1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// As we resolve forward-referenced constants, we add information about them 48 /// to this vector. This allows us to resolve them in bulk instead of 49 /// resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 67 68 void clear() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 ValuePtrs.clear(); 71 } 72 73 Value *operator[](unsigned i) const { 74 assert(i < ValuePtrs.size()); 75 return ValuePtrs[i]; 76 } 77 78 Value *back() const { return ValuePtrs.back(); } 79 void pop_back() { ValuePtrs.pop_back(); } 80 bool empty() const { return ValuePtrs.empty(); } 81 void shrinkTo(unsigned N) { 82 assert(N <= size() && "Invalid shrinkTo request!"); 83 ValuePtrs.resize(N); 84 } 85 86 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 87 Value *getValueFwdRef(unsigned Idx, Type *Ty); 88 89 void assignValue(Value *V, unsigned Idx); 90 91 /// Once all constants are read, this method bulk resolves any forward 92 /// references. 93 void resolveConstantForwardRefs(); 94 }; 95 96 class BitcodeReaderMDValueList { 97 unsigned NumFwdRefs; 98 bool AnyFwdRefs; 99 unsigned MinFwdRef; 100 unsigned MaxFwdRef; 101 std::vector<TrackingMDRef> MDValuePtrs; 102 103 LLVMContext &Context; 104 public: 105 BitcodeReaderMDValueList(LLVMContext &C) 106 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 107 108 // vector compatibility methods 109 unsigned size() const { return MDValuePtrs.size(); } 110 void resize(unsigned N) { MDValuePtrs.resize(N); } 111 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 112 void clear() { MDValuePtrs.clear(); } 113 Metadata *back() const { return MDValuePtrs.back(); } 114 void pop_back() { MDValuePtrs.pop_back(); } 115 bool empty() const { return MDValuePtrs.empty(); } 116 117 Metadata *operator[](unsigned i) const { 118 assert(i < MDValuePtrs.size()); 119 return MDValuePtrs[i]; 120 } 121 122 void shrinkTo(unsigned N) { 123 assert(N <= size() && "Invalid shrinkTo request!"); 124 MDValuePtrs.resize(N); 125 } 126 127 Metadata *getValueFwdRef(unsigned Idx); 128 void assignValue(Metadata *MD, unsigned Idx); 129 void tryToResolveCycles(); 130 }; 131 132 class BitcodeReader : public GVMaterializer { 133 LLVMContext &Context; 134 DiagnosticHandlerFunction DiagnosticHandler; 135 Module *TheModule = nullptr; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 bool IsStreamed; 140 uint64_t NextUnreadBit = 0; 141 bool SeenValueSymbolTable = false; 142 143 std::vector<Type*> TypeList; 144 BitcodeReaderValueList ValueList; 145 BitcodeReaderMDValueList MDValueList; 146 std::vector<Comdat *> ComdatList; 147 SmallVector<Instruction *, 64> InstructionList; 148 149 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 150 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 151 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 152 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 153 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 154 155 SmallVector<Instruction*, 64> InstsWithTBAATag; 156 157 /// The set of attributes by index. Index zero in the file is for null, and 158 /// is thus not represented here. As such all indices are off by one. 159 std::vector<AttributeSet> MAttributes; 160 161 /// \brief The set of attribute groups. 162 std::map<unsigned, AttributeSet> MAttributeGroups; 163 164 /// While parsing a function body, this is a list of the basic blocks for the 165 /// function. 166 std::vector<BasicBlock*> FunctionBBs; 167 168 // When reading the module header, this list is populated with functions that 169 // have bodies later in the file. 170 std::vector<Function*> FunctionsWithBodies; 171 172 // When intrinsic functions are encountered which require upgrading they are 173 // stored here with their replacement function. 174 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 175 UpgradedIntrinsicMap UpgradedIntrinsics; 176 177 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 178 DenseMap<unsigned, unsigned> MDKindMap; 179 180 // Several operations happen after the module header has been read, but 181 // before function bodies are processed. This keeps track of whether 182 // we've done this yet. 183 bool SeenFirstFunctionBody = false; 184 185 /// When function bodies are initially scanned, this map contains info about 186 /// where to find deferred function body in the stream. 187 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 188 189 /// When Metadata block is initially scanned when parsing the module, we may 190 /// choose to defer parsing of the metadata. This vector contains info about 191 /// which Metadata blocks are deferred. 192 std::vector<uint64_t> DeferredMetadataInfo; 193 194 /// These are basic blocks forward-referenced by block addresses. They are 195 /// inserted lazily into functions when they're loaded. The basic block ID is 196 /// its index into the vector. 197 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 198 std::deque<Function *> BasicBlockFwdRefQueue; 199 200 /// Indicates that we are using a new encoding for instruction operands where 201 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 202 /// instruction number, for a more compact encoding. Some instruction 203 /// operands are not relative to the instruction ID: basic block numbers, and 204 /// types. Once the old style function blocks have been phased out, we would 205 /// not need this flag. 206 bool UseRelativeIDs = false; 207 208 /// True if all functions will be materialized, negating the need to process 209 /// (e.g.) blockaddress forward references. 210 bool WillMaterializeAllForwardRefs = false; 211 212 /// Functions that have block addresses taken. This is usually empty. 213 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 214 215 /// True if any Metadata block has been materialized. 216 bool IsMetadataMaterialized = false; 217 218 bool StripDebugInfo = false; 219 220 public: 221 std::error_code error(BitcodeError E, const Twine &Message); 222 std::error_code error(BitcodeError E); 223 std::error_code error(const Twine &Message); 224 225 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 226 DiagnosticHandlerFunction DiagnosticHandler); 227 BitcodeReader(LLVMContext &Context, 228 DiagnosticHandlerFunction DiagnosticHandler); 229 ~BitcodeReader() override { freeState(); } 230 231 std::error_code materializeForwardReferencedFunctions(); 232 233 void freeState(); 234 235 void releaseBuffer(); 236 237 bool isDematerializable(const GlobalValue *GV) const override; 238 std::error_code materialize(GlobalValue *GV) override; 239 std::error_code materializeModule(Module *M) override; 240 std::vector<StructType *> getIdentifiedStructTypes() const override; 241 void dematerialize(GlobalValue *GV) override; 242 243 /// \brief Main interface to parsing a bitcode buffer. 244 /// \returns true if an error occurred. 245 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 246 Module *M, 247 bool ShouldLazyLoadMetadata = false); 248 249 /// \brief Cheap mechanism to just extract module triple 250 /// \returns true if an error occurred. 251 ErrorOr<std::string> parseTriple(); 252 253 static uint64_t decodeSignRotatedValue(uint64_t V); 254 255 /// Materialize any deferred Metadata block. 256 std::error_code materializeMetadata() override; 257 258 void setStripDebugInfo() override; 259 260 private: 261 std::vector<StructType *> IdentifiedStructTypes; 262 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 263 StructType *createIdentifiedStructType(LLVMContext &Context); 264 265 Type *getTypeByID(unsigned ID); 266 Value *getFnValueByID(unsigned ID, Type *Ty) { 267 if (Ty && Ty->isMetadataTy()) 268 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 269 return ValueList.getValueFwdRef(ID, Ty); 270 } 271 Metadata *getFnMetadataByID(unsigned ID) { 272 return MDValueList.getValueFwdRef(ID); 273 } 274 BasicBlock *getBasicBlock(unsigned ID) const { 275 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 276 return FunctionBBs[ID]; 277 } 278 AttributeSet getAttributes(unsigned i) const { 279 if (i-1 < MAttributes.size()) 280 return MAttributes[i-1]; 281 return AttributeSet(); 282 } 283 284 /// Read a value/type pair out of the specified record from slot 'Slot'. 285 /// Increment Slot past the number of slots used in the record. Return true on 286 /// failure. 287 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 288 unsigned InstNum, Value *&ResVal) { 289 if (Slot == Record.size()) return true; 290 unsigned ValNo = (unsigned)Record[Slot++]; 291 // Adjust the ValNo, if it was encoded relative to the InstNum. 292 if (UseRelativeIDs) 293 ValNo = InstNum - ValNo; 294 if (ValNo < InstNum) { 295 // If this is not a forward reference, just return the value we already 296 // have. 297 ResVal = getFnValueByID(ValNo, nullptr); 298 return ResVal == nullptr; 299 } 300 if (Slot == Record.size()) 301 return true; 302 303 unsigned TypeNo = (unsigned)Record[Slot++]; 304 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 305 return ResVal == nullptr; 306 } 307 308 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 309 /// past the number of slots used by the value in the record. Return true if 310 /// there is an error. 311 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 312 unsigned InstNum, Type *Ty, Value *&ResVal) { 313 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 314 return true; 315 // All values currently take a single record slot. 316 ++Slot; 317 return false; 318 } 319 320 /// Like popValue, but does not increment the Slot number. 321 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 322 unsigned InstNum, Type *Ty, Value *&ResVal) { 323 ResVal = getValue(Record, Slot, InstNum, Ty); 324 return ResVal == nullptr; 325 } 326 327 /// Version of getValue that returns ResVal directly, or 0 if there is an 328 /// error. 329 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 330 unsigned InstNum, Type *Ty) { 331 if (Slot == Record.size()) return nullptr; 332 unsigned ValNo = (unsigned)Record[Slot]; 333 // Adjust the ValNo, if it was encoded relative to the InstNum. 334 if (UseRelativeIDs) 335 ValNo = InstNum - ValNo; 336 return getFnValueByID(ValNo, Ty); 337 } 338 339 /// Like getValue, but decodes signed VBRs. 340 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 341 unsigned InstNum, Type *Ty) { 342 if (Slot == Record.size()) return nullptr; 343 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 344 // Adjust the ValNo, if it was encoded relative to the InstNum. 345 if (UseRelativeIDs) 346 ValNo = InstNum - ValNo; 347 return getFnValueByID(ValNo, Ty); 348 } 349 350 /// Converts alignment exponent (i.e. power of two (or zero)) to the 351 /// corresponding alignment to use. If alignment is too large, returns 352 /// a corresponding error code. 353 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 354 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 355 std::error_code parseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 356 std::error_code parseAttributeBlock(); 357 std::error_code parseAttributeGroupBlock(); 358 std::error_code parseTypeTable(); 359 std::error_code parseTypeTableBody(); 360 361 std::error_code parseValueSymbolTable(); 362 std::error_code parseConstants(); 363 std::error_code rememberAndSkipFunctionBody(); 364 /// Save the positions of the Metadata blocks and skip parsing the blocks. 365 std::error_code rememberAndSkipMetadata(); 366 std::error_code parseFunctionBody(Function *F); 367 std::error_code globalCleanup(); 368 std::error_code resolveGlobalAndAliasInits(); 369 std::error_code parseMetadata(); 370 std::error_code parseMetadataAttachment(Function &F); 371 ErrorOr<std::string> parseModuleTriple(); 372 std::error_code parseUseLists(); 373 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 374 std::error_code initStreamFromBuffer(); 375 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 376 std::error_code findFunctionInStream( 377 Function *F, 378 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 379 }; 380 } // namespace 381 382 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 383 DiagnosticSeverity Severity, 384 const Twine &Msg) 385 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 386 387 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 388 389 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 390 std::error_code EC, const Twine &Message) { 391 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 392 DiagnosticHandler(DI); 393 return EC; 394 } 395 396 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 397 std::error_code EC) { 398 return error(DiagnosticHandler, EC, EC.message()); 399 } 400 401 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 402 const Twine &Message) { 403 return error(DiagnosticHandler, 404 make_error_code(BitcodeError::CorruptedBitcode), Message); 405 } 406 407 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 408 return ::error(DiagnosticHandler, make_error_code(E), Message); 409 } 410 411 std::error_code BitcodeReader::error(const Twine &Message) { 412 return ::error(DiagnosticHandler, 413 make_error_code(BitcodeError::CorruptedBitcode), Message); 414 } 415 416 std::error_code BitcodeReader::error(BitcodeError E) { 417 return ::error(DiagnosticHandler, make_error_code(E)); 418 } 419 420 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 421 LLVMContext &C) { 422 if (F) 423 return F; 424 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 425 } 426 427 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 428 DiagnosticHandlerFunction DiagnosticHandler) 429 : Context(Context), 430 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 431 Buffer(Buffer), IsStreamed(false), ValueList(Context), 432 MDValueList(Context) {} 433 434 BitcodeReader::BitcodeReader(LLVMContext &Context, 435 DiagnosticHandlerFunction DiagnosticHandler) 436 : Context(Context), 437 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 438 Buffer(nullptr), IsStreamed(true), ValueList(Context), 439 MDValueList(Context) {} 440 441 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 442 if (WillMaterializeAllForwardRefs) 443 return std::error_code(); 444 445 // Prevent recursion. 446 WillMaterializeAllForwardRefs = true; 447 448 while (!BasicBlockFwdRefQueue.empty()) { 449 Function *F = BasicBlockFwdRefQueue.front(); 450 BasicBlockFwdRefQueue.pop_front(); 451 assert(F && "Expected valid function"); 452 if (!BasicBlockFwdRefs.count(F)) 453 // Already materialized. 454 continue; 455 456 // Check for a function that isn't materializable to prevent an infinite 457 // loop. When parsing a blockaddress stored in a global variable, there 458 // isn't a trivial way to check if a function will have a body without a 459 // linear search through FunctionsWithBodies, so just check it here. 460 if (!F->isMaterializable()) 461 return error("Never resolved function from blockaddress"); 462 463 // Try to materialize F. 464 if (std::error_code EC = materialize(F)) 465 return EC; 466 } 467 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 468 469 // Reset state. 470 WillMaterializeAllForwardRefs = false; 471 return std::error_code(); 472 } 473 474 void BitcodeReader::freeState() { 475 Buffer = nullptr; 476 std::vector<Type*>().swap(TypeList); 477 ValueList.clear(); 478 MDValueList.clear(); 479 std::vector<Comdat *>().swap(ComdatList); 480 481 std::vector<AttributeSet>().swap(MAttributes); 482 std::vector<BasicBlock*>().swap(FunctionBBs); 483 std::vector<Function*>().swap(FunctionsWithBodies); 484 DeferredFunctionInfo.clear(); 485 DeferredMetadataInfo.clear(); 486 MDKindMap.clear(); 487 488 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 489 BasicBlockFwdRefQueue.clear(); 490 } 491 492 //===----------------------------------------------------------------------===// 493 // Helper functions to implement forward reference resolution, etc. 494 //===----------------------------------------------------------------------===// 495 496 /// Convert a string from a record into an std::string, return true on failure. 497 template <typename StrTy> 498 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 499 StrTy &Result) { 500 if (Idx > Record.size()) 501 return true; 502 503 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 504 Result += (char)Record[i]; 505 return false; 506 } 507 508 static bool hasImplicitComdat(size_t Val) { 509 switch (Val) { 510 default: 511 return false; 512 case 1: // Old WeakAnyLinkage 513 case 4: // Old LinkOnceAnyLinkage 514 case 10: // Old WeakODRLinkage 515 case 11: // Old LinkOnceODRLinkage 516 return true; 517 } 518 } 519 520 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 521 switch (Val) { 522 default: // Map unknown/new linkages to external 523 case 0: 524 return GlobalValue::ExternalLinkage; 525 case 2: 526 return GlobalValue::AppendingLinkage; 527 case 3: 528 return GlobalValue::InternalLinkage; 529 case 5: 530 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 531 case 6: 532 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 533 case 7: 534 return GlobalValue::ExternalWeakLinkage; 535 case 8: 536 return GlobalValue::CommonLinkage; 537 case 9: 538 return GlobalValue::PrivateLinkage; 539 case 12: 540 return GlobalValue::AvailableExternallyLinkage; 541 case 13: 542 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 543 case 14: 544 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 545 case 15: 546 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 547 case 1: // Old value with implicit comdat. 548 case 16: 549 return GlobalValue::WeakAnyLinkage; 550 case 10: // Old value with implicit comdat. 551 case 17: 552 return GlobalValue::WeakODRLinkage; 553 case 4: // Old value with implicit comdat. 554 case 18: 555 return GlobalValue::LinkOnceAnyLinkage; 556 case 11: // Old value with implicit comdat. 557 case 19: 558 return GlobalValue::LinkOnceODRLinkage; 559 } 560 } 561 562 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 563 switch (Val) { 564 default: // Map unknown visibilities to default. 565 case 0: return GlobalValue::DefaultVisibility; 566 case 1: return GlobalValue::HiddenVisibility; 567 case 2: return GlobalValue::ProtectedVisibility; 568 } 569 } 570 571 static GlobalValue::DLLStorageClassTypes 572 getDecodedDLLStorageClass(unsigned Val) { 573 switch (Val) { 574 default: // Map unknown values to default. 575 case 0: return GlobalValue::DefaultStorageClass; 576 case 1: return GlobalValue::DLLImportStorageClass; 577 case 2: return GlobalValue::DLLExportStorageClass; 578 } 579 } 580 581 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 582 switch (Val) { 583 case 0: return GlobalVariable::NotThreadLocal; 584 default: // Map unknown non-zero value to general dynamic. 585 case 1: return GlobalVariable::GeneralDynamicTLSModel; 586 case 2: return GlobalVariable::LocalDynamicTLSModel; 587 case 3: return GlobalVariable::InitialExecTLSModel; 588 case 4: return GlobalVariable::LocalExecTLSModel; 589 } 590 } 591 592 static int getDecodedCastOpcode(unsigned Val) { 593 switch (Val) { 594 default: return -1; 595 case bitc::CAST_TRUNC : return Instruction::Trunc; 596 case bitc::CAST_ZEXT : return Instruction::ZExt; 597 case bitc::CAST_SEXT : return Instruction::SExt; 598 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 599 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 600 case bitc::CAST_UITOFP : return Instruction::UIToFP; 601 case bitc::CAST_SITOFP : return Instruction::SIToFP; 602 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 603 case bitc::CAST_FPEXT : return Instruction::FPExt; 604 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 605 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 606 case bitc::CAST_BITCAST : return Instruction::BitCast; 607 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 608 } 609 } 610 611 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 612 bool IsFP = Ty->isFPOrFPVectorTy(); 613 // BinOps are only valid for int/fp or vector of int/fp types 614 if (!IsFP && !Ty->isIntOrIntVectorTy()) 615 return -1; 616 617 switch (Val) { 618 default: 619 return -1; 620 case bitc::BINOP_ADD: 621 return IsFP ? Instruction::FAdd : Instruction::Add; 622 case bitc::BINOP_SUB: 623 return IsFP ? Instruction::FSub : Instruction::Sub; 624 case bitc::BINOP_MUL: 625 return IsFP ? Instruction::FMul : Instruction::Mul; 626 case bitc::BINOP_UDIV: 627 return IsFP ? -1 : Instruction::UDiv; 628 case bitc::BINOP_SDIV: 629 return IsFP ? Instruction::FDiv : Instruction::SDiv; 630 case bitc::BINOP_UREM: 631 return IsFP ? -1 : Instruction::URem; 632 case bitc::BINOP_SREM: 633 return IsFP ? Instruction::FRem : Instruction::SRem; 634 case bitc::BINOP_SHL: 635 return IsFP ? -1 : Instruction::Shl; 636 case bitc::BINOP_LSHR: 637 return IsFP ? -1 : Instruction::LShr; 638 case bitc::BINOP_ASHR: 639 return IsFP ? -1 : Instruction::AShr; 640 case bitc::BINOP_AND: 641 return IsFP ? -1 : Instruction::And; 642 case bitc::BINOP_OR: 643 return IsFP ? -1 : Instruction::Or; 644 case bitc::BINOP_XOR: 645 return IsFP ? -1 : Instruction::Xor; 646 } 647 } 648 649 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 650 switch (Val) { 651 default: return AtomicRMWInst::BAD_BINOP; 652 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 653 case bitc::RMW_ADD: return AtomicRMWInst::Add; 654 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 655 case bitc::RMW_AND: return AtomicRMWInst::And; 656 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 657 case bitc::RMW_OR: return AtomicRMWInst::Or; 658 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 659 case bitc::RMW_MAX: return AtomicRMWInst::Max; 660 case bitc::RMW_MIN: return AtomicRMWInst::Min; 661 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 662 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 663 } 664 } 665 666 static AtomicOrdering getDecodedOrdering(unsigned Val) { 667 switch (Val) { 668 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 669 case bitc::ORDERING_UNORDERED: return Unordered; 670 case bitc::ORDERING_MONOTONIC: return Monotonic; 671 case bitc::ORDERING_ACQUIRE: return Acquire; 672 case bitc::ORDERING_RELEASE: return Release; 673 case bitc::ORDERING_ACQREL: return AcquireRelease; 674 default: // Map unknown orderings to sequentially-consistent. 675 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 676 } 677 } 678 679 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 680 switch (Val) { 681 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 682 default: // Map unknown scopes to cross-thread. 683 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 684 } 685 } 686 687 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 688 switch (Val) { 689 default: // Map unknown selection kinds to any. 690 case bitc::COMDAT_SELECTION_KIND_ANY: 691 return Comdat::Any; 692 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 693 return Comdat::ExactMatch; 694 case bitc::COMDAT_SELECTION_KIND_LARGEST: 695 return Comdat::Largest; 696 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 697 return Comdat::NoDuplicates; 698 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 699 return Comdat::SameSize; 700 } 701 } 702 703 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 704 switch (Val) { 705 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 706 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 707 } 708 } 709 710 namespace llvm { 711 namespace { 712 /// \brief A class for maintaining the slot number definition 713 /// as a placeholder for the actual definition for forward constants defs. 714 class ConstantPlaceHolder : public ConstantExpr { 715 void operator=(const ConstantPlaceHolder &) = delete; 716 717 public: 718 // allocate space for exactly one operand 719 void *operator new(size_t s) { return User::operator new(s, 1); } 720 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 721 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 722 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 723 } 724 725 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 726 static bool classof(const Value *V) { 727 return isa<ConstantExpr>(V) && 728 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 729 } 730 731 /// Provide fast operand accessors 732 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 733 }; 734 } // namespace 735 736 // FIXME: can we inherit this from ConstantExpr? 737 template <> 738 struct OperandTraits<ConstantPlaceHolder> : 739 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 740 }; 741 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 742 } // namespace llvm 743 744 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 745 if (Idx == size()) { 746 push_back(V); 747 return; 748 } 749 750 if (Idx >= size()) 751 resize(Idx+1); 752 753 WeakVH &OldV = ValuePtrs[Idx]; 754 if (!OldV) { 755 OldV = V; 756 return; 757 } 758 759 // Handle constants and non-constants (e.g. instrs) differently for 760 // efficiency. 761 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 762 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 763 OldV = V; 764 } else { 765 // If there was a forward reference to this value, replace it. 766 Value *PrevVal = OldV; 767 OldV->replaceAllUsesWith(V); 768 delete PrevVal; 769 } 770 } 771 772 773 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 774 Type *Ty) { 775 if (Idx >= size()) 776 resize(Idx + 1); 777 778 if (Value *V = ValuePtrs[Idx]) { 779 if (Ty != V->getType()) 780 report_fatal_error("Type mismatch in constant table!"); 781 return cast<Constant>(V); 782 } 783 784 // Create and return a placeholder, which will later be RAUW'd. 785 Constant *C = new ConstantPlaceHolder(Ty, Context); 786 ValuePtrs[Idx] = C; 787 return C; 788 } 789 790 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 791 // Bail out for a clearly invalid value. This would make us call resize(0) 792 if (Idx == UINT_MAX) 793 return nullptr; 794 795 if (Idx >= size()) 796 resize(Idx + 1); 797 798 if (Value *V = ValuePtrs[Idx]) { 799 // If the types don't match, it's invalid. 800 if (Ty && Ty != V->getType()) 801 return nullptr; 802 return V; 803 } 804 805 // No type specified, must be invalid reference. 806 if (!Ty) return nullptr; 807 808 // Create and return a placeholder, which will later be RAUW'd. 809 Value *V = new Argument(Ty); 810 ValuePtrs[Idx] = V; 811 return V; 812 } 813 814 /// Once all constants are read, this method bulk resolves any forward 815 /// references. The idea behind this is that we sometimes get constants (such 816 /// as large arrays) which reference *many* forward ref constants. Replacing 817 /// each of these causes a lot of thrashing when building/reuniquing the 818 /// constant. Instead of doing this, we look at all the uses and rewrite all 819 /// the place holders at once for any constant that uses a placeholder. 820 void BitcodeReaderValueList::resolveConstantForwardRefs() { 821 // Sort the values by-pointer so that they are efficient to look up with a 822 // binary search. 823 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 824 825 SmallVector<Constant*, 64> NewOps; 826 827 while (!ResolveConstants.empty()) { 828 Value *RealVal = operator[](ResolveConstants.back().second); 829 Constant *Placeholder = ResolveConstants.back().first; 830 ResolveConstants.pop_back(); 831 832 // Loop over all users of the placeholder, updating them to reference the 833 // new value. If they reference more than one placeholder, update them all 834 // at once. 835 while (!Placeholder->use_empty()) { 836 auto UI = Placeholder->user_begin(); 837 User *U = *UI; 838 839 // If the using object isn't uniqued, just update the operands. This 840 // handles instructions and initializers for global variables. 841 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 842 UI.getUse().set(RealVal); 843 continue; 844 } 845 846 // Otherwise, we have a constant that uses the placeholder. Replace that 847 // constant with a new constant that has *all* placeholder uses updated. 848 Constant *UserC = cast<Constant>(U); 849 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 850 I != E; ++I) { 851 Value *NewOp; 852 if (!isa<ConstantPlaceHolder>(*I)) { 853 // Not a placeholder reference. 854 NewOp = *I; 855 } else if (*I == Placeholder) { 856 // Common case is that it just references this one placeholder. 857 NewOp = RealVal; 858 } else { 859 // Otherwise, look up the placeholder in ResolveConstants. 860 ResolveConstantsTy::iterator It = 861 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 862 std::pair<Constant*, unsigned>(cast<Constant>(*I), 863 0)); 864 assert(It != ResolveConstants.end() && It->first == *I); 865 NewOp = operator[](It->second); 866 } 867 868 NewOps.push_back(cast<Constant>(NewOp)); 869 } 870 871 // Make the new constant. 872 Constant *NewC; 873 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 874 NewC = ConstantArray::get(UserCA->getType(), NewOps); 875 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 876 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 877 } else if (isa<ConstantVector>(UserC)) { 878 NewC = ConstantVector::get(NewOps); 879 } else { 880 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 881 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 882 } 883 884 UserC->replaceAllUsesWith(NewC); 885 UserC->destroyConstant(); 886 NewOps.clear(); 887 } 888 889 // Update all ValueHandles, they should be the only users at this point. 890 Placeholder->replaceAllUsesWith(RealVal); 891 delete Placeholder; 892 } 893 } 894 895 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 896 if (Idx == size()) { 897 push_back(MD); 898 return; 899 } 900 901 if (Idx >= size()) 902 resize(Idx+1); 903 904 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 905 if (!OldMD) { 906 OldMD.reset(MD); 907 return; 908 } 909 910 // If there was a forward reference to this value, replace it. 911 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 912 PrevMD->replaceAllUsesWith(MD); 913 --NumFwdRefs; 914 } 915 916 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 917 if (Idx >= size()) 918 resize(Idx + 1); 919 920 if (Metadata *MD = MDValuePtrs[Idx]) 921 return MD; 922 923 // Track forward refs to be resolved later. 924 if (AnyFwdRefs) { 925 MinFwdRef = std::min(MinFwdRef, Idx); 926 MaxFwdRef = std::max(MaxFwdRef, Idx); 927 } else { 928 AnyFwdRefs = true; 929 MinFwdRef = MaxFwdRef = Idx; 930 } 931 ++NumFwdRefs; 932 933 // Create and return a placeholder, which will later be RAUW'd. 934 Metadata *MD = MDNode::getTemporary(Context, None).release(); 935 MDValuePtrs[Idx].reset(MD); 936 return MD; 937 } 938 939 void BitcodeReaderMDValueList::tryToResolveCycles() { 940 if (!AnyFwdRefs) 941 // Nothing to do. 942 return; 943 944 if (NumFwdRefs) 945 // Still forward references... can't resolve cycles. 946 return; 947 948 // Resolve any cycles. 949 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 950 auto &MD = MDValuePtrs[I]; 951 auto *N = dyn_cast_or_null<MDNode>(MD); 952 if (!N) 953 continue; 954 955 assert(!N->isTemporary() && "Unexpected forward reference"); 956 N->resolveCycles(); 957 } 958 959 // Make sure we return early again until there's another forward ref. 960 AnyFwdRefs = false; 961 } 962 963 Type *BitcodeReader::getTypeByID(unsigned ID) { 964 // The type table size is always specified correctly. 965 if (ID >= TypeList.size()) 966 return nullptr; 967 968 if (Type *Ty = TypeList[ID]) 969 return Ty; 970 971 // If we have a forward reference, the only possible case is when it is to a 972 // named struct. Just create a placeholder for now. 973 return TypeList[ID] = createIdentifiedStructType(Context); 974 } 975 976 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 977 StringRef Name) { 978 auto *Ret = StructType::create(Context, Name); 979 IdentifiedStructTypes.push_back(Ret); 980 return Ret; 981 } 982 983 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 984 auto *Ret = StructType::create(Context); 985 IdentifiedStructTypes.push_back(Ret); 986 return Ret; 987 } 988 989 990 //===----------------------------------------------------------------------===// 991 // Functions for parsing blocks from the bitcode file 992 //===----------------------------------------------------------------------===// 993 994 995 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 996 /// been decoded from the given integer. This function must stay in sync with 997 /// 'encodeLLVMAttributesForBitcode'. 998 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 999 uint64_t EncodedAttrs) { 1000 // FIXME: Remove in 4.0. 1001 1002 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1003 // the bits above 31 down by 11 bits. 1004 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1005 assert((!Alignment || isPowerOf2_32(Alignment)) && 1006 "Alignment must be a power of two."); 1007 1008 if (Alignment) 1009 B.addAlignmentAttr(Alignment); 1010 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1011 (EncodedAttrs & 0xffff)); 1012 } 1013 1014 std::error_code BitcodeReader::parseAttributeBlock() { 1015 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1016 return error("Invalid record"); 1017 1018 if (!MAttributes.empty()) 1019 return error("Invalid multiple blocks"); 1020 1021 SmallVector<uint64_t, 64> Record; 1022 1023 SmallVector<AttributeSet, 8> Attrs; 1024 1025 // Read all the records. 1026 while (1) { 1027 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1028 1029 switch (Entry.Kind) { 1030 case BitstreamEntry::SubBlock: // Handled for us already. 1031 case BitstreamEntry::Error: 1032 return error("Malformed block"); 1033 case BitstreamEntry::EndBlock: 1034 return std::error_code(); 1035 case BitstreamEntry::Record: 1036 // The interesting case. 1037 break; 1038 } 1039 1040 // Read a record. 1041 Record.clear(); 1042 switch (Stream.readRecord(Entry.ID, Record)) { 1043 default: // Default behavior: ignore. 1044 break; 1045 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1046 // FIXME: Remove in 4.0. 1047 if (Record.size() & 1) 1048 return error("Invalid record"); 1049 1050 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1051 AttrBuilder B; 1052 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1053 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1054 } 1055 1056 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1057 Attrs.clear(); 1058 break; 1059 } 1060 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1061 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1062 Attrs.push_back(MAttributeGroups[Record[i]]); 1063 1064 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1065 Attrs.clear(); 1066 break; 1067 } 1068 } 1069 } 1070 } 1071 1072 // Returns Attribute::None on unrecognized codes. 1073 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1074 switch (Code) { 1075 default: 1076 return Attribute::None; 1077 case bitc::ATTR_KIND_ALIGNMENT: 1078 return Attribute::Alignment; 1079 case bitc::ATTR_KIND_ALWAYS_INLINE: 1080 return Attribute::AlwaysInline; 1081 case bitc::ATTR_KIND_BUILTIN: 1082 return Attribute::Builtin; 1083 case bitc::ATTR_KIND_BY_VAL: 1084 return Attribute::ByVal; 1085 case bitc::ATTR_KIND_IN_ALLOCA: 1086 return Attribute::InAlloca; 1087 case bitc::ATTR_KIND_COLD: 1088 return Attribute::Cold; 1089 case bitc::ATTR_KIND_CONVERGENT: 1090 return Attribute::Convergent; 1091 case bitc::ATTR_KIND_INLINE_HINT: 1092 return Attribute::InlineHint; 1093 case bitc::ATTR_KIND_IN_REG: 1094 return Attribute::InReg; 1095 case bitc::ATTR_KIND_JUMP_TABLE: 1096 return Attribute::JumpTable; 1097 case bitc::ATTR_KIND_MIN_SIZE: 1098 return Attribute::MinSize; 1099 case bitc::ATTR_KIND_NAKED: 1100 return Attribute::Naked; 1101 case bitc::ATTR_KIND_NEST: 1102 return Attribute::Nest; 1103 case bitc::ATTR_KIND_NO_ALIAS: 1104 return Attribute::NoAlias; 1105 case bitc::ATTR_KIND_NO_BUILTIN: 1106 return Attribute::NoBuiltin; 1107 case bitc::ATTR_KIND_NO_CAPTURE: 1108 return Attribute::NoCapture; 1109 case bitc::ATTR_KIND_NO_DUPLICATE: 1110 return Attribute::NoDuplicate; 1111 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1112 return Attribute::NoImplicitFloat; 1113 case bitc::ATTR_KIND_NO_INLINE: 1114 return Attribute::NoInline; 1115 case bitc::ATTR_KIND_NON_LAZY_BIND: 1116 return Attribute::NonLazyBind; 1117 case bitc::ATTR_KIND_NON_NULL: 1118 return Attribute::NonNull; 1119 case bitc::ATTR_KIND_DEREFERENCEABLE: 1120 return Attribute::Dereferenceable; 1121 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1122 return Attribute::DereferenceableOrNull; 1123 case bitc::ATTR_KIND_NO_RED_ZONE: 1124 return Attribute::NoRedZone; 1125 case bitc::ATTR_KIND_NO_RETURN: 1126 return Attribute::NoReturn; 1127 case bitc::ATTR_KIND_NO_UNWIND: 1128 return Attribute::NoUnwind; 1129 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1130 return Attribute::OptimizeForSize; 1131 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1132 return Attribute::OptimizeNone; 1133 case bitc::ATTR_KIND_READ_NONE: 1134 return Attribute::ReadNone; 1135 case bitc::ATTR_KIND_READ_ONLY: 1136 return Attribute::ReadOnly; 1137 case bitc::ATTR_KIND_RETURNED: 1138 return Attribute::Returned; 1139 case bitc::ATTR_KIND_RETURNS_TWICE: 1140 return Attribute::ReturnsTwice; 1141 case bitc::ATTR_KIND_S_EXT: 1142 return Attribute::SExt; 1143 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1144 return Attribute::StackAlignment; 1145 case bitc::ATTR_KIND_STACK_PROTECT: 1146 return Attribute::StackProtect; 1147 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1148 return Attribute::StackProtectReq; 1149 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1150 return Attribute::StackProtectStrong; 1151 case bitc::ATTR_KIND_SAFESTACK: 1152 return Attribute::SafeStack; 1153 case bitc::ATTR_KIND_STRUCT_RET: 1154 return Attribute::StructRet; 1155 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1156 return Attribute::SanitizeAddress; 1157 case bitc::ATTR_KIND_SANITIZE_THREAD: 1158 return Attribute::SanitizeThread; 1159 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1160 return Attribute::SanitizeMemory; 1161 case bitc::ATTR_KIND_UW_TABLE: 1162 return Attribute::UWTable; 1163 case bitc::ATTR_KIND_Z_EXT: 1164 return Attribute::ZExt; 1165 } 1166 } 1167 1168 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1169 unsigned &Alignment) { 1170 // Note: Alignment in bitcode files is incremented by 1, so that zero 1171 // can be used for default alignment. 1172 if (Exponent > Value::MaxAlignmentExponent + 1) 1173 return error("Invalid alignment value"); 1174 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1175 return std::error_code(); 1176 } 1177 1178 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1179 Attribute::AttrKind *Kind) { 1180 *Kind = getAttrFromCode(Code); 1181 if (*Kind == Attribute::None) 1182 return error(BitcodeError::CorruptedBitcode, 1183 "Unknown attribute kind (" + Twine(Code) + ")"); 1184 return std::error_code(); 1185 } 1186 1187 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1188 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1189 return error("Invalid record"); 1190 1191 if (!MAttributeGroups.empty()) 1192 return error("Invalid multiple blocks"); 1193 1194 SmallVector<uint64_t, 64> Record; 1195 1196 // Read all the records. 1197 while (1) { 1198 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1199 1200 switch (Entry.Kind) { 1201 case BitstreamEntry::SubBlock: // Handled for us already. 1202 case BitstreamEntry::Error: 1203 return error("Malformed block"); 1204 case BitstreamEntry::EndBlock: 1205 return std::error_code(); 1206 case BitstreamEntry::Record: 1207 // The interesting case. 1208 break; 1209 } 1210 1211 // Read a record. 1212 Record.clear(); 1213 switch (Stream.readRecord(Entry.ID, Record)) { 1214 default: // Default behavior: ignore. 1215 break; 1216 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1217 if (Record.size() < 3) 1218 return error("Invalid record"); 1219 1220 uint64_t GrpID = Record[0]; 1221 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1222 1223 AttrBuilder B; 1224 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1225 if (Record[i] == 0) { // Enum attribute 1226 Attribute::AttrKind Kind; 1227 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1228 return EC; 1229 1230 B.addAttribute(Kind); 1231 } else if (Record[i] == 1) { // Integer attribute 1232 Attribute::AttrKind Kind; 1233 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1234 return EC; 1235 if (Kind == Attribute::Alignment) 1236 B.addAlignmentAttr(Record[++i]); 1237 else if (Kind == Attribute::StackAlignment) 1238 B.addStackAlignmentAttr(Record[++i]); 1239 else if (Kind == Attribute::Dereferenceable) 1240 B.addDereferenceableAttr(Record[++i]); 1241 else if (Kind == Attribute::DereferenceableOrNull) 1242 B.addDereferenceableOrNullAttr(Record[++i]); 1243 } else { // String attribute 1244 assert((Record[i] == 3 || Record[i] == 4) && 1245 "Invalid attribute group entry"); 1246 bool HasValue = (Record[i++] == 4); 1247 SmallString<64> KindStr; 1248 SmallString<64> ValStr; 1249 1250 while (Record[i] != 0 && i != e) 1251 KindStr += Record[i++]; 1252 assert(Record[i] == 0 && "Kind string not null terminated"); 1253 1254 if (HasValue) { 1255 // Has a value associated with it. 1256 ++i; // Skip the '0' that terminates the "kind" string. 1257 while (Record[i] != 0 && i != e) 1258 ValStr += Record[i++]; 1259 assert(Record[i] == 0 && "Value string not null terminated"); 1260 } 1261 1262 B.addAttribute(KindStr.str(), ValStr.str()); 1263 } 1264 } 1265 1266 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1267 break; 1268 } 1269 } 1270 } 1271 } 1272 1273 std::error_code BitcodeReader::parseTypeTable() { 1274 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1275 return error("Invalid record"); 1276 1277 return parseTypeTableBody(); 1278 } 1279 1280 std::error_code BitcodeReader::parseTypeTableBody() { 1281 if (!TypeList.empty()) 1282 return error("Invalid multiple blocks"); 1283 1284 SmallVector<uint64_t, 64> Record; 1285 unsigned NumRecords = 0; 1286 1287 SmallString<64> TypeName; 1288 1289 // Read all the records for this type table. 1290 while (1) { 1291 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1292 1293 switch (Entry.Kind) { 1294 case BitstreamEntry::SubBlock: // Handled for us already. 1295 case BitstreamEntry::Error: 1296 return error("Malformed block"); 1297 case BitstreamEntry::EndBlock: 1298 if (NumRecords != TypeList.size()) 1299 return error("Malformed block"); 1300 return std::error_code(); 1301 case BitstreamEntry::Record: 1302 // The interesting case. 1303 break; 1304 } 1305 1306 // Read a record. 1307 Record.clear(); 1308 Type *ResultTy = nullptr; 1309 switch (Stream.readRecord(Entry.ID, Record)) { 1310 default: 1311 return error("Invalid value"); 1312 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1313 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1314 // type list. This allows us to reserve space. 1315 if (Record.size() < 1) 1316 return error("Invalid record"); 1317 TypeList.resize(Record[0]); 1318 continue; 1319 case bitc::TYPE_CODE_VOID: // VOID 1320 ResultTy = Type::getVoidTy(Context); 1321 break; 1322 case bitc::TYPE_CODE_HALF: // HALF 1323 ResultTy = Type::getHalfTy(Context); 1324 break; 1325 case bitc::TYPE_CODE_FLOAT: // FLOAT 1326 ResultTy = Type::getFloatTy(Context); 1327 break; 1328 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1329 ResultTy = Type::getDoubleTy(Context); 1330 break; 1331 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1332 ResultTy = Type::getX86_FP80Ty(Context); 1333 break; 1334 case bitc::TYPE_CODE_FP128: // FP128 1335 ResultTy = Type::getFP128Ty(Context); 1336 break; 1337 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1338 ResultTy = Type::getPPC_FP128Ty(Context); 1339 break; 1340 case bitc::TYPE_CODE_LABEL: // LABEL 1341 ResultTy = Type::getLabelTy(Context); 1342 break; 1343 case bitc::TYPE_CODE_METADATA: // METADATA 1344 ResultTy = Type::getMetadataTy(Context); 1345 break; 1346 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1347 ResultTy = Type::getX86_MMXTy(Context); 1348 break; 1349 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1350 if (Record.size() < 1) 1351 return error("Invalid record"); 1352 1353 uint64_t NumBits = Record[0]; 1354 if (NumBits < IntegerType::MIN_INT_BITS || 1355 NumBits > IntegerType::MAX_INT_BITS) 1356 return error("Bitwidth for integer type out of range"); 1357 ResultTy = IntegerType::get(Context, NumBits); 1358 break; 1359 } 1360 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1361 // [pointee type, address space] 1362 if (Record.size() < 1) 1363 return error("Invalid record"); 1364 unsigned AddressSpace = 0; 1365 if (Record.size() == 2) 1366 AddressSpace = Record[1]; 1367 ResultTy = getTypeByID(Record[0]); 1368 if (!ResultTy || 1369 !PointerType::isValidElementType(ResultTy)) 1370 return error("Invalid type"); 1371 ResultTy = PointerType::get(ResultTy, AddressSpace); 1372 break; 1373 } 1374 case bitc::TYPE_CODE_FUNCTION_OLD: { 1375 // FIXME: attrid is dead, remove it in LLVM 4.0 1376 // FUNCTION: [vararg, attrid, retty, paramty x N] 1377 if (Record.size() < 3) 1378 return error("Invalid record"); 1379 SmallVector<Type*, 8> ArgTys; 1380 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1381 if (Type *T = getTypeByID(Record[i])) 1382 ArgTys.push_back(T); 1383 else 1384 break; 1385 } 1386 1387 ResultTy = getTypeByID(Record[2]); 1388 if (!ResultTy || ArgTys.size() < Record.size()-3) 1389 return error("Invalid type"); 1390 1391 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1392 break; 1393 } 1394 case bitc::TYPE_CODE_FUNCTION: { 1395 // FUNCTION: [vararg, retty, paramty x N] 1396 if (Record.size() < 2) 1397 return error("Invalid record"); 1398 SmallVector<Type*, 8> ArgTys; 1399 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1400 if (Type *T = getTypeByID(Record[i])) { 1401 if (!FunctionType::isValidArgumentType(T)) 1402 return error("Invalid function argument type"); 1403 ArgTys.push_back(T); 1404 } 1405 else 1406 break; 1407 } 1408 1409 ResultTy = getTypeByID(Record[1]); 1410 if (!ResultTy || ArgTys.size() < Record.size()-2) 1411 return error("Invalid type"); 1412 1413 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1414 break; 1415 } 1416 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1417 if (Record.size() < 1) 1418 return error("Invalid record"); 1419 SmallVector<Type*, 8> EltTys; 1420 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1421 if (Type *T = getTypeByID(Record[i])) 1422 EltTys.push_back(T); 1423 else 1424 break; 1425 } 1426 if (EltTys.size() != Record.size()-1) 1427 return error("Invalid type"); 1428 ResultTy = StructType::get(Context, EltTys, Record[0]); 1429 break; 1430 } 1431 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1432 if (convertToString(Record, 0, TypeName)) 1433 return error("Invalid record"); 1434 continue; 1435 1436 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1437 if (Record.size() < 1) 1438 return error("Invalid record"); 1439 1440 if (NumRecords >= TypeList.size()) 1441 return error("Invalid TYPE table"); 1442 1443 // Check to see if this was forward referenced, if so fill in the temp. 1444 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1445 if (Res) { 1446 Res->setName(TypeName); 1447 TypeList[NumRecords] = nullptr; 1448 } else // Otherwise, create a new struct. 1449 Res = createIdentifiedStructType(Context, TypeName); 1450 TypeName.clear(); 1451 1452 SmallVector<Type*, 8> EltTys; 1453 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1454 if (Type *T = getTypeByID(Record[i])) 1455 EltTys.push_back(T); 1456 else 1457 break; 1458 } 1459 if (EltTys.size() != Record.size()-1) 1460 return error("Invalid record"); 1461 Res->setBody(EltTys, Record[0]); 1462 ResultTy = Res; 1463 break; 1464 } 1465 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1466 if (Record.size() != 1) 1467 return error("Invalid record"); 1468 1469 if (NumRecords >= TypeList.size()) 1470 return error("Invalid TYPE table"); 1471 1472 // Check to see if this was forward referenced, if so fill in the temp. 1473 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1474 if (Res) { 1475 Res->setName(TypeName); 1476 TypeList[NumRecords] = nullptr; 1477 } else // Otherwise, create a new struct with no body. 1478 Res = createIdentifiedStructType(Context, TypeName); 1479 TypeName.clear(); 1480 ResultTy = Res; 1481 break; 1482 } 1483 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1484 if (Record.size() < 2) 1485 return error("Invalid record"); 1486 ResultTy = getTypeByID(Record[1]); 1487 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1488 return error("Invalid type"); 1489 ResultTy = ArrayType::get(ResultTy, Record[0]); 1490 break; 1491 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1492 if (Record.size() < 2) 1493 return error("Invalid record"); 1494 if (Record[0] == 0) 1495 return error("Invalid vector length"); 1496 ResultTy = getTypeByID(Record[1]); 1497 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1498 return error("Invalid type"); 1499 ResultTy = VectorType::get(ResultTy, Record[0]); 1500 break; 1501 } 1502 1503 if (NumRecords >= TypeList.size()) 1504 return error("Invalid TYPE table"); 1505 if (TypeList[NumRecords]) 1506 return error( 1507 "Invalid TYPE table: Only named structs can be forward referenced"); 1508 assert(ResultTy && "Didn't read a type?"); 1509 TypeList[NumRecords++] = ResultTy; 1510 } 1511 } 1512 1513 std::error_code BitcodeReader::parseValueSymbolTable() { 1514 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1515 return error("Invalid record"); 1516 1517 SmallVector<uint64_t, 64> Record; 1518 1519 Triple TT(TheModule->getTargetTriple()); 1520 1521 // Read all the records for this value table. 1522 SmallString<128> ValueName; 1523 while (1) { 1524 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1525 1526 switch (Entry.Kind) { 1527 case BitstreamEntry::SubBlock: // Handled for us already. 1528 case BitstreamEntry::Error: 1529 return error("Malformed block"); 1530 case BitstreamEntry::EndBlock: 1531 return std::error_code(); 1532 case BitstreamEntry::Record: 1533 // The interesting case. 1534 break; 1535 } 1536 1537 // Read a record. 1538 Record.clear(); 1539 switch (Stream.readRecord(Entry.ID, Record)) { 1540 default: // Default behavior: unknown type. 1541 break; 1542 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1543 if (convertToString(Record, 1, ValueName)) 1544 return error("Invalid record"); 1545 unsigned ValueID = Record[0]; 1546 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1547 return error("Invalid record"); 1548 Value *V = ValueList[ValueID]; 1549 1550 V->setName(StringRef(ValueName.data(), ValueName.size())); 1551 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1552 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1553 if (TT.isOSBinFormatMachO()) 1554 GO->setComdat(nullptr); 1555 else 1556 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1557 } 1558 } 1559 ValueName.clear(); 1560 break; 1561 } 1562 case bitc::VST_CODE_BBENTRY: { 1563 if (convertToString(Record, 1, ValueName)) 1564 return error("Invalid record"); 1565 BasicBlock *BB = getBasicBlock(Record[0]); 1566 if (!BB) 1567 return error("Invalid record"); 1568 1569 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1570 ValueName.clear(); 1571 break; 1572 } 1573 } 1574 } 1575 } 1576 1577 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1578 1579 std::error_code BitcodeReader::parseMetadata() { 1580 IsMetadataMaterialized = true; 1581 unsigned NextMDValueNo = MDValueList.size(); 1582 1583 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1584 return error("Invalid record"); 1585 1586 SmallVector<uint64_t, 64> Record; 1587 1588 auto getMD = 1589 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1590 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1591 if (ID) 1592 return getMD(ID - 1); 1593 return nullptr; 1594 }; 1595 auto getMDString = [&](unsigned ID) -> MDString *{ 1596 // This requires that the ID is not really a forward reference. In 1597 // particular, the MDString must already have been resolved. 1598 return cast_or_null<MDString>(getMDOrNull(ID)); 1599 }; 1600 1601 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1602 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1603 1604 // Read all the records. 1605 while (1) { 1606 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1607 1608 switch (Entry.Kind) { 1609 case BitstreamEntry::SubBlock: // Handled for us already. 1610 case BitstreamEntry::Error: 1611 return error("Malformed block"); 1612 case BitstreamEntry::EndBlock: 1613 MDValueList.tryToResolveCycles(); 1614 return std::error_code(); 1615 case BitstreamEntry::Record: 1616 // The interesting case. 1617 break; 1618 } 1619 1620 // Read a record. 1621 Record.clear(); 1622 unsigned Code = Stream.readRecord(Entry.ID, Record); 1623 bool IsDistinct = false; 1624 switch (Code) { 1625 default: // Default behavior: ignore. 1626 break; 1627 case bitc::METADATA_NAME: { 1628 // Read name of the named metadata. 1629 SmallString<8> Name(Record.begin(), Record.end()); 1630 Record.clear(); 1631 Code = Stream.ReadCode(); 1632 1633 unsigned NextBitCode = Stream.readRecord(Code, Record); 1634 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1635 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1636 1637 // Read named metadata elements. 1638 unsigned Size = Record.size(); 1639 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1640 for (unsigned i = 0; i != Size; ++i) { 1641 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1642 if (!MD) 1643 return error("Invalid record"); 1644 NMD->addOperand(MD); 1645 } 1646 break; 1647 } 1648 case bitc::METADATA_OLD_FN_NODE: { 1649 // FIXME: Remove in 4.0. 1650 // This is a LocalAsMetadata record, the only type of function-local 1651 // metadata. 1652 if (Record.size() % 2 == 1) 1653 return error("Invalid record"); 1654 1655 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1656 // to be legal, but there's no upgrade path. 1657 auto dropRecord = [&] { 1658 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1659 }; 1660 if (Record.size() != 2) { 1661 dropRecord(); 1662 break; 1663 } 1664 1665 Type *Ty = getTypeByID(Record[0]); 1666 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1667 dropRecord(); 1668 break; 1669 } 1670 1671 MDValueList.assignValue( 1672 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1673 NextMDValueNo++); 1674 break; 1675 } 1676 case bitc::METADATA_OLD_NODE: { 1677 // FIXME: Remove in 4.0. 1678 if (Record.size() % 2 == 1) 1679 return error("Invalid record"); 1680 1681 unsigned Size = Record.size(); 1682 SmallVector<Metadata *, 8> Elts; 1683 for (unsigned i = 0; i != Size; i += 2) { 1684 Type *Ty = getTypeByID(Record[i]); 1685 if (!Ty) 1686 return error("Invalid record"); 1687 if (Ty->isMetadataTy()) 1688 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1689 else if (!Ty->isVoidTy()) { 1690 auto *MD = 1691 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1692 assert(isa<ConstantAsMetadata>(MD) && 1693 "Expected non-function-local metadata"); 1694 Elts.push_back(MD); 1695 } else 1696 Elts.push_back(nullptr); 1697 } 1698 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1699 break; 1700 } 1701 case bitc::METADATA_VALUE: { 1702 if (Record.size() != 2) 1703 return error("Invalid record"); 1704 1705 Type *Ty = getTypeByID(Record[0]); 1706 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1707 return error("Invalid record"); 1708 1709 MDValueList.assignValue( 1710 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1711 NextMDValueNo++); 1712 break; 1713 } 1714 case bitc::METADATA_DISTINCT_NODE: 1715 IsDistinct = true; 1716 // fallthrough... 1717 case bitc::METADATA_NODE: { 1718 SmallVector<Metadata *, 8> Elts; 1719 Elts.reserve(Record.size()); 1720 for (unsigned ID : Record) 1721 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1722 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1723 : MDNode::get(Context, Elts), 1724 NextMDValueNo++); 1725 break; 1726 } 1727 case bitc::METADATA_LOCATION: { 1728 if (Record.size() != 5) 1729 return error("Invalid record"); 1730 1731 unsigned Line = Record[1]; 1732 unsigned Column = Record[2]; 1733 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1734 Metadata *InlinedAt = 1735 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1736 MDValueList.assignValue( 1737 GET_OR_DISTINCT(DILocation, Record[0], 1738 (Context, Line, Column, Scope, InlinedAt)), 1739 NextMDValueNo++); 1740 break; 1741 } 1742 case bitc::METADATA_GENERIC_DEBUG: { 1743 if (Record.size() < 4) 1744 return error("Invalid record"); 1745 1746 unsigned Tag = Record[1]; 1747 unsigned Version = Record[2]; 1748 1749 if (Tag >= 1u << 16 || Version != 0) 1750 return error("Invalid record"); 1751 1752 auto *Header = getMDString(Record[3]); 1753 SmallVector<Metadata *, 8> DwarfOps; 1754 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1755 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1756 : nullptr); 1757 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1758 (Context, Tag, Header, DwarfOps)), 1759 NextMDValueNo++); 1760 break; 1761 } 1762 case bitc::METADATA_SUBRANGE: { 1763 if (Record.size() != 3) 1764 return error("Invalid record"); 1765 1766 MDValueList.assignValue( 1767 GET_OR_DISTINCT(DISubrange, Record[0], 1768 (Context, Record[1], unrotateSign(Record[2]))), 1769 NextMDValueNo++); 1770 break; 1771 } 1772 case bitc::METADATA_ENUMERATOR: { 1773 if (Record.size() != 3) 1774 return error("Invalid record"); 1775 1776 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1777 (Context, unrotateSign(Record[1]), 1778 getMDString(Record[2]))), 1779 NextMDValueNo++); 1780 break; 1781 } 1782 case bitc::METADATA_BASIC_TYPE: { 1783 if (Record.size() != 6) 1784 return error("Invalid record"); 1785 1786 MDValueList.assignValue( 1787 GET_OR_DISTINCT(DIBasicType, Record[0], 1788 (Context, Record[1], getMDString(Record[2]), 1789 Record[3], Record[4], Record[5])), 1790 NextMDValueNo++); 1791 break; 1792 } 1793 case bitc::METADATA_DERIVED_TYPE: { 1794 if (Record.size() != 12) 1795 return error("Invalid record"); 1796 1797 MDValueList.assignValue( 1798 GET_OR_DISTINCT(DIDerivedType, Record[0], 1799 (Context, Record[1], getMDString(Record[2]), 1800 getMDOrNull(Record[3]), Record[4], 1801 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1802 Record[7], Record[8], Record[9], Record[10], 1803 getMDOrNull(Record[11]))), 1804 NextMDValueNo++); 1805 break; 1806 } 1807 case bitc::METADATA_COMPOSITE_TYPE: { 1808 if (Record.size() != 16) 1809 return error("Invalid record"); 1810 1811 MDValueList.assignValue( 1812 GET_OR_DISTINCT(DICompositeType, Record[0], 1813 (Context, Record[1], getMDString(Record[2]), 1814 getMDOrNull(Record[3]), Record[4], 1815 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1816 Record[7], Record[8], Record[9], Record[10], 1817 getMDOrNull(Record[11]), Record[12], 1818 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1819 getMDString(Record[15]))), 1820 NextMDValueNo++); 1821 break; 1822 } 1823 case bitc::METADATA_SUBROUTINE_TYPE: { 1824 if (Record.size() != 3) 1825 return error("Invalid record"); 1826 1827 MDValueList.assignValue( 1828 GET_OR_DISTINCT(DISubroutineType, Record[0], 1829 (Context, Record[1], getMDOrNull(Record[2]))), 1830 NextMDValueNo++); 1831 break; 1832 } 1833 case bitc::METADATA_FILE: { 1834 if (Record.size() != 3) 1835 return error("Invalid record"); 1836 1837 MDValueList.assignValue( 1838 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1839 getMDString(Record[2]))), 1840 NextMDValueNo++); 1841 break; 1842 } 1843 case bitc::METADATA_COMPILE_UNIT: { 1844 if (Record.size() < 14 || Record.size() > 15) 1845 return error("Invalid record"); 1846 1847 MDValueList.assignValue( 1848 GET_OR_DISTINCT( 1849 DICompileUnit, Record[0], 1850 (Context, Record[1], getMDOrNull(Record[2]), 1851 getMDString(Record[3]), Record[4], getMDString(Record[5]), 1852 Record[6], getMDString(Record[7]), Record[8], 1853 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1854 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1855 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14])), 1856 NextMDValueNo++); 1857 break; 1858 } 1859 case bitc::METADATA_SUBPROGRAM: { 1860 if (Record.size() != 19) 1861 return error("Invalid record"); 1862 1863 MDValueList.assignValue( 1864 GET_OR_DISTINCT( 1865 DISubprogram, Record[0], 1866 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1867 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1868 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1869 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1870 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1871 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1872 NextMDValueNo++); 1873 break; 1874 } 1875 case bitc::METADATA_LEXICAL_BLOCK: { 1876 if (Record.size() != 5) 1877 return error("Invalid record"); 1878 1879 MDValueList.assignValue( 1880 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1881 (Context, getMDOrNull(Record[1]), 1882 getMDOrNull(Record[2]), Record[3], Record[4])), 1883 NextMDValueNo++); 1884 break; 1885 } 1886 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1887 if (Record.size() != 4) 1888 return error("Invalid record"); 1889 1890 MDValueList.assignValue( 1891 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1892 (Context, getMDOrNull(Record[1]), 1893 getMDOrNull(Record[2]), Record[3])), 1894 NextMDValueNo++); 1895 break; 1896 } 1897 case bitc::METADATA_NAMESPACE: { 1898 if (Record.size() != 5) 1899 return error("Invalid record"); 1900 1901 MDValueList.assignValue( 1902 GET_OR_DISTINCT(DINamespace, Record[0], 1903 (Context, getMDOrNull(Record[1]), 1904 getMDOrNull(Record[2]), getMDString(Record[3]), 1905 Record[4])), 1906 NextMDValueNo++); 1907 break; 1908 } 1909 case bitc::METADATA_TEMPLATE_TYPE: { 1910 if (Record.size() != 3) 1911 return error("Invalid record"); 1912 1913 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1914 Record[0], 1915 (Context, getMDString(Record[1]), 1916 getMDOrNull(Record[2]))), 1917 NextMDValueNo++); 1918 break; 1919 } 1920 case bitc::METADATA_TEMPLATE_VALUE: { 1921 if (Record.size() != 5) 1922 return error("Invalid record"); 1923 1924 MDValueList.assignValue( 1925 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1926 (Context, Record[1], getMDString(Record[2]), 1927 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1928 NextMDValueNo++); 1929 break; 1930 } 1931 case bitc::METADATA_GLOBAL_VAR: { 1932 if (Record.size() != 11) 1933 return error("Invalid record"); 1934 1935 MDValueList.assignValue( 1936 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1937 (Context, getMDOrNull(Record[1]), 1938 getMDString(Record[2]), getMDString(Record[3]), 1939 getMDOrNull(Record[4]), Record[5], 1940 getMDOrNull(Record[6]), Record[7], Record[8], 1941 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1942 NextMDValueNo++); 1943 break; 1944 } 1945 case bitc::METADATA_LOCAL_VAR: { 1946 // 10th field is for the obseleted 'inlinedAt:' field. 1947 if (Record.size() != 9 && Record.size() != 10) 1948 return error("Invalid record"); 1949 1950 MDValueList.assignValue( 1951 GET_OR_DISTINCT(DILocalVariable, Record[0], 1952 (Context, Record[1], getMDOrNull(Record[2]), 1953 getMDString(Record[3]), getMDOrNull(Record[4]), 1954 Record[5], getMDOrNull(Record[6]), Record[7], 1955 Record[8])), 1956 NextMDValueNo++); 1957 break; 1958 } 1959 case bitc::METADATA_EXPRESSION: { 1960 if (Record.size() < 1) 1961 return error("Invalid record"); 1962 1963 MDValueList.assignValue( 1964 GET_OR_DISTINCT(DIExpression, Record[0], 1965 (Context, makeArrayRef(Record).slice(1))), 1966 NextMDValueNo++); 1967 break; 1968 } 1969 case bitc::METADATA_OBJC_PROPERTY: { 1970 if (Record.size() != 8) 1971 return error("Invalid record"); 1972 1973 MDValueList.assignValue( 1974 GET_OR_DISTINCT(DIObjCProperty, Record[0], 1975 (Context, getMDString(Record[1]), 1976 getMDOrNull(Record[2]), Record[3], 1977 getMDString(Record[4]), getMDString(Record[5]), 1978 Record[6], getMDOrNull(Record[7]))), 1979 NextMDValueNo++); 1980 break; 1981 } 1982 case bitc::METADATA_IMPORTED_ENTITY: { 1983 if (Record.size() != 6) 1984 return error("Invalid record"); 1985 1986 MDValueList.assignValue( 1987 GET_OR_DISTINCT(DIImportedEntity, Record[0], 1988 (Context, Record[1], getMDOrNull(Record[2]), 1989 getMDOrNull(Record[3]), Record[4], 1990 getMDString(Record[5]))), 1991 NextMDValueNo++); 1992 break; 1993 } 1994 case bitc::METADATA_STRING: { 1995 std::string String(Record.begin(), Record.end()); 1996 llvm::UpgradeMDStringConstant(String); 1997 Metadata *MD = MDString::get(Context, String); 1998 MDValueList.assignValue(MD, NextMDValueNo++); 1999 break; 2000 } 2001 case bitc::METADATA_KIND: { 2002 if (Record.size() < 2) 2003 return error("Invalid record"); 2004 2005 unsigned Kind = Record[0]; 2006 SmallString<8> Name(Record.begin()+1, Record.end()); 2007 2008 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2009 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2010 return error("Conflicting METADATA_KIND records"); 2011 break; 2012 } 2013 } 2014 } 2015 #undef GET_OR_DISTINCT 2016 } 2017 2018 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2019 /// encoding. 2020 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2021 if ((V & 1) == 0) 2022 return V >> 1; 2023 if (V != 1) 2024 return -(V >> 1); 2025 // There is no such thing as -0 with integers. "-0" really means MININT. 2026 return 1ULL << 63; 2027 } 2028 2029 /// Resolve all of the initializers for global values and aliases that we can. 2030 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2031 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2032 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2033 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2034 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2035 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2036 2037 GlobalInitWorklist.swap(GlobalInits); 2038 AliasInitWorklist.swap(AliasInits); 2039 FunctionPrefixWorklist.swap(FunctionPrefixes); 2040 FunctionPrologueWorklist.swap(FunctionPrologues); 2041 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2042 2043 while (!GlobalInitWorklist.empty()) { 2044 unsigned ValID = GlobalInitWorklist.back().second; 2045 if (ValID >= ValueList.size()) { 2046 // Not ready to resolve this yet, it requires something later in the file. 2047 GlobalInits.push_back(GlobalInitWorklist.back()); 2048 } else { 2049 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2050 GlobalInitWorklist.back().first->setInitializer(C); 2051 else 2052 return error("Expected a constant"); 2053 } 2054 GlobalInitWorklist.pop_back(); 2055 } 2056 2057 while (!AliasInitWorklist.empty()) { 2058 unsigned ValID = AliasInitWorklist.back().second; 2059 if (ValID >= ValueList.size()) { 2060 AliasInits.push_back(AliasInitWorklist.back()); 2061 } else { 2062 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2063 if (!C) 2064 return error("Expected a constant"); 2065 GlobalAlias *Alias = AliasInitWorklist.back().first; 2066 if (C->getType() != Alias->getType()) 2067 return error("Alias and aliasee types don't match"); 2068 Alias->setAliasee(C); 2069 } 2070 AliasInitWorklist.pop_back(); 2071 } 2072 2073 while (!FunctionPrefixWorklist.empty()) { 2074 unsigned ValID = FunctionPrefixWorklist.back().second; 2075 if (ValID >= ValueList.size()) { 2076 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2077 } else { 2078 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2079 FunctionPrefixWorklist.back().first->setPrefixData(C); 2080 else 2081 return error("Expected a constant"); 2082 } 2083 FunctionPrefixWorklist.pop_back(); 2084 } 2085 2086 while (!FunctionPrologueWorklist.empty()) { 2087 unsigned ValID = FunctionPrologueWorklist.back().second; 2088 if (ValID >= ValueList.size()) { 2089 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2090 } else { 2091 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2092 FunctionPrologueWorklist.back().first->setPrologueData(C); 2093 else 2094 return error("Expected a constant"); 2095 } 2096 FunctionPrologueWorklist.pop_back(); 2097 } 2098 2099 while (!FunctionPersonalityFnWorklist.empty()) { 2100 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2101 if (ValID >= ValueList.size()) { 2102 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2103 } else { 2104 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2105 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2106 else 2107 return error("Expected a constant"); 2108 } 2109 FunctionPersonalityFnWorklist.pop_back(); 2110 } 2111 2112 return std::error_code(); 2113 } 2114 2115 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2116 SmallVector<uint64_t, 8> Words(Vals.size()); 2117 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2118 BitcodeReader::decodeSignRotatedValue); 2119 2120 return APInt(TypeBits, Words); 2121 } 2122 2123 std::error_code BitcodeReader::parseConstants() { 2124 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2125 return error("Invalid record"); 2126 2127 SmallVector<uint64_t, 64> Record; 2128 2129 // Read all the records for this value table. 2130 Type *CurTy = Type::getInt32Ty(Context); 2131 unsigned NextCstNo = ValueList.size(); 2132 while (1) { 2133 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2134 2135 switch (Entry.Kind) { 2136 case BitstreamEntry::SubBlock: // Handled for us already. 2137 case BitstreamEntry::Error: 2138 return error("Malformed block"); 2139 case BitstreamEntry::EndBlock: 2140 if (NextCstNo != ValueList.size()) 2141 return error("Invalid ronstant reference"); 2142 2143 // Once all the constants have been read, go through and resolve forward 2144 // references. 2145 ValueList.resolveConstantForwardRefs(); 2146 return std::error_code(); 2147 case BitstreamEntry::Record: 2148 // The interesting case. 2149 break; 2150 } 2151 2152 // Read a record. 2153 Record.clear(); 2154 Value *V = nullptr; 2155 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2156 switch (BitCode) { 2157 default: // Default behavior: unknown constant 2158 case bitc::CST_CODE_UNDEF: // UNDEF 2159 V = UndefValue::get(CurTy); 2160 break; 2161 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2162 if (Record.empty()) 2163 return error("Invalid record"); 2164 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2165 return error("Invalid record"); 2166 CurTy = TypeList[Record[0]]; 2167 continue; // Skip the ValueList manipulation. 2168 case bitc::CST_CODE_NULL: // NULL 2169 V = Constant::getNullValue(CurTy); 2170 break; 2171 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2172 if (!CurTy->isIntegerTy() || Record.empty()) 2173 return error("Invalid record"); 2174 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2175 break; 2176 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2177 if (!CurTy->isIntegerTy() || Record.empty()) 2178 return error("Invalid record"); 2179 2180 APInt VInt = 2181 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2182 V = ConstantInt::get(Context, VInt); 2183 2184 break; 2185 } 2186 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2187 if (Record.empty()) 2188 return error("Invalid record"); 2189 if (CurTy->isHalfTy()) 2190 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2191 APInt(16, (uint16_t)Record[0]))); 2192 else if (CurTy->isFloatTy()) 2193 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2194 APInt(32, (uint32_t)Record[0]))); 2195 else if (CurTy->isDoubleTy()) 2196 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2197 APInt(64, Record[0]))); 2198 else if (CurTy->isX86_FP80Ty()) { 2199 // Bits are not stored the same way as a normal i80 APInt, compensate. 2200 uint64_t Rearrange[2]; 2201 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2202 Rearrange[1] = Record[0] >> 48; 2203 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2204 APInt(80, Rearrange))); 2205 } else if (CurTy->isFP128Ty()) 2206 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2207 APInt(128, Record))); 2208 else if (CurTy->isPPC_FP128Ty()) 2209 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2210 APInt(128, Record))); 2211 else 2212 V = UndefValue::get(CurTy); 2213 break; 2214 } 2215 2216 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2217 if (Record.empty()) 2218 return error("Invalid record"); 2219 2220 unsigned Size = Record.size(); 2221 SmallVector<Constant*, 16> Elts; 2222 2223 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2224 for (unsigned i = 0; i != Size; ++i) 2225 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2226 STy->getElementType(i))); 2227 V = ConstantStruct::get(STy, Elts); 2228 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2229 Type *EltTy = ATy->getElementType(); 2230 for (unsigned i = 0; i != Size; ++i) 2231 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2232 V = ConstantArray::get(ATy, Elts); 2233 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2234 Type *EltTy = VTy->getElementType(); 2235 for (unsigned i = 0; i != Size; ++i) 2236 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2237 V = ConstantVector::get(Elts); 2238 } else { 2239 V = UndefValue::get(CurTy); 2240 } 2241 break; 2242 } 2243 case bitc::CST_CODE_STRING: // STRING: [values] 2244 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2245 if (Record.empty()) 2246 return error("Invalid record"); 2247 2248 SmallString<16> Elts(Record.begin(), Record.end()); 2249 V = ConstantDataArray::getString(Context, Elts, 2250 BitCode == bitc::CST_CODE_CSTRING); 2251 break; 2252 } 2253 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2254 if (Record.empty()) 2255 return error("Invalid record"); 2256 2257 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2258 unsigned Size = Record.size(); 2259 2260 if (EltTy->isIntegerTy(8)) { 2261 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2262 if (isa<VectorType>(CurTy)) 2263 V = ConstantDataVector::get(Context, Elts); 2264 else 2265 V = ConstantDataArray::get(Context, Elts); 2266 } else if (EltTy->isIntegerTy(16)) { 2267 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2268 if (isa<VectorType>(CurTy)) 2269 V = ConstantDataVector::get(Context, Elts); 2270 else 2271 V = ConstantDataArray::get(Context, Elts); 2272 } else if (EltTy->isIntegerTy(32)) { 2273 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2274 if (isa<VectorType>(CurTy)) 2275 V = ConstantDataVector::get(Context, Elts); 2276 else 2277 V = ConstantDataArray::get(Context, Elts); 2278 } else if (EltTy->isIntegerTy(64)) { 2279 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2280 if (isa<VectorType>(CurTy)) 2281 V = ConstantDataVector::get(Context, Elts); 2282 else 2283 V = ConstantDataArray::get(Context, Elts); 2284 } else if (EltTy->isFloatTy()) { 2285 SmallVector<float, 16> Elts(Size); 2286 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2287 if (isa<VectorType>(CurTy)) 2288 V = ConstantDataVector::get(Context, Elts); 2289 else 2290 V = ConstantDataArray::get(Context, Elts); 2291 } else if (EltTy->isDoubleTy()) { 2292 SmallVector<double, 16> Elts(Size); 2293 std::transform(Record.begin(), Record.end(), Elts.begin(), 2294 BitsToDouble); 2295 if (isa<VectorType>(CurTy)) 2296 V = ConstantDataVector::get(Context, Elts); 2297 else 2298 V = ConstantDataArray::get(Context, Elts); 2299 } else { 2300 return error("Invalid type for value"); 2301 } 2302 break; 2303 } 2304 2305 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2306 if (Record.size() < 3) 2307 return error("Invalid record"); 2308 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2309 if (Opc < 0) { 2310 V = UndefValue::get(CurTy); // Unknown binop. 2311 } else { 2312 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2313 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2314 unsigned Flags = 0; 2315 if (Record.size() >= 4) { 2316 if (Opc == Instruction::Add || 2317 Opc == Instruction::Sub || 2318 Opc == Instruction::Mul || 2319 Opc == Instruction::Shl) { 2320 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2321 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2322 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2323 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2324 } else if (Opc == Instruction::SDiv || 2325 Opc == Instruction::UDiv || 2326 Opc == Instruction::LShr || 2327 Opc == Instruction::AShr) { 2328 if (Record[3] & (1 << bitc::PEO_EXACT)) 2329 Flags |= SDivOperator::IsExact; 2330 } 2331 } 2332 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2333 } 2334 break; 2335 } 2336 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2337 if (Record.size() < 3) 2338 return error("Invalid record"); 2339 int Opc = getDecodedCastOpcode(Record[0]); 2340 if (Opc < 0) { 2341 V = UndefValue::get(CurTy); // Unknown cast. 2342 } else { 2343 Type *OpTy = getTypeByID(Record[1]); 2344 if (!OpTy) 2345 return error("Invalid record"); 2346 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2347 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2348 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2349 } 2350 break; 2351 } 2352 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2353 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2354 unsigned OpNum = 0; 2355 Type *PointeeType = nullptr; 2356 if (Record.size() % 2) 2357 PointeeType = getTypeByID(Record[OpNum++]); 2358 SmallVector<Constant*, 16> Elts; 2359 while (OpNum != Record.size()) { 2360 Type *ElTy = getTypeByID(Record[OpNum++]); 2361 if (!ElTy) 2362 return error("Invalid record"); 2363 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2364 } 2365 2366 if (PointeeType && 2367 PointeeType != 2368 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2369 ->getElementType()) 2370 return error("Explicit gep operator type does not match pointee type " 2371 "of pointer operand"); 2372 2373 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2374 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2375 BitCode == 2376 bitc::CST_CODE_CE_INBOUNDS_GEP); 2377 break; 2378 } 2379 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2380 if (Record.size() < 3) 2381 return error("Invalid record"); 2382 2383 Type *SelectorTy = Type::getInt1Ty(Context); 2384 2385 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2386 // vector. Otherwise, it must be a single bit. 2387 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2388 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2389 VTy->getNumElements()); 2390 2391 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2392 SelectorTy), 2393 ValueList.getConstantFwdRef(Record[1],CurTy), 2394 ValueList.getConstantFwdRef(Record[2],CurTy)); 2395 break; 2396 } 2397 case bitc::CST_CODE_CE_EXTRACTELT 2398 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2399 if (Record.size() < 3) 2400 return error("Invalid record"); 2401 VectorType *OpTy = 2402 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2403 if (!OpTy) 2404 return error("Invalid record"); 2405 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2406 Constant *Op1 = nullptr; 2407 if (Record.size() == 4) { 2408 Type *IdxTy = getTypeByID(Record[2]); 2409 if (!IdxTy) 2410 return error("Invalid record"); 2411 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2412 } else // TODO: Remove with llvm 4.0 2413 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2414 if (!Op1) 2415 return error("Invalid record"); 2416 V = ConstantExpr::getExtractElement(Op0, Op1); 2417 break; 2418 } 2419 case bitc::CST_CODE_CE_INSERTELT 2420 : { // CE_INSERTELT: [opval, opval, opty, opval] 2421 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2422 if (Record.size() < 3 || !OpTy) 2423 return error("Invalid record"); 2424 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2425 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2426 OpTy->getElementType()); 2427 Constant *Op2 = nullptr; 2428 if (Record.size() == 4) { 2429 Type *IdxTy = getTypeByID(Record[2]); 2430 if (!IdxTy) 2431 return error("Invalid record"); 2432 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2433 } else // TODO: Remove with llvm 4.0 2434 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2435 if (!Op2) 2436 return error("Invalid record"); 2437 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2438 break; 2439 } 2440 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2441 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2442 if (Record.size() < 3 || !OpTy) 2443 return error("Invalid record"); 2444 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2445 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2446 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2447 OpTy->getNumElements()); 2448 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2449 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2450 break; 2451 } 2452 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2453 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2454 VectorType *OpTy = 2455 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2456 if (Record.size() < 4 || !RTy || !OpTy) 2457 return error("Invalid record"); 2458 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2459 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2460 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2461 RTy->getNumElements()); 2462 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2463 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2464 break; 2465 } 2466 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2467 if (Record.size() < 4) 2468 return error("Invalid record"); 2469 Type *OpTy = getTypeByID(Record[0]); 2470 if (!OpTy) 2471 return error("Invalid record"); 2472 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2473 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2474 2475 if (OpTy->isFPOrFPVectorTy()) 2476 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2477 else 2478 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2479 break; 2480 } 2481 // This maintains backward compatibility, pre-asm dialect keywords. 2482 // FIXME: Remove with the 4.0 release. 2483 case bitc::CST_CODE_INLINEASM_OLD: { 2484 if (Record.size() < 2) 2485 return error("Invalid record"); 2486 std::string AsmStr, ConstrStr; 2487 bool HasSideEffects = Record[0] & 1; 2488 bool IsAlignStack = Record[0] >> 1; 2489 unsigned AsmStrSize = Record[1]; 2490 if (2+AsmStrSize >= Record.size()) 2491 return error("Invalid record"); 2492 unsigned ConstStrSize = Record[2+AsmStrSize]; 2493 if (3+AsmStrSize+ConstStrSize > Record.size()) 2494 return error("Invalid record"); 2495 2496 for (unsigned i = 0; i != AsmStrSize; ++i) 2497 AsmStr += (char)Record[2+i]; 2498 for (unsigned i = 0; i != ConstStrSize; ++i) 2499 ConstrStr += (char)Record[3+AsmStrSize+i]; 2500 PointerType *PTy = cast<PointerType>(CurTy); 2501 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2502 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2503 break; 2504 } 2505 // This version adds support for the asm dialect keywords (e.g., 2506 // inteldialect). 2507 case bitc::CST_CODE_INLINEASM: { 2508 if (Record.size() < 2) 2509 return error("Invalid record"); 2510 std::string AsmStr, ConstrStr; 2511 bool HasSideEffects = Record[0] & 1; 2512 bool IsAlignStack = (Record[0] >> 1) & 1; 2513 unsigned AsmDialect = Record[0] >> 2; 2514 unsigned AsmStrSize = Record[1]; 2515 if (2+AsmStrSize >= Record.size()) 2516 return error("Invalid record"); 2517 unsigned ConstStrSize = Record[2+AsmStrSize]; 2518 if (3+AsmStrSize+ConstStrSize > Record.size()) 2519 return error("Invalid record"); 2520 2521 for (unsigned i = 0; i != AsmStrSize; ++i) 2522 AsmStr += (char)Record[2+i]; 2523 for (unsigned i = 0; i != ConstStrSize; ++i) 2524 ConstrStr += (char)Record[3+AsmStrSize+i]; 2525 PointerType *PTy = cast<PointerType>(CurTy); 2526 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2527 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2528 InlineAsm::AsmDialect(AsmDialect)); 2529 break; 2530 } 2531 case bitc::CST_CODE_BLOCKADDRESS:{ 2532 if (Record.size() < 3) 2533 return error("Invalid record"); 2534 Type *FnTy = getTypeByID(Record[0]); 2535 if (!FnTy) 2536 return error("Invalid record"); 2537 Function *Fn = 2538 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2539 if (!Fn) 2540 return error("Invalid record"); 2541 2542 // Don't let Fn get dematerialized. 2543 BlockAddressesTaken.insert(Fn); 2544 2545 // If the function is already parsed we can insert the block address right 2546 // away. 2547 BasicBlock *BB; 2548 unsigned BBID = Record[2]; 2549 if (!BBID) 2550 // Invalid reference to entry block. 2551 return error("Invalid ID"); 2552 if (!Fn->empty()) { 2553 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2554 for (size_t I = 0, E = BBID; I != E; ++I) { 2555 if (BBI == BBE) 2556 return error("Invalid ID"); 2557 ++BBI; 2558 } 2559 BB = BBI; 2560 } else { 2561 // Otherwise insert a placeholder and remember it so it can be inserted 2562 // when the function is parsed. 2563 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2564 if (FwdBBs.empty()) 2565 BasicBlockFwdRefQueue.push_back(Fn); 2566 if (FwdBBs.size() < BBID + 1) 2567 FwdBBs.resize(BBID + 1); 2568 if (!FwdBBs[BBID]) 2569 FwdBBs[BBID] = BasicBlock::Create(Context); 2570 BB = FwdBBs[BBID]; 2571 } 2572 V = BlockAddress::get(Fn, BB); 2573 break; 2574 } 2575 } 2576 2577 ValueList.assignValue(V, NextCstNo); 2578 ++NextCstNo; 2579 } 2580 } 2581 2582 std::error_code BitcodeReader::parseUseLists() { 2583 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2584 return error("Invalid record"); 2585 2586 // Read all the records. 2587 SmallVector<uint64_t, 64> Record; 2588 while (1) { 2589 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2590 2591 switch (Entry.Kind) { 2592 case BitstreamEntry::SubBlock: // Handled for us already. 2593 case BitstreamEntry::Error: 2594 return error("Malformed block"); 2595 case BitstreamEntry::EndBlock: 2596 return std::error_code(); 2597 case BitstreamEntry::Record: 2598 // The interesting case. 2599 break; 2600 } 2601 2602 // Read a use list record. 2603 Record.clear(); 2604 bool IsBB = false; 2605 switch (Stream.readRecord(Entry.ID, Record)) { 2606 default: // Default behavior: unknown type. 2607 break; 2608 case bitc::USELIST_CODE_BB: 2609 IsBB = true; 2610 // fallthrough 2611 case bitc::USELIST_CODE_DEFAULT: { 2612 unsigned RecordLength = Record.size(); 2613 if (RecordLength < 3) 2614 // Records should have at least an ID and two indexes. 2615 return error("Invalid record"); 2616 unsigned ID = Record.back(); 2617 Record.pop_back(); 2618 2619 Value *V; 2620 if (IsBB) { 2621 assert(ID < FunctionBBs.size() && "Basic block not found"); 2622 V = FunctionBBs[ID]; 2623 } else 2624 V = ValueList[ID]; 2625 unsigned NumUses = 0; 2626 SmallDenseMap<const Use *, unsigned, 16> Order; 2627 for (const Use &U : V->uses()) { 2628 if (++NumUses > Record.size()) 2629 break; 2630 Order[&U] = Record[NumUses - 1]; 2631 } 2632 if (Order.size() != Record.size() || NumUses > Record.size()) 2633 // Mismatches can happen if the functions are being materialized lazily 2634 // (out-of-order), or a value has been upgraded. 2635 break; 2636 2637 V->sortUseList([&](const Use &L, const Use &R) { 2638 return Order.lookup(&L) < Order.lookup(&R); 2639 }); 2640 break; 2641 } 2642 } 2643 } 2644 } 2645 2646 /// When we see the block for metadata, remember where it is and then skip it. 2647 /// This lets us lazily deserialize the metadata. 2648 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2649 // Save the current stream state. 2650 uint64_t CurBit = Stream.GetCurrentBitNo(); 2651 DeferredMetadataInfo.push_back(CurBit); 2652 2653 // Skip over the block for now. 2654 if (Stream.SkipBlock()) 2655 return error("Invalid record"); 2656 return std::error_code(); 2657 } 2658 2659 std::error_code BitcodeReader::materializeMetadata() { 2660 for (uint64_t BitPos : DeferredMetadataInfo) { 2661 // Move the bit stream to the saved position. 2662 Stream.JumpToBit(BitPos); 2663 if (std::error_code EC = parseMetadata()) 2664 return EC; 2665 } 2666 DeferredMetadataInfo.clear(); 2667 return std::error_code(); 2668 } 2669 2670 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2671 2672 /// When we see the block for a function body, remember where it is and then 2673 /// skip it. This lets us lazily deserialize the functions. 2674 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 2675 // Get the function we are talking about. 2676 if (FunctionsWithBodies.empty()) 2677 return error("Insufficient function protos"); 2678 2679 Function *Fn = FunctionsWithBodies.back(); 2680 FunctionsWithBodies.pop_back(); 2681 2682 // Save the current stream state. 2683 uint64_t CurBit = Stream.GetCurrentBitNo(); 2684 DeferredFunctionInfo[Fn] = CurBit; 2685 2686 // Skip over the function block for now. 2687 if (Stream.SkipBlock()) 2688 return error("Invalid record"); 2689 return std::error_code(); 2690 } 2691 2692 std::error_code BitcodeReader::globalCleanup() { 2693 // Patch the initializers for globals and aliases up. 2694 resolveGlobalAndAliasInits(); 2695 if (!GlobalInits.empty() || !AliasInits.empty()) 2696 return error("Malformed global initializer set"); 2697 2698 // Look for intrinsic functions which need to be upgraded at some point 2699 for (Function &F : *TheModule) { 2700 Function *NewFn; 2701 if (UpgradeIntrinsicFunction(&F, NewFn)) 2702 UpgradedIntrinsics.push_back(std::make_pair(&F, NewFn)); 2703 } 2704 2705 // Look for global variables which need to be renamed. 2706 for (GlobalVariable &GV : TheModule->globals()) 2707 UpgradeGlobalVariable(&GV); 2708 2709 // Force deallocation of memory for these vectors to favor the client that 2710 // want lazy deserialization. 2711 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2712 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2713 return std::error_code(); 2714 } 2715 2716 std::error_code BitcodeReader::parseModule(bool Resume, 2717 bool ShouldLazyLoadMetadata) { 2718 if (Resume) 2719 Stream.JumpToBit(NextUnreadBit); 2720 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2721 return error("Invalid record"); 2722 2723 SmallVector<uint64_t, 64> Record; 2724 std::vector<std::string> SectionTable; 2725 std::vector<std::string> GCTable; 2726 2727 // Read all the records for this module. 2728 while (1) { 2729 BitstreamEntry Entry = Stream.advance(); 2730 2731 switch (Entry.Kind) { 2732 case BitstreamEntry::Error: 2733 return error("Malformed block"); 2734 case BitstreamEntry::EndBlock: 2735 return globalCleanup(); 2736 2737 case BitstreamEntry::SubBlock: 2738 switch (Entry.ID) { 2739 default: // Skip unknown content. 2740 if (Stream.SkipBlock()) 2741 return error("Invalid record"); 2742 break; 2743 case bitc::BLOCKINFO_BLOCK_ID: 2744 if (Stream.ReadBlockInfoBlock()) 2745 return error("Malformed block"); 2746 break; 2747 case bitc::PARAMATTR_BLOCK_ID: 2748 if (std::error_code EC = parseAttributeBlock()) 2749 return EC; 2750 break; 2751 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2752 if (std::error_code EC = parseAttributeGroupBlock()) 2753 return EC; 2754 break; 2755 case bitc::TYPE_BLOCK_ID_NEW: 2756 if (std::error_code EC = parseTypeTable()) 2757 return EC; 2758 break; 2759 case bitc::VALUE_SYMTAB_BLOCK_ID: 2760 if (std::error_code EC = parseValueSymbolTable()) 2761 return EC; 2762 SeenValueSymbolTable = true; 2763 break; 2764 case bitc::CONSTANTS_BLOCK_ID: 2765 if (std::error_code EC = parseConstants()) 2766 return EC; 2767 if (std::error_code EC = resolveGlobalAndAliasInits()) 2768 return EC; 2769 break; 2770 case bitc::METADATA_BLOCK_ID: 2771 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2772 if (std::error_code EC = rememberAndSkipMetadata()) 2773 return EC; 2774 break; 2775 } 2776 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2777 if (std::error_code EC = parseMetadata()) 2778 return EC; 2779 break; 2780 case bitc::FUNCTION_BLOCK_ID: 2781 // If this is the first function body we've seen, reverse the 2782 // FunctionsWithBodies list. 2783 if (!SeenFirstFunctionBody) { 2784 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2785 if (std::error_code EC = globalCleanup()) 2786 return EC; 2787 SeenFirstFunctionBody = true; 2788 } 2789 2790 if (std::error_code EC = rememberAndSkipFunctionBody()) 2791 return EC; 2792 // For streaming bitcode, suspend parsing when we reach the function 2793 // bodies. Subsequent materialization calls will resume it when 2794 // necessary. For streaming, the function bodies must be at the end of 2795 // the bitcode. If the bitcode file is old, the symbol table will be 2796 // at the end instead and will not have been seen yet. In this case, 2797 // just finish the parse now. 2798 if (IsStreamed && SeenValueSymbolTable) { 2799 NextUnreadBit = Stream.GetCurrentBitNo(); 2800 return std::error_code(); 2801 } 2802 break; 2803 case bitc::USELIST_BLOCK_ID: 2804 if (std::error_code EC = parseUseLists()) 2805 return EC; 2806 break; 2807 } 2808 continue; 2809 2810 case BitstreamEntry::Record: 2811 // The interesting case. 2812 break; 2813 } 2814 2815 2816 // Read a record. 2817 switch (Stream.readRecord(Entry.ID, Record)) { 2818 default: break; // Default behavior, ignore unknown content. 2819 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2820 if (Record.size() < 1) 2821 return error("Invalid record"); 2822 // Only version #0 and #1 are supported so far. 2823 unsigned module_version = Record[0]; 2824 switch (module_version) { 2825 default: 2826 return error("Invalid value"); 2827 case 0: 2828 UseRelativeIDs = false; 2829 break; 2830 case 1: 2831 UseRelativeIDs = true; 2832 break; 2833 } 2834 break; 2835 } 2836 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2837 std::string S; 2838 if (convertToString(Record, 0, S)) 2839 return error("Invalid record"); 2840 TheModule->setTargetTriple(S); 2841 break; 2842 } 2843 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2844 std::string S; 2845 if (convertToString(Record, 0, S)) 2846 return error("Invalid record"); 2847 TheModule->setDataLayout(S); 2848 break; 2849 } 2850 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2851 std::string S; 2852 if (convertToString(Record, 0, S)) 2853 return error("Invalid record"); 2854 TheModule->setModuleInlineAsm(S); 2855 break; 2856 } 2857 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2858 // FIXME: Remove in 4.0. 2859 std::string S; 2860 if (convertToString(Record, 0, S)) 2861 return error("Invalid record"); 2862 // Ignore value. 2863 break; 2864 } 2865 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2866 std::string S; 2867 if (convertToString(Record, 0, S)) 2868 return error("Invalid record"); 2869 SectionTable.push_back(S); 2870 break; 2871 } 2872 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2873 std::string S; 2874 if (convertToString(Record, 0, S)) 2875 return error("Invalid record"); 2876 GCTable.push_back(S); 2877 break; 2878 } 2879 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2880 if (Record.size() < 2) 2881 return error("Invalid record"); 2882 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2883 unsigned ComdatNameSize = Record[1]; 2884 std::string ComdatName; 2885 ComdatName.reserve(ComdatNameSize); 2886 for (unsigned i = 0; i != ComdatNameSize; ++i) 2887 ComdatName += (char)Record[2 + i]; 2888 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2889 C->setSelectionKind(SK); 2890 ComdatList.push_back(C); 2891 break; 2892 } 2893 // GLOBALVAR: [pointer type, isconst, initid, 2894 // linkage, alignment, section, visibility, threadlocal, 2895 // unnamed_addr, externally_initialized, dllstorageclass, 2896 // comdat] 2897 case bitc::MODULE_CODE_GLOBALVAR: { 2898 if (Record.size() < 6) 2899 return error("Invalid record"); 2900 Type *Ty = getTypeByID(Record[0]); 2901 if (!Ty) 2902 return error("Invalid record"); 2903 bool isConstant = Record[1] & 1; 2904 bool explicitType = Record[1] & 2; 2905 unsigned AddressSpace; 2906 if (explicitType) { 2907 AddressSpace = Record[1] >> 2; 2908 } else { 2909 if (!Ty->isPointerTy()) 2910 return error("Invalid type for value"); 2911 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2912 Ty = cast<PointerType>(Ty)->getElementType(); 2913 } 2914 2915 uint64_t RawLinkage = Record[3]; 2916 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2917 unsigned Alignment; 2918 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2919 return EC; 2920 std::string Section; 2921 if (Record[5]) { 2922 if (Record[5]-1 >= SectionTable.size()) 2923 return error("Invalid ID"); 2924 Section = SectionTable[Record[5]-1]; 2925 } 2926 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2927 // Local linkage must have default visibility. 2928 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2929 // FIXME: Change to an error if non-default in 4.0. 2930 Visibility = getDecodedVisibility(Record[6]); 2931 2932 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2933 if (Record.size() > 7) 2934 TLM = getDecodedThreadLocalMode(Record[7]); 2935 2936 bool UnnamedAddr = false; 2937 if (Record.size() > 8) 2938 UnnamedAddr = Record[8]; 2939 2940 bool ExternallyInitialized = false; 2941 if (Record.size() > 9) 2942 ExternallyInitialized = Record[9]; 2943 2944 GlobalVariable *NewGV = 2945 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2946 TLM, AddressSpace, ExternallyInitialized); 2947 NewGV->setAlignment(Alignment); 2948 if (!Section.empty()) 2949 NewGV->setSection(Section); 2950 NewGV->setVisibility(Visibility); 2951 NewGV->setUnnamedAddr(UnnamedAddr); 2952 2953 if (Record.size() > 10) 2954 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2955 else 2956 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2957 2958 ValueList.push_back(NewGV); 2959 2960 // Remember which value to use for the global initializer. 2961 if (unsigned InitID = Record[2]) 2962 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2963 2964 if (Record.size() > 11) { 2965 if (unsigned ComdatID = Record[11]) { 2966 if (ComdatID > ComdatList.size()) 2967 return error("Invalid global variable comdat ID"); 2968 NewGV->setComdat(ComdatList[ComdatID - 1]); 2969 } 2970 } else if (hasImplicitComdat(RawLinkage)) { 2971 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2972 } 2973 break; 2974 } 2975 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2976 // alignment, section, visibility, gc, unnamed_addr, 2977 // prologuedata, dllstorageclass, comdat, prefixdata] 2978 case bitc::MODULE_CODE_FUNCTION: { 2979 if (Record.size() < 8) 2980 return error("Invalid record"); 2981 Type *Ty = getTypeByID(Record[0]); 2982 if (!Ty) 2983 return error("Invalid record"); 2984 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2985 Ty = PTy->getElementType(); 2986 auto *FTy = dyn_cast<FunctionType>(Ty); 2987 if (!FTy) 2988 return error("Invalid type for value"); 2989 2990 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2991 "", TheModule); 2992 2993 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2994 bool isProto = Record[2]; 2995 uint64_t RawLinkage = Record[3]; 2996 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2997 Func->setAttributes(getAttributes(Record[4])); 2998 2999 unsigned Alignment; 3000 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3001 return EC; 3002 Func->setAlignment(Alignment); 3003 if (Record[6]) { 3004 if (Record[6]-1 >= SectionTable.size()) 3005 return error("Invalid ID"); 3006 Func->setSection(SectionTable[Record[6]-1]); 3007 } 3008 // Local linkage must have default visibility. 3009 if (!Func->hasLocalLinkage()) 3010 // FIXME: Change to an error if non-default in 4.0. 3011 Func->setVisibility(getDecodedVisibility(Record[7])); 3012 if (Record.size() > 8 && Record[8]) { 3013 if (Record[8]-1 >= GCTable.size()) 3014 return error("Invalid ID"); 3015 Func->setGC(GCTable[Record[8]-1].c_str()); 3016 } 3017 bool UnnamedAddr = false; 3018 if (Record.size() > 9) 3019 UnnamedAddr = Record[9]; 3020 Func->setUnnamedAddr(UnnamedAddr); 3021 if (Record.size() > 10 && Record[10] != 0) 3022 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3023 3024 if (Record.size() > 11) 3025 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3026 else 3027 upgradeDLLImportExportLinkage(Func, RawLinkage); 3028 3029 if (Record.size() > 12) { 3030 if (unsigned ComdatID = Record[12]) { 3031 if (ComdatID > ComdatList.size()) 3032 return error("Invalid function comdat ID"); 3033 Func->setComdat(ComdatList[ComdatID - 1]); 3034 } 3035 } else if (hasImplicitComdat(RawLinkage)) { 3036 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3037 } 3038 3039 if (Record.size() > 13 && Record[13] != 0) 3040 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3041 3042 if (Record.size() > 14 && Record[14] != 0) 3043 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3044 3045 ValueList.push_back(Func); 3046 3047 // If this is a function with a body, remember the prototype we are 3048 // creating now, so that we can match up the body with them later. 3049 if (!isProto) { 3050 Func->setIsMaterializable(true); 3051 FunctionsWithBodies.push_back(Func); 3052 if (IsStreamed) 3053 DeferredFunctionInfo[Func] = 0; 3054 } 3055 break; 3056 } 3057 // ALIAS: [alias type, aliasee val#, linkage] 3058 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3059 case bitc::MODULE_CODE_ALIAS: { 3060 if (Record.size() < 3) 3061 return error("Invalid record"); 3062 Type *Ty = getTypeByID(Record[0]); 3063 if (!Ty) 3064 return error("Invalid record"); 3065 auto *PTy = dyn_cast<PointerType>(Ty); 3066 if (!PTy) 3067 return error("Invalid type for value"); 3068 3069 auto *NewGA = 3070 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3071 // Old bitcode files didn't have visibility field. 3072 // Local linkage must have default visibility. 3073 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3074 // FIXME: Change to an error if non-default in 4.0. 3075 NewGA->setVisibility(getDecodedVisibility(Record[3])); 3076 if (Record.size() > 4) 3077 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[4])); 3078 else 3079 upgradeDLLImportExportLinkage(NewGA, Record[2]); 3080 if (Record.size() > 5) 3081 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[5])); 3082 if (Record.size() > 6) 3083 NewGA->setUnnamedAddr(Record[6]); 3084 ValueList.push_back(NewGA); 3085 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3086 break; 3087 } 3088 /// MODULE_CODE_PURGEVALS: [numvals] 3089 case bitc::MODULE_CODE_PURGEVALS: 3090 // Trim down the value list to the specified size. 3091 if (Record.size() < 1 || Record[0] > ValueList.size()) 3092 return error("Invalid record"); 3093 ValueList.shrinkTo(Record[0]); 3094 break; 3095 } 3096 Record.clear(); 3097 } 3098 } 3099 3100 std::error_code 3101 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3102 Module *M, bool ShouldLazyLoadMetadata) { 3103 TheModule = M; 3104 3105 if (std::error_code EC = initStream(std::move(Streamer))) 3106 return EC; 3107 3108 // Sniff for the signature. 3109 if (Stream.Read(8) != 'B' || 3110 Stream.Read(8) != 'C' || 3111 Stream.Read(4) != 0x0 || 3112 Stream.Read(4) != 0xC || 3113 Stream.Read(4) != 0xE || 3114 Stream.Read(4) != 0xD) 3115 return error("Invalid bitcode signature"); 3116 3117 // We expect a number of well-defined blocks, though we don't necessarily 3118 // need to understand them all. 3119 while (1) { 3120 if (Stream.AtEndOfStream()) { 3121 // We didn't really read a proper Module. 3122 return error("Malformed IR file"); 3123 } 3124 3125 BitstreamEntry Entry = 3126 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3127 3128 if (Entry.Kind != BitstreamEntry::SubBlock) 3129 return error("Malformed block"); 3130 3131 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3132 return parseModule(false, ShouldLazyLoadMetadata); 3133 3134 if (Stream.SkipBlock()) 3135 return error("Invalid record"); 3136 } 3137 } 3138 3139 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3140 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3141 return error("Invalid record"); 3142 3143 SmallVector<uint64_t, 64> Record; 3144 3145 std::string Triple; 3146 // Read all the records for this module. 3147 while (1) { 3148 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3149 3150 switch (Entry.Kind) { 3151 case BitstreamEntry::SubBlock: // Handled for us already. 3152 case BitstreamEntry::Error: 3153 return error("Malformed block"); 3154 case BitstreamEntry::EndBlock: 3155 return Triple; 3156 case BitstreamEntry::Record: 3157 // The interesting case. 3158 break; 3159 } 3160 3161 // Read a record. 3162 switch (Stream.readRecord(Entry.ID, Record)) { 3163 default: break; // Default behavior, ignore unknown content. 3164 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3165 std::string S; 3166 if (convertToString(Record, 0, S)) 3167 return error("Invalid record"); 3168 Triple = S; 3169 break; 3170 } 3171 } 3172 Record.clear(); 3173 } 3174 llvm_unreachable("Exit infinite loop"); 3175 } 3176 3177 ErrorOr<std::string> BitcodeReader::parseTriple() { 3178 if (std::error_code EC = initStream(nullptr)) 3179 return EC; 3180 3181 // Sniff for the signature. 3182 if (Stream.Read(8) != 'B' || 3183 Stream.Read(8) != 'C' || 3184 Stream.Read(4) != 0x0 || 3185 Stream.Read(4) != 0xC || 3186 Stream.Read(4) != 0xE || 3187 Stream.Read(4) != 0xD) 3188 return error("Invalid bitcode signature"); 3189 3190 // We expect a number of well-defined blocks, though we don't necessarily 3191 // need to understand them all. 3192 while (1) { 3193 BitstreamEntry Entry = Stream.advance(); 3194 3195 switch (Entry.Kind) { 3196 case BitstreamEntry::Error: 3197 return error("Malformed block"); 3198 case BitstreamEntry::EndBlock: 3199 return std::error_code(); 3200 3201 case BitstreamEntry::SubBlock: 3202 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3203 return parseModuleTriple(); 3204 3205 // Ignore other sub-blocks. 3206 if (Stream.SkipBlock()) 3207 return error("Malformed block"); 3208 continue; 3209 3210 case BitstreamEntry::Record: 3211 Stream.skipRecord(Entry.ID); 3212 continue; 3213 } 3214 } 3215 } 3216 3217 /// Parse metadata attachments. 3218 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3219 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3220 return error("Invalid record"); 3221 3222 SmallVector<uint64_t, 64> Record; 3223 while (1) { 3224 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3225 3226 switch (Entry.Kind) { 3227 case BitstreamEntry::SubBlock: // Handled for us already. 3228 case BitstreamEntry::Error: 3229 return error("Malformed block"); 3230 case BitstreamEntry::EndBlock: 3231 return std::error_code(); 3232 case BitstreamEntry::Record: 3233 // The interesting case. 3234 break; 3235 } 3236 3237 // Read a metadata attachment record. 3238 Record.clear(); 3239 switch (Stream.readRecord(Entry.ID, Record)) { 3240 default: // Default behavior: ignore. 3241 break; 3242 case bitc::METADATA_ATTACHMENT: { 3243 unsigned RecordLength = Record.size(); 3244 if (Record.empty()) 3245 return error("Invalid record"); 3246 if (RecordLength % 2 == 0) { 3247 // A function attachment. 3248 for (unsigned I = 0; I != RecordLength; I += 2) { 3249 auto K = MDKindMap.find(Record[I]); 3250 if (K == MDKindMap.end()) 3251 return error("Invalid ID"); 3252 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3253 F.setMetadata(K->second, cast<MDNode>(MD)); 3254 } 3255 continue; 3256 } 3257 3258 // An instruction attachment. 3259 Instruction *Inst = InstructionList[Record[0]]; 3260 for (unsigned i = 1; i != RecordLength; i = i+2) { 3261 unsigned Kind = Record[i]; 3262 DenseMap<unsigned, unsigned>::iterator I = 3263 MDKindMap.find(Kind); 3264 if (I == MDKindMap.end()) 3265 return error("Invalid ID"); 3266 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3267 if (isa<LocalAsMetadata>(Node)) 3268 // Drop the attachment. This used to be legal, but there's no 3269 // upgrade path. 3270 break; 3271 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3272 if (I->second == LLVMContext::MD_tbaa) 3273 InstsWithTBAATag.push_back(Inst); 3274 } 3275 break; 3276 } 3277 } 3278 } 3279 } 3280 3281 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3282 Type *ValType, Type *PtrType) { 3283 if (!isa<PointerType>(PtrType)) 3284 return error(DH, "Load/Store operand is not a pointer type"); 3285 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3286 3287 if (ValType && ValType != ElemType) 3288 return error(DH, "Explicit load/store type does not match pointee type of " 3289 "pointer operand"); 3290 if (!PointerType::isLoadableOrStorableType(ElemType)) 3291 return error(DH, "Cannot load/store from pointer"); 3292 return std::error_code(); 3293 } 3294 3295 /// Lazily parse the specified function body block. 3296 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3297 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3298 return error("Invalid record"); 3299 3300 InstructionList.clear(); 3301 unsigned ModuleValueListSize = ValueList.size(); 3302 unsigned ModuleMDValueListSize = MDValueList.size(); 3303 3304 // Add all the function arguments to the value table. 3305 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3306 ValueList.push_back(I); 3307 3308 unsigned NextValueNo = ValueList.size(); 3309 BasicBlock *CurBB = nullptr; 3310 unsigned CurBBNo = 0; 3311 3312 DebugLoc LastLoc; 3313 auto getLastInstruction = [&]() -> Instruction * { 3314 if (CurBB && !CurBB->empty()) 3315 return &CurBB->back(); 3316 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3317 !FunctionBBs[CurBBNo - 1]->empty()) 3318 return &FunctionBBs[CurBBNo - 1]->back(); 3319 return nullptr; 3320 }; 3321 3322 // Read all the records. 3323 SmallVector<uint64_t, 64> Record; 3324 while (1) { 3325 BitstreamEntry Entry = Stream.advance(); 3326 3327 switch (Entry.Kind) { 3328 case BitstreamEntry::Error: 3329 return error("Malformed block"); 3330 case BitstreamEntry::EndBlock: 3331 goto OutOfRecordLoop; 3332 3333 case BitstreamEntry::SubBlock: 3334 switch (Entry.ID) { 3335 default: // Skip unknown content. 3336 if (Stream.SkipBlock()) 3337 return error("Invalid record"); 3338 break; 3339 case bitc::CONSTANTS_BLOCK_ID: 3340 if (std::error_code EC = parseConstants()) 3341 return EC; 3342 NextValueNo = ValueList.size(); 3343 break; 3344 case bitc::VALUE_SYMTAB_BLOCK_ID: 3345 if (std::error_code EC = parseValueSymbolTable()) 3346 return EC; 3347 break; 3348 case bitc::METADATA_ATTACHMENT_ID: 3349 if (std::error_code EC = parseMetadataAttachment(*F)) 3350 return EC; 3351 break; 3352 case bitc::METADATA_BLOCK_ID: 3353 if (std::error_code EC = parseMetadata()) 3354 return EC; 3355 break; 3356 case bitc::USELIST_BLOCK_ID: 3357 if (std::error_code EC = parseUseLists()) 3358 return EC; 3359 break; 3360 } 3361 continue; 3362 3363 case BitstreamEntry::Record: 3364 // The interesting case. 3365 break; 3366 } 3367 3368 // Read a record. 3369 Record.clear(); 3370 Instruction *I = nullptr; 3371 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3372 switch (BitCode) { 3373 default: // Default behavior: reject 3374 return error("Invalid value"); 3375 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3376 if (Record.size() < 1 || Record[0] == 0) 3377 return error("Invalid record"); 3378 // Create all the basic blocks for the function. 3379 FunctionBBs.resize(Record[0]); 3380 3381 // See if anything took the address of blocks in this function. 3382 auto BBFRI = BasicBlockFwdRefs.find(F); 3383 if (BBFRI == BasicBlockFwdRefs.end()) { 3384 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3385 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3386 } else { 3387 auto &BBRefs = BBFRI->second; 3388 // Check for invalid basic block references. 3389 if (BBRefs.size() > FunctionBBs.size()) 3390 return error("Invalid ID"); 3391 assert(!BBRefs.empty() && "Unexpected empty array"); 3392 assert(!BBRefs.front() && "Invalid reference to entry block"); 3393 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3394 ++I) 3395 if (I < RE && BBRefs[I]) { 3396 BBRefs[I]->insertInto(F); 3397 FunctionBBs[I] = BBRefs[I]; 3398 } else { 3399 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3400 } 3401 3402 // Erase from the table. 3403 BasicBlockFwdRefs.erase(BBFRI); 3404 } 3405 3406 CurBB = FunctionBBs[0]; 3407 continue; 3408 } 3409 3410 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3411 // This record indicates that the last instruction is at the same 3412 // location as the previous instruction with a location. 3413 I = getLastInstruction(); 3414 3415 if (!I) 3416 return error("Invalid record"); 3417 I->setDebugLoc(LastLoc); 3418 I = nullptr; 3419 continue; 3420 3421 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3422 I = getLastInstruction(); 3423 if (!I || Record.size() < 4) 3424 return error("Invalid record"); 3425 3426 unsigned Line = Record[0], Col = Record[1]; 3427 unsigned ScopeID = Record[2], IAID = Record[3]; 3428 3429 MDNode *Scope = nullptr, *IA = nullptr; 3430 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3431 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3432 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3433 I->setDebugLoc(LastLoc); 3434 I = nullptr; 3435 continue; 3436 } 3437 3438 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3439 unsigned OpNum = 0; 3440 Value *LHS, *RHS; 3441 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3442 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3443 OpNum+1 > Record.size()) 3444 return error("Invalid record"); 3445 3446 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3447 if (Opc == -1) 3448 return error("Invalid record"); 3449 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3450 InstructionList.push_back(I); 3451 if (OpNum < Record.size()) { 3452 if (Opc == Instruction::Add || 3453 Opc == Instruction::Sub || 3454 Opc == Instruction::Mul || 3455 Opc == Instruction::Shl) { 3456 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3457 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3458 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3459 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3460 } else if (Opc == Instruction::SDiv || 3461 Opc == Instruction::UDiv || 3462 Opc == Instruction::LShr || 3463 Opc == Instruction::AShr) { 3464 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3465 cast<BinaryOperator>(I)->setIsExact(true); 3466 } else if (isa<FPMathOperator>(I)) { 3467 FastMathFlags FMF; 3468 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3469 FMF.setUnsafeAlgebra(); 3470 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3471 FMF.setNoNaNs(); 3472 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3473 FMF.setNoInfs(); 3474 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3475 FMF.setNoSignedZeros(); 3476 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3477 FMF.setAllowReciprocal(); 3478 if (FMF.any()) 3479 I->setFastMathFlags(FMF); 3480 } 3481 3482 } 3483 break; 3484 } 3485 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3486 unsigned OpNum = 0; 3487 Value *Op; 3488 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3489 OpNum+2 != Record.size()) 3490 return error("Invalid record"); 3491 3492 Type *ResTy = getTypeByID(Record[OpNum]); 3493 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3494 if (Opc == -1 || !ResTy) 3495 return error("Invalid record"); 3496 Instruction *Temp = nullptr; 3497 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3498 if (Temp) { 3499 InstructionList.push_back(Temp); 3500 CurBB->getInstList().push_back(Temp); 3501 } 3502 } else { 3503 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3504 } 3505 InstructionList.push_back(I); 3506 break; 3507 } 3508 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3509 case bitc::FUNC_CODE_INST_GEP_OLD: 3510 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3511 unsigned OpNum = 0; 3512 3513 Type *Ty; 3514 bool InBounds; 3515 3516 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3517 InBounds = Record[OpNum++]; 3518 Ty = getTypeByID(Record[OpNum++]); 3519 } else { 3520 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3521 Ty = nullptr; 3522 } 3523 3524 Value *BasePtr; 3525 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3526 return error("Invalid record"); 3527 3528 if (!Ty) 3529 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3530 ->getElementType(); 3531 else if (Ty != 3532 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3533 ->getElementType()) 3534 return error( 3535 "Explicit gep type does not match pointee type of pointer operand"); 3536 3537 SmallVector<Value*, 16> GEPIdx; 3538 while (OpNum != Record.size()) { 3539 Value *Op; 3540 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3541 return error("Invalid record"); 3542 GEPIdx.push_back(Op); 3543 } 3544 3545 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3546 3547 InstructionList.push_back(I); 3548 if (InBounds) 3549 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3550 break; 3551 } 3552 3553 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3554 // EXTRACTVAL: [opty, opval, n x indices] 3555 unsigned OpNum = 0; 3556 Value *Agg; 3557 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3558 return error("Invalid record"); 3559 3560 unsigned RecSize = Record.size(); 3561 if (OpNum == RecSize) 3562 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3563 3564 SmallVector<unsigned, 4> EXTRACTVALIdx; 3565 Type *CurTy = Agg->getType(); 3566 for (; OpNum != RecSize; ++OpNum) { 3567 bool IsArray = CurTy->isArrayTy(); 3568 bool IsStruct = CurTy->isStructTy(); 3569 uint64_t Index = Record[OpNum]; 3570 3571 if (!IsStruct && !IsArray) 3572 return error("EXTRACTVAL: Invalid type"); 3573 if ((unsigned)Index != Index) 3574 return error("Invalid value"); 3575 if (IsStruct && Index >= CurTy->subtypes().size()) 3576 return error("EXTRACTVAL: Invalid struct index"); 3577 if (IsArray && Index >= CurTy->getArrayNumElements()) 3578 return error("EXTRACTVAL: Invalid array index"); 3579 EXTRACTVALIdx.push_back((unsigned)Index); 3580 3581 if (IsStruct) 3582 CurTy = CurTy->subtypes()[Index]; 3583 else 3584 CurTy = CurTy->subtypes()[0]; 3585 } 3586 3587 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3588 InstructionList.push_back(I); 3589 break; 3590 } 3591 3592 case bitc::FUNC_CODE_INST_INSERTVAL: { 3593 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3594 unsigned OpNum = 0; 3595 Value *Agg; 3596 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3597 return error("Invalid record"); 3598 Value *Val; 3599 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3600 return error("Invalid record"); 3601 3602 unsigned RecSize = Record.size(); 3603 if (OpNum == RecSize) 3604 return error("INSERTVAL: Invalid instruction with 0 indices"); 3605 3606 SmallVector<unsigned, 4> INSERTVALIdx; 3607 Type *CurTy = Agg->getType(); 3608 for (; OpNum != RecSize; ++OpNum) { 3609 bool IsArray = CurTy->isArrayTy(); 3610 bool IsStruct = CurTy->isStructTy(); 3611 uint64_t Index = Record[OpNum]; 3612 3613 if (!IsStruct && !IsArray) 3614 return error("INSERTVAL: Invalid type"); 3615 if ((unsigned)Index != Index) 3616 return error("Invalid value"); 3617 if (IsStruct && Index >= CurTy->subtypes().size()) 3618 return error("INSERTVAL: Invalid struct index"); 3619 if (IsArray && Index >= CurTy->getArrayNumElements()) 3620 return error("INSERTVAL: Invalid array index"); 3621 3622 INSERTVALIdx.push_back((unsigned)Index); 3623 if (IsStruct) 3624 CurTy = CurTy->subtypes()[Index]; 3625 else 3626 CurTy = CurTy->subtypes()[0]; 3627 } 3628 3629 if (CurTy != Val->getType()) 3630 return error("Inserted value type doesn't match aggregate type"); 3631 3632 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3633 InstructionList.push_back(I); 3634 break; 3635 } 3636 3637 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3638 // obsolete form of select 3639 // handles select i1 ... in old bitcode 3640 unsigned OpNum = 0; 3641 Value *TrueVal, *FalseVal, *Cond; 3642 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3643 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3644 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3645 return error("Invalid record"); 3646 3647 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3648 InstructionList.push_back(I); 3649 break; 3650 } 3651 3652 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3653 // new form of select 3654 // handles select i1 or select [N x i1] 3655 unsigned OpNum = 0; 3656 Value *TrueVal, *FalseVal, *Cond; 3657 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3658 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3659 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3660 return error("Invalid record"); 3661 3662 // select condition can be either i1 or [N x i1] 3663 if (VectorType* vector_type = 3664 dyn_cast<VectorType>(Cond->getType())) { 3665 // expect <n x i1> 3666 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3667 return error("Invalid type for value"); 3668 } else { 3669 // expect i1 3670 if (Cond->getType() != Type::getInt1Ty(Context)) 3671 return error("Invalid type for value"); 3672 } 3673 3674 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3675 InstructionList.push_back(I); 3676 break; 3677 } 3678 3679 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3680 unsigned OpNum = 0; 3681 Value *Vec, *Idx; 3682 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3683 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3684 return error("Invalid record"); 3685 if (!Vec->getType()->isVectorTy()) 3686 return error("Invalid type for value"); 3687 I = ExtractElementInst::Create(Vec, Idx); 3688 InstructionList.push_back(I); 3689 break; 3690 } 3691 3692 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3693 unsigned OpNum = 0; 3694 Value *Vec, *Elt, *Idx; 3695 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3696 return error("Invalid record"); 3697 if (!Vec->getType()->isVectorTy()) 3698 return error("Invalid type for value"); 3699 if (popValue(Record, OpNum, NextValueNo, 3700 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3701 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3702 return error("Invalid record"); 3703 I = InsertElementInst::Create(Vec, Elt, Idx); 3704 InstructionList.push_back(I); 3705 break; 3706 } 3707 3708 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3709 unsigned OpNum = 0; 3710 Value *Vec1, *Vec2, *Mask; 3711 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3712 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3713 return error("Invalid record"); 3714 3715 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3716 return error("Invalid record"); 3717 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3718 return error("Invalid type for value"); 3719 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3720 InstructionList.push_back(I); 3721 break; 3722 } 3723 3724 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3725 // Old form of ICmp/FCmp returning bool 3726 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3727 // both legal on vectors but had different behaviour. 3728 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3729 // FCmp/ICmp returning bool or vector of bool 3730 3731 unsigned OpNum = 0; 3732 Value *LHS, *RHS; 3733 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3734 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3735 OpNum+1 != Record.size()) 3736 return error("Invalid record"); 3737 3738 if (LHS->getType()->isFPOrFPVectorTy()) 3739 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3740 else 3741 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3742 InstructionList.push_back(I); 3743 break; 3744 } 3745 3746 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3747 { 3748 unsigned Size = Record.size(); 3749 if (Size == 0) { 3750 I = ReturnInst::Create(Context); 3751 InstructionList.push_back(I); 3752 break; 3753 } 3754 3755 unsigned OpNum = 0; 3756 Value *Op = nullptr; 3757 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3758 return error("Invalid record"); 3759 if (OpNum != Record.size()) 3760 return error("Invalid record"); 3761 3762 I = ReturnInst::Create(Context, Op); 3763 InstructionList.push_back(I); 3764 break; 3765 } 3766 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3767 if (Record.size() != 1 && Record.size() != 3) 3768 return error("Invalid record"); 3769 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3770 if (!TrueDest) 3771 return error("Invalid record"); 3772 3773 if (Record.size() == 1) { 3774 I = BranchInst::Create(TrueDest); 3775 InstructionList.push_back(I); 3776 } 3777 else { 3778 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3779 Value *Cond = getValue(Record, 2, NextValueNo, 3780 Type::getInt1Ty(Context)); 3781 if (!FalseDest || !Cond) 3782 return error("Invalid record"); 3783 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3784 InstructionList.push_back(I); 3785 } 3786 break; 3787 } 3788 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3789 // Check magic 3790 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3791 // "New" SwitchInst format with case ranges. The changes to write this 3792 // format were reverted but we still recognize bitcode that uses it. 3793 // Hopefully someday we will have support for case ranges and can use 3794 // this format again. 3795 3796 Type *OpTy = getTypeByID(Record[1]); 3797 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3798 3799 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3800 BasicBlock *Default = getBasicBlock(Record[3]); 3801 if (!OpTy || !Cond || !Default) 3802 return error("Invalid record"); 3803 3804 unsigned NumCases = Record[4]; 3805 3806 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3807 InstructionList.push_back(SI); 3808 3809 unsigned CurIdx = 5; 3810 for (unsigned i = 0; i != NumCases; ++i) { 3811 SmallVector<ConstantInt*, 1> CaseVals; 3812 unsigned NumItems = Record[CurIdx++]; 3813 for (unsigned ci = 0; ci != NumItems; ++ci) { 3814 bool isSingleNumber = Record[CurIdx++]; 3815 3816 APInt Low; 3817 unsigned ActiveWords = 1; 3818 if (ValueBitWidth > 64) 3819 ActiveWords = Record[CurIdx++]; 3820 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3821 ValueBitWidth); 3822 CurIdx += ActiveWords; 3823 3824 if (!isSingleNumber) { 3825 ActiveWords = 1; 3826 if (ValueBitWidth > 64) 3827 ActiveWords = Record[CurIdx++]; 3828 APInt High = readWideAPInt( 3829 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3830 CurIdx += ActiveWords; 3831 3832 // FIXME: It is not clear whether values in the range should be 3833 // compared as signed or unsigned values. The partially 3834 // implemented changes that used this format in the past used 3835 // unsigned comparisons. 3836 for ( ; Low.ule(High); ++Low) 3837 CaseVals.push_back(ConstantInt::get(Context, Low)); 3838 } else 3839 CaseVals.push_back(ConstantInt::get(Context, Low)); 3840 } 3841 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3842 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3843 cve = CaseVals.end(); cvi != cve; ++cvi) 3844 SI->addCase(*cvi, DestBB); 3845 } 3846 I = SI; 3847 break; 3848 } 3849 3850 // Old SwitchInst format without case ranges. 3851 3852 if (Record.size() < 3 || (Record.size() & 1) == 0) 3853 return error("Invalid record"); 3854 Type *OpTy = getTypeByID(Record[0]); 3855 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3856 BasicBlock *Default = getBasicBlock(Record[2]); 3857 if (!OpTy || !Cond || !Default) 3858 return error("Invalid record"); 3859 unsigned NumCases = (Record.size()-3)/2; 3860 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3861 InstructionList.push_back(SI); 3862 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3863 ConstantInt *CaseVal = 3864 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3865 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3866 if (!CaseVal || !DestBB) { 3867 delete SI; 3868 return error("Invalid record"); 3869 } 3870 SI->addCase(CaseVal, DestBB); 3871 } 3872 I = SI; 3873 break; 3874 } 3875 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3876 if (Record.size() < 2) 3877 return error("Invalid record"); 3878 Type *OpTy = getTypeByID(Record[0]); 3879 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3880 if (!OpTy || !Address) 3881 return error("Invalid record"); 3882 unsigned NumDests = Record.size()-2; 3883 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3884 InstructionList.push_back(IBI); 3885 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3886 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3887 IBI->addDestination(DestBB); 3888 } else { 3889 delete IBI; 3890 return error("Invalid record"); 3891 } 3892 } 3893 I = IBI; 3894 break; 3895 } 3896 3897 case bitc::FUNC_CODE_INST_INVOKE: { 3898 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3899 if (Record.size() < 4) 3900 return error("Invalid record"); 3901 unsigned OpNum = 0; 3902 AttributeSet PAL = getAttributes(Record[OpNum++]); 3903 unsigned CCInfo = Record[OpNum++]; 3904 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3905 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3906 3907 FunctionType *FTy = nullptr; 3908 if (CCInfo >> 13 & 1 && 3909 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3910 return error("Explicit invoke type is not a function type"); 3911 3912 Value *Callee; 3913 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3914 return error("Invalid record"); 3915 3916 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3917 if (!CalleeTy) 3918 return error("Callee is not a pointer"); 3919 if (!FTy) { 3920 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3921 if (!FTy) 3922 return error("Callee is not of pointer to function type"); 3923 } else if (CalleeTy->getElementType() != FTy) 3924 return error("Explicit invoke type does not match pointee type of " 3925 "callee operand"); 3926 if (Record.size() < FTy->getNumParams() + OpNum) 3927 return error("Insufficient operands to call"); 3928 3929 SmallVector<Value*, 16> Ops; 3930 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3931 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3932 FTy->getParamType(i))); 3933 if (!Ops.back()) 3934 return error("Invalid record"); 3935 } 3936 3937 if (!FTy->isVarArg()) { 3938 if (Record.size() != OpNum) 3939 return error("Invalid record"); 3940 } else { 3941 // Read type/value pairs for varargs params. 3942 while (OpNum != Record.size()) { 3943 Value *Op; 3944 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3945 return error("Invalid record"); 3946 Ops.push_back(Op); 3947 } 3948 } 3949 3950 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3951 InstructionList.push_back(I); 3952 cast<InvokeInst>(I) 3953 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3954 cast<InvokeInst>(I)->setAttributes(PAL); 3955 break; 3956 } 3957 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3958 unsigned Idx = 0; 3959 Value *Val = nullptr; 3960 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3961 return error("Invalid record"); 3962 I = ResumeInst::Create(Val); 3963 InstructionList.push_back(I); 3964 break; 3965 } 3966 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3967 I = new UnreachableInst(Context); 3968 InstructionList.push_back(I); 3969 break; 3970 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3971 if (Record.size() < 1 || ((Record.size()-1)&1)) 3972 return error("Invalid record"); 3973 Type *Ty = getTypeByID(Record[0]); 3974 if (!Ty) 3975 return error("Invalid record"); 3976 3977 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3978 InstructionList.push_back(PN); 3979 3980 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3981 Value *V; 3982 // With the new function encoding, it is possible that operands have 3983 // negative IDs (for forward references). Use a signed VBR 3984 // representation to keep the encoding small. 3985 if (UseRelativeIDs) 3986 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3987 else 3988 V = getValue(Record, 1+i, NextValueNo, Ty); 3989 BasicBlock *BB = getBasicBlock(Record[2+i]); 3990 if (!V || !BB) 3991 return error("Invalid record"); 3992 PN->addIncoming(V, BB); 3993 } 3994 I = PN; 3995 break; 3996 } 3997 3998 case bitc::FUNC_CODE_INST_LANDINGPAD: 3999 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4000 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4001 unsigned Idx = 0; 4002 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4003 if (Record.size() < 3) 4004 return error("Invalid record"); 4005 } else { 4006 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4007 if (Record.size() < 4) 4008 return error("Invalid record"); 4009 } 4010 Type *Ty = getTypeByID(Record[Idx++]); 4011 if (!Ty) 4012 return error("Invalid record"); 4013 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4014 Value *PersFn = nullptr; 4015 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4016 return error("Invalid record"); 4017 4018 if (!F->hasPersonalityFn()) 4019 F->setPersonalityFn(cast<Constant>(PersFn)); 4020 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4021 return error("Personality function mismatch"); 4022 } 4023 4024 bool IsCleanup = !!Record[Idx++]; 4025 unsigned NumClauses = Record[Idx++]; 4026 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4027 LP->setCleanup(IsCleanup); 4028 for (unsigned J = 0; J != NumClauses; ++J) { 4029 LandingPadInst::ClauseType CT = 4030 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4031 Value *Val; 4032 4033 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4034 delete LP; 4035 return error("Invalid record"); 4036 } 4037 4038 assert((CT != LandingPadInst::Catch || 4039 !isa<ArrayType>(Val->getType())) && 4040 "Catch clause has a invalid type!"); 4041 assert((CT != LandingPadInst::Filter || 4042 isa<ArrayType>(Val->getType())) && 4043 "Filter clause has invalid type!"); 4044 LP->addClause(cast<Constant>(Val)); 4045 } 4046 4047 I = LP; 4048 InstructionList.push_back(I); 4049 break; 4050 } 4051 4052 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4053 if (Record.size() != 4) 4054 return error("Invalid record"); 4055 uint64_t AlignRecord = Record[3]; 4056 const uint64_t InAllocaMask = uint64_t(1) << 5; 4057 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4058 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4059 bool InAlloca = AlignRecord & InAllocaMask; 4060 Type *Ty = getTypeByID(Record[0]); 4061 if ((AlignRecord & ExplicitTypeMask) == 0) { 4062 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4063 if (!PTy) 4064 return error("Old-style alloca with a non-pointer type"); 4065 Ty = PTy->getElementType(); 4066 } 4067 Type *OpTy = getTypeByID(Record[1]); 4068 Value *Size = getFnValueByID(Record[2], OpTy); 4069 unsigned Align; 4070 if (std::error_code EC = 4071 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4072 return EC; 4073 } 4074 if (!Ty || !Size) 4075 return error("Invalid record"); 4076 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4077 AI->setUsedWithInAlloca(InAlloca); 4078 I = AI; 4079 InstructionList.push_back(I); 4080 break; 4081 } 4082 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4083 unsigned OpNum = 0; 4084 Value *Op; 4085 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4086 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4087 return error("Invalid record"); 4088 4089 Type *Ty = nullptr; 4090 if (OpNum + 3 == Record.size()) 4091 Ty = getTypeByID(Record[OpNum++]); 4092 if (std::error_code EC = 4093 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4094 return EC; 4095 if (!Ty) 4096 Ty = cast<PointerType>(Op->getType())->getElementType(); 4097 4098 unsigned Align; 4099 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4100 return EC; 4101 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4102 4103 InstructionList.push_back(I); 4104 break; 4105 } 4106 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4107 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4108 unsigned OpNum = 0; 4109 Value *Op; 4110 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4111 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4112 return error("Invalid record"); 4113 4114 Type *Ty = nullptr; 4115 if (OpNum + 5 == Record.size()) 4116 Ty = getTypeByID(Record[OpNum++]); 4117 if (std::error_code EC = 4118 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4119 return EC; 4120 if (!Ty) 4121 Ty = cast<PointerType>(Op->getType())->getElementType(); 4122 4123 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4124 if (Ordering == NotAtomic || Ordering == Release || 4125 Ordering == AcquireRelease) 4126 return error("Invalid record"); 4127 if (Ordering != NotAtomic && Record[OpNum] == 0) 4128 return error("Invalid record"); 4129 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4130 4131 unsigned Align; 4132 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4133 return EC; 4134 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4135 4136 InstructionList.push_back(I); 4137 break; 4138 } 4139 case bitc::FUNC_CODE_INST_STORE: 4140 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4141 unsigned OpNum = 0; 4142 Value *Val, *Ptr; 4143 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4144 (BitCode == bitc::FUNC_CODE_INST_STORE 4145 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4146 : popValue(Record, OpNum, NextValueNo, 4147 cast<PointerType>(Ptr->getType())->getElementType(), 4148 Val)) || 4149 OpNum + 2 != Record.size()) 4150 return error("Invalid record"); 4151 4152 if (std::error_code EC = typeCheckLoadStoreInst( 4153 DiagnosticHandler, Val->getType(), Ptr->getType())) 4154 return EC; 4155 unsigned Align; 4156 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4157 return EC; 4158 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4159 InstructionList.push_back(I); 4160 break; 4161 } 4162 case bitc::FUNC_CODE_INST_STOREATOMIC: 4163 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4164 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4165 unsigned OpNum = 0; 4166 Value *Val, *Ptr; 4167 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4168 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4169 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4170 : popValue(Record, OpNum, NextValueNo, 4171 cast<PointerType>(Ptr->getType())->getElementType(), 4172 Val)) || 4173 OpNum + 4 != Record.size()) 4174 return error("Invalid record"); 4175 4176 if (std::error_code EC = typeCheckLoadStoreInst( 4177 DiagnosticHandler, Val->getType(), Ptr->getType())) 4178 return EC; 4179 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4180 if (Ordering == NotAtomic || Ordering == Acquire || 4181 Ordering == AcquireRelease) 4182 return error("Invalid record"); 4183 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4184 if (Ordering != NotAtomic && Record[OpNum] == 0) 4185 return error("Invalid record"); 4186 4187 unsigned Align; 4188 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4189 return EC; 4190 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4191 InstructionList.push_back(I); 4192 break; 4193 } 4194 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4195 case bitc::FUNC_CODE_INST_CMPXCHG: { 4196 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4197 // failureordering?, isweak?] 4198 unsigned OpNum = 0; 4199 Value *Ptr, *Cmp, *New; 4200 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4201 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4202 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4203 : popValue(Record, OpNum, NextValueNo, 4204 cast<PointerType>(Ptr->getType())->getElementType(), 4205 Cmp)) || 4206 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4207 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4208 return error("Invalid record"); 4209 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4210 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4211 return error("Invalid record"); 4212 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4213 4214 if (std::error_code EC = typeCheckLoadStoreInst( 4215 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4216 return EC; 4217 AtomicOrdering FailureOrdering; 4218 if (Record.size() < 7) 4219 FailureOrdering = 4220 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4221 else 4222 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4223 4224 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4225 SynchScope); 4226 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4227 4228 if (Record.size() < 8) { 4229 // Before weak cmpxchgs existed, the instruction simply returned the 4230 // value loaded from memory, so bitcode files from that era will be 4231 // expecting the first component of a modern cmpxchg. 4232 CurBB->getInstList().push_back(I); 4233 I = ExtractValueInst::Create(I, 0); 4234 } else { 4235 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4236 } 4237 4238 InstructionList.push_back(I); 4239 break; 4240 } 4241 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4242 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4243 unsigned OpNum = 0; 4244 Value *Ptr, *Val; 4245 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4246 popValue(Record, OpNum, NextValueNo, 4247 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4248 OpNum+4 != Record.size()) 4249 return error("Invalid record"); 4250 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4251 if (Operation < AtomicRMWInst::FIRST_BINOP || 4252 Operation > AtomicRMWInst::LAST_BINOP) 4253 return error("Invalid record"); 4254 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4255 if (Ordering == NotAtomic || Ordering == Unordered) 4256 return error("Invalid record"); 4257 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4258 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4259 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4260 InstructionList.push_back(I); 4261 break; 4262 } 4263 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4264 if (2 != Record.size()) 4265 return error("Invalid record"); 4266 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4267 if (Ordering == NotAtomic || Ordering == Unordered || 4268 Ordering == Monotonic) 4269 return error("Invalid record"); 4270 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4271 I = new FenceInst(Context, Ordering, SynchScope); 4272 InstructionList.push_back(I); 4273 break; 4274 } 4275 case bitc::FUNC_CODE_INST_CALL: { 4276 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4277 if (Record.size() < 3) 4278 return error("Invalid record"); 4279 4280 unsigned OpNum = 0; 4281 AttributeSet PAL = getAttributes(Record[OpNum++]); 4282 unsigned CCInfo = Record[OpNum++]; 4283 4284 FunctionType *FTy = nullptr; 4285 if (CCInfo >> 15 & 1 && 4286 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4287 return error("Explicit call type is not a function type"); 4288 4289 Value *Callee; 4290 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4291 return error("Invalid record"); 4292 4293 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4294 if (!OpTy) 4295 return error("Callee is not a pointer type"); 4296 if (!FTy) { 4297 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4298 if (!FTy) 4299 return error("Callee is not of pointer to function type"); 4300 } else if (OpTy->getElementType() != FTy) 4301 return error("Explicit call type does not match pointee type of " 4302 "callee operand"); 4303 if (Record.size() < FTy->getNumParams() + OpNum) 4304 return error("Insufficient operands to call"); 4305 4306 SmallVector<Value*, 16> Args; 4307 // Read the fixed params. 4308 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4309 if (FTy->getParamType(i)->isLabelTy()) 4310 Args.push_back(getBasicBlock(Record[OpNum])); 4311 else 4312 Args.push_back(getValue(Record, OpNum, NextValueNo, 4313 FTy->getParamType(i))); 4314 if (!Args.back()) 4315 return error("Invalid record"); 4316 } 4317 4318 // Read type/value pairs for varargs params. 4319 if (!FTy->isVarArg()) { 4320 if (OpNum != Record.size()) 4321 return error("Invalid record"); 4322 } else { 4323 while (OpNum != Record.size()) { 4324 Value *Op; 4325 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4326 return error("Invalid record"); 4327 Args.push_back(Op); 4328 } 4329 } 4330 4331 I = CallInst::Create(FTy, Callee, Args); 4332 InstructionList.push_back(I); 4333 cast<CallInst>(I)->setCallingConv( 4334 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4335 CallInst::TailCallKind TCK = CallInst::TCK_None; 4336 if (CCInfo & 1) 4337 TCK = CallInst::TCK_Tail; 4338 if (CCInfo & (1 << 14)) 4339 TCK = CallInst::TCK_MustTail; 4340 cast<CallInst>(I)->setTailCallKind(TCK); 4341 cast<CallInst>(I)->setAttributes(PAL); 4342 break; 4343 } 4344 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4345 if (Record.size() < 3) 4346 return error("Invalid record"); 4347 Type *OpTy = getTypeByID(Record[0]); 4348 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4349 Type *ResTy = getTypeByID(Record[2]); 4350 if (!OpTy || !Op || !ResTy) 4351 return error("Invalid record"); 4352 I = new VAArgInst(Op, ResTy); 4353 InstructionList.push_back(I); 4354 break; 4355 } 4356 } 4357 4358 // Add instruction to end of current BB. If there is no current BB, reject 4359 // this file. 4360 if (!CurBB) { 4361 delete I; 4362 return error("Invalid instruction with no BB"); 4363 } 4364 CurBB->getInstList().push_back(I); 4365 4366 // If this was a terminator instruction, move to the next block. 4367 if (isa<TerminatorInst>(I)) { 4368 ++CurBBNo; 4369 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4370 } 4371 4372 // Non-void values get registered in the value table for future use. 4373 if (I && !I->getType()->isVoidTy()) 4374 ValueList.assignValue(I, NextValueNo++); 4375 } 4376 4377 OutOfRecordLoop: 4378 4379 // Check the function list for unresolved values. 4380 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4381 if (!A->getParent()) { 4382 // We found at least one unresolved value. Nuke them all to avoid leaks. 4383 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4384 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4385 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4386 delete A; 4387 } 4388 } 4389 return error("Never resolved value found in function"); 4390 } 4391 } 4392 4393 // FIXME: Check for unresolved forward-declared metadata references 4394 // and clean up leaks. 4395 4396 // Trim the value list down to the size it was before we parsed this function. 4397 ValueList.shrinkTo(ModuleValueListSize); 4398 MDValueList.shrinkTo(ModuleMDValueListSize); 4399 std::vector<BasicBlock*>().swap(FunctionBBs); 4400 return std::error_code(); 4401 } 4402 4403 /// Find the function body in the bitcode stream 4404 std::error_code BitcodeReader::findFunctionInStream( 4405 Function *F, 4406 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4407 while (DeferredFunctionInfoIterator->second == 0) { 4408 if (Stream.AtEndOfStream()) 4409 return error("Could not find function in stream"); 4410 // ParseModule will parse the next body in the stream and set its 4411 // position in the DeferredFunctionInfo map. 4412 if (std::error_code EC = parseModule(true)) 4413 return EC; 4414 } 4415 return std::error_code(); 4416 } 4417 4418 //===----------------------------------------------------------------------===// 4419 // GVMaterializer implementation 4420 //===----------------------------------------------------------------------===// 4421 4422 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4423 4424 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4425 if (std::error_code EC = materializeMetadata()) 4426 return EC; 4427 4428 Function *F = dyn_cast<Function>(GV); 4429 // If it's not a function or is already material, ignore the request. 4430 if (!F || !F->isMaterializable()) 4431 return std::error_code(); 4432 4433 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4434 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4435 // If its position is recorded as 0, its body is somewhere in the stream 4436 // but we haven't seen it yet. 4437 if (DFII->second == 0 && IsStreamed) 4438 if (std::error_code EC = findFunctionInStream(F, DFII)) 4439 return EC; 4440 4441 // Move the bit stream to the saved position of the deferred function body. 4442 Stream.JumpToBit(DFII->second); 4443 4444 if (std::error_code EC = parseFunctionBody(F)) 4445 return EC; 4446 F->setIsMaterializable(false); 4447 4448 if (StripDebugInfo) 4449 stripDebugInfo(*F); 4450 4451 // Upgrade any old intrinsic calls in the function. 4452 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4453 E = UpgradedIntrinsics.end(); I != E; ++I) { 4454 if (I->first != I->second) { 4455 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4456 UI != UE;) { 4457 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4458 UpgradeIntrinsicCall(CI, I->second); 4459 } 4460 } 4461 } 4462 4463 // Bring in any functions that this function forward-referenced via 4464 // blockaddresses. 4465 return materializeForwardReferencedFunctions(); 4466 } 4467 4468 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4469 const Function *F = dyn_cast<Function>(GV); 4470 if (!F || F->isDeclaration()) 4471 return false; 4472 4473 // Dematerializing F would leave dangling references that wouldn't be 4474 // reconnected on re-materialization. 4475 if (BlockAddressesTaken.count(F)) 4476 return false; 4477 4478 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4479 } 4480 4481 void BitcodeReader::dematerialize(GlobalValue *GV) { 4482 Function *F = dyn_cast<Function>(GV); 4483 // If this function isn't dematerializable, this is a noop. 4484 if (!F || !isDematerializable(F)) 4485 return; 4486 4487 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4488 4489 // Just forget the function body, we can remat it later. 4490 F->dropAllReferences(); 4491 F->setIsMaterializable(true); 4492 } 4493 4494 std::error_code BitcodeReader::materializeModule(Module *M) { 4495 assert(M == TheModule && 4496 "Can only Materialize the Module this BitcodeReader is attached to."); 4497 4498 if (std::error_code EC = materializeMetadata()) 4499 return EC; 4500 4501 // Promise to materialize all forward references. 4502 WillMaterializeAllForwardRefs = true; 4503 4504 // Iterate over the module, deserializing any functions that are still on 4505 // disk. 4506 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4507 F != E; ++F) { 4508 if (std::error_code EC = materialize(F)) 4509 return EC; 4510 } 4511 // At this point, if there are any function bodies, the current bit is 4512 // pointing to the END_BLOCK record after them. Now make sure the rest 4513 // of the bits in the module have been read. 4514 if (NextUnreadBit) 4515 parseModule(true); 4516 4517 // Check that all block address forward references got resolved (as we 4518 // promised above). 4519 if (!BasicBlockFwdRefs.empty()) 4520 return error("Never resolved function from blockaddress"); 4521 4522 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4523 // delete the old functions to clean up. We can't do this unless the entire 4524 // module is materialized because there could always be another function body 4525 // with calls to the old function. 4526 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4527 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4528 if (I->first != I->second) { 4529 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4530 UI != UE;) { 4531 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4532 UpgradeIntrinsicCall(CI, I->second); 4533 } 4534 if (!I->first->use_empty()) 4535 I->first->replaceAllUsesWith(I->second); 4536 I->first->eraseFromParent(); 4537 } 4538 } 4539 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4540 4541 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4542 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4543 4544 UpgradeDebugInfo(*M); 4545 return std::error_code(); 4546 } 4547 4548 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4549 return IdentifiedStructTypes; 4550 } 4551 4552 std::error_code 4553 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 4554 if (Streamer) 4555 return initLazyStream(std::move(Streamer)); 4556 return initStreamFromBuffer(); 4557 } 4558 4559 std::error_code BitcodeReader::initStreamFromBuffer() { 4560 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4561 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4562 4563 if (Buffer->getBufferSize() & 3) 4564 return error("Invalid bitcode signature"); 4565 4566 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4567 // The magic number is 0x0B17C0DE stored in little endian. 4568 if (isBitcodeWrapper(BufPtr, BufEnd)) 4569 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4570 return error("Invalid bitcode wrapper header"); 4571 4572 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4573 Stream.init(&*StreamFile); 4574 4575 return std::error_code(); 4576 } 4577 4578 std::error_code 4579 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 4580 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4581 // see it. 4582 auto OwnedBytes = 4583 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 4584 StreamingMemoryObject &Bytes = *OwnedBytes; 4585 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4586 Stream.init(&*StreamFile); 4587 4588 unsigned char buf[16]; 4589 if (Bytes.readBytes(buf, 16, 0) != 16) 4590 return error("Invalid bitcode signature"); 4591 4592 if (!isBitcode(buf, buf + 16)) 4593 return error("Invalid bitcode signature"); 4594 4595 if (isBitcodeWrapper(buf, buf + 4)) { 4596 const unsigned char *bitcodeStart = buf; 4597 const unsigned char *bitcodeEnd = buf + 16; 4598 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4599 Bytes.dropLeadingBytes(bitcodeStart - buf); 4600 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4601 } 4602 return std::error_code(); 4603 } 4604 4605 namespace { 4606 class BitcodeErrorCategoryType : public std::error_category { 4607 const char *name() const LLVM_NOEXCEPT override { 4608 return "llvm.bitcode"; 4609 } 4610 std::string message(int IE) const override { 4611 BitcodeError E = static_cast<BitcodeError>(IE); 4612 switch (E) { 4613 case BitcodeError::InvalidBitcodeSignature: 4614 return "Invalid bitcode signature"; 4615 case BitcodeError::CorruptedBitcode: 4616 return "Corrupted bitcode"; 4617 } 4618 llvm_unreachable("Unknown error type!"); 4619 } 4620 }; 4621 } // namespace 4622 4623 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4624 4625 const std::error_category &llvm::BitcodeErrorCategory() { 4626 return *ErrorCategory; 4627 } 4628 4629 //===----------------------------------------------------------------------===// 4630 // External interface 4631 //===----------------------------------------------------------------------===// 4632 4633 static ErrorOr<std::unique_ptr<Module>> 4634 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 4635 BitcodeReader *R, LLVMContext &Context, 4636 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 4637 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4638 M->setMaterializer(R); 4639 4640 auto cleanupOnError = [&](std::error_code EC) { 4641 R->releaseBuffer(); // Never take ownership on error. 4642 return EC; 4643 }; 4644 4645 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4646 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 4647 ShouldLazyLoadMetadata)) 4648 return cleanupOnError(EC); 4649 4650 if (MaterializeAll) { 4651 // Read in the entire module, and destroy the BitcodeReader. 4652 if (std::error_code EC = M->materializeAllPermanently()) 4653 return cleanupOnError(EC); 4654 } else { 4655 // Resolve forward references from blockaddresses. 4656 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4657 return cleanupOnError(EC); 4658 } 4659 return std::move(M); 4660 } 4661 4662 /// \brief Get a lazy one-at-time loading module from bitcode. 4663 /// 4664 /// This isn't always used in a lazy context. In particular, it's also used by 4665 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4666 /// in forward-referenced functions from block address references. 4667 /// 4668 /// \param[in] MaterializeAll Set to \c true if we should materialize 4669 /// everything. 4670 static ErrorOr<std::unique_ptr<Module>> 4671 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4672 LLVMContext &Context, bool MaterializeAll, 4673 DiagnosticHandlerFunction DiagnosticHandler, 4674 bool ShouldLazyLoadMetadata = false) { 4675 BitcodeReader *R = 4676 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4677 4678 ErrorOr<std::unique_ptr<Module>> Ret = 4679 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 4680 MaterializeAll, ShouldLazyLoadMetadata); 4681 if (!Ret) 4682 return Ret; 4683 4684 Buffer.release(); // The BitcodeReader owns it now. 4685 return Ret; 4686 } 4687 4688 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 4689 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 4690 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 4691 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4692 DiagnosticHandler, ShouldLazyLoadMetadata); 4693 } 4694 4695 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 4696 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 4697 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 4698 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4699 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 4700 4701 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 4702 false); 4703 } 4704 4705 ErrorOr<std::unique_ptr<Module>> 4706 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4707 DiagnosticHandlerFunction DiagnosticHandler) { 4708 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4709 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 4710 DiagnosticHandler); 4711 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4712 // written. We must defer until the Module has been fully materialized. 4713 } 4714 4715 std::string 4716 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4717 DiagnosticHandlerFunction DiagnosticHandler) { 4718 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4719 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4720 DiagnosticHandler); 4721 ErrorOr<std::string> Triple = R->parseTriple(); 4722 if (Triple.getError()) 4723 return ""; 4724 return Triple.get(); 4725 } 4726