1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
29 
30 void BitcodeReader::FreeState() {
31   delete Buffer;
32   Buffer = 0;
33   std::vector<PATypeHolder>().swap(TypeList);
34   ValueList.clear();
35   MDValueList.clear();
36 
37   std::vector<AttrListPtr>().swap(MAttributes);
38   std::vector<BasicBlock*>().swap(FunctionBBs);
39   std::vector<Function*>().swap(FunctionsWithBodies);
40   DeferredFunctionInfo.clear();
41 }
42 
43 //===----------------------------------------------------------------------===//
44 //  Helper functions to implement forward reference resolution, etc.
45 //===----------------------------------------------------------------------===//
46 
47 /// ConvertToString - Convert a string from a record into an std::string, return
48 /// true on failure.
49 template<typename StrTy>
50 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
51                             StrTy &Result) {
52   if (Idx > Record.size())
53     return true;
54 
55   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
56     Result += (char)Record[i];
57   return false;
58 }
59 
60 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
61   switch (Val) {
62   default: // Map unknown/new linkages to external
63   case 0:  return GlobalValue::ExternalLinkage;
64   case 1:  return GlobalValue::WeakAnyLinkage;
65   case 2:  return GlobalValue::AppendingLinkage;
66   case 3:  return GlobalValue::InternalLinkage;
67   case 4:  return GlobalValue::LinkOnceAnyLinkage;
68   case 5:  return GlobalValue::DLLImportLinkage;
69   case 6:  return GlobalValue::DLLExportLinkage;
70   case 7:  return GlobalValue::ExternalWeakLinkage;
71   case 8:  return GlobalValue::CommonLinkage;
72   case 9:  return GlobalValue::PrivateLinkage;
73   case 10: return GlobalValue::WeakODRLinkage;
74   case 11: return GlobalValue::LinkOnceODRLinkage;
75   case 12: return GlobalValue::AvailableExternallyLinkage;
76   case 13: return GlobalValue::LinkerPrivateLinkage;
77   }
78 }
79 
80 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
81   switch (Val) {
82   default: // Map unknown visibilities to default.
83   case 0: return GlobalValue::DefaultVisibility;
84   case 1: return GlobalValue::HiddenVisibility;
85   case 2: return GlobalValue::ProtectedVisibility;
86   }
87 }
88 
89 static int GetDecodedCastOpcode(unsigned Val) {
90   switch (Val) {
91   default: return -1;
92   case bitc::CAST_TRUNC   : return Instruction::Trunc;
93   case bitc::CAST_ZEXT    : return Instruction::ZExt;
94   case bitc::CAST_SEXT    : return Instruction::SExt;
95   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
96   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
97   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
98   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
99   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
100   case bitc::CAST_FPEXT   : return Instruction::FPExt;
101   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
102   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
103   case bitc::CAST_BITCAST : return Instruction::BitCast;
104   }
105 }
106 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
107   switch (Val) {
108   default: return -1;
109   case bitc::BINOP_ADD:
110     return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
111   case bitc::BINOP_SUB:
112     return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
113   case bitc::BINOP_MUL:
114     return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
115   case bitc::BINOP_UDIV: return Instruction::UDiv;
116   case bitc::BINOP_SDIV:
117     return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
118   case bitc::BINOP_UREM: return Instruction::URem;
119   case bitc::BINOP_SREM:
120     return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
121   case bitc::BINOP_SHL:  return Instruction::Shl;
122   case bitc::BINOP_LSHR: return Instruction::LShr;
123   case bitc::BINOP_ASHR: return Instruction::AShr;
124   case bitc::BINOP_AND:  return Instruction::And;
125   case bitc::BINOP_OR:   return Instruction::Or;
126   case bitc::BINOP_XOR:  return Instruction::Xor;
127   }
128 }
129 
130 namespace llvm {
131 namespace {
132   /// @brief A class for maintaining the slot number definition
133   /// as a placeholder for the actual definition for forward constants defs.
134   class ConstantPlaceHolder : public ConstantExpr {
135     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
136     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
137   public:
138     // allocate space for exactly one operand
139     void *operator new(size_t s) {
140       return User::operator new(s, 1);
141     }
142     explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
143       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
144       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
145     }
146 
147     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
148     static inline bool classof(const ConstantPlaceHolder *) { return true; }
149     static bool classof(const Value *V) {
150       return isa<ConstantExpr>(V) &&
151              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
152     }
153 
154 
155     /// Provide fast operand accessors
156     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
157   };
158 }
159 
160 // FIXME: can we inherit this from ConstantExpr?
161 template <>
162 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
163 };
164 }
165 
166 
167 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
168   if (Idx == size()) {
169     push_back(V);
170     return;
171   }
172 
173   if (Idx >= size())
174     resize(Idx+1);
175 
176   WeakVH &OldV = ValuePtrs[Idx];
177   if (OldV == 0) {
178     OldV = V;
179     return;
180   }
181 
182   // Handle constants and non-constants (e.g. instrs) differently for
183   // efficiency.
184   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
185     ResolveConstants.push_back(std::make_pair(PHC, Idx));
186     OldV = V;
187   } else {
188     // If there was a forward reference to this value, replace it.
189     Value *PrevVal = OldV;
190     OldV->replaceAllUsesWith(V);
191     delete PrevVal;
192   }
193 }
194 
195 
196 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
197                                                     const Type *Ty) {
198   if (Idx >= size())
199     resize(Idx + 1);
200 
201   if (Value *V = ValuePtrs[Idx]) {
202     assert(Ty == V->getType() && "Type mismatch in constant table!");
203     return cast<Constant>(V);
204   }
205 
206   // Create and return a placeholder, which will later be RAUW'd.
207   Constant *C = new ConstantPlaceHolder(Ty, Context);
208   ValuePtrs[Idx] = C;
209   return C;
210 }
211 
212 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
213   if (Idx >= size())
214     resize(Idx + 1);
215 
216   if (Value *V = ValuePtrs[Idx]) {
217     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
218     return V;
219   }
220 
221   // No type specified, must be invalid reference.
222   if (Ty == 0) return 0;
223 
224   // Create and return a placeholder, which will later be RAUW'd.
225   Value *V = new Argument(Ty);
226   ValuePtrs[Idx] = V;
227   return V;
228 }
229 
230 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
231 /// resolves any forward references.  The idea behind this is that we sometimes
232 /// get constants (such as large arrays) which reference *many* forward ref
233 /// constants.  Replacing each of these causes a lot of thrashing when
234 /// building/reuniquing the constant.  Instead of doing this, we look at all the
235 /// uses and rewrite all the place holders at once for any constant that uses
236 /// a placeholder.
237 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
238   // Sort the values by-pointer so that they are efficient to look up with a
239   // binary search.
240   std::sort(ResolveConstants.begin(), ResolveConstants.end());
241 
242   SmallVector<Constant*, 64> NewOps;
243 
244   while (!ResolveConstants.empty()) {
245     Value *RealVal = operator[](ResolveConstants.back().second);
246     Constant *Placeholder = ResolveConstants.back().first;
247     ResolveConstants.pop_back();
248 
249     // Loop over all users of the placeholder, updating them to reference the
250     // new value.  If they reference more than one placeholder, update them all
251     // at once.
252     while (!Placeholder->use_empty()) {
253       Value::use_iterator UI = Placeholder->use_begin();
254 
255       // If the using object isn't uniqued, just update the operands.  This
256       // handles instructions and initializers for global variables.
257       if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
258         UI.getUse().set(RealVal);
259         continue;
260       }
261 
262       // Otherwise, we have a constant that uses the placeholder.  Replace that
263       // constant with a new constant that has *all* placeholder uses updated.
264       Constant *UserC = cast<Constant>(*UI);
265       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
266            I != E; ++I) {
267         Value *NewOp;
268         if (!isa<ConstantPlaceHolder>(*I)) {
269           // Not a placeholder reference.
270           NewOp = *I;
271         } else if (*I == Placeholder) {
272           // Common case is that it just references this one placeholder.
273           NewOp = RealVal;
274         } else {
275           // Otherwise, look up the placeholder in ResolveConstants.
276           ResolveConstantsTy::iterator It =
277             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
278                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
279                                                             0));
280           assert(It != ResolveConstants.end() && It->first == *I);
281           NewOp = operator[](It->second);
282         }
283 
284         NewOps.push_back(cast<Constant>(NewOp));
285       }
286 
287       // Make the new constant.
288       Constant *NewC;
289       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
290         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
291                                         NewOps.size());
292       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
293         NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
294                                          UserCS->getType()->isPacked());
295       } else if (isa<ConstantVector>(UserC)) {
296         NewC = ConstantVector::get(&NewOps[0], NewOps.size());
297       } else {
298         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
299         NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
300                                                           NewOps.size());
301       }
302 
303       UserC->replaceAllUsesWith(NewC);
304       UserC->destroyConstant();
305       NewOps.clear();
306     }
307 
308     // Update all ValueHandles, they should be the only users at this point.
309     Placeholder->replaceAllUsesWith(RealVal);
310     delete Placeholder;
311   }
312 }
313 
314 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
315   if (Idx == size()) {
316     push_back(V);
317     return;
318   }
319 
320   if (Idx >= size())
321     resize(Idx+1);
322 
323   WeakVH &OldV = MDValuePtrs[Idx];
324   if (OldV == 0) {
325     OldV = V;
326     return;
327   }
328 
329   // If there was a forward reference to this value, replace it.
330   Value *PrevVal = OldV;
331   OldV->replaceAllUsesWith(V);
332   delete PrevVal;
333   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
334   // value for Idx.
335   MDValuePtrs[Idx] = V;
336 }
337 
338 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
339   if (Idx >= size())
340     resize(Idx + 1);
341 
342   if (Value *V = MDValuePtrs[Idx]) {
343     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
344     return V;
345   }
346 
347   // Create and return a placeholder, which will later be RAUW'd.
348   Value *V = new Argument(Type::getMetadataTy(Context));
349   MDValuePtrs[Idx] = V;
350   return V;
351 }
352 
353 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
354   // If the TypeID is in range, return it.
355   if (ID < TypeList.size())
356     return TypeList[ID].get();
357   if (!isTypeTable) return 0;
358 
359   // The type table allows forward references.  Push as many Opaque types as
360   // needed to get up to ID.
361   while (TypeList.size() <= ID)
362     TypeList.push_back(OpaqueType::get(Context));
363   return TypeList.back().get();
364 }
365 
366 //===----------------------------------------------------------------------===//
367 //  Functions for parsing blocks from the bitcode file
368 //===----------------------------------------------------------------------===//
369 
370 bool BitcodeReader::ParseAttributeBlock() {
371   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
372     return Error("Malformed block record");
373 
374   if (!MAttributes.empty())
375     return Error("Multiple PARAMATTR blocks found!");
376 
377   SmallVector<uint64_t, 64> Record;
378 
379   SmallVector<AttributeWithIndex, 8> Attrs;
380 
381   // Read all the records.
382   while (1) {
383     unsigned Code = Stream.ReadCode();
384     if (Code == bitc::END_BLOCK) {
385       if (Stream.ReadBlockEnd())
386         return Error("Error at end of PARAMATTR block");
387       return false;
388     }
389 
390     if (Code == bitc::ENTER_SUBBLOCK) {
391       // No known subblocks, always skip them.
392       Stream.ReadSubBlockID();
393       if (Stream.SkipBlock())
394         return Error("Malformed block record");
395       continue;
396     }
397 
398     if (Code == bitc::DEFINE_ABBREV) {
399       Stream.ReadAbbrevRecord();
400       continue;
401     }
402 
403     // Read a record.
404     Record.clear();
405     switch (Stream.ReadRecord(Code, Record)) {
406     default:  // Default behavior: ignore.
407       break;
408     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
409       if (Record.size() & 1)
410         return Error("Invalid ENTRY record");
411 
412       // FIXME : Remove this autoupgrade code in LLVM 3.0.
413       // If Function attributes are using index 0 then transfer them
414       // to index ~0. Index 0 is used for return value attributes but used to be
415       // used for function attributes.
416       Attributes RetAttribute = Attribute::None;
417       Attributes FnAttribute = Attribute::None;
418       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
419         // FIXME: remove in LLVM 3.0
420         // The alignment is stored as a 16-bit raw value from bits 31--16.
421         // We shift the bits above 31 down by 11 bits.
422 
423         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
424         if (Alignment && !isPowerOf2_32(Alignment))
425           return Error("Alignment is not a power of two.");
426 
427         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
428         if (Alignment)
429           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
430         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
431         Record[i+1] = ReconstitutedAttr;
432 
433         if (Record[i] == 0)
434           RetAttribute = Record[i+1];
435         else if (Record[i] == ~0U)
436           FnAttribute = Record[i+1];
437       }
438 
439       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
440                               Attribute::ReadOnly|Attribute::ReadNone);
441 
442       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
443           (RetAttribute & OldRetAttrs) != 0) {
444         if (FnAttribute == Attribute::None) { // add a slot so they get added.
445           Record.push_back(~0U);
446           Record.push_back(0);
447         }
448 
449         FnAttribute  |= RetAttribute & OldRetAttrs;
450         RetAttribute &= ~OldRetAttrs;
451       }
452 
453       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
454         if (Record[i] == 0) {
455           if (RetAttribute != Attribute::None)
456             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
457         } else if (Record[i] == ~0U) {
458           if (FnAttribute != Attribute::None)
459             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
460         } else if (Record[i+1] != Attribute::None)
461           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
462       }
463 
464       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
465       Attrs.clear();
466       break;
467     }
468     }
469   }
470 }
471 
472 
473 bool BitcodeReader::ParseTypeTable() {
474   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
475     return Error("Malformed block record");
476 
477   if (!TypeList.empty())
478     return Error("Multiple TYPE_BLOCKs found!");
479 
480   SmallVector<uint64_t, 64> Record;
481   unsigned NumRecords = 0;
482 
483   // Read all the records for this type table.
484   while (1) {
485     unsigned Code = Stream.ReadCode();
486     if (Code == bitc::END_BLOCK) {
487       if (NumRecords != TypeList.size())
488         return Error("Invalid type forward reference in TYPE_BLOCK");
489       if (Stream.ReadBlockEnd())
490         return Error("Error at end of type table block");
491       return false;
492     }
493 
494     if (Code == bitc::ENTER_SUBBLOCK) {
495       // No known subblocks, always skip them.
496       Stream.ReadSubBlockID();
497       if (Stream.SkipBlock())
498         return Error("Malformed block record");
499       continue;
500     }
501 
502     if (Code == bitc::DEFINE_ABBREV) {
503       Stream.ReadAbbrevRecord();
504       continue;
505     }
506 
507     // Read a record.
508     Record.clear();
509     const Type *ResultTy = 0;
510     switch (Stream.ReadRecord(Code, Record)) {
511     default:  // Default behavior: unknown type.
512       ResultTy = 0;
513       break;
514     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
515       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
516       // type list.  This allows us to reserve space.
517       if (Record.size() < 1)
518         return Error("Invalid TYPE_CODE_NUMENTRY record");
519       TypeList.reserve(Record[0]);
520       continue;
521     case bitc::TYPE_CODE_VOID:      // VOID
522       ResultTy = Type::getVoidTy(Context);
523       break;
524     case bitc::TYPE_CODE_FLOAT:     // FLOAT
525       ResultTy = Type::getFloatTy(Context);
526       break;
527     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
528       ResultTy = Type::getDoubleTy(Context);
529       break;
530     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
531       ResultTy = Type::getX86_FP80Ty(Context);
532       break;
533     case bitc::TYPE_CODE_FP128:     // FP128
534       ResultTy = Type::getFP128Ty(Context);
535       break;
536     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
537       ResultTy = Type::getPPC_FP128Ty(Context);
538       break;
539     case bitc::TYPE_CODE_LABEL:     // LABEL
540       ResultTy = Type::getLabelTy(Context);
541       break;
542     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
543       ResultTy = 0;
544       break;
545     case bitc::TYPE_CODE_METADATA:  // METADATA
546       ResultTy = Type::getMetadataTy(Context);
547       break;
548     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
549       if (Record.size() < 1)
550         return Error("Invalid Integer type record");
551 
552       ResultTy = IntegerType::get(Context, Record[0]);
553       break;
554     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
555                                     //          [pointee type, address space]
556       if (Record.size() < 1)
557         return Error("Invalid POINTER type record");
558       unsigned AddressSpace = 0;
559       if (Record.size() == 2)
560         AddressSpace = Record[1];
561       ResultTy = PointerType::get(getTypeByID(Record[0], true),
562                                         AddressSpace);
563       break;
564     }
565     case bitc::TYPE_CODE_FUNCTION: {
566       // FIXME: attrid is dead, remove it in LLVM 3.0
567       // FUNCTION: [vararg, attrid, retty, paramty x N]
568       if (Record.size() < 3)
569         return Error("Invalid FUNCTION type record");
570       std::vector<const Type*> ArgTys;
571       for (unsigned i = 3, e = Record.size(); i != e; ++i)
572         ArgTys.push_back(getTypeByID(Record[i], true));
573 
574       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
575                                    Record[0]);
576       break;
577     }
578     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
579       if (Record.size() < 1)
580         return Error("Invalid STRUCT type record");
581       std::vector<const Type*> EltTys;
582       for (unsigned i = 1, e = Record.size(); i != e; ++i)
583         EltTys.push_back(getTypeByID(Record[i], true));
584       ResultTy = StructType::get(Context, EltTys, Record[0]);
585       break;
586     }
587     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
588       if (Record.size() < 2)
589         return Error("Invalid ARRAY type record");
590       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
591       break;
592     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
593       if (Record.size() < 2)
594         return Error("Invalid VECTOR type record");
595       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
596       break;
597     }
598 
599     if (NumRecords == TypeList.size()) {
600       // If this is a new type slot, just append it.
601       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
602       ++NumRecords;
603     } else if (ResultTy == 0) {
604       // Otherwise, this was forward referenced, so an opaque type was created,
605       // but the result type is actually just an opaque.  Leave the one we
606       // created previously.
607       ++NumRecords;
608     } else {
609       // Otherwise, this was forward referenced, so an opaque type was created.
610       // Resolve the opaque type to the real type now.
611       assert(NumRecords < TypeList.size() && "Typelist imbalance");
612       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
613 
614       // Don't directly push the new type on the Tab. Instead we want to replace
615       // the opaque type we previously inserted with the new concrete value. The
616       // refinement from the abstract (opaque) type to the new type causes all
617       // uses of the abstract type to use the concrete type (NewTy). This will
618       // also cause the opaque type to be deleted.
619       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
620 
621       // This should have replaced the old opaque type with the new type in the
622       // value table... or with a preexisting type that was already in the
623       // system.  Let's just make sure it did.
624       assert(TypeList[NumRecords-1].get() != OldTy &&
625              "refineAbstractType didn't work!");
626     }
627   }
628 }
629 
630 
631 bool BitcodeReader::ParseTypeSymbolTable() {
632   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
633     return Error("Malformed block record");
634 
635   SmallVector<uint64_t, 64> Record;
636 
637   // Read all the records for this type table.
638   std::string TypeName;
639   while (1) {
640     unsigned Code = Stream.ReadCode();
641     if (Code == bitc::END_BLOCK) {
642       if (Stream.ReadBlockEnd())
643         return Error("Error at end of type symbol table block");
644       return false;
645     }
646 
647     if (Code == bitc::ENTER_SUBBLOCK) {
648       // No known subblocks, always skip them.
649       Stream.ReadSubBlockID();
650       if (Stream.SkipBlock())
651         return Error("Malformed block record");
652       continue;
653     }
654 
655     if (Code == bitc::DEFINE_ABBREV) {
656       Stream.ReadAbbrevRecord();
657       continue;
658     }
659 
660     // Read a record.
661     Record.clear();
662     switch (Stream.ReadRecord(Code, Record)) {
663     default:  // Default behavior: unknown type.
664       break;
665     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
666       if (ConvertToString(Record, 1, TypeName))
667         return Error("Invalid TST_ENTRY record");
668       unsigned TypeID = Record[0];
669       if (TypeID >= TypeList.size())
670         return Error("Invalid Type ID in TST_ENTRY record");
671 
672       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
673       TypeName.clear();
674       break;
675     }
676   }
677 }
678 
679 bool BitcodeReader::ParseValueSymbolTable() {
680   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
681     return Error("Malformed block record");
682 
683   SmallVector<uint64_t, 64> Record;
684 
685   // Read all the records for this value table.
686   SmallString<128> ValueName;
687   while (1) {
688     unsigned Code = Stream.ReadCode();
689     if (Code == bitc::END_BLOCK) {
690       if (Stream.ReadBlockEnd())
691         return Error("Error at end of value symbol table block");
692       return false;
693     }
694     if (Code == bitc::ENTER_SUBBLOCK) {
695       // No known subblocks, always skip them.
696       Stream.ReadSubBlockID();
697       if (Stream.SkipBlock())
698         return Error("Malformed block record");
699       continue;
700     }
701 
702     if (Code == bitc::DEFINE_ABBREV) {
703       Stream.ReadAbbrevRecord();
704       continue;
705     }
706 
707     // Read a record.
708     Record.clear();
709     switch (Stream.ReadRecord(Code, Record)) {
710     default:  // Default behavior: unknown type.
711       break;
712     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
713       if (ConvertToString(Record, 1, ValueName))
714         return Error("Invalid VST_ENTRY record");
715       unsigned ValueID = Record[0];
716       if (ValueID >= ValueList.size())
717         return Error("Invalid Value ID in VST_ENTRY record");
718       Value *V = ValueList[ValueID];
719 
720       V->setName(StringRef(ValueName.data(), ValueName.size()));
721       ValueName.clear();
722       break;
723     }
724     case bitc::VST_CODE_BBENTRY: {
725       if (ConvertToString(Record, 1, ValueName))
726         return Error("Invalid VST_BBENTRY record");
727       BasicBlock *BB = getBasicBlock(Record[0]);
728       if (BB == 0)
729         return Error("Invalid BB ID in VST_BBENTRY record");
730 
731       BB->setName(StringRef(ValueName.data(), ValueName.size()));
732       ValueName.clear();
733       break;
734     }
735     }
736   }
737 }
738 
739 bool BitcodeReader::ParseMetadata() {
740   unsigned NextValueNo = MDValueList.size();
741 
742   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
743     return Error("Malformed block record");
744 
745   SmallVector<uint64_t, 64> Record;
746 
747   // Read all the records.
748   while (1) {
749     unsigned Code = Stream.ReadCode();
750     if (Code == bitc::END_BLOCK) {
751       if (Stream.ReadBlockEnd())
752         return Error("Error at end of PARAMATTR block");
753       return false;
754     }
755 
756     if (Code == bitc::ENTER_SUBBLOCK) {
757       // No known subblocks, always skip them.
758       Stream.ReadSubBlockID();
759       if (Stream.SkipBlock())
760         return Error("Malformed block record");
761       continue;
762     }
763 
764     if (Code == bitc::DEFINE_ABBREV) {
765       Stream.ReadAbbrevRecord();
766       continue;
767     }
768 
769     // Read a record.
770     Record.clear();
771     switch (Stream.ReadRecord(Code, Record)) {
772     default:  // Default behavior: ignore.
773       break;
774     case bitc::METADATA_NAME: {
775       // Read named of the named metadata.
776       unsigned NameLength = Record.size();
777       SmallString<8> Name;
778       Name.resize(NameLength);
779       for (unsigned i = 0; i != NameLength; ++i)
780         Name[i] = Record[i];
781       Record.clear();
782       Code = Stream.ReadCode();
783 
784       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
785       if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
786         assert ( 0 && "Inavlid Named Metadata record");
787 
788       // Read named metadata elements.
789       unsigned Size = Record.size();
790       SmallVector<MDNode *, 8> Elts;
791       for (unsigned i = 0; i != Size; ++i) {
792         if (Record[i] == ~0U)
793           Elts.push_back(NULL);
794         else {
795           Value *MD = MDValueList.getValueFwdRef(Record[i]);
796           if (MDNode *B = dyn_cast_or_null<MDNode>(MD))
797             Elts.push_back(B);
798         }
799       }
800       Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
801                                      Elts.size(), TheModule);
802       MDValueList.AssignValue(V, NextValueNo++);
803       break;
804     }
805     case bitc::METADATA_NODE: {
806       if (Record.empty() || Record.size() % 2 == 1)
807         return Error("Invalid METADATA_NODE record");
808 
809       unsigned Size = Record.size();
810       SmallVector<Value*, 8> Elts;
811       for (unsigned i = 0; i != Size; i += 2) {
812         const Type *Ty = getTypeByID(Record[i], false);
813         if (Ty->isMetadataTy())
814           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
815         else if (!Ty->isVoidTy())
816           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
817         else
818           Elts.push_back(NULL);
819       }
820       Value *V = MDNode::get(Context, &Elts[0], Elts.size());
821       MDValueList.AssignValue(V, NextValueNo++);
822       break;
823     }
824     case bitc::METADATA_STRING: {
825       unsigned MDStringLength = Record.size();
826       SmallString<8> String;
827       String.resize(MDStringLength);
828       for (unsigned i = 0; i != MDStringLength; ++i)
829         String[i] = Record[i];
830       Value *V = MDString::get(Context,
831                                StringRef(String.data(), String.size()));
832       MDValueList.AssignValue(V, NextValueNo++);
833       break;
834     }
835     case bitc::METADATA_KIND: {
836       unsigned RecordLength = Record.size();
837       if (Record.empty() || RecordLength < 2)
838         return Error("Invalid METADATA_KIND record");
839       SmallString<8> Name;
840       Name.resize(RecordLength-1);
841       unsigned Kind = Record[0];
842       (void) Kind;
843       for (unsigned i = 1; i != RecordLength; ++i)
844         Name[i-1] = Record[i];
845 
846       unsigned NewKind = TheModule->getMDKindID(Name.str());
847       assert(Kind == NewKind &&
848              "FIXME: Unable to handle custom metadata mismatch!");(void)NewKind;
849       break;
850     }
851     }
852   }
853 }
854 
855 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
856 /// the LSB for dense VBR encoding.
857 static uint64_t DecodeSignRotatedValue(uint64_t V) {
858   if ((V & 1) == 0)
859     return V >> 1;
860   if (V != 1)
861     return -(V >> 1);
862   // There is no such thing as -0 with integers.  "-0" really means MININT.
863   return 1ULL << 63;
864 }
865 
866 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
867 /// values and aliases that we can.
868 bool BitcodeReader::ResolveGlobalAndAliasInits() {
869   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
870   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
871 
872   GlobalInitWorklist.swap(GlobalInits);
873   AliasInitWorklist.swap(AliasInits);
874 
875   while (!GlobalInitWorklist.empty()) {
876     unsigned ValID = GlobalInitWorklist.back().second;
877     if (ValID >= ValueList.size()) {
878       // Not ready to resolve this yet, it requires something later in the file.
879       GlobalInits.push_back(GlobalInitWorklist.back());
880     } else {
881       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
882         GlobalInitWorklist.back().first->setInitializer(C);
883       else
884         return Error("Global variable initializer is not a constant!");
885     }
886     GlobalInitWorklist.pop_back();
887   }
888 
889   while (!AliasInitWorklist.empty()) {
890     unsigned ValID = AliasInitWorklist.back().second;
891     if (ValID >= ValueList.size()) {
892       AliasInits.push_back(AliasInitWorklist.back());
893     } else {
894       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
895         AliasInitWorklist.back().first->setAliasee(C);
896       else
897         return Error("Alias initializer is not a constant!");
898     }
899     AliasInitWorklist.pop_back();
900   }
901   return false;
902 }
903 
904 bool BitcodeReader::ParseConstants() {
905   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
906     return Error("Malformed block record");
907 
908   SmallVector<uint64_t, 64> Record;
909 
910   // Read all the records for this value table.
911   const Type *CurTy = Type::getInt32Ty(Context);
912   unsigned NextCstNo = ValueList.size();
913   while (1) {
914     unsigned Code = Stream.ReadCode();
915     if (Code == bitc::END_BLOCK)
916       break;
917 
918     if (Code == bitc::ENTER_SUBBLOCK) {
919       // No known subblocks, always skip them.
920       Stream.ReadSubBlockID();
921       if (Stream.SkipBlock())
922         return Error("Malformed block record");
923       continue;
924     }
925 
926     if (Code == bitc::DEFINE_ABBREV) {
927       Stream.ReadAbbrevRecord();
928       continue;
929     }
930 
931     // Read a record.
932     Record.clear();
933     Value *V = 0;
934     unsigned BitCode = Stream.ReadRecord(Code, Record);
935     switch (BitCode) {
936     default:  // Default behavior: unknown constant
937     case bitc::CST_CODE_UNDEF:     // UNDEF
938       V = UndefValue::get(CurTy);
939       break;
940     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
941       if (Record.empty())
942         return Error("Malformed CST_SETTYPE record");
943       if (Record[0] >= TypeList.size())
944         return Error("Invalid Type ID in CST_SETTYPE record");
945       CurTy = TypeList[Record[0]];
946       continue;  // Skip the ValueList manipulation.
947     case bitc::CST_CODE_NULL:      // NULL
948       V = Constant::getNullValue(CurTy);
949       break;
950     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
951       if (!isa<IntegerType>(CurTy) || Record.empty())
952         return Error("Invalid CST_INTEGER record");
953       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
954       break;
955     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
956       if (!isa<IntegerType>(CurTy) || Record.empty())
957         return Error("Invalid WIDE_INTEGER record");
958 
959       unsigned NumWords = Record.size();
960       SmallVector<uint64_t, 8> Words;
961       Words.resize(NumWords);
962       for (unsigned i = 0; i != NumWords; ++i)
963         Words[i] = DecodeSignRotatedValue(Record[i]);
964       V = ConstantInt::get(Context,
965                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
966                            NumWords, &Words[0]));
967       break;
968     }
969     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
970       if (Record.empty())
971         return Error("Invalid FLOAT record");
972       if (CurTy->isFloatTy())
973         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
974       else if (CurTy->isDoubleTy())
975         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
976       else if (CurTy->isX86_FP80Ty()) {
977         // Bits are not stored the same way as a normal i80 APInt, compensate.
978         uint64_t Rearrange[2];
979         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
980         Rearrange[1] = Record[0] >> 48;
981         V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
982       } else if (CurTy->isFP128Ty())
983         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
984       else if (CurTy->isPPC_FP128Ty())
985         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
986       else
987         V = UndefValue::get(CurTy);
988       break;
989     }
990 
991     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
992       if (Record.empty())
993         return Error("Invalid CST_AGGREGATE record");
994 
995       unsigned Size = Record.size();
996       std::vector<Constant*> Elts;
997 
998       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
999         for (unsigned i = 0; i != Size; ++i)
1000           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1001                                                      STy->getElementType(i)));
1002         V = ConstantStruct::get(STy, Elts);
1003       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1004         const Type *EltTy = ATy->getElementType();
1005         for (unsigned i = 0; i != Size; ++i)
1006           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1007         V = ConstantArray::get(ATy, Elts);
1008       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1009         const Type *EltTy = VTy->getElementType();
1010         for (unsigned i = 0; i != Size; ++i)
1011           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1012         V = ConstantVector::get(Elts);
1013       } else {
1014         V = UndefValue::get(CurTy);
1015       }
1016       break;
1017     }
1018     case bitc::CST_CODE_STRING: { // STRING: [values]
1019       if (Record.empty())
1020         return Error("Invalid CST_AGGREGATE record");
1021 
1022       const ArrayType *ATy = cast<ArrayType>(CurTy);
1023       const Type *EltTy = ATy->getElementType();
1024 
1025       unsigned Size = Record.size();
1026       std::vector<Constant*> Elts;
1027       for (unsigned i = 0; i != Size; ++i)
1028         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1029       V = ConstantArray::get(ATy, Elts);
1030       break;
1031     }
1032     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1033       if (Record.empty())
1034         return Error("Invalid CST_AGGREGATE record");
1035 
1036       const ArrayType *ATy = cast<ArrayType>(CurTy);
1037       const Type *EltTy = ATy->getElementType();
1038 
1039       unsigned Size = Record.size();
1040       std::vector<Constant*> Elts;
1041       for (unsigned i = 0; i != Size; ++i)
1042         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1043       Elts.push_back(Constant::getNullValue(EltTy));
1044       V = ConstantArray::get(ATy, Elts);
1045       break;
1046     }
1047     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1048       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1049       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1050       if (Opc < 0) {
1051         V = UndefValue::get(CurTy);  // Unknown binop.
1052       } else {
1053         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1054         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1055         unsigned Flags = 0;
1056         if (Record.size() >= 4) {
1057           if (Opc == Instruction::Add ||
1058               Opc == Instruction::Sub ||
1059               Opc == Instruction::Mul) {
1060             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1061               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1062             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1063               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1064           } else if (Opc == Instruction::SDiv) {
1065             if (Record[3] & (1 << bitc::SDIV_EXACT))
1066               Flags |= SDivOperator::IsExact;
1067           }
1068         }
1069         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1070       }
1071       break;
1072     }
1073     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1074       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1075       int Opc = GetDecodedCastOpcode(Record[0]);
1076       if (Opc < 0) {
1077         V = UndefValue::get(CurTy);  // Unknown cast.
1078       } else {
1079         const Type *OpTy = getTypeByID(Record[1]);
1080         if (!OpTy) return Error("Invalid CE_CAST record");
1081         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1082         V = ConstantExpr::getCast(Opc, Op, CurTy);
1083       }
1084       break;
1085     }
1086     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1087     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1088       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1089       SmallVector<Constant*, 16> Elts;
1090       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1091         const Type *ElTy = getTypeByID(Record[i]);
1092         if (!ElTy) return Error("Invalid CE_GEP record");
1093         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1094       }
1095       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1096         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1097                                                    Elts.size()-1);
1098       else
1099         V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1100                                            Elts.size()-1);
1101       break;
1102     }
1103     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1104       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1105       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1106                                                               Type::getInt1Ty(Context)),
1107                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1108                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1109       break;
1110     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1111       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1112       const VectorType *OpTy =
1113         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1114       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1115       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1116       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1117       V = ConstantExpr::getExtractElement(Op0, Op1);
1118       break;
1119     }
1120     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1121       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1122       if (Record.size() < 3 || OpTy == 0)
1123         return Error("Invalid CE_INSERTELT record");
1124       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1125       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1126                                                   OpTy->getElementType());
1127       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1128       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1129       break;
1130     }
1131     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1132       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1133       if (Record.size() < 3 || OpTy == 0)
1134         return Error("Invalid CE_SHUFFLEVEC record");
1135       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1136       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1137       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1138                                                  OpTy->getNumElements());
1139       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1140       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1141       break;
1142     }
1143     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1144       const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1145       const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1146       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1147         return Error("Invalid CE_SHUFVEC_EX record");
1148       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1149       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1150       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1151                                                  RTy->getNumElements());
1152       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1153       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1154       break;
1155     }
1156     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1157       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1158       const Type *OpTy = getTypeByID(Record[0]);
1159       if (OpTy == 0) return Error("Invalid CE_CMP record");
1160       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1161       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1162 
1163       if (OpTy->isFloatingPoint())
1164         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1165       else
1166         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1167       break;
1168     }
1169     case bitc::CST_CODE_INLINEASM: {
1170       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1171       std::string AsmStr, ConstrStr;
1172       bool HasSideEffects = Record[0] & 1;
1173       bool IsAlignStack = Record[0] >> 1;
1174       unsigned AsmStrSize = Record[1];
1175       if (2+AsmStrSize >= Record.size())
1176         return Error("Invalid INLINEASM record");
1177       unsigned ConstStrSize = Record[2+AsmStrSize];
1178       if (3+AsmStrSize+ConstStrSize > Record.size())
1179         return Error("Invalid INLINEASM record");
1180 
1181       for (unsigned i = 0; i != AsmStrSize; ++i)
1182         AsmStr += (char)Record[2+i];
1183       for (unsigned i = 0; i != ConstStrSize; ++i)
1184         ConstrStr += (char)Record[3+AsmStrSize+i];
1185       const PointerType *PTy = cast<PointerType>(CurTy);
1186       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1187                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1188       break;
1189     }
1190     case bitc::CST_CODE_BLOCKADDRESS:{
1191       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1192       const Type *FnTy = getTypeByID(Record[0]);
1193       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1194       Function *Fn =
1195         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1196       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1197 
1198       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1199                                                   Type::getInt8Ty(Context),
1200                                             false, GlobalValue::InternalLinkage,
1201                                                   0, "");
1202       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1203       V = FwdRef;
1204       break;
1205     }
1206     }
1207 
1208     ValueList.AssignValue(V, NextCstNo);
1209     ++NextCstNo;
1210   }
1211 
1212   if (NextCstNo != ValueList.size())
1213     return Error("Invalid constant reference!");
1214 
1215   if (Stream.ReadBlockEnd())
1216     return Error("Error at end of constants block");
1217 
1218   // Once all the constants have been read, go through and resolve forward
1219   // references.
1220   ValueList.ResolveConstantForwardRefs();
1221   return false;
1222 }
1223 
1224 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1225 /// remember where it is and then skip it.  This lets us lazily deserialize the
1226 /// functions.
1227 bool BitcodeReader::RememberAndSkipFunctionBody() {
1228   // Get the function we are talking about.
1229   if (FunctionsWithBodies.empty())
1230     return Error("Insufficient function protos");
1231 
1232   Function *Fn = FunctionsWithBodies.back();
1233   FunctionsWithBodies.pop_back();
1234 
1235   // Save the current stream state.
1236   uint64_t CurBit = Stream.GetCurrentBitNo();
1237   DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1238 
1239   // Set the functions linkage to GhostLinkage so we know it is lazily
1240   // deserialized.
1241   Fn->setLinkage(GlobalValue::GhostLinkage);
1242 
1243   // Skip over the function block for now.
1244   if (Stream.SkipBlock())
1245     return Error("Malformed block record");
1246   return false;
1247 }
1248 
1249 bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1250   // Reject multiple MODULE_BLOCK's in a single bitstream.
1251   if (TheModule)
1252     return Error("Multiple MODULE_BLOCKs in same stream");
1253 
1254   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1255     return Error("Malformed block record");
1256 
1257   // Otherwise, create the module.
1258   TheModule = new Module(ModuleID, Context);
1259 
1260   SmallVector<uint64_t, 64> Record;
1261   std::vector<std::string> SectionTable;
1262   std::vector<std::string> GCTable;
1263 
1264   // Read all the records for this module.
1265   while (!Stream.AtEndOfStream()) {
1266     unsigned Code = Stream.ReadCode();
1267     if (Code == bitc::END_BLOCK) {
1268       if (Stream.ReadBlockEnd())
1269         return Error("Error at end of module block");
1270 
1271       // Patch the initializers for globals and aliases up.
1272       ResolveGlobalAndAliasInits();
1273       if (!GlobalInits.empty() || !AliasInits.empty())
1274         return Error("Malformed global initializer set");
1275       if (!FunctionsWithBodies.empty())
1276         return Error("Too few function bodies found");
1277 
1278       // Look for intrinsic functions which need to be upgraded at some point
1279       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1280            FI != FE; ++FI) {
1281         Function* NewFn;
1282         if (UpgradeIntrinsicFunction(FI, NewFn))
1283           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1284       }
1285 
1286       // Force deallocation of memory for these vectors to favor the client that
1287       // want lazy deserialization.
1288       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1289       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1290       std::vector<Function*>().swap(FunctionsWithBodies);
1291       return false;
1292     }
1293 
1294     if (Code == bitc::ENTER_SUBBLOCK) {
1295       switch (Stream.ReadSubBlockID()) {
1296       default:  // Skip unknown content.
1297         if (Stream.SkipBlock())
1298           return Error("Malformed block record");
1299         break;
1300       case bitc::BLOCKINFO_BLOCK_ID:
1301         if (Stream.ReadBlockInfoBlock())
1302           return Error("Malformed BlockInfoBlock");
1303         break;
1304       case bitc::PARAMATTR_BLOCK_ID:
1305         if (ParseAttributeBlock())
1306           return true;
1307         break;
1308       case bitc::TYPE_BLOCK_ID:
1309         if (ParseTypeTable())
1310           return true;
1311         break;
1312       case bitc::TYPE_SYMTAB_BLOCK_ID:
1313         if (ParseTypeSymbolTable())
1314           return true;
1315         break;
1316       case bitc::VALUE_SYMTAB_BLOCK_ID:
1317         if (ParseValueSymbolTable())
1318           return true;
1319         break;
1320       case bitc::CONSTANTS_BLOCK_ID:
1321         if (ParseConstants() || ResolveGlobalAndAliasInits())
1322           return true;
1323         break;
1324       case bitc::METADATA_BLOCK_ID:
1325         if (ParseMetadata())
1326           return true;
1327         break;
1328       case bitc::FUNCTION_BLOCK_ID:
1329         // If this is the first function body we've seen, reverse the
1330         // FunctionsWithBodies list.
1331         if (!HasReversedFunctionsWithBodies) {
1332           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1333           HasReversedFunctionsWithBodies = true;
1334         }
1335 
1336         if (RememberAndSkipFunctionBody())
1337           return true;
1338         break;
1339       }
1340       continue;
1341     }
1342 
1343     if (Code == bitc::DEFINE_ABBREV) {
1344       Stream.ReadAbbrevRecord();
1345       continue;
1346     }
1347 
1348     // Read a record.
1349     switch (Stream.ReadRecord(Code, Record)) {
1350     default: break;  // Default behavior, ignore unknown content.
1351     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1352       if (Record.size() < 1)
1353         return Error("Malformed MODULE_CODE_VERSION");
1354       // Only version #0 is supported so far.
1355       if (Record[0] != 0)
1356         return Error("Unknown bitstream version!");
1357       break;
1358     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1359       std::string S;
1360       if (ConvertToString(Record, 0, S))
1361         return Error("Invalid MODULE_CODE_TRIPLE record");
1362       TheModule->setTargetTriple(S);
1363       break;
1364     }
1365     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1366       std::string S;
1367       if (ConvertToString(Record, 0, S))
1368         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1369       TheModule->setDataLayout(S);
1370       break;
1371     }
1372     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1373       std::string S;
1374       if (ConvertToString(Record, 0, S))
1375         return Error("Invalid MODULE_CODE_ASM record");
1376       TheModule->setModuleInlineAsm(S);
1377       break;
1378     }
1379     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1380       std::string S;
1381       if (ConvertToString(Record, 0, S))
1382         return Error("Invalid MODULE_CODE_DEPLIB record");
1383       TheModule->addLibrary(S);
1384       break;
1385     }
1386     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1387       std::string S;
1388       if (ConvertToString(Record, 0, S))
1389         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1390       SectionTable.push_back(S);
1391       break;
1392     }
1393     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1394       std::string S;
1395       if (ConvertToString(Record, 0, S))
1396         return Error("Invalid MODULE_CODE_GCNAME record");
1397       GCTable.push_back(S);
1398       break;
1399     }
1400     // GLOBALVAR: [pointer type, isconst, initid,
1401     //             linkage, alignment, section, visibility, threadlocal]
1402     case bitc::MODULE_CODE_GLOBALVAR: {
1403       if (Record.size() < 6)
1404         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1405       const Type *Ty = getTypeByID(Record[0]);
1406       if (!isa<PointerType>(Ty))
1407         return Error("Global not a pointer type!");
1408       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1409       Ty = cast<PointerType>(Ty)->getElementType();
1410 
1411       bool isConstant = Record[1];
1412       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1413       unsigned Alignment = (1 << Record[4]) >> 1;
1414       std::string Section;
1415       if (Record[5]) {
1416         if (Record[5]-1 >= SectionTable.size())
1417           return Error("Invalid section ID");
1418         Section = SectionTable[Record[5]-1];
1419       }
1420       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1421       if (Record.size() > 6)
1422         Visibility = GetDecodedVisibility(Record[6]);
1423       bool isThreadLocal = false;
1424       if (Record.size() > 7)
1425         isThreadLocal = Record[7];
1426 
1427       GlobalVariable *NewGV =
1428         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1429                            isThreadLocal, AddressSpace);
1430       NewGV->setAlignment(Alignment);
1431       if (!Section.empty())
1432         NewGV->setSection(Section);
1433       NewGV->setVisibility(Visibility);
1434       NewGV->setThreadLocal(isThreadLocal);
1435 
1436       ValueList.push_back(NewGV);
1437 
1438       // Remember which value to use for the global initializer.
1439       if (unsigned InitID = Record[2])
1440         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1441       break;
1442     }
1443     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1444     //             alignment, section, visibility, gc]
1445     case bitc::MODULE_CODE_FUNCTION: {
1446       if (Record.size() < 8)
1447         return Error("Invalid MODULE_CODE_FUNCTION record");
1448       const Type *Ty = getTypeByID(Record[0]);
1449       if (!isa<PointerType>(Ty))
1450         return Error("Function not a pointer type!");
1451       const FunctionType *FTy =
1452         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1453       if (!FTy)
1454         return Error("Function not a pointer to function type!");
1455 
1456       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1457                                         "", TheModule);
1458 
1459       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1460       bool isProto = Record[2];
1461       Func->setLinkage(GetDecodedLinkage(Record[3]));
1462       Func->setAttributes(getAttributes(Record[4]));
1463 
1464       Func->setAlignment((1 << Record[5]) >> 1);
1465       if (Record[6]) {
1466         if (Record[6]-1 >= SectionTable.size())
1467           return Error("Invalid section ID");
1468         Func->setSection(SectionTable[Record[6]-1]);
1469       }
1470       Func->setVisibility(GetDecodedVisibility(Record[7]));
1471       if (Record.size() > 8 && Record[8]) {
1472         if (Record[8]-1 > GCTable.size())
1473           return Error("Invalid GC ID");
1474         Func->setGC(GCTable[Record[8]-1].c_str());
1475       }
1476       ValueList.push_back(Func);
1477 
1478       // If this is a function with a body, remember the prototype we are
1479       // creating now, so that we can match up the body with them later.
1480       if (!isProto)
1481         FunctionsWithBodies.push_back(Func);
1482       break;
1483     }
1484     // ALIAS: [alias type, aliasee val#, linkage]
1485     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1486     case bitc::MODULE_CODE_ALIAS: {
1487       if (Record.size() < 3)
1488         return Error("Invalid MODULE_ALIAS record");
1489       const Type *Ty = getTypeByID(Record[0]);
1490       if (!isa<PointerType>(Ty))
1491         return Error("Function not a pointer type!");
1492 
1493       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1494                                            "", 0, TheModule);
1495       // Old bitcode files didn't have visibility field.
1496       if (Record.size() > 3)
1497         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1498       ValueList.push_back(NewGA);
1499       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1500       break;
1501     }
1502     /// MODULE_CODE_PURGEVALS: [numvals]
1503     case bitc::MODULE_CODE_PURGEVALS:
1504       // Trim down the value list to the specified size.
1505       if (Record.size() < 1 || Record[0] > ValueList.size())
1506         return Error("Invalid MODULE_PURGEVALS record");
1507       ValueList.shrinkTo(Record[0]);
1508       break;
1509     }
1510     Record.clear();
1511   }
1512 
1513   return Error("Premature end of bitstream");
1514 }
1515 
1516 bool BitcodeReader::ParseBitcode() {
1517   TheModule = 0;
1518 
1519   if (Buffer->getBufferSize() & 3)
1520     return Error("Bitcode stream should be a multiple of 4 bytes in length");
1521 
1522   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1523   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1524 
1525   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1526   // The magic number is 0x0B17C0DE stored in little endian.
1527   if (isBitcodeWrapper(BufPtr, BufEnd))
1528     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1529       return Error("Invalid bitcode wrapper header");
1530 
1531   StreamFile.init(BufPtr, BufEnd);
1532   Stream.init(StreamFile);
1533 
1534   // Sniff for the signature.
1535   if (Stream.Read(8) != 'B' ||
1536       Stream.Read(8) != 'C' ||
1537       Stream.Read(4) != 0x0 ||
1538       Stream.Read(4) != 0xC ||
1539       Stream.Read(4) != 0xE ||
1540       Stream.Read(4) != 0xD)
1541     return Error("Invalid bitcode signature");
1542 
1543   // We expect a number of well-defined blocks, though we don't necessarily
1544   // need to understand them all.
1545   while (!Stream.AtEndOfStream()) {
1546     unsigned Code = Stream.ReadCode();
1547 
1548     if (Code != bitc::ENTER_SUBBLOCK)
1549       return Error("Invalid record at top-level");
1550 
1551     unsigned BlockID = Stream.ReadSubBlockID();
1552 
1553     // We only know the MODULE subblock ID.
1554     switch (BlockID) {
1555     case bitc::BLOCKINFO_BLOCK_ID:
1556       if (Stream.ReadBlockInfoBlock())
1557         return Error("Malformed BlockInfoBlock");
1558       break;
1559     case bitc::MODULE_BLOCK_ID:
1560       if (ParseModule(Buffer->getBufferIdentifier()))
1561         return true;
1562       break;
1563     default:
1564       if (Stream.SkipBlock())
1565         return Error("Malformed block record");
1566       break;
1567     }
1568   }
1569 
1570   return false;
1571 }
1572 
1573 /// ParseMetadataAttachment - Parse metadata attachments.
1574 bool BitcodeReader::ParseMetadataAttachment() {
1575   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1576     return Error("Malformed block record");
1577 
1578   SmallVector<uint64_t, 64> Record;
1579   while(1) {
1580     unsigned Code = Stream.ReadCode();
1581     if (Code == bitc::END_BLOCK) {
1582       if (Stream.ReadBlockEnd())
1583         return Error("Error at end of PARAMATTR block");
1584       break;
1585     }
1586     if (Code == bitc::DEFINE_ABBREV) {
1587       Stream.ReadAbbrevRecord();
1588       continue;
1589     }
1590     // Read a metadata attachment record.
1591     Record.clear();
1592     switch (Stream.ReadRecord(Code, Record)) {
1593     default:  // Default behavior: ignore.
1594       break;
1595     case bitc::METADATA_ATTACHMENT: {
1596       unsigned RecordLength = Record.size();
1597       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1598         return Error ("Invalid METADATA_ATTACHMENT reader!");
1599       Instruction *Inst = InstructionList[Record[0]];
1600       for (unsigned i = 1; i != RecordLength; i = i+2) {
1601         unsigned Kind = Record[i];
1602         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1603         Inst->setMetadata(Kind, cast<MDNode>(Node));
1604       }
1605       break;
1606     }
1607     }
1608   }
1609   return false;
1610 }
1611 
1612 /// ParseFunctionBody - Lazily parse the specified function body block.
1613 bool BitcodeReader::ParseFunctionBody(Function *F) {
1614   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1615     return Error("Malformed block record");
1616 
1617   unsigned ModuleValueListSize = ValueList.size();
1618 
1619   // Add all the function arguments to the value table.
1620   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1621     ValueList.push_back(I);
1622 
1623   unsigned NextValueNo = ValueList.size();
1624   BasicBlock *CurBB = 0;
1625   unsigned CurBBNo = 0;
1626 
1627   // Read all the records.
1628   SmallVector<uint64_t, 64> Record;
1629   while (1) {
1630     unsigned Code = Stream.ReadCode();
1631     if (Code == bitc::END_BLOCK) {
1632       if (Stream.ReadBlockEnd())
1633         return Error("Error at end of function block");
1634       break;
1635     }
1636 
1637     if (Code == bitc::ENTER_SUBBLOCK) {
1638       switch (Stream.ReadSubBlockID()) {
1639       default:  // Skip unknown content.
1640         if (Stream.SkipBlock())
1641           return Error("Malformed block record");
1642         break;
1643       case bitc::CONSTANTS_BLOCK_ID:
1644         if (ParseConstants()) return true;
1645         NextValueNo = ValueList.size();
1646         break;
1647       case bitc::VALUE_SYMTAB_BLOCK_ID:
1648         if (ParseValueSymbolTable()) return true;
1649         break;
1650       case bitc::METADATA_ATTACHMENT_ID:
1651         if (ParseMetadataAttachment()) return true;
1652         break;
1653       }
1654       continue;
1655     }
1656 
1657     if (Code == bitc::DEFINE_ABBREV) {
1658       Stream.ReadAbbrevRecord();
1659       continue;
1660     }
1661 
1662     // Read a record.
1663     Record.clear();
1664     Instruction *I = 0;
1665     unsigned BitCode = Stream.ReadRecord(Code, Record);
1666     switch (BitCode) {
1667     default: // Default behavior: reject
1668       return Error("Unknown instruction");
1669     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1670       if (Record.size() < 1 || Record[0] == 0)
1671         return Error("Invalid DECLAREBLOCKS record");
1672       // Create all the basic blocks for the function.
1673       FunctionBBs.resize(Record[0]);
1674       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1675         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1676       CurBB = FunctionBBs[0];
1677       continue;
1678 
1679     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1680       unsigned OpNum = 0;
1681       Value *LHS, *RHS;
1682       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1683           getValue(Record, OpNum, LHS->getType(), RHS) ||
1684           OpNum+1 > Record.size())
1685         return Error("Invalid BINOP record");
1686 
1687       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1688       if (Opc == -1) return Error("Invalid BINOP record");
1689       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1690       InstructionList.push_back(I);
1691       if (OpNum < Record.size()) {
1692         if (Opc == Instruction::Add ||
1693             Opc == Instruction::Sub ||
1694             Opc == Instruction::Mul) {
1695           if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1696             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1697           if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1698             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1699         } else if (Opc == Instruction::SDiv) {
1700           if (Record[3] & (1 << bitc::SDIV_EXACT))
1701             cast<BinaryOperator>(I)->setIsExact(true);
1702         }
1703       }
1704       break;
1705     }
1706     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1707       unsigned OpNum = 0;
1708       Value *Op;
1709       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1710           OpNum+2 != Record.size())
1711         return Error("Invalid CAST record");
1712 
1713       const Type *ResTy = getTypeByID(Record[OpNum]);
1714       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1715       if (Opc == -1 || ResTy == 0)
1716         return Error("Invalid CAST record");
1717       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1718       InstructionList.push_back(I);
1719       break;
1720     }
1721     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1722     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1723       unsigned OpNum = 0;
1724       Value *BasePtr;
1725       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1726         return Error("Invalid GEP record");
1727 
1728       SmallVector<Value*, 16> GEPIdx;
1729       while (OpNum != Record.size()) {
1730         Value *Op;
1731         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1732           return Error("Invalid GEP record");
1733         GEPIdx.push_back(Op);
1734       }
1735 
1736       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1737       InstructionList.push_back(I);
1738       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1739         cast<GetElementPtrInst>(I)->setIsInBounds(true);
1740       break;
1741     }
1742 
1743     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1744                                        // EXTRACTVAL: [opty, opval, n x indices]
1745       unsigned OpNum = 0;
1746       Value *Agg;
1747       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1748         return Error("Invalid EXTRACTVAL record");
1749 
1750       SmallVector<unsigned, 4> EXTRACTVALIdx;
1751       for (unsigned RecSize = Record.size();
1752            OpNum != RecSize; ++OpNum) {
1753         uint64_t Index = Record[OpNum];
1754         if ((unsigned)Index != Index)
1755           return Error("Invalid EXTRACTVAL index");
1756         EXTRACTVALIdx.push_back((unsigned)Index);
1757       }
1758 
1759       I = ExtractValueInst::Create(Agg,
1760                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1761       InstructionList.push_back(I);
1762       break;
1763     }
1764 
1765     case bitc::FUNC_CODE_INST_INSERTVAL: {
1766                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1767       unsigned OpNum = 0;
1768       Value *Agg;
1769       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1770         return Error("Invalid INSERTVAL record");
1771       Value *Val;
1772       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1773         return Error("Invalid INSERTVAL record");
1774 
1775       SmallVector<unsigned, 4> INSERTVALIdx;
1776       for (unsigned RecSize = Record.size();
1777            OpNum != RecSize; ++OpNum) {
1778         uint64_t Index = Record[OpNum];
1779         if ((unsigned)Index != Index)
1780           return Error("Invalid INSERTVAL index");
1781         INSERTVALIdx.push_back((unsigned)Index);
1782       }
1783 
1784       I = InsertValueInst::Create(Agg, Val,
1785                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
1786       InstructionList.push_back(I);
1787       break;
1788     }
1789 
1790     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1791       // obsolete form of select
1792       // handles select i1 ... in old bitcode
1793       unsigned OpNum = 0;
1794       Value *TrueVal, *FalseVal, *Cond;
1795       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1796           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1797           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1798         return Error("Invalid SELECT record");
1799 
1800       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1801       InstructionList.push_back(I);
1802       break;
1803     }
1804 
1805     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1806       // new form of select
1807       // handles select i1 or select [N x i1]
1808       unsigned OpNum = 0;
1809       Value *TrueVal, *FalseVal, *Cond;
1810       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1811           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1812           getValueTypePair(Record, OpNum, NextValueNo, Cond))
1813         return Error("Invalid SELECT record");
1814 
1815       // select condition can be either i1 or [N x i1]
1816       if (const VectorType* vector_type =
1817           dyn_cast<const VectorType>(Cond->getType())) {
1818         // expect <n x i1>
1819         if (vector_type->getElementType() != Type::getInt1Ty(Context))
1820           return Error("Invalid SELECT condition type");
1821       } else {
1822         // expect i1
1823         if (Cond->getType() != Type::getInt1Ty(Context))
1824           return Error("Invalid SELECT condition type");
1825       }
1826 
1827       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1828       InstructionList.push_back(I);
1829       break;
1830     }
1831 
1832     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1833       unsigned OpNum = 0;
1834       Value *Vec, *Idx;
1835       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1836           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1837         return Error("Invalid EXTRACTELT record");
1838       I = ExtractElementInst::Create(Vec, Idx);
1839       InstructionList.push_back(I);
1840       break;
1841     }
1842 
1843     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1844       unsigned OpNum = 0;
1845       Value *Vec, *Elt, *Idx;
1846       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1847           getValue(Record, OpNum,
1848                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1849           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1850         return Error("Invalid INSERTELT record");
1851       I = InsertElementInst::Create(Vec, Elt, Idx);
1852       InstructionList.push_back(I);
1853       break;
1854     }
1855 
1856     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1857       unsigned OpNum = 0;
1858       Value *Vec1, *Vec2, *Mask;
1859       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1860           getValue(Record, OpNum, Vec1->getType(), Vec2))
1861         return Error("Invalid SHUFFLEVEC record");
1862 
1863       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1864         return Error("Invalid SHUFFLEVEC record");
1865       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1866       InstructionList.push_back(I);
1867       break;
1868     }
1869 
1870     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1871       // Old form of ICmp/FCmp returning bool
1872       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1873       // both legal on vectors but had different behaviour.
1874     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1875       // FCmp/ICmp returning bool or vector of bool
1876 
1877       unsigned OpNum = 0;
1878       Value *LHS, *RHS;
1879       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1880           getValue(Record, OpNum, LHS->getType(), RHS) ||
1881           OpNum+1 != Record.size())
1882         return Error("Invalid CMP record");
1883 
1884       if (LHS->getType()->isFPOrFPVector())
1885         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1886       else
1887         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1888       InstructionList.push_back(I);
1889       break;
1890     }
1891 
1892     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1893       if (Record.size() != 2)
1894         return Error("Invalid GETRESULT record");
1895       unsigned OpNum = 0;
1896       Value *Op;
1897       getValueTypePair(Record, OpNum, NextValueNo, Op);
1898       unsigned Index = Record[1];
1899       I = ExtractValueInst::Create(Op, Index);
1900       InstructionList.push_back(I);
1901       break;
1902     }
1903 
1904     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1905       {
1906         unsigned Size = Record.size();
1907         if (Size == 0) {
1908           I = ReturnInst::Create(Context);
1909           InstructionList.push_back(I);
1910           break;
1911         }
1912 
1913         unsigned OpNum = 0;
1914         SmallVector<Value *,4> Vs;
1915         do {
1916           Value *Op = NULL;
1917           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1918             return Error("Invalid RET record");
1919           Vs.push_back(Op);
1920         } while(OpNum != Record.size());
1921 
1922         const Type *ReturnType = F->getReturnType();
1923         if (Vs.size() > 1 ||
1924             (isa<StructType>(ReturnType) &&
1925              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1926           Value *RV = UndefValue::get(ReturnType);
1927           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1928             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1929             InstructionList.push_back(I);
1930             CurBB->getInstList().push_back(I);
1931             ValueList.AssignValue(I, NextValueNo++);
1932             RV = I;
1933           }
1934           I = ReturnInst::Create(Context, RV);
1935           InstructionList.push_back(I);
1936           break;
1937         }
1938 
1939         I = ReturnInst::Create(Context, Vs[0]);
1940         InstructionList.push_back(I);
1941         break;
1942       }
1943     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1944       if (Record.size() != 1 && Record.size() != 3)
1945         return Error("Invalid BR record");
1946       BasicBlock *TrueDest = getBasicBlock(Record[0]);
1947       if (TrueDest == 0)
1948         return Error("Invalid BR record");
1949 
1950       if (Record.size() == 1) {
1951         I = BranchInst::Create(TrueDest);
1952         InstructionList.push_back(I);
1953       }
1954       else {
1955         BasicBlock *FalseDest = getBasicBlock(Record[1]);
1956         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1957         if (FalseDest == 0 || Cond == 0)
1958           return Error("Invalid BR record");
1959         I = BranchInst::Create(TrueDest, FalseDest, Cond);
1960         InstructionList.push_back(I);
1961       }
1962       break;
1963     }
1964     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
1965       if (Record.size() < 3 || (Record.size() & 1) == 0)
1966         return Error("Invalid SWITCH record");
1967       const Type *OpTy = getTypeByID(Record[0]);
1968       Value *Cond = getFnValueByID(Record[1], OpTy);
1969       BasicBlock *Default = getBasicBlock(Record[2]);
1970       if (OpTy == 0 || Cond == 0 || Default == 0)
1971         return Error("Invalid SWITCH record");
1972       unsigned NumCases = (Record.size()-3)/2;
1973       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1974       InstructionList.push_back(SI);
1975       for (unsigned i = 0, e = NumCases; i != e; ++i) {
1976         ConstantInt *CaseVal =
1977           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1978         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1979         if (CaseVal == 0 || DestBB == 0) {
1980           delete SI;
1981           return Error("Invalid SWITCH record!");
1982         }
1983         SI->addCase(CaseVal, DestBB);
1984       }
1985       I = SI;
1986       break;
1987     }
1988     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
1989       if (Record.size() < 2)
1990         return Error("Invalid INDIRECTBR record");
1991       const Type *OpTy = getTypeByID(Record[0]);
1992       Value *Address = getFnValueByID(Record[1], OpTy);
1993       if (OpTy == 0 || Address == 0)
1994         return Error("Invalid INDIRECTBR record");
1995       unsigned NumDests = Record.size()-2;
1996       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
1997       InstructionList.push_back(IBI);
1998       for (unsigned i = 0, e = NumDests; i != e; ++i) {
1999         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2000           IBI->addDestination(DestBB);
2001         } else {
2002           delete IBI;
2003           return Error("Invalid INDIRECTBR record!");
2004         }
2005       }
2006       I = IBI;
2007       break;
2008     }
2009 
2010     case bitc::FUNC_CODE_INST_INVOKE: {
2011       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2012       if (Record.size() < 4) return Error("Invalid INVOKE record");
2013       AttrListPtr PAL = getAttributes(Record[0]);
2014       unsigned CCInfo = Record[1];
2015       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2016       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2017 
2018       unsigned OpNum = 4;
2019       Value *Callee;
2020       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2021         return Error("Invalid INVOKE record");
2022 
2023       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2024       const FunctionType *FTy = !CalleeTy ? 0 :
2025         dyn_cast<FunctionType>(CalleeTy->getElementType());
2026 
2027       // Check that the right number of fixed parameters are here.
2028       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2029           Record.size() < OpNum+FTy->getNumParams())
2030         return Error("Invalid INVOKE record");
2031 
2032       SmallVector<Value*, 16> Ops;
2033       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2034         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2035         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2036       }
2037 
2038       if (!FTy->isVarArg()) {
2039         if (Record.size() != OpNum)
2040           return Error("Invalid INVOKE record");
2041       } else {
2042         // Read type/value pairs for varargs params.
2043         while (OpNum != Record.size()) {
2044           Value *Op;
2045           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2046             return Error("Invalid INVOKE record");
2047           Ops.push_back(Op);
2048         }
2049       }
2050 
2051       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2052                              Ops.begin(), Ops.end());
2053       InstructionList.push_back(I);
2054       cast<InvokeInst>(I)->setCallingConv(
2055         static_cast<CallingConv::ID>(CCInfo));
2056       cast<InvokeInst>(I)->setAttributes(PAL);
2057       break;
2058     }
2059     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2060       I = new UnwindInst(Context);
2061       InstructionList.push_back(I);
2062       break;
2063     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2064       I = new UnreachableInst(Context);
2065       InstructionList.push_back(I);
2066       break;
2067     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2068       if (Record.size() < 1 || ((Record.size()-1)&1))
2069         return Error("Invalid PHI record");
2070       const Type *Ty = getTypeByID(Record[0]);
2071       if (!Ty) return Error("Invalid PHI record");
2072 
2073       PHINode *PN = PHINode::Create(Ty);
2074       InstructionList.push_back(PN);
2075       PN->reserveOperandSpace((Record.size()-1)/2);
2076 
2077       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2078         Value *V = getFnValueByID(Record[1+i], Ty);
2079         BasicBlock *BB = getBasicBlock(Record[2+i]);
2080         if (!V || !BB) return Error("Invalid PHI record");
2081         PN->addIncoming(V, BB);
2082       }
2083       I = PN;
2084       break;
2085     }
2086 
2087     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2088       // Autoupgrade malloc instruction to malloc call.
2089       // FIXME: Remove in LLVM 3.0.
2090       if (Record.size() < 3)
2091         return Error("Invalid MALLOC record");
2092       const PointerType *Ty =
2093         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2094       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2095       if (!Ty || !Size) return Error("Invalid MALLOC record");
2096       if (!CurBB) return Error("Invalid malloc instruction with no BB");
2097       const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2098       Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2099       AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2100       I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2101                                  AllocSize, Size, NULL);
2102       InstructionList.push_back(I);
2103       break;
2104     }
2105     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2106       unsigned OpNum = 0;
2107       Value *Op;
2108       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2109           OpNum != Record.size())
2110         return Error("Invalid FREE record");
2111       if (!CurBB) return Error("Invalid free instruction with no BB");
2112       I = CallInst::CreateFree(Op, CurBB);
2113       InstructionList.push_back(I);
2114       break;
2115     }
2116     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
2117       if (Record.size() < 3)
2118         return Error("Invalid ALLOCA record");
2119       const PointerType *Ty =
2120         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2121       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2122       unsigned Align = Record[2];
2123       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2124       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2125       InstructionList.push_back(I);
2126       break;
2127     }
2128     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2129       unsigned OpNum = 0;
2130       Value *Op;
2131       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2132           OpNum+2 != Record.size())
2133         return Error("Invalid LOAD record");
2134 
2135       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2136       InstructionList.push_back(I);
2137       break;
2138     }
2139     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2140       unsigned OpNum = 0;
2141       Value *Val, *Ptr;
2142       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2143           getValue(Record, OpNum,
2144                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2145           OpNum+2 != Record.size())
2146         return Error("Invalid STORE record");
2147 
2148       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2149       InstructionList.push_back(I);
2150       break;
2151     }
2152     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2153       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2154       unsigned OpNum = 0;
2155       Value *Val, *Ptr;
2156       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2157           getValue(Record, OpNum,
2158                    PointerType::getUnqual(Val->getType()), Ptr)||
2159           OpNum+2 != Record.size())
2160         return Error("Invalid STORE record");
2161 
2162       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2163       InstructionList.push_back(I);
2164       break;
2165     }
2166     case bitc::FUNC_CODE_INST_CALL: {
2167       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2168       if (Record.size() < 3)
2169         return Error("Invalid CALL record");
2170 
2171       AttrListPtr PAL = getAttributes(Record[0]);
2172       unsigned CCInfo = Record[1];
2173 
2174       unsigned OpNum = 2;
2175       Value *Callee;
2176       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2177         return Error("Invalid CALL record");
2178 
2179       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2180       const FunctionType *FTy = 0;
2181       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2182       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2183         return Error("Invalid CALL record");
2184 
2185       SmallVector<Value*, 16> Args;
2186       // Read the fixed params.
2187       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2188         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2189           Args.push_back(getBasicBlock(Record[OpNum]));
2190         else
2191           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2192         if (Args.back() == 0) return Error("Invalid CALL record");
2193       }
2194 
2195       // Read type/value pairs for varargs params.
2196       if (!FTy->isVarArg()) {
2197         if (OpNum != Record.size())
2198           return Error("Invalid CALL record");
2199       } else {
2200         while (OpNum != Record.size()) {
2201           Value *Op;
2202           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2203             return Error("Invalid CALL record");
2204           Args.push_back(Op);
2205         }
2206       }
2207 
2208       I = CallInst::Create(Callee, Args.begin(), Args.end());
2209       InstructionList.push_back(I);
2210       cast<CallInst>(I)->setCallingConv(
2211         static_cast<CallingConv::ID>(CCInfo>>1));
2212       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2213       cast<CallInst>(I)->setAttributes(PAL);
2214       break;
2215     }
2216     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2217       if (Record.size() < 3)
2218         return Error("Invalid VAARG record");
2219       const Type *OpTy = getTypeByID(Record[0]);
2220       Value *Op = getFnValueByID(Record[1], OpTy);
2221       const Type *ResTy = getTypeByID(Record[2]);
2222       if (!OpTy || !Op || !ResTy)
2223         return Error("Invalid VAARG record");
2224       I = new VAArgInst(Op, ResTy);
2225       InstructionList.push_back(I);
2226       break;
2227     }
2228     }
2229 
2230     // Add instruction to end of current BB.  If there is no current BB, reject
2231     // this file.
2232     if (CurBB == 0) {
2233       delete I;
2234       return Error("Invalid instruction with no BB");
2235     }
2236     CurBB->getInstList().push_back(I);
2237 
2238     // If this was a terminator instruction, move to the next block.
2239     if (isa<TerminatorInst>(I)) {
2240       ++CurBBNo;
2241       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2242     }
2243 
2244     // Non-void values get registered in the value table for future use.
2245     if (I && !I->getType()->isVoidTy())
2246       ValueList.AssignValue(I, NextValueNo++);
2247   }
2248 
2249   // Check the function list for unresolved values.
2250   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2251     if (A->getParent() == 0) {
2252       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2253       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2254         if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2255           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2256           delete A;
2257         }
2258       }
2259       return Error("Never resolved value found in function!");
2260     }
2261   }
2262 
2263   // See if anything took the address of blocks in this function.  If so,
2264   // resolve them now.
2265   /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
2266   /// are resolved lazily when functions are loaded.
2267   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2268     BlockAddrFwdRefs.find(F);
2269   if (BAFRI != BlockAddrFwdRefs.end()) {
2270     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2271     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2272       unsigned BlockIdx = RefList[i].first;
2273       if (BlockIdx >= FunctionBBs.size())
2274         return Error("Invalid blockaddress block #");
2275 
2276       GlobalVariable *FwdRef = RefList[i].second;
2277       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2278       FwdRef->eraseFromParent();
2279     }
2280 
2281     BlockAddrFwdRefs.erase(BAFRI);
2282   }
2283 
2284   // Trim the value list down to the size it was before we parsed this function.
2285   ValueList.shrinkTo(ModuleValueListSize);
2286   std::vector<BasicBlock*>().swap(FunctionBBs);
2287 
2288   return false;
2289 }
2290 
2291 //===----------------------------------------------------------------------===//
2292 // ModuleProvider implementation
2293 //===----------------------------------------------------------------------===//
2294 
2295 
2296 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2297   // If it already is material, ignore the request.
2298   if (!F->hasNotBeenReadFromBitcode()) return false;
2299 
2300   DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2301     DeferredFunctionInfo.find(F);
2302   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2303 
2304   // Move the bit stream to the saved position of the deferred function body and
2305   // restore the real linkage type for the function.
2306   Stream.JumpToBit(DFII->second.first);
2307   F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2308 
2309   if (ParseFunctionBody(F)) {
2310     if (ErrInfo) *ErrInfo = ErrorString;
2311     return true;
2312   }
2313 
2314   // Upgrade any old intrinsic calls in the function.
2315   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2316        E = UpgradedIntrinsics.end(); I != E; ++I) {
2317     if (I->first != I->second) {
2318       for (Value::use_iterator UI = I->first->use_begin(),
2319            UE = I->first->use_end(); UI != UE; ) {
2320         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2321           UpgradeIntrinsicCall(CI, I->second);
2322       }
2323     }
2324   }
2325 
2326   return false;
2327 }
2328 
2329 void BitcodeReader::dematerializeFunction(Function *F) {
2330   // If this function isn't materialized, or if it is a proto, this is a noop.
2331   if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2332     return;
2333 
2334   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2335 
2336   // Just forget the function body, we can remat it later.
2337   F->deleteBody();
2338   F->setLinkage(GlobalValue::GhostLinkage);
2339 }
2340 
2341 
2342 Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2343   // Iterate over the module, deserializing any functions that are still on
2344   // disk.
2345   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2346        F != E; ++F)
2347     if (F->hasNotBeenReadFromBitcode() &&
2348         materializeFunction(F, ErrInfo))
2349       return 0;
2350 
2351   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2352   // delete the old functions to clean up. We can't do this unless the entire
2353   // module is materialized because there could always be another function body
2354   // with calls to the old function.
2355   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2356        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2357     if (I->first != I->second) {
2358       for (Value::use_iterator UI = I->first->use_begin(),
2359            UE = I->first->use_end(); UI != UE; ) {
2360         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2361           UpgradeIntrinsicCall(CI, I->second);
2362       }
2363       if (!I->first->use_empty())
2364         I->first->replaceAllUsesWith(I->second);
2365       I->first->eraseFromParent();
2366     }
2367   }
2368   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2369 
2370   // Check debug info intrinsics.
2371   CheckDebugInfoIntrinsics(TheModule);
2372 
2373   return TheModule;
2374 }
2375 
2376 
2377 /// This method is provided by the parent ModuleProvde class and overriden
2378 /// here. It simply releases the module from its provided and frees up our
2379 /// state.
2380 /// @brief Release our hold on the generated module
2381 Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2382   // Since we're losing control of this Module, we must hand it back complete
2383   Module *M = ModuleProvider::releaseModule(ErrInfo);
2384   FreeState();
2385   return M;
2386 }
2387 
2388 
2389 //===----------------------------------------------------------------------===//
2390 // External interface
2391 //===----------------------------------------------------------------------===//
2392 
2393 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2394 ///
2395 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2396                                                LLVMContext& Context,
2397                                                std::string *ErrMsg) {
2398   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2399   if (R->ParseBitcode()) {
2400     if (ErrMsg)
2401       *ErrMsg = R->getErrorString();
2402 
2403     // Don't let the BitcodeReader dtor delete 'Buffer'.
2404     R->releaseMemoryBuffer();
2405     delete R;
2406     return 0;
2407   }
2408   return R;
2409 }
2410 
2411 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2412 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2413 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2414                                std::string *ErrMsg){
2415   BitcodeReader *R;
2416   R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2417                                                            ErrMsg));
2418   if (!R) return 0;
2419 
2420   // Read in the entire module.
2421   Module *M = R->materializeModule(ErrMsg);
2422 
2423   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2424   // there was an error.
2425   R->releaseMemoryBuffer();
2426 
2427   // If there was no error, tell ModuleProvider not to delete it when its dtor
2428   // is run.
2429   if (M)
2430     M = R->releaseModule(ErrMsg);
2431 
2432   delete R;
2433   return M;
2434 }
2435