1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/APFloat.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/ADT/ArrayRef.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/None.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitstreamReader.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/Comdat.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/IR/DiagnosticPrinter.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalIFunc.h" 42 #include "llvm/IR/GlobalIndirectSymbol.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/GVMaterializer.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/OperandTraits.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/TrackingMDRef.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/ValueHandle.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/DataStream.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/ErrorOr.h" 68 #include "llvm/Support/ManagedStatic.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Support/StreamingMemoryObject.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <deque> 77 #include <limits> 78 #include <map> 79 #include <memory> 80 #include <string> 81 #include <system_error> 82 #include <tuple> 83 #include <utility> 84 #include <vector> 85 86 using namespace llvm; 87 88 static cl::opt<bool> PrintSummaryGUIDs( 89 "print-summary-global-ids", cl::init(false), cl::Hidden, 90 cl::desc( 91 "Print the global id for each value when reading the module summary")); 92 93 namespace { 94 95 enum { 96 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 97 }; 98 99 class BitcodeReaderValueList { 100 std::vector<WeakVH> ValuePtrs; 101 102 /// As we resolve forward-referenced constants, we add information about them 103 /// to this vector. This allows us to resolve them in bulk instead of 104 /// resolving each reference at a time. See the code in 105 /// ResolveConstantForwardRefs for more information about this. 106 /// 107 /// The key of this vector is the placeholder constant, the value is the slot 108 /// number that holds the resolved value. 109 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 110 ResolveConstantsTy ResolveConstants; 111 LLVMContext &Context; 112 113 public: 114 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 115 ~BitcodeReaderValueList() { 116 assert(ResolveConstants.empty() && "Constants not resolved?"); 117 } 118 119 // vector compatibility methods 120 unsigned size() const { return ValuePtrs.size(); } 121 void resize(unsigned N) { ValuePtrs.resize(N); } 122 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 123 124 void clear() { 125 assert(ResolveConstants.empty() && "Constants not resolved?"); 126 ValuePtrs.clear(); 127 } 128 129 Value *operator[](unsigned i) const { 130 assert(i < ValuePtrs.size()); 131 return ValuePtrs[i]; 132 } 133 134 Value *back() const { return ValuePtrs.back(); } 135 void pop_back() { ValuePtrs.pop_back(); } 136 bool empty() const { return ValuePtrs.empty(); } 137 138 void shrinkTo(unsigned N) { 139 assert(N <= size() && "Invalid shrinkTo request!"); 140 ValuePtrs.resize(N); 141 } 142 143 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 144 Value *getValueFwdRef(unsigned Idx, Type *Ty); 145 146 void assignValue(Value *V, unsigned Idx); 147 148 /// Once all constants are read, this method bulk resolves any forward 149 /// references. 150 void resolveConstantForwardRefs(); 151 }; 152 153 class BitcodeReaderMetadataList { 154 unsigned NumFwdRefs; 155 bool AnyFwdRefs; 156 unsigned MinFwdRef; 157 unsigned MaxFwdRef; 158 159 /// Array of metadata references. 160 /// 161 /// Don't use std::vector here. Some versions of libc++ copy (instead of 162 /// move) on resize, and TrackingMDRef is very expensive to copy. 163 SmallVector<TrackingMDRef, 1> MetadataPtrs; 164 165 /// Structures for resolving old type refs. 166 struct { 167 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 168 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 169 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 170 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 171 } OldTypeRefs; 172 173 LLVMContext &Context; 174 175 public: 176 BitcodeReaderMetadataList(LLVMContext &C) 177 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 178 179 // vector compatibility methods 180 unsigned size() const { return MetadataPtrs.size(); } 181 void resize(unsigned N) { MetadataPtrs.resize(N); } 182 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 183 void clear() { MetadataPtrs.clear(); } 184 Metadata *back() const { return MetadataPtrs.back(); } 185 void pop_back() { MetadataPtrs.pop_back(); } 186 bool empty() const { return MetadataPtrs.empty(); } 187 188 Metadata *operator[](unsigned i) const { 189 assert(i < MetadataPtrs.size()); 190 return MetadataPtrs[i]; 191 } 192 193 Metadata *lookup(unsigned I) const { 194 if (I < MetadataPtrs.size()) 195 return MetadataPtrs[I]; 196 return nullptr; 197 } 198 199 void shrinkTo(unsigned N) { 200 assert(N <= size() && "Invalid shrinkTo request!"); 201 assert(!AnyFwdRefs && "Unexpected forward refs"); 202 MetadataPtrs.resize(N); 203 } 204 205 /// Return the given metadata, creating a replaceable forward reference if 206 /// necessary. 207 Metadata *getMetadataFwdRef(unsigned Idx); 208 209 /// Return the the given metadata only if it is fully resolved. 210 /// 211 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 212 /// would give \c false. 213 Metadata *getMetadataIfResolved(unsigned Idx); 214 215 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 216 void assignValue(Metadata *MD, unsigned Idx); 217 void tryToResolveCycles(); 218 bool hasFwdRefs() const { return AnyFwdRefs; } 219 220 /// Upgrade a type that had an MDString reference. 221 void addTypeRef(MDString &UUID, DICompositeType &CT); 222 223 /// Upgrade a type that had an MDString reference. 224 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 225 226 /// Upgrade a type ref array that may have MDString references. 227 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 228 229 private: 230 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 231 }; 232 233 class BitcodeReaderBase { 234 protected: 235 BitcodeReaderBase() = default; 236 BitcodeReaderBase(MemoryBuffer *Buffer) : Buffer(Buffer) {} 237 238 std::unique_ptr<MemoryBuffer> Buffer; 239 std::unique_ptr<BitstreamReader> StreamFile; 240 BitstreamCursor Stream; 241 242 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 243 std::error_code initStreamFromBuffer(); 244 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 245 246 virtual std::error_code error(const Twine &Message) = 0; 247 virtual ~BitcodeReaderBase() = default; 248 }; 249 250 std::error_code 251 BitcodeReaderBase::initStream(std::unique_ptr<DataStreamer> Streamer) { 252 if (Streamer) 253 return initLazyStream(std::move(Streamer)); 254 return initStreamFromBuffer(); 255 } 256 257 std::error_code BitcodeReaderBase::initStreamFromBuffer() { 258 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 259 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 260 261 if (Buffer->getBufferSize() & 3) 262 return error("Invalid bitcode signature"); 263 264 // If we have a wrapper header, parse it and ignore the non-bc file contents. 265 // The magic number is 0x0B17C0DE stored in little endian. 266 if (isBitcodeWrapper(BufPtr, BufEnd)) 267 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 268 return error("Invalid bitcode wrapper header"); 269 270 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 271 Stream.init(&*StreamFile); 272 273 return std::error_code(); 274 } 275 276 std::error_code 277 BitcodeReaderBase::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 278 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 279 // see it. 280 auto OwnedBytes = 281 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 282 StreamingMemoryObject &Bytes = *OwnedBytes; 283 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 284 Stream.init(&*StreamFile); 285 286 unsigned char buf[16]; 287 if (Bytes.readBytes(buf, 16, 0) != 16) 288 return error("Invalid bitcode signature"); 289 290 if (!isBitcode(buf, buf + 16)) 291 return error("Invalid bitcode signature"); 292 293 if (isBitcodeWrapper(buf, buf + 4)) { 294 const unsigned char *bitcodeStart = buf; 295 const unsigned char *bitcodeEnd = buf + 16; 296 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 297 Bytes.dropLeadingBytes(bitcodeStart - buf); 298 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 299 } 300 return std::error_code(); 301 } 302 303 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 304 LLVMContext &Context; 305 Module *TheModule = nullptr; 306 // Next offset to start scanning for lazy parsing of function bodies. 307 uint64_t NextUnreadBit = 0; 308 // Last function offset found in the VST. 309 uint64_t LastFunctionBlockBit = 0; 310 bool SeenValueSymbolTable = false; 311 uint64_t VSTOffset = 0; 312 // Contains an arbitrary and optional string identifying the bitcode producer 313 std::string ProducerIdentification; 314 315 std::vector<Type*> TypeList; 316 BitcodeReaderValueList ValueList; 317 BitcodeReaderMetadataList MetadataList; 318 std::vector<Comdat *> ComdatList; 319 SmallVector<Instruction *, 64> InstructionList; 320 321 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 322 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 323 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 324 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 325 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 326 327 bool HasSeenOldLoopTags = false; 328 329 /// The set of attributes by index. Index zero in the file is for null, and 330 /// is thus not represented here. As such all indices are off by one. 331 std::vector<AttributeSet> MAttributes; 332 333 /// The set of attribute groups. 334 std::map<unsigned, AttributeSet> MAttributeGroups; 335 336 /// While parsing a function body, this is a list of the basic blocks for the 337 /// function. 338 std::vector<BasicBlock*> FunctionBBs; 339 340 // When reading the module header, this list is populated with functions that 341 // have bodies later in the file. 342 std::vector<Function*> FunctionsWithBodies; 343 344 // When intrinsic functions are encountered which require upgrading they are 345 // stored here with their replacement function. 346 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 347 UpdatedIntrinsicMap UpgradedIntrinsics; 348 // Intrinsics which were remangled because of types rename 349 UpdatedIntrinsicMap RemangledIntrinsics; 350 351 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 352 DenseMap<unsigned, unsigned> MDKindMap; 353 354 // Several operations happen after the module header has been read, but 355 // before function bodies are processed. This keeps track of whether 356 // we've done this yet. 357 bool SeenFirstFunctionBody = false; 358 359 /// When function bodies are initially scanned, this map contains info about 360 /// where to find deferred function body in the stream. 361 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 362 363 /// When Metadata block is initially scanned when parsing the module, we may 364 /// choose to defer parsing of the metadata. This vector contains info about 365 /// which Metadata blocks are deferred. 366 std::vector<uint64_t> DeferredMetadataInfo; 367 368 /// These are basic blocks forward-referenced by block addresses. They are 369 /// inserted lazily into functions when they're loaded. The basic block ID is 370 /// its index into the vector. 371 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 372 std::deque<Function *> BasicBlockFwdRefQueue; 373 374 /// Indicates that we are using a new encoding for instruction operands where 375 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 376 /// instruction number, for a more compact encoding. Some instruction 377 /// operands are not relative to the instruction ID: basic block numbers, and 378 /// types. Once the old style function blocks have been phased out, we would 379 /// not need this flag. 380 bool UseRelativeIDs = false; 381 382 /// True if all functions will be materialized, negating the need to process 383 /// (e.g.) blockaddress forward references. 384 bool WillMaterializeAllForwardRefs = false; 385 386 /// True if any Metadata block has been materialized. 387 bool IsMetadataMaterialized = false; 388 389 bool StripDebugInfo = false; 390 391 /// Functions that need to be matched with subprograms when upgrading old 392 /// metadata. 393 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 394 395 std::vector<std::string> BundleTags; 396 397 public: 398 std::error_code error(BitcodeError E, const Twine &Message); 399 std::error_code error(const Twine &Message) override; 400 401 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 402 BitcodeReader(LLVMContext &Context); 403 ~BitcodeReader() override { freeState(); } 404 405 std::error_code materializeForwardReferencedFunctions(); 406 407 void freeState(); 408 409 void releaseBuffer(); 410 411 std::error_code materialize(GlobalValue *GV) override; 412 std::error_code materializeModule() override; 413 std::vector<StructType *> getIdentifiedStructTypes() const override; 414 415 /// \brief Main interface to parsing a bitcode buffer. 416 /// \returns true if an error occurred. 417 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 418 Module *M, 419 bool ShouldLazyLoadMetadata = false); 420 421 /// \brief Cheap mechanism to just extract module triple 422 /// \returns true if an error occurred. 423 ErrorOr<std::string> parseTriple(); 424 425 /// Cheap mechanism to just extract the identification block out of bitcode. 426 ErrorOr<std::string> parseIdentificationBlock(); 427 428 /// Peak at the module content and return true if any ObjC category or class 429 /// is found. 430 ErrorOr<bool> hasObjCCategory(); 431 432 static uint64_t decodeSignRotatedValue(uint64_t V); 433 434 /// Materialize any deferred Metadata block. 435 std::error_code materializeMetadata() override; 436 437 void setStripDebugInfo() override; 438 439 private: 440 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 441 // ProducerIdentification data member, and do some basic enforcement on the 442 // "epoch" encoded in the bitcode. 443 std::error_code parseBitcodeVersion(); 444 445 std::vector<StructType *> IdentifiedStructTypes; 446 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 447 StructType *createIdentifiedStructType(LLVMContext &Context); 448 449 Type *getTypeByID(unsigned ID); 450 451 Value *getFnValueByID(unsigned ID, Type *Ty) { 452 if (Ty && Ty->isMetadataTy()) 453 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 454 return ValueList.getValueFwdRef(ID, Ty); 455 } 456 457 Metadata *getFnMetadataByID(unsigned ID) { 458 return MetadataList.getMetadataFwdRef(ID); 459 } 460 461 BasicBlock *getBasicBlock(unsigned ID) const { 462 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 463 return FunctionBBs[ID]; 464 } 465 466 AttributeSet getAttributes(unsigned i) const { 467 if (i-1 < MAttributes.size()) 468 return MAttributes[i-1]; 469 return AttributeSet(); 470 } 471 472 /// Read a value/type pair out of the specified record from slot 'Slot'. 473 /// Increment Slot past the number of slots used in the record. Return true on 474 /// failure. 475 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 476 unsigned InstNum, Value *&ResVal) { 477 if (Slot == Record.size()) return true; 478 unsigned ValNo = (unsigned)Record[Slot++]; 479 // Adjust the ValNo, if it was encoded relative to the InstNum. 480 if (UseRelativeIDs) 481 ValNo = InstNum - ValNo; 482 if (ValNo < InstNum) { 483 // If this is not a forward reference, just return the value we already 484 // have. 485 ResVal = getFnValueByID(ValNo, nullptr); 486 return ResVal == nullptr; 487 } 488 if (Slot == Record.size()) 489 return true; 490 491 unsigned TypeNo = (unsigned)Record[Slot++]; 492 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 493 return ResVal == nullptr; 494 } 495 496 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 497 /// past the number of slots used by the value in the record. Return true if 498 /// there is an error. 499 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 500 unsigned InstNum, Type *Ty, Value *&ResVal) { 501 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 502 return true; 503 // All values currently take a single record slot. 504 ++Slot; 505 return false; 506 } 507 508 /// Like popValue, but does not increment the Slot number. 509 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 510 unsigned InstNum, Type *Ty, Value *&ResVal) { 511 ResVal = getValue(Record, Slot, InstNum, Ty); 512 return ResVal == nullptr; 513 } 514 515 /// Version of getValue that returns ResVal directly, or 0 if there is an 516 /// error. 517 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 518 unsigned InstNum, Type *Ty) { 519 if (Slot == Record.size()) return nullptr; 520 unsigned ValNo = (unsigned)Record[Slot]; 521 // Adjust the ValNo, if it was encoded relative to the InstNum. 522 if (UseRelativeIDs) 523 ValNo = InstNum - ValNo; 524 return getFnValueByID(ValNo, Ty); 525 } 526 527 /// Like getValue, but decodes signed VBRs. 528 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 529 unsigned InstNum, Type *Ty) { 530 if (Slot == Record.size()) return nullptr; 531 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 532 // Adjust the ValNo, if it was encoded relative to the InstNum. 533 if (UseRelativeIDs) 534 ValNo = InstNum - ValNo; 535 return getFnValueByID(ValNo, Ty); 536 } 537 538 /// Converts alignment exponent (i.e. power of two (or zero)) to the 539 /// corresponding alignment to use. If alignment is too large, returns 540 /// a corresponding error code. 541 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 542 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 543 std::error_code parseModule(uint64_t ResumeBit, 544 bool ShouldLazyLoadMetadata = false); 545 std::error_code parseAttributeBlock(); 546 std::error_code parseAttributeGroupBlock(); 547 std::error_code parseTypeTable(); 548 std::error_code parseTypeTableBody(); 549 std::error_code parseOperandBundleTags(); 550 551 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 552 unsigned NameIndex, Triple &TT); 553 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 554 std::error_code parseConstants(); 555 std::error_code rememberAndSkipFunctionBodies(); 556 std::error_code rememberAndSkipFunctionBody(); 557 /// Save the positions of the Metadata blocks and skip parsing the blocks. 558 std::error_code rememberAndSkipMetadata(); 559 std::error_code parseFunctionBody(Function *F); 560 std::error_code globalCleanup(); 561 std::error_code resolveGlobalAndIndirectSymbolInits(); 562 std::error_code parseMetadata(bool ModuleLevel = false); 563 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 564 StringRef Blob, 565 unsigned &NextMetadataNo); 566 std::error_code parseMetadataKinds(); 567 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 568 std::error_code 569 parseGlobalObjectAttachment(GlobalObject &GO, 570 ArrayRef<uint64_t> Record); 571 std::error_code parseMetadataAttachment(Function &F); 572 ErrorOr<std::string> parseModuleTriple(); 573 ErrorOr<bool> hasObjCCategoryInModule(); 574 std::error_code parseUseLists(); 575 std::error_code findFunctionInStream( 576 Function *F, 577 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 578 }; 579 580 /// Class to manage reading and parsing function summary index bitcode 581 /// files/sections. 582 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 583 DiagnosticHandlerFunction DiagnosticHandler; 584 585 /// Eventually points to the module index built during parsing. 586 ModuleSummaryIndex *TheIndex = nullptr; 587 588 /// Used to indicate whether caller only wants to check for the presence 589 /// of the global value summary bitcode section. All blocks are skipped, 590 /// but the SeenGlobalValSummary boolean is set. 591 bool CheckGlobalValSummaryPresenceOnly = false; 592 593 /// Indicates whether we have encountered a global value summary section 594 /// yet during parsing, used when checking if file contains global value 595 /// summary section. 596 bool SeenGlobalValSummary = false; 597 598 /// Indicates whether we have already parsed the VST, used for error checking. 599 bool SeenValueSymbolTable = false; 600 601 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 602 /// Used to enable on-demand parsing of the VST. 603 uint64_t VSTOffset = 0; 604 605 // Map to save ValueId to GUID association that was recorded in the 606 // ValueSymbolTable. It is used after the VST is parsed to convert 607 // call graph edges read from the function summary from referencing 608 // callees by their ValueId to using the GUID instead, which is how 609 // they are recorded in the summary index being built. 610 // We save a second GUID which is the same as the first one, but ignoring the 611 // linkage, i.e. for value other than local linkage they are identical. 612 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 613 ValueIdToCallGraphGUIDMap; 614 615 /// Map populated during module path string table parsing, from the 616 /// module ID to a string reference owned by the index's module 617 /// path string table, used to correlate with combined index 618 /// summary records. 619 DenseMap<uint64_t, StringRef> ModuleIdMap; 620 621 /// Original source file name recorded in a bitcode record. 622 std::string SourceFileName; 623 624 public: 625 std::error_code error(const Twine &Message); 626 627 ModuleSummaryIndexBitcodeReader( 628 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 629 bool CheckGlobalValSummaryPresenceOnly = false); 630 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 631 632 void freeState(); 633 634 void releaseBuffer(); 635 636 /// Check if the parser has encountered a summary section. 637 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 638 639 /// \brief Main interface to parsing a bitcode buffer. 640 /// \returns true if an error occurred. 641 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 642 ModuleSummaryIndex *I); 643 644 private: 645 std::error_code parseModule(); 646 std::error_code parseValueSymbolTable( 647 uint64_t Offset, 648 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 649 std::error_code parseEntireSummary(); 650 std::error_code parseModuleStringTable(); 651 std::pair<GlobalValue::GUID, GlobalValue::GUID> 652 653 getGUIDFromValueId(unsigned ValueId); 654 }; 655 656 } // end anonymous namespace 657 658 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 659 DiagnosticSeverity Severity, 660 const Twine &Msg) 661 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 662 663 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 664 665 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler, 666 std::error_code EC, const Twine &Message) { 667 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 668 DiagnosticHandler(DI); 669 return EC; 670 } 671 672 static std::error_code error(LLVMContext &Context, std::error_code EC, 673 const Twine &Message) { 674 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 675 Message); 676 } 677 678 static std::error_code error(LLVMContext &Context, const Twine &Message) { 679 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 680 Message); 681 } 682 683 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 684 if (!ProducerIdentification.empty()) { 685 return ::error(Context, make_error_code(E), 686 Message + " (Producer: '" + ProducerIdentification + 687 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 688 } 689 return ::error(Context, make_error_code(E), Message); 690 } 691 692 std::error_code BitcodeReader::error(const Twine &Message) { 693 if (!ProducerIdentification.empty()) { 694 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 695 Message + " (Producer: '" + ProducerIdentification + 696 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 697 } 698 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 699 Message); 700 } 701 702 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 703 : BitcodeReaderBase(Buffer), Context(Context), ValueList(Context), 704 MetadataList(Context) {} 705 706 BitcodeReader::BitcodeReader(LLVMContext &Context) 707 : Context(Context), ValueList(Context), MetadataList(Context) {} 708 709 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 710 if (WillMaterializeAllForwardRefs) 711 return std::error_code(); 712 713 // Prevent recursion. 714 WillMaterializeAllForwardRefs = true; 715 716 while (!BasicBlockFwdRefQueue.empty()) { 717 Function *F = BasicBlockFwdRefQueue.front(); 718 BasicBlockFwdRefQueue.pop_front(); 719 assert(F && "Expected valid function"); 720 if (!BasicBlockFwdRefs.count(F)) 721 // Already materialized. 722 continue; 723 724 // Check for a function that isn't materializable to prevent an infinite 725 // loop. When parsing a blockaddress stored in a global variable, there 726 // isn't a trivial way to check if a function will have a body without a 727 // linear search through FunctionsWithBodies, so just check it here. 728 if (!F->isMaterializable()) 729 return error("Never resolved function from blockaddress"); 730 731 // Try to materialize F. 732 if (std::error_code EC = materialize(F)) 733 return EC; 734 } 735 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 736 737 // Reset state. 738 WillMaterializeAllForwardRefs = false; 739 return std::error_code(); 740 } 741 742 void BitcodeReader::freeState() { 743 Buffer = nullptr; 744 std::vector<Type*>().swap(TypeList); 745 ValueList.clear(); 746 MetadataList.clear(); 747 std::vector<Comdat *>().swap(ComdatList); 748 749 std::vector<AttributeSet>().swap(MAttributes); 750 std::vector<BasicBlock*>().swap(FunctionBBs); 751 std::vector<Function*>().swap(FunctionsWithBodies); 752 DeferredFunctionInfo.clear(); 753 DeferredMetadataInfo.clear(); 754 MDKindMap.clear(); 755 756 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 757 BasicBlockFwdRefQueue.clear(); 758 } 759 760 //===----------------------------------------------------------------------===// 761 // Helper functions to implement forward reference resolution, etc. 762 //===----------------------------------------------------------------------===// 763 764 /// Convert a string from a record into an std::string, return true on failure. 765 template <typename StrTy> 766 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 767 StrTy &Result) { 768 if (Idx > Record.size()) 769 return true; 770 771 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 772 Result += (char)Record[i]; 773 return false; 774 } 775 776 static bool hasImplicitComdat(size_t Val) { 777 switch (Val) { 778 default: 779 return false; 780 case 1: // Old WeakAnyLinkage 781 case 4: // Old LinkOnceAnyLinkage 782 case 10: // Old WeakODRLinkage 783 case 11: // Old LinkOnceODRLinkage 784 return true; 785 } 786 } 787 788 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 789 switch (Val) { 790 default: // Map unknown/new linkages to external 791 case 0: 792 return GlobalValue::ExternalLinkage; 793 case 2: 794 return GlobalValue::AppendingLinkage; 795 case 3: 796 return GlobalValue::InternalLinkage; 797 case 5: 798 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 799 case 6: 800 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 801 case 7: 802 return GlobalValue::ExternalWeakLinkage; 803 case 8: 804 return GlobalValue::CommonLinkage; 805 case 9: 806 return GlobalValue::PrivateLinkage; 807 case 12: 808 return GlobalValue::AvailableExternallyLinkage; 809 case 13: 810 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 811 case 14: 812 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 813 case 15: 814 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 815 case 1: // Old value with implicit comdat. 816 case 16: 817 return GlobalValue::WeakAnyLinkage; 818 case 10: // Old value with implicit comdat. 819 case 17: 820 return GlobalValue::WeakODRLinkage; 821 case 4: // Old value with implicit comdat. 822 case 18: 823 return GlobalValue::LinkOnceAnyLinkage; 824 case 11: // Old value with implicit comdat. 825 case 19: 826 return GlobalValue::LinkOnceODRLinkage; 827 } 828 } 829 830 /// Decode the flags for GlobalValue in the summary. 831 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 832 uint64_t Version) { 833 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 834 // like getDecodedLinkage() above. Any future change to the linkage enum and 835 // to getDecodedLinkage() will need to be taken into account here as above. 836 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 837 RawFlags = RawFlags >> 4; 838 bool HasSection = RawFlags & 0x1; 839 bool IsNotViableToInline = RawFlags & 0x2; 840 return GlobalValueSummary::GVFlags(Linkage, HasSection, IsNotViableToInline); 841 } 842 843 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 844 switch (Val) { 845 default: // Map unknown visibilities to default. 846 case 0: return GlobalValue::DefaultVisibility; 847 case 1: return GlobalValue::HiddenVisibility; 848 case 2: return GlobalValue::ProtectedVisibility; 849 } 850 } 851 852 static GlobalValue::DLLStorageClassTypes 853 getDecodedDLLStorageClass(unsigned Val) { 854 switch (Val) { 855 default: // Map unknown values to default. 856 case 0: return GlobalValue::DefaultStorageClass; 857 case 1: return GlobalValue::DLLImportStorageClass; 858 case 2: return GlobalValue::DLLExportStorageClass; 859 } 860 } 861 862 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 863 switch (Val) { 864 case 0: return GlobalVariable::NotThreadLocal; 865 default: // Map unknown non-zero value to general dynamic. 866 case 1: return GlobalVariable::GeneralDynamicTLSModel; 867 case 2: return GlobalVariable::LocalDynamicTLSModel; 868 case 3: return GlobalVariable::InitialExecTLSModel; 869 case 4: return GlobalVariable::LocalExecTLSModel; 870 } 871 } 872 873 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 874 switch (Val) { 875 default: // Map unknown to UnnamedAddr::None. 876 case 0: return GlobalVariable::UnnamedAddr::None; 877 case 1: return GlobalVariable::UnnamedAddr::Global; 878 case 2: return GlobalVariable::UnnamedAddr::Local; 879 } 880 } 881 882 static int getDecodedCastOpcode(unsigned Val) { 883 switch (Val) { 884 default: return -1; 885 case bitc::CAST_TRUNC : return Instruction::Trunc; 886 case bitc::CAST_ZEXT : return Instruction::ZExt; 887 case bitc::CAST_SEXT : return Instruction::SExt; 888 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 889 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 890 case bitc::CAST_UITOFP : return Instruction::UIToFP; 891 case bitc::CAST_SITOFP : return Instruction::SIToFP; 892 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 893 case bitc::CAST_FPEXT : return Instruction::FPExt; 894 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 895 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 896 case bitc::CAST_BITCAST : return Instruction::BitCast; 897 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 898 } 899 } 900 901 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 902 bool IsFP = Ty->isFPOrFPVectorTy(); 903 // BinOps are only valid for int/fp or vector of int/fp types 904 if (!IsFP && !Ty->isIntOrIntVectorTy()) 905 return -1; 906 907 switch (Val) { 908 default: 909 return -1; 910 case bitc::BINOP_ADD: 911 return IsFP ? Instruction::FAdd : Instruction::Add; 912 case bitc::BINOP_SUB: 913 return IsFP ? Instruction::FSub : Instruction::Sub; 914 case bitc::BINOP_MUL: 915 return IsFP ? Instruction::FMul : Instruction::Mul; 916 case bitc::BINOP_UDIV: 917 return IsFP ? -1 : Instruction::UDiv; 918 case bitc::BINOP_SDIV: 919 return IsFP ? Instruction::FDiv : Instruction::SDiv; 920 case bitc::BINOP_UREM: 921 return IsFP ? -1 : Instruction::URem; 922 case bitc::BINOP_SREM: 923 return IsFP ? Instruction::FRem : Instruction::SRem; 924 case bitc::BINOP_SHL: 925 return IsFP ? -1 : Instruction::Shl; 926 case bitc::BINOP_LSHR: 927 return IsFP ? -1 : Instruction::LShr; 928 case bitc::BINOP_ASHR: 929 return IsFP ? -1 : Instruction::AShr; 930 case bitc::BINOP_AND: 931 return IsFP ? -1 : Instruction::And; 932 case bitc::BINOP_OR: 933 return IsFP ? -1 : Instruction::Or; 934 case bitc::BINOP_XOR: 935 return IsFP ? -1 : Instruction::Xor; 936 } 937 } 938 939 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 940 switch (Val) { 941 default: return AtomicRMWInst::BAD_BINOP; 942 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 943 case bitc::RMW_ADD: return AtomicRMWInst::Add; 944 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 945 case bitc::RMW_AND: return AtomicRMWInst::And; 946 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 947 case bitc::RMW_OR: return AtomicRMWInst::Or; 948 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 949 case bitc::RMW_MAX: return AtomicRMWInst::Max; 950 case bitc::RMW_MIN: return AtomicRMWInst::Min; 951 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 952 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 953 } 954 } 955 956 static AtomicOrdering getDecodedOrdering(unsigned Val) { 957 switch (Val) { 958 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 959 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 960 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 961 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 962 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 963 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 964 default: // Map unknown orderings to sequentially-consistent. 965 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 966 } 967 } 968 969 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 970 switch (Val) { 971 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 972 default: // Map unknown scopes to cross-thread. 973 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 974 } 975 } 976 977 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 978 switch (Val) { 979 default: // Map unknown selection kinds to any. 980 case bitc::COMDAT_SELECTION_KIND_ANY: 981 return Comdat::Any; 982 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 983 return Comdat::ExactMatch; 984 case bitc::COMDAT_SELECTION_KIND_LARGEST: 985 return Comdat::Largest; 986 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 987 return Comdat::NoDuplicates; 988 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 989 return Comdat::SameSize; 990 } 991 } 992 993 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 994 FastMathFlags FMF; 995 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 996 FMF.setUnsafeAlgebra(); 997 if (0 != (Val & FastMathFlags::NoNaNs)) 998 FMF.setNoNaNs(); 999 if (0 != (Val & FastMathFlags::NoInfs)) 1000 FMF.setNoInfs(); 1001 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1002 FMF.setNoSignedZeros(); 1003 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1004 FMF.setAllowReciprocal(); 1005 return FMF; 1006 } 1007 1008 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1009 switch (Val) { 1010 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1011 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1012 } 1013 } 1014 1015 namespace llvm { 1016 namespace { 1017 1018 /// \brief A class for maintaining the slot number definition 1019 /// as a placeholder for the actual definition for forward constants defs. 1020 class ConstantPlaceHolder : public ConstantExpr { 1021 void operator=(const ConstantPlaceHolder &) = delete; 1022 1023 public: 1024 // allocate space for exactly one operand 1025 void *operator new(size_t s) { return User::operator new(s, 1); } 1026 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 1027 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 1028 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 1029 } 1030 1031 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 1032 static bool classof(const Value *V) { 1033 return isa<ConstantExpr>(V) && 1034 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 1035 } 1036 1037 /// Provide fast operand accessors 1038 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 1039 }; 1040 1041 } // end anonymous namespace 1042 1043 // FIXME: can we inherit this from ConstantExpr? 1044 template <> 1045 struct OperandTraits<ConstantPlaceHolder> : 1046 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 1047 }; 1048 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 1049 1050 } // end namespace llvm 1051 1052 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 1053 if (Idx == size()) { 1054 push_back(V); 1055 return; 1056 } 1057 1058 if (Idx >= size()) 1059 resize(Idx+1); 1060 1061 WeakVH &OldV = ValuePtrs[Idx]; 1062 if (!OldV) { 1063 OldV = V; 1064 return; 1065 } 1066 1067 // Handle constants and non-constants (e.g. instrs) differently for 1068 // efficiency. 1069 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 1070 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 1071 OldV = V; 1072 } else { 1073 // If there was a forward reference to this value, replace it. 1074 Value *PrevVal = OldV; 1075 OldV->replaceAllUsesWith(V); 1076 delete PrevVal; 1077 } 1078 } 1079 1080 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 1081 Type *Ty) { 1082 if (Idx >= size()) 1083 resize(Idx + 1); 1084 1085 if (Value *V = ValuePtrs[Idx]) { 1086 if (Ty != V->getType()) 1087 report_fatal_error("Type mismatch in constant table!"); 1088 return cast<Constant>(V); 1089 } 1090 1091 // Create and return a placeholder, which will later be RAUW'd. 1092 Constant *C = new ConstantPlaceHolder(Ty, Context); 1093 ValuePtrs[Idx] = C; 1094 return C; 1095 } 1096 1097 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 1098 // Bail out for a clearly invalid value. This would make us call resize(0) 1099 if (Idx == std::numeric_limits<unsigned>::max()) 1100 return nullptr; 1101 1102 if (Idx >= size()) 1103 resize(Idx + 1); 1104 1105 if (Value *V = ValuePtrs[Idx]) { 1106 // If the types don't match, it's invalid. 1107 if (Ty && Ty != V->getType()) 1108 return nullptr; 1109 return V; 1110 } 1111 1112 // No type specified, must be invalid reference. 1113 if (!Ty) return nullptr; 1114 1115 // Create and return a placeholder, which will later be RAUW'd. 1116 Value *V = new Argument(Ty); 1117 ValuePtrs[Idx] = V; 1118 return V; 1119 } 1120 1121 /// Once all constants are read, this method bulk resolves any forward 1122 /// references. The idea behind this is that we sometimes get constants (such 1123 /// as large arrays) which reference *many* forward ref constants. Replacing 1124 /// each of these causes a lot of thrashing when building/reuniquing the 1125 /// constant. Instead of doing this, we look at all the uses and rewrite all 1126 /// the place holders at once for any constant that uses a placeholder. 1127 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1128 // Sort the values by-pointer so that they are efficient to look up with a 1129 // binary search. 1130 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1131 1132 SmallVector<Constant*, 64> NewOps; 1133 1134 while (!ResolveConstants.empty()) { 1135 Value *RealVal = operator[](ResolveConstants.back().second); 1136 Constant *Placeholder = ResolveConstants.back().first; 1137 ResolveConstants.pop_back(); 1138 1139 // Loop over all users of the placeholder, updating them to reference the 1140 // new value. If they reference more than one placeholder, update them all 1141 // at once. 1142 while (!Placeholder->use_empty()) { 1143 auto UI = Placeholder->user_begin(); 1144 User *U = *UI; 1145 1146 // If the using object isn't uniqued, just update the operands. This 1147 // handles instructions and initializers for global variables. 1148 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1149 UI.getUse().set(RealVal); 1150 continue; 1151 } 1152 1153 // Otherwise, we have a constant that uses the placeholder. Replace that 1154 // constant with a new constant that has *all* placeholder uses updated. 1155 Constant *UserC = cast<Constant>(U); 1156 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1157 I != E; ++I) { 1158 Value *NewOp; 1159 if (!isa<ConstantPlaceHolder>(*I)) { 1160 // Not a placeholder reference. 1161 NewOp = *I; 1162 } else if (*I == Placeholder) { 1163 // Common case is that it just references this one placeholder. 1164 NewOp = RealVal; 1165 } else { 1166 // Otherwise, look up the placeholder in ResolveConstants. 1167 ResolveConstantsTy::iterator It = 1168 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1169 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1170 0)); 1171 assert(It != ResolveConstants.end() && It->first == *I); 1172 NewOp = operator[](It->second); 1173 } 1174 1175 NewOps.push_back(cast<Constant>(NewOp)); 1176 } 1177 1178 // Make the new constant. 1179 Constant *NewC; 1180 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1181 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1182 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1183 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1184 } else if (isa<ConstantVector>(UserC)) { 1185 NewC = ConstantVector::get(NewOps); 1186 } else { 1187 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1188 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1189 } 1190 1191 UserC->replaceAllUsesWith(NewC); 1192 UserC->destroyConstant(); 1193 NewOps.clear(); 1194 } 1195 1196 // Update all ValueHandles, they should be the only users at this point. 1197 Placeholder->replaceAllUsesWith(RealVal); 1198 delete Placeholder; 1199 } 1200 } 1201 1202 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1203 if (Idx == size()) { 1204 push_back(MD); 1205 return; 1206 } 1207 1208 if (Idx >= size()) 1209 resize(Idx+1); 1210 1211 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1212 if (!OldMD) { 1213 OldMD.reset(MD); 1214 return; 1215 } 1216 1217 // If there was a forward reference to this value, replace it. 1218 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1219 PrevMD->replaceAllUsesWith(MD); 1220 --NumFwdRefs; 1221 } 1222 1223 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1224 if (Idx >= size()) 1225 resize(Idx + 1); 1226 1227 if (Metadata *MD = MetadataPtrs[Idx]) 1228 return MD; 1229 1230 // Track forward refs to be resolved later. 1231 if (AnyFwdRefs) { 1232 MinFwdRef = std::min(MinFwdRef, Idx); 1233 MaxFwdRef = std::max(MaxFwdRef, Idx); 1234 } else { 1235 AnyFwdRefs = true; 1236 MinFwdRef = MaxFwdRef = Idx; 1237 } 1238 ++NumFwdRefs; 1239 1240 // Create and return a placeholder, which will later be RAUW'd. 1241 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1242 MetadataPtrs[Idx].reset(MD); 1243 return MD; 1244 } 1245 1246 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1247 Metadata *MD = lookup(Idx); 1248 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1249 if (!N->isResolved()) 1250 return nullptr; 1251 return MD; 1252 } 1253 1254 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1255 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1256 } 1257 1258 void BitcodeReaderMetadataList::tryToResolveCycles() { 1259 if (NumFwdRefs) 1260 // Still forward references... can't resolve cycles. 1261 return; 1262 1263 bool DidReplaceTypeRefs = false; 1264 1265 // Give up on finding a full definition for any forward decls that remain. 1266 for (const auto &Ref : OldTypeRefs.FwdDecls) 1267 OldTypeRefs.Final.insert(Ref); 1268 OldTypeRefs.FwdDecls.clear(); 1269 1270 // Upgrade from old type ref arrays. In strange cases, this could add to 1271 // OldTypeRefs.Unknown. 1272 for (const auto &Array : OldTypeRefs.Arrays) { 1273 DidReplaceTypeRefs = true; 1274 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1275 } 1276 OldTypeRefs.Arrays.clear(); 1277 1278 // Replace old string-based type refs with the resolved node, if possible. 1279 // If we haven't seen the node, leave it to the verifier to complain about 1280 // the invalid string reference. 1281 for (const auto &Ref : OldTypeRefs.Unknown) { 1282 DidReplaceTypeRefs = true; 1283 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1284 Ref.second->replaceAllUsesWith(CT); 1285 else 1286 Ref.second->replaceAllUsesWith(Ref.first); 1287 } 1288 OldTypeRefs.Unknown.clear(); 1289 1290 // Make sure all the upgraded types are resolved. 1291 if (DidReplaceTypeRefs) { 1292 AnyFwdRefs = true; 1293 MinFwdRef = 0; 1294 MaxFwdRef = MetadataPtrs.size() - 1; 1295 } 1296 1297 if (!AnyFwdRefs) 1298 // Nothing to do. 1299 return; 1300 1301 // Resolve any cycles. 1302 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1303 auto &MD = MetadataPtrs[I]; 1304 auto *N = dyn_cast_or_null<MDNode>(MD); 1305 if (!N) 1306 continue; 1307 1308 assert(!N->isTemporary() && "Unexpected forward reference"); 1309 N->resolveCycles(); 1310 } 1311 1312 // Make sure we return early again until there's another forward ref. 1313 AnyFwdRefs = false; 1314 } 1315 1316 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1317 DICompositeType &CT) { 1318 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1319 if (CT.isForwardDecl()) 1320 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1321 else 1322 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1323 } 1324 1325 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1326 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1327 if (LLVM_LIKELY(!UUID)) 1328 return MaybeUUID; 1329 1330 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1331 return CT; 1332 1333 auto &Ref = OldTypeRefs.Unknown[UUID]; 1334 if (!Ref) 1335 Ref = MDNode::getTemporary(Context, None); 1336 return Ref.get(); 1337 } 1338 1339 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1340 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1341 if (!Tuple || Tuple->isDistinct()) 1342 return MaybeTuple; 1343 1344 // Look through the array immediately if possible. 1345 if (!Tuple->isTemporary()) 1346 return resolveTypeRefArray(Tuple); 1347 1348 // Create and return a placeholder to use for now. Eventually 1349 // resolveTypeRefArrays() will be resolve this forward reference. 1350 OldTypeRefs.Arrays.emplace_back( 1351 std::piecewise_construct, std::forward_as_tuple(Tuple), 1352 std::forward_as_tuple(MDTuple::getTemporary(Context, None))); 1353 return OldTypeRefs.Arrays.back().second.get(); 1354 } 1355 1356 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1357 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1358 if (!Tuple || Tuple->isDistinct()) 1359 return MaybeTuple; 1360 1361 // Look through the DITypeRefArray, upgrading each DITypeRef. 1362 SmallVector<Metadata *, 32> Ops; 1363 Ops.reserve(Tuple->getNumOperands()); 1364 for (Metadata *MD : Tuple->operands()) 1365 Ops.push_back(upgradeTypeRef(MD)); 1366 1367 return MDTuple::get(Context, Ops); 1368 } 1369 1370 Type *BitcodeReader::getTypeByID(unsigned ID) { 1371 // The type table size is always specified correctly. 1372 if (ID >= TypeList.size()) 1373 return nullptr; 1374 1375 if (Type *Ty = TypeList[ID]) 1376 return Ty; 1377 1378 // If we have a forward reference, the only possible case is when it is to a 1379 // named struct. Just create a placeholder for now. 1380 return TypeList[ID] = createIdentifiedStructType(Context); 1381 } 1382 1383 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1384 StringRef Name) { 1385 auto *Ret = StructType::create(Context, Name); 1386 IdentifiedStructTypes.push_back(Ret); 1387 return Ret; 1388 } 1389 1390 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1391 auto *Ret = StructType::create(Context); 1392 IdentifiedStructTypes.push_back(Ret); 1393 return Ret; 1394 } 1395 1396 //===----------------------------------------------------------------------===// 1397 // Functions for parsing blocks from the bitcode file 1398 //===----------------------------------------------------------------------===// 1399 1400 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1401 /// been decoded from the given integer. This function must stay in sync with 1402 /// 'encodeLLVMAttributesForBitcode'. 1403 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1404 uint64_t EncodedAttrs) { 1405 // FIXME: Remove in 4.0. 1406 1407 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1408 // the bits above 31 down by 11 bits. 1409 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1410 assert((!Alignment || isPowerOf2_32(Alignment)) && 1411 "Alignment must be a power of two."); 1412 1413 if (Alignment) 1414 B.addAlignmentAttr(Alignment); 1415 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1416 (EncodedAttrs & 0xffff)); 1417 } 1418 1419 std::error_code BitcodeReader::parseAttributeBlock() { 1420 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1421 return error("Invalid record"); 1422 1423 if (!MAttributes.empty()) 1424 return error("Invalid multiple blocks"); 1425 1426 SmallVector<uint64_t, 64> Record; 1427 1428 SmallVector<AttributeSet, 8> Attrs; 1429 1430 // Read all the records. 1431 while (true) { 1432 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1433 1434 switch (Entry.Kind) { 1435 case BitstreamEntry::SubBlock: // Handled for us already. 1436 case BitstreamEntry::Error: 1437 return error("Malformed block"); 1438 case BitstreamEntry::EndBlock: 1439 return std::error_code(); 1440 case BitstreamEntry::Record: 1441 // The interesting case. 1442 break; 1443 } 1444 1445 // Read a record. 1446 Record.clear(); 1447 switch (Stream.readRecord(Entry.ID, Record)) { 1448 default: // Default behavior: ignore. 1449 break; 1450 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1451 // FIXME: Remove in 4.0. 1452 if (Record.size() & 1) 1453 return error("Invalid record"); 1454 1455 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1456 AttrBuilder B; 1457 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1458 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1459 } 1460 1461 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1462 Attrs.clear(); 1463 break; 1464 } 1465 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1466 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1467 Attrs.push_back(MAttributeGroups[Record[i]]); 1468 1469 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1470 Attrs.clear(); 1471 break; 1472 } 1473 } 1474 } 1475 } 1476 1477 // Returns Attribute::None on unrecognized codes. 1478 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1479 switch (Code) { 1480 default: 1481 return Attribute::None; 1482 case bitc::ATTR_KIND_ALIGNMENT: 1483 return Attribute::Alignment; 1484 case bitc::ATTR_KIND_ALWAYS_INLINE: 1485 return Attribute::AlwaysInline; 1486 case bitc::ATTR_KIND_ARGMEMONLY: 1487 return Attribute::ArgMemOnly; 1488 case bitc::ATTR_KIND_BUILTIN: 1489 return Attribute::Builtin; 1490 case bitc::ATTR_KIND_BY_VAL: 1491 return Attribute::ByVal; 1492 case bitc::ATTR_KIND_IN_ALLOCA: 1493 return Attribute::InAlloca; 1494 case bitc::ATTR_KIND_COLD: 1495 return Attribute::Cold; 1496 case bitc::ATTR_KIND_CONVERGENT: 1497 return Attribute::Convergent; 1498 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1499 return Attribute::InaccessibleMemOnly; 1500 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1501 return Attribute::InaccessibleMemOrArgMemOnly; 1502 case bitc::ATTR_KIND_INLINE_HINT: 1503 return Attribute::InlineHint; 1504 case bitc::ATTR_KIND_IN_REG: 1505 return Attribute::InReg; 1506 case bitc::ATTR_KIND_JUMP_TABLE: 1507 return Attribute::JumpTable; 1508 case bitc::ATTR_KIND_MIN_SIZE: 1509 return Attribute::MinSize; 1510 case bitc::ATTR_KIND_NAKED: 1511 return Attribute::Naked; 1512 case bitc::ATTR_KIND_NEST: 1513 return Attribute::Nest; 1514 case bitc::ATTR_KIND_NO_ALIAS: 1515 return Attribute::NoAlias; 1516 case bitc::ATTR_KIND_NO_BUILTIN: 1517 return Attribute::NoBuiltin; 1518 case bitc::ATTR_KIND_NO_CAPTURE: 1519 return Attribute::NoCapture; 1520 case bitc::ATTR_KIND_NO_DUPLICATE: 1521 return Attribute::NoDuplicate; 1522 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1523 return Attribute::NoImplicitFloat; 1524 case bitc::ATTR_KIND_NO_INLINE: 1525 return Attribute::NoInline; 1526 case bitc::ATTR_KIND_NO_RECURSE: 1527 return Attribute::NoRecurse; 1528 case bitc::ATTR_KIND_NON_LAZY_BIND: 1529 return Attribute::NonLazyBind; 1530 case bitc::ATTR_KIND_NON_NULL: 1531 return Attribute::NonNull; 1532 case bitc::ATTR_KIND_DEREFERENCEABLE: 1533 return Attribute::Dereferenceable; 1534 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1535 return Attribute::DereferenceableOrNull; 1536 case bitc::ATTR_KIND_ALLOC_SIZE: 1537 return Attribute::AllocSize; 1538 case bitc::ATTR_KIND_NO_RED_ZONE: 1539 return Attribute::NoRedZone; 1540 case bitc::ATTR_KIND_NO_RETURN: 1541 return Attribute::NoReturn; 1542 case bitc::ATTR_KIND_NO_UNWIND: 1543 return Attribute::NoUnwind; 1544 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1545 return Attribute::OptimizeForSize; 1546 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1547 return Attribute::OptimizeNone; 1548 case bitc::ATTR_KIND_READ_NONE: 1549 return Attribute::ReadNone; 1550 case bitc::ATTR_KIND_READ_ONLY: 1551 return Attribute::ReadOnly; 1552 case bitc::ATTR_KIND_RETURNED: 1553 return Attribute::Returned; 1554 case bitc::ATTR_KIND_RETURNS_TWICE: 1555 return Attribute::ReturnsTwice; 1556 case bitc::ATTR_KIND_S_EXT: 1557 return Attribute::SExt; 1558 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1559 return Attribute::StackAlignment; 1560 case bitc::ATTR_KIND_STACK_PROTECT: 1561 return Attribute::StackProtect; 1562 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1563 return Attribute::StackProtectReq; 1564 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1565 return Attribute::StackProtectStrong; 1566 case bitc::ATTR_KIND_SAFESTACK: 1567 return Attribute::SafeStack; 1568 case bitc::ATTR_KIND_STRUCT_RET: 1569 return Attribute::StructRet; 1570 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1571 return Attribute::SanitizeAddress; 1572 case bitc::ATTR_KIND_SANITIZE_THREAD: 1573 return Attribute::SanitizeThread; 1574 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1575 return Attribute::SanitizeMemory; 1576 case bitc::ATTR_KIND_SWIFT_ERROR: 1577 return Attribute::SwiftError; 1578 case bitc::ATTR_KIND_SWIFT_SELF: 1579 return Attribute::SwiftSelf; 1580 case bitc::ATTR_KIND_UW_TABLE: 1581 return Attribute::UWTable; 1582 case bitc::ATTR_KIND_WRITEONLY: 1583 return Attribute::WriteOnly; 1584 case bitc::ATTR_KIND_Z_EXT: 1585 return Attribute::ZExt; 1586 } 1587 } 1588 1589 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1590 unsigned &Alignment) { 1591 // Note: Alignment in bitcode files is incremented by 1, so that zero 1592 // can be used for default alignment. 1593 if (Exponent > Value::MaxAlignmentExponent + 1) 1594 return error("Invalid alignment value"); 1595 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1596 return std::error_code(); 1597 } 1598 1599 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1600 Attribute::AttrKind *Kind) { 1601 *Kind = getAttrFromCode(Code); 1602 if (*Kind == Attribute::None) 1603 return error(BitcodeError::CorruptedBitcode, 1604 "Unknown attribute kind (" + Twine(Code) + ")"); 1605 return std::error_code(); 1606 } 1607 1608 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1609 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1610 return error("Invalid record"); 1611 1612 if (!MAttributeGroups.empty()) 1613 return error("Invalid multiple blocks"); 1614 1615 SmallVector<uint64_t, 64> Record; 1616 1617 // Read all the records. 1618 while (true) { 1619 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1620 1621 switch (Entry.Kind) { 1622 case BitstreamEntry::SubBlock: // Handled for us already. 1623 case BitstreamEntry::Error: 1624 return error("Malformed block"); 1625 case BitstreamEntry::EndBlock: 1626 return std::error_code(); 1627 case BitstreamEntry::Record: 1628 // The interesting case. 1629 break; 1630 } 1631 1632 // Read a record. 1633 Record.clear(); 1634 switch (Stream.readRecord(Entry.ID, Record)) { 1635 default: // Default behavior: ignore. 1636 break; 1637 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1638 if (Record.size() < 3) 1639 return error("Invalid record"); 1640 1641 uint64_t GrpID = Record[0]; 1642 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1643 1644 AttrBuilder B; 1645 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1646 if (Record[i] == 0) { // Enum attribute 1647 Attribute::AttrKind Kind; 1648 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1649 return EC; 1650 1651 B.addAttribute(Kind); 1652 } else if (Record[i] == 1) { // Integer attribute 1653 Attribute::AttrKind Kind; 1654 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1655 return EC; 1656 if (Kind == Attribute::Alignment) 1657 B.addAlignmentAttr(Record[++i]); 1658 else if (Kind == Attribute::StackAlignment) 1659 B.addStackAlignmentAttr(Record[++i]); 1660 else if (Kind == Attribute::Dereferenceable) 1661 B.addDereferenceableAttr(Record[++i]); 1662 else if (Kind == Attribute::DereferenceableOrNull) 1663 B.addDereferenceableOrNullAttr(Record[++i]); 1664 else if (Kind == Attribute::AllocSize) 1665 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1666 } else { // String attribute 1667 assert((Record[i] == 3 || Record[i] == 4) && 1668 "Invalid attribute group entry"); 1669 bool HasValue = (Record[i++] == 4); 1670 SmallString<64> KindStr; 1671 SmallString<64> ValStr; 1672 1673 while (Record[i] != 0 && i != e) 1674 KindStr += Record[i++]; 1675 assert(Record[i] == 0 && "Kind string not null terminated"); 1676 1677 if (HasValue) { 1678 // Has a value associated with it. 1679 ++i; // Skip the '0' that terminates the "kind" string. 1680 while (Record[i] != 0 && i != e) 1681 ValStr += Record[i++]; 1682 assert(Record[i] == 0 && "Value string not null terminated"); 1683 } 1684 1685 B.addAttribute(KindStr.str(), ValStr.str()); 1686 } 1687 } 1688 1689 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1690 break; 1691 } 1692 } 1693 } 1694 } 1695 1696 std::error_code BitcodeReader::parseTypeTable() { 1697 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1698 return error("Invalid record"); 1699 1700 return parseTypeTableBody(); 1701 } 1702 1703 std::error_code BitcodeReader::parseTypeTableBody() { 1704 if (!TypeList.empty()) 1705 return error("Invalid multiple blocks"); 1706 1707 SmallVector<uint64_t, 64> Record; 1708 unsigned NumRecords = 0; 1709 1710 SmallString<64> TypeName; 1711 1712 // Read all the records for this type table. 1713 while (true) { 1714 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1715 1716 switch (Entry.Kind) { 1717 case BitstreamEntry::SubBlock: // Handled for us already. 1718 case BitstreamEntry::Error: 1719 return error("Malformed block"); 1720 case BitstreamEntry::EndBlock: 1721 if (NumRecords != TypeList.size()) 1722 return error("Malformed block"); 1723 return std::error_code(); 1724 case BitstreamEntry::Record: 1725 // The interesting case. 1726 break; 1727 } 1728 1729 // Read a record. 1730 Record.clear(); 1731 Type *ResultTy = nullptr; 1732 switch (Stream.readRecord(Entry.ID, Record)) { 1733 default: 1734 return error("Invalid value"); 1735 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1736 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1737 // type list. This allows us to reserve space. 1738 if (Record.size() < 1) 1739 return error("Invalid record"); 1740 TypeList.resize(Record[0]); 1741 continue; 1742 case bitc::TYPE_CODE_VOID: // VOID 1743 ResultTy = Type::getVoidTy(Context); 1744 break; 1745 case bitc::TYPE_CODE_HALF: // HALF 1746 ResultTy = Type::getHalfTy(Context); 1747 break; 1748 case bitc::TYPE_CODE_FLOAT: // FLOAT 1749 ResultTy = Type::getFloatTy(Context); 1750 break; 1751 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1752 ResultTy = Type::getDoubleTy(Context); 1753 break; 1754 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1755 ResultTy = Type::getX86_FP80Ty(Context); 1756 break; 1757 case bitc::TYPE_CODE_FP128: // FP128 1758 ResultTy = Type::getFP128Ty(Context); 1759 break; 1760 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1761 ResultTy = Type::getPPC_FP128Ty(Context); 1762 break; 1763 case bitc::TYPE_CODE_LABEL: // LABEL 1764 ResultTy = Type::getLabelTy(Context); 1765 break; 1766 case bitc::TYPE_CODE_METADATA: // METADATA 1767 ResultTy = Type::getMetadataTy(Context); 1768 break; 1769 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1770 ResultTy = Type::getX86_MMXTy(Context); 1771 break; 1772 case bitc::TYPE_CODE_TOKEN: // TOKEN 1773 ResultTy = Type::getTokenTy(Context); 1774 break; 1775 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1776 if (Record.size() < 1) 1777 return error("Invalid record"); 1778 1779 uint64_t NumBits = Record[0]; 1780 if (NumBits < IntegerType::MIN_INT_BITS || 1781 NumBits > IntegerType::MAX_INT_BITS) 1782 return error("Bitwidth for integer type out of range"); 1783 ResultTy = IntegerType::get(Context, NumBits); 1784 break; 1785 } 1786 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1787 // [pointee type, address space] 1788 if (Record.size() < 1) 1789 return error("Invalid record"); 1790 unsigned AddressSpace = 0; 1791 if (Record.size() == 2) 1792 AddressSpace = Record[1]; 1793 ResultTy = getTypeByID(Record[0]); 1794 if (!ResultTy || 1795 !PointerType::isValidElementType(ResultTy)) 1796 return error("Invalid type"); 1797 ResultTy = PointerType::get(ResultTy, AddressSpace); 1798 break; 1799 } 1800 case bitc::TYPE_CODE_FUNCTION_OLD: { 1801 // FIXME: attrid is dead, remove it in LLVM 4.0 1802 // FUNCTION: [vararg, attrid, retty, paramty x N] 1803 if (Record.size() < 3) 1804 return error("Invalid record"); 1805 SmallVector<Type*, 8> ArgTys; 1806 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1807 if (Type *T = getTypeByID(Record[i])) 1808 ArgTys.push_back(T); 1809 else 1810 break; 1811 } 1812 1813 ResultTy = getTypeByID(Record[2]); 1814 if (!ResultTy || ArgTys.size() < Record.size()-3) 1815 return error("Invalid type"); 1816 1817 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1818 break; 1819 } 1820 case bitc::TYPE_CODE_FUNCTION: { 1821 // FUNCTION: [vararg, retty, paramty x N] 1822 if (Record.size() < 2) 1823 return error("Invalid record"); 1824 SmallVector<Type*, 8> ArgTys; 1825 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1826 if (Type *T = getTypeByID(Record[i])) { 1827 if (!FunctionType::isValidArgumentType(T)) 1828 return error("Invalid function argument type"); 1829 ArgTys.push_back(T); 1830 } 1831 else 1832 break; 1833 } 1834 1835 ResultTy = getTypeByID(Record[1]); 1836 if (!ResultTy || ArgTys.size() < Record.size()-2) 1837 return error("Invalid type"); 1838 1839 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1840 break; 1841 } 1842 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1843 if (Record.size() < 1) 1844 return error("Invalid record"); 1845 SmallVector<Type*, 8> EltTys; 1846 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1847 if (Type *T = getTypeByID(Record[i])) 1848 EltTys.push_back(T); 1849 else 1850 break; 1851 } 1852 if (EltTys.size() != Record.size()-1) 1853 return error("Invalid type"); 1854 ResultTy = StructType::get(Context, EltTys, Record[0]); 1855 break; 1856 } 1857 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1858 if (convertToString(Record, 0, TypeName)) 1859 return error("Invalid record"); 1860 continue; 1861 1862 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1863 if (Record.size() < 1) 1864 return error("Invalid record"); 1865 1866 if (NumRecords >= TypeList.size()) 1867 return error("Invalid TYPE table"); 1868 1869 // Check to see if this was forward referenced, if so fill in the temp. 1870 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1871 if (Res) { 1872 Res->setName(TypeName); 1873 TypeList[NumRecords] = nullptr; 1874 } else // Otherwise, create a new struct. 1875 Res = createIdentifiedStructType(Context, TypeName); 1876 TypeName.clear(); 1877 1878 SmallVector<Type*, 8> EltTys; 1879 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1880 if (Type *T = getTypeByID(Record[i])) 1881 EltTys.push_back(T); 1882 else 1883 break; 1884 } 1885 if (EltTys.size() != Record.size()-1) 1886 return error("Invalid record"); 1887 Res->setBody(EltTys, Record[0]); 1888 ResultTy = Res; 1889 break; 1890 } 1891 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1892 if (Record.size() != 1) 1893 return error("Invalid record"); 1894 1895 if (NumRecords >= TypeList.size()) 1896 return error("Invalid TYPE table"); 1897 1898 // Check to see if this was forward referenced, if so fill in the temp. 1899 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1900 if (Res) { 1901 Res->setName(TypeName); 1902 TypeList[NumRecords] = nullptr; 1903 } else // Otherwise, create a new struct with no body. 1904 Res = createIdentifiedStructType(Context, TypeName); 1905 TypeName.clear(); 1906 ResultTy = Res; 1907 break; 1908 } 1909 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1910 if (Record.size() < 2) 1911 return error("Invalid record"); 1912 ResultTy = getTypeByID(Record[1]); 1913 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1914 return error("Invalid type"); 1915 ResultTy = ArrayType::get(ResultTy, Record[0]); 1916 break; 1917 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1918 if (Record.size() < 2) 1919 return error("Invalid record"); 1920 if (Record[0] == 0) 1921 return error("Invalid vector length"); 1922 ResultTy = getTypeByID(Record[1]); 1923 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1924 return error("Invalid type"); 1925 ResultTy = VectorType::get(ResultTy, Record[0]); 1926 break; 1927 } 1928 1929 if (NumRecords >= TypeList.size()) 1930 return error("Invalid TYPE table"); 1931 if (TypeList[NumRecords]) 1932 return error( 1933 "Invalid TYPE table: Only named structs can be forward referenced"); 1934 assert(ResultTy && "Didn't read a type?"); 1935 TypeList[NumRecords++] = ResultTy; 1936 } 1937 } 1938 1939 std::error_code BitcodeReader::parseOperandBundleTags() { 1940 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1941 return error("Invalid record"); 1942 1943 if (!BundleTags.empty()) 1944 return error("Invalid multiple blocks"); 1945 1946 SmallVector<uint64_t, 64> Record; 1947 1948 while (true) { 1949 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1950 1951 switch (Entry.Kind) { 1952 case BitstreamEntry::SubBlock: // Handled for us already. 1953 case BitstreamEntry::Error: 1954 return error("Malformed block"); 1955 case BitstreamEntry::EndBlock: 1956 return std::error_code(); 1957 case BitstreamEntry::Record: 1958 // The interesting case. 1959 break; 1960 } 1961 1962 // Tags are implicitly mapped to integers by their order. 1963 1964 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1965 return error("Invalid record"); 1966 1967 // OPERAND_BUNDLE_TAG: [strchr x N] 1968 BundleTags.emplace_back(); 1969 if (convertToString(Record, 0, BundleTags.back())) 1970 return error("Invalid record"); 1971 Record.clear(); 1972 } 1973 } 1974 1975 /// Associate a value with its name from the given index in the provided record. 1976 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1977 unsigned NameIndex, Triple &TT) { 1978 SmallString<128> ValueName; 1979 if (convertToString(Record, NameIndex, ValueName)) 1980 return error("Invalid record"); 1981 unsigned ValueID = Record[0]; 1982 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1983 return error("Invalid record"); 1984 Value *V = ValueList[ValueID]; 1985 1986 StringRef NameStr(ValueName.data(), ValueName.size()); 1987 if (NameStr.find_first_of(0) != StringRef::npos) 1988 return error("Invalid value name"); 1989 V->setName(NameStr); 1990 auto *GO = dyn_cast<GlobalObject>(V); 1991 if (GO) { 1992 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1993 if (TT.isOSBinFormatMachO()) 1994 GO->setComdat(nullptr); 1995 else 1996 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1997 } 1998 } 1999 return V; 2000 } 2001 2002 /// Helper to note and return the current location, and jump to the given 2003 /// offset. 2004 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 2005 BitstreamCursor &Stream) { 2006 // Save the current parsing location so we can jump back at the end 2007 // of the VST read. 2008 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2009 Stream.JumpToBit(Offset * 32); 2010 #ifndef NDEBUG 2011 // Do some checking if we are in debug mode. 2012 BitstreamEntry Entry = Stream.advance(); 2013 assert(Entry.Kind == BitstreamEntry::SubBlock); 2014 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2015 #else 2016 // In NDEBUG mode ignore the output so we don't get an unused variable 2017 // warning. 2018 Stream.advance(); 2019 #endif 2020 return CurrentBit; 2021 } 2022 2023 /// Parse the value symbol table at either the current parsing location or 2024 /// at the given bit offset if provided. 2025 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2026 uint64_t CurrentBit; 2027 // Pass in the Offset to distinguish between calling for the module-level 2028 // VST (where we want to jump to the VST offset) and the function-level 2029 // VST (where we don't). 2030 if (Offset > 0) 2031 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 2032 2033 // Compute the delta between the bitcode indices in the VST (the word offset 2034 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2035 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2036 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2037 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2038 // just before entering the VST subblock because: 1) the EnterSubBlock 2039 // changes the AbbrevID width; 2) the VST block is nested within the same 2040 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2041 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2042 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2043 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2044 unsigned FuncBitcodeOffsetDelta = 2045 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2046 2047 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2048 return error("Invalid record"); 2049 2050 SmallVector<uint64_t, 64> Record; 2051 2052 Triple TT(TheModule->getTargetTriple()); 2053 2054 // Read all the records for this value table. 2055 SmallString<128> ValueName; 2056 2057 while (true) { 2058 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2059 2060 switch (Entry.Kind) { 2061 case BitstreamEntry::SubBlock: // Handled for us already. 2062 case BitstreamEntry::Error: 2063 return error("Malformed block"); 2064 case BitstreamEntry::EndBlock: 2065 if (Offset > 0) 2066 Stream.JumpToBit(CurrentBit); 2067 return std::error_code(); 2068 case BitstreamEntry::Record: 2069 // The interesting case. 2070 break; 2071 } 2072 2073 // Read a record. 2074 Record.clear(); 2075 switch (Stream.readRecord(Entry.ID, Record)) { 2076 default: // Default behavior: unknown type. 2077 break; 2078 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2079 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 2080 if (std::error_code EC = ValOrErr.getError()) 2081 return EC; 2082 ValOrErr.get(); 2083 break; 2084 } 2085 case bitc::VST_CODE_FNENTRY: { 2086 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2087 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 2088 if (std::error_code EC = ValOrErr.getError()) 2089 return EC; 2090 Value *V = ValOrErr.get(); 2091 2092 auto *GO = dyn_cast<GlobalObject>(V); 2093 if (!GO) { 2094 // If this is an alias, need to get the actual Function object 2095 // it aliases, in order to set up the DeferredFunctionInfo entry below. 2096 auto *GA = dyn_cast<GlobalAlias>(V); 2097 if (GA) 2098 GO = GA->getBaseObject(); 2099 assert(GO); 2100 } 2101 2102 uint64_t FuncWordOffset = Record[1]; 2103 Function *F = dyn_cast<Function>(GO); 2104 assert(F); 2105 uint64_t FuncBitOffset = FuncWordOffset * 32; 2106 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2107 // Set the LastFunctionBlockBit to point to the last function block. 2108 // Later when parsing is resumed after function materialization, 2109 // we can simply skip that last function block. 2110 if (FuncBitOffset > LastFunctionBlockBit) 2111 LastFunctionBlockBit = FuncBitOffset; 2112 break; 2113 } 2114 case bitc::VST_CODE_BBENTRY: { 2115 if (convertToString(Record, 1, ValueName)) 2116 return error("Invalid record"); 2117 BasicBlock *BB = getBasicBlock(Record[0]); 2118 if (!BB) 2119 return error("Invalid record"); 2120 2121 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2122 ValueName.clear(); 2123 break; 2124 } 2125 } 2126 } 2127 } 2128 2129 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2130 std::error_code 2131 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2132 if (Record.size() < 2) 2133 return error("Invalid record"); 2134 2135 unsigned Kind = Record[0]; 2136 SmallString<8> Name(Record.begin() + 1, Record.end()); 2137 2138 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2139 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2140 return error("Conflicting METADATA_KIND records"); 2141 return std::error_code(); 2142 } 2143 2144 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2145 2146 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2147 StringRef Blob, 2148 unsigned &NextMetadataNo) { 2149 // All the MDStrings in the block are emitted together in a single 2150 // record. The strings are concatenated and stored in a blob along with 2151 // their sizes. 2152 if (Record.size() != 2) 2153 return error("Invalid record: metadata strings layout"); 2154 2155 unsigned NumStrings = Record[0]; 2156 unsigned StringsOffset = Record[1]; 2157 if (!NumStrings) 2158 return error("Invalid record: metadata strings with no strings"); 2159 if (StringsOffset > Blob.size()) 2160 return error("Invalid record: metadata strings corrupt offset"); 2161 2162 StringRef Lengths = Blob.slice(0, StringsOffset); 2163 SimpleBitstreamCursor R(*StreamFile); 2164 R.jumpToPointer(Lengths.begin()); 2165 2166 // Ensure that Blob doesn't get invalidated, even if this is reading from 2167 // a StreamingMemoryObject with corrupt data. 2168 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2169 2170 StringRef Strings = Blob.drop_front(StringsOffset); 2171 do { 2172 if (R.AtEndOfStream()) 2173 return error("Invalid record: metadata strings bad length"); 2174 2175 unsigned Size = R.ReadVBR(6); 2176 if (Strings.size() < Size) 2177 return error("Invalid record: metadata strings truncated chars"); 2178 2179 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2180 NextMetadataNo++); 2181 Strings = Strings.drop_front(Size); 2182 } while (--NumStrings); 2183 2184 return std::error_code(); 2185 } 2186 2187 namespace { 2188 2189 class PlaceholderQueue { 2190 // Placeholders would thrash around when moved, so store in a std::deque 2191 // instead of some sort of vector. 2192 std::deque<DistinctMDOperandPlaceholder> PHs; 2193 2194 public: 2195 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2196 void flush(BitcodeReaderMetadataList &MetadataList); 2197 }; 2198 2199 } // end anonymous namespace 2200 2201 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2202 PHs.emplace_back(ID); 2203 return PHs.back(); 2204 } 2205 2206 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2207 while (!PHs.empty()) { 2208 PHs.front().replaceUseWith( 2209 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2210 PHs.pop_front(); 2211 } 2212 } 2213 2214 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2215 /// module level metadata. 2216 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2217 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2218 "Must read all module-level metadata before function-level"); 2219 2220 IsMetadataMaterialized = true; 2221 unsigned NextMetadataNo = MetadataList.size(); 2222 2223 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2224 return error("Invalid metadata: fwd refs into function blocks"); 2225 2226 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2227 return error("Invalid record"); 2228 2229 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2230 SmallVector<uint64_t, 64> Record; 2231 2232 PlaceholderQueue Placeholders; 2233 bool IsDistinct; 2234 auto getMD = [&](unsigned ID) -> Metadata * { 2235 if (!IsDistinct) 2236 return MetadataList.getMetadataFwdRef(ID); 2237 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2238 return MD; 2239 return &Placeholders.getPlaceholderOp(ID); 2240 }; 2241 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2242 if (ID) 2243 return getMD(ID - 1); 2244 return nullptr; 2245 }; 2246 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2247 if (ID) 2248 return MetadataList.getMetadataFwdRef(ID - 1); 2249 return nullptr; 2250 }; 2251 auto getMDString = [&](unsigned ID) -> MDString *{ 2252 // This requires that the ID is not really a forward reference. In 2253 // particular, the MDString must already have been resolved. 2254 return cast_or_null<MDString>(getMDOrNull(ID)); 2255 }; 2256 2257 // Support for old type refs. 2258 auto getDITypeRefOrNull = [&](unsigned ID) { 2259 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2260 }; 2261 2262 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2263 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2264 2265 // Read all the records. 2266 while (true) { 2267 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2268 2269 switch (Entry.Kind) { 2270 case BitstreamEntry::SubBlock: // Handled for us already. 2271 case BitstreamEntry::Error: 2272 return error("Malformed block"); 2273 case BitstreamEntry::EndBlock: 2274 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2275 for (auto CU_SP : CUSubprograms) 2276 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2277 for (auto &Op : SPs->operands()) 2278 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2279 SP->replaceOperandWith(7, CU_SP.first); 2280 2281 MetadataList.tryToResolveCycles(); 2282 Placeholders.flush(MetadataList); 2283 return std::error_code(); 2284 case BitstreamEntry::Record: 2285 // The interesting case. 2286 break; 2287 } 2288 2289 // Read a record. 2290 Record.clear(); 2291 StringRef Blob; 2292 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2293 IsDistinct = false; 2294 switch (Code) { 2295 default: // Default behavior: ignore. 2296 break; 2297 case bitc::METADATA_NAME: { 2298 // Read name of the named metadata. 2299 SmallString<8> Name(Record.begin(), Record.end()); 2300 Record.clear(); 2301 Code = Stream.ReadCode(); 2302 2303 unsigned NextBitCode = Stream.readRecord(Code, Record); 2304 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2305 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2306 2307 // Read named metadata elements. 2308 unsigned Size = Record.size(); 2309 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2310 for (unsigned i = 0; i != Size; ++i) { 2311 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2312 if (!MD) 2313 return error("Invalid record"); 2314 NMD->addOperand(MD); 2315 } 2316 break; 2317 } 2318 case bitc::METADATA_OLD_FN_NODE: { 2319 // FIXME: Remove in 4.0. 2320 // This is a LocalAsMetadata record, the only type of function-local 2321 // metadata. 2322 if (Record.size() % 2 == 1) 2323 return error("Invalid record"); 2324 2325 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2326 // to be legal, but there's no upgrade path. 2327 auto dropRecord = [&] { 2328 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2329 }; 2330 if (Record.size() != 2) { 2331 dropRecord(); 2332 break; 2333 } 2334 2335 Type *Ty = getTypeByID(Record[0]); 2336 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2337 dropRecord(); 2338 break; 2339 } 2340 2341 MetadataList.assignValue( 2342 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2343 NextMetadataNo++); 2344 break; 2345 } 2346 case bitc::METADATA_OLD_NODE: { 2347 // FIXME: Remove in 4.0. 2348 if (Record.size() % 2 == 1) 2349 return error("Invalid record"); 2350 2351 unsigned Size = Record.size(); 2352 SmallVector<Metadata *, 8> Elts; 2353 for (unsigned i = 0; i != Size; i += 2) { 2354 Type *Ty = getTypeByID(Record[i]); 2355 if (!Ty) 2356 return error("Invalid record"); 2357 if (Ty->isMetadataTy()) 2358 Elts.push_back(getMD(Record[i + 1])); 2359 else if (!Ty->isVoidTy()) { 2360 auto *MD = 2361 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2362 assert(isa<ConstantAsMetadata>(MD) && 2363 "Expected non-function-local metadata"); 2364 Elts.push_back(MD); 2365 } else 2366 Elts.push_back(nullptr); 2367 } 2368 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2369 break; 2370 } 2371 case bitc::METADATA_VALUE: { 2372 if (Record.size() != 2) 2373 return error("Invalid record"); 2374 2375 Type *Ty = getTypeByID(Record[0]); 2376 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2377 return error("Invalid record"); 2378 2379 MetadataList.assignValue( 2380 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2381 NextMetadataNo++); 2382 break; 2383 } 2384 case bitc::METADATA_DISTINCT_NODE: 2385 IsDistinct = true; 2386 LLVM_FALLTHROUGH; 2387 case bitc::METADATA_NODE: { 2388 SmallVector<Metadata *, 8> Elts; 2389 Elts.reserve(Record.size()); 2390 for (unsigned ID : Record) 2391 Elts.push_back(getMDOrNull(ID)); 2392 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2393 : MDNode::get(Context, Elts), 2394 NextMetadataNo++); 2395 break; 2396 } 2397 case bitc::METADATA_LOCATION: { 2398 if (Record.size() != 5) 2399 return error("Invalid record"); 2400 2401 IsDistinct = Record[0]; 2402 unsigned Line = Record[1]; 2403 unsigned Column = Record[2]; 2404 Metadata *Scope = getMD(Record[3]); 2405 Metadata *InlinedAt = getMDOrNull(Record[4]); 2406 MetadataList.assignValue( 2407 GET_OR_DISTINCT(DILocation, 2408 (Context, Line, Column, Scope, InlinedAt)), 2409 NextMetadataNo++); 2410 break; 2411 } 2412 case bitc::METADATA_GENERIC_DEBUG: { 2413 if (Record.size() < 4) 2414 return error("Invalid record"); 2415 2416 IsDistinct = Record[0]; 2417 unsigned Tag = Record[1]; 2418 unsigned Version = Record[2]; 2419 2420 if (Tag >= 1u << 16 || Version != 0) 2421 return error("Invalid record"); 2422 2423 auto *Header = getMDString(Record[3]); 2424 SmallVector<Metadata *, 8> DwarfOps; 2425 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2426 DwarfOps.push_back(getMDOrNull(Record[I])); 2427 MetadataList.assignValue( 2428 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2429 NextMetadataNo++); 2430 break; 2431 } 2432 case bitc::METADATA_SUBRANGE: { 2433 if (Record.size() != 3) 2434 return error("Invalid record"); 2435 2436 IsDistinct = Record[0]; 2437 MetadataList.assignValue( 2438 GET_OR_DISTINCT(DISubrange, 2439 (Context, Record[1], unrotateSign(Record[2]))), 2440 NextMetadataNo++); 2441 break; 2442 } 2443 case bitc::METADATA_ENUMERATOR: { 2444 if (Record.size() != 3) 2445 return error("Invalid record"); 2446 2447 IsDistinct = Record[0]; 2448 MetadataList.assignValue( 2449 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2450 getMDString(Record[2]))), 2451 NextMetadataNo++); 2452 break; 2453 } 2454 case bitc::METADATA_BASIC_TYPE: { 2455 if (Record.size() != 6) 2456 return error("Invalid record"); 2457 2458 IsDistinct = Record[0]; 2459 MetadataList.assignValue( 2460 GET_OR_DISTINCT(DIBasicType, 2461 (Context, Record[1], getMDString(Record[2]), 2462 Record[3], Record[4], Record[5])), 2463 NextMetadataNo++); 2464 break; 2465 } 2466 case bitc::METADATA_DERIVED_TYPE: { 2467 if (Record.size() != 12) 2468 return error("Invalid record"); 2469 2470 IsDistinct = Record[0]; 2471 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2472 MetadataList.assignValue( 2473 GET_OR_DISTINCT(DIDerivedType, 2474 (Context, Record[1], getMDString(Record[2]), 2475 getMDOrNull(Record[3]), Record[4], 2476 getDITypeRefOrNull(Record[5]), 2477 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2478 Record[9], Flags, getDITypeRefOrNull(Record[11]))), 2479 NextMetadataNo++); 2480 break; 2481 } 2482 case bitc::METADATA_COMPOSITE_TYPE: { 2483 if (Record.size() != 16) 2484 return error("Invalid record"); 2485 2486 // If we have a UUID and this is not a forward declaration, lookup the 2487 // mapping. 2488 IsDistinct = Record[0] & 0x1; 2489 bool IsNotUsedInTypeRef = Record[0] >= 2; 2490 unsigned Tag = Record[1]; 2491 MDString *Name = getMDString(Record[2]); 2492 Metadata *File = getMDOrNull(Record[3]); 2493 unsigned Line = Record[4]; 2494 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2495 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2496 uint64_t SizeInBits = Record[7]; 2497 uint64_t AlignInBits = Record[8]; 2498 uint64_t OffsetInBits = Record[9]; 2499 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2500 Metadata *Elements = getMDOrNull(Record[11]); 2501 unsigned RuntimeLang = Record[12]; 2502 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2503 Metadata *TemplateParams = getMDOrNull(Record[14]); 2504 auto *Identifier = getMDString(Record[15]); 2505 DICompositeType *CT = nullptr; 2506 if (Identifier) 2507 CT = DICompositeType::buildODRType( 2508 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2509 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2510 VTableHolder, TemplateParams); 2511 2512 // Create a node if we didn't get a lazy ODR type. 2513 if (!CT) 2514 CT = GET_OR_DISTINCT(DICompositeType, 2515 (Context, Tag, Name, File, Line, Scope, BaseType, 2516 SizeInBits, AlignInBits, OffsetInBits, Flags, 2517 Elements, RuntimeLang, VTableHolder, 2518 TemplateParams, Identifier)); 2519 if (!IsNotUsedInTypeRef && Identifier) 2520 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2521 2522 MetadataList.assignValue(CT, NextMetadataNo++); 2523 break; 2524 } 2525 case bitc::METADATA_SUBROUTINE_TYPE: { 2526 if (Record.size() < 3 || Record.size() > 4) 2527 return error("Invalid record"); 2528 bool IsOldTypeRefArray = Record[0] < 2; 2529 unsigned CC = (Record.size() > 3) ? Record[3] : 0; 2530 2531 IsDistinct = Record[0] & 0x1; 2532 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]); 2533 Metadata *Types = getMDOrNull(Record[2]); 2534 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2535 Types = MetadataList.upgradeTypeRefArray(Types); 2536 2537 MetadataList.assignValue( 2538 GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)), 2539 NextMetadataNo++); 2540 break; 2541 } 2542 2543 case bitc::METADATA_MODULE: { 2544 if (Record.size() != 6) 2545 return error("Invalid record"); 2546 2547 IsDistinct = Record[0]; 2548 MetadataList.assignValue( 2549 GET_OR_DISTINCT(DIModule, 2550 (Context, getMDOrNull(Record[1]), 2551 getMDString(Record[2]), getMDString(Record[3]), 2552 getMDString(Record[4]), getMDString(Record[5]))), 2553 NextMetadataNo++); 2554 break; 2555 } 2556 2557 case bitc::METADATA_FILE: { 2558 if (Record.size() != 3) 2559 return error("Invalid record"); 2560 2561 IsDistinct = Record[0]; 2562 MetadataList.assignValue( 2563 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2564 getMDString(Record[2]))), 2565 NextMetadataNo++); 2566 break; 2567 } 2568 case bitc::METADATA_COMPILE_UNIT: { 2569 if (Record.size() < 14 || Record.size() > 17) 2570 return error("Invalid record"); 2571 2572 // Ignore Record[0], which indicates whether this compile unit is 2573 // distinct. It's always distinct. 2574 IsDistinct = true; 2575 auto *CU = DICompileUnit::getDistinct( 2576 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2577 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2578 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2579 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2580 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2581 Record.size() <= 14 ? 0 : Record[14], 2582 Record.size() <= 16 ? true : Record[16]); 2583 2584 MetadataList.assignValue(CU, NextMetadataNo++); 2585 2586 // Move the Upgrade the list of subprograms. 2587 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2588 CUSubprograms.push_back({CU, SPs}); 2589 break; 2590 } 2591 case bitc::METADATA_SUBPROGRAM: { 2592 if (Record.size() < 18 || Record.size() > 20) 2593 return error("Invalid record"); 2594 2595 IsDistinct = 2596 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2597 // Version 1 has a Function as Record[15]. 2598 // Version 2 has removed Record[15]. 2599 // Version 3 has the Unit as Record[15]. 2600 // Version 4 added thisAdjustment. 2601 bool HasUnit = Record[0] >= 2; 2602 if (HasUnit && Record.size() < 19) 2603 return error("Invalid record"); 2604 Metadata *CUorFn = getMDOrNull(Record[15]); 2605 unsigned Offset = Record.size() >= 19 ? 1 : 0; 2606 bool HasFn = Offset && !HasUnit; 2607 bool HasThisAdj = Record.size() >= 20; 2608 DISubprogram *SP = GET_OR_DISTINCT( 2609 DISubprogram, (Context, 2610 getDITypeRefOrNull(Record[1]), // scope 2611 getMDString(Record[2]), // name 2612 getMDString(Record[3]), // linkageName 2613 getMDOrNull(Record[4]), // file 2614 Record[5], // line 2615 getMDOrNull(Record[6]), // type 2616 Record[7], // isLocal 2617 Record[8], // isDefinition 2618 Record[9], // scopeLine 2619 getDITypeRefOrNull(Record[10]), // containingType 2620 Record[11], // virtuality 2621 Record[12], // virtualIndex 2622 HasThisAdj ? Record[19] : 0, // thisAdjustment 2623 static_cast<DINode::DIFlags>(Record[13] // flags 2624 ), 2625 Record[14], // isOptimized 2626 HasUnit ? CUorFn : nullptr, // unit 2627 getMDOrNull(Record[15 + Offset]), // templateParams 2628 getMDOrNull(Record[16 + Offset]), // declaration 2629 getMDOrNull(Record[17 + Offset]) // variables 2630 )); 2631 MetadataList.assignValue(SP, NextMetadataNo++); 2632 2633 // Upgrade sp->function mapping to function->sp mapping. 2634 if (HasFn) { 2635 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2636 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2637 if (F->isMaterializable()) 2638 // Defer until materialized; unmaterialized functions may not have 2639 // metadata. 2640 FunctionsWithSPs[F] = SP; 2641 else if (!F->empty()) 2642 F->setSubprogram(SP); 2643 } 2644 } 2645 break; 2646 } 2647 case bitc::METADATA_LEXICAL_BLOCK: { 2648 if (Record.size() != 5) 2649 return error("Invalid record"); 2650 2651 IsDistinct = Record[0]; 2652 MetadataList.assignValue( 2653 GET_OR_DISTINCT(DILexicalBlock, 2654 (Context, getMDOrNull(Record[1]), 2655 getMDOrNull(Record[2]), Record[3], Record[4])), 2656 NextMetadataNo++); 2657 break; 2658 } 2659 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2660 if (Record.size() != 4) 2661 return error("Invalid record"); 2662 2663 IsDistinct = Record[0]; 2664 MetadataList.assignValue( 2665 GET_OR_DISTINCT(DILexicalBlockFile, 2666 (Context, getMDOrNull(Record[1]), 2667 getMDOrNull(Record[2]), Record[3])), 2668 NextMetadataNo++); 2669 break; 2670 } 2671 case bitc::METADATA_NAMESPACE: { 2672 if (Record.size() != 5) 2673 return error("Invalid record"); 2674 2675 IsDistinct = Record[0]; 2676 MetadataList.assignValue( 2677 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2678 getMDOrNull(Record[2]), 2679 getMDString(Record[3]), Record[4])), 2680 NextMetadataNo++); 2681 break; 2682 } 2683 case bitc::METADATA_MACRO: { 2684 if (Record.size() != 5) 2685 return error("Invalid record"); 2686 2687 IsDistinct = Record[0]; 2688 MetadataList.assignValue( 2689 GET_OR_DISTINCT(DIMacro, 2690 (Context, Record[1], Record[2], 2691 getMDString(Record[3]), getMDString(Record[4]))), 2692 NextMetadataNo++); 2693 break; 2694 } 2695 case bitc::METADATA_MACRO_FILE: { 2696 if (Record.size() != 5) 2697 return error("Invalid record"); 2698 2699 IsDistinct = Record[0]; 2700 MetadataList.assignValue( 2701 GET_OR_DISTINCT(DIMacroFile, 2702 (Context, Record[1], Record[2], 2703 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2704 NextMetadataNo++); 2705 break; 2706 } 2707 case bitc::METADATA_TEMPLATE_TYPE: { 2708 if (Record.size() != 3) 2709 return error("Invalid record"); 2710 2711 IsDistinct = Record[0]; 2712 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2713 (Context, getMDString(Record[1]), 2714 getDITypeRefOrNull(Record[2]))), 2715 NextMetadataNo++); 2716 break; 2717 } 2718 case bitc::METADATA_TEMPLATE_VALUE: { 2719 if (Record.size() != 5) 2720 return error("Invalid record"); 2721 2722 IsDistinct = Record[0]; 2723 MetadataList.assignValue( 2724 GET_OR_DISTINCT(DITemplateValueParameter, 2725 (Context, Record[1], getMDString(Record[2]), 2726 getDITypeRefOrNull(Record[3]), 2727 getMDOrNull(Record[4]))), 2728 NextMetadataNo++); 2729 break; 2730 } 2731 case bitc::METADATA_GLOBAL_VAR: { 2732 if (Record.size() != 11) 2733 return error("Invalid record"); 2734 2735 IsDistinct = Record[0]; 2736 2737 // Upgrade old metadata, which stored a global variable reference or a 2738 // ConstantInt here. 2739 Metadata *Expr = getMDOrNull(Record[9]); 2740 GlobalVariable *Attach = nullptr; 2741 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) { 2742 if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) { 2743 Attach = GV; 2744 Expr = nullptr; 2745 } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) { 2746 Expr = DIExpression::get(Context, 2747 {dwarf::DW_OP_constu, CI->getZExtValue(), 2748 dwarf::DW_OP_stack_value}); 2749 } else { 2750 Expr = nullptr; 2751 } 2752 } 2753 2754 DIGlobalVariable *DGV = GET_OR_DISTINCT( 2755 DIGlobalVariable, 2756 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2757 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2758 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr, 2759 getMDOrNull(Record[10]))); 2760 MetadataList.assignValue(DGV, NextMetadataNo++); 2761 2762 if (Attach) 2763 Attach->addDebugInfo(DGV); 2764 2765 break; 2766 } 2767 case bitc::METADATA_LOCAL_VAR: { 2768 // 10th field is for the obseleted 'inlinedAt:' field. 2769 if (Record.size() < 8 || Record.size() > 10) 2770 return error("Invalid record"); 2771 2772 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2773 // DW_TAG_arg_variable. 2774 IsDistinct = Record[0]; 2775 bool HasTag = Record.size() > 8; 2776 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]); 2777 MetadataList.assignValue( 2778 GET_OR_DISTINCT(DILocalVariable, 2779 (Context, getMDOrNull(Record[1 + HasTag]), 2780 getMDString(Record[2 + HasTag]), 2781 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2782 getDITypeRefOrNull(Record[5 + HasTag]), 2783 Record[6 + HasTag], Flags)), 2784 NextMetadataNo++); 2785 break; 2786 } 2787 case bitc::METADATA_EXPRESSION: { 2788 if (Record.size() < 1) 2789 return error("Invalid record"); 2790 2791 IsDistinct = Record[0]; 2792 MetadataList.assignValue( 2793 GET_OR_DISTINCT(DIExpression, 2794 (Context, makeArrayRef(Record).slice(1))), 2795 NextMetadataNo++); 2796 break; 2797 } 2798 case bitc::METADATA_OBJC_PROPERTY: { 2799 if (Record.size() != 8) 2800 return error("Invalid record"); 2801 2802 IsDistinct = Record[0]; 2803 MetadataList.assignValue( 2804 GET_OR_DISTINCT(DIObjCProperty, 2805 (Context, getMDString(Record[1]), 2806 getMDOrNull(Record[2]), Record[3], 2807 getMDString(Record[4]), getMDString(Record[5]), 2808 Record[6], getDITypeRefOrNull(Record[7]))), 2809 NextMetadataNo++); 2810 break; 2811 } 2812 case bitc::METADATA_IMPORTED_ENTITY: { 2813 if (Record.size() != 6) 2814 return error("Invalid record"); 2815 2816 IsDistinct = Record[0]; 2817 MetadataList.assignValue( 2818 GET_OR_DISTINCT(DIImportedEntity, 2819 (Context, Record[1], getMDOrNull(Record[2]), 2820 getDITypeRefOrNull(Record[3]), Record[4], 2821 getMDString(Record[5]))), 2822 NextMetadataNo++); 2823 break; 2824 } 2825 case bitc::METADATA_STRING_OLD: { 2826 std::string String(Record.begin(), Record.end()); 2827 2828 // Test for upgrading !llvm.loop. 2829 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2830 2831 Metadata *MD = MDString::get(Context, String); 2832 MetadataList.assignValue(MD, NextMetadataNo++); 2833 break; 2834 } 2835 case bitc::METADATA_STRINGS: 2836 if (std::error_code EC = 2837 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2838 return EC; 2839 break; 2840 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { 2841 if (Record.size() % 2 == 0) 2842 return error("Invalid record"); 2843 unsigned ValueID = Record[0]; 2844 if (ValueID >= ValueList.size()) 2845 return error("Invalid record"); 2846 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID])) 2847 parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1)); 2848 break; 2849 } 2850 case bitc::METADATA_KIND: { 2851 // Support older bitcode files that had METADATA_KIND records in a 2852 // block with METADATA_BLOCK_ID. 2853 if (std::error_code EC = parseMetadataKindRecord(Record)) 2854 return EC; 2855 break; 2856 } 2857 } 2858 } 2859 2860 #undef GET_OR_DISTINCT 2861 } 2862 2863 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2864 std::error_code BitcodeReader::parseMetadataKinds() { 2865 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2866 return error("Invalid record"); 2867 2868 SmallVector<uint64_t, 64> Record; 2869 2870 // Read all the records. 2871 while (true) { 2872 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2873 2874 switch (Entry.Kind) { 2875 case BitstreamEntry::SubBlock: // Handled for us already. 2876 case BitstreamEntry::Error: 2877 return error("Malformed block"); 2878 case BitstreamEntry::EndBlock: 2879 return std::error_code(); 2880 case BitstreamEntry::Record: 2881 // The interesting case. 2882 break; 2883 } 2884 2885 // Read a record. 2886 Record.clear(); 2887 unsigned Code = Stream.readRecord(Entry.ID, Record); 2888 switch (Code) { 2889 default: // Default behavior: ignore. 2890 break; 2891 case bitc::METADATA_KIND: { 2892 if (std::error_code EC = parseMetadataKindRecord(Record)) 2893 return EC; 2894 break; 2895 } 2896 } 2897 } 2898 } 2899 2900 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2901 /// encoding. 2902 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2903 if ((V & 1) == 0) 2904 return V >> 1; 2905 if (V != 1) 2906 return -(V >> 1); 2907 // There is no such thing as -0 with integers. "-0" really means MININT. 2908 return 1ULL << 63; 2909 } 2910 2911 /// Resolve all of the initializers for global values and aliases that we can. 2912 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2913 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2914 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2915 IndirectSymbolInitWorklist; 2916 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2917 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2918 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2919 2920 GlobalInitWorklist.swap(GlobalInits); 2921 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2922 FunctionPrefixWorklist.swap(FunctionPrefixes); 2923 FunctionPrologueWorklist.swap(FunctionPrologues); 2924 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2925 2926 while (!GlobalInitWorklist.empty()) { 2927 unsigned ValID = GlobalInitWorklist.back().second; 2928 if (ValID >= ValueList.size()) { 2929 // Not ready to resolve this yet, it requires something later in the file. 2930 GlobalInits.push_back(GlobalInitWorklist.back()); 2931 } else { 2932 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2933 GlobalInitWorklist.back().first->setInitializer(C); 2934 else 2935 return error("Expected a constant"); 2936 } 2937 GlobalInitWorklist.pop_back(); 2938 } 2939 2940 while (!IndirectSymbolInitWorklist.empty()) { 2941 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2942 if (ValID >= ValueList.size()) { 2943 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2944 } else { 2945 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2946 if (!C) 2947 return error("Expected a constant"); 2948 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2949 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2950 return error("Alias and aliasee types don't match"); 2951 GIS->setIndirectSymbol(C); 2952 } 2953 IndirectSymbolInitWorklist.pop_back(); 2954 } 2955 2956 while (!FunctionPrefixWorklist.empty()) { 2957 unsigned ValID = FunctionPrefixWorklist.back().second; 2958 if (ValID >= ValueList.size()) { 2959 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2960 } else { 2961 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2962 FunctionPrefixWorklist.back().first->setPrefixData(C); 2963 else 2964 return error("Expected a constant"); 2965 } 2966 FunctionPrefixWorklist.pop_back(); 2967 } 2968 2969 while (!FunctionPrologueWorklist.empty()) { 2970 unsigned ValID = FunctionPrologueWorklist.back().second; 2971 if (ValID >= ValueList.size()) { 2972 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2973 } else { 2974 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2975 FunctionPrologueWorklist.back().first->setPrologueData(C); 2976 else 2977 return error("Expected a constant"); 2978 } 2979 FunctionPrologueWorklist.pop_back(); 2980 } 2981 2982 while (!FunctionPersonalityFnWorklist.empty()) { 2983 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2984 if (ValID >= ValueList.size()) { 2985 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2986 } else { 2987 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2988 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2989 else 2990 return error("Expected a constant"); 2991 } 2992 FunctionPersonalityFnWorklist.pop_back(); 2993 } 2994 2995 return std::error_code(); 2996 } 2997 2998 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2999 SmallVector<uint64_t, 8> Words(Vals.size()); 3000 transform(Vals, Words.begin(), 3001 BitcodeReader::decodeSignRotatedValue); 3002 3003 return APInt(TypeBits, Words); 3004 } 3005 3006 std::error_code BitcodeReader::parseConstants() { 3007 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3008 return error("Invalid record"); 3009 3010 SmallVector<uint64_t, 64> Record; 3011 3012 // Read all the records for this value table. 3013 Type *CurTy = Type::getInt32Ty(Context); 3014 unsigned NextCstNo = ValueList.size(); 3015 3016 while (true) { 3017 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3018 3019 switch (Entry.Kind) { 3020 case BitstreamEntry::SubBlock: // Handled for us already. 3021 case BitstreamEntry::Error: 3022 return error("Malformed block"); 3023 case BitstreamEntry::EndBlock: 3024 if (NextCstNo != ValueList.size()) 3025 return error("Invalid constant reference"); 3026 3027 // Once all the constants have been read, go through and resolve forward 3028 // references. 3029 ValueList.resolveConstantForwardRefs(); 3030 return std::error_code(); 3031 case BitstreamEntry::Record: 3032 // The interesting case. 3033 break; 3034 } 3035 3036 // Read a record. 3037 Record.clear(); 3038 Type *VoidType = Type::getVoidTy(Context); 3039 Value *V = nullptr; 3040 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3041 switch (BitCode) { 3042 default: // Default behavior: unknown constant 3043 case bitc::CST_CODE_UNDEF: // UNDEF 3044 V = UndefValue::get(CurTy); 3045 break; 3046 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3047 if (Record.empty()) 3048 return error("Invalid record"); 3049 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3050 return error("Invalid record"); 3051 if (TypeList[Record[0]] == VoidType) 3052 return error("Invalid constant type"); 3053 CurTy = TypeList[Record[0]]; 3054 continue; // Skip the ValueList manipulation. 3055 case bitc::CST_CODE_NULL: // NULL 3056 V = Constant::getNullValue(CurTy); 3057 break; 3058 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3059 if (!CurTy->isIntegerTy() || Record.empty()) 3060 return error("Invalid record"); 3061 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3062 break; 3063 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3064 if (!CurTy->isIntegerTy() || Record.empty()) 3065 return error("Invalid record"); 3066 3067 APInt VInt = 3068 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3069 V = ConstantInt::get(Context, VInt); 3070 3071 break; 3072 } 3073 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3074 if (Record.empty()) 3075 return error("Invalid record"); 3076 if (CurTy->isHalfTy()) 3077 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 3078 APInt(16, (uint16_t)Record[0]))); 3079 else if (CurTy->isFloatTy()) 3080 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 3081 APInt(32, (uint32_t)Record[0]))); 3082 else if (CurTy->isDoubleTy()) 3083 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 3084 APInt(64, Record[0]))); 3085 else if (CurTy->isX86_FP80Ty()) { 3086 // Bits are not stored the same way as a normal i80 APInt, compensate. 3087 uint64_t Rearrange[2]; 3088 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3089 Rearrange[1] = Record[0] >> 48; 3090 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 3091 APInt(80, Rearrange))); 3092 } else if (CurTy->isFP128Ty()) 3093 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 3094 APInt(128, Record))); 3095 else if (CurTy->isPPC_FP128Ty()) 3096 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 3097 APInt(128, Record))); 3098 else 3099 V = UndefValue::get(CurTy); 3100 break; 3101 } 3102 3103 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3104 if (Record.empty()) 3105 return error("Invalid record"); 3106 3107 unsigned Size = Record.size(); 3108 SmallVector<Constant*, 16> Elts; 3109 3110 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3111 for (unsigned i = 0; i != Size; ++i) 3112 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 3113 STy->getElementType(i))); 3114 V = ConstantStruct::get(STy, Elts); 3115 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 3116 Type *EltTy = ATy->getElementType(); 3117 for (unsigned i = 0; i != Size; ++i) 3118 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3119 V = ConstantArray::get(ATy, Elts); 3120 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 3121 Type *EltTy = VTy->getElementType(); 3122 for (unsigned i = 0; i != Size; ++i) 3123 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3124 V = ConstantVector::get(Elts); 3125 } else { 3126 V = UndefValue::get(CurTy); 3127 } 3128 break; 3129 } 3130 case bitc::CST_CODE_STRING: // STRING: [values] 3131 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3132 if (Record.empty()) 3133 return error("Invalid record"); 3134 3135 SmallString<16> Elts(Record.begin(), Record.end()); 3136 V = ConstantDataArray::getString(Context, Elts, 3137 BitCode == bitc::CST_CODE_CSTRING); 3138 break; 3139 } 3140 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3141 if (Record.empty()) 3142 return error("Invalid record"); 3143 3144 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 3145 if (EltTy->isIntegerTy(8)) { 3146 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3147 if (isa<VectorType>(CurTy)) 3148 V = ConstantDataVector::get(Context, Elts); 3149 else 3150 V = ConstantDataArray::get(Context, Elts); 3151 } else if (EltTy->isIntegerTy(16)) { 3152 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3153 if (isa<VectorType>(CurTy)) 3154 V = ConstantDataVector::get(Context, Elts); 3155 else 3156 V = ConstantDataArray::get(Context, Elts); 3157 } else if (EltTy->isIntegerTy(32)) { 3158 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3159 if (isa<VectorType>(CurTy)) 3160 V = ConstantDataVector::get(Context, Elts); 3161 else 3162 V = ConstantDataArray::get(Context, Elts); 3163 } else if (EltTy->isIntegerTy(64)) { 3164 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3165 if (isa<VectorType>(CurTy)) 3166 V = ConstantDataVector::get(Context, Elts); 3167 else 3168 V = ConstantDataArray::get(Context, Elts); 3169 } else if (EltTy->isHalfTy()) { 3170 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3171 if (isa<VectorType>(CurTy)) 3172 V = ConstantDataVector::getFP(Context, Elts); 3173 else 3174 V = ConstantDataArray::getFP(Context, Elts); 3175 } else if (EltTy->isFloatTy()) { 3176 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3177 if (isa<VectorType>(CurTy)) 3178 V = ConstantDataVector::getFP(Context, Elts); 3179 else 3180 V = ConstantDataArray::getFP(Context, Elts); 3181 } else if (EltTy->isDoubleTy()) { 3182 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3183 if (isa<VectorType>(CurTy)) 3184 V = ConstantDataVector::getFP(Context, Elts); 3185 else 3186 V = ConstantDataArray::getFP(Context, Elts); 3187 } else { 3188 return error("Invalid type for value"); 3189 } 3190 break; 3191 } 3192 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3193 if (Record.size() < 3) 3194 return error("Invalid record"); 3195 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3196 if (Opc < 0) { 3197 V = UndefValue::get(CurTy); // Unknown binop. 3198 } else { 3199 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3200 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3201 unsigned Flags = 0; 3202 if (Record.size() >= 4) { 3203 if (Opc == Instruction::Add || 3204 Opc == Instruction::Sub || 3205 Opc == Instruction::Mul || 3206 Opc == Instruction::Shl) { 3207 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3208 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3209 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3210 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3211 } else if (Opc == Instruction::SDiv || 3212 Opc == Instruction::UDiv || 3213 Opc == Instruction::LShr || 3214 Opc == Instruction::AShr) { 3215 if (Record[3] & (1 << bitc::PEO_EXACT)) 3216 Flags |= SDivOperator::IsExact; 3217 } 3218 } 3219 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3220 } 3221 break; 3222 } 3223 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3224 if (Record.size() < 3) 3225 return error("Invalid record"); 3226 int Opc = getDecodedCastOpcode(Record[0]); 3227 if (Opc < 0) { 3228 V = UndefValue::get(CurTy); // Unknown cast. 3229 } else { 3230 Type *OpTy = getTypeByID(Record[1]); 3231 if (!OpTy) 3232 return error("Invalid record"); 3233 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3234 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3235 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3236 } 3237 break; 3238 } 3239 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3240 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3241 unsigned OpNum = 0; 3242 Type *PointeeType = nullptr; 3243 if (Record.size() % 2) 3244 PointeeType = getTypeByID(Record[OpNum++]); 3245 SmallVector<Constant*, 16> Elts; 3246 while (OpNum != Record.size()) { 3247 Type *ElTy = getTypeByID(Record[OpNum++]); 3248 if (!ElTy) 3249 return error("Invalid record"); 3250 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3251 } 3252 3253 if (PointeeType && 3254 PointeeType != 3255 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3256 ->getElementType()) 3257 return error("Explicit gep operator type does not match pointee type " 3258 "of pointer operand"); 3259 3260 if (Elts.size() < 1) 3261 return error("Invalid gep with no operands"); 3262 3263 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3264 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3265 BitCode == 3266 bitc::CST_CODE_CE_INBOUNDS_GEP); 3267 break; 3268 } 3269 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3270 if (Record.size() < 3) 3271 return error("Invalid record"); 3272 3273 Type *SelectorTy = Type::getInt1Ty(Context); 3274 3275 // The selector might be an i1 or an <n x i1> 3276 // Get the type from the ValueList before getting a forward ref. 3277 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3278 if (Value *V = ValueList[Record[0]]) 3279 if (SelectorTy != V->getType()) 3280 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3281 3282 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3283 SelectorTy), 3284 ValueList.getConstantFwdRef(Record[1],CurTy), 3285 ValueList.getConstantFwdRef(Record[2],CurTy)); 3286 break; 3287 } 3288 case bitc::CST_CODE_CE_EXTRACTELT 3289 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3290 if (Record.size() < 3) 3291 return error("Invalid record"); 3292 VectorType *OpTy = 3293 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3294 if (!OpTy) 3295 return error("Invalid record"); 3296 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3297 Constant *Op1 = nullptr; 3298 if (Record.size() == 4) { 3299 Type *IdxTy = getTypeByID(Record[2]); 3300 if (!IdxTy) 3301 return error("Invalid record"); 3302 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3303 } else // TODO: Remove with llvm 4.0 3304 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3305 if (!Op1) 3306 return error("Invalid record"); 3307 V = ConstantExpr::getExtractElement(Op0, Op1); 3308 break; 3309 } 3310 case bitc::CST_CODE_CE_INSERTELT 3311 : { // CE_INSERTELT: [opval, opval, opty, opval] 3312 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3313 if (Record.size() < 3 || !OpTy) 3314 return error("Invalid record"); 3315 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3316 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3317 OpTy->getElementType()); 3318 Constant *Op2 = nullptr; 3319 if (Record.size() == 4) { 3320 Type *IdxTy = getTypeByID(Record[2]); 3321 if (!IdxTy) 3322 return error("Invalid record"); 3323 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3324 } else // TODO: Remove with llvm 4.0 3325 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3326 if (!Op2) 3327 return error("Invalid record"); 3328 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3329 break; 3330 } 3331 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3332 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3333 if (Record.size() < 3 || !OpTy) 3334 return error("Invalid record"); 3335 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3336 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3337 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3338 OpTy->getNumElements()); 3339 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3340 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3341 break; 3342 } 3343 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3344 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3345 VectorType *OpTy = 3346 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3347 if (Record.size() < 4 || !RTy || !OpTy) 3348 return error("Invalid record"); 3349 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3350 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3351 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3352 RTy->getNumElements()); 3353 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3354 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3355 break; 3356 } 3357 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3358 if (Record.size() < 4) 3359 return error("Invalid record"); 3360 Type *OpTy = getTypeByID(Record[0]); 3361 if (!OpTy) 3362 return error("Invalid record"); 3363 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3364 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3365 3366 if (OpTy->isFPOrFPVectorTy()) 3367 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3368 else 3369 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3370 break; 3371 } 3372 // This maintains backward compatibility, pre-asm dialect keywords. 3373 // FIXME: Remove with the 4.0 release. 3374 case bitc::CST_CODE_INLINEASM_OLD: { 3375 if (Record.size() < 2) 3376 return error("Invalid record"); 3377 std::string AsmStr, ConstrStr; 3378 bool HasSideEffects = Record[0] & 1; 3379 bool IsAlignStack = Record[0] >> 1; 3380 unsigned AsmStrSize = Record[1]; 3381 if (2+AsmStrSize >= Record.size()) 3382 return error("Invalid record"); 3383 unsigned ConstStrSize = Record[2+AsmStrSize]; 3384 if (3+AsmStrSize+ConstStrSize > Record.size()) 3385 return error("Invalid record"); 3386 3387 for (unsigned i = 0; i != AsmStrSize; ++i) 3388 AsmStr += (char)Record[2+i]; 3389 for (unsigned i = 0; i != ConstStrSize; ++i) 3390 ConstrStr += (char)Record[3+AsmStrSize+i]; 3391 PointerType *PTy = cast<PointerType>(CurTy); 3392 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3393 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3394 break; 3395 } 3396 // This version adds support for the asm dialect keywords (e.g., 3397 // inteldialect). 3398 case bitc::CST_CODE_INLINEASM: { 3399 if (Record.size() < 2) 3400 return error("Invalid record"); 3401 std::string AsmStr, ConstrStr; 3402 bool HasSideEffects = Record[0] & 1; 3403 bool IsAlignStack = (Record[0] >> 1) & 1; 3404 unsigned AsmDialect = Record[0] >> 2; 3405 unsigned AsmStrSize = Record[1]; 3406 if (2+AsmStrSize >= Record.size()) 3407 return error("Invalid record"); 3408 unsigned ConstStrSize = Record[2+AsmStrSize]; 3409 if (3+AsmStrSize+ConstStrSize > Record.size()) 3410 return error("Invalid record"); 3411 3412 for (unsigned i = 0; i != AsmStrSize; ++i) 3413 AsmStr += (char)Record[2+i]; 3414 for (unsigned i = 0; i != ConstStrSize; ++i) 3415 ConstrStr += (char)Record[3+AsmStrSize+i]; 3416 PointerType *PTy = cast<PointerType>(CurTy); 3417 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3418 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3419 InlineAsm::AsmDialect(AsmDialect)); 3420 break; 3421 } 3422 case bitc::CST_CODE_BLOCKADDRESS:{ 3423 if (Record.size() < 3) 3424 return error("Invalid record"); 3425 Type *FnTy = getTypeByID(Record[0]); 3426 if (!FnTy) 3427 return error("Invalid record"); 3428 Function *Fn = 3429 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3430 if (!Fn) 3431 return error("Invalid record"); 3432 3433 // If the function is already parsed we can insert the block address right 3434 // away. 3435 BasicBlock *BB; 3436 unsigned BBID = Record[2]; 3437 if (!BBID) 3438 // Invalid reference to entry block. 3439 return error("Invalid ID"); 3440 if (!Fn->empty()) { 3441 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3442 for (size_t I = 0, E = BBID; I != E; ++I) { 3443 if (BBI == BBE) 3444 return error("Invalid ID"); 3445 ++BBI; 3446 } 3447 BB = &*BBI; 3448 } else { 3449 // Otherwise insert a placeholder and remember it so it can be inserted 3450 // when the function is parsed. 3451 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3452 if (FwdBBs.empty()) 3453 BasicBlockFwdRefQueue.push_back(Fn); 3454 if (FwdBBs.size() < BBID + 1) 3455 FwdBBs.resize(BBID + 1); 3456 if (!FwdBBs[BBID]) 3457 FwdBBs[BBID] = BasicBlock::Create(Context); 3458 BB = FwdBBs[BBID]; 3459 } 3460 V = BlockAddress::get(Fn, BB); 3461 break; 3462 } 3463 } 3464 3465 ValueList.assignValue(V, NextCstNo); 3466 ++NextCstNo; 3467 } 3468 } 3469 3470 std::error_code BitcodeReader::parseUseLists() { 3471 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3472 return error("Invalid record"); 3473 3474 // Read all the records. 3475 SmallVector<uint64_t, 64> Record; 3476 3477 while (true) { 3478 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3479 3480 switch (Entry.Kind) { 3481 case BitstreamEntry::SubBlock: // Handled for us already. 3482 case BitstreamEntry::Error: 3483 return error("Malformed block"); 3484 case BitstreamEntry::EndBlock: 3485 return std::error_code(); 3486 case BitstreamEntry::Record: 3487 // The interesting case. 3488 break; 3489 } 3490 3491 // Read a use list record. 3492 Record.clear(); 3493 bool IsBB = false; 3494 switch (Stream.readRecord(Entry.ID, Record)) { 3495 default: // Default behavior: unknown type. 3496 break; 3497 case bitc::USELIST_CODE_BB: 3498 IsBB = true; 3499 LLVM_FALLTHROUGH; 3500 case bitc::USELIST_CODE_DEFAULT: { 3501 unsigned RecordLength = Record.size(); 3502 if (RecordLength < 3) 3503 // Records should have at least an ID and two indexes. 3504 return error("Invalid record"); 3505 unsigned ID = Record.back(); 3506 Record.pop_back(); 3507 3508 Value *V; 3509 if (IsBB) { 3510 assert(ID < FunctionBBs.size() && "Basic block not found"); 3511 V = FunctionBBs[ID]; 3512 } else 3513 V = ValueList[ID]; 3514 unsigned NumUses = 0; 3515 SmallDenseMap<const Use *, unsigned, 16> Order; 3516 for (const Use &U : V->materialized_uses()) { 3517 if (++NumUses > Record.size()) 3518 break; 3519 Order[&U] = Record[NumUses - 1]; 3520 } 3521 if (Order.size() != Record.size() || NumUses > Record.size()) 3522 // Mismatches can happen if the functions are being materialized lazily 3523 // (out-of-order), or a value has been upgraded. 3524 break; 3525 3526 V->sortUseList([&](const Use &L, const Use &R) { 3527 return Order.lookup(&L) < Order.lookup(&R); 3528 }); 3529 break; 3530 } 3531 } 3532 } 3533 } 3534 3535 /// When we see the block for metadata, remember where it is and then skip it. 3536 /// This lets us lazily deserialize the metadata. 3537 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3538 // Save the current stream state. 3539 uint64_t CurBit = Stream.GetCurrentBitNo(); 3540 DeferredMetadataInfo.push_back(CurBit); 3541 3542 // Skip over the block for now. 3543 if (Stream.SkipBlock()) 3544 return error("Invalid record"); 3545 return std::error_code(); 3546 } 3547 3548 std::error_code BitcodeReader::materializeMetadata() { 3549 for (uint64_t BitPos : DeferredMetadataInfo) { 3550 // Move the bit stream to the saved position. 3551 Stream.JumpToBit(BitPos); 3552 if (std::error_code EC = parseMetadata(true)) 3553 return EC; 3554 } 3555 DeferredMetadataInfo.clear(); 3556 return std::error_code(); 3557 } 3558 3559 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3560 3561 /// When we see the block for a function body, remember where it is and then 3562 /// skip it. This lets us lazily deserialize the functions. 3563 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3564 // Get the function we are talking about. 3565 if (FunctionsWithBodies.empty()) 3566 return error("Insufficient function protos"); 3567 3568 Function *Fn = FunctionsWithBodies.back(); 3569 FunctionsWithBodies.pop_back(); 3570 3571 // Save the current stream state. 3572 uint64_t CurBit = Stream.GetCurrentBitNo(); 3573 assert( 3574 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3575 "Mismatch between VST and scanned function offsets"); 3576 DeferredFunctionInfo[Fn] = CurBit; 3577 3578 // Skip over the function block for now. 3579 if (Stream.SkipBlock()) 3580 return error("Invalid record"); 3581 return std::error_code(); 3582 } 3583 3584 std::error_code BitcodeReader::globalCleanup() { 3585 // Patch the initializers for globals and aliases up. 3586 resolveGlobalAndIndirectSymbolInits(); 3587 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3588 return error("Malformed global initializer set"); 3589 3590 // Look for intrinsic functions which need to be upgraded at some point 3591 for (Function &F : *TheModule) { 3592 Function *NewFn; 3593 if (UpgradeIntrinsicFunction(&F, NewFn)) 3594 UpgradedIntrinsics[&F] = NewFn; 3595 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3596 // Some types could be renamed during loading if several modules are 3597 // loaded in the same LLVMContext (LTO scenario). In this case we should 3598 // remangle intrinsics names as well. 3599 RemangledIntrinsics[&F] = Remangled.getValue(); 3600 } 3601 3602 // Look for global variables which need to be renamed. 3603 for (GlobalVariable &GV : TheModule->globals()) 3604 UpgradeGlobalVariable(&GV); 3605 3606 // Force deallocation of memory for these vectors to favor the client that 3607 // want lazy deserialization. 3608 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3609 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3610 IndirectSymbolInits); 3611 return std::error_code(); 3612 } 3613 3614 /// Support for lazy parsing of function bodies. This is required if we 3615 /// either have an old bitcode file without a VST forward declaration record, 3616 /// or if we have an anonymous function being materialized, since anonymous 3617 /// functions do not have a name and are therefore not in the VST. 3618 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3619 Stream.JumpToBit(NextUnreadBit); 3620 3621 if (Stream.AtEndOfStream()) 3622 return error("Could not find function in stream"); 3623 3624 if (!SeenFirstFunctionBody) 3625 return error("Trying to materialize functions before seeing function blocks"); 3626 3627 // An old bitcode file with the symbol table at the end would have 3628 // finished the parse greedily. 3629 assert(SeenValueSymbolTable); 3630 3631 SmallVector<uint64_t, 64> Record; 3632 3633 while (true) { 3634 BitstreamEntry Entry = Stream.advance(); 3635 switch (Entry.Kind) { 3636 default: 3637 return error("Expect SubBlock"); 3638 case BitstreamEntry::SubBlock: 3639 switch (Entry.ID) { 3640 default: 3641 return error("Expect function block"); 3642 case bitc::FUNCTION_BLOCK_ID: 3643 if (std::error_code EC = rememberAndSkipFunctionBody()) 3644 return EC; 3645 NextUnreadBit = Stream.GetCurrentBitNo(); 3646 return std::error_code(); 3647 } 3648 } 3649 } 3650 } 3651 3652 std::error_code BitcodeReader::parseBitcodeVersion() { 3653 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3654 return error("Invalid record"); 3655 3656 // Read all the records. 3657 SmallVector<uint64_t, 64> Record; 3658 3659 while (true) { 3660 BitstreamEntry Entry = Stream.advance(); 3661 3662 switch (Entry.Kind) { 3663 default: 3664 case BitstreamEntry::Error: 3665 return error("Malformed block"); 3666 case BitstreamEntry::EndBlock: 3667 return std::error_code(); 3668 case BitstreamEntry::Record: 3669 // The interesting case. 3670 break; 3671 } 3672 3673 // Read a record. 3674 Record.clear(); 3675 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3676 switch (BitCode) { 3677 default: // Default behavior: reject 3678 return error("Invalid value"); 3679 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3680 // N] 3681 convertToString(Record, 0, ProducerIdentification); 3682 break; 3683 } 3684 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3685 unsigned epoch = (unsigned)Record[0]; 3686 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3687 return error( 3688 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3689 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3690 } 3691 } 3692 } 3693 } 3694 } 3695 3696 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3697 bool ShouldLazyLoadMetadata) { 3698 if (ResumeBit) 3699 Stream.JumpToBit(ResumeBit); 3700 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3701 return error("Invalid record"); 3702 3703 SmallVector<uint64_t, 64> Record; 3704 std::vector<std::string> SectionTable; 3705 std::vector<std::string> GCTable; 3706 3707 // Read all the records for this module. 3708 while (true) { 3709 BitstreamEntry Entry = Stream.advance(); 3710 3711 switch (Entry.Kind) { 3712 case BitstreamEntry::Error: 3713 return error("Malformed block"); 3714 case BitstreamEntry::EndBlock: 3715 return globalCleanup(); 3716 3717 case BitstreamEntry::SubBlock: 3718 switch (Entry.ID) { 3719 default: // Skip unknown content. 3720 if (Stream.SkipBlock()) 3721 return error("Invalid record"); 3722 break; 3723 case bitc::BLOCKINFO_BLOCK_ID: 3724 if (Stream.ReadBlockInfoBlock()) 3725 return error("Malformed block"); 3726 break; 3727 case bitc::PARAMATTR_BLOCK_ID: 3728 if (std::error_code EC = parseAttributeBlock()) 3729 return EC; 3730 break; 3731 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3732 if (std::error_code EC = parseAttributeGroupBlock()) 3733 return EC; 3734 break; 3735 case bitc::TYPE_BLOCK_ID_NEW: 3736 if (std::error_code EC = parseTypeTable()) 3737 return EC; 3738 break; 3739 case bitc::VALUE_SYMTAB_BLOCK_ID: 3740 if (!SeenValueSymbolTable) { 3741 // Either this is an old form VST without function index and an 3742 // associated VST forward declaration record (which would have caused 3743 // the VST to be jumped to and parsed before it was encountered 3744 // normally in the stream), or there were no function blocks to 3745 // trigger an earlier parsing of the VST. 3746 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3747 if (std::error_code EC = parseValueSymbolTable()) 3748 return EC; 3749 SeenValueSymbolTable = true; 3750 } else { 3751 // We must have had a VST forward declaration record, which caused 3752 // the parser to jump to and parse the VST earlier. 3753 assert(VSTOffset > 0); 3754 if (Stream.SkipBlock()) 3755 return error("Invalid record"); 3756 } 3757 break; 3758 case bitc::CONSTANTS_BLOCK_ID: 3759 if (std::error_code EC = parseConstants()) 3760 return EC; 3761 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3762 return EC; 3763 break; 3764 case bitc::METADATA_BLOCK_ID: 3765 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3766 if (std::error_code EC = rememberAndSkipMetadata()) 3767 return EC; 3768 break; 3769 } 3770 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3771 if (std::error_code EC = parseMetadata(true)) 3772 return EC; 3773 break; 3774 case bitc::METADATA_KIND_BLOCK_ID: 3775 if (std::error_code EC = parseMetadataKinds()) 3776 return EC; 3777 break; 3778 case bitc::FUNCTION_BLOCK_ID: 3779 // If this is the first function body we've seen, reverse the 3780 // FunctionsWithBodies list. 3781 if (!SeenFirstFunctionBody) { 3782 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3783 if (std::error_code EC = globalCleanup()) 3784 return EC; 3785 SeenFirstFunctionBody = true; 3786 } 3787 3788 if (VSTOffset > 0) { 3789 // If we have a VST forward declaration record, make sure we 3790 // parse the VST now if we haven't already. It is needed to 3791 // set up the DeferredFunctionInfo vector for lazy reading. 3792 if (!SeenValueSymbolTable) { 3793 if (std::error_code EC = 3794 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3795 return EC; 3796 SeenValueSymbolTable = true; 3797 // Fall through so that we record the NextUnreadBit below. 3798 // This is necessary in case we have an anonymous function that 3799 // is later materialized. Since it will not have a VST entry we 3800 // need to fall back to the lazy parse to find its offset. 3801 } else { 3802 // If we have a VST forward declaration record, but have already 3803 // parsed the VST (just above, when the first function body was 3804 // encountered here), then we are resuming the parse after 3805 // materializing functions. The ResumeBit points to the 3806 // start of the last function block recorded in the 3807 // DeferredFunctionInfo map. Skip it. 3808 if (Stream.SkipBlock()) 3809 return error("Invalid record"); 3810 continue; 3811 } 3812 } 3813 3814 // Support older bitcode files that did not have the function 3815 // index in the VST, nor a VST forward declaration record, as 3816 // well as anonymous functions that do not have VST entries. 3817 // Build the DeferredFunctionInfo vector on the fly. 3818 if (std::error_code EC = rememberAndSkipFunctionBody()) 3819 return EC; 3820 3821 // Suspend parsing when we reach the function bodies. Subsequent 3822 // materialization calls will resume it when necessary. If the bitcode 3823 // file is old, the symbol table will be at the end instead and will not 3824 // have been seen yet. In this case, just finish the parse now. 3825 if (SeenValueSymbolTable) { 3826 NextUnreadBit = Stream.GetCurrentBitNo(); 3827 // After the VST has been parsed, we need to make sure intrinsic name 3828 // are auto-upgraded. 3829 return globalCleanup(); 3830 } 3831 break; 3832 case bitc::USELIST_BLOCK_ID: 3833 if (std::error_code EC = parseUseLists()) 3834 return EC; 3835 break; 3836 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3837 if (std::error_code EC = parseOperandBundleTags()) 3838 return EC; 3839 break; 3840 } 3841 continue; 3842 3843 case BitstreamEntry::Record: 3844 // The interesting case. 3845 break; 3846 } 3847 3848 // Read a record. 3849 auto BitCode = Stream.readRecord(Entry.ID, Record); 3850 switch (BitCode) { 3851 default: break; // Default behavior, ignore unknown content. 3852 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3853 if (Record.size() < 1) 3854 return error("Invalid record"); 3855 // Only version #0 and #1 are supported so far. 3856 unsigned module_version = Record[0]; 3857 switch (module_version) { 3858 default: 3859 return error("Invalid value"); 3860 case 0: 3861 UseRelativeIDs = false; 3862 break; 3863 case 1: 3864 UseRelativeIDs = true; 3865 break; 3866 } 3867 break; 3868 } 3869 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3870 std::string S; 3871 if (convertToString(Record, 0, S)) 3872 return error("Invalid record"); 3873 TheModule->setTargetTriple(S); 3874 break; 3875 } 3876 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3877 std::string S; 3878 if (convertToString(Record, 0, S)) 3879 return error("Invalid record"); 3880 TheModule->setDataLayout(S); 3881 break; 3882 } 3883 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3884 std::string S; 3885 if (convertToString(Record, 0, S)) 3886 return error("Invalid record"); 3887 TheModule->setModuleInlineAsm(S); 3888 break; 3889 } 3890 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3891 // FIXME: Remove in 4.0. 3892 std::string S; 3893 if (convertToString(Record, 0, S)) 3894 return error("Invalid record"); 3895 // Ignore value. 3896 break; 3897 } 3898 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3899 std::string S; 3900 if (convertToString(Record, 0, S)) 3901 return error("Invalid record"); 3902 SectionTable.push_back(S); 3903 break; 3904 } 3905 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3906 std::string S; 3907 if (convertToString(Record, 0, S)) 3908 return error("Invalid record"); 3909 GCTable.push_back(S); 3910 break; 3911 } 3912 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3913 if (Record.size() < 2) 3914 return error("Invalid record"); 3915 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3916 unsigned ComdatNameSize = Record[1]; 3917 std::string ComdatName; 3918 ComdatName.reserve(ComdatNameSize); 3919 for (unsigned i = 0; i != ComdatNameSize; ++i) 3920 ComdatName += (char)Record[2 + i]; 3921 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3922 C->setSelectionKind(SK); 3923 ComdatList.push_back(C); 3924 break; 3925 } 3926 // GLOBALVAR: [pointer type, isconst, initid, 3927 // linkage, alignment, section, visibility, threadlocal, 3928 // unnamed_addr, externally_initialized, dllstorageclass, 3929 // comdat] 3930 case bitc::MODULE_CODE_GLOBALVAR: { 3931 if (Record.size() < 6) 3932 return error("Invalid record"); 3933 Type *Ty = getTypeByID(Record[0]); 3934 if (!Ty) 3935 return error("Invalid record"); 3936 bool isConstant = Record[1] & 1; 3937 bool explicitType = Record[1] & 2; 3938 unsigned AddressSpace; 3939 if (explicitType) { 3940 AddressSpace = Record[1] >> 2; 3941 } else { 3942 if (!Ty->isPointerTy()) 3943 return error("Invalid type for value"); 3944 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3945 Ty = cast<PointerType>(Ty)->getElementType(); 3946 } 3947 3948 uint64_t RawLinkage = Record[3]; 3949 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3950 unsigned Alignment; 3951 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3952 return EC; 3953 std::string Section; 3954 if (Record[5]) { 3955 if (Record[5]-1 >= SectionTable.size()) 3956 return error("Invalid ID"); 3957 Section = SectionTable[Record[5]-1]; 3958 } 3959 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3960 // Local linkage must have default visibility. 3961 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3962 // FIXME: Change to an error if non-default in 4.0. 3963 Visibility = getDecodedVisibility(Record[6]); 3964 3965 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3966 if (Record.size() > 7) 3967 TLM = getDecodedThreadLocalMode(Record[7]); 3968 3969 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3970 if (Record.size() > 8) 3971 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3972 3973 bool ExternallyInitialized = false; 3974 if (Record.size() > 9) 3975 ExternallyInitialized = Record[9]; 3976 3977 GlobalVariable *NewGV = 3978 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3979 TLM, AddressSpace, ExternallyInitialized); 3980 NewGV->setAlignment(Alignment); 3981 if (!Section.empty()) 3982 NewGV->setSection(Section); 3983 NewGV->setVisibility(Visibility); 3984 NewGV->setUnnamedAddr(UnnamedAddr); 3985 3986 if (Record.size() > 10) 3987 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3988 else 3989 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3990 3991 ValueList.push_back(NewGV); 3992 3993 // Remember which value to use for the global initializer. 3994 if (unsigned InitID = Record[2]) 3995 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3996 3997 if (Record.size() > 11) { 3998 if (unsigned ComdatID = Record[11]) { 3999 if (ComdatID > ComdatList.size()) 4000 return error("Invalid global variable comdat ID"); 4001 NewGV->setComdat(ComdatList[ComdatID - 1]); 4002 } 4003 } else if (hasImplicitComdat(RawLinkage)) { 4004 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 4005 } 4006 4007 break; 4008 } 4009 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 4010 // alignment, section, visibility, gc, unnamed_addr, 4011 // prologuedata, dllstorageclass, comdat, prefixdata] 4012 case bitc::MODULE_CODE_FUNCTION: { 4013 if (Record.size() < 8) 4014 return error("Invalid record"); 4015 Type *Ty = getTypeByID(Record[0]); 4016 if (!Ty) 4017 return error("Invalid record"); 4018 if (auto *PTy = dyn_cast<PointerType>(Ty)) 4019 Ty = PTy->getElementType(); 4020 auto *FTy = dyn_cast<FunctionType>(Ty); 4021 if (!FTy) 4022 return error("Invalid type for value"); 4023 auto CC = static_cast<CallingConv::ID>(Record[1]); 4024 if (CC & ~CallingConv::MaxID) 4025 return error("Invalid calling convention ID"); 4026 4027 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 4028 "", TheModule); 4029 4030 Func->setCallingConv(CC); 4031 bool isProto = Record[2]; 4032 uint64_t RawLinkage = Record[3]; 4033 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4034 Func->setAttributes(getAttributes(Record[4])); 4035 4036 unsigned Alignment; 4037 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 4038 return EC; 4039 Func->setAlignment(Alignment); 4040 if (Record[6]) { 4041 if (Record[6]-1 >= SectionTable.size()) 4042 return error("Invalid ID"); 4043 Func->setSection(SectionTable[Record[6]-1]); 4044 } 4045 // Local linkage must have default visibility. 4046 if (!Func->hasLocalLinkage()) 4047 // FIXME: Change to an error if non-default in 4.0. 4048 Func->setVisibility(getDecodedVisibility(Record[7])); 4049 if (Record.size() > 8 && Record[8]) { 4050 if (Record[8]-1 >= GCTable.size()) 4051 return error("Invalid ID"); 4052 Func->setGC(GCTable[Record[8] - 1]); 4053 } 4054 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4055 if (Record.size() > 9) 4056 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4057 Func->setUnnamedAddr(UnnamedAddr); 4058 if (Record.size() > 10 && Record[10] != 0) 4059 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 4060 4061 if (Record.size() > 11) 4062 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4063 else 4064 upgradeDLLImportExportLinkage(Func, RawLinkage); 4065 4066 if (Record.size() > 12) { 4067 if (unsigned ComdatID = Record[12]) { 4068 if (ComdatID > ComdatList.size()) 4069 return error("Invalid function comdat ID"); 4070 Func->setComdat(ComdatList[ComdatID - 1]); 4071 } 4072 } else if (hasImplicitComdat(RawLinkage)) { 4073 Func->setComdat(reinterpret_cast<Comdat *>(1)); 4074 } 4075 4076 if (Record.size() > 13 && Record[13] != 0) 4077 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 4078 4079 if (Record.size() > 14 && Record[14] != 0) 4080 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 4081 4082 ValueList.push_back(Func); 4083 4084 // If this is a function with a body, remember the prototype we are 4085 // creating now, so that we can match up the body with them later. 4086 if (!isProto) { 4087 Func->setIsMaterializable(true); 4088 FunctionsWithBodies.push_back(Func); 4089 DeferredFunctionInfo[Func] = 0; 4090 } 4091 break; 4092 } 4093 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 4094 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4095 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4096 case bitc::MODULE_CODE_IFUNC: 4097 case bitc::MODULE_CODE_ALIAS: 4098 case bitc::MODULE_CODE_ALIAS_OLD: { 4099 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4100 if (Record.size() < (3 + (unsigned)NewRecord)) 4101 return error("Invalid record"); 4102 unsigned OpNum = 0; 4103 Type *Ty = getTypeByID(Record[OpNum++]); 4104 if (!Ty) 4105 return error("Invalid record"); 4106 4107 unsigned AddrSpace; 4108 if (!NewRecord) { 4109 auto *PTy = dyn_cast<PointerType>(Ty); 4110 if (!PTy) 4111 return error("Invalid type for value"); 4112 Ty = PTy->getElementType(); 4113 AddrSpace = PTy->getAddressSpace(); 4114 } else { 4115 AddrSpace = Record[OpNum++]; 4116 } 4117 4118 auto Val = Record[OpNum++]; 4119 auto Linkage = Record[OpNum++]; 4120 GlobalIndirectSymbol *NewGA; 4121 if (BitCode == bitc::MODULE_CODE_ALIAS || 4122 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4123 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4124 "", TheModule); 4125 else 4126 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4127 "", nullptr, TheModule); 4128 // Old bitcode files didn't have visibility field. 4129 // Local linkage must have default visibility. 4130 if (OpNum != Record.size()) { 4131 auto VisInd = OpNum++; 4132 if (!NewGA->hasLocalLinkage()) 4133 // FIXME: Change to an error if non-default in 4.0. 4134 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4135 } 4136 if (OpNum != Record.size()) 4137 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 4138 else 4139 upgradeDLLImportExportLinkage(NewGA, Linkage); 4140 if (OpNum != Record.size()) 4141 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4142 if (OpNum != Record.size()) 4143 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4144 ValueList.push_back(NewGA); 4145 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4146 break; 4147 } 4148 /// MODULE_CODE_PURGEVALS: [numvals] 4149 case bitc::MODULE_CODE_PURGEVALS: 4150 // Trim down the value list to the specified size. 4151 if (Record.size() < 1 || Record[0] > ValueList.size()) 4152 return error("Invalid record"); 4153 ValueList.shrinkTo(Record[0]); 4154 break; 4155 /// MODULE_CODE_VSTOFFSET: [offset] 4156 case bitc::MODULE_CODE_VSTOFFSET: 4157 if (Record.size() < 1) 4158 return error("Invalid record"); 4159 VSTOffset = Record[0]; 4160 break; 4161 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4162 case bitc::MODULE_CODE_SOURCE_FILENAME: 4163 SmallString<128> ValueName; 4164 if (convertToString(Record, 0, ValueName)) 4165 return error("Invalid record"); 4166 TheModule->setSourceFileName(ValueName); 4167 break; 4168 } 4169 Record.clear(); 4170 } 4171 } 4172 4173 /// Helper to read the header common to all bitcode files. 4174 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 4175 // Sniff for the signature. 4176 if (Stream.Read(8) != 'B' || 4177 Stream.Read(8) != 'C' || 4178 Stream.Read(4) != 0x0 || 4179 Stream.Read(4) != 0xC || 4180 Stream.Read(4) != 0xE || 4181 Stream.Read(4) != 0xD) 4182 return false; 4183 return true; 4184 } 4185 4186 std::error_code 4187 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 4188 Module *M, bool ShouldLazyLoadMetadata) { 4189 TheModule = M; 4190 4191 if (std::error_code EC = initStream(std::move(Streamer))) 4192 return EC; 4193 4194 // Sniff for the signature. 4195 if (!hasValidBitcodeHeader(Stream)) 4196 return error("Invalid bitcode signature"); 4197 4198 // We expect a number of well-defined blocks, though we don't necessarily 4199 // need to understand them all. 4200 while (true) { 4201 if (Stream.AtEndOfStream()) { 4202 // We didn't really read a proper Module. 4203 return error("Malformed IR file"); 4204 } 4205 4206 BitstreamEntry Entry = 4207 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4208 4209 if (Entry.Kind != BitstreamEntry::SubBlock) 4210 return error("Malformed block"); 4211 4212 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4213 parseBitcodeVersion(); 4214 continue; 4215 } 4216 4217 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4218 return parseModule(0, ShouldLazyLoadMetadata); 4219 4220 if (Stream.SkipBlock()) 4221 return error("Invalid record"); 4222 } 4223 } 4224 4225 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4226 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4227 return error("Invalid record"); 4228 4229 SmallVector<uint64_t, 64> Record; 4230 4231 std::string Triple; 4232 4233 // Read all the records for this module. 4234 while (true) { 4235 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4236 4237 switch (Entry.Kind) { 4238 case BitstreamEntry::SubBlock: // Handled for us already. 4239 case BitstreamEntry::Error: 4240 return error("Malformed block"); 4241 case BitstreamEntry::EndBlock: 4242 return Triple; 4243 case BitstreamEntry::Record: 4244 // The interesting case. 4245 break; 4246 } 4247 4248 // Read a record. 4249 switch (Stream.readRecord(Entry.ID, Record)) { 4250 default: break; // Default behavior, ignore unknown content. 4251 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4252 std::string S; 4253 if (convertToString(Record, 0, S)) 4254 return error("Invalid record"); 4255 Triple = S; 4256 break; 4257 } 4258 } 4259 Record.clear(); 4260 } 4261 llvm_unreachable("Exit infinite loop"); 4262 } 4263 4264 ErrorOr<std::string> BitcodeReader::parseTriple() { 4265 if (std::error_code EC = initStream(nullptr)) 4266 return EC; 4267 4268 // Sniff for the signature. 4269 if (!hasValidBitcodeHeader(Stream)) 4270 return error("Invalid bitcode signature"); 4271 4272 // We expect a number of well-defined blocks, though we don't necessarily 4273 // need to understand them all. 4274 while (true) { 4275 BitstreamEntry Entry = Stream.advance(); 4276 4277 switch (Entry.Kind) { 4278 case BitstreamEntry::Error: 4279 return error("Malformed block"); 4280 case BitstreamEntry::EndBlock: 4281 return std::error_code(); 4282 4283 case BitstreamEntry::SubBlock: 4284 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4285 return parseModuleTriple(); 4286 4287 // Ignore other sub-blocks. 4288 if (Stream.SkipBlock()) 4289 return error("Malformed block"); 4290 continue; 4291 4292 case BitstreamEntry::Record: 4293 Stream.skipRecord(Entry.ID); 4294 continue; 4295 } 4296 } 4297 } 4298 4299 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4300 if (std::error_code EC = initStream(nullptr)) 4301 return EC; 4302 4303 // Sniff for the signature. 4304 if (!hasValidBitcodeHeader(Stream)) 4305 return error("Invalid bitcode signature"); 4306 4307 // We expect a number of well-defined blocks, though we don't necessarily 4308 // need to understand them all. 4309 while (true) { 4310 BitstreamEntry Entry = Stream.advance(); 4311 switch (Entry.Kind) { 4312 case BitstreamEntry::Error: 4313 return error("Malformed block"); 4314 case BitstreamEntry::EndBlock: 4315 return std::error_code(); 4316 4317 case BitstreamEntry::SubBlock: 4318 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4319 if (std::error_code EC = parseBitcodeVersion()) 4320 return EC; 4321 return ProducerIdentification; 4322 } 4323 // Ignore other sub-blocks. 4324 if (Stream.SkipBlock()) 4325 return error("Malformed block"); 4326 continue; 4327 case BitstreamEntry::Record: 4328 Stream.skipRecord(Entry.ID); 4329 continue; 4330 } 4331 } 4332 } 4333 4334 std::error_code BitcodeReader::parseGlobalObjectAttachment( 4335 GlobalObject &GO, ArrayRef<uint64_t> Record) { 4336 assert(Record.size() % 2 == 0); 4337 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4338 auto K = MDKindMap.find(Record[I]); 4339 if (K == MDKindMap.end()) 4340 return error("Invalid ID"); 4341 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4342 if (!MD) 4343 return error("Invalid metadata attachment"); 4344 GO.addMetadata(K->second, *MD); 4345 } 4346 return std::error_code(); 4347 } 4348 4349 ErrorOr<bool> BitcodeReader::hasObjCCategory() { 4350 if (std::error_code EC = initStream(nullptr)) 4351 return EC; 4352 4353 // Sniff for the signature. 4354 if (!hasValidBitcodeHeader(Stream)) 4355 return error("Invalid bitcode signature"); 4356 4357 // We expect a number of well-defined blocks, though we don't necessarily 4358 // need to understand them all. 4359 while (true) { 4360 BitstreamEntry Entry = Stream.advance(); 4361 4362 switch (Entry.Kind) { 4363 case BitstreamEntry::Error: 4364 return error("Malformed block"); 4365 case BitstreamEntry::EndBlock: 4366 return std::error_code(); 4367 4368 case BitstreamEntry::SubBlock: 4369 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4370 return hasObjCCategoryInModule(); 4371 4372 // Ignore other sub-blocks. 4373 if (Stream.SkipBlock()) 4374 return error("Malformed block"); 4375 continue; 4376 4377 case BitstreamEntry::Record: 4378 Stream.skipRecord(Entry.ID); 4379 continue; 4380 } 4381 } 4382 } 4383 4384 ErrorOr<bool> BitcodeReader::hasObjCCategoryInModule() { 4385 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4386 return error("Invalid record"); 4387 4388 SmallVector<uint64_t, 64> Record; 4389 // Read all the records for this module. 4390 4391 while (true) { 4392 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4393 4394 switch (Entry.Kind) { 4395 case BitstreamEntry::SubBlock: // Handled for us already. 4396 case BitstreamEntry::Error: 4397 return error("Malformed block"); 4398 case BitstreamEntry::EndBlock: 4399 return false; 4400 case BitstreamEntry::Record: 4401 // The interesting case. 4402 break; 4403 } 4404 4405 // Read a record. 4406 switch (Stream.readRecord(Entry.ID, Record)) { 4407 default: 4408 break; // Default behavior, ignore unknown content. 4409 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4410 std::string S; 4411 if (convertToString(Record, 0, S)) 4412 return error("Invalid record"); 4413 // Check for the i386 and other (x86_64, ARM) conventions 4414 if (S.find("__DATA, __objc_catlist") != std::string::npos || 4415 S.find("__OBJC,__category") != std::string::npos) 4416 return true; 4417 break; 4418 } 4419 } 4420 Record.clear(); 4421 } 4422 llvm_unreachable("Exit infinite loop"); 4423 } 4424 4425 /// Parse metadata attachments. 4426 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4427 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4428 return error("Invalid record"); 4429 4430 SmallVector<uint64_t, 64> Record; 4431 4432 while (true) { 4433 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4434 4435 switch (Entry.Kind) { 4436 case BitstreamEntry::SubBlock: // Handled for us already. 4437 case BitstreamEntry::Error: 4438 return error("Malformed block"); 4439 case BitstreamEntry::EndBlock: 4440 return std::error_code(); 4441 case BitstreamEntry::Record: 4442 // The interesting case. 4443 break; 4444 } 4445 4446 // Read a metadata attachment record. 4447 Record.clear(); 4448 switch (Stream.readRecord(Entry.ID, Record)) { 4449 default: // Default behavior: ignore. 4450 break; 4451 case bitc::METADATA_ATTACHMENT: { 4452 unsigned RecordLength = Record.size(); 4453 if (Record.empty()) 4454 return error("Invalid record"); 4455 if (RecordLength % 2 == 0) { 4456 // A function attachment. 4457 if (std::error_code EC = parseGlobalObjectAttachment(F, Record)) 4458 return EC; 4459 continue; 4460 } 4461 4462 // An instruction attachment. 4463 Instruction *Inst = InstructionList[Record[0]]; 4464 for (unsigned i = 1; i != RecordLength; i = i+2) { 4465 unsigned Kind = Record[i]; 4466 DenseMap<unsigned, unsigned>::iterator I = 4467 MDKindMap.find(Kind); 4468 if (I == MDKindMap.end()) 4469 return error("Invalid ID"); 4470 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4471 if (isa<LocalAsMetadata>(Node)) 4472 // Drop the attachment. This used to be legal, but there's no 4473 // upgrade path. 4474 break; 4475 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4476 if (!MD) 4477 return error("Invalid metadata attachment"); 4478 4479 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4480 MD = upgradeInstructionLoopAttachment(*MD); 4481 4482 if (I->second == LLVMContext::MD_tbaa) { 4483 assert(!MD->isTemporary() && "should load MDs before attachments"); 4484 MD = UpgradeTBAANode(*MD); 4485 } 4486 Inst->setMetadata(I->second, MD); 4487 } 4488 break; 4489 } 4490 } 4491 } 4492 } 4493 4494 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4495 LLVMContext &Context = PtrType->getContext(); 4496 if (!isa<PointerType>(PtrType)) 4497 return error(Context, "Load/Store operand is not a pointer type"); 4498 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4499 4500 if (ValType && ValType != ElemType) 4501 return error(Context, "Explicit load/store type does not match pointee " 4502 "type of pointer operand"); 4503 if (!PointerType::isLoadableOrStorableType(ElemType)) 4504 return error(Context, "Cannot load/store from pointer"); 4505 return std::error_code(); 4506 } 4507 4508 /// Lazily parse the specified function body block. 4509 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4510 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4511 return error("Invalid record"); 4512 4513 // Unexpected unresolved metadata when parsing function. 4514 if (MetadataList.hasFwdRefs()) 4515 return error("Invalid function metadata: incoming forward references"); 4516 4517 InstructionList.clear(); 4518 unsigned ModuleValueListSize = ValueList.size(); 4519 unsigned ModuleMetadataListSize = MetadataList.size(); 4520 4521 // Add all the function arguments to the value table. 4522 for (Argument &I : F->args()) 4523 ValueList.push_back(&I); 4524 4525 unsigned NextValueNo = ValueList.size(); 4526 BasicBlock *CurBB = nullptr; 4527 unsigned CurBBNo = 0; 4528 4529 DebugLoc LastLoc; 4530 auto getLastInstruction = [&]() -> Instruction * { 4531 if (CurBB && !CurBB->empty()) 4532 return &CurBB->back(); 4533 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4534 !FunctionBBs[CurBBNo - 1]->empty()) 4535 return &FunctionBBs[CurBBNo - 1]->back(); 4536 return nullptr; 4537 }; 4538 4539 std::vector<OperandBundleDef> OperandBundles; 4540 4541 // Read all the records. 4542 SmallVector<uint64_t, 64> Record; 4543 4544 while (true) { 4545 BitstreamEntry Entry = Stream.advance(); 4546 4547 switch (Entry.Kind) { 4548 case BitstreamEntry::Error: 4549 return error("Malformed block"); 4550 case BitstreamEntry::EndBlock: 4551 goto OutOfRecordLoop; 4552 4553 case BitstreamEntry::SubBlock: 4554 switch (Entry.ID) { 4555 default: // Skip unknown content. 4556 if (Stream.SkipBlock()) 4557 return error("Invalid record"); 4558 break; 4559 case bitc::CONSTANTS_BLOCK_ID: 4560 if (std::error_code EC = parseConstants()) 4561 return EC; 4562 NextValueNo = ValueList.size(); 4563 break; 4564 case bitc::VALUE_SYMTAB_BLOCK_ID: 4565 if (std::error_code EC = parseValueSymbolTable()) 4566 return EC; 4567 break; 4568 case bitc::METADATA_ATTACHMENT_ID: 4569 if (std::error_code EC = parseMetadataAttachment(*F)) 4570 return EC; 4571 break; 4572 case bitc::METADATA_BLOCK_ID: 4573 if (std::error_code EC = parseMetadata()) 4574 return EC; 4575 break; 4576 case bitc::USELIST_BLOCK_ID: 4577 if (std::error_code EC = parseUseLists()) 4578 return EC; 4579 break; 4580 } 4581 continue; 4582 4583 case BitstreamEntry::Record: 4584 // The interesting case. 4585 break; 4586 } 4587 4588 // Read a record. 4589 Record.clear(); 4590 Instruction *I = nullptr; 4591 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4592 switch (BitCode) { 4593 default: // Default behavior: reject 4594 return error("Invalid value"); 4595 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4596 if (Record.size() < 1 || Record[0] == 0) 4597 return error("Invalid record"); 4598 // Create all the basic blocks for the function. 4599 FunctionBBs.resize(Record[0]); 4600 4601 // See if anything took the address of blocks in this function. 4602 auto BBFRI = BasicBlockFwdRefs.find(F); 4603 if (BBFRI == BasicBlockFwdRefs.end()) { 4604 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4605 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4606 } else { 4607 auto &BBRefs = BBFRI->second; 4608 // Check for invalid basic block references. 4609 if (BBRefs.size() > FunctionBBs.size()) 4610 return error("Invalid ID"); 4611 assert(!BBRefs.empty() && "Unexpected empty array"); 4612 assert(!BBRefs.front() && "Invalid reference to entry block"); 4613 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4614 ++I) 4615 if (I < RE && BBRefs[I]) { 4616 BBRefs[I]->insertInto(F); 4617 FunctionBBs[I] = BBRefs[I]; 4618 } else { 4619 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4620 } 4621 4622 // Erase from the table. 4623 BasicBlockFwdRefs.erase(BBFRI); 4624 } 4625 4626 CurBB = FunctionBBs[0]; 4627 continue; 4628 } 4629 4630 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4631 // This record indicates that the last instruction is at the same 4632 // location as the previous instruction with a location. 4633 I = getLastInstruction(); 4634 4635 if (!I) 4636 return error("Invalid record"); 4637 I->setDebugLoc(LastLoc); 4638 I = nullptr; 4639 continue; 4640 4641 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4642 I = getLastInstruction(); 4643 if (!I || Record.size() < 4) 4644 return error("Invalid record"); 4645 4646 unsigned Line = Record[0], Col = Record[1]; 4647 unsigned ScopeID = Record[2], IAID = Record[3]; 4648 4649 MDNode *Scope = nullptr, *IA = nullptr; 4650 if (ScopeID) { 4651 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4652 if (!Scope) 4653 return error("Invalid record"); 4654 } 4655 if (IAID) { 4656 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4657 if (!IA) 4658 return error("Invalid record"); 4659 } 4660 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4661 I->setDebugLoc(LastLoc); 4662 I = nullptr; 4663 continue; 4664 } 4665 4666 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4667 unsigned OpNum = 0; 4668 Value *LHS, *RHS; 4669 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4670 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4671 OpNum+1 > Record.size()) 4672 return error("Invalid record"); 4673 4674 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4675 if (Opc == -1) 4676 return error("Invalid record"); 4677 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4678 InstructionList.push_back(I); 4679 if (OpNum < Record.size()) { 4680 if (Opc == Instruction::Add || 4681 Opc == Instruction::Sub || 4682 Opc == Instruction::Mul || 4683 Opc == Instruction::Shl) { 4684 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4685 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4686 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4687 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4688 } else if (Opc == Instruction::SDiv || 4689 Opc == Instruction::UDiv || 4690 Opc == Instruction::LShr || 4691 Opc == Instruction::AShr) { 4692 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4693 cast<BinaryOperator>(I)->setIsExact(true); 4694 } else if (isa<FPMathOperator>(I)) { 4695 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4696 if (FMF.any()) 4697 I->setFastMathFlags(FMF); 4698 } 4699 4700 } 4701 break; 4702 } 4703 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4704 unsigned OpNum = 0; 4705 Value *Op; 4706 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4707 OpNum+2 != Record.size()) 4708 return error("Invalid record"); 4709 4710 Type *ResTy = getTypeByID(Record[OpNum]); 4711 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4712 if (Opc == -1 || !ResTy) 4713 return error("Invalid record"); 4714 Instruction *Temp = nullptr; 4715 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4716 if (Temp) { 4717 InstructionList.push_back(Temp); 4718 CurBB->getInstList().push_back(Temp); 4719 } 4720 } else { 4721 auto CastOp = (Instruction::CastOps)Opc; 4722 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4723 return error("Invalid cast"); 4724 I = CastInst::Create(CastOp, Op, ResTy); 4725 } 4726 InstructionList.push_back(I); 4727 break; 4728 } 4729 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4730 case bitc::FUNC_CODE_INST_GEP_OLD: 4731 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4732 unsigned OpNum = 0; 4733 4734 Type *Ty; 4735 bool InBounds; 4736 4737 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4738 InBounds = Record[OpNum++]; 4739 Ty = getTypeByID(Record[OpNum++]); 4740 } else { 4741 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4742 Ty = nullptr; 4743 } 4744 4745 Value *BasePtr; 4746 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4747 return error("Invalid record"); 4748 4749 if (!Ty) 4750 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4751 ->getElementType(); 4752 else if (Ty != 4753 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4754 ->getElementType()) 4755 return error( 4756 "Explicit gep type does not match pointee type of pointer operand"); 4757 4758 SmallVector<Value*, 16> GEPIdx; 4759 while (OpNum != Record.size()) { 4760 Value *Op; 4761 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4762 return error("Invalid record"); 4763 GEPIdx.push_back(Op); 4764 } 4765 4766 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4767 4768 InstructionList.push_back(I); 4769 if (InBounds) 4770 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4771 break; 4772 } 4773 4774 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4775 // EXTRACTVAL: [opty, opval, n x indices] 4776 unsigned OpNum = 0; 4777 Value *Agg; 4778 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4779 return error("Invalid record"); 4780 4781 unsigned RecSize = Record.size(); 4782 if (OpNum == RecSize) 4783 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4784 4785 SmallVector<unsigned, 4> EXTRACTVALIdx; 4786 Type *CurTy = Agg->getType(); 4787 for (; OpNum != RecSize; ++OpNum) { 4788 bool IsArray = CurTy->isArrayTy(); 4789 bool IsStruct = CurTy->isStructTy(); 4790 uint64_t Index = Record[OpNum]; 4791 4792 if (!IsStruct && !IsArray) 4793 return error("EXTRACTVAL: Invalid type"); 4794 if ((unsigned)Index != Index) 4795 return error("Invalid value"); 4796 if (IsStruct && Index >= CurTy->subtypes().size()) 4797 return error("EXTRACTVAL: Invalid struct index"); 4798 if (IsArray && Index >= CurTy->getArrayNumElements()) 4799 return error("EXTRACTVAL: Invalid array index"); 4800 EXTRACTVALIdx.push_back((unsigned)Index); 4801 4802 if (IsStruct) 4803 CurTy = CurTy->subtypes()[Index]; 4804 else 4805 CurTy = CurTy->subtypes()[0]; 4806 } 4807 4808 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4809 InstructionList.push_back(I); 4810 break; 4811 } 4812 4813 case bitc::FUNC_CODE_INST_INSERTVAL: { 4814 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4815 unsigned OpNum = 0; 4816 Value *Agg; 4817 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4818 return error("Invalid record"); 4819 Value *Val; 4820 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4821 return error("Invalid record"); 4822 4823 unsigned RecSize = Record.size(); 4824 if (OpNum == RecSize) 4825 return error("INSERTVAL: Invalid instruction with 0 indices"); 4826 4827 SmallVector<unsigned, 4> INSERTVALIdx; 4828 Type *CurTy = Agg->getType(); 4829 for (; OpNum != RecSize; ++OpNum) { 4830 bool IsArray = CurTy->isArrayTy(); 4831 bool IsStruct = CurTy->isStructTy(); 4832 uint64_t Index = Record[OpNum]; 4833 4834 if (!IsStruct && !IsArray) 4835 return error("INSERTVAL: Invalid type"); 4836 if ((unsigned)Index != Index) 4837 return error("Invalid value"); 4838 if (IsStruct && Index >= CurTy->subtypes().size()) 4839 return error("INSERTVAL: Invalid struct index"); 4840 if (IsArray && Index >= CurTy->getArrayNumElements()) 4841 return error("INSERTVAL: Invalid array index"); 4842 4843 INSERTVALIdx.push_back((unsigned)Index); 4844 if (IsStruct) 4845 CurTy = CurTy->subtypes()[Index]; 4846 else 4847 CurTy = CurTy->subtypes()[0]; 4848 } 4849 4850 if (CurTy != Val->getType()) 4851 return error("Inserted value type doesn't match aggregate type"); 4852 4853 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4854 InstructionList.push_back(I); 4855 break; 4856 } 4857 4858 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4859 // obsolete form of select 4860 // handles select i1 ... in old bitcode 4861 unsigned OpNum = 0; 4862 Value *TrueVal, *FalseVal, *Cond; 4863 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4864 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4865 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4866 return error("Invalid record"); 4867 4868 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4869 InstructionList.push_back(I); 4870 break; 4871 } 4872 4873 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4874 // new form of select 4875 // handles select i1 or select [N x i1] 4876 unsigned OpNum = 0; 4877 Value *TrueVal, *FalseVal, *Cond; 4878 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4879 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4880 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4881 return error("Invalid record"); 4882 4883 // select condition can be either i1 or [N x i1] 4884 if (VectorType* vector_type = 4885 dyn_cast<VectorType>(Cond->getType())) { 4886 // expect <n x i1> 4887 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4888 return error("Invalid type for value"); 4889 } else { 4890 // expect i1 4891 if (Cond->getType() != Type::getInt1Ty(Context)) 4892 return error("Invalid type for value"); 4893 } 4894 4895 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4896 InstructionList.push_back(I); 4897 break; 4898 } 4899 4900 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4901 unsigned OpNum = 0; 4902 Value *Vec, *Idx; 4903 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4904 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4905 return error("Invalid record"); 4906 if (!Vec->getType()->isVectorTy()) 4907 return error("Invalid type for value"); 4908 I = ExtractElementInst::Create(Vec, Idx); 4909 InstructionList.push_back(I); 4910 break; 4911 } 4912 4913 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4914 unsigned OpNum = 0; 4915 Value *Vec, *Elt, *Idx; 4916 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4917 return error("Invalid record"); 4918 if (!Vec->getType()->isVectorTy()) 4919 return error("Invalid type for value"); 4920 if (popValue(Record, OpNum, NextValueNo, 4921 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4922 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4923 return error("Invalid record"); 4924 I = InsertElementInst::Create(Vec, Elt, Idx); 4925 InstructionList.push_back(I); 4926 break; 4927 } 4928 4929 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4930 unsigned OpNum = 0; 4931 Value *Vec1, *Vec2, *Mask; 4932 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4933 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4934 return error("Invalid record"); 4935 4936 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4937 return error("Invalid record"); 4938 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4939 return error("Invalid type for value"); 4940 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4941 InstructionList.push_back(I); 4942 break; 4943 } 4944 4945 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4946 // Old form of ICmp/FCmp returning bool 4947 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4948 // both legal on vectors but had different behaviour. 4949 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4950 // FCmp/ICmp returning bool or vector of bool 4951 4952 unsigned OpNum = 0; 4953 Value *LHS, *RHS; 4954 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4955 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4956 return error("Invalid record"); 4957 4958 unsigned PredVal = Record[OpNum]; 4959 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4960 FastMathFlags FMF; 4961 if (IsFP && Record.size() > OpNum+1) 4962 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4963 4964 if (OpNum+1 != Record.size()) 4965 return error("Invalid record"); 4966 4967 if (LHS->getType()->isFPOrFPVectorTy()) 4968 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4969 else 4970 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4971 4972 if (FMF.any()) 4973 I->setFastMathFlags(FMF); 4974 InstructionList.push_back(I); 4975 break; 4976 } 4977 4978 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4979 { 4980 unsigned Size = Record.size(); 4981 if (Size == 0) { 4982 I = ReturnInst::Create(Context); 4983 InstructionList.push_back(I); 4984 break; 4985 } 4986 4987 unsigned OpNum = 0; 4988 Value *Op = nullptr; 4989 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4990 return error("Invalid record"); 4991 if (OpNum != Record.size()) 4992 return error("Invalid record"); 4993 4994 I = ReturnInst::Create(Context, Op); 4995 InstructionList.push_back(I); 4996 break; 4997 } 4998 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4999 if (Record.size() != 1 && Record.size() != 3) 5000 return error("Invalid record"); 5001 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5002 if (!TrueDest) 5003 return error("Invalid record"); 5004 5005 if (Record.size() == 1) { 5006 I = BranchInst::Create(TrueDest); 5007 InstructionList.push_back(I); 5008 } 5009 else { 5010 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5011 Value *Cond = getValue(Record, 2, NextValueNo, 5012 Type::getInt1Ty(Context)); 5013 if (!FalseDest || !Cond) 5014 return error("Invalid record"); 5015 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5016 InstructionList.push_back(I); 5017 } 5018 break; 5019 } 5020 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5021 if (Record.size() != 1 && Record.size() != 2) 5022 return error("Invalid record"); 5023 unsigned Idx = 0; 5024 Value *CleanupPad = 5025 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5026 if (!CleanupPad) 5027 return error("Invalid record"); 5028 BasicBlock *UnwindDest = nullptr; 5029 if (Record.size() == 2) { 5030 UnwindDest = getBasicBlock(Record[Idx++]); 5031 if (!UnwindDest) 5032 return error("Invalid record"); 5033 } 5034 5035 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5036 InstructionList.push_back(I); 5037 break; 5038 } 5039 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5040 if (Record.size() != 2) 5041 return error("Invalid record"); 5042 unsigned Idx = 0; 5043 Value *CatchPad = 5044 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5045 if (!CatchPad) 5046 return error("Invalid record"); 5047 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5048 if (!BB) 5049 return error("Invalid record"); 5050 5051 I = CatchReturnInst::Create(CatchPad, BB); 5052 InstructionList.push_back(I); 5053 break; 5054 } 5055 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5056 // We must have, at minimum, the outer scope and the number of arguments. 5057 if (Record.size() < 2) 5058 return error("Invalid record"); 5059 5060 unsigned Idx = 0; 5061 5062 Value *ParentPad = 5063 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5064 5065 unsigned NumHandlers = Record[Idx++]; 5066 5067 SmallVector<BasicBlock *, 2> Handlers; 5068 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5069 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5070 if (!BB) 5071 return error("Invalid record"); 5072 Handlers.push_back(BB); 5073 } 5074 5075 BasicBlock *UnwindDest = nullptr; 5076 if (Idx + 1 == Record.size()) { 5077 UnwindDest = getBasicBlock(Record[Idx++]); 5078 if (!UnwindDest) 5079 return error("Invalid record"); 5080 } 5081 5082 if (Record.size() != Idx) 5083 return error("Invalid record"); 5084 5085 auto *CatchSwitch = 5086 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5087 for (BasicBlock *Handler : Handlers) 5088 CatchSwitch->addHandler(Handler); 5089 I = CatchSwitch; 5090 InstructionList.push_back(I); 5091 break; 5092 } 5093 case bitc::FUNC_CODE_INST_CATCHPAD: 5094 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5095 // We must have, at minimum, the outer scope and the number of arguments. 5096 if (Record.size() < 2) 5097 return error("Invalid record"); 5098 5099 unsigned Idx = 0; 5100 5101 Value *ParentPad = 5102 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5103 5104 unsigned NumArgOperands = Record[Idx++]; 5105 5106 SmallVector<Value *, 2> Args; 5107 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5108 Value *Val; 5109 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5110 return error("Invalid record"); 5111 Args.push_back(Val); 5112 } 5113 5114 if (Record.size() != Idx) 5115 return error("Invalid record"); 5116 5117 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5118 I = CleanupPadInst::Create(ParentPad, Args); 5119 else 5120 I = CatchPadInst::Create(ParentPad, Args); 5121 InstructionList.push_back(I); 5122 break; 5123 } 5124 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5125 // Check magic 5126 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5127 // "New" SwitchInst format with case ranges. The changes to write this 5128 // format were reverted but we still recognize bitcode that uses it. 5129 // Hopefully someday we will have support for case ranges and can use 5130 // this format again. 5131 5132 Type *OpTy = getTypeByID(Record[1]); 5133 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5134 5135 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 5136 BasicBlock *Default = getBasicBlock(Record[3]); 5137 if (!OpTy || !Cond || !Default) 5138 return error("Invalid record"); 5139 5140 unsigned NumCases = Record[4]; 5141 5142 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5143 InstructionList.push_back(SI); 5144 5145 unsigned CurIdx = 5; 5146 for (unsigned i = 0; i != NumCases; ++i) { 5147 SmallVector<ConstantInt*, 1> CaseVals; 5148 unsigned NumItems = Record[CurIdx++]; 5149 for (unsigned ci = 0; ci != NumItems; ++ci) { 5150 bool isSingleNumber = Record[CurIdx++]; 5151 5152 APInt Low; 5153 unsigned ActiveWords = 1; 5154 if (ValueBitWidth > 64) 5155 ActiveWords = Record[CurIdx++]; 5156 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5157 ValueBitWidth); 5158 CurIdx += ActiveWords; 5159 5160 if (!isSingleNumber) { 5161 ActiveWords = 1; 5162 if (ValueBitWidth > 64) 5163 ActiveWords = Record[CurIdx++]; 5164 APInt High = readWideAPInt( 5165 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5166 CurIdx += ActiveWords; 5167 5168 // FIXME: It is not clear whether values in the range should be 5169 // compared as signed or unsigned values. The partially 5170 // implemented changes that used this format in the past used 5171 // unsigned comparisons. 5172 for ( ; Low.ule(High); ++Low) 5173 CaseVals.push_back(ConstantInt::get(Context, Low)); 5174 } else 5175 CaseVals.push_back(ConstantInt::get(Context, Low)); 5176 } 5177 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5178 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 5179 cve = CaseVals.end(); cvi != cve; ++cvi) 5180 SI->addCase(*cvi, DestBB); 5181 } 5182 I = SI; 5183 break; 5184 } 5185 5186 // Old SwitchInst format without case ranges. 5187 5188 if (Record.size() < 3 || (Record.size() & 1) == 0) 5189 return error("Invalid record"); 5190 Type *OpTy = getTypeByID(Record[0]); 5191 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 5192 BasicBlock *Default = getBasicBlock(Record[2]); 5193 if (!OpTy || !Cond || !Default) 5194 return error("Invalid record"); 5195 unsigned NumCases = (Record.size()-3)/2; 5196 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5197 InstructionList.push_back(SI); 5198 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5199 ConstantInt *CaseVal = 5200 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 5201 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5202 if (!CaseVal || !DestBB) { 5203 delete SI; 5204 return error("Invalid record"); 5205 } 5206 SI->addCase(CaseVal, DestBB); 5207 } 5208 I = SI; 5209 break; 5210 } 5211 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5212 if (Record.size() < 2) 5213 return error("Invalid record"); 5214 Type *OpTy = getTypeByID(Record[0]); 5215 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 5216 if (!OpTy || !Address) 5217 return error("Invalid record"); 5218 unsigned NumDests = Record.size()-2; 5219 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5220 InstructionList.push_back(IBI); 5221 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5222 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5223 IBI->addDestination(DestBB); 5224 } else { 5225 delete IBI; 5226 return error("Invalid record"); 5227 } 5228 } 5229 I = IBI; 5230 break; 5231 } 5232 5233 case bitc::FUNC_CODE_INST_INVOKE: { 5234 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5235 if (Record.size() < 4) 5236 return error("Invalid record"); 5237 unsigned OpNum = 0; 5238 AttributeSet PAL = getAttributes(Record[OpNum++]); 5239 unsigned CCInfo = Record[OpNum++]; 5240 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5241 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5242 5243 FunctionType *FTy = nullptr; 5244 if (CCInfo >> 13 & 1 && 5245 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5246 return error("Explicit invoke type is not a function type"); 5247 5248 Value *Callee; 5249 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5250 return error("Invalid record"); 5251 5252 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5253 if (!CalleeTy) 5254 return error("Callee is not a pointer"); 5255 if (!FTy) { 5256 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5257 if (!FTy) 5258 return error("Callee is not of pointer to function type"); 5259 } else if (CalleeTy->getElementType() != FTy) 5260 return error("Explicit invoke type does not match pointee type of " 5261 "callee operand"); 5262 if (Record.size() < FTy->getNumParams() + OpNum) 5263 return error("Insufficient operands to call"); 5264 5265 SmallVector<Value*, 16> Ops; 5266 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5267 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5268 FTy->getParamType(i))); 5269 if (!Ops.back()) 5270 return error("Invalid record"); 5271 } 5272 5273 if (!FTy->isVarArg()) { 5274 if (Record.size() != OpNum) 5275 return error("Invalid record"); 5276 } else { 5277 // Read type/value pairs for varargs params. 5278 while (OpNum != Record.size()) { 5279 Value *Op; 5280 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5281 return error("Invalid record"); 5282 Ops.push_back(Op); 5283 } 5284 } 5285 5286 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5287 OperandBundles.clear(); 5288 InstructionList.push_back(I); 5289 cast<InvokeInst>(I)->setCallingConv( 5290 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5291 cast<InvokeInst>(I)->setAttributes(PAL); 5292 break; 5293 } 5294 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5295 unsigned Idx = 0; 5296 Value *Val = nullptr; 5297 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5298 return error("Invalid record"); 5299 I = ResumeInst::Create(Val); 5300 InstructionList.push_back(I); 5301 break; 5302 } 5303 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5304 I = new UnreachableInst(Context); 5305 InstructionList.push_back(I); 5306 break; 5307 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5308 if (Record.size() < 1 || ((Record.size()-1)&1)) 5309 return error("Invalid record"); 5310 Type *Ty = getTypeByID(Record[0]); 5311 if (!Ty) 5312 return error("Invalid record"); 5313 5314 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5315 InstructionList.push_back(PN); 5316 5317 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5318 Value *V; 5319 // With the new function encoding, it is possible that operands have 5320 // negative IDs (for forward references). Use a signed VBR 5321 // representation to keep the encoding small. 5322 if (UseRelativeIDs) 5323 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5324 else 5325 V = getValue(Record, 1+i, NextValueNo, Ty); 5326 BasicBlock *BB = getBasicBlock(Record[2+i]); 5327 if (!V || !BB) 5328 return error("Invalid record"); 5329 PN->addIncoming(V, BB); 5330 } 5331 I = PN; 5332 break; 5333 } 5334 5335 case bitc::FUNC_CODE_INST_LANDINGPAD: 5336 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5337 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5338 unsigned Idx = 0; 5339 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5340 if (Record.size() < 3) 5341 return error("Invalid record"); 5342 } else { 5343 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5344 if (Record.size() < 4) 5345 return error("Invalid record"); 5346 } 5347 Type *Ty = getTypeByID(Record[Idx++]); 5348 if (!Ty) 5349 return error("Invalid record"); 5350 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5351 Value *PersFn = nullptr; 5352 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5353 return error("Invalid record"); 5354 5355 if (!F->hasPersonalityFn()) 5356 F->setPersonalityFn(cast<Constant>(PersFn)); 5357 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5358 return error("Personality function mismatch"); 5359 } 5360 5361 bool IsCleanup = !!Record[Idx++]; 5362 unsigned NumClauses = Record[Idx++]; 5363 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5364 LP->setCleanup(IsCleanup); 5365 for (unsigned J = 0; J != NumClauses; ++J) { 5366 LandingPadInst::ClauseType CT = 5367 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5368 Value *Val; 5369 5370 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5371 delete LP; 5372 return error("Invalid record"); 5373 } 5374 5375 assert((CT != LandingPadInst::Catch || 5376 !isa<ArrayType>(Val->getType())) && 5377 "Catch clause has a invalid type!"); 5378 assert((CT != LandingPadInst::Filter || 5379 isa<ArrayType>(Val->getType())) && 5380 "Filter clause has invalid type!"); 5381 LP->addClause(cast<Constant>(Val)); 5382 } 5383 5384 I = LP; 5385 InstructionList.push_back(I); 5386 break; 5387 } 5388 5389 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5390 if (Record.size() != 4) 5391 return error("Invalid record"); 5392 uint64_t AlignRecord = Record[3]; 5393 const uint64_t InAllocaMask = uint64_t(1) << 5; 5394 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5395 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5396 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5397 SwiftErrorMask; 5398 bool InAlloca = AlignRecord & InAllocaMask; 5399 bool SwiftError = AlignRecord & SwiftErrorMask; 5400 Type *Ty = getTypeByID(Record[0]); 5401 if ((AlignRecord & ExplicitTypeMask) == 0) { 5402 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5403 if (!PTy) 5404 return error("Old-style alloca with a non-pointer type"); 5405 Ty = PTy->getElementType(); 5406 } 5407 Type *OpTy = getTypeByID(Record[1]); 5408 Value *Size = getFnValueByID(Record[2], OpTy); 5409 unsigned Align; 5410 if (std::error_code EC = 5411 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5412 return EC; 5413 } 5414 if (!Ty || !Size) 5415 return error("Invalid record"); 5416 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5417 AI->setUsedWithInAlloca(InAlloca); 5418 AI->setSwiftError(SwiftError); 5419 I = AI; 5420 InstructionList.push_back(I); 5421 break; 5422 } 5423 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5424 unsigned OpNum = 0; 5425 Value *Op; 5426 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5427 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5428 return error("Invalid record"); 5429 5430 Type *Ty = nullptr; 5431 if (OpNum + 3 == Record.size()) 5432 Ty = getTypeByID(Record[OpNum++]); 5433 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5434 return EC; 5435 if (!Ty) 5436 Ty = cast<PointerType>(Op->getType())->getElementType(); 5437 5438 unsigned Align; 5439 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5440 return EC; 5441 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5442 5443 InstructionList.push_back(I); 5444 break; 5445 } 5446 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5447 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5448 unsigned OpNum = 0; 5449 Value *Op; 5450 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5451 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5452 return error("Invalid record"); 5453 5454 Type *Ty = nullptr; 5455 if (OpNum + 5 == Record.size()) 5456 Ty = getTypeByID(Record[OpNum++]); 5457 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5458 return EC; 5459 if (!Ty) 5460 Ty = cast<PointerType>(Op->getType())->getElementType(); 5461 5462 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5463 if (Ordering == AtomicOrdering::NotAtomic || 5464 Ordering == AtomicOrdering::Release || 5465 Ordering == AtomicOrdering::AcquireRelease) 5466 return error("Invalid record"); 5467 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5468 return error("Invalid record"); 5469 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5470 5471 unsigned Align; 5472 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5473 return EC; 5474 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5475 5476 InstructionList.push_back(I); 5477 break; 5478 } 5479 case bitc::FUNC_CODE_INST_STORE: 5480 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5481 unsigned OpNum = 0; 5482 Value *Val, *Ptr; 5483 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5484 (BitCode == bitc::FUNC_CODE_INST_STORE 5485 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5486 : popValue(Record, OpNum, NextValueNo, 5487 cast<PointerType>(Ptr->getType())->getElementType(), 5488 Val)) || 5489 OpNum + 2 != Record.size()) 5490 return error("Invalid record"); 5491 5492 if (std::error_code EC = 5493 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5494 return EC; 5495 unsigned Align; 5496 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5497 return EC; 5498 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5499 InstructionList.push_back(I); 5500 break; 5501 } 5502 case bitc::FUNC_CODE_INST_STOREATOMIC: 5503 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5504 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5505 unsigned OpNum = 0; 5506 Value *Val, *Ptr; 5507 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5508 !isa<PointerType>(Ptr->getType()) || 5509 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5510 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5511 : popValue(Record, OpNum, NextValueNo, 5512 cast<PointerType>(Ptr->getType())->getElementType(), 5513 Val)) || 5514 OpNum + 4 != Record.size()) 5515 return error("Invalid record"); 5516 5517 if (std::error_code EC = 5518 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5519 return EC; 5520 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5521 if (Ordering == AtomicOrdering::NotAtomic || 5522 Ordering == AtomicOrdering::Acquire || 5523 Ordering == AtomicOrdering::AcquireRelease) 5524 return error("Invalid record"); 5525 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5526 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5527 return error("Invalid record"); 5528 5529 unsigned Align; 5530 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5531 return EC; 5532 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5533 InstructionList.push_back(I); 5534 break; 5535 } 5536 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5537 case bitc::FUNC_CODE_INST_CMPXCHG: { 5538 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5539 // failureordering?, isweak?] 5540 unsigned OpNum = 0; 5541 Value *Ptr, *Cmp, *New; 5542 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5543 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5544 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5545 : popValue(Record, OpNum, NextValueNo, 5546 cast<PointerType>(Ptr->getType())->getElementType(), 5547 Cmp)) || 5548 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5549 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5550 return error("Invalid record"); 5551 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5552 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5553 SuccessOrdering == AtomicOrdering::Unordered) 5554 return error("Invalid record"); 5555 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5556 5557 if (std::error_code EC = 5558 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5559 return EC; 5560 AtomicOrdering FailureOrdering; 5561 if (Record.size() < 7) 5562 FailureOrdering = 5563 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5564 else 5565 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5566 5567 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5568 SynchScope); 5569 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5570 5571 if (Record.size() < 8) { 5572 // Before weak cmpxchgs existed, the instruction simply returned the 5573 // value loaded from memory, so bitcode files from that era will be 5574 // expecting the first component of a modern cmpxchg. 5575 CurBB->getInstList().push_back(I); 5576 I = ExtractValueInst::Create(I, 0); 5577 } else { 5578 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5579 } 5580 5581 InstructionList.push_back(I); 5582 break; 5583 } 5584 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5585 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5586 unsigned OpNum = 0; 5587 Value *Ptr, *Val; 5588 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5589 !isa<PointerType>(Ptr->getType()) || 5590 popValue(Record, OpNum, NextValueNo, 5591 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5592 OpNum+4 != Record.size()) 5593 return error("Invalid record"); 5594 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5595 if (Operation < AtomicRMWInst::FIRST_BINOP || 5596 Operation > AtomicRMWInst::LAST_BINOP) 5597 return error("Invalid record"); 5598 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5599 if (Ordering == AtomicOrdering::NotAtomic || 5600 Ordering == AtomicOrdering::Unordered) 5601 return error("Invalid record"); 5602 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5603 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5604 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5605 InstructionList.push_back(I); 5606 break; 5607 } 5608 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5609 if (2 != Record.size()) 5610 return error("Invalid record"); 5611 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5612 if (Ordering == AtomicOrdering::NotAtomic || 5613 Ordering == AtomicOrdering::Unordered || 5614 Ordering == AtomicOrdering::Monotonic) 5615 return error("Invalid record"); 5616 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5617 I = new FenceInst(Context, Ordering, SynchScope); 5618 InstructionList.push_back(I); 5619 break; 5620 } 5621 case bitc::FUNC_CODE_INST_CALL: { 5622 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5623 if (Record.size() < 3) 5624 return error("Invalid record"); 5625 5626 unsigned OpNum = 0; 5627 AttributeSet PAL = getAttributes(Record[OpNum++]); 5628 unsigned CCInfo = Record[OpNum++]; 5629 5630 FastMathFlags FMF; 5631 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5632 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5633 if (!FMF.any()) 5634 return error("Fast math flags indicator set for call with no FMF"); 5635 } 5636 5637 FunctionType *FTy = nullptr; 5638 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5639 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5640 return error("Explicit call type is not a function type"); 5641 5642 Value *Callee; 5643 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5644 return error("Invalid record"); 5645 5646 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5647 if (!OpTy) 5648 return error("Callee is not a pointer type"); 5649 if (!FTy) { 5650 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5651 if (!FTy) 5652 return error("Callee is not of pointer to function type"); 5653 } else if (OpTy->getElementType() != FTy) 5654 return error("Explicit call type does not match pointee type of " 5655 "callee operand"); 5656 if (Record.size() < FTy->getNumParams() + OpNum) 5657 return error("Insufficient operands to call"); 5658 5659 SmallVector<Value*, 16> Args; 5660 // Read the fixed params. 5661 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5662 if (FTy->getParamType(i)->isLabelTy()) 5663 Args.push_back(getBasicBlock(Record[OpNum])); 5664 else 5665 Args.push_back(getValue(Record, OpNum, NextValueNo, 5666 FTy->getParamType(i))); 5667 if (!Args.back()) 5668 return error("Invalid record"); 5669 } 5670 5671 // Read type/value pairs for varargs params. 5672 if (!FTy->isVarArg()) { 5673 if (OpNum != Record.size()) 5674 return error("Invalid record"); 5675 } else { 5676 while (OpNum != Record.size()) { 5677 Value *Op; 5678 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5679 return error("Invalid record"); 5680 Args.push_back(Op); 5681 } 5682 } 5683 5684 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5685 OperandBundles.clear(); 5686 InstructionList.push_back(I); 5687 cast<CallInst>(I)->setCallingConv( 5688 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5689 CallInst::TailCallKind TCK = CallInst::TCK_None; 5690 if (CCInfo & 1 << bitc::CALL_TAIL) 5691 TCK = CallInst::TCK_Tail; 5692 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5693 TCK = CallInst::TCK_MustTail; 5694 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5695 TCK = CallInst::TCK_NoTail; 5696 cast<CallInst>(I)->setTailCallKind(TCK); 5697 cast<CallInst>(I)->setAttributes(PAL); 5698 if (FMF.any()) { 5699 if (!isa<FPMathOperator>(I)) 5700 return error("Fast-math-flags specified for call without " 5701 "floating-point scalar or vector return type"); 5702 I->setFastMathFlags(FMF); 5703 } 5704 break; 5705 } 5706 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5707 if (Record.size() < 3) 5708 return error("Invalid record"); 5709 Type *OpTy = getTypeByID(Record[0]); 5710 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5711 Type *ResTy = getTypeByID(Record[2]); 5712 if (!OpTy || !Op || !ResTy) 5713 return error("Invalid record"); 5714 I = new VAArgInst(Op, ResTy); 5715 InstructionList.push_back(I); 5716 break; 5717 } 5718 5719 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5720 // A call or an invoke can be optionally prefixed with some variable 5721 // number of operand bundle blocks. These blocks are read into 5722 // OperandBundles and consumed at the next call or invoke instruction. 5723 5724 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5725 return error("Invalid record"); 5726 5727 std::vector<Value *> Inputs; 5728 5729 unsigned OpNum = 1; 5730 while (OpNum != Record.size()) { 5731 Value *Op; 5732 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5733 return error("Invalid record"); 5734 Inputs.push_back(Op); 5735 } 5736 5737 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5738 continue; 5739 } 5740 } 5741 5742 // Add instruction to end of current BB. If there is no current BB, reject 5743 // this file. 5744 if (!CurBB) { 5745 delete I; 5746 return error("Invalid instruction with no BB"); 5747 } 5748 if (!OperandBundles.empty()) { 5749 delete I; 5750 return error("Operand bundles found with no consumer"); 5751 } 5752 CurBB->getInstList().push_back(I); 5753 5754 // If this was a terminator instruction, move to the next block. 5755 if (isa<TerminatorInst>(I)) { 5756 ++CurBBNo; 5757 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5758 } 5759 5760 // Non-void values get registered in the value table for future use. 5761 if (I && !I->getType()->isVoidTy()) 5762 ValueList.assignValue(I, NextValueNo++); 5763 } 5764 5765 OutOfRecordLoop: 5766 5767 if (!OperandBundles.empty()) 5768 return error("Operand bundles found with no consumer"); 5769 5770 // Check the function list for unresolved values. 5771 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5772 if (!A->getParent()) { 5773 // We found at least one unresolved value. Nuke them all to avoid leaks. 5774 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5775 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5776 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5777 delete A; 5778 } 5779 } 5780 return error("Never resolved value found in function"); 5781 } 5782 } 5783 5784 // Unexpected unresolved metadata about to be dropped. 5785 if (MetadataList.hasFwdRefs()) 5786 return error("Invalid function metadata: outgoing forward refs"); 5787 5788 // Trim the value list down to the size it was before we parsed this function. 5789 ValueList.shrinkTo(ModuleValueListSize); 5790 MetadataList.shrinkTo(ModuleMetadataListSize); 5791 std::vector<BasicBlock*>().swap(FunctionBBs); 5792 return std::error_code(); 5793 } 5794 5795 /// Find the function body in the bitcode stream 5796 std::error_code BitcodeReader::findFunctionInStream( 5797 Function *F, 5798 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5799 while (DeferredFunctionInfoIterator->second == 0) { 5800 // This is the fallback handling for the old format bitcode that 5801 // didn't contain the function index in the VST, or when we have 5802 // an anonymous function which would not have a VST entry. 5803 // Assert that we have one of those two cases. 5804 assert(VSTOffset == 0 || !F->hasName()); 5805 // Parse the next body in the stream and set its position in the 5806 // DeferredFunctionInfo map. 5807 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5808 return EC; 5809 } 5810 return std::error_code(); 5811 } 5812 5813 //===----------------------------------------------------------------------===// 5814 // GVMaterializer implementation 5815 //===----------------------------------------------------------------------===// 5816 5817 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5818 5819 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5820 Function *F = dyn_cast<Function>(GV); 5821 // If it's not a function or is already material, ignore the request. 5822 if (!F || !F->isMaterializable()) 5823 return std::error_code(); 5824 5825 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5826 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5827 // If its position is recorded as 0, its body is somewhere in the stream 5828 // but we haven't seen it yet. 5829 if (DFII->second == 0) 5830 if (std::error_code EC = findFunctionInStream(F, DFII)) 5831 return EC; 5832 5833 // Materialize metadata before parsing any function bodies. 5834 if (std::error_code EC = materializeMetadata()) 5835 return EC; 5836 5837 // Move the bit stream to the saved position of the deferred function body. 5838 Stream.JumpToBit(DFII->second); 5839 5840 if (std::error_code EC = parseFunctionBody(F)) 5841 return EC; 5842 F->setIsMaterializable(false); 5843 5844 if (StripDebugInfo) 5845 stripDebugInfo(*F); 5846 5847 // Upgrade any old intrinsic calls in the function. 5848 for (auto &I : UpgradedIntrinsics) { 5849 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5850 UI != UE;) { 5851 User *U = *UI; 5852 ++UI; 5853 if (CallInst *CI = dyn_cast<CallInst>(U)) 5854 UpgradeIntrinsicCall(CI, I.second); 5855 } 5856 } 5857 5858 // Update calls to the remangled intrinsics 5859 for (auto &I : RemangledIntrinsics) 5860 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5861 UI != UE;) 5862 // Don't expect any other users than call sites 5863 CallSite(*UI++).setCalledFunction(I.second); 5864 5865 // Finish fn->subprogram upgrade for materialized functions. 5866 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5867 F->setSubprogram(SP); 5868 5869 // Bring in any functions that this function forward-referenced via 5870 // blockaddresses. 5871 return materializeForwardReferencedFunctions(); 5872 } 5873 5874 std::error_code BitcodeReader::materializeModule() { 5875 if (std::error_code EC = materializeMetadata()) 5876 return EC; 5877 5878 // Promise to materialize all forward references. 5879 WillMaterializeAllForwardRefs = true; 5880 5881 // Iterate over the module, deserializing any functions that are still on 5882 // disk. 5883 for (Function &F : *TheModule) { 5884 if (std::error_code EC = materialize(&F)) 5885 return EC; 5886 } 5887 // At this point, if there are any function bodies, parse the rest of 5888 // the bits in the module past the last function block we have recorded 5889 // through either lazy scanning or the VST. 5890 if (LastFunctionBlockBit || NextUnreadBit) 5891 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5892 : NextUnreadBit); 5893 5894 // Check that all block address forward references got resolved (as we 5895 // promised above). 5896 if (!BasicBlockFwdRefs.empty()) 5897 return error("Never resolved function from blockaddress"); 5898 5899 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5900 // delete the old functions to clean up. We can't do this unless the entire 5901 // module is materialized because there could always be another function body 5902 // with calls to the old function. 5903 for (auto &I : UpgradedIntrinsics) { 5904 for (auto *U : I.first->users()) { 5905 if (CallInst *CI = dyn_cast<CallInst>(U)) 5906 UpgradeIntrinsicCall(CI, I.second); 5907 } 5908 if (!I.first->use_empty()) 5909 I.first->replaceAllUsesWith(I.second); 5910 I.first->eraseFromParent(); 5911 } 5912 UpgradedIntrinsics.clear(); 5913 // Do the same for remangled intrinsics 5914 for (auto &I : RemangledIntrinsics) { 5915 I.first->replaceAllUsesWith(I.second); 5916 I.first->eraseFromParent(); 5917 } 5918 RemangledIntrinsics.clear(); 5919 5920 UpgradeDebugInfo(*TheModule); 5921 5922 UpgradeModuleFlags(*TheModule); 5923 return std::error_code(); 5924 } 5925 5926 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5927 return IdentifiedStructTypes; 5928 } 5929 5930 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5931 return ::error(DiagnosticHandler, 5932 make_error_code(BitcodeError::CorruptedBitcode), Message); 5933 } 5934 5935 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5936 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5937 bool CheckGlobalValSummaryPresenceOnly) 5938 : BitcodeReaderBase(Buffer), DiagnosticHandler(std::move(DiagnosticHandler)), 5939 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5940 5941 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5942 5943 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5944 5945 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5946 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5947 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5948 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5949 return VGI->second; 5950 } 5951 5952 // Specialized value symbol table parser used when reading module index 5953 // blocks where we don't actually create global values. The parsed information 5954 // is saved in the bitcode reader for use when later parsing summaries. 5955 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5956 uint64_t Offset, 5957 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5958 assert(Offset > 0 && "Expected non-zero VST offset"); 5959 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5960 5961 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5962 return error("Invalid record"); 5963 5964 SmallVector<uint64_t, 64> Record; 5965 5966 // Read all the records for this value table. 5967 SmallString<128> ValueName; 5968 5969 while (true) { 5970 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5971 5972 switch (Entry.Kind) { 5973 case BitstreamEntry::SubBlock: // Handled for us already. 5974 case BitstreamEntry::Error: 5975 return error("Malformed block"); 5976 case BitstreamEntry::EndBlock: 5977 // Done parsing VST, jump back to wherever we came from. 5978 Stream.JumpToBit(CurrentBit); 5979 return std::error_code(); 5980 case BitstreamEntry::Record: 5981 // The interesting case. 5982 break; 5983 } 5984 5985 // Read a record. 5986 Record.clear(); 5987 switch (Stream.readRecord(Entry.ID, Record)) { 5988 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5989 break; 5990 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5991 if (convertToString(Record, 1, ValueName)) 5992 return error("Invalid record"); 5993 unsigned ValueID = Record[0]; 5994 assert(!SourceFileName.empty()); 5995 auto VLI = ValueIdToLinkageMap.find(ValueID); 5996 assert(VLI != ValueIdToLinkageMap.end() && 5997 "No linkage found for VST entry?"); 5998 auto Linkage = VLI->second; 5999 std::string GlobalId = 6000 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6001 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6002 auto OriginalNameID = ValueGUID; 6003 if (GlobalValue::isLocalLinkage(Linkage)) 6004 OriginalNameID = GlobalValue::getGUID(ValueName); 6005 if (PrintSummaryGUIDs) 6006 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6007 << ValueName << "\n"; 6008 ValueIdToCallGraphGUIDMap[ValueID] = 6009 std::make_pair(ValueGUID, OriginalNameID); 6010 ValueName.clear(); 6011 break; 6012 } 6013 case bitc::VST_CODE_FNENTRY: { 6014 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6015 if (convertToString(Record, 2, ValueName)) 6016 return error("Invalid record"); 6017 unsigned ValueID = Record[0]; 6018 assert(!SourceFileName.empty()); 6019 auto VLI = ValueIdToLinkageMap.find(ValueID); 6020 assert(VLI != ValueIdToLinkageMap.end() && 6021 "No linkage found for VST entry?"); 6022 auto Linkage = VLI->second; 6023 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 6024 ValueName, VLI->second, SourceFileName); 6025 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 6026 auto OriginalNameID = FunctionGUID; 6027 if (GlobalValue::isLocalLinkage(Linkage)) 6028 OriginalNameID = GlobalValue::getGUID(ValueName); 6029 if (PrintSummaryGUIDs) 6030 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 6031 << ValueName << "\n"; 6032 ValueIdToCallGraphGUIDMap[ValueID] = 6033 std::make_pair(FunctionGUID, OriginalNameID); 6034 6035 ValueName.clear(); 6036 break; 6037 } 6038 case bitc::VST_CODE_COMBINED_ENTRY: { 6039 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6040 unsigned ValueID = Record[0]; 6041 GlobalValue::GUID RefGUID = Record[1]; 6042 // The "original name", which is the second value of the pair will be 6043 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6044 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 6045 break; 6046 } 6047 } 6048 } 6049 } 6050 6051 // Parse just the blocks needed for building the index out of the module. 6052 // At the end of this routine the module Index is populated with a map 6053 // from global value id to GlobalValueSummary objects. 6054 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 6055 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6056 return error("Invalid record"); 6057 6058 SmallVector<uint64_t, 64> Record; 6059 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6060 unsigned ValueId = 0; 6061 6062 // Read the index for this module. 6063 while (true) { 6064 BitstreamEntry Entry = Stream.advance(); 6065 6066 switch (Entry.Kind) { 6067 case BitstreamEntry::Error: 6068 return error("Malformed block"); 6069 case BitstreamEntry::EndBlock: 6070 return std::error_code(); 6071 6072 case BitstreamEntry::SubBlock: 6073 if (CheckGlobalValSummaryPresenceOnly) { 6074 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6075 SeenGlobalValSummary = true; 6076 // No need to parse the rest since we found the summary. 6077 return std::error_code(); 6078 } 6079 if (Stream.SkipBlock()) 6080 return error("Invalid record"); 6081 continue; 6082 } 6083 switch (Entry.ID) { 6084 default: // Skip unknown content. 6085 if (Stream.SkipBlock()) 6086 return error("Invalid record"); 6087 break; 6088 case bitc::BLOCKINFO_BLOCK_ID: 6089 // Need to parse these to get abbrev ids (e.g. for VST) 6090 if (Stream.ReadBlockInfoBlock()) 6091 return error("Malformed block"); 6092 break; 6093 case bitc::VALUE_SYMTAB_BLOCK_ID: 6094 // Should have been parsed earlier via VSTOffset, unless there 6095 // is no summary section. 6096 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6097 !SeenGlobalValSummary) && 6098 "Expected early VST parse via VSTOffset record"); 6099 if (Stream.SkipBlock()) 6100 return error("Invalid record"); 6101 break; 6102 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6103 assert(!SeenValueSymbolTable && 6104 "Already read VST when parsing summary block?"); 6105 // We might not have a VST if there were no values in the 6106 // summary. An empty summary block generated when we are 6107 // performing ThinLTO compiles so we don't later invoke 6108 // the regular LTO process on them. 6109 if (VSTOffset > 0) { 6110 if (std::error_code EC = 6111 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6112 return EC; 6113 SeenValueSymbolTable = true; 6114 } 6115 SeenGlobalValSummary = true; 6116 if (std::error_code EC = parseEntireSummary()) 6117 return EC; 6118 break; 6119 case bitc::MODULE_STRTAB_BLOCK_ID: 6120 if (std::error_code EC = parseModuleStringTable()) 6121 return EC; 6122 break; 6123 } 6124 continue; 6125 6126 case BitstreamEntry::Record: { 6127 Record.clear(); 6128 auto BitCode = Stream.readRecord(Entry.ID, Record); 6129 switch (BitCode) { 6130 default: 6131 break; // Default behavior, ignore unknown content. 6132 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6133 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6134 SmallString<128> ValueName; 6135 if (convertToString(Record, 0, ValueName)) 6136 return error("Invalid record"); 6137 SourceFileName = ValueName.c_str(); 6138 break; 6139 } 6140 /// MODULE_CODE_HASH: [5*i32] 6141 case bitc::MODULE_CODE_HASH: { 6142 if (Record.size() != 5) 6143 return error("Invalid hash length " + Twine(Record.size()).str()); 6144 if (!TheIndex) 6145 break; 6146 if (TheIndex->modulePaths().empty()) 6147 // Does not have any summary emitted. 6148 break; 6149 if (TheIndex->modulePaths().size() != 1) 6150 return error("Don't expect multiple modules defined?"); 6151 auto &Hash = TheIndex->modulePaths().begin()->second.second; 6152 int Pos = 0; 6153 for (auto &Val : Record) { 6154 assert(!(Val >> 32) && "Unexpected high bits set"); 6155 Hash[Pos++] = Val; 6156 } 6157 break; 6158 } 6159 /// MODULE_CODE_VSTOFFSET: [offset] 6160 case bitc::MODULE_CODE_VSTOFFSET: 6161 if (Record.size() < 1) 6162 return error("Invalid record"); 6163 VSTOffset = Record[0]; 6164 break; 6165 // GLOBALVAR: [pointer type, isconst, initid, 6166 // linkage, alignment, section, visibility, threadlocal, 6167 // unnamed_addr, externally_initialized, dllstorageclass, 6168 // comdat] 6169 case bitc::MODULE_CODE_GLOBALVAR: { 6170 if (Record.size() < 6) 6171 return error("Invalid record"); 6172 uint64_t RawLinkage = Record[3]; 6173 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6174 ValueIdToLinkageMap[ValueId++] = Linkage; 6175 break; 6176 } 6177 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 6178 // alignment, section, visibility, gc, unnamed_addr, 6179 // prologuedata, dllstorageclass, comdat, prefixdata] 6180 case bitc::MODULE_CODE_FUNCTION: { 6181 if (Record.size() < 8) 6182 return error("Invalid record"); 6183 uint64_t RawLinkage = Record[3]; 6184 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6185 ValueIdToLinkageMap[ValueId++] = Linkage; 6186 break; 6187 } 6188 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 6189 // dllstorageclass] 6190 case bitc::MODULE_CODE_ALIAS: { 6191 if (Record.size() < 6) 6192 return error("Invalid record"); 6193 uint64_t RawLinkage = Record[3]; 6194 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6195 ValueIdToLinkageMap[ValueId++] = Linkage; 6196 break; 6197 } 6198 } 6199 } 6200 continue; 6201 } 6202 } 6203 } 6204 6205 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6206 // objects in the index. 6207 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 6208 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6209 return error("Invalid record"); 6210 SmallVector<uint64_t, 64> Record; 6211 6212 // Parse version 6213 { 6214 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6215 if (Entry.Kind != BitstreamEntry::Record) 6216 return error("Invalid Summary Block: record for version expected"); 6217 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6218 return error("Invalid Summary Block: version expected"); 6219 } 6220 const uint64_t Version = Record[0]; 6221 if (Version != 1) 6222 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 6223 Record.clear(); 6224 6225 // Keep around the last seen summary to be used when we see an optional 6226 // "OriginalName" attachement. 6227 GlobalValueSummary *LastSeenSummary = nullptr; 6228 bool Combined = false; 6229 6230 while (true) { 6231 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6232 6233 switch (Entry.Kind) { 6234 case BitstreamEntry::SubBlock: // Handled for us already. 6235 case BitstreamEntry::Error: 6236 return error("Malformed block"); 6237 case BitstreamEntry::EndBlock: 6238 // For a per-module index, remove any entries that still have empty 6239 // summaries. The VST parsing creates entries eagerly for all symbols, 6240 // but not all have associated summaries (e.g. it doesn't know how to 6241 // distinguish between VST_CODE_ENTRY for function declarations vs global 6242 // variables with initializers that end up with a summary). Remove those 6243 // entries now so that we don't need to rely on the combined index merger 6244 // to clean them up (especially since that may not run for the first 6245 // module's index if we merge into that). 6246 if (!Combined) 6247 TheIndex->removeEmptySummaryEntries(); 6248 return std::error_code(); 6249 case BitstreamEntry::Record: 6250 // The interesting case. 6251 break; 6252 } 6253 6254 // Read a record. The record format depends on whether this 6255 // is a per-module index or a combined index file. In the per-module 6256 // case the records contain the associated value's ID for correlation 6257 // with VST entries. In the combined index the correlation is done 6258 // via the bitcode offset of the summary records (which were saved 6259 // in the combined index VST entries). The records also contain 6260 // information used for ThinLTO renaming and importing. 6261 Record.clear(); 6262 auto BitCode = Stream.readRecord(Entry.ID, Record); 6263 switch (BitCode) { 6264 default: // Default behavior: ignore. 6265 break; 6266 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6267 // n x (valueid, callsitecount)] 6268 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6269 // numrefs x valueid, 6270 // n x (valueid, callsitecount, profilecount)] 6271 case bitc::FS_PERMODULE: 6272 case bitc::FS_PERMODULE_PROFILE: { 6273 unsigned ValueID = Record[0]; 6274 uint64_t RawFlags = Record[1]; 6275 unsigned InstCount = Record[2]; 6276 unsigned NumRefs = Record[3]; 6277 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6278 std::unique_ptr<FunctionSummary> FS = 6279 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6280 // The module path string ref set in the summary must be owned by the 6281 // index's module string table. Since we don't have a module path 6282 // string table section in the per-module index, we create a single 6283 // module path string table entry with an empty (0) ID to take 6284 // ownership. 6285 FS->setModulePath( 6286 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6287 static int RefListStartIndex = 4; 6288 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6289 assert(Record.size() >= RefListStartIndex + NumRefs && 6290 "Record size inconsistent with number of references"); 6291 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6292 unsigned RefValueId = Record[I]; 6293 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6294 FS->addRefEdge(RefGUID); 6295 } 6296 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6297 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6298 ++I) { 6299 unsigned CalleeValueId = Record[I]; 6300 unsigned CallsiteCount = Record[++I]; 6301 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6302 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6303 FS->addCallGraphEdge(CalleeGUID, 6304 CalleeInfo(CallsiteCount, ProfileCount)); 6305 } 6306 auto GUID = getGUIDFromValueId(ValueID); 6307 FS->setOriginalName(GUID.second); 6308 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6309 break; 6310 } 6311 // FS_ALIAS: [valueid, flags, valueid] 6312 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6313 // they expect all aliasee summaries to be available. 6314 case bitc::FS_ALIAS: { 6315 unsigned ValueID = Record[0]; 6316 uint64_t RawFlags = Record[1]; 6317 unsigned AliaseeID = Record[2]; 6318 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6319 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6320 // The module path string ref set in the summary must be owned by the 6321 // index's module string table. Since we don't have a module path 6322 // string table section in the per-module index, we create a single 6323 // module path string table entry with an empty (0) ID to take 6324 // ownership. 6325 AS->setModulePath( 6326 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6327 6328 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6329 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6330 if (!AliaseeSummary) 6331 return error("Alias expects aliasee summary to be parsed"); 6332 AS->setAliasee(AliaseeSummary); 6333 6334 auto GUID = getGUIDFromValueId(ValueID); 6335 AS->setOriginalName(GUID.second); 6336 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6337 break; 6338 } 6339 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6340 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6341 unsigned ValueID = Record[0]; 6342 uint64_t RawFlags = Record[1]; 6343 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6344 std::unique_ptr<GlobalVarSummary> FS = 6345 llvm::make_unique<GlobalVarSummary>(Flags); 6346 FS->setModulePath( 6347 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6348 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6349 unsigned RefValueId = Record[I]; 6350 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6351 FS->addRefEdge(RefGUID); 6352 } 6353 auto GUID = getGUIDFromValueId(ValueID); 6354 FS->setOriginalName(GUID.second); 6355 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6356 break; 6357 } 6358 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6359 // numrefs x valueid, n x (valueid, callsitecount)] 6360 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6361 // numrefs x valueid, 6362 // n x (valueid, callsitecount, profilecount)] 6363 case bitc::FS_COMBINED: 6364 case bitc::FS_COMBINED_PROFILE: { 6365 unsigned ValueID = Record[0]; 6366 uint64_t ModuleId = Record[1]; 6367 uint64_t RawFlags = Record[2]; 6368 unsigned InstCount = Record[3]; 6369 unsigned NumRefs = Record[4]; 6370 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6371 std::unique_ptr<FunctionSummary> FS = 6372 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6373 LastSeenSummary = FS.get(); 6374 FS->setModulePath(ModuleIdMap[ModuleId]); 6375 static int RefListStartIndex = 5; 6376 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6377 assert(Record.size() >= RefListStartIndex + NumRefs && 6378 "Record size inconsistent with number of references"); 6379 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6380 ++I) { 6381 unsigned RefValueId = Record[I]; 6382 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6383 FS->addRefEdge(RefGUID); 6384 } 6385 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6386 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6387 ++I) { 6388 unsigned CalleeValueId = Record[I]; 6389 unsigned CallsiteCount = Record[++I]; 6390 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6391 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6392 FS->addCallGraphEdge(CalleeGUID, 6393 CalleeInfo(CallsiteCount, ProfileCount)); 6394 } 6395 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6396 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6397 Combined = true; 6398 break; 6399 } 6400 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6401 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6402 // they expect all aliasee summaries to be available. 6403 case bitc::FS_COMBINED_ALIAS: { 6404 unsigned ValueID = Record[0]; 6405 uint64_t ModuleId = Record[1]; 6406 uint64_t RawFlags = Record[2]; 6407 unsigned AliaseeValueId = Record[3]; 6408 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6409 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6410 LastSeenSummary = AS.get(); 6411 AS->setModulePath(ModuleIdMap[ModuleId]); 6412 6413 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6414 auto AliaseeInModule = 6415 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6416 if (!AliaseeInModule) 6417 return error("Alias expects aliasee summary to be parsed"); 6418 AS->setAliasee(AliaseeInModule); 6419 6420 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6421 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6422 Combined = true; 6423 break; 6424 } 6425 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6426 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6427 unsigned ValueID = Record[0]; 6428 uint64_t ModuleId = Record[1]; 6429 uint64_t RawFlags = Record[2]; 6430 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6431 std::unique_ptr<GlobalVarSummary> FS = 6432 llvm::make_unique<GlobalVarSummary>(Flags); 6433 LastSeenSummary = FS.get(); 6434 FS->setModulePath(ModuleIdMap[ModuleId]); 6435 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6436 unsigned RefValueId = Record[I]; 6437 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6438 FS->addRefEdge(RefGUID); 6439 } 6440 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6441 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6442 Combined = true; 6443 break; 6444 } 6445 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6446 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6447 uint64_t OriginalName = Record[0]; 6448 if (!LastSeenSummary) 6449 return error("Name attachment that does not follow a combined record"); 6450 LastSeenSummary->setOriginalName(OriginalName); 6451 // Reset the LastSeenSummary 6452 LastSeenSummary = nullptr; 6453 } 6454 } 6455 } 6456 llvm_unreachable("Exit infinite loop"); 6457 } 6458 6459 // Parse the module string table block into the Index. 6460 // This populates the ModulePathStringTable map in the index. 6461 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6462 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6463 return error("Invalid record"); 6464 6465 SmallVector<uint64_t, 64> Record; 6466 6467 SmallString<128> ModulePath; 6468 ModulePathStringTableTy::iterator LastSeenModulePath; 6469 6470 while (true) { 6471 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6472 6473 switch (Entry.Kind) { 6474 case BitstreamEntry::SubBlock: // Handled for us already. 6475 case BitstreamEntry::Error: 6476 return error("Malformed block"); 6477 case BitstreamEntry::EndBlock: 6478 return std::error_code(); 6479 case BitstreamEntry::Record: 6480 // The interesting case. 6481 break; 6482 } 6483 6484 Record.clear(); 6485 switch (Stream.readRecord(Entry.ID, Record)) { 6486 default: // Default behavior: ignore. 6487 break; 6488 case bitc::MST_CODE_ENTRY: { 6489 // MST_ENTRY: [modid, namechar x N] 6490 uint64_t ModuleId = Record[0]; 6491 6492 if (convertToString(Record, 1, ModulePath)) 6493 return error("Invalid record"); 6494 6495 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6496 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6497 6498 ModulePath.clear(); 6499 break; 6500 } 6501 /// MST_CODE_HASH: [5*i32] 6502 case bitc::MST_CODE_HASH: { 6503 if (Record.size() != 5) 6504 return error("Invalid hash length " + Twine(Record.size()).str()); 6505 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6506 return error("Invalid hash that does not follow a module path"); 6507 int Pos = 0; 6508 for (auto &Val : Record) { 6509 assert(!(Val >> 32) && "Unexpected high bits set"); 6510 LastSeenModulePath->second.second[Pos++] = Val; 6511 } 6512 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6513 LastSeenModulePath = TheIndex->modulePaths().end(); 6514 break; 6515 } 6516 } 6517 } 6518 llvm_unreachable("Exit infinite loop"); 6519 } 6520 6521 // Parse the function info index from the bitcode streamer into the given index. 6522 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6523 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6524 TheIndex = I; 6525 6526 if (std::error_code EC = initStream(std::move(Streamer))) 6527 return EC; 6528 6529 // Sniff for the signature. 6530 if (!hasValidBitcodeHeader(Stream)) 6531 return error("Invalid bitcode signature"); 6532 6533 // We expect a number of well-defined blocks, though we don't necessarily 6534 // need to understand them all. 6535 while (true) { 6536 if (Stream.AtEndOfStream()) { 6537 // We didn't really read a proper Module block. 6538 return error("Malformed block"); 6539 } 6540 6541 BitstreamEntry Entry = 6542 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6543 6544 if (Entry.Kind != BitstreamEntry::SubBlock) 6545 return error("Malformed block"); 6546 6547 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6548 // building the function summary index. 6549 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6550 return parseModule(); 6551 6552 if (Stream.SkipBlock()) 6553 return error("Invalid record"); 6554 } 6555 } 6556 6557 namespace { 6558 6559 // FIXME: This class is only here to support the transition to llvm::Error. It 6560 // will be removed once this transition is complete. Clients should prefer to 6561 // deal with the Error value directly, rather than converting to error_code. 6562 class BitcodeErrorCategoryType : public std::error_category { 6563 const char *name() const LLVM_NOEXCEPT override { 6564 return "llvm.bitcode"; 6565 } 6566 std::string message(int IE) const override { 6567 BitcodeError E = static_cast<BitcodeError>(IE); 6568 switch (E) { 6569 case BitcodeError::InvalidBitcodeSignature: 6570 return "Invalid bitcode signature"; 6571 case BitcodeError::CorruptedBitcode: 6572 return "Corrupted bitcode"; 6573 } 6574 llvm_unreachable("Unknown error type!"); 6575 } 6576 }; 6577 6578 } // end anonymous namespace 6579 6580 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6581 6582 const std::error_category &llvm::BitcodeErrorCategory() { 6583 return *ErrorCategory; 6584 } 6585 6586 //===----------------------------------------------------------------------===// 6587 // External interface 6588 //===----------------------------------------------------------------------===// 6589 6590 static ErrorOr<std::unique_ptr<Module>> 6591 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6592 BitcodeReader *R, LLVMContext &Context, 6593 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6594 std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context); 6595 M->setMaterializer(R); 6596 6597 auto cleanupOnError = [&](std::error_code EC) { 6598 R->releaseBuffer(); // Never take ownership on error. 6599 return EC; 6600 }; 6601 6602 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6603 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6604 ShouldLazyLoadMetadata)) 6605 return cleanupOnError(EC); 6606 6607 if (MaterializeAll) { 6608 // Read in the entire module, and destroy the BitcodeReader. 6609 if (std::error_code EC = M->materializeAll()) 6610 return cleanupOnError(EC); 6611 } else { 6612 // Resolve forward references from blockaddresses. 6613 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6614 return cleanupOnError(EC); 6615 } 6616 return std::move(M); 6617 } 6618 6619 /// \brief Get a lazy one-at-time loading module from bitcode. 6620 /// 6621 /// This isn't always used in a lazy context. In particular, it's also used by 6622 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6623 /// in forward-referenced functions from block address references. 6624 /// 6625 /// \param[in] MaterializeAll Set to \c true if we should materialize 6626 /// everything. 6627 static ErrorOr<std::unique_ptr<Module>> 6628 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6629 LLVMContext &Context, bool MaterializeAll, 6630 bool ShouldLazyLoadMetadata = false) { 6631 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6632 6633 ErrorOr<std::unique_ptr<Module>> Ret = 6634 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6635 MaterializeAll, ShouldLazyLoadMetadata); 6636 if (!Ret) 6637 return Ret; 6638 6639 Buffer.release(); // The BitcodeReader owns it now. 6640 return Ret; 6641 } 6642 6643 ErrorOr<std::unique_ptr<Module>> 6644 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6645 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6646 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6647 ShouldLazyLoadMetadata); 6648 } 6649 6650 ErrorOr<std::unique_ptr<Module>> 6651 llvm::getStreamedBitcodeModule(StringRef Name, 6652 std::unique_ptr<DataStreamer> Streamer, 6653 LLVMContext &Context) { 6654 std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context); 6655 BitcodeReader *R = new BitcodeReader(Context); 6656 6657 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6658 false); 6659 } 6660 6661 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6662 LLVMContext &Context) { 6663 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6664 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6665 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6666 // written. We must defer until the Module has been fully materialized. 6667 } 6668 6669 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6670 LLVMContext &Context) { 6671 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6672 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6673 ErrorOr<std::string> Triple = R->parseTriple(); 6674 if (Triple.getError()) 6675 return ""; 6676 return Triple.get(); 6677 } 6678 6679 bool llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer, 6680 LLVMContext &Context) { 6681 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6682 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6683 ErrorOr<bool> hasObjCCategory = R->hasObjCCategory(); 6684 if (hasObjCCategory.getError()) 6685 return false; 6686 return hasObjCCategory.get(); 6687 } 6688 6689 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6690 LLVMContext &Context) { 6691 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6692 BitcodeReader R(Buf.release(), Context); 6693 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6694 if (ProducerString.getError()) 6695 return ""; 6696 return ProducerString.get(); 6697 } 6698 6699 // Parse the specified bitcode buffer, returning the function info index. 6700 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex( 6701 MemoryBufferRef Buffer, 6702 const DiagnosticHandlerFunction &DiagnosticHandler) { 6703 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6704 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6705 6706 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6707 6708 auto cleanupOnError = [&](std::error_code EC) { 6709 R.releaseBuffer(); // Never take ownership on error. 6710 return EC; 6711 }; 6712 6713 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6714 return cleanupOnError(EC); 6715 6716 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6717 return std::move(Index); 6718 } 6719 6720 // Check if the given bitcode buffer contains a global value summary block. 6721 bool llvm::hasGlobalValueSummary( 6722 MemoryBufferRef Buffer, 6723 const DiagnosticHandlerFunction &DiagnosticHandler) { 6724 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6725 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6726 6727 auto cleanupOnError = [&](std::error_code EC) { 6728 R.releaseBuffer(); // Never take ownership on error. 6729 return false; 6730 }; 6731 6732 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6733 return cleanupOnError(EC); 6734 6735 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6736 return R.foundGlobalValSummary(); 6737 } 6738