1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DebugInfo.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GVMaterializer.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalIndirectSymbol.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstIterator.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/ManagedStatic.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <map> 81 #include <memory> 82 #include <set> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 } // end anonymous namespace 103 104 static Error error(const Twine &Message) { 105 return make_error<StringError>( 106 Message, make_error_code(BitcodeError::CorruptedBitcode)); 107 } 108 109 /// Helper to read the header common to all bitcode files. 110 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 111 // Sniff for the signature. 112 if (!Stream.canSkipToPos(4) || 113 Stream.Read(8) != 'B' || 114 Stream.Read(8) != 'C' || 115 Stream.Read(4) != 0x0 || 116 Stream.Read(4) != 0xC || 117 Stream.Read(4) != 0xE || 118 Stream.Read(4) != 0xD) 119 return false; 120 return true; 121 } 122 123 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 124 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 125 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 126 127 if (Buffer.getBufferSize() & 3) 128 return error("Invalid bitcode signature"); 129 130 // If we have a wrapper header, parse it and ignore the non-bc file contents. 131 // The magic number is 0x0B17C0DE stored in little endian. 132 if (isBitcodeWrapper(BufPtr, BufEnd)) 133 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 134 return error("Invalid bitcode wrapper header"); 135 136 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 137 if (!hasValidBitcodeHeader(Stream)) 138 return error("Invalid bitcode signature"); 139 140 return std::move(Stream); 141 } 142 143 /// Convert a string from a record into an std::string, return true on failure. 144 template <typename StrTy> 145 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 146 StrTy &Result) { 147 if (Idx > Record.size()) 148 return true; 149 150 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 151 Result += (char)Record[i]; 152 return false; 153 } 154 155 // Strip all the TBAA attachment for the module. 156 static void stripTBAA(Module *M) { 157 for (auto &F : *M) { 158 if (F.isMaterializable()) 159 continue; 160 for (auto &I : instructions(F)) 161 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 162 } 163 } 164 165 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 166 /// "epoch" encoded in the bitcode, and return the producer name if any. 167 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 168 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 169 return error("Invalid record"); 170 171 // Read all the records. 172 SmallVector<uint64_t, 64> Record; 173 174 std::string ProducerIdentification; 175 176 while (true) { 177 BitstreamEntry Entry = Stream.advance(); 178 179 switch (Entry.Kind) { 180 default: 181 case BitstreamEntry::Error: 182 return error("Malformed block"); 183 case BitstreamEntry::EndBlock: 184 return ProducerIdentification; 185 case BitstreamEntry::Record: 186 // The interesting case. 187 break; 188 } 189 190 // Read a record. 191 Record.clear(); 192 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 193 switch (BitCode) { 194 default: // Default behavior: reject 195 return error("Invalid value"); 196 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 197 convertToString(Record, 0, ProducerIdentification); 198 break; 199 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 200 unsigned epoch = (unsigned)Record[0]; 201 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 202 return error( 203 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 204 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 205 } 206 } 207 } 208 } 209 } 210 211 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 212 // We expect a number of well-defined blocks, though we don't necessarily 213 // need to understand them all. 214 while (true) { 215 if (Stream.AtEndOfStream()) 216 return ""; 217 218 BitstreamEntry Entry = Stream.advance(); 219 switch (Entry.Kind) { 220 case BitstreamEntry::EndBlock: 221 case BitstreamEntry::Error: 222 return error("Malformed block"); 223 224 case BitstreamEntry::SubBlock: 225 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 226 return readIdentificationBlock(Stream); 227 228 // Ignore other sub-blocks. 229 if (Stream.SkipBlock()) 230 return error("Malformed block"); 231 continue; 232 case BitstreamEntry::Record: 233 Stream.skipRecord(Entry.ID); 234 continue; 235 } 236 } 237 } 238 239 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 240 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 241 return error("Invalid record"); 242 243 SmallVector<uint64_t, 64> Record; 244 // Read all the records for this module. 245 246 while (true) { 247 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 248 249 switch (Entry.Kind) { 250 case BitstreamEntry::SubBlock: // Handled for us already. 251 case BitstreamEntry::Error: 252 return error("Malformed block"); 253 case BitstreamEntry::EndBlock: 254 return false; 255 case BitstreamEntry::Record: 256 // The interesting case. 257 break; 258 } 259 260 // Read a record. 261 switch (Stream.readRecord(Entry.ID, Record)) { 262 default: 263 break; // Default behavior, ignore unknown content. 264 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 265 std::string S; 266 if (convertToString(Record, 0, S)) 267 return error("Invalid record"); 268 // Check for the i386 and other (x86_64, ARM) conventions 269 if (S.find("__DATA,__objc_catlist") != std::string::npos || 270 S.find("__OBJC,__category") != std::string::npos) 271 return true; 272 break; 273 } 274 } 275 Record.clear(); 276 } 277 llvm_unreachable("Exit infinite loop"); 278 } 279 280 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 281 // We expect a number of well-defined blocks, though we don't necessarily 282 // need to understand them all. 283 while (true) { 284 BitstreamEntry Entry = Stream.advance(); 285 286 switch (Entry.Kind) { 287 case BitstreamEntry::Error: 288 return error("Malformed block"); 289 case BitstreamEntry::EndBlock: 290 return false; 291 292 case BitstreamEntry::SubBlock: 293 if (Entry.ID == bitc::MODULE_BLOCK_ID) 294 return hasObjCCategoryInModule(Stream); 295 296 // Ignore other sub-blocks. 297 if (Stream.SkipBlock()) 298 return error("Malformed block"); 299 continue; 300 301 case BitstreamEntry::Record: 302 Stream.skipRecord(Entry.ID); 303 continue; 304 } 305 } 306 } 307 308 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 309 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 310 return error("Invalid record"); 311 312 SmallVector<uint64_t, 64> Record; 313 314 std::string Triple; 315 316 // Read all the records for this module. 317 while (true) { 318 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 319 320 switch (Entry.Kind) { 321 case BitstreamEntry::SubBlock: // Handled for us already. 322 case BitstreamEntry::Error: 323 return error("Malformed block"); 324 case BitstreamEntry::EndBlock: 325 return Triple; 326 case BitstreamEntry::Record: 327 // The interesting case. 328 break; 329 } 330 331 // Read a record. 332 switch (Stream.readRecord(Entry.ID, Record)) { 333 default: break; // Default behavior, ignore unknown content. 334 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 335 std::string S; 336 if (convertToString(Record, 0, S)) 337 return error("Invalid record"); 338 Triple = S; 339 break; 340 } 341 } 342 Record.clear(); 343 } 344 llvm_unreachable("Exit infinite loop"); 345 } 346 347 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 348 // We expect a number of well-defined blocks, though we don't necessarily 349 // need to understand them all. 350 while (true) { 351 BitstreamEntry Entry = Stream.advance(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return ""; 358 359 case BitstreamEntry::SubBlock: 360 if (Entry.ID == bitc::MODULE_BLOCK_ID) 361 return readModuleTriple(Stream); 362 363 // Ignore other sub-blocks. 364 if (Stream.SkipBlock()) 365 return error("Malformed block"); 366 continue; 367 368 case BitstreamEntry::Record: 369 Stream.skipRecord(Entry.ID); 370 continue; 371 } 372 } 373 } 374 375 namespace { 376 377 class BitcodeReaderBase { 378 protected: 379 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 380 : Stream(std::move(Stream)), Strtab(Strtab) { 381 this->Stream.setBlockInfo(&BlockInfo); 382 } 383 384 BitstreamBlockInfo BlockInfo; 385 BitstreamCursor Stream; 386 StringRef Strtab; 387 388 /// In version 2 of the bitcode we store names of global values and comdats in 389 /// a string table rather than in the VST. 390 bool UseStrtab = false; 391 392 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 393 394 /// If this module uses a string table, pop the reference to the string table 395 /// and return the referenced string and the rest of the record. Otherwise 396 /// just return the record itself. 397 std::pair<StringRef, ArrayRef<uint64_t>> 398 readNameFromStrtab(ArrayRef<uint64_t> Record); 399 400 bool readBlockInfo(); 401 402 // Contains an arbitrary and optional string identifying the bitcode producer 403 std::string ProducerIdentification; 404 405 Error error(const Twine &Message); 406 }; 407 408 } // end anonymous namespace 409 410 Error BitcodeReaderBase::error(const Twine &Message) { 411 std::string FullMsg = Message.str(); 412 if (!ProducerIdentification.empty()) 413 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 414 LLVM_VERSION_STRING "')"; 415 return ::error(FullMsg); 416 } 417 418 Expected<unsigned> 419 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 420 if (Record.empty()) 421 return error("Invalid record"); 422 unsigned ModuleVersion = Record[0]; 423 if (ModuleVersion > 2) 424 return error("Invalid value"); 425 UseStrtab = ModuleVersion >= 2; 426 return ModuleVersion; 427 } 428 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 431 if (!UseStrtab) 432 return {"", Record}; 433 // Invalid reference. Let the caller complain about the record being empty. 434 if (Record[0] + Record[1] > Strtab.size()) 435 return {"", {}}; 436 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 437 } 438 439 namespace { 440 441 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 442 LLVMContext &Context; 443 Module *TheModule = nullptr; 444 // Next offset to start scanning for lazy parsing of function bodies. 445 uint64_t NextUnreadBit = 0; 446 // Last function offset found in the VST. 447 uint64_t LastFunctionBlockBit = 0; 448 bool SeenValueSymbolTable = false; 449 uint64_t VSTOffset = 0; 450 451 std::vector<std::string> SectionTable; 452 std::vector<std::string> GCTable; 453 454 std::vector<Type*> TypeList; 455 BitcodeReaderValueList ValueList; 456 Optional<MetadataLoader> MDLoader; 457 std::vector<Comdat *> ComdatList; 458 SmallVector<Instruction *, 64> InstructionList; 459 460 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 461 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 463 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 464 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 465 466 /// The set of attributes by index. Index zero in the file is for null, and 467 /// is thus not represented here. As such all indices are off by one. 468 std::vector<AttributeList> MAttributes; 469 470 /// The set of attribute groups. 471 std::map<unsigned, AttributeList> MAttributeGroups; 472 473 /// While parsing a function body, this is a list of the basic blocks for the 474 /// function. 475 std::vector<BasicBlock*> FunctionBBs; 476 477 // When reading the module header, this list is populated with functions that 478 // have bodies later in the file. 479 std::vector<Function*> FunctionsWithBodies; 480 481 // When intrinsic functions are encountered which require upgrading they are 482 // stored here with their replacement function. 483 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 484 UpdatedIntrinsicMap UpgradedIntrinsics; 485 // Intrinsics which were remangled because of types rename 486 UpdatedIntrinsicMap RemangledIntrinsics; 487 488 // Several operations happen after the module header has been read, but 489 // before function bodies are processed. This keeps track of whether 490 // we've done this yet. 491 bool SeenFirstFunctionBody = false; 492 493 /// When function bodies are initially scanned, this map contains info about 494 /// where to find deferred function body in the stream. 495 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 496 497 /// When Metadata block is initially scanned when parsing the module, we may 498 /// choose to defer parsing of the metadata. This vector contains info about 499 /// which Metadata blocks are deferred. 500 std::vector<uint64_t> DeferredMetadataInfo; 501 502 /// These are basic blocks forward-referenced by block addresses. They are 503 /// inserted lazily into functions when they're loaded. The basic block ID is 504 /// its index into the vector. 505 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 506 std::deque<Function *> BasicBlockFwdRefQueue; 507 508 /// Indicates that we are using a new encoding for instruction operands where 509 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 510 /// instruction number, for a more compact encoding. Some instruction 511 /// operands are not relative to the instruction ID: basic block numbers, and 512 /// types. Once the old style function blocks have been phased out, we would 513 /// not need this flag. 514 bool UseRelativeIDs = false; 515 516 /// True if all functions will be materialized, negating the need to process 517 /// (e.g.) blockaddress forward references. 518 bool WillMaterializeAllForwardRefs = false; 519 520 bool StripDebugInfo = false; 521 TBAAVerifier TBAAVerifyHelper; 522 523 std::vector<std::string> BundleTags; 524 SmallVector<SyncScope::ID, 8> SSIDs; 525 526 public: 527 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 528 StringRef ProducerIdentification, LLVMContext &Context); 529 530 Error materializeForwardReferencedFunctions(); 531 532 Error materialize(GlobalValue *GV) override; 533 Error materializeModule() override; 534 std::vector<StructType *> getIdentifiedStructTypes() const override; 535 536 /// Main interface to parsing a bitcode buffer. 537 /// \returns true if an error occurred. 538 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 539 bool IsImporting = false); 540 541 static uint64_t decodeSignRotatedValue(uint64_t V); 542 543 /// Materialize any deferred Metadata block. 544 Error materializeMetadata() override; 545 546 void setStripDebugInfo() override; 547 548 private: 549 std::vector<StructType *> IdentifiedStructTypes; 550 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 551 StructType *createIdentifiedStructType(LLVMContext &Context); 552 553 Type *getTypeByID(unsigned ID); 554 555 Value *getFnValueByID(unsigned ID, Type *Ty) { 556 if (Ty && Ty->isMetadataTy()) 557 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 558 return ValueList.getValueFwdRef(ID, Ty); 559 } 560 561 Metadata *getFnMetadataByID(unsigned ID) { 562 return MDLoader->getMetadataFwdRefOrLoad(ID); 563 } 564 565 BasicBlock *getBasicBlock(unsigned ID) const { 566 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 567 return FunctionBBs[ID]; 568 } 569 570 AttributeList getAttributes(unsigned i) const { 571 if (i-1 < MAttributes.size()) 572 return MAttributes[i-1]; 573 return AttributeList(); 574 } 575 576 /// Read a value/type pair out of the specified record from slot 'Slot'. 577 /// Increment Slot past the number of slots used in the record. Return true on 578 /// failure. 579 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 580 unsigned InstNum, Value *&ResVal) { 581 if (Slot == Record.size()) return true; 582 unsigned ValNo = (unsigned)Record[Slot++]; 583 // Adjust the ValNo, if it was encoded relative to the InstNum. 584 if (UseRelativeIDs) 585 ValNo = InstNum - ValNo; 586 if (ValNo < InstNum) { 587 // If this is not a forward reference, just return the value we already 588 // have. 589 ResVal = getFnValueByID(ValNo, nullptr); 590 return ResVal == nullptr; 591 } 592 if (Slot == Record.size()) 593 return true; 594 595 unsigned TypeNo = (unsigned)Record[Slot++]; 596 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 597 return ResVal == nullptr; 598 } 599 600 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 601 /// past the number of slots used by the value in the record. Return true if 602 /// there is an error. 603 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 604 unsigned InstNum, Type *Ty, Value *&ResVal) { 605 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 606 return true; 607 // All values currently take a single record slot. 608 ++Slot; 609 return false; 610 } 611 612 /// Like popValue, but does not increment the Slot number. 613 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 614 unsigned InstNum, Type *Ty, Value *&ResVal) { 615 ResVal = getValue(Record, Slot, InstNum, Ty); 616 return ResVal == nullptr; 617 } 618 619 /// Version of getValue that returns ResVal directly, or 0 if there is an 620 /// error. 621 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 622 unsigned InstNum, Type *Ty) { 623 if (Slot == Record.size()) return nullptr; 624 unsigned ValNo = (unsigned)Record[Slot]; 625 // Adjust the ValNo, if it was encoded relative to the InstNum. 626 if (UseRelativeIDs) 627 ValNo = InstNum - ValNo; 628 return getFnValueByID(ValNo, Ty); 629 } 630 631 /// Like getValue, but decodes signed VBRs. 632 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 633 unsigned InstNum, Type *Ty) { 634 if (Slot == Record.size()) return nullptr; 635 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 636 // Adjust the ValNo, if it was encoded relative to the InstNum. 637 if (UseRelativeIDs) 638 ValNo = InstNum - ValNo; 639 return getFnValueByID(ValNo, Ty); 640 } 641 642 /// Converts alignment exponent (i.e. power of two (or zero)) to the 643 /// corresponding alignment to use. If alignment is too large, returns 644 /// a corresponding error code. 645 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 646 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 647 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 648 649 Error parseComdatRecord(ArrayRef<uint64_t> Record); 650 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 651 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 652 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 653 ArrayRef<uint64_t> Record); 654 655 Error parseAttributeBlock(); 656 Error parseAttributeGroupBlock(); 657 Error parseTypeTable(); 658 Error parseTypeTableBody(); 659 Error parseOperandBundleTags(); 660 Error parseSyncScopeNames(); 661 662 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 663 unsigned NameIndex, Triple &TT); 664 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 665 ArrayRef<uint64_t> Record); 666 Error parseValueSymbolTable(uint64_t Offset = 0); 667 Error parseGlobalValueSymbolTable(); 668 Error parseConstants(); 669 Error rememberAndSkipFunctionBodies(); 670 Error rememberAndSkipFunctionBody(); 671 /// Save the positions of the Metadata blocks and skip parsing the blocks. 672 Error rememberAndSkipMetadata(); 673 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 674 Error parseFunctionBody(Function *F); 675 Error globalCleanup(); 676 Error resolveGlobalAndIndirectSymbolInits(); 677 Error parseUseLists(); 678 Error findFunctionInStream( 679 Function *F, 680 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 681 682 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 683 }; 684 685 /// Class to manage reading and parsing function summary index bitcode 686 /// files/sections. 687 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 688 /// The module index built during parsing. 689 ModuleSummaryIndex &TheIndex; 690 691 /// Indicates whether we have encountered a global value summary section 692 /// yet during parsing. 693 bool SeenGlobalValSummary = false; 694 695 /// Indicates whether we have already parsed the VST, used for error checking. 696 bool SeenValueSymbolTable = false; 697 698 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 699 /// Used to enable on-demand parsing of the VST. 700 uint64_t VSTOffset = 0; 701 702 // Map to save ValueId to ValueInfo association that was recorded in the 703 // ValueSymbolTable. It is used after the VST is parsed to convert 704 // call graph edges read from the function summary from referencing 705 // callees by their ValueId to using the ValueInfo instead, which is how 706 // they are recorded in the summary index being built. 707 // We save a GUID which refers to the same global as the ValueInfo, but 708 // ignoring the linkage, i.e. for values other than local linkage they are 709 // identical. 710 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 711 ValueIdToValueInfoMap; 712 713 /// Map populated during module path string table parsing, from the 714 /// module ID to a string reference owned by the index's module 715 /// path string table, used to correlate with combined index 716 /// summary records. 717 DenseMap<uint64_t, StringRef> ModuleIdMap; 718 719 /// Original source file name recorded in a bitcode record. 720 std::string SourceFileName; 721 722 /// The string identifier given to this module by the client, normally the 723 /// path to the bitcode file. 724 StringRef ModulePath; 725 726 /// For per-module summary indexes, the unique numerical identifier given to 727 /// this module by the client. 728 unsigned ModuleId; 729 730 public: 731 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 732 ModuleSummaryIndex &TheIndex, 733 StringRef ModulePath, unsigned ModuleId); 734 735 Error parseModule(); 736 737 private: 738 void setValueGUID(uint64_t ValueID, StringRef ValueName, 739 GlobalValue::LinkageTypes Linkage, 740 StringRef SourceFileName); 741 Error parseValueSymbolTable( 742 uint64_t Offset, 743 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 744 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 745 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 746 bool IsOldProfileFormat, 747 bool HasProfile, 748 bool HasRelBF); 749 Error parseEntireSummary(unsigned ID); 750 Error parseModuleStringTable(); 751 752 std::pair<ValueInfo, GlobalValue::GUID> 753 getValueInfoFromValueId(unsigned ValueId); 754 755 ModuleSummaryIndex::ModuleInfo *addThisModule(); 756 }; 757 758 } // end anonymous namespace 759 760 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 761 Error Err) { 762 if (Err) { 763 std::error_code EC; 764 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 765 EC = EIB.convertToErrorCode(); 766 Ctx.emitError(EIB.message()); 767 }); 768 return EC; 769 } 770 return std::error_code(); 771 } 772 773 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 774 StringRef ProducerIdentification, 775 LLVMContext &Context) 776 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 777 ValueList(Context) { 778 this->ProducerIdentification = ProducerIdentification; 779 } 780 781 Error BitcodeReader::materializeForwardReferencedFunctions() { 782 if (WillMaterializeAllForwardRefs) 783 return Error::success(); 784 785 // Prevent recursion. 786 WillMaterializeAllForwardRefs = true; 787 788 while (!BasicBlockFwdRefQueue.empty()) { 789 Function *F = BasicBlockFwdRefQueue.front(); 790 BasicBlockFwdRefQueue.pop_front(); 791 assert(F && "Expected valid function"); 792 if (!BasicBlockFwdRefs.count(F)) 793 // Already materialized. 794 continue; 795 796 // Check for a function that isn't materializable to prevent an infinite 797 // loop. When parsing a blockaddress stored in a global variable, there 798 // isn't a trivial way to check if a function will have a body without a 799 // linear search through FunctionsWithBodies, so just check it here. 800 if (!F->isMaterializable()) 801 return error("Never resolved function from blockaddress"); 802 803 // Try to materialize F. 804 if (Error Err = materialize(F)) 805 return Err; 806 } 807 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 808 809 // Reset state. 810 WillMaterializeAllForwardRefs = false; 811 return Error::success(); 812 } 813 814 //===----------------------------------------------------------------------===// 815 // Helper functions to implement forward reference resolution, etc. 816 //===----------------------------------------------------------------------===// 817 818 static bool hasImplicitComdat(size_t Val) { 819 switch (Val) { 820 default: 821 return false; 822 case 1: // Old WeakAnyLinkage 823 case 4: // Old LinkOnceAnyLinkage 824 case 10: // Old WeakODRLinkage 825 case 11: // Old LinkOnceODRLinkage 826 return true; 827 } 828 } 829 830 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 831 switch (Val) { 832 default: // Map unknown/new linkages to external 833 case 0: 834 return GlobalValue::ExternalLinkage; 835 case 2: 836 return GlobalValue::AppendingLinkage; 837 case 3: 838 return GlobalValue::InternalLinkage; 839 case 5: 840 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 841 case 6: 842 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 843 case 7: 844 return GlobalValue::ExternalWeakLinkage; 845 case 8: 846 return GlobalValue::CommonLinkage; 847 case 9: 848 return GlobalValue::PrivateLinkage; 849 case 12: 850 return GlobalValue::AvailableExternallyLinkage; 851 case 13: 852 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 853 case 14: 854 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 855 case 15: 856 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 857 case 1: // Old value with implicit comdat. 858 case 16: 859 return GlobalValue::WeakAnyLinkage; 860 case 10: // Old value with implicit comdat. 861 case 17: 862 return GlobalValue::WeakODRLinkage; 863 case 4: // Old value with implicit comdat. 864 case 18: 865 return GlobalValue::LinkOnceAnyLinkage; 866 case 11: // Old value with implicit comdat. 867 case 19: 868 return GlobalValue::LinkOnceODRLinkage; 869 } 870 } 871 872 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 873 FunctionSummary::FFlags Flags; 874 Flags.ReadNone = RawFlags & 0x1; 875 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 876 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 877 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 878 return Flags; 879 } 880 881 /// Decode the flags for GlobalValue in the summary. 882 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 883 uint64_t Version) { 884 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 885 // like getDecodedLinkage() above. Any future change to the linkage enum and 886 // to getDecodedLinkage() will need to be taken into account here as above. 887 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 888 RawFlags = RawFlags >> 4; 889 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 890 // The Live flag wasn't introduced until version 3. For dead stripping 891 // to work correctly on earlier versions, we must conservatively treat all 892 // values as live. 893 bool Live = (RawFlags & 0x2) || Version < 3; 894 bool Local = (RawFlags & 0x4); 895 896 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 897 } 898 899 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 900 switch (Val) { 901 default: // Map unknown visibilities to default. 902 case 0: return GlobalValue::DefaultVisibility; 903 case 1: return GlobalValue::HiddenVisibility; 904 case 2: return GlobalValue::ProtectedVisibility; 905 } 906 } 907 908 static GlobalValue::DLLStorageClassTypes 909 getDecodedDLLStorageClass(unsigned Val) { 910 switch (Val) { 911 default: // Map unknown values to default. 912 case 0: return GlobalValue::DefaultStorageClass; 913 case 1: return GlobalValue::DLLImportStorageClass; 914 case 2: return GlobalValue::DLLExportStorageClass; 915 } 916 } 917 918 static bool getDecodedDSOLocal(unsigned Val) { 919 switch(Val) { 920 default: // Map unknown values to preemptable. 921 case 0: return false; 922 case 1: return true; 923 } 924 } 925 926 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 927 switch (Val) { 928 case 0: return GlobalVariable::NotThreadLocal; 929 default: // Map unknown non-zero value to general dynamic. 930 case 1: return GlobalVariable::GeneralDynamicTLSModel; 931 case 2: return GlobalVariable::LocalDynamicTLSModel; 932 case 3: return GlobalVariable::InitialExecTLSModel; 933 case 4: return GlobalVariable::LocalExecTLSModel; 934 } 935 } 936 937 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 938 switch (Val) { 939 default: // Map unknown to UnnamedAddr::None. 940 case 0: return GlobalVariable::UnnamedAddr::None; 941 case 1: return GlobalVariable::UnnamedAddr::Global; 942 case 2: return GlobalVariable::UnnamedAddr::Local; 943 } 944 } 945 946 static int getDecodedCastOpcode(unsigned Val) { 947 switch (Val) { 948 default: return -1; 949 case bitc::CAST_TRUNC : return Instruction::Trunc; 950 case bitc::CAST_ZEXT : return Instruction::ZExt; 951 case bitc::CAST_SEXT : return Instruction::SExt; 952 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 953 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 954 case bitc::CAST_UITOFP : return Instruction::UIToFP; 955 case bitc::CAST_SITOFP : return Instruction::SIToFP; 956 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 957 case bitc::CAST_FPEXT : return Instruction::FPExt; 958 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 959 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 960 case bitc::CAST_BITCAST : return Instruction::BitCast; 961 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 962 } 963 } 964 965 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 966 bool IsFP = Ty->isFPOrFPVectorTy(); 967 // BinOps are only valid for int/fp or vector of int/fp types 968 if (!IsFP && !Ty->isIntOrIntVectorTy()) 969 return -1; 970 971 switch (Val) { 972 default: 973 return -1; 974 case bitc::BINOP_ADD: 975 return IsFP ? Instruction::FAdd : Instruction::Add; 976 case bitc::BINOP_SUB: 977 return IsFP ? Instruction::FSub : Instruction::Sub; 978 case bitc::BINOP_MUL: 979 return IsFP ? Instruction::FMul : Instruction::Mul; 980 case bitc::BINOP_UDIV: 981 return IsFP ? -1 : Instruction::UDiv; 982 case bitc::BINOP_SDIV: 983 return IsFP ? Instruction::FDiv : Instruction::SDiv; 984 case bitc::BINOP_UREM: 985 return IsFP ? -1 : Instruction::URem; 986 case bitc::BINOP_SREM: 987 return IsFP ? Instruction::FRem : Instruction::SRem; 988 case bitc::BINOP_SHL: 989 return IsFP ? -1 : Instruction::Shl; 990 case bitc::BINOP_LSHR: 991 return IsFP ? -1 : Instruction::LShr; 992 case bitc::BINOP_ASHR: 993 return IsFP ? -1 : Instruction::AShr; 994 case bitc::BINOP_AND: 995 return IsFP ? -1 : Instruction::And; 996 case bitc::BINOP_OR: 997 return IsFP ? -1 : Instruction::Or; 998 case bitc::BINOP_XOR: 999 return IsFP ? -1 : Instruction::Xor; 1000 } 1001 } 1002 1003 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1004 switch (Val) { 1005 default: return AtomicRMWInst::BAD_BINOP; 1006 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1007 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1008 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1009 case bitc::RMW_AND: return AtomicRMWInst::And; 1010 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1011 case bitc::RMW_OR: return AtomicRMWInst::Or; 1012 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1013 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1014 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1015 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1016 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1017 } 1018 } 1019 1020 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1021 switch (Val) { 1022 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1023 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1024 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1025 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1026 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1027 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1028 default: // Map unknown orderings to sequentially-consistent. 1029 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1030 } 1031 } 1032 1033 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1034 switch (Val) { 1035 default: // Map unknown selection kinds to any. 1036 case bitc::COMDAT_SELECTION_KIND_ANY: 1037 return Comdat::Any; 1038 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1039 return Comdat::ExactMatch; 1040 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1041 return Comdat::Largest; 1042 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1043 return Comdat::NoDuplicates; 1044 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1045 return Comdat::SameSize; 1046 } 1047 } 1048 1049 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1050 FastMathFlags FMF; 1051 if (0 != (Val & bitc::UnsafeAlgebra)) 1052 FMF.setFast(); 1053 if (0 != (Val & bitc::AllowReassoc)) 1054 FMF.setAllowReassoc(); 1055 if (0 != (Val & bitc::NoNaNs)) 1056 FMF.setNoNaNs(); 1057 if (0 != (Val & bitc::NoInfs)) 1058 FMF.setNoInfs(); 1059 if (0 != (Val & bitc::NoSignedZeros)) 1060 FMF.setNoSignedZeros(); 1061 if (0 != (Val & bitc::AllowReciprocal)) 1062 FMF.setAllowReciprocal(); 1063 if (0 != (Val & bitc::AllowContract)) 1064 FMF.setAllowContract(true); 1065 if (0 != (Val & bitc::ApproxFunc)) 1066 FMF.setApproxFunc(); 1067 return FMF; 1068 } 1069 1070 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1071 switch (Val) { 1072 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1073 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1074 } 1075 } 1076 1077 Type *BitcodeReader::getTypeByID(unsigned ID) { 1078 // The type table size is always specified correctly. 1079 if (ID >= TypeList.size()) 1080 return nullptr; 1081 1082 if (Type *Ty = TypeList[ID]) 1083 return Ty; 1084 1085 // If we have a forward reference, the only possible case is when it is to a 1086 // named struct. Just create a placeholder for now. 1087 return TypeList[ID] = createIdentifiedStructType(Context); 1088 } 1089 1090 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1091 StringRef Name) { 1092 auto *Ret = StructType::create(Context, Name); 1093 IdentifiedStructTypes.push_back(Ret); 1094 return Ret; 1095 } 1096 1097 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1098 auto *Ret = StructType::create(Context); 1099 IdentifiedStructTypes.push_back(Ret); 1100 return Ret; 1101 } 1102 1103 //===----------------------------------------------------------------------===// 1104 // Functions for parsing blocks from the bitcode file 1105 //===----------------------------------------------------------------------===// 1106 1107 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1108 switch (Val) { 1109 case Attribute::EndAttrKinds: 1110 llvm_unreachable("Synthetic enumerators which should never get here"); 1111 1112 case Attribute::None: return 0; 1113 case Attribute::ZExt: return 1 << 0; 1114 case Attribute::SExt: return 1 << 1; 1115 case Attribute::NoReturn: return 1 << 2; 1116 case Attribute::InReg: return 1 << 3; 1117 case Attribute::StructRet: return 1 << 4; 1118 case Attribute::NoUnwind: return 1 << 5; 1119 case Attribute::NoAlias: return 1 << 6; 1120 case Attribute::ByVal: return 1 << 7; 1121 case Attribute::Nest: return 1 << 8; 1122 case Attribute::ReadNone: return 1 << 9; 1123 case Attribute::ReadOnly: return 1 << 10; 1124 case Attribute::NoInline: return 1 << 11; 1125 case Attribute::AlwaysInline: return 1 << 12; 1126 case Attribute::OptimizeForSize: return 1 << 13; 1127 case Attribute::StackProtect: return 1 << 14; 1128 case Attribute::StackProtectReq: return 1 << 15; 1129 case Attribute::Alignment: return 31 << 16; 1130 case Attribute::NoCapture: return 1 << 21; 1131 case Attribute::NoRedZone: return 1 << 22; 1132 case Attribute::NoImplicitFloat: return 1 << 23; 1133 case Attribute::Naked: return 1 << 24; 1134 case Attribute::InlineHint: return 1 << 25; 1135 case Attribute::StackAlignment: return 7 << 26; 1136 case Attribute::ReturnsTwice: return 1 << 29; 1137 case Attribute::UWTable: return 1 << 30; 1138 case Attribute::NonLazyBind: return 1U << 31; 1139 case Attribute::SanitizeAddress: return 1ULL << 32; 1140 case Attribute::MinSize: return 1ULL << 33; 1141 case Attribute::NoDuplicate: return 1ULL << 34; 1142 case Attribute::StackProtectStrong: return 1ULL << 35; 1143 case Attribute::SanitizeThread: return 1ULL << 36; 1144 case Attribute::SanitizeMemory: return 1ULL << 37; 1145 case Attribute::NoBuiltin: return 1ULL << 38; 1146 case Attribute::Returned: return 1ULL << 39; 1147 case Attribute::Cold: return 1ULL << 40; 1148 case Attribute::Builtin: return 1ULL << 41; 1149 case Attribute::OptimizeNone: return 1ULL << 42; 1150 case Attribute::InAlloca: return 1ULL << 43; 1151 case Attribute::NonNull: return 1ULL << 44; 1152 case Attribute::JumpTable: return 1ULL << 45; 1153 case Attribute::Convergent: return 1ULL << 46; 1154 case Attribute::SafeStack: return 1ULL << 47; 1155 case Attribute::NoRecurse: return 1ULL << 48; 1156 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1157 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1158 case Attribute::SwiftSelf: return 1ULL << 51; 1159 case Attribute::SwiftError: return 1ULL << 52; 1160 case Attribute::WriteOnly: return 1ULL << 53; 1161 case Attribute::Speculatable: return 1ULL << 54; 1162 case Attribute::StrictFP: return 1ULL << 55; 1163 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1164 case Attribute::NoCfCheck: return 1ULL << 57; 1165 case Attribute::OptForFuzzing: return 1ULL << 58; 1166 case Attribute::ShadowCallStack: return 1ULL << 59; 1167 case Attribute::Dereferenceable: 1168 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1169 break; 1170 case Attribute::DereferenceableOrNull: 1171 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1172 "format"); 1173 break; 1174 case Attribute::ArgMemOnly: 1175 llvm_unreachable("argmemonly attribute not supported in raw format"); 1176 break; 1177 case Attribute::AllocSize: 1178 llvm_unreachable("allocsize not supported in raw format"); 1179 break; 1180 } 1181 llvm_unreachable("Unsupported attribute type"); 1182 } 1183 1184 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1185 if (!Val) return; 1186 1187 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1188 I = Attribute::AttrKind(I + 1)) { 1189 if (I == Attribute::Dereferenceable || 1190 I == Attribute::DereferenceableOrNull || 1191 I == Attribute::ArgMemOnly || 1192 I == Attribute::AllocSize) 1193 continue; 1194 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1195 if (I == Attribute::Alignment) 1196 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1197 else if (I == Attribute::StackAlignment) 1198 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1199 else 1200 B.addAttribute(I); 1201 } 1202 } 1203 } 1204 1205 /// This fills an AttrBuilder object with the LLVM attributes that have 1206 /// been decoded from the given integer. This function must stay in sync with 1207 /// 'encodeLLVMAttributesForBitcode'. 1208 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1209 uint64_t EncodedAttrs) { 1210 // FIXME: Remove in 4.0. 1211 1212 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1213 // the bits above 31 down by 11 bits. 1214 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1215 assert((!Alignment || isPowerOf2_32(Alignment)) && 1216 "Alignment must be a power of two."); 1217 1218 if (Alignment) 1219 B.addAlignmentAttr(Alignment); 1220 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1221 (EncodedAttrs & 0xffff)); 1222 } 1223 1224 Error BitcodeReader::parseAttributeBlock() { 1225 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1226 return error("Invalid record"); 1227 1228 if (!MAttributes.empty()) 1229 return error("Invalid multiple blocks"); 1230 1231 SmallVector<uint64_t, 64> Record; 1232 1233 SmallVector<AttributeList, 8> Attrs; 1234 1235 // Read all the records. 1236 while (true) { 1237 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1238 1239 switch (Entry.Kind) { 1240 case BitstreamEntry::SubBlock: // Handled for us already. 1241 case BitstreamEntry::Error: 1242 return error("Malformed block"); 1243 case BitstreamEntry::EndBlock: 1244 return Error::success(); 1245 case BitstreamEntry::Record: 1246 // The interesting case. 1247 break; 1248 } 1249 1250 // Read a record. 1251 Record.clear(); 1252 switch (Stream.readRecord(Entry.ID, Record)) { 1253 default: // Default behavior: ignore. 1254 break; 1255 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1256 // FIXME: Remove in 4.0. 1257 if (Record.size() & 1) 1258 return error("Invalid record"); 1259 1260 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1261 AttrBuilder B; 1262 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1263 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1264 } 1265 1266 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1267 Attrs.clear(); 1268 break; 1269 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1270 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1271 Attrs.push_back(MAttributeGroups[Record[i]]); 1272 1273 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1274 Attrs.clear(); 1275 break; 1276 } 1277 } 1278 } 1279 1280 // Returns Attribute::None on unrecognized codes. 1281 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1282 switch (Code) { 1283 default: 1284 return Attribute::None; 1285 case bitc::ATTR_KIND_ALIGNMENT: 1286 return Attribute::Alignment; 1287 case bitc::ATTR_KIND_ALWAYS_INLINE: 1288 return Attribute::AlwaysInline; 1289 case bitc::ATTR_KIND_ARGMEMONLY: 1290 return Attribute::ArgMemOnly; 1291 case bitc::ATTR_KIND_BUILTIN: 1292 return Attribute::Builtin; 1293 case bitc::ATTR_KIND_BY_VAL: 1294 return Attribute::ByVal; 1295 case bitc::ATTR_KIND_IN_ALLOCA: 1296 return Attribute::InAlloca; 1297 case bitc::ATTR_KIND_COLD: 1298 return Attribute::Cold; 1299 case bitc::ATTR_KIND_CONVERGENT: 1300 return Attribute::Convergent; 1301 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1302 return Attribute::InaccessibleMemOnly; 1303 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1304 return Attribute::InaccessibleMemOrArgMemOnly; 1305 case bitc::ATTR_KIND_INLINE_HINT: 1306 return Attribute::InlineHint; 1307 case bitc::ATTR_KIND_IN_REG: 1308 return Attribute::InReg; 1309 case bitc::ATTR_KIND_JUMP_TABLE: 1310 return Attribute::JumpTable; 1311 case bitc::ATTR_KIND_MIN_SIZE: 1312 return Attribute::MinSize; 1313 case bitc::ATTR_KIND_NAKED: 1314 return Attribute::Naked; 1315 case bitc::ATTR_KIND_NEST: 1316 return Attribute::Nest; 1317 case bitc::ATTR_KIND_NO_ALIAS: 1318 return Attribute::NoAlias; 1319 case bitc::ATTR_KIND_NO_BUILTIN: 1320 return Attribute::NoBuiltin; 1321 case bitc::ATTR_KIND_NO_CAPTURE: 1322 return Attribute::NoCapture; 1323 case bitc::ATTR_KIND_NO_DUPLICATE: 1324 return Attribute::NoDuplicate; 1325 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1326 return Attribute::NoImplicitFloat; 1327 case bitc::ATTR_KIND_NO_INLINE: 1328 return Attribute::NoInline; 1329 case bitc::ATTR_KIND_NO_RECURSE: 1330 return Attribute::NoRecurse; 1331 case bitc::ATTR_KIND_NON_LAZY_BIND: 1332 return Attribute::NonLazyBind; 1333 case bitc::ATTR_KIND_NON_NULL: 1334 return Attribute::NonNull; 1335 case bitc::ATTR_KIND_DEREFERENCEABLE: 1336 return Attribute::Dereferenceable; 1337 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1338 return Attribute::DereferenceableOrNull; 1339 case bitc::ATTR_KIND_ALLOC_SIZE: 1340 return Attribute::AllocSize; 1341 case bitc::ATTR_KIND_NO_RED_ZONE: 1342 return Attribute::NoRedZone; 1343 case bitc::ATTR_KIND_NO_RETURN: 1344 return Attribute::NoReturn; 1345 case bitc::ATTR_KIND_NOCF_CHECK: 1346 return Attribute::NoCfCheck; 1347 case bitc::ATTR_KIND_NO_UNWIND: 1348 return Attribute::NoUnwind; 1349 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1350 return Attribute::OptForFuzzing; 1351 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1352 return Attribute::OptimizeForSize; 1353 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1354 return Attribute::OptimizeNone; 1355 case bitc::ATTR_KIND_READ_NONE: 1356 return Attribute::ReadNone; 1357 case bitc::ATTR_KIND_READ_ONLY: 1358 return Attribute::ReadOnly; 1359 case bitc::ATTR_KIND_RETURNED: 1360 return Attribute::Returned; 1361 case bitc::ATTR_KIND_RETURNS_TWICE: 1362 return Attribute::ReturnsTwice; 1363 case bitc::ATTR_KIND_S_EXT: 1364 return Attribute::SExt; 1365 case bitc::ATTR_KIND_SPECULATABLE: 1366 return Attribute::Speculatable; 1367 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1368 return Attribute::StackAlignment; 1369 case bitc::ATTR_KIND_STACK_PROTECT: 1370 return Attribute::StackProtect; 1371 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1372 return Attribute::StackProtectReq; 1373 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1374 return Attribute::StackProtectStrong; 1375 case bitc::ATTR_KIND_SAFESTACK: 1376 return Attribute::SafeStack; 1377 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1378 return Attribute::ShadowCallStack; 1379 case bitc::ATTR_KIND_STRICT_FP: 1380 return Attribute::StrictFP; 1381 case bitc::ATTR_KIND_STRUCT_RET: 1382 return Attribute::StructRet; 1383 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1384 return Attribute::SanitizeAddress; 1385 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1386 return Attribute::SanitizeHWAddress; 1387 case bitc::ATTR_KIND_SANITIZE_THREAD: 1388 return Attribute::SanitizeThread; 1389 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1390 return Attribute::SanitizeMemory; 1391 case bitc::ATTR_KIND_SWIFT_ERROR: 1392 return Attribute::SwiftError; 1393 case bitc::ATTR_KIND_SWIFT_SELF: 1394 return Attribute::SwiftSelf; 1395 case bitc::ATTR_KIND_UW_TABLE: 1396 return Attribute::UWTable; 1397 case bitc::ATTR_KIND_WRITEONLY: 1398 return Attribute::WriteOnly; 1399 case bitc::ATTR_KIND_Z_EXT: 1400 return Attribute::ZExt; 1401 } 1402 } 1403 1404 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1405 unsigned &Alignment) { 1406 // Note: Alignment in bitcode files is incremented by 1, so that zero 1407 // can be used for default alignment. 1408 if (Exponent > Value::MaxAlignmentExponent + 1) 1409 return error("Invalid alignment value"); 1410 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1411 return Error::success(); 1412 } 1413 1414 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1415 *Kind = getAttrFromCode(Code); 1416 if (*Kind == Attribute::None) 1417 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1418 return Error::success(); 1419 } 1420 1421 Error BitcodeReader::parseAttributeGroupBlock() { 1422 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1423 return error("Invalid record"); 1424 1425 if (!MAttributeGroups.empty()) 1426 return error("Invalid multiple blocks"); 1427 1428 SmallVector<uint64_t, 64> Record; 1429 1430 // Read all the records. 1431 while (true) { 1432 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1433 1434 switch (Entry.Kind) { 1435 case BitstreamEntry::SubBlock: // Handled for us already. 1436 case BitstreamEntry::Error: 1437 return error("Malformed block"); 1438 case BitstreamEntry::EndBlock: 1439 return Error::success(); 1440 case BitstreamEntry::Record: 1441 // The interesting case. 1442 break; 1443 } 1444 1445 // Read a record. 1446 Record.clear(); 1447 switch (Stream.readRecord(Entry.ID, Record)) { 1448 default: // Default behavior: ignore. 1449 break; 1450 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1451 if (Record.size() < 3) 1452 return error("Invalid record"); 1453 1454 uint64_t GrpID = Record[0]; 1455 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1456 1457 AttrBuilder B; 1458 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1459 if (Record[i] == 0) { // Enum attribute 1460 Attribute::AttrKind Kind; 1461 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1462 return Err; 1463 1464 B.addAttribute(Kind); 1465 } else if (Record[i] == 1) { // Integer attribute 1466 Attribute::AttrKind Kind; 1467 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1468 return Err; 1469 if (Kind == Attribute::Alignment) 1470 B.addAlignmentAttr(Record[++i]); 1471 else if (Kind == Attribute::StackAlignment) 1472 B.addStackAlignmentAttr(Record[++i]); 1473 else if (Kind == Attribute::Dereferenceable) 1474 B.addDereferenceableAttr(Record[++i]); 1475 else if (Kind == Attribute::DereferenceableOrNull) 1476 B.addDereferenceableOrNullAttr(Record[++i]); 1477 else if (Kind == Attribute::AllocSize) 1478 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1479 } else { // String attribute 1480 assert((Record[i] == 3 || Record[i] == 4) && 1481 "Invalid attribute group entry"); 1482 bool HasValue = (Record[i++] == 4); 1483 SmallString<64> KindStr; 1484 SmallString<64> ValStr; 1485 1486 while (Record[i] != 0 && i != e) 1487 KindStr += Record[i++]; 1488 assert(Record[i] == 0 && "Kind string not null terminated"); 1489 1490 if (HasValue) { 1491 // Has a value associated with it. 1492 ++i; // Skip the '0' that terminates the "kind" string. 1493 while (Record[i] != 0 && i != e) 1494 ValStr += Record[i++]; 1495 assert(Record[i] == 0 && "Value string not null terminated"); 1496 } 1497 1498 B.addAttribute(KindStr.str(), ValStr.str()); 1499 } 1500 } 1501 1502 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1503 break; 1504 } 1505 } 1506 } 1507 } 1508 1509 Error BitcodeReader::parseTypeTable() { 1510 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1511 return error("Invalid record"); 1512 1513 return parseTypeTableBody(); 1514 } 1515 1516 Error BitcodeReader::parseTypeTableBody() { 1517 if (!TypeList.empty()) 1518 return error("Invalid multiple blocks"); 1519 1520 SmallVector<uint64_t, 64> Record; 1521 unsigned NumRecords = 0; 1522 1523 SmallString<64> TypeName; 1524 1525 // Read all the records for this type table. 1526 while (true) { 1527 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1528 1529 switch (Entry.Kind) { 1530 case BitstreamEntry::SubBlock: // Handled for us already. 1531 case BitstreamEntry::Error: 1532 return error("Malformed block"); 1533 case BitstreamEntry::EndBlock: 1534 if (NumRecords != TypeList.size()) 1535 return error("Malformed block"); 1536 return Error::success(); 1537 case BitstreamEntry::Record: 1538 // The interesting case. 1539 break; 1540 } 1541 1542 // Read a record. 1543 Record.clear(); 1544 Type *ResultTy = nullptr; 1545 switch (Stream.readRecord(Entry.ID, Record)) { 1546 default: 1547 return error("Invalid value"); 1548 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1549 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1550 // type list. This allows us to reserve space. 1551 if (Record.size() < 1) 1552 return error("Invalid record"); 1553 TypeList.resize(Record[0]); 1554 continue; 1555 case bitc::TYPE_CODE_VOID: // VOID 1556 ResultTy = Type::getVoidTy(Context); 1557 break; 1558 case bitc::TYPE_CODE_HALF: // HALF 1559 ResultTy = Type::getHalfTy(Context); 1560 break; 1561 case bitc::TYPE_CODE_FLOAT: // FLOAT 1562 ResultTy = Type::getFloatTy(Context); 1563 break; 1564 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1565 ResultTy = Type::getDoubleTy(Context); 1566 break; 1567 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1568 ResultTy = Type::getX86_FP80Ty(Context); 1569 break; 1570 case bitc::TYPE_CODE_FP128: // FP128 1571 ResultTy = Type::getFP128Ty(Context); 1572 break; 1573 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1574 ResultTy = Type::getPPC_FP128Ty(Context); 1575 break; 1576 case bitc::TYPE_CODE_LABEL: // LABEL 1577 ResultTy = Type::getLabelTy(Context); 1578 break; 1579 case bitc::TYPE_CODE_METADATA: // METADATA 1580 ResultTy = Type::getMetadataTy(Context); 1581 break; 1582 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1583 ResultTy = Type::getX86_MMXTy(Context); 1584 break; 1585 case bitc::TYPE_CODE_TOKEN: // TOKEN 1586 ResultTy = Type::getTokenTy(Context); 1587 break; 1588 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1589 if (Record.size() < 1) 1590 return error("Invalid record"); 1591 1592 uint64_t NumBits = Record[0]; 1593 if (NumBits < IntegerType::MIN_INT_BITS || 1594 NumBits > IntegerType::MAX_INT_BITS) 1595 return error("Bitwidth for integer type out of range"); 1596 ResultTy = IntegerType::get(Context, NumBits); 1597 break; 1598 } 1599 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1600 // [pointee type, address space] 1601 if (Record.size() < 1) 1602 return error("Invalid record"); 1603 unsigned AddressSpace = 0; 1604 if (Record.size() == 2) 1605 AddressSpace = Record[1]; 1606 ResultTy = getTypeByID(Record[0]); 1607 if (!ResultTy || 1608 !PointerType::isValidElementType(ResultTy)) 1609 return error("Invalid type"); 1610 ResultTy = PointerType::get(ResultTy, AddressSpace); 1611 break; 1612 } 1613 case bitc::TYPE_CODE_FUNCTION_OLD: { 1614 // FIXME: attrid is dead, remove it in LLVM 4.0 1615 // FUNCTION: [vararg, attrid, retty, paramty x N] 1616 if (Record.size() < 3) 1617 return error("Invalid record"); 1618 SmallVector<Type*, 8> ArgTys; 1619 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1620 if (Type *T = getTypeByID(Record[i])) 1621 ArgTys.push_back(T); 1622 else 1623 break; 1624 } 1625 1626 ResultTy = getTypeByID(Record[2]); 1627 if (!ResultTy || ArgTys.size() < Record.size()-3) 1628 return error("Invalid type"); 1629 1630 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1631 break; 1632 } 1633 case bitc::TYPE_CODE_FUNCTION: { 1634 // FUNCTION: [vararg, retty, paramty x N] 1635 if (Record.size() < 2) 1636 return error("Invalid record"); 1637 SmallVector<Type*, 8> ArgTys; 1638 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1639 if (Type *T = getTypeByID(Record[i])) { 1640 if (!FunctionType::isValidArgumentType(T)) 1641 return error("Invalid function argument type"); 1642 ArgTys.push_back(T); 1643 } 1644 else 1645 break; 1646 } 1647 1648 ResultTy = getTypeByID(Record[1]); 1649 if (!ResultTy || ArgTys.size() < Record.size()-2) 1650 return error("Invalid type"); 1651 1652 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1653 break; 1654 } 1655 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1656 if (Record.size() < 1) 1657 return error("Invalid record"); 1658 SmallVector<Type*, 8> EltTys; 1659 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1660 if (Type *T = getTypeByID(Record[i])) 1661 EltTys.push_back(T); 1662 else 1663 break; 1664 } 1665 if (EltTys.size() != Record.size()-1) 1666 return error("Invalid type"); 1667 ResultTy = StructType::get(Context, EltTys, Record[0]); 1668 break; 1669 } 1670 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1671 if (convertToString(Record, 0, TypeName)) 1672 return error("Invalid record"); 1673 continue; 1674 1675 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1676 if (Record.size() < 1) 1677 return error("Invalid record"); 1678 1679 if (NumRecords >= TypeList.size()) 1680 return error("Invalid TYPE table"); 1681 1682 // Check to see if this was forward referenced, if so fill in the temp. 1683 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1684 if (Res) { 1685 Res->setName(TypeName); 1686 TypeList[NumRecords] = nullptr; 1687 } else // Otherwise, create a new struct. 1688 Res = createIdentifiedStructType(Context, TypeName); 1689 TypeName.clear(); 1690 1691 SmallVector<Type*, 8> EltTys; 1692 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1693 if (Type *T = getTypeByID(Record[i])) 1694 EltTys.push_back(T); 1695 else 1696 break; 1697 } 1698 if (EltTys.size() != Record.size()-1) 1699 return error("Invalid record"); 1700 Res->setBody(EltTys, Record[0]); 1701 ResultTy = Res; 1702 break; 1703 } 1704 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1705 if (Record.size() != 1) 1706 return error("Invalid record"); 1707 1708 if (NumRecords >= TypeList.size()) 1709 return error("Invalid TYPE table"); 1710 1711 // Check to see if this was forward referenced, if so fill in the temp. 1712 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1713 if (Res) { 1714 Res->setName(TypeName); 1715 TypeList[NumRecords] = nullptr; 1716 } else // Otherwise, create a new struct with no body. 1717 Res = createIdentifiedStructType(Context, TypeName); 1718 TypeName.clear(); 1719 ResultTy = Res; 1720 break; 1721 } 1722 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1723 if (Record.size() < 2) 1724 return error("Invalid record"); 1725 ResultTy = getTypeByID(Record[1]); 1726 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1727 return error("Invalid type"); 1728 ResultTy = ArrayType::get(ResultTy, Record[0]); 1729 break; 1730 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1731 if (Record.size() < 2) 1732 return error("Invalid record"); 1733 if (Record[0] == 0) 1734 return error("Invalid vector length"); 1735 ResultTy = getTypeByID(Record[1]); 1736 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1737 return error("Invalid type"); 1738 ResultTy = VectorType::get(ResultTy, Record[0]); 1739 break; 1740 } 1741 1742 if (NumRecords >= TypeList.size()) 1743 return error("Invalid TYPE table"); 1744 if (TypeList[NumRecords]) 1745 return error( 1746 "Invalid TYPE table: Only named structs can be forward referenced"); 1747 assert(ResultTy && "Didn't read a type?"); 1748 TypeList[NumRecords++] = ResultTy; 1749 } 1750 } 1751 1752 Error BitcodeReader::parseOperandBundleTags() { 1753 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1754 return error("Invalid record"); 1755 1756 if (!BundleTags.empty()) 1757 return error("Invalid multiple blocks"); 1758 1759 SmallVector<uint64_t, 64> Record; 1760 1761 while (true) { 1762 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1763 1764 switch (Entry.Kind) { 1765 case BitstreamEntry::SubBlock: // Handled for us already. 1766 case BitstreamEntry::Error: 1767 return error("Malformed block"); 1768 case BitstreamEntry::EndBlock: 1769 return Error::success(); 1770 case BitstreamEntry::Record: 1771 // The interesting case. 1772 break; 1773 } 1774 1775 // Tags are implicitly mapped to integers by their order. 1776 1777 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1778 return error("Invalid record"); 1779 1780 // OPERAND_BUNDLE_TAG: [strchr x N] 1781 BundleTags.emplace_back(); 1782 if (convertToString(Record, 0, BundleTags.back())) 1783 return error("Invalid record"); 1784 Record.clear(); 1785 } 1786 } 1787 1788 Error BitcodeReader::parseSyncScopeNames() { 1789 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1790 return error("Invalid record"); 1791 1792 if (!SSIDs.empty()) 1793 return error("Invalid multiple synchronization scope names blocks"); 1794 1795 SmallVector<uint64_t, 64> Record; 1796 while (true) { 1797 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1798 switch (Entry.Kind) { 1799 case BitstreamEntry::SubBlock: // Handled for us already. 1800 case BitstreamEntry::Error: 1801 return error("Malformed block"); 1802 case BitstreamEntry::EndBlock: 1803 if (SSIDs.empty()) 1804 return error("Invalid empty synchronization scope names block"); 1805 return Error::success(); 1806 case BitstreamEntry::Record: 1807 // The interesting case. 1808 break; 1809 } 1810 1811 // Synchronization scope names are implicitly mapped to synchronization 1812 // scope IDs by their order. 1813 1814 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1815 return error("Invalid record"); 1816 1817 SmallString<16> SSN; 1818 if (convertToString(Record, 0, SSN)) 1819 return error("Invalid record"); 1820 1821 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1822 Record.clear(); 1823 } 1824 } 1825 1826 /// Associate a value with its name from the given index in the provided record. 1827 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1828 unsigned NameIndex, Triple &TT) { 1829 SmallString<128> ValueName; 1830 if (convertToString(Record, NameIndex, ValueName)) 1831 return error("Invalid record"); 1832 unsigned ValueID = Record[0]; 1833 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1834 return error("Invalid record"); 1835 Value *V = ValueList[ValueID]; 1836 1837 StringRef NameStr(ValueName.data(), ValueName.size()); 1838 if (NameStr.find_first_of(0) != StringRef::npos) 1839 return error("Invalid value name"); 1840 V->setName(NameStr); 1841 auto *GO = dyn_cast<GlobalObject>(V); 1842 if (GO) { 1843 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1844 if (TT.supportsCOMDAT()) 1845 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1846 else 1847 GO->setComdat(nullptr); 1848 } 1849 } 1850 return V; 1851 } 1852 1853 /// Helper to note and return the current location, and jump to the given 1854 /// offset. 1855 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1856 BitstreamCursor &Stream) { 1857 // Save the current parsing location so we can jump back at the end 1858 // of the VST read. 1859 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1860 Stream.JumpToBit(Offset * 32); 1861 #ifndef NDEBUG 1862 // Do some checking if we are in debug mode. 1863 BitstreamEntry Entry = Stream.advance(); 1864 assert(Entry.Kind == BitstreamEntry::SubBlock); 1865 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1866 #else 1867 // In NDEBUG mode ignore the output so we don't get an unused variable 1868 // warning. 1869 Stream.advance(); 1870 #endif 1871 return CurrentBit; 1872 } 1873 1874 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1875 Function *F, 1876 ArrayRef<uint64_t> Record) { 1877 // Note that we subtract 1 here because the offset is relative to one word 1878 // before the start of the identification or module block, which was 1879 // historically always the start of the regular bitcode header. 1880 uint64_t FuncWordOffset = Record[1] - 1; 1881 uint64_t FuncBitOffset = FuncWordOffset * 32; 1882 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1883 // Set the LastFunctionBlockBit to point to the last function block. 1884 // Later when parsing is resumed after function materialization, 1885 // we can simply skip that last function block. 1886 if (FuncBitOffset > LastFunctionBlockBit) 1887 LastFunctionBlockBit = FuncBitOffset; 1888 } 1889 1890 /// Read a new-style GlobalValue symbol table. 1891 Error BitcodeReader::parseGlobalValueSymbolTable() { 1892 unsigned FuncBitcodeOffsetDelta = 1893 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1894 1895 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1896 return error("Invalid record"); 1897 1898 SmallVector<uint64_t, 64> Record; 1899 while (true) { 1900 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1901 1902 switch (Entry.Kind) { 1903 case BitstreamEntry::SubBlock: 1904 case BitstreamEntry::Error: 1905 return error("Malformed block"); 1906 case BitstreamEntry::EndBlock: 1907 return Error::success(); 1908 case BitstreamEntry::Record: 1909 break; 1910 } 1911 1912 Record.clear(); 1913 switch (Stream.readRecord(Entry.ID, Record)) { 1914 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1915 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1916 cast<Function>(ValueList[Record[0]]), Record); 1917 break; 1918 } 1919 } 1920 } 1921 1922 /// Parse the value symbol table at either the current parsing location or 1923 /// at the given bit offset if provided. 1924 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1925 uint64_t CurrentBit; 1926 // Pass in the Offset to distinguish between calling for the module-level 1927 // VST (where we want to jump to the VST offset) and the function-level 1928 // VST (where we don't). 1929 if (Offset > 0) { 1930 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1931 // If this module uses a string table, read this as a module-level VST. 1932 if (UseStrtab) { 1933 if (Error Err = parseGlobalValueSymbolTable()) 1934 return Err; 1935 Stream.JumpToBit(CurrentBit); 1936 return Error::success(); 1937 } 1938 // Otherwise, the VST will be in a similar format to a function-level VST, 1939 // and will contain symbol names. 1940 } 1941 1942 // Compute the delta between the bitcode indices in the VST (the word offset 1943 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1944 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1945 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1946 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1947 // just before entering the VST subblock because: 1) the EnterSubBlock 1948 // changes the AbbrevID width; 2) the VST block is nested within the same 1949 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1950 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1951 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1952 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1953 unsigned FuncBitcodeOffsetDelta = 1954 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1955 1956 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1957 return error("Invalid record"); 1958 1959 SmallVector<uint64_t, 64> Record; 1960 1961 Triple TT(TheModule->getTargetTriple()); 1962 1963 // Read all the records for this value table. 1964 SmallString<128> ValueName; 1965 1966 while (true) { 1967 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1968 1969 switch (Entry.Kind) { 1970 case BitstreamEntry::SubBlock: // Handled for us already. 1971 case BitstreamEntry::Error: 1972 return error("Malformed block"); 1973 case BitstreamEntry::EndBlock: 1974 if (Offset > 0) 1975 Stream.JumpToBit(CurrentBit); 1976 return Error::success(); 1977 case BitstreamEntry::Record: 1978 // The interesting case. 1979 break; 1980 } 1981 1982 // Read a record. 1983 Record.clear(); 1984 switch (Stream.readRecord(Entry.ID, Record)) { 1985 default: // Default behavior: unknown type. 1986 break; 1987 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1988 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1989 if (Error Err = ValOrErr.takeError()) 1990 return Err; 1991 ValOrErr.get(); 1992 break; 1993 } 1994 case bitc::VST_CODE_FNENTRY: { 1995 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1996 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1997 if (Error Err = ValOrErr.takeError()) 1998 return Err; 1999 Value *V = ValOrErr.get(); 2000 2001 // Ignore function offsets emitted for aliases of functions in older 2002 // versions of LLVM. 2003 if (auto *F = dyn_cast<Function>(V)) 2004 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2005 break; 2006 } 2007 case bitc::VST_CODE_BBENTRY: { 2008 if (convertToString(Record, 1, ValueName)) 2009 return error("Invalid record"); 2010 BasicBlock *BB = getBasicBlock(Record[0]); 2011 if (!BB) 2012 return error("Invalid record"); 2013 2014 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2015 ValueName.clear(); 2016 break; 2017 } 2018 } 2019 } 2020 } 2021 2022 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2023 /// encoding. 2024 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2025 if ((V & 1) == 0) 2026 return V >> 1; 2027 if (V != 1) 2028 return -(V >> 1); 2029 // There is no such thing as -0 with integers. "-0" really means MININT. 2030 return 1ULL << 63; 2031 } 2032 2033 /// Resolve all of the initializers for global values and aliases that we can. 2034 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2035 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2036 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2037 IndirectSymbolInitWorklist; 2038 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2039 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2040 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2041 2042 GlobalInitWorklist.swap(GlobalInits); 2043 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2044 FunctionPrefixWorklist.swap(FunctionPrefixes); 2045 FunctionPrologueWorklist.swap(FunctionPrologues); 2046 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2047 2048 while (!GlobalInitWorklist.empty()) { 2049 unsigned ValID = GlobalInitWorklist.back().second; 2050 if (ValID >= ValueList.size()) { 2051 // Not ready to resolve this yet, it requires something later in the file. 2052 GlobalInits.push_back(GlobalInitWorklist.back()); 2053 } else { 2054 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2055 GlobalInitWorklist.back().first->setInitializer(C); 2056 else 2057 return error("Expected a constant"); 2058 } 2059 GlobalInitWorklist.pop_back(); 2060 } 2061 2062 while (!IndirectSymbolInitWorklist.empty()) { 2063 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2064 if (ValID >= ValueList.size()) { 2065 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2066 } else { 2067 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2068 if (!C) 2069 return error("Expected a constant"); 2070 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2071 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2072 return error("Alias and aliasee types don't match"); 2073 GIS->setIndirectSymbol(C); 2074 } 2075 IndirectSymbolInitWorklist.pop_back(); 2076 } 2077 2078 while (!FunctionPrefixWorklist.empty()) { 2079 unsigned ValID = FunctionPrefixWorklist.back().second; 2080 if (ValID >= ValueList.size()) { 2081 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2082 } else { 2083 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2084 FunctionPrefixWorklist.back().first->setPrefixData(C); 2085 else 2086 return error("Expected a constant"); 2087 } 2088 FunctionPrefixWorklist.pop_back(); 2089 } 2090 2091 while (!FunctionPrologueWorklist.empty()) { 2092 unsigned ValID = FunctionPrologueWorklist.back().second; 2093 if (ValID >= ValueList.size()) { 2094 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2095 } else { 2096 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2097 FunctionPrologueWorklist.back().first->setPrologueData(C); 2098 else 2099 return error("Expected a constant"); 2100 } 2101 FunctionPrologueWorklist.pop_back(); 2102 } 2103 2104 while (!FunctionPersonalityFnWorklist.empty()) { 2105 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2106 if (ValID >= ValueList.size()) { 2107 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2108 } else { 2109 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2110 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2111 else 2112 return error("Expected a constant"); 2113 } 2114 FunctionPersonalityFnWorklist.pop_back(); 2115 } 2116 2117 return Error::success(); 2118 } 2119 2120 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2121 SmallVector<uint64_t, 8> Words(Vals.size()); 2122 transform(Vals, Words.begin(), 2123 BitcodeReader::decodeSignRotatedValue); 2124 2125 return APInt(TypeBits, Words); 2126 } 2127 2128 Error BitcodeReader::parseConstants() { 2129 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2130 return error("Invalid record"); 2131 2132 SmallVector<uint64_t, 64> Record; 2133 2134 // Read all the records for this value table. 2135 Type *CurTy = Type::getInt32Ty(Context); 2136 unsigned NextCstNo = ValueList.size(); 2137 2138 while (true) { 2139 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2140 2141 switch (Entry.Kind) { 2142 case BitstreamEntry::SubBlock: // Handled for us already. 2143 case BitstreamEntry::Error: 2144 return error("Malformed block"); 2145 case BitstreamEntry::EndBlock: 2146 if (NextCstNo != ValueList.size()) 2147 return error("Invalid constant reference"); 2148 2149 // Once all the constants have been read, go through and resolve forward 2150 // references. 2151 ValueList.resolveConstantForwardRefs(); 2152 return Error::success(); 2153 case BitstreamEntry::Record: 2154 // The interesting case. 2155 break; 2156 } 2157 2158 // Read a record. 2159 Record.clear(); 2160 Type *VoidType = Type::getVoidTy(Context); 2161 Value *V = nullptr; 2162 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2163 switch (BitCode) { 2164 default: // Default behavior: unknown constant 2165 case bitc::CST_CODE_UNDEF: // UNDEF 2166 V = UndefValue::get(CurTy); 2167 break; 2168 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2169 if (Record.empty()) 2170 return error("Invalid record"); 2171 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2172 return error("Invalid record"); 2173 if (TypeList[Record[0]] == VoidType) 2174 return error("Invalid constant type"); 2175 CurTy = TypeList[Record[0]]; 2176 continue; // Skip the ValueList manipulation. 2177 case bitc::CST_CODE_NULL: // NULL 2178 V = Constant::getNullValue(CurTy); 2179 break; 2180 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2181 if (!CurTy->isIntegerTy() || Record.empty()) 2182 return error("Invalid record"); 2183 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2184 break; 2185 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2186 if (!CurTy->isIntegerTy() || Record.empty()) 2187 return error("Invalid record"); 2188 2189 APInt VInt = 2190 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2191 V = ConstantInt::get(Context, VInt); 2192 2193 break; 2194 } 2195 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2196 if (Record.empty()) 2197 return error("Invalid record"); 2198 if (CurTy->isHalfTy()) 2199 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2200 APInt(16, (uint16_t)Record[0]))); 2201 else if (CurTy->isFloatTy()) 2202 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2203 APInt(32, (uint32_t)Record[0]))); 2204 else if (CurTy->isDoubleTy()) 2205 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2206 APInt(64, Record[0]))); 2207 else if (CurTy->isX86_FP80Ty()) { 2208 // Bits are not stored the same way as a normal i80 APInt, compensate. 2209 uint64_t Rearrange[2]; 2210 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2211 Rearrange[1] = Record[0] >> 48; 2212 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2213 APInt(80, Rearrange))); 2214 } else if (CurTy->isFP128Ty()) 2215 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2216 APInt(128, Record))); 2217 else if (CurTy->isPPC_FP128Ty()) 2218 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2219 APInt(128, Record))); 2220 else 2221 V = UndefValue::get(CurTy); 2222 break; 2223 } 2224 2225 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2226 if (Record.empty()) 2227 return error("Invalid record"); 2228 2229 unsigned Size = Record.size(); 2230 SmallVector<Constant*, 16> Elts; 2231 2232 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2233 for (unsigned i = 0; i != Size; ++i) 2234 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2235 STy->getElementType(i))); 2236 V = ConstantStruct::get(STy, Elts); 2237 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2238 Type *EltTy = ATy->getElementType(); 2239 for (unsigned i = 0; i != Size; ++i) 2240 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2241 V = ConstantArray::get(ATy, Elts); 2242 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2243 Type *EltTy = VTy->getElementType(); 2244 for (unsigned i = 0; i != Size; ++i) 2245 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2246 V = ConstantVector::get(Elts); 2247 } else { 2248 V = UndefValue::get(CurTy); 2249 } 2250 break; 2251 } 2252 case bitc::CST_CODE_STRING: // STRING: [values] 2253 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2254 if (Record.empty()) 2255 return error("Invalid record"); 2256 2257 SmallString<16> Elts(Record.begin(), Record.end()); 2258 V = ConstantDataArray::getString(Context, Elts, 2259 BitCode == bitc::CST_CODE_CSTRING); 2260 break; 2261 } 2262 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2263 if (Record.empty()) 2264 return error("Invalid record"); 2265 2266 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2267 if (EltTy->isIntegerTy(8)) { 2268 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2269 if (isa<VectorType>(CurTy)) 2270 V = ConstantDataVector::get(Context, Elts); 2271 else 2272 V = ConstantDataArray::get(Context, Elts); 2273 } else if (EltTy->isIntegerTy(16)) { 2274 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2275 if (isa<VectorType>(CurTy)) 2276 V = ConstantDataVector::get(Context, Elts); 2277 else 2278 V = ConstantDataArray::get(Context, Elts); 2279 } else if (EltTy->isIntegerTy(32)) { 2280 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2281 if (isa<VectorType>(CurTy)) 2282 V = ConstantDataVector::get(Context, Elts); 2283 else 2284 V = ConstantDataArray::get(Context, Elts); 2285 } else if (EltTy->isIntegerTy(64)) { 2286 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2287 if (isa<VectorType>(CurTy)) 2288 V = ConstantDataVector::get(Context, Elts); 2289 else 2290 V = ConstantDataArray::get(Context, Elts); 2291 } else if (EltTy->isHalfTy()) { 2292 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2293 if (isa<VectorType>(CurTy)) 2294 V = ConstantDataVector::getFP(Context, Elts); 2295 else 2296 V = ConstantDataArray::getFP(Context, Elts); 2297 } else if (EltTy->isFloatTy()) { 2298 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2299 if (isa<VectorType>(CurTy)) 2300 V = ConstantDataVector::getFP(Context, Elts); 2301 else 2302 V = ConstantDataArray::getFP(Context, Elts); 2303 } else if (EltTy->isDoubleTy()) { 2304 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2305 if (isa<VectorType>(CurTy)) 2306 V = ConstantDataVector::getFP(Context, Elts); 2307 else 2308 V = ConstantDataArray::getFP(Context, Elts); 2309 } else { 2310 return error("Invalid type for value"); 2311 } 2312 break; 2313 } 2314 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2315 if (Record.size() < 3) 2316 return error("Invalid record"); 2317 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2318 if (Opc < 0) { 2319 V = UndefValue::get(CurTy); // Unknown binop. 2320 } else { 2321 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2322 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2323 unsigned Flags = 0; 2324 if (Record.size() >= 4) { 2325 if (Opc == Instruction::Add || 2326 Opc == Instruction::Sub || 2327 Opc == Instruction::Mul || 2328 Opc == Instruction::Shl) { 2329 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2330 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2331 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2332 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2333 } else if (Opc == Instruction::SDiv || 2334 Opc == Instruction::UDiv || 2335 Opc == Instruction::LShr || 2336 Opc == Instruction::AShr) { 2337 if (Record[3] & (1 << bitc::PEO_EXACT)) 2338 Flags |= SDivOperator::IsExact; 2339 } 2340 } 2341 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2342 } 2343 break; 2344 } 2345 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2346 if (Record.size() < 3) 2347 return error("Invalid record"); 2348 int Opc = getDecodedCastOpcode(Record[0]); 2349 if (Opc < 0) { 2350 V = UndefValue::get(CurTy); // Unknown cast. 2351 } else { 2352 Type *OpTy = getTypeByID(Record[1]); 2353 if (!OpTy) 2354 return error("Invalid record"); 2355 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2356 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2357 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2358 } 2359 break; 2360 } 2361 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2362 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2363 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2364 // operands] 2365 unsigned OpNum = 0; 2366 Type *PointeeType = nullptr; 2367 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2368 Record.size() % 2) 2369 PointeeType = getTypeByID(Record[OpNum++]); 2370 2371 bool InBounds = false; 2372 Optional<unsigned> InRangeIndex; 2373 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2374 uint64_t Op = Record[OpNum++]; 2375 InBounds = Op & 1; 2376 InRangeIndex = Op >> 1; 2377 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2378 InBounds = true; 2379 2380 SmallVector<Constant*, 16> Elts; 2381 while (OpNum != Record.size()) { 2382 Type *ElTy = getTypeByID(Record[OpNum++]); 2383 if (!ElTy) 2384 return error("Invalid record"); 2385 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2386 } 2387 2388 if (PointeeType && 2389 PointeeType != 2390 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2391 ->getElementType()) 2392 return error("Explicit gep operator type does not match pointee type " 2393 "of pointer operand"); 2394 2395 if (Elts.size() < 1) 2396 return error("Invalid gep with no operands"); 2397 2398 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2399 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2400 InBounds, InRangeIndex); 2401 break; 2402 } 2403 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2404 if (Record.size() < 3) 2405 return error("Invalid record"); 2406 2407 Type *SelectorTy = Type::getInt1Ty(Context); 2408 2409 // The selector might be an i1 or an <n x i1> 2410 // Get the type from the ValueList before getting a forward ref. 2411 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2412 if (Value *V = ValueList[Record[0]]) 2413 if (SelectorTy != V->getType()) 2414 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2415 2416 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2417 SelectorTy), 2418 ValueList.getConstantFwdRef(Record[1],CurTy), 2419 ValueList.getConstantFwdRef(Record[2],CurTy)); 2420 break; 2421 } 2422 case bitc::CST_CODE_CE_EXTRACTELT 2423 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2424 if (Record.size() < 3) 2425 return error("Invalid record"); 2426 VectorType *OpTy = 2427 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2428 if (!OpTy) 2429 return error("Invalid record"); 2430 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2431 Constant *Op1 = nullptr; 2432 if (Record.size() == 4) { 2433 Type *IdxTy = getTypeByID(Record[2]); 2434 if (!IdxTy) 2435 return error("Invalid record"); 2436 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2437 } else // TODO: Remove with llvm 4.0 2438 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2439 if (!Op1) 2440 return error("Invalid record"); 2441 V = ConstantExpr::getExtractElement(Op0, Op1); 2442 break; 2443 } 2444 case bitc::CST_CODE_CE_INSERTELT 2445 : { // CE_INSERTELT: [opval, opval, opty, opval] 2446 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2447 if (Record.size() < 3 || !OpTy) 2448 return error("Invalid record"); 2449 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2450 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2451 OpTy->getElementType()); 2452 Constant *Op2 = nullptr; 2453 if (Record.size() == 4) { 2454 Type *IdxTy = getTypeByID(Record[2]); 2455 if (!IdxTy) 2456 return error("Invalid record"); 2457 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2458 } else // TODO: Remove with llvm 4.0 2459 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2460 if (!Op2) 2461 return error("Invalid record"); 2462 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2463 break; 2464 } 2465 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2466 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2467 if (Record.size() < 3 || !OpTy) 2468 return error("Invalid record"); 2469 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2470 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2471 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2472 OpTy->getNumElements()); 2473 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2474 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2475 break; 2476 } 2477 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2478 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2479 VectorType *OpTy = 2480 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2481 if (Record.size() < 4 || !RTy || !OpTy) 2482 return error("Invalid record"); 2483 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2484 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2485 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2486 RTy->getNumElements()); 2487 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2488 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2489 break; 2490 } 2491 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2492 if (Record.size() < 4) 2493 return error("Invalid record"); 2494 Type *OpTy = getTypeByID(Record[0]); 2495 if (!OpTy) 2496 return error("Invalid record"); 2497 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2498 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2499 2500 if (OpTy->isFPOrFPVectorTy()) 2501 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2502 else 2503 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2504 break; 2505 } 2506 // This maintains backward compatibility, pre-asm dialect keywords. 2507 // FIXME: Remove with the 4.0 release. 2508 case bitc::CST_CODE_INLINEASM_OLD: { 2509 if (Record.size() < 2) 2510 return error("Invalid record"); 2511 std::string AsmStr, ConstrStr; 2512 bool HasSideEffects = Record[0] & 1; 2513 bool IsAlignStack = Record[0] >> 1; 2514 unsigned AsmStrSize = Record[1]; 2515 if (2+AsmStrSize >= Record.size()) 2516 return error("Invalid record"); 2517 unsigned ConstStrSize = Record[2+AsmStrSize]; 2518 if (3+AsmStrSize+ConstStrSize > Record.size()) 2519 return error("Invalid record"); 2520 2521 for (unsigned i = 0; i != AsmStrSize; ++i) 2522 AsmStr += (char)Record[2+i]; 2523 for (unsigned i = 0; i != ConstStrSize; ++i) 2524 ConstrStr += (char)Record[3+AsmStrSize+i]; 2525 PointerType *PTy = cast<PointerType>(CurTy); 2526 UpgradeInlineAsmString(&AsmStr); 2527 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2528 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2529 break; 2530 } 2531 // This version adds support for the asm dialect keywords (e.g., 2532 // inteldialect). 2533 case bitc::CST_CODE_INLINEASM: { 2534 if (Record.size() < 2) 2535 return error("Invalid record"); 2536 std::string AsmStr, ConstrStr; 2537 bool HasSideEffects = Record[0] & 1; 2538 bool IsAlignStack = (Record[0] >> 1) & 1; 2539 unsigned AsmDialect = Record[0] >> 2; 2540 unsigned AsmStrSize = Record[1]; 2541 if (2+AsmStrSize >= Record.size()) 2542 return error("Invalid record"); 2543 unsigned ConstStrSize = Record[2+AsmStrSize]; 2544 if (3+AsmStrSize+ConstStrSize > Record.size()) 2545 return error("Invalid record"); 2546 2547 for (unsigned i = 0; i != AsmStrSize; ++i) 2548 AsmStr += (char)Record[2+i]; 2549 for (unsigned i = 0; i != ConstStrSize; ++i) 2550 ConstrStr += (char)Record[3+AsmStrSize+i]; 2551 PointerType *PTy = cast<PointerType>(CurTy); 2552 UpgradeInlineAsmString(&AsmStr); 2553 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2554 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2555 InlineAsm::AsmDialect(AsmDialect)); 2556 break; 2557 } 2558 case bitc::CST_CODE_BLOCKADDRESS:{ 2559 if (Record.size() < 3) 2560 return error("Invalid record"); 2561 Type *FnTy = getTypeByID(Record[0]); 2562 if (!FnTy) 2563 return error("Invalid record"); 2564 Function *Fn = 2565 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2566 if (!Fn) 2567 return error("Invalid record"); 2568 2569 // If the function is already parsed we can insert the block address right 2570 // away. 2571 BasicBlock *BB; 2572 unsigned BBID = Record[2]; 2573 if (!BBID) 2574 // Invalid reference to entry block. 2575 return error("Invalid ID"); 2576 if (!Fn->empty()) { 2577 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2578 for (size_t I = 0, E = BBID; I != E; ++I) { 2579 if (BBI == BBE) 2580 return error("Invalid ID"); 2581 ++BBI; 2582 } 2583 BB = &*BBI; 2584 } else { 2585 // Otherwise insert a placeholder and remember it so it can be inserted 2586 // when the function is parsed. 2587 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2588 if (FwdBBs.empty()) 2589 BasicBlockFwdRefQueue.push_back(Fn); 2590 if (FwdBBs.size() < BBID + 1) 2591 FwdBBs.resize(BBID + 1); 2592 if (!FwdBBs[BBID]) 2593 FwdBBs[BBID] = BasicBlock::Create(Context); 2594 BB = FwdBBs[BBID]; 2595 } 2596 V = BlockAddress::get(Fn, BB); 2597 break; 2598 } 2599 } 2600 2601 ValueList.assignValue(V, NextCstNo); 2602 ++NextCstNo; 2603 } 2604 } 2605 2606 Error BitcodeReader::parseUseLists() { 2607 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2608 return error("Invalid record"); 2609 2610 // Read all the records. 2611 SmallVector<uint64_t, 64> Record; 2612 2613 while (true) { 2614 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2615 2616 switch (Entry.Kind) { 2617 case BitstreamEntry::SubBlock: // Handled for us already. 2618 case BitstreamEntry::Error: 2619 return error("Malformed block"); 2620 case BitstreamEntry::EndBlock: 2621 return Error::success(); 2622 case BitstreamEntry::Record: 2623 // The interesting case. 2624 break; 2625 } 2626 2627 // Read a use list record. 2628 Record.clear(); 2629 bool IsBB = false; 2630 switch (Stream.readRecord(Entry.ID, Record)) { 2631 default: // Default behavior: unknown type. 2632 break; 2633 case bitc::USELIST_CODE_BB: 2634 IsBB = true; 2635 LLVM_FALLTHROUGH; 2636 case bitc::USELIST_CODE_DEFAULT: { 2637 unsigned RecordLength = Record.size(); 2638 if (RecordLength < 3) 2639 // Records should have at least an ID and two indexes. 2640 return error("Invalid record"); 2641 unsigned ID = Record.back(); 2642 Record.pop_back(); 2643 2644 Value *V; 2645 if (IsBB) { 2646 assert(ID < FunctionBBs.size() && "Basic block not found"); 2647 V = FunctionBBs[ID]; 2648 } else 2649 V = ValueList[ID]; 2650 unsigned NumUses = 0; 2651 SmallDenseMap<const Use *, unsigned, 16> Order; 2652 for (const Use &U : V->materialized_uses()) { 2653 if (++NumUses > Record.size()) 2654 break; 2655 Order[&U] = Record[NumUses - 1]; 2656 } 2657 if (Order.size() != Record.size() || NumUses > Record.size()) 2658 // Mismatches can happen if the functions are being materialized lazily 2659 // (out-of-order), or a value has been upgraded. 2660 break; 2661 2662 V->sortUseList([&](const Use &L, const Use &R) { 2663 return Order.lookup(&L) < Order.lookup(&R); 2664 }); 2665 break; 2666 } 2667 } 2668 } 2669 } 2670 2671 /// When we see the block for metadata, remember where it is and then skip it. 2672 /// This lets us lazily deserialize the metadata. 2673 Error BitcodeReader::rememberAndSkipMetadata() { 2674 // Save the current stream state. 2675 uint64_t CurBit = Stream.GetCurrentBitNo(); 2676 DeferredMetadataInfo.push_back(CurBit); 2677 2678 // Skip over the block for now. 2679 if (Stream.SkipBlock()) 2680 return error("Invalid record"); 2681 return Error::success(); 2682 } 2683 2684 Error BitcodeReader::materializeMetadata() { 2685 for (uint64_t BitPos : DeferredMetadataInfo) { 2686 // Move the bit stream to the saved position. 2687 Stream.JumpToBit(BitPos); 2688 if (Error Err = MDLoader->parseModuleMetadata()) 2689 return Err; 2690 } 2691 2692 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2693 // metadata. 2694 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2695 NamedMDNode *LinkerOpts = 2696 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2697 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2698 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2699 } 2700 2701 DeferredMetadataInfo.clear(); 2702 return Error::success(); 2703 } 2704 2705 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2706 2707 /// When we see the block for a function body, remember where it is and then 2708 /// skip it. This lets us lazily deserialize the functions. 2709 Error BitcodeReader::rememberAndSkipFunctionBody() { 2710 // Get the function we are talking about. 2711 if (FunctionsWithBodies.empty()) 2712 return error("Insufficient function protos"); 2713 2714 Function *Fn = FunctionsWithBodies.back(); 2715 FunctionsWithBodies.pop_back(); 2716 2717 // Save the current stream state. 2718 uint64_t CurBit = Stream.GetCurrentBitNo(); 2719 assert( 2720 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2721 "Mismatch between VST and scanned function offsets"); 2722 DeferredFunctionInfo[Fn] = CurBit; 2723 2724 // Skip over the function block for now. 2725 if (Stream.SkipBlock()) 2726 return error("Invalid record"); 2727 return Error::success(); 2728 } 2729 2730 Error BitcodeReader::globalCleanup() { 2731 // Patch the initializers for globals and aliases up. 2732 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2733 return Err; 2734 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2735 return error("Malformed global initializer set"); 2736 2737 // Look for intrinsic functions which need to be upgraded at some point 2738 for (Function &F : *TheModule) { 2739 MDLoader->upgradeDebugIntrinsics(F); 2740 Function *NewFn; 2741 if (UpgradeIntrinsicFunction(&F, NewFn)) 2742 UpgradedIntrinsics[&F] = NewFn; 2743 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2744 // Some types could be renamed during loading if several modules are 2745 // loaded in the same LLVMContext (LTO scenario). In this case we should 2746 // remangle intrinsics names as well. 2747 RemangledIntrinsics[&F] = Remangled.getValue(); 2748 } 2749 2750 // Look for global variables which need to be renamed. 2751 for (GlobalVariable &GV : TheModule->globals()) 2752 UpgradeGlobalVariable(&GV); 2753 2754 // Force deallocation of memory for these vectors to favor the client that 2755 // want lazy deserialization. 2756 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2757 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2758 IndirectSymbolInits); 2759 return Error::success(); 2760 } 2761 2762 /// Support for lazy parsing of function bodies. This is required if we 2763 /// either have an old bitcode file without a VST forward declaration record, 2764 /// or if we have an anonymous function being materialized, since anonymous 2765 /// functions do not have a name and are therefore not in the VST. 2766 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2767 Stream.JumpToBit(NextUnreadBit); 2768 2769 if (Stream.AtEndOfStream()) 2770 return error("Could not find function in stream"); 2771 2772 if (!SeenFirstFunctionBody) 2773 return error("Trying to materialize functions before seeing function blocks"); 2774 2775 // An old bitcode file with the symbol table at the end would have 2776 // finished the parse greedily. 2777 assert(SeenValueSymbolTable); 2778 2779 SmallVector<uint64_t, 64> Record; 2780 2781 while (true) { 2782 BitstreamEntry Entry = Stream.advance(); 2783 switch (Entry.Kind) { 2784 default: 2785 return error("Expect SubBlock"); 2786 case BitstreamEntry::SubBlock: 2787 switch (Entry.ID) { 2788 default: 2789 return error("Expect function block"); 2790 case bitc::FUNCTION_BLOCK_ID: 2791 if (Error Err = rememberAndSkipFunctionBody()) 2792 return Err; 2793 NextUnreadBit = Stream.GetCurrentBitNo(); 2794 return Error::success(); 2795 } 2796 } 2797 } 2798 } 2799 2800 bool BitcodeReaderBase::readBlockInfo() { 2801 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2802 if (!NewBlockInfo) 2803 return true; 2804 BlockInfo = std::move(*NewBlockInfo); 2805 return false; 2806 } 2807 2808 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2809 // v1: [selection_kind, name] 2810 // v2: [strtab_offset, strtab_size, selection_kind] 2811 StringRef Name; 2812 std::tie(Name, Record) = readNameFromStrtab(Record); 2813 2814 if (Record.empty()) 2815 return error("Invalid record"); 2816 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2817 std::string OldFormatName; 2818 if (!UseStrtab) { 2819 if (Record.size() < 2) 2820 return error("Invalid record"); 2821 unsigned ComdatNameSize = Record[1]; 2822 OldFormatName.reserve(ComdatNameSize); 2823 for (unsigned i = 0; i != ComdatNameSize; ++i) 2824 OldFormatName += (char)Record[2 + i]; 2825 Name = OldFormatName; 2826 } 2827 Comdat *C = TheModule->getOrInsertComdat(Name); 2828 C->setSelectionKind(SK); 2829 ComdatList.push_back(C); 2830 return Error::success(); 2831 } 2832 2833 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2834 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2835 // visibility, threadlocal, unnamed_addr, externally_initialized, 2836 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2837 // v2: [strtab_offset, strtab_size, v1] 2838 StringRef Name; 2839 std::tie(Name, Record) = readNameFromStrtab(Record); 2840 2841 if (Record.size() < 6) 2842 return error("Invalid record"); 2843 Type *Ty = getTypeByID(Record[0]); 2844 if (!Ty) 2845 return error("Invalid record"); 2846 bool isConstant = Record[1] & 1; 2847 bool explicitType = Record[1] & 2; 2848 unsigned AddressSpace; 2849 if (explicitType) { 2850 AddressSpace = Record[1] >> 2; 2851 } else { 2852 if (!Ty->isPointerTy()) 2853 return error("Invalid type for value"); 2854 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2855 Ty = cast<PointerType>(Ty)->getElementType(); 2856 } 2857 2858 uint64_t RawLinkage = Record[3]; 2859 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2860 unsigned Alignment; 2861 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2862 return Err; 2863 std::string Section; 2864 if (Record[5]) { 2865 if (Record[5] - 1 >= SectionTable.size()) 2866 return error("Invalid ID"); 2867 Section = SectionTable[Record[5] - 1]; 2868 } 2869 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2870 // Local linkage must have default visibility. 2871 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2872 // FIXME: Change to an error if non-default in 4.0. 2873 Visibility = getDecodedVisibility(Record[6]); 2874 2875 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2876 if (Record.size() > 7) 2877 TLM = getDecodedThreadLocalMode(Record[7]); 2878 2879 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2880 if (Record.size() > 8) 2881 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2882 2883 bool ExternallyInitialized = false; 2884 if (Record.size() > 9) 2885 ExternallyInitialized = Record[9]; 2886 2887 GlobalVariable *NewGV = 2888 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2889 nullptr, TLM, AddressSpace, ExternallyInitialized); 2890 NewGV->setAlignment(Alignment); 2891 if (!Section.empty()) 2892 NewGV->setSection(Section); 2893 NewGV->setVisibility(Visibility); 2894 NewGV->setUnnamedAddr(UnnamedAddr); 2895 2896 if (Record.size() > 10) 2897 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2898 else 2899 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2900 2901 ValueList.push_back(NewGV); 2902 2903 // Remember which value to use for the global initializer. 2904 if (unsigned InitID = Record[2]) 2905 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2906 2907 if (Record.size() > 11) { 2908 if (unsigned ComdatID = Record[11]) { 2909 if (ComdatID > ComdatList.size()) 2910 return error("Invalid global variable comdat ID"); 2911 NewGV->setComdat(ComdatList[ComdatID - 1]); 2912 } 2913 } else if (hasImplicitComdat(RawLinkage)) { 2914 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2915 } 2916 2917 if (Record.size() > 12) { 2918 auto AS = getAttributes(Record[12]).getFnAttributes(); 2919 NewGV->setAttributes(AS); 2920 } 2921 2922 if (Record.size() > 13) { 2923 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2924 } 2925 2926 return Error::success(); 2927 } 2928 2929 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2930 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2931 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2932 // prefixdata, personalityfn, preemption specifier] (name in VST) 2933 // v2: [strtab_offset, strtab_size, v1] 2934 StringRef Name; 2935 std::tie(Name, Record) = readNameFromStrtab(Record); 2936 2937 if (Record.size() < 8) 2938 return error("Invalid record"); 2939 Type *Ty = getTypeByID(Record[0]); 2940 if (!Ty) 2941 return error("Invalid record"); 2942 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2943 Ty = PTy->getElementType(); 2944 auto *FTy = dyn_cast<FunctionType>(Ty); 2945 if (!FTy) 2946 return error("Invalid type for value"); 2947 auto CC = static_cast<CallingConv::ID>(Record[1]); 2948 if (CC & ~CallingConv::MaxID) 2949 return error("Invalid calling convention ID"); 2950 2951 Function *Func = 2952 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2953 2954 Func->setCallingConv(CC); 2955 bool isProto = Record[2]; 2956 uint64_t RawLinkage = Record[3]; 2957 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2958 Func->setAttributes(getAttributes(Record[4])); 2959 2960 unsigned Alignment; 2961 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2962 return Err; 2963 Func->setAlignment(Alignment); 2964 if (Record[6]) { 2965 if (Record[6] - 1 >= SectionTable.size()) 2966 return error("Invalid ID"); 2967 Func->setSection(SectionTable[Record[6] - 1]); 2968 } 2969 // Local linkage must have default visibility. 2970 if (!Func->hasLocalLinkage()) 2971 // FIXME: Change to an error if non-default in 4.0. 2972 Func->setVisibility(getDecodedVisibility(Record[7])); 2973 if (Record.size() > 8 && Record[8]) { 2974 if (Record[8] - 1 >= GCTable.size()) 2975 return error("Invalid ID"); 2976 Func->setGC(GCTable[Record[8] - 1]); 2977 } 2978 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2979 if (Record.size() > 9) 2980 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2981 Func->setUnnamedAddr(UnnamedAddr); 2982 if (Record.size() > 10 && Record[10] != 0) 2983 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2984 2985 if (Record.size() > 11) 2986 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2987 else 2988 upgradeDLLImportExportLinkage(Func, RawLinkage); 2989 2990 if (Record.size() > 12) { 2991 if (unsigned ComdatID = Record[12]) { 2992 if (ComdatID > ComdatList.size()) 2993 return error("Invalid function comdat ID"); 2994 Func->setComdat(ComdatList[ComdatID - 1]); 2995 } 2996 } else if (hasImplicitComdat(RawLinkage)) { 2997 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2998 } 2999 3000 if (Record.size() > 13 && Record[13] != 0) 3001 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3002 3003 if (Record.size() > 14 && Record[14] != 0) 3004 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3005 3006 if (Record.size() > 15) { 3007 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3008 } 3009 3010 ValueList.push_back(Func); 3011 3012 // If this is a function with a body, remember the prototype we are 3013 // creating now, so that we can match up the body with them later. 3014 if (!isProto) { 3015 Func->setIsMaterializable(true); 3016 FunctionsWithBodies.push_back(Func); 3017 DeferredFunctionInfo[Func] = 0; 3018 } 3019 return Error::success(); 3020 } 3021 3022 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3023 unsigned BitCode, ArrayRef<uint64_t> Record) { 3024 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3025 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3026 // dllstorageclass, threadlocal, unnamed_addr, 3027 // preemption specifier] (name in VST) 3028 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3029 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3030 // preemption specifier] (name in VST) 3031 // v2: [strtab_offset, strtab_size, v1] 3032 StringRef Name; 3033 std::tie(Name, Record) = readNameFromStrtab(Record); 3034 3035 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3036 if (Record.size() < (3 + (unsigned)NewRecord)) 3037 return error("Invalid record"); 3038 unsigned OpNum = 0; 3039 Type *Ty = getTypeByID(Record[OpNum++]); 3040 if (!Ty) 3041 return error("Invalid record"); 3042 3043 unsigned AddrSpace; 3044 if (!NewRecord) { 3045 auto *PTy = dyn_cast<PointerType>(Ty); 3046 if (!PTy) 3047 return error("Invalid type for value"); 3048 Ty = PTy->getElementType(); 3049 AddrSpace = PTy->getAddressSpace(); 3050 } else { 3051 AddrSpace = Record[OpNum++]; 3052 } 3053 3054 auto Val = Record[OpNum++]; 3055 auto Linkage = Record[OpNum++]; 3056 GlobalIndirectSymbol *NewGA; 3057 if (BitCode == bitc::MODULE_CODE_ALIAS || 3058 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3059 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3060 TheModule); 3061 else 3062 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3063 nullptr, TheModule); 3064 // Old bitcode files didn't have visibility field. 3065 // Local linkage must have default visibility. 3066 if (OpNum != Record.size()) { 3067 auto VisInd = OpNum++; 3068 if (!NewGA->hasLocalLinkage()) 3069 // FIXME: Change to an error if non-default in 4.0. 3070 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3071 } 3072 if (BitCode == bitc::MODULE_CODE_ALIAS || 3073 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3074 if (OpNum != Record.size()) 3075 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3076 else 3077 upgradeDLLImportExportLinkage(NewGA, Linkage); 3078 if (OpNum != Record.size()) 3079 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3080 if (OpNum != Record.size()) 3081 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3082 } 3083 if (OpNum != Record.size()) 3084 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3085 ValueList.push_back(NewGA); 3086 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3087 return Error::success(); 3088 } 3089 3090 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3091 bool ShouldLazyLoadMetadata) { 3092 if (ResumeBit) 3093 Stream.JumpToBit(ResumeBit); 3094 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3095 return error("Invalid record"); 3096 3097 SmallVector<uint64_t, 64> Record; 3098 3099 // Read all the records for this module. 3100 while (true) { 3101 BitstreamEntry Entry = Stream.advance(); 3102 3103 switch (Entry.Kind) { 3104 case BitstreamEntry::Error: 3105 return error("Malformed block"); 3106 case BitstreamEntry::EndBlock: 3107 return globalCleanup(); 3108 3109 case BitstreamEntry::SubBlock: 3110 switch (Entry.ID) { 3111 default: // Skip unknown content. 3112 if (Stream.SkipBlock()) 3113 return error("Invalid record"); 3114 break; 3115 case bitc::BLOCKINFO_BLOCK_ID: 3116 if (readBlockInfo()) 3117 return error("Malformed block"); 3118 break; 3119 case bitc::PARAMATTR_BLOCK_ID: 3120 if (Error Err = parseAttributeBlock()) 3121 return Err; 3122 break; 3123 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3124 if (Error Err = parseAttributeGroupBlock()) 3125 return Err; 3126 break; 3127 case bitc::TYPE_BLOCK_ID_NEW: 3128 if (Error Err = parseTypeTable()) 3129 return Err; 3130 break; 3131 case bitc::VALUE_SYMTAB_BLOCK_ID: 3132 if (!SeenValueSymbolTable) { 3133 // Either this is an old form VST without function index and an 3134 // associated VST forward declaration record (which would have caused 3135 // the VST to be jumped to and parsed before it was encountered 3136 // normally in the stream), or there were no function blocks to 3137 // trigger an earlier parsing of the VST. 3138 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3139 if (Error Err = parseValueSymbolTable()) 3140 return Err; 3141 SeenValueSymbolTable = true; 3142 } else { 3143 // We must have had a VST forward declaration record, which caused 3144 // the parser to jump to and parse the VST earlier. 3145 assert(VSTOffset > 0); 3146 if (Stream.SkipBlock()) 3147 return error("Invalid record"); 3148 } 3149 break; 3150 case bitc::CONSTANTS_BLOCK_ID: 3151 if (Error Err = parseConstants()) 3152 return Err; 3153 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3154 return Err; 3155 break; 3156 case bitc::METADATA_BLOCK_ID: 3157 if (ShouldLazyLoadMetadata) { 3158 if (Error Err = rememberAndSkipMetadata()) 3159 return Err; 3160 break; 3161 } 3162 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3163 if (Error Err = MDLoader->parseModuleMetadata()) 3164 return Err; 3165 break; 3166 case bitc::METADATA_KIND_BLOCK_ID: 3167 if (Error Err = MDLoader->parseMetadataKinds()) 3168 return Err; 3169 break; 3170 case bitc::FUNCTION_BLOCK_ID: 3171 // If this is the first function body we've seen, reverse the 3172 // FunctionsWithBodies list. 3173 if (!SeenFirstFunctionBody) { 3174 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3175 if (Error Err = globalCleanup()) 3176 return Err; 3177 SeenFirstFunctionBody = true; 3178 } 3179 3180 if (VSTOffset > 0) { 3181 // If we have a VST forward declaration record, make sure we 3182 // parse the VST now if we haven't already. It is needed to 3183 // set up the DeferredFunctionInfo vector for lazy reading. 3184 if (!SeenValueSymbolTable) { 3185 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3186 return Err; 3187 SeenValueSymbolTable = true; 3188 // Fall through so that we record the NextUnreadBit below. 3189 // This is necessary in case we have an anonymous function that 3190 // is later materialized. Since it will not have a VST entry we 3191 // need to fall back to the lazy parse to find its offset. 3192 } else { 3193 // If we have a VST forward declaration record, but have already 3194 // parsed the VST (just above, when the first function body was 3195 // encountered here), then we are resuming the parse after 3196 // materializing functions. The ResumeBit points to the 3197 // start of the last function block recorded in the 3198 // DeferredFunctionInfo map. Skip it. 3199 if (Stream.SkipBlock()) 3200 return error("Invalid record"); 3201 continue; 3202 } 3203 } 3204 3205 // Support older bitcode files that did not have the function 3206 // index in the VST, nor a VST forward declaration record, as 3207 // well as anonymous functions that do not have VST entries. 3208 // Build the DeferredFunctionInfo vector on the fly. 3209 if (Error Err = rememberAndSkipFunctionBody()) 3210 return Err; 3211 3212 // Suspend parsing when we reach the function bodies. Subsequent 3213 // materialization calls will resume it when necessary. If the bitcode 3214 // file is old, the symbol table will be at the end instead and will not 3215 // have been seen yet. In this case, just finish the parse now. 3216 if (SeenValueSymbolTable) { 3217 NextUnreadBit = Stream.GetCurrentBitNo(); 3218 // After the VST has been parsed, we need to make sure intrinsic name 3219 // are auto-upgraded. 3220 return globalCleanup(); 3221 } 3222 break; 3223 case bitc::USELIST_BLOCK_ID: 3224 if (Error Err = parseUseLists()) 3225 return Err; 3226 break; 3227 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3228 if (Error Err = parseOperandBundleTags()) 3229 return Err; 3230 break; 3231 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3232 if (Error Err = parseSyncScopeNames()) 3233 return Err; 3234 break; 3235 } 3236 continue; 3237 3238 case BitstreamEntry::Record: 3239 // The interesting case. 3240 break; 3241 } 3242 3243 // Read a record. 3244 auto BitCode = Stream.readRecord(Entry.ID, Record); 3245 switch (BitCode) { 3246 default: break; // Default behavior, ignore unknown content. 3247 case bitc::MODULE_CODE_VERSION: { 3248 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3249 if (!VersionOrErr) 3250 return VersionOrErr.takeError(); 3251 UseRelativeIDs = *VersionOrErr >= 1; 3252 break; 3253 } 3254 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3255 std::string S; 3256 if (convertToString(Record, 0, S)) 3257 return error("Invalid record"); 3258 TheModule->setTargetTriple(S); 3259 break; 3260 } 3261 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3262 std::string S; 3263 if (convertToString(Record, 0, S)) 3264 return error("Invalid record"); 3265 TheModule->setDataLayout(S); 3266 break; 3267 } 3268 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3269 std::string S; 3270 if (convertToString(Record, 0, S)) 3271 return error("Invalid record"); 3272 TheModule->setModuleInlineAsm(S); 3273 break; 3274 } 3275 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3276 // FIXME: Remove in 4.0. 3277 std::string S; 3278 if (convertToString(Record, 0, S)) 3279 return error("Invalid record"); 3280 // Ignore value. 3281 break; 3282 } 3283 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3284 std::string S; 3285 if (convertToString(Record, 0, S)) 3286 return error("Invalid record"); 3287 SectionTable.push_back(S); 3288 break; 3289 } 3290 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3291 std::string S; 3292 if (convertToString(Record, 0, S)) 3293 return error("Invalid record"); 3294 GCTable.push_back(S); 3295 break; 3296 } 3297 case bitc::MODULE_CODE_COMDAT: 3298 if (Error Err = parseComdatRecord(Record)) 3299 return Err; 3300 break; 3301 case bitc::MODULE_CODE_GLOBALVAR: 3302 if (Error Err = parseGlobalVarRecord(Record)) 3303 return Err; 3304 break; 3305 case bitc::MODULE_CODE_FUNCTION: 3306 if (Error Err = parseFunctionRecord(Record)) 3307 return Err; 3308 break; 3309 case bitc::MODULE_CODE_IFUNC: 3310 case bitc::MODULE_CODE_ALIAS: 3311 case bitc::MODULE_CODE_ALIAS_OLD: 3312 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3313 return Err; 3314 break; 3315 /// MODULE_CODE_VSTOFFSET: [offset] 3316 case bitc::MODULE_CODE_VSTOFFSET: 3317 if (Record.size() < 1) 3318 return error("Invalid record"); 3319 // Note that we subtract 1 here because the offset is relative to one word 3320 // before the start of the identification or module block, which was 3321 // historically always the start of the regular bitcode header. 3322 VSTOffset = Record[0] - 1; 3323 break; 3324 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3325 case bitc::MODULE_CODE_SOURCE_FILENAME: 3326 SmallString<128> ValueName; 3327 if (convertToString(Record, 0, ValueName)) 3328 return error("Invalid record"); 3329 TheModule->setSourceFileName(ValueName); 3330 break; 3331 } 3332 Record.clear(); 3333 } 3334 } 3335 3336 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3337 bool IsImporting) { 3338 TheModule = M; 3339 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3340 [&](unsigned ID) { return getTypeByID(ID); }); 3341 return parseModule(0, ShouldLazyLoadMetadata); 3342 } 3343 3344 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3345 if (!isa<PointerType>(PtrType)) 3346 return error("Load/Store operand is not a pointer type"); 3347 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3348 3349 if (ValType && ValType != ElemType) 3350 return error("Explicit load/store type does not match pointee " 3351 "type of pointer operand"); 3352 if (!PointerType::isLoadableOrStorableType(ElemType)) 3353 return error("Cannot load/store from pointer"); 3354 return Error::success(); 3355 } 3356 3357 /// Lazily parse the specified function body block. 3358 Error BitcodeReader::parseFunctionBody(Function *F) { 3359 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3360 return error("Invalid record"); 3361 3362 // Unexpected unresolved metadata when parsing function. 3363 if (MDLoader->hasFwdRefs()) 3364 return error("Invalid function metadata: incoming forward references"); 3365 3366 InstructionList.clear(); 3367 unsigned ModuleValueListSize = ValueList.size(); 3368 unsigned ModuleMDLoaderSize = MDLoader->size(); 3369 3370 // Add all the function arguments to the value table. 3371 for (Argument &I : F->args()) 3372 ValueList.push_back(&I); 3373 3374 unsigned NextValueNo = ValueList.size(); 3375 BasicBlock *CurBB = nullptr; 3376 unsigned CurBBNo = 0; 3377 3378 DebugLoc LastLoc; 3379 auto getLastInstruction = [&]() -> Instruction * { 3380 if (CurBB && !CurBB->empty()) 3381 return &CurBB->back(); 3382 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3383 !FunctionBBs[CurBBNo - 1]->empty()) 3384 return &FunctionBBs[CurBBNo - 1]->back(); 3385 return nullptr; 3386 }; 3387 3388 std::vector<OperandBundleDef> OperandBundles; 3389 3390 // Read all the records. 3391 SmallVector<uint64_t, 64> Record; 3392 3393 while (true) { 3394 BitstreamEntry Entry = Stream.advance(); 3395 3396 switch (Entry.Kind) { 3397 case BitstreamEntry::Error: 3398 return error("Malformed block"); 3399 case BitstreamEntry::EndBlock: 3400 goto OutOfRecordLoop; 3401 3402 case BitstreamEntry::SubBlock: 3403 switch (Entry.ID) { 3404 default: // Skip unknown content. 3405 if (Stream.SkipBlock()) 3406 return error("Invalid record"); 3407 break; 3408 case bitc::CONSTANTS_BLOCK_ID: 3409 if (Error Err = parseConstants()) 3410 return Err; 3411 NextValueNo = ValueList.size(); 3412 break; 3413 case bitc::VALUE_SYMTAB_BLOCK_ID: 3414 if (Error Err = parseValueSymbolTable()) 3415 return Err; 3416 break; 3417 case bitc::METADATA_ATTACHMENT_ID: 3418 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3419 return Err; 3420 break; 3421 case bitc::METADATA_BLOCK_ID: 3422 assert(DeferredMetadataInfo.empty() && 3423 "Must read all module-level metadata before function-level"); 3424 if (Error Err = MDLoader->parseFunctionMetadata()) 3425 return Err; 3426 break; 3427 case bitc::USELIST_BLOCK_ID: 3428 if (Error Err = parseUseLists()) 3429 return Err; 3430 break; 3431 } 3432 continue; 3433 3434 case BitstreamEntry::Record: 3435 // The interesting case. 3436 break; 3437 } 3438 3439 // Read a record. 3440 Record.clear(); 3441 Instruction *I = nullptr; 3442 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3443 switch (BitCode) { 3444 default: // Default behavior: reject 3445 return error("Invalid value"); 3446 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3447 if (Record.size() < 1 || Record[0] == 0) 3448 return error("Invalid record"); 3449 // Create all the basic blocks for the function. 3450 FunctionBBs.resize(Record[0]); 3451 3452 // See if anything took the address of blocks in this function. 3453 auto BBFRI = BasicBlockFwdRefs.find(F); 3454 if (BBFRI == BasicBlockFwdRefs.end()) { 3455 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3456 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3457 } else { 3458 auto &BBRefs = BBFRI->second; 3459 // Check for invalid basic block references. 3460 if (BBRefs.size() > FunctionBBs.size()) 3461 return error("Invalid ID"); 3462 assert(!BBRefs.empty() && "Unexpected empty array"); 3463 assert(!BBRefs.front() && "Invalid reference to entry block"); 3464 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3465 ++I) 3466 if (I < RE && BBRefs[I]) { 3467 BBRefs[I]->insertInto(F); 3468 FunctionBBs[I] = BBRefs[I]; 3469 } else { 3470 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3471 } 3472 3473 // Erase from the table. 3474 BasicBlockFwdRefs.erase(BBFRI); 3475 } 3476 3477 CurBB = FunctionBBs[0]; 3478 continue; 3479 } 3480 3481 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3482 // This record indicates that the last instruction is at the same 3483 // location as the previous instruction with a location. 3484 I = getLastInstruction(); 3485 3486 if (!I) 3487 return error("Invalid record"); 3488 I->setDebugLoc(LastLoc); 3489 I = nullptr; 3490 continue; 3491 3492 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3493 I = getLastInstruction(); 3494 if (!I || Record.size() < 4) 3495 return error("Invalid record"); 3496 3497 unsigned Line = Record[0], Col = Record[1]; 3498 unsigned ScopeID = Record[2], IAID = Record[3]; 3499 3500 MDNode *Scope = nullptr, *IA = nullptr; 3501 if (ScopeID) { 3502 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3503 if (!Scope) 3504 return error("Invalid record"); 3505 } 3506 if (IAID) { 3507 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3508 if (!IA) 3509 return error("Invalid record"); 3510 } 3511 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3512 I->setDebugLoc(LastLoc); 3513 I = nullptr; 3514 continue; 3515 } 3516 3517 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3518 unsigned OpNum = 0; 3519 Value *LHS, *RHS; 3520 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3521 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3522 OpNum+1 > Record.size()) 3523 return error("Invalid record"); 3524 3525 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3526 if (Opc == -1) 3527 return error("Invalid record"); 3528 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3529 InstructionList.push_back(I); 3530 if (OpNum < Record.size()) { 3531 if (Opc == Instruction::Add || 3532 Opc == Instruction::Sub || 3533 Opc == Instruction::Mul || 3534 Opc == Instruction::Shl) { 3535 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3536 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3537 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3538 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3539 } else if (Opc == Instruction::SDiv || 3540 Opc == Instruction::UDiv || 3541 Opc == Instruction::LShr || 3542 Opc == Instruction::AShr) { 3543 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3544 cast<BinaryOperator>(I)->setIsExact(true); 3545 } else if (isa<FPMathOperator>(I)) { 3546 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3547 if (FMF.any()) 3548 I->setFastMathFlags(FMF); 3549 } 3550 3551 } 3552 break; 3553 } 3554 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3555 unsigned OpNum = 0; 3556 Value *Op; 3557 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3558 OpNum+2 != Record.size()) 3559 return error("Invalid record"); 3560 3561 Type *ResTy = getTypeByID(Record[OpNum]); 3562 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3563 if (Opc == -1 || !ResTy) 3564 return error("Invalid record"); 3565 Instruction *Temp = nullptr; 3566 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3567 if (Temp) { 3568 InstructionList.push_back(Temp); 3569 CurBB->getInstList().push_back(Temp); 3570 } 3571 } else { 3572 auto CastOp = (Instruction::CastOps)Opc; 3573 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3574 return error("Invalid cast"); 3575 I = CastInst::Create(CastOp, Op, ResTy); 3576 } 3577 InstructionList.push_back(I); 3578 break; 3579 } 3580 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3581 case bitc::FUNC_CODE_INST_GEP_OLD: 3582 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3583 unsigned OpNum = 0; 3584 3585 Type *Ty; 3586 bool InBounds; 3587 3588 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3589 InBounds = Record[OpNum++]; 3590 Ty = getTypeByID(Record[OpNum++]); 3591 } else { 3592 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3593 Ty = nullptr; 3594 } 3595 3596 Value *BasePtr; 3597 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3598 return error("Invalid record"); 3599 3600 if (!Ty) 3601 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3602 ->getElementType(); 3603 else if (Ty != 3604 cast<PointerType>(BasePtr->getType()->getScalarType()) 3605 ->getElementType()) 3606 return error( 3607 "Explicit gep type does not match pointee type of pointer operand"); 3608 3609 SmallVector<Value*, 16> GEPIdx; 3610 while (OpNum != Record.size()) { 3611 Value *Op; 3612 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3613 return error("Invalid record"); 3614 GEPIdx.push_back(Op); 3615 } 3616 3617 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3618 3619 InstructionList.push_back(I); 3620 if (InBounds) 3621 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3622 break; 3623 } 3624 3625 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3626 // EXTRACTVAL: [opty, opval, n x indices] 3627 unsigned OpNum = 0; 3628 Value *Agg; 3629 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3630 return error("Invalid record"); 3631 3632 unsigned RecSize = Record.size(); 3633 if (OpNum == RecSize) 3634 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3635 3636 SmallVector<unsigned, 4> EXTRACTVALIdx; 3637 Type *CurTy = Agg->getType(); 3638 for (; OpNum != RecSize; ++OpNum) { 3639 bool IsArray = CurTy->isArrayTy(); 3640 bool IsStruct = CurTy->isStructTy(); 3641 uint64_t Index = Record[OpNum]; 3642 3643 if (!IsStruct && !IsArray) 3644 return error("EXTRACTVAL: Invalid type"); 3645 if ((unsigned)Index != Index) 3646 return error("Invalid value"); 3647 if (IsStruct && Index >= CurTy->subtypes().size()) 3648 return error("EXTRACTVAL: Invalid struct index"); 3649 if (IsArray && Index >= CurTy->getArrayNumElements()) 3650 return error("EXTRACTVAL: Invalid array index"); 3651 EXTRACTVALIdx.push_back((unsigned)Index); 3652 3653 if (IsStruct) 3654 CurTy = CurTy->subtypes()[Index]; 3655 else 3656 CurTy = CurTy->subtypes()[0]; 3657 } 3658 3659 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3660 InstructionList.push_back(I); 3661 break; 3662 } 3663 3664 case bitc::FUNC_CODE_INST_INSERTVAL: { 3665 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3666 unsigned OpNum = 0; 3667 Value *Agg; 3668 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3669 return error("Invalid record"); 3670 Value *Val; 3671 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3672 return error("Invalid record"); 3673 3674 unsigned RecSize = Record.size(); 3675 if (OpNum == RecSize) 3676 return error("INSERTVAL: Invalid instruction with 0 indices"); 3677 3678 SmallVector<unsigned, 4> INSERTVALIdx; 3679 Type *CurTy = Agg->getType(); 3680 for (; OpNum != RecSize; ++OpNum) { 3681 bool IsArray = CurTy->isArrayTy(); 3682 bool IsStruct = CurTy->isStructTy(); 3683 uint64_t Index = Record[OpNum]; 3684 3685 if (!IsStruct && !IsArray) 3686 return error("INSERTVAL: Invalid type"); 3687 if ((unsigned)Index != Index) 3688 return error("Invalid value"); 3689 if (IsStruct && Index >= CurTy->subtypes().size()) 3690 return error("INSERTVAL: Invalid struct index"); 3691 if (IsArray && Index >= CurTy->getArrayNumElements()) 3692 return error("INSERTVAL: Invalid array index"); 3693 3694 INSERTVALIdx.push_back((unsigned)Index); 3695 if (IsStruct) 3696 CurTy = CurTy->subtypes()[Index]; 3697 else 3698 CurTy = CurTy->subtypes()[0]; 3699 } 3700 3701 if (CurTy != Val->getType()) 3702 return error("Inserted value type doesn't match aggregate type"); 3703 3704 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3705 InstructionList.push_back(I); 3706 break; 3707 } 3708 3709 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3710 // obsolete form of select 3711 // handles select i1 ... in old bitcode 3712 unsigned OpNum = 0; 3713 Value *TrueVal, *FalseVal, *Cond; 3714 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3715 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3716 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3717 return error("Invalid record"); 3718 3719 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3720 InstructionList.push_back(I); 3721 break; 3722 } 3723 3724 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3725 // new form of select 3726 // handles select i1 or select [N x i1] 3727 unsigned OpNum = 0; 3728 Value *TrueVal, *FalseVal, *Cond; 3729 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3730 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3731 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3732 return error("Invalid record"); 3733 3734 // select condition can be either i1 or [N x i1] 3735 if (VectorType* vector_type = 3736 dyn_cast<VectorType>(Cond->getType())) { 3737 // expect <n x i1> 3738 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3739 return error("Invalid type for value"); 3740 } else { 3741 // expect i1 3742 if (Cond->getType() != Type::getInt1Ty(Context)) 3743 return error("Invalid type for value"); 3744 } 3745 3746 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3747 InstructionList.push_back(I); 3748 break; 3749 } 3750 3751 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3752 unsigned OpNum = 0; 3753 Value *Vec, *Idx; 3754 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3755 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3756 return error("Invalid record"); 3757 if (!Vec->getType()->isVectorTy()) 3758 return error("Invalid type for value"); 3759 I = ExtractElementInst::Create(Vec, Idx); 3760 InstructionList.push_back(I); 3761 break; 3762 } 3763 3764 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3765 unsigned OpNum = 0; 3766 Value *Vec, *Elt, *Idx; 3767 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3768 return error("Invalid record"); 3769 if (!Vec->getType()->isVectorTy()) 3770 return error("Invalid type for value"); 3771 if (popValue(Record, OpNum, NextValueNo, 3772 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3773 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3774 return error("Invalid record"); 3775 I = InsertElementInst::Create(Vec, Elt, Idx); 3776 InstructionList.push_back(I); 3777 break; 3778 } 3779 3780 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3781 unsigned OpNum = 0; 3782 Value *Vec1, *Vec2, *Mask; 3783 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3784 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3785 return error("Invalid record"); 3786 3787 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3788 return error("Invalid record"); 3789 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3790 return error("Invalid type for value"); 3791 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3792 InstructionList.push_back(I); 3793 break; 3794 } 3795 3796 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3797 // Old form of ICmp/FCmp returning bool 3798 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3799 // both legal on vectors but had different behaviour. 3800 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3801 // FCmp/ICmp returning bool or vector of bool 3802 3803 unsigned OpNum = 0; 3804 Value *LHS, *RHS; 3805 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3806 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3807 return error("Invalid record"); 3808 3809 unsigned PredVal = Record[OpNum]; 3810 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3811 FastMathFlags FMF; 3812 if (IsFP && Record.size() > OpNum+1) 3813 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3814 3815 if (OpNum+1 != Record.size()) 3816 return error("Invalid record"); 3817 3818 if (LHS->getType()->isFPOrFPVectorTy()) 3819 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3820 else 3821 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3822 3823 if (FMF.any()) 3824 I->setFastMathFlags(FMF); 3825 InstructionList.push_back(I); 3826 break; 3827 } 3828 3829 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3830 { 3831 unsigned Size = Record.size(); 3832 if (Size == 0) { 3833 I = ReturnInst::Create(Context); 3834 InstructionList.push_back(I); 3835 break; 3836 } 3837 3838 unsigned OpNum = 0; 3839 Value *Op = nullptr; 3840 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3841 return error("Invalid record"); 3842 if (OpNum != Record.size()) 3843 return error("Invalid record"); 3844 3845 I = ReturnInst::Create(Context, Op); 3846 InstructionList.push_back(I); 3847 break; 3848 } 3849 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3850 if (Record.size() != 1 && Record.size() != 3) 3851 return error("Invalid record"); 3852 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3853 if (!TrueDest) 3854 return error("Invalid record"); 3855 3856 if (Record.size() == 1) { 3857 I = BranchInst::Create(TrueDest); 3858 InstructionList.push_back(I); 3859 } 3860 else { 3861 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3862 Value *Cond = getValue(Record, 2, NextValueNo, 3863 Type::getInt1Ty(Context)); 3864 if (!FalseDest || !Cond) 3865 return error("Invalid record"); 3866 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3867 InstructionList.push_back(I); 3868 } 3869 break; 3870 } 3871 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3872 if (Record.size() != 1 && Record.size() != 2) 3873 return error("Invalid record"); 3874 unsigned Idx = 0; 3875 Value *CleanupPad = 3876 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3877 if (!CleanupPad) 3878 return error("Invalid record"); 3879 BasicBlock *UnwindDest = nullptr; 3880 if (Record.size() == 2) { 3881 UnwindDest = getBasicBlock(Record[Idx++]); 3882 if (!UnwindDest) 3883 return error("Invalid record"); 3884 } 3885 3886 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3887 InstructionList.push_back(I); 3888 break; 3889 } 3890 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3891 if (Record.size() != 2) 3892 return error("Invalid record"); 3893 unsigned Idx = 0; 3894 Value *CatchPad = 3895 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3896 if (!CatchPad) 3897 return error("Invalid record"); 3898 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3899 if (!BB) 3900 return error("Invalid record"); 3901 3902 I = CatchReturnInst::Create(CatchPad, BB); 3903 InstructionList.push_back(I); 3904 break; 3905 } 3906 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3907 // We must have, at minimum, the outer scope and the number of arguments. 3908 if (Record.size() < 2) 3909 return error("Invalid record"); 3910 3911 unsigned Idx = 0; 3912 3913 Value *ParentPad = 3914 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3915 3916 unsigned NumHandlers = Record[Idx++]; 3917 3918 SmallVector<BasicBlock *, 2> Handlers; 3919 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3920 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3921 if (!BB) 3922 return error("Invalid record"); 3923 Handlers.push_back(BB); 3924 } 3925 3926 BasicBlock *UnwindDest = nullptr; 3927 if (Idx + 1 == Record.size()) { 3928 UnwindDest = getBasicBlock(Record[Idx++]); 3929 if (!UnwindDest) 3930 return error("Invalid record"); 3931 } 3932 3933 if (Record.size() != Idx) 3934 return error("Invalid record"); 3935 3936 auto *CatchSwitch = 3937 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3938 for (BasicBlock *Handler : Handlers) 3939 CatchSwitch->addHandler(Handler); 3940 I = CatchSwitch; 3941 InstructionList.push_back(I); 3942 break; 3943 } 3944 case bitc::FUNC_CODE_INST_CATCHPAD: 3945 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3946 // We must have, at minimum, the outer scope and the number of arguments. 3947 if (Record.size() < 2) 3948 return error("Invalid record"); 3949 3950 unsigned Idx = 0; 3951 3952 Value *ParentPad = 3953 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3954 3955 unsigned NumArgOperands = Record[Idx++]; 3956 3957 SmallVector<Value *, 2> Args; 3958 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3959 Value *Val; 3960 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3961 return error("Invalid record"); 3962 Args.push_back(Val); 3963 } 3964 3965 if (Record.size() != Idx) 3966 return error("Invalid record"); 3967 3968 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3969 I = CleanupPadInst::Create(ParentPad, Args); 3970 else 3971 I = CatchPadInst::Create(ParentPad, Args); 3972 InstructionList.push_back(I); 3973 break; 3974 } 3975 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3976 // Check magic 3977 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3978 // "New" SwitchInst format with case ranges. The changes to write this 3979 // format were reverted but we still recognize bitcode that uses it. 3980 // Hopefully someday we will have support for case ranges and can use 3981 // this format again. 3982 3983 Type *OpTy = getTypeByID(Record[1]); 3984 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3985 3986 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3987 BasicBlock *Default = getBasicBlock(Record[3]); 3988 if (!OpTy || !Cond || !Default) 3989 return error("Invalid record"); 3990 3991 unsigned NumCases = Record[4]; 3992 3993 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3994 InstructionList.push_back(SI); 3995 3996 unsigned CurIdx = 5; 3997 for (unsigned i = 0; i != NumCases; ++i) { 3998 SmallVector<ConstantInt*, 1> CaseVals; 3999 unsigned NumItems = Record[CurIdx++]; 4000 for (unsigned ci = 0; ci != NumItems; ++ci) { 4001 bool isSingleNumber = Record[CurIdx++]; 4002 4003 APInt Low; 4004 unsigned ActiveWords = 1; 4005 if (ValueBitWidth > 64) 4006 ActiveWords = Record[CurIdx++]; 4007 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4008 ValueBitWidth); 4009 CurIdx += ActiveWords; 4010 4011 if (!isSingleNumber) { 4012 ActiveWords = 1; 4013 if (ValueBitWidth > 64) 4014 ActiveWords = Record[CurIdx++]; 4015 APInt High = readWideAPInt( 4016 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4017 CurIdx += ActiveWords; 4018 4019 // FIXME: It is not clear whether values in the range should be 4020 // compared as signed or unsigned values. The partially 4021 // implemented changes that used this format in the past used 4022 // unsigned comparisons. 4023 for ( ; Low.ule(High); ++Low) 4024 CaseVals.push_back(ConstantInt::get(Context, Low)); 4025 } else 4026 CaseVals.push_back(ConstantInt::get(Context, Low)); 4027 } 4028 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4029 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4030 cve = CaseVals.end(); cvi != cve; ++cvi) 4031 SI->addCase(*cvi, DestBB); 4032 } 4033 I = SI; 4034 break; 4035 } 4036 4037 // Old SwitchInst format without case ranges. 4038 4039 if (Record.size() < 3 || (Record.size() & 1) == 0) 4040 return error("Invalid record"); 4041 Type *OpTy = getTypeByID(Record[0]); 4042 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4043 BasicBlock *Default = getBasicBlock(Record[2]); 4044 if (!OpTy || !Cond || !Default) 4045 return error("Invalid record"); 4046 unsigned NumCases = (Record.size()-3)/2; 4047 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4048 InstructionList.push_back(SI); 4049 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4050 ConstantInt *CaseVal = 4051 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4052 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4053 if (!CaseVal || !DestBB) { 4054 delete SI; 4055 return error("Invalid record"); 4056 } 4057 SI->addCase(CaseVal, DestBB); 4058 } 4059 I = SI; 4060 break; 4061 } 4062 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4063 if (Record.size() < 2) 4064 return error("Invalid record"); 4065 Type *OpTy = getTypeByID(Record[0]); 4066 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4067 if (!OpTy || !Address) 4068 return error("Invalid record"); 4069 unsigned NumDests = Record.size()-2; 4070 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4071 InstructionList.push_back(IBI); 4072 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4073 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4074 IBI->addDestination(DestBB); 4075 } else { 4076 delete IBI; 4077 return error("Invalid record"); 4078 } 4079 } 4080 I = IBI; 4081 break; 4082 } 4083 4084 case bitc::FUNC_CODE_INST_INVOKE: { 4085 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4086 if (Record.size() < 4) 4087 return error("Invalid record"); 4088 unsigned OpNum = 0; 4089 AttributeList PAL = getAttributes(Record[OpNum++]); 4090 unsigned CCInfo = Record[OpNum++]; 4091 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4092 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4093 4094 FunctionType *FTy = nullptr; 4095 if (CCInfo >> 13 & 1 && 4096 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4097 return error("Explicit invoke type is not a function type"); 4098 4099 Value *Callee; 4100 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4101 return error("Invalid record"); 4102 4103 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4104 if (!CalleeTy) 4105 return error("Callee is not a pointer"); 4106 if (!FTy) { 4107 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4108 if (!FTy) 4109 return error("Callee is not of pointer to function type"); 4110 } else if (CalleeTy->getElementType() != FTy) 4111 return error("Explicit invoke type does not match pointee type of " 4112 "callee operand"); 4113 if (Record.size() < FTy->getNumParams() + OpNum) 4114 return error("Insufficient operands to call"); 4115 4116 SmallVector<Value*, 16> Ops; 4117 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4118 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4119 FTy->getParamType(i))); 4120 if (!Ops.back()) 4121 return error("Invalid record"); 4122 } 4123 4124 if (!FTy->isVarArg()) { 4125 if (Record.size() != OpNum) 4126 return error("Invalid record"); 4127 } else { 4128 // Read type/value pairs for varargs params. 4129 while (OpNum != Record.size()) { 4130 Value *Op; 4131 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4132 return error("Invalid record"); 4133 Ops.push_back(Op); 4134 } 4135 } 4136 4137 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4138 OperandBundles.clear(); 4139 InstructionList.push_back(I); 4140 cast<InvokeInst>(I)->setCallingConv( 4141 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4142 cast<InvokeInst>(I)->setAttributes(PAL); 4143 break; 4144 } 4145 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4146 unsigned Idx = 0; 4147 Value *Val = nullptr; 4148 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4149 return error("Invalid record"); 4150 I = ResumeInst::Create(Val); 4151 InstructionList.push_back(I); 4152 break; 4153 } 4154 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4155 I = new UnreachableInst(Context); 4156 InstructionList.push_back(I); 4157 break; 4158 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4159 if (Record.size() < 1 || ((Record.size()-1)&1)) 4160 return error("Invalid record"); 4161 Type *Ty = getTypeByID(Record[0]); 4162 if (!Ty) 4163 return error("Invalid record"); 4164 4165 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4166 InstructionList.push_back(PN); 4167 4168 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4169 Value *V; 4170 // With the new function encoding, it is possible that operands have 4171 // negative IDs (for forward references). Use a signed VBR 4172 // representation to keep the encoding small. 4173 if (UseRelativeIDs) 4174 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4175 else 4176 V = getValue(Record, 1+i, NextValueNo, Ty); 4177 BasicBlock *BB = getBasicBlock(Record[2+i]); 4178 if (!V || !BB) 4179 return error("Invalid record"); 4180 PN->addIncoming(V, BB); 4181 } 4182 I = PN; 4183 break; 4184 } 4185 4186 case bitc::FUNC_CODE_INST_LANDINGPAD: 4187 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4188 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4189 unsigned Idx = 0; 4190 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4191 if (Record.size() < 3) 4192 return error("Invalid record"); 4193 } else { 4194 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4195 if (Record.size() < 4) 4196 return error("Invalid record"); 4197 } 4198 Type *Ty = getTypeByID(Record[Idx++]); 4199 if (!Ty) 4200 return error("Invalid record"); 4201 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4202 Value *PersFn = nullptr; 4203 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4204 return error("Invalid record"); 4205 4206 if (!F->hasPersonalityFn()) 4207 F->setPersonalityFn(cast<Constant>(PersFn)); 4208 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4209 return error("Personality function mismatch"); 4210 } 4211 4212 bool IsCleanup = !!Record[Idx++]; 4213 unsigned NumClauses = Record[Idx++]; 4214 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4215 LP->setCleanup(IsCleanup); 4216 for (unsigned J = 0; J != NumClauses; ++J) { 4217 LandingPadInst::ClauseType CT = 4218 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4219 Value *Val; 4220 4221 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4222 delete LP; 4223 return error("Invalid record"); 4224 } 4225 4226 assert((CT != LandingPadInst::Catch || 4227 !isa<ArrayType>(Val->getType())) && 4228 "Catch clause has a invalid type!"); 4229 assert((CT != LandingPadInst::Filter || 4230 isa<ArrayType>(Val->getType())) && 4231 "Filter clause has invalid type!"); 4232 LP->addClause(cast<Constant>(Val)); 4233 } 4234 4235 I = LP; 4236 InstructionList.push_back(I); 4237 break; 4238 } 4239 4240 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4241 if (Record.size() != 4) 4242 return error("Invalid record"); 4243 uint64_t AlignRecord = Record[3]; 4244 const uint64_t InAllocaMask = uint64_t(1) << 5; 4245 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4246 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4247 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4248 SwiftErrorMask; 4249 bool InAlloca = AlignRecord & InAllocaMask; 4250 bool SwiftError = AlignRecord & SwiftErrorMask; 4251 Type *Ty = getTypeByID(Record[0]); 4252 if ((AlignRecord & ExplicitTypeMask) == 0) { 4253 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4254 if (!PTy) 4255 return error("Old-style alloca with a non-pointer type"); 4256 Ty = PTy->getElementType(); 4257 } 4258 Type *OpTy = getTypeByID(Record[1]); 4259 Value *Size = getFnValueByID(Record[2], OpTy); 4260 unsigned Align; 4261 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4262 return Err; 4263 } 4264 if (!Ty || !Size) 4265 return error("Invalid record"); 4266 4267 // FIXME: Make this an optional field. 4268 const DataLayout &DL = TheModule->getDataLayout(); 4269 unsigned AS = DL.getAllocaAddrSpace(); 4270 4271 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4272 AI->setUsedWithInAlloca(InAlloca); 4273 AI->setSwiftError(SwiftError); 4274 I = AI; 4275 InstructionList.push_back(I); 4276 break; 4277 } 4278 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4279 unsigned OpNum = 0; 4280 Value *Op; 4281 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4282 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4283 return error("Invalid record"); 4284 4285 Type *Ty = nullptr; 4286 if (OpNum + 3 == Record.size()) 4287 Ty = getTypeByID(Record[OpNum++]); 4288 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4289 return Err; 4290 if (!Ty) 4291 Ty = cast<PointerType>(Op->getType())->getElementType(); 4292 4293 unsigned Align; 4294 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4295 return Err; 4296 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4297 4298 InstructionList.push_back(I); 4299 break; 4300 } 4301 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4302 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4303 unsigned OpNum = 0; 4304 Value *Op; 4305 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4306 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4307 return error("Invalid record"); 4308 4309 Type *Ty = nullptr; 4310 if (OpNum + 5 == Record.size()) 4311 Ty = getTypeByID(Record[OpNum++]); 4312 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4313 return Err; 4314 if (!Ty) 4315 Ty = cast<PointerType>(Op->getType())->getElementType(); 4316 4317 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4318 if (Ordering == AtomicOrdering::NotAtomic || 4319 Ordering == AtomicOrdering::Release || 4320 Ordering == AtomicOrdering::AcquireRelease) 4321 return error("Invalid record"); 4322 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4323 return error("Invalid record"); 4324 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4325 4326 unsigned Align; 4327 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4328 return Err; 4329 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4330 4331 InstructionList.push_back(I); 4332 break; 4333 } 4334 case bitc::FUNC_CODE_INST_STORE: 4335 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4336 unsigned OpNum = 0; 4337 Value *Val, *Ptr; 4338 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4339 (BitCode == bitc::FUNC_CODE_INST_STORE 4340 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4341 : popValue(Record, OpNum, NextValueNo, 4342 cast<PointerType>(Ptr->getType())->getElementType(), 4343 Val)) || 4344 OpNum + 2 != Record.size()) 4345 return error("Invalid record"); 4346 4347 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4348 return Err; 4349 unsigned Align; 4350 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4351 return Err; 4352 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4353 InstructionList.push_back(I); 4354 break; 4355 } 4356 case bitc::FUNC_CODE_INST_STOREATOMIC: 4357 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4358 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4359 unsigned OpNum = 0; 4360 Value *Val, *Ptr; 4361 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4362 !isa<PointerType>(Ptr->getType()) || 4363 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4364 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4365 : popValue(Record, OpNum, NextValueNo, 4366 cast<PointerType>(Ptr->getType())->getElementType(), 4367 Val)) || 4368 OpNum + 4 != Record.size()) 4369 return error("Invalid record"); 4370 4371 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4372 return Err; 4373 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4374 if (Ordering == AtomicOrdering::NotAtomic || 4375 Ordering == AtomicOrdering::Acquire || 4376 Ordering == AtomicOrdering::AcquireRelease) 4377 return error("Invalid record"); 4378 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4379 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4380 return error("Invalid record"); 4381 4382 unsigned Align; 4383 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4384 return Err; 4385 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4386 InstructionList.push_back(I); 4387 break; 4388 } 4389 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4390 case bitc::FUNC_CODE_INST_CMPXCHG: { 4391 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4392 // failureordering?, isweak?] 4393 unsigned OpNum = 0; 4394 Value *Ptr, *Cmp, *New; 4395 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4396 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4397 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4398 : popValue(Record, OpNum, NextValueNo, 4399 cast<PointerType>(Ptr->getType())->getElementType(), 4400 Cmp)) || 4401 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4402 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4403 return error("Invalid record"); 4404 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4405 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4406 SuccessOrdering == AtomicOrdering::Unordered) 4407 return error("Invalid record"); 4408 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4409 4410 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4411 return Err; 4412 AtomicOrdering FailureOrdering; 4413 if (Record.size() < 7) 4414 FailureOrdering = 4415 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4416 else 4417 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4418 4419 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4420 SSID); 4421 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4422 4423 if (Record.size() < 8) { 4424 // Before weak cmpxchgs existed, the instruction simply returned the 4425 // value loaded from memory, so bitcode files from that era will be 4426 // expecting the first component of a modern cmpxchg. 4427 CurBB->getInstList().push_back(I); 4428 I = ExtractValueInst::Create(I, 0); 4429 } else { 4430 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4431 } 4432 4433 InstructionList.push_back(I); 4434 break; 4435 } 4436 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4437 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4438 unsigned OpNum = 0; 4439 Value *Ptr, *Val; 4440 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4441 !isa<PointerType>(Ptr->getType()) || 4442 popValue(Record, OpNum, NextValueNo, 4443 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4444 OpNum+4 != Record.size()) 4445 return error("Invalid record"); 4446 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4447 if (Operation < AtomicRMWInst::FIRST_BINOP || 4448 Operation > AtomicRMWInst::LAST_BINOP) 4449 return error("Invalid record"); 4450 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4451 if (Ordering == AtomicOrdering::NotAtomic || 4452 Ordering == AtomicOrdering::Unordered) 4453 return error("Invalid record"); 4454 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4455 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4456 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4457 InstructionList.push_back(I); 4458 break; 4459 } 4460 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4461 if (2 != Record.size()) 4462 return error("Invalid record"); 4463 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4464 if (Ordering == AtomicOrdering::NotAtomic || 4465 Ordering == AtomicOrdering::Unordered || 4466 Ordering == AtomicOrdering::Monotonic) 4467 return error("Invalid record"); 4468 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4469 I = new FenceInst(Context, Ordering, SSID); 4470 InstructionList.push_back(I); 4471 break; 4472 } 4473 case bitc::FUNC_CODE_INST_CALL: { 4474 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4475 if (Record.size() < 3) 4476 return error("Invalid record"); 4477 4478 unsigned OpNum = 0; 4479 AttributeList PAL = getAttributes(Record[OpNum++]); 4480 unsigned CCInfo = Record[OpNum++]; 4481 4482 FastMathFlags FMF; 4483 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4484 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4485 if (!FMF.any()) 4486 return error("Fast math flags indicator set for call with no FMF"); 4487 } 4488 4489 FunctionType *FTy = nullptr; 4490 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4491 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4492 return error("Explicit call type is not a function type"); 4493 4494 Value *Callee; 4495 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4496 return error("Invalid record"); 4497 4498 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4499 if (!OpTy) 4500 return error("Callee is not a pointer type"); 4501 if (!FTy) { 4502 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4503 if (!FTy) 4504 return error("Callee is not of pointer to function type"); 4505 } else if (OpTy->getElementType() != FTy) 4506 return error("Explicit call type does not match pointee type of " 4507 "callee operand"); 4508 if (Record.size() < FTy->getNumParams() + OpNum) 4509 return error("Insufficient operands to call"); 4510 4511 SmallVector<Value*, 16> Args; 4512 // Read the fixed params. 4513 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4514 if (FTy->getParamType(i)->isLabelTy()) 4515 Args.push_back(getBasicBlock(Record[OpNum])); 4516 else 4517 Args.push_back(getValue(Record, OpNum, NextValueNo, 4518 FTy->getParamType(i))); 4519 if (!Args.back()) 4520 return error("Invalid record"); 4521 } 4522 4523 // Read type/value pairs for varargs params. 4524 if (!FTy->isVarArg()) { 4525 if (OpNum != Record.size()) 4526 return error("Invalid record"); 4527 } else { 4528 while (OpNum != Record.size()) { 4529 Value *Op; 4530 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4531 return error("Invalid record"); 4532 Args.push_back(Op); 4533 } 4534 } 4535 4536 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4537 OperandBundles.clear(); 4538 InstructionList.push_back(I); 4539 cast<CallInst>(I)->setCallingConv( 4540 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4541 CallInst::TailCallKind TCK = CallInst::TCK_None; 4542 if (CCInfo & 1 << bitc::CALL_TAIL) 4543 TCK = CallInst::TCK_Tail; 4544 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4545 TCK = CallInst::TCK_MustTail; 4546 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4547 TCK = CallInst::TCK_NoTail; 4548 cast<CallInst>(I)->setTailCallKind(TCK); 4549 cast<CallInst>(I)->setAttributes(PAL); 4550 if (FMF.any()) { 4551 if (!isa<FPMathOperator>(I)) 4552 return error("Fast-math-flags specified for call without " 4553 "floating-point scalar or vector return type"); 4554 I->setFastMathFlags(FMF); 4555 } 4556 break; 4557 } 4558 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4559 if (Record.size() < 3) 4560 return error("Invalid record"); 4561 Type *OpTy = getTypeByID(Record[0]); 4562 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4563 Type *ResTy = getTypeByID(Record[2]); 4564 if (!OpTy || !Op || !ResTy) 4565 return error("Invalid record"); 4566 I = new VAArgInst(Op, ResTy); 4567 InstructionList.push_back(I); 4568 break; 4569 } 4570 4571 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4572 // A call or an invoke can be optionally prefixed with some variable 4573 // number of operand bundle blocks. These blocks are read into 4574 // OperandBundles and consumed at the next call or invoke instruction. 4575 4576 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4577 return error("Invalid record"); 4578 4579 std::vector<Value *> Inputs; 4580 4581 unsigned OpNum = 1; 4582 while (OpNum != Record.size()) { 4583 Value *Op; 4584 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4585 return error("Invalid record"); 4586 Inputs.push_back(Op); 4587 } 4588 4589 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4590 continue; 4591 } 4592 } 4593 4594 // Add instruction to end of current BB. If there is no current BB, reject 4595 // this file. 4596 if (!CurBB) { 4597 I->deleteValue(); 4598 return error("Invalid instruction with no BB"); 4599 } 4600 if (!OperandBundles.empty()) { 4601 I->deleteValue(); 4602 return error("Operand bundles found with no consumer"); 4603 } 4604 CurBB->getInstList().push_back(I); 4605 4606 // If this was a terminator instruction, move to the next block. 4607 if (isa<TerminatorInst>(I)) { 4608 ++CurBBNo; 4609 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4610 } 4611 4612 // Non-void values get registered in the value table for future use. 4613 if (I && !I->getType()->isVoidTy()) 4614 ValueList.assignValue(I, NextValueNo++); 4615 } 4616 4617 OutOfRecordLoop: 4618 4619 if (!OperandBundles.empty()) 4620 return error("Operand bundles found with no consumer"); 4621 4622 // Check the function list for unresolved values. 4623 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4624 if (!A->getParent()) { 4625 // We found at least one unresolved value. Nuke them all to avoid leaks. 4626 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4627 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4628 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4629 delete A; 4630 } 4631 } 4632 return error("Never resolved value found in function"); 4633 } 4634 } 4635 4636 // Unexpected unresolved metadata about to be dropped. 4637 if (MDLoader->hasFwdRefs()) 4638 return error("Invalid function metadata: outgoing forward refs"); 4639 4640 // Trim the value list down to the size it was before we parsed this function. 4641 ValueList.shrinkTo(ModuleValueListSize); 4642 MDLoader->shrinkTo(ModuleMDLoaderSize); 4643 std::vector<BasicBlock*>().swap(FunctionBBs); 4644 return Error::success(); 4645 } 4646 4647 /// Find the function body in the bitcode stream 4648 Error BitcodeReader::findFunctionInStream( 4649 Function *F, 4650 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4651 while (DeferredFunctionInfoIterator->second == 0) { 4652 // This is the fallback handling for the old format bitcode that 4653 // didn't contain the function index in the VST, or when we have 4654 // an anonymous function which would not have a VST entry. 4655 // Assert that we have one of those two cases. 4656 assert(VSTOffset == 0 || !F->hasName()); 4657 // Parse the next body in the stream and set its position in the 4658 // DeferredFunctionInfo map. 4659 if (Error Err = rememberAndSkipFunctionBodies()) 4660 return Err; 4661 } 4662 return Error::success(); 4663 } 4664 4665 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4666 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4667 return SyncScope::ID(Val); 4668 if (Val >= SSIDs.size()) 4669 return SyncScope::System; // Map unknown synchronization scopes to system. 4670 return SSIDs[Val]; 4671 } 4672 4673 //===----------------------------------------------------------------------===// 4674 // GVMaterializer implementation 4675 //===----------------------------------------------------------------------===// 4676 4677 Error BitcodeReader::materialize(GlobalValue *GV) { 4678 Function *F = dyn_cast<Function>(GV); 4679 // If it's not a function or is already material, ignore the request. 4680 if (!F || !F->isMaterializable()) 4681 return Error::success(); 4682 4683 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4684 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4685 // If its position is recorded as 0, its body is somewhere in the stream 4686 // but we haven't seen it yet. 4687 if (DFII->second == 0) 4688 if (Error Err = findFunctionInStream(F, DFII)) 4689 return Err; 4690 4691 // Materialize metadata before parsing any function bodies. 4692 if (Error Err = materializeMetadata()) 4693 return Err; 4694 4695 // Move the bit stream to the saved position of the deferred function body. 4696 Stream.JumpToBit(DFII->second); 4697 4698 if (Error Err = parseFunctionBody(F)) 4699 return Err; 4700 F->setIsMaterializable(false); 4701 4702 if (StripDebugInfo) 4703 stripDebugInfo(*F); 4704 4705 // Upgrade any old intrinsic calls in the function. 4706 for (auto &I : UpgradedIntrinsics) { 4707 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4708 UI != UE;) { 4709 User *U = *UI; 4710 ++UI; 4711 if (CallInst *CI = dyn_cast<CallInst>(U)) 4712 UpgradeIntrinsicCall(CI, I.second); 4713 } 4714 } 4715 4716 // Update calls to the remangled intrinsics 4717 for (auto &I : RemangledIntrinsics) 4718 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4719 UI != UE;) 4720 // Don't expect any other users than call sites 4721 CallSite(*UI++).setCalledFunction(I.second); 4722 4723 // Finish fn->subprogram upgrade for materialized functions. 4724 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4725 F->setSubprogram(SP); 4726 4727 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4728 if (!MDLoader->isStrippingTBAA()) { 4729 for (auto &I : instructions(F)) { 4730 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4731 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4732 continue; 4733 MDLoader->setStripTBAA(true); 4734 stripTBAA(F->getParent()); 4735 } 4736 } 4737 4738 // Bring in any functions that this function forward-referenced via 4739 // blockaddresses. 4740 return materializeForwardReferencedFunctions(); 4741 } 4742 4743 Error BitcodeReader::materializeModule() { 4744 if (Error Err = materializeMetadata()) 4745 return Err; 4746 4747 // Promise to materialize all forward references. 4748 WillMaterializeAllForwardRefs = true; 4749 4750 // Iterate over the module, deserializing any functions that are still on 4751 // disk. 4752 for (Function &F : *TheModule) { 4753 if (Error Err = materialize(&F)) 4754 return Err; 4755 } 4756 // At this point, if there are any function bodies, parse the rest of 4757 // the bits in the module past the last function block we have recorded 4758 // through either lazy scanning or the VST. 4759 if (LastFunctionBlockBit || NextUnreadBit) 4760 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4761 ? LastFunctionBlockBit 4762 : NextUnreadBit)) 4763 return Err; 4764 4765 // Check that all block address forward references got resolved (as we 4766 // promised above). 4767 if (!BasicBlockFwdRefs.empty()) 4768 return error("Never resolved function from blockaddress"); 4769 4770 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4771 // delete the old functions to clean up. We can't do this unless the entire 4772 // module is materialized because there could always be another function body 4773 // with calls to the old function. 4774 for (auto &I : UpgradedIntrinsics) { 4775 for (auto *U : I.first->users()) { 4776 if (CallInst *CI = dyn_cast<CallInst>(U)) 4777 UpgradeIntrinsicCall(CI, I.second); 4778 } 4779 if (!I.first->use_empty()) 4780 I.first->replaceAllUsesWith(I.second); 4781 I.first->eraseFromParent(); 4782 } 4783 UpgradedIntrinsics.clear(); 4784 // Do the same for remangled intrinsics 4785 for (auto &I : RemangledIntrinsics) { 4786 I.first->replaceAllUsesWith(I.second); 4787 I.first->eraseFromParent(); 4788 } 4789 RemangledIntrinsics.clear(); 4790 4791 UpgradeDebugInfo(*TheModule); 4792 4793 UpgradeModuleFlags(*TheModule); 4794 4795 UpgradeRetainReleaseMarker(*TheModule); 4796 4797 return Error::success(); 4798 } 4799 4800 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4801 return IdentifiedStructTypes; 4802 } 4803 4804 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4805 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4806 StringRef ModulePath, unsigned ModuleId) 4807 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4808 ModulePath(ModulePath), ModuleId(ModuleId) {} 4809 4810 ModuleSummaryIndex::ModuleInfo * 4811 ModuleSummaryIndexBitcodeReader::addThisModule() { 4812 return TheIndex.addModule(ModulePath, ModuleId); 4813 } 4814 4815 std::pair<ValueInfo, GlobalValue::GUID> 4816 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4817 auto VGI = ValueIdToValueInfoMap[ValueId]; 4818 assert(VGI.first); 4819 return VGI; 4820 } 4821 4822 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4823 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4824 StringRef SourceFileName) { 4825 std::string GlobalId = 4826 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4827 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4828 auto OriginalNameID = ValueGUID; 4829 if (GlobalValue::isLocalLinkage(Linkage)) 4830 OriginalNameID = GlobalValue::getGUID(ValueName); 4831 if (PrintSummaryGUIDs) 4832 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4833 << ValueName << "\n"; 4834 4835 // UseStrtab is false for legacy summary formats and value names are 4836 // created on stack. We can't use them outside of parseValueSymbolTable. 4837 ValueIdToValueInfoMap[ValueID] = std::make_pair( 4838 TheIndex.getOrInsertValueInfo(ValueGUID, UseStrtab ? ValueName : ""), 4839 OriginalNameID); 4840 } 4841 4842 // Specialized value symbol table parser used when reading module index 4843 // blocks where we don't actually create global values. The parsed information 4844 // is saved in the bitcode reader for use when later parsing summaries. 4845 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4846 uint64_t Offset, 4847 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4848 // With a strtab the VST is not required to parse the summary. 4849 if (UseStrtab) 4850 return Error::success(); 4851 4852 assert(Offset > 0 && "Expected non-zero VST offset"); 4853 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4854 4855 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4856 return error("Invalid record"); 4857 4858 SmallVector<uint64_t, 64> Record; 4859 4860 // Read all the records for this value table. 4861 SmallString<128> ValueName; 4862 4863 while (true) { 4864 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4865 4866 switch (Entry.Kind) { 4867 case BitstreamEntry::SubBlock: // Handled for us already. 4868 case BitstreamEntry::Error: 4869 return error("Malformed block"); 4870 case BitstreamEntry::EndBlock: 4871 // Done parsing VST, jump back to wherever we came from. 4872 Stream.JumpToBit(CurrentBit); 4873 return Error::success(); 4874 case BitstreamEntry::Record: 4875 // The interesting case. 4876 break; 4877 } 4878 4879 // Read a record. 4880 Record.clear(); 4881 switch (Stream.readRecord(Entry.ID, Record)) { 4882 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4883 break; 4884 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4885 if (convertToString(Record, 1, ValueName)) 4886 return error("Invalid record"); 4887 unsigned ValueID = Record[0]; 4888 assert(!SourceFileName.empty()); 4889 auto VLI = ValueIdToLinkageMap.find(ValueID); 4890 assert(VLI != ValueIdToLinkageMap.end() && 4891 "No linkage found for VST entry?"); 4892 auto Linkage = VLI->second; 4893 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4894 ValueName.clear(); 4895 break; 4896 } 4897 case bitc::VST_CODE_FNENTRY: { 4898 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4899 if (convertToString(Record, 2, ValueName)) 4900 return error("Invalid record"); 4901 unsigned ValueID = Record[0]; 4902 assert(!SourceFileName.empty()); 4903 auto VLI = ValueIdToLinkageMap.find(ValueID); 4904 assert(VLI != ValueIdToLinkageMap.end() && 4905 "No linkage found for VST entry?"); 4906 auto Linkage = VLI->second; 4907 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4908 ValueName.clear(); 4909 break; 4910 } 4911 case bitc::VST_CODE_COMBINED_ENTRY: { 4912 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4913 unsigned ValueID = Record[0]; 4914 GlobalValue::GUID RefGUID = Record[1]; 4915 // The "original name", which is the second value of the pair will be 4916 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4917 ValueIdToValueInfoMap[ValueID] = 4918 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4919 break; 4920 } 4921 } 4922 } 4923 } 4924 4925 // Parse just the blocks needed for building the index out of the module. 4926 // At the end of this routine the module Index is populated with a map 4927 // from global value id to GlobalValueSummary objects. 4928 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4929 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4930 return error("Invalid record"); 4931 4932 SmallVector<uint64_t, 64> Record; 4933 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4934 unsigned ValueId = 0; 4935 4936 // Read the index for this module. 4937 while (true) { 4938 BitstreamEntry Entry = Stream.advance(); 4939 4940 switch (Entry.Kind) { 4941 case BitstreamEntry::Error: 4942 return error("Malformed block"); 4943 case BitstreamEntry::EndBlock: 4944 return Error::success(); 4945 4946 case BitstreamEntry::SubBlock: 4947 switch (Entry.ID) { 4948 default: // Skip unknown content. 4949 if (Stream.SkipBlock()) 4950 return error("Invalid record"); 4951 break; 4952 case bitc::BLOCKINFO_BLOCK_ID: 4953 // Need to parse these to get abbrev ids (e.g. for VST) 4954 if (readBlockInfo()) 4955 return error("Malformed block"); 4956 break; 4957 case bitc::VALUE_SYMTAB_BLOCK_ID: 4958 // Should have been parsed earlier via VSTOffset, unless there 4959 // is no summary section. 4960 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4961 !SeenGlobalValSummary) && 4962 "Expected early VST parse via VSTOffset record"); 4963 if (Stream.SkipBlock()) 4964 return error("Invalid record"); 4965 break; 4966 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4967 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4968 assert(!SeenValueSymbolTable && 4969 "Already read VST when parsing summary block?"); 4970 // We might not have a VST if there were no values in the 4971 // summary. An empty summary block generated when we are 4972 // performing ThinLTO compiles so we don't later invoke 4973 // the regular LTO process on them. 4974 if (VSTOffset > 0) { 4975 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4976 return Err; 4977 SeenValueSymbolTable = true; 4978 } 4979 SeenGlobalValSummary = true; 4980 if (Error Err = parseEntireSummary(Entry.ID)) 4981 return Err; 4982 break; 4983 case bitc::MODULE_STRTAB_BLOCK_ID: 4984 if (Error Err = parseModuleStringTable()) 4985 return Err; 4986 break; 4987 } 4988 continue; 4989 4990 case BitstreamEntry::Record: { 4991 Record.clear(); 4992 auto BitCode = Stream.readRecord(Entry.ID, Record); 4993 switch (BitCode) { 4994 default: 4995 break; // Default behavior, ignore unknown content. 4996 case bitc::MODULE_CODE_VERSION: { 4997 if (Error Err = parseVersionRecord(Record).takeError()) 4998 return Err; 4999 break; 5000 } 5001 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5002 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5003 SmallString<128> ValueName; 5004 if (convertToString(Record, 0, ValueName)) 5005 return error("Invalid record"); 5006 SourceFileName = ValueName.c_str(); 5007 break; 5008 } 5009 /// MODULE_CODE_HASH: [5*i32] 5010 case bitc::MODULE_CODE_HASH: { 5011 if (Record.size() != 5) 5012 return error("Invalid hash length " + Twine(Record.size()).str()); 5013 auto &Hash = addThisModule()->second.second; 5014 int Pos = 0; 5015 for (auto &Val : Record) { 5016 assert(!(Val >> 32) && "Unexpected high bits set"); 5017 Hash[Pos++] = Val; 5018 } 5019 break; 5020 } 5021 /// MODULE_CODE_VSTOFFSET: [offset] 5022 case bitc::MODULE_CODE_VSTOFFSET: 5023 if (Record.size() < 1) 5024 return error("Invalid record"); 5025 // Note that we subtract 1 here because the offset is relative to one 5026 // word before the start of the identification or module block, which 5027 // was historically always the start of the regular bitcode header. 5028 VSTOffset = Record[0] - 1; 5029 break; 5030 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5031 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5032 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5033 // v2: [strtab offset, strtab size, v1] 5034 case bitc::MODULE_CODE_GLOBALVAR: 5035 case bitc::MODULE_CODE_FUNCTION: 5036 case bitc::MODULE_CODE_ALIAS: { 5037 StringRef Name; 5038 ArrayRef<uint64_t> GVRecord; 5039 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5040 if (GVRecord.size() <= 3) 5041 return error("Invalid record"); 5042 uint64_t RawLinkage = GVRecord[3]; 5043 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5044 if (!UseStrtab) { 5045 ValueIdToLinkageMap[ValueId++] = Linkage; 5046 break; 5047 } 5048 5049 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5050 break; 5051 } 5052 } 5053 } 5054 continue; 5055 } 5056 } 5057 } 5058 5059 std::vector<ValueInfo> 5060 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5061 std::vector<ValueInfo> Ret; 5062 Ret.reserve(Record.size()); 5063 for (uint64_t RefValueId : Record) 5064 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5065 return Ret; 5066 } 5067 5068 std::vector<FunctionSummary::EdgeTy> 5069 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5070 bool IsOldProfileFormat, 5071 bool HasProfile, bool HasRelBF) { 5072 std::vector<FunctionSummary::EdgeTy> Ret; 5073 Ret.reserve(Record.size()); 5074 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5075 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5076 uint64_t RelBF = 0; 5077 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5078 if (IsOldProfileFormat) { 5079 I += 1; // Skip old callsitecount field 5080 if (HasProfile) 5081 I += 1; // Skip old profilecount field 5082 } else if (HasProfile) 5083 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5084 else if (HasRelBF) 5085 RelBF = Record[++I]; 5086 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5087 } 5088 return Ret; 5089 } 5090 5091 static void 5092 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5093 WholeProgramDevirtResolution &Wpd) { 5094 uint64_t ArgNum = Record[Slot++]; 5095 WholeProgramDevirtResolution::ByArg &B = 5096 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5097 Slot += ArgNum; 5098 5099 B.TheKind = 5100 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5101 B.Info = Record[Slot++]; 5102 B.Byte = Record[Slot++]; 5103 B.Bit = Record[Slot++]; 5104 } 5105 5106 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5107 StringRef Strtab, size_t &Slot, 5108 TypeIdSummary &TypeId) { 5109 uint64_t Id = Record[Slot++]; 5110 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5111 5112 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5113 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5114 static_cast<size_t>(Record[Slot + 1])}; 5115 Slot += 2; 5116 5117 uint64_t ResByArgNum = Record[Slot++]; 5118 for (uint64_t I = 0; I != ResByArgNum; ++I) 5119 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5120 } 5121 5122 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5123 StringRef Strtab, 5124 ModuleSummaryIndex &TheIndex) { 5125 size_t Slot = 0; 5126 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5127 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5128 Slot += 2; 5129 5130 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5131 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5132 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5133 TypeId.TTRes.SizeM1 = Record[Slot++]; 5134 TypeId.TTRes.BitMask = Record[Slot++]; 5135 TypeId.TTRes.InlineBits = Record[Slot++]; 5136 5137 while (Slot < Record.size()) 5138 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5139 } 5140 5141 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5142 // objects in the index. 5143 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5144 if (Stream.EnterSubBlock(ID)) 5145 return error("Invalid record"); 5146 SmallVector<uint64_t, 64> Record; 5147 5148 // Parse version 5149 { 5150 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5151 if (Entry.Kind != BitstreamEntry::Record) 5152 return error("Invalid Summary Block: record for version expected"); 5153 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5154 return error("Invalid Summary Block: version expected"); 5155 } 5156 const uint64_t Version = Record[0]; 5157 const bool IsOldProfileFormat = Version == 1; 5158 if (Version < 1 || Version > 4) 5159 return error("Invalid summary version " + Twine(Version) + 5160 ", 1, 2, 3 or 4 expected"); 5161 Record.clear(); 5162 5163 // Keep around the last seen summary to be used when we see an optional 5164 // "OriginalName" attachement. 5165 GlobalValueSummary *LastSeenSummary = nullptr; 5166 GlobalValue::GUID LastSeenGUID = 0; 5167 5168 // We can expect to see any number of type ID information records before 5169 // each function summary records; these variables store the information 5170 // collected so far so that it can be used to create the summary object. 5171 std::vector<GlobalValue::GUID> PendingTypeTests; 5172 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5173 PendingTypeCheckedLoadVCalls; 5174 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5175 PendingTypeCheckedLoadConstVCalls; 5176 5177 while (true) { 5178 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5179 5180 switch (Entry.Kind) { 5181 case BitstreamEntry::SubBlock: // Handled for us already. 5182 case BitstreamEntry::Error: 5183 return error("Malformed block"); 5184 case BitstreamEntry::EndBlock: 5185 return Error::success(); 5186 case BitstreamEntry::Record: 5187 // The interesting case. 5188 break; 5189 } 5190 5191 // Read a record. The record format depends on whether this 5192 // is a per-module index or a combined index file. In the per-module 5193 // case the records contain the associated value's ID for correlation 5194 // with VST entries. In the combined index the correlation is done 5195 // via the bitcode offset of the summary records (which were saved 5196 // in the combined index VST entries). The records also contain 5197 // information used for ThinLTO renaming and importing. 5198 Record.clear(); 5199 auto BitCode = Stream.readRecord(Entry.ID, Record); 5200 switch (BitCode) { 5201 default: // Default behavior: ignore. 5202 break; 5203 case bitc::FS_FLAGS: { // [flags] 5204 uint64_t Flags = Record[0]; 5205 // Scan flags (set only on the combined index). 5206 assert(Flags <= 0x3 && "Unexpected bits in flag"); 5207 5208 // 1 bit: WithGlobalValueDeadStripping flag. 5209 if (Flags & 0x1) 5210 TheIndex.setWithGlobalValueDeadStripping(); 5211 // 1 bit: SkipModuleByDistributedBackend flag. 5212 if (Flags & 0x2) 5213 TheIndex.setSkipModuleByDistributedBackend(); 5214 break; 5215 } 5216 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5217 uint64_t ValueID = Record[0]; 5218 GlobalValue::GUID RefGUID = Record[1]; 5219 ValueIdToValueInfoMap[ValueID] = 5220 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5221 break; 5222 } 5223 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5224 // numrefs x valueid, n x (valueid)] 5225 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5226 // numrefs x valueid, 5227 // n x (valueid, hotness)] 5228 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5229 // numrefs x valueid, 5230 // n x (valueid, relblockfreq)] 5231 case bitc::FS_PERMODULE: 5232 case bitc::FS_PERMODULE_RELBF: 5233 case bitc::FS_PERMODULE_PROFILE: { 5234 unsigned ValueID = Record[0]; 5235 uint64_t RawFlags = Record[1]; 5236 unsigned InstCount = Record[2]; 5237 uint64_t RawFunFlags = 0; 5238 unsigned NumRefs = Record[3]; 5239 int RefListStartIndex = 4; 5240 if (Version >= 4) { 5241 RawFunFlags = Record[3]; 5242 NumRefs = Record[4]; 5243 RefListStartIndex = 5; 5244 } 5245 5246 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5247 // The module path string ref set in the summary must be owned by the 5248 // index's module string table. Since we don't have a module path 5249 // string table section in the per-module index, we create a single 5250 // module path string table entry with an empty (0) ID to take 5251 // ownership. 5252 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5253 assert(Record.size() >= RefListStartIndex + NumRefs && 5254 "Record size inconsistent with number of references"); 5255 std::vector<ValueInfo> Refs = makeRefList( 5256 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5257 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5258 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5259 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5260 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5261 IsOldProfileFormat, HasProfile, HasRelBF); 5262 auto FS = llvm::make_unique<FunctionSummary>( 5263 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5264 std::move(Calls), std::move(PendingTypeTests), 5265 std::move(PendingTypeTestAssumeVCalls), 5266 std::move(PendingTypeCheckedLoadVCalls), 5267 std::move(PendingTypeTestAssumeConstVCalls), 5268 std::move(PendingTypeCheckedLoadConstVCalls)); 5269 PendingTypeTests.clear(); 5270 PendingTypeTestAssumeVCalls.clear(); 5271 PendingTypeCheckedLoadVCalls.clear(); 5272 PendingTypeTestAssumeConstVCalls.clear(); 5273 PendingTypeCheckedLoadConstVCalls.clear(); 5274 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5275 FS->setModulePath(addThisModule()->first()); 5276 FS->setOriginalName(VIAndOriginalGUID.second); 5277 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5278 break; 5279 } 5280 // FS_ALIAS: [valueid, flags, valueid] 5281 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5282 // they expect all aliasee summaries to be available. 5283 case bitc::FS_ALIAS: { 5284 unsigned ValueID = Record[0]; 5285 uint64_t RawFlags = Record[1]; 5286 unsigned AliaseeID = Record[2]; 5287 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5288 auto AS = llvm::make_unique<AliasSummary>(Flags); 5289 // The module path string ref set in the summary must be owned by the 5290 // index's module string table. Since we don't have a module path 5291 // string table section in the per-module index, we create a single 5292 // module path string table entry with an empty (0) ID to take 5293 // ownership. 5294 AS->setModulePath(addThisModule()->first()); 5295 5296 GlobalValue::GUID AliaseeGUID = 5297 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5298 auto AliaseeInModule = 5299 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5300 if (!AliaseeInModule) 5301 return error("Alias expects aliasee summary to be parsed"); 5302 AS->setAliasee(AliaseeInModule); 5303 AS->setAliaseeGUID(AliaseeGUID); 5304 5305 auto GUID = getValueInfoFromValueId(ValueID); 5306 AS->setOriginalName(GUID.second); 5307 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5308 break; 5309 } 5310 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5311 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5312 unsigned ValueID = Record[0]; 5313 uint64_t RawFlags = Record[1]; 5314 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5315 std::vector<ValueInfo> Refs = 5316 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5317 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5318 FS->setModulePath(addThisModule()->first()); 5319 auto GUID = getValueInfoFromValueId(ValueID); 5320 FS->setOriginalName(GUID.second); 5321 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5322 break; 5323 } 5324 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5325 // numrefs x valueid, n x (valueid)] 5326 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5327 // numrefs x valueid, n x (valueid, hotness)] 5328 case bitc::FS_COMBINED: 5329 case bitc::FS_COMBINED_PROFILE: { 5330 unsigned ValueID = Record[0]; 5331 uint64_t ModuleId = Record[1]; 5332 uint64_t RawFlags = Record[2]; 5333 unsigned InstCount = Record[3]; 5334 uint64_t RawFunFlags = 0; 5335 unsigned NumRefs = Record[4]; 5336 int RefListStartIndex = 5; 5337 5338 if (Version >= 4) { 5339 RawFunFlags = Record[4]; 5340 NumRefs = Record[5]; 5341 RefListStartIndex = 6; 5342 } 5343 5344 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5345 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5346 assert(Record.size() >= RefListStartIndex + NumRefs && 5347 "Record size inconsistent with number of references"); 5348 std::vector<ValueInfo> Refs = makeRefList( 5349 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5350 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5351 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5352 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5353 IsOldProfileFormat, HasProfile, false); 5354 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5355 auto FS = llvm::make_unique<FunctionSummary>( 5356 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5357 std::move(Edges), std::move(PendingTypeTests), 5358 std::move(PendingTypeTestAssumeVCalls), 5359 std::move(PendingTypeCheckedLoadVCalls), 5360 std::move(PendingTypeTestAssumeConstVCalls), 5361 std::move(PendingTypeCheckedLoadConstVCalls)); 5362 PendingTypeTests.clear(); 5363 PendingTypeTestAssumeVCalls.clear(); 5364 PendingTypeCheckedLoadVCalls.clear(); 5365 PendingTypeTestAssumeConstVCalls.clear(); 5366 PendingTypeCheckedLoadConstVCalls.clear(); 5367 LastSeenSummary = FS.get(); 5368 LastSeenGUID = VI.getGUID(); 5369 FS->setModulePath(ModuleIdMap[ModuleId]); 5370 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5371 break; 5372 } 5373 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5374 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5375 // they expect all aliasee summaries to be available. 5376 case bitc::FS_COMBINED_ALIAS: { 5377 unsigned ValueID = Record[0]; 5378 uint64_t ModuleId = Record[1]; 5379 uint64_t RawFlags = Record[2]; 5380 unsigned AliaseeValueId = Record[3]; 5381 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5382 auto AS = llvm::make_unique<AliasSummary>(Flags); 5383 LastSeenSummary = AS.get(); 5384 AS->setModulePath(ModuleIdMap[ModuleId]); 5385 5386 auto AliaseeGUID = 5387 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5388 auto AliaseeInModule = 5389 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5390 AS->setAliasee(AliaseeInModule); 5391 AS->setAliaseeGUID(AliaseeGUID); 5392 5393 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5394 LastSeenGUID = VI.getGUID(); 5395 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5396 break; 5397 } 5398 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5399 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5400 unsigned ValueID = Record[0]; 5401 uint64_t ModuleId = Record[1]; 5402 uint64_t RawFlags = Record[2]; 5403 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5404 std::vector<ValueInfo> Refs = 5405 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5406 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5407 LastSeenSummary = FS.get(); 5408 FS->setModulePath(ModuleIdMap[ModuleId]); 5409 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5410 LastSeenGUID = VI.getGUID(); 5411 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5412 break; 5413 } 5414 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5415 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5416 uint64_t OriginalName = Record[0]; 5417 if (!LastSeenSummary) 5418 return error("Name attachment that does not follow a combined record"); 5419 LastSeenSummary->setOriginalName(OriginalName); 5420 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5421 // Reset the LastSeenSummary 5422 LastSeenSummary = nullptr; 5423 LastSeenGUID = 0; 5424 break; 5425 } 5426 case bitc::FS_TYPE_TESTS: 5427 assert(PendingTypeTests.empty()); 5428 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5429 Record.end()); 5430 break; 5431 5432 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5433 assert(PendingTypeTestAssumeVCalls.empty()); 5434 for (unsigned I = 0; I != Record.size(); I += 2) 5435 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5436 break; 5437 5438 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5439 assert(PendingTypeCheckedLoadVCalls.empty()); 5440 for (unsigned I = 0; I != Record.size(); I += 2) 5441 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5442 break; 5443 5444 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5445 PendingTypeTestAssumeConstVCalls.push_back( 5446 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5447 break; 5448 5449 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5450 PendingTypeCheckedLoadConstVCalls.push_back( 5451 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5452 break; 5453 5454 case bitc::FS_CFI_FUNCTION_DEFS: { 5455 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5456 for (unsigned I = 0; I != Record.size(); I += 2) 5457 CfiFunctionDefs.insert( 5458 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5459 break; 5460 } 5461 5462 case bitc::FS_CFI_FUNCTION_DECLS: { 5463 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5464 for (unsigned I = 0; I != Record.size(); I += 2) 5465 CfiFunctionDecls.insert( 5466 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5467 break; 5468 } 5469 5470 case bitc::FS_TYPE_ID: 5471 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5472 break; 5473 } 5474 } 5475 llvm_unreachable("Exit infinite loop"); 5476 } 5477 5478 // Parse the module string table block into the Index. 5479 // This populates the ModulePathStringTable map in the index. 5480 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5481 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5482 return error("Invalid record"); 5483 5484 SmallVector<uint64_t, 64> Record; 5485 5486 SmallString<128> ModulePath; 5487 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5488 5489 while (true) { 5490 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5491 5492 switch (Entry.Kind) { 5493 case BitstreamEntry::SubBlock: // Handled for us already. 5494 case BitstreamEntry::Error: 5495 return error("Malformed block"); 5496 case BitstreamEntry::EndBlock: 5497 return Error::success(); 5498 case BitstreamEntry::Record: 5499 // The interesting case. 5500 break; 5501 } 5502 5503 Record.clear(); 5504 switch (Stream.readRecord(Entry.ID, Record)) { 5505 default: // Default behavior: ignore. 5506 break; 5507 case bitc::MST_CODE_ENTRY: { 5508 // MST_ENTRY: [modid, namechar x N] 5509 uint64_t ModuleId = Record[0]; 5510 5511 if (convertToString(Record, 1, ModulePath)) 5512 return error("Invalid record"); 5513 5514 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5515 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5516 5517 ModulePath.clear(); 5518 break; 5519 } 5520 /// MST_CODE_HASH: [5*i32] 5521 case bitc::MST_CODE_HASH: { 5522 if (Record.size() != 5) 5523 return error("Invalid hash length " + Twine(Record.size()).str()); 5524 if (!LastSeenModule) 5525 return error("Invalid hash that does not follow a module path"); 5526 int Pos = 0; 5527 for (auto &Val : Record) { 5528 assert(!(Val >> 32) && "Unexpected high bits set"); 5529 LastSeenModule->second.second[Pos++] = Val; 5530 } 5531 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5532 LastSeenModule = nullptr; 5533 break; 5534 } 5535 } 5536 } 5537 llvm_unreachable("Exit infinite loop"); 5538 } 5539 5540 namespace { 5541 5542 // FIXME: This class is only here to support the transition to llvm::Error. It 5543 // will be removed once this transition is complete. Clients should prefer to 5544 // deal with the Error value directly, rather than converting to error_code. 5545 class BitcodeErrorCategoryType : public std::error_category { 5546 const char *name() const noexcept override { 5547 return "llvm.bitcode"; 5548 } 5549 5550 std::string message(int IE) const override { 5551 BitcodeError E = static_cast<BitcodeError>(IE); 5552 switch (E) { 5553 case BitcodeError::CorruptedBitcode: 5554 return "Corrupted bitcode"; 5555 } 5556 llvm_unreachable("Unknown error type!"); 5557 } 5558 }; 5559 5560 } // end anonymous namespace 5561 5562 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5563 5564 const std::error_category &llvm::BitcodeErrorCategory() { 5565 return *ErrorCategory; 5566 } 5567 5568 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5569 unsigned Block, unsigned RecordID) { 5570 if (Stream.EnterSubBlock(Block)) 5571 return error("Invalid record"); 5572 5573 StringRef Strtab; 5574 while (true) { 5575 BitstreamEntry Entry = Stream.advance(); 5576 switch (Entry.Kind) { 5577 case BitstreamEntry::EndBlock: 5578 return Strtab; 5579 5580 case BitstreamEntry::Error: 5581 return error("Malformed block"); 5582 5583 case BitstreamEntry::SubBlock: 5584 if (Stream.SkipBlock()) 5585 return error("Malformed block"); 5586 break; 5587 5588 case BitstreamEntry::Record: 5589 StringRef Blob; 5590 SmallVector<uint64_t, 1> Record; 5591 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5592 Strtab = Blob; 5593 break; 5594 } 5595 } 5596 } 5597 5598 //===----------------------------------------------------------------------===// 5599 // External interface 5600 //===----------------------------------------------------------------------===// 5601 5602 Expected<std::vector<BitcodeModule>> 5603 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5604 auto FOrErr = getBitcodeFileContents(Buffer); 5605 if (!FOrErr) 5606 return FOrErr.takeError(); 5607 return std::move(FOrErr->Mods); 5608 } 5609 5610 Expected<BitcodeFileContents> 5611 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5612 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5613 if (!StreamOrErr) 5614 return StreamOrErr.takeError(); 5615 BitstreamCursor &Stream = *StreamOrErr; 5616 5617 BitcodeFileContents F; 5618 while (true) { 5619 uint64_t BCBegin = Stream.getCurrentByteNo(); 5620 5621 // We may be consuming bitcode from a client that leaves garbage at the end 5622 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5623 // the end that there cannot possibly be another module, stop looking. 5624 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5625 return F; 5626 5627 BitstreamEntry Entry = Stream.advance(); 5628 switch (Entry.Kind) { 5629 case BitstreamEntry::EndBlock: 5630 case BitstreamEntry::Error: 5631 return error("Malformed block"); 5632 5633 case BitstreamEntry::SubBlock: { 5634 uint64_t IdentificationBit = -1ull; 5635 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5636 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5637 if (Stream.SkipBlock()) 5638 return error("Malformed block"); 5639 5640 Entry = Stream.advance(); 5641 if (Entry.Kind != BitstreamEntry::SubBlock || 5642 Entry.ID != bitc::MODULE_BLOCK_ID) 5643 return error("Malformed block"); 5644 } 5645 5646 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5647 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5648 if (Stream.SkipBlock()) 5649 return error("Malformed block"); 5650 5651 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5652 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5653 Buffer.getBufferIdentifier(), IdentificationBit, 5654 ModuleBit}); 5655 continue; 5656 } 5657 5658 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5659 Expected<StringRef> Strtab = 5660 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5661 if (!Strtab) 5662 return Strtab.takeError(); 5663 // This string table is used by every preceding bitcode module that does 5664 // not have its own string table. A bitcode file may have multiple 5665 // string tables if it was created by binary concatenation, for example 5666 // with "llvm-cat -b". 5667 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5668 if (!I->Strtab.empty()) 5669 break; 5670 I->Strtab = *Strtab; 5671 } 5672 // Similarly, the string table is used by every preceding symbol table; 5673 // normally there will be just one unless the bitcode file was created 5674 // by binary concatenation. 5675 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5676 F.StrtabForSymtab = *Strtab; 5677 continue; 5678 } 5679 5680 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5681 Expected<StringRef> SymtabOrErr = 5682 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5683 if (!SymtabOrErr) 5684 return SymtabOrErr.takeError(); 5685 5686 // We can expect the bitcode file to have multiple symbol tables if it 5687 // was created by binary concatenation. In that case we silently 5688 // ignore any subsequent symbol tables, which is fine because this is a 5689 // low level function. The client is expected to notice that the number 5690 // of modules in the symbol table does not match the number of modules 5691 // in the input file and regenerate the symbol table. 5692 if (F.Symtab.empty()) 5693 F.Symtab = *SymtabOrErr; 5694 continue; 5695 } 5696 5697 if (Stream.SkipBlock()) 5698 return error("Malformed block"); 5699 continue; 5700 } 5701 case BitstreamEntry::Record: 5702 Stream.skipRecord(Entry.ID); 5703 continue; 5704 } 5705 } 5706 } 5707 5708 /// Get a lazy one-at-time loading module from bitcode. 5709 /// 5710 /// This isn't always used in a lazy context. In particular, it's also used by 5711 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5712 /// in forward-referenced functions from block address references. 5713 /// 5714 /// \param[in] MaterializeAll Set to \c true if we should materialize 5715 /// everything. 5716 Expected<std::unique_ptr<Module>> 5717 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5718 bool ShouldLazyLoadMetadata, bool IsImporting) { 5719 BitstreamCursor Stream(Buffer); 5720 5721 std::string ProducerIdentification; 5722 if (IdentificationBit != -1ull) { 5723 Stream.JumpToBit(IdentificationBit); 5724 Expected<std::string> ProducerIdentificationOrErr = 5725 readIdentificationBlock(Stream); 5726 if (!ProducerIdentificationOrErr) 5727 return ProducerIdentificationOrErr.takeError(); 5728 5729 ProducerIdentification = *ProducerIdentificationOrErr; 5730 } 5731 5732 Stream.JumpToBit(ModuleBit); 5733 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5734 Context); 5735 5736 std::unique_ptr<Module> M = 5737 llvm::make_unique<Module>(ModuleIdentifier, Context); 5738 M->setMaterializer(R); 5739 5740 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5741 if (Error Err = 5742 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5743 return std::move(Err); 5744 5745 if (MaterializeAll) { 5746 // Read in the entire module, and destroy the BitcodeReader. 5747 if (Error Err = M->materializeAll()) 5748 return std::move(Err); 5749 } else { 5750 // Resolve forward references from blockaddresses. 5751 if (Error Err = R->materializeForwardReferencedFunctions()) 5752 return std::move(Err); 5753 } 5754 return std::move(M); 5755 } 5756 5757 Expected<std::unique_ptr<Module>> 5758 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5759 bool IsImporting) { 5760 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5761 } 5762 5763 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5764 // We don't use ModuleIdentifier here because the client may need to control the 5765 // module path used in the combined summary (e.g. when reading summaries for 5766 // regular LTO modules). 5767 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5768 StringRef ModulePath, uint64_t ModuleId) { 5769 BitstreamCursor Stream(Buffer); 5770 Stream.JumpToBit(ModuleBit); 5771 5772 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5773 ModulePath, ModuleId); 5774 return R.parseModule(); 5775 } 5776 5777 // Parse the specified bitcode buffer, returning the function info index. 5778 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5779 BitstreamCursor Stream(Buffer); 5780 Stream.JumpToBit(ModuleBit); 5781 5782 auto Index = 5783 llvm::make_unique<ModuleSummaryIndex>(/*IsPerformingAnalysis=*/false); 5784 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5785 ModuleIdentifier, 0); 5786 5787 if (Error Err = R.parseModule()) 5788 return std::move(Err); 5789 5790 return std::move(Index); 5791 } 5792 5793 // Check if the given bitcode buffer contains a global value summary block. 5794 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5795 BitstreamCursor Stream(Buffer); 5796 Stream.JumpToBit(ModuleBit); 5797 5798 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5799 return error("Invalid record"); 5800 5801 while (true) { 5802 BitstreamEntry Entry = Stream.advance(); 5803 5804 switch (Entry.Kind) { 5805 case BitstreamEntry::Error: 5806 return error("Malformed block"); 5807 case BitstreamEntry::EndBlock: 5808 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5809 5810 case BitstreamEntry::SubBlock: 5811 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5812 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5813 5814 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5815 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5816 5817 // Ignore other sub-blocks. 5818 if (Stream.SkipBlock()) 5819 return error("Malformed block"); 5820 continue; 5821 5822 case BitstreamEntry::Record: 5823 Stream.skipRecord(Entry.ID); 5824 continue; 5825 } 5826 } 5827 } 5828 5829 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5830 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5831 if (!MsOrErr) 5832 return MsOrErr.takeError(); 5833 5834 if (MsOrErr->size() != 1) 5835 return error("Expected a single module"); 5836 5837 return (*MsOrErr)[0]; 5838 } 5839 5840 Expected<std::unique_ptr<Module>> 5841 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5842 bool ShouldLazyLoadMetadata, bool IsImporting) { 5843 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5844 if (!BM) 5845 return BM.takeError(); 5846 5847 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5848 } 5849 5850 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5851 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5852 bool ShouldLazyLoadMetadata, bool IsImporting) { 5853 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5854 IsImporting); 5855 if (MOrErr) 5856 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5857 return MOrErr; 5858 } 5859 5860 Expected<std::unique_ptr<Module>> 5861 BitcodeModule::parseModule(LLVMContext &Context) { 5862 return getModuleImpl(Context, true, false, false); 5863 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5864 // written. We must defer until the Module has been fully materialized. 5865 } 5866 5867 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5868 LLVMContext &Context) { 5869 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5870 if (!BM) 5871 return BM.takeError(); 5872 5873 return BM->parseModule(Context); 5874 } 5875 5876 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5877 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5878 if (!StreamOrErr) 5879 return StreamOrErr.takeError(); 5880 5881 return readTriple(*StreamOrErr); 5882 } 5883 5884 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5885 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5886 if (!StreamOrErr) 5887 return StreamOrErr.takeError(); 5888 5889 return hasObjCCategory(*StreamOrErr); 5890 } 5891 5892 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5893 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5894 if (!StreamOrErr) 5895 return StreamOrErr.takeError(); 5896 5897 return readIdentificationCode(*StreamOrErr); 5898 } 5899 5900 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5901 ModuleSummaryIndex &CombinedIndex, 5902 uint64_t ModuleId) { 5903 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5904 if (!BM) 5905 return BM.takeError(); 5906 5907 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5908 } 5909 5910 Expected<std::unique_ptr<ModuleSummaryIndex>> 5911 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5912 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5913 if (!BM) 5914 return BM.takeError(); 5915 5916 return BM->getSummary(); 5917 } 5918 5919 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5920 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5921 if (!BM) 5922 return BM.takeError(); 5923 5924 return BM->getLTOInfo(); 5925 } 5926 5927 Expected<std::unique_ptr<ModuleSummaryIndex>> 5928 llvm::getModuleSummaryIndexForFile(StringRef Path, 5929 bool IgnoreEmptyThinLTOIndexFile) { 5930 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5931 MemoryBuffer::getFileOrSTDIN(Path); 5932 if (!FileOrErr) 5933 return errorCodeToError(FileOrErr.getError()); 5934 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5935 return nullptr; 5936 return getModuleSummaryIndex(**FileOrErr); 5937 } 5938