1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSummaryIndex.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/ManagedStatic.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <deque>
78 #include <map>
79 #include <memory>
80 #include <set>
81 #include <string>
82 #include <system_error>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 static cl::opt<bool> PrintSummaryGUIDs(
90     "print-summary-global-ids", cl::init(false), cl::Hidden,
91     cl::desc(
92         "Print the global id for each value when reading the module summary"));
93 
94 namespace {
95 
96 enum {
97   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
98 };
99 
100 } // end anonymous namespace
101 
102 static Error error(const Twine &Message) {
103   return make_error<StringError>(
104       Message, make_error_code(BitcodeError::CorruptedBitcode));
105 }
106 
107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
108   if (!Stream.canSkipToPos(4))
109     return createStringError(std::errc::illegal_byte_sequence,
110                              "file too small to contain bitcode header");
111   for (unsigned C : {'B', 'C'})
112     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
113       if (Res.get() != C)
114         return createStringError(std::errc::illegal_byte_sequence,
115                                  "file doesn't start with bitcode header");
116     } else
117       return Res.takeError();
118   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
119     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
120       if (Res.get() != C)
121         return createStringError(std::errc::illegal_byte_sequence,
122                                  "file doesn't start with bitcode header");
123     } else
124       return Res.takeError();
125   return Error::success();
126 }
127 
128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
129   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
130   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
131 
132   if (Buffer.getBufferSize() & 3)
133     return error("Invalid bitcode signature");
134 
135   // If we have a wrapper header, parse it and ignore the non-bc file contents.
136   // The magic number is 0x0B17C0DE stored in little endian.
137   if (isBitcodeWrapper(BufPtr, BufEnd))
138     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
139       return error("Invalid bitcode wrapper header");
140 
141   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
142   if (Error Err = hasInvalidBitcodeHeader(Stream))
143     return std::move(Err);
144 
145   return std::move(Stream);
146 }
147 
148 /// Convert a string from a record into an std::string, return true on failure.
149 template <typename StrTy>
150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151                             StrTy &Result) {
152   if (Idx > Record.size())
153     return true;
154 
155   Result.append(Record.begin() + Idx, Record.end());
156   return false;
157 }
158 
159 // Strip all the TBAA attachment for the module.
160 static void stripTBAA(Module *M) {
161   for (auto &F : *M) {
162     if (F.isMaterializable())
163       continue;
164     for (auto &I : instructions(F))
165       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
166   }
167 }
168 
169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
170 /// "epoch" encoded in the bitcode, and return the producer name if any.
171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
172   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
173     return std::move(Err);
174 
175   // Read all the records.
176   SmallVector<uint64_t, 64> Record;
177 
178   std::string ProducerIdentification;
179 
180   while (true) {
181     BitstreamEntry Entry;
182     if (Error E = Stream.advance().moveInto(Entry))
183       return std::move(E);
184 
185     switch (Entry.Kind) {
186     default:
187     case BitstreamEntry::Error:
188       return error("Malformed block");
189     case BitstreamEntry::EndBlock:
190       return ProducerIdentification;
191     case BitstreamEntry::Record:
192       // The interesting case.
193       break;
194     }
195 
196     // Read a record.
197     Record.clear();
198     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
199     if (!MaybeBitCode)
200       return MaybeBitCode.takeError();
201     switch (MaybeBitCode.get()) {
202     default: // Default behavior: reject
203       return error("Invalid value");
204     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
205       convertToString(Record, 0, ProducerIdentification);
206       break;
207     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
208       unsigned epoch = (unsigned)Record[0];
209       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
210         return error(
211           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
212           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
213       }
214     }
215     }
216   }
217 }
218 
219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
220   // We expect a number of well-defined blocks, though we don't necessarily
221   // need to understand them all.
222   while (true) {
223     if (Stream.AtEndOfStream())
224       return "";
225 
226     BitstreamEntry Entry;
227     if (Error E = Stream.advance().moveInto(Entry))
228       return std::move(E);
229 
230     switch (Entry.Kind) {
231     case BitstreamEntry::EndBlock:
232     case BitstreamEntry::Error:
233       return error("Malformed block");
234 
235     case BitstreamEntry::SubBlock:
236       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
237         return readIdentificationBlock(Stream);
238 
239       // Ignore other sub-blocks.
240       if (Error Err = Stream.SkipBlock())
241         return std::move(Err);
242       continue;
243     case BitstreamEntry::Record:
244       if (Error E = Stream.skipRecord(Entry.ID).takeError())
245         return std::move(E);
246       continue;
247     }
248   }
249 }
250 
251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
252   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
253     return std::move(Err);
254 
255   SmallVector<uint64_t, 64> Record;
256   // Read all the records for this module.
257 
258   while (true) {
259     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
260     if (!MaybeEntry)
261       return MaybeEntry.takeError();
262     BitstreamEntry Entry = MaybeEntry.get();
263 
264     switch (Entry.Kind) {
265     case BitstreamEntry::SubBlock: // Handled for us already.
266     case BitstreamEntry::Error:
267       return error("Malformed block");
268     case BitstreamEntry::EndBlock:
269       return false;
270     case BitstreamEntry::Record:
271       // The interesting case.
272       break;
273     }
274 
275     // Read a record.
276     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
277     if (!MaybeRecord)
278       return MaybeRecord.takeError();
279     switch (MaybeRecord.get()) {
280     default:
281       break; // Default behavior, ignore unknown content.
282     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
283       std::string S;
284       if (convertToString(Record, 0, S))
285         return error("Invalid record");
286       // Check for the i386 and other (x86_64, ARM) conventions
287       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
288           S.find("__OBJC,__category") != std::string::npos)
289         return true;
290       break;
291     }
292     }
293     Record.clear();
294   }
295   llvm_unreachable("Exit infinite loop");
296 }
297 
298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
299   // We expect a number of well-defined blocks, though we don't necessarily
300   // need to understand them all.
301   while (true) {
302     BitstreamEntry Entry;
303     if (Error E = Stream.advance().moveInto(Entry))
304       return std::move(E);
305 
306     switch (Entry.Kind) {
307     case BitstreamEntry::Error:
308       return error("Malformed block");
309     case BitstreamEntry::EndBlock:
310       return false;
311 
312     case BitstreamEntry::SubBlock:
313       if (Entry.ID == bitc::MODULE_BLOCK_ID)
314         return hasObjCCategoryInModule(Stream);
315 
316       // Ignore other sub-blocks.
317       if (Error Err = Stream.SkipBlock())
318         return std::move(Err);
319       continue;
320 
321     case BitstreamEntry::Record:
322       if (Error E = Stream.skipRecord(Entry.ID).takeError())
323         return std::move(E);
324       continue;
325     }
326   }
327 }
328 
329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
330   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
331     return std::move(Err);
332 
333   SmallVector<uint64_t, 64> Record;
334 
335   std::string Triple;
336 
337   // Read all the records for this module.
338   while (true) {
339     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
340     if (!MaybeEntry)
341       return MaybeEntry.takeError();
342     BitstreamEntry Entry = MaybeEntry.get();
343 
344     switch (Entry.Kind) {
345     case BitstreamEntry::SubBlock: // Handled for us already.
346     case BitstreamEntry::Error:
347       return error("Malformed block");
348     case BitstreamEntry::EndBlock:
349       return Triple;
350     case BitstreamEntry::Record:
351       // The interesting case.
352       break;
353     }
354 
355     // Read a record.
356     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
357     if (!MaybeRecord)
358       return MaybeRecord.takeError();
359     switch (MaybeRecord.get()) {
360     default: break;  // Default behavior, ignore unknown content.
361     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
362       std::string S;
363       if (convertToString(Record, 0, S))
364         return error("Invalid record");
365       Triple = S;
366       break;
367     }
368     }
369     Record.clear();
370   }
371   llvm_unreachable("Exit infinite loop");
372 }
373 
374 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
375   // We expect a number of well-defined blocks, though we don't necessarily
376   // need to understand them all.
377   while (true) {
378     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
379     if (!MaybeEntry)
380       return MaybeEntry.takeError();
381     BitstreamEntry Entry = MaybeEntry.get();
382 
383     switch (Entry.Kind) {
384     case BitstreamEntry::Error:
385       return error("Malformed block");
386     case BitstreamEntry::EndBlock:
387       return "";
388 
389     case BitstreamEntry::SubBlock:
390       if (Entry.ID == bitc::MODULE_BLOCK_ID)
391         return readModuleTriple(Stream);
392 
393       // Ignore other sub-blocks.
394       if (Error Err = Stream.SkipBlock())
395         return std::move(Err);
396       continue;
397 
398     case BitstreamEntry::Record:
399       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
400         continue;
401       else
402         return Skipped.takeError();
403     }
404   }
405 }
406 
407 namespace {
408 
409 class BitcodeReaderBase {
410 protected:
411   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
412       : Stream(std::move(Stream)), Strtab(Strtab) {
413     this->Stream.setBlockInfo(&BlockInfo);
414   }
415 
416   BitstreamBlockInfo BlockInfo;
417   BitstreamCursor Stream;
418   StringRef Strtab;
419 
420   /// In version 2 of the bitcode we store names of global values and comdats in
421   /// a string table rather than in the VST.
422   bool UseStrtab = false;
423 
424   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
425 
426   /// If this module uses a string table, pop the reference to the string table
427   /// and return the referenced string and the rest of the record. Otherwise
428   /// just return the record itself.
429   std::pair<StringRef, ArrayRef<uint64_t>>
430   readNameFromStrtab(ArrayRef<uint64_t> Record);
431 
432   Error readBlockInfo();
433 
434   // Contains an arbitrary and optional string identifying the bitcode producer
435   std::string ProducerIdentification;
436 
437   Error error(const Twine &Message);
438 };
439 
440 } // end anonymous namespace
441 
442 Error BitcodeReaderBase::error(const Twine &Message) {
443   std::string FullMsg = Message.str();
444   if (!ProducerIdentification.empty())
445     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
446                LLVM_VERSION_STRING "')";
447   return ::error(FullMsg);
448 }
449 
450 Expected<unsigned>
451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
452   if (Record.empty())
453     return error("Invalid record");
454   unsigned ModuleVersion = Record[0];
455   if (ModuleVersion > 2)
456     return error("Invalid value");
457   UseStrtab = ModuleVersion >= 2;
458   return ModuleVersion;
459 }
460 
461 std::pair<StringRef, ArrayRef<uint64_t>>
462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
463   if (!UseStrtab)
464     return {"", Record};
465   // Invalid reference. Let the caller complain about the record being empty.
466   if (Record[0] + Record[1] > Strtab.size())
467     return {"", {}};
468   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
469 }
470 
471 namespace {
472 
473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
474   LLVMContext &Context;
475   Module *TheModule = nullptr;
476   // Next offset to start scanning for lazy parsing of function bodies.
477   uint64_t NextUnreadBit = 0;
478   // Last function offset found in the VST.
479   uint64_t LastFunctionBlockBit = 0;
480   bool SeenValueSymbolTable = false;
481   uint64_t VSTOffset = 0;
482 
483   std::vector<std::string> SectionTable;
484   std::vector<std::string> GCTable;
485 
486   std::vector<Type*> TypeList;
487   DenseMap<Function *, FunctionType *> FunctionTypes;
488   BitcodeReaderValueList ValueList;
489   Optional<MetadataLoader> MDLoader;
490   std::vector<Comdat *> ComdatList;
491   DenseSet<GlobalObject *> ImplicitComdatObjects;
492   SmallVector<Instruction *, 64> InstructionList;
493 
494   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
495   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
496 
497   struct FunctionOperandInfo {
498     Function *F;
499     unsigned PersonalityFn;
500     unsigned Prefix;
501     unsigned Prologue;
502   };
503   std::vector<FunctionOperandInfo> FunctionOperands;
504 
505   /// The set of attributes by index.  Index zero in the file is for null, and
506   /// is thus not represented here.  As such all indices are off by one.
507   std::vector<AttributeList> MAttributes;
508 
509   /// The set of attribute groups.
510   std::map<unsigned, AttributeList> MAttributeGroups;
511 
512   /// While parsing a function body, this is a list of the basic blocks for the
513   /// function.
514   std::vector<BasicBlock*> FunctionBBs;
515 
516   // When reading the module header, this list is populated with functions that
517   // have bodies later in the file.
518   std::vector<Function*> FunctionsWithBodies;
519 
520   // When intrinsic functions are encountered which require upgrading they are
521   // stored here with their replacement function.
522   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
523   UpdatedIntrinsicMap UpgradedIntrinsics;
524   // Intrinsics which were remangled because of types rename
525   UpdatedIntrinsicMap RemangledIntrinsics;
526 
527   // Several operations happen after the module header has been read, but
528   // before function bodies are processed. This keeps track of whether
529   // we've done this yet.
530   bool SeenFirstFunctionBody = false;
531 
532   /// When function bodies are initially scanned, this map contains info about
533   /// where to find deferred function body in the stream.
534   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
535 
536   /// When Metadata block is initially scanned when parsing the module, we may
537   /// choose to defer parsing of the metadata. This vector contains info about
538   /// which Metadata blocks are deferred.
539   std::vector<uint64_t> DeferredMetadataInfo;
540 
541   /// These are basic blocks forward-referenced by block addresses.  They are
542   /// inserted lazily into functions when they're loaded.  The basic block ID is
543   /// its index into the vector.
544   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
545   std::deque<Function *> BasicBlockFwdRefQueue;
546 
547   /// Indicates that we are using a new encoding for instruction operands where
548   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
549   /// instruction number, for a more compact encoding.  Some instruction
550   /// operands are not relative to the instruction ID: basic block numbers, and
551   /// types. Once the old style function blocks have been phased out, we would
552   /// not need this flag.
553   bool UseRelativeIDs = false;
554 
555   /// True if all functions will be materialized, negating the need to process
556   /// (e.g.) blockaddress forward references.
557   bool WillMaterializeAllForwardRefs = false;
558 
559   bool StripDebugInfo = false;
560   TBAAVerifier TBAAVerifyHelper;
561 
562   std::vector<std::string> BundleTags;
563   SmallVector<SyncScope::ID, 8> SSIDs;
564 
565 public:
566   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
567                 StringRef ProducerIdentification, LLVMContext &Context);
568 
569   Error materializeForwardReferencedFunctions();
570 
571   Error materialize(GlobalValue *GV) override;
572   Error materializeModule() override;
573   std::vector<StructType *> getIdentifiedStructTypes() const override;
574 
575   /// Main interface to parsing a bitcode buffer.
576   /// \returns true if an error occurred.
577   Error parseBitcodeInto(
578       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
579       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
580 
581   static uint64_t decodeSignRotatedValue(uint64_t V);
582 
583   /// Materialize any deferred Metadata block.
584   Error materializeMetadata() override;
585 
586   void setStripDebugInfo() override;
587 
588 private:
589   std::vector<StructType *> IdentifiedStructTypes;
590   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
591   StructType *createIdentifiedStructType(LLVMContext &Context);
592 
593   Type *getTypeByID(unsigned ID);
594 
595   Value *getFnValueByID(unsigned ID, Type *Ty) {
596     if (Ty && Ty->isMetadataTy())
597       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
598     return ValueList.getValueFwdRef(ID, Ty);
599   }
600 
601   Metadata *getFnMetadataByID(unsigned ID) {
602     return MDLoader->getMetadataFwdRefOrLoad(ID);
603   }
604 
605   BasicBlock *getBasicBlock(unsigned ID) const {
606     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
607     return FunctionBBs[ID];
608   }
609 
610   AttributeList getAttributes(unsigned i) const {
611     if (i-1 < MAttributes.size())
612       return MAttributes[i-1];
613     return AttributeList();
614   }
615 
616   /// Read a value/type pair out of the specified record from slot 'Slot'.
617   /// Increment Slot past the number of slots used in the record. Return true on
618   /// failure.
619   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
620                         unsigned InstNum, Value *&ResVal) {
621     if (Slot == Record.size()) return true;
622     unsigned ValNo = (unsigned)Record[Slot++];
623     // Adjust the ValNo, if it was encoded relative to the InstNum.
624     if (UseRelativeIDs)
625       ValNo = InstNum - ValNo;
626     if (ValNo < InstNum) {
627       // If this is not a forward reference, just return the value we already
628       // have.
629       ResVal = getFnValueByID(ValNo, nullptr);
630       return ResVal == nullptr;
631     }
632     if (Slot == Record.size())
633       return true;
634 
635     unsigned TypeNo = (unsigned)Record[Slot++];
636     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
637     return ResVal == nullptr;
638   }
639 
640   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
641   /// past the number of slots used by the value in the record. Return true if
642   /// there is an error.
643   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
644                 unsigned InstNum, Type *Ty, Value *&ResVal) {
645     if (getValue(Record, Slot, InstNum, Ty, ResVal))
646       return true;
647     // All values currently take a single record slot.
648     ++Slot;
649     return false;
650   }
651 
652   /// Like popValue, but does not increment the Slot number.
653   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
654                 unsigned InstNum, Type *Ty, Value *&ResVal) {
655     ResVal = getValue(Record, Slot, InstNum, Ty);
656     return ResVal == nullptr;
657   }
658 
659   /// Version of getValue that returns ResVal directly, or 0 if there is an
660   /// error.
661   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
662                   unsigned InstNum, Type *Ty) {
663     if (Slot == Record.size()) return nullptr;
664     unsigned ValNo = (unsigned)Record[Slot];
665     // Adjust the ValNo, if it was encoded relative to the InstNum.
666     if (UseRelativeIDs)
667       ValNo = InstNum - ValNo;
668     return getFnValueByID(ValNo, Ty);
669   }
670 
671   /// Like getValue, but decodes signed VBRs.
672   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
673                         unsigned InstNum, Type *Ty) {
674     if (Slot == Record.size()) return nullptr;
675     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
676     // Adjust the ValNo, if it was encoded relative to the InstNum.
677     if (UseRelativeIDs)
678       ValNo = InstNum - ValNo;
679     return getFnValueByID(ValNo, Ty);
680   }
681 
682   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
683   /// corresponding argument's pointee type. Also upgrades intrinsics that now
684   /// require an elementtype attribute.
685   void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
686 
687   /// Converts alignment exponent (i.e. power of two (or zero)) to the
688   /// corresponding alignment to use. If alignment is too large, returns
689   /// a corresponding error code.
690   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
691   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
692   Error parseModule(
693       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
694       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
695 
696   Error parseComdatRecord(ArrayRef<uint64_t> Record);
697   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
698   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
699   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
700                                         ArrayRef<uint64_t> Record);
701 
702   Error parseAttributeBlock();
703   Error parseAttributeGroupBlock();
704   Error parseTypeTable();
705   Error parseTypeTableBody();
706   Error parseOperandBundleTags();
707   Error parseSyncScopeNames();
708 
709   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
710                                 unsigned NameIndex, Triple &TT);
711   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
712                                ArrayRef<uint64_t> Record);
713   Error parseValueSymbolTable(uint64_t Offset = 0);
714   Error parseGlobalValueSymbolTable();
715   Error parseConstants();
716   Error rememberAndSkipFunctionBodies();
717   Error rememberAndSkipFunctionBody();
718   /// Save the positions of the Metadata blocks and skip parsing the blocks.
719   Error rememberAndSkipMetadata();
720   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
721   Error parseFunctionBody(Function *F);
722   Error globalCleanup();
723   Error resolveGlobalAndIndirectSymbolInits();
724   Error parseUseLists();
725   Error findFunctionInStream(
726       Function *F,
727       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
728 
729   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
730 };
731 
732 /// Class to manage reading and parsing function summary index bitcode
733 /// files/sections.
734 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
735   /// The module index built during parsing.
736   ModuleSummaryIndex &TheIndex;
737 
738   /// Indicates whether we have encountered a global value summary section
739   /// yet during parsing.
740   bool SeenGlobalValSummary = false;
741 
742   /// Indicates whether we have already parsed the VST, used for error checking.
743   bool SeenValueSymbolTable = false;
744 
745   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
746   /// Used to enable on-demand parsing of the VST.
747   uint64_t VSTOffset = 0;
748 
749   // Map to save ValueId to ValueInfo association that was recorded in the
750   // ValueSymbolTable. It is used after the VST is parsed to convert
751   // call graph edges read from the function summary from referencing
752   // callees by their ValueId to using the ValueInfo instead, which is how
753   // they are recorded in the summary index being built.
754   // We save a GUID which refers to the same global as the ValueInfo, but
755   // ignoring the linkage, i.e. for values other than local linkage they are
756   // identical.
757   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
758       ValueIdToValueInfoMap;
759 
760   /// Map populated during module path string table parsing, from the
761   /// module ID to a string reference owned by the index's module
762   /// path string table, used to correlate with combined index
763   /// summary records.
764   DenseMap<uint64_t, StringRef> ModuleIdMap;
765 
766   /// Original source file name recorded in a bitcode record.
767   std::string SourceFileName;
768 
769   /// The string identifier given to this module by the client, normally the
770   /// path to the bitcode file.
771   StringRef ModulePath;
772 
773   /// For per-module summary indexes, the unique numerical identifier given to
774   /// this module by the client.
775   unsigned ModuleId;
776 
777 public:
778   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
779                                   ModuleSummaryIndex &TheIndex,
780                                   StringRef ModulePath, unsigned ModuleId);
781 
782   Error parseModule();
783 
784 private:
785   void setValueGUID(uint64_t ValueID, StringRef ValueName,
786                     GlobalValue::LinkageTypes Linkage,
787                     StringRef SourceFileName);
788   Error parseValueSymbolTable(
789       uint64_t Offset,
790       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
791   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
792   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
793                                                     bool IsOldProfileFormat,
794                                                     bool HasProfile,
795                                                     bool HasRelBF);
796   Error parseEntireSummary(unsigned ID);
797   Error parseModuleStringTable();
798   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
799   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
800                                        TypeIdCompatibleVtableInfo &TypeId);
801   std::vector<FunctionSummary::ParamAccess>
802   parseParamAccesses(ArrayRef<uint64_t> Record);
803 
804   std::pair<ValueInfo, GlobalValue::GUID>
805   getValueInfoFromValueId(unsigned ValueId);
806 
807   void addThisModule();
808   ModuleSummaryIndex::ModuleInfo *getThisModule();
809 };
810 
811 } // end anonymous namespace
812 
813 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
814                                                     Error Err) {
815   if (Err) {
816     std::error_code EC;
817     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
818       EC = EIB.convertToErrorCode();
819       Ctx.emitError(EIB.message());
820     });
821     return EC;
822   }
823   return std::error_code();
824 }
825 
826 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
827                              StringRef ProducerIdentification,
828                              LLVMContext &Context)
829     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
830       ValueList(Context, Stream.SizeInBytes()) {
831   this->ProducerIdentification = std::string(ProducerIdentification);
832 }
833 
834 Error BitcodeReader::materializeForwardReferencedFunctions() {
835   if (WillMaterializeAllForwardRefs)
836     return Error::success();
837 
838   // Prevent recursion.
839   WillMaterializeAllForwardRefs = true;
840 
841   while (!BasicBlockFwdRefQueue.empty()) {
842     Function *F = BasicBlockFwdRefQueue.front();
843     BasicBlockFwdRefQueue.pop_front();
844     assert(F && "Expected valid function");
845     if (!BasicBlockFwdRefs.count(F))
846       // Already materialized.
847       continue;
848 
849     // Check for a function that isn't materializable to prevent an infinite
850     // loop.  When parsing a blockaddress stored in a global variable, there
851     // isn't a trivial way to check if a function will have a body without a
852     // linear search through FunctionsWithBodies, so just check it here.
853     if (!F->isMaterializable())
854       return error("Never resolved function from blockaddress");
855 
856     // Try to materialize F.
857     if (Error Err = materialize(F))
858       return Err;
859   }
860   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
861 
862   // Reset state.
863   WillMaterializeAllForwardRefs = false;
864   return Error::success();
865 }
866 
867 //===----------------------------------------------------------------------===//
868 //  Helper functions to implement forward reference resolution, etc.
869 //===----------------------------------------------------------------------===//
870 
871 static bool hasImplicitComdat(size_t Val) {
872   switch (Val) {
873   default:
874     return false;
875   case 1:  // Old WeakAnyLinkage
876   case 4:  // Old LinkOnceAnyLinkage
877   case 10: // Old WeakODRLinkage
878   case 11: // Old LinkOnceODRLinkage
879     return true;
880   }
881 }
882 
883 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
884   switch (Val) {
885   default: // Map unknown/new linkages to external
886   case 0:
887     return GlobalValue::ExternalLinkage;
888   case 2:
889     return GlobalValue::AppendingLinkage;
890   case 3:
891     return GlobalValue::InternalLinkage;
892   case 5:
893     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
894   case 6:
895     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
896   case 7:
897     return GlobalValue::ExternalWeakLinkage;
898   case 8:
899     return GlobalValue::CommonLinkage;
900   case 9:
901     return GlobalValue::PrivateLinkage;
902   case 12:
903     return GlobalValue::AvailableExternallyLinkage;
904   case 13:
905     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
906   case 14:
907     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
908   case 15:
909     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
910   case 1: // Old value with implicit comdat.
911   case 16:
912     return GlobalValue::WeakAnyLinkage;
913   case 10: // Old value with implicit comdat.
914   case 17:
915     return GlobalValue::WeakODRLinkage;
916   case 4: // Old value with implicit comdat.
917   case 18:
918     return GlobalValue::LinkOnceAnyLinkage;
919   case 11: // Old value with implicit comdat.
920   case 19:
921     return GlobalValue::LinkOnceODRLinkage;
922   }
923 }
924 
925 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
926   FunctionSummary::FFlags Flags;
927   Flags.ReadNone = RawFlags & 0x1;
928   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
929   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
930   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
931   Flags.NoInline = (RawFlags >> 4) & 0x1;
932   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
933   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
934   Flags.MayThrow = (RawFlags >> 7) & 0x1;
935   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
936   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
937   return Flags;
938 }
939 
940 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
941 //
942 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
943 // visibility: [8, 10).
944 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
945                                                             uint64_t Version) {
946   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
947   // like getDecodedLinkage() above. Any future change to the linkage enum and
948   // to getDecodedLinkage() will need to be taken into account here as above.
949   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
950   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
951   RawFlags = RawFlags >> 4;
952   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
953   // The Live flag wasn't introduced until version 3. For dead stripping
954   // to work correctly on earlier versions, we must conservatively treat all
955   // values as live.
956   bool Live = (RawFlags & 0x2) || Version < 3;
957   bool Local = (RawFlags & 0x4);
958   bool AutoHide = (RawFlags & 0x8);
959 
960   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
961                                      Live, Local, AutoHide);
962 }
963 
964 // Decode the flags for GlobalVariable in the summary
965 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
966   return GlobalVarSummary::GVarFlags(
967       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
968       (RawFlags & 0x4) ? true : false,
969       (GlobalObject::VCallVisibility)(RawFlags >> 3));
970 }
971 
972 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
973   switch (Val) {
974   default: // Map unknown visibilities to default.
975   case 0: return GlobalValue::DefaultVisibility;
976   case 1: return GlobalValue::HiddenVisibility;
977   case 2: return GlobalValue::ProtectedVisibility;
978   }
979 }
980 
981 static GlobalValue::DLLStorageClassTypes
982 getDecodedDLLStorageClass(unsigned Val) {
983   switch (Val) {
984   default: // Map unknown values to default.
985   case 0: return GlobalValue::DefaultStorageClass;
986   case 1: return GlobalValue::DLLImportStorageClass;
987   case 2: return GlobalValue::DLLExportStorageClass;
988   }
989 }
990 
991 static bool getDecodedDSOLocal(unsigned Val) {
992   switch(Val) {
993   default: // Map unknown values to preemptable.
994   case 0:  return false;
995   case 1:  return true;
996   }
997 }
998 
999 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1000   switch (Val) {
1001     case 0: return GlobalVariable::NotThreadLocal;
1002     default: // Map unknown non-zero value to general dynamic.
1003     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1004     case 2: return GlobalVariable::LocalDynamicTLSModel;
1005     case 3: return GlobalVariable::InitialExecTLSModel;
1006     case 4: return GlobalVariable::LocalExecTLSModel;
1007   }
1008 }
1009 
1010 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1011   switch (Val) {
1012     default: // Map unknown to UnnamedAddr::None.
1013     case 0: return GlobalVariable::UnnamedAddr::None;
1014     case 1: return GlobalVariable::UnnamedAddr::Global;
1015     case 2: return GlobalVariable::UnnamedAddr::Local;
1016   }
1017 }
1018 
1019 static int getDecodedCastOpcode(unsigned Val) {
1020   switch (Val) {
1021   default: return -1;
1022   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1023   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1024   case bitc::CAST_SEXT    : return Instruction::SExt;
1025   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1026   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1027   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1028   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1029   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1030   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1031   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1032   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1033   case bitc::CAST_BITCAST : return Instruction::BitCast;
1034   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1035   }
1036 }
1037 
1038 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1039   bool IsFP = Ty->isFPOrFPVectorTy();
1040   // UnOps are only valid for int/fp or vector of int/fp types
1041   if (!IsFP && !Ty->isIntOrIntVectorTy())
1042     return -1;
1043 
1044   switch (Val) {
1045   default:
1046     return -1;
1047   case bitc::UNOP_FNEG:
1048     return IsFP ? Instruction::FNeg : -1;
1049   }
1050 }
1051 
1052 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1053   bool IsFP = Ty->isFPOrFPVectorTy();
1054   // BinOps are only valid for int/fp or vector of int/fp types
1055   if (!IsFP && !Ty->isIntOrIntVectorTy())
1056     return -1;
1057 
1058   switch (Val) {
1059   default:
1060     return -1;
1061   case bitc::BINOP_ADD:
1062     return IsFP ? Instruction::FAdd : Instruction::Add;
1063   case bitc::BINOP_SUB:
1064     return IsFP ? Instruction::FSub : Instruction::Sub;
1065   case bitc::BINOP_MUL:
1066     return IsFP ? Instruction::FMul : Instruction::Mul;
1067   case bitc::BINOP_UDIV:
1068     return IsFP ? -1 : Instruction::UDiv;
1069   case bitc::BINOP_SDIV:
1070     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1071   case bitc::BINOP_UREM:
1072     return IsFP ? -1 : Instruction::URem;
1073   case bitc::BINOP_SREM:
1074     return IsFP ? Instruction::FRem : Instruction::SRem;
1075   case bitc::BINOP_SHL:
1076     return IsFP ? -1 : Instruction::Shl;
1077   case bitc::BINOP_LSHR:
1078     return IsFP ? -1 : Instruction::LShr;
1079   case bitc::BINOP_ASHR:
1080     return IsFP ? -1 : Instruction::AShr;
1081   case bitc::BINOP_AND:
1082     return IsFP ? -1 : Instruction::And;
1083   case bitc::BINOP_OR:
1084     return IsFP ? -1 : Instruction::Or;
1085   case bitc::BINOP_XOR:
1086     return IsFP ? -1 : Instruction::Xor;
1087   }
1088 }
1089 
1090 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1091   switch (Val) {
1092   default: return AtomicRMWInst::BAD_BINOP;
1093   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1094   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1095   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1096   case bitc::RMW_AND: return AtomicRMWInst::And;
1097   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1098   case bitc::RMW_OR: return AtomicRMWInst::Or;
1099   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1100   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1101   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1102   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1103   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1104   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1105   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1106   }
1107 }
1108 
1109 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1110   switch (Val) {
1111   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1112   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1113   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1114   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1115   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1116   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1117   default: // Map unknown orderings to sequentially-consistent.
1118   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1119   }
1120 }
1121 
1122 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1123   switch (Val) {
1124   default: // Map unknown selection kinds to any.
1125   case bitc::COMDAT_SELECTION_KIND_ANY:
1126     return Comdat::Any;
1127   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1128     return Comdat::ExactMatch;
1129   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1130     return Comdat::Largest;
1131   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1132     return Comdat::NoDeduplicate;
1133   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1134     return Comdat::SameSize;
1135   }
1136 }
1137 
1138 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1139   FastMathFlags FMF;
1140   if (0 != (Val & bitc::UnsafeAlgebra))
1141     FMF.setFast();
1142   if (0 != (Val & bitc::AllowReassoc))
1143     FMF.setAllowReassoc();
1144   if (0 != (Val & bitc::NoNaNs))
1145     FMF.setNoNaNs();
1146   if (0 != (Val & bitc::NoInfs))
1147     FMF.setNoInfs();
1148   if (0 != (Val & bitc::NoSignedZeros))
1149     FMF.setNoSignedZeros();
1150   if (0 != (Val & bitc::AllowReciprocal))
1151     FMF.setAllowReciprocal();
1152   if (0 != (Val & bitc::AllowContract))
1153     FMF.setAllowContract(true);
1154   if (0 != (Val & bitc::ApproxFunc))
1155     FMF.setApproxFunc();
1156   return FMF;
1157 }
1158 
1159 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1160   switch (Val) {
1161   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1162   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1163   }
1164 }
1165 
1166 Type *BitcodeReader::getTypeByID(unsigned ID) {
1167   // The type table size is always specified correctly.
1168   if (ID >= TypeList.size())
1169     return nullptr;
1170 
1171   if (Type *Ty = TypeList[ID])
1172     return Ty;
1173 
1174   // If we have a forward reference, the only possible case is when it is to a
1175   // named struct.  Just create a placeholder for now.
1176   return TypeList[ID] = createIdentifiedStructType(Context);
1177 }
1178 
1179 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1180                                                       StringRef Name) {
1181   auto *Ret = StructType::create(Context, Name);
1182   IdentifiedStructTypes.push_back(Ret);
1183   return Ret;
1184 }
1185 
1186 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1187   auto *Ret = StructType::create(Context);
1188   IdentifiedStructTypes.push_back(Ret);
1189   return Ret;
1190 }
1191 
1192 //===----------------------------------------------------------------------===//
1193 //  Functions for parsing blocks from the bitcode file
1194 //===----------------------------------------------------------------------===//
1195 
1196 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1197   switch (Val) {
1198   case Attribute::EndAttrKinds:
1199   case Attribute::EmptyKey:
1200   case Attribute::TombstoneKey:
1201     llvm_unreachable("Synthetic enumerators which should never get here");
1202 
1203   case Attribute::None:            return 0;
1204   case Attribute::ZExt:            return 1 << 0;
1205   case Attribute::SExt:            return 1 << 1;
1206   case Attribute::NoReturn:        return 1 << 2;
1207   case Attribute::InReg:           return 1 << 3;
1208   case Attribute::StructRet:       return 1 << 4;
1209   case Attribute::NoUnwind:        return 1 << 5;
1210   case Attribute::NoAlias:         return 1 << 6;
1211   case Attribute::ByVal:           return 1 << 7;
1212   case Attribute::Nest:            return 1 << 8;
1213   case Attribute::ReadNone:        return 1 << 9;
1214   case Attribute::ReadOnly:        return 1 << 10;
1215   case Attribute::NoInline:        return 1 << 11;
1216   case Attribute::AlwaysInline:    return 1 << 12;
1217   case Attribute::OptimizeForSize: return 1 << 13;
1218   case Attribute::StackProtect:    return 1 << 14;
1219   case Attribute::StackProtectReq: return 1 << 15;
1220   case Attribute::Alignment:       return 31 << 16;
1221   case Attribute::NoCapture:       return 1 << 21;
1222   case Attribute::NoRedZone:       return 1 << 22;
1223   case Attribute::NoImplicitFloat: return 1 << 23;
1224   case Attribute::Naked:           return 1 << 24;
1225   case Attribute::InlineHint:      return 1 << 25;
1226   case Attribute::StackAlignment:  return 7 << 26;
1227   case Attribute::ReturnsTwice:    return 1 << 29;
1228   case Attribute::UWTable:         return 1 << 30;
1229   case Attribute::NonLazyBind:     return 1U << 31;
1230   case Attribute::SanitizeAddress: return 1ULL << 32;
1231   case Attribute::MinSize:         return 1ULL << 33;
1232   case Attribute::NoDuplicate:     return 1ULL << 34;
1233   case Attribute::StackProtectStrong: return 1ULL << 35;
1234   case Attribute::SanitizeThread:  return 1ULL << 36;
1235   case Attribute::SanitizeMemory:  return 1ULL << 37;
1236   case Attribute::NoBuiltin:       return 1ULL << 38;
1237   case Attribute::Returned:        return 1ULL << 39;
1238   case Attribute::Cold:            return 1ULL << 40;
1239   case Attribute::Builtin:         return 1ULL << 41;
1240   case Attribute::OptimizeNone:    return 1ULL << 42;
1241   case Attribute::InAlloca:        return 1ULL << 43;
1242   case Attribute::NonNull:         return 1ULL << 44;
1243   case Attribute::JumpTable:       return 1ULL << 45;
1244   case Attribute::Convergent:      return 1ULL << 46;
1245   case Attribute::SafeStack:       return 1ULL << 47;
1246   case Attribute::NoRecurse:       return 1ULL << 48;
1247   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1248   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1249   case Attribute::SwiftSelf:       return 1ULL << 51;
1250   case Attribute::SwiftError:      return 1ULL << 52;
1251   case Attribute::WriteOnly:       return 1ULL << 53;
1252   case Attribute::Speculatable:    return 1ULL << 54;
1253   case Attribute::StrictFP:        return 1ULL << 55;
1254   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1255   case Attribute::NoCfCheck:       return 1ULL << 57;
1256   case Attribute::OptForFuzzing:   return 1ULL << 58;
1257   case Attribute::ShadowCallStack: return 1ULL << 59;
1258   case Attribute::SpeculativeLoadHardening:
1259     return 1ULL << 60;
1260   case Attribute::ImmArg:
1261     return 1ULL << 61;
1262   case Attribute::WillReturn:
1263     return 1ULL << 62;
1264   case Attribute::NoFree:
1265     return 1ULL << 63;
1266   default:
1267     // Other attributes are not supported in the raw format,
1268     // as we ran out of space.
1269     return 0;
1270   }
1271   llvm_unreachable("Unsupported attribute type");
1272 }
1273 
1274 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1275   if (!Val) return;
1276 
1277   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1278        I = Attribute::AttrKind(I + 1)) {
1279     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1280       if (I == Attribute::Alignment)
1281         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1282       else if (I == Attribute::StackAlignment)
1283         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1284       else if (Attribute::isTypeAttrKind(I))
1285         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1286       else
1287         B.addAttribute(I);
1288     }
1289   }
1290 }
1291 
1292 /// This fills an AttrBuilder object with the LLVM attributes that have
1293 /// been decoded from the given integer. This function must stay in sync with
1294 /// 'encodeLLVMAttributesForBitcode'.
1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1296                                            uint64_t EncodedAttrs) {
1297   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1298   // the bits above 31 down by 11 bits.
1299   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1300   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1301          "Alignment must be a power of two.");
1302 
1303   if (Alignment)
1304     B.addAlignmentAttr(Alignment);
1305   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1306                           (EncodedAttrs & 0xffff));
1307 }
1308 
1309 Error BitcodeReader::parseAttributeBlock() {
1310   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1311     return Err;
1312 
1313   if (!MAttributes.empty())
1314     return error("Invalid multiple blocks");
1315 
1316   SmallVector<uint64_t, 64> Record;
1317 
1318   SmallVector<AttributeList, 8> Attrs;
1319 
1320   // Read all the records.
1321   while (true) {
1322     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1323     if (!MaybeEntry)
1324       return MaybeEntry.takeError();
1325     BitstreamEntry Entry = MaybeEntry.get();
1326 
1327     switch (Entry.Kind) {
1328     case BitstreamEntry::SubBlock: // Handled for us already.
1329     case BitstreamEntry::Error:
1330       return error("Malformed block");
1331     case BitstreamEntry::EndBlock:
1332       return Error::success();
1333     case BitstreamEntry::Record:
1334       // The interesting case.
1335       break;
1336     }
1337 
1338     // Read a record.
1339     Record.clear();
1340     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1341     if (!MaybeRecord)
1342       return MaybeRecord.takeError();
1343     switch (MaybeRecord.get()) {
1344     default:  // Default behavior: ignore.
1345       break;
1346     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1347       // Deprecated, but still needed to read old bitcode files.
1348       if (Record.size() & 1)
1349         return error("Invalid record");
1350 
1351       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1352         AttrBuilder B(Context);
1353         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1354         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1355       }
1356 
1357       MAttributes.push_back(AttributeList::get(Context, Attrs));
1358       Attrs.clear();
1359       break;
1360     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1361       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1362         Attrs.push_back(MAttributeGroups[Record[i]]);
1363 
1364       MAttributes.push_back(AttributeList::get(Context, Attrs));
1365       Attrs.clear();
1366       break;
1367     }
1368   }
1369 }
1370 
1371 // Returns Attribute::None on unrecognized codes.
1372 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1373   switch (Code) {
1374   default:
1375     return Attribute::None;
1376   case bitc::ATTR_KIND_ALIGNMENT:
1377     return Attribute::Alignment;
1378   case bitc::ATTR_KIND_ALWAYS_INLINE:
1379     return Attribute::AlwaysInline;
1380   case bitc::ATTR_KIND_ARGMEMONLY:
1381     return Attribute::ArgMemOnly;
1382   case bitc::ATTR_KIND_BUILTIN:
1383     return Attribute::Builtin;
1384   case bitc::ATTR_KIND_BY_VAL:
1385     return Attribute::ByVal;
1386   case bitc::ATTR_KIND_IN_ALLOCA:
1387     return Attribute::InAlloca;
1388   case bitc::ATTR_KIND_COLD:
1389     return Attribute::Cold;
1390   case bitc::ATTR_KIND_CONVERGENT:
1391     return Attribute::Convergent;
1392   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1393     return Attribute::DisableSanitizerInstrumentation;
1394   case bitc::ATTR_KIND_ELEMENTTYPE:
1395     return Attribute::ElementType;
1396   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1397     return Attribute::InaccessibleMemOnly;
1398   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1399     return Attribute::InaccessibleMemOrArgMemOnly;
1400   case bitc::ATTR_KIND_INLINE_HINT:
1401     return Attribute::InlineHint;
1402   case bitc::ATTR_KIND_IN_REG:
1403     return Attribute::InReg;
1404   case bitc::ATTR_KIND_JUMP_TABLE:
1405     return Attribute::JumpTable;
1406   case bitc::ATTR_KIND_MIN_SIZE:
1407     return Attribute::MinSize;
1408   case bitc::ATTR_KIND_NAKED:
1409     return Attribute::Naked;
1410   case bitc::ATTR_KIND_NEST:
1411     return Attribute::Nest;
1412   case bitc::ATTR_KIND_NO_ALIAS:
1413     return Attribute::NoAlias;
1414   case bitc::ATTR_KIND_NO_BUILTIN:
1415     return Attribute::NoBuiltin;
1416   case bitc::ATTR_KIND_NO_CALLBACK:
1417     return Attribute::NoCallback;
1418   case bitc::ATTR_KIND_NO_CAPTURE:
1419     return Attribute::NoCapture;
1420   case bitc::ATTR_KIND_NO_DUPLICATE:
1421     return Attribute::NoDuplicate;
1422   case bitc::ATTR_KIND_NOFREE:
1423     return Attribute::NoFree;
1424   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1425     return Attribute::NoImplicitFloat;
1426   case bitc::ATTR_KIND_NO_INLINE:
1427     return Attribute::NoInline;
1428   case bitc::ATTR_KIND_NO_RECURSE:
1429     return Attribute::NoRecurse;
1430   case bitc::ATTR_KIND_NO_MERGE:
1431     return Attribute::NoMerge;
1432   case bitc::ATTR_KIND_NON_LAZY_BIND:
1433     return Attribute::NonLazyBind;
1434   case bitc::ATTR_KIND_NON_NULL:
1435     return Attribute::NonNull;
1436   case bitc::ATTR_KIND_DEREFERENCEABLE:
1437     return Attribute::Dereferenceable;
1438   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1439     return Attribute::DereferenceableOrNull;
1440   case bitc::ATTR_KIND_ALLOC_SIZE:
1441     return Attribute::AllocSize;
1442   case bitc::ATTR_KIND_NO_RED_ZONE:
1443     return Attribute::NoRedZone;
1444   case bitc::ATTR_KIND_NO_RETURN:
1445     return Attribute::NoReturn;
1446   case bitc::ATTR_KIND_NOSYNC:
1447     return Attribute::NoSync;
1448   case bitc::ATTR_KIND_NOCF_CHECK:
1449     return Attribute::NoCfCheck;
1450   case bitc::ATTR_KIND_NO_PROFILE:
1451     return Attribute::NoProfile;
1452   case bitc::ATTR_KIND_NO_UNWIND:
1453     return Attribute::NoUnwind;
1454   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1455     return Attribute::NoSanitizeCoverage;
1456   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1457     return Attribute::NullPointerIsValid;
1458   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1459     return Attribute::OptForFuzzing;
1460   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1461     return Attribute::OptimizeForSize;
1462   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1463     return Attribute::OptimizeNone;
1464   case bitc::ATTR_KIND_READ_NONE:
1465     return Attribute::ReadNone;
1466   case bitc::ATTR_KIND_READ_ONLY:
1467     return Attribute::ReadOnly;
1468   case bitc::ATTR_KIND_RETURNED:
1469     return Attribute::Returned;
1470   case bitc::ATTR_KIND_RETURNS_TWICE:
1471     return Attribute::ReturnsTwice;
1472   case bitc::ATTR_KIND_S_EXT:
1473     return Attribute::SExt;
1474   case bitc::ATTR_KIND_SPECULATABLE:
1475     return Attribute::Speculatable;
1476   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1477     return Attribute::StackAlignment;
1478   case bitc::ATTR_KIND_STACK_PROTECT:
1479     return Attribute::StackProtect;
1480   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1481     return Attribute::StackProtectReq;
1482   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1483     return Attribute::StackProtectStrong;
1484   case bitc::ATTR_KIND_SAFESTACK:
1485     return Attribute::SafeStack;
1486   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1487     return Attribute::ShadowCallStack;
1488   case bitc::ATTR_KIND_STRICT_FP:
1489     return Attribute::StrictFP;
1490   case bitc::ATTR_KIND_STRUCT_RET:
1491     return Attribute::StructRet;
1492   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1493     return Attribute::SanitizeAddress;
1494   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1495     return Attribute::SanitizeHWAddress;
1496   case bitc::ATTR_KIND_SANITIZE_THREAD:
1497     return Attribute::SanitizeThread;
1498   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1499     return Attribute::SanitizeMemory;
1500   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1501     return Attribute::SpeculativeLoadHardening;
1502   case bitc::ATTR_KIND_SWIFT_ERROR:
1503     return Attribute::SwiftError;
1504   case bitc::ATTR_KIND_SWIFT_SELF:
1505     return Attribute::SwiftSelf;
1506   case bitc::ATTR_KIND_SWIFT_ASYNC:
1507     return Attribute::SwiftAsync;
1508   case bitc::ATTR_KIND_UW_TABLE:
1509     return Attribute::UWTable;
1510   case bitc::ATTR_KIND_VSCALE_RANGE:
1511     return Attribute::VScaleRange;
1512   case bitc::ATTR_KIND_WILLRETURN:
1513     return Attribute::WillReturn;
1514   case bitc::ATTR_KIND_WRITEONLY:
1515     return Attribute::WriteOnly;
1516   case bitc::ATTR_KIND_Z_EXT:
1517     return Attribute::ZExt;
1518   case bitc::ATTR_KIND_IMMARG:
1519     return Attribute::ImmArg;
1520   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1521     return Attribute::SanitizeMemTag;
1522   case bitc::ATTR_KIND_PREALLOCATED:
1523     return Attribute::Preallocated;
1524   case bitc::ATTR_KIND_NOUNDEF:
1525     return Attribute::NoUndef;
1526   case bitc::ATTR_KIND_BYREF:
1527     return Attribute::ByRef;
1528   case bitc::ATTR_KIND_MUSTPROGRESS:
1529     return Attribute::MustProgress;
1530   case bitc::ATTR_KIND_HOT:
1531     return Attribute::Hot;
1532   }
1533 }
1534 
1535 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1536                                          MaybeAlign &Alignment) {
1537   // Note: Alignment in bitcode files is incremented by 1, so that zero
1538   // can be used for default alignment.
1539   if (Exponent > Value::MaxAlignmentExponent + 1)
1540     return error("Invalid alignment value");
1541   Alignment = decodeMaybeAlign(Exponent);
1542   return Error::success();
1543 }
1544 
1545 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1546   *Kind = getAttrFromCode(Code);
1547   if (*Kind == Attribute::None)
1548     return error("Unknown attribute kind (" + Twine(Code) + ")");
1549   return Error::success();
1550 }
1551 
1552 Error BitcodeReader::parseAttributeGroupBlock() {
1553   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1554     return Err;
1555 
1556   if (!MAttributeGroups.empty())
1557     return error("Invalid multiple blocks");
1558 
1559   SmallVector<uint64_t, 64> Record;
1560 
1561   // Read all the records.
1562   while (true) {
1563     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1564     if (!MaybeEntry)
1565       return MaybeEntry.takeError();
1566     BitstreamEntry Entry = MaybeEntry.get();
1567 
1568     switch (Entry.Kind) {
1569     case BitstreamEntry::SubBlock: // Handled for us already.
1570     case BitstreamEntry::Error:
1571       return error("Malformed block");
1572     case BitstreamEntry::EndBlock:
1573       return Error::success();
1574     case BitstreamEntry::Record:
1575       // The interesting case.
1576       break;
1577     }
1578 
1579     // Read a record.
1580     Record.clear();
1581     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1582     if (!MaybeRecord)
1583       return MaybeRecord.takeError();
1584     switch (MaybeRecord.get()) {
1585     default:  // Default behavior: ignore.
1586       break;
1587     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1588       if (Record.size() < 3)
1589         return error("Invalid record");
1590 
1591       uint64_t GrpID = Record[0];
1592       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1593 
1594       AttrBuilder B(Context);
1595       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1596         if (Record[i] == 0) {        // Enum attribute
1597           Attribute::AttrKind Kind;
1598           if (Error Err = parseAttrKind(Record[++i], &Kind))
1599             return Err;
1600 
1601           // Upgrade old-style byval attribute to one with a type, even if it's
1602           // nullptr. We will have to insert the real type when we associate
1603           // this AttributeList with a function.
1604           if (Kind == Attribute::ByVal)
1605             B.addByValAttr(nullptr);
1606           else if (Kind == Attribute::StructRet)
1607             B.addStructRetAttr(nullptr);
1608           else if (Kind == Attribute::InAlloca)
1609             B.addInAllocaAttr(nullptr);
1610           else if (Attribute::isEnumAttrKind(Kind))
1611             B.addAttribute(Kind);
1612           else
1613             return error("Not an enum attribute");
1614         } else if (Record[i] == 1) { // Integer attribute
1615           Attribute::AttrKind Kind;
1616           if (Error Err = parseAttrKind(Record[++i], &Kind))
1617             return Err;
1618           if (!Attribute::isIntAttrKind(Kind))
1619             return error("Not an int attribute");
1620           if (Kind == Attribute::Alignment)
1621             B.addAlignmentAttr(Record[++i]);
1622           else if (Kind == Attribute::StackAlignment)
1623             B.addStackAlignmentAttr(Record[++i]);
1624           else if (Kind == Attribute::Dereferenceable)
1625             B.addDereferenceableAttr(Record[++i]);
1626           else if (Kind == Attribute::DereferenceableOrNull)
1627             B.addDereferenceableOrNullAttr(Record[++i]);
1628           else if (Kind == Attribute::AllocSize)
1629             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1630           else if (Kind == Attribute::VScaleRange)
1631             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1632         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1633           bool HasValue = (Record[i++] == 4);
1634           SmallString<64> KindStr;
1635           SmallString<64> ValStr;
1636 
1637           while (Record[i] != 0 && i != e)
1638             KindStr += Record[i++];
1639           assert(Record[i] == 0 && "Kind string not null terminated");
1640 
1641           if (HasValue) {
1642             // Has a value associated with it.
1643             ++i; // Skip the '0' that terminates the "kind" string.
1644             while (Record[i] != 0 && i != e)
1645               ValStr += Record[i++];
1646             assert(Record[i] == 0 && "Value string not null terminated");
1647           }
1648 
1649           B.addAttribute(KindStr.str(), ValStr.str());
1650         } else if (Record[i] == 5 || Record[i] == 6) {
1651           bool HasType = Record[i] == 6;
1652           Attribute::AttrKind Kind;
1653           if (Error Err = parseAttrKind(Record[++i], &Kind))
1654             return Err;
1655           if (!Attribute::isTypeAttrKind(Kind))
1656             return error("Not a type attribute");
1657 
1658           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1659         } else {
1660           return error("Invalid attribute group entry");
1661         }
1662       }
1663 
1664       UpgradeAttributes(B);
1665       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1666       break;
1667     }
1668     }
1669   }
1670 }
1671 
1672 Error BitcodeReader::parseTypeTable() {
1673   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1674     return Err;
1675 
1676   return parseTypeTableBody();
1677 }
1678 
1679 Error BitcodeReader::parseTypeTableBody() {
1680   if (!TypeList.empty())
1681     return error("Invalid multiple blocks");
1682 
1683   SmallVector<uint64_t, 64> Record;
1684   unsigned NumRecords = 0;
1685 
1686   SmallString<64> TypeName;
1687 
1688   // Read all the records for this type table.
1689   while (true) {
1690     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1691     if (!MaybeEntry)
1692       return MaybeEntry.takeError();
1693     BitstreamEntry Entry = MaybeEntry.get();
1694 
1695     switch (Entry.Kind) {
1696     case BitstreamEntry::SubBlock: // Handled for us already.
1697     case BitstreamEntry::Error:
1698       return error("Malformed block");
1699     case BitstreamEntry::EndBlock:
1700       if (NumRecords != TypeList.size())
1701         return error("Malformed block");
1702       return Error::success();
1703     case BitstreamEntry::Record:
1704       // The interesting case.
1705       break;
1706     }
1707 
1708     // Read a record.
1709     Record.clear();
1710     Type *ResultTy = nullptr;
1711     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1712     if (!MaybeRecord)
1713       return MaybeRecord.takeError();
1714     switch (MaybeRecord.get()) {
1715     default:
1716       return error("Invalid value");
1717     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1718       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1719       // type list.  This allows us to reserve space.
1720       if (Record.empty())
1721         return error("Invalid record");
1722       TypeList.resize(Record[0]);
1723       continue;
1724     case bitc::TYPE_CODE_VOID:      // VOID
1725       ResultTy = Type::getVoidTy(Context);
1726       break;
1727     case bitc::TYPE_CODE_HALF:     // HALF
1728       ResultTy = Type::getHalfTy(Context);
1729       break;
1730     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1731       ResultTy = Type::getBFloatTy(Context);
1732       break;
1733     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1734       ResultTy = Type::getFloatTy(Context);
1735       break;
1736     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1737       ResultTy = Type::getDoubleTy(Context);
1738       break;
1739     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1740       ResultTy = Type::getX86_FP80Ty(Context);
1741       break;
1742     case bitc::TYPE_CODE_FP128:     // FP128
1743       ResultTy = Type::getFP128Ty(Context);
1744       break;
1745     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1746       ResultTy = Type::getPPC_FP128Ty(Context);
1747       break;
1748     case bitc::TYPE_CODE_LABEL:     // LABEL
1749       ResultTy = Type::getLabelTy(Context);
1750       break;
1751     case bitc::TYPE_CODE_METADATA:  // METADATA
1752       ResultTy = Type::getMetadataTy(Context);
1753       break;
1754     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1755       ResultTy = Type::getX86_MMXTy(Context);
1756       break;
1757     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1758       ResultTy = Type::getX86_AMXTy(Context);
1759       break;
1760     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1761       ResultTy = Type::getTokenTy(Context);
1762       break;
1763     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1764       if (Record.empty())
1765         return error("Invalid record");
1766 
1767       uint64_t NumBits = Record[0];
1768       if (NumBits < IntegerType::MIN_INT_BITS ||
1769           NumBits > IntegerType::MAX_INT_BITS)
1770         return error("Bitwidth for integer type out of range");
1771       ResultTy = IntegerType::get(Context, NumBits);
1772       break;
1773     }
1774     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1775                                     //          [pointee type, address space]
1776       if (Record.empty())
1777         return error("Invalid record");
1778       unsigned AddressSpace = 0;
1779       if (Record.size() == 2)
1780         AddressSpace = Record[1];
1781       ResultTy = getTypeByID(Record[0]);
1782       if (!ResultTy ||
1783           !PointerType::isValidElementType(ResultTy))
1784         return error("Invalid type");
1785       ResultTy = PointerType::get(ResultTy, AddressSpace);
1786       break;
1787     }
1788     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1789       if (Record.size() != 1)
1790         return error("Invalid record");
1791       if (Context.supportsTypedPointers())
1792         return error(
1793             "Opaque pointers are only supported in -opaque-pointers mode");
1794       unsigned AddressSpace = Record[0];
1795       ResultTy = PointerType::get(Context, AddressSpace);
1796       break;
1797     }
1798     case bitc::TYPE_CODE_FUNCTION_OLD: {
1799       // Deprecated, but still needed to read old bitcode files.
1800       // FUNCTION: [vararg, attrid, retty, paramty x N]
1801       if (Record.size() < 3)
1802         return error("Invalid record");
1803       SmallVector<Type*, 8> ArgTys;
1804       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1805         if (Type *T = getTypeByID(Record[i]))
1806           ArgTys.push_back(T);
1807         else
1808           break;
1809       }
1810 
1811       ResultTy = getTypeByID(Record[2]);
1812       if (!ResultTy || ArgTys.size() < Record.size()-3)
1813         return error("Invalid type");
1814 
1815       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1816       break;
1817     }
1818     case bitc::TYPE_CODE_FUNCTION: {
1819       // FUNCTION: [vararg, retty, paramty x N]
1820       if (Record.size() < 2)
1821         return error("Invalid record");
1822       SmallVector<Type*, 8> ArgTys;
1823       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1824         if (Type *T = getTypeByID(Record[i])) {
1825           if (!FunctionType::isValidArgumentType(T))
1826             return error("Invalid function argument type");
1827           ArgTys.push_back(T);
1828         }
1829         else
1830           break;
1831       }
1832 
1833       ResultTy = getTypeByID(Record[1]);
1834       if (!ResultTy || ArgTys.size() < Record.size()-2)
1835         return error("Invalid type");
1836 
1837       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1838       break;
1839     }
1840     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1841       if (Record.empty())
1842         return error("Invalid record");
1843       SmallVector<Type*, 8> EltTys;
1844       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1845         if (Type *T = getTypeByID(Record[i]))
1846           EltTys.push_back(T);
1847         else
1848           break;
1849       }
1850       if (EltTys.size() != Record.size()-1)
1851         return error("Invalid type");
1852       ResultTy = StructType::get(Context, EltTys, Record[0]);
1853       break;
1854     }
1855     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1856       if (convertToString(Record, 0, TypeName))
1857         return error("Invalid record");
1858       continue;
1859 
1860     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1861       if (Record.empty())
1862         return error("Invalid record");
1863 
1864       if (NumRecords >= TypeList.size())
1865         return error("Invalid TYPE table");
1866 
1867       // Check to see if this was forward referenced, if so fill in the temp.
1868       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1869       if (Res) {
1870         Res->setName(TypeName);
1871         TypeList[NumRecords] = nullptr;
1872       } else  // Otherwise, create a new struct.
1873         Res = createIdentifiedStructType(Context, TypeName);
1874       TypeName.clear();
1875 
1876       SmallVector<Type*, 8> EltTys;
1877       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1878         if (Type *T = getTypeByID(Record[i]))
1879           EltTys.push_back(T);
1880         else
1881           break;
1882       }
1883       if (EltTys.size() != Record.size()-1)
1884         return error("Invalid record");
1885       Res->setBody(EltTys, Record[0]);
1886       ResultTy = Res;
1887       break;
1888     }
1889     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1890       if (Record.size() != 1)
1891         return error("Invalid record");
1892 
1893       if (NumRecords >= TypeList.size())
1894         return error("Invalid TYPE table");
1895 
1896       // Check to see if this was forward referenced, if so fill in the temp.
1897       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1898       if (Res) {
1899         Res->setName(TypeName);
1900         TypeList[NumRecords] = nullptr;
1901       } else  // Otherwise, create a new struct with no body.
1902         Res = createIdentifiedStructType(Context, TypeName);
1903       TypeName.clear();
1904       ResultTy = Res;
1905       break;
1906     }
1907     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1908       if (Record.size() < 2)
1909         return error("Invalid record");
1910       ResultTy = getTypeByID(Record[1]);
1911       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1912         return error("Invalid type");
1913       ResultTy = ArrayType::get(ResultTy, Record[0]);
1914       break;
1915     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1916                                     //         [numelts, eltty, scalable]
1917       if (Record.size() < 2)
1918         return error("Invalid record");
1919       if (Record[0] == 0)
1920         return error("Invalid vector length");
1921       ResultTy = getTypeByID(Record[1]);
1922       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
1923         return error("Invalid type");
1924       bool Scalable = Record.size() > 2 ? Record[2] : false;
1925       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1926       break;
1927     }
1928 
1929     if (NumRecords >= TypeList.size())
1930       return error("Invalid TYPE table");
1931     if (TypeList[NumRecords])
1932       return error(
1933           "Invalid TYPE table: Only named structs can be forward referenced");
1934     assert(ResultTy && "Didn't read a type?");
1935     TypeList[NumRecords++] = ResultTy;
1936   }
1937 }
1938 
1939 Error BitcodeReader::parseOperandBundleTags() {
1940   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1941     return Err;
1942 
1943   if (!BundleTags.empty())
1944     return error("Invalid multiple blocks");
1945 
1946   SmallVector<uint64_t, 64> Record;
1947 
1948   while (true) {
1949     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1950     if (!MaybeEntry)
1951       return MaybeEntry.takeError();
1952     BitstreamEntry Entry = MaybeEntry.get();
1953 
1954     switch (Entry.Kind) {
1955     case BitstreamEntry::SubBlock: // Handled for us already.
1956     case BitstreamEntry::Error:
1957       return error("Malformed block");
1958     case BitstreamEntry::EndBlock:
1959       return Error::success();
1960     case BitstreamEntry::Record:
1961       // The interesting case.
1962       break;
1963     }
1964 
1965     // Tags are implicitly mapped to integers by their order.
1966 
1967     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1968     if (!MaybeRecord)
1969       return MaybeRecord.takeError();
1970     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1971       return error("Invalid record");
1972 
1973     // OPERAND_BUNDLE_TAG: [strchr x N]
1974     BundleTags.emplace_back();
1975     if (convertToString(Record, 0, BundleTags.back()))
1976       return error("Invalid record");
1977     Record.clear();
1978   }
1979 }
1980 
1981 Error BitcodeReader::parseSyncScopeNames() {
1982   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1983     return Err;
1984 
1985   if (!SSIDs.empty())
1986     return error("Invalid multiple synchronization scope names blocks");
1987 
1988   SmallVector<uint64_t, 64> Record;
1989   while (true) {
1990     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1991     if (!MaybeEntry)
1992       return MaybeEntry.takeError();
1993     BitstreamEntry Entry = MaybeEntry.get();
1994 
1995     switch (Entry.Kind) {
1996     case BitstreamEntry::SubBlock: // Handled for us already.
1997     case BitstreamEntry::Error:
1998       return error("Malformed block");
1999     case BitstreamEntry::EndBlock:
2000       if (SSIDs.empty())
2001         return error("Invalid empty synchronization scope names block");
2002       return Error::success();
2003     case BitstreamEntry::Record:
2004       // The interesting case.
2005       break;
2006     }
2007 
2008     // Synchronization scope names are implicitly mapped to synchronization
2009     // scope IDs by their order.
2010 
2011     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2012     if (!MaybeRecord)
2013       return MaybeRecord.takeError();
2014     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2015       return error("Invalid record");
2016 
2017     SmallString<16> SSN;
2018     if (convertToString(Record, 0, SSN))
2019       return error("Invalid record");
2020 
2021     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2022     Record.clear();
2023   }
2024 }
2025 
2026 /// Associate a value with its name from the given index in the provided record.
2027 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2028                                              unsigned NameIndex, Triple &TT) {
2029   SmallString<128> ValueName;
2030   if (convertToString(Record, NameIndex, ValueName))
2031     return error("Invalid record");
2032   unsigned ValueID = Record[0];
2033   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2034     return error("Invalid record");
2035   Value *V = ValueList[ValueID];
2036 
2037   StringRef NameStr(ValueName.data(), ValueName.size());
2038   if (NameStr.find_first_of(0) != StringRef::npos)
2039     return error("Invalid value name");
2040   V->setName(NameStr);
2041   auto *GO = dyn_cast<GlobalObject>(V);
2042   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2043     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2044   return V;
2045 }
2046 
2047 /// Helper to note and return the current location, and jump to the given
2048 /// offset.
2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2050                                                  BitstreamCursor &Stream) {
2051   // Save the current parsing location so we can jump back at the end
2052   // of the VST read.
2053   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2054   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2055     return std::move(JumpFailed);
2056   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2057   if (!MaybeEntry)
2058     return MaybeEntry.takeError();
2059   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2060       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2061     return error("Expected value symbol table subblock");
2062   return CurrentBit;
2063 }
2064 
2065 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2066                                             Function *F,
2067                                             ArrayRef<uint64_t> Record) {
2068   // Note that we subtract 1 here because the offset is relative to one word
2069   // before the start of the identification or module block, which was
2070   // historically always the start of the regular bitcode header.
2071   uint64_t FuncWordOffset = Record[1] - 1;
2072   uint64_t FuncBitOffset = FuncWordOffset * 32;
2073   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2074   // Set the LastFunctionBlockBit to point to the last function block.
2075   // Later when parsing is resumed after function materialization,
2076   // we can simply skip that last function block.
2077   if (FuncBitOffset > LastFunctionBlockBit)
2078     LastFunctionBlockBit = FuncBitOffset;
2079 }
2080 
2081 /// Read a new-style GlobalValue symbol table.
2082 Error BitcodeReader::parseGlobalValueSymbolTable() {
2083   unsigned FuncBitcodeOffsetDelta =
2084       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2085 
2086   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2087     return Err;
2088 
2089   SmallVector<uint64_t, 64> Record;
2090   while (true) {
2091     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2092     if (!MaybeEntry)
2093       return MaybeEntry.takeError();
2094     BitstreamEntry Entry = MaybeEntry.get();
2095 
2096     switch (Entry.Kind) {
2097     case BitstreamEntry::SubBlock:
2098     case BitstreamEntry::Error:
2099       return error("Malformed block");
2100     case BitstreamEntry::EndBlock:
2101       return Error::success();
2102     case BitstreamEntry::Record:
2103       break;
2104     }
2105 
2106     Record.clear();
2107     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2108     if (!MaybeRecord)
2109       return MaybeRecord.takeError();
2110     switch (MaybeRecord.get()) {
2111     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2112       unsigned ValueID = Record[0];
2113       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2114         return error("Invalid value reference in symbol table");
2115       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2116                               cast<Function>(ValueList[ValueID]), Record);
2117       break;
2118     }
2119     }
2120   }
2121 }
2122 
2123 /// Parse the value symbol table at either the current parsing location or
2124 /// at the given bit offset if provided.
2125 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2126   uint64_t CurrentBit;
2127   // Pass in the Offset to distinguish between calling for the module-level
2128   // VST (where we want to jump to the VST offset) and the function-level
2129   // VST (where we don't).
2130   if (Offset > 0) {
2131     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2132     if (!MaybeCurrentBit)
2133       return MaybeCurrentBit.takeError();
2134     CurrentBit = MaybeCurrentBit.get();
2135     // If this module uses a string table, read this as a module-level VST.
2136     if (UseStrtab) {
2137       if (Error Err = parseGlobalValueSymbolTable())
2138         return Err;
2139       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2140         return JumpFailed;
2141       return Error::success();
2142     }
2143     // Otherwise, the VST will be in a similar format to a function-level VST,
2144     // and will contain symbol names.
2145   }
2146 
2147   // Compute the delta between the bitcode indices in the VST (the word offset
2148   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2149   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2150   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2151   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2152   // just before entering the VST subblock because: 1) the EnterSubBlock
2153   // changes the AbbrevID width; 2) the VST block is nested within the same
2154   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2155   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2156   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2157   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2158   unsigned FuncBitcodeOffsetDelta =
2159       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2160 
2161   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2162     return Err;
2163 
2164   SmallVector<uint64_t, 64> Record;
2165 
2166   Triple TT(TheModule->getTargetTriple());
2167 
2168   // Read all the records for this value table.
2169   SmallString<128> ValueName;
2170 
2171   while (true) {
2172     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2173     if (!MaybeEntry)
2174       return MaybeEntry.takeError();
2175     BitstreamEntry Entry = MaybeEntry.get();
2176 
2177     switch (Entry.Kind) {
2178     case BitstreamEntry::SubBlock: // Handled for us already.
2179     case BitstreamEntry::Error:
2180       return error("Malformed block");
2181     case BitstreamEntry::EndBlock:
2182       if (Offset > 0)
2183         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2184           return JumpFailed;
2185       return Error::success();
2186     case BitstreamEntry::Record:
2187       // The interesting case.
2188       break;
2189     }
2190 
2191     // Read a record.
2192     Record.clear();
2193     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2194     if (!MaybeRecord)
2195       return MaybeRecord.takeError();
2196     switch (MaybeRecord.get()) {
2197     default:  // Default behavior: unknown type.
2198       break;
2199     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2200       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2201       if (Error Err = ValOrErr.takeError())
2202         return Err;
2203       ValOrErr.get();
2204       break;
2205     }
2206     case bitc::VST_CODE_FNENTRY: {
2207       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2208       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2209       if (Error Err = ValOrErr.takeError())
2210         return Err;
2211       Value *V = ValOrErr.get();
2212 
2213       // Ignore function offsets emitted for aliases of functions in older
2214       // versions of LLVM.
2215       if (auto *F = dyn_cast<Function>(V))
2216         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2217       break;
2218     }
2219     case bitc::VST_CODE_BBENTRY: {
2220       if (convertToString(Record, 1, ValueName))
2221         return error("Invalid record");
2222       BasicBlock *BB = getBasicBlock(Record[0]);
2223       if (!BB)
2224         return error("Invalid record");
2225 
2226       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2227       ValueName.clear();
2228       break;
2229     }
2230     }
2231   }
2232 }
2233 
2234 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2235 /// encoding.
2236 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2237   if ((V & 1) == 0)
2238     return V >> 1;
2239   if (V != 1)
2240     return -(V >> 1);
2241   // There is no such thing as -0 with integers.  "-0" really means MININT.
2242   return 1ULL << 63;
2243 }
2244 
2245 /// Resolve all of the initializers for global values and aliases that we can.
2246 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2247   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2248   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2249   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2250 
2251   GlobalInitWorklist.swap(GlobalInits);
2252   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2253   FunctionOperandWorklist.swap(FunctionOperands);
2254 
2255   while (!GlobalInitWorklist.empty()) {
2256     unsigned ValID = GlobalInitWorklist.back().second;
2257     if (ValID >= ValueList.size()) {
2258       // Not ready to resolve this yet, it requires something later in the file.
2259       GlobalInits.push_back(GlobalInitWorklist.back());
2260     } else {
2261       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2262         GlobalInitWorklist.back().first->setInitializer(C);
2263       else
2264         return error("Expected a constant");
2265     }
2266     GlobalInitWorklist.pop_back();
2267   }
2268 
2269   while (!IndirectSymbolInitWorklist.empty()) {
2270     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2271     if (ValID >= ValueList.size()) {
2272       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2273     } else {
2274       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2275       if (!C)
2276         return error("Expected a constant");
2277       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2278       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2279         if (C->getType() != GV->getType())
2280           return error("Alias and aliasee types don't match");
2281         GA->setAliasee(C);
2282       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2283         Type *ResolverFTy =
2284             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2285         // Transparently fix up the type for compatiblity with older bitcode
2286         GI->setResolver(
2287             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2288       } else {
2289         return error("Expected an alias or an ifunc");
2290       }
2291     }
2292     IndirectSymbolInitWorklist.pop_back();
2293   }
2294 
2295   while (!FunctionOperandWorklist.empty()) {
2296     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2297     if (Info.PersonalityFn) {
2298       unsigned ValID = Info.PersonalityFn - 1;
2299       if (ValID < ValueList.size()) {
2300         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2301           Info.F->setPersonalityFn(C);
2302         else
2303           return error("Expected a constant");
2304         Info.PersonalityFn = 0;
2305       }
2306     }
2307     if (Info.Prefix) {
2308       unsigned ValID = Info.Prefix - 1;
2309       if (ValID < ValueList.size()) {
2310         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2311           Info.F->setPrefixData(C);
2312         else
2313           return error("Expected a constant");
2314         Info.Prefix = 0;
2315       }
2316     }
2317     if (Info.Prologue) {
2318       unsigned ValID = Info.Prologue - 1;
2319       if (ValID < ValueList.size()) {
2320         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2321           Info.F->setPrologueData(C);
2322         else
2323           return error("Expected a constant");
2324         Info.Prologue = 0;
2325       }
2326     }
2327     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2328       FunctionOperands.push_back(Info);
2329     FunctionOperandWorklist.pop_back();
2330   }
2331 
2332   return Error::success();
2333 }
2334 
2335 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2336   SmallVector<uint64_t, 8> Words(Vals.size());
2337   transform(Vals, Words.begin(),
2338                  BitcodeReader::decodeSignRotatedValue);
2339 
2340   return APInt(TypeBits, Words);
2341 }
2342 
2343 Error BitcodeReader::parseConstants() {
2344   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2345     return Err;
2346 
2347   SmallVector<uint64_t, 64> Record;
2348 
2349   // Read all the records for this value table.
2350   Type *CurTy = Type::getInt32Ty(Context);
2351   unsigned NextCstNo = ValueList.size();
2352 
2353   struct DelayedShufTy {
2354     VectorType *OpTy;
2355     VectorType *RTy;
2356     uint64_t Op0Idx;
2357     uint64_t Op1Idx;
2358     uint64_t Op2Idx;
2359     unsigned CstNo;
2360   };
2361   std::vector<DelayedShufTy> DelayedShuffles;
2362   struct DelayedSelTy {
2363     Type *OpTy;
2364     uint64_t Op0Idx;
2365     uint64_t Op1Idx;
2366     uint64_t Op2Idx;
2367     unsigned CstNo;
2368   };
2369   std::vector<DelayedSelTy> DelayedSelectors;
2370 
2371   while (true) {
2372     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2373     if (!MaybeEntry)
2374       return MaybeEntry.takeError();
2375     BitstreamEntry Entry = MaybeEntry.get();
2376 
2377     switch (Entry.Kind) {
2378     case BitstreamEntry::SubBlock: // Handled for us already.
2379     case BitstreamEntry::Error:
2380       return error("Malformed block");
2381     case BitstreamEntry::EndBlock:
2382       // Once all the constants have been read, go through and resolve forward
2383       // references.
2384       //
2385       // We have to treat shuffles specially because they don't have three
2386       // operands anymore.  We need to convert the shuffle mask into an array,
2387       // and we can't convert a forward reference.
2388       for (auto &DelayedShuffle : DelayedShuffles) {
2389         VectorType *OpTy = DelayedShuffle.OpTy;
2390         VectorType *RTy = DelayedShuffle.RTy;
2391         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2392         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2393         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2394         uint64_t CstNo = DelayedShuffle.CstNo;
2395         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2396         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2397         Type *ShufTy =
2398             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2399         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2400         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2401           return error("Invalid shufflevector operands");
2402         SmallVector<int, 16> Mask;
2403         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2404         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2405         ValueList.assignValue(V, CstNo);
2406       }
2407       for (auto &DelayedSelector : DelayedSelectors) {
2408         Type *OpTy = DelayedSelector.OpTy;
2409         Type *SelectorTy = Type::getInt1Ty(Context);
2410         uint64_t Op0Idx = DelayedSelector.Op0Idx;
2411         uint64_t Op1Idx = DelayedSelector.Op1Idx;
2412         uint64_t Op2Idx = DelayedSelector.Op2Idx;
2413         uint64_t CstNo = DelayedSelector.CstNo;
2414         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2415         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy);
2416         // The selector might be an i1 or an <n x i1>
2417         // Get the type from the ValueList before getting a forward ref.
2418         if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2419           Value *V = ValueList[Op0Idx];
2420           assert(V);
2421           if (SelectorTy != V->getType())
2422             SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2423         }
2424         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy);
2425         Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2426         ValueList.assignValue(V, CstNo);
2427       }
2428 
2429       if (NextCstNo != ValueList.size())
2430         return error("Invalid constant reference");
2431 
2432       ValueList.resolveConstantForwardRefs();
2433       return Error::success();
2434     case BitstreamEntry::Record:
2435       // The interesting case.
2436       break;
2437     }
2438 
2439     // Read a record.
2440     Record.clear();
2441     Type *VoidType = Type::getVoidTy(Context);
2442     Value *V = nullptr;
2443     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2444     if (!MaybeBitCode)
2445       return MaybeBitCode.takeError();
2446     switch (unsigned BitCode = MaybeBitCode.get()) {
2447     default:  // Default behavior: unknown constant
2448     case bitc::CST_CODE_UNDEF:     // UNDEF
2449       V = UndefValue::get(CurTy);
2450       break;
2451     case bitc::CST_CODE_POISON:    // POISON
2452       V = PoisonValue::get(CurTy);
2453       break;
2454     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2455       if (Record.empty())
2456         return error("Invalid record");
2457       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2458         return error("Invalid record");
2459       if (TypeList[Record[0]] == VoidType)
2460         return error("Invalid constant type");
2461       CurTy = TypeList[Record[0]];
2462       continue;  // Skip the ValueList manipulation.
2463     case bitc::CST_CODE_NULL:      // NULL
2464       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2465         return error("Invalid type for a constant null value");
2466       V = Constant::getNullValue(CurTy);
2467       break;
2468     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2469       if (!CurTy->isIntegerTy() || Record.empty())
2470         return error("Invalid record");
2471       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2472       break;
2473     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2474       if (!CurTy->isIntegerTy() || Record.empty())
2475         return error("Invalid record");
2476 
2477       APInt VInt =
2478           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2479       V = ConstantInt::get(Context, VInt);
2480 
2481       break;
2482     }
2483     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2484       if (Record.empty())
2485         return error("Invalid record");
2486       if (CurTy->isHalfTy())
2487         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2488                                              APInt(16, (uint16_t)Record[0])));
2489       else if (CurTy->isBFloatTy())
2490         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2491                                              APInt(16, (uint32_t)Record[0])));
2492       else if (CurTy->isFloatTy())
2493         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2494                                              APInt(32, (uint32_t)Record[0])));
2495       else if (CurTy->isDoubleTy())
2496         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2497                                              APInt(64, Record[0])));
2498       else if (CurTy->isX86_FP80Ty()) {
2499         // Bits are not stored the same way as a normal i80 APInt, compensate.
2500         uint64_t Rearrange[2];
2501         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2502         Rearrange[1] = Record[0] >> 48;
2503         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2504                                              APInt(80, Rearrange)));
2505       } else if (CurTy->isFP128Ty())
2506         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2507                                              APInt(128, Record)));
2508       else if (CurTy->isPPC_FP128Ty())
2509         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2510                                              APInt(128, Record)));
2511       else
2512         V = UndefValue::get(CurTy);
2513       break;
2514     }
2515 
2516     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2517       if (Record.empty())
2518         return error("Invalid record");
2519 
2520       unsigned Size = Record.size();
2521       SmallVector<Constant*, 16> Elts;
2522 
2523       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2524         for (unsigned i = 0; i != Size; ++i)
2525           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2526                                                      STy->getElementType(i)));
2527         V = ConstantStruct::get(STy, Elts);
2528       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2529         Type *EltTy = ATy->getElementType();
2530         for (unsigned i = 0; i != Size; ++i)
2531           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2532         V = ConstantArray::get(ATy, Elts);
2533       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2534         Type *EltTy = VTy->getElementType();
2535         for (unsigned i = 0; i != Size; ++i)
2536           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2537         V = ConstantVector::get(Elts);
2538       } else {
2539         V = UndefValue::get(CurTy);
2540       }
2541       break;
2542     }
2543     case bitc::CST_CODE_STRING:    // STRING: [values]
2544     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2545       if (Record.empty())
2546         return error("Invalid record");
2547 
2548       SmallString<16> Elts(Record.begin(), Record.end());
2549       V = ConstantDataArray::getString(Context, Elts,
2550                                        BitCode == bitc::CST_CODE_CSTRING);
2551       break;
2552     }
2553     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2554       if (Record.empty())
2555         return error("Invalid record");
2556 
2557       Type *EltTy;
2558       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2559         EltTy = Array->getElementType();
2560       else
2561         EltTy = cast<VectorType>(CurTy)->getElementType();
2562       if (EltTy->isIntegerTy(8)) {
2563         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2564         if (isa<VectorType>(CurTy))
2565           V = ConstantDataVector::get(Context, Elts);
2566         else
2567           V = ConstantDataArray::get(Context, Elts);
2568       } else if (EltTy->isIntegerTy(16)) {
2569         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2570         if (isa<VectorType>(CurTy))
2571           V = ConstantDataVector::get(Context, Elts);
2572         else
2573           V = ConstantDataArray::get(Context, Elts);
2574       } else if (EltTy->isIntegerTy(32)) {
2575         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2576         if (isa<VectorType>(CurTy))
2577           V = ConstantDataVector::get(Context, Elts);
2578         else
2579           V = ConstantDataArray::get(Context, Elts);
2580       } else if (EltTy->isIntegerTy(64)) {
2581         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2582         if (isa<VectorType>(CurTy))
2583           V = ConstantDataVector::get(Context, Elts);
2584         else
2585           V = ConstantDataArray::get(Context, Elts);
2586       } else if (EltTy->isHalfTy()) {
2587         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2588         if (isa<VectorType>(CurTy))
2589           V = ConstantDataVector::getFP(EltTy, Elts);
2590         else
2591           V = ConstantDataArray::getFP(EltTy, Elts);
2592       } else if (EltTy->isBFloatTy()) {
2593         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2594         if (isa<VectorType>(CurTy))
2595           V = ConstantDataVector::getFP(EltTy, Elts);
2596         else
2597           V = ConstantDataArray::getFP(EltTy, Elts);
2598       } else if (EltTy->isFloatTy()) {
2599         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2600         if (isa<VectorType>(CurTy))
2601           V = ConstantDataVector::getFP(EltTy, Elts);
2602         else
2603           V = ConstantDataArray::getFP(EltTy, Elts);
2604       } else if (EltTy->isDoubleTy()) {
2605         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2606         if (isa<VectorType>(CurTy))
2607           V = ConstantDataVector::getFP(EltTy, Elts);
2608         else
2609           V = ConstantDataArray::getFP(EltTy, Elts);
2610       } else {
2611         return error("Invalid type for value");
2612       }
2613       break;
2614     }
2615     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2616       if (Record.size() < 2)
2617         return error("Invalid record");
2618       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2619       if (Opc < 0) {
2620         V = UndefValue::get(CurTy);  // Unknown unop.
2621       } else {
2622         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2623         unsigned Flags = 0;
2624         V = ConstantExpr::get(Opc, LHS, Flags);
2625       }
2626       break;
2627     }
2628     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2629       if (Record.size() < 3)
2630         return error("Invalid record");
2631       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2632       if (Opc < 0) {
2633         V = UndefValue::get(CurTy);  // Unknown binop.
2634       } else {
2635         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2636         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2637         unsigned Flags = 0;
2638         if (Record.size() >= 4) {
2639           if (Opc == Instruction::Add ||
2640               Opc == Instruction::Sub ||
2641               Opc == Instruction::Mul ||
2642               Opc == Instruction::Shl) {
2643             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2644               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2645             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2646               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2647           } else if (Opc == Instruction::SDiv ||
2648                      Opc == Instruction::UDiv ||
2649                      Opc == Instruction::LShr ||
2650                      Opc == Instruction::AShr) {
2651             if (Record[3] & (1 << bitc::PEO_EXACT))
2652               Flags |= SDivOperator::IsExact;
2653           }
2654         }
2655         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2656       }
2657       break;
2658     }
2659     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2660       if (Record.size() < 3)
2661         return error("Invalid record");
2662       int Opc = getDecodedCastOpcode(Record[0]);
2663       if (Opc < 0) {
2664         V = UndefValue::get(CurTy);  // Unknown cast.
2665       } else {
2666         Type *OpTy = getTypeByID(Record[1]);
2667         if (!OpTy)
2668           return error("Invalid record");
2669         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2670         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2671         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2672       }
2673       break;
2674     }
2675     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2676     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2677     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2678                                                      // operands]
2679       if (Record.size() < 2)
2680         return error("Constant GEP record must have at least two elements");
2681       unsigned OpNum = 0;
2682       Type *PointeeType = nullptr;
2683       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2684           Record.size() % 2)
2685         PointeeType = getTypeByID(Record[OpNum++]);
2686 
2687       bool InBounds = false;
2688       Optional<unsigned> InRangeIndex;
2689       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2690         uint64_t Op = Record[OpNum++];
2691         InBounds = Op & 1;
2692         InRangeIndex = Op >> 1;
2693       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2694         InBounds = true;
2695 
2696       SmallVector<Constant*, 16> Elts;
2697       Type *Elt0FullTy = nullptr;
2698       while (OpNum != Record.size()) {
2699         if (!Elt0FullTy)
2700           Elt0FullTy = getTypeByID(Record[OpNum]);
2701         Type *ElTy = getTypeByID(Record[OpNum++]);
2702         if (!ElTy)
2703           return error("Invalid record");
2704         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2705       }
2706 
2707       if (Elts.size() < 1)
2708         return error("Invalid gep with no operands");
2709 
2710       PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
2711       if (!PointeeType)
2712         PointeeType = OrigPtrTy->getPointerElementType();
2713       else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2714         return error("Explicit gep operator type does not match pointee type "
2715                      "of pointer operand");
2716 
2717       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2718       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2719                                          InBounds, InRangeIndex);
2720       break;
2721     }
2722     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2723       if (Record.size() < 3)
2724         return error("Invalid record");
2725 
2726       DelayedSelectors.push_back(
2727           {CurTy, Record[0], Record[1], Record[2], NextCstNo});
2728       (void)ValueList.getConstantFwdRef(NextCstNo, CurTy);
2729       ++NextCstNo;
2730       continue;
2731     }
2732     case bitc::CST_CODE_CE_EXTRACTELT
2733         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2734       if (Record.size() < 3)
2735         return error("Invalid record");
2736       VectorType *OpTy =
2737         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2738       if (!OpTy)
2739         return error("Invalid record");
2740       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2741       Constant *Op1 = nullptr;
2742       if (Record.size() == 4) {
2743         Type *IdxTy = getTypeByID(Record[2]);
2744         if (!IdxTy)
2745           return error("Invalid record");
2746         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2747       } else {
2748         // Deprecated, but still needed to read old bitcode files.
2749         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2750       }
2751       if (!Op1)
2752         return error("Invalid record");
2753       V = ConstantExpr::getExtractElement(Op0, Op1);
2754       break;
2755     }
2756     case bitc::CST_CODE_CE_INSERTELT
2757         : { // CE_INSERTELT: [opval, opval, opty, opval]
2758       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2759       if (Record.size() < 3 || !OpTy)
2760         return error("Invalid record");
2761       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2762       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2763                                                   OpTy->getElementType());
2764       Constant *Op2 = nullptr;
2765       if (Record.size() == 4) {
2766         Type *IdxTy = getTypeByID(Record[2]);
2767         if (!IdxTy)
2768           return error("Invalid record");
2769         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2770       } else {
2771         // Deprecated, but still needed to read old bitcode files.
2772         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2773       }
2774       if (!Op2)
2775         return error("Invalid record");
2776       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2777       break;
2778     }
2779     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2780       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2781       if (Record.size() < 3 || !OpTy)
2782         return error("Invalid record");
2783       DelayedShuffles.push_back(
2784           {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2785       ++NextCstNo;
2786       continue;
2787     }
2788     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2789       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2790       VectorType *OpTy =
2791         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2792       if (Record.size() < 4 || !RTy || !OpTy)
2793         return error("Invalid record");
2794       DelayedShuffles.push_back(
2795           {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2796       ++NextCstNo;
2797       continue;
2798     }
2799     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2800       if (Record.size() < 4)
2801         return error("Invalid record");
2802       Type *OpTy = getTypeByID(Record[0]);
2803       if (!OpTy)
2804         return error("Invalid record");
2805       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2806       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2807 
2808       if (OpTy->isFPOrFPVectorTy())
2809         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2810       else
2811         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2812       break;
2813     }
2814     // This maintains backward compatibility, pre-asm dialect keywords.
2815     // Deprecated, but still needed to read old bitcode files.
2816     case bitc::CST_CODE_INLINEASM_OLD: {
2817       if (Record.size() < 2)
2818         return error("Invalid record");
2819       std::string AsmStr, ConstrStr;
2820       bool HasSideEffects = Record[0] & 1;
2821       bool IsAlignStack = Record[0] >> 1;
2822       unsigned AsmStrSize = Record[1];
2823       if (2+AsmStrSize >= Record.size())
2824         return error("Invalid record");
2825       unsigned ConstStrSize = Record[2+AsmStrSize];
2826       if (3+AsmStrSize+ConstStrSize > Record.size())
2827         return error("Invalid record");
2828 
2829       for (unsigned i = 0; i != AsmStrSize; ++i)
2830         AsmStr += (char)Record[2+i];
2831       for (unsigned i = 0; i != ConstStrSize; ++i)
2832         ConstrStr += (char)Record[3+AsmStrSize+i];
2833       UpgradeInlineAsmString(&AsmStr);
2834       // FIXME: support upgrading in opaque pointers mode.
2835       V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2836                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2837       break;
2838     }
2839     // This version adds support for the asm dialect keywords (e.g.,
2840     // inteldialect).
2841     case bitc::CST_CODE_INLINEASM_OLD2: {
2842       if (Record.size() < 2)
2843         return error("Invalid record");
2844       std::string AsmStr, ConstrStr;
2845       bool HasSideEffects = Record[0] & 1;
2846       bool IsAlignStack = (Record[0] >> 1) & 1;
2847       unsigned AsmDialect = Record[0] >> 2;
2848       unsigned AsmStrSize = Record[1];
2849       if (2+AsmStrSize >= Record.size())
2850         return error("Invalid record");
2851       unsigned ConstStrSize = Record[2+AsmStrSize];
2852       if (3+AsmStrSize+ConstStrSize > Record.size())
2853         return error("Invalid record");
2854 
2855       for (unsigned i = 0; i != AsmStrSize; ++i)
2856         AsmStr += (char)Record[2+i];
2857       for (unsigned i = 0; i != ConstStrSize; ++i)
2858         ConstrStr += (char)Record[3+AsmStrSize+i];
2859       UpgradeInlineAsmString(&AsmStr);
2860       // FIXME: support upgrading in opaque pointers mode.
2861       V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2862                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2863                          InlineAsm::AsmDialect(AsmDialect));
2864       break;
2865     }
2866     // This version adds support for the unwind keyword.
2867     case bitc::CST_CODE_INLINEASM_OLD3: {
2868       if (Record.size() < 2)
2869         return error("Invalid record");
2870       unsigned OpNum = 0;
2871       std::string AsmStr, ConstrStr;
2872       bool HasSideEffects = Record[OpNum] & 1;
2873       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
2874       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
2875       bool CanThrow = (Record[OpNum] >> 3) & 1;
2876       ++OpNum;
2877       unsigned AsmStrSize = Record[OpNum];
2878       ++OpNum;
2879       if (OpNum + AsmStrSize >= Record.size())
2880         return error("Invalid record");
2881       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
2882       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
2883         return error("Invalid record");
2884 
2885       for (unsigned i = 0; i != AsmStrSize; ++i)
2886         AsmStr += (char)Record[OpNum + i];
2887       ++OpNum;
2888       for (unsigned i = 0; i != ConstStrSize; ++i)
2889         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
2890       UpgradeInlineAsmString(&AsmStr);
2891       // FIXME: support upgrading in opaque pointers mode.
2892       V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2893                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2894                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
2895       break;
2896     }
2897     // This version adds explicit function type.
2898     case bitc::CST_CODE_INLINEASM: {
2899       if (Record.size() < 3)
2900         return error("Invalid record");
2901       unsigned OpNum = 0;
2902       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
2903       ++OpNum;
2904       if (!FnTy)
2905         return error("Invalid record");
2906       std::string AsmStr, ConstrStr;
2907       bool HasSideEffects = Record[OpNum] & 1;
2908       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
2909       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
2910       bool CanThrow = (Record[OpNum] >> 3) & 1;
2911       ++OpNum;
2912       unsigned AsmStrSize = Record[OpNum];
2913       ++OpNum;
2914       if (OpNum + AsmStrSize >= Record.size())
2915         return error("Invalid record");
2916       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
2917       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
2918         return error("Invalid record");
2919 
2920       for (unsigned i = 0; i != AsmStrSize; ++i)
2921         AsmStr += (char)Record[OpNum + i];
2922       ++OpNum;
2923       for (unsigned i = 0; i != ConstStrSize; ++i)
2924         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
2925       UpgradeInlineAsmString(&AsmStr);
2926       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2927                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
2928       break;
2929     }
2930     case bitc::CST_CODE_BLOCKADDRESS:{
2931       if (Record.size() < 3)
2932         return error("Invalid record");
2933       Type *FnTy = getTypeByID(Record[0]);
2934       if (!FnTy)
2935         return error("Invalid record");
2936       Function *Fn =
2937         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2938       if (!Fn)
2939         return error("Invalid record");
2940 
2941       // If the function is already parsed we can insert the block address right
2942       // away.
2943       BasicBlock *BB;
2944       unsigned BBID = Record[2];
2945       if (!BBID)
2946         // Invalid reference to entry block.
2947         return error("Invalid ID");
2948       if (!Fn->empty()) {
2949         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2950         for (size_t I = 0, E = BBID; I != E; ++I) {
2951           if (BBI == BBE)
2952             return error("Invalid ID");
2953           ++BBI;
2954         }
2955         BB = &*BBI;
2956       } else {
2957         // Otherwise insert a placeholder and remember it so it can be inserted
2958         // when the function is parsed.
2959         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2960         if (FwdBBs.empty())
2961           BasicBlockFwdRefQueue.push_back(Fn);
2962         if (FwdBBs.size() < BBID + 1)
2963           FwdBBs.resize(BBID + 1);
2964         if (!FwdBBs[BBID])
2965           FwdBBs[BBID] = BasicBlock::Create(Context);
2966         BB = FwdBBs[BBID];
2967       }
2968       V = BlockAddress::get(Fn, BB);
2969       break;
2970     }
2971     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2972       if (Record.size() < 2)
2973         return error("Invalid record");
2974       Type *GVTy = getTypeByID(Record[0]);
2975       if (!GVTy)
2976         return error("Invalid record");
2977       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2978           ValueList.getConstantFwdRef(Record[1], GVTy));
2979       if (!GV)
2980         return error("Invalid record");
2981 
2982       V = DSOLocalEquivalent::get(GV);
2983       break;
2984     }
2985     case bitc::CST_CODE_NO_CFI_VALUE: {
2986       if (Record.size() < 2)
2987         return error("Invalid record");
2988       Type *GVTy = getTypeByID(Record[0]);
2989       if (!GVTy)
2990         return error("Invalid record");
2991       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2992           ValueList.getConstantFwdRef(Record[1], GVTy));
2993       if (!GV)
2994         return error("Invalid record");
2995       V = NoCFIValue::get(GV);
2996       break;
2997     }
2998     }
2999 
3000     ValueList.assignValue(V, NextCstNo);
3001     ++NextCstNo;
3002   }
3003 }
3004 
3005 Error BitcodeReader::parseUseLists() {
3006   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3007     return Err;
3008 
3009   // Read all the records.
3010   SmallVector<uint64_t, 64> Record;
3011 
3012   while (true) {
3013     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3014     if (!MaybeEntry)
3015       return MaybeEntry.takeError();
3016     BitstreamEntry Entry = MaybeEntry.get();
3017 
3018     switch (Entry.Kind) {
3019     case BitstreamEntry::SubBlock: // Handled for us already.
3020     case BitstreamEntry::Error:
3021       return error("Malformed block");
3022     case BitstreamEntry::EndBlock:
3023       return Error::success();
3024     case BitstreamEntry::Record:
3025       // The interesting case.
3026       break;
3027     }
3028 
3029     // Read a use list record.
3030     Record.clear();
3031     bool IsBB = false;
3032     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3033     if (!MaybeRecord)
3034       return MaybeRecord.takeError();
3035     switch (MaybeRecord.get()) {
3036     default:  // Default behavior: unknown type.
3037       break;
3038     case bitc::USELIST_CODE_BB:
3039       IsBB = true;
3040       LLVM_FALLTHROUGH;
3041     case bitc::USELIST_CODE_DEFAULT: {
3042       unsigned RecordLength = Record.size();
3043       if (RecordLength < 3)
3044         // Records should have at least an ID and two indexes.
3045         return error("Invalid record");
3046       unsigned ID = Record.pop_back_val();
3047 
3048       Value *V;
3049       if (IsBB) {
3050         assert(ID < FunctionBBs.size() && "Basic block not found");
3051         V = FunctionBBs[ID];
3052       } else
3053         V = ValueList[ID];
3054       unsigned NumUses = 0;
3055       SmallDenseMap<const Use *, unsigned, 16> Order;
3056       for (const Use &U : V->materialized_uses()) {
3057         if (++NumUses > Record.size())
3058           break;
3059         Order[&U] = Record[NumUses - 1];
3060       }
3061       if (Order.size() != Record.size() || NumUses > Record.size())
3062         // Mismatches can happen if the functions are being materialized lazily
3063         // (out-of-order), or a value has been upgraded.
3064         break;
3065 
3066       V->sortUseList([&](const Use &L, const Use &R) {
3067         return Order.lookup(&L) < Order.lookup(&R);
3068       });
3069       break;
3070     }
3071     }
3072   }
3073 }
3074 
3075 /// When we see the block for metadata, remember where it is and then skip it.
3076 /// This lets us lazily deserialize the metadata.
3077 Error BitcodeReader::rememberAndSkipMetadata() {
3078   // Save the current stream state.
3079   uint64_t CurBit = Stream.GetCurrentBitNo();
3080   DeferredMetadataInfo.push_back(CurBit);
3081 
3082   // Skip over the block for now.
3083   if (Error Err = Stream.SkipBlock())
3084     return Err;
3085   return Error::success();
3086 }
3087 
3088 Error BitcodeReader::materializeMetadata() {
3089   for (uint64_t BitPos : DeferredMetadataInfo) {
3090     // Move the bit stream to the saved position.
3091     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3092       return JumpFailed;
3093     if (Error Err = MDLoader->parseModuleMetadata())
3094       return Err;
3095   }
3096 
3097   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3098   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3099   // multiple times.
3100   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3101     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3102       NamedMDNode *LinkerOpts =
3103           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3104       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3105         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3106     }
3107   }
3108 
3109   DeferredMetadataInfo.clear();
3110   return Error::success();
3111 }
3112 
3113 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3114 
3115 /// When we see the block for a function body, remember where it is and then
3116 /// skip it.  This lets us lazily deserialize the functions.
3117 Error BitcodeReader::rememberAndSkipFunctionBody() {
3118   // Get the function we are talking about.
3119   if (FunctionsWithBodies.empty())
3120     return error("Insufficient function protos");
3121 
3122   Function *Fn = FunctionsWithBodies.back();
3123   FunctionsWithBodies.pop_back();
3124 
3125   // Save the current stream state.
3126   uint64_t CurBit = Stream.GetCurrentBitNo();
3127   assert(
3128       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3129       "Mismatch between VST and scanned function offsets");
3130   DeferredFunctionInfo[Fn] = CurBit;
3131 
3132   // Skip over the function block for now.
3133   if (Error Err = Stream.SkipBlock())
3134     return Err;
3135   return Error::success();
3136 }
3137 
3138 Error BitcodeReader::globalCleanup() {
3139   // Patch the initializers for globals and aliases up.
3140   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3141     return Err;
3142   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3143     return error("Malformed global initializer set");
3144 
3145   // Look for intrinsic functions which need to be upgraded at some point
3146   // and functions that need to have their function attributes upgraded.
3147   for (Function &F : *TheModule) {
3148     MDLoader->upgradeDebugIntrinsics(F);
3149     Function *NewFn;
3150     if (UpgradeIntrinsicFunction(&F, NewFn))
3151       UpgradedIntrinsics[&F] = NewFn;
3152     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3153       // Some types could be renamed during loading if several modules are
3154       // loaded in the same LLVMContext (LTO scenario). In this case we should
3155       // remangle intrinsics names as well.
3156       RemangledIntrinsics[&F] = Remangled.getValue();
3157     // Look for functions that rely on old function attribute behavior.
3158     UpgradeFunctionAttributes(F);
3159   }
3160 
3161   // Look for global variables which need to be renamed.
3162   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3163   for (GlobalVariable &GV : TheModule->globals())
3164     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3165       UpgradedVariables.emplace_back(&GV, Upgraded);
3166   for (auto &Pair : UpgradedVariables) {
3167     Pair.first->eraseFromParent();
3168     TheModule->getGlobalList().push_back(Pair.second);
3169   }
3170 
3171   // Force deallocation of memory for these vectors to favor the client that
3172   // want lazy deserialization.
3173   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3174   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3175   return Error::success();
3176 }
3177 
3178 /// Support for lazy parsing of function bodies. This is required if we
3179 /// either have an old bitcode file without a VST forward declaration record,
3180 /// or if we have an anonymous function being materialized, since anonymous
3181 /// functions do not have a name and are therefore not in the VST.
3182 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3183   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3184     return JumpFailed;
3185 
3186   if (Stream.AtEndOfStream())
3187     return error("Could not find function in stream");
3188 
3189   if (!SeenFirstFunctionBody)
3190     return error("Trying to materialize functions before seeing function blocks");
3191 
3192   // An old bitcode file with the symbol table at the end would have
3193   // finished the parse greedily.
3194   assert(SeenValueSymbolTable);
3195 
3196   SmallVector<uint64_t, 64> Record;
3197 
3198   while (true) {
3199     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3200     if (!MaybeEntry)
3201       return MaybeEntry.takeError();
3202     llvm::BitstreamEntry Entry = MaybeEntry.get();
3203 
3204     switch (Entry.Kind) {
3205     default:
3206       return error("Expect SubBlock");
3207     case BitstreamEntry::SubBlock:
3208       switch (Entry.ID) {
3209       default:
3210         return error("Expect function block");
3211       case bitc::FUNCTION_BLOCK_ID:
3212         if (Error Err = rememberAndSkipFunctionBody())
3213           return Err;
3214         NextUnreadBit = Stream.GetCurrentBitNo();
3215         return Error::success();
3216       }
3217     }
3218   }
3219 }
3220 
3221 Error BitcodeReaderBase::readBlockInfo() {
3222   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3223       Stream.ReadBlockInfoBlock();
3224   if (!MaybeNewBlockInfo)
3225     return MaybeNewBlockInfo.takeError();
3226   Optional<BitstreamBlockInfo> NewBlockInfo =
3227       std::move(MaybeNewBlockInfo.get());
3228   if (!NewBlockInfo)
3229     return error("Malformed block");
3230   BlockInfo = std::move(*NewBlockInfo);
3231   return Error::success();
3232 }
3233 
3234 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3235   // v1: [selection_kind, name]
3236   // v2: [strtab_offset, strtab_size, selection_kind]
3237   StringRef Name;
3238   std::tie(Name, Record) = readNameFromStrtab(Record);
3239 
3240   if (Record.empty())
3241     return error("Invalid record");
3242   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3243   std::string OldFormatName;
3244   if (!UseStrtab) {
3245     if (Record.size() < 2)
3246       return error("Invalid record");
3247     unsigned ComdatNameSize = Record[1];
3248     if (ComdatNameSize > Record.size() - 2)
3249       return error("Comdat name size too large");
3250     OldFormatName.reserve(ComdatNameSize);
3251     for (unsigned i = 0; i != ComdatNameSize; ++i)
3252       OldFormatName += (char)Record[2 + i];
3253     Name = OldFormatName;
3254   }
3255   Comdat *C = TheModule->getOrInsertComdat(Name);
3256   C->setSelectionKind(SK);
3257   ComdatList.push_back(C);
3258   return Error::success();
3259 }
3260 
3261 static void inferDSOLocal(GlobalValue *GV) {
3262   // infer dso_local from linkage and visibility if it is not encoded.
3263   if (GV->hasLocalLinkage() ||
3264       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3265     GV->setDSOLocal(true);
3266 }
3267 
3268 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3269   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3270   // visibility, threadlocal, unnamed_addr, externally_initialized,
3271   // dllstorageclass, comdat, attributes, preemption specifier,
3272   // partition strtab offset, partition strtab size] (name in VST)
3273   // v2: [strtab_offset, strtab_size, v1]
3274   StringRef Name;
3275   std::tie(Name, Record) = readNameFromStrtab(Record);
3276 
3277   if (Record.size() < 6)
3278     return error("Invalid record");
3279   Type *Ty = getTypeByID(Record[0]);
3280   if (!Ty)
3281     return error("Invalid record");
3282   bool isConstant = Record[1] & 1;
3283   bool explicitType = Record[1] & 2;
3284   unsigned AddressSpace;
3285   if (explicitType) {
3286     AddressSpace = Record[1] >> 2;
3287   } else {
3288     if (!Ty->isPointerTy())
3289       return error("Invalid type for value");
3290     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3291     Ty = Ty->getPointerElementType();
3292   }
3293 
3294   uint64_t RawLinkage = Record[3];
3295   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3296   MaybeAlign Alignment;
3297   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3298     return Err;
3299   std::string Section;
3300   if (Record[5]) {
3301     if (Record[5] - 1 >= SectionTable.size())
3302       return error("Invalid ID");
3303     Section = SectionTable[Record[5] - 1];
3304   }
3305   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3306   // Local linkage must have default visibility.
3307   // auto-upgrade `hidden` and `protected` for old bitcode.
3308   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3309     Visibility = getDecodedVisibility(Record[6]);
3310 
3311   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3312   if (Record.size() > 7)
3313     TLM = getDecodedThreadLocalMode(Record[7]);
3314 
3315   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3316   if (Record.size() > 8)
3317     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3318 
3319   bool ExternallyInitialized = false;
3320   if (Record.size() > 9)
3321     ExternallyInitialized = Record[9];
3322 
3323   GlobalVariable *NewGV =
3324       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3325                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3326   NewGV->setAlignment(Alignment);
3327   if (!Section.empty())
3328     NewGV->setSection(Section);
3329   NewGV->setVisibility(Visibility);
3330   NewGV->setUnnamedAddr(UnnamedAddr);
3331 
3332   if (Record.size() > 10)
3333     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3334   else
3335     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3336 
3337   ValueList.push_back(NewGV);
3338 
3339   // Remember which value to use for the global initializer.
3340   if (unsigned InitID = Record[2])
3341     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3342 
3343   if (Record.size() > 11) {
3344     if (unsigned ComdatID = Record[11]) {
3345       if (ComdatID > ComdatList.size())
3346         return error("Invalid global variable comdat ID");
3347       NewGV->setComdat(ComdatList[ComdatID - 1]);
3348     }
3349   } else if (hasImplicitComdat(RawLinkage)) {
3350     ImplicitComdatObjects.insert(NewGV);
3351   }
3352 
3353   if (Record.size() > 12) {
3354     auto AS = getAttributes(Record[12]).getFnAttrs();
3355     NewGV->setAttributes(AS);
3356   }
3357 
3358   if (Record.size() > 13) {
3359     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3360   }
3361   inferDSOLocal(NewGV);
3362 
3363   // Check whether we have enough values to read a partition name.
3364   if (Record.size() > 15)
3365     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3366 
3367   return Error::success();
3368 }
3369 
3370 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3371   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3372   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3373   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3374   // v2: [strtab_offset, strtab_size, v1]
3375   StringRef Name;
3376   std::tie(Name, Record) = readNameFromStrtab(Record);
3377 
3378   if (Record.size() < 8)
3379     return error("Invalid record");
3380   Type *FTy = getTypeByID(Record[0]);
3381   if (!FTy)
3382     return error("Invalid record");
3383   if (auto *PTy = dyn_cast<PointerType>(FTy))
3384     FTy = PTy->getPointerElementType();
3385 
3386   if (!isa<FunctionType>(FTy))
3387     return error("Invalid type for value");
3388   auto CC = static_cast<CallingConv::ID>(Record[1]);
3389   if (CC & ~CallingConv::MaxID)
3390     return error("Invalid calling convention ID");
3391 
3392   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3393   if (Record.size() > 16)
3394     AddrSpace = Record[16];
3395 
3396   Function *Func =
3397       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3398                        AddrSpace, Name, TheModule);
3399 
3400   assert(Func->getFunctionType() == FTy &&
3401          "Incorrect fully specified type provided for function");
3402   FunctionTypes[Func] = cast<FunctionType>(FTy);
3403 
3404   Func->setCallingConv(CC);
3405   bool isProto = Record[2];
3406   uint64_t RawLinkage = Record[3];
3407   Func->setLinkage(getDecodedLinkage(RawLinkage));
3408   Func->setAttributes(getAttributes(Record[4]));
3409 
3410   // Upgrade any old-style byval or sret without a type by propagating the
3411   // argument's pointee type. There should be no opaque pointers where the byval
3412   // type is implicit.
3413   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3414     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3415                                      Attribute::InAlloca}) {
3416       if (!Func->hasParamAttribute(i, Kind))
3417         continue;
3418 
3419       if (Func->getParamAttribute(i, Kind).getValueAsType())
3420         continue;
3421 
3422       Func->removeParamAttr(i, Kind);
3423 
3424       Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3425       Type *PtrEltTy = PTy->getPointerElementType();
3426       Attribute NewAttr;
3427       switch (Kind) {
3428       case Attribute::ByVal:
3429         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3430         break;
3431       case Attribute::StructRet:
3432         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3433         break;
3434       case Attribute::InAlloca:
3435         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3436         break;
3437       default:
3438         llvm_unreachable("not an upgraded type attribute");
3439       }
3440 
3441       Func->addParamAttr(i, NewAttr);
3442     }
3443   }
3444 
3445   MaybeAlign Alignment;
3446   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3447     return Err;
3448   Func->setAlignment(Alignment);
3449   if (Record[6]) {
3450     if (Record[6] - 1 >= SectionTable.size())
3451       return error("Invalid ID");
3452     Func->setSection(SectionTable[Record[6] - 1]);
3453   }
3454   // Local linkage must have default visibility.
3455   // auto-upgrade `hidden` and `protected` for old bitcode.
3456   if (!Func->hasLocalLinkage())
3457     Func->setVisibility(getDecodedVisibility(Record[7]));
3458   if (Record.size() > 8 && Record[8]) {
3459     if (Record[8] - 1 >= GCTable.size())
3460       return error("Invalid ID");
3461     Func->setGC(GCTable[Record[8] - 1]);
3462   }
3463   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3464   if (Record.size() > 9)
3465     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3466   Func->setUnnamedAddr(UnnamedAddr);
3467 
3468   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3469   if (Record.size() > 10)
3470     OperandInfo.Prologue = Record[10];
3471 
3472   if (Record.size() > 11)
3473     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3474   else
3475     upgradeDLLImportExportLinkage(Func, RawLinkage);
3476 
3477   if (Record.size() > 12) {
3478     if (unsigned ComdatID = Record[12]) {
3479       if (ComdatID > ComdatList.size())
3480         return error("Invalid function comdat ID");
3481       Func->setComdat(ComdatList[ComdatID - 1]);
3482     }
3483   } else if (hasImplicitComdat(RawLinkage)) {
3484     ImplicitComdatObjects.insert(Func);
3485   }
3486 
3487   if (Record.size() > 13)
3488     OperandInfo.Prefix = Record[13];
3489 
3490   if (Record.size() > 14)
3491     OperandInfo.PersonalityFn = Record[14];
3492 
3493   if (Record.size() > 15) {
3494     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3495   }
3496   inferDSOLocal(Func);
3497 
3498   // Record[16] is the address space number.
3499 
3500   // Check whether we have enough values to read a partition name. Also make
3501   // sure Strtab has enough values.
3502   if (Record.size() > 18 && Strtab.data() &&
3503       Record[17] + Record[18] <= Strtab.size()) {
3504     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3505   }
3506 
3507   ValueList.push_back(Func);
3508 
3509   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3510     FunctionOperands.push_back(OperandInfo);
3511 
3512   // If this is a function with a body, remember the prototype we are
3513   // creating now, so that we can match up the body with them later.
3514   if (!isProto) {
3515     Func->setIsMaterializable(true);
3516     FunctionsWithBodies.push_back(Func);
3517     DeferredFunctionInfo[Func] = 0;
3518   }
3519   return Error::success();
3520 }
3521 
3522 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3523     unsigned BitCode, ArrayRef<uint64_t> Record) {
3524   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3525   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3526   // dllstorageclass, threadlocal, unnamed_addr,
3527   // preemption specifier] (name in VST)
3528   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3529   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3530   // preemption specifier] (name in VST)
3531   // v2: [strtab_offset, strtab_size, v1]
3532   StringRef Name;
3533   std::tie(Name, Record) = readNameFromStrtab(Record);
3534 
3535   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3536   if (Record.size() < (3 + (unsigned)NewRecord))
3537     return error("Invalid record");
3538   unsigned OpNum = 0;
3539   Type *Ty = getTypeByID(Record[OpNum++]);
3540   if (!Ty)
3541     return error("Invalid record");
3542 
3543   unsigned AddrSpace;
3544   if (!NewRecord) {
3545     auto *PTy = dyn_cast<PointerType>(Ty);
3546     if (!PTy)
3547       return error("Invalid type for value");
3548     Ty = PTy->getPointerElementType();
3549     AddrSpace = PTy->getAddressSpace();
3550   } else {
3551     AddrSpace = Record[OpNum++];
3552   }
3553 
3554   auto Val = Record[OpNum++];
3555   auto Linkage = Record[OpNum++];
3556   GlobalValue *NewGA;
3557   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3558       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3559     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3560                                 TheModule);
3561   else
3562     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3563                                 nullptr, TheModule);
3564 
3565   // Local linkage must have default visibility.
3566   // auto-upgrade `hidden` and `protected` for old bitcode.
3567   if (OpNum != Record.size()) {
3568     auto VisInd = OpNum++;
3569     if (!NewGA->hasLocalLinkage())
3570       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3571   }
3572   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3573       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3574     if (OpNum != Record.size())
3575       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3576     else
3577       upgradeDLLImportExportLinkage(NewGA, Linkage);
3578     if (OpNum != Record.size())
3579       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3580     if (OpNum != Record.size())
3581       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3582   }
3583   if (OpNum != Record.size())
3584     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3585   inferDSOLocal(NewGA);
3586 
3587   // Check whether we have enough values to read a partition name.
3588   if (OpNum + 1 < Record.size()) {
3589     NewGA->setPartition(
3590         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3591     OpNum += 2;
3592   }
3593 
3594   ValueList.push_back(NewGA);
3595   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3596   return Error::success();
3597 }
3598 
3599 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3600                                  bool ShouldLazyLoadMetadata,
3601                                  DataLayoutCallbackTy DataLayoutCallback) {
3602   if (ResumeBit) {
3603     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3604       return JumpFailed;
3605   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3606     return Err;
3607 
3608   SmallVector<uint64_t, 64> Record;
3609 
3610   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3611   // finalize the datalayout before we run any of that code.
3612   bool ResolvedDataLayout = false;
3613   auto ResolveDataLayout = [&] {
3614     if (ResolvedDataLayout)
3615       return;
3616 
3617     // datalayout and triple can't be parsed after this point.
3618     ResolvedDataLayout = true;
3619 
3620     // Upgrade data layout string.
3621     std::string DL = llvm::UpgradeDataLayoutString(
3622         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3623     TheModule->setDataLayout(DL);
3624 
3625     if (auto LayoutOverride =
3626             DataLayoutCallback(TheModule->getTargetTriple()))
3627       TheModule->setDataLayout(*LayoutOverride);
3628   };
3629 
3630   // Read all the records for this module.
3631   while (true) {
3632     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3633     if (!MaybeEntry)
3634       return MaybeEntry.takeError();
3635     llvm::BitstreamEntry Entry = MaybeEntry.get();
3636 
3637     switch (Entry.Kind) {
3638     case BitstreamEntry::Error:
3639       return error("Malformed block");
3640     case BitstreamEntry::EndBlock:
3641       ResolveDataLayout();
3642       return globalCleanup();
3643 
3644     case BitstreamEntry::SubBlock:
3645       switch (Entry.ID) {
3646       default:  // Skip unknown content.
3647         if (Error Err = Stream.SkipBlock())
3648           return Err;
3649         break;
3650       case bitc::BLOCKINFO_BLOCK_ID:
3651         if (Error Err = readBlockInfo())
3652           return Err;
3653         break;
3654       case bitc::PARAMATTR_BLOCK_ID:
3655         if (Error Err = parseAttributeBlock())
3656           return Err;
3657         break;
3658       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3659         if (Error Err = parseAttributeGroupBlock())
3660           return Err;
3661         break;
3662       case bitc::TYPE_BLOCK_ID_NEW:
3663         if (Error Err = parseTypeTable())
3664           return Err;
3665         break;
3666       case bitc::VALUE_SYMTAB_BLOCK_ID:
3667         if (!SeenValueSymbolTable) {
3668           // Either this is an old form VST without function index and an
3669           // associated VST forward declaration record (which would have caused
3670           // the VST to be jumped to and parsed before it was encountered
3671           // normally in the stream), or there were no function blocks to
3672           // trigger an earlier parsing of the VST.
3673           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3674           if (Error Err = parseValueSymbolTable())
3675             return Err;
3676           SeenValueSymbolTable = true;
3677         } else {
3678           // We must have had a VST forward declaration record, which caused
3679           // the parser to jump to and parse the VST earlier.
3680           assert(VSTOffset > 0);
3681           if (Error Err = Stream.SkipBlock())
3682             return Err;
3683         }
3684         break;
3685       case bitc::CONSTANTS_BLOCK_ID:
3686         if (Error Err = parseConstants())
3687           return Err;
3688         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3689           return Err;
3690         break;
3691       case bitc::METADATA_BLOCK_ID:
3692         if (ShouldLazyLoadMetadata) {
3693           if (Error Err = rememberAndSkipMetadata())
3694             return Err;
3695           break;
3696         }
3697         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3698         if (Error Err = MDLoader->parseModuleMetadata())
3699           return Err;
3700         break;
3701       case bitc::METADATA_KIND_BLOCK_ID:
3702         if (Error Err = MDLoader->parseMetadataKinds())
3703           return Err;
3704         break;
3705       case bitc::FUNCTION_BLOCK_ID:
3706         ResolveDataLayout();
3707 
3708         // If this is the first function body we've seen, reverse the
3709         // FunctionsWithBodies list.
3710         if (!SeenFirstFunctionBody) {
3711           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3712           if (Error Err = globalCleanup())
3713             return Err;
3714           SeenFirstFunctionBody = true;
3715         }
3716 
3717         if (VSTOffset > 0) {
3718           // If we have a VST forward declaration record, make sure we
3719           // parse the VST now if we haven't already. It is needed to
3720           // set up the DeferredFunctionInfo vector for lazy reading.
3721           if (!SeenValueSymbolTable) {
3722             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3723               return Err;
3724             SeenValueSymbolTable = true;
3725             // Fall through so that we record the NextUnreadBit below.
3726             // This is necessary in case we have an anonymous function that
3727             // is later materialized. Since it will not have a VST entry we
3728             // need to fall back to the lazy parse to find its offset.
3729           } else {
3730             // If we have a VST forward declaration record, but have already
3731             // parsed the VST (just above, when the first function body was
3732             // encountered here), then we are resuming the parse after
3733             // materializing functions. The ResumeBit points to the
3734             // start of the last function block recorded in the
3735             // DeferredFunctionInfo map. Skip it.
3736             if (Error Err = Stream.SkipBlock())
3737               return Err;
3738             continue;
3739           }
3740         }
3741 
3742         // Support older bitcode files that did not have the function
3743         // index in the VST, nor a VST forward declaration record, as
3744         // well as anonymous functions that do not have VST entries.
3745         // Build the DeferredFunctionInfo vector on the fly.
3746         if (Error Err = rememberAndSkipFunctionBody())
3747           return Err;
3748 
3749         // Suspend parsing when we reach the function bodies. Subsequent
3750         // materialization calls will resume it when necessary. If the bitcode
3751         // file is old, the symbol table will be at the end instead and will not
3752         // have been seen yet. In this case, just finish the parse now.
3753         if (SeenValueSymbolTable) {
3754           NextUnreadBit = Stream.GetCurrentBitNo();
3755           // After the VST has been parsed, we need to make sure intrinsic name
3756           // are auto-upgraded.
3757           return globalCleanup();
3758         }
3759         break;
3760       case bitc::USELIST_BLOCK_ID:
3761         if (Error Err = parseUseLists())
3762           return Err;
3763         break;
3764       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3765         if (Error Err = parseOperandBundleTags())
3766           return Err;
3767         break;
3768       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3769         if (Error Err = parseSyncScopeNames())
3770           return Err;
3771         break;
3772       }
3773       continue;
3774 
3775     case BitstreamEntry::Record:
3776       // The interesting case.
3777       break;
3778     }
3779 
3780     // Read a record.
3781     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3782     if (!MaybeBitCode)
3783       return MaybeBitCode.takeError();
3784     switch (unsigned BitCode = MaybeBitCode.get()) {
3785     default: break;  // Default behavior, ignore unknown content.
3786     case bitc::MODULE_CODE_VERSION: {
3787       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3788       if (!VersionOrErr)
3789         return VersionOrErr.takeError();
3790       UseRelativeIDs = *VersionOrErr >= 1;
3791       break;
3792     }
3793     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3794       if (ResolvedDataLayout)
3795         return error("target triple too late in module");
3796       std::string S;
3797       if (convertToString(Record, 0, S))
3798         return error("Invalid record");
3799       TheModule->setTargetTriple(S);
3800       break;
3801     }
3802     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3803       if (ResolvedDataLayout)
3804         return error("datalayout too late in module");
3805       std::string S;
3806       if (convertToString(Record, 0, S))
3807         return error("Invalid record");
3808       Expected<DataLayout> MaybeDL = DataLayout::parse(S);
3809       if (!MaybeDL)
3810         return MaybeDL.takeError();
3811       TheModule->setDataLayout(MaybeDL.get());
3812       break;
3813     }
3814     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3815       std::string S;
3816       if (convertToString(Record, 0, S))
3817         return error("Invalid record");
3818       TheModule->setModuleInlineAsm(S);
3819       break;
3820     }
3821     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3822       // Deprecated, but still needed to read old bitcode files.
3823       std::string S;
3824       if (convertToString(Record, 0, S))
3825         return error("Invalid record");
3826       // Ignore value.
3827       break;
3828     }
3829     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3830       std::string S;
3831       if (convertToString(Record, 0, S))
3832         return error("Invalid record");
3833       SectionTable.push_back(S);
3834       break;
3835     }
3836     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3837       std::string S;
3838       if (convertToString(Record, 0, S))
3839         return error("Invalid record");
3840       GCTable.push_back(S);
3841       break;
3842     }
3843     case bitc::MODULE_CODE_COMDAT:
3844       if (Error Err = parseComdatRecord(Record))
3845         return Err;
3846       break;
3847     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
3848     // written by ThinLinkBitcodeWriter. See
3849     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
3850     // record
3851     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
3852     case bitc::MODULE_CODE_GLOBALVAR:
3853       if (Error Err = parseGlobalVarRecord(Record))
3854         return Err;
3855       break;
3856     case bitc::MODULE_CODE_FUNCTION:
3857       ResolveDataLayout();
3858       if (Error Err = parseFunctionRecord(Record))
3859         return Err;
3860       break;
3861     case bitc::MODULE_CODE_IFUNC:
3862     case bitc::MODULE_CODE_ALIAS:
3863     case bitc::MODULE_CODE_ALIAS_OLD:
3864       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3865         return Err;
3866       break;
3867     /// MODULE_CODE_VSTOFFSET: [offset]
3868     case bitc::MODULE_CODE_VSTOFFSET:
3869       if (Record.empty())
3870         return error("Invalid record");
3871       // Note that we subtract 1 here because the offset is relative to one word
3872       // before the start of the identification or module block, which was
3873       // historically always the start of the regular bitcode header.
3874       VSTOffset = Record[0] - 1;
3875       break;
3876     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3877     case bitc::MODULE_CODE_SOURCE_FILENAME:
3878       SmallString<128> ValueName;
3879       if (convertToString(Record, 0, ValueName))
3880         return error("Invalid record");
3881       TheModule->setSourceFileName(ValueName);
3882       break;
3883     }
3884     Record.clear();
3885   }
3886 }
3887 
3888 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3889                                       bool IsImporting,
3890                                       DataLayoutCallbackTy DataLayoutCallback) {
3891   TheModule = M;
3892   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3893                             [&](unsigned ID) { return getTypeByID(ID); });
3894   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3895 }
3896 
3897 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3898   if (!isa<PointerType>(PtrType))
3899     return error("Load/Store operand is not a pointer type");
3900 
3901   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3902     return error("Explicit load/store type does not match pointee "
3903                  "type of pointer operand");
3904   if (!PointerType::isLoadableOrStorableType(ValType))
3905     return error("Cannot load/store from pointer");
3906   return Error::success();
3907 }
3908 
3909 void BitcodeReader::propagateAttributeTypes(CallBase *CB,
3910                                             ArrayRef<Type *> ArgsTys) {
3911   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3912     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3913                                      Attribute::InAlloca}) {
3914       if (!CB->paramHasAttr(i, Kind) ||
3915           CB->getParamAttr(i, Kind).getValueAsType())
3916         continue;
3917 
3918       CB->removeParamAttr(i, Kind);
3919 
3920       Type *PtrEltTy = ArgsTys[i]->getPointerElementType();
3921       Attribute NewAttr;
3922       switch (Kind) {
3923       case Attribute::ByVal:
3924         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3925         break;
3926       case Attribute::StructRet:
3927         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3928         break;
3929       case Attribute::InAlloca:
3930         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3931         break;
3932       default:
3933         llvm_unreachable("not an upgraded type attribute");
3934       }
3935 
3936       CB->addParamAttr(i, NewAttr);
3937     }
3938   }
3939 
3940   if (CB->isInlineAsm()) {
3941     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
3942     unsigned ArgNo = 0;
3943     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3944       if (!CI.hasArg())
3945         continue;
3946 
3947       if (CI.isIndirect && !CB->getAttributes().getParamElementType(ArgNo)) {
3948         Type *ElemTy = ArgsTys[ArgNo]->getPointerElementType();
3949         CB->addParamAttr(
3950             ArgNo, Attribute::get(Context, Attribute::ElementType, ElemTy));
3951       }
3952 
3953       ArgNo++;
3954     }
3955   }
3956 
3957   switch (CB->getIntrinsicID()) {
3958   case Intrinsic::preserve_array_access_index:
3959   case Intrinsic::preserve_struct_access_index:
3960     if (!CB->getAttributes().getParamElementType(0)) {
3961       Type *ElTy = ArgsTys[0]->getPointerElementType();
3962       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
3963       CB->addParamAttr(0, NewAttr);
3964     }
3965     break;
3966   default:
3967     break;
3968   }
3969 }
3970 
3971 /// Lazily parse the specified function body block.
3972 Error BitcodeReader::parseFunctionBody(Function *F) {
3973   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3974     return Err;
3975 
3976   // Unexpected unresolved metadata when parsing function.
3977   if (MDLoader->hasFwdRefs())
3978     return error("Invalid function metadata: incoming forward references");
3979 
3980   InstructionList.clear();
3981   unsigned ModuleValueListSize = ValueList.size();
3982   unsigned ModuleMDLoaderSize = MDLoader->size();
3983 
3984   // Add all the function arguments to the value table.
3985 #ifndef NDEBUG
3986   unsigned ArgNo = 0;
3987   FunctionType *FTy = FunctionTypes[F];
3988 #endif
3989   for (Argument &I : F->args()) {
3990     assert(I.getType() == FTy->getParamType(ArgNo++) &&
3991            "Incorrect fully specified type for Function Argument");
3992     ValueList.push_back(&I);
3993   }
3994   unsigned NextValueNo = ValueList.size();
3995   BasicBlock *CurBB = nullptr;
3996   unsigned CurBBNo = 0;
3997 
3998   DebugLoc LastLoc;
3999   auto getLastInstruction = [&]() -> Instruction * {
4000     if (CurBB && !CurBB->empty())
4001       return &CurBB->back();
4002     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4003              !FunctionBBs[CurBBNo - 1]->empty())
4004       return &FunctionBBs[CurBBNo - 1]->back();
4005     return nullptr;
4006   };
4007 
4008   std::vector<OperandBundleDef> OperandBundles;
4009 
4010   // Read all the records.
4011   SmallVector<uint64_t, 64> Record;
4012 
4013   while (true) {
4014     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4015     if (!MaybeEntry)
4016       return MaybeEntry.takeError();
4017     llvm::BitstreamEntry Entry = MaybeEntry.get();
4018 
4019     switch (Entry.Kind) {
4020     case BitstreamEntry::Error:
4021       return error("Malformed block");
4022     case BitstreamEntry::EndBlock:
4023       goto OutOfRecordLoop;
4024 
4025     case BitstreamEntry::SubBlock:
4026       switch (Entry.ID) {
4027       default:  // Skip unknown content.
4028         if (Error Err = Stream.SkipBlock())
4029           return Err;
4030         break;
4031       case bitc::CONSTANTS_BLOCK_ID:
4032         if (Error Err = parseConstants())
4033           return Err;
4034         NextValueNo = ValueList.size();
4035         break;
4036       case bitc::VALUE_SYMTAB_BLOCK_ID:
4037         if (Error Err = parseValueSymbolTable())
4038           return Err;
4039         break;
4040       case bitc::METADATA_ATTACHMENT_ID:
4041         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4042           return Err;
4043         break;
4044       case bitc::METADATA_BLOCK_ID:
4045         assert(DeferredMetadataInfo.empty() &&
4046                "Must read all module-level metadata before function-level");
4047         if (Error Err = MDLoader->parseFunctionMetadata())
4048           return Err;
4049         break;
4050       case bitc::USELIST_BLOCK_ID:
4051         if (Error Err = parseUseLists())
4052           return Err;
4053         break;
4054       }
4055       continue;
4056 
4057     case BitstreamEntry::Record:
4058       // The interesting case.
4059       break;
4060     }
4061 
4062     // Read a record.
4063     Record.clear();
4064     Instruction *I = nullptr;
4065     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4066     if (!MaybeBitCode)
4067       return MaybeBitCode.takeError();
4068     switch (unsigned BitCode = MaybeBitCode.get()) {
4069     default: // Default behavior: reject
4070       return error("Invalid value");
4071     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4072       if (Record.empty() || Record[0] == 0)
4073         return error("Invalid record");
4074       // Create all the basic blocks for the function.
4075       FunctionBBs.resize(Record[0]);
4076 
4077       // See if anything took the address of blocks in this function.
4078       auto BBFRI = BasicBlockFwdRefs.find(F);
4079       if (BBFRI == BasicBlockFwdRefs.end()) {
4080         for (BasicBlock *&BB : FunctionBBs)
4081           BB = BasicBlock::Create(Context, "", F);
4082       } else {
4083         auto &BBRefs = BBFRI->second;
4084         // Check for invalid basic block references.
4085         if (BBRefs.size() > FunctionBBs.size())
4086           return error("Invalid ID");
4087         assert(!BBRefs.empty() && "Unexpected empty array");
4088         assert(!BBRefs.front() && "Invalid reference to entry block");
4089         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4090              ++I)
4091           if (I < RE && BBRefs[I]) {
4092             BBRefs[I]->insertInto(F);
4093             FunctionBBs[I] = BBRefs[I];
4094           } else {
4095             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4096           }
4097 
4098         // Erase from the table.
4099         BasicBlockFwdRefs.erase(BBFRI);
4100       }
4101 
4102       CurBB = FunctionBBs[0];
4103       continue;
4104     }
4105 
4106     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4107       // This record indicates that the last instruction is at the same
4108       // location as the previous instruction with a location.
4109       I = getLastInstruction();
4110 
4111       if (!I)
4112         return error("Invalid record");
4113       I->setDebugLoc(LastLoc);
4114       I = nullptr;
4115       continue;
4116 
4117     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4118       I = getLastInstruction();
4119       if (!I || Record.size() < 4)
4120         return error("Invalid record");
4121 
4122       unsigned Line = Record[0], Col = Record[1];
4123       unsigned ScopeID = Record[2], IAID = Record[3];
4124       bool isImplicitCode = Record.size() == 5 && Record[4];
4125 
4126       MDNode *Scope = nullptr, *IA = nullptr;
4127       if (ScopeID) {
4128         Scope = dyn_cast_or_null<MDNode>(
4129             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4130         if (!Scope)
4131           return error("Invalid record");
4132       }
4133       if (IAID) {
4134         IA = dyn_cast_or_null<MDNode>(
4135             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4136         if (!IA)
4137           return error("Invalid record");
4138       }
4139       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4140                                 isImplicitCode);
4141       I->setDebugLoc(LastLoc);
4142       I = nullptr;
4143       continue;
4144     }
4145     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4146       unsigned OpNum = 0;
4147       Value *LHS;
4148       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4149           OpNum+1 > Record.size())
4150         return error("Invalid record");
4151 
4152       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4153       if (Opc == -1)
4154         return error("Invalid record");
4155       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4156       InstructionList.push_back(I);
4157       if (OpNum < Record.size()) {
4158         if (isa<FPMathOperator>(I)) {
4159           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4160           if (FMF.any())
4161             I->setFastMathFlags(FMF);
4162         }
4163       }
4164       break;
4165     }
4166     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4167       unsigned OpNum = 0;
4168       Value *LHS, *RHS;
4169       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4170           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4171           OpNum+1 > Record.size())
4172         return error("Invalid record");
4173 
4174       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4175       if (Opc == -1)
4176         return error("Invalid record");
4177       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4178       InstructionList.push_back(I);
4179       if (OpNum < Record.size()) {
4180         if (Opc == Instruction::Add ||
4181             Opc == Instruction::Sub ||
4182             Opc == Instruction::Mul ||
4183             Opc == Instruction::Shl) {
4184           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4185             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4186           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4187             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4188         } else if (Opc == Instruction::SDiv ||
4189                    Opc == Instruction::UDiv ||
4190                    Opc == Instruction::LShr ||
4191                    Opc == Instruction::AShr) {
4192           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4193             cast<BinaryOperator>(I)->setIsExact(true);
4194         } else if (isa<FPMathOperator>(I)) {
4195           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4196           if (FMF.any())
4197             I->setFastMathFlags(FMF);
4198         }
4199 
4200       }
4201       break;
4202     }
4203     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4204       unsigned OpNum = 0;
4205       Value *Op;
4206       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4207           OpNum+2 != Record.size())
4208         return error("Invalid record");
4209 
4210       Type *ResTy = getTypeByID(Record[OpNum]);
4211       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4212       if (Opc == -1 || !ResTy)
4213         return error("Invalid record");
4214       Instruction *Temp = nullptr;
4215       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4216         if (Temp) {
4217           InstructionList.push_back(Temp);
4218           assert(CurBB && "No current BB?");
4219           CurBB->getInstList().push_back(Temp);
4220         }
4221       } else {
4222         auto CastOp = (Instruction::CastOps)Opc;
4223         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4224           return error("Invalid cast");
4225         I = CastInst::Create(CastOp, Op, ResTy);
4226       }
4227       InstructionList.push_back(I);
4228       break;
4229     }
4230     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4231     case bitc::FUNC_CODE_INST_GEP_OLD:
4232     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4233       unsigned OpNum = 0;
4234 
4235       Type *Ty;
4236       bool InBounds;
4237 
4238       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4239         InBounds = Record[OpNum++];
4240         Ty = getTypeByID(Record[OpNum++]);
4241       } else {
4242         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4243         Ty = nullptr;
4244       }
4245 
4246       Value *BasePtr;
4247       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4248         return error("Invalid record");
4249 
4250       if (!Ty) {
4251         Ty = BasePtr->getType()->getScalarType()->getPointerElementType();
4252       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4253                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4254         return error(
4255             "Explicit gep type does not match pointee type of pointer operand");
4256       }
4257 
4258       SmallVector<Value*, 16> GEPIdx;
4259       while (OpNum != Record.size()) {
4260         Value *Op;
4261         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4262           return error("Invalid record");
4263         GEPIdx.push_back(Op);
4264       }
4265 
4266       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4267 
4268       InstructionList.push_back(I);
4269       if (InBounds)
4270         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4271       break;
4272     }
4273 
4274     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4275                                        // EXTRACTVAL: [opty, opval, n x indices]
4276       unsigned OpNum = 0;
4277       Value *Agg;
4278       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4279         return error("Invalid record");
4280       Type *Ty = Agg->getType();
4281 
4282       unsigned RecSize = Record.size();
4283       if (OpNum == RecSize)
4284         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4285 
4286       SmallVector<unsigned, 4> EXTRACTVALIdx;
4287       for (; OpNum != RecSize; ++OpNum) {
4288         bool IsArray = Ty->isArrayTy();
4289         bool IsStruct = Ty->isStructTy();
4290         uint64_t Index = Record[OpNum];
4291 
4292         if (!IsStruct && !IsArray)
4293           return error("EXTRACTVAL: Invalid type");
4294         if ((unsigned)Index != Index)
4295           return error("Invalid value");
4296         if (IsStruct && Index >= Ty->getStructNumElements())
4297           return error("EXTRACTVAL: Invalid struct index");
4298         if (IsArray && Index >= Ty->getArrayNumElements())
4299           return error("EXTRACTVAL: Invalid array index");
4300         EXTRACTVALIdx.push_back((unsigned)Index);
4301 
4302         if (IsStruct)
4303           Ty = Ty->getStructElementType(Index);
4304         else
4305           Ty = Ty->getArrayElementType();
4306       }
4307 
4308       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4309       InstructionList.push_back(I);
4310       break;
4311     }
4312 
4313     case bitc::FUNC_CODE_INST_INSERTVAL: {
4314                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4315       unsigned OpNum = 0;
4316       Value *Agg;
4317       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4318         return error("Invalid record");
4319       Value *Val;
4320       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4321         return error("Invalid record");
4322 
4323       unsigned RecSize = Record.size();
4324       if (OpNum == RecSize)
4325         return error("INSERTVAL: Invalid instruction with 0 indices");
4326 
4327       SmallVector<unsigned, 4> INSERTVALIdx;
4328       Type *CurTy = Agg->getType();
4329       for (; OpNum != RecSize; ++OpNum) {
4330         bool IsArray = CurTy->isArrayTy();
4331         bool IsStruct = CurTy->isStructTy();
4332         uint64_t Index = Record[OpNum];
4333 
4334         if (!IsStruct && !IsArray)
4335           return error("INSERTVAL: Invalid type");
4336         if ((unsigned)Index != Index)
4337           return error("Invalid value");
4338         if (IsStruct && Index >= CurTy->getStructNumElements())
4339           return error("INSERTVAL: Invalid struct index");
4340         if (IsArray && Index >= CurTy->getArrayNumElements())
4341           return error("INSERTVAL: Invalid array index");
4342 
4343         INSERTVALIdx.push_back((unsigned)Index);
4344         if (IsStruct)
4345           CurTy = CurTy->getStructElementType(Index);
4346         else
4347           CurTy = CurTy->getArrayElementType();
4348       }
4349 
4350       if (CurTy != Val->getType())
4351         return error("Inserted value type doesn't match aggregate type");
4352 
4353       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4354       InstructionList.push_back(I);
4355       break;
4356     }
4357 
4358     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4359       // obsolete form of select
4360       // handles select i1 ... in old bitcode
4361       unsigned OpNum = 0;
4362       Value *TrueVal, *FalseVal, *Cond;
4363       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4364           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4365           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4366         return error("Invalid record");
4367 
4368       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4369       InstructionList.push_back(I);
4370       break;
4371     }
4372 
4373     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4374       // new form of select
4375       // handles select i1 or select [N x i1]
4376       unsigned OpNum = 0;
4377       Value *TrueVal, *FalseVal, *Cond;
4378       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4379           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4380           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4381         return error("Invalid record");
4382 
4383       // select condition can be either i1 or [N x i1]
4384       if (VectorType* vector_type =
4385           dyn_cast<VectorType>(Cond->getType())) {
4386         // expect <n x i1>
4387         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4388           return error("Invalid type for value");
4389       } else {
4390         // expect i1
4391         if (Cond->getType() != Type::getInt1Ty(Context))
4392           return error("Invalid type for value");
4393       }
4394 
4395       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4396       InstructionList.push_back(I);
4397       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4398         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4399         if (FMF.any())
4400           I->setFastMathFlags(FMF);
4401       }
4402       break;
4403     }
4404 
4405     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4406       unsigned OpNum = 0;
4407       Value *Vec, *Idx;
4408       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4409           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4410         return error("Invalid record");
4411       if (!Vec->getType()->isVectorTy())
4412         return error("Invalid type for value");
4413       I = ExtractElementInst::Create(Vec, Idx);
4414       InstructionList.push_back(I);
4415       break;
4416     }
4417 
4418     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4419       unsigned OpNum = 0;
4420       Value *Vec, *Elt, *Idx;
4421       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4422         return error("Invalid record");
4423       if (!Vec->getType()->isVectorTy())
4424         return error("Invalid type for value");
4425       if (popValue(Record, OpNum, NextValueNo,
4426                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4427           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4428         return error("Invalid record");
4429       I = InsertElementInst::Create(Vec, Elt, Idx);
4430       InstructionList.push_back(I);
4431       break;
4432     }
4433 
4434     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4435       unsigned OpNum = 0;
4436       Value *Vec1, *Vec2, *Mask;
4437       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4438           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4439         return error("Invalid record");
4440 
4441       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4442         return error("Invalid record");
4443       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4444         return error("Invalid type for value");
4445 
4446       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4447       InstructionList.push_back(I);
4448       break;
4449     }
4450 
4451     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4452       // Old form of ICmp/FCmp returning bool
4453       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4454       // both legal on vectors but had different behaviour.
4455     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4456       // FCmp/ICmp returning bool or vector of bool
4457 
4458       unsigned OpNum = 0;
4459       Value *LHS, *RHS;
4460       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4461           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4462         return error("Invalid record");
4463 
4464       if (OpNum >= Record.size())
4465         return error(
4466             "Invalid record: operand number exceeded available operands");
4467 
4468       unsigned PredVal = Record[OpNum];
4469       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4470       FastMathFlags FMF;
4471       if (IsFP && Record.size() > OpNum+1)
4472         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4473 
4474       if (OpNum+1 != Record.size())
4475         return error("Invalid record");
4476 
4477       if (LHS->getType()->isFPOrFPVectorTy())
4478         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4479       else
4480         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4481 
4482       if (FMF.any())
4483         I->setFastMathFlags(FMF);
4484       InstructionList.push_back(I);
4485       break;
4486     }
4487 
4488     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4489       {
4490         unsigned Size = Record.size();
4491         if (Size == 0) {
4492           I = ReturnInst::Create(Context);
4493           InstructionList.push_back(I);
4494           break;
4495         }
4496 
4497         unsigned OpNum = 0;
4498         Value *Op = nullptr;
4499         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4500           return error("Invalid record");
4501         if (OpNum != Record.size())
4502           return error("Invalid record");
4503 
4504         I = ReturnInst::Create(Context, Op);
4505         InstructionList.push_back(I);
4506         break;
4507       }
4508     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4509       if (Record.size() != 1 && Record.size() != 3)
4510         return error("Invalid record");
4511       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4512       if (!TrueDest)
4513         return error("Invalid record");
4514 
4515       if (Record.size() == 1) {
4516         I = BranchInst::Create(TrueDest);
4517         InstructionList.push_back(I);
4518       }
4519       else {
4520         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4521         Value *Cond = getValue(Record, 2, NextValueNo,
4522                                Type::getInt1Ty(Context));
4523         if (!FalseDest || !Cond)
4524           return error("Invalid record");
4525         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4526         InstructionList.push_back(I);
4527       }
4528       break;
4529     }
4530     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4531       if (Record.size() != 1 && Record.size() != 2)
4532         return error("Invalid record");
4533       unsigned Idx = 0;
4534       Value *CleanupPad =
4535           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4536       if (!CleanupPad)
4537         return error("Invalid record");
4538       BasicBlock *UnwindDest = nullptr;
4539       if (Record.size() == 2) {
4540         UnwindDest = getBasicBlock(Record[Idx++]);
4541         if (!UnwindDest)
4542           return error("Invalid record");
4543       }
4544 
4545       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4546       InstructionList.push_back(I);
4547       break;
4548     }
4549     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4550       if (Record.size() != 2)
4551         return error("Invalid record");
4552       unsigned Idx = 0;
4553       Value *CatchPad =
4554           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4555       if (!CatchPad)
4556         return error("Invalid record");
4557       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4558       if (!BB)
4559         return error("Invalid record");
4560 
4561       I = CatchReturnInst::Create(CatchPad, BB);
4562       InstructionList.push_back(I);
4563       break;
4564     }
4565     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4566       // We must have, at minimum, the outer scope and the number of arguments.
4567       if (Record.size() < 2)
4568         return error("Invalid record");
4569 
4570       unsigned Idx = 0;
4571 
4572       Value *ParentPad =
4573           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4574 
4575       unsigned NumHandlers = Record[Idx++];
4576 
4577       SmallVector<BasicBlock *, 2> Handlers;
4578       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4579         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4580         if (!BB)
4581           return error("Invalid record");
4582         Handlers.push_back(BB);
4583       }
4584 
4585       BasicBlock *UnwindDest = nullptr;
4586       if (Idx + 1 == Record.size()) {
4587         UnwindDest = getBasicBlock(Record[Idx++]);
4588         if (!UnwindDest)
4589           return error("Invalid record");
4590       }
4591 
4592       if (Record.size() != Idx)
4593         return error("Invalid record");
4594 
4595       auto *CatchSwitch =
4596           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4597       for (BasicBlock *Handler : Handlers)
4598         CatchSwitch->addHandler(Handler);
4599       I = CatchSwitch;
4600       InstructionList.push_back(I);
4601       break;
4602     }
4603     case bitc::FUNC_CODE_INST_CATCHPAD:
4604     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4605       // We must have, at minimum, the outer scope and the number of arguments.
4606       if (Record.size() < 2)
4607         return error("Invalid record");
4608 
4609       unsigned Idx = 0;
4610 
4611       Value *ParentPad =
4612           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4613 
4614       unsigned NumArgOperands = Record[Idx++];
4615 
4616       SmallVector<Value *, 2> Args;
4617       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4618         Value *Val;
4619         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4620           return error("Invalid record");
4621         Args.push_back(Val);
4622       }
4623 
4624       if (Record.size() != Idx)
4625         return error("Invalid record");
4626 
4627       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4628         I = CleanupPadInst::Create(ParentPad, Args);
4629       else
4630         I = CatchPadInst::Create(ParentPad, Args);
4631       InstructionList.push_back(I);
4632       break;
4633     }
4634     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4635       // Check magic
4636       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4637         // "New" SwitchInst format with case ranges. The changes to write this
4638         // format were reverted but we still recognize bitcode that uses it.
4639         // Hopefully someday we will have support for case ranges and can use
4640         // this format again.
4641 
4642         Type *OpTy = getTypeByID(Record[1]);
4643         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4644 
4645         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4646         BasicBlock *Default = getBasicBlock(Record[3]);
4647         if (!OpTy || !Cond || !Default)
4648           return error("Invalid record");
4649 
4650         unsigned NumCases = Record[4];
4651 
4652         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4653         InstructionList.push_back(SI);
4654 
4655         unsigned CurIdx = 5;
4656         for (unsigned i = 0; i != NumCases; ++i) {
4657           SmallVector<ConstantInt*, 1> CaseVals;
4658           unsigned NumItems = Record[CurIdx++];
4659           for (unsigned ci = 0; ci != NumItems; ++ci) {
4660             bool isSingleNumber = Record[CurIdx++];
4661 
4662             APInt Low;
4663             unsigned ActiveWords = 1;
4664             if (ValueBitWidth > 64)
4665               ActiveWords = Record[CurIdx++];
4666             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4667                                 ValueBitWidth);
4668             CurIdx += ActiveWords;
4669 
4670             if (!isSingleNumber) {
4671               ActiveWords = 1;
4672               if (ValueBitWidth > 64)
4673                 ActiveWords = Record[CurIdx++];
4674               APInt High = readWideAPInt(
4675                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4676               CurIdx += ActiveWords;
4677 
4678               // FIXME: It is not clear whether values in the range should be
4679               // compared as signed or unsigned values. The partially
4680               // implemented changes that used this format in the past used
4681               // unsigned comparisons.
4682               for ( ; Low.ule(High); ++Low)
4683                 CaseVals.push_back(ConstantInt::get(Context, Low));
4684             } else
4685               CaseVals.push_back(ConstantInt::get(Context, Low));
4686           }
4687           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4688           for (ConstantInt *Cst : CaseVals)
4689             SI->addCase(Cst, DestBB);
4690         }
4691         I = SI;
4692         break;
4693       }
4694 
4695       // Old SwitchInst format without case ranges.
4696 
4697       if (Record.size() < 3 || (Record.size() & 1) == 0)
4698         return error("Invalid record");
4699       Type *OpTy = getTypeByID(Record[0]);
4700       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4701       BasicBlock *Default = getBasicBlock(Record[2]);
4702       if (!OpTy || !Cond || !Default)
4703         return error("Invalid record");
4704       unsigned NumCases = (Record.size()-3)/2;
4705       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4706       InstructionList.push_back(SI);
4707       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4708         ConstantInt *CaseVal =
4709           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4710         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4711         if (!CaseVal || !DestBB) {
4712           delete SI;
4713           return error("Invalid record");
4714         }
4715         SI->addCase(CaseVal, DestBB);
4716       }
4717       I = SI;
4718       break;
4719     }
4720     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4721       if (Record.size() < 2)
4722         return error("Invalid record");
4723       Type *OpTy = getTypeByID(Record[0]);
4724       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4725       if (!OpTy || !Address)
4726         return error("Invalid record");
4727       unsigned NumDests = Record.size()-2;
4728       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4729       InstructionList.push_back(IBI);
4730       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4731         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4732           IBI->addDestination(DestBB);
4733         } else {
4734           delete IBI;
4735           return error("Invalid record");
4736         }
4737       }
4738       I = IBI;
4739       break;
4740     }
4741 
4742     case bitc::FUNC_CODE_INST_INVOKE: {
4743       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4744       if (Record.size() < 4)
4745         return error("Invalid record");
4746       unsigned OpNum = 0;
4747       AttributeList PAL = getAttributes(Record[OpNum++]);
4748       unsigned CCInfo = Record[OpNum++];
4749       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4750       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4751 
4752       FunctionType *FTy = nullptr;
4753       if ((CCInfo >> 13) & 1) {
4754         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4755         if (!FTy)
4756           return error("Explicit invoke type is not a function type");
4757       }
4758 
4759       Value *Callee;
4760       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4761         return error("Invalid record");
4762 
4763       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4764       if (!CalleeTy)
4765         return error("Callee is not a pointer");
4766       if (!FTy) {
4767         FTy =
4768             dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
4769         if (!FTy)
4770           return error("Callee is not of pointer to function type");
4771       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4772         return error("Explicit invoke type does not match pointee type of "
4773                      "callee operand");
4774       if (Record.size() < FTy->getNumParams() + OpNum)
4775         return error("Insufficient operands to call");
4776 
4777       SmallVector<Value*, 16> Ops;
4778       SmallVector<Type *, 16> ArgsTys;
4779       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4780         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4781                                FTy->getParamType(i)));
4782         ArgsTys.push_back(FTy->getParamType(i));
4783         if (!Ops.back())
4784           return error("Invalid record");
4785       }
4786 
4787       if (!FTy->isVarArg()) {
4788         if (Record.size() != OpNum)
4789           return error("Invalid record");
4790       } else {
4791         // Read type/value pairs for varargs params.
4792         while (OpNum != Record.size()) {
4793           Value *Op;
4794           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4795             return error("Invalid record");
4796           Ops.push_back(Op);
4797           ArgsTys.push_back(Op->getType());
4798         }
4799       }
4800 
4801       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4802                              OperandBundles);
4803       OperandBundles.clear();
4804       InstructionList.push_back(I);
4805       cast<InvokeInst>(I)->setCallingConv(
4806           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4807       cast<InvokeInst>(I)->setAttributes(PAL);
4808       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4809 
4810       break;
4811     }
4812     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4813       unsigned Idx = 0;
4814       Value *Val = nullptr;
4815       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4816         return error("Invalid record");
4817       I = ResumeInst::Create(Val);
4818       InstructionList.push_back(I);
4819       break;
4820     }
4821     case bitc::FUNC_CODE_INST_CALLBR: {
4822       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4823       unsigned OpNum = 0;
4824       AttributeList PAL = getAttributes(Record[OpNum++]);
4825       unsigned CCInfo = Record[OpNum++];
4826 
4827       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4828       unsigned NumIndirectDests = Record[OpNum++];
4829       SmallVector<BasicBlock *, 16> IndirectDests;
4830       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4831         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4832 
4833       FunctionType *FTy = nullptr;
4834       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4835         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4836         if (!FTy)
4837           return error("Explicit call type is not a function type");
4838       }
4839 
4840       Value *Callee;
4841       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4842         return error("Invalid record");
4843 
4844       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4845       if (!OpTy)
4846         return error("Callee is not a pointer type");
4847       if (!FTy) {
4848         FTy =
4849             dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
4850         if (!FTy)
4851           return error("Callee is not of pointer to function type");
4852       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
4853         return error("Explicit call type does not match pointee type of "
4854                      "callee operand");
4855       if (Record.size() < FTy->getNumParams() + OpNum)
4856         return error("Insufficient operands to call");
4857 
4858       SmallVector<Value*, 16> Args;
4859       SmallVector<Type *, 16> ArgsTys;
4860       // Read the fixed params.
4861       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4862         Value *Arg;
4863         if (FTy->getParamType(i)->isLabelTy())
4864           Arg = getBasicBlock(Record[OpNum]);
4865         else
4866           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i));
4867         if (!Arg)
4868           return error("Invalid record");
4869         Args.push_back(Arg);
4870         ArgsTys.push_back(Arg->getType());
4871       }
4872 
4873       // Read type/value pairs for varargs params.
4874       if (!FTy->isVarArg()) {
4875         if (OpNum != Record.size())
4876           return error("Invalid record");
4877       } else {
4878         while (OpNum != Record.size()) {
4879           Value *Op;
4880           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4881             return error("Invalid record");
4882           Args.push_back(Op);
4883           ArgsTys.push_back(Op->getType());
4884         }
4885       }
4886 
4887       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4888                              OperandBundles);
4889       OperandBundles.clear();
4890       InstructionList.push_back(I);
4891       cast<CallBrInst>(I)->setCallingConv(
4892           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4893       cast<CallBrInst>(I)->setAttributes(PAL);
4894       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4895       break;
4896     }
4897     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4898       I = new UnreachableInst(Context);
4899       InstructionList.push_back(I);
4900       break;
4901     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4902       if (Record.empty())
4903         return error("Invalid record");
4904       // The first record specifies the type.
4905       Type *Ty = getTypeByID(Record[0]);
4906       if (!Ty)
4907         return error("Invalid record");
4908 
4909       // Phi arguments are pairs of records of [value, basic block].
4910       // There is an optional final record for fast-math-flags if this phi has a
4911       // floating-point type.
4912       size_t NumArgs = (Record.size() - 1) / 2;
4913       PHINode *PN = PHINode::Create(Ty, NumArgs);
4914       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4915         return error("Invalid record");
4916       InstructionList.push_back(PN);
4917 
4918       for (unsigned i = 0; i != NumArgs; i++) {
4919         Value *V;
4920         // With the new function encoding, it is possible that operands have
4921         // negative IDs (for forward references).  Use a signed VBR
4922         // representation to keep the encoding small.
4923         if (UseRelativeIDs)
4924           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4925         else
4926           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4927         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4928         if (!V || !BB)
4929           return error("Invalid record");
4930         PN->addIncoming(V, BB);
4931       }
4932       I = PN;
4933 
4934       // If there are an even number of records, the final record must be FMF.
4935       if (Record.size() % 2 == 0) {
4936         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4937         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4938         if (FMF.any())
4939           I->setFastMathFlags(FMF);
4940       }
4941 
4942       break;
4943     }
4944 
4945     case bitc::FUNC_CODE_INST_LANDINGPAD:
4946     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4947       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4948       unsigned Idx = 0;
4949       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4950         if (Record.size() < 3)
4951           return error("Invalid record");
4952       } else {
4953         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4954         if (Record.size() < 4)
4955           return error("Invalid record");
4956       }
4957       Type *Ty = getTypeByID(Record[Idx++]);
4958       if (!Ty)
4959         return error("Invalid record");
4960       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4961         Value *PersFn = nullptr;
4962         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4963           return error("Invalid record");
4964 
4965         if (!F->hasPersonalityFn())
4966           F->setPersonalityFn(cast<Constant>(PersFn));
4967         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4968           return error("Personality function mismatch");
4969       }
4970 
4971       bool IsCleanup = !!Record[Idx++];
4972       unsigned NumClauses = Record[Idx++];
4973       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4974       LP->setCleanup(IsCleanup);
4975       for (unsigned J = 0; J != NumClauses; ++J) {
4976         LandingPadInst::ClauseType CT =
4977           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4978         Value *Val;
4979 
4980         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4981           delete LP;
4982           return error("Invalid record");
4983         }
4984 
4985         assert((CT != LandingPadInst::Catch ||
4986                 !isa<ArrayType>(Val->getType())) &&
4987                "Catch clause has a invalid type!");
4988         assert((CT != LandingPadInst::Filter ||
4989                 isa<ArrayType>(Val->getType())) &&
4990                "Filter clause has invalid type!");
4991         LP->addClause(cast<Constant>(Val));
4992       }
4993 
4994       I = LP;
4995       InstructionList.push_back(I);
4996       break;
4997     }
4998 
4999     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5000       if (Record.size() != 4)
5001         return error("Invalid record");
5002       using APV = AllocaPackedValues;
5003       const uint64_t Rec = Record[3];
5004       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5005       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5006       Type *Ty = getTypeByID(Record[0]);
5007       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5008         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5009         if (!PTy)
5010           return error("Old-style alloca with a non-pointer type");
5011         Ty = PTy->getPointerElementType();
5012       }
5013       Type *OpTy = getTypeByID(Record[1]);
5014       Value *Size = getFnValueByID(Record[2], OpTy);
5015       MaybeAlign Align;
5016       uint64_t AlignExp =
5017           Bitfield::get<APV::AlignLower>(Rec) |
5018           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5019       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5020         return Err;
5021       }
5022       if (!Ty || !Size)
5023         return error("Invalid record");
5024 
5025       // FIXME: Make this an optional field.
5026       const DataLayout &DL = TheModule->getDataLayout();
5027       unsigned AS = DL.getAllocaAddrSpace();
5028 
5029       SmallPtrSet<Type *, 4> Visited;
5030       if (!Align && !Ty->isSized(&Visited))
5031         return error("alloca of unsized type");
5032       if (!Align)
5033         Align = DL.getPrefTypeAlign(Ty);
5034 
5035       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5036       AI->setUsedWithInAlloca(InAlloca);
5037       AI->setSwiftError(SwiftError);
5038       I = AI;
5039       InstructionList.push_back(I);
5040       break;
5041     }
5042     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5043       unsigned OpNum = 0;
5044       Value *Op;
5045       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5046           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5047         return error("Invalid record");
5048 
5049       if (!isa<PointerType>(Op->getType()))
5050         return error("Load operand is not a pointer type");
5051 
5052       Type *Ty = nullptr;
5053       if (OpNum + 3 == Record.size()) {
5054         Ty = getTypeByID(Record[OpNum++]);
5055       } else {
5056         Ty = Op->getType()->getPointerElementType();
5057       }
5058 
5059       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5060         return Err;
5061 
5062       MaybeAlign Align;
5063       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5064         return Err;
5065       SmallPtrSet<Type *, 4> Visited;
5066       if (!Align && !Ty->isSized(&Visited))
5067         return error("load of unsized type");
5068       if (!Align)
5069         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5070       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5071       InstructionList.push_back(I);
5072       break;
5073     }
5074     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5075        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5076       unsigned OpNum = 0;
5077       Value *Op;
5078       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5079           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5080         return error("Invalid record");
5081 
5082       if (!isa<PointerType>(Op->getType()))
5083         return error("Load operand is not a pointer type");
5084 
5085       Type *Ty = nullptr;
5086       if (OpNum + 5 == Record.size()) {
5087         Ty = getTypeByID(Record[OpNum++]);
5088       } else {
5089         Ty = Op->getType()->getPointerElementType();
5090       }
5091 
5092       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5093         return Err;
5094 
5095       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5096       if (Ordering == AtomicOrdering::NotAtomic ||
5097           Ordering == AtomicOrdering::Release ||
5098           Ordering == AtomicOrdering::AcquireRelease)
5099         return error("Invalid record");
5100       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5101         return error("Invalid record");
5102       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5103 
5104       MaybeAlign Align;
5105       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5106         return Err;
5107       if (!Align)
5108         return error("Alignment missing from atomic load");
5109       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5110       InstructionList.push_back(I);
5111       break;
5112     }
5113     case bitc::FUNC_CODE_INST_STORE:
5114     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5115       unsigned OpNum = 0;
5116       Value *Val, *Ptr;
5117       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5118           (BitCode == bitc::FUNC_CODE_INST_STORE
5119                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5120                : popValue(Record, OpNum, NextValueNo,
5121                           Ptr->getType()->getPointerElementType(), Val)) ||
5122           OpNum + 2 != Record.size())
5123         return error("Invalid record");
5124 
5125       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5126         return Err;
5127       MaybeAlign Align;
5128       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5129         return Err;
5130       SmallPtrSet<Type *, 4> Visited;
5131       if (!Align && !Val->getType()->isSized(&Visited))
5132         return error("store of unsized type");
5133       if (!Align)
5134         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5135       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5136       InstructionList.push_back(I);
5137       break;
5138     }
5139     case bitc::FUNC_CODE_INST_STOREATOMIC:
5140     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5141       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5142       unsigned OpNum = 0;
5143       Value *Val, *Ptr;
5144       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5145           !isa<PointerType>(Ptr->getType()) ||
5146           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5147                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5148                : popValue(Record, OpNum, NextValueNo,
5149                           Ptr->getType()->getPointerElementType(), Val)) ||
5150           OpNum + 4 != Record.size())
5151         return error("Invalid record");
5152 
5153       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5154         return Err;
5155       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5156       if (Ordering == AtomicOrdering::NotAtomic ||
5157           Ordering == AtomicOrdering::Acquire ||
5158           Ordering == AtomicOrdering::AcquireRelease)
5159         return error("Invalid record");
5160       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5161       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5162         return error("Invalid record");
5163 
5164       MaybeAlign Align;
5165       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5166         return Err;
5167       if (!Align)
5168         return error("Alignment missing from atomic store");
5169       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5170       InstructionList.push_back(I);
5171       break;
5172     }
5173     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5174       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5175       // failure_ordering?, weak?]
5176       const size_t NumRecords = Record.size();
5177       unsigned OpNum = 0;
5178       Value *Ptr = nullptr;
5179       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5180         return error("Invalid record");
5181 
5182       if (!isa<PointerType>(Ptr->getType()))
5183         return error("Cmpxchg operand is not a pointer type");
5184 
5185       Value *Cmp = nullptr;
5186       if (popValue(Record, OpNum, NextValueNo,
5187                    cast<PointerType>(Ptr->getType())->getPointerElementType(),
5188                    Cmp))
5189         return error("Invalid record");
5190 
5191       Value *New = nullptr;
5192       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5193           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5194         return error("Invalid record");
5195 
5196       const AtomicOrdering SuccessOrdering =
5197           getDecodedOrdering(Record[OpNum + 1]);
5198       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5199           SuccessOrdering == AtomicOrdering::Unordered)
5200         return error("Invalid record");
5201 
5202       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5203 
5204       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5205         return Err;
5206 
5207       const AtomicOrdering FailureOrdering =
5208           NumRecords < 7
5209               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5210               : getDecodedOrdering(Record[OpNum + 3]);
5211 
5212       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5213           FailureOrdering == AtomicOrdering::Unordered)
5214         return error("Invalid record");
5215 
5216       const Align Alignment(
5217           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5218 
5219       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5220                                 FailureOrdering, SSID);
5221       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5222 
5223       if (NumRecords < 8) {
5224         // Before weak cmpxchgs existed, the instruction simply returned the
5225         // value loaded from memory, so bitcode files from that era will be
5226         // expecting the first component of a modern cmpxchg.
5227         CurBB->getInstList().push_back(I);
5228         I = ExtractValueInst::Create(I, 0);
5229       } else {
5230         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5231       }
5232 
5233       InstructionList.push_back(I);
5234       break;
5235     }
5236     case bitc::FUNC_CODE_INST_CMPXCHG: {
5237       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5238       // failure_ordering, weak, align?]
5239       const size_t NumRecords = Record.size();
5240       unsigned OpNum = 0;
5241       Value *Ptr = nullptr;
5242       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5243         return error("Invalid record");
5244 
5245       if (!isa<PointerType>(Ptr->getType()))
5246         return error("Cmpxchg operand is not a pointer type");
5247 
5248       Value *Cmp = nullptr;
5249       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5250         return error("Invalid record");
5251 
5252       Value *Val = nullptr;
5253       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5254         return error("Invalid record");
5255 
5256       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5257         return error("Invalid record");
5258 
5259       const bool IsVol = Record[OpNum];
5260 
5261       const AtomicOrdering SuccessOrdering =
5262           getDecodedOrdering(Record[OpNum + 1]);
5263       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5264         return error("Invalid cmpxchg success ordering");
5265 
5266       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5267 
5268       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5269         return Err;
5270 
5271       const AtomicOrdering FailureOrdering =
5272           getDecodedOrdering(Record[OpNum + 3]);
5273       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5274         return error("Invalid cmpxchg failure ordering");
5275 
5276       const bool IsWeak = Record[OpNum + 4];
5277 
5278       MaybeAlign Alignment;
5279 
5280       if (NumRecords == (OpNum + 6)) {
5281         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5282           return Err;
5283       }
5284       if (!Alignment)
5285         Alignment =
5286             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5287 
5288       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5289                                 FailureOrdering, SSID);
5290       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5291       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5292 
5293       InstructionList.push_back(I);
5294       break;
5295     }
5296     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5297     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5298       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5299       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5300       const size_t NumRecords = Record.size();
5301       unsigned OpNum = 0;
5302 
5303       Value *Ptr = nullptr;
5304       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5305         return error("Invalid record");
5306 
5307       if (!isa<PointerType>(Ptr->getType()))
5308         return error("Invalid record");
5309 
5310       Value *Val = nullptr;
5311       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5312         if (popValue(Record, OpNum, NextValueNo,
5313                      cast<PointerType>(Ptr->getType())->getPointerElementType(),
5314                      Val))
5315           return error("Invalid record");
5316       } else {
5317         if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5318           return error("Invalid record");
5319       }
5320 
5321       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5322         return error("Invalid record");
5323 
5324       const AtomicRMWInst::BinOp Operation =
5325           getDecodedRMWOperation(Record[OpNum]);
5326       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5327           Operation > AtomicRMWInst::LAST_BINOP)
5328         return error("Invalid record");
5329 
5330       const bool IsVol = Record[OpNum + 1];
5331 
5332       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5333       if (Ordering == AtomicOrdering::NotAtomic ||
5334           Ordering == AtomicOrdering::Unordered)
5335         return error("Invalid record");
5336 
5337       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5338 
5339       MaybeAlign Alignment;
5340 
5341       if (NumRecords == (OpNum + 5)) {
5342         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5343           return Err;
5344       }
5345 
5346       if (!Alignment)
5347         Alignment =
5348             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5349 
5350       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5351       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5352 
5353       InstructionList.push_back(I);
5354       break;
5355     }
5356     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5357       if (2 != Record.size())
5358         return error("Invalid record");
5359       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5360       if (Ordering == AtomicOrdering::NotAtomic ||
5361           Ordering == AtomicOrdering::Unordered ||
5362           Ordering == AtomicOrdering::Monotonic)
5363         return error("Invalid record");
5364       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5365       I = new FenceInst(Context, Ordering, SSID);
5366       InstructionList.push_back(I);
5367       break;
5368     }
5369     case bitc::FUNC_CODE_INST_CALL: {
5370       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5371       if (Record.size() < 3)
5372         return error("Invalid record");
5373 
5374       unsigned OpNum = 0;
5375       AttributeList PAL = getAttributes(Record[OpNum++]);
5376       unsigned CCInfo = Record[OpNum++];
5377 
5378       FastMathFlags FMF;
5379       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5380         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5381         if (!FMF.any())
5382           return error("Fast math flags indicator set for call with no FMF");
5383       }
5384 
5385       FunctionType *FTy = nullptr;
5386       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5387         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
5388         if (!FTy)
5389           return error("Explicit call type is not a function type");
5390       }
5391 
5392       Value *Callee;
5393       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5394         return error("Invalid record");
5395 
5396       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5397       if (!OpTy)
5398         return error("Callee is not a pointer type");
5399       if (!FTy) {
5400         FTy =
5401             dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
5402         if (!FTy)
5403           return error("Callee is not of pointer to function type");
5404       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5405         return error("Explicit call type does not match pointee type of "
5406                      "callee operand");
5407       if (Record.size() < FTy->getNumParams() + OpNum)
5408         return error("Insufficient operands to call");
5409 
5410       SmallVector<Value*, 16> Args;
5411       SmallVector<Type *, 16> ArgsTys;
5412       // Read the fixed params.
5413       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5414         if (FTy->getParamType(i)->isLabelTy())
5415           Args.push_back(getBasicBlock(Record[OpNum]));
5416         else
5417           Args.push_back(getValue(Record, OpNum, NextValueNo,
5418                                   FTy->getParamType(i)));
5419         ArgsTys.push_back(FTy->getParamType(i));
5420         if (!Args.back())
5421           return error("Invalid record");
5422       }
5423 
5424       // Read type/value pairs for varargs params.
5425       if (!FTy->isVarArg()) {
5426         if (OpNum != Record.size())
5427           return error("Invalid record");
5428       } else {
5429         while (OpNum != Record.size()) {
5430           Value *Op;
5431           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5432             return error("Invalid record");
5433           Args.push_back(Op);
5434           ArgsTys.push_back(Op->getType());
5435         }
5436       }
5437 
5438       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5439       OperandBundles.clear();
5440       InstructionList.push_back(I);
5441       cast<CallInst>(I)->setCallingConv(
5442           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5443       CallInst::TailCallKind TCK = CallInst::TCK_None;
5444       if (CCInfo & 1 << bitc::CALL_TAIL)
5445         TCK = CallInst::TCK_Tail;
5446       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5447         TCK = CallInst::TCK_MustTail;
5448       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5449         TCK = CallInst::TCK_NoTail;
5450       cast<CallInst>(I)->setTailCallKind(TCK);
5451       cast<CallInst>(I)->setAttributes(PAL);
5452       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
5453       if (FMF.any()) {
5454         if (!isa<FPMathOperator>(I))
5455           return error("Fast-math-flags specified for call without "
5456                        "floating-point scalar or vector return type");
5457         I->setFastMathFlags(FMF);
5458       }
5459       break;
5460     }
5461     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5462       if (Record.size() < 3)
5463         return error("Invalid record");
5464       Type *OpTy = getTypeByID(Record[0]);
5465       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5466       Type *ResTy = getTypeByID(Record[2]);
5467       if (!OpTy || !Op || !ResTy)
5468         return error("Invalid record");
5469       I = new VAArgInst(Op, ResTy);
5470       InstructionList.push_back(I);
5471       break;
5472     }
5473 
5474     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5475       // A call or an invoke can be optionally prefixed with some variable
5476       // number of operand bundle blocks.  These blocks are read into
5477       // OperandBundles and consumed at the next call or invoke instruction.
5478 
5479       if (Record.empty() || Record[0] >= BundleTags.size())
5480         return error("Invalid record");
5481 
5482       std::vector<Value *> Inputs;
5483 
5484       unsigned OpNum = 1;
5485       while (OpNum != Record.size()) {
5486         Value *Op;
5487         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5488           return error("Invalid record");
5489         Inputs.push_back(Op);
5490       }
5491 
5492       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5493       continue;
5494     }
5495 
5496     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5497       unsigned OpNum = 0;
5498       Value *Op = nullptr;
5499       if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5500         return error("Invalid record");
5501       if (OpNum != Record.size())
5502         return error("Invalid record");
5503 
5504       I = new FreezeInst(Op);
5505       InstructionList.push_back(I);
5506       break;
5507     }
5508     }
5509 
5510     // Add instruction to end of current BB.  If there is no current BB, reject
5511     // this file.
5512     if (!CurBB) {
5513       I->deleteValue();
5514       return error("Invalid instruction with no BB");
5515     }
5516     if (!OperandBundles.empty()) {
5517       I->deleteValue();
5518       return error("Operand bundles found with no consumer");
5519     }
5520     CurBB->getInstList().push_back(I);
5521 
5522     // If this was a terminator instruction, move to the next block.
5523     if (I->isTerminator()) {
5524       ++CurBBNo;
5525       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5526     }
5527 
5528     // Non-void values get registered in the value table for future use.
5529     if (!I->getType()->isVoidTy())
5530       ValueList.assignValue(I, NextValueNo++);
5531   }
5532 
5533 OutOfRecordLoop:
5534 
5535   if (!OperandBundles.empty())
5536     return error("Operand bundles found with no consumer");
5537 
5538   // Check the function list for unresolved values.
5539   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5540     if (!A->getParent()) {
5541       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5542       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5543         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5544           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5545           delete A;
5546         }
5547       }
5548       return error("Never resolved value found in function");
5549     }
5550   }
5551 
5552   // Unexpected unresolved metadata about to be dropped.
5553   if (MDLoader->hasFwdRefs())
5554     return error("Invalid function metadata: outgoing forward refs");
5555 
5556   // Trim the value list down to the size it was before we parsed this function.
5557   ValueList.shrinkTo(ModuleValueListSize);
5558   MDLoader->shrinkTo(ModuleMDLoaderSize);
5559   std::vector<BasicBlock*>().swap(FunctionBBs);
5560   return Error::success();
5561 }
5562 
5563 /// Find the function body in the bitcode stream
5564 Error BitcodeReader::findFunctionInStream(
5565     Function *F,
5566     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5567   while (DeferredFunctionInfoIterator->second == 0) {
5568     // This is the fallback handling for the old format bitcode that
5569     // didn't contain the function index in the VST, or when we have
5570     // an anonymous function which would not have a VST entry.
5571     // Assert that we have one of those two cases.
5572     assert(VSTOffset == 0 || !F->hasName());
5573     // Parse the next body in the stream and set its position in the
5574     // DeferredFunctionInfo map.
5575     if (Error Err = rememberAndSkipFunctionBodies())
5576       return Err;
5577   }
5578   return Error::success();
5579 }
5580 
5581 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5582   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5583     return SyncScope::ID(Val);
5584   if (Val >= SSIDs.size())
5585     return SyncScope::System; // Map unknown synchronization scopes to system.
5586   return SSIDs[Val];
5587 }
5588 
5589 //===----------------------------------------------------------------------===//
5590 // GVMaterializer implementation
5591 //===----------------------------------------------------------------------===//
5592 
5593 Error BitcodeReader::materialize(GlobalValue *GV) {
5594   Function *F = dyn_cast<Function>(GV);
5595   // If it's not a function or is already material, ignore the request.
5596   if (!F || !F->isMaterializable())
5597     return Error::success();
5598 
5599   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5600   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5601   // If its position is recorded as 0, its body is somewhere in the stream
5602   // but we haven't seen it yet.
5603   if (DFII->second == 0)
5604     if (Error Err = findFunctionInStream(F, DFII))
5605       return Err;
5606 
5607   // Materialize metadata before parsing any function bodies.
5608   if (Error Err = materializeMetadata())
5609     return Err;
5610 
5611   // Move the bit stream to the saved position of the deferred function body.
5612   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5613     return JumpFailed;
5614   if (Error Err = parseFunctionBody(F))
5615     return Err;
5616   F->setIsMaterializable(false);
5617 
5618   if (StripDebugInfo)
5619     stripDebugInfo(*F);
5620 
5621   // Upgrade any old intrinsic calls in the function.
5622   for (auto &I : UpgradedIntrinsics) {
5623     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5624       if (CallInst *CI = dyn_cast<CallInst>(U))
5625         UpgradeIntrinsicCall(CI, I.second);
5626   }
5627 
5628   // Update calls to the remangled intrinsics
5629   for (auto &I : RemangledIntrinsics)
5630     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5631       // Don't expect any other users than call sites
5632       cast<CallBase>(U)->setCalledFunction(I.second);
5633 
5634   // Finish fn->subprogram upgrade for materialized functions.
5635   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5636     F->setSubprogram(SP);
5637 
5638   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5639   if (!MDLoader->isStrippingTBAA()) {
5640     for (auto &I : instructions(F)) {
5641       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5642       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5643         continue;
5644       MDLoader->setStripTBAA(true);
5645       stripTBAA(F->getParent());
5646     }
5647   }
5648 
5649   for (auto &I : instructions(F)) {
5650     // "Upgrade" older incorrect branch weights by dropping them.
5651     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5652       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5653         MDString *MDS = cast<MDString>(MD->getOperand(0));
5654         StringRef ProfName = MDS->getString();
5655         // Check consistency of !prof branch_weights metadata.
5656         if (!ProfName.equals("branch_weights"))
5657           continue;
5658         unsigned ExpectedNumOperands = 0;
5659         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5660           ExpectedNumOperands = BI->getNumSuccessors();
5661         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5662           ExpectedNumOperands = SI->getNumSuccessors();
5663         else if (isa<CallInst>(&I))
5664           ExpectedNumOperands = 1;
5665         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5666           ExpectedNumOperands = IBI->getNumDestinations();
5667         else if (isa<SelectInst>(&I))
5668           ExpectedNumOperands = 2;
5669         else
5670           continue; // ignore and continue.
5671 
5672         // If branch weight doesn't match, just strip branch weight.
5673         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5674           I.setMetadata(LLVMContext::MD_prof, nullptr);
5675       }
5676     }
5677 
5678     // Remove incompatible attributes on function calls.
5679     if (auto *CI = dyn_cast<CallBase>(&I)) {
5680       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
5681           CI->getFunctionType()->getReturnType()));
5682 
5683       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5684         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5685                                         CI->getArgOperand(ArgNo)->getType()));
5686     }
5687   }
5688 
5689   // Look for functions that rely on old function attribute behavior.
5690   UpgradeFunctionAttributes(*F);
5691 
5692   // Bring in any functions that this function forward-referenced via
5693   // blockaddresses.
5694   return materializeForwardReferencedFunctions();
5695 }
5696 
5697 Error BitcodeReader::materializeModule() {
5698   if (Error Err = materializeMetadata())
5699     return Err;
5700 
5701   // Promise to materialize all forward references.
5702   WillMaterializeAllForwardRefs = true;
5703 
5704   // Iterate over the module, deserializing any functions that are still on
5705   // disk.
5706   for (Function &F : *TheModule) {
5707     if (Error Err = materialize(&F))
5708       return Err;
5709   }
5710   // At this point, if there are any function bodies, parse the rest of
5711   // the bits in the module past the last function block we have recorded
5712   // through either lazy scanning or the VST.
5713   if (LastFunctionBlockBit || NextUnreadBit)
5714     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5715                                     ? LastFunctionBlockBit
5716                                     : NextUnreadBit))
5717       return Err;
5718 
5719   // Check that all block address forward references got resolved (as we
5720   // promised above).
5721   if (!BasicBlockFwdRefs.empty())
5722     return error("Never resolved function from blockaddress");
5723 
5724   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5725   // delete the old functions to clean up. We can't do this unless the entire
5726   // module is materialized because there could always be another function body
5727   // with calls to the old function.
5728   for (auto &I : UpgradedIntrinsics) {
5729     for (auto *U : I.first->users()) {
5730       if (CallInst *CI = dyn_cast<CallInst>(U))
5731         UpgradeIntrinsicCall(CI, I.second);
5732     }
5733     if (!I.first->use_empty())
5734       I.first->replaceAllUsesWith(I.second);
5735     I.first->eraseFromParent();
5736   }
5737   UpgradedIntrinsics.clear();
5738   // Do the same for remangled intrinsics
5739   for (auto &I : RemangledIntrinsics) {
5740     I.first->replaceAllUsesWith(I.second);
5741     I.first->eraseFromParent();
5742   }
5743   RemangledIntrinsics.clear();
5744 
5745   UpgradeDebugInfo(*TheModule);
5746 
5747   UpgradeModuleFlags(*TheModule);
5748 
5749   UpgradeARCRuntime(*TheModule);
5750 
5751   return Error::success();
5752 }
5753 
5754 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5755   return IdentifiedStructTypes;
5756 }
5757 
5758 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5759     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5760     StringRef ModulePath, unsigned ModuleId)
5761     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5762       ModulePath(ModulePath), ModuleId(ModuleId) {}
5763 
5764 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5765   TheIndex.addModule(ModulePath, ModuleId);
5766 }
5767 
5768 ModuleSummaryIndex::ModuleInfo *
5769 ModuleSummaryIndexBitcodeReader::getThisModule() {
5770   return TheIndex.getModule(ModulePath);
5771 }
5772 
5773 std::pair<ValueInfo, GlobalValue::GUID>
5774 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5775   auto VGI = ValueIdToValueInfoMap[ValueId];
5776   assert(VGI.first);
5777   return VGI;
5778 }
5779 
5780 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5781     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5782     StringRef SourceFileName) {
5783   std::string GlobalId =
5784       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5785   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5786   auto OriginalNameID = ValueGUID;
5787   if (GlobalValue::isLocalLinkage(Linkage))
5788     OriginalNameID = GlobalValue::getGUID(ValueName);
5789   if (PrintSummaryGUIDs)
5790     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5791            << ValueName << "\n";
5792 
5793   // UseStrtab is false for legacy summary formats and value names are
5794   // created on stack. In that case we save the name in a string saver in
5795   // the index so that the value name can be recorded.
5796   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5797       TheIndex.getOrInsertValueInfo(
5798           ValueGUID,
5799           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5800       OriginalNameID);
5801 }
5802 
5803 // Specialized value symbol table parser used when reading module index
5804 // blocks where we don't actually create global values. The parsed information
5805 // is saved in the bitcode reader for use when later parsing summaries.
5806 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5807     uint64_t Offset,
5808     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5809   // With a strtab the VST is not required to parse the summary.
5810   if (UseStrtab)
5811     return Error::success();
5812 
5813   assert(Offset > 0 && "Expected non-zero VST offset");
5814   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5815   if (!MaybeCurrentBit)
5816     return MaybeCurrentBit.takeError();
5817   uint64_t CurrentBit = MaybeCurrentBit.get();
5818 
5819   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5820     return Err;
5821 
5822   SmallVector<uint64_t, 64> Record;
5823 
5824   // Read all the records for this value table.
5825   SmallString<128> ValueName;
5826 
5827   while (true) {
5828     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5829     if (!MaybeEntry)
5830       return MaybeEntry.takeError();
5831     BitstreamEntry Entry = MaybeEntry.get();
5832 
5833     switch (Entry.Kind) {
5834     case BitstreamEntry::SubBlock: // Handled for us already.
5835     case BitstreamEntry::Error:
5836       return error("Malformed block");
5837     case BitstreamEntry::EndBlock:
5838       // Done parsing VST, jump back to wherever we came from.
5839       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5840         return JumpFailed;
5841       return Error::success();
5842     case BitstreamEntry::Record:
5843       // The interesting case.
5844       break;
5845     }
5846 
5847     // Read a record.
5848     Record.clear();
5849     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5850     if (!MaybeRecord)
5851       return MaybeRecord.takeError();
5852     switch (MaybeRecord.get()) {
5853     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5854       break;
5855     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5856       if (convertToString(Record, 1, ValueName))
5857         return error("Invalid record");
5858       unsigned ValueID = Record[0];
5859       assert(!SourceFileName.empty());
5860       auto VLI = ValueIdToLinkageMap.find(ValueID);
5861       assert(VLI != ValueIdToLinkageMap.end() &&
5862              "No linkage found for VST entry?");
5863       auto Linkage = VLI->second;
5864       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5865       ValueName.clear();
5866       break;
5867     }
5868     case bitc::VST_CODE_FNENTRY: {
5869       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5870       if (convertToString(Record, 2, ValueName))
5871         return error("Invalid record");
5872       unsigned ValueID = Record[0];
5873       assert(!SourceFileName.empty());
5874       auto VLI = ValueIdToLinkageMap.find(ValueID);
5875       assert(VLI != ValueIdToLinkageMap.end() &&
5876              "No linkage found for VST entry?");
5877       auto Linkage = VLI->second;
5878       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5879       ValueName.clear();
5880       break;
5881     }
5882     case bitc::VST_CODE_COMBINED_ENTRY: {
5883       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5884       unsigned ValueID = Record[0];
5885       GlobalValue::GUID RefGUID = Record[1];
5886       // The "original name", which is the second value of the pair will be
5887       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5888       ValueIdToValueInfoMap[ValueID] =
5889           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5890       break;
5891     }
5892     }
5893   }
5894 }
5895 
5896 // Parse just the blocks needed for building the index out of the module.
5897 // At the end of this routine the module Index is populated with a map
5898 // from global value id to GlobalValueSummary objects.
5899 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5900   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5901     return Err;
5902 
5903   SmallVector<uint64_t, 64> Record;
5904   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5905   unsigned ValueId = 0;
5906 
5907   // Read the index for this module.
5908   while (true) {
5909     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5910     if (!MaybeEntry)
5911       return MaybeEntry.takeError();
5912     llvm::BitstreamEntry Entry = MaybeEntry.get();
5913 
5914     switch (Entry.Kind) {
5915     case BitstreamEntry::Error:
5916       return error("Malformed block");
5917     case BitstreamEntry::EndBlock:
5918       return Error::success();
5919 
5920     case BitstreamEntry::SubBlock:
5921       switch (Entry.ID) {
5922       default: // Skip unknown content.
5923         if (Error Err = Stream.SkipBlock())
5924           return Err;
5925         break;
5926       case bitc::BLOCKINFO_BLOCK_ID:
5927         // Need to parse these to get abbrev ids (e.g. for VST)
5928         if (Error Err = readBlockInfo())
5929           return Err;
5930         break;
5931       case bitc::VALUE_SYMTAB_BLOCK_ID:
5932         // Should have been parsed earlier via VSTOffset, unless there
5933         // is no summary section.
5934         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5935                 !SeenGlobalValSummary) &&
5936                "Expected early VST parse via VSTOffset record");
5937         if (Error Err = Stream.SkipBlock())
5938           return Err;
5939         break;
5940       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5941       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5942         // Add the module if it is a per-module index (has a source file name).
5943         if (!SourceFileName.empty())
5944           addThisModule();
5945         assert(!SeenValueSymbolTable &&
5946                "Already read VST when parsing summary block?");
5947         // We might not have a VST if there were no values in the
5948         // summary. An empty summary block generated when we are
5949         // performing ThinLTO compiles so we don't later invoke
5950         // the regular LTO process on them.
5951         if (VSTOffset > 0) {
5952           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5953             return Err;
5954           SeenValueSymbolTable = true;
5955         }
5956         SeenGlobalValSummary = true;
5957         if (Error Err = parseEntireSummary(Entry.ID))
5958           return Err;
5959         break;
5960       case bitc::MODULE_STRTAB_BLOCK_ID:
5961         if (Error Err = parseModuleStringTable())
5962           return Err;
5963         break;
5964       }
5965       continue;
5966 
5967     case BitstreamEntry::Record: {
5968         Record.clear();
5969         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5970         if (!MaybeBitCode)
5971           return MaybeBitCode.takeError();
5972         switch (MaybeBitCode.get()) {
5973         default:
5974           break; // Default behavior, ignore unknown content.
5975         case bitc::MODULE_CODE_VERSION: {
5976           if (Error Err = parseVersionRecord(Record).takeError())
5977             return Err;
5978           break;
5979         }
5980         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5981         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5982           SmallString<128> ValueName;
5983           if (convertToString(Record, 0, ValueName))
5984             return error("Invalid record");
5985           SourceFileName = ValueName.c_str();
5986           break;
5987         }
5988         /// MODULE_CODE_HASH: [5*i32]
5989         case bitc::MODULE_CODE_HASH: {
5990           if (Record.size() != 5)
5991             return error("Invalid hash length " + Twine(Record.size()).str());
5992           auto &Hash = getThisModule()->second.second;
5993           int Pos = 0;
5994           for (auto &Val : Record) {
5995             assert(!(Val >> 32) && "Unexpected high bits set");
5996             Hash[Pos++] = Val;
5997           }
5998           break;
5999         }
6000         /// MODULE_CODE_VSTOFFSET: [offset]
6001         case bitc::MODULE_CODE_VSTOFFSET:
6002           if (Record.empty())
6003             return error("Invalid record");
6004           // Note that we subtract 1 here because the offset is relative to one
6005           // word before the start of the identification or module block, which
6006           // was historically always the start of the regular bitcode header.
6007           VSTOffset = Record[0] - 1;
6008           break;
6009         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6010         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6011         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6012         // v2: [strtab offset, strtab size, v1]
6013         case bitc::MODULE_CODE_GLOBALVAR:
6014         case bitc::MODULE_CODE_FUNCTION:
6015         case bitc::MODULE_CODE_ALIAS: {
6016           StringRef Name;
6017           ArrayRef<uint64_t> GVRecord;
6018           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6019           if (GVRecord.size() <= 3)
6020             return error("Invalid record");
6021           uint64_t RawLinkage = GVRecord[3];
6022           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6023           if (!UseStrtab) {
6024             ValueIdToLinkageMap[ValueId++] = Linkage;
6025             break;
6026           }
6027 
6028           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6029           break;
6030         }
6031         }
6032       }
6033       continue;
6034     }
6035   }
6036 }
6037 
6038 std::vector<ValueInfo>
6039 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6040   std::vector<ValueInfo> Ret;
6041   Ret.reserve(Record.size());
6042   for (uint64_t RefValueId : Record)
6043     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6044   return Ret;
6045 }
6046 
6047 std::vector<FunctionSummary::EdgeTy>
6048 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6049                                               bool IsOldProfileFormat,
6050                                               bool HasProfile, bool HasRelBF) {
6051   std::vector<FunctionSummary::EdgeTy> Ret;
6052   Ret.reserve(Record.size());
6053   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6054     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6055     uint64_t RelBF = 0;
6056     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6057     if (IsOldProfileFormat) {
6058       I += 1; // Skip old callsitecount field
6059       if (HasProfile)
6060         I += 1; // Skip old profilecount field
6061     } else if (HasProfile)
6062       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6063     else if (HasRelBF)
6064       RelBF = Record[++I];
6065     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6066   }
6067   return Ret;
6068 }
6069 
6070 static void
6071 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6072                                        WholeProgramDevirtResolution &Wpd) {
6073   uint64_t ArgNum = Record[Slot++];
6074   WholeProgramDevirtResolution::ByArg &B =
6075       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6076   Slot += ArgNum;
6077 
6078   B.TheKind =
6079       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6080   B.Info = Record[Slot++];
6081   B.Byte = Record[Slot++];
6082   B.Bit = Record[Slot++];
6083 }
6084 
6085 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6086                                               StringRef Strtab, size_t &Slot,
6087                                               TypeIdSummary &TypeId) {
6088   uint64_t Id = Record[Slot++];
6089   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6090 
6091   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6092   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6093                         static_cast<size_t>(Record[Slot + 1])};
6094   Slot += 2;
6095 
6096   uint64_t ResByArgNum = Record[Slot++];
6097   for (uint64_t I = 0; I != ResByArgNum; ++I)
6098     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6099 }
6100 
6101 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6102                                      StringRef Strtab,
6103                                      ModuleSummaryIndex &TheIndex) {
6104   size_t Slot = 0;
6105   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6106       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6107   Slot += 2;
6108 
6109   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6110   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6111   TypeId.TTRes.AlignLog2 = Record[Slot++];
6112   TypeId.TTRes.SizeM1 = Record[Slot++];
6113   TypeId.TTRes.BitMask = Record[Slot++];
6114   TypeId.TTRes.InlineBits = Record[Slot++];
6115 
6116   while (Slot < Record.size())
6117     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6118 }
6119 
6120 std::vector<FunctionSummary::ParamAccess>
6121 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6122   auto ReadRange = [&]() {
6123     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6124                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6125     Record = Record.drop_front();
6126     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6127                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6128     Record = Record.drop_front();
6129     ConstantRange Range{Lower, Upper};
6130     assert(!Range.isFullSet());
6131     assert(!Range.isUpperSignWrapped());
6132     return Range;
6133   };
6134 
6135   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6136   while (!Record.empty()) {
6137     PendingParamAccesses.emplace_back();
6138     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6139     ParamAccess.ParamNo = Record.front();
6140     Record = Record.drop_front();
6141     ParamAccess.Use = ReadRange();
6142     ParamAccess.Calls.resize(Record.front());
6143     Record = Record.drop_front();
6144     for (auto &Call : ParamAccess.Calls) {
6145       Call.ParamNo = Record.front();
6146       Record = Record.drop_front();
6147       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6148       Record = Record.drop_front();
6149       Call.Offsets = ReadRange();
6150     }
6151   }
6152   return PendingParamAccesses;
6153 }
6154 
6155 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6156     ArrayRef<uint64_t> Record, size_t &Slot,
6157     TypeIdCompatibleVtableInfo &TypeId) {
6158   uint64_t Offset = Record[Slot++];
6159   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6160   TypeId.push_back({Offset, Callee});
6161 }
6162 
6163 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6164     ArrayRef<uint64_t> Record) {
6165   size_t Slot = 0;
6166   TypeIdCompatibleVtableInfo &TypeId =
6167       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6168           {Strtab.data() + Record[Slot],
6169            static_cast<size_t>(Record[Slot + 1])});
6170   Slot += 2;
6171 
6172   while (Slot < Record.size())
6173     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6174 }
6175 
6176 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6177                            unsigned WOCnt) {
6178   // Readonly and writeonly refs are in the end of the refs list.
6179   assert(ROCnt + WOCnt <= Refs.size());
6180   unsigned FirstWORef = Refs.size() - WOCnt;
6181   unsigned RefNo = FirstWORef - ROCnt;
6182   for (; RefNo < FirstWORef; ++RefNo)
6183     Refs[RefNo].setReadOnly();
6184   for (; RefNo < Refs.size(); ++RefNo)
6185     Refs[RefNo].setWriteOnly();
6186 }
6187 
6188 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6189 // objects in the index.
6190 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6191   if (Error Err = Stream.EnterSubBlock(ID))
6192     return Err;
6193   SmallVector<uint64_t, 64> Record;
6194 
6195   // Parse version
6196   {
6197     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6198     if (!MaybeEntry)
6199       return MaybeEntry.takeError();
6200     BitstreamEntry Entry = MaybeEntry.get();
6201 
6202     if (Entry.Kind != BitstreamEntry::Record)
6203       return error("Invalid Summary Block: record for version expected");
6204     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6205     if (!MaybeRecord)
6206       return MaybeRecord.takeError();
6207     if (MaybeRecord.get() != bitc::FS_VERSION)
6208       return error("Invalid Summary Block: version expected");
6209   }
6210   const uint64_t Version = Record[0];
6211   const bool IsOldProfileFormat = Version == 1;
6212   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6213     return error("Invalid summary version " + Twine(Version) +
6214                  ". Version should be in the range [1-" +
6215                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6216                  "].");
6217   Record.clear();
6218 
6219   // Keep around the last seen summary to be used when we see an optional
6220   // "OriginalName" attachement.
6221   GlobalValueSummary *LastSeenSummary = nullptr;
6222   GlobalValue::GUID LastSeenGUID = 0;
6223 
6224   // We can expect to see any number of type ID information records before
6225   // each function summary records; these variables store the information
6226   // collected so far so that it can be used to create the summary object.
6227   std::vector<GlobalValue::GUID> PendingTypeTests;
6228   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6229       PendingTypeCheckedLoadVCalls;
6230   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6231       PendingTypeCheckedLoadConstVCalls;
6232   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6233 
6234   while (true) {
6235     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6236     if (!MaybeEntry)
6237       return MaybeEntry.takeError();
6238     BitstreamEntry Entry = MaybeEntry.get();
6239 
6240     switch (Entry.Kind) {
6241     case BitstreamEntry::SubBlock: // Handled for us already.
6242     case BitstreamEntry::Error:
6243       return error("Malformed block");
6244     case BitstreamEntry::EndBlock:
6245       return Error::success();
6246     case BitstreamEntry::Record:
6247       // The interesting case.
6248       break;
6249     }
6250 
6251     // Read a record. The record format depends on whether this
6252     // is a per-module index or a combined index file. In the per-module
6253     // case the records contain the associated value's ID for correlation
6254     // with VST entries. In the combined index the correlation is done
6255     // via the bitcode offset of the summary records (which were saved
6256     // in the combined index VST entries). The records also contain
6257     // information used for ThinLTO renaming and importing.
6258     Record.clear();
6259     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6260     if (!MaybeBitCode)
6261       return MaybeBitCode.takeError();
6262     switch (unsigned BitCode = MaybeBitCode.get()) {
6263     default: // Default behavior: ignore.
6264       break;
6265     case bitc::FS_FLAGS: {  // [flags]
6266       TheIndex.setFlags(Record[0]);
6267       break;
6268     }
6269     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6270       uint64_t ValueID = Record[0];
6271       GlobalValue::GUID RefGUID = Record[1];
6272       ValueIdToValueInfoMap[ValueID] =
6273           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6274       break;
6275     }
6276     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6277     //                numrefs x valueid, n x (valueid)]
6278     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6279     //                        numrefs x valueid,
6280     //                        n x (valueid, hotness)]
6281     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6282     //                      numrefs x valueid,
6283     //                      n x (valueid, relblockfreq)]
6284     case bitc::FS_PERMODULE:
6285     case bitc::FS_PERMODULE_RELBF:
6286     case bitc::FS_PERMODULE_PROFILE: {
6287       unsigned ValueID = Record[0];
6288       uint64_t RawFlags = Record[1];
6289       unsigned InstCount = Record[2];
6290       uint64_t RawFunFlags = 0;
6291       unsigned NumRefs = Record[3];
6292       unsigned NumRORefs = 0, NumWORefs = 0;
6293       int RefListStartIndex = 4;
6294       if (Version >= 4) {
6295         RawFunFlags = Record[3];
6296         NumRefs = Record[4];
6297         RefListStartIndex = 5;
6298         if (Version >= 5) {
6299           NumRORefs = Record[5];
6300           RefListStartIndex = 6;
6301           if (Version >= 7) {
6302             NumWORefs = Record[6];
6303             RefListStartIndex = 7;
6304           }
6305         }
6306       }
6307 
6308       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6309       // The module path string ref set in the summary must be owned by the
6310       // index's module string table. Since we don't have a module path
6311       // string table section in the per-module index, we create a single
6312       // module path string table entry with an empty (0) ID to take
6313       // ownership.
6314       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6315       assert(Record.size() >= RefListStartIndex + NumRefs &&
6316              "Record size inconsistent with number of references");
6317       std::vector<ValueInfo> Refs = makeRefList(
6318           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6319       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6320       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6321       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6322           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6323           IsOldProfileFormat, HasProfile, HasRelBF);
6324       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6325       auto FS = std::make_unique<FunctionSummary>(
6326           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6327           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6328           std::move(PendingTypeTestAssumeVCalls),
6329           std::move(PendingTypeCheckedLoadVCalls),
6330           std::move(PendingTypeTestAssumeConstVCalls),
6331           std::move(PendingTypeCheckedLoadConstVCalls),
6332           std::move(PendingParamAccesses));
6333       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6334       FS->setModulePath(getThisModule()->first());
6335       FS->setOriginalName(VIAndOriginalGUID.second);
6336       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6337       break;
6338     }
6339     // FS_ALIAS: [valueid, flags, valueid]
6340     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6341     // they expect all aliasee summaries to be available.
6342     case bitc::FS_ALIAS: {
6343       unsigned ValueID = Record[0];
6344       uint64_t RawFlags = Record[1];
6345       unsigned AliaseeID = Record[2];
6346       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6347       auto AS = std::make_unique<AliasSummary>(Flags);
6348       // The module path string ref set in the summary must be owned by the
6349       // index's module string table. Since we don't have a module path
6350       // string table section in the per-module index, we create a single
6351       // module path string table entry with an empty (0) ID to take
6352       // ownership.
6353       AS->setModulePath(getThisModule()->first());
6354 
6355       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6356       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6357       if (!AliaseeInModule)
6358         return error("Alias expects aliasee summary to be parsed");
6359       AS->setAliasee(AliaseeVI, AliaseeInModule);
6360 
6361       auto GUID = getValueInfoFromValueId(ValueID);
6362       AS->setOriginalName(GUID.second);
6363       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6364       break;
6365     }
6366     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6367     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6368       unsigned ValueID = Record[0];
6369       uint64_t RawFlags = Record[1];
6370       unsigned RefArrayStart = 2;
6371       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6372                                       /* WriteOnly */ false,
6373                                       /* Constant */ false,
6374                                       GlobalObject::VCallVisibilityPublic);
6375       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6376       if (Version >= 5) {
6377         GVF = getDecodedGVarFlags(Record[2]);
6378         RefArrayStart = 3;
6379       }
6380       std::vector<ValueInfo> Refs =
6381           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6382       auto FS =
6383           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6384       FS->setModulePath(getThisModule()->first());
6385       auto GUID = getValueInfoFromValueId(ValueID);
6386       FS->setOriginalName(GUID.second);
6387       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6388       break;
6389     }
6390     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6391     //                        numrefs, numrefs x valueid,
6392     //                        n x (valueid, offset)]
6393     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6394       unsigned ValueID = Record[0];
6395       uint64_t RawFlags = Record[1];
6396       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6397       unsigned NumRefs = Record[3];
6398       unsigned RefListStartIndex = 4;
6399       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6400       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6401       std::vector<ValueInfo> Refs = makeRefList(
6402           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6403       VTableFuncList VTableFuncs;
6404       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6405         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6406         uint64_t Offset = Record[++I];
6407         VTableFuncs.push_back({Callee, Offset});
6408       }
6409       auto VS =
6410           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6411       VS->setModulePath(getThisModule()->first());
6412       VS->setVTableFuncs(VTableFuncs);
6413       auto GUID = getValueInfoFromValueId(ValueID);
6414       VS->setOriginalName(GUID.second);
6415       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6416       break;
6417     }
6418     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6419     //               numrefs x valueid, n x (valueid)]
6420     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6421     //                       numrefs x valueid, n x (valueid, hotness)]
6422     case bitc::FS_COMBINED:
6423     case bitc::FS_COMBINED_PROFILE: {
6424       unsigned ValueID = Record[0];
6425       uint64_t ModuleId = Record[1];
6426       uint64_t RawFlags = Record[2];
6427       unsigned InstCount = Record[3];
6428       uint64_t RawFunFlags = 0;
6429       uint64_t EntryCount = 0;
6430       unsigned NumRefs = Record[4];
6431       unsigned NumRORefs = 0, NumWORefs = 0;
6432       int RefListStartIndex = 5;
6433 
6434       if (Version >= 4) {
6435         RawFunFlags = Record[4];
6436         RefListStartIndex = 6;
6437         size_t NumRefsIndex = 5;
6438         if (Version >= 5) {
6439           unsigned NumRORefsOffset = 1;
6440           RefListStartIndex = 7;
6441           if (Version >= 6) {
6442             NumRefsIndex = 6;
6443             EntryCount = Record[5];
6444             RefListStartIndex = 8;
6445             if (Version >= 7) {
6446               RefListStartIndex = 9;
6447               NumWORefs = Record[8];
6448               NumRORefsOffset = 2;
6449             }
6450           }
6451           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6452         }
6453         NumRefs = Record[NumRefsIndex];
6454       }
6455 
6456       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6457       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6458       assert(Record.size() >= RefListStartIndex + NumRefs &&
6459              "Record size inconsistent with number of references");
6460       std::vector<ValueInfo> Refs = makeRefList(
6461           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6462       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6463       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6464           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6465           IsOldProfileFormat, HasProfile, false);
6466       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6467       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6468       auto FS = std::make_unique<FunctionSummary>(
6469           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6470           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6471           std::move(PendingTypeTestAssumeVCalls),
6472           std::move(PendingTypeCheckedLoadVCalls),
6473           std::move(PendingTypeTestAssumeConstVCalls),
6474           std::move(PendingTypeCheckedLoadConstVCalls),
6475           std::move(PendingParamAccesses));
6476       LastSeenSummary = FS.get();
6477       LastSeenGUID = VI.getGUID();
6478       FS->setModulePath(ModuleIdMap[ModuleId]);
6479       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6480       break;
6481     }
6482     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6483     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6484     // they expect all aliasee summaries to be available.
6485     case bitc::FS_COMBINED_ALIAS: {
6486       unsigned ValueID = Record[0];
6487       uint64_t ModuleId = Record[1];
6488       uint64_t RawFlags = Record[2];
6489       unsigned AliaseeValueId = Record[3];
6490       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6491       auto AS = std::make_unique<AliasSummary>(Flags);
6492       LastSeenSummary = AS.get();
6493       AS->setModulePath(ModuleIdMap[ModuleId]);
6494 
6495       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6496       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6497       AS->setAliasee(AliaseeVI, AliaseeInModule);
6498 
6499       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6500       LastSeenGUID = VI.getGUID();
6501       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6502       break;
6503     }
6504     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6505     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6506       unsigned ValueID = Record[0];
6507       uint64_t ModuleId = Record[1];
6508       uint64_t RawFlags = Record[2];
6509       unsigned RefArrayStart = 3;
6510       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6511                                       /* WriteOnly */ false,
6512                                       /* Constant */ false,
6513                                       GlobalObject::VCallVisibilityPublic);
6514       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6515       if (Version >= 5) {
6516         GVF = getDecodedGVarFlags(Record[3]);
6517         RefArrayStart = 4;
6518       }
6519       std::vector<ValueInfo> Refs =
6520           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6521       auto FS =
6522           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6523       LastSeenSummary = FS.get();
6524       FS->setModulePath(ModuleIdMap[ModuleId]);
6525       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6526       LastSeenGUID = VI.getGUID();
6527       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6528       break;
6529     }
6530     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6531     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6532       uint64_t OriginalName = Record[0];
6533       if (!LastSeenSummary)
6534         return error("Name attachment that does not follow a combined record");
6535       LastSeenSummary->setOriginalName(OriginalName);
6536       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6537       // Reset the LastSeenSummary
6538       LastSeenSummary = nullptr;
6539       LastSeenGUID = 0;
6540       break;
6541     }
6542     case bitc::FS_TYPE_TESTS:
6543       assert(PendingTypeTests.empty());
6544       llvm::append_range(PendingTypeTests, Record);
6545       break;
6546 
6547     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6548       assert(PendingTypeTestAssumeVCalls.empty());
6549       for (unsigned I = 0; I != Record.size(); I += 2)
6550         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6551       break;
6552 
6553     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6554       assert(PendingTypeCheckedLoadVCalls.empty());
6555       for (unsigned I = 0; I != Record.size(); I += 2)
6556         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6557       break;
6558 
6559     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6560       PendingTypeTestAssumeConstVCalls.push_back(
6561           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6562       break;
6563 
6564     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6565       PendingTypeCheckedLoadConstVCalls.push_back(
6566           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6567       break;
6568 
6569     case bitc::FS_CFI_FUNCTION_DEFS: {
6570       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6571       for (unsigned I = 0; I != Record.size(); I += 2)
6572         CfiFunctionDefs.insert(
6573             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6574       break;
6575     }
6576 
6577     case bitc::FS_CFI_FUNCTION_DECLS: {
6578       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6579       for (unsigned I = 0; I != Record.size(); I += 2)
6580         CfiFunctionDecls.insert(
6581             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6582       break;
6583     }
6584 
6585     case bitc::FS_TYPE_ID:
6586       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6587       break;
6588 
6589     case bitc::FS_TYPE_ID_METADATA:
6590       parseTypeIdCompatibleVtableSummaryRecord(Record);
6591       break;
6592 
6593     case bitc::FS_BLOCK_COUNT:
6594       TheIndex.addBlockCount(Record[0]);
6595       break;
6596 
6597     case bitc::FS_PARAM_ACCESS: {
6598       PendingParamAccesses = parseParamAccesses(Record);
6599       break;
6600     }
6601     }
6602   }
6603   llvm_unreachable("Exit infinite loop");
6604 }
6605 
6606 // Parse the  module string table block into the Index.
6607 // This populates the ModulePathStringTable map in the index.
6608 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6609   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6610     return Err;
6611 
6612   SmallVector<uint64_t, 64> Record;
6613 
6614   SmallString<128> ModulePath;
6615   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6616 
6617   while (true) {
6618     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6619     if (!MaybeEntry)
6620       return MaybeEntry.takeError();
6621     BitstreamEntry Entry = MaybeEntry.get();
6622 
6623     switch (Entry.Kind) {
6624     case BitstreamEntry::SubBlock: // Handled for us already.
6625     case BitstreamEntry::Error:
6626       return error("Malformed block");
6627     case BitstreamEntry::EndBlock:
6628       return Error::success();
6629     case BitstreamEntry::Record:
6630       // The interesting case.
6631       break;
6632     }
6633 
6634     Record.clear();
6635     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6636     if (!MaybeRecord)
6637       return MaybeRecord.takeError();
6638     switch (MaybeRecord.get()) {
6639     default: // Default behavior: ignore.
6640       break;
6641     case bitc::MST_CODE_ENTRY: {
6642       // MST_ENTRY: [modid, namechar x N]
6643       uint64_t ModuleId = Record[0];
6644 
6645       if (convertToString(Record, 1, ModulePath))
6646         return error("Invalid record");
6647 
6648       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6649       ModuleIdMap[ModuleId] = LastSeenModule->first();
6650 
6651       ModulePath.clear();
6652       break;
6653     }
6654     /// MST_CODE_HASH: [5*i32]
6655     case bitc::MST_CODE_HASH: {
6656       if (Record.size() != 5)
6657         return error("Invalid hash length " + Twine(Record.size()).str());
6658       if (!LastSeenModule)
6659         return error("Invalid hash that does not follow a module path");
6660       int Pos = 0;
6661       for (auto &Val : Record) {
6662         assert(!(Val >> 32) && "Unexpected high bits set");
6663         LastSeenModule->second.second[Pos++] = Val;
6664       }
6665       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6666       LastSeenModule = nullptr;
6667       break;
6668     }
6669     }
6670   }
6671   llvm_unreachable("Exit infinite loop");
6672 }
6673 
6674 namespace {
6675 
6676 // FIXME: This class is only here to support the transition to llvm::Error. It
6677 // will be removed once this transition is complete. Clients should prefer to
6678 // deal with the Error value directly, rather than converting to error_code.
6679 class BitcodeErrorCategoryType : public std::error_category {
6680   const char *name() const noexcept override {
6681     return "llvm.bitcode";
6682   }
6683 
6684   std::string message(int IE) const override {
6685     BitcodeError E = static_cast<BitcodeError>(IE);
6686     switch (E) {
6687     case BitcodeError::CorruptedBitcode:
6688       return "Corrupted bitcode";
6689     }
6690     llvm_unreachable("Unknown error type!");
6691   }
6692 };
6693 
6694 } // end anonymous namespace
6695 
6696 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6697 
6698 const std::error_category &llvm::BitcodeErrorCategory() {
6699   return *ErrorCategory;
6700 }
6701 
6702 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6703                                             unsigned Block, unsigned RecordID) {
6704   if (Error Err = Stream.EnterSubBlock(Block))
6705     return std::move(Err);
6706 
6707   StringRef Strtab;
6708   while (true) {
6709     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6710     if (!MaybeEntry)
6711       return MaybeEntry.takeError();
6712     llvm::BitstreamEntry Entry = MaybeEntry.get();
6713 
6714     switch (Entry.Kind) {
6715     case BitstreamEntry::EndBlock:
6716       return Strtab;
6717 
6718     case BitstreamEntry::Error:
6719       return error("Malformed block");
6720 
6721     case BitstreamEntry::SubBlock:
6722       if (Error Err = Stream.SkipBlock())
6723         return std::move(Err);
6724       break;
6725 
6726     case BitstreamEntry::Record:
6727       StringRef Blob;
6728       SmallVector<uint64_t, 1> Record;
6729       Expected<unsigned> MaybeRecord =
6730           Stream.readRecord(Entry.ID, Record, &Blob);
6731       if (!MaybeRecord)
6732         return MaybeRecord.takeError();
6733       if (MaybeRecord.get() == RecordID)
6734         Strtab = Blob;
6735       break;
6736     }
6737   }
6738 }
6739 
6740 //===----------------------------------------------------------------------===//
6741 // External interface
6742 //===----------------------------------------------------------------------===//
6743 
6744 Expected<std::vector<BitcodeModule>>
6745 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6746   auto FOrErr = getBitcodeFileContents(Buffer);
6747   if (!FOrErr)
6748     return FOrErr.takeError();
6749   return std::move(FOrErr->Mods);
6750 }
6751 
6752 Expected<BitcodeFileContents>
6753 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6754   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6755   if (!StreamOrErr)
6756     return StreamOrErr.takeError();
6757   BitstreamCursor &Stream = *StreamOrErr;
6758 
6759   BitcodeFileContents F;
6760   while (true) {
6761     uint64_t BCBegin = Stream.getCurrentByteNo();
6762 
6763     // We may be consuming bitcode from a client that leaves garbage at the end
6764     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6765     // the end that there cannot possibly be another module, stop looking.
6766     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6767       return F;
6768 
6769     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6770     if (!MaybeEntry)
6771       return MaybeEntry.takeError();
6772     llvm::BitstreamEntry Entry = MaybeEntry.get();
6773 
6774     switch (Entry.Kind) {
6775     case BitstreamEntry::EndBlock:
6776     case BitstreamEntry::Error:
6777       return error("Malformed block");
6778 
6779     case BitstreamEntry::SubBlock: {
6780       uint64_t IdentificationBit = -1ull;
6781       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6782         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6783         if (Error Err = Stream.SkipBlock())
6784           return std::move(Err);
6785 
6786         {
6787           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6788           if (!MaybeEntry)
6789             return MaybeEntry.takeError();
6790           Entry = MaybeEntry.get();
6791         }
6792 
6793         if (Entry.Kind != BitstreamEntry::SubBlock ||
6794             Entry.ID != bitc::MODULE_BLOCK_ID)
6795           return error("Malformed block");
6796       }
6797 
6798       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6799         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6800         if (Error Err = Stream.SkipBlock())
6801           return std::move(Err);
6802 
6803         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6804                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6805                           Buffer.getBufferIdentifier(), IdentificationBit,
6806                           ModuleBit});
6807         continue;
6808       }
6809 
6810       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6811         Expected<StringRef> Strtab =
6812             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6813         if (!Strtab)
6814           return Strtab.takeError();
6815         // This string table is used by every preceding bitcode module that does
6816         // not have its own string table. A bitcode file may have multiple
6817         // string tables if it was created by binary concatenation, for example
6818         // with "llvm-cat -b".
6819         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
6820           if (!I.Strtab.empty())
6821             break;
6822           I.Strtab = *Strtab;
6823         }
6824         // Similarly, the string table is used by every preceding symbol table;
6825         // normally there will be just one unless the bitcode file was created
6826         // by binary concatenation.
6827         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6828           F.StrtabForSymtab = *Strtab;
6829         continue;
6830       }
6831 
6832       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6833         Expected<StringRef> SymtabOrErr =
6834             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6835         if (!SymtabOrErr)
6836           return SymtabOrErr.takeError();
6837 
6838         // We can expect the bitcode file to have multiple symbol tables if it
6839         // was created by binary concatenation. In that case we silently
6840         // ignore any subsequent symbol tables, which is fine because this is a
6841         // low level function. The client is expected to notice that the number
6842         // of modules in the symbol table does not match the number of modules
6843         // in the input file and regenerate the symbol table.
6844         if (F.Symtab.empty())
6845           F.Symtab = *SymtabOrErr;
6846         continue;
6847       }
6848 
6849       if (Error Err = Stream.SkipBlock())
6850         return std::move(Err);
6851       continue;
6852     }
6853     case BitstreamEntry::Record:
6854       if (Error E = Stream.skipRecord(Entry.ID).takeError())
6855         return std::move(E);
6856       continue;
6857     }
6858   }
6859 }
6860 
6861 /// Get a lazy one-at-time loading module from bitcode.
6862 ///
6863 /// This isn't always used in a lazy context.  In particular, it's also used by
6864 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6865 /// in forward-referenced functions from block address references.
6866 ///
6867 /// \param[in] MaterializeAll Set to \c true if we should materialize
6868 /// everything.
6869 Expected<std::unique_ptr<Module>>
6870 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6871                              bool ShouldLazyLoadMetadata, bool IsImporting,
6872                              DataLayoutCallbackTy DataLayoutCallback) {
6873   BitstreamCursor Stream(Buffer);
6874 
6875   std::string ProducerIdentification;
6876   if (IdentificationBit != -1ull) {
6877     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6878       return std::move(JumpFailed);
6879     if (Error E =
6880             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
6881       return std::move(E);
6882   }
6883 
6884   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6885     return std::move(JumpFailed);
6886   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6887                               Context);
6888 
6889   std::unique_ptr<Module> M =
6890       std::make_unique<Module>(ModuleIdentifier, Context);
6891   M->setMaterializer(R);
6892 
6893   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6894   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6895                                       IsImporting, DataLayoutCallback))
6896     return std::move(Err);
6897 
6898   if (MaterializeAll) {
6899     // Read in the entire module, and destroy the BitcodeReader.
6900     if (Error Err = M->materializeAll())
6901       return std::move(Err);
6902   } else {
6903     // Resolve forward references from blockaddresses.
6904     if (Error Err = R->materializeForwardReferencedFunctions())
6905       return std::move(Err);
6906   }
6907   return std::move(M);
6908 }
6909 
6910 Expected<std::unique_ptr<Module>>
6911 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6912                              bool IsImporting) {
6913   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6914                        [](StringRef) { return None; });
6915 }
6916 
6917 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6918 // We don't use ModuleIdentifier here because the client may need to control the
6919 // module path used in the combined summary (e.g. when reading summaries for
6920 // regular LTO modules).
6921 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6922                                  StringRef ModulePath, uint64_t ModuleId) {
6923   BitstreamCursor Stream(Buffer);
6924   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6925     return JumpFailed;
6926 
6927   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6928                                     ModulePath, ModuleId);
6929   return R.parseModule();
6930 }
6931 
6932 // Parse the specified bitcode buffer, returning the function info index.
6933 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6934   BitstreamCursor Stream(Buffer);
6935   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6936     return std::move(JumpFailed);
6937 
6938   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6939   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6940                                     ModuleIdentifier, 0);
6941 
6942   if (Error Err = R.parseModule())
6943     return std::move(Err);
6944 
6945   return std::move(Index);
6946 }
6947 
6948 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6949                                                 unsigned ID) {
6950   if (Error Err = Stream.EnterSubBlock(ID))
6951     return std::move(Err);
6952   SmallVector<uint64_t, 64> Record;
6953 
6954   while (true) {
6955     BitstreamEntry Entry;
6956     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
6957       return std::move(E);
6958 
6959     switch (Entry.Kind) {
6960     case BitstreamEntry::SubBlock: // Handled for us already.
6961     case BitstreamEntry::Error:
6962       return error("Malformed block");
6963     case BitstreamEntry::EndBlock:
6964       // If no flags record found, conservatively return true to mimic
6965       // behavior before this flag was added.
6966       return true;
6967     case BitstreamEntry::Record:
6968       // The interesting case.
6969       break;
6970     }
6971 
6972     // Look for the FS_FLAGS record.
6973     Record.clear();
6974     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6975     if (!MaybeBitCode)
6976       return MaybeBitCode.takeError();
6977     switch (MaybeBitCode.get()) {
6978     default: // Default behavior: ignore.
6979       break;
6980     case bitc::FS_FLAGS: { // [flags]
6981       uint64_t Flags = Record[0];
6982       // Scan flags.
6983       assert(Flags <= 0x7f && "Unexpected bits in flag");
6984 
6985       return Flags & 0x8;
6986     }
6987     }
6988   }
6989   llvm_unreachable("Exit infinite loop");
6990 }
6991 
6992 // Check if the given bitcode buffer contains a global value summary block.
6993 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6994   BitstreamCursor Stream(Buffer);
6995   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6996     return std::move(JumpFailed);
6997 
6998   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6999     return std::move(Err);
7000 
7001   while (true) {
7002     llvm::BitstreamEntry Entry;
7003     if (Error E = Stream.advance().moveInto(Entry))
7004       return std::move(E);
7005 
7006     switch (Entry.Kind) {
7007     case BitstreamEntry::Error:
7008       return error("Malformed block");
7009     case BitstreamEntry::EndBlock:
7010       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
7011                             /*EnableSplitLTOUnit=*/false};
7012 
7013     case BitstreamEntry::SubBlock:
7014       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
7015         Expected<bool> EnableSplitLTOUnit =
7016             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7017         if (!EnableSplitLTOUnit)
7018           return EnableSplitLTOUnit.takeError();
7019         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
7020                               *EnableSplitLTOUnit};
7021       }
7022 
7023       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
7024         Expected<bool> EnableSplitLTOUnit =
7025             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7026         if (!EnableSplitLTOUnit)
7027           return EnableSplitLTOUnit.takeError();
7028         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7029                               *EnableSplitLTOUnit};
7030       }
7031 
7032       // Ignore other sub-blocks.
7033       if (Error Err = Stream.SkipBlock())
7034         return std::move(Err);
7035       continue;
7036 
7037     case BitstreamEntry::Record:
7038       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7039         continue;
7040       else
7041         return StreamFailed.takeError();
7042     }
7043   }
7044 }
7045 
7046 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7047   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7048   if (!MsOrErr)
7049     return MsOrErr.takeError();
7050 
7051   if (MsOrErr->size() != 1)
7052     return error("Expected a single module");
7053 
7054   return (*MsOrErr)[0];
7055 }
7056 
7057 Expected<std::unique_ptr<Module>>
7058 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7059                            bool ShouldLazyLoadMetadata, bool IsImporting) {
7060   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7061   if (!BM)
7062     return BM.takeError();
7063 
7064   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7065 }
7066 
7067 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7068     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7069     bool ShouldLazyLoadMetadata, bool IsImporting) {
7070   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7071                                      IsImporting);
7072   if (MOrErr)
7073     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7074   return MOrErr;
7075 }
7076 
7077 Expected<std::unique_ptr<Module>>
7078 BitcodeModule::parseModule(LLVMContext &Context,
7079                            DataLayoutCallbackTy DataLayoutCallback) {
7080   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7081   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7082   // written.  We must defer until the Module has been fully materialized.
7083 }
7084 
7085 Expected<std::unique_ptr<Module>>
7086 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7087                        DataLayoutCallbackTy DataLayoutCallback) {
7088   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7089   if (!BM)
7090     return BM.takeError();
7091 
7092   return BM->parseModule(Context, DataLayoutCallback);
7093 }
7094 
7095 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7096   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7097   if (!StreamOrErr)
7098     return StreamOrErr.takeError();
7099 
7100   return readTriple(*StreamOrErr);
7101 }
7102 
7103 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7104   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7105   if (!StreamOrErr)
7106     return StreamOrErr.takeError();
7107 
7108   return hasObjCCategory(*StreamOrErr);
7109 }
7110 
7111 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7112   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7113   if (!StreamOrErr)
7114     return StreamOrErr.takeError();
7115 
7116   return readIdentificationCode(*StreamOrErr);
7117 }
7118 
7119 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7120                                    ModuleSummaryIndex &CombinedIndex,
7121                                    uint64_t ModuleId) {
7122   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7123   if (!BM)
7124     return BM.takeError();
7125 
7126   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7127 }
7128 
7129 Expected<std::unique_ptr<ModuleSummaryIndex>>
7130 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7131   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7132   if (!BM)
7133     return BM.takeError();
7134 
7135   return BM->getSummary();
7136 }
7137 
7138 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7139   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7140   if (!BM)
7141     return BM.takeError();
7142 
7143   return BM->getLTOInfo();
7144 }
7145 
7146 Expected<std::unique_ptr<ModuleSummaryIndex>>
7147 llvm::getModuleSummaryIndexForFile(StringRef Path,
7148                                    bool IgnoreEmptyThinLTOIndexFile) {
7149   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7150       MemoryBuffer::getFileOrSTDIN(Path);
7151   if (!FileOrErr)
7152     return errorCodeToError(FileOrErr.getError());
7153   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7154     return nullptr;
7155   return getModuleSummaryIndex(**FileOrErr);
7156 }
7157