]); 4744 unsigned CCInfo = Record[OpNum++]; 4745 4746 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4747 unsigned NumIndirectDests = Record[OpNum++]; 4748 SmallVector<BasicBlock *, 16> IndirectDests; 4749 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4750 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4751 4752 FunctionType *FTy = nullptr; 4753 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4754 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4755 if (!FTy) 4756 return error("Explicit call type is not a function type"); 4757 } 4758 4759 Value *Callee; 4760 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4761 return error("Invalid record"); 4762 4763 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4764 if (!OpTy) 4765 return error("Callee is not a pointer type"); 4766 if (!FTy) { 4767 FTy = dyn_cast<FunctionType>( 4768 cast<PointerType>(Callee->getType())->getElementType()); 4769 if (!FTy) 4770 return error("Callee is not of pointer to function type"); 4771 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy) 4772 return error("Explicit call type does not match pointee type of " 4773 "callee operand"); 4774 if (Record.size() < FTy->getNumParams() + OpNum) 4775 return error("Insufficient operands to call"); 4776 4777 SmallVector<Value*, 16> Args; 4778 // Read the fixed params. 4779 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4780 if (FTy->getParamType(i)->isLabelTy()) 4781 Args.push_back(getBasicBlock(Record[OpNum])); 4782 else 4783 Args.push_back(getValue(Record, OpNum, NextValueNo, 4784 FTy->getParamType(i))); 4785 if (!Args.back()) 4786 return error("Invalid record"); 4787 } 4788 4789 // Read type/value pairs for varargs params. 4790 if (!FTy->isVarArg()) { 4791 if (OpNum != Record.size()) 4792 return error("Invalid record"); 4793 } else { 4794 while (OpNum != Record.size()) { 4795 Value *Op; 4796 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4797 return error("Invalid record"); 4798 Args.push_back(Op); 4799 } 4800 } 4801 4802 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4803 OperandBundles); 4804 OperandBundles.clear(); 4805 InstructionList.push_back(I); 4806 cast<CallBrInst>(I)->setCallingConv( 4807 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4808 cast<CallBrInst>(I)->setAttributes(PAL); 4809 break; 4810 } 4811 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4812 I = new UnreachableInst(Context); 4813 InstructionList.push_back(I); 4814 break; 4815 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4816 if (Record.empty()) 4817 return error("Invalid record"); 4818 // The first record specifies the type. 4819 Type *Ty = getTypeByID(Record[0]); 4820 if (!Ty) 4821 return error("Invalid record"); 4822 4823 // Phi arguments are pairs of records of [value, basic block]. 4824 // There is an optional final record for fast-math-flags if this phi has a 4825 // floating-point type. 4826 size_t NumArgs = (Record.size() - 1) / 2; 4827 PHINode *PN = PHINode::Create(Ty, NumArgs); 4828 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4829 return error("Invalid record"); 4830 InstructionList.push_back(PN); 4831 4832 for (unsigned i = 0; i != NumArgs; i++) { 4833 Value *V; 4834 // With the new function encoding, it is possible that operands have 4835 // negative IDs (for forward references). Use a signed VBR 4836 // representation to keep the encoding small. 4837 if (UseRelativeIDs) 4838 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4839 else 4840 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4841 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4842 if (!V || !BB) 4843 return error("Invalid record"); 4844 PN->addIncoming(V, BB); 4845 } 4846 I = PN; 4847 4848 // If there are an even number of records, the final record must be FMF. 4849 if (Record.size() % 2 == 0) { 4850 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4851 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4852 if (FMF.any()) 4853 I->setFastMathFlags(FMF); 4854 } 4855 4856 break; 4857 } 4858 4859 case bitc::FUNC_CODE_INST_LANDINGPAD: 4860 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4861 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4862 unsigned Idx = 0; 4863 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4864 if (Record.size() < 3) 4865 return error("Invalid record"); 4866 } else { 4867 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4868 if (Record.size() < 4) 4869 return error("Invalid record"); 4870 } 4871 Type *Ty = getTypeByID(Record[Idx++]); 4872 if (!Ty) 4873 return error("Invalid record"); 4874 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4875 Value *PersFn = nullptr; 4876 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4877 return error("Invalid record"); 4878 4879 if (!F->hasPersonalityFn()) 4880 F->setPersonalityFn(cast<Constant>(PersFn)); 4881 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4882 return error("Personality function mismatch"); 4883 } 4884 4885 bool IsCleanup = !!Record[Idx++]; 4886 unsigned NumClauses = Record[Idx++]; 4887 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4888 LP->setCleanup(IsCleanup); 4889 for (unsigned J = 0; J != NumClauses; ++J) { 4890 LandingPadInst::ClauseType CT = 4891 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4892 Value *Val; 4893 4894 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4895 delete LP; 4896 return error("Invalid record"); 4897 } 4898 4899 assert((CT != LandingPadInst::Catch || 4900 !isa<ArrayType>(Val->getType())) && 4901 "Catch clause has a invalid type!"); 4902 assert((CT != LandingPadInst::Filter || 4903 isa<ArrayType>(Val->getType())) && 4904 "Filter clause has invalid type!"); 4905 LP->addClause(cast<Constant>(Val)); 4906 } 4907 4908 I = LP; 4909 InstructionList.push_back(I); 4910 break; 4911 } 4912 4913 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4914 if (Record.size() != 4) 4915 return error("Invalid record"); 4916 using APV = AllocaPackedValues; 4917 const uint64_t Rec = Record[3]; 4918 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4919 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4920 Type *Ty = getTypeByID(Record[0]); 4921 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4922 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4923 if (!PTy) 4924 return error("Old-style alloca with a non-pointer type"); 4925 Ty = PTy->getElementType(); 4926 } 4927 Type *OpTy = getTypeByID(Record[1]); 4928 Value *Size = getFnValueByID(Record[2], OpTy); 4929 MaybeAlign Align; 4930 if (Error Err = 4931 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4932 return Err; 4933 } 4934 if (!Ty || !Size) 4935 return error("Invalid record"); 4936 4937 // FIXME: Make this an optional field. 4938 const DataLayout &DL = TheModule->getDataLayout(); 4939 unsigned AS = DL.getAllocaAddrSpace(); 4940 4941 SmallPtrSet<Type *, 4> Visited; 4942 if (!Align && !Ty->isSized(&Visited)) 4943 return error("alloca of unsized type"); 4944 if (!Align) 4945 Align = DL.getPrefTypeAlign(Ty); 4946 4947 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4948 AI->setUsedWithInAlloca(InAlloca); 4949 AI->setSwiftError(SwiftError); 4950 I = AI; 4951 InstructionList.push_back(I); 4952 break; 4953 } 4954 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4955 unsigned OpNum = 0; 4956 Value *Op; 4957 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4958 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4959 return error("Invalid record"); 4960 4961 if (!isa<PointerType>(Op->getType())) 4962 return error("Load operand is not a pointer type"); 4963 4964 Type *Ty = nullptr; 4965 if (OpNum + 3 == Record.size()) { 4966 Ty = getTypeByID(Record[OpNum++]); 4967 } else { 4968 Ty = cast<PointerType>(Op->getType())->getElementType(); 4969 } 4970 4971 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4972 return Err; 4973 4974 MaybeAlign Align; 4975 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4976 return Err; 4977 SmallPtrSet<Type *, 4> Visited; 4978 if (!Align && !Ty->isSized(&Visited)) 4979 return error("load of unsized type"); 4980 if (!Align) 4981 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4982 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4983 InstructionList.push_back(I); 4984 break; 4985 } 4986 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4987 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4988 unsigned OpNum = 0; 4989 Value *Op; 4990 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4991 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4992 return error("Invalid record"); 4993 4994 if (!isa<PointerType>(Op->getType())) 4995 return error("Load operand is not a pointer type"); 4996 4997 Type *Ty = nullptr; 4998 if (OpNum + 5 == Record.size()) { 4999 Ty = getTypeByID(Record[OpNum++]); 5000 } else { 5001 Ty = cast<PointerType>(Op->getType())->getElementType(); 5002 } 5003 5004 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5005 return Err; 5006 5007 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5008 if (Ordering == AtomicOrdering::NotAtomic || 5009 Ordering == AtomicOrdering::Release || 5010 Ordering == AtomicOrdering::AcquireRelease) 5011 return error("Invalid record"); 5012 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5013 return error("Invalid record"); 5014 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5015 5016 MaybeAlign Align; 5017 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5018 return Err; 5019 if (!Align) 5020 return error("Alignment missing from atomic load"); 5021 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5022 InstructionList.push_back(I); 5023 break; 5024 } 5025 case bitc::FUNC_CODE_INST_STORE: 5026 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5027 unsigned OpNum = 0; 5028 Value *Val, *Ptr; 5029 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5030 (BitCode == bitc::FUNC_CODE_INST_STORE 5031 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5032 : popValue(Record, OpNum, NextValueNo, 5033 cast<PointerType>(Ptr->getType())->getElementType(), 5034 Val)) || 5035 OpNum + 2 != Record.size()) 5036 return error("Invalid record"); 5037 5038 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5039 return Err; 5040 MaybeAlign Align; 5041 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5042 return Err; 5043 SmallPtrSet<Type *, 4> Visited; 5044 if (!Align && !Val->getType()->isSized(&Visited)) 5045 return error("store of unsized type"); 5046 if (!Align) 5047 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5048 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5049 InstructionList.push_back(I); 5050 break; 5051 } 5052 case bitc::FUNC_CODE_INST_STOREATOMIC: 5053 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5054 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5055 unsigned OpNum = 0; 5056 Value *Val, *Ptr; 5057 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5058 !isa<PointerType>(Ptr->getType()) || 5059 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5060 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5061 : popValue(Record, OpNum, NextValueNo, 5062 cast<PointerType>(Ptr->getType())->getElementType(), 5063 Val)) || 5064 OpNum + 4 != Record.size()) 5065 return error("Invalid record"); 5066 5067 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5068 return Err; 5069 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5070 if (Ordering == AtomicOrdering::NotAtomic || 5071 Ordering == AtomicOrdering::Acquire || 5072 Ordering == AtomicOrdering::AcquireRelease) 5073 return error("Invalid record"); 5074 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5075 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5076 return error("Invalid record"); 5077 5078 MaybeAlign Align; 5079 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5080 return Err; 5081 if (!Align) 5082 return error("Alignment missing from atomic store"); 5083 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5084 InstructionList.push_back(I); 5085 break; 5086 } 5087 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5088 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5089 // failure_ordering?, weak?] 5090 const size_t NumRecords = Record.size(); 5091 unsigned OpNum = 0; 5092 Value *Ptr = nullptr; 5093 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5094 return error("Invalid record"); 5095 5096 if (!isa<PointerType>(Ptr->getType())) 5097 return error("Cmpxchg operand is not a pointer type"); 5098 5099 Value *Cmp = nullptr; 5100 if (popValue(Record, OpNum, NextValueNo, 5101 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5102 Cmp)) 5103 return error("Invalid record"); 5104 5105 Value *New = nullptr; 5106 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5107 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5108 return error("Invalid record"); 5109 5110 const AtomicOrdering SuccessOrdering = 5111 getDecodedOrdering(Record[OpNum + 1]); 5112 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5113 SuccessOrdering == AtomicOrdering::Unordered) 5114 return error("Invalid record"); 5115 5116 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5117 5118 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5119 return Err; 5120 5121 const AtomicOrdering FailureOrdering = 5122 NumRecords < 7 5123 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5124 : getDecodedOrdering(Record[OpNum + 3]); 5125 5126 if (FailureOrdering == AtomicOrdering::NotAtomic || 5127 FailureOrdering == AtomicOrdering::Unordered) 5128 return error("Invalid record"); 5129 5130 const Align Alignment( 5131 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5132 5133 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5134 FailureOrdering, SSID); 5135 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5136 5137 if (NumRecords < 8) { 5138 // Before weak cmpxchgs existed, the instruction simply returned the 5139 // value loaded from memory, so bitcode files from that era will be 5140 // expecting the first component of a modern cmpxchg. 5141 CurBB->getInstList().push_back(I); 5142 I = ExtractValueInst::Create(I, 0); 5143 } else { 5144 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5145 } 5146 5147 InstructionList.push_back(I); 5148 break; 5149 } 5150 case bitc::FUNC_CODE_INST_CMPXCHG: { 5151 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5152 // failure_ordering, weak, align?] 5153 const size_t NumRecords = Record.size(); 5154 unsigned OpNum = 0; 5155 Value *Ptr = nullptr; 5156 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5157 return error("Invalid record"); 5158 5159 if (!isa<PointerType>(Ptr->getType())) 5160 return error("Cmpxchg operand is not a pointer type"); 5161 5162 Value *Cmp = nullptr; 5163 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5164 return error("Invalid record"); 5165 5166 Value *Val = nullptr; 5167 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5168 return error("Invalid record"); 5169 5170 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5171 return error("Invalid record"); 5172 5173 const bool IsVol = Record[OpNum]; 5174 5175 const AtomicOrdering SuccessOrdering = 5176 getDecodedOrdering(Record[OpNum + 1]); 5177 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5178 return error("Invalid cmpxchg success ordering"); 5179 5180 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5181 5182 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5183 return Err; 5184 5185 const AtomicOrdering FailureOrdering = 5186 getDecodedOrdering(Record[OpNum + 3]); 5187 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5188 return error("Invalid cmpxchg failure ordering"); 5189 5190 const bool IsWeak = Record[OpNum + 4]; 5191 5192 MaybeAlign Alignment; 5193 5194 if (NumRecords == (OpNum + 6)) { 5195 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5196 return Err; 5197 } 5198 if (!Alignment) 5199 Alignment = 5200 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5201 5202 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5203 FailureOrdering, SSID); 5204 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5205 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5206 5207 InstructionList.push_back(I); 5208 break; 5209 } 5210 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5211 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5212 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5213 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5214 const size_t NumRecords = Record.size(); 5215 unsigned OpNum = 0; 5216 5217 Value *Ptr = nullptr; 5218 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5219 return error("Invalid record"); 5220 5221 if (!isa<PointerType>(Ptr->getType())) 5222 return error("Invalid record"); 5223 5224 Value *Val = nullptr; 5225 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5226 if (popValue(Record, OpNum, NextValueNo, 5227 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5228 Val)) 5229 return error("Invalid record"); 5230 } else { 5231 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5232 return error("Invalid record"); 5233 } 5234 5235 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5236 return error("Invalid record"); 5237 5238 const AtomicRMWInst::BinOp Operation = 5239 getDecodedRMWOperation(Record[OpNum]); 5240 if (Operation < AtomicRMWInst::FIRST_BINOP || 5241 Operation > AtomicRMWInst::LAST_BINOP) 5242 return error("Invalid record"); 5243 5244 const bool IsVol = Record[OpNum + 1]; 5245 5246 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5247 if (Ordering == AtomicOrdering::NotAtomic || 5248 Ordering == AtomicOrdering::Unordered) 5249 return error("Invalid record"); 5250 5251 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5252 5253 MaybeAlign Alignment; 5254 5255 if (NumRecords == (OpNum + 5)) { 5256 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5257 return Err; 5258 } 5259 5260 if (!Alignment) 5261 Alignment = 5262 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5263 5264 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5265 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5266 5267 InstructionList.push_back(I); 5268 break; 5269 } 5270 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5271 if (2 != Record.size()) 5272 return error("Invalid record"); 5273 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5274 if (Ordering == AtomicOrdering::NotAtomic || 5275 Ordering == AtomicOrdering::Unordered || 5276 Ordering == AtomicOrdering::Monotonic) 5277 return error("Invalid record"); 5278 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5279 I = new FenceInst(Context, Ordering, SSID); 5280 InstructionList.push_back(I); 5281 break; 5282 } 5283 case bitc::FUNC_CODE_INST_CALL: { 5284 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5285 if (Record.size() < 3) 5286 return error("Invalid record"); 5287 5288 unsigned OpNum = 0; 5289 AttributeList PAL = getAttributes(Record[OpNum++]); 5290 unsigned CCInfo = Record[OpNum++]; 5291 5292 FastMathFlags FMF; 5293 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5294 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5295 if (!FMF.any()) 5296 return error("Fast math flags indicator set for call with no FMF"); 5297 } 5298 5299 FunctionType *FTy = nullptr; 5300 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5301 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5302 if (!FTy) 5303 return error("Explicit call type is not a function type"); 5304 } 5305 5306 Value *Callee; 5307 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5308 return error("Invalid record"); 5309 5310 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5311 if (!OpTy) 5312 return error("Callee is not a pointer type"); 5313 if (!FTy) { 5314 FTy = dyn_cast<FunctionType>( 5315 cast<PointerType>(Callee->getType())->getElementType()); 5316 if (!FTy) 5317 return error("Callee is not of pointer to function type"); 5318 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5319 return error("Explicit call type does not match pointee type of " 5320 "callee operand"); 5321 if (Record.size() < FTy->getNumParams() + OpNum) 5322 return error("Insufficient operands to call"); 5323 5324 SmallVector<Value*, 16> Args; 5325 SmallVector<Type *, 16> ArgsTys; 5326 // Read the fixed params. 5327 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5328 if (FTy->getParamType(i)->isLabelTy()) 5329 Args.push_back(getBasicBlock(Record[OpNum])); 5330 else 5331 Args.push_back(getValue(Record, OpNum, NextValueNo, 5332 FTy->getParamType(i))); 5333 ArgsTys.push_back(FTy->getParamType(i)); 5334 if (!Args.back()) 5335 return error("Invalid record"); 5336 } 5337 5338 // Read type/value pairs for varargs params. 5339 if (!FTy->isVarArg()) { 5340 if (OpNum != Record.size()) 5341 return error("Invalid record"); 5342 } else { 5343 while (OpNum != Record.size()) { 5344 Value *Op; 5345 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5346 return error("Invalid record"); 5347 Args.push_back(Op); 5348 ArgsTys.push_back(Op->getType()); 5349 } 5350 } 5351 5352 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5353 OperandBundles.clear(); 5354 InstructionList.push_back(I); 5355 cast<CallInst>(I)->setCallingConv( 5356 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5357 CallInst::TailCallKind TCK = CallInst::TCK_None; 5358 if (CCInfo & 1 << bitc::CALL_TAIL) 5359 TCK = CallInst::TCK_Tail; 5360 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5361 TCK = CallInst::TCK_MustTail; 5362 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5363 TCK = CallInst::TCK_NoTail; 5364 cast<CallInst>(I)->setTailCallKind(TCK); 5365 cast<CallInst>(I)->setAttributes(PAL); 5366 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5367 if (FMF.any()) { 5368 if (!isa<FPMathOperator>(I)) 5369 return error("Fast-math-flags specified for call without " 5370 "floating-point scalar or vector return type"); 5371 I->setFastMathFlags(FMF); 5372 } 5373 break; 5374 } 5375 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5376 if (Record.size() < 3) 5377 return error("Invalid record"); 5378 Type *OpTy = getTypeByID(Record[0]); 5379 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5380 Type *ResTy = getTypeByID(Record[2]); 5381 if (!OpTy || !Op || !ResTy) 5382 return error("Invalid record"); 5383 I = new VAArgInst(Op, ResTy); 5384 InstructionList.push_back(I); 5385 break; 5386 } 5387 5388 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5389 // A call or an invoke can be optionally prefixed with some variable 5390 // number of operand bundle blocks. These blocks are read into 5391 // OperandBundles and consumed at the next call or invoke instruction. 5392 5393 if (Record.empty() || Record[0] >= BundleTags.size()) 5394 return error("Invalid record"); 5395 5396 std::vector<Value *> Inputs; 5397 5398 unsigned OpNum = 1; 5399 while (OpNum != Record.size()) { 5400 Value *Op; 5401 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5402 return error("Invalid record"); 5403 Inputs.push_back(Op); 5404 } 5405 5406 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5407 continue; 5408 } 5409 5410 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5411 unsigned OpNum = 0; 5412 Value *Op = nullptr; 5413 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5414 return error("Invalid record"); 5415 if (OpNum != Record.size()) 5416 return error("Invalid record"); 5417 5418 I = new FreezeInst(Op); 5419 InstructionList.push_back(I); 5420 break; 5421 } 5422 } 5423 5424 // Add instruction to end of current BB. If there is no current BB, reject 5425 // this file. 5426 if (!CurBB) { 5427 I->deleteValue(); 5428 return error("Invalid instruction with no BB"); 5429 } 5430 if (!OperandBundles.empty()) { 5431 I->deleteValue(); 5432 return error("Operand bundles found with no consumer"); 5433 } 5434 CurBB->getInstList().push_back(I); 5435 5436 // If this was a terminator instruction, move to the next block. 5437 if (I->isTerminator()) { 5438 ++CurBBNo; 5439 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5440 } 5441 5442 // Non-void values get registered in the value table for future use. 5443 if (!I->getType()->isVoidTy()) 5444 ValueList.assignValue(I, NextValueNo++); 5445 } 5446 5447 OutOfRecordLoop: 5448 5449 if (!OperandBundles.empty()) 5450 return error("Operand bundles found with no consumer"); 5451 5452 // Check the function list for unresolved values. 5453 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5454 if (!A->getParent()) { 5455 // We found at least one unresolved value. Nuke them all to avoid leaks. 5456 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5457 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5458 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5459 delete A; 5460 } 5461 } 5462 return error("Never resolved value found in function"); 5463 } 5464 } 5465 5466 // Unexpected unresolved metadata about to be dropped. 5467 if (MDLoader->hasFwdRefs()) 5468 return error("Invalid function metadata: outgoing forward refs"); 5469 5470 // Trim the value list down to the size it was before we parsed this function. 5471 ValueList.shrinkTo(ModuleValueListSize); 5472 MDLoader->shrinkTo(ModuleMDLoaderSize); 5473 std::vector<BasicBlock*>().swap(FunctionBBs); 5474 return Error::success(); 5475 } 5476 5477 /// Find the function body in the bitcode stream 5478 Error BitcodeReader::findFunctionInStream( 5479 Function *F, 5480 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5481 while (DeferredFunctionInfoIterator->second == 0) { 5482 // This is the fallback handling for the old format bitcode that 5483 // didn't contain the function index in the VST, or when we have 5484 // an anonymous function which would not have a VST entry. 5485 // Assert that we have one of those two cases. 5486 assert(VSTOffset == 0 || !F->hasName()); 5487 // Parse the next body in the stream and set its position in the 5488 // DeferredFunctionInfo map. 5489 if (Error Err = rememberAndSkipFunctionBodies()) 5490 return Err; 5491 } 5492 return Error::success(); 5493 } 5494 5495 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5496 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5497 return SyncScope::ID(Val); 5498 if (Val >= SSIDs.size()) 5499 return SyncScope::System; // Map unknown synchronization scopes to system. 5500 return SSIDs[Val]; 5501 } 5502 5503 //===----------------------------------------------------------------------===// 5504 // GVMaterializer implementation 5505 //===----------------------------------------------------------------------===// 5506 5507 Error BitcodeReader::materialize(GlobalValue *GV) { 5508 Function *F = dyn_cast<Function>(GV); 5509 // If it's not a function or is already material, ignore the request. 5510 if (!F || !F->isMaterializable()) 5511 return Error::success(); 5512 5513 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5514 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5515 // If its position is recorded as 0, its body is somewhere in the stream 5516 // but we haven't seen it yet. 5517 if (DFII->second == 0) 5518 if (Error Err = findFunctionInStream(F, DFII)) 5519 return Err; 5520 5521 // Materialize metadata before parsing any function bodies. 5522 if (Error Err = materializeMetadata()) 5523 return Err; 5524 5525 // Move the bit stream to the saved position of the deferred function body. 5526 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5527 return JumpFailed; 5528 if (Error Err = parseFunctionBody(F)) 5529 return Err; 5530 F->setIsMaterializable(false); 5531 5532 if (StripDebugInfo) 5533 stripDebugInfo(*F); 5534 5535 // Upgrade any old intrinsic calls in the function. 5536 for (auto &I : UpgradedIntrinsics) { 5537 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5538 UI != UE;) { 5539 User *U = *UI; 5540 ++UI; 5541 if (CallInst *CI = dyn_cast<CallInst>(U)) 5542 UpgradeIntrinsicCall(CI, I.second); 5543 } 5544 } 5545 5546 // Update calls to the remangled intrinsics 5547 for (auto &I : RemangledIntrinsics) 5548 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5549 UI != UE;) 5550 // Don't expect any other users than call sites 5551 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5552 5553 // Finish fn->subprogram upgrade for materialized functions. 5554 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5555 F->setSubprogram(SP); 5556 5557 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5558 if (!MDLoader->isStrippingTBAA()) { 5559 for (auto &I : instructions(F)) { 5560 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5561 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5562 continue; 5563 MDLoader->setStripTBAA(true); 5564 stripTBAA(F->getParent()); 5565 } 5566 } 5567 5568 for (auto &I : instructions(F)) { 5569 // "Upgrade" older incorrect branch weights by dropping them. 5570 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5571 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5572 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5573 StringRef ProfName = MDS->getString(); 5574 // Check consistency of !prof branch_weights metadata. 5575 if (!ProfName.equals("branch_weights")) 5576 continue; 5577 unsigned ExpectedNumOperands = 0; 5578 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5579 ExpectedNumOperands = BI->getNumSuccessors(); 5580 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5581 ExpectedNumOperands = SI->getNumSuccessors(); 5582 else if (isa<CallInst>(&I)) 5583 ExpectedNumOperands = 1; 5584 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5585 ExpectedNumOperands = IBI->getNumDestinations(); 5586 else if (isa<SelectInst>(&I)) 5587 ExpectedNumOperands = 2; 5588 else 5589 continue; // ignore and continue. 5590 5591 // If branch weight doesn't match, just strip branch weight. 5592 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5593 I.setMetadata(LLVMContext::MD_prof, nullptr); 5594 } 5595 } 5596 5597 // Remove incompatible attributes on function calls. 5598 if (auto *CI = dyn_cast<CallBase>(&I)) { 5599 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 5600 CI->getFunctionType()->getReturnType())); 5601 5602 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5603 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5604 CI->getArgOperand(ArgNo)->getType())); 5605 } 5606 } 5607 5608 // Look for functions that rely on old function attribute behavior. 5609 UpgradeFunctionAttributes(*F); 5610 5611 // Bring in any functions that this function forward-referenced via 5612 // blockaddresses. 5613 return materializeForwardReferencedFunctions(); 5614 } 5615 5616 Error BitcodeReader::materializeModule() { 5617 if (Error Err = materializeMetadata()) 5618 return Err; 5619 5620 // Promise to materialize all forward references. 5621 WillMaterializeAllForwardRefs = true; 5622 5623 // Iterate over the module, deserializing any functions that are still on 5624 // disk. 5625 for (Function &F : *TheModule) { 5626 if (Error Err = materialize(&F)) 5627 return Err; 5628 } 5629 // At this point, if there are any function bodies, parse the rest of 5630 // the bits in the module past the last function block we have recorded 5631 // through either lazy scanning or the VST. 5632 if (LastFunctionBlockBit || NextUnreadBit) 5633 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5634 ? LastFunctionBlockBit 5635 : NextUnreadBit)) 5636 return Err; 5637 5638 // Check that all block address forward references got resolved (as we 5639 // promised above). 5640 if (!BasicBlockFwdRefs.empty()) 5641 return error("Never resolved function from blockaddress"); 5642 5643 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5644 // delete the old functions to clean up. We can't do this unless the entire 5645 // module is materialized because there could always be another function body 5646 // with calls to the old function. 5647 for (auto &I : UpgradedIntrinsics) { 5648 for (auto *U : I.first->users()) { 5649 if (CallInst *CI = dyn_cast<CallInst>(U)) 5650 UpgradeIntrinsicCall(CI, I.second); 5651 } 5652 if (!I.first->use_empty()) 5653 I.first->replaceAllUsesWith(I.second); 5654 I.first->eraseFromParent(); 5655 } 5656 UpgradedIntrinsics.clear(); 5657 // Do the same for remangled intrinsics 5658 for (auto &I : RemangledIntrinsics) { 5659 I.first->replaceAllUsesWith(I.second); 5660 I.first->eraseFromParent(); 5661 } 5662 RemangledIntrinsics.clear(); 5663 5664 UpgradeDebugInfo(*TheModule); 5665 5666 UpgradeModuleFlags(*TheModule); 5667 5668 UpgradeARCRuntime(*TheModule); 5669 5670 return Error::success(); 5671 } 5672 5673 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5674 return IdentifiedStructTypes; 5675 } 5676 5677 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5678 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5679 StringRef ModulePath, unsigned ModuleId) 5680 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5681 ModulePath(ModulePath), ModuleId(ModuleId) {} 5682 5683 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5684 TheIndex.addModule(ModulePath, ModuleId); 5685 } 5686 5687 ModuleSummaryIndex::ModuleInfo * 5688 ModuleSummaryIndexBitcodeReader::getThisModule() { 5689 return TheIndex.getModule(ModulePath); 5690 } 5691 5692 std::pair<ValueInfo, GlobalValue::GUID> 5693 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5694 auto VGI = ValueIdToValueInfoMap[ValueId]; 5695 assert(VGI.first); 5696 return VGI; 5697 } 5698 5699 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5700 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5701 StringRef SourceFileName) { 5702 std::string GlobalId = 5703 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5704 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5705 auto OriginalNameID = ValueGUID; 5706 if (GlobalValue::isLocalLinkage(Linkage)) 5707 OriginalNameID = GlobalValue::getGUID(ValueName); 5708 if (PrintSummaryGUIDs) 5709 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5710 << ValueName << "\n"; 5711 5712 // UseStrtab is false for legacy summary formats and value names are 5713 // created on stack. In that case we save the name in a string saver in 5714 // the index so that the value name can be recorded. 5715 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5716 TheIndex.getOrInsertValueInfo( 5717 ValueGUID, 5718 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5719 OriginalNameID); 5720 } 5721 5722 // Specialized value symbol table parser used when reading module index 5723 // blocks where we don't actually create global values. The parsed information 5724 // is saved in the bitcode reader for use when later parsing summaries. 5725 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5726 uint64_t Offset, 5727 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5728 // With a strtab the VST is not required to parse the summary. 5729 if (UseStrtab) 5730 return Error::success(); 5731 5732 assert(Offset > 0 && "Expected non-zero VST offset"); 5733 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5734 if (!MaybeCurrentBit) 5735 return MaybeCurrentBit.takeError(); 5736 uint64_t CurrentBit = MaybeCurrentBit.get(); 5737 5738 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5739 return Err; 5740 5741 SmallVector<uint64_t, 64> Record; 5742 5743 // Read all the records for this value table. 5744 SmallString<128> ValueName; 5745 5746 while (true) { 5747 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5748 if (!MaybeEntry) 5749 return MaybeEntry.takeError(); 5750 BitstreamEntry Entry = MaybeEntry.get(); 5751 5752 switch (Entry.Kind) { 5753 case BitstreamEntry::SubBlock: // Handled for us already. 5754 case BitstreamEntry::Error: 5755 return error("Malformed block"); 5756 case BitstreamEntry::EndBlock: 5757 // Done parsing VST, jump back to wherever we came from. 5758 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5759 return JumpFailed; 5760 return Error::success(); 5761 case BitstreamEntry::Record: 5762 // The interesting case. 5763 break; 5764 } 5765 5766 // Read a record. 5767 Record.clear(); 5768 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5769 if (!MaybeRecord) 5770 return MaybeRecord.takeError(); 5771 switch (MaybeRecord.get()) { 5772 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5773 break; 5774 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5775 if (convertToString(Record, 1, ValueName)) 5776 return error("Invalid record"); 5777 unsigned ValueID = Record[0]; 5778 assert(!SourceFileName.empty()); 5779 auto VLI = ValueIdToLinkageMap.find(ValueID); 5780 assert(VLI != ValueIdToLinkageMap.end() && 5781 "No linkage found for VST entry?"); 5782 auto Linkage = VLI->second; 5783 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5784 ValueName.clear(); 5785 break; 5786 } 5787 case bitc::VST_CODE_FNENTRY: { 5788 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5789 if (convertToString(Record, 2, ValueName)) 5790 return error("Invalid record"); 5791 unsigned ValueID = Record[0]; 5792 assert(!SourceFileName.empty()); 5793 auto VLI = ValueIdToLinkageMap.find(ValueID); 5794 assert(VLI != ValueIdToLinkageMap.end() && 5795 "No linkage found for VST entry?"); 5796 auto Linkage = VLI->second; 5797 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5798 ValueName.clear(); 5799 break; 5800 } 5801 case bitc::VST_CODE_COMBINED_ENTRY: { 5802 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5803 unsigned ValueID = Record[0]; 5804 GlobalValue::GUID RefGUID = Record[1]; 5805 // The "original name", which is the second value of the pair will be 5806 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5807 ValueIdToValueInfoMap[ValueID] = 5808 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5809 break; 5810 } 5811 } 5812 } 5813 } 5814 5815 // Parse just the blocks needed for building the index out of the module. 5816 // At the end of this routine the module Index is populated with a map 5817 // from global value id to GlobalValueSummary objects. 5818 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5819 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5820 return Err; 5821 5822 SmallVector<uint64_t, 64> Record; 5823 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5824 unsigned ValueId = 0; 5825 5826 // Read the index for this module. 5827 while (true) { 5828 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5829 if (!MaybeEntry) 5830 return MaybeEntry.takeError(); 5831 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5832 5833 switch (Entry.Kind) { 5834 case BitstreamEntry::Error: 5835 return error("Malformed block"); 5836 case BitstreamEntry::EndBlock: 5837 return Error::success(); 5838 5839 case BitstreamEntry::SubBlock: 5840 switch (Entry.ID) { 5841 default: // Skip unknown content. 5842 if (Error Err = Stream.SkipBlock()) 5843 return Err; 5844 break; 5845 case bitc::BLOCKINFO_BLOCK_ID: 5846 // Need to parse these to get abbrev ids (e.g. for VST) 5847 if (readBlockInfo()) 5848 return error("Malformed block"); 5849 break; 5850 case bitc::VALUE_SYMTAB_BLOCK_ID: 5851 // Should have been parsed earlier via VSTOffset, unless there 5852 // is no summary section. 5853 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5854 !SeenGlobalValSummary) && 5855 "Expected early VST parse via VSTOffset record"); 5856 if (Error Err = Stream.SkipBlock()) 5857 return Err; 5858 break; 5859 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5860 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5861 // Add the module if it is a per-module index (has a source file name). 5862 if (!SourceFileName.empty()) 5863 addThisModule(); 5864 assert(!SeenValueSymbolTable && 5865 "Already read VST when parsing summary block?"); 5866 // We might not have a VST if there were no values in the 5867 // summary. An empty summary block generated when we are 5868 // performing ThinLTO compiles so we don't later invoke 5869 // the regular LTO process on them. 5870 if (VSTOffset > 0) { 5871 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5872 return Err; 5873 SeenValueSymbolTable = true; 5874 } 5875 SeenGlobalValSummary = true; 5876 if (Error Err = parseEntireSummary(Entry.ID)) 5877 return Err; 5878 break; 5879 case bitc::MODULE_STRTAB_BLOCK_ID: 5880 if (Error Err = parseModuleStringTable()) 5881 return Err; 5882 break; 5883 } 5884 continue; 5885 5886 case BitstreamEntry::Record: { 5887 Record.clear(); 5888 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5889 if (!MaybeBitCode) 5890 return MaybeBitCode.takeError(); 5891 switch (MaybeBitCode.get()) { 5892 default: 5893 break; // Default behavior, ignore unknown content. 5894 case bitc::MODULE_CODE_VERSION: { 5895 if (Error Err = parseVersionRecord(Record).takeError()) 5896 return Err; 5897 break; 5898 } 5899 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5900 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5901 SmallString<128> ValueName; 5902 if (convertToString(Record, 0, ValueName)) 5903 return error("Invalid record"); 5904 SourceFileName = ValueName.c_str(); 5905 break; 5906 } 5907 /// MODULE_CODE_HASH: [5*i32] 5908 case bitc::MODULE_CODE_HASH: { 5909 if (Record.size() != 5) 5910 return error("Invalid hash length " + Twine(Record.size()).str()); 5911 auto &Hash = getThisModule()->second.second; 5912 int Pos = 0; 5913 for (auto &Val : Record) { 5914 assert(!(Val >> 32) && "Unexpected high bits set"); 5915 Hash[Pos++] = Val; 5916 } 5917 break; 5918 } 5919 /// MODULE_CODE_VSTOFFSET: [offset] 5920 case bitc::MODULE_CODE_VSTOFFSET: 5921 if (Record.empty()) 5922 return error("Invalid record"); 5923 // Note that we subtract 1 here because the offset is relative to one 5924 // word before the start of the identification or module block, which 5925 // was historically always the start of the regular bitcode header. 5926 VSTOffset = Record[0] - 1; 5927 break; 5928 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5929 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5930 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5931 // v2: [strtab offset, strtab size, v1] 5932 case bitc::MODULE_CODE_GLOBALVAR: 5933 case bitc::MODULE_CODE_FUNCTION: 5934 case bitc::MODULE_CODE_ALIAS: { 5935 StringRef Name; 5936 ArrayRef<uint64_t> GVRecord; 5937 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5938 if (GVRecord.size() <= 3) 5939 return error("Invalid record"); 5940 uint64_t RawLinkage = GVRecord[3]; 5941 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5942 if (!UseStrtab) { 5943 ValueIdToLinkageMap[ValueId++] = Linkage; 5944 break; 5945 } 5946 5947 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5948 break; 5949 } 5950 } 5951 } 5952 continue; 5953 } 5954 } 5955 } 5956 5957 std::vector<ValueInfo> 5958 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5959 std::vector<ValueInfo> Ret; 5960 Ret.reserve(Record.size()); 5961 for (uint64_t RefValueId : Record) 5962 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5963 return Ret; 5964 } 5965 5966 std::vector<FunctionSummary::EdgeTy> 5967 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5968 bool IsOldProfileFormat, 5969 bool HasProfile, bool HasRelBF) { 5970 std::vector<FunctionSummary::EdgeTy> Ret; 5971 Ret.reserve(Record.size()); 5972 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5973 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5974 uint64_t RelBF = 0; 5975 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5976 if (IsOldProfileFormat) { 5977 I += 1; // Skip old callsitecount field 5978 if (HasProfile) 5979 I += 1; // Skip old profilecount field 5980 } else if (HasProfile) 5981 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5982 else if (HasRelBF) 5983 RelBF = Record[++I]; 5984 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5985 } 5986 return Ret; 5987 } 5988 5989 static void 5990 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5991 WholeProgramDevirtResolution &Wpd) { 5992 uint64_t ArgNum = Record[Slot++]; 5993 WholeProgramDevirtResolution::ByArg &B = 5994 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5995 Slot += ArgNum; 5996 5997 B.TheKind = 5998 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5999 B.Info = Record[Slot++]; 6000 B.Byte = Record[Slot++]; 6001 B.Bit = Record[Slot++]; 6002 } 6003 6004 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6005 StringRef Strtab, size_t &Slot, 6006 TypeIdSummary &TypeId) { 6007 uint64_t Id = Record[Slot++]; 6008 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6009 6010 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6011 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6012 static_cast<size_t>(Record[Slot + 1])}; 6013 Slot += 2; 6014 6015 uint64_t ResByArgNum = Record[Slot++]; 6016 for (uint64_t I = 0; I != ResByArgNum; ++I) 6017 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6018 } 6019 6020 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6021 StringRef Strtab, 6022 ModuleSummaryIndex &TheIndex) { 6023 size_t Slot = 0; 6024 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6025 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6026 Slot += 2; 6027 6028 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6029 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6030 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6031 TypeId.TTRes.SizeM1 = Record[Slot++]; 6032 TypeId.TTRes.BitMask = Record[Slot++]; 6033 TypeId.TTRes.InlineBits = Record[Slot++]; 6034 6035 while (Slot < Record.size()) 6036 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6037 } 6038 6039 std::vector<FunctionSummary::ParamAccess> 6040 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6041 auto ReadRange = [&]() { 6042 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6043 BitcodeReader::decodeSignRotatedValue(Record.front())); 6044 Record = Record.drop_front(); 6045 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6046 BitcodeReader::decodeSignRotatedValue(Record.front())); 6047 Record = Record.drop_front(); 6048 ConstantRange Range{Lower, Upper}; 6049 assert(!Range.isFullSet()); 6050 assert(!Range.isUpperSignWrapped()); 6051 return Range; 6052 }; 6053 6054 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6055 while (!Record.empty()) { 6056 PendingParamAccesses.emplace_back(); 6057 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6058 ParamAccess.ParamNo = Record.front(); 6059 Record = Record.drop_front(); 6060 ParamAccess.Use = ReadRange(); 6061 ParamAccess.Calls.resize(Record.front()); 6062 Record = Record.drop_front(); 6063 for (auto &Call : ParamAccess.Calls) { 6064 Call.ParamNo = Record.front(); 6065 Record = Record.drop_front(); 6066 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6067 Record = Record.drop_front(); 6068 Call.Offsets = ReadRange(); 6069 } 6070 } 6071 return PendingParamAccesses; 6072 } 6073 6074 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6075 ArrayRef<uint64_t> Record, size_t &Slot, 6076 TypeIdCompatibleVtableInfo &TypeId) { 6077 uint64_t Offset = Record[Slot++]; 6078 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6079 TypeId.push_back({Offset, Callee}); 6080 } 6081 6082 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6083 ArrayRef<uint64_t> Record) { 6084 size_t Slot = 0; 6085 TypeIdCompatibleVtableInfo &TypeId = 6086 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6087 {Strtab.data() + Record[Slot], 6088 static_cast<size_t>(Record[Slot + 1])}); 6089 Slot += 2; 6090 6091 while (Slot < Record.size()) 6092 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6093 } 6094 6095 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6096 unsigned WOCnt) { 6097 // Readonly and writeonly refs are in the end of the refs list. 6098 assert(ROCnt + WOCnt <= Refs.size()); 6099 unsigned FirstWORef = Refs.size() - WOCnt; 6100 unsigned RefNo = FirstWORef - ROCnt; 6101 for (; RefNo < FirstWORef; ++RefNo) 6102 Refs[RefNo].setReadOnly(); 6103 for (; RefNo < Refs.size(); ++RefNo) 6104 Refs[RefNo].setWriteOnly(); 6105 } 6106 6107 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6108 // objects in the index. 6109 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6110 if (Error Err = Stream.EnterSubBlock(ID)) 6111 return Err; 6112 SmallVector<uint64_t, 64> Record; 6113 6114 // Parse version 6115 { 6116 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6117 if (!MaybeEntry) 6118 return MaybeEntry.takeError(); 6119 BitstreamEntry Entry = MaybeEntry.get(); 6120 6121 if (Entry.Kind != BitstreamEntry::Record) 6122 return error("Invalid Summary Block: record for version expected"); 6123 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6124 if (!MaybeRecord) 6125 return MaybeRecord.takeError(); 6126 if (MaybeRecord.get() != bitc::FS_VERSION) 6127 return error("Invalid Summary Block: version expected"); 6128 } 6129 const uint64_t Version = Record[0]; 6130 const bool IsOldProfileFormat = Version == 1; 6131 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6132 return error("Invalid summary version " + Twine(Version) + 6133 ". Version should be in the range [1-" + 6134 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6135 "]."); 6136 Record.clear(); 6137 6138 // Keep around the last seen summary to be used when we see an optional 6139 // "OriginalName" attachement. 6140 GlobalValueSummary *LastSeenSummary = nullptr; 6141 GlobalValue::GUID LastSeenGUID = 0; 6142 6143 // We can expect to see any number of type ID information records before 6144 // each function summary records; these variables store the information 6145 // collected so far so that it can be used to create the summary object. 6146 std::vector<GlobalValue::GUID> PendingTypeTests; 6147 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6148 PendingTypeCheckedLoadVCalls; 6149 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6150 PendingTypeCheckedLoadConstVCalls; 6151 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6152 6153 while (true) { 6154 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6155 if (!MaybeEntry) 6156 return MaybeEntry.takeError(); 6157 BitstreamEntry Entry = MaybeEntry.get(); 6158 6159 switch (Entry.Kind) { 6160 case BitstreamEntry::SubBlock: // Handled for us already. 6161 case BitstreamEntry::Error: 6162 return error("Malformed block"); 6163 case BitstreamEntry::EndBlock: 6164 return Error::success(); 6165 case BitstreamEntry::Record: 6166 // The interesting case. 6167 break; 6168 } 6169 6170 // Read a record. The record format depends on whether this 6171 // is a per-module index or a combined index file. In the per-module 6172 // case the records contain the associated value's ID for correlation 6173 // with VST entries. In the combined index the correlation is done 6174 // via the bitcode offset of the summary records (which were saved 6175 // in the combined index VST entries). The records also contain 6176 // information used for ThinLTO renaming and importing. 6177 Record.clear(); 6178 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6179 if (!MaybeBitCode) 6180 return MaybeBitCode.takeError(); 6181 switch (unsigned BitCode = MaybeBitCode.get()) { 6182 default: // Default behavior: ignore. 6183 break; 6184 case bitc::FS_FLAGS: { // [flags] 6185 TheIndex.setFlags(Record[0]); 6186 break; 6187 } 6188 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6189 uint64_t ValueID = Record[0]; 6190 GlobalValue::GUID RefGUID = Record[1]; 6191 ValueIdToValueInfoMap[ValueID] = 6192 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6193 break; 6194 } 6195 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6196 // numrefs x valueid, n x (valueid)] 6197 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6198 // numrefs x valueid, 6199 // n x (valueid, hotness)] 6200 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6201 // numrefs x valueid, 6202 // n x (valueid, relblockfreq)] 6203 case bitc::FS_PERMODULE: 6204 case bitc::FS_PERMODULE_RELBF: 6205 case bitc::FS_PERMODULE_PROFILE: { 6206 unsigned ValueID = Record[0]; 6207 uint64_t RawFlags = Record[1]; 6208 unsigned InstCount = Record[2]; 6209 uint64_t RawFunFlags = 0; 6210 unsigned NumRefs = Record[3]; 6211 unsigned NumRORefs = 0, NumWORefs = 0; 6212 int RefListStartIndex = 4; 6213 if (Version >= 4) { 6214 RawFunFlags = Record[3]; 6215 NumRefs = Record[4]; 6216 RefListStartIndex = 5; 6217 if (Version >= 5) { 6218 NumRORefs = Record[5]; 6219 RefListStartIndex = 6; 6220 if (Version >= 7) { 6221 NumWORefs = Record[6]; 6222 RefListStartIndex = 7; 6223 } 6224 } 6225 } 6226 6227 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6228 // The module path string ref set in the summary must be owned by the 6229 // index's module string table. Since we don't have a module path 6230 // string table section in the per-module index, we create a single 6231 // module path string table entry with an empty (0) ID to take 6232 // ownership. 6233 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6234 assert(Record.size() >= RefListStartIndex + NumRefs && 6235 "Record size inconsistent with number of references"); 6236 std::vector<ValueInfo> Refs = makeRefList( 6237 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6238 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6239 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6240 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6241 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6242 IsOldProfileFormat, HasProfile, HasRelBF); 6243 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6244 auto FS = std::make_unique<FunctionSummary>( 6245 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6246 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6247 std::move(PendingTypeTestAssumeVCalls), 6248 std::move(PendingTypeCheckedLoadVCalls), 6249 std::move(PendingTypeTestAssumeConstVCalls), 6250 std::move(PendingTypeCheckedLoadConstVCalls), 6251 std::move(PendingParamAccesses)); 6252 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6253 FS->setModulePath(getThisModule()->first()); 6254 FS->setOriginalName(VIAndOriginalGUID.second); 6255 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6256 break; 6257 } 6258 // FS_ALIAS: [valueid, flags, valueid] 6259 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6260 // they expect all aliasee summaries to be available. 6261 case bitc::FS_ALIAS: { 6262 unsigned ValueID = Record[0]; 6263 uint64_t RawFlags = Record[1]; 6264 unsigned AliaseeID = Record[2]; 6265 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6266 auto AS = std::make_unique<AliasSummary>(Flags); 6267 // The module path string ref set in the summary must be owned by the 6268 // index's module string table. Since we don't have a module path 6269 // string table section in the per-module index, we create a single 6270 // module path string table entry with an empty (0) ID to take 6271 // ownership. 6272 AS->setModulePath(getThisModule()->first()); 6273 6274 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6275 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6276 if (!AliaseeInModule) 6277 return error("Alias expects aliasee summary to be parsed"); 6278 AS->setAliasee(AliaseeVI, AliaseeInModule); 6279 6280 auto GUID = getValueInfoFromValueId(ValueID); 6281 AS->setOriginalName(GUID.second); 6282 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6283 break; 6284 } 6285 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6286 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6287 unsigned ValueID = Record[0]; 6288 uint64_t RawFlags = Record[1]; 6289 unsigned RefArrayStart = 2; 6290 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6291 /* WriteOnly */ false, 6292 /* Constant */ false, 6293 GlobalObject::VCallVisibilityPublic); 6294 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6295 if (Version >= 5) { 6296 GVF = getDecodedGVarFlags(Record[2]); 6297 RefArrayStart = 3; 6298 } 6299 std::vector<ValueInfo> Refs = 6300 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6301 auto FS = 6302 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6303 FS->setModulePath(getThisModule()->first()); 6304 auto GUID = getValueInfoFromValueId(ValueID); 6305 FS->setOriginalName(GUID.second); 6306 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6307 break; 6308 } 6309 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6310 // numrefs, numrefs x valueid, 6311 // n x (valueid, offset)] 6312 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6313 unsigned ValueID = Record[0]; 6314 uint64_t RawFlags = Record[1]; 6315 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6316 unsigned NumRefs = Record[3]; 6317 unsigned RefListStartIndex = 4; 6318 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6319 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6320 std::vector<ValueInfo> Refs = makeRefList( 6321 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6322 VTableFuncList VTableFuncs; 6323 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6324 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6325 uint64_t Offset = Record[++I]; 6326 VTableFuncs.push_back({Callee, Offset}); 6327 } 6328 auto VS = 6329 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6330 VS->setModulePath(getThisModule()->first()); 6331 VS->setVTableFuncs(VTableFuncs); 6332 auto GUID = getValueInfoFromValueId(ValueID); 6333 VS->setOriginalName(GUID.second); 6334 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6335 break; 6336 } 6337 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6338 // numrefs x valueid, n x (valueid)] 6339 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6340 // numrefs x valueid, n x (valueid, hotness)] 6341 case bitc::FS_COMBINED: 6342 case bitc::FS_COMBINED_PROFILE: { 6343 unsigned ValueID = Record[0]; 6344 uint64_t ModuleId = Record[1]; 6345 uint64_t RawFlags = Record[2]; 6346 unsigned InstCount = Record[3]; 6347 uint64_t RawFunFlags = 0; 6348 uint64_t EntryCount = 0; 6349 unsigned NumRefs = Record[4]; 6350 unsigned NumRORefs = 0, NumWORefs = 0; 6351 int RefListStartIndex = 5; 6352 6353 if (Version >= 4) { 6354 RawFunFlags = Record[4]; 6355 RefListStartIndex = 6; 6356 size_t NumRefsIndex = 5; 6357 if (Version >= 5) { 6358 unsigned NumRORefsOffset = 1; 6359 RefListStartIndex = 7; 6360 if (Version >= 6) { 6361 NumRefsIndex = 6; 6362 EntryCount = Record[5]; 6363 RefListStartIndex = 8; 6364 if (Version >= 7) { 6365 RefListStartIndex = 9; 6366 NumWORefs = Record[8]; 6367 NumRORefsOffset = 2; 6368 } 6369 } 6370 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6371 } 6372 NumRefs = Record[NumRefsIndex]; 6373 } 6374 6375 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6376 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6377 assert(Record.size() >= RefListStartIndex + NumRefs && 6378 "Record size inconsistent with number of references"); 6379 std::vector<ValueInfo> Refs = makeRefList( 6380 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6381 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6382 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6383 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6384 IsOldProfileFormat, HasProfile, false); 6385 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6386 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6387 auto FS = std::make_unique<FunctionSummary>( 6388 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6389 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6390 std::move(PendingTypeTestAssumeVCalls), 6391 std::move(PendingTypeCheckedLoadVCalls), 6392 std::move(PendingTypeTestAssumeConstVCalls), 6393 std::move(PendingTypeCheckedLoadConstVCalls), 6394 std::move(PendingParamAccesses)); 6395 LastSeenSummary = FS.get(); 6396 LastSeenGUID = VI.getGUID(); 6397 FS->setModulePath(ModuleIdMap[ModuleId]); 6398 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6399 break; 6400 } 6401 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6402 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6403 // they expect all aliasee summaries to be available. 6404 case bitc::FS_COMBINED_ALIAS: { 6405 unsigned ValueID = Record[0]; 6406 uint64_t ModuleId = Record[1]; 6407 uint64_t RawFlags = Record[2]; 6408 unsigned AliaseeValueId = Record[3]; 6409 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6410 auto AS = std::make_unique<AliasSummary>(Flags); 6411 LastSeenSummary = AS.get(); 6412 AS->setModulePath(ModuleIdMap[ModuleId]); 6413 6414 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6415 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6416 AS->setAliasee(AliaseeVI, AliaseeInModule); 6417 6418 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6419 LastSeenGUID = VI.getGUID(); 6420 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6421 break; 6422 } 6423 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6424 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6425 unsigned ValueID = Record[0]; 6426 uint64_t ModuleId = Record[1]; 6427 uint64_t RawFlags = Record[2]; 6428 unsigned RefArrayStart = 3; 6429 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6430 /* WriteOnly */ false, 6431 /* Constant */ false, 6432 GlobalObject::VCallVisibilityPublic); 6433 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6434 if (Version >= 5) { 6435 GVF = getDecodedGVarFlags(Record[3]); 6436 RefArrayStart = 4; 6437 } 6438 std::vector<ValueInfo> Refs = 6439 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6440 auto FS = 6441 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6442 LastSeenSummary = FS.get(); 6443 FS->setModulePath(ModuleIdMap[ModuleId]); 6444 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6445 LastSeenGUID = VI.getGUID(); 6446 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6447 break; 6448 } 6449 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6450 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6451 uint64_t OriginalName = Record[0]; 6452 if (!LastSeenSummary) 6453 return error("Name attachment that does not follow a combined record"); 6454 LastSeenSummary->setOriginalName(OriginalName); 6455 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6456 // Reset the LastSeenSummary 6457 LastSeenSummary = nullptr; 6458 LastSeenGUID = 0; 6459 break; 6460 } 6461 case bitc::FS_TYPE_TESTS: 6462 assert(PendingTypeTests.empty()); 6463 llvm::append_range(PendingTypeTests, Record); 6464 break; 6465 6466 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6467 assert(PendingTypeTestAssumeVCalls.empty()); 6468 for (unsigned I = 0; I != Record.size(); I += 2) 6469 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6470 break; 6471 6472 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6473 assert(PendingTypeCheckedLoadVCalls.empty()); 6474 for (unsigned I = 0; I != Record.size(); I += 2) 6475 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6476 break; 6477 6478 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6479 PendingTypeTestAssumeConstVCalls.push_back( 6480 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6481 break; 6482 6483 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6484 PendingTypeCheckedLoadConstVCalls.push_back( 6485 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6486 break; 6487 6488 case bitc::FS_CFI_FUNCTION_DEFS: { 6489 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6490 for (unsigned I = 0; I != Record.size(); I += 2) 6491 CfiFunctionDefs.insert( 6492 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6493 break; 6494 } 6495 6496 case bitc::FS_CFI_FUNCTION_DECLS: { 6497 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6498 for (unsigned I = 0; I != Record.size(); I += 2) 6499 CfiFunctionDecls.insert( 6500 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6501 break; 6502 } 6503 6504 case bitc::FS_TYPE_ID: 6505 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6506 break; 6507 6508 case bitc::FS_TYPE_ID_METADATA: 6509 parseTypeIdCompatibleVtableSummaryRecord(Record); 6510 break; 6511 6512 case bitc::FS_BLOCK_COUNT: 6513 TheIndex.addBlockCount(Record[0]); 6514 break; 6515 6516 case bitc::FS_PARAM_ACCESS: { 6517 PendingParamAccesses = parseParamAccesses(Record); 6518 break; 6519 } 6520 } 6521 } 6522 llvm_unreachable("Exit infinite loop"); 6523 } 6524 6525 // Parse the module string table block into the Index. 6526 // This populates the ModulePathStringTable map in the index. 6527 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6528 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6529 return Err; 6530 6531 SmallVector<uint64_t, 64> Record; 6532 6533 SmallString<128> ModulePath; 6534 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6535 6536 while (true) { 6537 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6538 if (!MaybeEntry) 6539 return MaybeEntry.takeError(); 6540 BitstreamEntry Entry = MaybeEntry.get(); 6541 6542 switch (Entry.Kind) { 6543 case BitstreamEntry::SubBlock: // Handled for us already. 6544 case BitstreamEntry::Error: 6545 return error("Malformed block"); 6546 case BitstreamEntry::EndBlock: 6547 return Error::success(); 6548 case BitstreamEntry::Record: 6549 // The interesting case. 6550 break; 6551 } 6552 6553 Record.clear(); 6554 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6555 if (!MaybeRecord) 6556 return MaybeRecord.takeError(); 6557 switch (MaybeRecord.get()) { 6558 default: // Default behavior: ignore. 6559 break; 6560 case bitc::MST_CODE_ENTRY: { 6561 // MST_ENTRY: [modid, namechar x N] 6562 uint64_t ModuleId = Record[0]; 6563 6564 if (convertToString(Record, 1, ModulePath)) 6565 return error("Invalid record"); 6566 6567 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6568 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6569 6570 ModulePath.clear(); 6571 break; 6572 } 6573 /// MST_CODE_HASH: [5*i32] 6574 case bitc::MST_CODE_HASH: { 6575 if (Record.size() != 5) 6576 return error("Invalid hash length " + Twine(Record.size()).str()); 6577 if (!LastSeenModule) 6578 return error("Invalid hash that does not follow a module path"); 6579 int Pos = 0; 6580 for (auto &Val : Record) { 6581 assert(!(Val >> 32) && "Unexpected high bits set"); 6582 LastSeenModule->second.second[Pos++] = Val; 6583 } 6584 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6585 LastSeenModule = nullptr; 6586 break; 6587 } 6588 } 6589 } 6590 llvm_unreachable("Exit infinite loop"); 6591 } 6592 6593 namespace { 6594 6595 // FIXME: This class is only here to support the transition to llvm::Error. It 6596 // will be removed once this transition is complete. Clients should prefer to 6597 // deal with the Error value directly, rather than converting to error_code. 6598 class BitcodeErrorCategoryType : public std::error_category { 6599 const char *name() const noexcept override { 6600 return "llvm.bitcode"; 6601 } 6602 6603 std::string message(int IE) const override { 6604 BitcodeError E = static_cast<BitcodeError>(IE); 6605 switch (E) { 6606 case BitcodeError::CorruptedBitcode: 6607 return "Corrupted bitcode"; 6608 } 6609 llvm_unreachable("Unknown error type!"); 6610 } 6611 }; 6612 6613 } // end anonymous namespace 6614 6615 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6616 6617 const std::error_category &llvm::BitcodeErrorCategory() { 6618 return *ErrorCategory; 6619 } 6620 6621 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6622 unsigned Block, unsigned RecordID) { 6623 if (Error Err = Stream.EnterSubBlock(Block)) 6624 return std::move(Err); 6625 6626 StringRef Strtab; 6627 while (true) { 6628 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6629 if (!MaybeEntry) 6630 return MaybeEntry.takeError(); 6631 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6632 6633 switch (Entry.Kind) { 6634 case BitstreamEntry::EndBlock: 6635 return Strtab; 6636 6637 case BitstreamEntry::Error: 6638 return error("Malformed block"); 6639 6640 case BitstreamEntry::SubBlock: 6641 if (Error Err = Stream.SkipBlock()) 6642 return std::move(Err); 6643 break; 6644 6645 case BitstreamEntry::Record: 6646 StringRef Blob; 6647 SmallVector<uint64_t, 1> Record; 6648 Expected<unsigned> MaybeRecord = 6649 Stream.readRecord(Entry.ID, Record, &Blob); 6650 if (!MaybeRecord) 6651 return MaybeRecord.takeError(); 6652 if (MaybeRecord.get() == RecordID) 6653 Strtab = Blob; 6654 break; 6655 } 6656 } 6657 } 6658 6659 //===----------------------------------------------------------------------===// 6660 // External interface 6661 //===----------------------------------------------------------------------===// 6662 6663 Expected<std::vector<BitcodeModule>> 6664 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6665 auto FOrErr = getBitcodeFileContents(Buffer); 6666 if (!FOrErr) 6667 return FOrErr.takeError(); 6668 return std::move(FOrErr->Mods); 6669 } 6670 6671 Expected<BitcodeFileContents> 6672 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6673 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6674 if (!StreamOrErr) 6675 return StreamOrErr.takeError(); 6676 BitstreamCursor &Stream = *StreamOrErr; 6677 6678 BitcodeFileContents F; 6679 while (true) { 6680 uint64_t BCBegin = Stream.getCurrentByteNo(); 6681 6682 // We may be consuming bitcode from a client that leaves garbage at the end 6683 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6684 // the end that there cannot possibly be another module, stop looking. 6685 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6686 return F; 6687 6688 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6689 if (!MaybeEntry) 6690 return MaybeEntry.takeError(); 6691 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6692 6693 switch (Entry.Kind) { 6694 case BitstreamEntry::EndBlock: 6695 case BitstreamEntry::Error: 6696 return error("Malformed block"); 6697 6698 case BitstreamEntry::SubBlock: { 6699 uint64_t IdentificationBit = -1ull; 6700 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6701 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6702 if (Error Err = Stream.SkipBlock()) 6703 return std::move(Err); 6704 6705 { 6706 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6707 if (!MaybeEntry) 6708 return MaybeEntry.takeError(); 6709 Entry = MaybeEntry.get(); 6710 } 6711 6712 if (Entry.Kind != BitstreamEntry::SubBlock || 6713 Entry.ID != bitc::MODULE_BLOCK_ID) 6714 return error("Malformed block"); 6715 } 6716 6717 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6718 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6719 if (Error Err = Stream.SkipBlock()) 6720 return std::move(Err); 6721 6722 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6723 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6724 Buffer.getBufferIdentifier(), IdentificationBit, 6725 ModuleBit}); 6726 continue; 6727 } 6728 6729 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6730 Expected<StringRef> Strtab = 6731 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6732 if (!Strtab) 6733 return Strtab.takeError(); 6734 // This string table is used by every preceding bitcode module that does 6735 // not have its own string table. A bitcode file may have multiple 6736 // string tables if it was created by binary concatenation, for example 6737 // with "llvm-cat -b". 6738 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6739 if (!I->Strtab.empty()) 6740 break; 6741 I->Strtab = *Strtab; 6742 } 6743 // Similarly, the string table is used by every preceding symbol table; 6744 // normally there will be just one unless the bitcode file was created 6745 // by binary concatenation. 6746 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6747 F.StrtabForSymtab = *Strtab; 6748 continue; 6749 } 6750 6751 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6752 Expected<StringRef> SymtabOrErr = 6753 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6754 if (!SymtabOrErr) 6755 return SymtabOrErr.takeError(); 6756 6757 // We can expect the bitcode file to have multiple symbol tables if it 6758 // was created by binary concatenation. In that case we silently 6759 // ignore any subsequent symbol tables, which is fine because this is a 6760 // low level function. The client is expected to notice that the number 6761 // of modules in the symbol table does not match the number of modules 6762 // in the input file and regenerate the symbol table. 6763 if (F.Symtab.empty()) 6764 F.Symtab = *SymtabOrErr; 6765 continue; 6766 } 6767 6768 if (Error Err = Stream.SkipBlock()) 6769 return std::move(Err); 6770 continue; 6771 } 6772 case BitstreamEntry::Record: 6773 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6774 continue; 6775 else 6776 return StreamFailed.takeError(); 6777 } 6778 } 6779 } 6780 6781 /// Get a lazy one-at-time loading module from bitcode. 6782 /// 6783 /// This isn't always used in a lazy context. In particular, it's also used by 6784 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6785 /// in forward-referenced functions from block address references. 6786 /// 6787 /// \param[in] MaterializeAll Set to \c true if we should materialize 6788 /// everything. 6789 Expected<std::unique_ptr<Module>> 6790 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6791 bool ShouldLazyLoadMetadata, bool IsImporting, 6792 DataLayoutCallbackTy DataLayoutCallback) { 6793 BitstreamCursor Stream(Buffer); 6794 6795 std::string ProducerIdentification; 6796 if (IdentificationBit != -1ull) { 6797 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6798 return std::move(JumpFailed); 6799 Expected<std::string> ProducerIdentificationOrErr = 6800 readIdentificationBlock(Stream); 6801 if (!ProducerIdentificationOrErr) 6802 return ProducerIdentificationOrErr.takeError(); 6803 6804 ProducerIdentification = *ProducerIdentificationOrErr; 6805 } 6806 6807 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6808 return std::move(JumpFailed); 6809 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6810 Context); 6811 6812 std::unique_ptr<Module> M = 6813 std::make_unique<Module>(ModuleIdentifier, Context); 6814 M->setMaterializer(R); 6815 6816 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6817 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6818 IsImporting, DataLayoutCallback)) 6819 return std::move(Err); 6820 6821 if (MaterializeAll) { 6822 // Read in the entire module, and destroy the BitcodeReader. 6823 if (Error Err = M->materializeAll()) 6824 return std::move(Err); 6825 } else { 6826 // Resolve forward references from blockaddresses. 6827 if (Error Err = R->materializeForwardReferencedFunctions()) 6828 return std::move(Err); 6829 } 6830 return std::move(M); 6831 } 6832 6833 Expected<std::unique_ptr<Module>> 6834 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6835 bool IsImporting) { 6836 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6837 [](StringRef) { return None; }); 6838 } 6839 6840 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6841 // We don't use ModuleIdentifier here because the client may need to control the 6842 // module path used in the combined summary (e.g. when reading summaries for 6843 // regular LTO modules). 6844 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6845 StringRef ModulePath, uint64_t ModuleId) { 6846 BitstreamCursor Stream(Buffer); 6847 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6848 return JumpFailed; 6849 6850 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6851 ModulePath, ModuleId); 6852 return R.parseModule(); 6853 } 6854 6855 // Parse the specified bitcode buffer, returning the function info index. 6856 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6857 BitstreamCursor Stream(Buffer); 6858 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6859 return std::move(JumpFailed); 6860 6861 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6862 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6863 ModuleIdentifier, 0); 6864 6865 if (Error Err = R.parseModule()) 6866 return std::move(Err); 6867 6868 return std::move(Index); 6869 } 6870 6871 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6872 unsigned ID) { 6873 if (Error Err = Stream.EnterSubBlock(ID)) 6874 return std::move(Err); 6875 SmallVector<uint64_t, 64> Record; 6876 6877 while (true) { 6878 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6879 if (!MaybeEntry) 6880 return MaybeEntry.takeError(); 6881 BitstreamEntry Entry = MaybeEntry.get(); 6882 6883 switch (Entry.Kind) { 6884 case BitstreamEntry::SubBlock: // Handled for us already. 6885 case BitstreamEntry::Error: 6886 return error("Malformed block"); 6887 case BitstreamEntry::EndBlock: 6888 // If no flags record found, conservatively return true to mimic 6889 // behavior before this flag was added. 6890 return true; 6891 case BitstreamEntry::Record: 6892 // The interesting case. 6893 break; 6894 } 6895 6896 // Look for the FS_FLAGS record. 6897 Record.clear(); 6898 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6899 if (!MaybeBitCode) 6900 return MaybeBitCode.takeError(); 6901 switch (MaybeBitCode.get()) { 6902 default: // Default behavior: ignore. 6903 break; 6904 case bitc::FS_FLAGS: { // [flags] 6905 uint64_t Flags = Record[0]; 6906 // Scan flags. 6907 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6908 6909 return Flags & 0x8; 6910 } 6911 } 6912 } 6913 llvm_unreachable("Exit infinite loop"); 6914 } 6915 6916 // Check if the given bitcode buffer contains a global value summary block. 6917 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6918 BitstreamCursor Stream(Buffer); 6919 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6920 return std::move(JumpFailed); 6921 6922 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6923 return std::move(Err); 6924 6925 while (true) { 6926 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6927 if (!MaybeEntry) 6928 return MaybeEntry.takeError(); 6929 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6930 6931 switch (Entry.Kind) { 6932 case BitstreamEntry::Error: 6933 return error("Malformed block"); 6934 case BitstreamEntry::EndBlock: 6935 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6936 /*EnableSplitLTOUnit=*/false}; 6937 6938 case BitstreamEntry::SubBlock: 6939 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6940 Expected<bool> EnableSplitLTOUnit = 6941 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6942 if (!EnableSplitLTOUnit) 6943 return EnableSplitLTOUnit.takeError(); 6944 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6945 *EnableSplitLTOUnit}; 6946 } 6947 6948 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6949 Expected<bool> EnableSplitLTOUnit = 6950 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6951 if (!EnableSplitLTOUnit) 6952 return EnableSplitLTOUnit.takeError(); 6953 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6954 *EnableSplitLTOUnit}; 6955 } 6956 6957 // Ignore other sub-blocks. 6958 if (Error Err = Stream.SkipBlock()) 6959 return std::move(Err); 6960 continue; 6961 6962 case BitstreamEntry::Record: 6963 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6964 continue; 6965 else 6966 return StreamFailed.takeError(); 6967 } 6968 } 6969 } 6970 6971 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6972 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6973 if (!MsOrErr) 6974 return MsOrErr.takeError(); 6975 6976 if (MsOrErr->size() != 1) 6977 return error("Expected a single module"); 6978 6979 return (*MsOrErr)[0]; 6980 } 6981 6982 Expected<std::unique_ptr<Module>> 6983 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6984 bool ShouldLazyLoadMetadata, bool IsImporting) { 6985 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6986 if (!BM) 6987 return BM.takeError(); 6988 6989 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6990 } 6991 6992 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6993 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6994 bool ShouldLazyLoadMetadata, bool IsImporting) { 6995 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6996 IsImporting); 6997 if (MOrErr) 6998 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6999 return MOrErr; 7000 } 7001 7002 Expected<std::unique_ptr<Module>> 7003 BitcodeModule::parseModule(LLVMContext &Context, 7004 DataLayoutCallbackTy DataLayoutCallback) { 7005 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7006 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7007 // written. We must defer until the Module has been fully materialized. 7008 } 7009 7010 Expected<std::unique_ptr<Module>> 7011 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7012 DataLayoutCallbackTy DataLayoutCallback) { 7013 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7014 if (!BM) 7015 return BM.takeError(); 7016 7017 return BM->parseModule(Context, DataLayoutCallback); 7018 } 7019 7020 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7021 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7022 if (!StreamOrErr) 7023 return StreamOrErr.takeError(); 7024 7025 return readTriple(*StreamOrErr); 7026 } 7027 7028 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7029 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7030 if (!StreamOrErr) 7031 return StreamOrErr.takeError(); 7032 7033 return hasObjCCategory(*StreamOrErr); 7034 } 7035 7036 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7037 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7038 if (!StreamOrErr) 7039 return StreamOrErr.takeError(); 7040 7041 return readIdentificationCode(*StreamOrErr); 7042 } 7043 7044 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7045 ModuleSummaryIndex &CombinedIndex, 7046 uint64_t ModuleId) { 7047 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7048 if (!BM) 7049 return BM.takeError(); 7050 7051 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7052 } 7053 7054 Expected<std::unique_ptr<ModuleSummaryIndex>> 7055 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7056 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7057 if (!BM) 7058 return BM.takeError(); 7059 7060 return BM->getSummary(); 7061 } 7062 7063 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7064 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7065 if (!BM) 7066 return BM.takeError(); 7067 7068 return BM->getLTOInfo(); 7069 } 7070 7071 Expected<std::unique_ptr<ModuleSummaryIndex>> 7072 llvm::getModuleSummaryIndexForFile(StringRef Path, 7073 bool IgnoreEmptyThinLTOIndexFile) { 7074 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7075 MemoryBuffer::getFileOrSTDIN(Path); 7076 if (!FileOrErr) 7077 return errorCodeToError(FileOrErr.getError()); 7078 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7079 return nullptr; 7080 return getModuleSummaryIndex(**FileOrErr); 7081 } 7082