1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 41 using namespace llvm; 42 43 static cl::opt<bool> PrintSummaryGUIDs( 44 "print-summary-global-ids", cl::init(false), cl::Hidden, 45 cl::desc( 46 "Print the global id for each value when reading the module summary")); 47 48 namespace { 49 enum { 50 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty); 97 98 void assignValue(Value *V, unsigned Idx); 99 100 /// Once all constants are read, this method bulk resolves any forward 101 /// references. 102 void resolveConstantForwardRefs(); 103 }; 104 105 class BitcodeReaderMetadataList { 106 unsigned NumFwdRefs; 107 bool AnyFwdRefs; 108 unsigned MinFwdRef; 109 unsigned MaxFwdRef; 110 111 /// Array of metadata references. 112 /// 113 /// Don't use std::vector here. Some versions of libc++ copy (instead of 114 /// move) on resize, and TrackingMDRef is very expensive to copy. 115 SmallVector<TrackingMDRef, 1> MetadataPtrs; 116 117 LLVMContext &Context; 118 public: 119 BitcodeReaderMetadataList(LLVMContext &C) 120 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 121 122 // vector compatibility methods 123 unsigned size() const { return MetadataPtrs.size(); } 124 void resize(unsigned N) { MetadataPtrs.resize(N); } 125 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 126 void clear() { MetadataPtrs.clear(); } 127 Metadata *back() const { return MetadataPtrs.back(); } 128 void pop_back() { MetadataPtrs.pop_back(); } 129 bool empty() const { return MetadataPtrs.empty(); } 130 131 Metadata *operator[](unsigned i) const { 132 assert(i < MetadataPtrs.size()); 133 return MetadataPtrs[i]; 134 } 135 136 void shrinkTo(unsigned N) { 137 assert(N <= size() && "Invalid shrinkTo request!"); 138 assert(!AnyFwdRefs && "Unexpected forward refs"); 139 MetadataPtrs.resize(N); 140 } 141 142 Metadata *getMetadataFwdRef(unsigned Idx); 143 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 144 void assignValue(Metadata *MD, unsigned Idx); 145 void tryToResolveCycles(); 146 bool hasFwdRefs() const { return AnyFwdRefs; } 147 }; 148 149 class BitcodeReader : public GVMaterializer { 150 LLVMContext &Context; 151 Module *TheModule = nullptr; 152 std::unique_ptr<MemoryBuffer> Buffer; 153 std::unique_ptr<BitstreamReader> StreamFile; 154 BitstreamCursor Stream; 155 // Next offset to start scanning for lazy parsing of function bodies. 156 uint64_t NextUnreadBit = 0; 157 // Last function offset found in the VST. 158 uint64_t LastFunctionBlockBit = 0; 159 bool SeenValueSymbolTable = false; 160 uint64_t VSTOffset = 0; 161 // Contains an arbitrary and optional string identifying the bitcode producer 162 std::string ProducerIdentification; 163 164 std::vector<Type*> TypeList; 165 BitcodeReaderValueList ValueList; 166 BitcodeReaderMetadataList MetadataList; 167 std::vector<Comdat *> ComdatList; 168 SmallVector<Instruction *, 64> InstructionList; 169 170 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 171 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 172 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 173 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 174 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 175 176 SmallVector<Instruction*, 64> InstsWithTBAATag; 177 178 bool HasSeenOldLoopTags = false; 179 180 /// The set of attributes by index. Index zero in the file is for null, and 181 /// is thus not represented here. As such all indices are off by one. 182 std::vector<AttributeSet> MAttributes; 183 184 /// The set of attribute groups. 185 std::map<unsigned, AttributeSet> MAttributeGroups; 186 187 /// While parsing a function body, this is a list of the basic blocks for the 188 /// function. 189 std::vector<BasicBlock*> FunctionBBs; 190 191 // When reading the module header, this list is populated with functions that 192 // have bodies later in the file. 193 std::vector<Function*> FunctionsWithBodies; 194 195 // When intrinsic functions are encountered which require upgrading they are 196 // stored here with their replacement function. 197 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 198 UpgradedIntrinsicMap UpgradedIntrinsics; 199 200 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 201 DenseMap<unsigned, unsigned> MDKindMap; 202 203 // Several operations happen after the module header has been read, but 204 // before function bodies are processed. This keeps track of whether 205 // we've done this yet. 206 bool SeenFirstFunctionBody = false; 207 208 /// When function bodies are initially scanned, this map contains info about 209 /// where to find deferred function body in the stream. 210 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 211 212 /// When Metadata block is initially scanned when parsing the module, we may 213 /// choose to defer parsing of the metadata. This vector contains info about 214 /// which Metadata blocks are deferred. 215 std::vector<uint64_t> DeferredMetadataInfo; 216 217 /// These are basic blocks forward-referenced by block addresses. They are 218 /// inserted lazily into functions when they're loaded. The basic block ID is 219 /// its index into the vector. 220 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 221 std::deque<Function *> BasicBlockFwdRefQueue; 222 223 /// Indicates that we are using a new encoding for instruction operands where 224 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 225 /// instruction number, for a more compact encoding. Some instruction 226 /// operands are not relative to the instruction ID: basic block numbers, and 227 /// types. Once the old style function blocks have been phased out, we would 228 /// not need this flag. 229 bool UseRelativeIDs = false; 230 231 /// True if all functions will be materialized, negating the need to process 232 /// (e.g.) blockaddress forward references. 233 bool WillMaterializeAllForwardRefs = false; 234 235 /// True if any Metadata block has been materialized. 236 bool IsMetadataMaterialized = false; 237 238 bool StripDebugInfo = false; 239 240 /// Functions that need to be matched with subprograms when upgrading old 241 /// metadata. 242 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 243 244 std::vector<std::string> BundleTags; 245 246 public: 247 std::error_code error(BitcodeError E, const Twine &Message); 248 std::error_code error(BitcodeError E); 249 std::error_code error(const Twine &Message); 250 251 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 252 BitcodeReader(LLVMContext &Context); 253 ~BitcodeReader() override { freeState(); } 254 255 std::error_code materializeForwardReferencedFunctions(); 256 257 void freeState(); 258 259 void releaseBuffer(); 260 261 std::error_code materialize(GlobalValue *GV) override; 262 std::error_code materializeModule() override; 263 std::vector<StructType *> getIdentifiedStructTypes() const override; 264 265 /// \brief Main interface to parsing a bitcode buffer. 266 /// \returns true if an error occurred. 267 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 268 Module *M, 269 bool ShouldLazyLoadMetadata = false); 270 271 /// \brief Cheap mechanism to just extract module triple 272 /// \returns true if an error occurred. 273 ErrorOr<std::string> parseTriple(); 274 275 /// Cheap mechanism to just extract the identification block out of bitcode. 276 ErrorOr<std::string> parseIdentificationBlock(); 277 278 static uint64_t decodeSignRotatedValue(uint64_t V); 279 280 /// Materialize any deferred Metadata block. 281 std::error_code materializeMetadata() override; 282 283 void setStripDebugInfo() override; 284 285 private: 286 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 287 // ProducerIdentification data member, and do some basic enforcement on the 288 // "epoch" encoded in the bitcode. 289 std::error_code parseBitcodeVersion(); 290 291 std::vector<StructType *> IdentifiedStructTypes; 292 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 293 StructType *createIdentifiedStructType(LLVMContext &Context); 294 295 Type *getTypeByID(unsigned ID); 296 Value *getFnValueByID(unsigned ID, Type *Ty) { 297 if (Ty && Ty->isMetadataTy()) 298 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 299 return ValueList.getValueFwdRef(ID, Ty); 300 } 301 Metadata *getFnMetadataByID(unsigned ID) { 302 return MetadataList.getMetadataFwdRef(ID); 303 } 304 BasicBlock *getBasicBlock(unsigned ID) const { 305 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 306 return FunctionBBs[ID]; 307 } 308 AttributeSet getAttributes(unsigned i) const { 309 if (i-1 < MAttributes.size()) 310 return MAttributes[i-1]; 311 return AttributeSet(); 312 } 313 314 /// Read a value/type pair out of the specified record from slot 'Slot'. 315 /// Increment Slot past the number of slots used in the record. Return true on 316 /// failure. 317 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 318 unsigned InstNum, Value *&ResVal) { 319 if (Slot == Record.size()) return true; 320 unsigned ValNo = (unsigned)Record[Slot++]; 321 // Adjust the ValNo, if it was encoded relative to the InstNum. 322 if (UseRelativeIDs) 323 ValNo = InstNum - ValNo; 324 if (ValNo < InstNum) { 325 // If this is not a forward reference, just return the value we already 326 // have. 327 ResVal = getFnValueByID(ValNo, nullptr); 328 return ResVal == nullptr; 329 } 330 if (Slot == Record.size()) 331 return true; 332 333 unsigned TypeNo = (unsigned)Record[Slot++]; 334 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 335 return ResVal == nullptr; 336 } 337 338 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 339 /// past the number of slots used by the value in the record. Return true if 340 /// there is an error. 341 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 342 unsigned InstNum, Type *Ty, Value *&ResVal) { 343 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 344 return true; 345 // All values currently take a single record slot. 346 ++Slot; 347 return false; 348 } 349 350 /// Like popValue, but does not increment the Slot number. 351 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 352 unsigned InstNum, Type *Ty, Value *&ResVal) { 353 ResVal = getValue(Record, Slot, InstNum, Ty); 354 return ResVal == nullptr; 355 } 356 357 /// Version of getValue that returns ResVal directly, or 0 if there is an 358 /// error. 359 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 360 unsigned InstNum, Type *Ty) { 361 if (Slot == Record.size()) return nullptr; 362 unsigned ValNo = (unsigned)Record[Slot]; 363 // Adjust the ValNo, if it was encoded relative to the InstNum. 364 if (UseRelativeIDs) 365 ValNo = InstNum - ValNo; 366 return getFnValueByID(ValNo, Ty); 367 } 368 369 /// Like getValue, but decodes signed VBRs. 370 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 371 unsigned InstNum, Type *Ty) { 372 if (Slot == Record.size()) return nullptr; 373 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 374 // Adjust the ValNo, if it was encoded relative to the InstNum. 375 if (UseRelativeIDs) 376 ValNo = InstNum - ValNo; 377 return getFnValueByID(ValNo, Ty); 378 } 379 380 /// Converts alignment exponent (i.e. power of two (or zero)) to the 381 /// corresponding alignment to use. If alignment is too large, returns 382 /// a corresponding error code. 383 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 384 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 385 std::error_code parseModule(uint64_t ResumeBit, 386 bool ShouldLazyLoadMetadata = false); 387 std::error_code parseAttributeBlock(); 388 std::error_code parseAttributeGroupBlock(); 389 std::error_code parseTypeTable(); 390 std::error_code parseTypeTableBody(); 391 std::error_code parseOperandBundleTags(); 392 393 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 394 unsigned NameIndex, Triple &TT); 395 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 396 std::error_code parseConstants(); 397 std::error_code rememberAndSkipFunctionBodies(); 398 std::error_code rememberAndSkipFunctionBody(); 399 /// Save the positions of the Metadata blocks and skip parsing the blocks. 400 std::error_code rememberAndSkipMetadata(); 401 std::error_code parseFunctionBody(Function *F); 402 std::error_code globalCleanup(); 403 std::error_code resolveGlobalAndIndirectSymbolInits(); 404 std::error_code parseMetadata(bool ModuleLevel = false); 405 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 406 StringRef Blob, 407 unsigned &NextMetadataNo); 408 std::error_code parseMetadataKinds(); 409 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 410 std::error_code parseMetadataAttachment(Function &F); 411 ErrorOr<std::string> parseModuleTriple(); 412 std::error_code parseUseLists(); 413 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 414 std::error_code initStreamFromBuffer(); 415 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 416 std::error_code findFunctionInStream( 417 Function *F, 418 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 419 }; 420 421 /// Class to manage reading and parsing function summary index bitcode 422 /// files/sections. 423 class ModuleSummaryIndexBitcodeReader { 424 DiagnosticHandlerFunction DiagnosticHandler; 425 426 /// Eventually points to the module index built during parsing. 427 ModuleSummaryIndex *TheIndex = nullptr; 428 429 std::unique_ptr<MemoryBuffer> Buffer; 430 std::unique_ptr<BitstreamReader> StreamFile; 431 BitstreamCursor Stream; 432 433 /// Used to indicate whether caller only wants to check for the presence 434 /// of the global value summary bitcode section. All blocks are skipped, 435 /// but the SeenGlobalValSummary boolean is set. 436 bool CheckGlobalValSummaryPresenceOnly = false; 437 438 /// Indicates whether we have encountered a global value summary section 439 /// yet during parsing, used when checking if file contains global value 440 /// summary section. 441 bool SeenGlobalValSummary = false; 442 443 /// Indicates whether we have already parsed the VST, used for error checking. 444 bool SeenValueSymbolTable = false; 445 446 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 447 /// Used to enable on-demand parsing of the VST. 448 uint64_t VSTOffset = 0; 449 450 // Map to save ValueId to GUID association that was recorded in the 451 // ValueSymbolTable. It is used after the VST is parsed to convert 452 // call graph edges read from the function summary from referencing 453 // callees by their ValueId to using the GUID instead, which is how 454 // they are recorded in the summary index being built. 455 DenseMap<unsigned, GlobalValue::GUID> ValueIdToCallGraphGUIDMap; 456 457 /// Map to save the association between summary offset in the VST to the 458 /// GlobalValueInfo object created when parsing it. Used to access the 459 /// info object when parsing the summary section. 460 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 461 462 /// Map populated during module path string table parsing, from the 463 /// module ID to a string reference owned by the index's module 464 /// path string table, used to correlate with combined index 465 /// summary records. 466 DenseMap<uint64_t, StringRef> ModuleIdMap; 467 468 /// Original source file name recorded in a bitcode record. 469 std::string SourceFileName; 470 471 public: 472 std::error_code error(BitcodeError E, const Twine &Message); 473 std::error_code error(BitcodeError E); 474 std::error_code error(const Twine &Message); 475 476 ModuleSummaryIndexBitcodeReader( 477 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 478 bool CheckGlobalValSummaryPresenceOnly = false); 479 ModuleSummaryIndexBitcodeReader( 480 DiagnosticHandlerFunction DiagnosticHandler, 481 bool CheckGlobalValSummaryPresenceOnly = false); 482 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 483 484 void freeState(); 485 486 void releaseBuffer(); 487 488 /// Check if the parser has encountered a summary section. 489 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 490 491 /// \brief Main interface to parsing a bitcode buffer. 492 /// \returns true if an error occurred. 493 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 494 ModuleSummaryIndex *I); 495 496 /// \brief Interface for parsing a summary lazily. 497 std::error_code 498 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 499 ModuleSummaryIndex *I, size_t SummaryOffset); 500 501 private: 502 std::error_code parseModule(); 503 std::error_code parseValueSymbolTable( 504 uint64_t Offset, 505 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 506 std::error_code parseEntireSummary(); 507 std::error_code parseModuleStringTable(); 508 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 509 std::error_code initStreamFromBuffer(); 510 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 511 GlobalValue::GUID getGUIDFromValueId(unsigned ValueId); 512 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 513 }; 514 } // end anonymous namespace 515 516 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 517 DiagnosticSeverity Severity, 518 const Twine &Msg) 519 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 520 521 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 522 523 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 524 std::error_code EC, const Twine &Message) { 525 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 526 DiagnosticHandler(DI); 527 return EC; 528 } 529 530 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 531 std::error_code EC) { 532 return error(DiagnosticHandler, EC, EC.message()); 533 } 534 535 static std::error_code error(LLVMContext &Context, std::error_code EC, 536 const Twine &Message) { 537 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 538 Message); 539 } 540 541 static std::error_code error(LLVMContext &Context, std::error_code EC) { 542 return error(Context, EC, EC.message()); 543 } 544 545 static std::error_code error(LLVMContext &Context, const Twine &Message) { 546 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 547 Message); 548 } 549 550 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 551 if (!ProducerIdentification.empty()) { 552 return ::error(Context, make_error_code(E), 553 Message + " (Producer: '" + ProducerIdentification + 554 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 555 } 556 return ::error(Context, make_error_code(E), Message); 557 } 558 559 std::error_code BitcodeReader::error(const Twine &Message) { 560 if (!ProducerIdentification.empty()) { 561 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 562 Message + " (Producer: '" + ProducerIdentification + 563 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 564 } 565 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 566 Message); 567 } 568 569 std::error_code BitcodeReader::error(BitcodeError E) { 570 return ::error(Context, make_error_code(E)); 571 } 572 573 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 574 : Context(Context), Buffer(Buffer), ValueList(Context), 575 MetadataList(Context) {} 576 577 BitcodeReader::BitcodeReader(LLVMContext &Context) 578 : Context(Context), Buffer(nullptr), ValueList(Context), 579 MetadataList(Context) {} 580 581 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 582 if (WillMaterializeAllForwardRefs) 583 return std::error_code(); 584 585 // Prevent recursion. 586 WillMaterializeAllForwardRefs = true; 587 588 while (!BasicBlockFwdRefQueue.empty()) { 589 Function *F = BasicBlockFwdRefQueue.front(); 590 BasicBlockFwdRefQueue.pop_front(); 591 assert(F && "Expected valid function"); 592 if (!BasicBlockFwdRefs.count(F)) 593 // Already materialized. 594 continue; 595 596 // Check for a function that isn't materializable to prevent an infinite 597 // loop. When parsing a blockaddress stored in a global variable, there 598 // isn't a trivial way to check if a function will have a body without a 599 // linear search through FunctionsWithBodies, so just check it here. 600 if (!F->isMaterializable()) 601 return error("Never resolved function from blockaddress"); 602 603 // Try to materialize F. 604 if (std::error_code EC = materialize(F)) 605 return EC; 606 } 607 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 608 609 // Reset state. 610 WillMaterializeAllForwardRefs = false; 611 return std::error_code(); 612 } 613 614 void BitcodeReader::freeState() { 615 Buffer = nullptr; 616 std::vector<Type*>().swap(TypeList); 617 ValueList.clear(); 618 MetadataList.clear(); 619 std::vector<Comdat *>().swap(ComdatList); 620 621 std::vector<AttributeSet>().swap(MAttributes); 622 std::vector<BasicBlock*>().swap(FunctionBBs); 623 std::vector<Function*>().swap(FunctionsWithBodies); 624 DeferredFunctionInfo.clear(); 625 DeferredMetadataInfo.clear(); 626 MDKindMap.clear(); 627 628 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 629 BasicBlockFwdRefQueue.clear(); 630 } 631 632 //===----------------------------------------------------------------------===// 633 // Helper functions to implement forward reference resolution, etc. 634 //===----------------------------------------------------------------------===// 635 636 /// Convert a string from a record into an std::string, return true on failure. 637 template <typename StrTy> 638 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 639 StrTy &Result) { 640 if (Idx > Record.size()) 641 return true; 642 643 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 644 Result += (char)Record[i]; 645 return false; 646 } 647 648 static bool hasImplicitComdat(size_t Val) { 649 switch (Val) { 650 default: 651 return false; 652 case 1: // Old WeakAnyLinkage 653 case 4: // Old LinkOnceAnyLinkage 654 case 10: // Old WeakODRLinkage 655 case 11: // Old LinkOnceODRLinkage 656 return true; 657 } 658 } 659 660 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 661 switch (Val) { 662 default: // Map unknown/new linkages to external 663 case 0: 664 return GlobalValue::ExternalLinkage; 665 case 2: 666 return GlobalValue::AppendingLinkage; 667 case 3: 668 return GlobalValue::InternalLinkage; 669 case 5: 670 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 671 case 6: 672 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 673 case 7: 674 return GlobalValue::ExternalWeakLinkage; 675 case 8: 676 return GlobalValue::CommonLinkage; 677 case 9: 678 return GlobalValue::PrivateLinkage; 679 case 12: 680 return GlobalValue::AvailableExternallyLinkage; 681 case 13: 682 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 683 case 14: 684 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 685 case 15: 686 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 687 case 1: // Old value with implicit comdat. 688 case 16: 689 return GlobalValue::WeakAnyLinkage; 690 case 10: // Old value with implicit comdat. 691 case 17: 692 return GlobalValue::WeakODRLinkage; 693 case 4: // Old value with implicit comdat. 694 case 18: 695 return GlobalValue::LinkOnceAnyLinkage; 696 case 11: // Old value with implicit comdat. 697 case 19: 698 return GlobalValue::LinkOnceODRLinkage; 699 } 700 } 701 702 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 703 switch (Val) { 704 default: // Map unknown visibilities to default. 705 case 0: return GlobalValue::DefaultVisibility; 706 case 1: return GlobalValue::HiddenVisibility; 707 case 2: return GlobalValue::ProtectedVisibility; 708 } 709 } 710 711 static GlobalValue::DLLStorageClassTypes 712 getDecodedDLLStorageClass(unsigned Val) { 713 switch (Val) { 714 default: // Map unknown values to default. 715 case 0: return GlobalValue::DefaultStorageClass; 716 case 1: return GlobalValue::DLLImportStorageClass; 717 case 2: return GlobalValue::DLLExportStorageClass; 718 } 719 } 720 721 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 722 switch (Val) { 723 case 0: return GlobalVariable::NotThreadLocal; 724 default: // Map unknown non-zero value to general dynamic. 725 case 1: return GlobalVariable::GeneralDynamicTLSModel; 726 case 2: return GlobalVariable::LocalDynamicTLSModel; 727 case 3: return GlobalVariable::InitialExecTLSModel; 728 case 4: return GlobalVariable::LocalExecTLSModel; 729 } 730 } 731 732 static int getDecodedCastOpcode(unsigned Val) { 733 switch (Val) { 734 default: return -1; 735 case bitc::CAST_TRUNC : return Instruction::Trunc; 736 case bitc::CAST_ZEXT : return Instruction::ZExt; 737 case bitc::CAST_SEXT : return Instruction::SExt; 738 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 739 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 740 case bitc::CAST_UITOFP : return Instruction::UIToFP; 741 case bitc::CAST_SITOFP : return Instruction::SIToFP; 742 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 743 case bitc::CAST_FPEXT : return Instruction::FPExt; 744 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 745 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 746 case bitc::CAST_BITCAST : return Instruction::BitCast; 747 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 748 } 749 } 750 751 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 752 bool IsFP = Ty->isFPOrFPVectorTy(); 753 // BinOps are only valid for int/fp or vector of int/fp types 754 if (!IsFP && !Ty->isIntOrIntVectorTy()) 755 return -1; 756 757 switch (Val) { 758 default: 759 return -1; 760 case bitc::BINOP_ADD: 761 return IsFP ? Instruction::FAdd : Instruction::Add; 762 case bitc::BINOP_SUB: 763 return IsFP ? Instruction::FSub : Instruction::Sub; 764 case bitc::BINOP_MUL: 765 return IsFP ? Instruction::FMul : Instruction::Mul; 766 case bitc::BINOP_UDIV: 767 return IsFP ? -1 : Instruction::UDiv; 768 case bitc::BINOP_SDIV: 769 return IsFP ? Instruction::FDiv : Instruction::SDiv; 770 case bitc::BINOP_UREM: 771 return IsFP ? -1 : Instruction::URem; 772 case bitc::BINOP_SREM: 773 return IsFP ? Instruction::FRem : Instruction::SRem; 774 case bitc::BINOP_SHL: 775 return IsFP ? -1 : Instruction::Shl; 776 case bitc::BINOP_LSHR: 777 return IsFP ? -1 : Instruction::LShr; 778 case bitc::BINOP_ASHR: 779 return IsFP ? -1 : Instruction::AShr; 780 case bitc::BINOP_AND: 781 return IsFP ? -1 : Instruction::And; 782 case bitc::BINOP_OR: 783 return IsFP ? -1 : Instruction::Or; 784 case bitc::BINOP_XOR: 785 return IsFP ? -1 : Instruction::Xor; 786 } 787 } 788 789 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 790 switch (Val) { 791 default: return AtomicRMWInst::BAD_BINOP; 792 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 793 case bitc::RMW_ADD: return AtomicRMWInst::Add; 794 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 795 case bitc::RMW_AND: return AtomicRMWInst::And; 796 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 797 case bitc::RMW_OR: return AtomicRMWInst::Or; 798 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 799 case bitc::RMW_MAX: return AtomicRMWInst::Max; 800 case bitc::RMW_MIN: return AtomicRMWInst::Min; 801 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 802 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 803 } 804 } 805 806 static AtomicOrdering getDecodedOrdering(unsigned Val) { 807 switch (Val) { 808 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 809 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 810 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 811 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 812 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 813 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 814 default: // Map unknown orderings to sequentially-consistent. 815 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 816 } 817 } 818 819 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 820 switch (Val) { 821 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 822 default: // Map unknown scopes to cross-thread. 823 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 824 } 825 } 826 827 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 828 switch (Val) { 829 default: // Map unknown selection kinds to any. 830 case bitc::COMDAT_SELECTION_KIND_ANY: 831 return Comdat::Any; 832 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 833 return Comdat::ExactMatch; 834 case bitc::COMDAT_SELECTION_KIND_LARGEST: 835 return Comdat::Largest; 836 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 837 return Comdat::NoDuplicates; 838 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 839 return Comdat::SameSize; 840 } 841 } 842 843 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 844 FastMathFlags FMF; 845 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 846 FMF.setUnsafeAlgebra(); 847 if (0 != (Val & FastMathFlags::NoNaNs)) 848 FMF.setNoNaNs(); 849 if (0 != (Val & FastMathFlags::NoInfs)) 850 FMF.setNoInfs(); 851 if (0 != (Val & FastMathFlags::NoSignedZeros)) 852 FMF.setNoSignedZeros(); 853 if (0 != (Val & FastMathFlags::AllowReciprocal)) 854 FMF.setAllowReciprocal(); 855 return FMF; 856 } 857 858 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 859 switch (Val) { 860 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 861 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 862 } 863 } 864 865 namespace llvm { 866 namespace { 867 /// \brief A class for maintaining the slot number definition 868 /// as a placeholder for the actual definition for forward constants defs. 869 class ConstantPlaceHolder : public ConstantExpr { 870 void operator=(const ConstantPlaceHolder &) = delete; 871 872 public: 873 // allocate space for exactly one operand 874 void *operator new(size_t s) { return User::operator new(s, 1); } 875 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 876 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 877 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 878 } 879 880 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 881 static bool classof(const Value *V) { 882 return isa<ConstantExpr>(V) && 883 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 884 } 885 886 /// Provide fast operand accessors 887 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 888 }; 889 } // end anonymous namespace 890 891 // FIXME: can we inherit this from ConstantExpr? 892 template <> 893 struct OperandTraits<ConstantPlaceHolder> : 894 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 895 }; 896 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 897 } // end namespace llvm 898 899 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 900 if (Idx == size()) { 901 push_back(V); 902 return; 903 } 904 905 if (Idx >= size()) 906 resize(Idx+1); 907 908 WeakVH &OldV = ValuePtrs[Idx]; 909 if (!OldV) { 910 OldV = V; 911 return; 912 } 913 914 // Handle constants and non-constants (e.g. instrs) differently for 915 // efficiency. 916 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 917 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 918 OldV = V; 919 } else { 920 // If there was a forward reference to this value, replace it. 921 Value *PrevVal = OldV; 922 OldV->replaceAllUsesWith(V); 923 delete PrevVal; 924 } 925 } 926 927 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 928 Type *Ty) { 929 if (Idx >= size()) 930 resize(Idx + 1); 931 932 if (Value *V = ValuePtrs[Idx]) { 933 if (Ty != V->getType()) 934 report_fatal_error("Type mismatch in constant table!"); 935 return cast<Constant>(V); 936 } 937 938 // Create and return a placeholder, which will later be RAUW'd. 939 Constant *C = new ConstantPlaceHolder(Ty, Context); 940 ValuePtrs[Idx] = C; 941 return C; 942 } 943 944 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 945 // Bail out for a clearly invalid value. This would make us call resize(0) 946 if (Idx == UINT_MAX) 947 return nullptr; 948 949 if (Idx >= size()) 950 resize(Idx + 1); 951 952 if (Value *V = ValuePtrs[Idx]) { 953 // If the types don't match, it's invalid. 954 if (Ty && Ty != V->getType()) 955 return nullptr; 956 return V; 957 } 958 959 // No type specified, must be invalid reference. 960 if (!Ty) return nullptr; 961 962 // Create and return a placeholder, which will later be RAUW'd. 963 Value *V = new Argument(Ty); 964 ValuePtrs[Idx] = V; 965 return V; 966 } 967 968 /// Once all constants are read, this method bulk resolves any forward 969 /// references. The idea behind this is that we sometimes get constants (such 970 /// as large arrays) which reference *many* forward ref constants. Replacing 971 /// each of these causes a lot of thrashing when building/reuniquing the 972 /// constant. Instead of doing this, we look at all the uses and rewrite all 973 /// the place holders at once for any constant that uses a placeholder. 974 void BitcodeReaderValueList::resolveConstantForwardRefs() { 975 // Sort the values by-pointer so that they are efficient to look up with a 976 // binary search. 977 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 978 979 SmallVector<Constant*, 64> NewOps; 980 981 while (!ResolveConstants.empty()) { 982 Value *RealVal = operator[](ResolveConstants.back().second); 983 Constant *Placeholder = ResolveConstants.back().first; 984 ResolveConstants.pop_back(); 985 986 // Loop over all users of the placeholder, updating them to reference the 987 // new value. If they reference more than one placeholder, update them all 988 // at once. 989 while (!Placeholder->use_empty()) { 990 auto UI = Placeholder->user_begin(); 991 User *U = *UI; 992 993 // If the using object isn't uniqued, just update the operands. This 994 // handles instructions and initializers for global variables. 995 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 996 UI.getUse().set(RealVal); 997 continue; 998 } 999 1000 // Otherwise, we have a constant that uses the placeholder. Replace that 1001 // constant with a new constant that has *all* placeholder uses updated. 1002 Constant *UserC = cast<Constant>(U); 1003 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1004 I != E; ++I) { 1005 Value *NewOp; 1006 if (!isa<ConstantPlaceHolder>(*I)) { 1007 // Not a placeholder reference. 1008 NewOp = *I; 1009 } else if (*I == Placeholder) { 1010 // Common case is that it just references this one placeholder. 1011 NewOp = RealVal; 1012 } else { 1013 // Otherwise, look up the placeholder in ResolveConstants. 1014 ResolveConstantsTy::iterator It = 1015 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1016 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1017 0)); 1018 assert(It != ResolveConstants.end() && It->first == *I); 1019 NewOp = operator[](It->second); 1020 } 1021 1022 NewOps.push_back(cast<Constant>(NewOp)); 1023 } 1024 1025 // Make the new constant. 1026 Constant *NewC; 1027 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1028 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1029 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1030 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1031 } else if (isa<ConstantVector>(UserC)) { 1032 NewC = ConstantVector::get(NewOps); 1033 } else { 1034 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1035 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1036 } 1037 1038 UserC->replaceAllUsesWith(NewC); 1039 UserC->destroyConstant(); 1040 NewOps.clear(); 1041 } 1042 1043 // Update all ValueHandles, they should be the only users at this point. 1044 Placeholder->replaceAllUsesWith(RealVal); 1045 delete Placeholder; 1046 } 1047 } 1048 1049 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1050 if (Idx == size()) { 1051 push_back(MD); 1052 return; 1053 } 1054 1055 if (Idx >= size()) 1056 resize(Idx+1); 1057 1058 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1059 if (!OldMD) { 1060 OldMD.reset(MD); 1061 return; 1062 } 1063 1064 // If there was a forward reference to this value, replace it. 1065 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1066 PrevMD->replaceAllUsesWith(MD); 1067 --NumFwdRefs; 1068 } 1069 1070 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1071 if (Idx >= size()) 1072 resize(Idx + 1); 1073 1074 if (Metadata *MD = MetadataPtrs[Idx]) 1075 return MD; 1076 1077 // Track forward refs to be resolved later. 1078 if (AnyFwdRefs) { 1079 MinFwdRef = std::min(MinFwdRef, Idx); 1080 MaxFwdRef = std::max(MaxFwdRef, Idx); 1081 } else { 1082 AnyFwdRefs = true; 1083 MinFwdRef = MaxFwdRef = Idx; 1084 } 1085 ++NumFwdRefs; 1086 1087 // Create and return a placeholder, which will later be RAUW'd. 1088 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1089 MetadataPtrs[Idx].reset(MD); 1090 return MD; 1091 } 1092 1093 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1094 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1095 } 1096 1097 void BitcodeReaderMetadataList::tryToResolveCycles() { 1098 if (!AnyFwdRefs) 1099 // Nothing to do. 1100 return; 1101 1102 if (NumFwdRefs) 1103 // Still forward references... can't resolve cycles. 1104 return; 1105 1106 // Resolve any cycles. 1107 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1108 auto &MD = MetadataPtrs[I]; 1109 auto *N = dyn_cast_or_null<MDNode>(MD); 1110 if (!N) 1111 continue; 1112 1113 assert(!N->isTemporary() && "Unexpected forward reference"); 1114 N->resolveCycles(); 1115 } 1116 1117 // Make sure we return early again until there's another forward ref. 1118 AnyFwdRefs = false; 1119 } 1120 1121 Type *BitcodeReader::getTypeByID(unsigned ID) { 1122 // The type table size is always specified correctly. 1123 if (ID >= TypeList.size()) 1124 return nullptr; 1125 1126 if (Type *Ty = TypeList[ID]) 1127 return Ty; 1128 1129 // If we have a forward reference, the only possible case is when it is to a 1130 // named struct. Just create a placeholder for now. 1131 return TypeList[ID] = createIdentifiedStructType(Context); 1132 } 1133 1134 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1135 StringRef Name) { 1136 auto *Ret = StructType::create(Context, Name); 1137 IdentifiedStructTypes.push_back(Ret); 1138 return Ret; 1139 } 1140 1141 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1142 auto *Ret = StructType::create(Context); 1143 IdentifiedStructTypes.push_back(Ret); 1144 return Ret; 1145 } 1146 1147 //===----------------------------------------------------------------------===// 1148 // Functions for parsing blocks from the bitcode file 1149 //===----------------------------------------------------------------------===// 1150 1151 1152 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1153 /// been decoded from the given integer. This function must stay in sync with 1154 /// 'encodeLLVMAttributesForBitcode'. 1155 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1156 uint64_t EncodedAttrs) { 1157 // FIXME: Remove in 4.0. 1158 1159 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1160 // the bits above 31 down by 11 bits. 1161 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1162 assert((!Alignment || isPowerOf2_32(Alignment)) && 1163 "Alignment must be a power of two."); 1164 1165 if (Alignment) 1166 B.addAlignmentAttr(Alignment); 1167 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1168 (EncodedAttrs & 0xffff)); 1169 } 1170 1171 std::error_code BitcodeReader::parseAttributeBlock() { 1172 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1173 return error("Invalid record"); 1174 1175 if (!MAttributes.empty()) 1176 return error("Invalid multiple blocks"); 1177 1178 SmallVector<uint64_t, 64> Record; 1179 1180 SmallVector<AttributeSet, 8> Attrs; 1181 1182 // Read all the records. 1183 while (1) { 1184 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1185 1186 switch (Entry.Kind) { 1187 case BitstreamEntry::SubBlock: // Handled for us already. 1188 case BitstreamEntry::Error: 1189 return error("Malformed block"); 1190 case BitstreamEntry::EndBlock: 1191 return std::error_code(); 1192 case BitstreamEntry::Record: 1193 // The interesting case. 1194 break; 1195 } 1196 1197 // Read a record. 1198 Record.clear(); 1199 switch (Stream.readRecord(Entry.ID, Record)) { 1200 default: // Default behavior: ignore. 1201 break; 1202 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1203 // FIXME: Remove in 4.0. 1204 if (Record.size() & 1) 1205 return error("Invalid record"); 1206 1207 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1208 AttrBuilder B; 1209 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1210 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1211 } 1212 1213 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1214 Attrs.clear(); 1215 break; 1216 } 1217 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1218 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1219 Attrs.push_back(MAttributeGroups[Record[i]]); 1220 1221 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1222 Attrs.clear(); 1223 break; 1224 } 1225 } 1226 } 1227 } 1228 1229 // Returns Attribute::None on unrecognized codes. 1230 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1231 switch (Code) { 1232 default: 1233 return Attribute::None; 1234 case bitc::ATTR_KIND_ALIGNMENT: 1235 return Attribute::Alignment; 1236 case bitc::ATTR_KIND_ALWAYS_INLINE: 1237 return Attribute::AlwaysInline; 1238 case bitc::ATTR_KIND_ARGMEMONLY: 1239 return Attribute::ArgMemOnly; 1240 case bitc::ATTR_KIND_BUILTIN: 1241 return Attribute::Builtin; 1242 case bitc::ATTR_KIND_BY_VAL: 1243 return Attribute::ByVal; 1244 case bitc::ATTR_KIND_IN_ALLOCA: 1245 return Attribute::InAlloca; 1246 case bitc::ATTR_KIND_COLD: 1247 return Attribute::Cold; 1248 case bitc::ATTR_KIND_CONVERGENT: 1249 return Attribute::Convergent; 1250 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1251 return Attribute::InaccessibleMemOnly; 1252 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1253 return Attribute::InaccessibleMemOrArgMemOnly; 1254 case bitc::ATTR_KIND_INLINE_HINT: 1255 return Attribute::InlineHint; 1256 case bitc::ATTR_KIND_IN_REG: 1257 return Attribute::InReg; 1258 case bitc::ATTR_KIND_JUMP_TABLE: 1259 return Attribute::JumpTable; 1260 case bitc::ATTR_KIND_MIN_SIZE: 1261 return Attribute::MinSize; 1262 case bitc::ATTR_KIND_NAKED: 1263 return Attribute::Naked; 1264 case bitc::ATTR_KIND_NEST: 1265 return Attribute::Nest; 1266 case bitc::ATTR_KIND_NO_ALIAS: 1267 return Attribute::NoAlias; 1268 case bitc::ATTR_KIND_NO_BUILTIN: 1269 return Attribute::NoBuiltin; 1270 case bitc::ATTR_KIND_NO_CAPTURE: 1271 return Attribute::NoCapture; 1272 case bitc::ATTR_KIND_NO_DUPLICATE: 1273 return Attribute::NoDuplicate; 1274 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1275 return Attribute::NoImplicitFloat; 1276 case bitc::ATTR_KIND_NO_INLINE: 1277 return Attribute::NoInline; 1278 case bitc::ATTR_KIND_NO_RECURSE: 1279 return Attribute::NoRecurse; 1280 case bitc::ATTR_KIND_NON_LAZY_BIND: 1281 return Attribute::NonLazyBind; 1282 case bitc::ATTR_KIND_NON_NULL: 1283 return Attribute::NonNull; 1284 case bitc::ATTR_KIND_DEREFERENCEABLE: 1285 return Attribute::Dereferenceable; 1286 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1287 return Attribute::DereferenceableOrNull; 1288 case bitc::ATTR_KIND_ALLOC_SIZE: 1289 return Attribute::AllocSize; 1290 case bitc::ATTR_KIND_NO_RED_ZONE: 1291 return Attribute::NoRedZone; 1292 case bitc::ATTR_KIND_NO_RETURN: 1293 return Attribute::NoReturn; 1294 case bitc::ATTR_KIND_NO_UNWIND: 1295 return Attribute::NoUnwind; 1296 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1297 return Attribute::OptimizeForSize; 1298 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1299 return Attribute::OptimizeNone; 1300 case bitc::ATTR_KIND_READ_NONE: 1301 return Attribute::ReadNone; 1302 case bitc::ATTR_KIND_READ_ONLY: 1303 return Attribute::ReadOnly; 1304 case bitc::ATTR_KIND_RETURNED: 1305 return Attribute::Returned; 1306 case bitc::ATTR_KIND_RETURNS_TWICE: 1307 return Attribute::ReturnsTwice; 1308 case bitc::ATTR_KIND_S_EXT: 1309 return Attribute::SExt; 1310 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1311 return Attribute::StackAlignment; 1312 case bitc::ATTR_KIND_STACK_PROTECT: 1313 return Attribute::StackProtect; 1314 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1315 return Attribute::StackProtectReq; 1316 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1317 return Attribute::StackProtectStrong; 1318 case bitc::ATTR_KIND_SAFESTACK: 1319 return Attribute::SafeStack; 1320 case bitc::ATTR_KIND_STRUCT_RET: 1321 return Attribute::StructRet; 1322 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1323 return Attribute::SanitizeAddress; 1324 case bitc::ATTR_KIND_SANITIZE_THREAD: 1325 return Attribute::SanitizeThread; 1326 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1327 return Attribute::SanitizeMemory; 1328 case bitc::ATTR_KIND_SWIFT_ERROR: 1329 return Attribute::SwiftError; 1330 case bitc::ATTR_KIND_SWIFT_SELF: 1331 return Attribute::SwiftSelf; 1332 case bitc::ATTR_KIND_UW_TABLE: 1333 return Attribute::UWTable; 1334 case bitc::ATTR_KIND_Z_EXT: 1335 return Attribute::ZExt; 1336 } 1337 } 1338 1339 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1340 unsigned &Alignment) { 1341 // Note: Alignment in bitcode files is incremented by 1, so that zero 1342 // can be used for default alignment. 1343 if (Exponent > Value::MaxAlignmentExponent + 1) 1344 return error("Invalid alignment value"); 1345 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1346 return std::error_code(); 1347 } 1348 1349 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1350 Attribute::AttrKind *Kind) { 1351 *Kind = getAttrFromCode(Code); 1352 if (*Kind == Attribute::None) 1353 return error(BitcodeError::CorruptedBitcode, 1354 "Unknown attribute kind (" + Twine(Code) + ")"); 1355 return std::error_code(); 1356 } 1357 1358 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1359 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1360 return error("Invalid record"); 1361 1362 if (!MAttributeGroups.empty()) 1363 return error("Invalid multiple blocks"); 1364 1365 SmallVector<uint64_t, 64> Record; 1366 1367 // Read all the records. 1368 while (1) { 1369 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1370 1371 switch (Entry.Kind) { 1372 case BitstreamEntry::SubBlock: // Handled for us already. 1373 case BitstreamEntry::Error: 1374 return error("Malformed block"); 1375 case BitstreamEntry::EndBlock: 1376 return std::error_code(); 1377 case BitstreamEntry::Record: 1378 // The interesting case. 1379 break; 1380 } 1381 1382 // Read a record. 1383 Record.clear(); 1384 switch (Stream.readRecord(Entry.ID, Record)) { 1385 default: // Default behavior: ignore. 1386 break; 1387 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1388 if (Record.size() < 3) 1389 return error("Invalid record"); 1390 1391 uint64_t GrpID = Record[0]; 1392 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1393 1394 AttrBuilder B; 1395 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1396 if (Record[i] == 0) { // Enum attribute 1397 Attribute::AttrKind Kind; 1398 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1399 return EC; 1400 1401 B.addAttribute(Kind); 1402 } else if (Record[i] == 1) { // Integer attribute 1403 Attribute::AttrKind Kind; 1404 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1405 return EC; 1406 if (Kind == Attribute::Alignment) 1407 B.addAlignmentAttr(Record[++i]); 1408 else if (Kind == Attribute::StackAlignment) 1409 B.addStackAlignmentAttr(Record[++i]); 1410 else if (Kind == Attribute::Dereferenceable) 1411 B.addDereferenceableAttr(Record[++i]); 1412 else if (Kind == Attribute::DereferenceableOrNull) 1413 B.addDereferenceableOrNullAttr(Record[++i]); 1414 else if (Kind == Attribute::AllocSize) 1415 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1416 } else { // String attribute 1417 assert((Record[i] == 3 || Record[i] == 4) && 1418 "Invalid attribute group entry"); 1419 bool HasValue = (Record[i++] == 4); 1420 SmallString<64> KindStr; 1421 SmallString<64> ValStr; 1422 1423 while (Record[i] != 0 && i != e) 1424 KindStr += Record[i++]; 1425 assert(Record[i] == 0 && "Kind string not null terminated"); 1426 1427 if (HasValue) { 1428 // Has a value associated with it. 1429 ++i; // Skip the '0' that terminates the "kind" string. 1430 while (Record[i] != 0 && i != e) 1431 ValStr += Record[i++]; 1432 assert(Record[i] == 0 && "Value string not null terminated"); 1433 } 1434 1435 B.addAttribute(KindStr.str(), ValStr.str()); 1436 } 1437 } 1438 1439 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1440 break; 1441 } 1442 } 1443 } 1444 } 1445 1446 std::error_code BitcodeReader::parseTypeTable() { 1447 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1448 return error("Invalid record"); 1449 1450 return parseTypeTableBody(); 1451 } 1452 1453 std::error_code BitcodeReader::parseTypeTableBody() { 1454 if (!TypeList.empty()) 1455 return error("Invalid multiple blocks"); 1456 1457 SmallVector<uint64_t, 64> Record; 1458 unsigned NumRecords = 0; 1459 1460 SmallString<64> TypeName; 1461 1462 // Read all the records for this type table. 1463 while (1) { 1464 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1465 1466 switch (Entry.Kind) { 1467 case BitstreamEntry::SubBlock: // Handled for us already. 1468 case BitstreamEntry::Error: 1469 return error("Malformed block"); 1470 case BitstreamEntry::EndBlock: 1471 if (NumRecords != TypeList.size()) 1472 return error("Malformed block"); 1473 return std::error_code(); 1474 case BitstreamEntry::Record: 1475 // The interesting case. 1476 break; 1477 } 1478 1479 // Read a record. 1480 Record.clear(); 1481 Type *ResultTy = nullptr; 1482 switch (Stream.readRecord(Entry.ID, Record)) { 1483 default: 1484 return error("Invalid value"); 1485 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1486 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1487 // type list. This allows us to reserve space. 1488 if (Record.size() < 1) 1489 return error("Invalid record"); 1490 TypeList.resize(Record[0]); 1491 continue; 1492 case bitc::TYPE_CODE_VOID: // VOID 1493 ResultTy = Type::getVoidTy(Context); 1494 break; 1495 case bitc::TYPE_CODE_HALF: // HALF 1496 ResultTy = Type::getHalfTy(Context); 1497 break; 1498 case bitc::TYPE_CODE_FLOAT: // FLOAT 1499 ResultTy = Type::getFloatTy(Context); 1500 break; 1501 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1502 ResultTy = Type::getDoubleTy(Context); 1503 break; 1504 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1505 ResultTy = Type::getX86_FP80Ty(Context); 1506 break; 1507 case bitc::TYPE_CODE_FP128: // FP128 1508 ResultTy = Type::getFP128Ty(Context); 1509 break; 1510 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1511 ResultTy = Type::getPPC_FP128Ty(Context); 1512 break; 1513 case bitc::TYPE_CODE_LABEL: // LABEL 1514 ResultTy = Type::getLabelTy(Context); 1515 break; 1516 case bitc::TYPE_CODE_METADATA: // METADATA 1517 ResultTy = Type::getMetadataTy(Context); 1518 break; 1519 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1520 ResultTy = Type::getX86_MMXTy(Context); 1521 break; 1522 case bitc::TYPE_CODE_TOKEN: // TOKEN 1523 ResultTy = Type::getTokenTy(Context); 1524 break; 1525 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1526 if (Record.size() < 1) 1527 return error("Invalid record"); 1528 1529 uint64_t NumBits = Record[0]; 1530 if (NumBits < IntegerType::MIN_INT_BITS || 1531 NumBits > IntegerType::MAX_INT_BITS) 1532 return error("Bitwidth for integer type out of range"); 1533 ResultTy = IntegerType::get(Context, NumBits); 1534 break; 1535 } 1536 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1537 // [pointee type, address space] 1538 if (Record.size() < 1) 1539 return error("Invalid record"); 1540 unsigned AddressSpace = 0; 1541 if (Record.size() == 2) 1542 AddressSpace = Record[1]; 1543 ResultTy = getTypeByID(Record[0]); 1544 if (!ResultTy || 1545 !PointerType::isValidElementType(ResultTy)) 1546 return error("Invalid type"); 1547 ResultTy = PointerType::get(ResultTy, AddressSpace); 1548 break; 1549 } 1550 case bitc::TYPE_CODE_FUNCTION_OLD: { 1551 // FIXME: attrid is dead, remove it in LLVM 4.0 1552 // FUNCTION: [vararg, attrid, retty, paramty x N] 1553 if (Record.size() < 3) 1554 return error("Invalid record"); 1555 SmallVector<Type*, 8> ArgTys; 1556 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1557 if (Type *T = getTypeByID(Record[i])) 1558 ArgTys.push_back(T); 1559 else 1560 break; 1561 } 1562 1563 ResultTy = getTypeByID(Record[2]); 1564 if (!ResultTy || ArgTys.size() < Record.size()-3) 1565 return error("Invalid type"); 1566 1567 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1568 break; 1569 } 1570 case bitc::TYPE_CODE_FUNCTION: { 1571 // FUNCTION: [vararg, retty, paramty x N] 1572 if (Record.size() < 2) 1573 return error("Invalid record"); 1574 SmallVector<Type*, 8> ArgTys; 1575 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1576 if (Type *T = getTypeByID(Record[i])) { 1577 if (!FunctionType::isValidArgumentType(T)) 1578 return error("Invalid function argument type"); 1579 ArgTys.push_back(T); 1580 } 1581 else 1582 break; 1583 } 1584 1585 ResultTy = getTypeByID(Record[1]); 1586 if (!ResultTy || ArgTys.size() < Record.size()-2) 1587 return error("Invalid type"); 1588 1589 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1590 break; 1591 } 1592 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1593 if (Record.size() < 1) 1594 return error("Invalid record"); 1595 SmallVector<Type*, 8> EltTys; 1596 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1597 if (Type *T = getTypeByID(Record[i])) 1598 EltTys.push_back(T); 1599 else 1600 break; 1601 } 1602 if (EltTys.size() != Record.size()-1) 1603 return error("Invalid type"); 1604 ResultTy = StructType::get(Context, EltTys, Record[0]); 1605 break; 1606 } 1607 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1608 if (convertToString(Record, 0, TypeName)) 1609 return error("Invalid record"); 1610 continue; 1611 1612 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1613 if (Record.size() < 1) 1614 return error("Invalid record"); 1615 1616 if (NumRecords >= TypeList.size()) 1617 return error("Invalid TYPE table"); 1618 1619 // Check to see if this was forward referenced, if so fill in the temp. 1620 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1621 if (Res) { 1622 Res->setName(TypeName); 1623 TypeList[NumRecords] = nullptr; 1624 } else // Otherwise, create a new struct. 1625 Res = createIdentifiedStructType(Context, TypeName); 1626 TypeName.clear(); 1627 1628 SmallVector<Type*, 8> EltTys; 1629 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1630 if (Type *T = getTypeByID(Record[i])) 1631 EltTys.push_back(T); 1632 else 1633 break; 1634 } 1635 if (EltTys.size() != Record.size()-1) 1636 return error("Invalid record"); 1637 Res->setBody(EltTys, Record[0]); 1638 ResultTy = Res; 1639 break; 1640 } 1641 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1642 if (Record.size() != 1) 1643 return error("Invalid record"); 1644 1645 if (NumRecords >= TypeList.size()) 1646 return error("Invalid TYPE table"); 1647 1648 // Check to see if this was forward referenced, if so fill in the temp. 1649 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1650 if (Res) { 1651 Res->setName(TypeName); 1652 TypeList[NumRecords] = nullptr; 1653 } else // Otherwise, create a new struct with no body. 1654 Res = createIdentifiedStructType(Context, TypeName); 1655 TypeName.clear(); 1656 ResultTy = Res; 1657 break; 1658 } 1659 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1660 if (Record.size() < 2) 1661 return error("Invalid record"); 1662 ResultTy = getTypeByID(Record[1]); 1663 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1664 return error("Invalid type"); 1665 ResultTy = ArrayType::get(ResultTy, Record[0]); 1666 break; 1667 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1668 if (Record.size() < 2) 1669 return error("Invalid record"); 1670 if (Record[0] == 0) 1671 return error("Invalid vector length"); 1672 ResultTy = getTypeByID(Record[1]); 1673 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1674 return error("Invalid type"); 1675 ResultTy = VectorType::get(ResultTy, Record[0]); 1676 break; 1677 } 1678 1679 if (NumRecords >= TypeList.size()) 1680 return error("Invalid TYPE table"); 1681 if (TypeList[NumRecords]) 1682 return error( 1683 "Invalid TYPE table: Only named structs can be forward referenced"); 1684 assert(ResultTy && "Didn't read a type?"); 1685 TypeList[NumRecords++] = ResultTy; 1686 } 1687 } 1688 1689 std::error_code BitcodeReader::parseOperandBundleTags() { 1690 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1691 return error("Invalid record"); 1692 1693 if (!BundleTags.empty()) 1694 return error("Invalid multiple blocks"); 1695 1696 SmallVector<uint64_t, 64> Record; 1697 1698 while (1) { 1699 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1700 1701 switch (Entry.Kind) { 1702 case BitstreamEntry::SubBlock: // Handled for us already. 1703 case BitstreamEntry::Error: 1704 return error("Malformed block"); 1705 case BitstreamEntry::EndBlock: 1706 return std::error_code(); 1707 case BitstreamEntry::Record: 1708 // The interesting case. 1709 break; 1710 } 1711 1712 // Tags are implicitly mapped to integers by their order. 1713 1714 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1715 return error("Invalid record"); 1716 1717 // OPERAND_BUNDLE_TAG: [strchr x N] 1718 BundleTags.emplace_back(); 1719 if (convertToString(Record, 0, BundleTags.back())) 1720 return error("Invalid record"); 1721 Record.clear(); 1722 } 1723 } 1724 1725 /// Associate a value with its name from the given index in the provided record. 1726 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1727 unsigned NameIndex, Triple &TT) { 1728 SmallString<128> ValueName; 1729 if (convertToString(Record, NameIndex, ValueName)) 1730 return error("Invalid record"); 1731 unsigned ValueID = Record[0]; 1732 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1733 return error("Invalid record"); 1734 Value *V = ValueList[ValueID]; 1735 1736 StringRef NameStr(ValueName.data(), ValueName.size()); 1737 if (NameStr.find_first_of(0) != StringRef::npos) 1738 return error("Invalid value name"); 1739 V->setName(NameStr); 1740 auto *GO = dyn_cast<GlobalObject>(V); 1741 if (GO) { 1742 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1743 if (TT.isOSBinFormatMachO()) 1744 GO->setComdat(nullptr); 1745 else 1746 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1747 } 1748 } 1749 return V; 1750 } 1751 1752 /// Helper to note and return the current location, and jump to the given 1753 /// offset. 1754 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1755 BitstreamCursor &Stream) { 1756 // Save the current parsing location so we can jump back at the end 1757 // of the VST read. 1758 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1759 Stream.JumpToBit(Offset * 32); 1760 #ifndef NDEBUG 1761 // Do some checking if we are in debug mode. 1762 BitstreamEntry Entry = Stream.advance(); 1763 assert(Entry.Kind == BitstreamEntry::SubBlock); 1764 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1765 #else 1766 // In NDEBUG mode ignore the output so we don't get an unused variable 1767 // warning. 1768 Stream.advance(); 1769 #endif 1770 return CurrentBit; 1771 } 1772 1773 /// Parse the value symbol table at either the current parsing location or 1774 /// at the given bit offset if provided. 1775 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1776 uint64_t CurrentBit; 1777 // Pass in the Offset to distinguish between calling for the module-level 1778 // VST (where we want to jump to the VST offset) and the function-level 1779 // VST (where we don't). 1780 if (Offset > 0) 1781 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1782 1783 // Compute the delta between the bitcode indices in the VST (the word offset 1784 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1785 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1786 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1787 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1788 // just before entering the VST subblock because: 1) the EnterSubBlock 1789 // changes the AbbrevID width; 2) the VST block is nested within the same 1790 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1791 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1792 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1793 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1794 unsigned FuncBitcodeOffsetDelta = 1795 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1796 1797 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1798 return error("Invalid record"); 1799 1800 SmallVector<uint64_t, 64> Record; 1801 1802 Triple TT(TheModule->getTargetTriple()); 1803 1804 // Read all the records for this value table. 1805 SmallString<128> ValueName; 1806 while (1) { 1807 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1808 1809 switch (Entry.Kind) { 1810 case BitstreamEntry::SubBlock: // Handled for us already. 1811 case BitstreamEntry::Error: 1812 return error("Malformed block"); 1813 case BitstreamEntry::EndBlock: 1814 if (Offset > 0) 1815 Stream.JumpToBit(CurrentBit); 1816 return std::error_code(); 1817 case BitstreamEntry::Record: 1818 // The interesting case. 1819 break; 1820 } 1821 1822 // Read a record. 1823 Record.clear(); 1824 switch (Stream.readRecord(Entry.ID, Record)) { 1825 default: // Default behavior: unknown type. 1826 break; 1827 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1828 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1829 if (std::error_code EC = ValOrErr.getError()) 1830 return EC; 1831 ValOrErr.get(); 1832 break; 1833 } 1834 case bitc::VST_CODE_FNENTRY: { 1835 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1836 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1837 if (std::error_code EC = ValOrErr.getError()) 1838 return EC; 1839 Value *V = ValOrErr.get(); 1840 1841 auto *GO = dyn_cast<GlobalObject>(V); 1842 if (!GO) { 1843 // If this is an alias, need to get the actual Function object 1844 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1845 auto *GA = dyn_cast<GlobalAlias>(V); 1846 if (GA) 1847 GO = GA->getBaseObject(); 1848 assert(GO); 1849 } 1850 1851 uint64_t FuncWordOffset = Record[1]; 1852 Function *F = dyn_cast<Function>(GO); 1853 assert(F); 1854 uint64_t FuncBitOffset = FuncWordOffset * 32; 1855 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1856 // Set the LastFunctionBlockBit to point to the last function block. 1857 // Later when parsing is resumed after function materialization, 1858 // we can simply skip that last function block. 1859 if (FuncBitOffset > LastFunctionBlockBit) 1860 LastFunctionBlockBit = FuncBitOffset; 1861 break; 1862 } 1863 case bitc::VST_CODE_BBENTRY: { 1864 if (convertToString(Record, 1, ValueName)) 1865 return error("Invalid record"); 1866 BasicBlock *BB = getBasicBlock(Record[0]); 1867 if (!BB) 1868 return error("Invalid record"); 1869 1870 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1871 ValueName.clear(); 1872 break; 1873 } 1874 } 1875 } 1876 } 1877 1878 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1879 std::error_code 1880 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1881 if (Record.size() < 2) 1882 return error("Invalid record"); 1883 1884 unsigned Kind = Record[0]; 1885 SmallString<8> Name(Record.begin() + 1, Record.end()); 1886 1887 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1888 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1889 return error("Conflicting METADATA_KIND records"); 1890 return std::error_code(); 1891 } 1892 1893 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1894 1895 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 1896 StringRef Blob, 1897 unsigned &NextMetadataNo) { 1898 // All the MDStrings in the block are emitted together in a single 1899 // record. The strings are concatenated and stored in a blob along with 1900 // their sizes. 1901 if (Record.size() != 2) 1902 return error("Invalid record: metadata strings layout"); 1903 1904 unsigned NumStrings = Record[0]; 1905 unsigned StringsOffset = Record[1]; 1906 if (!NumStrings) 1907 return error("Invalid record: metadata strings with no strings"); 1908 if (StringsOffset > Blob.size()) 1909 return error("Invalid record: metadata strings corrupt offset"); 1910 1911 StringRef Lengths = Blob.slice(0, StringsOffset); 1912 SimpleBitstreamCursor R(*StreamFile); 1913 R.jumpToPointer(Lengths.begin()); 1914 1915 // Ensure that Blob doesn't get invalidated, even if this is reading from 1916 // a StreamingMemoryObject with corrupt data. 1917 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 1918 1919 StringRef Strings = Blob.drop_front(StringsOffset); 1920 do { 1921 if (R.AtEndOfStream()) 1922 return error("Invalid record: metadata strings bad length"); 1923 1924 unsigned Size = R.ReadVBR(6); 1925 if (Strings.size() < Size) 1926 return error("Invalid record: metadata strings truncated chars"); 1927 1928 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 1929 NextMetadataNo++); 1930 Strings = Strings.drop_front(Size); 1931 } while (--NumStrings); 1932 1933 return std::error_code(); 1934 } 1935 1936 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1937 /// module level metadata. 1938 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1939 IsMetadataMaterialized = true; 1940 unsigned NextMetadataNo = MetadataList.size(); 1941 1942 if (!ModuleLevel && MetadataList.hasFwdRefs()) 1943 return error("Invalid metadata: fwd refs into function blocks"); 1944 1945 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1946 return error("Invalid record"); 1947 1948 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 1949 SmallVector<uint64_t, 64> Record; 1950 1951 auto getMD = [&](unsigned ID) -> Metadata * { 1952 return MetadataList.getMetadataFwdRef(ID); 1953 }; 1954 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1955 if (ID) 1956 return getMD(ID - 1); 1957 return nullptr; 1958 }; 1959 auto getMDString = [&](unsigned ID) -> MDString *{ 1960 // This requires that the ID is not really a forward reference. In 1961 // particular, the MDString must already have been resolved. 1962 return cast_or_null<MDString>(getMDOrNull(ID)); 1963 }; 1964 1965 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1966 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1967 1968 // Read all the records. 1969 while (1) { 1970 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1971 1972 switch (Entry.Kind) { 1973 case BitstreamEntry::SubBlock: // Handled for us already. 1974 case BitstreamEntry::Error: 1975 return error("Malformed block"); 1976 case BitstreamEntry::EndBlock: 1977 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 1978 for (auto CU_SP : CUSubprograms) 1979 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 1980 for (auto &Op : SPs->operands()) 1981 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 1982 SP->replaceOperandWith(7, CU_SP.first); 1983 1984 MetadataList.tryToResolveCycles(); 1985 return std::error_code(); 1986 case BitstreamEntry::Record: 1987 // The interesting case. 1988 break; 1989 } 1990 1991 // Read a record. 1992 Record.clear(); 1993 StringRef Blob; 1994 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 1995 bool IsDistinct = false; 1996 switch (Code) { 1997 default: // Default behavior: ignore. 1998 break; 1999 case bitc::METADATA_NAME: { 2000 // Read name of the named metadata. 2001 SmallString<8> Name(Record.begin(), Record.end()); 2002 Record.clear(); 2003 Code = Stream.ReadCode(); 2004 2005 unsigned NextBitCode = Stream.readRecord(Code, Record); 2006 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2007 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2008 2009 // Read named metadata elements. 2010 unsigned Size = Record.size(); 2011 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2012 for (unsigned i = 0; i != Size; ++i) { 2013 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2014 if (!MD) 2015 return error("Invalid record"); 2016 NMD->addOperand(MD); 2017 } 2018 break; 2019 } 2020 case bitc::METADATA_OLD_FN_NODE: { 2021 // FIXME: Remove in 4.0. 2022 // This is a LocalAsMetadata record, the only type of function-local 2023 // metadata. 2024 if (Record.size() % 2 == 1) 2025 return error("Invalid record"); 2026 2027 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2028 // to be legal, but there's no upgrade path. 2029 auto dropRecord = [&] { 2030 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2031 }; 2032 if (Record.size() != 2) { 2033 dropRecord(); 2034 break; 2035 } 2036 2037 Type *Ty = getTypeByID(Record[0]); 2038 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2039 dropRecord(); 2040 break; 2041 } 2042 2043 MetadataList.assignValue( 2044 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2045 NextMetadataNo++); 2046 break; 2047 } 2048 case bitc::METADATA_OLD_NODE: { 2049 // FIXME: Remove in 4.0. 2050 if (Record.size() % 2 == 1) 2051 return error("Invalid record"); 2052 2053 unsigned Size = Record.size(); 2054 SmallVector<Metadata *, 8> Elts; 2055 for (unsigned i = 0; i != Size; i += 2) { 2056 Type *Ty = getTypeByID(Record[i]); 2057 if (!Ty) 2058 return error("Invalid record"); 2059 if (Ty->isMetadataTy()) 2060 Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1])); 2061 else if (!Ty->isVoidTy()) { 2062 auto *MD = 2063 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2064 assert(isa<ConstantAsMetadata>(MD) && 2065 "Expected non-function-local metadata"); 2066 Elts.push_back(MD); 2067 } else 2068 Elts.push_back(nullptr); 2069 } 2070 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2071 break; 2072 } 2073 case bitc::METADATA_VALUE: { 2074 if (Record.size() != 2) 2075 return error("Invalid record"); 2076 2077 Type *Ty = getTypeByID(Record[0]); 2078 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2079 return error("Invalid record"); 2080 2081 MetadataList.assignValue( 2082 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2083 NextMetadataNo++); 2084 break; 2085 } 2086 case bitc::METADATA_DISTINCT_NODE: 2087 IsDistinct = true; 2088 // fallthrough... 2089 case bitc::METADATA_NODE: { 2090 SmallVector<Metadata *, 8> Elts; 2091 Elts.reserve(Record.size()); 2092 for (unsigned ID : Record) 2093 Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr); 2094 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2095 : MDNode::get(Context, Elts), 2096 NextMetadataNo++); 2097 break; 2098 } 2099 case bitc::METADATA_LOCATION: { 2100 if (Record.size() != 5) 2101 return error("Invalid record"); 2102 2103 unsigned Line = Record[1]; 2104 unsigned Column = Record[2]; 2105 MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]); 2106 if (!Scope) 2107 return error("Invalid record"); 2108 Metadata *InlinedAt = 2109 Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr; 2110 MetadataList.assignValue( 2111 GET_OR_DISTINCT(DILocation, Record[0], 2112 (Context, Line, Column, Scope, InlinedAt)), 2113 NextMetadataNo++); 2114 break; 2115 } 2116 case bitc::METADATA_GENERIC_DEBUG: { 2117 if (Record.size() < 4) 2118 return error("Invalid record"); 2119 2120 unsigned Tag = Record[1]; 2121 unsigned Version = Record[2]; 2122 2123 if (Tag >= 1u << 16 || Version != 0) 2124 return error("Invalid record"); 2125 2126 auto *Header = getMDString(Record[3]); 2127 SmallVector<Metadata *, 8> DwarfOps; 2128 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2129 DwarfOps.push_back(Record[I] 2130 ? MetadataList.getMetadataFwdRef(Record[I] - 1) 2131 : nullptr); 2132 MetadataList.assignValue( 2133 GET_OR_DISTINCT(GenericDINode, Record[0], 2134 (Context, Tag, Header, DwarfOps)), 2135 NextMetadataNo++); 2136 break; 2137 } 2138 case bitc::METADATA_SUBRANGE: { 2139 if (Record.size() != 3) 2140 return error("Invalid record"); 2141 2142 MetadataList.assignValue( 2143 GET_OR_DISTINCT(DISubrange, Record[0], 2144 (Context, Record[1], unrotateSign(Record[2]))), 2145 NextMetadataNo++); 2146 break; 2147 } 2148 case bitc::METADATA_ENUMERATOR: { 2149 if (Record.size() != 3) 2150 return error("Invalid record"); 2151 2152 MetadataList.assignValue( 2153 GET_OR_DISTINCT( 2154 DIEnumerator, Record[0], 2155 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2156 NextMetadataNo++); 2157 break; 2158 } 2159 case bitc::METADATA_BASIC_TYPE: { 2160 if (Record.size() != 6) 2161 return error("Invalid record"); 2162 2163 MetadataList.assignValue( 2164 GET_OR_DISTINCT(DIBasicType, Record[0], 2165 (Context, Record[1], getMDString(Record[2]), 2166 Record[3], Record[4], Record[5])), 2167 NextMetadataNo++); 2168 break; 2169 } 2170 case bitc::METADATA_DERIVED_TYPE: { 2171 if (Record.size() != 12) 2172 return error("Invalid record"); 2173 2174 MetadataList.assignValue( 2175 GET_OR_DISTINCT(DIDerivedType, Record[0], 2176 (Context, Record[1], getMDString(Record[2]), 2177 getMDOrNull(Record[3]), Record[4], 2178 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2179 Record[7], Record[8], Record[9], Record[10], 2180 getMDOrNull(Record[11]))), 2181 NextMetadataNo++); 2182 break; 2183 } 2184 case bitc::METADATA_COMPOSITE_TYPE: { 2185 if (Record.size() != 16) 2186 return error("Invalid record"); 2187 2188 // If we have a UUID and this is not a forward declaration, lookup the 2189 // mapping. 2190 bool IsDistinct = Record[0]; 2191 unsigned Tag = Record[1]; 2192 MDString *Name = getMDString(Record[2]); 2193 Metadata *File = getMDOrNull(Record[3]); 2194 unsigned Line = Record[4]; 2195 Metadata *Scope = getMDOrNull(Record[5]); 2196 Metadata *BaseType = getMDOrNull(Record[6]); 2197 uint64_t SizeInBits = Record[7]; 2198 uint64_t AlignInBits = Record[8]; 2199 uint64_t OffsetInBits = Record[9]; 2200 unsigned Flags = Record[10]; 2201 Metadata *Elements = getMDOrNull(Record[11]); 2202 unsigned RuntimeLang = Record[12]; 2203 Metadata *VTableHolder = getMDOrNull(Record[13]); 2204 Metadata *TemplateParams = getMDOrNull(Record[14]); 2205 auto *Identifier = getMDString(Record[15]); 2206 DICompositeType *CT = nullptr; 2207 if (Identifier) 2208 CT = DICompositeType::buildODRType( 2209 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2210 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2211 VTableHolder, TemplateParams); 2212 2213 // Create a node if we didn't get a lazy ODR type. 2214 if (!CT) 2215 CT = GET_OR_DISTINCT(DICompositeType, IsDistinct, 2216 (Context, Tag, Name, File, Line, Scope, BaseType, 2217 SizeInBits, AlignInBits, OffsetInBits, Flags, 2218 Elements, RuntimeLang, VTableHolder, 2219 TemplateParams, Identifier)); 2220 2221 MetadataList.assignValue(CT, NextMetadataNo++); 2222 break; 2223 } 2224 case bitc::METADATA_SUBROUTINE_TYPE: { 2225 if (Record.size() != 3) 2226 return error("Invalid record"); 2227 2228 MetadataList.assignValue( 2229 GET_OR_DISTINCT(DISubroutineType, Record[0], 2230 (Context, Record[1], getMDOrNull(Record[2]))), 2231 NextMetadataNo++); 2232 break; 2233 } 2234 2235 case bitc::METADATA_MODULE: { 2236 if (Record.size() != 6) 2237 return error("Invalid record"); 2238 2239 MetadataList.assignValue( 2240 GET_OR_DISTINCT(DIModule, Record[0], 2241 (Context, getMDOrNull(Record[1]), 2242 getMDString(Record[2]), getMDString(Record[3]), 2243 getMDString(Record[4]), getMDString(Record[5]))), 2244 NextMetadataNo++); 2245 break; 2246 } 2247 2248 case bitc::METADATA_FILE: { 2249 if (Record.size() != 3) 2250 return error("Invalid record"); 2251 2252 MetadataList.assignValue( 2253 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2254 getMDString(Record[2]))), 2255 NextMetadataNo++); 2256 break; 2257 } 2258 case bitc::METADATA_COMPILE_UNIT: { 2259 if (Record.size() < 14 || Record.size() > 16) 2260 return error("Invalid record"); 2261 2262 // Ignore Record[0], which indicates whether this compile unit is 2263 // distinct. It's always distinct. 2264 auto *CU = DICompileUnit::getDistinct( 2265 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2266 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2267 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2268 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2269 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2270 Record.size() <= 14 ? 0 : Record[14]); 2271 2272 MetadataList.assignValue(CU, NextMetadataNo++); 2273 2274 // Move the Upgrade the list of subprograms. 2275 if (Metadata *SPs = getMDOrNull(Record[11])) 2276 CUSubprograms.push_back({CU, SPs}); 2277 break; 2278 } 2279 case bitc::METADATA_SUBPROGRAM: { 2280 if (Record.size() != 18 && Record.size() != 19) 2281 return error("Invalid record"); 2282 2283 // Version 1 has a Function as Record[15]. 2284 // Version 2 has removed Record[15]. 2285 // Version 3 has the Unit as Record[15]. 2286 Metadata *CUorFn = getMDOrNull(Record[15]); 2287 unsigned Offset = Record.size() == 19 ? 1 : 0; 2288 bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn); 2289 bool HasCU = Offset && !HasFn; 2290 DISubprogram *SP = GET_OR_DISTINCT( 2291 DISubprogram, 2292 Record[0] || Record[8], // All definitions should be distinct. 2293 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2294 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2295 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2296 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2297 Record[14], HasCU ? CUorFn : nullptr, 2298 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2299 getMDOrNull(Record[17 + Offset]))); 2300 MetadataList.assignValue(SP, NextMetadataNo++); 2301 2302 // Upgrade sp->function mapping to function->sp mapping. 2303 if (HasFn) { 2304 if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn)) 2305 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2306 if (F->isMaterializable()) 2307 // Defer until materialized; unmaterialized functions may not have 2308 // metadata. 2309 FunctionsWithSPs[F] = SP; 2310 else if (!F->empty()) 2311 F->setSubprogram(SP); 2312 } 2313 } 2314 break; 2315 } 2316 case bitc::METADATA_LEXICAL_BLOCK: { 2317 if (Record.size() != 5) 2318 return error("Invalid record"); 2319 2320 MetadataList.assignValue( 2321 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2322 (Context, getMDOrNull(Record[1]), 2323 getMDOrNull(Record[2]), Record[3], Record[4])), 2324 NextMetadataNo++); 2325 break; 2326 } 2327 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2328 if (Record.size() != 4) 2329 return error("Invalid record"); 2330 2331 MetadataList.assignValue( 2332 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2333 (Context, getMDOrNull(Record[1]), 2334 getMDOrNull(Record[2]), Record[3])), 2335 NextMetadataNo++); 2336 break; 2337 } 2338 case bitc::METADATA_NAMESPACE: { 2339 if (Record.size() != 5) 2340 return error("Invalid record"); 2341 2342 MetadataList.assignValue( 2343 GET_OR_DISTINCT(DINamespace, Record[0], 2344 (Context, getMDOrNull(Record[1]), 2345 getMDOrNull(Record[2]), getMDString(Record[3]), 2346 Record[4])), 2347 NextMetadataNo++); 2348 break; 2349 } 2350 case bitc::METADATA_MACRO: { 2351 if (Record.size() != 5) 2352 return error("Invalid record"); 2353 2354 MetadataList.assignValue( 2355 GET_OR_DISTINCT(DIMacro, Record[0], 2356 (Context, Record[1], Record[2], 2357 getMDString(Record[3]), getMDString(Record[4]))), 2358 NextMetadataNo++); 2359 break; 2360 } 2361 case bitc::METADATA_MACRO_FILE: { 2362 if (Record.size() != 5) 2363 return error("Invalid record"); 2364 2365 MetadataList.assignValue( 2366 GET_OR_DISTINCT(DIMacroFile, Record[0], 2367 (Context, Record[1], Record[2], 2368 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2369 NextMetadataNo++); 2370 break; 2371 } 2372 case bitc::METADATA_TEMPLATE_TYPE: { 2373 if (Record.size() != 3) 2374 return error("Invalid record"); 2375 2376 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2377 Record[0], 2378 (Context, getMDString(Record[1]), 2379 getMDOrNull(Record[2]))), 2380 NextMetadataNo++); 2381 break; 2382 } 2383 case bitc::METADATA_TEMPLATE_VALUE: { 2384 if (Record.size() != 5) 2385 return error("Invalid record"); 2386 2387 MetadataList.assignValue( 2388 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2389 (Context, Record[1], getMDString(Record[2]), 2390 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2391 NextMetadataNo++); 2392 break; 2393 } 2394 case bitc::METADATA_GLOBAL_VAR: { 2395 if (Record.size() != 11) 2396 return error("Invalid record"); 2397 2398 MetadataList.assignValue( 2399 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2400 (Context, getMDOrNull(Record[1]), 2401 getMDString(Record[2]), getMDString(Record[3]), 2402 getMDOrNull(Record[4]), Record[5], 2403 getMDOrNull(Record[6]), Record[7], Record[8], 2404 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2405 NextMetadataNo++); 2406 break; 2407 } 2408 case bitc::METADATA_LOCAL_VAR: { 2409 // 10th field is for the obseleted 'inlinedAt:' field. 2410 if (Record.size() < 8 || Record.size() > 10) 2411 return error("Invalid record"); 2412 2413 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2414 // DW_TAG_arg_variable. 2415 bool HasTag = Record.size() > 8; 2416 MetadataList.assignValue( 2417 GET_OR_DISTINCT(DILocalVariable, Record[0], 2418 (Context, getMDOrNull(Record[1 + HasTag]), 2419 getMDString(Record[2 + HasTag]), 2420 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2421 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2422 Record[7 + HasTag])), 2423 NextMetadataNo++); 2424 break; 2425 } 2426 case bitc::METADATA_EXPRESSION: { 2427 if (Record.size() < 1) 2428 return error("Invalid record"); 2429 2430 MetadataList.assignValue( 2431 GET_OR_DISTINCT(DIExpression, Record[0], 2432 (Context, makeArrayRef(Record).slice(1))), 2433 NextMetadataNo++); 2434 break; 2435 } 2436 case bitc::METADATA_OBJC_PROPERTY: { 2437 if (Record.size() != 8) 2438 return error("Invalid record"); 2439 2440 MetadataList.assignValue( 2441 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2442 (Context, getMDString(Record[1]), 2443 getMDOrNull(Record[2]), Record[3], 2444 getMDString(Record[4]), getMDString(Record[5]), 2445 Record[6], getMDOrNull(Record[7]))), 2446 NextMetadataNo++); 2447 break; 2448 } 2449 case bitc::METADATA_IMPORTED_ENTITY: { 2450 if (Record.size() != 6) 2451 return error("Invalid record"); 2452 2453 MetadataList.assignValue( 2454 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2455 (Context, Record[1], getMDOrNull(Record[2]), 2456 getMDOrNull(Record[3]), Record[4], 2457 getMDString(Record[5]))), 2458 NextMetadataNo++); 2459 break; 2460 } 2461 case bitc::METADATA_STRING_OLD: { 2462 std::string String(Record.begin(), Record.end()); 2463 2464 // Test for upgrading !llvm.loop. 2465 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2466 2467 Metadata *MD = MDString::get(Context, String); 2468 MetadataList.assignValue(MD, NextMetadataNo++); 2469 break; 2470 } 2471 case bitc::METADATA_STRINGS: 2472 if (std::error_code EC = 2473 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2474 return EC; 2475 break; 2476 case bitc::METADATA_KIND: { 2477 // Support older bitcode files that had METADATA_KIND records in a 2478 // block with METADATA_BLOCK_ID. 2479 if (std::error_code EC = parseMetadataKindRecord(Record)) 2480 return EC; 2481 break; 2482 } 2483 } 2484 } 2485 #undef GET_OR_DISTINCT 2486 } 2487 2488 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2489 std::error_code BitcodeReader::parseMetadataKinds() { 2490 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2491 return error("Invalid record"); 2492 2493 SmallVector<uint64_t, 64> Record; 2494 2495 // Read all the records. 2496 while (1) { 2497 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2498 2499 switch (Entry.Kind) { 2500 case BitstreamEntry::SubBlock: // Handled for us already. 2501 case BitstreamEntry::Error: 2502 return error("Malformed block"); 2503 case BitstreamEntry::EndBlock: 2504 return std::error_code(); 2505 case BitstreamEntry::Record: 2506 // The interesting case. 2507 break; 2508 } 2509 2510 // Read a record. 2511 Record.clear(); 2512 unsigned Code = Stream.readRecord(Entry.ID, Record); 2513 switch (Code) { 2514 default: // Default behavior: ignore. 2515 break; 2516 case bitc::METADATA_KIND: { 2517 if (std::error_code EC = parseMetadataKindRecord(Record)) 2518 return EC; 2519 break; 2520 } 2521 } 2522 } 2523 } 2524 2525 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2526 /// encoding. 2527 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2528 if ((V & 1) == 0) 2529 return V >> 1; 2530 if (V != 1) 2531 return -(V >> 1); 2532 // There is no such thing as -0 with integers. "-0" really means MININT. 2533 return 1ULL << 63; 2534 } 2535 2536 /// Resolve all of the initializers for global values and aliases that we can. 2537 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2538 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2539 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2540 IndirectSymbolInitWorklist; 2541 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2542 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2543 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2544 2545 GlobalInitWorklist.swap(GlobalInits); 2546 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2547 FunctionPrefixWorklist.swap(FunctionPrefixes); 2548 FunctionPrologueWorklist.swap(FunctionPrologues); 2549 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2550 2551 while (!GlobalInitWorklist.empty()) { 2552 unsigned ValID = GlobalInitWorklist.back().second; 2553 if (ValID >= ValueList.size()) { 2554 // Not ready to resolve this yet, it requires something later in the file. 2555 GlobalInits.push_back(GlobalInitWorklist.back()); 2556 } else { 2557 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2558 GlobalInitWorklist.back().first->setInitializer(C); 2559 else 2560 return error("Expected a constant"); 2561 } 2562 GlobalInitWorklist.pop_back(); 2563 } 2564 2565 while (!IndirectSymbolInitWorklist.empty()) { 2566 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2567 if (ValID >= ValueList.size()) { 2568 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2569 } else { 2570 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2571 if (!C) 2572 return error("Expected a constant"); 2573 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2574 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2575 return error("Alias and aliasee types don't match"); 2576 GIS->setIndirectSymbol(C); 2577 } 2578 IndirectSymbolInitWorklist.pop_back(); 2579 } 2580 2581 while (!FunctionPrefixWorklist.empty()) { 2582 unsigned ValID = FunctionPrefixWorklist.back().second; 2583 if (ValID >= ValueList.size()) { 2584 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2585 } else { 2586 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2587 FunctionPrefixWorklist.back().first->setPrefixData(C); 2588 else 2589 return error("Expected a constant"); 2590 } 2591 FunctionPrefixWorklist.pop_back(); 2592 } 2593 2594 while (!FunctionPrologueWorklist.empty()) { 2595 unsigned ValID = FunctionPrologueWorklist.back().second; 2596 if (ValID >= ValueList.size()) { 2597 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2598 } else { 2599 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2600 FunctionPrologueWorklist.back().first->setPrologueData(C); 2601 else 2602 return error("Expected a constant"); 2603 } 2604 FunctionPrologueWorklist.pop_back(); 2605 } 2606 2607 while (!FunctionPersonalityFnWorklist.empty()) { 2608 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2609 if (ValID >= ValueList.size()) { 2610 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2611 } else { 2612 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2613 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2614 else 2615 return error("Expected a constant"); 2616 } 2617 FunctionPersonalityFnWorklist.pop_back(); 2618 } 2619 2620 return std::error_code(); 2621 } 2622 2623 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2624 SmallVector<uint64_t, 8> Words(Vals.size()); 2625 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2626 BitcodeReader::decodeSignRotatedValue); 2627 2628 return APInt(TypeBits, Words); 2629 } 2630 2631 std::error_code BitcodeReader::parseConstants() { 2632 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2633 return error("Invalid record"); 2634 2635 SmallVector<uint64_t, 64> Record; 2636 2637 // Read all the records for this value table. 2638 Type *CurTy = Type::getInt32Ty(Context); 2639 unsigned NextCstNo = ValueList.size(); 2640 while (1) { 2641 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2642 2643 switch (Entry.Kind) { 2644 case BitstreamEntry::SubBlock: // Handled for us already. 2645 case BitstreamEntry::Error: 2646 return error("Malformed block"); 2647 case BitstreamEntry::EndBlock: 2648 if (NextCstNo != ValueList.size()) 2649 return error("Invalid constant reference"); 2650 2651 // Once all the constants have been read, go through and resolve forward 2652 // references. 2653 ValueList.resolveConstantForwardRefs(); 2654 return std::error_code(); 2655 case BitstreamEntry::Record: 2656 // The interesting case. 2657 break; 2658 } 2659 2660 // Read a record. 2661 Record.clear(); 2662 Value *V = nullptr; 2663 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2664 switch (BitCode) { 2665 default: // Default behavior: unknown constant 2666 case bitc::CST_CODE_UNDEF: // UNDEF 2667 V = UndefValue::get(CurTy); 2668 break; 2669 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2670 if (Record.empty()) 2671 return error("Invalid record"); 2672 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2673 return error("Invalid record"); 2674 CurTy = TypeList[Record[0]]; 2675 continue; // Skip the ValueList manipulation. 2676 case bitc::CST_CODE_NULL: // NULL 2677 V = Constant::getNullValue(CurTy); 2678 break; 2679 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2680 if (!CurTy->isIntegerTy() || Record.empty()) 2681 return error("Invalid record"); 2682 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2683 break; 2684 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2685 if (!CurTy->isIntegerTy() || Record.empty()) 2686 return error("Invalid record"); 2687 2688 APInt VInt = 2689 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2690 V = ConstantInt::get(Context, VInt); 2691 2692 break; 2693 } 2694 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2695 if (Record.empty()) 2696 return error("Invalid record"); 2697 if (CurTy->isHalfTy()) 2698 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2699 APInt(16, (uint16_t)Record[0]))); 2700 else if (CurTy->isFloatTy()) 2701 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2702 APInt(32, (uint32_t)Record[0]))); 2703 else if (CurTy->isDoubleTy()) 2704 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2705 APInt(64, Record[0]))); 2706 else if (CurTy->isX86_FP80Ty()) { 2707 // Bits are not stored the same way as a normal i80 APInt, compensate. 2708 uint64_t Rearrange[2]; 2709 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2710 Rearrange[1] = Record[0] >> 48; 2711 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2712 APInt(80, Rearrange))); 2713 } else if (CurTy->isFP128Ty()) 2714 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2715 APInt(128, Record))); 2716 else if (CurTy->isPPC_FP128Ty()) 2717 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2718 APInt(128, Record))); 2719 else 2720 V = UndefValue::get(CurTy); 2721 break; 2722 } 2723 2724 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2725 if (Record.empty()) 2726 return error("Invalid record"); 2727 2728 unsigned Size = Record.size(); 2729 SmallVector<Constant*, 16> Elts; 2730 2731 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2732 for (unsigned i = 0; i != Size; ++i) 2733 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2734 STy->getElementType(i))); 2735 V = ConstantStruct::get(STy, Elts); 2736 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2737 Type *EltTy = ATy->getElementType(); 2738 for (unsigned i = 0; i != Size; ++i) 2739 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2740 V = ConstantArray::get(ATy, Elts); 2741 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2742 Type *EltTy = VTy->getElementType(); 2743 for (unsigned i = 0; i != Size; ++i) 2744 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2745 V = ConstantVector::get(Elts); 2746 } else { 2747 V = UndefValue::get(CurTy); 2748 } 2749 break; 2750 } 2751 case bitc::CST_CODE_STRING: // STRING: [values] 2752 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2753 if (Record.empty()) 2754 return error("Invalid record"); 2755 2756 SmallString<16> Elts(Record.begin(), Record.end()); 2757 V = ConstantDataArray::getString(Context, Elts, 2758 BitCode == bitc::CST_CODE_CSTRING); 2759 break; 2760 } 2761 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2762 if (Record.empty()) 2763 return error("Invalid record"); 2764 2765 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2766 if (EltTy->isIntegerTy(8)) { 2767 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2768 if (isa<VectorType>(CurTy)) 2769 V = ConstantDataVector::get(Context, Elts); 2770 else 2771 V = ConstantDataArray::get(Context, Elts); 2772 } else if (EltTy->isIntegerTy(16)) { 2773 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2774 if (isa<VectorType>(CurTy)) 2775 V = ConstantDataVector::get(Context, Elts); 2776 else 2777 V = ConstantDataArray::get(Context, Elts); 2778 } else if (EltTy->isIntegerTy(32)) { 2779 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2780 if (isa<VectorType>(CurTy)) 2781 V = ConstantDataVector::get(Context, Elts); 2782 else 2783 V = ConstantDataArray::get(Context, Elts); 2784 } else if (EltTy->isIntegerTy(64)) { 2785 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2786 if (isa<VectorType>(CurTy)) 2787 V = ConstantDataVector::get(Context, Elts); 2788 else 2789 V = ConstantDataArray::get(Context, Elts); 2790 } else if (EltTy->isHalfTy()) { 2791 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2792 if (isa<VectorType>(CurTy)) 2793 V = ConstantDataVector::getFP(Context, Elts); 2794 else 2795 V = ConstantDataArray::getFP(Context, Elts); 2796 } else if (EltTy->isFloatTy()) { 2797 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2798 if (isa<VectorType>(CurTy)) 2799 V = ConstantDataVector::getFP(Context, Elts); 2800 else 2801 V = ConstantDataArray::getFP(Context, Elts); 2802 } else if (EltTy->isDoubleTy()) { 2803 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2804 if (isa<VectorType>(CurTy)) 2805 V = ConstantDataVector::getFP(Context, Elts); 2806 else 2807 V = ConstantDataArray::getFP(Context, Elts); 2808 } else { 2809 return error("Invalid type for value"); 2810 } 2811 break; 2812 } 2813 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2814 if (Record.size() < 3) 2815 return error("Invalid record"); 2816 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2817 if (Opc < 0) { 2818 V = UndefValue::get(CurTy); // Unknown binop. 2819 } else { 2820 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2821 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2822 unsigned Flags = 0; 2823 if (Record.size() >= 4) { 2824 if (Opc == Instruction::Add || 2825 Opc == Instruction::Sub || 2826 Opc == Instruction::Mul || 2827 Opc == Instruction::Shl) { 2828 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2829 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2830 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2831 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2832 } else if (Opc == Instruction::SDiv || 2833 Opc == Instruction::UDiv || 2834 Opc == Instruction::LShr || 2835 Opc == Instruction::AShr) { 2836 if (Record[3] & (1 << bitc::PEO_EXACT)) 2837 Flags |= SDivOperator::IsExact; 2838 } 2839 } 2840 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2841 } 2842 break; 2843 } 2844 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2845 if (Record.size() < 3) 2846 return error("Invalid record"); 2847 int Opc = getDecodedCastOpcode(Record[0]); 2848 if (Opc < 0) { 2849 V = UndefValue::get(CurTy); // Unknown cast. 2850 } else { 2851 Type *OpTy = getTypeByID(Record[1]); 2852 if (!OpTy) 2853 return error("Invalid record"); 2854 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2855 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2856 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2857 } 2858 break; 2859 } 2860 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2861 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2862 unsigned OpNum = 0; 2863 Type *PointeeType = nullptr; 2864 if (Record.size() % 2) 2865 PointeeType = getTypeByID(Record[OpNum++]); 2866 SmallVector<Constant*, 16> Elts; 2867 while (OpNum != Record.size()) { 2868 Type *ElTy = getTypeByID(Record[OpNum++]); 2869 if (!ElTy) 2870 return error("Invalid record"); 2871 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2872 } 2873 2874 if (PointeeType && 2875 PointeeType != 2876 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2877 ->getElementType()) 2878 return error("Explicit gep operator type does not match pointee type " 2879 "of pointer operand"); 2880 2881 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2882 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2883 BitCode == 2884 bitc::CST_CODE_CE_INBOUNDS_GEP); 2885 break; 2886 } 2887 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2888 if (Record.size() < 3) 2889 return error("Invalid record"); 2890 2891 Type *SelectorTy = Type::getInt1Ty(Context); 2892 2893 // The selector might be an i1 or an <n x i1> 2894 // Get the type from the ValueList before getting a forward ref. 2895 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2896 if (Value *V = ValueList[Record[0]]) 2897 if (SelectorTy != V->getType()) 2898 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2899 2900 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2901 SelectorTy), 2902 ValueList.getConstantFwdRef(Record[1],CurTy), 2903 ValueList.getConstantFwdRef(Record[2],CurTy)); 2904 break; 2905 } 2906 case bitc::CST_CODE_CE_EXTRACTELT 2907 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2908 if (Record.size() < 3) 2909 return error("Invalid record"); 2910 VectorType *OpTy = 2911 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2912 if (!OpTy) 2913 return error("Invalid record"); 2914 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2915 Constant *Op1 = nullptr; 2916 if (Record.size() == 4) { 2917 Type *IdxTy = getTypeByID(Record[2]); 2918 if (!IdxTy) 2919 return error("Invalid record"); 2920 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2921 } else // TODO: Remove with llvm 4.0 2922 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2923 if (!Op1) 2924 return error("Invalid record"); 2925 V = ConstantExpr::getExtractElement(Op0, Op1); 2926 break; 2927 } 2928 case bitc::CST_CODE_CE_INSERTELT 2929 : { // CE_INSERTELT: [opval, opval, opty, opval] 2930 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2931 if (Record.size() < 3 || !OpTy) 2932 return error("Invalid record"); 2933 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2934 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2935 OpTy->getElementType()); 2936 Constant *Op2 = nullptr; 2937 if (Record.size() == 4) { 2938 Type *IdxTy = getTypeByID(Record[2]); 2939 if (!IdxTy) 2940 return error("Invalid record"); 2941 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2942 } else // TODO: Remove with llvm 4.0 2943 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2944 if (!Op2) 2945 return error("Invalid record"); 2946 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2947 break; 2948 } 2949 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2950 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2951 if (Record.size() < 3 || !OpTy) 2952 return error("Invalid record"); 2953 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2954 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2955 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2956 OpTy->getNumElements()); 2957 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2958 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2959 break; 2960 } 2961 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2962 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2963 VectorType *OpTy = 2964 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2965 if (Record.size() < 4 || !RTy || !OpTy) 2966 return error("Invalid record"); 2967 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2968 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2969 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2970 RTy->getNumElements()); 2971 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2972 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2973 break; 2974 } 2975 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2976 if (Record.size() < 4) 2977 return error("Invalid record"); 2978 Type *OpTy = getTypeByID(Record[0]); 2979 if (!OpTy) 2980 return error("Invalid record"); 2981 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2982 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2983 2984 if (OpTy->isFPOrFPVectorTy()) 2985 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2986 else 2987 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2988 break; 2989 } 2990 // This maintains backward compatibility, pre-asm dialect keywords. 2991 // FIXME: Remove with the 4.0 release. 2992 case bitc::CST_CODE_INLINEASM_OLD: { 2993 if (Record.size() < 2) 2994 return error("Invalid record"); 2995 std::string AsmStr, ConstrStr; 2996 bool HasSideEffects = Record[0] & 1; 2997 bool IsAlignStack = Record[0] >> 1; 2998 unsigned AsmStrSize = Record[1]; 2999 if (2+AsmStrSize >= Record.size()) 3000 return error("Invalid record"); 3001 unsigned ConstStrSize = Record[2+AsmStrSize]; 3002 if (3+AsmStrSize+ConstStrSize > Record.size()) 3003 return error("Invalid record"); 3004 3005 for (unsigned i = 0; i != AsmStrSize; ++i) 3006 AsmStr += (char)Record[2+i]; 3007 for (unsigned i = 0; i != ConstStrSize; ++i) 3008 ConstrStr += (char)Record[3+AsmStrSize+i]; 3009 PointerType *PTy = cast<PointerType>(CurTy); 3010 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3011 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3012 break; 3013 } 3014 // This version adds support for the asm dialect keywords (e.g., 3015 // inteldialect). 3016 case bitc::CST_CODE_INLINEASM: { 3017 if (Record.size() < 2) 3018 return error("Invalid record"); 3019 std::string AsmStr, ConstrStr; 3020 bool HasSideEffects = Record[0] & 1; 3021 bool IsAlignStack = (Record[0] >> 1) & 1; 3022 unsigned AsmDialect = Record[0] >> 2; 3023 unsigned AsmStrSize = Record[1]; 3024 if (2+AsmStrSize >= Record.size()) 3025 return error("Invalid record"); 3026 unsigned ConstStrSize = Record[2+AsmStrSize]; 3027 if (3+AsmStrSize+ConstStrSize > Record.size()) 3028 return error("Invalid record"); 3029 3030 for (unsigned i = 0; i != AsmStrSize; ++i) 3031 AsmStr += (char)Record[2+i]; 3032 for (unsigned i = 0; i != ConstStrSize; ++i) 3033 ConstrStr += (char)Record[3+AsmStrSize+i]; 3034 PointerType *PTy = cast<PointerType>(CurTy); 3035 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3036 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3037 InlineAsm::AsmDialect(AsmDialect)); 3038 break; 3039 } 3040 case bitc::CST_CODE_BLOCKADDRESS:{ 3041 if (Record.size() < 3) 3042 return error("Invalid record"); 3043 Type *FnTy = getTypeByID(Record[0]); 3044 if (!FnTy) 3045 return error("Invalid record"); 3046 Function *Fn = 3047 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3048 if (!Fn) 3049 return error("Invalid record"); 3050 3051 // If the function is already parsed we can insert the block address right 3052 // away. 3053 BasicBlock *BB; 3054 unsigned BBID = Record[2]; 3055 if (!BBID) 3056 // Invalid reference to entry block. 3057 return error("Invalid ID"); 3058 if (!Fn->empty()) { 3059 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3060 for (size_t I = 0, E = BBID; I != E; ++I) { 3061 if (BBI == BBE) 3062 return error("Invalid ID"); 3063 ++BBI; 3064 } 3065 BB = &*BBI; 3066 } else { 3067 // Otherwise insert a placeholder and remember it so it can be inserted 3068 // when the function is parsed. 3069 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3070 if (FwdBBs.empty()) 3071 BasicBlockFwdRefQueue.push_back(Fn); 3072 if (FwdBBs.size() < BBID + 1) 3073 FwdBBs.resize(BBID + 1); 3074 if (!FwdBBs[BBID]) 3075 FwdBBs[BBID] = BasicBlock::Create(Context); 3076 BB = FwdBBs[BBID]; 3077 } 3078 V = BlockAddress::get(Fn, BB); 3079 break; 3080 } 3081 } 3082 3083 ValueList.assignValue(V, NextCstNo); 3084 ++NextCstNo; 3085 } 3086 } 3087 3088 std::error_code BitcodeReader::parseUseLists() { 3089 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3090 return error("Invalid record"); 3091 3092 // Read all the records. 3093 SmallVector<uint64_t, 64> Record; 3094 while (1) { 3095 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3096 3097 switch (Entry.Kind) { 3098 case BitstreamEntry::SubBlock: // Handled for us already. 3099 case BitstreamEntry::Error: 3100 return error("Malformed block"); 3101 case BitstreamEntry::EndBlock: 3102 return std::error_code(); 3103 case BitstreamEntry::Record: 3104 // The interesting case. 3105 break; 3106 } 3107 3108 // Read a use list record. 3109 Record.clear(); 3110 bool IsBB = false; 3111 switch (Stream.readRecord(Entry.ID, Record)) { 3112 default: // Default behavior: unknown type. 3113 break; 3114 case bitc::USELIST_CODE_BB: 3115 IsBB = true; 3116 // fallthrough 3117 case bitc::USELIST_CODE_DEFAULT: { 3118 unsigned RecordLength = Record.size(); 3119 if (RecordLength < 3) 3120 // Records should have at least an ID and two indexes. 3121 return error("Invalid record"); 3122 unsigned ID = Record.back(); 3123 Record.pop_back(); 3124 3125 Value *V; 3126 if (IsBB) { 3127 assert(ID < FunctionBBs.size() && "Basic block not found"); 3128 V = FunctionBBs[ID]; 3129 } else 3130 V = ValueList[ID]; 3131 unsigned NumUses = 0; 3132 SmallDenseMap<const Use *, unsigned, 16> Order; 3133 for (const Use &U : V->materialized_uses()) { 3134 if (++NumUses > Record.size()) 3135 break; 3136 Order[&U] = Record[NumUses - 1]; 3137 } 3138 if (Order.size() != Record.size() || NumUses > Record.size()) 3139 // Mismatches can happen if the functions are being materialized lazily 3140 // (out-of-order), or a value has been upgraded. 3141 break; 3142 3143 V->sortUseList([&](const Use &L, const Use &R) { 3144 return Order.lookup(&L) < Order.lookup(&R); 3145 }); 3146 break; 3147 } 3148 } 3149 } 3150 } 3151 3152 /// When we see the block for metadata, remember where it is and then skip it. 3153 /// This lets us lazily deserialize the metadata. 3154 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3155 // Save the current stream state. 3156 uint64_t CurBit = Stream.GetCurrentBitNo(); 3157 DeferredMetadataInfo.push_back(CurBit); 3158 3159 // Skip over the block for now. 3160 if (Stream.SkipBlock()) 3161 return error("Invalid record"); 3162 return std::error_code(); 3163 } 3164 3165 std::error_code BitcodeReader::materializeMetadata() { 3166 for (uint64_t BitPos : DeferredMetadataInfo) { 3167 // Move the bit stream to the saved position. 3168 Stream.JumpToBit(BitPos); 3169 if (std::error_code EC = parseMetadata(true)) 3170 return EC; 3171 } 3172 DeferredMetadataInfo.clear(); 3173 return std::error_code(); 3174 } 3175 3176 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3177 3178 /// When we see the block for a function body, remember where it is and then 3179 /// skip it. This lets us lazily deserialize the functions. 3180 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3181 // Get the function we are talking about. 3182 if (FunctionsWithBodies.empty()) 3183 return error("Insufficient function protos"); 3184 3185 Function *Fn = FunctionsWithBodies.back(); 3186 FunctionsWithBodies.pop_back(); 3187 3188 // Save the current stream state. 3189 uint64_t CurBit = Stream.GetCurrentBitNo(); 3190 assert( 3191 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3192 "Mismatch between VST and scanned function offsets"); 3193 DeferredFunctionInfo[Fn] = CurBit; 3194 3195 // Skip over the function block for now. 3196 if (Stream.SkipBlock()) 3197 return error("Invalid record"); 3198 return std::error_code(); 3199 } 3200 3201 std::error_code BitcodeReader::globalCleanup() { 3202 // Patch the initializers for globals and aliases up. 3203 resolveGlobalAndIndirectSymbolInits(); 3204 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3205 return error("Malformed global initializer set"); 3206 3207 // Look for intrinsic functions which need to be upgraded at some point 3208 for (Function &F : *TheModule) { 3209 Function *NewFn; 3210 if (UpgradeIntrinsicFunction(&F, NewFn)) 3211 UpgradedIntrinsics[&F] = NewFn; 3212 } 3213 3214 // Look for global variables which need to be renamed. 3215 for (GlobalVariable &GV : TheModule->globals()) 3216 UpgradeGlobalVariable(&GV); 3217 3218 // Force deallocation of memory for these vectors to favor the client that 3219 // want lazy deserialization. 3220 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3221 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3222 IndirectSymbolInits); 3223 return std::error_code(); 3224 } 3225 3226 /// Support for lazy parsing of function bodies. This is required if we 3227 /// either have an old bitcode file without a VST forward declaration record, 3228 /// or if we have an anonymous function being materialized, since anonymous 3229 /// functions do not have a name and are therefore not in the VST. 3230 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3231 Stream.JumpToBit(NextUnreadBit); 3232 3233 if (Stream.AtEndOfStream()) 3234 return error("Could not find function in stream"); 3235 3236 if (!SeenFirstFunctionBody) 3237 return error("Trying to materialize functions before seeing function blocks"); 3238 3239 // An old bitcode file with the symbol table at the end would have 3240 // finished the parse greedily. 3241 assert(SeenValueSymbolTable); 3242 3243 SmallVector<uint64_t, 64> Record; 3244 3245 while (1) { 3246 BitstreamEntry Entry = Stream.advance(); 3247 switch (Entry.Kind) { 3248 default: 3249 return error("Expect SubBlock"); 3250 case BitstreamEntry::SubBlock: 3251 switch (Entry.ID) { 3252 default: 3253 return error("Expect function block"); 3254 case bitc::FUNCTION_BLOCK_ID: 3255 if (std::error_code EC = rememberAndSkipFunctionBody()) 3256 return EC; 3257 NextUnreadBit = Stream.GetCurrentBitNo(); 3258 return std::error_code(); 3259 } 3260 } 3261 } 3262 } 3263 3264 std::error_code BitcodeReader::parseBitcodeVersion() { 3265 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3266 return error("Invalid record"); 3267 3268 // Read all the records. 3269 SmallVector<uint64_t, 64> Record; 3270 while (1) { 3271 BitstreamEntry Entry = Stream.advance(); 3272 3273 switch (Entry.Kind) { 3274 default: 3275 case BitstreamEntry::Error: 3276 return error("Malformed block"); 3277 case BitstreamEntry::EndBlock: 3278 return std::error_code(); 3279 case BitstreamEntry::Record: 3280 // The interesting case. 3281 break; 3282 } 3283 3284 // Read a record. 3285 Record.clear(); 3286 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3287 switch (BitCode) { 3288 default: // Default behavior: reject 3289 return error("Invalid value"); 3290 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3291 // N] 3292 convertToString(Record, 0, ProducerIdentification); 3293 break; 3294 } 3295 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3296 unsigned epoch = (unsigned)Record[0]; 3297 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3298 return error( 3299 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3300 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3301 } 3302 } 3303 } 3304 } 3305 } 3306 3307 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3308 bool ShouldLazyLoadMetadata) { 3309 if (ResumeBit) 3310 Stream.JumpToBit(ResumeBit); 3311 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3312 return error("Invalid record"); 3313 3314 SmallVector<uint64_t, 64> Record; 3315 std::vector<std::string> SectionTable; 3316 std::vector<std::string> GCTable; 3317 3318 // Read all the records for this module. 3319 while (1) { 3320 BitstreamEntry Entry = Stream.advance(); 3321 3322 switch (Entry.Kind) { 3323 case BitstreamEntry::Error: 3324 return error("Malformed block"); 3325 case BitstreamEntry::EndBlock: 3326 return globalCleanup(); 3327 3328 case BitstreamEntry::SubBlock: 3329 switch (Entry.ID) { 3330 default: // Skip unknown content. 3331 if (Stream.SkipBlock()) 3332 return error("Invalid record"); 3333 break; 3334 case bitc::BLOCKINFO_BLOCK_ID: 3335 if (Stream.ReadBlockInfoBlock()) 3336 return error("Malformed block"); 3337 break; 3338 case bitc::PARAMATTR_BLOCK_ID: 3339 if (std::error_code EC = parseAttributeBlock()) 3340 return EC; 3341 break; 3342 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3343 if (std::error_code EC = parseAttributeGroupBlock()) 3344 return EC; 3345 break; 3346 case bitc::TYPE_BLOCK_ID_NEW: 3347 if (std::error_code EC = parseTypeTable()) 3348 return EC; 3349 break; 3350 case bitc::VALUE_SYMTAB_BLOCK_ID: 3351 if (!SeenValueSymbolTable) { 3352 // Either this is an old form VST without function index and an 3353 // associated VST forward declaration record (which would have caused 3354 // the VST to be jumped to and parsed before it was encountered 3355 // normally in the stream), or there were no function blocks to 3356 // trigger an earlier parsing of the VST. 3357 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3358 if (std::error_code EC = parseValueSymbolTable()) 3359 return EC; 3360 SeenValueSymbolTable = true; 3361 } else { 3362 // We must have had a VST forward declaration record, which caused 3363 // the parser to jump to and parse the VST earlier. 3364 assert(VSTOffset > 0); 3365 if (Stream.SkipBlock()) 3366 return error("Invalid record"); 3367 } 3368 break; 3369 case bitc::CONSTANTS_BLOCK_ID: 3370 if (std::error_code EC = parseConstants()) 3371 return EC; 3372 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3373 return EC; 3374 break; 3375 case bitc::METADATA_BLOCK_ID: 3376 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3377 if (std::error_code EC = rememberAndSkipMetadata()) 3378 return EC; 3379 break; 3380 } 3381 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3382 if (std::error_code EC = parseMetadata(true)) 3383 return EC; 3384 break; 3385 case bitc::METADATA_KIND_BLOCK_ID: 3386 if (std::error_code EC = parseMetadataKinds()) 3387 return EC; 3388 break; 3389 case bitc::FUNCTION_BLOCK_ID: 3390 // If this is the first function body we've seen, reverse the 3391 // FunctionsWithBodies list. 3392 if (!SeenFirstFunctionBody) { 3393 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3394 if (std::error_code EC = globalCleanup()) 3395 return EC; 3396 SeenFirstFunctionBody = true; 3397 } 3398 3399 if (VSTOffset > 0) { 3400 // If we have a VST forward declaration record, make sure we 3401 // parse the VST now if we haven't already. It is needed to 3402 // set up the DeferredFunctionInfo vector for lazy reading. 3403 if (!SeenValueSymbolTable) { 3404 if (std::error_code EC = 3405 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3406 return EC; 3407 SeenValueSymbolTable = true; 3408 // Fall through so that we record the NextUnreadBit below. 3409 // This is necessary in case we have an anonymous function that 3410 // is later materialized. Since it will not have a VST entry we 3411 // need to fall back to the lazy parse to find its offset. 3412 } else { 3413 // If we have a VST forward declaration record, but have already 3414 // parsed the VST (just above, when the first function body was 3415 // encountered here), then we are resuming the parse after 3416 // materializing functions. The ResumeBit points to the 3417 // start of the last function block recorded in the 3418 // DeferredFunctionInfo map. Skip it. 3419 if (Stream.SkipBlock()) 3420 return error("Invalid record"); 3421 continue; 3422 } 3423 } 3424 3425 // Support older bitcode files that did not have the function 3426 // index in the VST, nor a VST forward declaration record, as 3427 // well as anonymous functions that do not have VST entries. 3428 // Build the DeferredFunctionInfo vector on the fly. 3429 if (std::error_code EC = rememberAndSkipFunctionBody()) 3430 return EC; 3431 3432 // Suspend parsing when we reach the function bodies. Subsequent 3433 // materialization calls will resume it when necessary. If the bitcode 3434 // file is old, the symbol table will be at the end instead and will not 3435 // have been seen yet. In this case, just finish the parse now. 3436 if (SeenValueSymbolTable) { 3437 NextUnreadBit = Stream.GetCurrentBitNo(); 3438 return std::error_code(); 3439 } 3440 break; 3441 case bitc::USELIST_BLOCK_ID: 3442 if (std::error_code EC = parseUseLists()) 3443 return EC; 3444 break; 3445 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3446 if (std::error_code EC = parseOperandBundleTags()) 3447 return EC; 3448 break; 3449 } 3450 continue; 3451 3452 case BitstreamEntry::Record: 3453 // The interesting case. 3454 break; 3455 } 3456 3457 // Read a record. 3458 auto BitCode = Stream.readRecord(Entry.ID, Record); 3459 switch (BitCode) { 3460 default: break; // Default behavior, ignore unknown content. 3461 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3462 if (Record.size() < 1) 3463 return error("Invalid record"); 3464 // Only version #0 and #1 are supported so far. 3465 unsigned module_version = Record[0]; 3466 switch (module_version) { 3467 default: 3468 return error("Invalid value"); 3469 case 0: 3470 UseRelativeIDs = false; 3471 break; 3472 case 1: 3473 UseRelativeIDs = true; 3474 break; 3475 } 3476 break; 3477 } 3478 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3479 std::string S; 3480 if (convertToString(Record, 0, S)) 3481 return error("Invalid record"); 3482 TheModule->setTargetTriple(S); 3483 break; 3484 } 3485 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3486 std::string S; 3487 if (convertToString(Record, 0, S)) 3488 return error("Invalid record"); 3489 TheModule->setDataLayout(S); 3490 break; 3491 } 3492 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3493 std::string S; 3494 if (convertToString(Record, 0, S)) 3495 return error("Invalid record"); 3496 TheModule->setModuleInlineAsm(S); 3497 break; 3498 } 3499 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3500 // FIXME: Remove in 4.0. 3501 std::string S; 3502 if (convertToString(Record, 0, S)) 3503 return error("Invalid record"); 3504 // Ignore value. 3505 break; 3506 } 3507 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3508 std::string S; 3509 if (convertToString(Record, 0, S)) 3510 return error("Invalid record"); 3511 SectionTable.push_back(S); 3512 break; 3513 } 3514 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3515 std::string S; 3516 if (convertToString(Record, 0, S)) 3517 return error("Invalid record"); 3518 GCTable.push_back(S); 3519 break; 3520 } 3521 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3522 if (Record.size() < 2) 3523 return error("Invalid record"); 3524 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3525 unsigned ComdatNameSize = Record[1]; 3526 std::string ComdatName; 3527 ComdatName.reserve(ComdatNameSize); 3528 for (unsigned i = 0; i != ComdatNameSize; ++i) 3529 ComdatName += (char)Record[2 + i]; 3530 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3531 C->setSelectionKind(SK); 3532 ComdatList.push_back(C); 3533 break; 3534 } 3535 // GLOBALVAR: [pointer type, isconst, initid, 3536 // linkage, alignment, section, visibility, threadlocal, 3537 // unnamed_addr, externally_initialized, dllstorageclass, 3538 // comdat] 3539 case bitc::MODULE_CODE_GLOBALVAR: { 3540 if (Record.size() < 6) 3541 return error("Invalid record"); 3542 Type *Ty = getTypeByID(Record[0]); 3543 if (!Ty) 3544 return error("Invalid record"); 3545 bool isConstant = Record[1] & 1; 3546 bool explicitType = Record[1] & 2; 3547 unsigned AddressSpace; 3548 if (explicitType) { 3549 AddressSpace = Record[1] >> 2; 3550 } else { 3551 if (!Ty->isPointerTy()) 3552 return error("Invalid type for value"); 3553 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3554 Ty = cast<PointerType>(Ty)->getElementType(); 3555 } 3556 3557 uint64_t RawLinkage = Record[3]; 3558 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3559 unsigned Alignment; 3560 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3561 return EC; 3562 std::string Section; 3563 if (Record[5]) { 3564 if (Record[5]-1 >= SectionTable.size()) 3565 return error("Invalid ID"); 3566 Section = SectionTable[Record[5]-1]; 3567 } 3568 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3569 // Local linkage must have default visibility. 3570 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3571 // FIXME: Change to an error if non-default in 4.0. 3572 Visibility = getDecodedVisibility(Record[6]); 3573 3574 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3575 if (Record.size() > 7) 3576 TLM = getDecodedThreadLocalMode(Record[7]); 3577 3578 bool UnnamedAddr = false; 3579 if (Record.size() > 8) 3580 UnnamedAddr = Record[8]; 3581 3582 bool ExternallyInitialized = false; 3583 if (Record.size() > 9) 3584 ExternallyInitialized = Record[9]; 3585 3586 GlobalVariable *NewGV = 3587 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3588 TLM, AddressSpace, ExternallyInitialized); 3589 NewGV->setAlignment(Alignment); 3590 if (!Section.empty()) 3591 NewGV->setSection(Section); 3592 NewGV->setVisibility(Visibility); 3593 NewGV->setUnnamedAddr(UnnamedAddr); 3594 3595 if (Record.size() > 10) 3596 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3597 else 3598 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3599 3600 ValueList.push_back(NewGV); 3601 3602 // Remember which value to use for the global initializer. 3603 if (unsigned InitID = Record[2]) 3604 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3605 3606 if (Record.size() > 11) { 3607 if (unsigned ComdatID = Record[11]) { 3608 if (ComdatID > ComdatList.size()) 3609 return error("Invalid global variable comdat ID"); 3610 NewGV->setComdat(ComdatList[ComdatID - 1]); 3611 } 3612 } else if (hasImplicitComdat(RawLinkage)) { 3613 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3614 } 3615 break; 3616 } 3617 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3618 // alignment, section, visibility, gc, unnamed_addr, 3619 // prologuedata, dllstorageclass, comdat, prefixdata] 3620 case bitc::MODULE_CODE_FUNCTION: { 3621 if (Record.size() < 8) 3622 return error("Invalid record"); 3623 Type *Ty = getTypeByID(Record[0]); 3624 if (!Ty) 3625 return error("Invalid record"); 3626 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3627 Ty = PTy->getElementType(); 3628 auto *FTy = dyn_cast<FunctionType>(Ty); 3629 if (!FTy) 3630 return error("Invalid type for value"); 3631 auto CC = static_cast<CallingConv::ID>(Record[1]); 3632 if (CC & ~CallingConv::MaxID) 3633 return error("Invalid calling convention ID"); 3634 3635 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3636 "", TheModule); 3637 3638 Func->setCallingConv(CC); 3639 bool isProto = Record[2]; 3640 uint64_t RawLinkage = Record[3]; 3641 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3642 Func->setAttributes(getAttributes(Record[4])); 3643 3644 unsigned Alignment; 3645 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3646 return EC; 3647 Func->setAlignment(Alignment); 3648 if (Record[6]) { 3649 if (Record[6]-1 >= SectionTable.size()) 3650 return error("Invalid ID"); 3651 Func->setSection(SectionTable[Record[6]-1]); 3652 } 3653 // Local linkage must have default visibility. 3654 if (!Func->hasLocalLinkage()) 3655 // FIXME: Change to an error if non-default in 4.0. 3656 Func->setVisibility(getDecodedVisibility(Record[7])); 3657 if (Record.size() > 8 && Record[8]) { 3658 if (Record[8]-1 >= GCTable.size()) 3659 return error("Invalid ID"); 3660 Func->setGC(GCTable[Record[8]-1].c_str()); 3661 } 3662 bool UnnamedAddr = false; 3663 if (Record.size() > 9) 3664 UnnamedAddr = Record[9]; 3665 Func->setUnnamedAddr(UnnamedAddr); 3666 if (Record.size() > 10 && Record[10] != 0) 3667 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3668 3669 if (Record.size() > 11) 3670 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3671 else 3672 upgradeDLLImportExportLinkage(Func, RawLinkage); 3673 3674 if (Record.size() > 12) { 3675 if (unsigned ComdatID = Record[12]) { 3676 if (ComdatID > ComdatList.size()) 3677 return error("Invalid function comdat ID"); 3678 Func->setComdat(ComdatList[ComdatID - 1]); 3679 } 3680 } else if (hasImplicitComdat(RawLinkage)) { 3681 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3682 } 3683 3684 if (Record.size() > 13 && Record[13] != 0) 3685 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3686 3687 if (Record.size() > 14 && Record[14] != 0) 3688 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3689 3690 ValueList.push_back(Func); 3691 3692 // If this is a function with a body, remember the prototype we are 3693 // creating now, so that we can match up the body with them later. 3694 if (!isProto) { 3695 Func->setIsMaterializable(true); 3696 FunctionsWithBodies.push_back(Func); 3697 DeferredFunctionInfo[Func] = 0; 3698 } 3699 break; 3700 } 3701 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3702 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3703 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3704 case bitc::MODULE_CODE_IFUNC: 3705 case bitc::MODULE_CODE_ALIAS: 3706 case bitc::MODULE_CODE_ALIAS_OLD: { 3707 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3708 if (Record.size() < (3 + (unsigned)NewRecord)) 3709 return error("Invalid record"); 3710 unsigned OpNum = 0; 3711 Type *Ty = getTypeByID(Record[OpNum++]); 3712 if (!Ty) 3713 return error("Invalid record"); 3714 3715 unsigned AddrSpace; 3716 if (!NewRecord) { 3717 auto *PTy = dyn_cast<PointerType>(Ty); 3718 if (!PTy) 3719 return error("Invalid type for value"); 3720 Ty = PTy->getElementType(); 3721 AddrSpace = PTy->getAddressSpace(); 3722 } else { 3723 AddrSpace = Record[OpNum++]; 3724 } 3725 3726 auto Val = Record[OpNum++]; 3727 auto Linkage = Record[OpNum++]; 3728 GlobalIndirectSymbol *NewGA; 3729 if (BitCode == bitc::MODULE_CODE_ALIAS || 3730 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3731 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3732 "", TheModule); 3733 else 3734 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3735 "", nullptr, TheModule); 3736 // Old bitcode files didn't have visibility field. 3737 // Local linkage must have default visibility. 3738 if (OpNum != Record.size()) { 3739 auto VisInd = OpNum++; 3740 if (!NewGA->hasLocalLinkage()) 3741 // FIXME: Change to an error if non-default in 4.0. 3742 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3743 } 3744 if (OpNum != Record.size()) 3745 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3746 else 3747 upgradeDLLImportExportLinkage(NewGA, Linkage); 3748 if (OpNum != Record.size()) 3749 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3750 if (OpNum != Record.size()) 3751 NewGA->setUnnamedAddr(Record[OpNum++]); 3752 ValueList.push_back(NewGA); 3753 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3754 break; 3755 } 3756 /// MODULE_CODE_PURGEVALS: [numvals] 3757 case bitc::MODULE_CODE_PURGEVALS: 3758 // Trim down the value list to the specified size. 3759 if (Record.size() < 1 || Record[0] > ValueList.size()) 3760 return error("Invalid record"); 3761 ValueList.shrinkTo(Record[0]); 3762 break; 3763 /// MODULE_CODE_VSTOFFSET: [offset] 3764 case bitc::MODULE_CODE_VSTOFFSET: 3765 if (Record.size() < 1) 3766 return error("Invalid record"); 3767 VSTOffset = Record[0]; 3768 break; 3769 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3770 case bitc::MODULE_CODE_SOURCE_FILENAME: 3771 SmallString<128> ValueName; 3772 if (convertToString(Record, 0, ValueName)) 3773 return error("Invalid record"); 3774 TheModule->setSourceFileName(ValueName); 3775 break; 3776 } 3777 Record.clear(); 3778 } 3779 } 3780 3781 /// Helper to read the header common to all bitcode files. 3782 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3783 // Sniff for the signature. 3784 if (Stream.Read(8) != 'B' || 3785 Stream.Read(8) != 'C' || 3786 Stream.Read(4) != 0x0 || 3787 Stream.Read(4) != 0xC || 3788 Stream.Read(4) != 0xE || 3789 Stream.Read(4) != 0xD) 3790 return false; 3791 return true; 3792 } 3793 3794 std::error_code 3795 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3796 Module *M, bool ShouldLazyLoadMetadata) { 3797 TheModule = M; 3798 3799 if (std::error_code EC = initStream(std::move(Streamer))) 3800 return EC; 3801 3802 // Sniff for the signature. 3803 if (!hasValidBitcodeHeader(Stream)) 3804 return error("Invalid bitcode signature"); 3805 3806 // We expect a number of well-defined blocks, though we don't necessarily 3807 // need to understand them all. 3808 while (1) { 3809 if (Stream.AtEndOfStream()) { 3810 // We didn't really read a proper Module. 3811 return error("Malformed IR file"); 3812 } 3813 3814 BitstreamEntry Entry = 3815 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3816 3817 if (Entry.Kind != BitstreamEntry::SubBlock) 3818 return error("Malformed block"); 3819 3820 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3821 parseBitcodeVersion(); 3822 continue; 3823 } 3824 3825 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3826 return parseModule(0, ShouldLazyLoadMetadata); 3827 3828 if (Stream.SkipBlock()) 3829 return error("Invalid record"); 3830 } 3831 } 3832 3833 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3834 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3835 return error("Invalid record"); 3836 3837 SmallVector<uint64_t, 64> Record; 3838 3839 std::string Triple; 3840 // Read all the records for this module. 3841 while (1) { 3842 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3843 3844 switch (Entry.Kind) { 3845 case BitstreamEntry::SubBlock: // Handled for us already. 3846 case BitstreamEntry::Error: 3847 return error("Malformed block"); 3848 case BitstreamEntry::EndBlock: 3849 return Triple; 3850 case BitstreamEntry::Record: 3851 // The interesting case. 3852 break; 3853 } 3854 3855 // Read a record. 3856 switch (Stream.readRecord(Entry.ID, Record)) { 3857 default: break; // Default behavior, ignore unknown content. 3858 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3859 std::string S; 3860 if (convertToString(Record, 0, S)) 3861 return error("Invalid record"); 3862 Triple = S; 3863 break; 3864 } 3865 } 3866 Record.clear(); 3867 } 3868 llvm_unreachable("Exit infinite loop"); 3869 } 3870 3871 ErrorOr<std::string> BitcodeReader::parseTriple() { 3872 if (std::error_code EC = initStream(nullptr)) 3873 return EC; 3874 3875 // Sniff for the signature. 3876 if (!hasValidBitcodeHeader(Stream)) 3877 return error("Invalid bitcode signature"); 3878 3879 // We expect a number of well-defined blocks, though we don't necessarily 3880 // need to understand them all. 3881 while (1) { 3882 BitstreamEntry Entry = Stream.advance(); 3883 3884 switch (Entry.Kind) { 3885 case BitstreamEntry::Error: 3886 return error("Malformed block"); 3887 case BitstreamEntry::EndBlock: 3888 return std::error_code(); 3889 3890 case BitstreamEntry::SubBlock: 3891 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3892 return parseModuleTriple(); 3893 3894 // Ignore other sub-blocks. 3895 if (Stream.SkipBlock()) 3896 return error("Malformed block"); 3897 continue; 3898 3899 case BitstreamEntry::Record: 3900 Stream.skipRecord(Entry.ID); 3901 continue; 3902 } 3903 } 3904 } 3905 3906 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3907 if (std::error_code EC = initStream(nullptr)) 3908 return EC; 3909 3910 // Sniff for the signature. 3911 if (!hasValidBitcodeHeader(Stream)) 3912 return error("Invalid bitcode signature"); 3913 3914 // We expect a number of well-defined blocks, though we don't necessarily 3915 // need to understand them all. 3916 while (1) { 3917 BitstreamEntry Entry = Stream.advance(); 3918 switch (Entry.Kind) { 3919 case BitstreamEntry::Error: 3920 return error("Malformed block"); 3921 case BitstreamEntry::EndBlock: 3922 return std::error_code(); 3923 3924 case BitstreamEntry::SubBlock: 3925 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3926 if (std::error_code EC = parseBitcodeVersion()) 3927 return EC; 3928 return ProducerIdentification; 3929 } 3930 // Ignore other sub-blocks. 3931 if (Stream.SkipBlock()) 3932 return error("Malformed block"); 3933 continue; 3934 case BitstreamEntry::Record: 3935 Stream.skipRecord(Entry.ID); 3936 continue; 3937 } 3938 } 3939 } 3940 3941 /// Parse metadata attachments. 3942 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3943 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3944 return error("Invalid record"); 3945 3946 SmallVector<uint64_t, 64> Record; 3947 while (1) { 3948 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3949 3950 switch (Entry.Kind) { 3951 case BitstreamEntry::SubBlock: // Handled for us already. 3952 case BitstreamEntry::Error: 3953 return error("Malformed block"); 3954 case BitstreamEntry::EndBlock: 3955 return std::error_code(); 3956 case BitstreamEntry::Record: 3957 // The interesting case. 3958 break; 3959 } 3960 3961 // Read a metadata attachment record. 3962 Record.clear(); 3963 switch (Stream.readRecord(Entry.ID, Record)) { 3964 default: // Default behavior: ignore. 3965 break; 3966 case bitc::METADATA_ATTACHMENT: { 3967 unsigned RecordLength = Record.size(); 3968 if (Record.empty()) 3969 return error("Invalid record"); 3970 if (RecordLength % 2 == 0) { 3971 // A function attachment. 3972 for (unsigned I = 0; I != RecordLength; I += 2) { 3973 auto K = MDKindMap.find(Record[I]); 3974 if (K == MDKindMap.end()) 3975 return error("Invalid ID"); 3976 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 3977 if (!MD) 3978 return error("Invalid metadata attachment"); 3979 F.setMetadata(K->second, MD); 3980 } 3981 continue; 3982 } 3983 3984 // An instruction attachment. 3985 Instruction *Inst = InstructionList[Record[0]]; 3986 for (unsigned i = 1; i != RecordLength; i = i+2) { 3987 unsigned Kind = Record[i]; 3988 DenseMap<unsigned, unsigned>::iterator I = 3989 MDKindMap.find(Kind); 3990 if (I == MDKindMap.end()) 3991 return error("Invalid ID"); 3992 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 3993 if (isa<LocalAsMetadata>(Node)) 3994 // Drop the attachment. This used to be legal, but there's no 3995 // upgrade path. 3996 break; 3997 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 3998 if (!MD) 3999 return error("Invalid metadata attachment"); 4000 4001 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4002 MD = upgradeInstructionLoopAttachment(*MD); 4003 4004 Inst->setMetadata(I->second, MD); 4005 if (I->second == LLVMContext::MD_tbaa) { 4006 InstsWithTBAATag.push_back(Inst); 4007 continue; 4008 } 4009 } 4010 break; 4011 } 4012 } 4013 } 4014 } 4015 4016 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4017 LLVMContext &Context = PtrType->getContext(); 4018 if (!isa<PointerType>(PtrType)) 4019 return error(Context, "Load/Store operand is not a pointer type"); 4020 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4021 4022 if (ValType && ValType != ElemType) 4023 return error(Context, "Explicit load/store type does not match pointee " 4024 "type of pointer operand"); 4025 if (!PointerType::isLoadableOrStorableType(ElemType)) 4026 return error(Context, "Cannot load/store from pointer"); 4027 return std::error_code(); 4028 } 4029 4030 /// Lazily parse the specified function body block. 4031 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4032 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4033 return error("Invalid record"); 4034 4035 // Unexpected unresolved metadata when parsing function. 4036 if (MetadataList.hasFwdRefs()) 4037 return error("Invalid function metadata: incoming forward references"); 4038 4039 InstructionList.clear(); 4040 unsigned ModuleValueListSize = ValueList.size(); 4041 unsigned ModuleMetadataListSize = MetadataList.size(); 4042 4043 // Add all the function arguments to the value table. 4044 for (Argument &I : F->args()) 4045 ValueList.push_back(&I); 4046 4047 unsigned NextValueNo = ValueList.size(); 4048 BasicBlock *CurBB = nullptr; 4049 unsigned CurBBNo = 0; 4050 4051 DebugLoc LastLoc; 4052 auto getLastInstruction = [&]() -> Instruction * { 4053 if (CurBB && !CurBB->empty()) 4054 return &CurBB->back(); 4055 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4056 !FunctionBBs[CurBBNo - 1]->empty()) 4057 return &FunctionBBs[CurBBNo - 1]->back(); 4058 return nullptr; 4059 }; 4060 4061 std::vector<OperandBundleDef> OperandBundles; 4062 4063 // Read all the records. 4064 SmallVector<uint64_t, 64> Record; 4065 while (1) { 4066 BitstreamEntry Entry = Stream.advance(); 4067 4068 switch (Entry.Kind) { 4069 case BitstreamEntry::Error: 4070 return error("Malformed block"); 4071 case BitstreamEntry::EndBlock: 4072 goto OutOfRecordLoop; 4073 4074 case BitstreamEntry::SubBlock: 4075 switch (Entry.ID) { 4076 default: // Skip unknown content. 4077 if (Stream.SkipBlock()) 4078 return error("Invalid record"); 4079 break; 4080 case bitc::CONSTANTS_BLOCK_ID: 4081 if (std::error_code EC = parseConstants()) 4082 return EC; 4083 NextValueNo = ValueList.size(); 4084 break; 4085 case bitc::VALUE_SYMTAB_BLOCK_ID: 4086 if (std::error_code EC = parseValueSymbolTable()) 4087 return EC; 4088 break; 4089 case bitc::METADATA_ATTACHMENT_ID: 4090 if (std::error_code EC = parseMetadataAttachment(*F)) 4091 return EC; 4092 break; 4093 case bitc::METADATA_BLOCK_ID: 4094 if (std::error_code EC = parseMetadata()) 4095 return EC; 4096 break; 4097 case bitc::USELIST_BLOCK_ID: 4098 if (std::error_code EC = parseUseLists()) 4099 return EC; 4100 break; 4101 } 4102 continue; 4103 4104 case BitstreamEntry::Record: 4105 // The interesting case. 4106 break; 4107 } 4108 4109 // Read a record. 4110 Record.clear(); 4111 Instruction *I = nullptr; 4112 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4113 switch (BitCode) { 4114 default: // Default behavior: reject 4115 return error("Invalid value"); 4116 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4117 if (Record.size() < 1 || Record[0] == 0) 4118 return error("Invalid record"); 4119 // Create all the basic blocks for the function. 4120 FunctionBBs.resize(Record[0]); 4121 4122 // See if anything took the address of blocks in this function. 4123 auto BBFRI = BasicBlockFwdRefs.find(F); 4124 if (BBFRI == BasicBlockFwdRefs.end()) { 4125 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4126 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4127 } else { 4128 auto &BBRefs = BBFRI->second; 4129 // Check for invalid basic block references. 4130 if (BBRefs.size() > FunctionBBs.size()) 4131 return error("Invalid ID"); 4132 assert(!BBRefs.empty() && "Unexpected empty array"); 4133 assert(!BBRefs.front() && "Invalid reference to entry block"); 4134 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4135 ++I) 4136 if (I < RE && BBRefs[I]) { 4137 BBRefs[I]->insertInto(F); 4138 FunctionBBs[I] = BBRefs[I]; 4139 } else { 4140 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4141 } 4142 4143 // Erase from the table. 4144 BasicBlockFwdRefs.erase(BBFRI); 4145 } 4146 4147 CurBB = FunctionBBs[0]; 4148 continue; 4149 } 4150 4151 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4152 // This record indicates that the last instruction is at the same 4153 // location as the previous instruction with a location. 4154 I = getLastInstruction(); 4155 4156 if (!I) 4157 return error("Invalid record"); 4158 I->setDebugLoc(LastLoc); 4159 I = nullptr; 4160 continue; 4161 4162 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4163 I = getLastInstruction(); 4164 if (!I || Record.size() < 4) 4165 return error("Invalid record"); 4166 4167 unsigned Line = Record[0], Col = Record[1]; 4168 unsigned ScopeID = Record[2], IAID = Record[3]; 4169 4170 MDNode *Scope = nullptr, *IA = nullptr; 4171 if (ScopeID) { 4172 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4173 if (!Scope) 4174 return error("Invalid record"); 4175 } 4176 if (IAID) { 4177 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4178 if (!IA) 4179 return error("Invalid record"); 4180 } 4181 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4182 I->setDebugLoc(LastLoc); 4183 I = nullptr; 4184 continue; 4185 } 4186 4187 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4188 unsigned OpNum = 0; 4189 Value *LHS, *RHS; 4190 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4191 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4192 OpNum+1 > Record.size()) 4193 return error("Invalid record"); 4194 4195 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4196 if (Opc == -1) 4197 return error("Invalid record"); 4198 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4199 InstructionList.push_back(I); 4200 if (OpNum < Record.size()) { 4201 if (Opc == Instruction::Add || 4202 Opc == Instruction::Sub || 4203 Opc == Instruction::Mul || 4204 Opc == Instruction::Shl) { 4205 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4206 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4207 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4208 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4209 } else if (Opc == Instruction::SDiv || 4210 Opc == Instruction::UDiv || 4211 Opc == Instruction::LShr || 4212 Opc == Instruction::AShr) { 4213 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4214 cast<BinaryOperator>(I)->setIsExact(true); 4215 } else if (isa<FPMathOperator>(I)) { 4216 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4217 if (FMF.any()) 4218 I->setFastMathFlags(FMF); 4219 } 4220 4221 } 4222 break; 4223 } 4224 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4225 unsigned OpNum = 0; 4226 Value *Op; 4227 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4228 OpNum+2 != Record.size()) 4229 return error("Invalid record"); 4230 4231 Type *ResTy = getTypeByID(Record[OpNum]); 4232 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4233 if (Opc == -1 || !ResTy) 4234 return error("Invalid record"); 4235 Instruction *Temp = nullptr; 4236 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4237 if (Temp) { 4238 InstructionList.push_back(Temp); 4239 CurBB->getInstList().push_back(Temp); 4240 } 4241 } else { 4242 auto CastOp = (Instruction::CastOps)Opc; 4243 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4244 return error("Invalid cast"); 4245 I = CastInst::Create(CastOp, Op, ResTy); 4246 } 4247 InstructionList.push_back(I); 4248 break; 4249 } 4250 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4251 case bitc::FUNC_CODE_INST_GEP_OLD: 4252 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4253 unsigned OpNum = 0; 4254 4255 Type *Ty; 4256 bool InBounds; 4257 4258 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4259 InBounds = Record[OpNum++]; 4260 Ty = getTypeByID(Record[OpNum++]); 4261 } else { 4262 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4263 Ty = nullptr; 4264 } 4265 4266 Value *BasePtr; 4267 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4268 return error("Invalid record"); 4269 4270 if (!Ty) 4271 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4272 ->getElementType(); 4273 else if (Ty != 4274 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4275 ->getElementType()) 4276 return error( 4277 "Explicit gep type does not match pointee type of pointer operand"); 4278 4279 SmallVector<Value*, 16> GEPIdx; 4280 while (OpNum != Record.size()) { 4281 Value *Op; 4282 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4283 return error("Invalid record"); 4284 GEPIdx.push_back(Op); 4285 } 4286 4287 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4288 4289 InstructionList.push_back(I); 4290 if (InBounds) 4291 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4292 break; 4293 } 4294 4295 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4296 // EXTRACTVAL: [opty, opval, n x indices] 4297 unsigned OpNum = 0; 4298 Value *Agg; 4299 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4300 return error("Invalid record"); 4301 4302 unsigned RecSize = Record.size(); 4303 if (OpNum == RecSize) 4304 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4305 4306 SmallVector<unsigned, 4> EXTRACTVALIdx; 4307 Type *CurTy = Agg->getType(); 4308 for (; OpNum != RecSize; ++OpNum) { 4309 bool IsArray = CurTy->isArrayTy(); 4310 bool IsStruct = CurTy->isStructTy(); 4311 uint64_t Index = Record[OpNum]; 4312 4313 if (!IsStruct && !IsArray) 4314 return error("EXTRACTVAL: Invalid type"); 4315 if ((unsigned)Index != Index) 4316 return error("Invalid value"); 4317 if (IsStruct && Index >= CurTy->subtypes().size()) 4318 return error("EXTRACTVAL: Invalid struct index"); 4319 if (IsArray && Index >= CurTy->getArrayNumElements()) 4320 return error("EXTRACTVAL: Invalid array index"); 4321 EXTRACTVALIdx.push_back((unsigned)Index); 4322 4323 if (IsStruct) 4324 CurTy = CurTy->subtypes()[Index]; 4325 else 4326 CurTy = CurTy->subtypes()[0]; 4327 } 4328 4329 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4330 InstructionList.push_back(I); 4331 break; 4332 } 4333 4334 case bitc::FUNC_CODE_INST_INSERTVAL: { 4335 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4336 unsigned OpNum = 0; 4337 Value *Agg; 4338 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4339 return error("Invalid record"); 4340 Value *Val; 4341 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4342 return error("Invalid record"); 4343 4344 unsigned RecSize = Record.size(); 4345 if (OpNum == RecSize) 4346 return error("INSERTVAL: Invalid instruction with 0 indices"); 4347 4348 SmallVector<unsigned, 4> INSERTVALIdx; 4349 Type *CurTy = Agg->getType(); 4350 for (; OpNum != RecSize; ++OpNum) { 4351 bool IsArray = CurTy->isArrayTy(); 4352 bool IsStruct = CurTy->isStructTy(); 4353 uint64_t Index = Record[OpNum]; 4354 4355 if (!IsStruct && !IsArray) 4356 return error("INSERTVAL: Invalid type"); 4357 if ((unsigned)Index != Index) 4358 return error("Invalid value"); 4359 if (IsStruct && Index >= CurTy->subtypes().size()) 4360 return error("INSERTVAL: Invalid struct index"); 4361 if (IsArray && Index >= CurTy->getArrayNumElements()) 4362 return error("INSERTVAL: Invalid array index"); 4363 4364 INSERTVALIdx.push_back((unsigned)Index); 4365 if (IsStruct) 4366 CurTy = CurTy->subtypes()[Index]; 4367 else 4368 CurTy = CurTy->subtypes()[0]; 4369 } 4370 4371 if (CurTy != Val->getType()) 4372 return error("Inserted value type doesn't match aggregate type"); 4373 4374 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4375 InstructionList.push_back(I); 4376 break; 4377 } 4378 4379 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4380 // obsolete form of select 4381 // handles select i1 ... in old bitcode 4382 unsigned OpNum = 0; 4383 Value *TrueVal, *FalseVal, *Cond; 4384 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4385 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4386 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4387 return error("Invalid record"); 4388 4389 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4390 InstructionList.push_back(I); 4391 break; 4392 } 4393 4394 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4395 // new form of select 4396 // handles select i1 or select [N x i1] 4397 unsigned OpNum = 0; 4398 Value *TrueVal, *FalseVal, *Cond; 4399 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4400 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4401 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4402 return error("Invalid record"); 4403 4404 // select condition can be either i1 or [N x i1] 4405 if (VectorType* vector_type = 4406 dyn_cast<VectorType>(Cond->getType())) { 4407 // expect <n x i1> 4408 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4409 return error("Invalid type for value"); 4410 } else { 4411 // expect i1 4412 if (Cond->getType() != Type::getInt1Ty(Context)) 4413 return error("Invalid type for value"); 4414 } 4415 4416 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4417 InstructionList.push_back(I); 4418 break; 4419 } 4420 4421 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4422 unsigned OpNum = 0; 4423 Value *Vec, *Idx; 4424 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4425 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4426 return error("Invalid record"); 4427 if (!Vec->getType()->isVectorTy()) 4428 return error("Invalid type for value"); 4429 I = ExtractElementInst::Create(Vec, Idx); 4430 InstructionList.push_back(I); 4431 break; 4432 } 4433 4434 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4435 unsigned OpNum = 0; 4436 Value *Vec, *Elt, *Idx; 4437 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4438 return error("Invalid record"); 4439 if (!Vec->getType()->isVectorTy()) 4440 return error("Invalid type for value"); 4441 if (popValue(Record, OpNum, NextValueNo, 4442 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4443 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4444 return error("Invalid record"); 4445 I = InsertElementInst::Create(Vec, Elt, Idx); 4446 InstructionList.push_back(I); 4447 break; 4448 } 4449 4450 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4451 unsigned OpNum = 0; 4452 Value *Vec1, *Vec2, *Mask; 4453 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4454 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4455 return error("Invalid record"); 4456 4457 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4458 return error("Invalid record"); 4459 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4460 return error("Invalid type for value"); 4461 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4462 InstructionList.push_back(I); 4463 break; 4464 } 4465 4466 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4467 // Old form of ICmp/FCmp returning bool 4468 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4469 // both legal on vectors but had different behaviour. 4470 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4471 // FCmp/ICmp returning bool or vector of bool 4472 4473 unsigned OpNum = 0; 4474 Value *LHS, *RHS; 4475 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4476 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4477 return error("Invalid record"); 4478 4479 unsigned PredVal = Record[OpNum]; 4480 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4481 FastMathFlags FMF; 4482 if (IsFP && Record.size() > OpNum+1) 4483 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4484 4485 if (OpNum+1 != Record.size()) 4486 return error("Invalid record"); 4487 4488 if (LHS->getType()->isFPOrFPVectorTy()) 4489 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4490 else 4491 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4492 4493 if (FMF.any()) 4494 I->setFastMathFlags(FMF); 4495 InstructionList.push_back(I); 4496 break; 4497 } 4498 4499 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4500 { 4501 unsigned Size = Record.size(); 4502 if (Size == 0) { 4503 I = ReturnInst::Create(Context); 4504 InstructionList.push_back(I); 4505 break; 4506 } 4507 4508 unsigned OpNum = 0; 4509 Value *Op = nullptr; 4510 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4511 return error("Invalid record"); 4512 if (OpNum != Record.size()) 4513 return error("Invalid record"); 4514 4515 I = ReturnInst::Create(Context, Op); 4516 InstructionList.push_back(I); 4517 break; 4518 } 4519 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4520 if (Record.size() != 1 && Record.size() != 3) 4521 return error("Invalid record"); 4522 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4523 if (!TrueDest) 4524 return error("Invalid record"); 4525 4526 if (Record.size() == 1) { 4527 I = BranchInst::Create(TrueDest); 4528 InstructionList.push_back(I); 4529 } 4530 else { 4531 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4532 Value *Cond = getValue(Record, 2, NextValueNo, 4533 Type::getInt1Ty(Context)); 4534 if (!FalseDest || !Cond) 4535 return error("Invalid record"); 4536 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4537 InstructionList.push_back(I); 4538 } 4539 break; 4540 } 4541 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4542 if (Record.size() != 1 && Record.size() != 2) 4543 return error("Invalid record"); 4544 unsigned Idx = 0; 4545 Value *CleanupPad = 4546 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4547 if (!CleanupPad) 4548 return error("Invalid record"); 4549 BasicBlock *UnwindDest = nullptr; 4550 if (Record.size() == 2) { 4551 UnwindDest = getBasicBlock(Record[Idx++]); 4552 if (!UnwindDest) 4553 return error("Invalid record"); 4554 } 4555 4556 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4557 InstructionList.push_back(I); 4558 break; 4559 } 4560 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4561 if (Record.size() != 2) 4562 return error("Invalid record"); 4563 unsigned Idx = 0; 4564 Value *CatchPad = 4565 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4566 if (!CatchPad) 4567 return error("Invalid record"); 4568 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4569 if (!BB) 4570 return error("Invalid record"); 4571 4572 I = CatchReturnInst::Create(CatchPad, BB); 4573 InstructionList.push_back(I); 4574 break; 4575 } 4576 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4577 // We must have, at minimum, the outer scope and the number of arguments. 4578 if (Record.size() < 2) 4579 return error("Invalid record"); 4580 4581 unsigned Idx = 0; 4582 4583 Value *ParentPad = 4584 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4585 4586 unsigned NumHandlers = Record[Idx++]; 4587 4588 SmallVector<BasicBlock *, 2> Handlers; 4589 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4590 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4591 if (!BB) 4592 return error("Invalid record"); 4593 Handlers.push_back(BB); 4594 } 4595 4596 BasicBlock *UnwindDest = nullptr; 4597 if (Idx + 1 == Record.size()) { 4598 UnwindDest = getBasicBlock(Record[Idx++]); 4599 if (!UnwindDest) 4600 return error("Invalid record"); 4601 } 4602 4603 if (Record.size() != Idx) 4604 return error("Invalid record"); 4605 4606 auto *CatchSwitch = 4607 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4608 for (BasicBlock *Handler : Handlers) 4609 CatchSwitch->addHandler(Handler); 4610 I = CatchSwitch; 4611 InstructionList.push_back(I); 4612 break; 4613 } 4614 case bitc::FUNC_CODE_INST_CATCHPAD: 4615 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4616 // We must have, at minimum, the outer scope and the number of arguments. 4617 if (Record.size() < 2) 4618 return error("Invalid record"); 4619 4620 unsigned Idx = 0; 4621 4622 Value *ParentPad = 4623 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4624 4625 unsigned NumArgOperands = Record[Idx++]; 4626 4627 SmallVector<Value *, 2> Args; 4628 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4629 Value *Val; 4630 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4631 return error("Invalid record"); 4632 Args.push_back(Val); 4633 } 4634 4635 if (Record.size() != Idx) 4636 return error("Invalid record"); 4637 4638 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4639 I = CleanupPadInst::Create(ParentPad, Args); 4640 else 4641 I = CatchPadInst::Create(ParentPad, Args); 4642 InstructionList.push_back(I); 4643 break; 4644 } 4645 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4646 // Check magic 4647 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4648 // "New" SwitchInst format with case ranges. The changes to write this 4649 // format were reverted but we still recognize bitcode that uses it. 4650 // Hopefully someday we will have support for case ranges and can use 4651 // this format again. 4652 4653 Type *OpTy = getTypeByID(Record[1]); 4654 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4655 4656 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4657 BasicBlock *Default = getBasicBlock(Record[3]); 4658 if (!OpTy || !Cond || !Default) 4659 return error("Invalid record"); 4660 4661 unsigned NumCases = Record[4]; 4662 4663 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4664 InstructionList.push_back(SI); 4665 4666 unsigned CurIdx = 5; 4667 for (unsigned i = 0; i != NumCases; ++i) { 4668 SmallVector<ConstantInt*, 1> CaseVals; 4669 unsigned NumItems = Record[CurIdx++]; 4670 for (unsigned ci = 0; ci != NumItems; ++ci) { 4671 bool isSingleNumber = Record[CurIdx++]; 4672 4673 APInt Low; 4674 unsigned ActiveWords = 1; 4675 if (ValueBitWidth > 64) 4676 ActiveWords = Record[CurIdx++]; 4677 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4678 ValueBitWidth); 4679 CurIdx += ActiveWords; 4680 4681 if (!isSingleNumber) { 4682 ActiveWords = 1; 4683 if (ValueBitWidth > 64) 4684 ActiveWords = Record[CurIdx++]; 4685 APInt High = readWideAPInt( 4686 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4687 CurIdx += ActiveWords; 4688 4689 // FIXME: It is not clear whether values in the range should be 4690 // compared as signed or unsigned values. The partially 4691 // implemented changes that used this format in the past used 4692 // unsigned comparisons. 4693 for ( ; Low.ule(High); ++Low) 4694 CaseVals.push_back(ConstantInt::get(Context, Low)); 4695 } else 4696 CaseVals.push_back(ConstantInt::get(Context, Low)); 4697 } 4698 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4699 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4700 cve = CaseVals.end(); cvi != cve; ++cvi) 4701 SI->addCase(*cvi, DestBB); 4702 } 4703 I = SI; 4704 break; 4705 } 4706 4707 // Old SwitchInst format without case ranges. 4708 4709 if (Record.size() < 3 || (Record.size() & 1) == 0) 4710 return error("Invalid record"); 4711 Type *OpTy = getTypeByID(Record[0]); 4712 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4713 BasicBlock *Default = getBasicBlock(Record[2]); 4714 if (!OpTy || !Cond || !Default) 4715 return error("Invalid record"); 4716 unsigned NumCases = (Record.size()-3)/2; 4717 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4718 InstructionList.push_back(SI); 4719 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4720 ConstantInt *CaseVal = 4721 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4722 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4723 if (!CaseVal || !DestBB) { 4724 delete SI; 4725 return error("Invalid record"); 4726 } 4727 SI->addCase(CaseVal, DestBB); 4728 } 4729 I = SI; 4730 break; 4731 } 4732 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4733 if (Record.size() < 2) 4734 return error("Invalid record"); 4735 Type *OpTy = getTypeByID(Record[0]); 4736 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4737 if (!OpTy || !Address) 4738 return error("Invalid record"); 4739 unsigned NumDests = Record.size()-2; 4740 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4741 InstructionList.push_back(IBI); 4742 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4743 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4744 IBI->addDestination(DestBB); 4745 } else { 4746 delete IBI; 4747 return error("Invalid record"); 4748 } 4749 } 4750 I = IBI; 4751 break; 4752 } 4753 4754 case bitc::FUNC_CODE_INST_INVOKE: { 4755 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4756 if (Record.size() < 4) 4757 return error("Invalid record"); 4758 unsigned OpNum = 0; 4759 AttributeSet PAL = getAttributes(Record[OpNum++]); 4760 unsigned CCInfo = Record[OpNum++]; 4761 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4762 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4763 4764 FunctionType *FTy = nullptr; 4765 if (CCInfo >> 13 & 1 && 4766 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4767 return error("Explicit invoke type is not a function type"); 4768 4769 Value *Callee; 4770 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4771 return error("Invalid record"); 4772 4773 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4774 if (!CalleeTy) 4775 return error("Callee is not a pointer"); 4776 if (!FTy) { 4777 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4778 if (!FTy) 4779 return error("Callee is not of pointer to function type"); 4780 } else if (CalleeTy->getElementType() != FTy) 4781 return error("Explicit invoke type does not match pointee type of " 4782 "callee operand"); 4783 if (Record.size() < FTy->getNumParams() + OpNum) 4784 return error("Insufficient operands to call"); 4785 4786 SmallVector<Value*, 16> Ops; 4787 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4788 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4789 FTy->getParamType(i))); 4790 if (!Ops.back()) 4791 return error("Invalid record"); 4792 } 4793 4794 if (!FTy->isVarArg()) { 4795 if (Record.size() != OpNum) 4796 return error("Invalid record"); 4797 } else { 4798 // Read type/value pairs for varargs params. 4799 while (OpNum != Record.size()) { 4800 Value *Op; 4801 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4802 return error("Invalid record"); 4803 Ops.push_back(Op); 4804 } 4805 } 4806 4807 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4808 OperandBundles.clear(); 4809 InstructionList.push_back(I); 4810 cast<InvokeInst>(I)->setCallingConv( 4811 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4812 cast<InvokeInst>(I)->setAttributes(PAL); 4813 break; 4814 } 4815 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4816 unsigned Idx = 0; 4817 Value *Val = nullptr; 4818 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4819 return error("Invalid record"); 4820 I = ResumeInst::Create(Val); 4821 InstructionList.push_back(I); 4822 break; 4823 } 4824 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4825 I = new UnreachableInst(Context); 4826 InstructionList.push_back(I); 4827 break; 4828 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4829 if (Record.size() < 1 || ((Record.size()-1)&1)) 4830 return error("Invalid record"); 4831 Type *Ty = getTypeByID(Record[0]); 4832 if (!Ty) 4833 return error("Invalid record"); 4834 4835 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4836 InstructionList.push_back(PN); 4837 4838 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4839 Value *V; 4840 // With the new function encoding, it is possible that operands have 4841 // negative IDs (for forward references). Use a signed VBR 4842 // representation to keep the encoding small. 4843 if (UseRelativeIDs) 4844 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4845 else 4846 V = getValue(Record, 1+i, NextValueNo, Ty); 4847 BasicBlock *BB = getBasicBlock(Record[2+i]); 4848 if (!V || !BB) 4849 return error("Invalid record"); 4850 PN->addIncoming(V, BB); 4851 } 4852 I = PN; 4853 break; 4854 } 4855 4856 case bitc::FUNC_CODE_INST_LANDINGPAD: 4857 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4858 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4859 unsigned Idx = 0; 4860 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4861 if (Record.size() < 3) 4862 return error("Invalid record"); 4863 } else { 4864 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4865 if (Record.size() < 4) 4866 return error("Invalid record"); 4867 } 4868 Type *Ty = getTypeByID(Record[Idx++]); 4869 if (!Ty) 4870 return error("Invalid record"); 4871 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4872 Value *PersFn = nullptr; 4873 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4874 return error("Invalid record"); 4875 4876 if (!F->hasPersonalityFn()) 4877 F->setPersonalityFn(cast<Constant>(PersFn)); 4878 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4879 return error("Personality function mismatch"); 4880 } 4881 4882 bool IsCleanup = !!Record[Idx++]; 4883 unsigned NumClauses = Record[Idx++]; 4884 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4885 LP->setCleanup(IsCleanup); 4886 for (unsigned J = 0; J != NumClauses; ++J) { 4887 LandingPadInst::ClauseType CT = 4888 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4889 Value *Val; 4890 4891 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4892 delete LP; 4893 return error("Invalid record"); 4894 } 4895 4896 assert((CT != LandingPadInst::Catch || 4897 !isa<ArrayType>(Val->getType())) && 4898 "Catch clause has a invalid type!"); 4899 assert((CT != LandingPadInst::Filter || 4900 isa<ArrayType>(Val->getType())) && 4901 "Filter clause has invalid type!"); 4902 LP->addClause(cast<Constant>(Val)); 4903 } 4904 4905 I = LP; 4906 InstructionList.push_back(I); 4907 break; 4908 } 4909 4910 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4911 if (Record.size() != 4) 4912 return error("Invalid record"); 4913 uint64_t AlignRecord = Record[3]; 4914 const uint64_t InAllocaMask = uint64_t(1) << 5; 4915 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4916 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4917 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4918 SwiftErrorMask; 4919 bool InAlloca = AlignRecord & InAllocaMask; 4920 bool SwiftError = AlignRecord & SwiftErrorMask; 4921 Type *Ty = getTypeByID(Record[0]); 4922 if ((AlignRecord & ExplicitTypeMask) == 0) { 4923 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4924 if (!PTy) 4925 return error("Old-style alloca with a non-pointer type"); 4926 Ty = PTy->getElementType(); 4927 } 4928 Type *OpTy = getTypeByID(Record[1]); 4929 Value *Size = getFnValueByID(Record[2], OpTy); 4930 unsigned Align; 4931 if (std::error_code EC = 4932 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4933 return EC; 4934 } 4935 if (!Ty || !Size) 4936 return error("Invalid record"); 4937 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4938 AI->setUsedWithInAlloca(InAlloca); 4939 AI->setSwiftError(SwiftError); 4940 I = AI; 4941 InstructionList.push_back(I); 4942 break; 4943 } 4944 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4945 unsigned OpNum = 0; 4946 Value *Op; 4947 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4948 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4949 return error("Invalid record"); 4950 4951 Type *Ty = nullptr; 4952 if (OpNum + 3 == Record.size()) 4953 Ty = getTypeByID(Record[OpNum++]); 4954 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4955 return EC; 4956 if (!Ty) 4957 Ty = cast<PointerType>(Op->getType())->getElementType(); 4958 4959 unsigned Align; 4960 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4961 return EC; 4962 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4963 4964 InstructionList.push_back(I); 4965 break; 4966 } 4967 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4968 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4969 unsigned OpNum = 0; 4970 Value *Op; 4971 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4972 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4973 return error("Invalid record"); 4974 4975 Type *Ty = nullptr; 4976 if (OpNum + 5 == Record.size()) 4977 Ty = getTypeByID(Record[OpNum++]); 4978 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4979 return EC; 4980 if (!Ty) 4981 Ty = cast<PointerType>(Op->getType())->getElementType(); 4982 4983 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4984 if (Ordering == AtomicOrdering::NotAtomic || 4985 Ordering == AtomicOrdering::Release || 4986 Ordering == AtomicOrdering::AcquireRelease) 4987 return error("Invalid record"); 4988 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4989 return error("Invalid record"); 4990 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4991 4992 unsigned Align; 4993 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4994 return EC; 4995 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4996 4997 InstructionList.push_back(I); 4998 break; 4999 } 5000 case bitc::FUNC_CODE_INST_STORE: 5001 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5002 unsigned OpNum = 0; 5003 Value *Val, *Ptr; 5004 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5005 (BitCode == bitc::FUNC_CODE_INST_STORE 5006 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5007 : popValue(Record, OpNum, NextValueNo, 5008 cast<PointerType>(Ptr->getType())->getElementType(), 5009 Val)) || 5010 OpNum + 2 != Record.size()) 5011 return error("Invalid record"); 5012 5013 if (std::error_code EC = 5014 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5015 return EC; 5016 unsigned Align; 5017 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5018 return EC; 5019 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5020 InstructionList.push_back(I); 5021 break; 5022 } 5023 case bitc::FUNC_CODE_INST_STOREATOMIC: 5024 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5025 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5026 unsigned OpNum = 0; 5027 Value *Val, *Ptr; 5028 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5029 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5030 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5031 : popValue(Record, OpNum, NextValueNo, 5032 cast<PointerType>(Ptr->getType())->getElementType(), 5033 Val)) || 5034 OpNum + 4 != Record.size()) 5035 return error("Invalid record"); 5036 5037 if (std::error_code EC = 5038 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5039 return EC; 5040 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5041 if (Ordering == AtomicOrdering::NotAtomic || 5042 Ordering == AtomicOrdering::Acquire || 5043 Ordering == AtomicOrdering::AcquireRelease) 5044 return error("Invalid record"); 5045 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5046 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5047 return error("Invalid record"); 5048 5049 unsigned Align; 5050 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5051 return EC; 5052 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5053 InstructionList.push_back(I); 5054 break; 5055 } 5056 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5057 case bitc::FUNC_CODE_INST_CMPXCHG: { 5058 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5059 // failureordering?, isweak?] 5060 unsigned OpNum = 0; 5061 Value *Ptr, *Cmp, *New; 5062 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5063 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5064 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5065 : popValue(Record, OpNum, NextValueNo, 5066 cast<PointerType>(Ptr->getType())->getElementType(), 5067 Cmp)) || 5068 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5069 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5070 return error("Invalid record"); 5071 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5072 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5073 SuccessOrdering == AtomicOrdering::Unordered) 5074 return error("Invalid record"); 5075 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5076 5077 if (std::error_code EC = 5078 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5079 return EC; 5080 AtomicOrdering FailureOrdering; 5081 if (Record.size() < 7) 5082 FailureOrdering = 5083 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5084 else 5085 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5086 5087 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5088 SynchScope); 5089 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5090 5091 if (Record.size() < 8) { 5092 // Before weak cmpxchgs existed, the instruction simply returned the 5093 // value loaded from memory, so bitcode files from that era will be 5094 // expecting the first component of a modern cmpxchg. 5095 CurBB->getInstList().push_back(I); 5096 I = ExtractValueInst::Create(I, 0); 5097 } else { 5098 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5099 } 5100 5101 InstructionList.push_back(I); 5102 break; 5103 } 5104 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5105 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5106 unsigned OpNum = 0; 5107 Value *Ptr, *Val; 5108 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5109 popValue(Record, OpNum, NextValueNo, 5110 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5111 OpNum+4 != Record.size()) 5112 return error("Invalid record"); 5113 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5114 if (Operation < AtomicRMWInst::FIRST_BINOP || 5115 Operation > AtomicRMWInst::LAST_BINOP) 5116 return error("Invalid record"); 5117 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5118 if (Ordering == AtomicOrdering::NotAtomic || 5119 Ordering == AtomicOrdering::Unordered) 5120 return error("Invalid record"); 5121 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5122 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5123 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5124 InstructionList.push_back(I); 5125 break; 5126 } 5127 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5128 if (2 != Record.size()) 5129 return error("Invalid record"); 5130 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5131 if (Ordering == AtomicOrdering::NotAtomic || 5132 Ordering == AtomicOrdering::Unordered || 5133 Ordering == AtomicOrdering::Monotonic) 5134 return error("Invalid record"); 5135 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5136 I = new FenceInst(Context, Ordering, SynchScope); 5137 InstructionList.push_back(I); 5138 break; 5139 } 5140 case bitc::FUNC_CODE_INST_CALL: { 5141 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5142 if (Record.size() < 3) 5143 return error("Invalid record"); 5144 5145 unsigned OpNum = 0; 5146 AttributeSet PAL = getAttributes(Record[OpNum++]); 5147 unsigned CCInfo = Record[OpNum++]; 5148 5149 FastMathFlags FMF; 5150 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5151 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5152 if (!FMF.any()) 5153 return error("Fast math flags indicator set for call with no FMF"); 5154 } 5155 5156 FunctionType *FTy = nullptr; 5157 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5158 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5159 return error("Explicit call type is not a function type"); 5160 5161 Value *Callee; 5162 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5163 return error("Invalid record"); 5164 5165 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5166 if (!OpTy) 5167 return error("Callee is not a pointer type"); 5168 if (!FTy) { 5169 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5170 if (!FTy) 5171 return error("Callee is not of pointer to function type"); 5172 } else if (OpTy->getElementType() != FTy) 5173 return error("Explicit call type does not match pointee type of " 5174 "callee operand"); 5175 if (Record.size() < FTy->getNumParams() + OpNum) 5176 return error("Insufficient operands to call"); 5177 5178 SmallVector<Value*, 16> Args; 5179 // Read the fixed params. 5180 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5181 if (FTy->getParamType(i)->isLabelTy()) 5182 Args.push_back(getBasicBlock(Record[OpNum])); 5183 else 5184 Args.push_back(getValue(Record, OpNum, NextValueNo, 5185 FTy->getParamType(i))); 5186 if (!Args.back()) 5187 return error("Invalid record"); 5188 } 5189 5190 // Read type/value pairs for varargs params. 5191 if (!FTy->isVarArg()) { 5192 if (OpNum != Record.size()) 5193 return error("Invalid record"); 5194 } else { 5195 while (OpNum != Record.size()) { 5196 Value *Op; 5197 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5198 return error("Invalid record"); 5199 Args.push_back(Op); 5200 } 5201 } 5202 5203 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5204 OperandBundles.clear(); 5205 InstructionList.push_back(I); 5206 cast<CallInst>(I)->setCallingConv( 5207 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5208 CallInst::TailCallKind TCK = CallInst::TCK_None; 5209 if (CCInfo & 1 << bitc::CALL_TAIL) 5210 TCK = CallInst::TCK_Tail; 5211 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5212 TCK = CallInst::TCK_MustTail; 5213 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5214 TCK = CallInst::TCK_NoTail; 5215 cast<CallInst>(I)->setTailCallKind(TCK); 5216 cast<CallInst>(I)->setAttributes(PAL); 5217 if (FMF.any()) { 5218 if (!isa<FPMathOperator>(I)) 5219 return error("Fast-math-flags specified for call without " 5220 "floating-point scalar or vector return type"); 5221 I->setFastMathFlags(FMF); 5222 } 5223 break; 5224 } 5225 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5226 if (Record.size() < 3) 5227 return error("Invalid record"); 5228 Type *OpTy = getTypeByID(Record[0]); 5229 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5230 Type *ResTy = getTypeByID(Record[2]); 5231 if (!OpTy || !Op || !ResTy) 5232 return error("Invalid record"); 5233 I = new VAArgInst(Op, ResTy); 5234 InstructionList.push_back(I); 5235 break; 5236 } 5237 5238 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5239 // A call or an invoke can be optionally prefixed with some variable 5240 // number of operand bundle blocks. These blocks are read into 5241 // OperandBundles and consumed at the next call or invoke instruction. 5242 5243 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5244 return error("Invalid record"); 5245 5246 std::vector<Value *> Inputs; 5247 5248 unsigned OpNum = 1; 5249 while (OpNum != Record.size()) { 5250 Value *Op; 5251 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5252 return error("Invalid record"); 5253 Inputs.push_back(Op); 5254 } 5255 5256 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5257 continue; 5258 } 5259 } 5260 5261 // Add instruction to end of current BB. If there is no current BB, reject 5262 // this file. 5263 if (!CurBB) { 5264 delete I; 5265 return error("Invalid instruction with no BB"); 5266 } 5267 if (!OperandBundles.empty()) { 5268 delete I; 5269 return error("Operand bundles found with no consumer"); 5270 } 5271 CurBB->getInstList().push_back(I); 5272 5273 // If this was a terminator instruction, move to the next block. 5274 if (isa<TerminatorInst>(I)) { 5275 ++CurBBNo; 5276 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5277 } 5278 5279 // Non-void values get registered in the value table for future use. 5280 if (I && !I->getType()->isVoidTy()) 5281 ValueList.assignValue(I, NextValueNo++); 5282 } 5283 5284 OutOfRecordLoop: 5285 5286 if (!OperandBundles.empty()) 5287 return error("Operand bundles found with no consumer"); 5288 5289 // Check the function list for unresolved values. 5290 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5291 if (!A->getParent()) { 5292 // We found at least one unresolved value. Nuke them all to avoid leaks. 5293 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5294 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5295 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5296 delete A; 5297 } 5298 } 5299 return error("Never resolved value found in function"); 5300 } 5301 } 5302 5303 // Unexpected unresolved metadata about to be dropped. 5304 if (MetadataList.hasFwdRefs()) 5305 return error("Invalid function metadata: outgoing forward refs"); 5306 5307 // Trim the value list down to the size it was before we parsed this function. 5308 ValueList.shrinkTo(ModuleValueListSize); 5309 MetadataList.shrinkTo(ModuleMetadataListSize); 5310 std::vector<BasicBlock*>().swap(FunctionBBs); 5311 return std::error_code(); 5312 } 5313 5314 /// Find the function body in the bitcode stream 5315 std::error_code BitcodeReader::findFunctionInStream( 5316 Function *F, 5317 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5318 while (DeferredFunctionInfoIterator->second == 0) { 5319 // This is the fallback handling for the old format bitcode that 5320 // didn't contain the function index in the VST, or when we have 5321 // an anonymous function which would not have a VST entry. 5322 // Assert that we have one of those two cases. 5323 assert(VSTOffset == 0 || !F->hasName()); 5324 // Parse the next body in the stream and set its position in the 5325 // DeferredFunctionInfo map. 5326 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5327 return EC; 5328 } 5329 return std::error_code(); 5330 } 5331 5332 //===----------------------------------------------------------------------===// 5333 // GVMaterializer implementation 5334 //===----------------------------------------------------------------------===// 5335 5336 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5337 5338 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5339 if (std::error_code EC = materializeMetadata()) 5340 return EC; 5341 5342 Function *F = dyn_cast<Function>(GV); 5343 // If it's not a function or is already material, ignore the request. 5344 if (!F || !F->isMaterializable()) 5345 return std::error_code(); 5346 5347 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5348 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5349 // If its position is recorded as 0, its body is somewhere in the stream 5350 // but we haven't seen it yet. 5351 if (DFII->second == 0) 5352 if (std::error_code EC = findFunctionInStream(F, DFII)) 5353 return EC; 5354 5355 // Move the bit stream to the saved position of the deferred function body. 5356 Stream.JumpToBit(DFII->second); 5357 5358 if (std::error_code EC = parseFunctionBody(F)) 5359 return EC; 5360 F->setIsMaterializable(false); 5361 5362 if (StripDebugInfo) 5363 stripDebugInfo(*F); 5364 5365 // Upgrade any old intrinsic calls in the function. 5366 for (auto &I : UpgradedIntrinsics) { 5367 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5368 UI != UE;) { 5369 User *U = *UI; 5370 ++UI; 5371 if (CallInst *CI = dyn_cast<CallInst>(U)) 5372 UpgradeIntrinsicCall(CI, I.second); 5373 } 5374 } 5375 5376 // Finish fn->subprogram upgrade for materialized functions. 5377 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5378 F->setSubprogram(SP); 5379 5380 // Bring in any functions that this function forward-referenced via 5381 // blockaddresses. 5382 return materializeForwardReferencedFunctions(); 5383 } 5384 5385 std::error_code BitcodeReader::materializeModule() { 5386 if (std::error_code EC = materializeMetadata()) 5387 return EC; 5388 5389 // Promise to materialize all forward references. 5390 WillMaterializeAllForwardRefs = true; 5391 5392 // Iterate over the module, deserializing any functions that are still on 5393 // disk. 5394 for (Function &F : *TheModule) { 5395 if (std::error_code EC = materialize(&F)) 5396 return EC; 5397 } 5398 // At this point, if there are any function bodies, parse the rest of 5399 // the bits in the module past the last function block we have recorded 5400 // through either lazy scanning or the VST. 5401 if (LastFunctionBlockBit || NextUnreadBit) 5402 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5403 : NextUnreadBit); 5404 5405 // Check that all block address forward references got resolved (as we 5406 // promised above). 5407 if (!BasicBlockFwdRefs.empty()) 5408 return error("Never resolved function from blockaddress"); 5409 5410 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5411 // to prevent this instructions with TBAA tags should be upgraded first. 5412 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5413 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5414 5415 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5416 // delete the old functions to clean up. We can't do this unless the entire 5417 // module is materialized because there could always be another function body 5418 // with calls to the old function. 5419 for (auto &I : UpgradedIntrinsics) { 5420 for (auto *U : I.first->users()) { 5421 if (CallInst *CI = dyn_cast<CallInst>(U)) 5422 UpgradeIntrinsicCall(CI, I.second); 5423 } 5424 if (!I.first->use_empty()) 5425 I.first->replaceAllUsesWith(I.second); 5426 I.first->eraseFromParent(); 5427 } 5428 UpgradedIntrinsics.clear(); 5429 5430 UpgradeDebugInfo(*TheModule); 5431 return std::error_code(); 5432 } 5433 5434 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5435 return IdentifiedStructTypes; 5436 } 5437 5438 std::error_code 5439 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5440 if (Streamer) 5441 return initLazyStream(std::move(Streamer)); 5442 return initStreamFromBuffer(); 5443 } 5444 5445 std::error_code BitcodeReader::initStreamFromBuffer() { 5446 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5447 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5448 5449 if (Buffer->getBufferSize() & 3) 5450 return error("Invalid bitcode signature"); 5451 5452 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5453 // The magic number is 0x0B17C0DE stored in little endian. 5454 if (isBitcodeWrapper(BufPtr, BufEnd)) 5455 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5456 return error("Invalid bitcode wrapper header"); 5457 5458 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5459 Stream.init(&*StreamFile); 5460 5461 return std::error_code(); 5462 } 5463 5464 std::error_code 5465 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5466 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5467 // see it. 5468 auto OwnedBytes = 5469 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5470 StreamingMemoryObject &Bytes = *OwnedBytes; 5471 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5472 Stream.init(&*StreamFile); 5473 5474 unsigned char buf[16]; 5475 if (Bytes.readBytes(buf, 16, 0) != 16) 5476 return error("Invalid bitcode signature"); 5477 5478 if (!isBitcode(buf, buf + 16)) 5479 return error("Invalid bitcode signature"); 5480 5481 if (isBitcodeWrapper(buf, buf + 4)) { 5482 const unsigned char *bitcodeStart = buf; 5483 const unsigned char *bitcodeEnd = buf + 16; 5484 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5485 Bytes.dropLeadingBytes(bitcodeStart - buf); 5486 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5487 } 5488 return std::error_code(); 5489 } 5490 5491 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5492 const Twine &Message) { 5493 return ::error(DiagnosticHandler, make_error_code(E), Message); 5494 } 5495 5496 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5497 return ::error(DiagnosticHandler, 5498 make_error_code(BitcodeError::CorruptedBitcode), Message); 5499 } 5500 5501 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5502 return ::error(DiagnosticHandler, make_error_code(E)); 5503 } 5504 5505 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5506 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5507 bool CheckGlobalValSummaryPresenceOnly) 5508 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), 5509 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5510 5511 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5512 DiagnosticHandlerFunction DiagnosticHandler, 5513 bool CheckGlobalValSummaryPresenceOnly) 5514 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), 5515 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5516 5517 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5518 5519 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5520 5521 GlobalValue::GUID 5522 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5523 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5524 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5525 return VGI->second; 5526 } 5527 5528 GlobalValueInfo * 5529 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5530 auto I = SummaryOffsetToInfoMap.find(Offset); 5531 assert(I != SummaryOffsetToInfoMap.end()); 5532 return I->second; 5533 } 5534 5535 // Specialized value symbol table parser used when reading module index 5536 // blocks where we don't actually create global values. 5537 // At the end of this routine the module index is populated with a map 5538 // from global value name to GlobalValueInfo. The global value info contains 5539 // the function block's bitcode offset (if applicable), or the offset into the 5540 // summary section for the combined index. 5541 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5542 uint64_t Offset, 5543 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5544 assert(Offset > 0 && "Expected non-zero VST offset"); 5545 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5546 5547 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5548 return error("Invalid record"); 5549 5550 SmallVector<uint64_t, 64> Record; 5551 5552 // Read all the records for this value table. 5553 SmallString<128> ValueName; 5554 while (1) { 5555 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5556 5557 switch (Entry.Kind) { 5558 case BitstreamEntry::SubBlock: // Handled for us already. 5559 case BitstreamEntry::Error: 5560 return error("Malformed block"); 5561 case BitstreamEntry::EndBlock: 5562 // Done parsing VST, jump back to wherever we came from. 5563 Stream.JumpToBit(CurrentBit); 5564 return std::error_code(); 5565 case BitstreamEntry::Record: 5566 // The interesting case. 5567 break; 5568 } 5569 5570 // Read a record. 5571 Record.clear(); 5572 switch (Stream.readRecord(Entry.ID, Record)) { 5573 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5574 break; 5575 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5576 if (convertToString(Record, 1, ValueName)) 5577 return error("Invalid record"); 5578 unsigned ValueID = Record[0]; 5579 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5580 llvm::make_unique<GlobalValueInfo>(); 5581 assert(!SourceFileName.empty()); 5582 auto VLI = ValueIdToLinkageMap.find(ValueID); 5583 assert(VLI != ValueIdToLinkageMap.end() && 5584 "No linkage found for VST entry?"); 5585 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5586 ValueName, VLI->second, SourceFileName); 5587 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5588 if (PrintSummaryGUIDs) 5589 dbgs() << "GUID " << ValueGUID << " is " << ValueName << "\n"; 5590 TheIndex->addGlobalValueInfo(ValueGUID, std::move(GlobalValInfo)); 5591 ValueIdToCallGraphGUIDMap[ValueID] = ValueGUID; 5592 ValueName.clear(); 5593 break; 5594 } 5595 case bitc::VST_CODE_FNENTRY: { 5596 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5597 if (convertToString(Record, 2, ValueName)) 5598 return error("Invalid record"); 5599 unsigned ValueID = Record[0]; 5600 uint64_t FuncOffset = Record[1]; 5601 std::unique_ptr<GlobalValueInfo> FuncInfo = 5602 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5603 assert(!SourceFileName.empty()); 5604 auto VLI = ValueIdToLinkageMap.find(ValueID); 5605 assert(VLI != ValueIdToLinkageMap.end() && 5606 "No linkage found for VST entry?"); 5607 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5608 ValueName, VLI->second, SourceFileName); 5609 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5610 if (PrintSummaryGUIDs) 5611 dbgs() << "GUID " << FunctionGUID << " is " << ValueName << "\n"; 5612 TheIndex->addGlobalValueInfo(FunctionGUID, std::move(FuncInfo)); 5613 ValueIdToCallGraphGUIDMap[ValueID] = FunctionGUID; 5614 5615 ValueName.clear(); 5616 break; 5617 } 5618 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5619 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5620 unsigned ValueID = Record[0]; 5621 uint64_t GlobalValSummaryOffset = Record[1]; 5622 GlobalValue::GUID GlobalValGUID = Record[2]; 5623 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5624 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5625 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5626 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5627 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5628 break; 5629 } 5630 case bitc::VST_CODE_COMBINED_ENTRY: { 5631 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5632 unsigned ValueID = Record[0]; 5633 GlobalValue::GUID RefGUID = Record[1]; 5634 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5635 break; 5636 } 5637 } 5638 } 5639 } 5640 5641 // Parse just the blocks needed for building the index out of the module. 5642 // At the end of this routine the module Index is populated with a map 5643 // from global value name to GlobalValueInfo. The global value info contains 5644 // the parsed summary information (when parsing summaries eagerly). 5645 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5646 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5647 return error("Invalid record"); 5648 5649 SmallVector<uint64_t, 64> Record; 5650 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5651 unsigned ValueId = 0; 5652 5653 // Read the index for this module. 5654 while (1) { 5655 BitstreamEntry Entry = Stream.advance(); 5656 5657 switch (Entry.Kind) { 5658 case BitstreamEntry::Error: 5659 return error("Malformed block"); 5660 case BitstreamEntry::EndBlock: 5661 return std::error_code(); 5662 5663 case BitstreamEntry::SubBlock: 5664 if (CheckGlobalValSummaryPresenceOnly) { 5665 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5666 SeenGlobalValSummary = true; 5667 // No need to parse the rest since we found the summary. 5668 return std::error_code(); 5669 } 5670 if (Stream.SkipBlock()) 5671 return error("Invalid record"); 5672 continue; 5673 } 5674 switch (Entry.ID) { 5675 default: // Skip unknown content. 5676 if (Stream.SkipBlock()) 5677 return error("Invalid record"); 5678 break; 5679 case bitc::BLOCKINFO_BLOCK_ID: 5680 // Need to parse these to get abbrev ids (e.g. for VST) 5681 if (Stream.ReadBlockInfoBlock()) 5682 return error("Malformed block"); 5683 break; 5684 case bitc::VALUE_SYMTAB_BLOCK_ID: 5685 // Should have been parsed earlier via VSTOffset, unless there 5686 // is no summary section. 5687 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5688 !SeenGlobalValSummary) && 5689 "Expected early VST parse via VSTOffset record"); 5690 if (Stream.SkipBlock()) 5691 return error("Invalid record"); 5692 break; 5693 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5694 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5695 assert(!SeenValueSymbolTable && 5696 "Already read VST when parsing summary block?"); 5697 if (std::error_code EC = 5698 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5699 return EC; 5700 SeenValueSymbolTable = true; 5701 SeenGlobalValSummary = true; 5702 if (std::error_code EC = parseEntireSummary()) 5703 return EC; 5704 break; 5705 case bitc::MODULE_STRTAB_BLOCK_ID: 5706 if (std::error_code EC = parseModuleStringTable()) 5707 return EC; 5708 break; 5709 } 5710 continue; 5711 5712 case BitstreamEntry::Record: { 5713 Record.clear(); 5714 auto BitCode = Stream.readRecord(Entry.ID, Record); 5715 switch (BitCode) { 5716 default: 5717 break; // Default behavior, ignore unknown content. 5718 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5719 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5720 SmallString<128> ValueName; 5721 if (convertToString(Record, 0, ValueName)) 5722 return error("Invalid record"); 5723 SourceFileName = ValueName.c_str(); 5724 break; 5725 } 5726 /// MODULE_CODE_HASH: [5*i32] 5727 case bitc::MODULE_CODE_HASH: { 5728 if (Record.size() != 5) 5729 return error("Invalid hash length " + Twine(Record.size()).str()); 5730 if (!TheIndex) 5731 break; 5732 if (TheIndex->modulePaths().empty()) 5733 // Does not have any summary emitted. 5734 break; 5735 if (TheIndex->modulePaths().size() != 1) 5736 return error("Don't expect multiple modules defined?"); 5737 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5738 int Pos = 0; 5739 for (auto &Val : Record) { 5740 assert(!(Val >> 32) && "Unexpected high bits set"); 5741 Hash[Pos++] = Val; 5742 } 5743 break; 5744 } 5745 /// MODULE_CODE_VSTOFFSET: [offset] 5746 case bitc::MODULE_CODE_VSTOFFSET: 5747 if (Record.size() < 1) 5748 return error("Invalid record"); 5749 VSTOffset = Record[0]; 5750 break; 5751 // GLOBALVAR: [pointer type, isconst, initid, 5752 // linkage, alignment, section, visibility, threadlocal, 5753 // unnamed_addr, externally_initialized, dllstorageclass, 5754 // comdat] 5755 case bitc::MODULE_CODE_GLOBALVAR: { 5756 if (Record.size() < 6) 5757 return error("Invalid record"); 5758 uint64_t RawLinkage = Record[3]; 5759 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5760 ValueIdToLinkageMap[ValueId++] = Linkage; 5761 break; 5762 } 5763 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5764 // alignment, section, visibility, gc, unnamed_addr, 5765 // prologuedata, dllstorageclass, comdat, prefixdata] 5766 case bitc::MODULE_CODE_FUNCTION: { 5767 if (Record.size() < 8) 5768 return error("Invalid record"); 5769 uint64_t RawLinkage = Record[3]; 5770 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5771 ValueIdToLinkageMap[ValueId++] = Linkage; 5772 break; 5773 } 5774 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5775 // dllstorageclass] 5776 case bitc::MODULE_CODE_ALIAS: { 5777 if (Record.size() < 6) 5778 return error("Invalid record"); 5779 uint64_t RawLinkage = Record[3]; 5780 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5781 ValueIdToLinkageMap[ValueId++] = Linkage; 5782 break; 5783 } 5784 } 5785 } 5786 continue; 5787 } 5788 } 5789 } 5790 5791 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5792 // objects in the index. 5793 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5794 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5795 return error("Invalid record"); 5796 5797 SmallVector<uint64_t, 64> Record; 5798 5799 bool Combined = false; 5800 while (1) { 5801 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5802 5803 switch (Entry.Kind) { 5804 case BitstreamEntry::SubBlock: // Handled for us already. 5805 case BitstreamEntry::Error: 5806 return error("Malformed block"); 5807 case BitstreamEntry::EndBlock: 5808 // For a per-module index, remove any entries that still have empty 5809 // summaries. The VST parsing creates entries eagerly for all symbols, 5810 // but not all have associated summaries (e.g. it doesn't know how to 5811 // distinguish between VST_CODE_ENTRY for function declarations vs global 5812 // variables with initializers that end up with a summary). Remove those 5813 // entries now so that we don't need to rely on the combined index merger 5814 // to clean them up (especially since that may not run for the first 5815 // module's index if we merge into that). 5816 if (!Combined) 5817 TheIndex->removeEmptySummaryEntries(); 5818 return std::error_code(); 5819 case BitstreamEntry::Record: 5820 // The interesting case. 5821 break; 5822 } 5823 5824 // Read a record. The record format depends on whether this 5825 // is a per-module index or a combined index file. In the per-module 5826 // case the records contain the associated value's ID for correlation 5827 // with VST entries. In the combined index the correlation is done 5828 // via the bitcode offset of the summary records (which were saved 5829 // in the combined index VST entries). The records also contain 5830 // information used for ThinLTO renaming and importing. 5831 Record.clear(); 5832 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5833 auto BitCode = Stream.readRecord(Entry.ID, Record); 5834 switch (BitCode) { 5835 default: // Default behavior: ignore. 5836 break; 5837 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5838 // n x (valueid, callsitecount)] 5839 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5840 // numrefs x valueid, 5841 // n x (valueid, callsitecount, profilecount)] 5842 case bitc::FS_PERMODULE: 5843 case bitc::FS_PERMODULE_PROFILE: { 5844 unsigned ValueID = Record[0]; 5845 uint64_t RawLinkage = Record[1]; 5846 unsigned InstCount = Record[2]; 5847 unsigned NumRefs = Record[3]; 5848 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5849 getDecodedLinkage(RawLinkage), InstCount); 5850 // The module path string ref set in the summary must be owned by the 5851 // index's module string table. Since we don't have a module path 5852 // string table section in the per-module index, we create a single 5853 // module path string table entry with an empty (0) ID to take 5854 // ownership. 5855 FS->setModulePath( 5856 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5857 static int RefListStartIndex = 4; 5858 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5859 assert(Record.size() >= RefListStartIndex + NumRefs && 5860 "Record size inconsistent with number of references"); 5861 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5862 unsigned RefValueId = Record[I]; 5863 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5864 FS->addRefEdge(RefGUID); 5865 } 5866 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5867 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5868 ++I) { 5869 unsigned CalleeValueId = Record[I]; 5870 unsigned CallsiteCount = Record[++I]; 5871 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5872 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5873 FS->addCallGraphEdge(CalleeGUID, 5874 CalleeInfo(CallsiteCount, ProfileCount)); 5875 } 5876 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5877 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5878 assert(!Info->summary() && "Expected a single summary per VST entry"); 5879 Info->setSummary(std::move(FS)); 5880 break; 5881 } 5882 // FS_ALIAS: [valueid, linkage, valueid] 5883 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5884 // they expect all aliasee summaries to be available. 5885 case bitc::FS_ALIAS: { 5886 unsigned ValueID = Record[0]; 5887 uint64_t RawLinkage = Record[1]; 5888 unsigned AliaseeID = Record[2]; 5889 std::unique_ptr<AliasSummary> AS = 5890 llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage)); 5891 // The module path string ref set in the summary must be owned by the 5892 // index's module string table. Since we don't have a module path 5893 // string table section in the per-module index, we create a single 5894 // module path string table entry with an empty (0) ID to take 5895 // ownership. 5896 AS->setModulePath( 5897 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5898 5899 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID); 5900 auto *AliaseeInfo = TheIndex->getGlobalValueInfo(AliaseeGUID); 5901 if (!AliaseeInfo->summary()) 5902 return error("Alias expects aliasee summary to be parsed"); 5903 AS->setAliasee(AliaseeInfo->summary()); 5904 5905 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5906 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5907 assert(!Info->summary() && "Expected a single summary per VST entry"); 5908 Info->setSummary(std::move(AS)); 5909 break; 5910 } 5911 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5912 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5913 unsigned ValueID = Record[0]; 5914 uint64_t RawLinkage = Record[1]; 5915 std::unique_ptr<GlobalVarSummary> FS = 5916 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5917 FS->setModulePath( 5918 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5919 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5920 unsigned RefValueId = Record[I]; 5921 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5922 FS->addRefEdge(RefGUID); 5923 } 5924 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5925 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5926 assert(!Info->summary() && "Expected a single summary per VST entry"); 5927 Info->setSummary(std::move(FS)); 5928 break; 5929 } 5930 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 5931 // n x (valueid, callsitecount)] 5932 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 5933 // numrefs x valueid, 5934 // n x (valueid, callsitecount, profilecount)] 5935 case bitc::FS_COMBINED: 5936 case bitc::FS_COMBINED_PROFILE: { 5937 uint64_t ModuleId = Record[0]; 5938 uint64_t RawLinkage = Record[1]; 5939 unsigned InstCount = Record[2]; 5940 unsigned NumRefs = Record[3]; 5941 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5942 getDecodedLinkage(RawLinkage), InstCount); 5943 FS->setModulePath(ModuleIdMap[ModuleId]); 5944 static int RefListStartIndex = 4; 5945 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5946 assert(Record.size() >= RefListStartIndex + NumRefs && 5947 "Record size inconsistent with number of references"); 5948 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5949 unsigned RefValueId = Record[I]; 5950 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5951 FS->addRefEdge(RefGUID); 5952 } 5953 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5954 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5955 ++I) { 5956 unsigned CalleeValueId = Record[I]; 5957 unsigned CallsiteCount = Record[++I]; 5958 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5959 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5960 FS->addCallGraphEdge(CalleeGUID, 5961 CalleeInfo(CallsiteCount, ProfileCount)); 5962 } 5963 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5964 assert(!Info->summary() && "Expected a single summary per VST entry"); 5965 Info->setSummary(std::move(FS)); 5966 Combined = true; 5967 break; 5968 } 5969 // FS_COMBINED_ALIAS: [modid, linkage, offset] 5970 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5971 // they expect all aliasee summaries to be available. 5972 case bitc::FS_COMBINED_ALIAS: { 5973 uint64_t ModuleId = Record[0]; 5974 uint64_t RawLinkage = Record[1]; 5975 uint64_t AliaseeSummaryOffset = Record[2]; 5976 std::unique_ptr<AliasSummary> AS = 5977 llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage)); 5978 AS->setModulePath(ModuleIdMap[ModuleId]); 5979 5980 auto *AliaseeInfo = getInfoFromSummaryOffset(AliaseeSummaryOffset); 5981 if (!AliaseeInfo->summary()) 5982 return error("Alias expects aliasee summary to be parsed"); 5983 AS->setAliasee(AliaseeInfo->summary()); 5984 5985 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5986 assert(!Info->summary() && "Expected a single summary per VST entry"); 5987 Info->setSummary(std::move(AS)); 5988 Combined = true; 5989 break; 5990 } 5991 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 5992 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5993 uint64_t ModuleId = Record[0]; 5994 uint64_t RawLinkage = Record[1]; 5995 std::unique_ptr<GlobalVarSummary> FS = 5996 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5997 FS->setModulePath(ModuleIdMap[ModuleId]); 5998 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5999 unsigned RefValueId = Record[I]; 6000 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 6001 FS->addRefEdge(RefGUID); 6002 } 6003 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 6004 assert(!Info->summary() && "Expected a single summary per VST entry"); 6005 Info->setSummary(std::move(FS)); 6006 Combined = true; 6007 break; 6008 } 6009 } 6010 } 6011 llvm_unreachable("Exit infinite loop"); 6012 } 6013 6014 // Parse the module string table block into the Index. 6015 // This populates the ModulePathStringTable map in the index. 6016 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6017 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6018 return error("Invalid record"); 6019 6020 SmallVector<uint64_t, 64> Record; 6021 6022 SmallString<128> ModulePath; 6023 ModulePathStringTableTy::iterator LastSeenModulePath; 6024 while (1) { 6025 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6026 6027 switch (Entry.Kind) { 6028 case BitstreamEntry::SubBlock: // Handled for us already. 6029 case BitstreamEntry::Error: 6030 return error("Malformed block"); 6031 case BitstreamEntry::EndBlock: 6032 return std::error_code(); 6033 case BitstreamEntry::Record: 6034 // The interesting case. 6035 break; 6036 } 6037 6038 Record.clear(); 6039 switch (Stream.readRecord(Entry.ID, Record)) { 6040 default: // Default behavior: ignore. 6041 break; 6042 case bitc::MST_CODE_ENTRY: { 6043 // MST_ENTRY: [modid, namechar x N] 6044 uint64_t ModuleId = Record[0]; 6045 6046 if (convertToString(Record, 1, ModulePath)) 6047 return error("Invalid record"); 6048 6049 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6050 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6051 6052 ModulePath.clear(); 6053 break; 6054 } 6055 /// MST_CODE_HASH: [5*i32] 6056 case bitc::MST_CODE_HASH: { 6057 if (Record.size() != 5) 6058 return error("Invalid hash length " + Twine(Record.size()).str()); 6059 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6060 return error("Invalid hash that does not follow a module path"); 6061 int Pos = 0; 6062 for (auto &Val : Record) { 6063 assert(!(Val >> 32) && "Unexpected high bits set"); 6064 LastSeenModulePath->second.second[Pos++] = Val; 6065 } 6066 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6067 LastSeenModulePath = TheIndex->modulePaths().end(); 6068 break; 6069 } 6070 } 6071 } 6072 llvm_unreachable("Exit infinite loop"); 6073 } 6074 6075 // Parse the function info index from the bitcode streamer into the given index. 6076 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6077 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6078 TheIndex = I; 6079 6080 if (std::error_code EC = initStream(std::move(Streamer))) 6081 return EC; 6082 6083 // Sniff for the signature. 6084 if (!hasValidBitcodeHeader(Stream)) 6085 return error("Invalid bitcode signature"); 6086 6087 // We expect a number of well-defined blocks, though we don't necessarily 6088 // need to understand them all. 6089 while (1) { 6090 if (Stream.AtEndOfStream()) { 6091 // We didn't really read a proper Module block. 6092 return error("Malformed block"); 6093 } 6094 6095 BitstreamEntry Entry = 6096 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6097 6098 if (Entry.Kind != BitstreamEntry::SubBlock) 6099 return error("Malformed block"); 6100 6101 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6102 // building the function summary index. 6103 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6104 return parseModule(); 6105 6106 if (Stream.SkipBlock()) 6107 return error("Invalid record"); 6108 } 6109 } 6110 6111 // Parse the summary information at the given offset in the buffer into 6112 // the index. Used to support lazy parsing of summaries from the 6113 // combined index during importing. 6114 // TODO: This function is not yet complete as it won't have a consumer 6115 // until ThinLTO function importing is added. 6116 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 6117 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6118 size_t SummaryOffset) { 6119 TheIndex = I; 6120 6121 if (std::error_code EC = initStream(std::move(Streamer))) 6122 return EC; 6123 6124 // Sniff for the signature. 6125 if (!hasValidBitcodeHeader(Stream)) 6126 return error("Invalid bitcode signature"); 6127 6128 Stream.JumpToBit(SummaryOffset); 6129 6130 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6131 6132 switch (Entry.Kind) { 6133 default: 6134 return error("Malformed block"); 6135 case BitstreamEntry::Record: 6136 // The expected case. 6137 break; 6138 } 6139 6140 // TODO: Read a record. This interface will be completed when ThinLTO 6141 // importing is added so that it can be tested. 6142 SmallVector<uint64_t, 64> Record; 6143 switch (Stream.readRecord(Entry.ID, Record)) { 6144 case bitc::FS_COMBINED: 6145 case bitc::FS_COMBINED_PROFILE: 6146 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6147 default: 6148 return error("Invalid record"); 6149 } 6150 6151 return std::error_code(); 6152 } 6153 6154 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6155 std::unique_ptr<DataStreamer> Streamer) { 6156 if (Streamer) 6157 return initLazyStream(std::move(Streamer)); 6158 return initStreamFromBuffer(); 6159 } 6160 6161 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6162 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6163 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6164 6165 if (Buffer->getBufferSize() & 3) 6166 return error("Invalid bitcode signature"); 6167 6168 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6169 // The magic number is 0x0B17C0DE stored in little endian. 6170 if (isBitcodeWrapper(BufPtr, BufEnd)) 6171 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6172 return error("Invalid bitcode wrapper header"); 6173 6174 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6175 Stream.init(&*StreamFile); 6176 6177 return std::error_code(); 6178 } 6179 6180 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6181 std::unique_ptr<DataStreamer> Streamer) { 6182 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6183 // see it. 6184 auto OwnedBytes = 6185 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6186 StreamingMemoryObject &Bytes = *OwnedBytes; 6187 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6188 Stream.init(&*StreamFile); 6189 6190 unsigned char buf[16]; 6191 if (Bytes.readBytes(buf, 16, 0) != 16) 6192 return error("Invalid bitcode signature"); 6193 6194 if (!isBitcode(buf, buf + 16)) 6195 return error("Invalid bitcode signature"); 6196 6197 if (isBitcodeWrapper(buf, buf + 4)) { 6198 const unsigned char *bitcodeStart = buf; 6199 const unsigned char *bitcodeEnd = buf + 16; 6200 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6201 Bytes.dropLeadingBytes(bitcodeStart - buf); 6202 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6203 } 6204 return std::error_code(); 6205 } 6206 6207 namespace { 6208 class BitcodeErrorCategoryType : public std::error_category { 6209 const char *name() const LLVM_NOEXCEPT override { 6210 return "llvm.bitcode"; 6211 } 6212 std::string message(int IE) const override { 6213 BitcodeError E = static_cast<BitcodeError>(IE); 6214 switch (E) { 6215 case BitcodeError::InvalidBitcodeSignature: 6216 return "Invalid bitcode signature"; 6217 case BitcodeError::CorruptedBitcode: 6218 return "Corrupted bitcode"; 6219 } 6220 llvm_unreachable("Unknown error type!"); 6221 } 6222 }; 6223 } // end anonymous namespace 6224 6225 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6226 6227 const std::error_category &llvm::BitcodeErrorCategory() { 6228 return *ErrorCategory; 6229 } 6230 6231 //===----------------------------------------------------------------------===// 6232 // External interface 6233 //===----------------------------------------------------------------------===// 6234 6235 static ErrorOr<std::unique_ptr<Module>> 6236 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6237 BitcodeReader *R, LLVMContext &Context, 6238 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6239 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6240 M->setMaterializer(R); 6241 6242 auto cleanupOnError = [&](std::error_code EC) { 6243 R->releaseBuffer(); // Never take ownership on error. 6244 return EC; 6245 }; 6246 6247 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6248 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6249 ShouldLazyLoadMetadata)) 6250 return cleanupOnError(EC); 6251 6252 if (MaterializeAll) { 6253 // Read in the entire module, and destroy the BitcodeReader. 6254 if (std::error_code EC = M->materializeAll()) 6255 return cleanupOnError(EC); 6256 } else { 6257 // Resolve forward references from blockaddresses. 6258 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6259 return cleanupOnError(EC); 6260 } 6261 return std::move(M); 6262 } 6263 6264 /// \brief Get a lazy one-at-time loading module from bitcode. 6265 /// 6266 /// This isn't always used in a lazy context. In particular, it's also used by 6267 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6268 /// in forward-referenced functions from block address references. 6269 /// 6270 /// \param[in] MaterializeAll Set to \c true if we should materialize 6271 /// everything. 6272 static ErrorOr<std::unique_ptr<Module>> 6273 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6274 LLVMContext &Context, bool MaterializeAll, 6275 bool ShouldLazyLoadMetadata = false) { 6276 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6277 6278 ErrorOr<std::unique_ptr<Module>> Ret = 6279 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6280 MaterializeAll, ShouldLazyLoadMetadata); 6281 if (!Ret) 6282 return Ret; 6283 6284 Buffer.release(); // The BitcodeReader owns it now. 6285 return Ret; 6286 } 6287 6288 ErrorOr<std::unique_ptr<Module>> 6289 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6290 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6291 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6292 ShouldLazyLoadMetadata); 6293 } 6294 6295 ErrorOr<std::unique_ptr<Module>> 6296 llvm::getStreamedBitcodeModule(StringRef Name, 6297 std::unique_ptr<DataStreamer> Streamer, 6298 LLVMContext &Context) { 6299 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6300 BitcodeReader *R = new BitcodeReader(Context); 6301 6302 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6303 false); 6304 } 6305 6306 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6307 LLVMContext &Context) { 6308 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6309 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6310 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6311 // written. We must defer until the Module has been fully materialized. 6312 } 6313 6314 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6315 LLVMContext &Context) { 6316 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6317 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6318 ErrorOr<std::string> Triple = R->parseTriple(); 6319 if (Triple.getError()) 6320 return ""; 6321 return Triple.get(); 6322 } 6323 6324 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6325 LLVMContext &Context) { 6326 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6327 BitcodeReader R(Buf.release(), Context); 6328 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6329 if (ProducerString.getError()) 6330 return ""; 6331 return ProducerString.get(); 6332 } 6333 6334 // Parse the specified bitcode buffer, returning the function info index. 6335 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6336 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6337 DiagnosticHandlerFunction DiagnosticHandler) { 6338 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6339 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6340 6341 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6342 6343 auto cleanupOnError = [&](std::error_code EC) { 6344 R.releaseBuffer(); // Never take ownership on error. 6345 return EC; 6346 }; 6347 6348 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6349 return cleanupOnError(EC); 6350 6351 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6352 return std::move(Index); 6353 } 6354 6355 // Check if the given bitcode buffer contains a global value summary block. 6356 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6357 DiagnosticHandlerFunction DiagnosticHandler) { 6358 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6359 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6360 6361 auto cleanupOnError = [&](std::error_code EC) { 6362 R.releaseBuffer(); // Never take ownership on error. 6363 return false; 6364 }; 6365 6366 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6367 return cleanupOnError(EC); 6368 6369 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6370 return R.foundGlobalValSummary(); 6371 } 6372