1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Create and return a placeholder, which will later be RAUW'd. 559 AnyFwdRefs = true; 560 ++NumFwdRefs; 561 Metadata *MD = MDNode::getTemporary(Context, None).release(); 562 MDValuePtrs[Idx].reset(MD); 563 return MD; 564 } 565 566 void BitcodeReaderMDValueList::tryToResolveCycles() { 567 if (!AnyFwdRefs) 568 // Nothing to do. 569 return; 570 571 if (NumFwdRefs) 572 // Still forward references... can't resolve cycles. 573 return; 574 575 // Resolve any cycles. 576 for (auto &MD : MDValuePtrs) { 577 auto *N = dyn_cast_or_null<MDNode>(MD); 578 if (!N) 579 continue; 580 581 assert(!N->isTemporary() && "Unexpected forward reference"); 582 N->resolveCycles(); 583 } 584 } 585 586 Type *BitcodeReader::getTypeByID(unsigned ID) { 587 // The type table size is always specified correctly. 588 if (ID >= TypeList.size()) 589 return nullptr; 590 591 if (Type *Ty = TypeList[ID]) 592 return Ty; 593 594 // If we have a forward reference, the only possible case is when it is to a 595 // named struct. Just create a placeholder for now. 596 return TypeList[ID] = createIdentifiedStructType(Context); 597 } 598 599 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 600 StringRef Name) { 601 auto *Ret = StructType::create(Context, Name); 602 IdentifiedStructTypes.push_back(Ret); 603 return Ret; 604 } 605 606 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 607 auto *Ret = StructType::create(Context); 608 IdentifiedStructTypes.push_back(Ret); 609 return Ret; 610 } 611 612 613 //===----------------------------------------------------------------------===// 614 // Functions for parsing blocks from the bitcode file 615 //===----------------------------------------------------------------------===// 616 617 618 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 619 /// been decoded from the given integer. This function must stay in sync with 620 /// 'encodeLLVMAttributesForBitcode'. 621 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 622 uint64_t EncodedAttrs) { 623 // FIXME: Remove in 4.0. 624 625 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 626 // the bits above 31 down by 11 bits. 627 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 628 assert((!Alignment || isPowerOf2_32(Alignment)) && 629 "Alignment must be a power of two."); 630 631 if (Alignment) 632 B.addAlignmentAttr(Alignment); 633 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 634 (EncodedAttrs & 0xffff)); 635 } 636 637 std::error_code BitcodeReader::ParseAttributeBlock() { 638 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 639 return Error("Invalid record"); 640 641 if (!MAttributes.empty()) 642 return Error("Invalid multiple blocks"); 643 644 SmallVector<uint64_t, 64> Record; 645 646 SmallVector<AttributeSet, 8> Attrs; 647 648 // Read all the records. 649 while (1) { 650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 651 652 switch (Entry.Kind) { 653 case BitstreamEntry::SubBlock: // Handled for us already. 654 case BitstreamEntry::Error: 655 return Error("Malformed block"); 656 case BitstreamEntry::EndBlock: 657 return std::error_code(); 658 case BitstreamEntry::Record: 659 // The interesting case. 660 break; 661 } 662 663 // Read a record. 664 Record.clear(); 665 switch (Stream.readRecord(Entry.ID, Record)) { 666 default: // Default behavior: ignore. 667 break; 668 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 669 // FIXME: Remove in 4.0. 670 if (Record.size() & 1) 671 return Error("Invalid record"); 672 673 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 674 AttrBuilder B; 675 decodeLLVMAttributesForBitcode(B, Record[i+1]); 676 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 677 } 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 684 for (unsigned i = 0, e = Record.size(); i != e; ++i) 685 Attrs.push_back(MAttributeGroups[Record[i]]); 686 687 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 688 Attrs.clear(); 689 break; 690 } 691 } 692 } 693 } 694 695 // Returns Attribute::None on unrecognized codes. 696 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 697 switch (Code) { 698 default: 699 return Attribute::None; 700 case bitc::ATTR_KIND_ALIGNMENT: 701 return Attribute::Alignment; 702 case bitc::ATTR_KIND_ALWAYS_INLINE: 703 return Attribute::AlwaysInline; 704 case bitc::ATTR_KIND_BUILTIN: 705 return Attribute::Builtin; 706 case bitc::ATTR_KIND_BY_VAL: 707 return Attribute::ByVal; 708 case bitc::ATTR_KIND_IN_ALLOCA: 709 return Attribute::InAlloca; 710 case bitc::ATTR_KIND_COLD: 711 return Attribute::Cold; 712 case bitc::ATTR_KIND_INLINE_HINT: 713 return Attribute::InlineHint; 714 case bitc::ATTR_KIND_IN_REG: 715 return Attribute::InReg; 716 case bitc::ATTR_KIND_JUMP_TABLE: 717 return Attribute::JumpTable; 718 case bitc::ATTR_KIND_MIN_SIZE: 719 return Attribute::MinSize; 720 case bitc::ATTR_KIND_NAKED: 721 return Attribute::Naked; 722 case bitc::ATTR_KIND_NEST: 723 return Attribute::Nest; 724 case bitc::ATTR_KIND_NO_ALIAS: 725 return Attribute::NoAlias; 726 case bitc::ATTR_KIND_NO_BUILTIN: 727 return Attribute::NoBuiltin; 728 case bitc::ATTR_KIND_NO_CAPTURE: 729 return Attribute::NoCapture; 730 case bitc::ATTR_KIND_NO_DUPLICATE: 731 return Attribute::NoDuplicate; 732 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 733 return Attribute::NoImplicitFloat; 734 case bitc::ATTR_KIND_NO_INLINE: 735 return Attribute::NoInline; 736 case bitc::ATTR_KIND_NON_LAZY_BIND: 737 return Attribute::NonLazyBind; 738 case bitc::ATTR_KIND_NON_NULL: 739 return Attribute::NonNull; 740 case bitc::ATTR_KIND_DEREFERENCEABLE: 741 return Attribute::Dereferenceable; 742 case bitc::ATTR_KIND_NO_RED_ZONE: 743 return Attribute::NoRedZone; 744 case bitc::ATTR_KIND_NO_RETURN: 745 return Attribute::NoReturn; 746 case bitc::ATTR_KIND_NO_UNWIND: 747 return Attribute::NoUnwind; 748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 749 return Attribute::OptimizeForSize; 750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 751 return Attribute::OptimizeNone; 752 case bitc::ATTR_KIND_READ_NONE: 753 return Attribute::ReadNone; 754 case bitc::ATTR_KIND_READ_ONLY: 755 return Attribute::ReadOnly; 756 case bitc::ATTR_KIND_RETURNED: 757 return Attribute::Returned; 758 case bitc::ATTR_KIND_RETURNS_TWICE: 759 return Attribute::ReturnsTwice; 760 case bitc::ATTR_KIND_S_EXT: 761 return Attribute::SExt; 762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 763 return Attribute::StackAlignment; 764 case bitc::ATTR_KIND_STACK_PROTECT: 765 return Attribute::StackProtect; 766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 767 return Attribute::StackProtectReq; 768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 769 return Attribute::StackProtectStrong; 770 case bitc::ATTR_KIND_STRUCT_RET: 771 return Attribute::StructRet; 772 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 773 return Attribute::SanitizeAddress; 774 case bitc::ATTR_KIND_SANITIZE_THREAD: 775 return Attribute::SanitizeThread; 776 case bitc::ATTR_KIND_SANITIZE_MEMORY: 777 return Attribute::SanitizeMemory; 778 case bitc::ATTR_KIND_UW_TABLE: 779 return Attribute::UWTable; 780 case bitc::ATTR_KIND_Z_EXT: 781 return Attribute::ZExt; 782 } 783 } 784 785 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 786 Attribute::AttrKind *Kind) { 787 *Kind = GetAttrFromCode(Code); 788 if (*Kind == Attribute::None) 789 return Error(BitcodeError::CorruptedBitcode, 790 "Unknown attribute kind (" + Twine(Code) + ")"); 791 return std::error_code(); 792 } 793 794 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 795 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 796 return Error("Invalid record"); 797 798 if (!MAttributeGroups.empty()) 799 return Error("Invalid multiple blocks"); 800 801 SmallVector<uint64_t, 64> Record; 802 803 // Read all the records. 804 while (1) { 805 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 806 807 switch (Entry.Kind) { 808 case BitstreamEntry::SubBlock: // Handled for us already. 809 case BitstreamEntry::Error: 810 return Error("Malformed block"); 811 case BitstreamEntry::EndBlock: 812 return std::error_code(); 813 case BitstreamEntry::Record: 814 // The interesting case. 815 break; 816 } 817 818 // Read a record. 819 Record.clear(); 820 switch (Stream.readRecord(Entry.ID, Record)) { 821 default: // Default behavior: ignore. 822 break; 823 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 824 if (Record.size() < 3) 825 return Error("Invalid record"); 826 827 uint64_t GrpID = Record[0]; 828 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 829 830 AttrBuilder B; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Record[i] == 0) { // Enum attribute 833 Attribute::AttrKind Kind; 834 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 835 return EC; 836 837 B.addAttribute(Kind); 838 } else if (Record[i] == 1) { // Integer attribute 839 Attribute::AttrKind Kind; 840 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 841 return EC; 842 if (Kind == Attribute::Alignment) 843 B.addAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::StackAlignment) 845 B.addStackAlignmentAttr(Record[++i]); 846 else if (Kind == Attribute::Dereferenceable) 847 B.addDereferenceableAttr(Record[++i]); 848 } else { // String attribute 849 assert((Record[i] == 3 || Record[i] == 4) && 850 "Invalid attribute group entry"); 851 bool HasValue = (Record[i++] == 4); 852 SmallString<64> KindStr; 853 SmallString<64> ValStr; 854 855 while (Record[i] != 0 && i != e) 856 KindStr += Record[i++]; 857 assert(Record[i] == 0 && "Kind string not null terminated"); 858 859 if (HasValue) { 860 // Has a value associated with it. 861 ++i; // Skip the '0' that terminates the "kind" string. 862 while (Record[i] != 0 && i != e) 863 ValStr += Record[i++]; 864 assert(Record[i] == 0 && "Value string not null terminated"); 865 } 866 867 B.addAttribute(KindStr.str(), ValStr.str()); 868 } 869 } 870 871 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 872 break; 873 } 874 } 875 } 876 } 877 878 std::error_code BitcodeReader::ParseTypeTable() { 879 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 880 return Error("Invalid record"); 881 882 return ParseTypeTableBody(); 883 } 884 885 std::error_code BitcodeReader::ParseTypeTableBody() { 886 if (!TypeList.empty()) 887 return Error("Invalid multiple blocks"); 888 889 SmallVector<uint64_t, 64> Record; 890 unsigned NumRecords = 0; 891 892 SmallString<64> TypeName; 893 894 // Read all the records for this type table. 895 while (1) { 896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 897 898 switch (Entry.Kind) { 899 case BitstreamEntry::SubBlock: // Handled for us already. 900 case BitstreamEntry::Error: 901 return Error("Malformed block"); 902 case BitstreamEntry::EndBlock: 903 if (NumRecords != TypeList.size()) 904 return Error("Malformed block"); 905 return std::error_code(); 906 case BitstreamEntry::Record: 907 // The interesting case. 908 break; 909 } 910 911 // Read a record. 912 Record.clear(); 913 Type *ResultTy = nullptr; 914 switch (Stream.readRecord(Entry.ID, Record)) { 915 default: 916 return Error("Invalid value"); 917 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 918 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 919 // type list. This allows us to reserve space. 920 if (Record.size() < 1) 921 return Error("Invalid record"); 922 TypeList.resize(Record[0]); 923 continue; 924 case bitc::TYPE_CODE_VOID: // VOID 925 ResultTy = Type::getVoidTy(Context); 926 break; 927 case bitc::TYPE_CODE_HALF: // HALF 928 ResultTy = Type::getHalfTy(Context); 929 break; 930 case bitc::TYPE_CODE_FLOAT: // FLOAT 931 ResultTy = Type::getFloatTy(Context); 932 break; 933 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 934 ResultTy = Type::getDoubleTy(Context); 935 break; 936 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 937 ResultTy = Type::getX86_FP80Ty(Context); 938 break; 939 case bitc::TYPE_CODE_FP128: // FP128 940 ResultTy = Type::getFP128Ty(Context); 941 break; 942 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 943 ResultTy = Type::getPPC_FP128Ty(Context); 944 break; 945 case bitc::TYPE_CODE_LABEL: // LABEL 946 ResultTy = Type::getLabelTy(Context); 947 break; 948 case bitc::TYPE_CODE_METADATA: // METADATA 949 ResultTy = Type::getMetadataTy(Context); 950 break; 951 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 952 ResultTy = Type::getX86_MMXTy(Context); 953 break; 954 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 955 if (Record.size() < 1) 956 return Error("Invalid record"); 957 958 uint64_t NumBits = Record[0]; 959 if (NumBits < IntegerType::MIN_INT_BITS || 960 NumBits > IntegerType::MAX_INT_BITS) 961 return Error("Bitwidth for integer type out of range"); 962 ResultTy = IntegerType::get(Context, NumBits); 963 break; 964 } 965 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 966 // [pointee type, address space] 967 if (Record.size() < 1) 968 return Error("Invalid record"); 969 unsigned AddressSpace = 0; 970 if (Record.size() == 2) 971 AddressSpace = Record[1]; 972 ResultTy = getTypeByID(Record[0]); 973 if (!ResultTy) 974 return Error("Invalid type"); 975 ResultTy = PointerType::get(ResultTy, AddressSpace); 976 break; 977 } 978 case bitc::TYPE_CODE_FUNCTION_OLD: { 979 // FIXME: attrid is dead, remove it in LLVM 4.0 980 // FUNCTION: [vararg, attrid, retty, paramty x N] 981 if (Record.size() < 3) 982 return Error("Invalid record"); 983 SmallVector<Type*, 8> ArgTys; 984 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 985 if (Type *T = getTypeByID(Record[i])) 986 ArgTys.push_back(T); 987 else 988 break; 989 } 990 991 ResultTy = getTypeByID(Record[2]); 992 if (!ResultTy || ArgTys.size() < Record.size()-3) 993 return Error("Invalid type"); 994 995 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 996 break; 997 } 998 case bitc::TYPE_CODE_FUNCTION: { 999 // FUNCTION: [vararg, retty, paramty x N] 1000 if (Record.size() < 2) 1001 return Error("Invalid record"); 1002 SmallVector<Type*, 8> ArgTys; 1003 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1004 if (Type *T = getTypeByID(Record[i])) 1005 ArgTys.push_back(T); 1006 else 1007 break; 1008 } 1009 1010 ResultTy = getTypeByID(Record[1]); 1011 if (!ResultTy || ArgTys.size() < Record.size()-2) 1012 return Error("Invalid type"); 1013 1014 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1015 break; 1016 } 1017 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1018 if (Record.size() < 1) 1019 return Error("Invalid record"); 1020 SmallVector<Type*, 8> EltTys; 1021 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1022 if (Type *T = getTypeByID(Record[i])) 1023 EltTys.push_back(T); 1024 else 1025 break; 1026 } 1027 if (EltTys.size() != Record.size()-1) 1028 return Error("Invalid type"); 1029 ResultTy = StructType::get(Context, EltTys, Record[0]); 1030 break; 1031 } 1032 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1033 if (ConvertToString(Record, 0, TypeName)) 1034 return Error("Invalid record"); 1035 continue; 1036 1037 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1038 if (Record.size() < 1) 1039 return Error("Invalid record"); 1040 1041 if (NumRecords >= TypeList.size()) 1042 return Error("Invalid TYPE table"); 1043 1044 // Check to see if this was forward referenced, if so fill in the temp. 1045 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1046 if (Res) { 1047 Res->setName(TypeName); 1048 TypeList[NumRecords] = nullptr; 1049 } else // Otherwise, create a new struct. 1050 Res = createIdentifiedStructType(Context, TypeName); 1051 TypeName.clear(); 1052 1053 SmallVector<Type*, 8> EltTys; 1054 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1055 if (Type *T = getTypeByID(Record[i])) 1056 EltTys.push_back(T); 1057 else 1058 break; 1059 } 1060 if (EltTys.size() != Record.size()-1) 1061 return Error("Invalid record"); 1062 Res->setBody(EltTys, Record[0]); 1063 ResultTy = Res; 1064 break; 1065 } 1066 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1067 if (Record.size() != 1) 1068 return Error("Invalid record"); 1069 1070 if (NumRecords >= TypeList.size()) 1071 return Error("Invalid TYPE table"); 1072 1073 // Check to see if this was forward referenced, if so fill in the temp. 1074 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1075 if (Res) { 1076 Res->setName(TypeName); 1077 TypeList[NumRecords] = nullptr; 1078 } else // Otherwise, create a new struct with no body. 1079 Res = createIdentifiedStructType(Context, TypeName); 1080 TypeName.clear(); 1081 ResultTy = Res; 1082 break; 1083 } 1084 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1085 if (Record.size() < 2) 1086 return Error("Invalid record"); 1087 if ((ResultTy = getTypeByID(Record[1]))) 1088 ResultTy = ArrayType::get(ResultTy, Record[0]); 1089 else 1090 return Error("Invalid type"); 1091 break; 1092 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1093 if (Record.size() < 2) 1094 return Error("Invalid record"); 1095 if ((ResultTy = getTypeByID(Record[1]))) 1096 ResultTy = VectorType::get(ResultTy, Record[0]); 1097 else 1098 return Error("Invalid type"); 1099 break; 1100 } 1101 1102 if (NumRecords >= TypeList.size()) 1103 return Error("Invalid TYPE table"); 1104 if (TypeList[NumRecords]) 1105 return Error( 1106 "Invalid TYPE table: Only named structs can be forward referenced"); 1107 assert(ResultTy && "Didn't read a type?"); 1108 TypeList[NumRecords++] = ResultTy; 1109 } 1110 } 1111 1112 std::error_code BitcodeReader::ParseValueSymbolTable() { 1113 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1114 return Error("Invalid record"); 1115 1116 SmallVector<uint64_t, 64> Record; 1117 1118 Triple TT(TheModule->getTargetTriple()); 1119 1120 // Read all the records for this value table. 1121 SmallString<128> ValueName; 1122 while (1) { 1123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1124 1125 switch (Entry.Kind) { 1126 case BitstreamEntry::SubBlock: // Handled for us already. 1127 case BitstreamEntry::Error: 1128 return Error("Malformed block"); 1129 case BitstreamEntry::EndBlock: 1130 return std::error_code(); 1131 case BitstreamEntry::Record: 1132 // The interesting case. 1133 break; 1134 } 1135 1136 // Read a record. 1137 Record.clear(); 1138 switch (Stream.readRecord(Entry.ID, Record)) { 1139 default: // Default behavior: unknown type. 1140 break; 1141 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1142 if (ConvertToString(Record, 1, ValueName)) 1143 return Error("Invalid record"); 1144 unsigned ValueID = Record[0]; 1145 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1146 return Error("Invalid record"); 1147 Value *V = ValueList[ValueID]; 1148 1149 V->setName(StringRef(ValueName.data(), ValueName.size())); 1150 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1151 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1152 if (TT.isOSBinFormatMachO()) 1153 GO->setComdat(nullptr); 1154 else 1155 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1156 } 1157 } 1158 ValueName.clear(); 1159 break; 1160 } 1161 case bitc::VST_CODE_BBENTRY: { 1162 if (ConvertToString(Record, 1, ValueName)) 1163 return Error("Invalid record"); 1164 BasicBlock *BB = getBasicBlock(Record[0]); 1165 if (!BB) 1166 return Error("Invalid record"); 1167 1168 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1169 ValueName.clear(); 1170 break; 1171 } 1172 } 1173 } 1174 } 1175 1176 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1177 1178 std::error_code BitcodeReader::ParseMetadata() { 1179 unsigned NextMDValueNo = MDValueList.size(); 1180 1181 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1182 return Error("Invalid record"); 1183 1184 SmallVector<uint64_t, 64> Record; 1185 1186 auto getMD = 1187 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1188 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1189 if (ID) 1190 return getMD(ID - 1); 1191 return nullptr; 1192 }; 1193 auto getMDString = [&](unsigned ID) -> MDString *{ 1194 // This requires that the ID is not really a forward reference. In 1195 // particular, the MDString must already have been resolved. 1196 return cast_or_null<MDString>(getMDOrNull(ID)); 1197 }; 1198 1199 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1200 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1201 1202 // Read all the records. 1203 while (1) { 1204 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1205 1206 switch (Entry.Kind) { 1207 case BitstreamEntry::SubBlock: // Handled for us already. 1208 case BitstreamEntry::Error: 1209 return Error("Malformed block"); 1210 case BitstreamEntry::EndBlock: 1211 MDValueList.tryToResolveCycles(); 1212 return std::error_code(); 1213 case BitstreamEntry::Record: 1214 // The interesting case. 1215 break; 1216 } 1217 1218 // Read a record. 1219 Record.clear(); 1220 unsigned Code = Stream.readRecord(Entry.ID, Record); 1221 bool IsDistinct = false; 1222 switch (Code) { 1223 default: // Default behavior: ignore. 1224 break; 1225 case bitc::METADATA_NAME: { 1226 // Read name of the named metadata. 1227 SmallString<8> Name(Record.begin(), Record.end()); 1228 Record.clear(); 1229 Code = Stream.ReadCode(); 1230 1231 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1232 unsigned NextBitCode = Stream.readRecord(Code, Record); 1233 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1234 1235 // Read named metadata elements. 1236 unsigned Size = Record.size(); 1237 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1238 for (unsigned i = 0; i != Size; ++i) { 1239 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1240 if (!MD) 1241 return Error("Invalid record"); 1242 NMD->addOperand(MD); 1243 } 1244 break; 1245 } 1246 case bitc::METADATA_OLD_FN_NODE: { 1247 // FIXME: Remove in 4.0. 1248 // This is a LocalAsMetadata record, the only type of function-local 1249 // metadata. 1250 if (Record.size() % 2 == 1) 1251 return Error("Invalid record"); 1252 1253 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1254 // to be legal, but there's no upgrade path. 1255 auto dropRecord = [&] { 1256 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1257 }; 1258 if (Record.size() != 2) { 1259 dropRecord(); 1260 break; 1261 } 1262 1263 Type *Ty = getTypeByID(Record[0]); 1264 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1265 dropRecord(); 1266 break; 1267 } 1268 1269 MDValueList.AssignValue( 1270 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1271 NextMDValueNo++); 1272 break; 1273 } 1274 case bitc::METADATA_OLD_NODE: { 1275 // FIXME: Remove in 4.0. 1276 if (Record.size() % 2 == 1) 1277 return Error("Invalid record"); 1278 1279 unsigned Size = Record.size(); 1280 SmallVector<Metadata *, 8> Elts; 1281 for (unsigned i = 0; i != Size; i += 2) { 1282 Type *Ty = getTypeByID(Record[i]); 1283 if (!Ty) 1284 return Error("Invalid record"); 1285 if (Ty->isMetadataTy()) 1286 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1287 else if (!Ty->isVoidTy()) { 1288 auto *MD = 1289 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1290 assert(isa<ConstantAsMetadata>(MD) && 1291 "Expected non-function-local metadata"); 1292 Elts.push_back(MD); 1293 } else 1294 Elts.push_back(nullptr); 1295 } 1296 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1297 break; 1298 } 1299 case bitc::METADATA_VALUE: { 1300 if (Record.size() != 2) 1301 return Error("Invalid record"); 1302 1303 Type *Ty = getTypeByID(Record[0]); 1304 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1305 return Error("Invalid record"); 1306 1307 MDValueList.AssignValue( 1308 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1309 NextMDValueNo++); 1310 break; 1311 } 1312 case bitc::METADATA_DISTINCT_NODE: 1313 IsDistinct = true; 1314 // fallthrough... 1315 case bitc::METADATA_NODE: { 1316 SmallVector<Metadata *, 8> Elts; 1317 Elts.reserve(Record.size()); 1318 for (unsigned ID : Record) 1319 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1320 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1321 : MDNode::get(Context, Elts), 1322 NextMDValueNo++); 1323 break; 1324 } 1325 case bitc::METADATA_LOCATION: { 1326 if (Record.size() != 5) 1327 return Error("Invalid record"); 1328 1329 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1330 unsigned Line = Record[1]; 1331 unsigned Column = Record[2]; 1332 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1333 Metadata *InlinedAt = 1334 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1335 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1336 NextMDValueNo++); 1337 break; 1338 } 1339 case bitc::METADATA_GENERIC_DEBUG: { 1340 if (Record.size() < 4) 1341 return Error("Invalid record"); 1342 1343 unsigned Tag = Record[1]; 1344 unsigned Version = Record[2]; 1345 1346 if (Tag >= 1u << 16 || Version != 0) 1347 return Error("Invalid record"); 1348 1349 auto *Header = getMDString(Record[3]); 1350 SmallVector<Metadata *, 8> DwarfOps; 1351 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1352 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1353 : nullptr); 1354 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1355 (Context, Tag, Header, DwarfOps)), 1356 NextMDValueNo++); 1357 break; 1358 } 1359 case bitc::METADATA_SUBRANGE: { 1360 if (Record.size() != 3) 1361 return Error("Invalid record"); 1362 1363 MDValueList.AssignValue( 1364 GET_OR_DISTINCT(MDSubrange, Record[0], 1365 (Context, Record[1], unrotateSign(Record[2]))), 1366 NextMDValueNo++); 1367 break; 1368 } 1369 case bitc::METADATA_ENUMERATOR: { 1370 if (Record.size() != 3) 1371 return Error("Invalid record"); 1372 1373 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1374 (Context, unrotateSign(Record[1]), 1375 getMDString(Record[2]))), 1376 NextMDValueNo++); 1377 break; 1378 } 1379 case bitc::METADATA_BASIC_TYPE: { 1380 if (Record.size() != 6) 1381 return Error("Invalid record"); 1382 1383 MDValueList.AssignValue( 1384 GET_OR_DISTINCT(MDBasicType, Record[0], 1385 (Context, Record[1], getMDString(Record[2]), 1386 Record[3], Record[4], Record[5])), 1387 NextMDValueNo++); 1388 break; 1389 } 1390 case bitc::METADATA_DERIVED_TYPE: { 1391 if (Record.size() != 12) 1392 return Error("Invalid record"); 1393 1394 MDValueList.AssignValue( 1395 GET_OR_DISTINCT(MDDerivedType, Record[0], 1396 (Context, Record[1], getMDString(Record[2]), 1397 getMDOrNull(Record[3]), Record[4], 1398 getMDOrNull(Record[5]), getMD(Record[6]), Record[7], 1399 Record[8], Record[9], Record[10], 1400 getMDOrNull(Record[11]))), 1401 NextMDValueNo++); 1402 break; 1403 } 1404 case bitc::METADATA_COMPOSITE_TYPE: { 1405 if (Record.size() != 16) 1406 return Error("Invalid record"); 1407 1408 MDValueList.AssignValue( 1409 GET_OR_DISTINCT(MDCompositeType, Record[0], 1410 (Context, Record[1], getMDString(Record[2]), 1411 getMDOrNull(Record[3]), Record[4], 1412 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1413 Record[7], Record[8], Record[9], Record[10], 1414 getMDOrNull(Record[11]), Record[12], 1415 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1416 getMDString(Record[15]))), 1417 NextMDValueNo++); 1418 break; 1419 } 1420 case bitc::METADATA_SUBROUTINE_TYPE: { 1421 if (Record.size() != 3) 1422 return Error("Invalid record"); 1423 1424 MDValueList.AssignValue( 1425 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1426 (Context, Record[1], getMDOrNull(Record[2]))), 1427 NextMDValueNo++); 1428 break; 1429 } 1430 case bitc::METADATA_FILE: { 1431 if (Record.size() != 3) 1432 return Error("Invalid record"); 1433 1434 MDValueList.AssignValue( 1435 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1436 getMDString(Record[2]))), 1437 NextMDValueNo++); 1438 break; 1439 } 1440 case bitc::METADATA_COMPILE_UNIT: { 1441 if (Record.size() != 14) 1442 return Error("Invalid record"); 1443 1444 MDValueList.AssignValue( 1445 GET_OR_DISTINCT( 1446 MDCompileUnit, Record[0], 1447 (Context, Record[1], getMD(Record[2]), getMDString(Record[3]), 1448 Record[4], getMDString(Record[5]), Record[6], 1449 getMDString(Record[7]), Record[8], getMDOrNull(Record[9]), 1450 getMDOrNull(Record[10]), getMDOrNull(Record[11]), 1451 getMDOrNull(Record[12]), getMDOrNull(Record[13]))), 1452 NextMDValueNo++); 1453 break; 1454 } 1455 case bitc::METADATA_SUBPROGRAM: { 1456 if (Record.size() != 19) 1457 return Error("Invalid record"); 1458 1459 MDValueList.AssignValue( 1460 GET_OR_DISTINCT( 1461 MDSubprogram, Record[0], 1462 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1463 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1464 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1465 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1466 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1467 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1468 NextMDValueNo++); 1469 break; 1470 } 1471 case bitc::METADATA_LEXICAL_BLOCK: { 1472 if (Record.size() != 5) 1473 return Error("Invalid record"); 1474 1475 MDValueList.AssignValue( 1476 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1477 (Context, getMDOrNull(Record[1]), 1478 getMDOrNull(Record[2]), Record[3], Record[4])), 1479 NextMDValueNo++); 1480 break; 1481 } 1482 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1483 if (Record.size() != 4) 1484 return Error("Invalid record"); 1485 1486 MDValueList.AssignValue( 1487 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1488 (Context, getMDOrNull(Record[1]), 1489 getMDOrNull(Record[2]), Record[3])), 1490 NextMDValueNo++); 1491 break; 1492 } 1493 case bitc::METADATA_NAMESPACE: { 1494 if (Record.size() != 5) 1495 return Error("Invalid record"); 1496 1497 MDValueList.AssignValue( 1498 GET_OR_DISTINCT(MDNamespace, Record[0], 1499 (Context, getMDOrNull(Record[1]), 1500 getMDOrNull(Record[2]), getMDString(Record[3]), 1501 Record[4])), 1502 NextMDValueNo++); 1503 break; 1504 } 1505 case bitc::METADATA_TEMPLATE_TYPE: { 1506 if (Record.size() != 4) 1507 return Error("Invalid record"); 1508 1509 MDValueList.AssignValue( 1510 GET_OR_DISTINCT(MDTemplateTypeParameter, Record[0], 1511 (Context, getMDOrNull(Record[1]), 1512 getMDString(Record[2]), getMDOrNull(Record[3]))), 1513 NextMDValueNo++); 1514 break; 1515 } 1516 case bitc::METADATA_TEMPLATE_VALUE: { 1517 if (Record.size() != 6) 1518 return Error("Invalid record"); 1519 1520 MDValueList.AssignValue( 1521 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1522 (Context, Record[1], getMDOrNull(Record[2]), 1523 getMDString(Record[3]), getMDOrNull(Record[4]), 1524 getMDOrNull(Record[5]))), 1525 NextMDValueNo++); 1526 break; 1527 } 1528 case bitc::METADATA_GLOBAL_VAR: { 1529 if (Record.size() != 11) 1530 return Error("Invalid record"); 1531 1532 MDValueList.AssignValue( 1533 GET_OR_DISTINCT(MDGlobalVariable, Record[0], 1534 (Context, getMDOrNull(Record[1]), 1535 getMDString(Record[2]), getMDString(Record[3]), 1536 getMDOrNull(Record[4]), Record[5], 1537 getMDOrNull(Record[6]), Record[7], Record[8], 1538 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1539 NextMDValueNo++); 1540 break; 1541 } 1542 case bitc::METADATA_LOCAL_VAR: { 1543 if (Record.size() != 10) 1544 return Error("Invalid record"); 1545 1546 MDValueList.AssignValue( 1547 GET_OR_DISTINCT(MDLocalVariable, Record[0], 1548 (Context, Record[1], getMDOrNull(Record[2]), 1549 getMDString(Record[3]), getMDOrNull(Record[4]), 1550 Record[5], getMDOrNull(Record[6]), Record[7], 1551 Record[8], getMDOrNull(Record[9]))), 1552 NextMDValueNo++); 1553 break; 1554 } 1555 case bitc::METADATA_STRING: { 1556 std::string String(Record.begin(), Record.end()); 1557 llvm::UpgradeMDStringConstant(String); 1558 Metadata *MD = MDString::get(Context, String); 1559 MDValueList.AssignValue(MD, NextMDValueNo++); 1560 break; 1561 } 1562 case bitc::METADATA_KIND: { 1563 if (Record.size() < 2) 1564 return Error("Invalid record"); 1565 1566 unsigned Kind = Record[0]; 1567 SmallString<8> Name(Record.begin()+1, Record.end()); 1568 1569 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1570 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1571 return Error("Conflicting METADATA_KIND records"); 1572 break; 1573 } 1574 } 1575 } 1576 #undef GET_OR_DISTINCT 1577 } 1578 1579 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1580 /// the LSB for dense VBR encoding. 1581 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1582 if ((V & 1) == 0) 1583 return V >> 1; 1584 if (V != 1) 1585 return -(V >> 1); 1586 // There is no such thing as -0 with integers. "-0" really means MININT. 1587 return 1ULL << 63; 1588 } 1589 1590 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1591 /// values and aliases that we can. 1592 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1593 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1594 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1595 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1596 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1597 1598 GlobalInitWorklist.swap(GlobalInits); 1599 AliasInitWorklist.swap(AliasInits); 1600 FunctionPrefixWorklist.swap(FunctionPrefixes); 1601 FunctionPrologueWorklist.swap(FunctionPrologues); 1602 1603 while (!GlobalInitWorklist.empty()) { 1604 unsigned ValID = GlobalInitWorklist.back().second; 1605 if (ValID >= ValueList.size()) { 1606 // Not ready to resolve this yet, it requires something later in the file. 1607 GlobalInits.push_back(GlobalInitWorklist.back()); 1608 } else { 1609 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1610 GlobalInitWorklist.back().first->setInitializer(C); 1611 else 1612 return Error("Expected a constant"); 1613 } 1614 GlobalInitWorklist.pop_back(); 1615 } 1616 1617 while (!AliasInitWorklist.empty()) { 1618 unsigned ValID = AliasInitWorklist.back().second; 1619 if (ValID >= ValueList.size()) { 1620 AliasInits.push_back(AliasInitWorklist.back()); 1621 } else { 1622 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1623 AliasInitWorklist.back().first->setAliasee(C); 1624 else 1625 return Error("Expected a constant"); 1626 } 1627 AliasInitWorklist.pop_back(); 1628 } 1629 1630 while (!FunctionPrefixWorklist.empty()) { 1631 unsigned ValID = FunctionPrefixWorklist.back().second; 1632 if (ValID >= ValueList.size()) { 1633 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1634 } else { 1635 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1636 FunctionPrefixWorklist.back().first->setPrefixData(C); 1637 else 1638 return Error("Expected a constant"); 1639 } 1640 FunctionPrefixWorklist.pop_back(); 1641 } 1642 1643 while (!FunctionPrologueWorklist.empty()) { 1644 unsigned ValID = FunctionPrologueWorklist.back().second; 1645 if (ValID >= ValueList.size()) { 1646 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1647 } else { 1648 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1649 FunctionPrologueWorklist.back().first->setPrologueData(C); 1650 else 1651 return Error("Expected a constant"); 1652 } 1653 FunctionPrologueWorklist.pop_back(); 1654 } 1655 1656 return std::error_code(); 1657 } 1658 1659 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1660 SmallVector<uint64_t, 8> Words(Vals.size()); 1661 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1662 BitcodeReader::decodeSignRotatedValue); 1663 1664 return APInt(TypeBits, Words); 1665 } 1666 1667 std::error_code BitcodeReader::ParseConstants() { 1668 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1669 return Error("Invalid record"); 1670 1671 SmallVector<uint64_t, 64> Record; 1672 1673 // Read all the records for this value table. 1674 Type *CurTy = Type::getInt32Ty(Context); 1675 unsigned NextCstNo = ValueList.size(); 1676 while (1) { 1677 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1678 1679 switch (Entry.Kind) { 1680 case BitstreamEntry::SubBlock: // Handled for us already. 1681 case BitstreamEntry::Error: 1682 return Error("Malformed block"); 1683 case BitstreamEntry::EndBlock: 1684 if (NextCstNo != ValueList.size()) 1685 return Error("Invalid ronstant reference"); 1686 1687 // Once all the constants have been read, go through and resolve forward 1688 // references. 1689 ValueList.ResolveConstantForwardRefs(); 1690 return std::error_code(); 1691 case BitstreamEntry::Record: 1692 // The interesting case. 1693 break; 1694 } 1695 1696 // Read a record. 1697 Record.clear(); 1698 Value *V = nullptr; 1699 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1700 switch (BitCode) { 1701 default: // Default behavior: unknown constant 1702 case bitc::CST_CODE_UNDEF: // UNDEF 1703 V = UndefValue::get(CurTy); 1704 break; 1705 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1706 if (Record.empty()) 1707 return Error("Invalid record"); 1708 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1709 return Error("Invalid record"); 1710 CurTy = TypeList[Record[0]]; 1711 continue; // Skip the ValueList manipulation. 1712 case bitc::CST_CODE_NULL: // NULL 1713 V = Constant::getNullValue(CurTy); 1714 break; 1715 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1716 if (!CurTy->isIntegerTy() || Record.empty()) 1717 return Error("Invalid record"); 1718 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1719 break; 1720 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1721 if (!CurTy->isIntegerTy() || Record.empty()) 1722 return Error("Invalid record"); 1723 1724 APInt VInt = ReadWideAPInt(Record, 1725 cast<IntegerType>(CurTy)->getBitWidth()); 1726 V = ConstantInt::get(Context, VInt); 1727 1728 break; 1729 } 1730 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1731 if (Record.empty()) 1732 return Error("Invalid record"); 1733 if (CurTy->isHalfTy()) 1734 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1735 APInt(16, (uint16_t)Record[0]))); 1736 else if (CurTy->isFloatTy()) 1737 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1738 APInt(32, (uint32_t)Record[0]))); 1739 else if (CurTy->isDoubleTy()) 1740 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1741 APInt(64, Record[0]))); 1742 else if (CurTy->isX86_FP80Ty()) { 1743 // Bits are not stored the same way as a normal i80 APInt, compensate. 1744 uint64_t Rearrange[2]; 1745 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1746 Rearrange[1] = Record[0] >> 48; 1747 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1748 APInt(80, Rearrange))); 1749 } else if (CurTy->isFP128Ty()) 1750 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1751 APInt(128, Record))); 1752 else if (CurTy->isPPC_FP128Ty()) 1753 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1754 APInt(128, Record))); 1755 else 1756 V = UndefValue::get(CurTy); 1757 break; 1758 } 1759 1760 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1761 if (Record.empty()) 1762 return Error("Invalid record"); 1763 1764 unsigned Size = Record.size(); 1765 SmallVector<Constant*, 16> Elts; 1766 1767 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1768 for (unsigned i = 0; i != Size; ++i) 1769 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1770 STy->getElementType(i))); 1771 V = ConstantStruct::get(STy, Elts); 1772 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1773 Type *EltTy = ATy->getElementType(); 1774 for (unsigned i = 0; i != Size; ++i) 1775 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1776 V = ConstantArray::get(ATy, Elts); 1777 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1778 Type *EltTy = VTy->getElementType(); 1779 for (unsigned i = 0; i != Size; ++i) 1780 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1781 V = ConstantVector::get(Elts); 1782 } else { 1783 V = UndefValue::get(CurTy); 1784 } 1785 break; 1786 } 1787 case bitc::CST_CODE_STRING: // STRING: [values] 1788 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1789 if (Record.empty()) 1790 return Error("Invalid record"); 1791 1792 SmallString<16> Elts(Record.begin(), Record.end()); 1793 V = ConstantDataArray::getString(Context, Elts, 1794 BitCode == bitc::CST_CODE_CSTRING); 1795 break; 1796 } 1797 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1798 if (Record.empty()) 1799 return Error("Invalid record"); 1800 1801 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1802 unsigned Size = Record.size(); 1803 1804 if (EltTy->isIntegerTy(8)) { 1805 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1806 if (isa<VectorType>(CurTy)) 1807 V = ConstantDataVector::get(Context, Elts); 1808 else 1809 V = ConstantDataArray::get(Context, Elts); 1810 } else if (EltTy->isIntegerTy(16)) { 1811 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1812 if (isa<VectorType>(CurTy)) 1813 V = ConstantDataVector::get(Context, Elts); 1814 else 1815 V = ConstantDataArray::get(Context, Elts); 1816 } else if (EltTy->isIntegerTy(32)) { 1817 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1818 if (isa<VectorType>(CurTy)) 1819 V = ConstantDataVector::get(Context, Elts); 1820 else 1821 V = ConstantDataArray::get(Context, Elts); 1822 } else if (EltTy->isIntegerTy(64)) { 1823 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1824 if (isa<VectorType>(CurTy)) 1825 V = ConstantDataVector::get(Context, Elts); 1826 else 1827 V = ConstantDataArray::get(Context, Elts); 1828 } else if (EltTy->isFloatTy()) { 1829 SmallVector<float, 16> Elts(Size); 1830 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1831 if (isa<VectorType>(CurTy)) 1832 V = ConstantDataVector::get(Context, Elts); 1833 else 1834 V = ConstantDataArray::get(Context, Elts); 1835 } else if (EltTy->isDoubleTy()) { 1836 SmallVector<double, 16> Elts(Size); 1837 std::transform(Record.begin(), Record.end(), Elts.begin(), 1838 BitsToDouble); 1839 if (isa<VectorType>(CurTy)) 1840 V = ConstantDataVector::get(Context, Elts); 1841 else 1842 V = ConstantDataArray::get(Context, Elts); 1843 } else { 1844 return Error("Invalid type for value"); 1845 } 1846 break; 1847 } 1848 1849 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1850 if (Record.size() < 3) 1851 return Error("Invalid record"); 1852 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1853 if (Opc < 0) { 1854 V = UndefValue::get(CurTy); // Unknown binop. 1855 } else { 1856 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1857 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1858 unsigned Flags = 0; 1859 if (Record.size() >= 4) { 1860 if (Opc == Instruction::Add || 1861 Opc == Instruction::Sub || 1862 Opc == Instruction::Mul || 1863 Opc == Instruction::Shl) { 1864 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1865 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1866 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1867 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1868 } else if (Opc == Instruction::SDiv || 1869 Opc == Instruction::UDiv || 1870 Opc == Instruction::LShr || 1871 Opc == Instruction::AShr) { 1872 if (Record[3] & (1 << bitc::PEO_EXACT)) 1873 Flags |= SDivOperator::IsExact; 1874 } 1875 } 1876 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1877 } 1878 break; 1879 } 1880 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1881 if (Record.size() < 3) 1882 return Error("Invalid record"); 1883 int Opc = GetDecodedCastOpcode(Record[0]); 1884 if (Opc < 0) { 1885 V = UndefValue::get(CurTy); // Unknown cast. 1886 } else { 1887 Type *OpTy = getTypeByID(Record[1]); 1888 if (!OpTy) 1889 return Error("Invalid record"); 1890 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1891 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1892 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1893 } 1894 break; 1895 } 1896 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1897 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1898 if (Record.size() & 1) 1899 return Error("Invalid record"); 1900 SmallVector<Constant*, 16> Elts; 1901 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1902 Type *ElTy = getTypeByID(Record[i]); 1903 if (!ElTy) 1904 return Error("Invalid record"); 1905 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1906 } 1907 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1908 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1909 BitCode == 1910 bitc::CST_CODE_CE_INBOUNDS_GEP); 1911 break; 1912 } 1913 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1914 if (Record.size() < 3) 1915 return Error("Invalid record"); 1916 1917 Type *SelectorTy = Type::getInt1Ty(Context); 1918 1919 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1920 // vector. Otherwise, it must be a single bit. 1921 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1922 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1923 VTy->getNumElements()); 1924 1925 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1926 SelectorTy), 1927 ValueList.getConstantFwdRef(Record[1],CurTy), 1928 ValueList.getConstantFwdRef(Record[2],CurTy)); 1929 break; 1930 } 1931 case bitc::CST_CODE_CE_EXTRACTELT 1932 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1933 if (Record.size() < 3) 1934 return Error("Invalid record"); 1935 VectorType *OpTy = 1936 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1937 if (!OpTy) 1938 return Error("Invalid record"); 1939 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1940 Constant *Op1 = nullptr; 1941 if (Record.size() == 4) { 1942 Type *IdxTy = getTypeByID(Record[2]); 1943 if (!IdxTy) 1944 return Error("Invalid record"); 1945 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1946 } else // TODO: Remove with llvm 4.0 1947 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1948 if (!Op1) 1949 return Error("Invalid record"); 1950 V = ConstantExpr::getExtractElement(Op0, Op1); 1951 break; 1952 } 1953 case bitc::CST_CODE_CE_INSERTELT 1954 : { // CE_INSERTELT: [opval, opval, opty, opval] 1955 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1956 if (Record.size() < 3 || !OpTy) 1957 return Error("Invalid record"); 1958 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1959 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1960 OpTy->getElementType()); 1961 Constant *Op2 = nullptr; 1962 if (Record.size() == 4) { 1963 Type *IdxTy = getTypeByID(Record[2]); 1964 if (!IdxTy) 1965 return Error("Invalid record"); 1966 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1967 } else // TODO: Remove with llvm 4.0 1968 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1969 if (!Op2) 1970 return Error("Invalid record"); 1971 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1972 break; 1973 } 1974 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1975 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1976 if (Record.size() < 3 || !OpTy) 1977 return Error("Invalid record"); 1978 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1979 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1980 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1981 OpTy->getNumElements()); 1982 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1983 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1984 break; 1985 } 1986 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1987 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1988 VectorType *OpTy = 1989 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1990 if (Record.size() < 4 || !RTy || !OpTy) 1991 return Error("Invalid record"); 1992 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1993 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1994 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1995 RTy->getNumElements()); 1996 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1997 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1998 break; 1999 } 2000 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2001 if (Record.size() < 4) 2002 return Error("Invalid record"); 2003 Type *OpTy = getTypeByID(Record[0]); 2004 if (!OpTy) 2005 return Error("Invalid record"); 2006 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2007 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2008 2009 if (OpTy->isFPOrFPVectorTy()) 2010 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2011 else 2012 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2013 break; 2014 } 2015 // This maintains backward compatibility, pre-asm dialect keywords. 2016 // FIXME: Remove with the 4.0 release. 2017 case bitc::CST_CODE_INLINEASM_OLD: { 2018 if (Record.size() < 2) 2019 return Error("Invalid record"); 2020 std::string AsmStr, ConstrStr; 2021 bool HasSideEffects = Record[0] & 1; 2022 bool IsAlignStack = Record[0] >> 1; 2023 unsigned AsmStrSize = Record[1]; 2024 if (2+AsmStrSize >= Record.size()) 2025 return Error("Invalid record"); 2026 unsigned ConstStrSize = Record[2+AsmStrSize]; 2027 if (3+AsmStrSize+ConstStrSize > Record.size()) 2028 return Error("Invalid record"); 2029 2030 for (unsigned i = 0; i != AsmStrSize; ++i) 2031 AsmStr += (char)Record[2+i]; 2032 for (unsigned i = 0; i != ConstStrSize; ++i) 2033 ConstrStr += (char)Record[3+AsmStrSize+i]; 2034 PointerType *PTy = cast<PointerType>(CurTy); 2035 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2036 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2037 break; 2038 } 2039 // This version adds support for the asm dialect keywords (e.g., 2040 // inteldialect). 2041 case bitc::CST_CODE_INLINEASM: { 2042 if (Record.size() < 2) 2043 return Error("Invalid record"); 2044 std::string AsmStr, ConstrStr; 2045 bool HasSideEffects = Record[0] & 1; 2046 bool IsAlignStack = (Record[0] >> 1) & 1; 2047 unsigned AsmDialect = Record[0] >> 2; 2048 unsigned AsmStrSize = Record[1]; 2049 if (2+AsmStrSize >= Record.size()) 2050 return Error("Invalid record"); 2051 unsigned ConstStrSize = Record[2+AsmStrSize]; 2052 if (3+AsmStrSize+ConstStrSize > Record.size()) 2053 return Error("Invalid record"); 2054 2055 for (unsigned i = 0; i != AsmStrSize; ++i) 2056 AsmStr += (char)Record[2+i]; 2057 for (unsigned i = 0; i != ConstStrSize; ++i) 2058 ConstrStr += (char)Record[3+AsmStrSize+i]; 2059 PointerType *PTy = cast<PointerType>(CurTy); 2060 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2061 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2062 InlineAsm::AsmDialect(AsmDialect)); 2063 break; 2064 } 2065 case bitc::CST_CODE_BLOCKADDRESS:{ 2066 if (Record.size() < 3) 2067 return Error("Invalid record"); 2068 Type *FnTy = getTypeByID(Record[0]); 2069 if (!FnTy) 2070 return Error("Invalid record"); 2071 Function *Fn = 2072 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2073 if (!Fn) 2074 return Error("Invalid record"); 2075 2076 // Don't let Fn get dematerialized. 2077 BlockAddressesTaken.insert(Fn); 2078 2079 // If the function is already parsed we can insert the block address right 2080 // away. 2081 BasicBlock *BB; 2082 unsigned BBID = Record[2]; 2083 if (!BBID) 2084 // Invalid reference to entry block. 2085 return Error("Invalid ID"); 2086 if (!Fn->empty()) { 2087 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2088 for (size_t I = 0, E = BBID; I != E; ++I) { 2089 if (BBI == BBE) 2090 return Error("Invalid ID"); 2091 ++BBI; 2092 } 2093 BB = BBI; 2094 } else { 2095 // Otherwise insert a placeholder and remember it so it can be inserted 2096 // when the function is parsed. 2097 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2098 if (FwdBBs.empty()) 2099 BasicBlockFwdRefQueue.push_back(Fn); 2100 if (FwdBBs.size() < BBID + 1) 2101 FwdBBs.resize(BBID + 1); 2102 if (!FwdBBs[BBID]) 2103 FwdBBs[BBID] = BasicBlock::Create(Context); 2104 BB = FwdBBs[BBID]; 2105 } 2106 V = BlockAddress::get(Fn, BB); 2107 break; 2108 } 2109 } 2110 2111 ValueList.AssignValue(V, NextCstNo); 2112 ++NextCstNo; 2113 } 2114 } 2115 2116 std::error_code BitcodeReader::ParseUseLists() { 2117 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2118 return Error("Invalid record"); 2119 2120 // Read all the records. 2121 SmallVector<uint64_t, 64> Record; 2122 while (1) { 2123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2124 2125 switch (Entry.Kind) { 2126 case BitstreamEntry::SubBlock: // Handled for us already. 2127 case BitstreamEntry::Error: 2128 return Error("Malformed block"); 2129 case BitstreamEntry::EndBlock: 2130 return std::error_code(); 2131 case BitstreamEntry::Record: 2132 // The interesting case. 2133 break; 2134 } 2135 2136 // Read a use list record. 2137 Record.clear(); 2138 bool IsBB = false; 2139 switch (Stream.readRecord(Entry.ID, Record)) { 2140 default: // Default behavior: unknown type. 2141 break; 2142 case bitc::USELIST_CODE_BB: 2143 IsBB = true; 2144 // fallthrough 2145 case bitc::USELIST_CODE_DEFAULT: { 2146 unsigned RecordLength = Record.size(); 2147 if (RecordLength < 3) 2148 // Records should have at least an ID and two indexes. 2149 return Error("Invalid record"); 2150 unsigned ID = Record.back(); 2151 Record.pop_back(); 2152 2153 Value *V; 2154 if (IsBB) { 2155 assert(ID < FunctionBBs.size() && "Basic block not found"); 2156 V = FunctionBBs[ID]; 2157 } else 2158 V = ValueList[ID]; 2159 unsigned NumUses = 0; 2160 SmallDenseMap<const Use *, unsigned, 16> Order; 2161 for (const Use &U : V->uses()) { 2162 if (++NumUses > Record.size()) 2163 break; 2164 Order[&U] = Record[NumUses - 1]; 2165 } 2166 if (Order.size() != Record.size() || NumUses > Record.size()) 2167 // Mismatches can happen if the functions are being materialized lazily 2168 // (out-of-order), or a value has been upgraded. 2169 break; 2170 2171 V->sortUseList([&](const Use &L, const Use &R) { 2172 return Order.lookup(&L) < Order.lookup(&R); 2173 }); 2174 break; 2175 } 2176 } 2177 } 2178 } 2179 2180 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2181 /// remember where it is and then skip it. This lets us lazily deserialize the 2182 /// functions. 2183 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2184 // Get the function we are talking about. 2185 if (FunctionsWithBodies.empty()) 2186 return Error("Insufficient function protos"); 2187 2188 Function *Fn = FunctionsWithBodies.back(); 2189 FunctionsWithBodies.pop_back(); 2190 2191 // Save the current stream state. 2192 uint64_t CurBit = Stream.GetCurrentBitNo(); 2193 DeferredFunctionInfo[Fn] = CurBit; 2194 2195 // Skip over the function block for now. 2196 if (Stream.SkipBlock()) 2197 return Error("Invalid record"); 2198 return std::error_code(); 2199 } 2200 2201 std::error_code BitcodeReader::GlobalCleanup() { 2202 // Patch the initializers for globals and aliases up. 2203 ResolveGlobalAndAliasInits(); 2204 if (!GlobalInits.empty() || !AliasInits.empty()) 2205 return Error("Malformed global initializer set"); 2206 2207 // Look for intrinsic functions which need to be upgraded at some point 2208 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2209 FI != FE; ++FI) { 2210 Function *NewFn; 2211 if (UpgradeIntrinsicFunction(FI, NewFn)) 2212 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2213 } 2214 2215 // Look for global variables which need to be renamed. 2216 for (Module::global_iterator 2217 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2218 GI != GE;) { 2219 GlobalVariable *GV = GI++; 2220 UpgradeGlobalVariable(GV); 2221 } 2222 2223 // Force deallocation of memory for these vectors to favor the client that 2224 // want lazy deserialization. 2225 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2226 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2227 return std::error_code(); 2228 } 2229 2230 std::error_code BitcodeReader::ParseModule(bool Resume) { 2231 if (Resume) 2232 Stream.JumpToBit(NextUnreadBit); 2233 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2234 return Error("Invalid record"); 2235 2236 SmallVector<uint64_t, 64> Record; 2237 std::vector<std::string> SectionTable; 2238 std::vector<std::string> GCTable; 2239 2240 // Read all the records for this module. 2241 while (1) { 2242 BitstreamEntry Entry = Stream.advance(); 2243 2244 switch (Entry.Kind) { 2245 case BitstreamEntry::Error: 2246 return Error("Malformed block"); 2247 case BitstreamEntry::EndBlock: 2248 return GlobalCleanup(); 2249 2250 case BitstreamEntry::SubBlock: 2251 switch (Entry.ID) { 2252 default: // Skip unknown content. 2253 if (Stream.SkipBlock()) 2254 return Error("Invalid record"); 2255 break; 2256 case bitc::BLOCKINFO_BLOCK_ID: 2257 if (Stream.ReadBlockInfoBlock()) 2258 return Error("Malformed block"); 2259 break; 2260 case bitc::PARAMATTR_BLOCK_ID: 2261 if (std::error_code EC = ParseAttributeBlock()) 2262 return EC; 2263 break; 2264 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2265 if (std::error_code EC = ParseAttributeGroupBlock()) 2266 return EC; 2267 break; 2268 case bitc::TYPE_BLOCK_ID_NEW: 2269 if (std::error_code EC = ParseTypeTable()) 2270 return EC; 2271 break; 2272 case bitc::VALUE_SYMTAB_BLOCK_ID: 2273 if (std::error_code EC = ParseValueSymbolTable()) 2274 return EC; 2275 SeenValueSymbolTable = true; 2276 break; 2277 case bitc::CONSTANTS_BLOCK_ID: 2278 if (std::error_code EC = ParseConstants()) 2279 return EC; 2280 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2281 return EC; 2282 break; 2283 case bitc::METADATA_BLOCK_ID: 2284 if (std::error_code EC = ParseMetadata()) 2285 return EC; 2286 break; 2287 case bitc::FUNCTION_BLOCK_ID: 2288 // If this is the first function body we've seen, reverse the 2289 // FunctionsWithBodies list. 2290 if (!SeenFirstFunctionBody) { 2291 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2292 if (std::error_code EC = GlobalCleanup()) 2293 return EC; 2294 SeenFirstFunctionBody = true; 2295 } 2296 2297 if (std::error_code EC = RememberAndSkipFunctionBody()) 2298 return EC; 2299 // For streaming bitcode, suspend parsing when we reach the function 2300 // bodies. Subsequent materialization calls will resume it when 2301 // necessary. For streaming, the function bodies must be at the end of 2302 // the bitcode. If the bitcode file is old, the symbol table will be 2303 // at the end instead and will not have been seen yet. In this case, 2304 // just finish the parse now. 2305 if (LazyStreamer && SeenValueSymbolTable) { 2306 NextUnreadBit = Stream.GetCurrentBitNo(); 2307 return std::error_code(); 2308 } 2309 break; 2310 case bitc::USELIST_BLOCK_ID: 2311 if (std::error_code EC = ParseUseLists()) 2312 return EC; 2313 break; 2314 } 2315 continue; 2316 2317 case BitstreamEntry::Record: 2318 // The interesting case. 2319 break; 2320 } 2321 2322 2323 // Read a record. 2324 switch (Stream.readRecord(Entry.ID, Record)) { 2325 default: break; // Default behavior, ignore unknown content. 2326 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2327 if (Record.size() < 1) 2328 return Error("Invalid record"); 2329 // Only version #0 and #1 are supported so far. 2330 unsigned module_version = Record[0]; 2331 switch (module_version) { 2332 default: 2333 return Error("Invalid value"); 2334 case 0: 2335 UseRelativeIDs = false; 2336 break; 2337 case 1: 2338 UseRelativeIDs = true; 2339 break; 2340 } 2341 break; 2342 } 2343 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2344 std::string S; 2345 if (ConvertToString(Record, 0, S)) 2346 return Error("Invalid record"); 2347 TheModule->setTargetTriple(S); 2348 break; 2349 } 2350 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2351 std::string S; 2352 if (ConvertToString(Record, 0, S)) 2353 return Error("Invalid record"); 2354 TheModule->setDataLayout(S); 2355 break; 2356 } 2357 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2358 std::string S; 2359 if (ConvertToString(Record, 0, S)) 2360 return Error("Invalid record"); 2361 TheModule->setModuleInlineAsm(S); 2362 break; 2363 } 2364 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2365 // FIXME: Remove in 4.0. 2366 std::string S; 2367 if (ConvertToString(Record, 0, S)) 2368 return Error("Invalid record"); 2369 // Ignore value. 2370 break; 2371 } 2372 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2373 std::string S; 2374 if (ConvertToString(Record, 0, S)) 2375 return Error("Invalid record"); 2376 SectionTable.push_back(S); 2377 break; 2378 } 2379 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2380 std::string S; 2381 if (ConvertToString(Record, 0, S)) 2382 return Error("Invalid record"); 2383 GCTable.push_back(S); 2384 break; 2385 } 2386 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2387 if (Record.size() < 2) 2388 return Error("Invalid record"); 2389 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2390 unsigned ComdatNameSize = Record[1]; 2391 std::string ComdatName; 2392 ComdatName.reserve(ComdatNameSize); 2393 for (unsigned i = 0; i != ComdatNameSize; ++i) 2394 ComdatName += (char)Record[2 + i]; 2395 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2396 C->setSelectionKind(SK); 2397 ComdatList.push_back(C); 2398 break; 2399 } 2400 // GLOBALVAR: [pointer type, isconst, initid, 2401 // linkage, alignment, section, visibility, threadlocal, 2402 // unnamed_addr, externally_initialized, dllstorageclass, 2403 // comdat] 2404 case bitc::MODULE_CODE_GLOBALVAR: { 2405 if (Record.size() < 6) 2406 return Error("Invalid record"); 2407 Type *Ty = getTypeByID(Record[0]); 2408 if (!Ty) 2409 return Error("Invalid record"); 2410 if (!Ty->isPointerTy()) 2411 return Error("Invalid type for value"); 2412 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2413 Ty = cast<PointerType>(Ty)->getElementType(); 2414 2415 bool isConstant = Record[1]; 2416 uint64_t RawLinkage = Record[3]; 2417 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2418 unsigned Alignment = (1 << Record[4]) >> 1; 2419 std::string Section; 2420 if (Record[5]) { 2421 if (Record[5]-1 >= SectionTable.size()) 2422 return Error("Invalid ID"); 2423 Section = SectionTable[Record[5]-1]; 2424 } 2425 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2426 // Local linkage must have default visibility. 2427 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2428 // FIXME: Change to an error if non-default in 4.0. 2429 Visibility = GetDecodedVisibility(Record[6]); 2430 2431 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2432 if (Record.size() > 7) 2433 TLM = GetDecodedThreadLocalMode(Record[7]); 2434 2435 bool UnnamedAddr = false; 2436 if (Record.size() > 8) 2437 UnnamedAddr = Record[8]; 2438 2439 bool ExternallyInitialized = false; 2440 if (Record.size() > 9) 2441 ExternallyInitialized = Record[9]; 2442 2443 GlobalVariable *NewGV = 2444 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2445 TLM, AddressSpace, ExternallyInitialized); 2446 NewGV->setAlignment(Alignment); 2447 if (!Section.empty()) 2448 NewGV->setSection(Section); 2449 NewGV->setVisibility(Visibility); 2450 NewGV->setUnnamedAddr(UnnamedAddr); 2451 2452 if (Record.size() > 10) 2453 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2454 else 2455 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2456 2457 ValueList.push_back(NewGV); 2458 2459 // Remember which value to use for the global initializer. 2460 if (unsigned InitID = Record[2]) 2461 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2462 2463 if (Record.size() > 11) { 2464 if (unsigned ComdatID = Record[11]) { 2465 assert(ComdatID <= ComdatList.size()); 2466 NewGV->setComdat(ComdatList[ComdatID - 1]); 2467 } 2468 } else if (hasImplicitComdat(RawLinkage)) { 2469 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2470 } 2471 break; 2472 } 2473 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2474 // alignment, section, visibility, gc, unnamed_addr, 2475 // prologuedata, dllstorageclass, comdat, prefixdata] 2476 case bitc::MODULE_CODE_FUNCTION: { 2477 if (Record.size() < 8) 2478 return Error("Invalid record"); 2479 Type *Ty = getTypeByID(Record[0]); 2480 if (!Ty) 2481 return Error("Invalid record"); 2482 if (!Ty->isPointerTy()) 2483 return Error("Invalid type for value"); 2484 FunctionType *FTy = 2485 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2486 if (!FTy) 2487 return Error("Invalid type for value"); 2488 2489 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2490 "", TheModule); 2491 2492 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2493 bool isProto = Record[2]; 2494 uint64_t RawLinkage = Record[3]; 2495 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2496 Func->setAttributes(getAttributes(Record[4])); 2497 2498 Func->setAlignment((1 << Record[5]) >> 1); 2499 if (Record[6]) { 2500 if (Record[6]-1 >= SectionTable.size()) 2501 return Error("Invalid ID"); 2502 Func->setSection(SectionTable[Record[6]-1]); 2503 } 2504 // Local linkage must have default visibility. 2505 if (!Func->hasLocalLinkage()) 2506 // FIXME: Change to an error if non-default in 4.0. 2507 Func->setVisibility(GetDecodedVisibility(Record[7])); 2508 if (Record.size() > 8 && Record[8]) { 2509 if (Record[8]-1 > GCTable.size()) 2510 return Error("Invalid ID"); 2511 Func->setGC(GCTable[Record[8]-1].c_str()); 2512 } 2513 bool UnnamedAddr = false; 2514 if (Record.size() > 9) 2515 UnnamedAddr = Record[9]; 2516 Func->setUnnamedAddr(UnnamedAddr); 2517 if (Record.size() > 10 && Record[10] != 0) 2518 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2519 2520 if (Record.size() > 11) 2521 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2522 else 2523 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2524 2525 if (Record.size() > 12) { 2526 if (unsigned ComdatID = Record[12]) { 2527 assert(ComdatID <= ComdatList.size()); 2528 Func->setComdat(ComdatList[ComdatID - 1]); 2529 } 2530 } else if (hasImplicitComdat(RawLinkage)) { 2531 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2532 } 2533 2534 if (Record.size() > 13 && Record[13] != 0) 2535 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2536 2537 ValueList.push_back(Func); 2538 2539 // If this is a function with a body, remember the prototype we are 2540 // creating now, so that we can match up the body with them later. 2541 if (!isProto) { 2542 Func->setIsMaterializable(true); 2543 FunctionsWithBodies.push_back(Func); 2544 if (LazyStreamer) 2545 DeferredFunctionInfo[Func] = 0; 2546 } 2547 break; 2548 } 2549 // ALIAS: [alias type, aliasee val#, linkage] 2550 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2551 case bitc::MODULE_CODE_ALIAS: { 2552 if (Record.size() < 3) 2553 return Error("Invalid record"); 2554 Type *Ty = getTypeByID(Record[0]); 2555 if (!Ty) 2556 return Error("Invalid record"); 2557 auto *PTy = dyn_cast<PointerType>(Ty); 2558 if (!PTy) 2559 return Error("Invalid type for value"); 2560 2561 auto *NewGA = 2562 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2563 getDecodedLinkage(Record[2]), "", TheModule); 2564 // Old bitcode files didn't have visibility field. 2565 // Local linkage must have default visibility. 2566 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2567 // FIXME: Change to an error if non-default in 4.0. 2568 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2569 if (Record.size() > 4) 2570 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2571 else 2572 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2573 if (Record.size() > 5) 2574 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2575 if (Record.size() > 6) 2576 NewGA->setUnnamedAddr(Record[6]); 2577 ValueList.push_back(NewGA); 2578 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2579 break; 2580 } 2581 /// MODULE_CODE_PURGEVALS: [numvals] 2582 case bitc::MODULE_CODE_PURGEVALS: 2583 // Trim down the value list to the specified size. 2584 if (Record.size() < 1 || Record[0] > ValueList.size()) 2585 return Error("Invalid record"); 2586 ValueList.shrinkTo(Record[0]); 2587 break; 2588 } 2589 Record.clear(); 2590 } 2591 } 2592 2593 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2594 TheModule = nullptr; 2595 2596 if (std::error_code EC = InitStream()) 2597 return EC; 2598 2599 // Sniff for the signature. 2600 if (Stream.Read(8) != 'B' || 2601 Stream.Read(8) != 'C' || 2602 Stream.Read(4) != 0x0 || 2603 Stream.Read(4) != 0xC || 2604 Stream.Read(4) != 0xE || 2605 Stream.Read(4) != 0xD) 2606 return Error("Invalid bitcode signature"); 2607 2608 // We expect a number of well-defined blocks, though we don't necessarily 2609 // need to understand them all. 2610 while (1) { 2611 if (Stream.AtEndOfStream()) 2612 return std::error_code(); 2613 2614 BitstreamEntry Entry = 2615 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2616 2617 switch (Entry.Kind) { 2618 case BitstreamEntry::Error: 2619 return Error("Malformed block"); 2620 case BitstreamEntry::EndBlock: 2621 return std::error_code(); 2622 2623 case BitstreamEntry::SubBlock: 2624 switch (Entry.ID) { 2625 case bitc::BLOCKINFO_BLOCK_ID: 2626 if (Stream.ReadBlockInfoBlock()) 2627 return Error("Malformed block"); 2628 break; 2629 case bitc::MODULE_BLOCK_ID: 2630 // Reject multiple MODULE_BLOCK's in a single bitstream. 2631 if (TheModule) 2632 return Error("Invalid multiple blocks"); 2633 TheModule = M; 2634 if (std::error_code EC = ParseModule(false)) 2635 return EC; 2636 if (LazyStreamer) 2637 return std::error_code(); 2638 break; 2639 default: 2640 if (Stream.SkipBlock()) 2641 return Error("Invalid record"); 2642 break; 2643 } 2644 continue; 2645 case BitstreamEntry::Record: 2646 // There should be no records in the top-level of blocks. 2647 2648 // The ranlib in Xcode 4 will align archive members by appending newlines 2649 // to the end of them. If this file size is a multiple of 4 but not 8, we 2650 // have to read and ignore these final 4 bytes :-( 2651 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2652 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2653 Stream.AtEndOfStream()) 2654 return std::error_code(); 2655 2656 return Error("Invalid record"); 2657 } 2658 } 2659 } 2660 2661 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2662 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2663 return Error("Invalid record"); 2664 2665 SmallVector<uint64_t, 64> Record; 2666 2667 std::string Triple; 2668 // Read all the records for this module. 2669 while (1) { 2670 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2671 2672 switch (Entry.Kind) { 2673 case BitstreamEntry::SubBlock: // Handled for us already. 2674 case BitstreamEntry::Error: 2675 return Error("Malformed block"); 2676 case BitstreamEntry::EndBlock: 2677 return Triple; 2678 case BitstreamEntry::Record: 2679 // The interesting case. 2680 break; 2681 } 2682 2683 // Read a record. 2684 switch (Stream.readRecord(Entry.ID, Record)) { 2685 default: break; // Default behavior, ignore unknown content. 2686 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2687 std::string S; 2688 if (ConvertToString(Record, 0, S)) 2689 return Error("Invalid record"); 2690 Triple = S; 2691 break; 2692 } 2693 } 2694 Record.clear(); 2695 } 2696 llvm_unreachable("Exit infinite loop"); 2697 } 2698 2699 ErrorOr<std::string> BitcodeReader::parseTriple() { 2700 if (std::error_code EC = InitStream()) 2701 return EC; 2702 2703 // Sniff for the signature. 2704 if (Stream.Read(8) != 'B' || 2705 Stream.Read(8) != 'C' || 2706 Stream.Read(4) != 0x0 || 2707 Stream.Read(4) != 0xC || 2708 Stream.Read(4) != 0xE || 2709 Stream.Read(4) != 0xD) 2710 return Error("Invalid bitcode signature"); 2711 2712 // We expect a number of well-defined blocks, though we don't necessarily 2713 // need to understand them all. 2714 while (1) { 2715 BitstreamEntry Entry = Stream.advance(); 2716 2717 switch (Entry.Kind) { 2718 case BitstreamEntry::Error: 2719 return Error("Malformed block"); 2720 case BitstreamEntry::EndBlock: 2721 return std::error_code(); 2722 2723 case BitstreamEntry::SubBlock: 2724 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2725 return parseModuleTriple(); 2726 2727 // Ignore other sub-blocks. 2728 if (Stream.SkipBlock()) 2729 return Error("Malformed block"); 2730 continue; 2731 2732 case BitstreamEntry::Record: 2733 Stream.skipRecord(Entry.ID); 2734 continue; 2735 } 2736 } 2737 } 2738 2739 /// ParseMetadataAttachment - Parse metadata attachments. 2740 std::error_code BitcodeReader::ParseMetadataAttachment() { 2741 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2742 return Error("Invalid record"); 2743 2744 SmallVector<uint64_t, 64> Record; 2745 while (1) { 2746 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2747 2748 switch (Entry.Kind) { 2749 case BitstreamEntry::SubBlock: // Handled for us already. 2750 case BitstreamEntry::Error: 2751 return Error("Malformed block"); 2752 case BitstreamEntry::EndBlock: 2753 return std::error_code(); 2754 case BitstreamEntry::Record: 2755 // The interesting case. 2756 break; 2757 } 2758 2759 // Read a metadata attachment record. 2760 Record.clear(); 2761 switch (Stream.readRecord(Entry.ID, Record)) { 2762 default: // Default behavior: ignore. 2763 break; 2764 case bitc::METADATA_ATTACHMENT: { 2765 unsigned RecordLength = Record.size(); 2766 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2767 return Error("Invalid record"); 2768 Instruction *Inst = InstructionList[Record[0]]; 2769 for (unsigned i = 1; i != RecordLength; i = i+2) { 2770 unsigned Kind = Record[i]; 2771 DenseMap<unsigned, unsigned>::iterator I = 2772 MDKindMap.find(Kind); 2773 if (I == MDKindMap.end()) 2774 return Error("Invalid ID"); 2775 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2776 if (isa<LocalAsMetadata>(Node)) 2777 // Drop the attachment. This used to be legal, but there's no 2778 // upgrade path. 2779 break; 2780 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2781 if (I->second == LLVMContext::MD_tbaa) 2782 InstsWithTBAATag.push_back(Inst); 2783 } 2784 break; 2785 } 2786 } 2787 } 2788 } 2789 2790 /// ParseFunctionBody - Lazily parse the specified function body block. 2791 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2792 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2793 return Error("Invalid record"); 2794 2795 InstructionList.clear(); 2796 unsigned ModuleValueListSize = ValueList.size(); 2797 unsigned ModuleMDValueListSize = MDValueList.size(); 2798 2799 // Add all the function arguments to the value table. 2800 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2801 ValueList.push_back(I); 2802 2803 unsigned NextValueNo = ValueList.size(); 2804 BasicBlock *CurBB = nullptr; 2805 unsigned CurBBNo = 0; 2806 2807 DebugLoc LastLoc; 2808 auto getLastInstruction = [&]() -> Instruction * { 2809 if (CurBB && !CurBB->empty()) 2810 return &CurBB->back(); 2811 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2812 !FunctionBBs[CurBBNo - 1]->empty()) 2813 return &FunctionBBs[CurBBNo - 1]->back(); 2814 return nullptr; 2815 }; 2816 2817 // Read all the records. 2818 SmallVector<uint64_t, 64> Record; 2819 while (1) { 2820 BitstreamEntry Entry = Stream.advance(); 2821 2822 switch (Entry.Kind) { 2823 case BitstreamEntry::Error: 2824 return Error("Malformed block"); 2825 case BitstreamEntry::EndBlock: 2826 goto OutOfRecordLoop; 2827 2828 case BitstreamEntry::SubBlock: 2829 switch (Entry.ID) { 2830 default: // Skip unknown content. 2831 if (Stream.SkipBlock()) 2832 return Error("Invalid record"); 2833 break; 2834 case bitc::CONSTANTS_BLOCK_ID: 2835 if (std::error_code EC = ParseConstants()) 2836 return EC; 2837 NextValueNo = ValueList.size(); 2838 break; 2839 case bitc::VALUE_SYMTAB_BLOCK_ID: 2840 if (std::error_code EC = ParseValueSymbolTable()) 2841 return EC; 2842 break; 2843 case bitc::METADATA_ATTACHMENT_ID: 2844 if (std::error_code EC = ParseMetadataAttachment()) 2845 return EC; 2846 break; 2847 case bitc::METADATA_BLOCK_ID: 2848 if (std::error_code EC = ParseMetadata()) 2849 return EC; 2850 break; 2851 case bitc::USELIST_BLOCK_ID: 2852 if (std::error_code EC = ParseUseLists()) 2853 return EC; 2854 break; 2855 } 2856 continue; 2857 2858 case BitstreamEntry::Record: 2859 // The interesting case. 2860 break; 2861 } 2862 2863 // Read a record. 2864 Record.clear(); 2865 Instruction *I = nullptr; 2866 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2867 switch (BitCode) { 2868 default: // Default behavior: reject 2869 return Error("Invalid value"); 2870 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2871 if (Record.size() < 1 || Record[0] == 0) 2872 return Error("Invalid record"); 2873 // Create all the basic blocks for the function. 2874 FunctionBBs.resize(Record[0]); 2875 2876 // See if anything took the address of blocks in this function. 2877 auto BBFRI = BasicBlockFwdRefs.find(F); 2878 if (BBFRI == BasicBlockFwdRefs.end()) { 2879 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2880 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2881 } else { 2882 auto &BBRefs = BBFRI->second; 2883 // Check for invalid basic block references. 2884 if (BBRefs.size() > FunctionBBs.size()) 2885 return Error("Invalid ID"); 2886 assert(!BBRefs.empty() && "Unexpected empty array"); 2887 assert(!BBRefs.front() && "Invalid reference to entry block"); 2888 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2889 ++I) 2890 if (I < RE && BBRefs[I]) { 2891 BBRefs[I]->insertInto(F); 2892 FunctionBBs[I] = BBRefs[I]; 2893 } else { 2894 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2895 } 2896 2897 // Erase from the table. 2898 BasicBlockFwdRefs.erase(BBFRI); 2899 } 2900 2901 CurBB = FunctionBBs[0]; 2902 continue; 2903 } 2904 2905 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2906 // This record indicates that the last instruction is at the same 2907 // location as the previous instruction with a location. 2908 I = getLastInstruction(); 2909 2910 if (!I) 2911 return Error("Invalid record"); 2912 I->setDebugLoc(LastLoc); 2913 I = nullptr; 2914 continue; 2915 2916 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2917 I = getLastInstruction(); 2918 if (!I || Record.size() < 4) 2919 return Error("Invalid record"); 2920 2921 unsigned Line = Record[0], Col = Record[1]; 2922 unsigned ScopeID = Record[2], IAID = Record[3]; 2923 2924 MDNode *Scope = nullptr, *IA = nullptr; 2925 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2926 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2927 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2928 I->setDebugLoc(LastLoc); 2929 I = nullptr; 2930 continue; 2931 } 2932 2933 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2934 unsigned OpNum = 0; 2935 Value *LHS, *RHS; 2936 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2937 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2938 OpNum+1 > Record.size()) 2939 return Error("Invalid record"); 2940 2941 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2942 if (Opc == -1) 2943 return Error("Invalid record"); 2944 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2945 InstructionList.push_back(I); 2946 if (OpNum < Record.size()) { 2947 if (Opc == Instruction::Add || 2948 Opc == Instruction::Sub || 2949 Opc == Instruction::Mul || 2950 Opc == Instruction::Shl) { 2951 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2952 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2953 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2954 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2955 } else if (Opc == Instruction::SDiv || 2956 Opc == Instruction::UDiv || 2957 Opc == Instruction::LShr || 2958 Opc == Instruction::AShr) { 2959 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2960 cast<BinaryOperator>(I)->setIsExact(true); 2961 } else if (isa<FPMathOperator>(I)) { 2962 FastMathFlags FMF; 2963 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2964 FMF.setUnsafeAlgebra(); 2965 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2966 FMF.setNoNaNs(); 2967 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2968 FMF.setNoInfs(); 2969 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2970 FMF.setNoSignedZeros(); 2971 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2972 FMF.setAllowReciprocal(); 2973 if (FMF.any()) 2974 I->setFastMathFlags(FMF); 2975 } 2976 2977 } 2978 break; 2979 } 2980 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2981 unsigned OpNum = 0; 2982 Value *Op; 2983 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2984 OpNum+2 != Record.size()) 2985 return Error("Invalid record"); 2986 2987 Type *ResTy = getTypeByID(Record[OpNum]); 2988 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2989 if (Opc == -1 || !ResTy) 2990 return Error("Invalid record"); 2991 Instruction *Temp = nullptr; 2992 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2993 if (Temp) { 2994 InstructionList.push_back(Temp); 2995 CurBB->getInstList().push_back(Temp); 2996 } 2997 } else { 2998 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2999 } 3000 InstructionList.push_back(I); 3001 break; 3002 } 3003 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 3004 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 3005 unsigned OpNum = 0; 3006 Value *BasePtr; 3007 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3008 return Error("Invalid record"); 3009 3010 SmallVector<Value*, 16> GEPIdx; 3011 while (OpNum != Record.size()) { 3012 Value *Op; 3013 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3014 return Error("Invalid record"); 3015 GEPIdx.push_back(Op); 3016 } 3017 3018 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 3019 InstructionList.push_back(I); 3020 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 3021 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3022 break; 3023 } 3024 3025 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3026 // EXTRACTVAL: [opty, opval, n x indices] 3027 unsigned OpNum = 0; 3028 Value *Agg; 3029 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3030 return Error("Invalid record"); 3031 3032 SmallVector<unsigned, 4> EXTRACTVALIdx; 3033 for (unsigned RecSize = Record.size(); 3034 OpNum != RecSize; ++OpNum) { 3035 uint64_t Index = Record[OpNum]; 3036 if ((unsigned)Index != Index) 3037 return Error("Invalid value"); 3038 EXTRACTVALIdx.push_back((unsigned)Index); 3039 } 3040 3041 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3042 InstructionList.push_back(I); 3043 break; 3044 } 3045 3046 case bitc::FUNC_CODE_INST_INSERTVAL: { 3047 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3048 unsigned OpNum = 0; 3049 Value *Agg; 3050 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3051 return Error("Invalid record"); 3052 Value *Val; 3053 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3054 return Error("Invalid record"); 3055 3056 SmallVector<unsigned, 4> INSERTVALIdx; 3057 for (unsigned RecSize = Record.size(); 3058 OpNum != RecSize; ++OpNum) { 3059 uint64_t Index = Record[OpNum]; 3060 if ((unsigned)Index != Index) 3061 return Error("Invalid value"); 3062 INSERTVALIdx.push_back((unsigned)Index); 3063 } 3064 3065 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3066 InstructionList.push_back(I); 3067 break; 3068 } 3069 3070 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3071 // obsolete form of select 3072 // handles select i1 ... in old bitcode 3073 unsigned OpNum = 0; 3074 Value *TrueVal, *FalseVal, *Cond; 3075 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3076 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3077 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3078 return Error("Invalid record"); 3079 3080 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3081 InstructionList.push_back(I); 3082 break; 3083 } 3084 3085 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3086 // new form of select 3087 // handles select i1 or select [N x i1] 3088 unsigned OpNum = 0; 3089 Value *TrueVal, *FalseVal, *Cond; 3090 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3091 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3092 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3093 return Error("Invalid record"); 3094 3095 // select condition can be either i1 or [N x i1] 3096 if (VectorType* vector_type = 3097 dyn_cast<VectorType>(Cond->getType())) { 3098 // expect <n x i1> 3099 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3100 return Error("Invalid type for value"); 3101 } else { 3102 // expect i1 3103 if (Cond->getType() != Type::getInt1Ty(Context)) 3104 return Error("Invalid type for value"); 3105 } 3106 3107 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3108 InstructionList.push_back(I); 3109 break; 3110 } 3111 3112 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3113 unsigned OpNum = 0; 3114 Value *Vec, *Idx; 3115 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3116 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3117 return Error("Invalid record"); 3118 I = ExtractElementInst::Create(Vec, Idx); 3119 InstructionList.push_back(I); 3120 break; 3121 } 3122 3123 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3124 unsigned OpNum = 0; 3125 Value *Vec, *Elt, *Idx; 3126 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3127 popValue(Record, OpNum, NextValueNo, 3128 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3129 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3130 return Error("Invalid record"); 3131 I = InsertElementInst::Create(Vec, Elt, Idx); 3132 InstructionList.push_back(I); 3133 break; 3134 } 3135 3136 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3137 unsigned OpNum = 0; 3138 Value *Vec1, *Vec2, *Mask; 3139 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3140 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3141 return Error("Invalid record"); 3142 3143 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3144 return Error("Invalid record"); 3145 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3146 InstructionList.push_back(I); 3147 break; 3148 } 3149 3150 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3151 // Old form of ICmp/FCmp returning bool 3152 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3153 // both legal on vectors but had different behaviour. 3154 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3155 // FCmp/ICmp returning bool or vector of bool 3156 3157 unsigned OpNum = 0; 3158 Value *LHS, *RHS; 3159 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3160 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3161 OpNum+1 != Record.size()) 3162 return Error("Invalid record"); 3163 3164 if (LHS->getType()->isFPOrFPVectorTy()) 3165 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3166 else 3167 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3168 InstructionList.push_back(I); 3169 break; 3170 } 3171 3172 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3173 { 3174 unsigned Size = Record.size(); 3175 if (Size == 0) { 3176 I = ReturnInst::Create(Context); 3177 InstructionList.push_back(I); 3178 break; 3179 } 3180 3181 unsigned OpNum = 0; 3182 Value *Op = nullptr; 3183 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3184 return Error("Invalid record"); 3185 if (OpNum != Record.size()) 3186 return Error("Invalid record"); 3187 3188 I = ReturnInst::Create(Context, Op); 3189 InstructionList.push_back(I); 3190 break; 3191 } 3192 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3193 if (Record.size() != 1 && Record.size() != 3) 3194 return Error("Invalid record"); 3195 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3196 if (!TrueDest) 3197 return Error("Invalid record"); 3198 3199 if (Record.size() == 1) { 3200 I = BranchInst::Create(TrueDest); 3201 InstructionList.push_back(I); 3202 } 3203 else { 3204 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3205 Value *Cond = getValue(Record, 2, NextValueNo, 3206 Type::getInt1Ty(Context)); 3207 if (!FalseDest || !Cond) 3208 return Error("Invalid record"); 3209 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3210 InstructionList.push_back(I); 3211 } 3212 break; 3213 } 3214 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3215 // Check magic 3216 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3217 // "New" SwitchInst format with case ranges. The changes to write this 3218 // format were reverted but we still recognize bitcode that uses it. 3219 // Hopefully someday we will have support for case ranges and can use 3220 // this format again. 3221 3222 Type *OpTy = getTypeByID(Record[1]); 3223 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3224 3225 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3226 BasicBlock *Default = getBasicBlock(Record[3]); 3227 if (!OpTy || !Cond || !Default) 3228 return Error("Invalid record"); 3229 3230 unsigned NumCases = Record[4]; 3231 3232 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3233 InstructionList.push_back(SI); 3234 3235 unsigned CurIdx = 5; 3236 for (unsigned i = 0; i != NumCases; ++i) { 3237 SmallVector<ConstantInt*, 1> CaseVals; 3238 unsigned NumItems = Record[CurIdx++]; 3239 for (unsigned ci = 0; ci != NumItems; ++ci) { 3240 bool isSingleNumber = Record[CurIdx++]; 3241 3242 APInt Low; 3243 unsigned ActiveWords = 1; 3244 if (ValueBitWidth > 64) 3245 ActiveWords = Record[CurIdx++]; 3246 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3247 ValueBitWidth); 3248 CurIdx += ActiveWords; 3249 3250 if (!isSingleNumber) { 3251 ActiveWords = 1; 3252 if (ValueBitWidth > 64) 3253 ActiveWords = Record[CurIdx++]; 3254 APInt High = 3255 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3256 ValueBitWidth); 3257 CurIdx += ActiveWords; 3258 3259 // FIXME: It is not clear whether values in the range should be 3260 // compared as signed or unsigned values. The partially 3261 // implemented changes that used this format in the past used 3262 // unsigned comparisons. 3263 for ( ; Low.ule(High); ++Low) 3264 CaseVals.push_back(ConstantInt::get(Context, Low)); 3265 } else 3266 CaseVals.push_back(ConstantInt::get(Context, Low)); 3267 } 3268 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3269 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3270 cve = CaseVals.end(); cvi != cve; ++cvi) 3271 SI->addCase(*cvi, DestBB); 3272 } 3273 I = SI; 3274 break; 3275 } 3276 3277 // Old SwitchInst format without case ranges. 3278 3279 if (Record.size() < 3 || (Record.size() & 1) == 0) 3280 return Error("Invalid record"); 3281 Type *OpTy = getTypeByID(Record[0]); 3282 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3283 BasicBlock *Default = getBasicBlock(Record[2]); 3284 if (!OpTy || !Cond || !Default) 3285 return Error("Invalid record"); 3286 unsigned NumCases = (Record.size()-3)/2; 3287 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3288 InstructionList.push_back(SI); 3289 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3290 ConstantInt *CaseVal = 3291 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3292 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3293 if (!CaseVal || !DestBB) { 3294 delete SI; 3295 return Error("Invalid record"); 3296 } 3297 SI->addCase(CaseVal, DestBB); 3298 } 3299 I = SI; 3300 break; 3301 } 3302 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3303 if (Record.size() < 2) 3304 return Error("Invalid record"); 3305 Type *OpTy = getTypeByID(Record[0]); 3306 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3307 if (!OpTy || !Address) 3308 return Error("Invalid record"); 3309 unsigned NumDests = Record.size()-2; 3310 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3311 InstructionList.push_back(IBI); 3312 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3313 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3314 IBI->addDestination(DestBB); 3315 } else { 3316 delete IBI; 3317 return Error("Invalid record"); 3318 } 3319 } 3320 I = IBI; 3321 break; 3322 } 3323 3324 case bitc::FUNC_CODE_INST_INVOKE: { 3325 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3326 if (Record.size() < 4) 3327 return Error("Invalid record"); 3328 AttributeSet PAL = getAttributes(Record[0]); 3329 unsigned CCInfo = Record[1]; 3330 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3331 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3332 3333 unsigned OpNum = 4; 3334 Value *Callee; 3335 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3336 return Error("Invalid record"); 3337 3338 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3339 FunctionType *FTy = !CalleeTy ? nullptr : 3340 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3341 3342 // Check that the right number of fixed parameters are here. 3343 if (!FTy || !NormalBB || !UnwindBB || 3344 Record.size() < OpNum+FTy->getNumParams()) 3345 return Error("Invalid record"); 3346 3347 SmallVector<Value*, 16> Ops; 3348 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3349 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3350 FTy->getParamType(i))); 3351 if (!Ops.back()) 3352 return Error("Invalid record"); 3353 } 3354 3355 if (!FTy->isVarArg()) { 3356 if (Record.size() != OpNum) 3357 return Error("Invalid record"); 3358 } else { 3359 // Read type/value pairs for varargs params. 3360 while (OpNum != Record.size()) { 3361 Value *Op; 3362 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3363 return Error("Invalid record"); 3364 Ops.push_back(Op); 3365 } 3366 } 3367 3368 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3369 InstructionList.push_back(I); 3370 cast<InvokeInst>(I)->setCallingConv( 3371 static_cast<CallingConv::ID>(CCInfo)); 3372 cast<InvokeInst>(I)->setAttributes(PAL); 3373 break; 3374 } 3375 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3376 unsigned Idx = 0; 3377 Value *Val = nullptr; 3378 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3379 return Error("Invalid record"); 3380 I = ResumeInst::Create(Val); 3381 InstructionList.push_back(I); 3382 break; 3383 } 3384 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3385 I = new UnreachableInst(Context); 3386 InstructionList.push_back(I); 3387 break; 3388 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3389 if (Record.size() < 1 || ((Record.size()-1)&1)) 3390 return Error("Invalid record"); 3391 Type *Ty = getTypeByID(Record[0]); 3392 if (!Ty) 3393 return Error("Invalid record"); 3394 3395 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3396 InstructionList.push_back(PN); 3397 3398 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3399 Value *V; 3400 // With the new function encoding, it is possible that operands have 3401 // negative IDs (for forward references). Use a signed VBR 3402 // representation to keep the encoding small. 3403 if (UseRelativeIDs) 3404 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3405 else 3406 V = getValue(Record, 1+i, NextValueNo, Ty); 3407 BasicBlock *BB = getBasicBlock(Record[2+i]); 3408 if (!V || !BB) 3409 return Error("Invalid record"); 3410 PN->addIncoming(V, BB); 3411 } 3412 I = PN; 3413 break; 3414 } 3415 3416 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3417 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3418 unsigned Idx = 0; 3419 if (Record.size() < 4) 3420 return Error("Invalid record"); 3421 Type *Ty = getTypeByID(Record[Idx++]); 3422 if (!Ty) 3423 return Error("Invalid record"); 3424 Value *PersFn = nullptr; 3425 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3426 return Error("Invalid record"); 3427 3428 bool IsCleanup = !!Record[Idx++]; 3429 unsigned NumClauses = Record[Idx++]; 3430 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3431 LP->setCleanup(IsCleanup); 3432 for (unsigned J = 0; J != NumClauses; ++J) { 3433 LandingPadInst::ClauseType CT = 3434 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3435 Value *Val; 3436 3437 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3438 delete LP; 3439 return Error("Invalid record"); 3440 } 3441 3442 assert((CT != LandingPadInst::Catch || 3443 !isa<ArrayType>(Val->getType())) && 3444 "Catch clause has a invalid type!"); 3445 assert((CT != LandingPadInst::Filter || 3446 isa<ArrayType>(Val->getType())) && 3447 "Filter clause has invalid type!"); 3448 LP->addClause(cast<Constant>(Val)); 3449 } 3450 3451 I = LP; 3452 InstructionList.push_back(I); 3453 break; 3454 } 3455 3456 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3457 if (Record.size() != 4) 3458 return Error("Invalid record"); 3459 PointerType *Ty = 3460 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3461 Type *OpTy = getTypeByID(Record[1]); 3462 Value *Size = getFnValueByID(Record[2], OpTy); 3463 unsigned AlignRecord = Record[3]; 3464 bool InAlloca = AlignRecord & (1 << 5); 3465 unsigned Align = AlignRecord & ((1 << 5) - 1); 3466 if (!Ty || !Size) 3467 return Error("Invalid record"); 3468 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3469 AI->setUsedWithInAlloca(InAlloca); 3470 I = AI; 3471 InstructionList.push_back(I); 3472 break; 3473 } 3474 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3475 unsigned OpNum = 0; 3476 Value *Op; 3477 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3478 OpNum+2 != Record.size()) 3479 return Error("Invalid record"); 3480 3481 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3482 InstructionList.push_back(I); 3483 break; 3484 } 3485 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3486 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3487 unsigned OpNum = 0; 3488 Value *Op; 3489 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3490 OpNum+4 != Record.size()) 3491 return Error("Invalid record"); 3492 3493 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3494 if (Ordering == NotAtomic || Ordering == Release || 3495 Ordering == AcquireRelease) 3496 return Error("Invalid record"); 3497 if (Ordering != NotAtomic && Record[OpNum] == 0) 3498 return Error("Invalid record"); 3499 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3500 3501 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3502 Ordering, SynchScope); 3503 InstructionList.push_back(I); 3504 break; 3505 } 3506 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3507 unsigned OpNum = 0; 3508 Value *Val, *Ptr; 3509 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3510 popValue(Record, OpNum, NextValueNo, 3511 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3512 OpNum+2 != Record.size()) 3513 return Error("Invalid record"); 3514 3515 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3516 InstructionList.push_back(I); 3517 break; 3518 } 3519 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3520 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3521 unsigned OpNum = 0; 3522 Value *Val, *Ptr; 3523 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3524 popValue(Record, OpNum, NextValueNo, 3525 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3526 OpNum+4 != Record.size()) 3527 return Error("Invalid record"); 3528 3529 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3530 if (Ordering == NotAtomic || Ordering == Acquire || 3531 Ordering == AcquireRelease) 3532 return Error("Invalid record"); 3533 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3534 if (Ordering != NotAtomic && Record[OpNum] == 0) 3535 return Error("Invalid record"); 3536 3537 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3538 Ordering, SynchScope); 3539 InstructionList.push_back(I); 3540 break; 3541 } 3542 case bitc::FUNC_CODE_INST_CMPXCHG: { 3543 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3544 // failureordering?, isweak?] 3545 unsigned OpNum = 0; 3546 Value *Ptr, *Cmp, *New; 3547 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3548 popValue(Record, OpNum, NextValueNo, 3549 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3550 popValue(Record, OpNum, NextValueNo, 3551 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3552 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3553 return Error("Invalid record"); 3554 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3555 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3556 return Error("Invalid record"); 3557 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3558 3559 AtomicOrdering FailureOrdering; 3560 if (Record.size() < 7) 3561 FailureOrdering = 3562 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3563 else 3564 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3565 3566 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3567 SynchScope); 3568 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3569 3570 if (Record.size() < 8) { 3571 // Before weak cmpxchgs existed, the instruction simply returned the 3572 // value loaded from memory, so bitcode files from that era will be 3573 // expecting the first component of a modern cmpxchg. 3574 CurBB->getInstList().push_back(I); 3575 I = ExtractValueInst::Create(I, 0); 3576 } else { 3577 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3578 } 3579 3580 InstructionList.push_back(I); 3581 break; 3582 } 3583 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3584 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3585 unsigned OpNum = 0; 3586 Value *Ptr, *Val; 3587 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3588 popValue(Record, OpNum, NextValueNo, 3589 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3590 OpNum+4 != Record.size()) 3591 return Error("Invalid record"); 3592 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3593 if (Operation < AtomicRMWInst::FIRST_BINOP || 3594 Operation > AtomicRMWInst::LAST_BINOP) 3595 return Error("Invalid record"); 3596 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3597 if (Ordering == NotAtomic || Ordering == Unordered) 3598 return Error("Invalid record"); 3599 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3600 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3601 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3602 InstructionList.push_back(I); 3603 break; 3604 } 3605 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3606 if (2 != Record.size()) 3607 return Error("Invalid record"); 3608 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3609 if (Ordering == NotAtomic || Ordering == Unordered || 3610 Ordering == Monotonic) 3611 return Error("Invalid record"); 3612 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3613 I = new FenceInst(Context, Ordering, SynchScope); 3614 InstructionList.push_back(I); 3615 break; 3616 } 3617 case bitc::FUNC_CODE_INST_CALL: { 3618 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3619 if (Record.size() < 3) 3620 return Error("Invalid record"); 3621 3622 AttributeSet PAL = getAttributes(Record[0]); 3623 unsigned CCInfo = Record[1]; 3624 3625 unsigned OpNum = 2; 3626 Value *Callee; 3627 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3628 return Error("Invalid record"); 3629 3630 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3631 FunctionType *FTy = nullptr; 3632 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3633 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3634 return Error("Invalid record"); 3635 3636 SmallVector<Value*, 16> Args; 3637 // Read the fixed params. 3638 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3639 if (FTy->getParamType(i)->isLabelTy()) 3640 Args.push_back(getBasicBlock(Record[OpNum])); 3641 else 3642 Args.push_back(getValue(Record, OpNum, NextValueNo, 3643 FTy->getParamType(i))); 3644 if (!Args.back()) 3645 return Error("Invalid record"); 3646 } 3647 3648 // Read type/value pairs for varargs params. 3649 if (!FTy->isVarArg()) { 3650 if (OpNum != Record.size()) 3651 return Error("Invalid record"); 3652 } else { 3653 while (OpNum != Record.size()) { 3654 Value *Op; 3655 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3656 return Error("Invalid record"); 3657 Args.push_back(Op); 3658 } 3659 } 3660 3661 I = CallInst::Create(Callee, Args); 3662 InstructionList.push_back(I); 3663 cast<CallInst>(I)->setCallingConv( 3664 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3665 CallInst::TailCallKind TCK = CallInst::TCK_None; 3666 if (CCInfo & 1) 3667 TCK = CallInst::TCK_Tail; 3668 if (CCInfo & (1 << 14)) 3669 TCK = CallInst::TCK_MustTail; 3670 cast<CallInst>(I)->setTailCallKind(TCK); 3671 cast<CallInst>(I)->setAttributes(PAL); 3672 break; 3673 } 3674 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3675 if (Record.size() < 3) 3676 return Error("Invalid record"); 3677 Type *OpTy = getTypeByID(Record[0]); 3678 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3679 Type *ResTy = getTypeByID(Record[2]); 3680 if (!OpTy || !Op || !ResTy) 3681 return Error("Invalid record"); 3682 I = new VAArgInst(Op, ResTy); 3683 InstructionList.push_back(I); 3684 break; 3685 } 3686 } 3687 3688 // Add instruction to end of current BB. If there is no current BB, reject 3689 // this file. 3690 if (!CurBB) { 3691 delete I; 3692 return Error("Invalid instruction with no BB"); 3693 } 3694 CurBB->getInstList().push_back(I); 3695 3696 // If this was a terminator instruction, move to the next block. 3697 if (isa<TerminatorInst>(I)) { 3698 ++CurBBNo; 3699 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3700 } 3701 3702 // Non-void values get registered in the value table for future use. 3703 if (I && !I->getType()->isVoidTy()) 3704 ValueList.AssignValue(I, NextValueNo++); 3705 } 3706 3707 OutOfRecordLoop: 3708 3709 // Check the function list for unresolved values. 3710 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3711 if (!A->getParent()) { 3712 // We found at least one unresolved value. Nuke them all to avoid leaks. 3713 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3714 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3715 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3716 delete A; 3717 } 3718 } 3719 return Error("Never resolved value found in function"); 3720 } 3721 } 3722 3723 // FIXME: Check for unresolved forward-declared metadata references 3724 // and clean up leaks. 3725 3726 // Trim the value list down to the size it was before we parsed this function. 3727 ValueList.shrinkTo(ModuleValueListSize); 3728 MDValueList.shrinkTo(ModuleMDValueListSize); 3729 std::vector<BasicBlock*>().swap(FunctionBBs); 3730 return std::error_code(); 3731 } 3732 3733 /// Find the function body in the bitcode stream 3734 std::error_code BitcodeReader::FindFunctionInStream( 3735 Function *F, 3736 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3737 while (DeferredFunctionInfoIterator->second == 0) { 3738 if (Stream.AtEndOfStream()) 3739 return Error("Could not find function in stream"); 3740 // ParseModule will parse the next body in the stream and set its 3741 // position in the DeferredFunctionInfo map. 3742 if (std::error_code EC = ParseModule(true)) 3743 return EC; 3744 } 3745 return std::error_code(); 3746 } 3747 3748 //===----------------------------------------------------------------------===// 3749 // GVMaterializer implementation 3750 //===----------------------------------------------------------------------===// 3751 3752 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3753 3754 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3755 Function *F = dyn_cast<Function>(GV); 3756 // If it's not a function or is already material, ignore the request. 3757 if (!F || !F->isMaterializable()) 3758 return std::error_code(); 3759 3760 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3761 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3762 // If its position is recorded as 0, its body is somewhere in the stream 3763 // but we haven't seen it yet. 3764 if (DFII->second == 0 && LazyStreamer) 3765 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3766 return EC; 3767 3768 // Move the bit stream to the saved position of the deferred function body. 3769 Stream.JumpToBit(DFII->second); 3770 3771 if (std::error_code EC = ParseFunctionBody(F)) 3772 return EC; 3773 F->setIsMaterializable(false); 3774 3775 // Upgrade any old intrinsic calls in the function. 3776 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3777 E = UpgradedIntrinsics.end(); I != E; ++I) { 3778 if (I->first != I->second) { 3779 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3780 UI != UE;) { 3781 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3782 UpgradeIntrinsicCall(CI, I->second); 3783 } 3784 } 3785 } 3786 3787 // Bring in any functions that this function forward-referenced via 3788 // blockaddresses. 3789 return materializeForwardReferencedFunctions(); 3790 } 3791 3792 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3793 const Function *F = dyn_cast<Function>(GV); 3794 if (!F || F->isDeclaration()) 3795 return false; 3796 3797 // Dematerializing F would leave dangling references that wouldn't be 3798 // reconnected on re-materialization. 3799 if (BlockAddressesTaken.count(F)) 3800 return false; 3801 3802 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3803 } 3804 3805 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3806 Function *F = dyn_cast<Function>(GV); 3807 // If this function isn't dematerializable, this is a noop. 3808 if (!F || !isDematerializable(F)) 3809 return; 3810 3811 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3812 3813 // Just forget the function body, we can remat it later. 3814 F->dropAllReferences(); 3815 F->setIsMaterializable(true); 3816 } 3817 3818 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3819 assert(M == TheModule && 3820 "Can only Materialize the Module this BitcodeReader is attached to."); 3821 3822 // Promise to materialize all forward references. 3823 WillMaterializeAllForwardRefs = true; 3824 3825 // Iterate over the module, deserializing any functions that are still on 3826 // disk. 3827 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3828 F != E; ++F) { 3829 if (std::error_code EC = materialize(F)) 3830 return EC; 3831 } 3832 // At this point, if there are any function bodies, the current bit is 3833 // pointing to the END_BLOCK record after them. Now make sure the rest 3834 // of the bits in the module have been read. 3835 if (NextUnreadBit) 3836 ParseModule(true); 3837 3838 // Check that all block address forward references got resolved (as we 3839 // promised above). 3840 if (!BasicBlockFwdRefs.empty()) 3841 return Error("Never resolved function from blockaddress"); 3842 3843 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3844 // delete the old functions to clean up. We can't do this unless the entire 3845 // module is materialized because there could always be another function body 3846 // with calls to the old function. 3847 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3848 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3849 if (I->first != I->second) { 3850 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3851 UI != UE;) { 3852 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3853 UpgradeIntrinsicCall(CI, I->second); 3854 } 3855 if (!I->first->use_empty()) 3856 I->first->replaceAllUsesWith(I->second); 3857 I->first->eraseFromParent(); 3858 } 3859 } 3860 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3861 3862 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3863 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3864 3865 UpgradeDebugInfo(*M); 3866 return std::error_code(); 3867 } 3868 3869 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3870 return IdentifiedStructTypes; 3871 } 3872 3873 std::error_code BitcodeReader::InitStream() { 3874 if (LazyStreamer) 3875 return InitLazyStream(); 3876 return InitStreamFromBuffer(); 3877 } 3878 3879 std::error_code BitcodeReader::InitStreamFromBuffer() { 3880 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3881 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3882 3883 if (Buffer->getBufferSize() & 3) 3884 return Error("Invalid bitcode signature"); 3885 3886 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3887 // The magic number is 0x0B17C0DE stored in little endian. 3888 if (isBitcodeWrapper(BufPtr, BufEnd)) 3889 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3890 return Error("Invalid bitcode wrapper header"); 3891 3892 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3893 Stream.init(&*StreamFile); 3894 3895 return std::error_code(); 3896 } 3897 3898 std::error_code BitcodeReader::InitLazyStream() { 3899 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3900 // see it. 3901 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3902 StreamingMemoryObject &Bytes = *OwnedBytes; 3903 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3904 Stream.init(&*StreamFile); 3905 3906 unsigned char buf[16]; 3907 if (Bytes.readBytes(buf, 16, 0) != 16) 3908 return Error("Invalid bitcode signature"); 3909 3910 if (!isBitcode(buf, buf + 16)) 3911 return Error("Invalid bitcode signature"); 3912 3913 if (isBitcodeWrapper(buf, buf + 4)) { 3914 const unsigned char *bitcodeStart = buf; 3915 const unsigned char *bitcodeEnd = buf + 16; 3916 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3917 Bytes.dropLeadingBytes(bitcodeStart - buf); 3918 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3919 } 3920 return std::error_code(); 3921 } 3922 3923 namespace { 3924 class BitcodeErrorCategoryType : public std::error_category { 3925 const char *name() const LLVM_NOEXCEPT override { 3926 return "llvm.bitcode"; 3927 } 3928 std::string message(int IE) const override { 3929 BitcodeError E = static_cast<BitcodeError>(IE); 3930 switch (E) { 3931 case BitcodeError::InvalidBitcodeSignature: 3932 return "Invalid bitcode signature"; 3933 case BitcodeError::CorruptedBitcode: 3934 return "Corrupted bitcode"; 3935 } 3936 llvm_unreachable("Unknown error type!"); 3937 } 3938 }; 3939 } 3940 3941 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3942 3943 const std::error_category &llvm::BitcodeErrorCategory() { 3944 return *ErrorCategory; 3945 } 3946 3947 //===----------------------------------------------------------------------===// 3948 // External interface 3949 //===----------------------------------------------------------------------===// 3950 3951 /// \brief Get a lazy one-at-time loading module from bitcode. 3952 /// 3953 /// This isn't always used in a lazy context. In particular, it's also used by 3954 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3955 /// in forward-referenced functions from block address references. 3956 /// 3957 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3958 /// materialize everything -- in particular, if this isn't truly lazy. 3959 static ErrorOr<Module *> 3960 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3961 LLVMContext &Context, bool WillMaterializeAll, 3962 DiagnosticHandlerFunction DiagnosticHandler) { 3963 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3964 BitcodeReader *R = 3965 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3966 M->setMaterializer(R); 3967 3968 auto cleanupOnError = [&](std::error_code EC) { 3969 R->releaseBuffer(); // Never take ownership on error. 3970 delete M; // Also deletes R. 3971 return EC; 3972 }; 3973 3974 if (std::error_code EC = R->ParseBitcodeInto(M)) 3975 return cleanupOnError(EC); 3976 3977 if (!WillMaterializeAll) 3978 // Resolve forward references from blockaddresses. 3979 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3980 return cleanupOnError(EC); 3981 3982 Buffer.release(); // The BitcodeReader owns it now. 3983 return M; 3984 } 3985 3986 ErrorOr<Module *> 3987 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3988 LLVMContext &Context, 3989 DiagnosticHandlerFunction DiagnosticHandler) { 3990 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3991 DiagnosticHandler); 3992 } 3993 3994 ErrorOr<std::unique_ptr<Module>> 3995 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3996 LLVMContext &Context, 3997 DiagnosticHandlerFunction DiagnosticHandler) { 3998 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3999 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4000 M->setMaterializer(R); 4001 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4002 return EC; 4003 return std::move(M); 4004 } 4005 4006 ErrorOr<Module *> 4007 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4008 DiagnosticHandlerFunction DiagnosticHandler) { 4009 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4010 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4011 std::move(Buf), Context, true, DiagnosticHandler); 4012 if (!ModuleOrErr) 4013 return ModuleOrErr; 4014 Module *M = ModuleOrErr.get(); 4015 // Read in the entire module, and destroy the BitcodeReader. 4016 if (std::error_code EC = M->materializeAllPermanently()) { 4017 delete M; 4018 return EC; 4019 } 4020 4021 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4022 // written. We must defer until the Module has been fully materialized. 4023 4024 return M; 4025 } 4026 4027 std::string 4028 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4029 DiagnosticHandlerFunction DiagnosticHandler) { 4030 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4031 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4032 DiagnosticHandler); 4033 ErrorOr<std::string> Triple = R->parseTriple(); 4034 if (Triple.getError()) 4035 return ""; 4036 return Triple.get(); 4037 } 4038