1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/APFloat.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/ArrayRef.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/None.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitstreamReader.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitcode/ReaderWriter.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/AutoUpgrade.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/Comdat.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/DiagnosticInfo.h"
38 #include "llvm/IR/DiagnosticPrinter.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalIFunc.h"
42 #include "llvm/IR/GlobalIndirectSymbol.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/GVMaterializer.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/OperandTraits.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/TrackingMDRef.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/ValueHandle.h"
60 #include "llvm/Support/AtomicOrdering.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/ErrorOr.h"
67 #include "llvm/Support/ManagedStatic.h"
68 #include "llvm/Support/MemoryBuffer.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <deque>
75 #include <limits>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <system_error>
80 #include <tuple>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 static cl::opt<bool> PrintSummaryGUIDs(
87     "print-summary-global-ids", cl::init(false), cl::Hidden,
88     cl::desc(
89         "Print the global id for each value when reading the module summary"));
90 
91 namespace {
92 
93 enum {
94   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
95 };
96 
97 class BitcodeReaderValueList {
98   std::vector<WeakVH> ValuePtrs;
99 
100   /// As we resolve forward-referenced constants, we add information about them
101   /// to this vector.  This allows us to resolve them in bulk instead of
102   /// resolving each reference at a time.  See the code in
103   /// ResolveConstantForwardRefs for more information about this.
104   ///
105   /// The key of this vector is the placeholder constant, the value is the slot
106   /// number that holds the resolved value.
107   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
108   ResolveConstantsTy ResolveConstants;
109   LLVMContext &Context;
110 
111 public:
112   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
113   ~BitcodeReaderValueList() {
114     assert(ResolveConstants.empty() && "Constants not resolved?");
115   }
116 
117   // vector compatibility methods
118   unsigned size() const { return ValuePtrs.size(); }
119   void resize(unsigned N) { ValuePtrs.resize(N); }
120   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
121 
122   void clear() {
123     assert(ResolveConstants.empty() && "Constants not resolved?");
124     ValuePtrs.clear();
125   }
126 
127   Value *operator[](unsigned i) const {
128     assert(i < ValuePtrs.size());
129     return ValuePtrs[i];
130   }
131 
132   Value *back() const { return ValuePtrs.back(); }
133   void pop_back() { ValuePtrs.pop_back(); }
134   bool empty() const { return ValuePtrs.empty(); }
135 
136   void shrinkTo(unsigned N) {
137     assert(N <= size() && "Invalid shrinkTo request!");
138     ValuePtrs.resize(N);
139   }
140 
141   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
142   Value *getValueFwdRef(unsigned Idx, Type *Ty);
143 
144   void assignValue(Value *V, unsigned Idx);
145 
146   /// Once all constants are read, this method bulk resolves any forward
147   /// references.
148   void resolveConstantForwardRefs();
149 };
150 
151 class BitcodeReaderMetadataList {
152   unsigned NumFwdRefs;
153   bool AnyFwdRefs;
154   unsigned MinFwdRef;
155   unsigned MaxFwdRef;
156 
157   /// Array of metadata references.
158   ///
159   /// Don't use std::vector here.  Some versions of libc++ copy (instead of
160   /// move) on resize, and TrackingMDRef is very expensive to copy.
161   SmallVector<TrackingMDRef, 1> MetadataPtrs;
162 
163   /// Structures for resolving old type refs.
164   struct {
165     SmallDenseMap<MDString *, TempMDTuple, 1> Unknown;
166     SmallDenseMap<MDString *, DICompositeType *, 1> Final;
167     SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls;
168     SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays;
169   } OldTypeRefs;
170 
171   LLVMContext &Context;
172 
173 public:
174   BitcodeReaderMetadataList(LLVMContext &C)
175       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
176 
177   // vector compatibility methods
178   unsigned size() const { return MetadataPtrs.size(); }
179   void resize(unsigned N) { MetadataPtrs.resize(N); }
180   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
181   void clear() { MetadataPtrs.clear(); }
182   Metadata *back() const { return MetadataPtrs.back(); }
183   void pop_back() { MetadataPtrs.pop_back(); }
184   bool empty() const { return MetadataPtrs.empty(); }
185 
186   Metadata *operator[](unsigned i) const {
187     assert(i < MetadataPtrs.size());
188     return MetadataPtrs[i];
189   }
190 
191   Metadata *lookup(unsigned I) const {
192     if (I < MetadataPtrs.size())
193       return MetadataPtrs[I];
194     return nullptr;
195   }
196 
197   void shrinkTo(unsigned N) {
198     assert(N <= size() && "Invalid shrinkTo request!");
199     assert(!AnyFwdRefs && "Unexpected forward refs");
200     MetadataPtrs.resize(N);
201   }
202 
203   /// Return the given metadata, creating a replaceable forward reference if
204   /// necessary.
205   Metadata *getMetadataFwdRef(unsigned Idx);
206 
207   /// Return the the given metadata only if it is fully resolved.
208   ///
209   /// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
210   /// would give \c false.
211   Metadata *getMetadataIfResolved(unsigned Idx);
212 
213   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
214   void assignValue(Metadata *MD, unsigned Idx);
215   void tryToResolveCycles();
216   bool hasFwdRefs() const { return AnyFwdRefs; }
217 
218   /// Upgrade a type that had an MDString reference.
219   void addTypeRef(MDString &UUID, DICompositeType &CT);
220 
221   /// Upgrade a type that had an MDString reference.
222   Metadata *upgradeTypeRef(Metadata *MaybeUUID);
223 
224   /// Upgrade a type ref array that may have MDString references.
225   Metadata *upgradeTypeRefArray(Metadata *MaybeTuple);
226 
227 private:
228   Metadata *resolveTypeRefArray(Metadata *MaybeTuple);
229 };
230 
231 class BitcodeReaderBase {
232 protected:
233   BitcodeReaderBase(MemoryBuffer *Buffer) : Buffer(Buffer) {}
234 
235   std::unique_ptr<MemoryBuffer> Buffer;
236   std::unique_ptr<BitstreamReader> StreamFile;
237   BitstreamCursor Stream;
238 
239   std::error_code initStream();
240 
241   virtual std::error_code error(const Twine &Message) = 0;
242   virtual ~BitcodeReaderBase() = default;
243 };
244 
245 std::error_code BitcodeReaderBase::initStream() {
246   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
247   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
248 
249   if (Buffer->getBufferSize() & 3)
250     return error("Invalid bitcode signature");
251 
252   // If we have a wrapper header, parse it and ignore the non-bc file contents.
253   // The magic number is 0x0B17C0DE stored in little endian.
254   if (isBitcodeWrapper(BufPtr, BufEnd))
255     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
256       return error("Invalid bitcode wrapper header");
257 
258   StreamFile.reset(new BitstreamReader(ArrayRef<uint8_t>(BufPtr, BufEnd)));
259   Stream.init(&*StreamFile);
260 
261   return std::error_code();
262 }
263 
264 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
265   LLVMContext &Context;
266   Module *TheModule = nullptr;
267   // Next offset to start scanning for lazy parsing of function bodies.
268   uint64_t NextUnreadBit = 0;
269   // Last function offset found in the VST.
270   uint64_t LastFunctionBlockBit = 0;
271   bool SeenValueSymbolTable = false;
272   uint64_t VSTOffset = 0;
273   // Contains an arbitrary and optional string identifying the bitcode producer
274   std::string ProducerIdentification;
275 
276   std::vector<Type*> TypeList;
277   BitcodeReaderValueList ValueList;
278   BitcodeReaderMetadataList MetadataList;
279   std::vector<Comdat *> ComdatList;
280   SmallVector<Instruction *, 64> InstructionList;
281 
282   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
283   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
284   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
285   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
286   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
287 
288   bool HasSeenOldLoopTags = false;
289 
290   /// The set of attributes by index.  Index zero in the file is for null, and
291   /// is thus not represented here.  As such all indices are off by one.
292   std::vector<AttributeSet> MAttributes;
293 
294   /// The set of attribute groups.
295   std::map<unsigned, AttributeSet> MAttributeGroups;
296 
297   /// While parsing a function body, this is a list of the basic blocks for the
298   /// function.
299   std::vector<BasicBlock*> FunctionBBs;
300 
301   // When reading the module header, this list is populated with functions that
302   // have bodies later in the file.
303   std::vector<Function*> FunctionsWithBodies;
304 
305   // When intrinsic functions are encountered which require upgrading they are
306   // stored here with their replacement function.
307   typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap;
308   UpdatedIntrinsicMap UpgradedIntrinsics;
309   // Intrinsics which were remangled because of types rename
310   UpdatedIntrinsicMap RemangledIntrinsics;
311 
312   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
313   DenseMap<unsigned, unsigned> MDKindMap;
314 
315   // Several operations happen after the module header has been read, but
316   // before function bodies are processed. This keeps track of whether
317   // we've done this yet.
318   bool SeenFirstFunctionBody = false;
319 
320   /// When function bodies are initially scanned, this map contains info about
321   /// where to find deferred function body in the stream.
322   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
323 
324   /// When Metadata block is initially scanned when parsing the module, we may
325   /// choose to defer parsing of the metadata. This vector contains info about
326   /// which Metadata blocks are deferred.
327   std::vector<uint64_t> DeferredMetadataInfo;
328 
329   /// These are basic blocks forward-referenced by block addresses.  They are
330   /// inserted lazily into functions when they're loaded.  The basic block ID is
331   /// its index into the vector.
332   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
333   std::deque<Function *> BasicBlockFwdRefQueue;
334 
335   /// Indicates that we are using a new encoding for instruction operands where
336   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
337   /// instruction number, for a more compact encoding.  Some instruction
338   /// operands are not relative to the instruction ID: basic block numbers, and
339   /// types. Once the old style function blocks have been phased out, we would
340   /// not need this flag.
341   bool UseRelativeIDs = false;
342 
343   /// True if all functions will be materialized, negating the need to process
344   /// (e.g.) blockaddress forward references.
345   bool WillMaterializeAllForwardRefs = false;
346 
347   /// True if any Metadata block has been materialized.
348   bool IsMetadataMaterialized = false;
349 
350   bool StripDebugInfo = false;
351 
352   /// Functions that need to be matched with subprograms when upgrading old
353   /// metadata.
354   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
355 
356   std::vector<std::string> BundleTags;
357 
358 public:
359   std::error_code error(BitcodeError E, const Twine &Message);
360   std::error_code error(const Twine &Message) override;
361 
362   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
363   ~BitcodeReader() override { freeState(); }
364 
365   std::error_code materializeForwardReferencedFunctions();
366 
367   void freeState();
368 
369   void releaseBuffer();
370 
371   std::error_code materialize(GlobalValue *GV) override;
372   std::error_code materializeModule() override;
373   std::vector<StructType *> getIdentifiedStructTypes() const override;
374 
375   /// \brief Main interface to parsing a bitcode buffer.
376   /// \returns true if an error occurred.
377   std::error_code parseBitcodeInto(Module *M,
378                                    bool ShouldLazyLoadMetadata = false);
379 
380   /// \brief Cheap mechanism to just extract module triple
381   /// \returns true if an error occurred.
382   ErrorOr<std::string> parseTriple();
383 
384   /// Cheap mechanism to just extract the identification block out of bitcode.
385   ErrorOr<std::string> parseIdentificationBlock();
386 
387   /// Peak at the module content and return true if any ObjC category or class
388   /// is found.
389   ErrorOr<bool> hasObjCCategory();
390 
391   static uint64_t decodeSignRotatedValue(uint64_t V);
392 
393   /// Materialize any deferred Metadata block.
394   std::error_code materializeMetadata() override;
395 
396   void setStripDebugInfo() override;
397 
398 private:
399   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
400   // ProducerIdentification data member, and do some basic enforcement on the
401   // "epoch" encoded in the bitcode.
402   std::error_code parseBitcodeVersion();
403 
404   std::vector<StructType *> IdentifiedStructTypes;
405   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
406   StructType *createIdentifiedStructType(LLVMContext &Context);
407 
408   Type *getTypeByID(unsigned ID);
409 
410   Value *getFnValueByID(unsigned ID, Type *Ty) {
411     if (Ty && Ty->isMetadataTy())
412       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
413     return ValueList.getValueFwdRef(ID, Ty);
414   }
415 
416   Metadata *getFnMetadataByID(unsigned ID) {
417     return MetadataList.getMetadataFwdRef(ID);
418   }
419 
420   BasicBlock *getBasicBlock(unsigned ID) const {
421     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
422     return FunctionBBs[ID];
423   }
424 
425   AttributeSet getAttributes(unsigned i) const {
426     if (i-1 < MAttributes.size())
427       return MAttributes[i-1];
428     return AttributeSet();
429   }
430 
431   /// Read a value/type pair out of the specified record from slot 'Slot'.
432   /// Increment Slot past the number of slots used in the record. Return true on
433   /// failure.
434   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
435                         unsigned InstNum, Value *&ResVal) {
436     if (Slot == Record.size()) return true;
437     unsigned ValNo = (unsigned)Record[Slot++];
438     // Adjust the ValNo, if it was encoded relative to the InstNum.
439     if (UseRelativeIDs)
440       ValNo = InstNum - ValNo;
441     if (ValNo < InstNum) {
442       // If this is not a forward reference, just return the value we already
443       // have.
444       ResVal = getFnValueByID(ValNo, nullptr);
445       return ResVal == nullptr;
446     }
447     if (Slot == Record.size())
448       return true;
449 
450     unsigned TypeNo = (unsigned)Record[Slot++];
451     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
452     return ResVal == nullptr;
453   }
454 
455   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
456   /// past the number of slots used by the value in the record. Return true if
457   /// there is an error.
458   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
459                 unsigned InstNum, Type *Ty, Value *&ResVal) {
460     if (getValue(Record, Slot, InstNum, Ty, ResVal))
461       return true;
462     // All values currently take a single record slot.
463     ++Slot;
464     return false;
465   }
466 
467   /// Like popValue, but does not increment the Slot number.
468   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
469                 unsigned InstNum, Type *Ty, Value *&ResVal) {
470     ResVal = getValue(Record, Slot, InstNum, Ty);
471     return ResVal == nullptr;
472   }
473 
474   /// Version of getValue that returns ResVal directly, or 0 if there is an
475   /// error.
476   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
477                   unsigned InstNum, Type *Ty) {
478     if (Slot == Record.size()) return nullptr;
479     unsigned ValNo = (unsigned)Record[Slot];
480     // Adjust the ValNo, if it was encoded relative to the InstNum.
481     if (UseRelativeIDs)
482       ValNo = InstNum - ValNo;
483     return getFnValueByID(ValNo, Ty);
484   }
485 
486   /// Like getValue, but decodes signed VBRs.
487   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
488                         unsigned InstNum, Type *Ty) {
489     if (Slot == Record.size()) return nullptr;
490     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
491     // Adjust the ValNo, if it was encoded relative to the InstNum.
492     if (UseRelativeIDs)
493       ValNo = InstNum - ValNo;
494     return getFnValueByID(ValNo, Ty);
495   }
496 
497   /// Converts alignment exponent (i.e. power of two (or zero)) to the
498   /// corresponding alignment to use. If alignment is too large, returns
499   /// a corresponding error code.
500   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
501   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
502   std::error_code parseModule(uint64_t ResumeBit,
503                               bool ShouldLazyLoadMetadata = false);
504   std::error_code parseAttributeBlock();
505   std::error_code parseAttributeGroupBlock();
506   std::error_code parseTypeTable();
507   std::error_code parseTypeTableBody();
508   std::error_code parseOperandBundleTags();
509 
510   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
511                                unsigned NameIndex, Triple &TT);
512   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
513   std::error_code parseConstants();
514   std::error_code rememberAndSkipFunctionBodies();
515   std::error_code rememberAndSkipFunctionBody();
516   /// Save the positions of the Metadata blocks and skip parsing the blocks.
517   std::error_code rememberAndSkipMetadata();
518   std::error_code parseFunctionBody(Function *F);
519   std::error_code globalCleanup();
520   std::error_code resolveGlobalAndIndirectSymbolInits();
521   std::error_code parseMetadata(bool ModuleLevel = false);
522   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
523                                        StringRef Blob,
524                                        unsigned &NextMetadataNo);
525   std::error_code parseMetadataKinds();
526   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
527   std::error_code
528   parseGlobalObjectAttachment(GlobalObject &GO,
529                               ArrayRef<uint64_t> Record);
530   std::error_code parseMetadataAttachment(Function &F);
531   ErrorOr<std::string> parseModuleTriple();
532   ErrorOr<bool> hasObjCCategoryInModule();
533   std::error_code parseUseLists();
534   std::error_code findFunctionInStream(
535       Function *F,
536       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
537 };
538 
539 /// Class to manage reading and parsing function summary index bitcode
540 /// files/sections.
541 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
542   DiagnosticHandlerFunction DiagnosticHandler;
543 
544   /// Eventually points to the module index built during parsing.
545   ModuleSummaryIndex *TheIndex = nullptr;
546 
547   /// Used to indicate whether caller only wants to check for the presence
548   /// of the global value summary bitcode section. All blocks are skipped,
549   /// but the SeenGlobalValSummary boolean is set.
550   bool CheckGlobalValSummaryPresenceOnly = false;
551 
552   /// Indicates whether we have encountered a global value summary section
553   /// yet during parsing, used when checking if file contains global value
554   /// summary section.
555   bool SeenGlobalValSummary = false;
556 
557   /// Indicates whether we have already parsed the VST, used for error checking.
558   bool SeenValueSymbolTable = false;
559 
560   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
561   /// Used to enable on-demand parsing of the VST.
562   uint64_t VSTOffset = 0;
563 
564   // Map to save ValueId to GUID association that was recorded in the
565   // ValueSymbolTable. It is used after the VST is parsed to convert
566   // call graph edges read from the function summary from referencing
567   // callees by their ValueId to using the GUID instead, which is how
568   // they are recorded in the summary index being built.
569   // We save a second GUID which is the same as the first one, but ignoring the
570   // linkage, i.e. for value other than local linkage they are identical.
571   DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>>
572       ValueIdToCallGraphGUIDMap;
573 
574   /// Map populated during module path string table parsing, from the
575   /// module ID to a string reference owned by the index's module
576   /// path string table, used to correlate with combined index
577   /// summary records.
578   DenseMap<uint64_t, StringRef> ModuleIdMap;
579 
580   /// Original source file name recorded in a bitcode record.
581   std::string SourceFileName;
582 
583 public:
584   std::error_code error(const Twine &Message);
585 
586   ModuleSummaryIndexBitcodeReader(
587       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
588       bool CheckGlobalValSummaryPresenceOnly = false);
589   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
590 
591   void freeState();
592 
593   void releaseBuffer();
594 
595   /// Check if the parser has encountered a summary section.
596   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
597 
598   /// \brief Main interface to parsing a bitcode buffer.
599   /// \returns true if an error occurred.
600   std::error_code parseSummaryIndexInto(ModuleSummaryIndex *I);
601 
602 private:
603   std::error_code parseModule();
604   std::error_code parseValueSymbolTable(
605       uint64_t Offset,
606       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
607   std::error_code parseEntireSummary();
608   std::error_code parseModuleStringTable();
609   std::pair<GlobalValue::GUID, GlobalValue::GUID>
610 
611   getGUIDFromValueId(unsigned ValueId);
612   std::pair<GlobalValue::GUID, CalleeInfo::HotnessType>
613   readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I,
614                     bool IsOldProfileFormat, bool HasProfile);
615 };
616 
617 } // end anonymous namespace
618 
619 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
620                                              DiagnosticSeverity Severity,
621                                              const Twine &Msg)
622     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
623 
624 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
625 
626 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler,
627                              std::error_code EC, const Twine &Message) {
628   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
629   DiagnosticHandler(DI);
630   return EC;
631 }
632 
633 static std::error_code error(LLVMContext &Context, std::error_code EC,
634                              const Twine &Message) {
635   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
636                Message);
637 }
638 
639 static std::error_code error(LLVMContext &Context, const Twine &Message) {
640   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
641                Message);
642 }
643 
644 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
645   if (!ProducerIdentification.empty()) {
646     return ::error(Context, make_error_code(E),
647                    Message + " (Producer: '" + ProducerIdentification +
648                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
649   }
650   return ::error(Context, make_error_code(E), Message);
651 }
652 
653 std::error_code BitcodeReader::error(const Twine &Message) {
654   if (!ProducerIdentification.empty()) {
655     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
656                    Message + " (Producer: '" + ProducerIdentification +
657                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
658   }
659   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
660                  Message);
661 }
662 
663 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
664     : BitcodeReaderBase(Buffer), Context(Context), ValueList(Context),
665       MetadataList(Context) {}
666 
667 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
668   if (WillMaterializeAllForwardRefs)
669     return std::error_code();
670 
671   // Prevent recursion.
672   WillMaterializeAllForwardRefs = true;
673 
674   while (!BasicBlockFwdRefQueue.empty()) {
675     Function *F = BasicBlockFwdRefQueue.front();
676     BasicBlockFwdRefQueue.pop_front();
677     assert(F && "Expected valid function");
678     if (!BasicBlockFwdRefs.count(F))
679       // Already materialized.
680       continue;
681 
682     // Check for a function that isn't materializable to prevent an infinite
683     // loop.  When parsing a blockaddress stored in a global variable, there
684     // isn't a trivial way to check if a function will have a body without a
685     // linear search through FunctionsWithBodies, so just check it here.
686     if (!F->isMaterializable())
687       return error("Never resolved function from blockaddress");
688 
689     // Try to materialize F.
690     if (std::error_code EC = materialize(F))
691       return EC;
692   }
693   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
694 
695   // Reset state.
696   WillMaterializeAllForwardRefs = false;
697   return std::error_code();
698 }
699 
700 void BitcodeReader::freeState() {
701   Buffer = nullptr;
702   std::vector<Type*>().swap(TypeList);
703   ValueList.clear();
704   MetadataList.clear();
705   std::vector<Comdat *>().swap(ComdatList);
706 
707   std::vector<AttributeSet>().swap(MAttributes);
708   std::vector<BasicBlock*>().swap(FunctionBBs);
709   std::vector<Function*>().swap(FunctionsWithBodies);
710   DeferredFunctionInfo.clear();
711   DeferredMetadataInfo.clear();
712   MDKindMap.clear();
713 
714   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
715   BasicBlockFwdRefQueue.clear();
716 }
717 
718 //===----------------------------------------------------------------------===//
719 //  Helper functions to implement forward reference resolution, etc.
720 //===----------------------------------------------------------------------===//
721 
722 /// Convert a string from a record into an std::string, return true on failure.
723 template <typename StrTy>
724 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
725                             StrTy &Result) {
726   if (Idx > Record.size())
727     return true;
728 
729   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
730     Result += (char)Record[i];
731   return false;
732 }
733 
734 static bool hasImplicitComdat(size_t Val) {
735   switch (Val) {
736   default:
737     return false;
738   case 1:  // Old WeakAnyLinkage
739   case 4:  // Old LinkOnceAnyLinkage
740   case 10: // Old WeakODRLinkage
741   case 11: // Old LinkOnceODRLinkage
742     return true;
743   }
744 }
745 
746 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
747   switch (Val) {
748   default: // Map unknown/new linkages to external
749   case 0:
750     return GlobalValue::ExternalLinkage;
751   case 2:
752     return GlobalValue::AppendingLinkage;
753   case 3:
754     return GlobalValue::InternalLinkage;
755   case 5:
756     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
757   case 6:
758     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
759   case 7:
760     return GlobalValue::ExternalWeakLinkage;
761   case 8:
762     return GlobalValue::CommonLinkage;
763   case 9:
764     return GlobalValue::PrivateLinkage;
765   case 12:
766     return GlobalValue::AvailableExternallyLinkage;
767   case 13:
768     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
769   case 14:
770     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
771   case 15:
772     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
773   case 1: // Old value with implicit comdat.
774   case 16:
775     return GlobalValue::WeakAnyLinkage;
776   case 10: // Old value with implicit comdat.
777   case 17:
778     return GlobalValue::WeakODRLinkage;
779   case 4: // Old value with implicit comdat.
780   case 18:
781     return GlobalValue::LinkOnceAnyLinkage;
782   case 11: // Old value with implicit comdat.
783   case 19:
784     return GlobalValue::LinkOnceODRLinkage;
785   }
786 }
787 
788 /// Decode the flags for GlobalValue in the summary.
789 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
790                                                             uint64_t Version) {
791   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
792   // like getDecodedLinkage() above. Any future change to the linkage enum and
793   // to getDecodedLinkage() will need to be taken into account here as above.
794   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
795   RawFlags = RawFlags >> 4;
796   bool NoRename = RawFlags & 0x1;
797   bool IsNotViableToInline = RawFlags & 0x2;
798   return GlobalValueSummary::GVFlags(Linkage, NoRename, IsNotViableToInline);
799 }
800 
801 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
802   switch (Val) {
803   default: // Map unknown visibilities to default.
804   case 0: return GlobalValue::DefaultVisibility;
805   case 1: return GlobalValue::HiddenVisibility;
806   case 2: return GlobalValue::ProtectedVisibility;
807   }
808 }
809 
810 static GlobalValue::DLLStorageClassTypes
811 getDecodedDLLStorageClass(unsigned Val) {
812   switch (Val) {
813   default: // Map unknown values to default.
814   case 0: return GlobalValue::DefaultStorageClass;
815   case 1: return GlobalValue::DLLImportStorageClass;
816   case 2: return GlobalValue::DLLExportStorageClass;
817   }
818 }
819 
820 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
821   switch (Val) {
822     case 0: return GlobalVariable::NotThreadLocal;
823     default: // Map unknown non-zero value to general dynamic.
824     case 1: return GlobalVariable::GeneralDynamicTLSModel;
825     case 2: return GlobalVariable::LocalDynamicTLSModel;
826     case 3: return GlobalVariable::InitialExecTLSModel;
827     case 4: return GlobalVariable::LocalExecTLSModel;
828   }
829 }
830 
831 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
832   switch (Val) {
833     default: // Map unknown to UnnamedAddr::None.
834     case 0: return GlobalVariable::UnnamedAddr::None;
835     case 1: return GlobalVariable::UnnamedAddr::Global;
836     case 2: return GlobalVariable::UnnamedAddr::Local;
837   }
838 }
839 
840 static int getDecodedCastOpcode(unsigned Val) {
841   switch (Val) {
842   default: return -1;
843   case bitc::CAST_TRUNC   : return Instruction::Trunc;
844   case bitc::CAST_ZEXT    : return Instruction::ZExt;
845   case bitc::CAST_SEXT    : return Instruction::SExt;
846   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
847   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
848   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
849   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
850   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
851   case bitc::CAST_FPEXT   : return Instruction::FPExt;
852   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
853   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
854   case bitc::CAST_BITCAST : return Instruction::BitCast;
855   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
856   }
857 }
858 
859 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
860   bool IsFP = Ty->isFPOrFPVectorTy();
861   // BinOps are only valid for int/fp or vector of int/fp types
862   if (!IsFP && !Ty->isIntOrIntVectorTy())
863     return -1;
864 
865   switch (Val) {
866   default:
867     return -1;
868   case bitc::BINOP_ADD:
869     return IsFP ? Instruction::FAdd : Instruction::Add;
870   case bitc::BINOP_SUB:
871     return IsFP ? Instruction::FSub : Instruction::Sub;
872   case bitc::BINOP_MUL:
873     return IsFP ? Instruction::FMul : Instruction::Mul;
874   case bitc::BINOP_UDIV:
875     return IsFP ? -1 : Instruction::UDiv;
876   case bitc::BINOP_SDIV:
877     return IsFP ? Instruction::FDiv : Instruction::SDiv;
878   case bitc::BINOP_UREM:
879     return IsFP ? -1 : Instruction::URem;
880   case bitc::BINOP_SREM:
881     return IsFP ? Instruction::FRem : Instruction::SRem;
882   case bitc::BINOP_SHL:
883     return IsFP ? -1 : Instruction::Shl;
884   case bitc::BINOP_LSHR:
885     return IsFP ? -1 : Instruction::LShr;
886   case bitc::BINOP_ASHR:
887     return IsFP ? -1 : Instruction::AShr;
888   case bitc::BINOP_AND:
889     return IsFP ? -1 : Instruction::And;
890   case bitc::BINOP_OR:
891     return IsFP ? -1 : Instruction::Or;
892   case bitc::BINOP_XOR:
893     return IsFP ? -1 : Instruction::Xor;
894   }
895 }
896 
897 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
898   switch (Val) {
899   default: return AtomicRMWInst::BAD_BINOP;
900   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
901   case bitc::RMW_ADD: return AtomicRMWInst::Add;
902   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
903   case bitc::RMW_AND: return AtomicRMWInst::And;
904   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
905   case bitc::RMW_OR: return AtomicRMWInst::Or;
906   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
907   case bitc::RMW_MAX: return AtomicRMWInst::Max;
908   case bitc::RMW_MIN: return AtomicRMWInst::Min;
909   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
910   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
911   }
912 }
913 
914 static AtomicOrdering getDecodedOrdering(unsigned Val) {
915   switch (Val) {
916   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
917   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
918   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
919   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
920   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
921   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
922   default: // Map unknown orderings to sequentially-consistent.
923   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
924   }
925 }
926 
927 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
928   switch (Val) {
929   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
930   default: // Map unknown scopes to cross-thread.
931   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
932   }
933 }
934 
935 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
936   switch (Val) {
937   default: // Map unknown selection kinds to any.
938   case bitc::COMDAT_SELECTION_KIND_ANY:
939     return Comdat::Any;
940   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
941     return Comdat::ExactMatch;
942   case bitc::COMDAT_SELECTION_KIND_LARGEST:
943     return Comdat::Largest;
944   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
945     return Comdat::NoDuplicates;
946   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
947     return Comdat::SameSize;
948   }
949 }
950 
951 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
952   FastMathFlags FMF;
953   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
954     FMF.setUnsafeAlgebra();
955   if (0 != (Val & FastMathFlags::NoNaNs))
956     FMF.setNoNaNs();
957   if (0 != (Val & FastMathFlags::NoInfs))
958     FMF.setNoInfs();
959   if (0 != (Val & FastMathFlags::NoSignedZeros))
960     FMF.setNoSignedZeros();
961   if (0 != (Val & FastMathFlags::AllowReciprocal))
962     FMF.setAllowReciprocal();
963   return FMF;
964 }
965 
966 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
967   switch (Val) {
968   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
969   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
970   }
971 }
972 
973 namespace llvm {
974 namespace {
975 
976 /// \brief A class for maintaining the slot number definition
977 /// as a placeholder for the actual definition for forward constants defs.
978 class ConstantPlaceHolder : public ConstantExpr {
979   void operator=(const ConstantPlaceHolder &) = delete;
980 
981 public:
982   // allocate space for exactly one operand
983   void *operator new(size_t s) { return User::operator new(s, 1); }
984   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
985       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
986     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
987   }
988 
989   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
990   static bool classof(const Value *V) {
991     return isa<ConstantExpr>(V) &&
992            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
993   }
994 
995   /// Provide fast operand accessors
996   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
997 };
998 
999 } // end anonymous namespace
1000 
1001 // FIXME: can we inherit this from ConstantExpr?
1002 template <>
1003 struct OperandTraits<ConstantPlaceHolder> :
1004   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
1005 };
1006 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
1007 
1008 } // end namespace llvm
1009 
1010 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
1011   if (Idx == size()) {
1012     push_back(V);
1013     return;
1014   }
1015 
1016   if (Idx >= size())
1017     resize(Idx+1);
1018 
1019   WeakVH &OldV = ValuePtrs[Idx];
1020   if (!OldV) {
1021     OldV = V;
1022     return;
1023   }
1024 
1025   // Handle constants and non-constants (e.g. instrs) differently for
1026   // efficiency.
1027   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
1028     ResolveConstants.push_back(std::make_pair(PHC, Idx));
1029     OldV = V;
1030   } else {
1031     // If there was a forward reference to this value, replace it.
1032     Value *PrevVal = OldV;
1033     OldV->replaceAllUsesWith(V);
1034     delete PrevVal;
1035   }
1036 }
1037 
1038 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
1039                                                     Type *Ty) {
1040   if (Idx >= size())
1041     resize(Idx + 1);
1042 
1043   if (Value *V = ValuePtrs[Idx]) {
1044     if (Ty != V->getType())
1045       report_fatal_error("Type mismatch in constant table!");
1046     return cast<Constant>(V);
1047   }
1048 
1049   // Create and return a placeholder, which will later be RAUW'd.
1050   Constant *C = new ConstantPlaceHolder(Ty, Context);
1051   ValuePtrs[Idx] = C;
1052   return C;
1053 }
1054 
1055 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
1056   // Bail out for a clearly invalid value. This would make us call resize(0)
1057   if (Idx == std::numeric_limits<unsigned>::max())
1058     return nullptr;
1059 
1060   if (Idx >= size())
1061     resize(Idx + 1);
1062 
1063   if (Value *V = ValuePtrs[Idx]) {
1064     // If the types don't match, it's invalid.
1065     if (Ty && Ty != V->getType())
1066       return nullptr;
1067     return V;
1068   }
1069 
1070   // No type specified, must be invalid reference.
1071   if (!Ty) return nullptr;
1072 
1073   // Create and return a placeholder, which will later be RAUW'd.
1074   Value *V = new Argument(Ty);
1075   ValuePtrs[Idx] = V;
1076   return V;
1077 }
1078 
1079 /// Once all constants are read, this method bulk resolves any forward
1080 /// references.  The idea behind this is that we sometimes get constants (such
1081 /// as large arrays) which reference *many* forward ref constants.  Replacing
1082 /// each of these causes a lot of thrashing when building/reuniquing the
1083 /// constant.  Instead of doing this, we look at all the uses and rewrite all
1084 /// the place holders at once for any constant that uses a placeholder.
1085 void BitcodeReaderValueList::resolveConstantForwardRefs() {
1086   // Sort the values by-pointer so that they are efficient to look up with a
1087   // binary search.
1088   std::sort(ResolveConstants.begin(), ResolveConstants.end());
1089 
1090   SmallVector<Constant*, 64> NewOps;
1091 
1092   while (!ResolveConstants.empty()) {
1093     Value *RealVal = operator[](ResolveConstants.back().second);
1094     Constant *Placeholder = ResolveConstants.back().first;
1095     ResolveConstants.pop_back();
1096 
1097     // Loop over all users of the placeholder, updating them to reference the
1098     // new value.  If they reference more than one placeholder, update them all
1099     // at once.
1100     while (!Placeholder->use_empty()) {
1101       auto UI = Placeholder->user_begin();
1102       User *U = *UI;
1103 
1104       // If the using object isn't uniqued, just update the operands.  This
1105       // handles instructions and initializers for global variables.
1106       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
1107         UI.getUse().set(RealVal);
1108         continue;
1109       }
1110 
1111       // Otherwise, we have a constant that uses the placeholder.  Replace that
1112       // constant with a new constant that has *all* placeholder uses updated.
1113       Constant *UserC = cast<Constant>(U);
1114       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1115            I != E; ++I) {
1116         Value *NewOp;
1117         if (!isa<ConstantPlaceHolder>(*I)) {
1118           // Not a placeholder reference.
1119           NewOp = *I;
1120         } else if (*I == Placeholder) {
1121           // Common case is that it just references this one placeholder.
1122           NewOp = RealVal;
1123         } else {
1124           // Otherwise, look up the placeholder in ResolveConstants.
1125           ResolveConstantsTy::iterator It =
1126             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1127                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1128                                                             0));
1129           assert(It != ResolveConstants.end() && It->first == *I);
1130           NewOp = operator[](It->second);
1131         }
1132 
1133         NewOps.push_back(cast<Constant>(NewOp));
1134       }
1135 
1136       // Make the new constant.
1137       Constant *NewC;
1138       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1139         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1140       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1141         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1142       } else if (isa<ConstantVector>(UserC)) {
1143         NewC = ConstantVector::get(NewOps);
1144       } else {
1145         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1146         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1147       }
1148 
1149       UserC->replaceAllUsesWith(NewC);
1150       UserC->destroyConstant();
1151       NewOps.clear();
1152     }
1153 
1154     // Update all ValueHandles, they should be the only users at this point.
1155     Placeholder->replaceAllUsesWith(RealVal);
1156     delete Placeholder;
1157   }
1158 }
1159 
1160 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1161   if (Idx == size()) {
1162     push_back(MD);
1163     return;
1164   }
1165 
1166   if (Idx >= size())
1167     resize(Idx+1);
1168 
1169   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1170   if (!OldMD) {
1171     OldMD.reset(MD);
1172     return;
1173   }
1174 
1175   // If there was a forward reference to this value, replace it.
1176   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1177   PrevMD->replaceAllUsesWith(MD);
1178   --NumFwdRefs;
1179 }
1180 
1181 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1182   if (Idx >= size())
1183     resize(Idx + 1);
1184 
1185   if (Metadata *MD = MetadataPtrs[Idx])
1186     return MD;
1187 
1188   // Track forward refs to be resolved later.
1189   if (AnyFwdRefs) {
1190     MinFwdRef = std::min(MinFwdRef, Idx);
1191     MaxFwdRef = std::max(MaxFwdRef, Idx);
1192   } else {
1193     AnyFwdRefs = true;
1194     MinFwdRef = MaxFwdRef = Idx;
1195   }
1196   ++NumFwdRefs;
1197 
1198   // Create and return a placeholder, which will later be RAUW'd.
1199   Metadata *MD = MDNode::getTemporary(Context, None).release();
1200   MetadataPtrs[Idx].reset(MD);
1201   return MD;
1202 }
1203 
1204 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
1205   Metadata *MD = lookup(Idx);
1206   if (auto *N = dyn_cast_or_null<MDNode>(MD))
1207     if (!N->isResolved())
1208       return nullptr;
1209   return MD;
1210 }
1211 
1212 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1213   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1214 }
1215 
1216 void BitcodeReaderMetadataList::tryToResolveCycles() {
1217   if (NumFwdRefs)
1218     // Still forward references... can't resolve cycles.
1219     return;
1220 
1221   bool DidReplaceTypeRefs = false;
1222 
1223   // Give up on finding a full definition for any forward decls that remain.
1224   for (const auto &Ref : OldTypeRefs.FwdDecls)
1225     OldTypeRefs.Final.insert(Ref);
1226   OldTypeRefs.FwdDecls.clear();
1227 
1228   // Upgrade from old type ref arrays.  In strange cases, this could add to
1229   // OldTypeRefs.Unknown.
1230   for (const auto &Array : OldTypeRefs.Arrays) {
1231     DidReplaceTypeRefs = true;
1232     Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get()));
1233   }
1234   OldTypeRefs.Arrays.clear();
1235 
1236   // Replace old string-based type refs with the resolved node, if possible.
1237   // If we haven't seen the node, leave it to the verifier to complain about
1238   // the invalid string reference.
1239   for (const auto &Ref : OldTypeRefs.Unknown) {
1240     DidReplaceTypeRefs = true;
1241     if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first))
1242       Ref.second->replaceAllUsesWith(CT);
1243     else
1244       Ref.second->replaceAllUsesWith(Ref.first);
1245   }
1246   OldTypeRefs.Unknown.clear();
1247 
1248   // Make sure all the upgraded types are resolved.
1249   if (DidReplaceTypeRefs) {
1250     AnyFwdRefs = true;
1251     MinFwdRef = 0;
1252     MaxFwdRef = MetadataPtrs.size() - 1;
1253   }
1254 
1255   if (!AnyFwdRefs)
1256     // Nothing to do.
1257     return;
1258 
1259   // Resolve any cycles.
1260   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1261     auto &MD = MetadataPtrs[I];
1262     auto *N = dyn_cast_or_null<MDNode>(MD);
1263     if (!N)
1264       continue;
1265 
1266     assert(!N->isTemporary() && "Unexpected forward reference");
1267     N->resolveCycles();
1268   }
1269 
1270   // Make sure we return early again until there's another forward ref.
1271   AnyFwdRefs = false;
1272 }
1273 
1274 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID,
1275                                            DICompositeType &CT) {
1276   assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID");
1277   if (CT.isForwardDecl())
1278     OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT));
1279   else
1280     OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT));
1281 }
1282 
1283 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) {
1284   auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID);
1285   if (LLVM_LIKELY(!UUID))
1286     return MaybeUUID;
1287 
1288   if (auto *CT = OldTypeRefs.Final.lookup(UUID))
1289     return CT;
1290 
1291   auto &Ref = OldTypeRefs.Unknown[UUID];
1292   if (!Ref)
1293     Ref = MDNode::getTemporary(Context, None);
1294   return Ref.get();
1295 }
1296 
1297 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) {
1298   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1299   if (!Tuple || Tuple->isDistinct())
1300     return MaybeTuple;
1301 
1302   // Look through the array immediately if possible.
1303   if (!Tuple->isTemporary())
1304     return resolveTypeRefArray(Tuple);
1305 
1306   // Create and return a placeholder to use for now.  Eventually
1307   // resolveTypeRefArrays() will be resolve this forward reference.
1308   OldTypeRefs.Arrays.emplace_back(
1309       std::piecewise_construct, std::forward_as_tuple(Tuple),
1310       std::forward_as_tuple(MDTuple::getTemporary(Context, None)));
1311   return OldTypeRefs.Arrays.back().second.get();
1312 }
1313 
1314 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) {
1315   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1316   if (!Tuple || Tuple->isDistinct())
1317     return MaybeTuple;
1318 
1319   // Look through the DITypeRefArray, upgrading each DITypeRef.
1320   SmallVector<Metadata *, 32> Ops;
1321   Ops.reserve(Tuple->getNumOperands());
1322   for (Metadata *MD : Tuple->operands())
1323     Ops.push_back(upgradeTypeRef(MD));
1324 
1325   return MDTuple::get(Context, Ops);
1326 }
1327 
1328 Type *BitcodeReader::getTypeByID(unsigned ID) {
1329   // The type table size is always specified correctly.
1330   if (ID >= TypeList.size())
1331     return nullptr;
1332 
1333   if (Type *Ty = TypeList[ID])
1334     return Ty;
1335 
1336   // If we have a forward reference, the only possible case is when it is to a
1337   // named struct.  Just create a placeholder for now.
1338   return TypeList[ID] = createIdentifiedStructType(Context);
1339 }
1340 
1341 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1342                                                       StringRef Name) {
1343   auto *Ret = StructType::create(Context, Name);
1344   IdentifiedStructTypes.push_back(Ret);
1345   return Ret;
1346 }
1347 
1348 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1349   auto *Ret = StructType::create(Context);
1350   IdentifiedStructTypes.push_back(Ret);
1351   return Ret;
1352 }
1353 
1354 //===----------------------------------------------------------------------===//
1355 //  Functions for parsing blocks from the bitcode file
1356 //===----------------------------------------------------------------------===//
1357 
1358 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1359   switch (Val) {
1360   case Attribute::EndAttrKinds:
1361     llvm_unreachable("Synthetic enumerators which should never get here");
1362 
1363   case Attribute::None:            return 0;
1364   case Attribute::ZExt:            return 1 << 0;
1365   case Attribute::SExt:            return 1 << 1;
1366   case Attribute::NoReturn:        return 1 << 2;
1367   case Attribute::InReg:           return 1 << 3;
1368   case Attribute::StructRet:       return 1 << 4;
1369   case Attribute::NoUnwind:        return 1 << 5;
1370   case Attribute::NoAlias:         return 1 << 6;
1371   case Attribute::ByVal:           return 1 << 7;
1372   case Attribute::Nest:            return 1 << 8;
1373   case Attribute::ReadNone:        return 1 << 9;
1374   case Attribute::ReadOnly:        return 1 << 10;
1375   case Attribute::NoInline:        return 1 << 11;
1376   case Attribute::AlwaysInline:    return 1 << 12;
1377   case Attribute::OptimizeForSize: return 1 << 13;
1378   case Attribute::StackProtect:    return 1 << 14;
1379   case Attribute::StackProtectReq: return 1 << 15;
1380   case Attribute::Alignment:       return 31 << 16;
1381   case Attribute::NoCapture:       return 1 << 21;
1382   case Attribute::NoRedZone:       return 1 << 22;
1383   case Attribute::NoImplicitFloat: return 1 << 23;
1384   case Attribute::Naked:           return 1 << 24;
1385   case Attribute::InlineHint:      return 1 << 25;
1386   case Attribute::StackAlignment:  return 7 << 26;
1387   case Attribute::ReturnsTwice:    return 1 << 29;
1388   case Attribute::UWTable:         return 1 << 30;
1389   case Attribute::NonLazyBind:     return 1U << 31;
1390   case Attribute::SanitizeAddress: return 1ULL << 32;
1391   case Attribute::MinSize:         return 1ULL << 33;
1392   case Attribute::NoDuplicate:     return 1ULL << 34;
1393   case Attribute::StackProtectStrong: return 1ULL << 35;
1394   case Attribute::SanitizeThread:  return 1ULL << 36;
1395   case Attribute::SanitizeMemory:  return 1ULL << 37;
1396   case Attribute::NoBuiltin:       return 1ULL << 38;
1397   case Attribute::Returned:        return 1ULL << 39;
1398   case Attribute::Cold:            return 1ULL << 40;
1399   case Attribute::Builtin:         return 1ULL << 41;
1400   case Attribute::OptimizeNone:    return 1ULL << 42;
1401   case Attribute::InAlloca:        return 1ULL << 43;
1402   case Attribute::NonNull:         return 1ULL << 44;
1403   case Attribute::JumpTable:       return 1ULL << 45;
1404   case Attribute::Convergent:      return 1ULL << 46;
1405   case Attribute::SafeStack:       return 1ULL << 47;
1406   case Attribute::NoRecurse:       return 1ULL << 48;
1407   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1408   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1409   case Attribute::SwiftSelf:       return 1ULL << 51;
1410   case Attribute::SwiftError:      return 1ULL << 52;
1411   case Attribute::WriteOnly:       return 1ULL << 53;
1412   case Attribute::Dereferenceable:
1413     llvm_unreachable("dereferenceable attribute not supported in raw format");
1414     break;
1415   case Attribute::DereferenceableOrNull:
1416     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1417                      "format");
1418     break;
1419   case Attribute::ArgMemOnly:
1420     llvm_unreachable("argmemonly attribute not supported in raw format");
1421     break;
1422   case Attribute::AllocSize:
1423     llvm_unreachable("allocsize not supported in raw format");
1424     break;
1425   }
1426   llvm_unreachable("Unsupported attribute type");
1427 }
1428 
1429 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1430   if (!Val) return;
1431 
1432   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1433        I = Attribute::AttrKind(I + 1)) {
1434     if (I == Attribute::Dereferenceable ||
1435         I == Attribute::DereferenceableOrNull ||
1436         I == Attribute::ArgMemOnly ||
1437         I == Attribute::AllocSize)
1438       continue;
1439     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1440       if (I == Attribute::Alignment)
1441         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1442       else if (I == Attribute::StackAlignment)
1443         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1444       else
1445         B.addAttribute(I);
1446     }
1447   }
1448 }
1449 
1450 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1451 /// been decoded from the given integer. This function must stay in sync with
1452 /// 'encodeLLVMAttributesForBitcode'.
1453 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1454                                            uint64_t EncodedAttrs) {
1455   // FIXME: Remove in 4.0.
1456 
1457   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1458   // the bits above 31 down by 11 bits.
1459   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1460   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1461          "Alignment must be a power of two.");
1462 
1463   if (Alignment)
1464     B.addAlignmentAttr(Alignment);
1465   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1466                           (EncodedAttrs & 0xffff));
1467 }
1468 
1469 std::error_code BitcodeReader::parseAttributeBlock() {
1470   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1471     return error("Invalid record");
1472 
1473   if (!MAttributes.empty())
1474     return error("Invalid multiple blocks");
1475 
1476   SmallVector<uint64_t, 64> Record;
1477 
1478   SmallVector<AttributeSet, 8> Attrs;
1479 
1480   // Read all the records.
1481   while (true) {
1482     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1483 
1484     switch (Entry.Kind) {
1485     case BitstreamEntry::SubBlock: // Handled for us already.
1486     case BitstreamEntry::Error:
1487       return error("Malformed block");
1488     case BitstreamEntry::EndBlock:
1489       return std::error_code();
1490     case BitstreamEntry::Record:
1491       // The interesting case.
1492       break;
1493     }
1494 
1495     // Read a record.
1496     Record.clear();
1497     switch (Stream.readRecord(Entry.ID, Record)) {
1498     default:  // Default behavior: ignore.
1499       break;
1500     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1501       // FIXME: Remove in 4.0.
1502       if (Record.size() & 1)
1503         return error("Invalid record");
1504 
1505       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1506         AttrBuilder B;
1507         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1508         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1509       }
1510 
1511       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1512       Attrs.clear();
1513       break;
1514     }
1515     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1516       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1517         Attrs.push_back(MAttributeGroups[Record[i]]);
1518 
1519       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1520       Attrs.clear();
1521       break;
1522     }
1523     }
1524   }
1525 }
1526 
1527 // Returns Attribute::None on unrecognized codes.
1528 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1529   switch (Code) {
1530   default:
1531     return Attribute::None;
1532   case bitc::ATTR_KIND_ALIGNMENT:
1533     return Attribute::Alignment;
1534   case bitc::ATTR_KIND_ALWAYS_INLINE:
1535     return Attribute::AlwaysInline;
1536   case bitc::ATTR_KIND_ARGMEMONLY:
1537     return Attribute::ArgMemOnly;
1538   case bitc::ATTR_KIND_BUILTIN:
1539     return Attribute::Builtin;
1540   case bitc::ATTR_KIND_BY_VAL:
1541     return Attribute::ByVal;
1542   case bitc::ATTR_KIND_IN_ALLOCA:
1543     return Attribute::InAlloca;
1544   case bitc::ATTR_KIND_COLD:
1545     return Attribute::Cold;
1546   case bitc::ATTR_KIND_CONVERGENT:
1547     return Attribute::Convergent;
1548   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1549     return Attribute::InaccessibleMemOnly;
1550   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1551     return Attribute::InaccessibleMemOrArgMemOnly;
1552   case bitc::ATTR_KIND_INLINE_HINT:
1553     return Attribute::InlineHint;
1554   case bitc::ATTR_KIND_IN_REG:
1555     return Attribute::InReg;
1556   case bitc::ATTR_KIND_JUMP_TABLE:
1557     return Attribute::JumpTable;
1558   case bitc::ATTR_KIND_MIN_SIZE:
1559     return Attribute::MinSize;
1560   case bitc::ATTR_KIND_NAKED:
1561     return Attribute::Naked;
1562   case bitc::ATTR_KIND_NEST:
1563     return Attribute::Nest;
1564   case bitc::ATTR_KIND_NO_ALIAS:
1565     return Attribute::NoAlias;
1566   case bitc::ATTR_KIND_NO_BUILTIN:
1567     return Attribute::NoBuiltin;
1568   case bitc::ATTR_KIND_NO_CAPTURE:
1569     return Attribute::NoCapture;
1570   case bitc::ATTR_KIND_NO_DUPLICATE:
1571     return Attribute::NoDuplicate;
1572   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1573     return Attribute::NoImplicitFloat;
1574   case bitc::ATTR_KIND_NO_INLINE:
1575     return Attribute::NoInline;
1576   case bitc::ATTR_KIND_NO_RECURSE:
1577     return Attribute::NoRecurse;
1578   case bitc::ATTR_KIND_NON_LAZY_BIND:
1579     return Attribute::NonLazyBind;
1580   case bitc::ATTR_KIND_NON_NULL:
1581     return Attribute::NonNull;
1582   case bitc::ATTR_KIND_DEREFERENCEABLE:
1583     return Attribute::Dereferenceable;
1584   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1585     return Attribute::DereferenceableOrNull;
1586   case bitc::ATTR_KIND_ALLOC_SIZE:
1587     return Attribute::AllocSize;
1588   case bitc::ATTR_KIND_NO_RED_ZONE:
1589     return Attribute::NoRedZone;
1590   case bitc::ATTR_KIND_NO_RETURN:
1591     return Attribute::NoReturn;
1592   case bitc::ATTR_KIND_NO_UNWIND:
1593     return Attribute::NoUnwind;
1594   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1595     return Attribute::OptimizeForSize;
1596   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1597     return Attribute::OptimizeNone;
1598   case bitc::ATTR_KIND_READ_NONE:
1599     return Attribute::ReadNone;
1600   case bitc::ATTR_KIND_READ_ONLY:
1601     return Attribute::ReadOnly;
1602   case bitc::ATTR_KIND_RETURNED:
1603     return Attribute::Returned;
1604   case bitc::ATTR_KIND_RETURNS_TWICE:
1605     return Attribute::ReturnsTwice;
1606   case bitc::ATTR_KIND_S_EXT:
1607     return Attribute::SExt;
1608   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1609     return Attribute::StackAlignment;
1610   case bitc::ATTR_KIND_STACK_PROTECT:
1611     return Attribute::StackProtect;
1612   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1613     return Attribute::StackProtectReq;
1614   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1615     return Attribute::StackProtectStrong;
1616   case bitc::ATTR_KIND_SAFESTACK:
1617     return Attribute::SafeStack;
1618   case bitc::ATTR_KIND_STRUCT_RET:
1619     return Attribute::StructRet;
1620   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1621     return Attribute::SanitizeAddress;
1622   case bitc::ATTR_KIND_SANITIZE_THREAD:
1623     return Attribute::SanitizeThread;
1624   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1625     return Attribute::SanitizeMemory;
1626   case bitc::ATTR_KIND_SWIFT_ERROR:
1627     return Attribute::SwiftError;
1628   case bitc::ATTR_KIND_SWIFT_SELF:
1629     return Attribute::SwiftSelf;
1630   case bitc::ATTR_KIND_UW_TABLE:
1631     return Attribute::UWTable;
1632   case bitc::ATTR_KIND_WRITEONLY:
1633     return Attribute::WriteOnly;
1634   case bitc::ATTR_KIND_Z_EXT:
1635     return Attribute::ZExt;
1636   }
1637 }
1638 
1639 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1640                                                    unsigned &Alignment) {
1641   // Note: Alignment in bitcode files is incremented by 1, so that zero
1642   // can be used for default alignment.
1643   if (Exponent > Value::MaxAlignmentExponent + 1)
1644     return error("Invalid alignment value");
1645   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1646   return std::error_code();
1647 }
1648 
1649 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1650                                              Attribute::AttrKind *Kind) {
1651   *Kind = getAttrFromCode(Code);
1652   if (*Kind == Attribute::None)
1653     return error(BitcodeError::CorruptedBitcode,
1654                  "Unknown attribute kind (" + Twine(Code) + ")");
1655   return std::error_code();
1656 }
1657 
1658 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1659   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1660     return error("Invalid record");
1661 
1662   if (!MAttributeGroups.empty())
1663     return error("Invalid multiple blocks");
1664 
1665   SmallVector<uint64_t, 64> Record;
1666 
1667   // Read all the records.
1668   while (true) {
1669     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1670 
1671     switch (Entry.Kind) {
1672     case BitstreamEntry::SubBlock: // Handled for us already.
1673     case BitstreamEntry::Error:
1674       return error("Malformed block");
1675     case BitstreamEntry::EndBlock:
1676       return std::error_code();
1677     case BitstreamEntry::Record:
1678       // The interesting case.
1679       break;
1680     }
1681 
1682     // Read a record.
1683     Record.clear();
1684     switch (Stream.readRecord(Entry.ID, Record)) {
1685     default:  // Default behavior: ignore.
1686       break;
1687     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1688       if (Record.size() < 3)
1689         return error("Invalid record");
1690 
1691       uint64_t GrpID = Record[0];
1692       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1693 
1694       AttrBuilder B;
1695       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1696         if (Record[i] == 0) {        // Enum attribute
1697           Attribute::AttrKind Kind;
1698           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1699             return EC;
1700 
1701           B.addAttribute(Kind);
1702         } else if (Record[i] == 1) { // Integer attribute
1703           Attribute::AttrKind Kind;
1704           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1705             return EC;
1706           if (Kind == Attribute::Alignment)
1707             B.addAlignmentAttr(Record[++i]);
1708           else if (Kind == Attribute::StackAlignment)
1709             B.addStackAlignmentAttr(Record[++i]);
1710           else if (Kind == Attribute::Dereferenceable)
1711             B.addDereferenceableAttr(Record[++i]);
1712           else if (Kind == Attribute::DereferenceableOrNull)
1713             B.addDereferenceableOrNullAttr(Record[++i]);
1714           else if (Kind == Attribute::AllocSize)
1715             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1716         } else {                     // String attribute
1717           assert((Record[i] == 3 || Record[i] == 4) &&
1718                  "Invalid attribute group entry");
1719           bool HasValue = (Record[i++] == 4);
1720           SmallString<64> KindStr;
1721           SmallString<64> ValStr;
1722 
1723           while (Record[i] != 0 && i != e)
1724             KindStr += Record[i++];
1725           assert(Record[i] == 0 && "Kind string not null terminated");
1726 
1727           if (HasValue) {
1728             // Has a value associated with it.
1729             ++i; // Skip the '0' that terminates the "kind" string.
1730             while (Record[i] != 0 && i != e)
1731               ValStr += Record[i++];
1732             assert(Record[i] == 0 && "Value string not null terminated");
1733           }
1734 
1735           B.addAttribute(KindStr.str(), ValStr.str());
1736         }
1737       }
1738 
1739       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1740       break;
1741     }
1742     }
1743   }
1744 }
1745 
1746 std::error_code BitcodeReader::parseTypeTable() {
1747   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1748     return error("Invalid record");
1749 
1750   return parseTypeTableBody();
1751 }
1752 
1753 std::error_code BitcodeReader::parseTypeTableBody() {
1754   if (!TypeList.empty())
1755     return error("Invalid multiple blocks");
1756 
1757   SmallVector<uint64_t, 64> Record;
1758   unsigned NumRecords = 0;
1759 
1760   SmallString<64> TypeName;
1761 
1762   // Read all the records for this type table.
1763   while (true) {
1764     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1765 
1766     switch (Entry.Kind) {
1767     case BitstreamEntry::SubBlock: // Handled for us already.
1768     case BitstreamEntry::Error:
1769       return error("Malformed block");
1770     case BitstreamEntry::EndBlock:
1771       if (NumRecords != TypeList.size())
1772         return error("Malformed block");
1773       return std::error_code();
1774     case BitstreamEntry::Record:
1775       // The interesting case.
1776       break;
1777     }
1778 
1779     // Read a record.
1780     Record.clear();
1781     Type *ResultTy = nullptr;
1782     switch (Stream.readRecord(Entry.ID, Record)) {
1783     default:
1784       return error("Invalid value");
1785     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1786       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1787       // type list.  This allows us to reserve space.
1788       if (Record.size() < 1)
1789         return error("Invalid record");
1790       TypeList.resize(Record[0]);
1791       continue;
1792     case bitc::TYPE_CODE_VOID:      // VOID
1793       ResultTy = Type::getVoidTy(Context);
1794       break;
1795     case bitc::TYPE_CODE_HALF:     // HALF
1796       ResultTy = Type::getHalfTy(Context);
1797       break;
1798     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1799       ResultTy = Type::getFloatTy(Context);
1800       break;
1801     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1802       ResultTy = Type::getDoubleTy(Context);
1803       break;
1804     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1805       ResultTy = Type::getX86_FP80Ty(Context);
1806       break;
1807     case bitc::TYPE_CODE_FP128:     // FP128
1808       ResultTy = Type::getFP128Ty(Context);
1809       break;
1810     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1811       ResultTy = Type::getPPC_FP128Ty(Context);
1812       break;
1813     case bitc::TYPE_CODE_LABEL:     // LABEL
1814       ResultTy = Type::getLabelTy(Context);
1815       break;
1816     case bitc::TYPE_CODE_METADATA:  // METADATA
1817       ResultTy = Type::getMetadataTy(Context);
1818       break;
1819     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1820       ResultTy = Type::getX86_MMXTy(Context);
1821       break;
1822     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1823       ResultTy = Type::getTokenTy(Context);
1824       break;
1825     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1826       if (Record.size() < 1)
1827         return error("Invalid record");
1828 
1829       uint64_t NumBits = Record[0];
1830       if (NumBits < IntegerType::MIN_INT_BITS ||
1831           NumBits > IntegerType::MAX_INT_BITS)
1832         return error("Bitwidth for integer type out of range");
1833       ResultTy = IntegerType::get(Context, NumBits);
1834       break;
1835     }
1836     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1837                                     //          [pointee type, address space]
1838       if (Record.size() < 1)
1839         return error("Invalid record");
1840       unsigned AddressSpace = 0;
1841       if (Record.size() == 2)
1842         AddressSpace = Record[1];
1843       ResultTy = getTypeByID(Record[0]);
1844       if (!ResultTy ||
1845           !PointerType::isValidElementType(ResultTy))
1846         return error("Invalid type");
1847       ResultTy = PointerType::get(ResultTy, AddressSpace);
1848       break;
1849     }
1850     case bitc::TYPE_CODE_FUNCTION_OLD: {
1851       // FIXME: attrid is dead, remove it in LLVM 4.0
1852       // FUNCTION: [vararg, attrid, retty, paramty x N]
1853       if (Record.size() < 3)
1854         return error("Invalid record");
1855       SmallVector<Type*, 8> ArgTys;
1856       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1857         if (Type *T = getTypeByID(Record[i]))
1858           ArgTys.push_back(T);
1859         else
1860           break;
1861       }
1862 
1863       ResultTy = getTypeByID(Record[2]);
1864       if (!ResultTy || ArgTys.size() < Record.size()-3)
1865         return error("Invalid type");
1866 
1867       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1868       break;
1869     }
1870     case bitc::TYPE_CODE_FUNCTION: {
1871       // FUNCTION: [vararg, retty, paramty x N]
1872       if (Record.size() < 2)
1873         return error("Invalid record");
1874       SmallVector<Type*, 8> ArgTys;
1875       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1876         if (Type *T = getTypeByID(Record[i])) {
1877           if (!FunctionType::isValidArgumentType(T))
1878             return error("Invalid function argument type");
1879           ArgTys.push_back(T);
1880         }
1881         else
1882           break;
1883       }
1884 
1885       ResultTy = getTypeByID(Record[1]);
1886       if (!ResultTy || ArgTys.size() < Record.size()-2)
1887         return error("Invalid type");
1888 
1889       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1890       break;
1891     }
1892     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1893       if (Record.size() < 1)
1894         return error("Invalid record");
1895       SmallVector<Type*, 8> EltTys;
1896       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1897         if (Type *T = getTypeByID(Record[i]))
1898           EltTys.push_back(T);
1899         else
1900           break;
1901       }
1902       if (EltTys.size() != Record.size()-1)
1903         return error("Invalid type");
1904       ResultTy = StructType::get(Context, EltTys, Record[0]);
1905       break;
1906     }
1907     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1908       if (convertToString(Record, 0, TypeName))
1909         return error("Invalid record");
1910       continue;
1911 
1912     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1913       if (Record.size() < 1)
1914         return error("Invalid record");
1915 
1916       if (NumRecords >= TypeList.size())
1917         return error("Invalid TYPE table");
1918 
1919       // Check to see if this was forward referenced, if so fill in the temp.
1920       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1921       if (Res) {
1922         Res->setName(TypeName);
1923         TypeList[NumRecords] = nullptr;
1924       } else  // Otherwise, create a new struct.
1925         Res = createIdentifiedStructType(Context, TypeName);
1926       TypeName.clear();
1927 
1928       SmallVector<Type*, 8> EltTys;
1929       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1930         if (Type *T = getTypeByID(Record[i]))
1931           EltTys.push_back(T);
1932         else
1933           break;
1934       }
1935       if (EltTys.size() != Record.size()-1)
1936         return error("Invalid record");
1937       Res->setBody(EltTys, Record[0]);
1938       ResultTy = Res;
1939       break;
1940     }
1941     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1942       if (Record.size() != 1)
1943         return error("Invalid record");
1944 
1945       if (NumRecords >= TypeList.size())
1946         return error("Invalid TYPE table");
1947 
1948       // Check to see if this was forward referenced, if so fill in the temp.
1949       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1950       if (Res) {
1951         Res->setName(TypeName);
1952         TypeList[NumRecords] = nullptr;
1953       } else  // Otherwise, create a new struct with no body.
1954         Res = createIdentifiedStructType(Context, TypeName);
1955       TypeName.clear();
1956       ResultTy = Res;
1957       break;
1958     }
1959     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1960       if (Record.size() < 2)
1961         return error("Invalid record");
1962       ResultTy = getTypeByID(Record[1]);
1963       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1964         return error("Invalid type");
1965       ResultTy = ArrayType::get(ResultTy, Record[0]);
1966       break;
1967     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1968       if (Record.size() < 2)
1969         return error("Invalid record");
1970       if (Record[0] == 0)
1971         return error("Invalid vector length");
1972       ResultTy = getTypeByID(Record[1]);
1973       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1974         return error("Invalid type");
1975       ResultTy = VectorType::get(ResultTy, Record[0]);
1976       break;
1977     }
1978 
1979     if (NumRecords >= TypeList.size())
1980       return error("Invalid TYPE table");
1981     if (TypeList[NumRecords])
1982       return error(
1983           "Invalid TYPE table: Only named structs can be forward referenced");
1984     assert(ResultTy && "Didn't read a type?");
1985     TypeList[NumRecords++] = ResultTy;
1986   }
1987 }
1988 
1989 std::error_code BitcodeReader::parseOperandBundleTags() {
1990   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1991     return error("Invalid record");
1992 
1993   if (!BundleTags.empty())
1994     return error("Invalid multiple blocks");
1995 
1996   SmallVector<uint64_t, 64> Record;
1997 
1998   while (true) {
1999     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2000 
2001     switch (Entry.Kind) {
2002     case BitstreamEntry::SubBlock: // Handled for us already.
2003     case BitstreamEntry::Error:
2004       return error("Malformed block");
2005     case BitstreamEntry::EndBlock:
2006       return std::error_code();
2007     case BitstreamEntry::Record:
2008       // The interesting case.
2009       break;
2010     }
2011 
2012     // Tags are implicitly mapped to integers by their order.
2013 
2014     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
2015       return error("Invalid record");
2016 
2017     // OPERAND_BUNDLE_TAG: [strchr x N]
2018     BundleTags.emplace_back();
2019     if (convertToString(Record, 0, BundleTags.back()))
2020       return error("Invalid record");
2021     Record.clear();
2022   }
2023 }
2024 
2025 /// Associate a value with its name from the given index in the provided record.
2026 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2027                                             unsigned NameIndex, Triple &TT) {
2028   SmallString<128> ValueName;
2029   if (convertToString(Record, NameIndex, ValueName))
2030     return error("Invalid record");
2031   unsigned ValueID = Record[0];
2032   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2033     return error("Invalid record");
2034   Value *V = ValueList[ValueID];
2035 
2036   StringRef NameStr(ValueName.data(), ValueName.size());
2037   if (NameStr.find_first_of(0) != StringRef::npos)
2038     return error("Invalid value name");
2039   V->setName(NameStr);
2040   auto *GO = dyn_cast<GlobalObject>(V);
2041   if (GO) {
2042     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2043       if (TT.isOSBinFormatMachO())
2044         GO->setComdat(nullptr);
2045       else
2046         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2047     }
2048   }
2049   return V;
2050 }
2051 
2052 /// Helper to note and return the current location, and jump to the given
2053 /// offset.
2054 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
2055                                        BitstreamCursor &Stream) {
2056   // Save the current parsing location so we can jump back at the end
2057   // of the VST read.
2058   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2059   Stream.JumpToBit(Offset * 32);
2060 #ifndef NDEBUG
2061   // Do some checking if we are in debug mode.
2062   BitstreamEntry Entry = Stream.advance();
2063   assert(Entry.Kind == BitstreamEntry::SubBlock);
2064   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2065 #else
2066   // In NDEBUG mode ignore the output so we don't get an unused variable
2067   // warning.
2068   Stream.advance();
2069 #endif
2070   return CurrentBit;
2071 }
2072 
2073 /// Parse the value symbol table at either the current parsing location or
2074 /// at the given bit offset if provided.
2075 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2076   uint64_t CurrentBit;
2077   // Pass in the Offset to distinguish between calling for the module-level
2078   // VST (where we want to jump to the VST offset) and the function-level
2079   // VST (where we don't).
2080   if (Offset > 0)
2081     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
2082 
2083   // Compute the delta between the bitcode indices in the VST (the word offset
2084   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2085   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2086   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2087   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2088   // just before entering the VST subblock because: 1) the EnterSubBlock
2089   // changes the AbbrevID width; 2) the VST block is nested within the same
2090   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2091   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2092   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2093   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2094   unsigned FuncBitcodeOffsetDelta =
2095       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2096 
2097   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2098     return error("Invalid record");
2099 
2100   SmallVector<uint64_t, 64> Record;
2101 
2102   Triple TT(TheModule->getTargetTriple());
2103 
2104   // Read all the records for this value table.
2105   SmallString<128> ValueName;
2106 
2107   while (true) {
2108     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2109 
2110     switch (Entry.Kind) {
2111     case BitstreamEntry::SubBlock: // Handled for us already.
2112     case BitstreamEntry::Error:
2113       return error("Malformed block");
2114     case BitstreamEntry::EndBlock:
2115       if (Offset > 0)
2116         Stream.JumpToBit(CurrentBit);
2117       return std::error_code();
2118     case BitstreamEntry::Record:
2119       // The interesting case.
2120       break;
2121     }
2122 
2123     // Read a record.
2124     Record.clear();
2125     switch (Stream.readRecord(Entry.ID, Record)) {
2126     default:  // Default behavior: unknown type.
2127       break;
2128     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2129       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
2130       if (std::error_code EC = ValOrErr.getError())
2131         return EC;
2132       ValOrErr.get();
2133       break;
2134     }
2135     case bitc::VST_CODE_FNENTRY: {
2136       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2137       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
2138       if (std::error_code EC = ValOrErr.getError())
2139         return EC;
2140       Value *V = ValOrErr.get();
2141 
2142       auto *GO = dyn_cast<GlobalObject>(V);
2143       if (!GO) {
2144         // If this is an alias, need to get the actual Function object
2145         // it aliases, in order to set up the DeferredFunctionInfo entry below.
2146         auto *GA = dyn_cast<GlobalAlias>(V);
2147         if (GA)
2148           GO = GA->getBaseObject();
2149         assert(GO);
2150       }
2151 
2152       uint64_t FuncWordOffset = Record[1];
2153       Function *F = dyn_cast<Function>(GO);
2154       assert(F);
2155       uint64_t FuncBitOffset = FuncWordOffset * 32;
2156       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2157       // Set the LastFunctionBlockBit to point to the last function block.
2158       // Later when parsing is resumed after function materialization,
2159       // we can simply skip that last function block.
2160       if (FuncBitOffset > LastFunctionBlockBit)
2161         LastFunctionBlockBit = FuncBitOffset;
2162       break;
2163     }
2164     case bitc::VST_CODE_BBENTRY: {
2165       if (convertToString(Record, 1, ValueName))
2166         return error("Invalid record");
2167       BasicBlock *BB = getBasicBlock(Record[0]);
2168       if (!BB)
2169         return error("Invalid record");
2170 
2171       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2172       ValueName.clear();
2173       break;
2174     }
2175     }
2176   }
2177 }
2178 
2179 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
2180 std::error_code
2181 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
2182   if (Record.size() < 2)
2183     return error("Invalid record");
2184 
2185   unsigned Kind = Record[0];
2186   SmallString<8> Name(Record.begin() + 1, Record.end());
2187 
2188   unsigned NewKind = TheModule->getMDKindID(Name.str());
2189   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
2190     return error("Conflicting METADATA_KIND records");
2191   return std::error_code();
2192 }
2193 
2194 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
2195 
2196 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
2197                                                     StringRef Blob,
2198                                                     unsigned &NextMetadataNo) {
2199   // All the MDStrings in the block are emitted together in a single
2200   // record.  The strings are concatenated and stored in a blob along with
2201   // their sizes.
2202   if (Record.size() != 2)
2203     return error("Invalid record: metadata strings layout");
2204 
2205   unsigned NumStrings = Record[0];
2206   unsigned StringsOffset = Record[1];
2207   if (!NumStrings)
2208     return error("Invalid record: metadata strings with no strings");
2209   if (StringsOffset > Blob.size())
2210     return error("Invalid record: metadata strings corrupt offset");
2211 
2212   StringRef Lengths = Blob.slice(0, StringsOffset);
2213   SimpleBitstreamCursor R(*StreamFile);
2214   R.jumpToPointer(Lengths.begin());
2215 
2216   StringRef Strings = Blob.drop_front(StringsOffset);
2217   do {
2218     if (R.AtEndOfStream())
2219       return error("Invalid record: metadata strings bad length");
2220 
2221     unsigned Size = R.ReadVBR(6);
2222     if (Strings.size() < Size)
2223       return error("Invalid record: metadata strings truncated chars");
2224 
2225     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
2226                              NextMetadataNo++);
2227     Strings = Strings.drop_front(Size);
2228   } while (--NumStrings);
2229 
2230   return std::error_code();
2231 }
2232 
2233 namespace {
2234 
2235 class PlaceholderQueue {
2236   // Placeholders would thrash around when moved, so store in a std::deque
2237   // instead of some sort of vector.
2238   std::deque<DistinctMDOperandPlaceholder> PHs;
2239 
2240 public:
2241   DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
2242   void flush(BitcodeReaderMetadataList &MetadataList);
2243 };
2244 
2245 } // end anonymous namespace
2246 
2247 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
2248   PHs.emplace_back(ID);
2249   return PHs.back();
2250 }
2251 
2252 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
2253   while (!PHs.empty()) {
2254     PHs.front().replaceUseWith(
2255         MetadataList.getMetadataFwdRef(PHs.front().getID()));
2256     PHs.pop_front();
2257   }
2258 }
2259 
2260 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
2261 /// module level metadata.
2262 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
2263   assert((ModuleLevel || DeferredMetadataInfo.empty()) &&
2264          "Must read all module-level metadata before function-level");
2265 
2266   IsMetadataMaterialized = true;
2267   unsigned NextMetadataNo = MetadataList.size();
2268 
2269   if (!ModuleLevel && MetadataList.hasFwdRefs())
2270     return error("Invalid metadata: fwd refs into function blocks");
2271 
2272   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
2273     return error("Invalid record");
2274 
2275   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
2276   SmallVector<uint64_t, 64> Record;
2277 
2278   PlaceholderQueue Placeholders;
2279   bool IsDistinct;
2280   auto getMD = [&](unsigned ID) -> Metadata * {
2281     if (!IsDistinct)
2282       return MetadataList.getMetadataFwdRef(ID);
2283     if (auto *MD = MetadataList.getMetadataIfResolved(ID))
2284       return MD;
2285     return &Placeholders.getPlaceholderOp(ID);
2286   };
2287   auto getMDOrNull = [&](unsigned ID) -> Metadata * {
2288     if (ID)
2289       return getMD(ID - 1);
2290     return nullptr;
2291   };
2292   auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
2293     if (ID)
2294       return MetadataList.getMetadataFwdRef(ID - 1);
2295     return nullptr;
2296   };
2297   auto getMDString = [&](unsigned ID) -> MDString *{
2298     // This requires that the ID is not really a forward reference.  In
2299     // particular, the MDString must already have been resolved.
2300     return cast_or_null<MDString>(getMDOrNull(ID));
2301   };
2302 
2303   // Support for old type refs.
2304   auto getDITypeRefOrNull = [&](unsigned ID) {
2305     return MetadataList.upgradeTypeRef(getMDOrNull(ID));
2306   };
2307 
2308 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
2309   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
2310 
2311   // Read all the records.
2312   while (true) {
2313     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2314 
2315     switch (Entry.Kind) {
2316     case BitstreamEntry::SubBlock: // Handled for us already.
2317     case BitstreamEntry::Error:
2318       return error("Malformed block");
2319     case BitstreamEntry::EndBlock:
2320       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
2321       for (auto CU_SP : CUSubprograms)
2322         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
2323           for (auto &Op : SPs->operands())
2324             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
2325               SP->replaceOperandWith(7, CU_SP.first);
2326 
2327       MetadataList.tryToResolveCycles();
2328       Placeholders.flush(MetadataList);
2329       return std::error_code();
2330     case BitstreamEntry::Record:
2331       // The interesting case.
2332       break;
2333     }
2334 
2335     // Read a record.
2336     Record.clear();
2337     StringRef Blob;
2338     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
2339     IsDistinct = false;
2340     switch (Code) {
2341     default:  // Default behavior: ignore.
2342       break;
2343     case bitc::METADATA_NAME: {
2344       // Read name of the named metadata.
2345       SmallString<8> Name(Record.begin(), Record.end());
2346       Record.clear();
2347       Code = Stream.ReadCode();
2348 
2349       unsigned NextBitCode = Stream.readRecord(Code, Record);
2350       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2351         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2352 
2353       // Read named metadata elements.
2354       unsigned Size = Record.size();
2355       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2356       for (unsigned i = 0; i != Size; ++i) {
2357         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2358         if (!MD)
2359           return error("Invalid record");
2360         NMD->addOperand(MD);
2361       }
2362       break;
2363     }
2364     case bitc::METADATA_OLD_FN_NODE: {
2365       // FIXME: Remove in 4.0.
2366       // This is a LocalAsMetadata record, the only type of function-local
2367       // metadata.
2368       if (Record.size() % 2 == 1)
2369         return error("Invalid record");
2370 
2371       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2372       // to be legal, but there's no upgrade path.
2373       auto dropRecord = [&] {
2374         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2375       };
2376       if (Record.size() != 2) {
2377         dropRecord();
2378         break;
2379       }
2380 
2381       Type *Ty = getTypeByID(Record[0]);
2382       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2383         dropRecord();
2384         break;
2385       }
2386 
2387       MetadataList.assignValue(
2388           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2389           NextMetadataNo++);
2390       break;
2391     }
2392     case bitc::METADATA_OLD_NODE: {
2393       // FIXME: Remove in 4.0.
2394       if (Record.size() % 2 == 1)
2395         return error("Invalid record");
2396 
2397       unsigned Size = Record.size();
2398       SmallVector<Metadata *, 8> Elts;
2399       for (unsigned i = 0; i != Size; i += 2) {
2400         Type *Ty = getTypeByID(Record[i]);
2401         if (!Ty)
2402           return error("Invalid record");
2403         if (Ty->isMetadataTy())
2404           Elts.push_back(getMD(Record[i + 1]));
2405         else if (!Ty->isVoidTy()) {
2406           auto *MD =
2407               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2408           assert(isa<ConstantAsMetadata>(MD) &&
2409                  "Expected non-function-local metadata");
2410           Elts.push_back(MD);
2411         } else
2412           Elts.push_back(nullptr);
2413       }
2414       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2415       break;
2416     }
2417     case bitc::METADATA_VALUE: {
2418       if (Record.size() != 2)
2419         return error("Invalid record");
2420 
2421       Type *Ty = getTypeByID(Record[0]);
2422       if (Ty->isMetadataTy() || Ty->isVoidTy())
2423         return error("Invalid record");
2424 
2425       MetadataList.assignValue(
2426           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2427           NextMetadataNo++);
2428       break;
2429     }
2430     case bitc::METADATA_DISTINCT_NODE:
2431       IsDistinct = true;
2432       LLVM_FALLTHROUGH;
2433     case bitc::METADATA_NODE: {
2434       SmallVector<Metadata *, 8> Elts;
2435       Elts.reserve(Record.size());
2436       for (unsigned ID : Record)
2437         Elts.push_back(getMDOrNull(ID));
2438       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2439                                           : MDNode::get(Context, Elts),
2440                                NextMetadataNo++);
2441       break;
2442     }
2443     case bitc::METADATA_LOCATION: {
2444       if (Record.size() != 5)
2445         return error("Invalid record");
2446 
2447       IsDistinct = Record[0];
2448       unsigned Line = Record[1];
2449       unsigned Column = Record[2];
2450       Metadata *Scope = getMD(Record[3]);
2451       Metadata *InlinedAt = getMDOrNull(Record[4]);
2452       MetadataList.assignValue(
2453           GET_OR_DISTINCT(DILocation,
2454                           (Context, Line, Column, Scope, InlinedAt)),
2455           NextMetadataNo++);
2456       break;
2457     }
2458     case bitc::METADATA_GENERIC_DEBUG: {
2459       if (Record.size() < 4)
2460         return error("Invalid record");
2461 
2462       IsDistinct = Record[0];
2463       unsigned Tag = Record[1];
2464       unsigned Version = Record[2];
2465 
2466       if (Tag >= 1u << 16 || Version != 0)
2467         return error("Invalid record");
2468 
2469       auto *Header = getMDString(Record[3]);
2470       SmallVector<Metadata *, 8> DwarfOps;
2471       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2472         DwarfOps.push_back(getMDOrNull(Record[I]));
2473       MetadataList.assignValue(
2474           GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
2475           NextMetadataNo++);
2476       break;
2477     }
2478     case bitc::METADATA_SUBRANGE: {
2479       if (Record.size() != 3)
2480         return error("Invalid record");
2481 
2482       IsDistinct = Record[0];
2483       MetadataList.assignValue(
2484           GET_OR_DISTINCT(DISubrange,
2485                           (Context, Record[1], unrotateSign(Record[2]))),
2486           NextMetadataNo++);
2487       break;
2488     }
2489     case bitc::METADATA_ENUMERATOR: {
2490       if (Record.size() != 3)
2491         return error("Invalid record");
2492 
2493       IsDistinct = Record[0];
2494       MetadataList.assignValue(
2495           GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
2496                                          getMDString(Record[2]))),
2497           NextMetadataNo++);
2498       break;
2499     }
2500     case bitc::METADATA_BASIC_TYPE: {
2501       if (Record.size() != 6)
2502         return error("Invalid record");
2503 
2504       IsDistinct = Record[0];
2505       MetadataList.assignValue(
2506           GET_OR_DISTINCT(DIBasicType,
2507                           (Context, Record[1], getMDString(Record[2]),
2508                            Record[3], Record[4], Record[5])),
2509           NextMetadataNo++);
2510       break;
2511     }
2512     case bitc::METADATA_DERIVED_TYPE: {
2513       if (Record.size() != 12)
2514         return error("Invalid record");
2515 
2516       IsDistinct = Record[0];
2517       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
2518       MetadataList.assignValue(
2519           GET_OR_DISTINCT(DIDerivedType,
2520                           (Context, Record[1], getMDString(Record[2]),
2521                            getMDOrNull(Record[3]), Record[4],
2522                            getDITypeRefOrNull(Record[5]),
2523                            getDITypeRefOrNull(Record[6]), Record[7], Record[8],
2524                            Record[9], Flags, getDITypeRefOrNull(Record[11]))),
2525           NextMetadataNo++);
2526       break;
2527     }
2528     case bitc::METADATA_COMPOSITE_TYPE: {
2529       if (Record.size() != 16)
2530         return error("Invalid record");
2531 
2532       // If we have a UUID and this is not a forward declaration, lookup the
2533       // mapping.
2534       IsDistinct = Record[0] & 0x1;
2535       bool IsNotUsedInTypeRef = Record[0] >= 2;
2536       unsigned Tag = Record[1];
2537       MDString *Name = getMDString(Record[2]);
2538       Metadata *File = getMDOrNull(Record[3]);
2539       unsigned Line = Record[4];
2540       Metadata *Scope = getDITypeRefOrNull(Record[5]);
2541       Metadata *BaseType = getDITypeRefOrNull(Record[6]);
2542       uint64_t SizeInBits = Record[7];
2543       if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max())
2544         return error("Alignment value is too large");
2545       uint32_t AlignInBits = Record[8];
2546       uint64_t OffsetInBits = Record[9];
2547       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
2548       Metadata *Elements = getMDOrNull(Record[11]);
2549       unsigned RuntimeLang = Record[12];
2550       Metadata *VTableHolder = getDITypeRefOrNull(Record[13]);
2551       Metadata *TemplateParams = getMDOrNull(Record[14]);
2552       auto *Identifier = getMDString(Record[15]);
2553       DICompositeType *CT = nullptr;
2554       if (Identifier)
2555         CT = DICompositeType::buildODRType(
2556             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2557             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2558             VTableHolder, TemplateParams);
2559 
2560       // Create a node if we didn't get a lazy ODR type.
2561       if (!CT)
2562         CT = GET_OR_DISTINCT(DICompositeType,
2563                              (Context, Tag, Name, File, Line, Scope, BaseType,
2564                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2565                               Elements, RuntimeLang, VTableHolder,
2566                               TemplateParams, Identifier));
2567       if (!IsNotUsedInTypeRef && Identifier)
2568         MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT));
2569 
2570       MetadataList.assignValue(CT, NextMetadataNo++);
2571       break;
2572     }
2573     case bitc::METADATA_SUBROUTINE_TYPE: {
2574       if (Record.size() < 3 || Record.size() > 4)
2575         return error("Invalid record");
2576       bool IsOldTypeRefArray = Record[0] < 2;
2577       unsigned CC = (Record.size() > 3) ? Record[3] : 0;
2578 
2579       IsDistinct = Record[0] & 0x1;
2580       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]);
2581       Metadata *Types = getMDOrNull(Record[2]);
2582       if (LLVM_UNLIKELY(IsOldTypeRefArray))
2583         Types = MetadataList.upgradeTypeRefArray(Types);
2584 
2585       MetadataList.assignValue(
2586           GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)),
2587           NextMetadataNo++);
2588       break;
2589     }
2590 
2591     case bitc::METADATA_MODULE: {
2592       if (Record.size() != 6)
2593         return error("Invalid record");
2594 
2595       IsDistinct = Record[0];
2596       MetadataList.assignValue(
2597           GET_OR_DISTINCT(DIModule,
2598                           (Context, getMDOrNull(Record[1]),
2599                            getMDString(Record[2]), getMDString(Record[3]),
2600                            getMDString(Record[4]), getMDString(Record[5]))),
2601           NextMetadataNo++);
2602       break;
2603     }
2604 
2605     case bitc::METADATA_FILE: {
2606       if (Record.size() != 3)
2607         return error("Invalid record");
2608 
2609       IsDistinct = Record[0];
2610       MetadataList.assignValue(
2611           GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]),
2612                                    getMDString(Record[2]))),
2613           NextMetadataNo++);
2614       break;
2615     }
2616     case bitc::METADATA_COMPILE_UNIT: {
2617       if (Record.size() < 14 || Record.size() > 17)
2618         return error("Invalid record");
2619 
2620       // Ignore Record[0], which indicates whether this compile unit is
2621       // distinct.  It's always distinct.
2622       IsDistinct = true;
2623       auto *CU = DICompileUnit::getDistinct(
2624           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2625           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2626           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2627           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2628           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2629           Record.size() <= 14 ? 0 : Record[14],
2630           Record.size() <= 16 ? true : Record[16]);
2631 
2632       MetadataList.assignValue(CU, NextMetadataNo++);
2633 
2634       // Move the Upgrade the list of subprograms.
2635       if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
2636         CUSubprograms.push_back({CU, SPs});
2637       break;
2638     }
2639     case bitc::METADATA_SUBPROGRAM: {
2640       if (Record.size() < 18 || Record.size() > 20)
2641         return error("Invalid record");
2642 
2643       IsDistinct =
2644           (Record[0] & 1) || Record[8]; // All definitions should be distinct.
2645       // Version 1 has a Function as Record[15].
2646       // Version 2 has removed Record[15].
2647       // Version 3 has the Unit as Record[15].
2648       // Version 4 added thisAdjustment.
2649       bool HasUnit = Record[0] >= 2;
2650       if (HasUnit && Record.size() < 19)
2651         return error("Invalid record");
2652       Metadata *CUorFn = getMDOrNull(Record[15]);
2653       unsigned Offset = Record.size() >= 19 ? 1 : 0;
2654       bool HasFn = Offset && !HasUnit;
2655       bool HasThisAdj = Record.size() >= 20;
2656       DISubprogram *SP = GET_OR_DISTINCT(
2657           DISubprogram, (Context,
2658                          getDITypeRefOrNull(Record[1]),  // scope
2659                          getMDString(Record[2]),         // name
2660                          getMDString(Record[3]),         // linkageName
2661                          getMDOrNull(Record[4]),         // file
2662                          Record[5],                      // line
2663                          getMDOrNull(Record[6]),         // type
2664                          Record[7],                      // isLocal
2665                          Record[8],                      // isDefinition
2666                          Record[9],                      // scopeLine
2667                          getDITypeRefOrNull(Record[10]), // containingType
2668                          Record[11],                     // virtuality
2669                          Record[12],                     // virtualIndex
2670                          HasThisAdj ? Record[19] : 0,    // thisAdjustment
2671                          static_cast<DINode::DIFlags>(Record[13] // flags
2672                                                       ),
2673                          Record[14],                       // isOptimized
2674                          HasUnit ? CUorFn : nullptr,       // unit
2675                          getMDOrNull(Record[15 + Offset]), // templateParams
2676                          getMDOrNull(Record[16 + Offset]), // declaration
2677                          getMDOrNull(Record[17 + Offset])  // variables
2678                          ));
2679       MetadataList.assignValue(SP, NextMetadataNo++);
2680 
2681       // Upgrade sp->function mapping to function->sp mapping.
2682       if (HasFn) {
2683         if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn))
2684           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2685             if (F->isMaterializable())
2686               // Defer until materialized; unmaterialized functions may not have
2687               // metadata.
2688               FunctionsWithSPs[F] = SP;
2689             else if (!F->empty())
2690               F->setSubprogram(SP);
2691           }
2692       }
2693       break;
2694     }
2695     case bitc::METADATA_LEXICAL_BLOCK: {
2696       if (Record.size() != 5)
2697         return error("Invalid record");
2698 
2699       IsDistinct = Record[0];
2700       MetadataList.assignValue(
2701           GET_OR_DISTINCT(DILexicalBlock,
2702                           (Context, getMDOrNull(Record[1]),
2703                            getMDOrNull(Record[2]), Record[3], Record[4])),
2704           NextMetadataNo++);
2705       break;
2706     }
2707     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2708       if (Record.size() != 4)
2709         return error("Invalid record");
2710 
2711       IsDistinct = Record[0];
2712       MetadataList.assignValue(
2713           GET_OR_DISTINCT(DILexicalBlockFile,
2714                           (Context, getMDOrNull(Record[1]),
2715                            getMDOrNull(Record[2]), Record[3])),
2716           NextMetadataNo++);
2717       break;
2718     }
2719     case bitc::METADATA_NAMESPACE: {
2720       if (Record.size() != 5)
2721         return error("Invalid record");
2722 
2723       IsDistinct = Record[0] & 1;
2724       bool ExportSymbols = Record[0] & 2;
2725       MetadataList.assignValue(
2726           GET_OR_DISTINCT(DINamespace,
2727                           (Context, getMDOrNull(Record[1]),
2728                            getMDOrNull(Record[2]), getMDString(Record[3]),
2729                            Record[4], ExportSymbols)),
2730           NextMetadataNo++);
2731       break;
2732     }
2733     case bitc::METADATA_MACRO: {
2734       if (Record.size() != 5)
2735         return error("Invalid record");
2736 
2737       IsDistinct = Record[0];
2738       MetadataList.assignValue(
2739           GET_OR_DISTINCT(DIMacro,
2740                           (Context, Record[1], Record[2],
2741                            getMDString(Record[3]), getMDString(Record[4]))),
2742           NextMetadataNo++);
2743       break;
2744     }
2745     case bitc::METADATA_MACRO_FILE: {
2746       if (Record.size() != 5)
2747         return error("Invalid record");
2748 
2749       IsDistinct = Record[0];
2750       MetadataList.assignValue(
2751           GET_OR_DISTINCT(DIMacroFile,
2752                           (Context, Record[1], Record[2],
2753                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2754           NextMetadataNo++);
2755       break;
2756     }
2757     case bitc::METADATA_TEMPLATE_TYPE: {
2758       if (Record.size() != 3)
2759         return error("Invalid record");
2760 
2761       IsDistinct = Record[0];
2762       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2763                                                (Context, getMDString(Record[1]),
2764                                                 getDITypeRefOrNull(Record[2]))),
2765                                NextMetadataNo++);
2766       break;
2767     }
2768     case bitc::METADATA_TEMPLATE_VALUE: {
2769       if (Record.size() != 5)
2770         return error("Invalid record");
2771 
2772       IsDistinct = Record[0];
2773       MetadataList.assignValue(
2774           GET_OR_DISTINCT(DITemplateValueParameter,
2775                           (Context, Record[1], getMDString(Record[2]),
2776                            getDITypeRefOrNull(Record[3]),
2777                            getMDOrNull(Record[4]))),
2778           NextMetadataNo++);
2779       break;
2780     }
2781     case bitc::METADATA_GLOBAL_VAR: {
2782       if (Record.size() < 11 || Record.size() > 12)
2783         return error("Invalid record");
2784 
2785       IsDistinct = Record[0];
2786 
2787       // Upgrade old metadata, which stored a global variable reference or a
2788       // ConstantInt here.
2789       Metadata *Expr = getMDOrNull(Record[9]);
2790       uint32_t AlignInBits = 0;
2791       if (Record.size() > 11) {
2792         if (Record[11] > (uint64_t)std::numeric_limits<uint32_t>::max())
2793           return error("Alignment value is too large");
2794         AlignInBits = Record[11];
2795       }
2796       GlobalVariable *Attach = nullptr;
2797       if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) {
2798         if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) {
2799           Attach = GV;
2800           Expr = nullptr;
2801         } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) {
2802           Expr = DIExpression::get(Context,
2803                                    {dwarf::DW_OP_constu, CI->getZExtValue(),
2804                                     dwarf::DW_OP_stack_value});
2805         } else {
2806           Expr = nullptr;
2807         }
2808       }
2809 
2810       DIGlobalVariable *DGV = GET_OR_DISTINCT(
2811           DIGlobalVariable,
2812           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2813            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2814            getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr,
2815            getMDOrNull(Record[10]), AlignInBits));
2816       MetadataList.assignValue(DGV, NextMetadataNo++);
2817 
2818       if (Attach)
2819         Attach->addDebugInfo(DGV);
2820 
2821       break;
2822     }
2823     case bitc::METADATA_LOCAL_VAR: {
2824       // 10th field is for the obseleted 'inlinedAt:' field.
2825       if (Record.size() < 8 || Record.size() > 10)
2826         return error("Invalid record");
2827 
2828       IsDistinct = Record[0] & 1;
2829       bool HasAlignment = Record[0] & 2;
2830       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2831       // DW_TAG_arg_variable, if we have alignment flag encoded it means, that
2832       // this is newer version of record which doesn't have artifical tag.
2833       bool HasTag = !HasAlignment && Record.size() > 8;
2834       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]);
2835       uint32_t AlignInBits = 0;
2836       if (HasAlignment) {
2837         if (Record[8 + HasTag] >
2838             (uint64_t)std::numeric_limits<uint32_t>::max())
2839           return error("Alignment value is too large");
2840         AlignInBits = Record[8 + HasTag];
2841       }
2842       MetadataList.assignValue(
2843           GET_OR_DISTINCT(DILocalVariable,
2844                           (Context, getMDOrNull(Record[1 + HasTag]),
2845                            getMDString(Record[2 + HasTag]),
2846                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2847                            getDITypeRefOrNull(Record[5 + HasTag]),
2848                            Record[6 + HasTag], Flags, AlignInBits)),
2849           NextMetadataNo++);
2850       break;
2851     }
2852     case bitc::METADATA_EXPRESSION: {
2853       if (Record.size() < 1)
2854         return error("Invalid record");
2855 
2856       IsDistinct = Record[0];
2857       MetadataList.assignValue(
2858           GET_OR_DISTINCT(DIExpression,
2859                           (Context, makeArrayRef(Record).slice(1))),
2860           NextMetadataNo++);
2861       break;
2862     }
2863     case bitc::METADATA_OBJC_PROPERTY: {
2864       if (Record.size() != 8)
2865         return error("Invalid record");
2866 
2867       IsDistinct = Record[0];
2868       MetadataList.assignValue(
2869           GET_OR_DISTINCT(DIObjCProperty,
2870                           (Context, getMDString(Record[1]),
2871                            getMDOrNull(Record[2]), Record[3],
2872                            getMDString(Record[4]), getMDString(Record[5]),
2873                            Record[6], getDITypeRefOrNull(Record[7]))),
2874           NextMetadataNo++);
2875       break;
2876     }
2877     case bitc::METADATA_IMPORTED_ENTITY: {
2878       if (Record.size() != 6)
2879         return error("Invalid record");
2880 
2881       IsDistinct = Record[0];
2882       MetadataList.assignValue(
2883           GET_OR_DISTINCT(DIImportedEntity,
2884                           (Context, Record[1], getMDOrNull(Record[2]),
2885                            getDITypeRefOrNull(Record[3]), Record[4],
2886                            getMDString(Record[5]))),
2887           NextMetadataNo++);
2888       break;
2889     }
2890     case bitc::METADATA_STRING_OLD: {
2891       std::string String(Record.begin(), Record.end());
2892 
2893       // Test for upgrading !llvm.loop.
2894       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2895 
2896       Metadata *MD = MDString::get(Context, String);
2897       MetadataList.assignValue(MD, NextMetadataNo++);
2898       break;
2899     }
2900     case bitc::METADATA_STRINGS:
2901       if (std::error_code EC =
2902               parseMetadataStrings(Record, Blob, NextMetadataNo))
2903         return EC;
2904       break;
2905     case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
2906       if (Record.size() % 2 == 0)
2907         return error("Invalid record");
2908       unsigned ValueID = Record[0];
2909       if (ValueID >= ValueList.size())
2910         return error("Invalid record");
2911       if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
2912         parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1));
2913       break;
2914     }
2915     case bitc::METADATA_KIND: {
2916       // Support older bitcode files that had METADATA_KIND records in a
2917       // block with METADATA_BLOCK_ID.
2918       if (std::error_code EC = parseMetadataKindRecord(Record))
2919         return EC;
2920       break;
2921     }
2922     }
2923   }
2924 
2925 #undef GET_OR_DISTINCT
2926 }
2927 
2928 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2929 std::error_code BitcodeReader::parseMetadataKinds() {
2930   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2931     return error("Invalid record");
2932 
2933   SmallVector<uint64_t, 64> Record;
2934 
2935   // Read all the records.
2936   while (true) {
2937     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2938 
2939     switch (Entry.Kind) {
2940     case BitstreamEntry::SubBlock: // Handled for us already.
2941     case BitstreamEntry::Error:
2942       return error("Malformed block");
2943     case BitstreamEntry::EndBlock:
2944       return std::error_code();
2945     case BitstreamEntry::Record:
2946       // The interesting case.
2947       break;
2948     }
2949 
2950     // Read a record.
2951     Record.clear();
2952     unsigned Code = Stream.readRecord(Entry.ID, Record);
2953     switch (Code) {
2954     default: // Default behavior: ignore.
2955       break;
2956     case bitc::METADATA_KIND: {
2957       if (std::error_code EC = parseMetadataKindRecord(Record))
2958         return EC;
2959       break;
2960     }
2961     }
2962   }
2963 }
2964 
2965 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2966 /// encoding.
2967 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2968   if ((V & 1) == 0)
2969     return V >> 1;
2970   if (V != 1)
2971     return -(V >> 1);
2972   // There is no such thing as -0 with integers.  "-0" really means MININT.
2973   return 1ULL << 63;
2974 }
2975 
2976 /// Resolve all of the initializers for global values and aliases that we can.
2977 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2978   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2979   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
2980       IndirectSymbolInitWorklist;
2981   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2982   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2983   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2984 
2985   GlobalInitWorklist.swap(GlobalInits);
2986   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2987   FunctionPrefixWorklist.swap(FunctionPrefixes);
2988   FunctionPrologueWorklist.swap(FunctionPrologues);
2989   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2990 
2991   while (!GlobalInitWorklist.empty()) {
2992     unsigned ValID = GlobalInitWorklist.back().second;
2993     if (ValID >= ValueList.size()) {
2994       // Not ready to resolve this yet, it requires something later in the file.
2995       GlobalInits.push_back(GlobalInitWorklist.back());
2996     } else {
2997       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2998         GlobalInitWorklist.back().first->setInitializer(C);
2999       else
3000         return error("Expected a constant");
3001     }
3002     GlobalInitWorklist.pop_back();
3003   }
3004 
3005   while (!IndirectSymbolInitWorklist.empty()) {
3006     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3007     if (ValID >= ValueList.size()) {
3008       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3009     } else {
3010       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
3011       if (!C)
3012         return error("Expected a constant");
3013       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
3014       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
3015         return error("Alias and aliasee types don't match");
3016       GIS->setIndirectSymbol(C);
3017     }
3018     IndirectSymbolInitWorklist.pop_back();
3019   }
3020 
3021   while (!FunctionPrefixWorklist.empty()) {
3022     unsigned ValID = FunctionPrefixWorklist.back().second;
3023     if (ValID >= ValueList.size()) {
3024       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
3025     } else {
3026       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3027         FunctionPrefixWorklist.back().first->setPrefixData(C);
3028       else
3029         return error("Expected a constant");
3030     }
3031     FunctionPrefixWorklist.pop_back();
3032   }
3033 
3034   while (!FunctionPrologueWorklist.empty()) {
3035     unsigned ValID = FunctionPrologueWorklist.back().second;
3036     if (ValID >= ValueList.size()) {
3037       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
3038     } else {
3039       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3040         FunctionPrologueWorklist.back().first->setPrologueData(C);
3041       else
3042         return error("Expected a constant");
3043     }
3044     FunctionPrologueWorklist.pop_back();
3045   }
3046 
3047   while (!FunctionPersonalityFnWorklist.empty()) {
3048     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
3049     if (ValID >= ValueList.size()) {
3050       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
3051     } else {
3052       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3053         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
3054       else
3055         return error("Expected a constant");
3056     }
3057     FunctionPersonalityFnWorklist.pop_back();
3058   }
3059 
3060   return std::error_code();
3061 }
3062 
3063 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3064   SmallVector<uint64_t, 8> Words(Vals.size());
3065   transform(Vals, Words.begin(),
3066                  BitcodeReader::decodeSignRotatedValue);
3067 
3068   return APInt(TypeBits, Words);
3069 }
3070 
3071 std::error_code BitcodeReader::parseConstants() {
3072   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3073     return error("Invalid record");
3074 
3075   SmallVector<uint64_t, 64> Record;
3076 
3077   // Read all the records for this value table.
3078   Type *CurTy = Type::getInt32Ty(Context);
3079   unsigned NextCstNo = ValueList.size();
3080 
3081   while (true) {
3082     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3083 
3084     switch (Entry.Kind) {
3085     case BitstreamEntry::SubBlock: // Handled for us already.
3086     case BitstreamEntry::Error:
3087       return error("Malformed block");
3088     case BitstreamEntry::EndBlock:
3089       if (NextCstNo != ValueList.size())
3090         return error("Invalid constant reference");
3091 
3092       // Once all the constants have been read, go through and resolve forward
3093       // references.
3094       ValueList.resolveConstantForwardRefs();
3095       return std::error_code();
3096     case BitstreamEntry::Record:
3097       // The interesting case.
3098       break;
3099     }
3100 
3101     // Read a record.
3102     Record.clear();
3103     Type *VoidType = Type::getVoidTy(Context);
3104     Value *V = nullptr;
3105     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3106     switch (BitCode) {
3107     default:  // Default behavior: unknown constant
3108     case bitc::CST_CODE_UNDEF:     // UNDEF
3109       V = UndefValue::get(CurTy);
3110       break;
3111     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3112       if (Record.empty())
3113         return error("Invalid record");
3114       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3115         return error("Invalid record");
3116       if (TypeList[Record[0]] == VoidType)
3117         return error("Invalid constant type");
3118       CurTy = TypeList[Record[0]];
3119       continue;  // Skip the ValueList manipulation.
3120     case bitc::CST_CODE_NULL:      // NULL
3121       V = Constant::getNullValue(CurTy);
3122       break;
3123     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3124       if (!CurTy->isIntegerTy() || Record.empty())
3125         return error("Invalid record");
3126       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3127       break;
3128     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3129       if (!CurTy->isIntegerTy() || Record.empty())
3130         return error("Invalid record");
3131 
3132       APInt VInt =
3133           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3134       V = ConstantInt::get(Context, VInt);
3135 
3136       break;
3137     }
3138     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3139       if (Record.empty())
3140         return error("Invalid record");
3141       if (CurTy->isHalfTy())
3142         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
3143                                              APInt(16, (uint16_t)Record[0])));
3144       else if (CurTy->isFloatTy())
3145         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
3146                                              APInt(32, (uint32_t)Record[0])));
3147       else if (CurTy->isDoubleTy())
3148         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
3149                                              APInt(64, Record[0])));
3150       else if (CurTy->isX86_FP80Ty()) {
3151         // Bits are not stored the same way as a normal i80 APInt, compensate.
3152         uint64_t Rearrange[2];
3153         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3154         Rearrange[1] = Record[0] >> 48;
3155         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
3156                                              APInt(80, Rearrange)));
3157       } else if (CurTy->isFP128Ty())
3158         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
3159                                              APInt(128, Record)));
3160       else if (CurTy->isPPC_FP128Ty())
3161         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
3162                                              APInt(128, Record)));
3163       else
3164         V = UndefValue::get(CurTy);
3165       break;
3166     }
3167 
3168     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3169       if (Record.empty())
3170         return error("Invalid record");
3171 
3172       unsigned Size = Record.size();
3173       SmallVector<Constant*, 16> Elts;
3174 
3175       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3176         for (unsigned i = 0; i != Size; ++i)
3177           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
3178                                                      STy->getElementType(i)));
3179         V = ConstantStruct::get(STy, Elts);
3180       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
3181         Type *EltTy = ATy->getElementType();
3182         for (unsigned i = 0; i != Size; ++i)
3183           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
3184         V = ConstantArray::get(ATy, Elts);
3185       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
3186         Type *EltTy = VTy->getElementType();
3187         for (unsigned i = 0; i != Size; ++i)
3188           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
3189         V = ConstantVector::get(Elts);
3190       } else {
3191         V = UndefValue::get(CurTy);
3192       }
3193       break;
3194     }
3195     case bitc::CST_CODE_STRING:    // STRING: [values]
3196     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3197       if (Record.empty())
3198         return error("Invalid record");
3199 
3200       SmallString<16> Elts(Record.begin(), Record.end());
3201       V = ConstantDataArray::getString(Context, Elts,
3202                                        BitCode == bitc::CST_CODE_CSTRING);
3203       break;
3204     }
3205     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3206       if (Record.empty())
3207         return error("Invalid record");
3208 
3209       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
3210       if (EltTy->isIntegerTy(8)) {
3211         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3212         if (isa<VectorType>(CurTy))
3213           V = ConstantDataVector::get(Context, Elts);
3214         else
3215           V = ConstantDataArray::get(Context, Elts);
3216       } else if (EltTy->isIntegerTy(16)) {
3217         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3218         if (isa<VectorType>(CurTy))
3219           V = ConstantDataVector::get(Context, Elts);
3220         else
3221           V = ConstantDataArray::get(Context, Elts);
3222       } else if (EltTy->isIntegerTy(32)) {
3223         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3224         if (isa<VectorType>(CurTy))
3225           V = ConstantDataVector::get(Context, Elts);
3226         else
3227           V = ConstantDataArray::get(Context, Elts);
3228       } else if (EltTy->isIntegerTy(64)) {
3229         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3230         if (isa<VectorType>(CurTy))
3231           V = ConstantDataVector::get(Context, Elts);
3232         else
3233           V = ConstantDataArray::get(Context, Elts);
3234       } else if (EltTy->isHalfTy()) {
3235         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3236         if (isa<VectorType>(CurTy))
3237           V = ConstantDataVector::getFP(Context, Elts);
3238         else
3239           V = ConstantDataArray::getFP(Context, Elts);
3240       } else if (EltTy->isFloatTy()) {
3241         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3242         if (isa<VectorType>(CurTy))
3243           V = ConstantDataVector::getFP(Context, Elts);
3244         else
3245           V = ConstantDataArray::getFP(Context, Elts);
3246       } else if (EltTy->isDoubleTy()) {
3247         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3248         if (isa<VectorType>(CurTy))
3249           V = ConstantDataVector::getFP(Context, Elts);
3250         else
3251           V = ConstantDataArray::getFP(Context, Elts);
3252       } else {
3253         return error("Invalid type for value");
3254       }
3255       break;
3256     }
3257     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3258       if (Record.size() < 3)
3259         return error("Invalid record");
3260       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3261       if (Opc < 0) {
3262         V = UndefValue::get(CurTy);  // Unknown binop.
3263       } else {
3264         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
3265         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
3266         unsigned Flags = 0;
3267         if (Record.size() >= 4) {
3268           if (Opc == Instruction::Add ||
3269               Opc == Instruction::Sub ||
3270               Opc == Instruction::Mul ||
3271               Opc == Instruction::Shl) {
3272             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3273               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3274             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3275               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3276           } else if (Opc == Instruction::SDiv ||
3277                      Opc == Instruction::UDiv ||
3278                      Opc == Instruction::LShr ||
3279                      Opc == Instruction::AShr) {
3280             if (Record[3] & (1 << bitc::PEO_EXACT))
3281               Flags |= SDivOperator::IsExact;
3282           }
3283         }
3284         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
3285       }
3286       break;
3287     }
3288     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3289       if (Record.size() < 3)
3290         return error("Invalid record");
3291       int Opc = getDecodedCastOpcode(Record[0]);
3292       if (Opc < 0) {
3293         V = UndefValue::get(CurTy);  // Unknown cast.
3294       } else {
3295         Type *OpTy = getTypeByID(Record[1]);
3296         if (!OpTy)
3297           return error("Invalid record");
3298         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
3299         V = UpgradeBitCastExpr(Opc, Op, CurTy);
3300         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
3301       }
3302       break;
3303     }
3304     case bitc::CST_CODE_CE_INBOUNDS_GEP:
3305     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
3306       unsigned OpNum = 0;
3307       Type *PointeeType = nullptr;
3308       if (Record.size() % 2)
3309         PointeeType = getTypeByID(Record[OpNum++]);
3310       SmallVector<Constant*, 16> Elts;
3311       while (OpNum != Record.size()) {
3312         Type *ElTy = getTypeByID(Record[OpNum++]);
3313         if (!ElTy)
3314           return error("Invalid record");
3315         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
3316       }
3317 
3318       if (PointeeType &&
3319           PointeeType !=
3320               cast<SequentialType>(Elts[0]->getType()->getScalarType())
3321                   ->getElementType())
3322         return error("Explicit gep operator type does not match pointee type "
3323                      "of pointer operand");
3324 
3325       if (Elts.size() < 1)
3326         return error("Invalid gep with no operands");
3327 
3328       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3329       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
3330                                          BitCode ==
3331                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
3332       break;
3333     }
3334     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3335       if (Record.size() < 3)
3336         return error("Invalid record");
3337 
3338       Type *SelectorTy = Type::getInt1Ty(Context);
3339 
3340       // The selector might be an i1 or an <n x i1>
3341       // Get the type from the ValueList before getting a forward ref.
3342       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
3343         if (Value *V = ValueList[Record[0]])
3344           if (SelectorTy != V->getType())
3345             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
3346 
3347       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
3348                                                               SelectorTy),
3349                                   ValueList.getConstantFwdRef(Record[1],CurTy),
3350                                   ValueList.getConstantFwdRef(Record[2],CurTy));
3351       break;
3352     }
3353     case bitc::CST_CODE_CE_EXTRACTELT
3354         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3355       if (Record.size() < 3)
3356         return error("Invalid record");
3357       VectorType *OpTy =
3358         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3359       if (!OpTy)
3360         return error("Invalid record");
3361       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3362       Constant *Op1 = nullptr;
3363       if (Record.size() == 4) {
3364         Type *IdxTy = getTypeByID(Record[2]);
3365         if (!IdxTy)
3366           return error("Invalid record");
3367         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3368       } else // TODO: Remove with llvm 4.0
3369         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3370       if (!Op1)
3371         return error("Invalid record");
3372       V = ConstantExpr::getExtractElement(Op0, Op1);
3373       break;
3374     }
3375     case bitc::CST_CODE_CE_INSERTELT
3376         : { // CE_INSERTELT: [opval, opval, opty, opval]
3377       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3378       if (Record.size() < 3 || !OpTy)
3379         return error("Invalid record");
3380       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3381       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
3382                                                   OpTy->getElementType());
3383       Constant *Op2 = nullptr;
3384       if (Record.size() == 4) {
3385         Type *IdxTy = getTypeByID(Record[2]);
3386         if (!IdxTy)
3387           return error("Invalid record");
3388         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3389       } else // TODO: Remove with llvm 4.0
3390         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3391       if (!Op2)
3392         return error("Invalid record");
3393       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
3394       break;
3395     }
3396     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3397       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3398       if (Record.size() < 3 || !OpTy)
3399         return error("Invalid record");
3400       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3401       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
3402       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3403                                                  OpTy->getNumElements());
3404       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
3405       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3406       break;
3407     }
3408     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3409       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3410       VectorType *OpTy =
3411         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3412       if (Record.size() < 4 || !RTy || !OpTy)
3413         return error("Invalid record");
3414       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3415       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3416       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3417                                                  RTy->getNumElements());
3418       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
3419       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3420       break;
3421     }
3422     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3423       if (Record.size() < 4)
3424         return error("Invalid record");
3425       Type *OpTy = getTypeByID(Record[0]);
3426       if (!OpTy)
3427         return error("Invalid record");
3428       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3429       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3430 
3431       if (OpTy->isFPOrFPVectorTy())
3432         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
3433       else
3434         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
3435       break;
3436     }
3437     // This maintains backward compatibility, pre-asm dialect keywords.
3438     // FIXME: Remove with the 4.0 release.
3439     case bitc::CST_CODE_INLINEASM_OLD: {
3440       if (Record.size() < 2)
3441         return error("Invalid record");
3442       std::string AsmStr, ConstrStr;
3443       bool HasSideEffects = Record[0] & 1;
3444       bool IsAlignStack = Record[0] >> 1;
3445       unsigned AsmStrSize = Record[1];
3446       if (2+AsmStrSize >= Record.size())
3447         return error("Invalid record");
3448       unsigned ConstStrSize = Record[2+AsmStrSize];
3449       if (3+AsmStrSize+ConstStrSize > Record.size())
3450         return error("Invalid record");
3451 
3452       for (unsigned i = 0; i != AsmStrSize; ++i)
3453         AsmStr += (char)Record[2+i];
3454       for (unsigned i = 0; i != ConstStrSize; ++i)
3455         ConstrStr += (char)Record[3+AsmStrSize+i];
3456       PointerType *PTy = cast<PointerType>(CurTy);
3457       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3458                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3459       break;
3460     }
3461     // This version adds support for the asm dialect keywords (e.g.,
3462     // inteldialect).
3463     case bitc::CST_CODE_INLINEASM: {
3464       if (Record.size() < 2)
3465         return error("Invalid record");
3466       std::string AsmStr, ConstrStr;
3467       bool HasSideEffects = Record[0] & 1;
3468       bool IsAlignStack = (Record[0] >> 1) & 1;
3469       unsigned AsmDialect = Record[0] >> 2;
3470       unsigned AsmStrSize = Record[1];
3471       if (2+AsmStrSize >= Record.size())
3472         return error("Invalid record");
3473       unsigned ConstStrSize = Record[2+AsmStrSize];
3474       if (3+AsmStrSize+ConstStrSize > Record.size())
3475         return error("Invalid record");
3476 
3477       for (unsigned i = 0; i != AsmStrSize; ++i)
3478         AsmStr += (char)Record[2+i];
3479       for (unsigned i = 0; i != ConstStrSize; ++i)
3480         ConstrStr += (char)Record[3+AsmStrSize+i];
3481       PointerType *PTy = cast<PointerType>(CurTy);
3482       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3483                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3484                          InlineAsm::AsmDialect(AsmDialect));
3485       break;
3486     }
3487     case bitc::CST_CODE_BLOCKADDRESS:{
3488       if (Record.size() < 3)
3489         return error("Invalid record");
3490       Type *FnTy = getTypeByID(Record[0]);
3491       if (!FnTy)
3492         return error("Invalid record");
3493       Function *Fn =
3494         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3495       if (!Fn)
3496         return error("Invalid record");
3497 
3498       // If the function is already parsed we can insert the block address right
3499       // away.
3500       BasicBlock *BB;
3501       unsigned BBID = Record[2];
3502       if (!BBID)
3503         // Invalid reference to entry block.
3504         return error("Invalid ID");
3505       if (!Fn->empty()) {
3506         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3507         for (size_t I = 0, E = BBID; I != E; ++I) {
3508           if (BBI == BBE)
3509             return error("Invalid ID");
3510           ++BBI;
3511         }
3512         BB = &*BBI;
3513       } else {
3514         // Otherwise insert a placeholder and remember it so it can be inserted
3515         // when the function is parsed.
3516         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3517         if (FwdBBs.empty())
3518           BasicBlockFwdRefQueue.push_back(Fn);
3519         if (FwdBBs.size() < BBID + 1)
3520           FwdBBs.resize(BBID + 1);
3521         if (!FwdBBs[BBID])
3522           FwdBBs[BBID] = BasicBlock::Create(Context);
3523         BB = FwdBBs[BBID];
3524       }
3525       V = BlockAddress::get(Fn, BB);
3526       break;
3527     }
3528     }
3529 
3530     ValueList.assignValue(V, NextCstNo);
3531     ++NextCstNo;
3532   }
3533 }
3534 
3535 std::error_code BitcodeReader::parseUseLists() {
3536   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3537     return error("Invalid record");
3538 
3539   // Read all the records.
3540   SmallVector<uint64_t, 64> Record;
3541 
3542   while (true) {
3543     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3544 
3545     switch (Entry.Kind) {
3546     case BitstreamEntry::SubBlock: // Handled for us already.
3547     case BitstreamEntry::Error:
3548       return error("Malformed block");
3549     case BitstreamEntry::EndBlock:
3550       return std::error_code();
3551     case BitstreamEntry::Record:
3552       // The interesting case.
3553       break;
3554     }
3555 
3556     // Read a use list record.
3557     Record.clear();
3558     bool IsBB = false;
3559     switch (Stream.readRecord(Entry.ID, Record)) {
3560     default:  // Default behavior: unknown type.
3561       break;
3562     case bitc::USELIST_CODE_BB:
3563       IsBB = true;
3564       LLVM_FALLTHROUGH;
3565     case bitc::USELIST_CODE_DEFAULT: {
3566       unsigned RecordLength = Record.size();
3567       if (RecordLength < 3)
3568         // Records should have at least an ID and two indexes.
3569         return error("Invalid record");
3570       unsigned ID = Record.back();
3571       Record.pop_back();
3572 
3573       Value *V;
3574       if (IsBB) {
3575         assert(ID < FunctionBBs.size() && "Basic block not found");
3576         V = FunctionBBs[ID];
3577       } else
3578         V = ValueList[ID];
3579       unsigned NumUses = 0;
3580       SmallDenseMap<const Use *, unsigned, 16> Order;
3581       for (const Use &U : V->materialized_uses()) {
3582         if (++NumUses > Record.size())
3583           break;
3584         Order[&U] = Record[NumUses - 1];
3585       }
3586       if (Order.size() != Record.size() || NumUses > Record.size())
3587         // Mismatches can happen if the functions are being materialized lazily
3588         // (out-of-order), or a value has been upgraded.
3589         break;
3590 
3591       V->sortUseList([&](const Use &L, const Use &R) {
3592         return Order.lookup(&L) < Order.lookup(&R);
3593       });
3594       break;
3595     }
3596     }
3597   }
3598 }
3599 
3600 /// When we see the block for metadata, remember where it is and then skip it.
3601 /// This lets us lazily deserialize the metadata.
3602 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3603   // Save the current stream state.
3604   uint64_t CurBit = Stream.GetCurrentBitNo();
3605   DeferredMetadataInfo.push_back(CurBit);
3606 
3607   // Skip over the block for now.
3608   if (Stream.SkipBlock())
3609     return error("Invalid record");
3610   return std::error_code();
3611 }
3612 
3613 std::error_code BitcodeReader::materializeMetadata() {
3614   for (uint64_t BitPos : DeferredMetadataInfo) {
3615     // Move the bit stream to the saved position.
3616     Stream.JumpToBit(BitPos);
3617     if (std::error_code EC = parseMetadata(true))
3618       return EC;
3619   }
3620   DeferredMetadataInfo.clear();
3621   return std::error_code();
3622 }
3623 
3624 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3625 
3626 /// When we see the block for a function body, remember where it is and then
3627 /// skip it.  This lets us lazily deserialize the functions.
3628 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3629   // Get the function we are talking about.
3630   if (FunctionsWithBodies.empty())
3631     return error("Insufficient function protos");
3632 
3633   Function *Fn = FunctionsWithBodies.back();
3634   FunctionsWithBodies.pop_back();
3635 
3636   // Save the current stream state.
3637   uint64_t CurBit = Stream.GetCurrentBitNo();
3638   assert(
3639       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3640       "Mismatch between VST and scanned function offsets");
3641   DeferredFunctionInfo[Fn] = CurBit;
3642 
3643   // Skip over the function block for now.
3644   if (Stream.SkipBlock())
3645     return error("Invalid record");
3646   return std::error_code();
3647 }
3648 
3649 std::error_code BitcodeReader::globalCleanup() {
3650   // Patch the initializers for globals and aliases up.
3651   resolveGlobalAndIndirectSymbolInits();
3652   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3653     return error("Malformed global initializer set");
3654 
3655   // Look for intrinsic functions which need to be upgraded at some point
3656   for (Function &F : *TheModule) {
3657     Function *NewFn;
3658     if (UpgradeIntrinsicFunction(&F, NewFn))
3659       UpgradedIntrinsics[&F] = NewFn;
3660     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3661       // Some types could be renamed during loading if several modules are
3662       // loaded in the same LLVMContext (LTO scenario). In this case we should
3663       // remangle intrinsics names as well.
3664       RemangledIntrinsics[&F] = Remangled.getValue();
3665   }
3666 
3667   // Look for global variables which need to be renamed.
3668   for (GlobalVariable &GV : TheModule->globals())
3669     UpgradeGlobalVariable(&GV);
3670 
3671   // Force deallocation of memory for these vectors to favor the client that
3672   // want lazy deserialization.
3673   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3674   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3675       IndirectSymbolInits);
3676   return std::error_code();
3677 }
3678 
3679 /// Support for lazy parsing of function bodies. This is required if we
3680 /// either have an old bitcode file without a VST forward declaration record,
3681 /// or if we have an anonymous function being materialized, since anonymous
3682 /// functions do not have a name and are therefore not in the VST.
3683 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3684   Stream.JumpToBit(NextUnreadBit);
3685 
3686   if (Stream.AtEndOfStream())
3687     return error("Could not find function in stream");
3688 
3689   if (!SeenFirstFunctionBody)
3690     return error("Trying to materialize functions before seeing function blocks");
3691 
3692   // An old bitcode file with the symbol table at the end would have
3693   // finished the parse greedily.
3694   assert(SeenValueSymbolTable);
3695 
3696   SmallVector<uint64_t, 64> Record;
3697 
3698   while (true) {
3699     BitstreamEntry Entry = Stream.advance();
3700     switch (Entry.Kind) {
3701     default:
3702       return error("Expect SubBlock");
3703     case BitstreamEntry::SubBlock:
3704       switch (Entry.ID) {
3705       default:
3706         return error("Expect function block");
3707       case bitc::FUNCTION_BLOCK_ID:
3708         if (std::error_code EC = rememberAndSkipFunctionBody())
3709           return EC;
3710         NextUnreadBit = Stream.GetCurrentBitNo();
3711         return std::error_code();
3712       }
3713     }
3714   }
3715 }
3716 
3717 std::error_code BitcodeReader::parseBitcodeVersion() {
3718   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3719     return error("Invalid record");
3720 
3721   // Read all the records.
3722   SmallVector<uint64_t, 64> Record;
3723 
3724   while (true) {
3725     BitstreamEntry Entry = Stream.advance();
3726 
3727     switch (Entry.Kind) {
3728     default:
3729     case BitstreamEntry::Error:
3730       return error("Malformed block");
3731     case BitstreamEntry::EndBlock:
3732       return std::error_code();
3733     case BitstreamEntry::Record:
3734       // The interesting case.
3735       break;
3736     }
3737 
3738     // Read a record.
3739     Record.clear();
3740     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3741     switch (BitCode) {
3742     default: // Default behavior: reject
3743       return error("Invalid value");
3744     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3745                                              // N]
3746       convertToString(Record, 0, ProducerIdentification);
3747       break;
3748     }
3749     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3750       unsigned epoch = (unsigned)Record[0];
3751       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3752         return error(
3753           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3754           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3755       }
3756     }
3757     }
3758   }
3759 }
3760 
3761 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3762                                            bool ShouldLazyLoadMetadata) {
3763   if (ResumeBit)
3764     Stream.JumpToBit(ResumeBit);
3765   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3766     return error("Invalid record");
3767 
3768   SmallVector<uint64_t, 64> Record;
3769   std::vector<std::string> SectionTable;
3770   std::vector<std::string> GCTable;
3771 
3772   // Read all the records for this module.
3773   while (true) {
3774     BitstreamEntry Entry = Stream.advance();
3775 
3776     switch (Entry.Kind) {
3777     case BitstreamEntry::Error:
3778       return error("Malformed block");
3779     case BitstreamEntry::EndBlock:
3780       return globalCleanup();
3781 
3782     case BitstreamEntry::SubBlock:
3783       switch (Entry.ID) {
3784       default:  // Skip unknown content.
3785         if (Stream.SkipBlock())
3786           return error("Invalid record");
3787         break;
3788       case bitc::BLOCKINFO_BLOCK_ID:
3789         if (Stream.ReadBlockInfoBlock())
3790           return error("Malformed block");
3791         break;
3792       case bitc::PARAMATTR_BLOCK_ID:
3793         if (std::error_code EC = parseAttributeBlock())
3794           return EC;
3795         break;
3796       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3797         if (std::error_code EC = parseAttributeGroupBlock())
3798           return EC;
3799         break;
3800       case bitc::TYPE_BLOCK_ID_NEW:
3801         if (std::error_code EC = parseTypeTable())
3802           return EC;
3803         break;
3804       case bitc::VALUE_SYMTAB_BLOCK_ID:
3805         if (!SeenValueSymbolTable) {
3806           // Either this is an old form VST without function index and an
3807           // associated VST forward declaration record (which would have caused
3808           // the VST to be jumped to and parsed before it was encountered
3809           // normally in the stream), or there were no function blocks to
3810           // trigger an earlier parsing of the VST.
3811           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3812           if (std::error_code EC = parseValueSymbolTable())
3813             return EC;
3814           SeenValueSymbolTable = true;
3815         } else {
3816           // We must have had a VST forward declaration record, which caused
3817           // the parser to jump to and parse the VST earlier.
3818           assert(VSTOffset > 0);
3819           if (Stream.SkipBlock())
3820             return error("Invalid record");
3821         }
3822         break;
3823       case bitc::CONSTANTS_BLOCK_ID:
3824         if (std::error_code EC = parseConstants())
3825           return EC;
3826         if (std::error_code EC = resolveGlobalAndIndirectSymbolInits())
3827           return EC;
3828         break;
3829       case bitc::METADATA_BLOCK_ID:
3830         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3831           if (std::error_code EC = rememberAndSkipMetadata())
3832             return EC;
3833           break;
3834         }
3835         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3836         if (std::error_code EC = parseMetadata(true))
3837           return EC;
3838         break;
3839       case bitc::METADATA_KIND_BLOCK_ID:
3840         if (std::error_code EC = parseMetadataKinds())
3841           return EC;
3842         break;
3843       case bitc::FUNCTION_BLOCK_ID:
3844         // If this is the first function body we've seen, reverse the
3845         // FunctionsWithBodies list.
3846         if (!SeenFirstFunctionBody) {
3847           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3848           if (std::error_code EC = globalCleanup())
3849             return EC;
3850           SeenFirstFunctionBody = true;
3851         }
3852 
3853         if (VSTOffset > 0) {
3854           // If we have a VST forward declaration record, make sure we
3855           // parse the VST now if we haven't already. It is needed to
3856           // set up the DeferredFunctionInfo vector for lazy reading.
3857           if (!SeenValueSymbolTable) {
3858             if (std::error_code EC =
3859                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3860               return EC;
3861             SeenValueSymbolTable = true;
3862             // Fall through so that we record the NextUnreadBit below.
3863             // This is necessary in case we have an anonymous function that
3864             // is later materialized. Since it will not have a VST entry we
3865             // need to fall back to the lazy parse to find its offset.
3866           } else {
3867             // If we have a VST forward declaration record, but have already
3868             // parsed the VST (just above, when the first function body was
3869             // encountered here), then we are resuming the parse after
3870             // materializing functions. The ResumeBit points to the
3871             // start of the last function block recorded in the
3872             // DeferredFunctionInfo map. Skip it.
3873             if (Stream.SkipBlock())
3874               return error("Invalid record");
3875             continue;
3876           }
3877         }
3878 
3879         // Support older bitcode files that did not have the function
3880         // index in the VST, nor a VST forward declaration record, as
3881         // well as anonymous functions that do not have VST entries.
3882         // Build the DeferredFunctionInfo vector on the fly.
3883         if (std::error_code EC = rememberAndSkipFunctionBody())
3884           return EC;
3885 
3886         // Suspend parsing when we reach the function bodies. Subsequent
3887         // materialization calls will resume it when necessary. If the bitcode
3888         // file is old, the symbol table will be at the end instead and will not
3889         // have been seen yet. In this case, just finish the parse now.
3890         if (SeenValueSymbolTable) {
3891           NextUnreadBit = Stream.GetCurrentBitNo();
3892           // After the VST has been parsed, we need to make sure intrinsic name
3893           // are auto-upgraded.
3894           return globalCleanup();
3895         }
3896         break;
3897       case bitc::USELIST_BLOCK_ID:
3898         if (std::error_code EC = parseUseLists())
3899           return EC;
3900         break;
3901       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3902         if (std::error_code EC = parseOperandBundleTags())
3903           return EC;
3904         break;
3905       }
3906       continue;
3907 
3908     case BitstreamEntry::Record:
3909       // The interesting case.
3910       break;
3911     }
3912 
3913     // Read a record.
3914     auto BitCode = Stream.readRecord(Entry.ID, Record);
3915     switch (BitCode) {
3916     default: break;  // Default behavior, ignore unknown content.
3917     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3918       if (Record.size() < 1)
3919         return error("Invalid record");
3920       // Only version #0 and #1 are supported so far.
3921       unsigned module_version = Record[0];
3922       switch (module_version) {
3923         default:
3924           return error("Invalid value");
3925         case 0:
3926           UseRelativeIDs = false;
3927           break;
3928         case 1:
3929           UseRelativeIDs = true;
3930           break;
3931       }
3932       break;
3933     }
3934     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3935       std::string S;
3936       if (convertToString(Record, 0, S))
3937         return error("Invalid record");
3938       TheModule->setTargetTriple(S);
3939       break;
3940     }
3941     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3942       std::string S;
3943       if (convertToString(Record, 0, S))
3944         return error("Invalid record");
3945       TheModule->setDataLayout(S);
3946       break;
3947     }
3948     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3949       std::string S;
3950       if (convertToString(Record, 0, S))
3951         return error("Invalid record");
3952       TheModule->setModuleInlineAsm(S);
3953       break;
3954     }
3955     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3956       // FIXME: Remove in 4.0.
3957       std::string S;
3958       if (convertToString(Record, 0, S))
3959         return error("Invalid record");
3960       // Ignore value.
3961       break;
3962     }
3963     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3964       std::string S;
3965       if (convertToString(Record, 0, S))
3966         return error("Invalid record");
3967       SectionTable.push_back(S);
3968       break;
3969     }
3970     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3971       std::string S;
3972       if (convertToString(Record, 0, S))
3973         return error("Invalid record");
3974       GCTable.push_back(S);
3975       break;
3976     }
3977     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3978       if (Record.size() < 2)
3979         return error("Invalid record");
3980       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3981       unsigned ComdatNameSize = Record[1];
3982       std::string ComdatName;
3983       ComdatName.reserve(ComdatNameSize);
3984       for (unsigned i = 0; i != ComdatNameSize; ++i)
3985         ComdatName += (char)Record[2 + i];
3986       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3987       C->setSelectionKind(SK);
3988       ComdatList.push_back(C);
3989       break;
3990     }
3991     // GLOBALVAR: [pointer type, isconst, initid,
3992     //             linkage, alignment, section, visibility, threadlocal,
3993     //             unnamed_addr, externally_initialized, dllstorageclass,
3994     //             comdat]
3995     case bitc::MODULE_CODE_GLOBALVAR: {
3996       if (Record.size() < 6)
3997         return error("Invalid record");
3998       Type *Ty = getTypeByID(Record[0]);
3999       if (!Ty)
4000         return error("Invalid record");
4001       bool isConstant = Record[1] & 1;
4002       bool explicitType = Record[1] & 2;
4003       unsigned AddressSpace;
4004       if (explicitType) {
4005         AddressSpace = Record[1] >> 2;
4006       } else {
4007         if (!Ty->isPointerTy())
4008           return error("Invalid type for value");
4009         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
4010         Ty = cast<PointerType>(Ty)->getElementType();
4011       }
4012 
4013       uint64_t RawLinkage = Record[3];
4014       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4015       unsigned Alignment;
4016       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
4017         return EC;
4018       std::string Section;
4019       if (Record[5]) {
4020         if (Record[5]-1 >= SectionTable.size())
4021           return error("Invalid ID");
4022         Section = SectionTable[Record[5]-1];
4023       }
4024       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4025       // Local linkage must have default visibility.
4026       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4027         // FIXME: Change to an error if non-default in 4.0.
4028         Visibility = getDecodedVisibility(Record[6]);
4029 
4030       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4031       if (Record.size() > 7)
4032         TLM = getDecodedThreadLocalMode(Record[7]);
4033 
4034       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4035       if (Record.size() > 8)
4036         UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4037 
4038       bool ExternallyInitialized = false;
4039       if (Record.size() > 9)
4040         ExternallyInitialized = Record[9];
4041 
4042       GlobalVariable *NewGV =
4043         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
4044                            TLM, AddressSpace, ExternallyInitialized);
4045       NewGV->setAlignment(Alignment);
4046       if (!Section.empty())
4047         NewGV->setSection(Section);
4048       NewGV->setVisibility(Visibility);
4049       NewGV->setUnnamedAddr(UnnamedAddr);
4050 
4051       if (Record.size() > 10)
4052         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4053       else
4054         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4055 
4056       ValueList.push_back(NewGV);
4057 
4058       // Remember which value to use for the global initializer.
4059       if (unsigned InitID = Record[2])
4060         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
4061 
4062       if (Record.size() > 11) {
4063         if (unsigned ComdatID = Record[11]) {
4064           if (ComdatID > ComdatList.size())
4065             return error("Invalid global variable comdat ID");
4066           NewGV->setComdat(ComdatList[ComdatID - 1]);
4067         }
4068       } else if (hasImplicitComdat(RawLinkage)) {
4069         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
4070       }
4071 
4072       break;
4073     }
4074     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
4075     //             alignment, section, visibility, gc, unnamed_addr,
4076     //             prologuedata, dllstorageclass, comdat, prefixdata]
4077     case bitc::MODULE_CODE_FUNCTION: {
4078       if (Record.size() < 8)
4079         return error("Invalid record");
4080       Type *Ty = getTypeByID(Record[0]);
4081       if (!Ty)
4082         return error("Invalid record");
4083       if (auto *PTy = dyn_cast<PointerType>(Ty))
4084         Ty = PTy->getElementType();
4085       auto *FTy = dyn_cast<FunctionType>(Ty);
4086       if (!FTy)
4087         return error("Invalid type for value");
4088       auto CC = static_cast<CallingConv::ID>(Record[1]);
4089       if (CC & ~CallingConv::MaxID)
4090         return error("Invalid calling convention ID");
4091 
4092       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
4093                                         "", TheModule);
4094 
4095       Func->setCallingConv(CC);
4096       bool isProto = Record[2];
4097       uint64_t RawLinkage = Record[3];
4098       Func->setLinkage(getDecodedLinkage(RawLinkage));
4099       Func->setAttributes(getAttributes(Record[4]));
4100 
4101       unsigned Alignment;
4102       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
4103         return EC;
4104       Func->setAlignment(Alignment);
4105       if (Record[6]) {
4106         if (Record[6]-1 >= SectionTable.size())
4107           return error("Invalid ID");
4108         Func->setSection(SectionTable[Record[6]-1]);
4109       }
4110       // Local linkage must have default visibility.
4111       if (!Func->hasLocalLinkage())
4112         // FIXME: Change to an error if non-default in 4.0.
4113         Func->setVisibility(getDecodedVisibility(Record[7]));
4114       if (Record.size() > 8 && Record[8]) {
4115         if (Record[8]-1 >= GCTable.size())
4116           return error("Invalid ID");
4117         Func->setGC(GCTable[Record[8] - 1]);
4118       }
4119       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4120       if (Record.size() > 9)
4121         UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4122       Func->setUnnamedAddr(UnnamedAddr);
4123       if (Record.size() > 10 && Record[10] != 0)
4124         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
4125 
4126       if (Record.size() > 11)
4127         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4128       else
4129         upgradeDLLImportExportLinkage(Func, RawLinkage);
4130 
4131       if (Record.size() > 12) {
4132         if (unsigned ComdatID = Record[12]) {
4133           if (ComdatID > ComdatList.size())
4134             return error("Invalid function comdat ID");
4135           Func->setComdat(ComdatList[ComdatID - 1]);
4136         }
4137       } else if (hasImplicitComdat(RawLinkage)) {
4138         Func->setComdat(reinterpret_cast<Comdat *>(1));
4139       }
4140 
4141       if (Record.size() > 13 && Record[13] != 0)
4142         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
4143 
4144       if (Record.size() > 14 && Record[14] != 0)
4145         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
4146 
4147       ValueList.push_back(Func);
4148 
4149       // If this is a function with a body, remember the prototype we are
4150       // creating now, so that we can match up the body with them later.
4151       if (!isProto) {
4152         Func->setIsMaterializable(true);
4153         FunctionsWithBodies.push_back(Func);
4154         DeferredFunctionInfo[Func] = 0;
4155       }
4156       break;
4157     }
4158     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
4159     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
4160     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
4161     case bitc::MODULE_CODE_IFUNC:
4162     case bitc::MODULE_CODE_ALIAS:
4163     case bitc::MODULE_CODE_ALIAS_OLD: {
4164       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4165       if (Record.size() < (3 + (unsigned)NewRecord))
4166         return error("Invalid record");
4167       unsigned OpNum = 0;
4168       Type *Ty = getTypeByID(Record[OpNum++]);
4169       if (!Ty)
4170         return error("Invalid record");
4171 
4172       unsigned AddrSpace;
4173       if (!NewRecord) {
4174         auto *PTy = dyn_cast<PointerType>(Ty);
4175         if (!PTy)
4176           return error("Invalid type for value");
4177         Ty = PTy->getElementType();
4178         AddrSpace = PTy->getAddressSpace();
4179       } else {
4180         AddrSpace = Record[OpNum++];
4181       }
4182 
4183       auto Val = Record[OpNum++];
4184       auto Linkage = Record[OpNum++];
4185       GlobalIndirectSymbol *NewGA;
4186       if (BitCode == bitc::MODULE_CODE_ALIAS ||
4187           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4188         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
4189                                     "", TheModule);
4190       else
4191         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
4192                                     "", nullptr, TheModule);
4193       // Old bitcode files didn't have visibility field.
4194       // Local linkage must have default visibility.
4195       if (OpNum != Record.size()) {
4196         auto VisInd = OpNum++;
4197         if (!NewGA->hasLocalLinkage())
4198           // FIXME: Change to an error if non-default in 4.0.
4199           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4200       }
4201       if (OpNum != Record.size())
4202         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
4203       else
4204         upgradeDLLImportExportLinkage(NewGA, Linkage);
4205       if (OpNum != Record.size())
4206         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4207       if (OpNum != Record.size())
4208         NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4209       ValueList.push_back(NewGA);
4210       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4211       break;
4212     }
4213     /// MODULE_CODE_PURGEVALS: [numvals]
4214     case bitc::MODULE_CODE_PURGEVALS:
4215       // Trim down the value list to the specified size.
4216       if (Record.size() < 1 || Record[0] > ValueList.size())
4217         return error("Invalid record");
4218       ValueList.shrinkTo(Record[0]);
4219       break;
4220     /// MODULE_CODE_VSTOFFSET: [offset]
4221     case bitc::MODULE_CODE_VSTOFFSET:
4222       if (Record.size() < 1)
4223         return error("Invalid record");
4224       VSTOffset = Record[0];
4225       break;
4226     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4227     case bitc::MODULE_CODE_SOURCE_FILENAME:
4228       SmallString<128> ValueName;
4229       if (convertToString(Record, 0, ValueName))
4230         return error("Invalid record");
4231       TheModule->setSourceFileName(ValueName);
4232       break;
4233     }
4234     Record.clear();
4235   }
4236 }
4237 
4238 /// Helper to read the header common to all bitcode files.
4239 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
4240   // Sniff for the signature.
4241   if (!Stream.canSkipToPos(4) ||
4242       Stream.Read(8) != 'B' ||
4243       Stream.Read(8) != 'C' ||
4244       Stream.Read(4) != 0x0 ||
4245       Stream.Read(4) != 0xC ||
4246       Stream.Read(4) != 0xE ||
4247       Stream.Read(4) != 0xD)
4248     return false;
4249   return true;
4250 }
4251 
4252 std::error_code BitcodeReader::parseBitcodeInto(Module *M,
4253                                                 bool ShouldLazyLoadMetadata) {
4254   TheModule = M;
4255 
4256   if (std::error_code EC = initStream())
4257     return EC;
4258 
4259   // Sniff for the signature.
4260   if (!hasValidBitcodeHeader(Stream))
4261     return error("Invalid bitcode signature");
4262 
4263   // We expect a number of well-defined blocks, though we don't necessarily
4264   // need to understand them all.
4265   while (true) {
4266     if (Stream.AtEndOfStream()) {
4267       // We didn't really read a proper Module.
4268       return error("Malformed IR file");
4269     }
4270 
4271     BitstreamEntry Entry =
4272       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
4273 
4274     if (Entry.Kind != BitstreamEntry::SubBlock)
4275       return error("Malformed block");
4276 
4277     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4278       parseBitcodeVersion();
4279       continue;
4280     }
4281 
4282     if (Entry.ID == bitc::MODULE_BLOCK_ID)
4283       return parseModule(0, ShouldLazyLoadMetadata);
4284 
4285     if (Stream.SkipBlock())
4286       return error("Invalid record");
4287   }
4288 }
4289 
4290 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
4291   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4292     return error("Invalid record");
4293 
4294   SmallVector<uint64_t, 64> Record;
4295 
4296   std::string Triple;
4297 
4298   // Read all the records for this module.
4299   while (true) {
4300     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4301 
4302     switch (Entry.Kind) {
4303     case BitstreamEntry::SubBlock: // Handled for us already.
4304     case BitstreamEntry::Error:
4305       return error("Malformed block");
4306     case BitstreamEntry::EndBlock:
4307       return Triple;
4308     case BitstreamEntry::Record:
4309       // The interesting case.
4310       break;
4311     }
4312 
4313     // Read a record.
4314     switch (Stream.readRecord(Entry.ID, Record)) {
4315     default: break;  // Default behavior, ignore unknown content.
4316     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4317       std::string S;
4318       if (convertToString(Record, 0, S))
4319         return error("Invalid record");
4320       Triple = S;
4321       break;
4322     }
4323     }
4324     Record.clear();
4325   }
4326   llvm_unreachable("Exit infinite loop");
4327 }
4328 
4329 ErrorOr<std::string> BitcodeReader::parseTriple() {
4330   if (std::error_code EC = initStream())
4331     return EC;
4332 
4333   // Sniff for the signature.
4334   if (!hasValidBitcodeHeader(Stream))
4335     return error("Invalid bitcode signature");
4336 
4337   // We expect a number of well-defined blocks, though we don't necessarily
4338   // need to understand them all.
4339   while (true) {
4340     BitstreamEntry Entry = Stream.advance();
4341 
4342     switch (Entry.Kind) {
4343     case BitstreamEntry::Error:
4344       return error("Malformed block");
4345     case BitstreamEntry::EndBlock:
4346       return std::error_code();
4347 
4348     case BitstreamEntry::SubBlock:
4349       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4350         return parseModuleTriple();
4351 
4352       // Ignore other sub-blocks.
4353       if (Stream.SkipBlock())
4354         return error("Malformed block");
4355       continue;
4356 
4357     case BitstreamEntry::Record:
4358       Stream.skipRecord(Entry.ID);
4359       continue;
4360     }
4361   }
4362 }
4363 
4364 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
4365   if (std::error_code EC = initStream())
4366     return EC;
4367 
4368   // Sniff for the signature.
4369   if (!hasValidBitcodeHeader(Stream))
4370     return error("Invalid bitcode signature");
4371 
4372   // We expect a number of well-defined blocks, though we don't necessarily
4373   // need to understand them all.
4374   while (true) {
4375     BitstreamEntry Entry = Stream.advance();
4376     switch (Entry.Kind) {
4377     case BitstreamEntry::Error:
4378       return error("Malformed block");
4379     case BitstreamEntry::EndBlock:
4380       return std::error_code();
4381 
4382     case BitstreamEntry::SubBlock:
4383       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4384         if (std::error_code EC = parseBitcodeVersion())
4385           return EC;
4386         return ProducerIdentification;
4387       }
4388       // Ignore other sub-blocks.
4389       if (Stream.SkipBlock())
4390         return error("Malformed block");
4391       continue;
4392     case BitstreamEntry::Record:
4393       Stream.skipRecord(Entry.ID);
4394       continue;
4395     }
4396   }
4397 }
4398 
4399 std::error_code BitcodeReader::parseGlobalObjectAttachment(
4400     GlobalObject &GO, ArrayRef<uint64_t> Record) {
4401   assert(Record.size() % 2 == 0);
4402   for (unsigned I = 0, E = Record.size(); I != E; I += 2) {
4403     auto K = MDKindMap.find(Record[I]);
4404     if (K == MDKindMap.end())
4405       return error("Invalid ID");
4406     MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
4407     if (!MD)
4408       return error("Invalid metadata attachment");
4409     GO.addMetadata(K->second, *MD);
4410   }
4411   return std::error_code();
4412 }
4413 
4414 ErrorOr<bool> BitcodeReader::hasObjCCategory() {
4415   if (std::error_code EC = initStream())
4416     return EC;
4417 
4418   // Sniff for the signature.
4419   if (!hasValidBitcodeHeader(Stream))
4420     return error("Invalid bitcode signature");
4421 
4422   // We expect a number of well-defined blocks, though we don't necessarily
4423   // need to understand them all.
4424   while (true) {
4425     BitstreamEntry Entry = Stream.advance();
4426 
4427     switch (Entry.Kind) {
4428     case BitstreamEntry::Error:
4429       return error("Malformed block");
4430     case BitstreamEntry::EndBlock:
4431       return std::error_code();
4432 
4433     case BitstreamEntry::SubBlock:
4434       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4435         return hasObjCCategoryInModule();
4436 
4437       // Ignore other sub-blocks.
4438       if (Stream.SkipBlock())
4439         return error("Malformed block");
4440       continue;
4441 
4442     case BitstreamEntry::Record:
4443       Stream.skipRecord(Entry.ID);
4444       continue;
4445     }
4446   }
4447 }
4448 
4449 ErrorOr<bool> BitcodeReader::hasObjCCategoryInModule() {
4450   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4451     return error("Invalid record");
4452 
4453   SmallVector<uint64_t, 64> Record;
4454   // Read all the records for this module.
4455 
4456   while (true) {
4457     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4458 
4459     switch (Entry.Kind) {
4460     case BitstreamEntry::SubBlock: // Handled for us already.
4461     case BitstreamEntry::Error:
4462       return error("Malformed block");
4463     case BitstreamEntry::EndBlock:
4464       return false;
4465     case BitstreamEntry::Record:
4466       // The interesting case.
4467       break;
4468     }
4469 
4470     // Read a record.
4471     switch (Stream.readRecord(Entry.ID, Record)) {
4472     default:
4473       break; // Default behavior, ignore unknown content.
4474     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
4475       std::string S;
4476       if (convertToString(Record, 0, S))
4477         return error("Invalid record");
4478       // Check for the i386 and other (x86_64, ARM) conventions
4479       if (S.find("__DATA, __objc_catlist") != std::string::npos ||
4480           S.find("__OBJC,__category") != std::string::npos)
4481         return true;
4482       break;
4483     }
4484     }
4485     Record.clear();
4486   }
4487   llvm_unreachable("Exit infinite loop");
4488 }
4489 
4490 /// Parse metadata attachments.
4491 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
4492   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
4493     return error("Invalid record");
4494 
4495   SmallVector<uint64_t, 64> Record;
4496 
4497   while (true) {
4498     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4499 
4500     switch (Entry.Kind) {
4501     case BitstreamEntry::SubBlock: // Handled for us already.
4502     case BitstreamEntry::Error:
4503       return error("Malformed block");
4504     case BitstreamEntry::EndBlock:
4505       return std::error_code();
4506     case BitstreamEntry::Record:
4507       // The interesting case.
4508       break;
4509     }
4510 
4511     // Read a metadata attachment record.
4512     Record.clear();
4513     switch (Stream.readRecord(Entry.ID, Record)) {
4514     default:  // Default behavior: ignore.
4515       break;
4516     case bitc::METADATA_ATTACHMENT: {
4517       unsigned RecordLength = Record.size();
4518       if (Record.empty())
4519         return error("Invalid record");
4520       if (RecordLength % 2 == 0) {
4521         // A function attachment.
4522         if (std::error_code EC = parseGlobalObjectAttachment(F, Record))
4523           return EC;
4524         continue;
4525       }
4526 
4527       // An instruction attachment.
4528       Instruction *Inst = InstructionList[Record[0]];
4529       for (unsigned i = 1; i != RecordLength; i = i+2) {
4530         unsigned Kind = Record[i];
4531         DenseMap<unsigned, unsigned>::iterator I =
4532           MDKindMap.find(Kind);
4533         if (I == MDKindMap.end())
4534           return error("Invalid ID");
4535         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
4536         if (isa<LocalAsMetadata>(Node))
4537           // Drop the attachment.  This used to be legal, but there's no
4538           // upgrade path.
4539           break;
4540         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4541         if (!MD)
4542           return error("Invalid metadata attachment");
4543 
4544         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4545           MD = upgradeInstructionLoopAttachment(*MD);
4546 
4547         if (I->second == LLVMContext::MD_tbaa) {
4548           assert(!MD->isTemporary() && "should load MDs before attachments");
4549           MD = UpgradeTBAANode(*MD);
4550         }
4551         Inst->setMetadata(I->second, MD);
4552       }
4553       break;
4554     }
4555     }
4556   }
4557 }
4558 
4559 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4560   LLVMContext &Context = PtrType->getContext();
4561   if (!isa<PointerType>(PtrType))
4562     return error(Context, "Load/Store operand is not a pointer type");
4563   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4564 
4565   if (ValType && ValType != ElemType)
4566     return error(Context, "Explicit load/store type does not match pointee "
4567                           "type of pointer operand");
4568   if (!PointerType::isLoadableOrStorableType(ElemType))
4569     return error(Context, "Cannot load/store from pointer");
4570   return std::error_code();
4571 }
4572 
4573 /// Lazily parse the specified function body block.
4574 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
4575   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4576     return error("Invalid record");
4577 
4578   // Unexpected unresolved metadata when parsing function.
4579   if (MetadataList.hasFwdRefs())
4580     return error("Invalid function metadata: incoming forward references");
4581 
4582   InstructionList.clear();
4583   unsigned ModuleValueListSize = ValueList.size();
4584   unsigned ModuleMetadataListSize = MetadataList.size();
4585 
4586   // Add all the function arguments to the value table.
4587   for (Argument &I : F->args())
4588     ValueList.push_back(&I);
4589 
4590   unsigned NextValueNo = ValueList.size();
4591   BasicBlock *CurBB = nullptr;
4592   unsigned CurBBNo = 0;
4593 
4594   DebugLoc LastLoc;
4595   auto getLastInstruction = [&]() -> Instruction * {
4596     if (CurBB && !CurBB->empty())
4597       return &CurBB->back();
4598     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4599              !FunctionBBs[CurBBNo - 1]->empty())
4600       return &FunctionBBs[CurBBNo - 1]->back();
4601     return nullptr;
4602   };
4603 
4604   std::vector<OperandBundleDef> OperandBundles;
4605 
4606   // Read all the records.
4607   SmallVector<uint64_t, 64> Record;
4608 
4609   while (true) {
4610     BitstreamEntry Entry = Stream.advance();
4611 
4612     switch (Entry.Kind) {
4613     case BitstreamEntry::Error:
4614       return error("Malformed block");
4615     case BitstreamEntry::EndBlock:
4616       goto OutOfRecordLoop;
4617 
4618     case BitstreamEntry::SubBlock:
4619       switch (Entry.ID) {
4620       default:  // Skip unknown content.
4621         if (Stream.SkipBlock())
4622           return error("Invalid record");
4623         break;
4624       case bitc::CONSTANTS_BLOCK_ID:
4625         if (std::error_code EC = parseConstants())
4626           return EC;
4627         NextValueNo = ValueList.size();
4628         break;
4629       case bitc::VALUE_SYMTAB_BLOCK_ID:
4630         if (std::error_code EC = parseValueSymbolTable())
4631           return EC;
4632         break;
4633       case bitc::METADATA_ATTACHMENT_ID:
4634         if (std::error_code EC = parseMetadataAttachment(*F))
4635           return EC;
4636         break;
4637       case bitc::METADATA_BLOCK_ID:
4638         if (std::error_code EC = parseMetadata())
4639           return EC;
4640         break;
4641       case bitc::USELIST_BLOCK_ID:
4642         if (std::error_code EC = parseUseLists())
4643           return EC;
4644         break;
4645       }
4646       continue;
4647 
4648     case BitstreamEntry::Record:
4649       // The interesting case.
4650       break;
4651     }
4652 
4653     // Read a record.
4654     Record.clear();
4655     Instruction *I = nullptr;
4656     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4657     switch (BitCode) {
4658     default: // Default behavior: reject
4659       return error("Invalid value");
4660     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4661       if (Record.size() < 1 || Record[0] == 0)
4662         return error("Invalid record");
4663       // Create all the basic blocks for the function.
4664       FunctionBBs.resize(Record[0]);
4665 
4666       // See if anything took the address of blocks in this function.
4667       auto BBFRI = BasicBlockFwdRefs.find(F);
4668       if (BBFRI == BasicBlockFwdRefs.end()) {
4669         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4670           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4671       } else {
4672         auto &BBRefs = BBFRI->second;
4673         // Check for invalid basic block references.
4674         if (BBRefs.size() > FunctionBBs.size())
4675           return error("Invalid ID");
4676         assert(!BBRefs.empty() && "Unexpected empty array");
4677         assert(!BBRefs.front() && "Invalid reference to entry block");
4678         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4679              ++I)
4680           if (I < RE && BBRefs[I]) {
4681             BBRefs[I]->insertInto(F);
4682             FunctionBBs[I] = BBRefs[I];
4683           } else {
4684             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4685           }
4686 
4687         // Erase from the table.
4688         BasicBlockFwdRefs.erase(BBFRI);
4689       }
4690 
4691       CurBB = FunctionBBs[0];
4692       continue;
4693     }
4694 
4695     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4696       // This record indicates that the last instruction is at the same
4697       // location as the previous instruction with a location.
4698       I = getLastInstruction();
4699 
4700       if (!I)
4701         return error("Invalid record");
4702       I->setDebugLoc(LastLoc);
4703       I = nullptr;
4704       continue;
4705 
4706     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4707       I = getLastInstruction();
4708       if (!I || Record.size() < 4)
4709         return error("Invalid record");
4710 
4711       unsigned Line = Record[0], Col = Record[1];
4712       unsigned ScopeID = Record[2], IAID = Record[3];
4713 
4714       MDNode *Scope = nullptr, *IA = nullptr;
4715       if (ScopeID) {
4716         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4717         if (!Scope)
4718           return error("Invalid record");
4719       }
4720       if (IAID) {
4721         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4722         if (!IA)
4723           return error("Invalid record");
4724       }
4725       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4726       I->setDebugLoc(LastLoc);
4727       I = nullptr;
4728       continue;
4729     }
4730 
4731     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4732       unsigned OpNum = 0;
4733       Value *LHS, *RHS;
4734       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4735           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4736           OpNum+1 > Record.size())
4737         return error("Invalid record");
4738 
4739       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4740       if (Opc == -1)
4741         return error("Invalid record");
4742       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4743       InstructionList.push_back(I);
4744       if (OpNum < Record.size()) {
4745         if (Opc == Instruction::Add ||
4746             Opc == Instruction::Sub ||
4747             Opc == Instruction::Mul ||
4748             Opc == Instruction::Shl) {
4749           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4750             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4751           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4752             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4753         } else if (Opc == Instruction::SDiv ||
4754                    Opc == Instruction::UDiv ||
4755                    Opc == Instruction::LShr ||
4756                    Opc == Instruction::AShr) {
4757           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4758             cast<BinaryOperator>(I)->setIsExact(true);
4759         } else if (isa<FPMathOperator>(I)) {
4760           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4761           if (FMF.any())
4762             I->setFastMathFlags(FMF);
4763         }
4764 
4765       }
4766       break;
4767     }
4768     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4769       unsigned OpNum = 0;
4770       Value *Op;
4771       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4772           OpNum+2 != Record.size())
4773         return error("Invalid record");
4774 
4775       Type *ResTy = getTypeByID(Record[OpNum]);
4776       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4777       if (Opc == -1 || !ResTy)
4778         return error("Invalid record");
4779       Instruction *Temp = nullptr;
4780       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4781         if (Temp) {
4782           InstructionList.push_back(Temp);
4783           CurBB->getInstList().push_back(Temp);
4784         }
4785       } else {
4786         auto CastOp = (Instruction::CastOps)Opc;
4787         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4788           return error("Invalid cast");
4789         I = CastInst::Create(CastOp, Op, ResTy);
4790       }
4791       InstructionList.push_back(I);
4792       break;
4793     }
4794     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4795     case bitc::FUNC_CODE_INST_GEP_OLD:
4796     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4797       unsigned OpNum = 0;
4798 
4799       Type *Ty;
4800       bool InBounds;
4801 
4802       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4803         InBounds = Record[OpNum++];
4804         Ty = getTypeByID(Record[OpNum++]);
4805       } else {
4806         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4807         Ty = nullptr;
4808       }
4809 
4810       Value *BasePtr;
4811       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4812         return error("Invalid record");
4813 
4814       if (!Ty)
4815         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4816                  ->getElementType();
4817       else if (Ty !=
4818                cast<SequentialType>(BasePtr->getType()->getScalarType())
4819                    ->getElementType())
4820         return error(
4821             "Explicit gep type does not match pointee type of pointer operand");
4822 
4823       SmallVector<Value*, 16> GEPIdx;
4824       while (OpNum != Record.size()) {
4825         Value *Op;
4826         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4827           return error("Invalid record");
4828         GEPIdx.push_back(Op);
4829       }
4830 
4831       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4832 
4833       InstructionList.push_back(I);
4834       if (InBounds)
4835         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4836       break;
4837     }
4838 
4839     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4840                                        // EXTRACTVAL: [opty, opval, n x indices]
4841       unsigned OpNum = 0;
4842       Value *Agg;
4843       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4844         return error("Invalid record");
4845 
4846       unsigned RecSize = Record.size();
4847       if (OpNum == RecSize)
4848         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4849 
4850       SmallVector<unsigned, 4> EXTRACTVALIdx;
4851       Type *CurTy = Agg->getType();
4852       for (; OpNum != RecSize; ++OpNum) {
4853         bool IsArray = CurTy->isArrayTy();
4854         bool IsStruct = CurTy->isStructTy();
4855         uint64_t Index = Record[OpNum];
4856 
4857         if (!IsStruct && !IsArray)
4858           return error("EXTRACTVAL: Invalid type");
4859         if ((unsigned)Index != Index)
4860           return error("Invalid value");
4861         if (IsStruct && Index >= CurTy->subtypes().size())
4862           return error("EXTRACTVAL: Invalid struct index");
4863         if (IsArray && Index >= CurTy->getArrayNumElements())
4864           return error("EXTRACTVAL: Invalid array index");
4865         EXTRACTVALIdx.push_back((unsigned)Index);
4866 
4867         if (IsStruct)
4868           CurTy = CurTy->subtypes()[Index];
4869         else
4870           CurTy = CurTy->subtypes()[0];
4871       }
4872 
4873       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4874       InstructionList.push_back(I);
4875       break;
4876     }
4877 
4878     case bitc::FUNC_CODE_INST_INSERTVAL: {
4879                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4880       unsigned OpNum = 0;
4881       Value *Agg;
4882       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4883         return error("Invalid record");
4884       Value *Val;
4885       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4886         return error("Invalid record");
4887 
4888       unsigned RecSize = Record.size();
4889       if (OpNum == RecSize)
4890         return error("INSERTVAL: Invalid instruction with 0 indices");
4891 
4892       SmallVector<unsigned, 4> INSERTVALIdx;
4893       Type *CurTy = Agg->getType();
4894       for (; OpNum != RecSize; ++OpNum) {
4895         bool IsArray = CurTy->isArrayTy();
4896         bool IsStruct = CurTy->isStructTy();
4897         uint64_t Index = Record[OpNum];
4898 
4899         if (!IsStruct && !IsArray)
4900           return error("INSERTVAL: Invalid type");
4901         if ((unsigned)Index != Index)
4902           return error("Invalid value");
4903         if (IsStruct && Index >= CurTy->subtypes().size())
4904           return error("INSERTVAL: Invalid struct index");
4905         if (IsArray && Index >= CurTy->getArrayNumElements())
4906           return error("INSERTVAL: Invalid array index");
4907 
4908         INSERTVALIdx.push_back((unsigned)Index);
4909         if (IsStruct)
4910           CurTy = CurTy->subtypes()[Index];
4911         else
4912           CurTy = CurTy->subtypes()[0];
4913       }
4914 
4915       if (CurTy != Val->getType())
4916         return error("Inserted value type doesn't match aggregate type");
4917 
4918       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4919       InstructionList.push_back(I);
4920       break;
4921     }
4922 
4923     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4924       // obsolete form of select
4925       // handles select i1 ... in old bitcode
4926       unsigned OpNum = 0;
4927       Value *TrueVal, *FalseVal, *Cond;
4928       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4929           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4930           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4931         return error("Invalid record");
4932 
4933       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4934       InstructionList.push_back(I);
4935       break;
4936     }
4937 
4938     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4939       // new form of select
4940       // handles select i1 or select [N x i1]
4941       unsigned OpNum = 0;
4942       Value *TrueVal, *FalseVal, *Cond;
4943       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4944           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4945           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4946         return error("Invalid record");
4947 
4948       // select condition can be either i1 or [N x i1]
4949       if (VectorType* vector_type =
4950           dyn_cast<VectorType>(Cond->getType())) {
4951         // expect <n x i1>
4952         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4953           return error("Invalid type for value");
4954       } else {
4955         // expect i1
4956         if (Cond->getType() != Type::getInt1Ty(Context))
4957           return error("Invalid type for value");
4958       }
4959 
4960       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4961       InstructionList.push_back(I);
4962       break;
4963     }
4964 
4965     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4966       unsigned OpNum = 0;
4967       Value *Vec, *Idx;
4968       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4969           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4970         return error("Invalid record");
4971       if (!Vec->getType()->isVectorTy())
4972         return error("Invalid type for value");
4973       I = ExtractElementInst::Create(Vec, Idx);
4974       InstructionList.push_back(I);
4975       break;
4976     }
4977 
4978     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4979       unsigned OpNum = 0;
4980       Value *Vec, *Elt, *Idx;
4981       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4982         return error("Invalid record");
4983       if (!Vec->getType()->isVectorTy())
4984         return error("Invalid type for value");
4985       if (popValue(Record, OpNum, NextValueNo,
4986                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4987           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4988         return error("Invalid record");
4989       I = InsertElementInst::Create(Vec, Elt, Idx);
4990       InstructionList.push_back(I);
4991       break;
4992     }
4993 
4994     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4995       unsigned OpNum = 0;
4996       Value *Vec1, *Vec2, *Mask;
4997       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4998           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4999         return error("Invalid record");
5000 
5001       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
5002         return error("Invalid record");
5003       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5004         return error("Invalid type for value");
5005       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5006       InstructionList.push_back(I);
5007       break;
5008     }
5009 
5010     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5011       // Old form of ICmp/FCmp returning bool
5012       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5013       // both legal on vectors but had different behaviour.
5014     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5015       // FCmp/ICmp returning bool or vector of bool
5016 
5017       unsigned OpNum = 0;
5018       Value *LHS, *RHS;
5019       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
5020           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
5021         return error("Invalid record");
5022 
5023       unsigned PredVal = Record[OpNum];
5024       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5025       FastMathFlags FMF;
5026       if (IsFP && Record.size() > OpNum+1)
5027         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5028 
5029       if (OpNum+1 != Record.size())
5030         return error("Invalid record");
5031 
5032       if (LHS->getType()->isFPOrFPVectorTy())
5033         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5034       else
5035         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5036 
5037       if (FMF.any())
5038         I->setFastMathFlags(FMF);
5039       InstructionList.push_back(I);
5040       break;
5041     }
5042 
5043     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5044       {
5045         unsigned Size = Record.size();
5046         if (Size == 0) {
5047           I = ReturnInst::Create(Context);
5048           InstructionList.push_back(I);
5049           break;
5050         }
5051 
5052         unsigned OpNum = 0;
5053         Value *Op = nullptr;
5054         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5055           return error("Invalid record");
5056         if (OpNum != Record.size())
5057           return error("Invalid record");
5058 
5059         I = ReturnInst::Create(Context, Op);
5060         InstructionList.push_back(I);
5061         break;
5062       }
5063     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5064       if (Record.size() != 1 && Record.size() != 3)
5065         return error("Invalid record");
5066       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5067       if (!TrueDest)
5068         return error("Invalid record");
5069 
5070       if (Record.size() == 1) {
5071         I = BranchInst::Create(TrueDest);
5072         InstructionList.push_back(I);
5073       }
5074       else {
5075         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5076         Value *Cond = getValue(Record, 2, NextValueNo,
5077                                Type::getInt1Ty(Context));
5078         if (!FalseDest || !Cond)
5079           return error("Invalid record");
5080         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5081         InstructionList.push_back(I);
5082       }
5083       break;
5084     }
5085     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5086       if (Record.size() != 1 && Record.size() != 2)
5087         return error("Invalid record");
5088       unsigned Idx = 0;
5089       Value *CleanupPad =
5090           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5091       if (!CleanupPad)
5092         return error("Invalid record");
5093       BasicBlock *UnwindDest = nullptr;
5094       if (Record.size() == 2) {
5095         UnwindDest = getBasicBlock(Record[Idx++]);
5096         if (!UnwindDest)
5097           return error("Invalid record");
5098       }
5099 
5100       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5101       InstructionList.push_back(I);
5102       break;
5103     }
5104     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5105       if (Record.size() != 2)
5106         return error("Invalid record");
5107       unsigned Idx = 0;
5108       Value *CatchPad =
5109           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5110       if (!CatchPad)
5111         return error("Invalid record");
5112       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5113       if (!BB)
5114         return error("Invalid record");
5115 
5116       I = CatchReturnInst::Create(CatchPad, BB);
5117       InstructionList.push_back(I);
5118       break;
5119     }
5120     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5121       // We must have, at minimum, the outer scope and the number of arguments.
5122       if (Record.size() < 2)
5123         return error("Invalid record");
5124 
5125       unsigned Idx = 0;
5126 
5127       Value *ParentPad =
5128           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5129 
5130       unsigned NumHandlers = Record[Idx++];
5131 
5132       SmallVector<BasicBlock *, 2> Handlers;
5133       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5134         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5135         if (!BB)
5136           return error("Invalid record");
5137         Handlers.push_back(BB);
5138       }
5139 
5140       BasicBlock *UnwindDest = nullptr;
5141       if (Idx + 1 == Record.size()) {
5142         UnwindDest = getBasicBlock(Record[Idx++]);
5143         if (!UnwindDest)
5144           return error("Invalid record");
5145       }
5146 
5147       if (Record.size() != Idx)
5148         return error("Invalid record");
5149 
5150       auto *CatchSwitch =
5151           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5152       for (BasicBlock *Handler : Handlers)
5153         CatchSwitch->addHandler(Handler);
5154       I = CatchSwitch;
5155       InstructionList.push_back(I);
5156       break;
5157     }
5158     case bitc::FUNC_CODE_INST_CATCHPAD:
5159     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5160       // We must have, at minimum, the outer scope and the number of arguments.
5161       if (Record.size() < 2)
5162         return error("Invalid record");
5163 
5164       unsigned Idx = 0;
5165 
5166       Value *ParentPad =
5167           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5168 
5169       unsigned NumArgOperands = Record[Idx++];
5170 
5171       SmallVector<Value *, 2> Args;
5172       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5173         Value *Val;
5174         if (getValueTypePair(Record, Idx, NextValueNo, Val))
5175           return error("Invalid record");
5176         Args.push_back(Val);
5177       }
5178 
5179       if (Record.size() != Idx)
5180         return error("Invalid record");
5181 
5182       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5183         I = CleanupPadInst::Create(ParentPad, Args);
5184       else
5185         I = CatchPadInst::Create(ParentPad, Args);
5186       InstructionList.push_back(I);
5187       break;
5188     }
5189     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5190       // Check magic
5191       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5192         // "New" SwitchInst format with case ranges. The changes to write this
5193         // format were reverted but we still recognize bitcode that uses it.
5194         // Hopefully someday we will have support for case ranges and can use
5195         // this format again.
5196 
5197         Type *OpTy = getTypeByID(Record[1]);
5198         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5199 
5200         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
5201         BasicBlock *Default = getBasicBlock(Record[3]);
5202         if (!OpTy || !Cond || !Default)
5203           return error("Invalid record");
5204 
5205         unsigned NumCases = Record[4];
5206 
5207         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5208         InstructionList.push_back(SI);
5209 
5210         unsigned CurIdx = 5;
5211         for (unsigned i = 0; i != NumCases; ++i) {
5212           SmallVector<ConstantInt*, 1> CaseVals;
5213           unsigned NumItems = Record[CurIdx++];
5214           for (unsigned ci = 0; ci != NumItems; ++ci) {
5215             bool isSingleNumber = Record[CurIdx++];
5216 
5217             APInt Low;
5218             unsigned ActiveWords = 1;
5219             if (ValueBitWidth > 64)
5220               ActiveWords = Record[CurIdx++];
5221             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
5222                                 ValueBitWidth);
5223             CurIdx += ActiveWords;
5224 
5225             if (!isSingleNumber) {
5226               ActiveWords = 1;
5227               if (ValueBitWidth > 64)
5228                 ActiveWords = Record[CurIdx++];
5229               APInt High = readWideAPInt(
5230                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5231               CurIdx += ActiveWords;
5232 
5233               // FIXME: It is not clear whether values in the range should be
5234               // compared as signed or unsigned values. The partially
5235               // implemented changes that used this format in the past used
5236               // unsigned comparisons.
5237               for ( ; Low.ule(High); ++Low)
5238                 CaseVals.push_back(ConstantInt::get(Context, Low));
5239             } else
5240               CaseVals.push_back(ConstantInt::get(Context, Low));
5241           }
5242           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5243           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
5244                  cve = CaseVals.end(); cvi != cve; ++cvi)
5245             SI->addCase(*cvi, DestBB);
5246         }
5247         I = SI;
5248         break;
5249       }
5250 
5251       // Old SwitchInst format without case ranges.
5252 
5253       if (Record.size() < 3 || (Record.size() & 1) == 0)
5254         return error("Invalid record");
5255       Type *OpTy = getTypeByID(Record[0]);
5256       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
5257       BasicBlock *Default = getBasicBlock(Record[2]);
5258       if (!OpTy || !Cond || !Default)
5259         return error("Invalid record");
5260       unsigned NumCases = (Record.size()-3)/2;
5261       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5262       InstructionList.push_back(SI);
5263       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5264         ConstantInt *CaseVal =
5265           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
5266         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5267         if (!CaseVal || !DestBB) {
5268           delete SI;
5269           return error("Invalid record");
5270         }
5271         SI->addCase(CaseVal, DestBB);
5272       }
5273       I = SI;
5274       break;
5275     }
5276     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5277       if (Record.size() < 2)
5278         return error("Invalid record");
5279       Type *OpTy = getTypeByID(Record[0]);
5280       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
5281       if (!OpTy || !Address)
5282         return error("Invalid record");
5283       unsigned NumDests = Record.size()-2;
5284       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5285       InstructionList.push_back(IBI);
5286       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5287         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5288           IBI->addDestination(DestBB);
5289         } else {
5290           delete IBI;
5291           return error("Invalid record");
5292         }
5293       }
5294       I = IBI;
5295       break;
5296     }
5297 
5298     case bitc::FUNC_CODE_INST_INVOKE: {
5299       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5300       if (Record.size() < 4)
5301         return error("Invalid record");
5302       unsigned OpNum = 0;
5303       AttributeSet PAL = getAttributes(Record[OpNum++]);
5304       unsigned CCInfo = Record[OpNum++];
5305       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5306       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5307 
5308       FunctionType *FTy = nullptr;
5309       if (CCInfo >> 13 & 1 &&
5310           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5311         return error("Explicit invoke type is not a function type");
5312 
5313       Value *Callee;
5314       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5315         return error("Invalid record");
5316 
5317       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5318       if (!CalleeTy)
5319         return error("Callee is not a pointer");
5320       if (!FTy) {
5321         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
5322         if (!FTy)
5323           return error("Callee is not of pointer to function type");
5324       } else if (CalleeTy->getElementType() != FTy)
5325         return error("Explicit invoke type does not match pointee type of "
5326                      "callee operand");
5327       if (Record.size() < FTy->getNumParams() + OpNum)
5328         return error("Insufficient operands to call");
5329 
5330       SmallVector<Value*, 16> Ops;
5331       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5332         Ops.push_back(getValue(Record, OpNum, NextValueNo,
5333                                FTy->getParamType(i)));
5334         if (!Ops.back())
5335           return error("Invalid record");
5336       }
5337 
5338       if (!FTy->isVarArg()) {
5339         if (Record.size() != OpNum)
5340           return error("Invalid record");
5341       } else {
5342         // Read type/value pairs for varargs params.
5343         while (OpNum != Record.size()) {
5344           Value *Op;
5345           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5346             return error("Invalid record");
5347           Ops.push_back(Op);
5348         }
5349       }
5350 
5351       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
5352       OperandBundles.clear();
5353       InstructionList.push_back(I);
5354       cast<InvokeInst>(I)->setCallingConv(
5355           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5356       cast<InvokeInst>(I)->setAttributes(PAL);
5357       break;
5358     }
5359     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5360       unsigned Idx = 0;
5361       Value *Val = nullptr;
5362       if (getValueTypePair(Record, Idx, NextValueNo, Val))
5363         return error("Invalid record");
5364       I = ResumeInst::Create(Val);
5365       InstructionList.push_back(I);
5366       break;
5367     }
5368     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5369       I = new UnreachableInst(Context);
5370       InstructionList.push_back(I);
5371       break;
5372     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5373       if (Record.size() < 1 || ((Record.size()-1)&1))
5374         return error("Invalid record");
5375       Type *Ty = getTypeByID(Record[0]);
5376       if (!Ty)
5377         return error("Invalid record");
5378 
5379       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
5380       InstructionList.push_back(PN);
5381 
5382       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
5383         Value *V;
5384         // With the new function encoding, it is possible that operands have
5385         // negative IDs (for forward references).  Use a signed VBR
5386         // representation to keep the encoding small.
5387         if (UseRelativeIDs)
5388           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
5389         else
5390           V = getValue(Record, 1+i, NextValueNo, Ty);
5391         BasicBlock *BB = getBasicBlock(Record[2+i]);
5392         if (!V || !BB)
5393           return error("Invalid record");
5394         PN->addIncoming(V, BB);
5395       }
5396       I = PN;
5397       break;
5398     }
5399 
5400     case bitc::FUNC_CODE_INST_LANDINGPAD:
5401     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5402       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5403       unsigned Idx = 0;
5404       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5405         if (Record.size() < 3)
5406           return error("Invalid record");
5407       } else {
5408         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5409         if (Record.size() < 4)
5410           return error("Invalid record");
5411       }
5412       Type *Ty = getTypeByID(Record[Idx++]);
5413       if (!Ty)
5414         return error("Invalid record");
5415       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5416         Value *PersFn = nullptr;
5417         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
5418           return error("Invalid record");
5419 
5420         if (!F->hasPersonalityFn())
5421           F->setPersonalityFn(cast<Constant>(PersFn));
5422         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5423           return error("Personality function mismatch");
5424       }
5425 
5426       bool IsCleanup = !!Record[Idx++];
5427       unsigned NumClauses = Record[Idx++];
5428       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5429       LP->setCleanup(IsCleanup);
5430       for (unsigned J = 0; J != NumClauses; ++J) {
5431         LandingPadInst::ClauseType CT =
5432           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5433         Value *Val;
5434 
5435         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
5436           delete LP;
5437           return error("Invalid record");
5438         }
5439 
5440         assert((CT != LandingPadInst::Catch ||
5441                 !isa<ArrayType>(Val->getType())) &&
5442                "Catch clause has a invalid type!");
5443         assert((CT != LandingPadInst::Filter ||
5444                 isa<ArrayType>(Val->getType())) &&
5445                "Filter clause has invalid type!");
5446         LP->addClause(cast<Constant>(Val));
5447       }
5448 
5449       I = LP;
5450       InstructionList.push_back(I);
5451       break;
5452     }
5453 
5454     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5455       if (Record.size() != 4)
5456         return error("Invalid record");
5457       uint64_t AlignRecord = Record[3];
5458       const uint64_t InAllocaMask = uint64_t(1) << 5;
5459       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
5460       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
5461       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
5462                                 SwiftErrorMask;
5463       bool InAlloca = AlignRecord & InAllocaMask;
5464       bool SwiftError = AlignRecord & SwiftErrorMask;
5465       Type *Ty = getTypeByID(Record[0]);
5466       if ((AlignRecord & ExplicitTypeMask) == 0) {
5467         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5468         if (!PTy)
5469           return error("Old-style alloca with a non-pointer type");
5470         Ty = PTy->getElementType();
5471       }
5472       Type *OpTy = getTypeByID(Record[1]);
5473       Value *Size = getFnValueByID(Record[2], OpTy);
5474       unsigned Align;
5475       if (std::error_code EC =
5476               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
5477         return EC;
5478       }
5479       if (!Ty || !Size)
5480         return error("Invalid record");
5481       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
5482       AI->setUsedWithInAlloca(InAlloca);
5483       AI->setSwiftError(SwiftError);
5484       I = AI;
5485       InstructionList.push_back(I);
5486       break;
5487     }
5488     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5489       unsigned OpNum = 0;
5490       Value *Op;
5491       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5492           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5493         return error("Invalid record");
5494 
5495       Type *Ty = nullptr;
5496       if (OpNum + 3 == Record.size())
5497         Ty = getTypeByID(Record[OpNum++]);
5498       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5499         return EC;
5500       if (!Ty)
5501         Ty = cast<PointerType>(Op->getType())->getElementType();
5502 
5503       unsigned Align;
5504       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5505         return EC;
5506       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
5507 
5508       InstructionList.push_back(I);
5509       break;
5510     }
5511     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5512        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
5513       unsigned OpNum = 0;
5514       Value *Op;
5515       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5516           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5517         return error("Invalid record");
5518 
5519       Type *Ty = nullptr;
5520       if (OpNum + 5 == Record.size())
5521         Ty = getTypeByID(Record[OpNum++]);
5522       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5523         return EC;
5524       if (!Ty)
5525         Ty = cast<PointerType>(Op->getType())->getElementType();
5526 
5527       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5528       if (Ordering == AtomicOrdering::NotAtomic ||
5529           Ordering == AtomicOrdering::Release ||
5530           Ordering == AtomicOrdering::AcquireRelease)
5531         return error("Invalid record");
5532       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5533         return error("Invalid record");
5534       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5535 
5536       unsigned Align;
5537       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5538         return EC;
5539       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
5540 
5541       InstructionList.push_back(I);
5542       break;
5543     }
5544     case bitc::FUNC_CODE_INST_STORE:
5545     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5546       unsigned OpNum = 0;
5547       Value *Val, *Ptr;
5548       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5549           (BitCode == bitc::FUNC_CODE_INST_STORE
5550                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5551                : popValue(Record, OpNum, NextValueNo,
5552                           cast<PointerType>(Ptr->getType())->getElementType(),
5553                           Val)) ||
5554           OpNum + 2 != Record.size())
5555         return error("Invalid record");
5556 
5557       if (std::error_code EC =
5558               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5559         return EC;
5560       unsigned Align;
5561       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5562         return EC;
5563       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5564       InstructionList.push_back(I);
5565       break;
5566     }
5567     case bitc::FUNC_CODE_INST_STOREATOMIC:
5568     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5569       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5570       unsigned OpNum = 0;
5571       Value *Val, *Ptr;
5572       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5573           !isa<PointerType>(Ptr->getType()) ||
5574           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5575                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5576                : popValue(Record, OpNum, NextValueNo,
5577                           cast<PointerType>(Ptr->getType())->getElementType(),
5578                           Val)) ||
5579           OpNum + 4 != Record.size())
5580         return error("Invalid record");
5581 
5582       if (std::error_code EC =
5583               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5584         return EC;
5585       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5586       if (Ordering == AtomicOrdering::NotAtomic ||
5587           Ordering == AtomicOrdering::Acquire ||
5588           Ordering == AtomicOrdering::AcquireRelease)
5589         return error("Invalid record");
5590       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5591       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5592         return error("Invalid record");
5593 
5594       unsigned Align;
5595       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5596         return EC;
5597       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5598       InstructionList.push_back(I);
5599       break;
5600     }
5601     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5602     case bitc::FUNC_CODE_INST_CMPXCHG: {
5603       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5604       //          failureordering?, isweak?]
5605       unsigned OpNum = 0;
5606       Value *Ptr, *Cmp, *New;
5607       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5608           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5609                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5610                : popValue(Record, OpNum, NextValueNo,
5611                           cast<PointerType>(Ptr->getType())->getElementType(),
5612                           Cmp)) ||
5613           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5614           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5615         return error("Invalid record");
5616       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5617       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5618           SuccessOrdering == AtomicOrdering::Unordered)
5619         return error("Invalid record");
5620       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5621 
5622       if (std::error_code EC =
5623               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5624         return EC;
5625       AtomicOrdering FailureOrdering;
5626       if (Record.size() < 7)
5627         FailureOrdering =
5628             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5629       else
5630         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5631 
5632       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5633                                 SynchScope);
5634       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5635 
5636       if (Record.size() < 8) {
5637         // Before weak cmpxchgs existed, the instruction simply returned the
5638         // value loaded from memory, so bitcode files from that era will be
5639         // expecting the first component of a modern cmpxchg.
5640         CurBB->getInstList().push_back(I);
5641         I = ExtractValueInst::Create(I, 0);
5642       } else {
5643         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5644       }
5645 
5646       InstructionList.push_back(I);
5647       break;
5648     }
5649     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5650       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5651       unsigned OpNum = 0;
5652       Value *Ptr, *Val;
5653       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5654           !isa<PointerType>(Ptr->getType()) ||
5655           popValue(Record, OpNum, NextValueNo,
5656                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5657           OpNum+4 != Record.size())
5658         return error("Invalid record");
5659       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5660       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5661           Operation > AtomicRMWInst::LAST_BINOP)
5662         return error("Invalid record");
5663       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5664       if (Ordering == AtomicOrdering::NotAtomic ||
5665           Ordering == AtomicOrdering::Unordered)
5666         return error("Invalid record");
5667       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5668       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5669       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5670       InstructionList.push_back(I);
5671       break;
5672     }
5673     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5674       if (2 != Record.size())
5675         return error("Invalid record");
5676       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5677       if (Ordering == AtomicOrdering::NotAtomic ||
5678           Ordering == AtomicOrdering::Unordered ||
5679           Ordering == AtomicOrdering::Monotonic)
5680         return error("Invalid record");
5681       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5682       I = new FenceInst(Context, Ordering, SynchScope);
5683       InstructionList.push_back(I);
5684       break;
5685     }
5686     case bitc::FUNC_CODE_INST_CALL: {
5687       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5688       if (Record.size() < 3)
5689         return error("Invalid record");
5690 
5691       unsigned OpNum = 0;
5692       AttributeSet PAL = getAttributes(Record[OpNum++]);
5693       unsigned CCInfo = Record[OpNum++];
5694 
5695       FastMathFlags FMF;
5696       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5697         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5698         if (!FMF.any())
5699           return error("Fast math flags indicator set for call with no FMF");
5700       }
5701 
5702       FunctionType *FTy = nullptr;
5703       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5704           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5705         return error("Explicit call type is not a function type");
5706 
5707       Value *Callee;
5708       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5709         return error("Invalid record");
5710 
5711       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5712       if (!OpTy)
5713         return error("Callee is not a pointer type");
5714       if (!FTy) {
5715         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5716         if (!FTy)
5717           return error("Callee is not of pointer to function type");
5718       } else if (OpTy->getElementType() != FTy)
5719         return error("Explicit call type does not match pointee type of "
5720                      "callee operand");
5721       if (Record.size() < FTy->getNumParams() + OpNum)
5722         return error("Insufficient operands to call");
5723 
5724       SmallVector<Value*, 16> Args;
5725       // Read the fixed params.
5726       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5727         if (FTy->getParamType(i)->isLabelTy())
5728           Args.push_back(getBasicBlock(Record[OpNum]));
5729         else
5730           Args.push_back(getValue(Record, OpNum, NextValueNo,
5731                                   FTy->getParamType(i)));
5732         if (!Args.back())
5733           return error("Invalid record");
5734       }
5735 
5736       // Read type/value pairs for varargs params.
5737       if (!FTy->isVarArg()) {
5738         if (OpNum != Record.size())
5739           return error("Invalid record");
5740       } else {
5741         while (OpNum != Record.size()) {
5742           Value *Op;
5743           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5744             return error("Invalid record");
5745           Args.push_back(Op);
5746         }
5747       }
5748 
5749       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5750       OperandBundles.clear();
5751       InstructionList.push_back(I);
5752       cast<CallInst>(I)->setCallingConv(
5753           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5754       CallInst::TailCallKind TCK = CallInst::TCK_None;
5755       if (CCInfo & 1 << bitc::CALL_TAIL)
5756         TCK = CallInst::TCK_Tail;
5757       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5758         TCK = CallInst::TCK_MustTail;
5759       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5760         TCK = CallInst::TCK_NoTail;
5761       cast<CallInst>(I)->setTailCallKind(TCK);
5762       cast<CallInst>(I)->setAttributes(PAL);
5763       if (FMF.any()) {
5764         if (!isa<FPMathOperator>(I))
5765           return error("Fast-math-flags specified for call without "
5766                        "floating-point scalar or vector return type");
5767         I->setFastMathFlags(FMF);
5768       }
5769       break;
5770     }
5771     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5772       if (Record.size() < 3)
5773         return error("Invalid record");
5774       Type *OpTy = getTypeByID(Record[0]);
5775       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5776       Type *ResTy = getTypeByID(Record[2]);
5777       if (!OpTy || !Op || !ResTy)
5778         return error("Invalid record");
5779       I = new VAArgInst(Op, ResTy);
5780       InstructionList.push_back(I);
5781       break;
5782     }
5783 
5784     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5785       // A call or an invoke can be optionally prefixed with some variable
5786       // number of operand bundle blocks.  These blocks are read into
5787       // OperandBundles and consumed at the next call or invoke instruction.
5788 
5789       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5790         return error("Invalid record");
5791 
5792       std::vector<Value *> Inputs;
5793 
5794       unsigned OpNum = 1;
5795       while (OpNum != Record.size()) {
5796         Value *Op;
5797         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5798           return error("Invalid record");
5799         Inputs.push_back(Op);
5800       }
5801 
5802       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5803       continue;
5804     }
5805     }
5806 
5807     // Add instruction to end of current BB.  If there is no current BB, reject
5808     // this file.
5809     if (!CurBB) {
5810       delete I;
5811       return error("Invalid instruction with no BB");
5812     }
5813     if (!OperandBundles.empty()) {
5814       delete I;
5815       return error("Operand bundles found with no consumer");
5816     }
5817     CurBB->getInstList().push_back(I);
5818 
5819     // If this was a terminator instruction, move to the next block.
5820     if (isa<TerminatorInst>(I)) {
5821       ++CurBBNo;
5822       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5823     }
5824 
5825     // Non-void values get registered in the value table for future use.
5826     if (I && !I->getType()->isVoidTy())
5827       ValueList.assignValue(I, NextValueNo++);
5828   }
5829 
5830 OutOfRecordLoop:
5831 
5832   if (!OperandBundles.empty())
5833     return error("Operand bundles found with no consumer");
5834 
5835   // Check the function list for unresolved values.
5836   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5837     if (!A->getParent()) {
5838       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5839       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5840         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5841           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5842           delete A;
5843         }
5844       }
5845       return error("Never resolved value found in function");
5846     }
5847   }
5848 
5849   // Unexpected unresolved metadata about to be dropped.
5850   if (MetadataList.hasFwdRefs())
5851     return error("Invalid function metadata: outgoing forward refs");
5852 
5853   // Trim the value list down to the size it was before we parsed this function.
5854   ValueList.shrinkTo(ModuleValueListSize);
5855   MetadataList.shrinkTo(ModuleMetadataListSize);
5856   std::vector<BasicBlock*>().swap(FunctionBBs);
5857   return std::error_code();
5858 }
5859 
5860 /// Find the function body in the bitcode stream
5861 std::error_code BitcodeReader::findFunctionInStream(
5862     Function *F,
5863     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5864   while (DeferredFunctionInfoIterator->second == 0) {
5865     // This is the fallback handling for the old format bitcode that
5866     // didn't contain the function index in the VST, or when we have
5867     // an anonymous function which would not have a VST entry.
5868     // Assert that we have one of those two cases.
5869     assert(VSTOffset == 0 || !F->hasName());
5870     // Parse the next body in the stream and set its position in the
5871     // DeferredFunctionInfo map.
5872     if (std::error_code EC = rememberAndSkipFunctionBodies())
5873       return EC;
5874   }
5875   return std::error_code();
5876 }
5877 
5878 //===----------------------------------------------------------------------===//
5879 // GVMaterializer implementation
5880 //===----------------------------------------------------------------------===//
5881 
5882 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5883 
5884 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5885   Function *F = dyn_cast<Function>(GV);
5886   // If it's not a function or is already material, ignore the request.
5887   if (!F || !F->isMaterializable())
5888     return std::error_code();
5889 
5890   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5891   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5892   // If its position is recorded as 0, its body is somewhere in the stream
5893   // but we haven't seen it yet.
5894   if (DFII->second == 0)
5895     if (std::error_code EC = findFunctionInStream(F, DFII))
5896       return EC;
5897 
5898   // Materialize metadata before parsing any function bodies.
5899   if (std::error_code EC = materializeMetadata())
5900     return EC;
5901 
5902   // Move the bit stream to the saved position of the deferred function body.
5903   Stream.JumpToBit(DFII->second);
5904 
5905   if (std::error_code EC = parseFunctionBody(F))
5906     return EC;
5907   F->setIsMaterializable(false);
5908 
5909   if (StripDebugInfo)
5910     stripDebugInfo(*F);
5911 
5912   // Upgrade any old intrinsic calls in the function.
5913   for (auto &I : UpgradedIntrinsics) {
5914     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5915          UI != UE;) {
5916       User *U = *UI;
5917       ++UI;
5918       if (CallInst *CI = dyn_cast<CallInst>(U))
5919         UpgradeIntrinsicCall(CI, I.second);
5920     }
5921   }
5922 
5923   // Update calls to the remangled intrinsics
5924   for (auto &I : RemangledIntrinsics)
5925     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5926          UI != UE;)
5927       // Don't expect any other users than call sites
5928       CallSite(*UI++).setCalledFunction(I.second);
5929 
5930   // Finish fn->subprogram upgrade for materialized functions.
5931   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5932     F->setSubprogram(SP);
5933 
5934   // Bring in any functions that this function forward-referenced via
5935   // blockaddresses.
5936   return materializeForwardReferencedFunctions();
5937 }
5938 
5939 std::error_code BitcodeReader::materializeModule() {
5940   if (std::error_code EC = materializeMetadata())
5941     return EC;
5942 
5943   // Promise to materialize all forward references.
5944   WillMaterializeAllForwardRefs = true;
5945 
5946   // Iterate over the module, deserializing any functions that are still on
5947   // disk.
5948   for (Function &F : *TheModule) {
5949     if (std::error_code EC = materialize(&F))
5950       return EC;
5951   }
5952   // At this point, if there are any function bodies, parse the rest of
5953   // the bits in the module past the last function block we have recorded
5954   // through either lazy scanning or the VST.
5955   if (LastFunctionBlockBit || NextUnreadBit)
5956     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5957                                                      : NextUnreadBit);
5958 
5959   // Check that all block address forward references got resolved (as we
5960   // promised above).
5961   if (!BasicBlockFwdRefs.empty())
5962     return error("Never resolved function from blockaddress");
5963 
5964   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5965   // delete the old functions to clean up. We can't do this unless the entire
5966   // module is materialized because there could always be another function body
5967   // with calls to the old function.
5968   for (auto &I : UpgradedIntrinsics) {
5969     for (auto *U : I.first->users()) {
5970       if (CallInst *CI = dyn_cast<CallInst>(U))
5971         UpgradeIntrinsicCall(CI, I.second);
5972     }
5973     if (!I.first->use_empty())
5974       I.first->replaceAllUsesWith(I.second);
5975     I.first->eraseFromParent();
5976   }
5977   UpgradedIntrinsics.clear();
5978   // Do the same for remangled intrinsics
5979   for (auto &I : RemangledIntrinsics) {
5980     I.first->replaceAllUsesWith(I.second);
5981     I.first->eraseFromParent();
5982   }
5983   RemangledIntrinsics.clear();
5984 
5985   UpgradeDebugInfo(*TheModule);
5986 
5987   UpgradeModuleFlags(*TheModule);
5988   return std::error_code();
5989 }
5990 
5991 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5992   return IdentifiedStructTypes;
5993 }
5994 
5995 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5996   return ::error(DiagnosticHandler,
5997                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5998 }
5999 
6000 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6001     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
6002     bool CheckGlobalValSummaryPresenceOnly)
6003     : BitcodeReaderBase(Buffer),
6004       DiagnosticHandler(std::move(DiagnosticHandler)),
6005       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
6006 
6007 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
6008 
6009 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
6010 
6011 std::pair<GlobalValue::GUID, GlobalValue::GUID>
6012 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
6013   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
6014   assert(VGI != ValueIdToCallGraphGUIDMap.end());
6015   return VGI->second;
6016 }
6017 
6018 // Specialized value symbol table parser used when reading module index
6019 // blocks where we don't actually create global values. The parsed information
6020 // is saved in the bitcode reader for use when later parsing summaries.
6021 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6022     uint64_t Offset,
6023     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6024   assert(Offset > 0 && "Expected non-zero VST offset");
6025   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
6026 
6027   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6028     return error("Invalid record");
6029 
6030   SmallVector<uint64_t, 64> Record;
6031 
6032   // Read all the records for this value table.
6033   SmallString<128> ValueName;
6034 
6035   while (true) {
6036     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6037 
6038     switch (Entry.Kind) {
6039     case BitstreamEntry::SubBlock: // Handled for us already.
6040     case BitstreamEntry::Error:
6041       return error("Malformed block");
6042     case BitstreamEntry::EndBlock:
6043       // Done parsing VST, jump back to wherever we came from.
6044       Stream.JumpToBit(CurrentBit);
6045       return std::error_code();
6046     case BitstreamEntry::Record:
6047       // The interesting case.
6048       break;
6049     }
6050 
6051     // Read a record.
6052     Record.clear();
6053     switch (Stream.readRecord(Entry.ID, Record)) {
6054     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6055       break;
6056     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6057       if (convertToString(Record, 1, ValueName))
6058         return error("Invalid record");
6059       unsigned ValueID = Record[0];
6060       assert(!SourceFileName.empty());
6061       auto VLI = ValueIdToLinkageMap.find(ValueID);
6062       assert(VLI != ValueIdToLinkageMap.end() &&
6063              "No linkage found for VST entry?");
6064       auto Linkage = VLI->second;
6065       std::string GlobalId =
6066           GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6067       auto ValueGUID = GlobalValue::getGUID(GlobalId);
6068       auto OriginalNameID = ValueGUID;
6069       if (GlobalValue::isLocalLinkage(Linkage))
6070         OriginalNameID = GlobalValue::getGUID(ValueName);
6071       if (PrintSummaryGUIDs)
6072         dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6073                << ValueName << "\n";
6074       ValueIdToCallGraphGUIDMap[ValueID] =
6075           std::make_pair(ValueGUID, OriginalNameID);
6076       ValueName.clear();
6077       break;
6078     }
6079     case bitc::VST_CODE_FNENTRY: {
6080       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6081       if (convertToString(Record, 2, ValueName))
6082         return error("Invalid record");
6083       unsigned ValueID = Record[0];
6084       assert(!SourceFileName.empty());
6085       auto VLI = ValueIdToLinkageMap.find(ValueID);
6086       assert(VLI != ValueIdToLinkageMap.end() &&
6087              "No linkage found for VST entry?");
6088       auto Linkage = VLI->second;
6089       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
6090           ValueName, VLI->second, SourceFileName);
6091       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
6092       auto OriginalNameID = FunctionGUID;
6093       if (GlobalValue::isLocalLinkage(Linkage))
6094         OriginalNameID = GlobalValue::getGUID(ValueName);
6095       if (PrintSummaryGUIDs)
6096         dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is "
6097                << ValueName << "\n";
6098       ValueIdToCallGraphGUIDMap[ValueID] =
6099           std::make_pair(FunctionGUID, OriginalNameID);
6100 
6101       ValueName.clear();
6102       break;
6103     }
6104     case bitc::VST_CODE_COMBINED_ENTRY: {
6105       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6106       unsigned ValueID = Record[0];
6107       GlobalValue::GUID RefGUID = Record[1];
6108       // The "original name", which is the second value of the pair will be
6109       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6110       ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID);
6111       break;
6112     }
6113     }
6114   }
6115 }
6116 
6117 // Parse just the blocks needed for building the index out of the module.
6118 // At the end of this routine the module Index is populated with a map
6119 // from global value id to GlobalValueSummary objects.
6120 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
6121   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6122     return error("Invalid record");
6123 
6124   SmallVector<uint64_t, 64> Record;
6125   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6126   unsigned ValueId = 0;
6127 
6128   // Read the index for this module.
6129   while (true) {
6130     BitstreamEntry Entry = Stream.advance();
6131 
6132     switch (Entry.Kind) {
6133     case BitstreamEntry::Error:
6134       return error("Malformed block");
6135     case BitstreamEntry::EndBlock:
6136       return std::error_code();
6137 
6138     case BitstreamEntry::SubBlock:
6139       if (CheckGlobalValSummaryPresenceOnly) {
6140         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6141           SeenGlobalValSummary = true;
6142           // No need to parse the rest since we found the summary.
6143           return std::error_code();
6144         }
6145         if (Stream.SkipBlock())
6146           return error("Invalid record");
6147         continue;
6148       }
6149       switch (Entry.ID) {
6150       default: // Skip unknown content.
6151         if (Stream.SkipBlock())
6152           return error("Invalid record");
6153         break;
6154       case bitc::BLOCKINFO_BLOCK_ID:
6155         // Need to parse these to get abbrev ids (e.g. for VST)
6156         if (Stream.ReadBlockInfoBlock())
6157           return error("Malformed block");
6158         break;
6159       case bitc::VALUE_SYMTAB_BLOCK_ID:
6160         // Should have been parsed earlier via VSTOffset, unless there
6161         // is no summary section.
6162         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6163                 !SeenGlobalValSummary) &&
6164                "Expected early VST parse via VSTOffset record");
6165         if (Stream.SkipBlock())
6166           return error("Invalid record");
6167         break;
6168       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6169         assert(!SeenValueSymbolTable &&
6170                "Already read VST when parsing summary block?");
6171         // We might not have a VST if there were no values in the
6172         // summary. An empty summary block generated when we are
6173         // performing ThinLTO compiles so we don't later invoke
6174         // the regular LTO process on them.
6175         if (VSTOffset > 0) {
6176           if (std::error_code EC =
6177                   parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6178             return EC;
6179           SeenValueSymbolTable = true;
6180         }
6181         SeenGlobalValSummary = true;
6182         if (std::error_code EC = parseEntireSummary())
6183           return EC;
6184         break;
6185       case bitc::MODULE_STRTAB_BLOCK_ID:
6186         if (std::error_code EC = parseModuleStringTable())
6187           return EC;
6188         break;
6189       }
6190       continue;
6191 
6192     case BitstreamEntry::Record: {
6193         Record.clear();
6194         auto BitCode = Stream.readRecord(Entry.ID, Record);
6195         switch (BitCode) {
6196         default:
6197           break; // Default behavior, ignore unknown content.
6198         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6199         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6200           SmallString<128> ValueName;
6201           if (convertToString(Record, 0, ValueName))
6202             return error("Invalid record");
6203           SourceFileName = ValueName.c_str();
6204           break;
6205         }
6206         /// MODULE_CODE_HASH: [5*i32]
6207         case bitc::MODULE_CODE_HASH: {
6208           if (Record.size() != 5)
6209             return error("Invalid hash length " + Twine(Record.size()).str());
6210           if (!TheIndex)
6211             break;
6212           if (TheIndex->modulePaths().empty())
6213             // We always seed the index with the module.
6214             TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0);
6215           if (TheIndex->modulePaths().size() != 1)
6216             return error("Don't expect multiple modules defined?");
6217           auto &Hash = TheIndex->modulePaths().begin()->second.second;
6218           int Pos = 0;
6219           for (auto &Val : Record) {
6220             assert(!(Val >> 32) && "Unexpected high bits set");
6221             Hash[Pos++] = Val;
6222           }
6223           break;
6224         }
6225         /// MODULE_CODE_VSTOFFSET: [offset]
6226         case bitc::MODULE_CODE_VSTOFFSET:
6227           if (Record.size() < 1)
6228             return error("Invalid record");
6229           VSTOffset = Record[0];
6230           break;
6231         // GLOBALVAR: [pointer type, isconst, initid,
6232         //             linkage, alignment, section, visibility, threadlocal,
6233         //             unnamed_addr, externally_initialized, dllstorageclass,
6234         //             comdat]
6235         case bitc::MODULE_CODE_GLOBALVAR: {
6236           if (Record.size() < 6)
6237             return error("Invalid record");
6238           uint64_t RawLinkage = Record[3];
6239           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6240           ValueIdToLinkageMap[ValueId++] = Linkage;
6241           break;
6242         }
6243         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
6244         //             alignment, section, visibility, gc, unnamed_addr,
6245         //             prologuedata, dllstorageclass, comdat, prefixdata]
6246         case bitc::MODULE_CODE_FUNCTION: {
6247           if (Record.size() < 8)
6248             return error("Invalid record");
6249           uint64_t RawLinkage = Record[3];
6250           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6251           ValueIdToLinkageMap[ValueId++] = Linkage;
6252           break;
6253         }
6254         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
6255         // dllstorageclass]
6256         case bitc::MODULE_CODE_ALIAS: {
6257           if (Record.size() < 6)
6258             return error("Invalid record");
6259           uint64_t RawLinkage = Record[3];
6260           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6261           ValueIdToLinkageMap[ValueId++] = Linkage;
6262           break;
6263         }
6264         }
6265       }
6266       continue;
6267     }
6268   }
6269 }
6270 
6271 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6272 // objects in the index.
6273 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
6274   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
6275     return error("Invalid record");
6276   SmallVector<uint64_t, 64> Record;
6277 
6278   // Parse version
6279   {
6280     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6281     if (Entry.Kind != BitstreamEntry::Record)
6282       return error("Invalid Summary Block: record for version expected");
6283     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
6284       return error("Invalid Summary Block: version expected");
6285   }
6286   const uint64_t Version = Record[0];
6287   const bool IsOldProfileFormat = Version == 1;
6288   if (!IsOldProfileFormat && Version != 2)
6289     return error("Invalid summary version " + Twine(Version) +
6290                  ", 1 or 2 expected");
6291   Record.clear();
6292 
6293   // Keep around the last seen summary to be used when we see an optional
6294   // "OriginalName" attachement.
6295   GlobalValueSummary *LastSeenSummary = nullptr;
6296   bool Combined = false;
6297 
6298   while (true) {
6299     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6300 
6301     switch (Entry.Kind) {
6302     case BitstreamEntry::SubBlock: // Handled for us already.
6303     case BitstreamEntry::Error:
6304       return error("Malformed block");
6305     case BitstreamEntry::EndBlock:
6306       // For a per-module index, remove any entries that still have empty
6307       // summaries. The VST parsing creates entries eagerly for all symbols,
6308       // but not all have associated summaries (e.g. it doesn't know how to
6309       // distinguish between VST_CODE_ENTRY for function declarations vs global
6310       // variables with initializers that end up with a summary). Remove those
6311       // entries now so that we don't need to rely on the combined index merger
6312       // to clean them up (especially since that may not run for the first
6313       // module's index if we merge into that).
6314       if (!Combined)
6315         TheIndex->removeEmptySummaryEntries();
6316       return std::error_code();
6317     case BitstreamEntry::Record:
6318       // The interesting case.
6319       break;
6320     }
6321 
6322     // Read a record. The record format depends on whether this
6323     // is a per-module index or a combined index file. In the per-module
6324     // case the records contain the associated value's ID for correlation
6325     // with VST entries. In the combined index the correlation is done
6326     // via the bitcode offset of the summary records (which were saved
6327     // in the combined index VST entries). The records also contain
6328     // information used for ThinLTO renaming and importing.
6329     Record.clear();
6330     auto BitCode = Stream.readRecord(Entry.ID, Record);
6331     switch (BitCode) {
6332     default: // Default behavior: ignore.
6333       break;
6334     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
6335     //                n x (valueid)]
6336     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
6337     //                        numrefs x valueid,
6338     //                        n x (valueid, hotness)]
6339     case bitc::FS_PERMODULE:
6340     case bitc::FS_PERMODULE_PROFILE: {
6341       unsigned ValueID = Record[0];
6342       uint64_t RawFlags = Record[1];
6343       unsigned InstCount = Record[2];
6344       unsigned NumRefs = Record[3];
6345       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6346       std::unique_ptr<FunctionSummary> FS =
6347           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6348       // The module path string ref set in the summary must be owned by the
6349       // index's module string table. Since we don't have a module path
6350       // string table section in the per-module index, we create a single
6351       // module path string table entry with an empty (0) ID to take
6352       // ownership.
6353       FS->setModulePath(
6354           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6355       static int RefListStartIndex = 4;
6356       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6357       assert(Record.size() >= RefListStartIndex + NumRefs &&
6358              "Record size inconsistent with number of references");
6359       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
6360         unsigned RefValueId = Record[I];
6361         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6362         FS->addRefEdge(RefGUID);
6363       }
6364       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6365       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6366            ++I) {
6367         CalleeInfo::HotnessType Hotness;
6368         GlobalValue::GUID CalleeGUID;
6369         std::tie(CalleeGUID, Hotness) =
6370             readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile);
6371         FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness));
6372       }
6373       auto GUID = getGUIDFromValueId(ValueID);
6374       FS->setOriginalName(GUID.second);
6375       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6376       break;
6377     }
6378     // FS_ALIAS: [valueid, flags, valueid]
6379     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6380     // they expect all aliasee summaries to be available.
6381     case bitc::FS_ALIAS: {
6382       unsigned ValueID = Record[0];
6383       uint64_t RawFlags = Record[1];
6384       unsigned AliaseeID = Record[2];
6385       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6386       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6387       // The module path string ref set in the summary must be owned by the
6388       // index's module string table. Since we don't have a module path
6389       // string table section in the per-module index, we create a single
6390       // module path string table entry with an empty (0) ID to take
6391       // ownership.
6392       AS->setModulePath(
6393           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6394 
6395       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first;
6396       auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID);
6397       if (!AliaseeSummary)
6398         return error("Alias expects aliasee summary to be parsed");
6399       AS->setAliasee(AliaseeSummary);
6400 
6401       auto GUID = getGUIDFromValueId(ValueID);
6402       AS->setOriginalName(GUID.second);
6403       TheIndex->addGlobalValueSummary(GUID.first, std::move(AS));
6404       break;
6405     }
6406     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
6407     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6408       unsigned ValueID = Record[0];
6409       uint64_t RawFlags = Record[1];
6410       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6411       std::unique_ptr<GlobalVarSummary> FS =
6412           llvm::make_unique<GlobalVarSummary>(Flags);
6413       FS->setModulePath(
6414           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6415       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6416         unsigned RefValueId = Record[I];
6417         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6418         FS->addRefEdge(RefGUID);
6419       }
6420       auto GUID = getGUIDFromValueId(ValueID);
6421       FS->setOriginalName(GUID.second);
6422       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6423       break;
6424     }
6425     // FS_COMBINED: [valueid, modid, flags, instcount, numrefs,
6426     //               numrefs x valueid, n x (valueid)]
6427     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs,
6428     //                       numrefs x valueid, n x (valueid, hotness)]
6429     case bitc::FS_COMBINED:
6430     case bitc::FS_COMBINED_PROFILE: {
6431       unsigned ValueID = Record[0];
6432       uint64_t ModuleId = Record[1];
6433       uint64_t RawFlags = Record[2];
6434       unsigned InstCount = Record[3];
6435       unsigned NumRefs = Record[4];
6436       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6437       std::unique_ptr<FunctionSummary> FS =
6438           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6439       LastSeenSummary = FS.get();
6440       FS->setModulePath(ModuleIdMap[ModuleId]);
6441       static int RefListStartIndex = 5;
6442       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6443       assert(Record.size() >= RefListStartIndex + NumRefs &&
6444              "Record size inconsistent with number of references");
6445       for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E;
6446            ++I) {
6447         unsigned RefValueId = Record[I];
6448         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6449         FS->addRefEdge(RefGUID);
6450       }
6451       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6452       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6453            ++I) {
6454         CalleeInfo::HotnessType Hotness;
6455         GlobalValue::GUID CalleeGUID;
6456         std::tie(CalleeGUID, Hotness) =
6457             readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile);
6458         FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness));
6459       }
6460       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6461       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6462       Combined = true;
6463       break;
6464     }
6465     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6466     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6467     // they expect all aliasee summaries to be available.
6468     case bitc::FS_COMBINED_ALIAS: {
6469       unsigned ValueID = Record[0];
6470       uint64_t ModuleId = Record[1];
6471       uint64_t RawFlags = Record[2];
6472       unsigned AliaseeValueId = Record[3];
6473       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6474       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6475       LastSeenSummary = AS.get();
6476       AS->setModulePath(ModuleIdMap[ModuleId]);
6477 
6478       auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first;
6479       auto AliaseeInModule =
6480           TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath());
6481       if (!AliaseeInModule)
6482         return error("Alias expects aliasee summary to be parsed");
6483       AS->setAliasee(AliaseeInModule);
6484 
6485       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6486       TheIndex->addGlobalValueSummary(GUID, std::move(AS));
6487       Combined = true;
6488       break;
6489     }
6490     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6491     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6492       unsigned ValueID = Record[0];
6493       uint64_t ModuleId = Record[1];
6494       uint64_t RawFlags = Record[2];
6495       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6496       std::unique_ptr<GlobalVarSummary> FS =
6497           llvm::make_unique<GlobalVarSummary>(Flags);
6498       LastSeenSummary = FS.get();
6499       FS->setModulePath(ModuleIdMap[ModuleId]);
6500       for (unsigned I = 3, E = Record.size(); I != E; ++I) {
6501         unsigned RefValueId = Record[I];
6502         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6503         FS->addRefEdge(RefGUID);
6504       }
6505       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6506       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6507       Combined = true;
6508       break;
6509     }
6510     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6511     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6512       uint64_t OriginalName = Record[0];
6513       if (!LastSeenSummary)
6514         return error("Name attachment that does not follow a combined record");
6515       LastSeenSummary->setOriginalName(OriginalName);
6516       // Reset the LastSeenSummary
6517       LastSeenSummary = nullptr;
6518     }
6519     }
6520   }
6521   llvm_unreachable("Exit infinite loop");
6522 }
6523 
6524 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType>
6525 ModuleSummaryIndexBitcodeReader::readCallGraphEdge(
6526     const SmallVector<uint64_t, 64> &Record, unsigned int &I,
6527     const bool IsOldProfileFormat, const bool HasProfile) {
6528 
6529   auto Hotness = CalleeInfo::HotnessType::Unknown;
6530   unsigned CalleeValueId = Record[I];
6531   GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6532   if (IsOldProfileFormat) {
6533     I += 1; // Skip old callsitecount field
6534     if (HasProfile)
6535       I += 1; // Skip old profilecount field
6536   } else if (HasProfile)
6537     Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6538   return {CalleeGUID, Hotness};
6539 }
6540 
6541 // Parse the  module string table block into the Index.
6542 // This populates the ModulePathStringTable map in the index.
6543 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6544   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6545     return error("Invalid record");
6546 
6547   SmallVector<uint64_t, 64> Record;
6548 
6549   SmallString<128> ModulePath;
6550   ModulePathStringTableTy::iterator LastSeenModulePath;
6551 
6552   while (true) {
6553     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6554 
6555     switch (Entry.Kind) {
6556     case BitstreamEntry::SubBlock: // Handled for us already.
6557     case BitstreamEntry::Error:
6558       return error("Malformed block");
6559     case BitstreamEntry::EndBlock:
6560       return std::error_code();
6561     case BitstreamEntry::Record:
6562       // The interesting case.
6563       break;
6564     }
6565 
6566     Record.clear();
6567     switch (Stream.readRecord(Entry.ID, Record)) {
6568     default: // Default behavior: ignore.
6569       break;
6570     case bitc::MST_CODE_ENTRY: {
6571       // MST_ENTRY: [modid, namechar x N]
6572       uint64_t ModuleId = Record[0];
6573 
6574       if (convertToString(Record, 1, ModulePath))
6575         return error("Invalid record");
6576 
6577       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
6578       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6579 
6580       ModulePath.clear();
6581       break;
6582     }
6583     /// MST_CODE_HASH: [5*i32]
6584     case bitc::MST_CODE_HASH: {
6585       if (Record.size() != 5)
6586         return error("Invalid hash length " + Twine(Record.size()).str());
6587       if (LastSeenModulePath == TheIndex->modulePaths().end())
6588         return error("Invalid hash that does not follow a module path");
6589       int Pos = 0;
6590       for (auto &Val : Record) {
6591         assert(!(Val >> 32) && "Unexpected high bits set");
6592         LastSeenModulePath->second.second[Pos++] = Val;
6593       }
6594       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6595       LastSeenModulePath = TheIndex->modulePaths().end();
6596       break;
6597     }
6598     }
6599   }
6600   llvm_unreachable("Exit infinite loop");
6601 }
6602 
6603 // Parse the function info index from the bitcode streamer into the given index.
6604 std::error_code
6605 ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(ModuleSummaryIndex *I) {
6606   TheIndex = I;
6607 
6608   if (std::error_code EC = initStream())
6609     return EC;
6610 
6611   // Sniff for the signature.
6612   if (!hasValidBitcodeHeader(Stream))
6613     return error("Invalid bitcode signature");
6614 
6615   // We expect a number of well-defined blocks, though we don't necessarily
6616   // need to understand them all.
6617   while (true) {
6618     if (Stream.AtEndOfStream()) {
6619       // We didn't really read a proper Module block.
6620       return error("Malformed block");
6621     }
6622 
6623     BitstreamEntry Entry =
6624         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6625 
6626     if (Entry.Kind != BitstreamEntry::SubBlock)
6627       return error("Malformed block");
6628 
6629     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6630     // building the function summary index.
6631     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6632       return parseModule();
6633 
6634     if (Stream.SkipBlock())
6635       return error("Invalid record");
6636   }
6637 }
6638 
6639 namespace {
6640 
6641 // FIXME: This class is only here to support the transition to llvm::Error. It
6642 // will be removed once this transition is complete. Clients should prefer to
6643 // deal with the Error value directly, rather than converting to error_code.
6644 class BitcodeErrorCategoryType : public std::error_category {
6645   const char *name() const noexcept override {
6646     return "llvm.bitcode";
6647   }
6648   std::string message(int IE) const override {
6649     BitcodeError E = static_cast<BitcodeError>(IE);
6650     switch (E) {
6651     case BitcodeError::InvalidBitcodeSignature:
6652       return "Invalid bitcode signature";
6653     case BitcodeError::CorruptedBitcode:
6654       return "Corrupted bitcode";
6655     }
6656     llvm_unreachable("Unknown error type!");
6657   }
6658 };
6659 
6660 } // end anonymous namespace
6661 
6662 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6663 
6664 const std::error_category &llvm::BitcodeErrorCategory() {
6665   return *ErrorCategory;
6666 }
6667 
6668 //===----------------------------------------------------------------------===//
6669 // External interface
6670 //===----------------------------------------------------------------------===//
6671 
6672 static ErrorOr<std::unique_ptr<Module>>
6673 getBitcodeModuleImpl(StringRef Name, BitcodeReader *R, LLVMContext &Context,
6674                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6675   std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context);
6676   M->setMaterializer(R);
6677 
6678   auto cleanupOnError = [&](std::error_code EC) {
6679     R->releaseBuffer(); // Never take ownership on error.
6680     return EC;
6681   };
6682 
6683   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6684   if (std::error_code EC = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata))
6685     return cleanupOnError(EC);
6686 
6687   if (MaterializeAll) {
6688     // Read in the entire module, and destroy the BitcodeReader.
6689     if (std::error_code EC = M->materializeAll())
6690       return cleanupOnError(EC);
6691   } else {
6692     // Resolve forward references from blockaddresses.
6693     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6694       return cleanupOnError(EC);
6695   }
6696   return std::move(M);
6697 }
6698 
6699 /// \brief Get a lazy one-at-time loading module from bitcode.
6700 ///
6701 /// This isn't always used in a lazy context.  In particular, it's also used by
6702 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6703 /// in forward-referenced functions from block address references.
6704 ///
6705 /// \param[in] MaterializeAll Set to \c true if we should materialize
6706 /// everything.
6707 static ErrorOr<std::unique_ptr<Module>>
6708 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6709                          LLVMContext &Context, bool MaterializeAll,
6710                          bool ShouldLazyLoadMetadata = false) {
6711   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6712 
6713   ErrorOr<std::unique_ptr<Module>> Ret =
6714       getBitcodeModuleImpl(Buffer->getBufferIdentifier(), R, Context,
6715                            MaterializeAll, ShouldLazyLoadMetadata);
6716   if (!Ret)
6717     return Ret;
6718 
6719   Buffer.release(); // The BitcodeReader owns it now.
6720   return Ret;
6721 }
6722 
6723 ErrorOr<std::unique_ptr<Module>>
6724 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6725                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6726   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6727                                   ShouldLazyLoadMetadata);
6728 }
6729 
6730 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6731                                                         LLVMContext &Context) {
6732   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6733   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6734   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6735   // written.  We must defer until the Module has been fully materialized.
6736 }
6737 
6738 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6739                                          LLVMContext &Context) {
6740   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6741   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6742   ErrorOr<std::string> Triple = R->parseTriple();
6743   if (Triple.getError())
6744     return "";
6745   return Triple.get();
6746 }
6747 
6748 bool llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer,
6749                                            LLVMContext &Context) {
6750   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6751   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6752   ErrorOr<bool> hasObjCCategory = R->hasObjCCategory();
6753   if (hasObjCCategory.getError())
6754     return false;
6755   return hasObjCCategory.get();
6756 }
6757 
6758 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6759                                            LLVMContext &Context) {
6760   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6761   BitcodeReader R(Buf.release(), Context);
6762   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6763   if (ProducerString.getError())
6764     return "";
6765   return ProducerString.get();
6766 }
6767 
6768 // Parse the specified bitcode buffer, returning the function info index.
6769 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex(
6770     MemoryBufferRef Buffer,
6771     const DiagnosticHandlerFunction &DiagnosticHandler) {
6772   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6773   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6774 
6775   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6776 
6777   auto cleanupOnError = [&](std::error_code EC) {
6778     R.releaseBuffer(); // Never take ownership on error.
6779     return EC;
6780   };
6781 
6782   if (std::error_code EC = R.parseSummaryIndexInto(Index.get()))
6783     return cleanupOnError(EC);
6784 
6785   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6786   return std::move(Index);
6787 }
6788 
6789 // Check if the given bitcode buffer contains a global value summary block.
6790 bool llvm::hasGlobalValueSummary(
6791     MemoryBufferRef Buffer,
6792     const DiagnosticHandlerFunction &DiagnosticHandler) {
6793   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6794   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true);
6795 
6796   auto cleanupOnError = [&](std::error_code EC) {
6797     R.releaseBuffer(); // Never take ownership on error.
6798     return false;
6799   };
6800 
6801   if (std::error_code EC = R.parseSummaryIndexInto(nullptr))
6802     return cleanupOnError(EC);
6803 
6804   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6805   return R.foundGlobalValSummary();
6806 }
6807