1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSummaryIndex.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/ManagedStatic.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <deque>
78 #include <map>
79 #include <memory>
80 #include <set>
81 #include <string>
82 #include <system_error>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 static cl::opt<bool> PrintSummaryGUIDs(
90     "print-summary-global-ids", cl::init(false), cl::Hidden,
91     cl::desc(
92         "Print the global id for each value when reading the module summary"));
93 
94 namespace {
95 
96 enum {
97   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
98 };
99 
100 } // end anonymous namespace
101 
102 static Error error(const Twine &Message) {
103   return make_error<StringError>(
104       Message, make_error_code(BitcodeError::CorruptedBitcode));
105 }
106 
107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
108   if (!Stream.canSkipToPos(4))
109     return createStringError(std::errc::illegal_byte_sequence,
110                              "file too small to contain bitcode header");
111   for (unsigned C : {'B', 'C'})
112     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
113       if (Res.get() != C)
114         return createStringError(std::errc::illegal_byte_sequence,
115                                  "file doesn't start with bitcode header");
116     } else
117       return Res.takeError();
118   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
119     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
120       if (Res.get() != C)
121         return createStringError(std::errc::illegal_byte_sequence,
122                                  "file doesn't start with bitcode header");
123     } else
124       return Res.takeError();
125   return Error::success();
126 }
127 
128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
129   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
130   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
131 
132   if (Buffer.getBufferSize() & 3)
133     return error("Invalid bitcode signature");
134 
135   // If we have a wrapper header, parse it and ignore the non-bc file contents.
136   // The magic number is 0x0B17C0DE stored in little endian.
137   if (isBitcodeWrapper(BufPtr, BufEnd))
138     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
139       return error("Invalid bitcode wrapper header");
140 
141   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
142   if (Error Err = hasInvalidBitcodeHeader(Stream))
143     return std::move(Err);
144 
145   return std::move(Stream);
146 }
147 
148 /// Convert a string from a record into an std::string, return true on failure.
149 template <typename StrTy>
150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151                             StrTy &Result) {
152   if (Idx > Record.size())
153     return true;
154 
155   Result.append(Record.begin() + Idx, Record.end());
156   return false;
157 }
158 
159 // Strip all the TBAA attachment for the module.
160 static void stripTBAA(Module *M) {
161   for (auto &F : *M) {
162     if (F.isMaterializable())
163       continue;
164     for (auto &I : instructions(F))
165       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
166   }
167 }
168 
169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
170 /// "epoch" encoded in the bitcode, and return the producer name if any.
171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
172   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
173     return std::move(Err);
174 
175   // Read all the records.
176   SmallVector<uint64_t, 64> Record;
177 
178   std::string ProducerIdentification;
179 
180   while (true) {
181     BitstreamEntry Entry;
182     if (Error E = Stream.advance().moveInto(Entry))
183       return std::move(E);
184 
185     switch (Entry.Kind) {
186     default:
187     case BitstreamEntry::Error:
188       return error("Malformed block");
189     case BitstreamEntry::EndBlock:
190       return ProducerIdentification;
191     case BitstreamEntry::Record:
192       // The interesting case.
193       break;
194     }
195 
196     // Read a record.
197     Record.clear();
198     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
199     if (!MaybeBitCode)
200       return MaybeBitCode.takeError();
201     switch (MaybeBitCode.get()) {
202     default: // Default behavior: reject
203       return error("Invalid value");
204     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
205       convertToString(Record, 0, ProducerIdentification);
206       break;
207     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
208       unsigned epoch = (unsigned)Record[0];
209       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
210         return error(
211           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
212           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
213       }
214     }
215     }
216   }
217 }
218 
219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
220   // We expect a number of well-defined blocks, though we don't necessarily
221   // need to understand them all.
222   while (true) {
223     if (Stream.AtEndOfStream())
224       return "";
225 
226     BitstreamEntry Entry;
227     if (Error E = Stream.advance().moveInto(Entry))
228       return std::move(E);
229 
230     switch (Entry.Kind) {
231     case BitstreamEntry::EndBlock:
232     case BitstreamEntry::Error:
233       return error("Malformed block");
234 
235     case BitstreamEntry::SubBlock:
236       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
237         return readIdentificationBlock(Stream);
238 
239       // Ignore other sub-blocks.
240       if (Error Err = Stream.SkipBlock())
241         return std::move(Err);
242       continue;
243     case BitstreamEntry::Record:
244       if (Error E = Stream.skipRecord(Entry.ID).takeError())
245         return std::move(E);
246       continue;
247     }
248   }
249 }
250 
251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
252   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
253     return std::move(Err);
254 
255   SmallVector<uint64_t, 64> Record;
256   // Read all the records for this module.
257 
258   while (true) {
259     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
260     if (!MaybeEntry)
261       return MaybeEntry.takeError();
262     BitstreamEntry Entry = MaybeEntry.get();
263 
264     switch (Entry.Kind) {
265     case BitstreamEntry::SubBlock: // Handled for us already.
266     case BitstreamEntry::Error:
267       return error("Malformed block");
268     case BitstreamEntry::EndBlock:
269       return false;
270     case BitstreamEntry::Record:
271       // The interesting case.
272       break;
273     }
274 
275     // Read a record.
276     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
277     if (!MaybeRecord)
278       return MaybeRecord.takeError();
279     switch (MaybeRecord.get()) {
280     default:
281       break; // Default behavior, ignore unknown content.
282     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
283       std::string S;
284       if (convertToString(Record, 0, S))
285         return error("Invalid record");
286       // Check for the i386 and other (x86_64, ARM) conventions
287       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
288           S.find("__OBJC,__category") != std::string::npos)
289         return true;
290       break;
291     }
292     }
293     Record.clear();
294   }
295   llvm_unreachable("Exit infinite loop");
296 }
297 
298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
299   // We expect a number of well-defined blocks, though we don't necessarily
300   // need to understand them all.
301   while (true) {
302     BitstreamEntry Entry;
303     if (Error E = Stream.advance().moveInto(Entry))
304       return std::move(E);
305 
306     switch (Entry.Kind) {
307     case BitstreamEntry::Error:
308       return error("Malformed block");
309     case BitstreamEntry::EndBlock:
310       return false;
311 
312     case BitstreamEntry::SubBlock:
313       if (Entry.ID == bitc::MODULE_BLOCK_ID)
314         return hasObjCCategoryInModule(Stream);
315 
316       // Ignore other sub-blocks.
317       if (Error Err = Stream.SkipBlock())
318         return std::move(Err);
319       continue;
320 
321     case BitstreamEntry::Record:
322       if (Error E = Stream.skipRecord(Entry.ID).takeError())
323         return std::move(E);
324       continue;
325     }
326   }
327 }
328 
329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
330   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
331     return std::move(Err);
332 
333   SmallVector<uint64_t, 64> Record;
334 
335   std::string Triple;
336 
337   // Read all the records for this module.
338   while (true) {
339     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
340     if (!MaybeEntry)
341       return MaybeEntry.takeError();
342     BitstreamEntry Entry = MaybeEntry.get();
343 
344     switch (Entry.Kind) {
345     case BitstreamEntry::SubBlock: // Handled for us already.
346     case BitstreamEntry::Error:
347       return error("Malformed block");
348     case BitstreamEntry::EndBlock:
349       return Triple;
350     case BitstreamEntry::Record:
351       // The interesting case.
352       break;
353     }
354 
355     // Read a record.
356     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
357     if (!MaybeRecord)
358       return MaybeRecord.takeError();
359     switch (MaybeRecord.get()) {
360     default: break;  // Default behavior, ignore unknown content.
361     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
362       std::string S;
363       if (convertToString(Record, 0, S))
364         return error("Invalid record");
365       Triple = S;
366       break;
367     }
368     }
369     Record.clear();
370   }
371   llvm_unreachable("Exit infinite loop");
372 }
373 
374 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
375   // We expect a number of well-defined blocks, though we don't necessarily
376   // need to understand them all.
377   while (true) {
378     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
379     if (!MaybeEntry)
380       return MaybeEntry.takeError();
381     BitstreamEntry Entry = MaybeEntry.get();
382 
383     switch (Entry.Kind) {
384     case BitstreamEntry::Error:
385       return error("Malformed block");
386     case BitstreamEntry::EndBlock:
387       return "";
388 
389     case BitstreamEntry::SubBlock:
390       if (Entry.ID == bitc::MODULE_BLOCK_ID)
391         return readModuleTriple(Stream);
392 
393       // Ignore other sub-blocks.
394       if (Error Err = Stream.SkipBlock())
395         return std::move(Err);
396       continue;
397 
398     case BitstreamEntry::Record:
399       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
400         continue;
401       else
402         return Skipped.takeError();
403     }
404   }
405 }
406 
407 namespace {
408 
409 class BitcodeReaderBase {
410 protected:
411   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
412       : Stream(std::move(Stream)), Strtab(Strtab) {
413     this->Stream.setBlockInfo(&BlockInfo);
414   }
415 
416   BitstreamBlockInfo BlockInfo;
417   BitstreamCursor Stream;
418   StringRef Strtab;
419 
420   /// In version 2 of the bitcode we store names of global values and comdats in
421   /// a string table rather than in the VST.
422   bool UseStrtab = false;
423 
424   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
425 
426   /// If this module uses a string table, pop the reference to the string table
427   /// and return the referenced string and the rest of the record. Otherwise
428   /// just return the record itself.
429   std::pair<StringRef, ArrayRef<uint64_t>>
430   readNameFromStrtab(ArrayRef<uint64_t> Record);
431 
432   Error readBlockInfo();
433 
434   // Contains an arbitrary and optional string identifying the bitcode producer
435   std::string ProducerIdentification;
436 
437   Error error(const Twine &Message);
438 };
439 
440 } // end anonymous namespace
441 
442 Error BitcodeReaderBase::error(const Twine &Message) {
443   std::string FullMsg = Message.str();
444   if (!ProducerIdentification.empty())
445     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
446                LLVM_VERSION_STRING "')";
447   return ::error(FullMsg);
448 }
449 
450 Expected<unsigned>
451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
452   if (Record.empty())
453     return error("Invalid record");
454   unsigned ModuleVersion = Record[0];
455   if (ModuleVersion > 2)
456     return error("Invalid value");
457   UseStrtab = ModuleVersion >= 2;
458   return ModuleVersion;
459 }
460 
461 std::pair<StringRef, ArrayRef<uint64_t>>
462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
463   if (!UseStrtab)
464     return {"", Record};
465   // Invalid reference. Let the caller complain about the record being empty.
466   if (Record[0] + Record[1] > Strtab.size())
467     return {"", {}};
468   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
469 }
470 
471 namespace {
472 
473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
474   LLVMContext &Context;
475   Module *TheModule = nullptr;
476   // Next offset to start scanning for lazy parsing of function bodies.
477   uint64_t NextUnreadBit = 0;
478   // Last function offset found in the VST.
479   uint64_t LastFunctionBlockBit = 0;
480   bool SeenValueSymbolTable = false;
481   uint64_t VSTOffset = 0;
482 
483   std::vector<std::string> SectionTable;
484   std::vector<std::string> GCTable;
485 
486   std::vector<Type*> TypeList;
487   DenseMap<Function *, FunctionType *> FunctionTypes;
488   BitcodeReaderValueList ValueList;
489   Optional<MetadataLoader> MDLoader;
490   std::vector<Comdat *> ComdatList;
491   DenseSet<GlobalObject *> ImplicitComdatObjects;
492   SmallVector<Instruction *, 64> InstructionList;
493 
494   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
495   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
496 
497   struct FunctionOperandInfo {
498     Function *F;
499     unsigned PersonalityFn;
500     unsigned Prefix;
501     unsigned Prologue;
502   };
503   std::vector<FunctionOperandInfo> FunctionOperands;
504 
505   /// The set of attributes by index.  Index zero in the file is for null, and
506   /// is thus not represented here.  As such all indices are off by one.
507   std::vector<AttributeList> MAttributes;
508 
509   /// The set of attribute groups.
510   std::map<unsigned, AttributeList> MAttributeGroups;
511 
512   /// While parsing a function body, this is a list of the basic blocks for the
513   /// function.
514   std::vector<BasicBlock*> FunctionBBs;
515 
516   // When reading the module header, this list is populated with functions that
517   // have bodies later in the file.
518   std::vector<Function*> FunctionsWithBodies;
519 
520   // When intrinsic functions are encountered which require upgrading they are
521   // stored here with their replacement function.
522   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
523   UpdatedIntrinsicMap UpgradedIntrinsics;
524   // Intrinsics which were remangled because of types rename
525   UpdatedIntrinsicMap RemangledIntrinsics;
526 
527   // Several operations happen after the module header has been read, but
528   // before function bodies are processed. This keeps track of whether
529   // we've done this yet.
530   bool SeenFirstFunctionBody = false;
531 
532   /// When function bodies are initially scanned, this map contains info about
533   /// where to find deferred function body in the stream.
534   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
535 
536   /// When Metadata block is initially scanned when parsing the module, we may
537   /// choose to defer parsing of the metadata. This vector contains info about
538   /// which Metadata blocks are deferred.
539   std::vector<uint64_t> DeferredMetadataInfo;
540 
541   /// These are basic blocks forward-referenced by block addresses.  They are
542   /// inserted lazily into functions when they're loaded.  The basic block ID is
543   /// its index into the vector.
544   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
545   std::deque<Function *> BasicBlockFwdRefQueue;
546 
547   /// Indicates that we are using a new encoding for instruction operands where
548   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
549   /// instruction number, for a more compact encoding.  Some instruction
550   /// operands are not relative to the instruction ID: basic block numbers, and
551   /// types. Once the old style function blocks have been phased out, we would
552   /// not need this flag.
553   bool UseRelativeIDs = false;
554 
555   /// True if all functions will be materialized, negating the need to process
556   /// (e.g.) blockaddress forward references.
557   bool WillMaterializeAllForwardRefs = false;
558 
559   bool StripDebugInfo = false;
560   TBAAVerifier TBAAVerifyHelper;
561 
562   std::vector<std::string> BundleTags;
563   SmallVector<SyncScope::ID, 8> SSIDs;
564 
565 public:
566   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
567                 StringRef ProducerIdentification, LLVMContext &Context);
568 
569   Error materializeForwardReferencedFunctions();
570 
571   Error materialize(GlobalValue *GV) override;
572   Error materializeModule() override;
573   std::vector<StructType *> getIdentifiedStructTypes() const override;
574 
575   /// Main interface to parsing a bitcode buffer.
576   /// \returns true if an error occurred.
577   Error parseBitcodeInto(
578       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
579       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
580 
581   static uint64_t decodeSignRotatedValue(uint64_t V);
582 
583   /// Materialize any deferred Metadata block.
584   Error materializeMetadata() override;
585 
586   void setStripDebugInfo() override;
587 
588 private:
589   std::vector<StructType *> IdentifiedStructTypes;
590   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
591   StructType *createIdentifiedStructType(LLVMContext &Context);
592 
593   Type *getTypeByID(unsigned ID);
594 
595   Value *getFnValueByID(unsigned ID, Type *Ty) {
596     if (Ty && Ty->isMetadataTy())
597       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
598     return ValueList.getValueFwdRef(ID, Ty);
599   }
600 
601   Metadata *getFnMetadataByID(unsigned ID) {
602     return MDLoader->getMetadataFwdRefOrLoad(ID);
603   }
604 
605   BasicBlock *getBasicBlock(unsigned ID) const {
606     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
607     return FunctionBBs[ID];
608   }
609 
610   AttributeList getAttributes(unsigned i) const {
611     if (i-1 < MAttributes.size())
612       return MAttributes[i-1];
613     return AttributeList();
614   }
615 
616   /// Read a value/type pair out of the specified record from slot 'Slot'.
617   /// Increment Slot past the number of slots used in the record. Return true on
618   /// failure.
619   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
620                         unsigned InstNum, Value *&ResVal) {
621     if (Slot == Record.size()) return true;
622     unsigned ValNo = (unsigned)Record[Slot++];
623     // Adjust the ValNo, if it was encoded relative to the InstNum.
624     if (UseRelativeIDs)
625       ValNo = InstNum - ValNo;
626     if (ValNo < InstNum) {
627       // If this is not a forward reference, just return the value we already
628       // have.
629       ResVal = getFnValueByID(ValNo, nullptr);
630       return ResVal == nullptr;
631     }
632     if (Slot == Record.size())
633       return true;
634 
635     unsigned TypeNo = (unsigned)Record[Slot++];
636     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
637     return ResVal == nullptr;
638   }
639 
640   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
641   /// past the number of slots used by the value in the record. Return true if
642   /// there is an error.
643   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
644                 unsigned InstNum, Type *Ty, Value *&ResVal) {
645     if (getValue(Record, Slot, InstNum, Ty, ResVal))
646       return true;
647     // All values currently take a single record slot.
648     ++Slot;
649     return false;
650   }
651 
652   /// Like popValue, but does not increment the Slot number.
653   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
654                 unsigned InstNum, Type *Ty, Value *&ResVal) {
655     ResVal = getValue(Record, Slot, InstNum, Ty);
656     return ResVal == nullptr;
657   }
658 
659   /// Version of getValue that returns ResVal directly, or 0 if there is an
660   /// error.
661   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
662                   unsigned InstNum, Type *Ty) {
663     if (Slot == Record.size()) return nullptr;
664     unsigned ValNo = (unsigned)Record[Slot];
665     // Adjust the ValNo, if it was encoded relative to the InstNum.
666     if (UseRelativeIDs)
667       ValNo = InstNum - ValNo;
668     return getFnValueByID(ValNo, Ty);
669   }
670 
671   /// Like getValue, but decodes signed VBRs.
672   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
673                         unsigned InstNum, Type *Ty) {
674     if (Slot == Record.size()) return nullptr;
675     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
676     // Adjust the ValNo, if it was encoded relative to the InstNum.
677     if (UseRelativeIDs)
678       ValNo = InstNum - ValNo;
679     return getFnValueByID(ValNo, Ty);
680   }
681 
682   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
683   /// corresponding argument's pointee type. Also upgrades intrinsics that now
684   /// require an elementtype attribute.
685   void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
686 
687   /// Converts alignment exponent (i.e. power of two (or zero)) to the
688   /// corresponding alignment to use. If alignment is too large, returns
689   /// a corresponding error code.
690   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
691   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
692   Error parseModule(
693       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
694       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
695 
696   Error parseComdatRecord(ArrayRef<uint64_t> Record);
697   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
698   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
699   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
700                                         ArrayRef<uint64_t> Record);
701 
702   Error parseAttributeBlock();
703   Error parseAttributeGroupBlock();
704   Error parseTypeTable();
705   Error parseTypeTableBody();
706   Error parseOperandBundleTags();
707   Error parseSyncScopeNames();
708 
709   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
710                                 unsigned NameIndex, Triple &TT);
711   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
712                                ArrayRef<uint64_t> Record);
713   Error parseValueSymbolTable(uint64_t Offset = 0);
714   Error parseGlobalValueSymbolTable();
715   Error parseConstants();
716   Error rememberAndSkipFunctionBodies();
717   Error rememberAndSkipFunctionBody();
718   /// Save the positions of the Metadata blocks and skip parsing the blocks.
719   Error rememberAndSkipMetadata();
720   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
721   Error parseFunctionBody(Function *F);
722   Error globalCleanup();
723   Error resolveGlobalAndIndirectSymbolInits();
724   Error parseUseLists();
725   Error findFunctionInStream(
726       Function *F,
727       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
728 
729   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
730 };
731 
732 /// Class to manage reading and parsing function summary index bitcode
733 /// files/sections.
734 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
735   /// The module index built during parsing.
736   ModuleSummaryIndex &TheIndex;
737 
738   /// Indicates whether we have encountered a global value summary section
739   /// yet during parsing.
740   bool SeenGlobalValSummary = false;
741 
742   /// Indicates whether we have already parsed the VST, used for error checking.
743   bool SeenValueSymbolTable = false;
744 
745   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
746   /// Used to enable on-demand parsing of the VST.
747   uint64_t VSTOffset = 0;
748 
749   // Map to save ValueId to ValueInfo association that was recorded in the
750   // ValueSymbolTable. It is used after the VST is parsed to convert
751   // call graph edges read from the function summary from referencing
752   // callees by their ValueId to using the ValueInfo instead, which is how
753   // they are recorded in the summary index being built.
754   // We save a GUID which refers to the same global as the ValueInfo, but
755   // ignoring the linkage, i.e. for values other than local linkage they are
756   // identical.
757   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
758       ValueIdToValueInfoMap;
759 
760   /// Map populated during module path string table parsing, from the
761   /// module ID to a string reference owned by the index's module
762   /// path string table, used to correlate with combined index
763   /// summary records.
764   DenseMap<uint64_t, StringRef> ModuleIdMap;
765 
766   /// Original source file name recorded in a bitcode record.
767   std::string SourceFileName;
768 
769   /// The string identifier given to this module by the client, normally the
770   /// path to the bitcode file.
771   StringRef ModulePath;
772 
773   /// For per-module summary indexes, the unique numerical identifier given to
774   /// this module by the client.
775   unsigned ModuleId;
776 
777 public:
778   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
779                                   ModuleSummaryIndex &TheIndex,
780                                   StringRef ModulePath, unsigned ModuleId);
781 
782   Error parseModule();
783 
784 private:
785   void setValueGUID(uint64_t ValueID, StringRef ValueName,
786                     GlobalValue::LinkageTypes Linkage,
787                     StringRef SourceFileName);
788   Error parseValueSymbolTable(
789       uint64_t Offset,
790       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
791   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
792   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
793                                                     bool IsOldProfileFormat,
794                                                     bool HasProfile,
795                                                     bool HasRelBF);
796   Error parseEntireSummary(unsigned ID);
797   Error parseModuleStringTable();
798   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
799   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
800                                        TypeIdCompatibleVtableInfo &TypeId);
801   std::vector<FunctionSummary::ParamAccess>
802   parseParamAccesses(ArrayRef<uint64_t> Record);
803 
804   std::pair<ValueInfo, GlobalValue::GUID>
805   getValueInfoFromValueId(unsigned ValueId);
806 
807   void addThisModule();
808   ModuleSummaryIndex::ModuleInfo *getThisModule();
809 };
810 
811 } // end anonymous namespace
812 
813 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
814                                                     Error Err) {
815   if (Err) {
816     std::error_code EC;
817     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
818       EC = EIB.convertToErrorCode();
819       Ctx.emitError(EIB.message());
820     });
821     return EC;
822   }
823   return std::error_code();
824 }
825 
826 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
827                              StringRef ProducerIdentification,
828                              LLVMContext &Context)
829     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
830       ValueList(Context, Stream.SizeInBytes()) {
831   this->ProducerIdentification = std::string(ProducerIdentification);
832 }
833 
834 Error BitcodeReader::materializeForwardReferencedFunctions() {
835   if (WillMaterializeAllForwardRefs)
836     return Error::success();
837 
838   // Prevent recursion.
839   WillMaterializeAllForwardRefs = true;
840 
841   while (!BasicBlockFwdRefQueue.empty()) {
842     Function *F = BasicBlockFwdRefQueue.front();
843     BasicBlockFwdRefQueue.pop_front();
844     assert(F && "Expected valid function");
845     if (!BasicBlockFwdRefs.count(F))
846       // Already materialized.
847       continue;
848 
849     // Check for a function that isn't materializable to prevent an infinite
850     // loop.  When parsing a blockaddress stored in a global variable, there
851     // isn't a trivial way to check if a function will have a body without a
852     // linear search through FunctionsWithBodies, so just check it here.
853     if (!F->isMaterializable())
854       return error("Never resolved function from blockaddress");
855 
856     // Try to materialize F.
857     if (Error Err = materialize(F))
858       return Err;
859   }
860   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
861 
862   // Reset state.
863   WillMaterializeAllForwardRefs = false;
864   return Error::success();
865 }
866 
867 //===----------------------------------------------------------------------===//
868 //  Helper functions to implement forward reference resolution, etc.
869 //===----------------------------------------------------------------------===//
870 
871 static bool hasImplicitComdat(size_t Val) {
872   switch (Val) {
873   default:
874     return false;
875   case 1:  // Old WeakAnyLinkage
876   case 4:  // Old LinkOnceAnyLinkage
877   case 10: // Old WeakODRLinkage
878   case 11: // Old LinkOnceODRLinkage
879     return true;
880   }
881 }
882 
883 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
884   switch (Val) {
885   default: // Map unknown/new linkages to external
886   case 0:
887     return GlobalValue::ExternalLinkage;
888   case 2:
889     return GlobalValue::AppendingLinkage;
890   case 3:
891     return GlobalValue::InternalLinkage;
892   case 5:
893     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
894   case 6:
895     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
896   case 7:
897     return GlobalValue::ExternalWeakLinkage;
898   case 8:
899     return GlobalValue::CommonLinkage;
900   case 9:
901     return GlobalValue::PrivateLinkage;
902   case 12:
903     return GlobalValue::AvailableExternallyLinkage;
904   case 13:
905     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
906   case 14:
907     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
908   case 15:
909     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
910   case 1: // Old value with implicit comdat.
911   case 16:
912     return GlobalValue::WeakAnyLinkage;
913   case 10: // Old value with implicit comdat.
914   case 17:
915     return GlobalValue::WeakODRLinkage;
916   case 4: // Old value with implicit comdat.
917   case 18:
918     return GlobalValue::LinkOnceAnyLinkage;
919   case 11: // Old value with implicit comdat.
920   case 19:
921     return GlobalValue::LinkOnceODRLinkage;
922   }
923 }
924 
925 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
926   FunctionSummary::FFlags Flags;
927   Flags.ReadNone = RawFlags & 0x1;
928   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
929   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
930   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
931   Flags.NoInline = (RawFlags >> 4) & 0x1;
932   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
933   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
934   Flags.MayThrow = (RawFlags >> 7) & 0x1;
935   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
936   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
937   return Flags;
938 }
939 
940 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
941 //
942 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
943 // visibility: [8, 10).
944 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
945                                                             uint64_t Version) {
946   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
947   // like getDecodedLinkage() above. Any future change to the linkage enum and
948   // to getDecodedLinkage() will need to be taken into account here as above.
949   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
950   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
951   RawFlags = RawFlags >> 4;
952   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
953   // The Live flag wasn't introduced until version 3. For dead stripping
954   // to work correctly on earlier versions, we must conservatively treat all
955   // values as live.
956   bool Live = (RawFlags & 0x2) || Version < 3;
957   bool Local = (RawFlags & 0x4);
958   bool AutoHide = (RawFlags & 0x8);
959 
960   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
961                                      Live, Local, AutoHide);
962 }
963 
964 // Decode the flags for GlobalVariable in the summary
965 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
966   return GlobalVarSummary::GVarFlags(
967       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
968       (RawFlags & 0x4) ? true : false,
969       (GlobalObject::VCallVisibility)(RawFlags >> 3));
970 }
971 
972 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
973   switch (Val) {
974   default: // Map unknown visibilities to default.
975   case 0: return GlobalValue::DefaultVisibility;
976   case 1: return GlobalValue::HiddenVisibility;
977   case 2: return GlobalValue::ProtectedVisibility;
978   }
979 }
980 
981 static GlobalValue::DLLStorageClassTypes
982 getDecodedDLLStorageClass(unsigned Val) {
983   switch (Val) {
984   default: // Map unknown values to default.
985   case 0: return GlobalValue::DefaultStorageClass;
986   case 1: return GlobalValue::DLLImportStorageClass;
987   case 2: return GlobalValue::DLLExportStorageClass;
988   }
989 }
990 
991 static bool getDecodedDSOLocal(unsigned Val) {
992   switch(Val) {
993   default: // Map unknown values to preemptable.
994   case 0:  return false;
995   case 1:  return true;
996   }
997 }
998 
999 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1000   switch (Val) {
1001     case 0: return GlobalVariable::NotThreadLocal;
1002     default: // Map unknown non-zero value to general dynamic.
1003     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1004     case 2: return GlobalVariable::LocalDynamicTLSModel;
1005     case 3: return GlobalVariable::InitialExecTLSModel;
1006     case 4: return GlobalVariable::LocalExecTLSModel;
1007   }
1008 }
1009 
1010 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1011   switch (Val) {
1012     default: // Map unknown to UnnamedAddr::None.
1013     case 0: return GlobalVariable::UnnamedAddr::None;
1014     case 1: return GlobalVariable::UnnamedAddr::Global;
1015     case 2: return GlobalVariable::UnnamedAddr::Local;
1016   }
1017 }
1018 
1019 static int getDecodedCastOpcode(unsigned Val) {
1020   switch (Val) {
1021   default: return -1;
1022   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1023   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1024   case bitc::CAST_SEXT    : return Instruction::SExt;
1025   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1026   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1027   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1028   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1029   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1030   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1031   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1032   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1033   case bitc::CAST_BITCAST : return Instruction::BitCast;
1034   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1035   }
1036 }
1037 
1038 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1039   bool IsFP = Ty->isFPOrFPVectorTy();
1040   // UnOps are only valid for int/fp or vector of int/fp types
1041   if (!IsFP && !Ty->isIntOrIntVectorTy())
1042     return -1;
1043 
1044   switch (Val) {
1045   default:
1046     return -1;
1047   case bitc::UNOP_FNEG:
1048     return IsFP ? Instruction::FNeg : -1;
1049   }
1050 }
1051 
1052 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1053   bool IsFP = Ty->isFPOrFPVectorTy();
1054   // BinOps are only valid for int/fp or vector of int/fp types
1055   if (!IsFP && !Ty->isIntOrIntVectorTy())
1056     return -1;
1057 
1058   switch (Val) {
1059   default:
1060     return -1;
1061   case bitc::BINOP_ADD:
1062     return IsFP ? Instruction::FAdd : Instruction::Add;
1063   case bitc::BINOP_SUB:
1064     return IsFP ? Instruction::FSub : Instruction::Sub;
1065   case bitc::BINOP_MUL:
1066     return IsFP ? Instruction::FMul : Instruction::Mul;
1067   case bitc::BINOP_UDIV:
1068     return IsFP ? -1 : Instruction::UDiv;
1069   case bitc::BINOP_SDIV:
1070     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1071   case bitc::BINOP_UREM:
1072     return IsFP ? -1 : Instruction::URem;
1073   case bitc::BINOP_SREM:
1074     return IsFP ? Instruction::FRem : Instruction::SRem;
1075   case bitc::BINOP_SHL:
1076     return IsFP ? -1 : Instruction::Shl;
1077   case bitc::BINOP_LSHR:
1078     return IsFP ? -1 : Instruction::LShr;
1079   case bitc::BINOP_ASHR:
1080     return IsFP ? -1 : Instruction::AShr;
1081   case bitc::BINOP_AND:
1082     return IsFP ? -1 : Instruction::And;
1083   case bitc::BINOP_OR:
1084     return IsFP ? -1 : Instruction::Or;
1085   case bitc::BINOP_XOR:
1086     return IsFP ? -1 : Instruction::Xor;
1087   }
1088 }
1089 
1090 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1091   switch (Val) {
1092   default: return AtomicRMWInst::BAD_BINOP;
1093   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1094   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1095   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1096   case bitc::RMW_AND: return AtomicRMWInst::And;
1097   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1098   case bitc::RMW_OR: return AtomicRMWInst::Or;
1099   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1100   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1101   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1102   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1103   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1104   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1105   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1106   }
1107 }
1108 
1109 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1110   switch (Val) {
1111   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1112   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1113   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1114   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1115   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1116   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1117   default: // Map unknown orderings to sequentially-consistent.
1118   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1119   }
1120 }
1121 
1122 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1123   switch (Val) {
1124   default: // Map unknown selection kinds to any.
1125   case bitc::COMDAT_SELECTION_KIND_ANY:
1126     return Comdat::Any;
1127   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1128     return Comdat::ExactMatch;
1129   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1130     return Comdat::Largest;
1131   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1132     return Comdat::NoDeduplicate;
1133   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1134     return Comdat::SameSize;
1135   }
1136 }
1137 
1138 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1139   FastMathFlags FMF;
1140   if (0 != (Val & bitc::UnsafeAlgebra))
1141     FMF.setFast();
1142   if (0 != (Val & bitc::AllowReassoc))
1143     FMF.setAllowReassoc();
1144   if (0 != (Val & bitc::NoNaNs))
1145     FMF.setNoNaNs();
1146   if (0 != (Val & bitc::NoInfs))
1147     FMF.setNoInfs();
1148   if (0 != (Val & bitc::NoSignedZeros))
1149     FMF.setNoSignedZeros();
1150   if (0 != (Val & bitc::AllowReciprocal))
1151     FMF.setAllowReciprocal();
1152   if (0 != (Val & bitc::AllowContract))
1153     FMF.setAllowContract(true);
1154   if (0 != (Val & bitc::ApproxFunc))
1155     FMF.setApproxFunc();
1156   return FMF;
1157 }
1158 
1159 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1160   switch (Val) {
1161   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1162   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1163   }
1164 }
1165 
1166 Type *BitcodeReader::getTypeByID(unsigned ID) {
1167   // The type table size is always specified correctly.
1168   if (ID >= TypeList.size())
1169     return nullptr;
1170 
1171   if (Type *Ty = TypeList[ID])
1172     return Ty;
1173 
1174   // If we have a forward reference, the only possible case is when it is to a
1175   // named struct.  Just create a placeholder for now.
1176   return TypeList[ID] = createIdentifiedStructType(Context);
1177 }
1178 
1179 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1180                                                       StringRef Name) {
1181   auto *Ret = StructType::create(Context, Name);
1182   IdentifiedStructTypes.push_back(Ret);
1183   return Ret;
1184 }
1185 
1186 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1187   auto *Ret = StructType::create(Context);
1188   IdentifiedStructTypes.push_back(Ret);
1189   return Ret;
1190 }
1191 
1192 //===----------------------------------------------------------------------===//
1193 //  Functions for parsing blocks from the bitcode file
1194 //===----------------------------------------------------------------------===//
1195 
1196 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1197   switch (Val) {
1198   case Attribute::EndAttrKinds:
1199   case Attribute::EmptyKey:
1200   case Attribute::TombstoneKey:
1201     llvm_unreachable("Synthetic enumerators which should never get here");
1202 
1203   case Attribute::None:            return 0;
1204   case Attribute::ZExt:            return 1 << 0;
1205   case Attribute::SExt:            return 1 << 1;
1206   case Attribute::NoReturn:        return 1 << 2;
1207   case Attribute::InReg:           return 1 << 3;
1208   case Attribute::StructRet:       return 1 << 4;
1209   case Attribute::NoUnwind:        return 1 << 5;
1210   case Attribute::NoAlias:         return 1 << 6;
1211   case Attribute::ByVal:           return 1 << 7;
1212   case Attribute::Nest:            return 1 << 8;
1213   case Attribute::ReadNone:        return 1 << 9;
1214   case Attribute::ReadOnly:        return 1 << 10;
1215   case Attribute::NoInline:        return 1 << 11;
1216   case Attribute::AlwaysInline:    return 1 << 12;
1217   case Attribute::OptimizeForSize: return 1 << 13;
1218   case Attribute::StackProtect:    return 1 << 14;
1219   case Attribute::StackProtectReq: return 1 << 15;
1220   case Attribute::Alignment:       return 31 << 16;
1221   case Attribute::NoCapture:       return 1 << 21;
1222   case Attribute::NoRedZone:       return 1 << 22;
1223   case Attribute::NoImplicitFloat: return 1 << 23;
1224   case Attribute::Naked:           return 1 << 24;
1225   case Attribute::InlineHint:      return 1 << 25;
1226   case Attribute::StackAlignment:  return 7 << 26;
1227   case Attribute::ReturnsTwice:    return 1 << 29;
1228   case Attribute::UWTable:         return 1 << 30;
1229   case Attribute::NonLazyBind:     return 1U << 31;
1230   case Attribute::SanitizeAddress: return 1ULL << 32;
1231   case Attribute::MinSize:         return 1ULL << 33;
1232   case Attribute::NoDuplicate:     return 1ULL << 34;
1233   case Attribute::StackProtectStrong: return 1ULL << 35;
1234   case Attribute::SanitizeThread:  return 1ULL << 36;
1235   case Attribute::SanitizeMemory:  return 1ULL << 37;
1236   case Attribute::NoBuiltin:       return 1ULL << 38;
1237   case Attribute::Returned:        return 1ULL << 39;
1238   case Attribute::Cold:            return 1ULL << 40;
1239   case Attribute::Builtin:         return 1ULL << 41;
1240   case Attribute::OptimizeNone:    return 1ULL << 42;
1241   case Attribute::InAlloca:        return 1ULL << 43;
1242   case Attribute::NonNull:         return 1ULL << 44;
1243   case Attribute::JumpTable:       return 1ULL << 45;
1244   case Attribute::Convergent:      return 1ULL << 46;
1245   case Attribute::SafeStack:       return 1ULL << 47;
1246   case Attribute::NoRecurse:       return 1ULL << 48;
1247   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1248   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1249   case Attribute::SwiftSelf:       return 1ULL << 51;
1250   case Attribute::SwiftError:      return 1ULL << 52;
1251   case Attribute::WriteOnly:       return 1ULL << 53;
1252   case Attribute::Speculatable:    return 1ULL << 54;
1253   case Attribute::StrictFP:        return 1ULL << 55;
1254   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1255   case Attribute::NoCfCheck:       return 1ULL << 57;
1256   case Attribute::OptForFuzzing:   return 1ULL << 58;
1257   case Attribute::ShadowCallStack: return 1ULL << 59;
1258   case Attribute::SpeculativeLoadHardening:
1259     return 1ULL << 60;
1260   case Attribute::ImmArg:
1261     return 1ULL << 61;
1262   case Attribute::WillReturn:
1263     return 1ULL << 62;
1264   case Attribute::NoFree:
1265     return 1ULL << 63;
1266   default:
1267     // Other attributes are not supported in the raw format,
1268     // as we ran out of space.
1269     return 0;
1270   }
1271   llvm_unreachable("Unsupported attribute type");
1272 }
1273 
1274 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1275   if (!Val) return;
1276 
1277   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1278        I = Attribute::AttrKind(I + 1)) {
1279     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1280       if (I == Attribute::Alignment)
1281         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1282       else if (I == Attribute::StackAlignment)
1283         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1284       else if (Attribute::isTypeAttrKind(I))
1285         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1286       else
1287         B.addAttribute(I);
1288     }
1289   }
1290 }
1291 
1292 /// This fills an AttrBuilder object with the LLVM attributes that have
1293 /// been decoded from the given integer. This function must stay in sync with
1294 /// 'encodeLLVMAttributesForBitcode'.
1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1296                                            uint64_t EncodedAttrs) {
1297   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1298   // the bits above 31 down by 11 bits.
1299   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1300   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1301          "Alignment must be a power of two.");
1302 
1303   if (Alignment)
1304     B.addAlignmentAttr(Alignment);
1305   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1306                           (EncodedAttrs & 0xffff));
1307 }
1308 
1309 Error BitcodeReader::parseAttributeBlock() {
1310   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1311     return Err;
1312 
1313   if (!MAttributes.empty())
1314     return error("Invalid multiple blocks");
1315 
1316   SmallVector<uint64_t, 64> Record;
1317 
1318   SmallVector<AttributeList, 8> Attrs;
1319 
1320   // Read all the records.
1321   while (true) {
1322     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1323     if (!MaybeEntry)
1324       return MaybeEntry.takeError();
1325     BitstreamEntry Entry = MaybeEntry.get();
1326 
1327     switch (Entry.Kind) {
1328     case BitstreamEntry::SubBlock: // Handled for us already.
1329     case BitstreamEntry::Error:
1330       return error("Malformed block");
1331     case BitstreamEntry::EndBlock:
1332       return Error::success();
1333     case BitstreamEntry::Record:
1334       // The interesting case.
1335       break;
1336     }
1337 
1338     // Read a record.
1339     Record.clear();
1340     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1341     if (!MaybeRecord)
1342       return MaybeRecord.takeError();
1343     switch (MaybeRecord.get()) {
1344     default:  // Default behavior: ignore.
1345       break;
1346     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1347       // Deprecated, but still needed to read old bitcode files.
1348       if (Record.size() & 1)
1349         return error("Invalid record");
1350 
1351       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1352         AttrBuilder B(Context);
1353         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1354         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1355       }
1356 
1357       MAttributes.push_back(AttributeList::get(Context, Attrs));
1358       Attrs.clear();
1359       break;
1360     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1361       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1362         Attrs.push_back(MAttributeGroups[Record[i]]);
1363 
1364       MAttributes.push_back(AttributeList::get(Context, Attrs));
1365       Attrs.clear();
1366       break;
1367     }
1368   }
1369 }
1370 
1371 // Returns Attribute::None on unrecognized codes.
1372 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1373   switch (Code) {
1374   default:
1375     return Attribute::None;
1376   case bitc::ATTR_KIND_ALIGNMENT:
1377     return Attribute::Alignment;
1378   case bitc::ATTR_KIND_ALWAYS_INLINE:
1379     return Attribute::AlwaysInline;
1380   case bitc::ATTR_KIND_ARGMEMONLY:
1381     return Attribute::ArgMemOnly;
1382   case bitc::ATTR_KIND_BUILTIN:
1383     return Attribute::Builtin;
1384   case bitc::ATTR_KIND_BY_VAL:
1385     return Attribute::ByVal;
1386   case bitc::ATTR_KIND_IN_ALLOCA:
1387     return Attribute::InAlloca;
1388   case bitc::ATTR_KIND_COLD:
1389     return Attribute::Cold;
1390   case bitc::ATTR_KIND_CONVERGENT:
1391     return Attribute::Convergent;
1392   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1393     return Attribute::DisableSanitizerInstrumentation;
1394   case bitc::ATTR_KIND_ELEMENTTYPE:
1395     return Attribute::ElementType;
1396   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1397     return Attribute::InaccessibleMemOnly;
1398   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1399     return Attribute::InaccessibleMemOrArgMemOnly;
1400   case bitc::ATTR_KIND_INLINE_HINT:
1401     return Attribute::InlineHint;
1402   case bitc::ATTR_KIND_IN_REG:
1403     return Attribute::InReg;
1404   case bitc::ATTR_KIND_JUMP_TABLE:
1405     return Attribute::JumpTable;
1406   case bitc::ATTR_KIND_MIN_SIZE:
1407     return Attribute::MinSize;
1408   case bitc::ATTR_KIND_NAKED:
1409     return Attribute::Naked;
1410   case bitc::ATTR_KIND_NEST:
1411     return Attribute::Nest;
1412   case bitc::ATTR_KIND_NO_ALIAS:
1413     return Attribute::NoAlias;
1414   case bitc::ATTR_KIND_NO_BUILTIN:
1415     return Attribute::NoBuiltin;
1416   case bitc::ATTR_KIND_NO_CALLBACK:
1417     return Attribute::NoCallback;
1418   case bitc::ATTR_KIND_NO_CAPTURE:
1419     return Attribute::NoCapture;
1420   case bitc::ATTR_KIND_NO_DUPLICATE:
1421     return Attribute::NoDuplicate;
1422   case bitc::ATTR_KIND_NOFREE:
1423     return Attribute::NoFree;
1424   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1425     return Attribute::NoImplicitFloat;
1426   case bitc::ATTR_KIND_NO_INLINE:
1427     return Attribute::NoInline;
1428   case bitc::ATTR_KIND_NO_RECURSE:
1429     return Attribute::NoRecurse;
1430   case bitc::ATTR_KIND_NO_MERGE:
1431     return Attribute::NoMerge;
1432   case bitc::ATTR_KIND_NON_LAZY_BIND:
1433     return Attribute::NonLazyBind;
1434   case bitc::ATTR_KIND_NON_NULL:
1435     return Attribute::NonNull;
1436   case bitc::ATTR_KIND_DEREFERENCEABLE:
1437     return Attribute::Dereferenceable;
1438   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1439     return Attribute::DereferenceableOrNull;
1440   case bitc::ATTR_KIND_ALLOC_SIZE:
1441     return Attribute::AllocSize;
1442   case bitc::ATTR_KIND_NO_RED_ZONE:
1443     return Attribute::NoRedZone;
1444   case bitc::ATTR_KIND_NO_RETURN:
1445     return Attribute::NoReturn;
1446   case bitc::ATTR_KIND_NOSYNC:
1447     return Attribute::NoSync;
1448   case bitc::ATTR_KIND_NOCF_CHECK:
1449     return Attribute::NoCfCheck;
1450   case bitc::ATTR_KIND_NO_PROFILE:
1451     return Attribute::NoProfile;
1452   case bitc::ATTR_KIND_NO_UNWIND:
1453     return Attribute::NoUnwind;
1454   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1455     return Attribute::NoSanitizeCoverage;
1456   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1457     return Attribute::NullPointerIsValid;
1458   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1459     return Attribute::OptForFuzzing;
1460   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1461     return Attribute::OptimizeForSize;
1462   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1463     return Attribute::OptimizeNone;
1464   case bitc::ATTR_KIND_READ_NONE:
1465     return Attribute::ReadNone;
1466   case bitc::ATTR_KIND_READ_ONLY:
1467     return Attribute::ReadOnly;
1468   case bitc::ATTR_KIND_RETURNED:
1469     return Attribute::Returned;
1470   case bitc::ATTR_KIND_RETURNS_TWICE:
1471     return Attribute::ReturnsTwice;
1472   case bitc::ATTR_KIND_S_EXT:
1473     return Attribute::SExt;
1474   case bitc::ATTR_KIND_SPECULATABLE:
1475     return Attribute::Speculatable;
1476   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1477     return Attribute::StackAlignment;
1478   case bitc::ATTR_KIND_STACK_PROTECT:
1479     return Attribute::StackProtect;
1480   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1481     return Attribute::StackProtectReq;
1482   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1483     return Attribute::StackProtectStrong;
1484   case bitc::ATTR_KIND_SAFESTACK:
1485     return Attribute::SafeStack;
1486   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1487     return Attribute::ShadowCallStack;
1488   case bitc::ATTR_KIND_STRICT_FP:
1489     return Attribute::StrictFP;
1490   case bitc::ATTR_KIND_STRUCT_RET:
1491     return Attribute::StructRet;
1492   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1493     return Attribute::SanitizeAddress;
1494   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1495     return Attribute::SanitizeHWAddress;
1496   case bitc::ATTR_KIND_SANITIZE_THREAD:
1497     return Attribute::SanitizeThread;
1498   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1499     return Attribute::SanitizeMemory;
1500   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1501     return Attribute::SpeculativeLoadHardening;
1502   case bitc::ATTR_KIND_SWIFT_ERROR:
1503     return Attribute::SwiftError;
1504   case bitc::ATTR_KIND_SWIFT_SELF:
1505     return Attribute::SwiftSelf;
1506   case bitc::ATTR_KIND_SWIFT_ASYNC:
1507     return Attribute::SwiftAsync;
1508   case bitc::ATTR_KIND_UW_TABLE:
1509     return Attribute::UWTable;
1510   case bitc::ATTR_KIND_VSCALE_RANGE:
1511     return Attribute::VScaleRange;
1512   case bitc::ATTR_KIND_WILLRETURN:
1513     return Attribute::WillReturn;
1514   case bitc::ATTR_KIND_WRITEONLY:
1515     return Attribute::WriteOnly;
1516   case bitc::ATTR_KIND_Z_EXT:
1517     return Attribute::ZExt;
1518   case bitc::ATTR_KIND_IMMARG:
1519     return Attribute::ImmArg;
1520   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1521     return Attribute::SanitizeMemTag;
1522   case bitc::ATTR_KIND_PREALLOCATED:
1523     return Attribute::Preallocated;
1524   case bitc::ATTR_KIND_NOUNDEF:
1525     return Attribute::NoUndef;
1526   case bitc::ATTR_KIND_BYREF:
1527     return Attribute::ByRef;
1528   case bitc::ATTR_KIND_MUSTPROGRESS:
1529     return Attribute::MustProgress;
1530   case bitc::ATTR_KIND_HOT:
1531     return Attribute::Hot;
1532   }
1533 }
1534 
1535 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1536                                          MaybeAlign &Alignment) {
1537   // Note: Alignment in bitcode files is incremented by 1, so that zero
1538   // can be used for default alignment.
1539   if (Exponent > Value::MaxAlignmentExponent + 1)
1540     return error("Invalid alignment value");
1541   Alignment = decodeMaybeAlign(Exponent);
1542   return Error::success();
1543 }
1544 
1545 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1546   *Kind = getAttrFromCode(Code);
1547   if (*Kind == Attribute::None)
1548     return error("Unknown attribute kind (" + Twine(Code) + ")");
1549   return Error::success();
1550 }
1551 
1552 Error BitcodeReader::parseAttributeGroupBlock() {
1553   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1554     return Err;
1555 
1556   if (!MAttributeGroups.empty())
1557     return error("Invalid multiple blocks");
1558 
1559   SmallVector<uint64_t, 64> Record;
1560 
1561   // Read all the records.
1562   while (true) {
1563     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1564     if (!MaybeEntry)
1565       return MaybeEntry.takeError();
1566     BitstreamEntry Entry = MaybeEntry.get();
1567 
1568     switch (Entry.Kind) {
1569     case BitstreamEntry::SubBlock: // Handled for us already.
1570     case BitstreamEntry::Error:
1571       return error("Malformed block");
1572     case BitstreamEntry::EndBlock:
1573       return Error::success();
1574     case BitstreamEntry::Record:
1575       // The interesting case.
1576       break;
1577     }
1578 
1579     // Read a record.
1580     Record.clear();
1581     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1582     if (!MaybeRecord)
1583       return MaybeRecord.takeError();
1584     switch (MaybeRecord.get()) {
1585     default:  // Default behavior: ignore.
1586       break;
1587     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1588       if (Record.size() < 3)
1589         return error("Invalid record");
1590 
1591       uint64_t GrpID = Record[0];
1592       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1593 
1594       AttrBuilder B(Context);
1595       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1596         if (Record[i] == 0) {        // Enum attribute
1597           Attribute::AttrKind Kind;
1598           if (Error Err = parseAttrKind(Record[++i], &Kind))
1599             return Err;
1600 
1601           // Upgrade old-style byval attribute to one with a type, even if it's
1602           // nullptr. We will have to insert the real type when we associate
1603           // this AttributeList with a function.
1604           if (Kind == Attribute::ByVal)
1605             B.addByValAttr(nullptr);
1606           else if (Kind == Attribute::StructRet)
1607             B.addStructRetAttr(nullptr);
1608           else if (Kind == Attribute::InAlloca)
1609             B.addInAllocaAttr(nullptr);
1610           else if (Attribute::isEnumAttrKind(Kind))
1611             B.addAttribute(Kind);
1612           else
1613             return error("Not an enum attribute");
1614         } else if (Record[i] == 1) { // Integer attribute
1615           Attribute::AttrKind Kind;
1616           if (Error Err = parseAttrKind(Record[++i], &Kind))
1617             return Err;
1618           if (!Attribute::isIntAttrKind(Kind))
1619             return error("Not an int attribute");
1620           if (Kind == Attribute::Alignment)
1621             B.addAlignmentAttr(Record[++i]);
1622           else if (Kind == Attribute::StackAlignment)
1623             B.addStackAlignmentAttr(Record[++i]);
1624           else if (Kind == Attribute::Dereferenceable)
1625             B.addDereferenceableAttr(Record[++i]);
1626           else if (Kind == Attribute::DereferenceableOrNull)
1627             B.addDereferenceableOrNullAttr(Record[++i]);
1628           else if (Kind == Attribute::AllocSize)
1629             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1630           else if (Kind == Attribute::VScaleRange)
1631             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1632         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1633           bool HasValue = (Record[i++] == 4);
1634           SmallString<64> KindStr;
1635           SmallString<64> ValStr;
1636 
1637           while (Record[i] != 0 && i != e)
1638             KindStr += Record[i++];
1639           assert(Record[i] == 0 && "Kind string not null terminated");
1640 
1641           if (HasValue) {
1642             // Has a value associated with it.
1643             ++i; // Skip the '0' that terminates the "kind" string.
1644             while (Record[i] != 0 && i != e)
1645               ValStr += Record[i++];
1646             assert(Record[i] == 0 && "Value string not null terminated");
1647           }
1648 
1649           B.addAttribute(KindStr.str(), ValStr.str());
1650         } else if (Record[i] == 5 || Record[i] == 6) {
1651           bool HasType = Record[i] == 6;
1652           Attribute::AttrKind Kind;
1653           if (Error Err = parseAttrKind(Record[++i], &Kind))
1654             return Err;
1655           if (!Attribute::isTypeAttrKind(Kind))
1656             return error("Not a type attribute");
1657 
1658           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1659         } else {
1660           return error("Invalid attribute group entry");
1661         }
1662       }
1663 
1664       UpgradeAttributes(B);
1665       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1666       break;
1667     }
1668     }
1669   }
1670 }
1671 
1672 Error BitcodeReader::parseTypeTable() {
1673   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1674     return Err;
1675 
1676   return parseTypeTableBody();
1677 }
1678 
1679 Error BitcodeReader::parseTypeTableBody() {
1680   if (!TypeList.empty())
1681     return error("Invalid multiple blocks");
1682 
1683   SmallVector<uint64_t, 64> Record;
1684   unsigned NumRecords = 0;
1685 
1686   SmallString<64> TypeName;
1687 
1688   // Read all the records for this type table.
1689   while (true) {
1690     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1691     if (!MaybeEntry)
1692       return MaybeEntry.takeError();
1693     BitstreamEntry Entry = MaybeEntry.get();
1694 
1695     switch (Entry.Kind) {
1696     case BitstreamEntry::SubBlock: // Handled for us already.
1697     case BitstreamEntry::Error:
1698       return error("Malformed block");
1699     case BitstreamEntry::EndBlock:
1700       if (NumRecords != TypeList.size())
1701         return error("Malformed block");
1702       return Error::success();
1703     case BitstreamEntry::Record:
1704       // The interesting case.
1705       break;
1706     }
1707 
1708     // Read a record.
1709     Record.clear();
1710     Type *ResultTy = nullptr;
1711     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1712     if (!MaybeRecord)
1713       return MaybeRecord.takeError();
1714     switch (MaybeRecord.get()) {
1715     default:
1716       return error("Invalid value");
1717     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1718       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1719       // type list.  This allows us to reserve space.
1720       if (Record.empty())
1721         return error("Invalid record");
1722       TypeList.resize(Record[0]);
1723       continue;
1724     case bitc::TYPE_CODE_VOID:      // VOID
1725       ResultTy = Type::getVoidTy(Context);
1726       break;
1727     case bitc::TYPE_CODE_HALF:     // HALF
1728       ResultTy = Type::getHalfTy(Context);
1729       break;
1730     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1731       ResultTy = Type::getBFloatTy(Context);
1732       break;
1733     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1734       ResultTy = Type::getFloatTy(Context);
1735       break;
1736     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1737       ResultTy = Type::getDoubleTy(Context);
1738       break;
1739     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1740       ResultTy = Type::getX86_FP80Ty(Context);
1741       break;
1742     case bitc::TYPE_CODE_FP128:     // FP128
1743       ResultTy = Type::getFP128Ty(Context);
1744       break;
1745     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1746       ResultTy = Type::getPPC_FP128Ty(Context);
1747       break;
1748     case bitc::TYPE_CODE_LABEL:     // LABEL
1749       ResultTy = Type::getLabelTy(Context);
1750       break;
1751     case bitc::TYPE_CODE_METADATA:  // METADATA
1752       ResultTy = Type::getMetadataTy(Context);
1753       break;
1754     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1755       ResultTy = Type::getX86_MMXTy(Context);
1756       break;
1757     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1758       ResultTy = Type::getX86_AMXTy(Context);
1759       break;
1760     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1761       ResultTy = Type::getTokenTy(Context);
1762       break;
1763     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1764       if (Record.empty())
1765         return error("Invalid record");
1766 
1767       uint64_t NumBits = Record[0];
1768       if (NumBits < IntegerType::MIN_INT_BITS ||
1769           NumBits > IntegerType::MAX_INT_BITS)
1770         return error("Bitwidth for integer type out of range");
1771       ResultTy = IntegerType::get(Context, NumBits);
1772       break;
1773     }
1774     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1775                                     //          [pointee type, address space]
1776       if (Record.empty())
1777         return error("Invalid record");
1778       unsigned AddressSpace = 0;
1779       if (Record.size() == 2)
1780         AddressSpace = Record[1];
1781       ResultTy = getTypeByID(Record[0]);
1782       if (!ResultTy ||
1783           !PointerType::isValidElementType(ResultTy))
1784         return error("Invalid type");
1785       ResultTy = PointerType::get(ResultTy, AddressSpace);
1786       break;
1787     }
1788     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1789       if (Record.size() != 1)
1790         return error("Invalid record");
1791       if (Context.supportsTypedPointers())
1792         return error(
1793             "Opaque pointers are only supported in -opaque-pointers mode");
1794       unsigned AddressSpace = Record[0];
1795       ResultTy = PointerType::get(Context, AddressSpace);
1796       break;
1797     }
1798     case bitc::TYPE_CODE_FUNCTION_OLD: {
1799       // Deprecated, but still needed to read old bitcode files.
1800       // FUNCTION: [vararg, attrid, retty, paramty x N]
1801       if (Record.size() < 3)
1802         return error("Invalid record");
1803       SmallVector<Type*, 8> ArgTys;
1804       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1805         if (Type *T = getTypeByID(Record[i]))
1806           ArgTys.push_back(T);
1807         else
1808           break;
1809       }
1810 
1811       ResultTy = getTypeByID(Record[2]);
1812       if (!ResultTy || ArgTys.size() < Record.size()-3)
1813         return error("Invalid type");
1814 
1815       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1816       break;
1817     }
1818     case bitc::TYPE_CODE_FUNCTION: {
1819       // FUNCTION: [vararg, retty, paramty x N]
1820       if (Record.size() < 2)
1821         return error("Invalid record");
1822       SmallVector<Type*, 8> ArgTys;
1823       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1824         if (Type *T = getTypeByID(Record[i])) {
1825           if (!FunctionType::isValidArgumentType(T))
1826             return error("Invalid function argument type");
1827           ArgTys.push_back(T);
1828         }
1829         else
1830           break;
1831       }
1832 
1833       ResultTy = getTypeByID(Record[1]);
1834       if (!ResultTy || ArgTys.size() < Record.size()-2)
1835         return error("Invalid type");
1836 
1837       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1838       break;
1839     }
1840     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1841       if (Record.empty())
1842         return error("Invalid record");
1843       SmallVector<Type*, 8> EltTys;
1844       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1845         if (Type *T = getTypeByID(Record[i]))
1846           EltTys.push_back(T);
1847         else
1848           break;
1849       }
1850       if (EltTys.size() != Record.size()-1)
1851         return error("Invalid type");
1852       ResultTy = StructType::get(Context, EltTys, Record[0]);
1853       break;
1854     }
1855     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1856       if (convertToString(Record, 0, TypeName))
1857         return error("Invalid record");
1858       continue;
1859 
1860     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1861       if (Record.empty())
1862         return error("Invalid record");
1863 
1864       if (NumRecords >= TypeList.size())
1865         return error("Invalid TYPE table");
1866 
1867       // Check to see if this was forward referenced, if so fill in the temp.
1868       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1869       if (Res) {
1870         Res->setName(TypeName);
1871         TypeList[NumRecords] = nullptr;
1872       } else  // Otherwise, create a new struct.
1873         Res = createIdentifiedStructType(Context, TypeName);
1874       TypeName.clear();
1875 
1876       SmallVector<Type*, 8> EltTys;
1877       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1878         if (Type *T = getTypeByID(Record[i]))
1879           EltTys.push_back(T);
1880         else
1881           break;
1882       }
1883       if (EltTys.size() != Record.size()-1)
1884         return error("Invalid record");
1885       Res->setBody(EltTys, Record[0]);
1886       ResultTy = Res;
1887       break;
1888     }
1889     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1890       if (Record.size() != 1)
1891         return error("Invalid record");
1892 
1893       if (NumRecords >= TypeList.size())
1894         return error("Invalid TYPE table");
1895 
1896       // Check to see if this was forward referenced, if so fill in the temp.
1897       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1898       if (Res) {
1899         Res->setName(TypeName);
1900         TypeList[NumRecords] = nullptr;
1901       } else  // Otherwise, create a new struct with no body.
1902         Res = createIdentifiedStructType(Context, TypeName);
1903       TypeName.clear();
1904       ResultTy = Res;
1905       break;
1906     }
1907     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1908       if (Record.size() < 2)
1909         return error("Invalid record");
1910       ResultTy = getTypeByID(Record[1]);
1911       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1912         return error("Invalid type");
1913       ResultTy = ArrayType::get(ResultTy, Record[0]);
1914       break;
1915     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1916                                     //         [numelts, eltty, scalable]
1917       if (Record.size() < 2)
1918         return error("Invalid record");
1919       if (Record[0] == 0)
1920         return error("Invalid vector length");
1921       ResultTy = getTypeByID(Record[1]);
1922       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
1923         return error("Invalid type");
1924       bool Scalable = Record.size() > 2 ? Record[2] : false;
1925       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1926       break;
1927     }
1928 
1929     if (NumRecords >= TypeList.size())
1930       return error("Invalid TYPE table");
1931     if (TypeList[NumRecords])
1932       return error(
1933           "Invalid TYPE table: Only named structs can be forward referenced");
1934     assert(ResultTy && "Didn't read a type?");
1935     TypeList[NumRecords++] = ResultTy;
1936   }
1937 }
1938 
1939 Error BitcodeReader::parseOperandBundleTags() {
1940   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1941     return Err;
1942 
1943   if (!BundleTags.empty())
1944     return error("Invalid multiple blocks");
1945 
1946   SmallVector<uint64_t, 64> Record;
1947 
1948   while (true) {
1949     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1950     if (!MaybeEntry)
1951       return MaybeEntry.takeError();
1952     BitstreamEntry Entry = MaybeEntry.get();
1953 
1954     switch (Entry.Kind) {
1955     case BitstreamEntry::SubBlock: // Handled for us already.
1956     case BitstreamEntry::Error:
1957       return error("Malformed block");
1958     case BitstreamEntry::EndBlock:
1959       return Error::success();
1960     case BitstreamEntry::Record:
1961       // The interesting case.
1962       break;
1963     }
1964 
1965     // Tags are implicitly mapped to integers by their order.
1966 
1967     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1968     if (!MaybeRecord)
1969       return MaybeRecord.takeError();
1970     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1971       return error("Invalid record");
1972 
1973     // OPERAND_BUNDLE_TAG: [strchr x N]
1974     BundleTags.emplace_back();
1975     if (convertToString(Record, 0, BundleTags.back()))
1976       return error("Invalid record");
1977     Record.clear();
1978   }
1979 }
1980 
1981 Error BitcodeReader::parseSyncScopeNames() {
1982   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1983     return Err;
1984 
1985   if (!SSIDs.empty())
1986     return error("Invalid multiple synchronization scope names blocks");
1987 
1988   SmallVector<uint64_t, 64> Record;
1989   while (true) {
1990     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1991     if (!MaybeEntry)
1992       return MaybeEntry.takeError();
1993     BitstreamEntry Entry = MaybeEntry.get();
1994 
1995     switch (Entry.Kind) {
1996     case BitstreamEntry::SubBlock: // Handled for us already.
1997     case BitstreamEntry::Error:
1998       return error("Malformed block");
1999     case BitstreamEntry::EndBlock:
2000       if (SSIDs.empty())
2001         return error("Invalid empty synchronization scope names block");
2002       return Error::success();
2003     case BitstreamEntry::Record:
2004       // The interesting case.
2005       break;
2006     }
2007 
2008     // Synchronization scope names are implicitly mapped to synchronization
2009     // scope IDs by their order.
2010 
2011     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2012     if (!MaybeRecord)
2013       return MaybeRecord.takeError();
2014     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2015       return error("Invalid record");
2016 
2017     SmallString<16> SSN;
2018     if (convertToString(Record, 0, SSN))
2019       return error("Invalid record");
2020 
2021     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2022     Record.clear();
2023   }
2024 }
2025 
2026 /// Associate a value with its name from the given index in the provided record.
2027 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2028                                              unsigned NameIndex, Triple &TT) {
2029   SmallString<128> ValueName;
2030   if (convertToString(Record, NameIndex, ValueName))
2031     return error("Invalid record");
2032   unsigned ValueID = Record[0];
2033   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2034     return error("Invalid record");
2035   Value *V = ValueList[ValueID];
2036 
2037   StringRef NameStr(ValueName.data(), ValueName.size());
2038   if (NameStr.find_first_of(0) != StringRef::npos)
2039     return error("Invalid value name");
2040   V->setName(NameStr);
2041   auto *GO = dyn_cast<GlobalObject>(V);
2042   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2043     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2044   return V;
2045 }
2046 
2047 /// Helper to note and return the current location, and jump to the given
2048 /// offset.
2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2050                                                  BitstreamCursor &Stream) {
2051   // Save the current parsing location so we can jump back at the end
2052   // of the VST read.
2053   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2054   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2055     return std::move(JumpFailed);
2056   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2057   if (!MaybeEntry)
2058     return MaybeEntry.takeError();
2059   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2060       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2061     return error("Expected value symbol table subblock");
2062   return CurrentBit;
2063 }
2064 
2065 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2066                                             Function *F,
2067                                             ArrayRef<uint64_t> Record) {
2068   // Note that we subtract 1 here because the offset is relative to one word
2069   // before the start of the identification or module block, which was
2070   // historically always the start of the regular bitcode header.
2071   uint64_t FuncWordOffset = Record[1] - 1;
2072   uint64_t FuncBitOffset = FuncWordOffset * 32;
2073   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2074   // Set the LastFunctionBlockBit to point to the last function block.
2075   // Later when parsing is resumed after function materialization,
2076   // we can simply skip that last function block.
2077   if (FuncBitOffset > LastFunctionBlockBit)
2078     LastFunctionBlockBit = FuncBitOffset;
2079 }
2080 
2081 /// Read a new-style GlobalValue symbol table.
2082 Error BitcodeReader::parseGlobalValueSymbolTable() {
2083   unsigned FuncBitcodeOffsetDelta =
2084       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2085 
2086   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2087     return Err;
2088 
2089   SmallVector<uint64_t, 64> Record;
2090   while (true) {
2091     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2092     if (!MaybeEntry)
2093       return MaybeEntry.takeError();
2094     BitstreamEntry Entry = MaybeEntry.get();
2095 
2096     switch (Entry.Kind) {
2097     case BitstreamEntry::SubBlock:
2098     case BitstreamEntry::Error:
2099       return error("Malformed block");
2100     case BitstreamEntry::EndBlock:
2101       return Error::success();
2102     case BitstreamEntry::Record:
2103       break;
2104     }
2105 
2106     Record.clear();
2107     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2108     if (!MaybeRecord)
2109       return MaybeRecord.takeError();
2110     switch (MaybeRecord.get()) {
2111     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2112       unsigned ValueID = Record[0];
2113       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2114         return error("Invalid value reference in symbol table");
2115       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2116                               cast<Function>(ValueList[ValueID]), Record);
2117       break;
2118     }
2119     }
2120   }
2121 }
2122 
2123 /// Parse the value symbol table at either the current parsing location or
2124 /// at the given bit offset if provided.
2125 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2126   uint64_t CurrentBit;
2127   // Pass in the Offset to distinguish between calling for the module-level
2128   // VST (where we want to jump to the VST offset) and the function-level
2129   // VST (where we don't).
2130   if (Offset > 0) {
2131     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2132     if (!MaybeCurrentBit)
2133       return MaybeCurrentBit.takeError();
2134     CurrentBit = MaybeCurrentBit.get();
2135     // If this module uses a string table, read this as a module-level VST.
2136     if (UseStrtab) {
2137       if (Error Err = parseGlobalValueSymbolTable())
2138         return Err;
2139       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2140         return JumpFailed;
2141       return Error::success();
2142     }
2143     // Otherwise, the VST will be in a similar format to a function-level VST,
2144     // and will contain symbol names.
2145   }
2146 
2147   // Compute the delta between the bitcode indices in the VST (the word offset
2148   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2149   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2150   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2151   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2152   // just before entering the VST subblock because: 1) the EnterSubBlock
2153   // changes the AbbrevID width; 2) the VST block is nested within the same
2154   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2155   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2156   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2157   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2158   unsigned FuncBitcodeOffsetDelta =
2159       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2160 
2161   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2162     return Err;
2163 
2164   SmallVector<uint64_t, 64> Record;
2165 
2166   Triple TT(TheModule->getTargetTriple());
2167 
2168   // Read all the records for this value table.
2169   SmallString<128> ValueName;
2170 
2171   while (true) {
2172     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2173     if (!MaybeEntry)
2174       return MaybeEntry.takeError();
2175     BitstreamEntry Entry = MaybeEntry.get();
2176 
2177     switch (Entry.Kind) {
2178     case BitstreamEntry::SubBlock: // Handled for us already.
2179     case BitstreamEntry::Error:
2180       return error("Malformed block");
2181     case BitstreamEntry::EndBlock:
2182       if (Offset > 0)
2183         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2184           return JumpFailed;
2185       return Error::success();
2186     case BitstreamEntry::Record:
2187       // The interesting case.
2188       break;
2189     }
2190 
2191     // Read a record.
2192     Record.clear();
2193     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2194     if (!MaybeRecord)
2195       return MaybeRecord.takeError();
2196     switch (MaybeRecord.get()) {
2197     default:  // Default behavior: unknown type.
2198       break;
2199     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2200       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2201       if (Error Err = ValOrErr.takeError())
2202         return Err;
2203       ValOrErr.get();
2204       break;
2205     }
2206     case bitc::VST_CODE_FNENTRY: {
2207       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2208       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2209       if (Error Err = ValOrErr.takeError())
2210         return Err;
2211       Value *V = ValOrErr.get();
2212 
2213       // Ignore function offsets emitted for aliases of functions in older
2214       // versions of LLVM.
2215       if (auto *F = dyn_cast<Function>(V))
2216         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2217       break;
2218     }
2219     case bitc::VST_CODE_BBENTRY: {
2220       if (convertToString(Record, 1, ValueName))
2221         return error("Invalid record");
2222       BasicBlock *BB = getBasicBlock(Record[0]);
2223       if (!BB)
2224         return error("Invalid record");
2225 
2226       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2227       ValueName.clear();
2228       break;
2229     }
2230     }
2231   }
2232 }
2233 
2234 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2235 /// encoding.
2236 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2237   if ((V & 1) == 0)
2238     return V >> 1;
2239   if (V != 1)
2240     return -(V >> 1);
2241   // There is no such thing as -0 with integers.  "-0" really means MININT.
2242   return 1ULL << 63;
2243 }
2244 
2245 /// Resolve all of the initializers for global values and aliases that we can.
2246 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2247   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2248   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2249   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2250 
2251   GlobalInitWorklist.swap(GlobalInits);
2252   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2253   FunctionOperandWorklist.swap(FunctionOperands);
2254 
2255   while (!GlobalInitWorklist.empty()) {
2256     unsigned ValID = GlobalInitWorklist.back().second;
2257     if (ValID >= ValueList.size()) {
2258       // Not ready to resolve this yet, it requires something later in the file.
2259       GlobalInits.push_back(GlobalInitWorklist.back());
2260     } else {
2261       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2262         GlobalInitWorklist.back().first->setInitializer(C);
2263       else
2264         return error("Expected a constant");
2265     }
2266     GlobalInitWorklist.pop_back();
2267   }
2268 
2269   while (!IndirectSymbolInitWorklist.empty()) {
2270     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2271     if (ValID >= ValueList.size()) {
2272       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2273     } else {
2274       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2275       if (!C)
2276         return error("Expected a constant");
2277       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2278       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2279         if (C->getType() != GV->getType())
2280           return error("Alias and aliasee types don't match");
2281         GA->setAliasee(C);
2282       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2283         Type *ResolverFTy =
2284             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2285         // Transparently fix up the type for compatiblity with older bitcode
2286         GI->setResolver(
2287             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2288       } else {
2289         return error("Expected an alias or an ifunc");
2290       }
2291     }
2292     IndirectSymbolInitWorklist.pop_back();
2293   }
2294 
2295   while (!FunctionOperandWorklist.empty()) {
2296     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2297     if (Info.PersonalityFn) {
2298       unsigned ValID = Info.PersonalityFn - 1;
2299       if (ValID < ValueList.size()) {
2300         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2301           Info.F->setPersonalityFn(C);
2302         else
2303           return error("Expected a constant");
2304         Info.PersonalityFn = 0;
2305       }
2306     }
2307     if (Info.Prefix) {
2308       unsigned ValID = Info.Prefix - 1;
2309       if (ValID < ValueList.size()) {
2310         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2311           Info.F->setPrefixData(C);
2312         else
2313           return error("Expected a constant");
2314         Info.Prefix = 0;
2315       }
2316     }
2317     if (Info.Prologue) {
2318       unsigned ValID = Info.Prologue - 1;
2319       if (ValID < ValueList.size()) {
2320         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2321           Info.F->setPrologueData(C);
2322         else
2323           return error("Expected a constant");
2324         Info.Prologue = 0;
2325       }
2326     }
2327     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2328       FunctionOperands.push_back(Info);
2329     FunctionOperandWorklist.pop_back();
2330   }
2331 
2332   return Error::success();
2333 }
2334 
2335 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2336   SmallVector<uint64_t, 8> Words(Vals.size());
2337   transform(Vals, Words.begin(),
2338                  BitcodeReader::decodeSignRotatedValue);
2339 
2340   return APInt(TypeBits, Words);
2341 }
2342 
2343 Error BitcodeReader::parseConstants() {
2344   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2345     return Err;
2346 
2347   SmallVector<uint64_t, 64> Record;
2348 
2349   // Read all the records for this value table.
2350   Type *CurTy = Type::getInt32Ty(Context);
2351   unsigned NextCstNo = ValueList.size();
2352 
2353   struct DelayedShufTy {
2354     VectorType *OpTy;
2355     VectorType *RTy;
2356     uint64_t Op0Idx;
2357     uint64_t Op1Idx;
2358     uint64_t Op2Idx;
2359     unsigned CstNo;
2360   };
2361   std::vector<DelayedShufTy> DelayedShuffles;
2362   struct DelayedSelTy {
2363     Type *OpTy;
2364     uint64_t Op0Idx;
2365     uint64_t Op1Idx;
2366     uint64_t Op2Idx;
2367     unsigned CstNo;
2368   };
2369   std::vector<DelayedSelTy> DelayedSelectors;
2370 
2371   while (true) {
2372     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2373     if (!MaybeEntry)
2374       return MaybeEntry.takeError();
2375     BitstreamEntry Entry = MaybeEntry.get();
2376 
2377     switch (Entry.Kind) {
2378     case BitstreamEntry::SubBlock: // Handled for us already.
2379     case BitstreamEntry::Error:
2380       return error("Malformed block");
2381     case BitstreamEntry::EndBlock:
2382       // Once all the constants have been read, go through and resolve forward
2383       // references.
2384       //
2385       // We have to treat shuffles specially because they don't have three
2386       // operands anymore.  We need to convert the shuffle mask into an array,
2387       // and we can't convert a forward reference.
2388       for (auto &DelayedShuffle : DelayedShuffles) {
2389         VectorType *OpTy = DelayedShuffle.OpTy;
2390         VectorType *RTy = DelayedShuffle.RTy;
2391         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2392         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2393         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2394         uint64_t CstNo = DelayedShuffle.CstNo;
2395         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2396         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2397         Type *ShufTy =
2398             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2399         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2400         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2401           return error("Invalid shufflevector operands");
2402         SmallVector<int, 16> Mask;
2403         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2404         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2405         ValueList.assignValue(V, CstNo);
2406       }
2407       for (auto &DelayedSelector : DelayedSelectors) {
2408         Type *OpTy = DelayedSelector.OpTy;
2409         Type *SelectorTy = Type::getInt1Ty(Context);
2410         uint64_t Op0Idx = DelayedSelector.Op0Idx;
2411         uint64_t Op1Idx = DelayedSelector.Op1Idx;
2412         uint64_t Op2Idx = DelayedSelector.Op2Idx;
2413         uint64_t CstNo = DelayedSelector.CstNo;
2414         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2415         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy);
2416         // The selector might be an i1 or an <n x i1>
2417         // Get the type from the ValueList before getting a forward ref.
2418         if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2419           Value *V = ValueList[Op0Idx];
2420           assert(V);
2421           if (SelectorTy != V->getType())
2422             SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2423         }
2424         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy);
2425         Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2426         ValueList.assignValue(V, CstNo);
2427       }
2428 
2429       if (NextCstNo != ValueList.size())
2430         return error("Invalid constant reference");
2431 
2432       ValueList.resolveConstantForwardRefs();
2433       return Error::success();
2434     case BitstreamEntry::Record:
2435       // The interesting case.
2436       break;
2437     }
2438 
2439     // Read a record.
2440     Record.clear();
2441     Type *VoidType = Type::getVoidTy(Context);
2442     Value *V = nullptr;
2443     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2444     if (!MaybeBitCode)
2445       return MaybeBitCode.takeError();
2446     switch (unsigned BitCode = MaybeBitCode.get()) {
2447     default:  // Default behavior: unknown constant
2448     case bitc::CST_CODE_UNDEF:     // UNDEF
2449       V = UndefValue::get(CurTy);
2450       break;
2451     case bitc::CST_CODE_POISON:    // POISON
2452       V = PoisonValue::get(CurTy);
2453       break;
2454     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2455       if (Record.empty())
2456         return error("Invalid record");
2457       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2458         return error("Invalid record");
2459       if (TypeList[Record[0]] == VoidType)
2460         return error("Invalid constant type");
2461       CurTy = TypeList[Record[0]];
2462       continue;  // Skip the ValueList manipulation.
2463     case bitc::CST_CODE_NULL:      // NULL
2464       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2465         return error("Invalid type for a constant null value");
2466       V = Constant::getNullValue(CurTy);
2467       break;
2468     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2469       if (!CurTy->isIntegerTy() || Record.empty())
2470         return error("Invalid record");
2471       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2472       break;
2473     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2474       if (!CurTy->isIntegerTy() || Record.empty())
2475         return error("Invalid record");
2476 
2477       APInt VInt =
2478           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2479       V = ConstantInt::get(Context, VInt);
2480 
2481       break;
2482     }
2483     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2484       if (Record.empty())
2485         return error("Invalid record");
2486       if (CurTy->isHalfTy())
2487         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2488                                              APInt(16, (uint16_t)Record[0])));
2489       else if (CurTy->isBFloatTy())
2490         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2491                                              APInt(16, (uint32_t)Record[0])));
2492       else if (CurTy->isFloatTy())
2493         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2494                                              APInt(32, (uint32_t)Record[0])));
2495       else if (CurTy->isDoubleTy())
2496         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2497                                              APInt(64, Record[0])));
2498       else if (CurTy->isX86_FP80Ty()) {
2499         // Bits are not stored the same way as a normal i80 APInt, compensate.
2500         uint64_t Rearrange[2];
2501         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2502         Rearrange[1] = Record[0] >> 48;
2503         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2504                                              APInt(80, Rearrange)));
2505       } else if (CurTy->isFP128Ty())
2506         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2507                                              APInt(128, Record)));
2508       else if (CurTy->isPPC_FP128Ty())
2509         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2510                                              APInt(128, Record)));
2511       else
2512         V = UndefValue::get(CurTy);
2513       break;
2514     }
2515 
2516     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2517       if (Record.empty())
2518         return error("Invalid record");
2519 
2520       unsigned Size = Record.size();
2521       SmallVector<Constant*, 16> Elts;
2522 
2523       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2524         for (unsigned i = 0; i != Size; ++i)
2525           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2526                                                      STy->getElementType(i)));
2527         V = ConstantStruct::get(STy, Elts);
2528       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2529         Type *EltTy = ATy->getElementType();
2530         for (unsigned i = 0; i != Size; ++i)
2531           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2532         V = ConstantArray::get(ATy, Elts);
2533       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2534         Type *EltTy = VTy->getElementType();
2535         for (unsigned i = 0; i != Size; ++i)
2536           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2537         V = ConstantVector::get(Elts);
2538       } else {
2539         V = UndefValue::get(CurTy);
2540       }
2541       break;
2542     }
2543     case bitc::CST_CODE_STRING:    // STRING: [values]
2544     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2545       if (Record.empty())
2546         return error("Invalid record");
2547 
2548       SmallString<16> Elts(Record.begin(), Record.end());
2549       V = ConstantDataArray::getString(Context, Elts,
2550                                        BitCode == bitc::CST_CODE_CSTRING);
2551       break;
2552     }
2553     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2554       if (Record.empty())
2555         return error("Invalid record");
2556 
2557       Type *EltTy;
2558       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2559         EltTy = Array->getElementType();
2560       else
2561         EltTy = cast<VectorType>(CurTy)->getElementType();
2562       if (EltTy->isIntegerTy(8)) {
2563         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2564         if (isa<VectorType>(CurTy))
2565           V = ConstantDataVector::get(Context, Elts);
2566         else
2567           V = ConstantDataArray::get(Context, Elts);
2568       } else if (EltTy->isIntegerTy(16)) {
2569         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2570         if (isa<VectorType>(CurTy))
2571           V = ConstantDataVector::get(Context, Elts);
2572         else
2573           V = ConstantDataArray::get(Context, Elts);
2574       } else if (EltTy->isIntegerTy(32)) {
2575         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2576         if (isa<VectorType>(CurTy))
2577           V = ConstantDataVector::get(Context, Elts);
2578         else
2579           V = ConstantDataArray::get(Context, Elts);
2580       } else if (EltTy->isIntegerTy(64)) {
2581         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2582         if (isa<VectorType>(CurTy))
2583           V = ConstantDataVector::get(Context, Elts);
2584         else
2585           V = ConstantDataArray::get(Context, Elts);
2586       } else if (EltTy->isHalfTy()) {
2587         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2588         if (isa<VectorType>(CurTy))
2589           V = ConstantDataVector::getFP(EltTy, Elts);
2590         else
2591           V = ConstantDataArray::getFP(EltTy, Elts);
2592       } else if (EltTy->isBFloatTy()) {
2593         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2594         if (isa<VectorType>(CurTy))
2595           V = ConstantDataVector::getFP(EltTy, Elts);
2596         else
2597           V = ConstantDataArray::getFP(EltTy, Elts);
2598       } else if (EltTy->isFloatTy()) {
2599         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2600         if (isa<VectorType>(CurTy))
2601           V = ConstantDataVector::getFP(EltTy, Elts);
2602         else
2603           V = ConstantDataArray::getFP(EltTy, Elts);
2604       } else if (EltTy->isDoubleTy()) {
2605         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2606         if (isa<VectorType>(CurTy))
2607           V = ConstantDataVector::getFP(EltTy, Elts);
2608         else
2609           V = ConstantDataArray::getFP(EltTy, Elts);
2610       } else {
2611         return error("Invalid type for value");
2612       }
2613       break;
2614     }
2615     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2616       if (Record.size() < 2)
2617         return error("Invalid record");
2618       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2619       if (Opc < 0) {
2620         V = UndefValue::get(CurTy);  // Unknown unop.
2621       } else {
2622         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2623         unsigned Flags = 0;
2624         V = ConstantExpr::get(Opc, LHS, Flags);
2625       }
2626       break;
2627     }
2628     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2629       if (Record.size() < 3)
2630         return error("Invalid record");
2631       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2632       if (Opc < 0) {
2633         V = UndefValue::get(CurTy);  // Unknown binop.
2634       } else {
2635         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2636         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2637         unsigned Flags = 0;
2638         if (Record.size() >= 4) {
2639           if (Opc == Instruction::Add ||
2640               Opc == Instruction::Sub ||
2641               Opc == Instruction::Mul ||
2642               Opc == Instruction::Shl) {
2643             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2644               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2645             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2646               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2647           } else if (Opc == Instruction::SDiv ||
2648                      Opc == Instruction::UDiv ||
2649                      Opc == Instruction::LShr ||
2650                      Opc == Instruction::AShr) {
2651             if (Record[3] & (1 << bitc::PEO_EXACT))
2652               Flags |= SDivOperator::IsExact;
2653           }
2654         }
2655         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2656       }
2657       break;
2658     }
2659     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2660       if (Record.size() < 3)
2661         return error("Invalid record");
2662       int Opc = getDecodedCastOpcode(Record[0]);
2663       if (Opc < 0) {
2664         V = UndefValue::get(CurTy);  // Unknown cast.
2665       } else {
2666         Type *OpTy = getTypeByID(Record[1]);
2667         if (!OpTy)
2668           return error("Invalid record");
2669         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2670         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2671         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2672       }
2673       break;
2674     }
2675     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2676     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2677     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2678                                                      // operands]
2679       unsigned OpNum = 0;
2680       Type *PointeeType = nullptr;
2681       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2682           Record.size() % 2)
2683         PointeeType = getTypeByID(Record[OpNum++]);
2684 
2685       bool InBounds = false;
2686       Optional<unsigned> InRangeIndex;
2687       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2688         uint64_t Op = Record[OpNum++];
2689         InBounds = Op & 1;
2690         InRangeIndex = Op >> 1;
2691       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2692         InBounds = true;
2693 
2694       SmallVector<Constant*, 16> Elts;
2695       Type *Elt0FullTy = nullptr;
2696       while (OpNum != Record.size()) {
2697         if (!Elt0FullTy)
2698           Elt0FullTy = getTypeByID(Record[OpNum]);
2699         Type *ElTy = getTypeByID(Record[OpNum++]);
2700         if (!ElTy)
2701           return error("Invalid record");
2702         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2703       }
2704 
2705       if (Elts.size() < 1)
2706         return error("Invalid gep with no operands");
2707 
2708       PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
2709       if (!PointeeType)
2710         PointeeType = OrigPtrTy->getPointerElementType();
2711       else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2712         return error("Explicit gep operator type does not match pointee type "
2713                      "of pointer operand");
2714 
2715       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2716       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2717                                          InBounds, InRangeIndex);
2718       break;
2719     }
2720     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2721       if (Record.size() < 3)
2722         return error("Invalid record");
2723 
2724       DelayedSelectors.push_back(
2725           {CurTy, Record[0], Record[1], Record[2], NextCstNo});
2726       (void)ValueList.getConstantFwdRef(NextCstNo, CurTy);
2727       ++NextCstNo;
2728       continue;
2729     }
2730     case bitc::CST_CODE_CE_EXTRACTELT
2731         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2732       if (Record.size() < 3)
2733         return error("Invalid record");
2734       VectorType *OpTy =
2735         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2736       if (!OpTy)
2737         return error("Invalid record");
2738       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2739       Constant *Op1 = nullptr;
2740       if (Record.size() == 4) {
2741         Type *IdxTy = getTypeByID(Record[2]);
2742         if (!IdxTy)
2743           return error("Invalid record");
2744         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2745       } else {
2746         // Deprecated, but still needed to read old bitcode files.
2747         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2748       }
2749       if (!Op1)
2750         return error("Invalid record");
2751       V = ConstantExpr::getExtractElement(Op0, Op1);
2752       break;
2753     }
2754     case bitc::CST_CODE_CE_INSERTELT
2755         : { // CE_INSERTELT: [opval, opval, opty, opval]
2756       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2757       if (Record.size() < 3 || !OpTy)
2758         return error("Invalid record");
2759       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2760       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2761                                                   OpTy->getElementType());
2762       Constant *Op2 = nullptr;
2763       if (Record.size() == 4) {
2764         Type *IdxTy = getTypeByID(Record[2]);
2765         if (!IdxTy)
2766           return error("Invalid record");
2767         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2768       } else {
2769         // Deprecated, but still needed to read old bitcode files.
2770         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2771       }
2772       if (!Op2)
2773         return error("Invalid record");
2774       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2775       break;
2776     }
2777     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2778       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2779       if (Record.size() < 3 || !OpTy)
2780         return error("Invalid record");
2781       DelayedShuffles.push_back(
2782           {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2783       ++NextCstNo;
2784       continue;
2785     }
2786     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2787       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2788       VectorType *OpTy =
2789         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2790       if (Record.size() < 4 || !RTy || !OpTy)
2791         return error("Invalid record");
2792       DelayedShuffles.push_back(
2793           {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2794       ++NextCstNo;
2795       continue;
2796     }
2797     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2798       if (Record.size() < 4)
2799         return error("Invalid record");
2800       Type *OpTy = getTypeByID(Record[0]);
2801       if (!OpTy)
2802         return error("Invalid record");
2803       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2804       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2805 
2806       if (OpTy->isFPOrFPVectorTy())
2807         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2808       else
2809         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2810       break;
2811     }
2812     // This maintains backward compatibility, pre-asm dialect keywords.
2813     // Deprecated, but still needed to read old bitcode files.
2814     case bitc::CST_CODE_INLINEASM_OLD: {
2815       if (Record.size() < 2)
2816         return error("Invalid record");
2817       std::string AsmStr, ConstrStr;
2818       bool HasSideEffects = Record[0] & 1;
2819       bool IsAlignStack = Record[0] >> 1;
2820       unsigned AsmStrSize = Record[1];
2821       if (2+AsmStrSize >= Record.size())
2822         return error("Invalid record");
2823       unsigned ConstStrSize = Record[2+AsmStrSize];
2824       if (3+AsmStrSize+ConstStrSize > Record.size())
2825         return error("Invalid record");
2826 
2827       for (unsigned i = 0; i != AsmStrSize; ++i)
2828         AsmStr += (char)Record[2+i];
2829       for (unsigned i = 0; i != ConstStrSize; ++i)
2830         ConstrStr += (char)Record[3+AsmStrSize+i];
2831       UpgradeInlineAsmString(&AsmStr);
2832       // FIXME: support upgrading in opaque pointers mode.
2833       V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2834                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2835       break;
2836     }
2837     // This version adds support for the asm dialect keywords (e.g.,
2838     // inteldialect).
2839     case bitc::CST_CODE_INLINEASM_OLD2: {
2840       if (Record.size() < 2)
2841         return error("Invalid record");
2842       std::string AsmStr, ConstrStr;
2843       bool HasSideEffects = Record[0] & 1;
2844       bool IsAlignStack = (Record[0] >> 1) & 1;
2845       unsigned AsmDialect = Record[0] >> 2;
2846       unsigned AsmStrSize = Record[1];
2847       if (2+AsmStrSize >= Record.size())
2848         return error("Invalid record");
2849       unsigned ConstStrSize = Record[2+AsmStrSize];
2850       if (3+AsmStrSize+ConstStrSize > Record.size())
2851         return error("Invalid record");
2852 
2853       for (unsigned i = 0; i != AsmStrSize; ++i)
2854         AsmStr += (char)Record[2+i];
2855       for (unsigned i = 0; i != ConstStrSize; ++i)
2856         ConstrStr += (char)Record[3+AsmStrSize+i];
2857       UpgradeInlineAsmString(&AsmStr);
2858       // FIXME: support upgrading in opaque pointers mode.
2859       V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2860                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2861                          InlineAsm::AsmDialect(AsmDialect));
2862       break;
2863     }
2864     // This version adds support for the unwind keyword.
2865     case bitc::CST_CODE_INLINEASM_OLD3: {
2866       if (Record.size() < 2)
2867         return error("Invalid record");
2868       unsigned OpNum = 0;
2869       std::string AsmStr, ConstrStr;
2870       bool HasSideEffects = Record[OpNum] & 1;
2871       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
2872       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
2873       bool CanThrow = (Record[OpNum] >> 3) & 1;
2874       ++OpNum;
2875       unsigned AsmStrSize = Record[OpNum];
2876       ++OpNum;
2877       if (OpNum + AsmStrSize >= Record.size())
2878         return error("Invalid record");
2879       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
2880       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
2881         return error("Invalid record");
2882 
2883       for (unsigned i = 0; i != AsmStrSize; ++i)
2884         AsmStr += (char)Record[OpNum + i];
2885       ++OpNum;
2886       for (unsigned i = 0; i != ConstStrSize; ++i)
2887         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
2888       UpgradeInlineAsmString(&AsmStr);
2889       // FIXME: support upgrading in opaque pointers mode.
2890       V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2891                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2892                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
2893       break;
2894     }
2895     // This version adds explicit function type.
2896     case bitc::CST_CODE_INLINEASM: {
2897       if (Record.size() < 3)
2898         return error("Invalid record");
2899       unsigned OpNum = 0;
2900       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
2901       ++OpNum;
2902       if (!FnTy)
2903         return error("Invalid record");
2904       std::string AsmStr, ConstrStr;
2905       bool HasSideEffects = Record[OpNum] & 1;
2906       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
2907       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
2908       bool CanThrow = (Record[OpNum] >> 3) & 1;
2909       ++OpNum;
2910       unsigned AsmStrSize = Record[OpNum];
2911       ++OpNum;
2912       if (OpNum + AsmStrSize >= Record.size())
2913         return error("Invalid record");
2914       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
2915       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
2916         return error("Invalid record");
2917 
2918       for (unsigned i = 0; i != AsmStrSize; ++i)
2919         AsmStr += (char)Record[OpNum + i];
2920       ++OpNum;
2921       for (unsigned i = 0; i != ConstStrSize; ++i)
2922         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
2923       UpgradeInlineAsmString(&AsmStr);
2924       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2925                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
2926       break;
2927     }
2928     case bitc::CST_CODE_BLOCKADDRESS:{
2929       if (Record.size() < 3)
2930         return error("Invalid record");
2931       Type *FnTy = getTypeByID(Record[0]);
2932       if (!FnTy)
2933         return error("Invalid record");
2934       Function *Fn =
2935         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2936       if (!Fn)
2937         return error("Invalid record");
2938 
2939       // If the function is already parsed we can insert the block address right
2940       // away.
2941       BasicBlock *BB;
2942       unsigned BBID = Record[2];
2943       if (!BBID)
2944         // Invalid reference to entry block.
2945         return error("Invalid ID");
2946       if (!Fn->empty()) {
2947         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2948         for (size_t I = 0, E = BBID; I != E; ++I) {
2949           if (BBI == BBE)
2950             return error("Invalid ID");
2951           ++BBI;
2952         }
2953         BB = &*BBI;
2954       } else {
2955         // Otherwise insert a placeholder and remember it so it can be inserted
2956         // when the function is parsed.
2957         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2958         if (FwdBBs.empty())
2959           BasicBlockFwdRefQueue.push_back(Fn);
2960         if (FwdBBs.size() < BBID + 1)
2961           FwdBBs.resize(BBID + 1);
2962         if (!FwdBBs[BBID])
2963           FwdBBs[BBID] = BasicBlock::Create(Context);
2964         BB = FwdBBs[BBID];
2965       }
2966       V = BlockAddress::get(Fn, BB);
2967       break;
2968     }
2969     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2970       if (Record.size() < 2)
2971         return error("Invalid record");
2972       Type *GVTy = getTypeByID(Record[0]);
2973       if (!GVTy)
2974         return error("Invalid record");
2975       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2976           ValueList.getConstantFwdRef(Record[1], GVTy));
2977       if (!GV)
2978         return error("Invalid record");
2979 
2980       V = DSOLocalEquivalent::get(GV);
2981       break;
2982     }
2983     case bitc::CST_CODE_NO_CFI_VALUE: {
2984       if (Record.size() < 2)
2985         return error("Invalid record");
2986       Type *GVTy = getTypeByID(Record[0]);
2987       if (!GVTy)
2988         return error("Invalid record");
2989       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2990           ValueList.getConstantFwdRef(Record[1], GVTy));
2991       if (!GV)
2992         return error("Invalid record");
2993       V = NoCFIValue::get(GV);
2994       break;
2995     }
2996     }
2997 
2998     ValueList.assignValue(V, NextCstNo);
2999     ++NextCstNo;
3000   }
3001 }
3002 
3003 Error BitcodeReader::parseUseLists() {
3004   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3005     return Err;
3006 
3007   // Read all the records.
3008   SmallVector<uint64_t, 64> Record;
3009 
3010   while (true) {
3011     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3012     if (!MaybeEntry)
3013       return MaybeEntry.takeError();
3014     BitstreamEntry Entry = MaybeEntry.get();
3015 
3016     switch (Entry.Kind) {
3017     case BitstreamEntry::SubBlock: // Handled for us already.
3018     case BitstreamEntry::Error:
3019       return error("Malformed block");
3020     case BitstreamEntry::EndBlock:
3021       return Error::success();
3022     case BitstreamEntry::Record:
3023       // The interesting case.
3024       break;
3025     }
3026 
3027     // Read a use list record.
3028     Record.clear();
3029     bool IsBB = false;
3030     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3031     if (!MaybeRecord)
3032       return MaybeRecord.takeError();
3033     switch (MaybeRecord.get()) {
3034     default:  // Default behavior: unknown type.
3035       break;
3036     case bitc::USELIST_CODE_BB:
3037       IsBB = true;
3038       LLVM_FALLTHROUGH;
3039     case bitc::USELIST_CODE_DEFAULT: {
3040       unsigned RecordLength = Record.size();
3041       if (RecordLength < 3)
3042         // Records should have at least an ID and two indexes.
3043         return error("Invalid record");
3044       unsigned ID = Record.pop_back_val();
3045 
3046       Value *V;
3047       if (IsBB) {
3048         assert(ID < FunctionBBs.size() && "Basic block not found");
3049         V = FunctionBBs[ID];
3050       } else
3051         V = ValueList[ID];
3052       unsigned NumUses = 0;
3053       SmallDenseMap<const Use *, unsigned, 16> Order;
3054       for (const Use &U : V->materialized_uses()) {
3055         if (++NumUses > Record.size())
3056           break;
3057         Order[&U] = Record[NumUses - 1];
3058       }
3059       if (Order.size() != Record.size() || NumUses > Record.size())
3060         // Mismatches can happen if the functions are being materialized lazily
3061         // (out-of-order), or a value has been upgraded.
3062         break;
3063 
3064       V->sortUseList([&](const Use &L, const Use &R) {
3065         return Order.lookup(&L) < Order.lookup(&R);
3066       });
3067       break;
3068     }
3069     }
3070   }
3071 }
3072 
3073 /// When we see the block for metadata, remember where it is and then skip it.
3074 /// This lets us lazily deserialize the metadata.
3075 Error BitcodeReader::rememberAndSkipMetadata() {
3076   // Save the current stream state.
3077   uint64_t CurBit = Stream.GetCurrentBitNo();
3078   DeferredMetadataInfo.push_back(CurBit);
3079 
3080   // Skip over the block for now.
3081   if (Error Err = Stream.SkipBlock())
3082     return Err;
3083   return Error::success();
3084 }
3085 
3086 Error BitcodeReader::materializeMetadata() {
3087   for (uint64_t BitPos : DeferredMetadataInfo) {
3088     // Move the bit stream to the saved position.
3089     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3090       return JumpFailed;
3091     if (Error Err = MDLoader->parseModuleMetadata())
3092       return Err;
3093   }
3094 
3095   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3096   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3097   // multiple times.
3098   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3099     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3100       NamedMDNode *LinkerOpts =
3101           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3102       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3103         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3104     }
3105   }
3106 
3107   DeferredMetadataInfo.clear();
3108   return Error::success();
3109 }
3110 
3111 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3112 
3113 /// When we see the block for a function body, remember where it is and then
3114 /// skip it.  This lets us lazily deserialize the functions.
3115 Error BitcodeReader::rememberAndSkipFunctionBody() {
3116   // Get the function we are talking about.
3117   if (FunctionsWithBodies.empty())
3118     return error("Insufficient function protos");
3119 
3120   Function *Fn = FunctionsWithBodies.back();
3121   FunctionsWithBodies.pop_back();
3122 
3123   // Save the current stream state.
3124   uint64_t CurBit = Stream.GetCurrentBitNo();
3125   assert(
3126       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3127       "Mismatch between VST and scanned function offsets");
3128   DeferredFunctionInfo[Fn] = CurBit;
3129 
3130   // Skip over the function block for now.
3131   if (Error Err = Stream.SkipBlock())
3132     return Err;
3133   return Error::success();
3134 }
3135 
3136 Error BitcodeReader::globalCleanup() {
3137   // Patch the initializers for globals and aliases up.
3138   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3139     return Err;
3140   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3141     return error("Malformed global initializer set");
3142 
3143   // Look for intrinsic functions which need to be upgraded at some point
3144   // and functions that need to have their function attributes upgraded.
3145   for (Function &F : *TheModule) {
3146     MDLoader->upgradeDebugIntrinsics(F);
3147     Function *NewFn;
3148     if (UpgradeIntrinsicFunction(&F, NewFn))
3149       UpgradedIntrinsics[&F] = NewFn;
3150     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3151       // Some types could be renamed during loading if several modules are
3152       // loaded in the same LLVMContext (LTO scenario). In this case we should
3153       // remangle intrinsics names as well.
3154       RemangledIntrinsics[&F] = Remangled.getValue();
3155     // Look for functions that rely on old function attribute behavior.
3156     UpgradeFunctionAttributes(F);
3157   }
3158 
3159   // Look for global variables which need to be renamed.
3160   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3161   for (GlobalVariable &GV : TheModule->globals())
3162     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3163       UpgradedVariables.emplace_back(&GV, Upgraded);
3164   for (auto &Pair : UpgradedVariables) {
3165     Pair.first->eraseFromParent();
3166     TheModule->getGlobalList().push_back(Pair.second);
3167   }
3168 
3169   // Force deallocation of memory for these vectors to favor the client that
3170   // want lazy deserialization.
3171   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3172   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3173   return Error::success();
3174 }
3175 
3176 /// Support for lazy parsing of function bodies. This is required if we
3177 /// either have an old bitcode file without a VST forward declaration record,
3178 /// or if we have an anonymous function being materialized, since anonymous
3179 /// functions do not have a name and are therefore not in the VST.
3180 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3181   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3182     return JumpFailed;
3183 
3184   if (Stream.AtEndOfStream())
3185     return error("Could not find function in stream");
3186 
3187   if (!SeenFirstFunctionBody)
3188     return error("Trying to materialize functions before seeing function blocks");
3189 
3190   // An old bitcode file with the symbol table at the end would have
3191   // finished the parse greedily.
3192   assert(SeenValueSymbolTable);
3193 
3194   SmallVector<uint64_t, 64> Record;
3195 
3196   while (true) {
3197     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3198     if (!MaybeEntry)
3199       return MaybeEntry.takeError();
3200     llvm::BitstreamEntry Entry = MaybeEntry.get();
3201 
3202     switch (Entry.Kind) {
3203     default:
3204       return error("Expect SubBlock");
3205     case BitstreamEntry::SubBlock:
3206       switch (Entry.ID) {
3207       default:
3208         return error("Expect function block");
3209       case bitc::FUNCTION_BLOCK_ID:
3210         if (Error Err = rememberAndSkipFunctionBody())
3211           return Err;
3212         NextUnreadBit = Stream.GetCurrentBitNo();
3213         return Error::success();
3214       }
3215     }
3216   }
3217 }
3218 
3219 Error BitcodeReaderBase::readBlockInfo() {
3220   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3221       Stream.ReadBlockInfoBlock();
3222   if (!MaybeNewBlockInfo)
3223     return MaybeNewBlockInfo.takeError();
3224   Optional<BitstreamBlockInfo> NewBlockInfo =
3225       std::move(MaybeNewBlockInfo.get());
3226   if (!NewBlockInfo)
3227     return error("Malformed block");
3228   BlockInfo = std::move(*NewBlockInfo);
3229   return Error::success();
3230 }
3231 
3232 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3233   // v1: [selection_kind, name]
3234   // v2: [strtab_offset, strtab_size, selection_kind]
3235   StringRef Name;
3236   std::tie(Name, Record) = readNameFromStrtab(Record);
3237 
3238   if (Record.empty())
3239     return error("Invalid record");
3240   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3241   std::string OldFormatName;
3242   if (!UseStrtab) {
3243     if (Record.size() < 2)
3244       return error("Invalid record");
3245     unsigned ComdatNameSize = Record[1];
3246     if (ComdatNameSize > Record.size() - 2)
3247       return error("Comdat name size too large");
3248     OldFormatName.reserve(ComdatNameSize);
3249     for (unsigned i = 0; i != ComdatNameSize; ++i)
3250       OldFormatName += (char)Record[2 + i];
3251     Name = OldFormatName;
3252   }
3253   Comdat *C = TheModule->getOrInsertComdat(Name);
3254   C->setSelectionKind(SK);
3255   ComdatList.push_back(C);
3256   return Error::success();
3257 }
3258 
3259 static void inferDSOLocal(GlobalValue *GV) {
3260   // infer dso_local from linkage and visibility if it is not encoded.
3261   if (GV->hasLocalLinkage() ||
3262       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3263     GV->setDSOLocal(true);
3264 }
3265 
3266 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3267   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3268   // visibility, threadlocal, unnamed_addr, externally_initialized,
3269   // dllstorageclass, comdat, attributes, preemption specifier,
3270   // partition strtab offset, partition strtab size] (name in VST)
3271   // v2: [strtab_offset, strtab_size, v1]
3272   StringRef Name;
3273   std::tie(Name, Record) = readNameFromStrtab(Record);
3274 
3275   if (Record.size() < 6)
3276     return error("Invalid record");
3277   Type *Ty = getTypeByID(Record[0]);
3278   if (!Ty)
3279     return error("Invalid record");
3280   bool isConstant = Record[1] & 1;
3281   bool explicitType = Record[1] & 2;
3282   unsigned AddressSpace;
3283   if (explicitType) {
3284     AddressSpace = Record[1] >> 2;
3285   } else {
3286     if (!Ty->isPointerTy())
3287       return error("Invalid type for value");
3288     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3289     Ty = Ty->getPointerElementType();
3290   }
3291 
3292   uint64_t RawLinkage = Record[3];
3293   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3294   MaybeAlign Alignment;
3295   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3296     return Err;
3297   std::string Section;
3298   if (Record[5]) {
3299     if (Record[5] - 1 >= SectionTable.size())
3300       return error("Invalid ID");
3301     Section = SectionTable[Record[5] - 1];
3302   }
3303   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3304   // Local linkage must have default visibility.
3305   // auto-upgrade `hidden` and `protected` for old bitcode.
3306   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3307     Visibility = getDecodedVisibility(Record[6]);
3308 
3309   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3310   if (Record.size() > 7)
3311     TLM = getDecodedThreadLocalMode(Record[7]);
3312 
3313   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3314   if (Record.size() > 8)
3315     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3316 
3317   bool ExternallyInitialized = false;
3318   if (Record.size() > 9)
3319     ExternallyInitialized = Record[9];
3320 
3321   GlobalVariable *NewGV =
3322       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3323                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3324   NewGV->setAlignment(Alignment);
3325   if (!Section.empty())
3326     NewGV->setSection(Section);
3327   NewGV->setVisibility(Visibility);
3328   NewGV->setUnnamedAddr(UnnamedAddr);
3329 
3330   if (Record.size() > 10)
3331     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3332   else
3333     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3334 
3335   ValueList.push_back(NewGV);
3336 
3337   // Remember which value to use for the global initializer.
3338   if (unsigned InitID = Record[2])
3339     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3340 
3341   if (Record.size() > 11) {
3342     if (unsigned ComdatID = Record[11]) {
3343       if (ComdatID > ComdatList.size())
3344         return error("Invalid global variable comdat ID");
3345       NewGV->setComdat(ComdatList[ComdatID - 1]);
3346     }
3347   } else if (hasImplicitComdat(RawLinkage)) {
3348     ImplicitComdatObjects.insert(NewGV);
3349   }
3350 
3351   if (Record.size() > 12) {
3352     auto AS = getAttributes(Record[12]).getFnAttrs();
3353     NewGV->setAttributes(AS);
3354   }
3355 
3356   if (Record.size() > 13) {
3357     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3358   }
3359   inferDSOLocal(NewGV);
3360 
3361   // Check whether we have enough values to read a partition name.
3362   if (Record.size() > 15)
3363     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3364 
3365   return Error::success();
3366 }
3367 
3368 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3369   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3370   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3371   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3372   // v2: [strtab_offset, strtab_size, v1]
3373   StringRef Name;
3374   std::tie(Name, Record) = readNameFromStrtab(Record);
3375 
3376   if (Record.size() < 8)
3377     return error("Invalid record");
3378   Type *FTy = getTypeByID(Record[0]);
3379   if (!FTy)
3380     return error("Invalid record");
3381   if (auto *PTy = dyn_cast<PointerType>(FTy))
3382     FTy = PTy->getPointerElementType();
3383 
3384   if (!isa<FunctionType>(FTy))
3385     return error("Invalid type for value");
3386   auto CC = static_cast<CallingConv::ID>(Record[1]);
3387   if (CC & ~CallingConv::MaxID)
3388     return error("Invalid calling convention ID");
3389 
3390   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3391   if (Record.size() > 16)
3392     AddrSpace = Record[16];
3393 
3394   Function *Func =
3395       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3396                        AddrSpace, Name, TheModule);
3397 
3398   assert(Func->getFunctionType() == FTy &&
3399          "Incorrect fully specified type provided for function");
3400   FunctionTypes[Func] = cast<FunctionType>(FTy);
3401 
3402   Func->setCallingConv(CC);
3403   bool isProto = Record[2];
3404   uint64_t RawLinkage = Record[3];
3405   Func->setLinkage(getDecodedLinkage(RawLinkage));
3406   Func->setAttributes(getAttributes(Record[4]));
3407 
3408   // Upgrade any old-style byval or sret without a type by propagating the
3409   // argument's pointee type. There should be no opaque pointers where the byval
3410   // type is implicit.
3411   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3412     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3413                                      Attribute::InAlloca}) {
3414       if (!Func->hasParamAttribute(i, Kind))
3415         continue;
3416 
3417       if (Func->getParamAttribute(i, Kind).getValueAsType())
3418         continue;
3419 
3420       Func->removeParamAttr(i, Kind);
3421 
3422       Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3423       Type *PtrEltTy = PTy->getPointerElementType();
3424       Attribute NewAttr;
3425       switch (Kind) {
3426       case Attribute::ByVal:
3427         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3428         break;
3429       case Attribute::StructRet:
3430         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3431         break;
3432       case Attribute::InAlloca:
3433         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3434         break;
3435       default:
3436         llvm_unreachable("not an upgraded type attribute");
3437       }
3438 
3439       Func->addParamAttr(i, NewAttr);
3440     }
3441   }
3442 
3443   MaybeAlign Alignment;
3444   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3445     return Err;
3446   Func->setAlignment(Alignment);
3447   if (Record[6]) {
3448     if (Record[6] - 1 >= SectionTable.size())
3449       return error("Invalid ID");
3450     Func->setSection(SectionTable[Record[6] - 1]);
3451   }
3452   // Local linkage must have default visibility.
3453   // auto-upgrade `hidden` and `protected` for old bitcode.
3454   if (!Func->hasLocalLinkage())
3455     Func->setVisibility(getDecodedVisibility(Record[7]));
3456   if (Record.size() > 8 && Record[8]) {
3457     if (Record[8] - 1 >= GCTable.size())
3458       return error("Invalid ID");
3459     Func->setGC(GCTable[Record[8] - 1]);
3460   }
3461   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3462   if (Record.size() > 9)
3463     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3464   Func->setUnnamedAddr(UnnamedAddr);
3465 
3466   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3467   if (Record.size() > 10)
3468     OperandInfo.Prologue = Record[10];
3469 
3470   if (Record.size() > 11)
3471     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3472   else
3473     upgradeDLLImportExportLinkage(Func, RawLinkage);
3474 
3475   if (Record.size() > 12) {
3476     if (unsigned ComdatID = Record[12]) {
3477       if (ComdatID > ComdatList.size())
3478         return error("Invalid function comdat ID");
3479       Func->setComdat(ComdatList[ComdatID - 1]);
3480     }
3481   } else if (hasImplicitComdat(RawLinkage)) {
3482     ImplicitComdatObjects.insert(Func);
3483   }
3484 
3485   if (Record.size() > 13)
3486     OperandInfo.Prefix = Record[13];
3487 
3488   if (Record.size() > 14)
3489     OperandInfo.PersonalityFn = Record[14];
3490 
3491   if (Record.size() > 15) {
3492     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3493   }
3494   inferDSOLocal(Func);
3495 
3496   // Record[16] is the address space number.
3497 
3498   // Check whether we have enough values to read a partition name. Also make
3499   // sure Strtab has enough values.
3500   if (Record.size() > 18 && Strtab.data() &&
3501       Record[17] + Record[18] <= Strtab.size()) {
3502     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3503   }
3504 
3505   ValueList.push_back(Func);
3506 
3507   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3508     FunctionOperands.push_back(OperandInfo);
3509 
3510   // If this is a function with a body, remember the prototype we are
3511   // creating now, so that we can match up the body with them later.
3512   if (!isProto) {
3513     Func->setIsMaterializable(true);
3514     FunctionsWithBodies.push_back(Func);
3515     DeferredFunctionInfo[Func] = 0;
3516   }
3517   return Error::success();
3518 }
3519 
3520 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3521     unsigned BitCode, ArrayRef<uint64_t> Record) {
3522   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3523   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3524   // dllstorageclass, threadlocal, unnamed_addr,
3525   // preemption specifier] (name in VST)
3526   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3527   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3528   // preemption specifier] (name in VST)
3529   // v2: [strtab_offset, strtab_size, v1]
3530   StringRef Name;
3531   std::tie(Name, Record) = readNameFromStrtab(Record);
3532 
3533   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3534   if (Record.size() < (3 + (unsigned)NewRecord))
3535     return error("Invalid record");
3536   unsigned OpNum = 0;
3537   Type *Ty = getTypeByID(Record[OpNum++]);
3538   if (!Ty)
3539     return error("Invalid record");
3540 
3541   unsigned AddrSpace;
3542   if (!NewRecord) {
3543     auto *PTy = dyn_cast<PointerType>(Ty);
3544     if (!PTy)
3545       return error("Invalid type for value");
3546     Ty = PTy->getPointerElementType();
3547     AddrSpace = PTy->getAddressSpace();
3548   } else {
3549     AddrSpace = Record[OpNum++];
3550   }
3551 
3552   auto Val = Record[OpNum++];
3553   auto Linkage = Record[OpNum++];
3554   GlobalValue *NewGA;
3555   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3556       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3557     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3558                                 TheModule);
3559   else
3560     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3561                                 nullptr, TheModule);
3562 
3563   // Local linkage must have default visibility.
3564   // auto-upgrade `hidden` and `protected` for old bitcode.
3565   if (OpNum != Record.size()) {
3566     auto VisInd = OpNum++;
3567     if (!NewGA->hasLocalLinkage())
3568       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3569   }
3570   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3571       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3572     if (OpNum != Record.size())
3573       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3574     else
3575       upgradeDLLImportExportLinkage(NewGA, Linkage);
3576     if (OpNum != Record.size())
3577       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3578     if (OpNum != Record.size())
3579       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3580   }
3581   if (OpNum != Record.size())
3582     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3583   inferDSOLocal(NewGA);
3584 
3585   // Check whether we have enough values to read a partition name.
3586   if (OpNum + 1 < Record.size()) {
3587     NewGA->setPartition(
3588         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3589     OpNum += 2;
3590   }
3591 
3592   ValueList.push_back(NewGA);
3593   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3594   return Error::success();
3595 }
3596 
3597 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3598                                  bool ShouldLazyLoadMetadata,
3599                                  DataLayoutCallbackTy DataLayoutCallback) {
3600   if (ResumeBit) {
3601     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3602       return JumpFailed;
3603   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3604     return Err;
3605 
3606   SmallVector<uint64_t, 64> Record;
3607 
3608   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3609   // finalize the datalayout before we run any of that code.
3610   bool ResolvedDataLayout = false;
3611   auto ResolveDataLayout = [&] {
3612     if (ResolvedDataLayout)
3613       return;
3614 
3615     // datalayout and triple can't be parsed after this point.
3616     ResolvedDataLayout = true;
3617 
3618     // Upgrade data layout string.
3619     std::string DL = llvm::UpgradeDataLayoutString(
3620         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3621     TheModule->setDataLayout(DL);
3622 
3623     if (auto LayoutOverride =
3624             DataLayoutCallback(TheModule->getTargetTriple()))
3625       TheModule->setDataLayout(*LayoutOverride);
3626   };
3627 
3628   // Read all the records for this module.
3629   while (true) {
3630     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3631     if (!MaybeEntry)
3632       return MaybeEntry.takeError();
3633     llvm::BitstreamEntry Entry = MaybeEntry.get();
3634 
3635     switch (Entry.Kind) {
3636     case BitstreamEntry::Error:
3637       return error("Malformed block");
3638     case BitstreamEntry::EndBlock:
3639       ResolveDataLayout();
3640       return globalCleanup();
3641 
3642     case BitstreamEntry::SubBlock:
3643       switch (Entry.ID) {
3644       default:  // Skip unknown content.
3645         if (Error Err = Stream.SkipBlock())
3646           return Err;
3647         break;
3648       case bitc::BLOCKINFO_BLOCK_ID:
3649         if (Error Err = readBlockInfo())
3650           return Err;
3651         break;
3652       case bitc::PARAMATTR_BLOCK_ID:
3653         if (Error Err = parseAttributeBlock())
3654           return Err;
3655         break;
3656       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3657         if (Error Err = parseAttributeGroupBlock())
3658           return Err;
3659         break;
3660       case bitc::TYPE_BLOCK_ID_NEW:
3661         if (Error Err = parseTypeTable())
3662           return Err;
3663         break;
3664       case bitc::VALUE_SYMTAB_BLOCK_ID:
3665         if (!SeenValueSymbolTable) {
3666           // Either this is an old form VST without function index and an
3667           // associated VST forward declaration record (which would have caused
3668           // the VST to be jumped to and parsed before it was encountered
3669           // normally in the stream), or there were no function blocks to
3670           // trigger an earlier parsing of the VST.
3671           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3672           if (Error Err = parseValueSymbolTable())
3673             return Err;
3674           SeenValueSymbolTable = true;
3675         } else {
3676           // We must have had a VST forward declaration record, which caused
3677           // the parser to jump to and parse the VST earlier.
3678           assert(VSTOffset > 0);
3679           if (Error Err = Stream.SkipBlock())
3680             return Err;
3681         }
3682         break;
3683       case bitc::CONSTANTS_BLOCK_ID:
3684         if (Error Err = parseConstants())
3685           return Err;
3686         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3687           return Err;
3688         break;
3689       case bitc::METADATA_BLOCK_ID:
3690         if (ShouldLazyLoadMetadata) {
3691           if (Error Err = rememberAndSkipMetadata())
3692             return Err;
3693           break;
3694         }
3695         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3696         if (Error Err = MDLoader->parseModuleMetadata())
3697           return Err;
3698         break;
3699       case bitc::METADATA_KIND_BLOCK_ID:
3700         if (Error Err = MDLoader->parseMetadataKinds())
3701           return Err;
3702         break;
3703       case bitc::FUNCTION_BLOCK_ID:
3704         ResolveDataLayout();
3705 
3706         // If this is the first function body we've seen, reverse the
3707         // FunctionsWithBodies list.
3708         if (!SeenFirstFunctionBody) {
3709           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3710           if (Error Err = globalCleanup())
3711             return Err;
3712           SeenFirstFunctionBody = true;
3713         }
3714 
3715         if (VSTOffset > 0) {
3716           // If we have a VST forward declaration record, make sure we
3717           // parse the VST now if we haven't already. It is needed to
3718           // set up the DeferredFunctionInfo vector for lazy reading.
3719           if (!SeenValueSymbolTable) {
3720             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3721               return Err;
3722             SeenValueSymbolTable = true;
3723             // Fall through so that we record the NextUnreadBit below.
3724             // This is necessary in case we have an anonymous function that
3725             // is later materialized. Since it will not have a VST entry we
3726             // need to fall back to the lazy parse to find its offset.
3727           } else {
3728             // If we have a VST forward declaration record, but have already
3729             // parsed the VST (just above, when the first function body was
3730             // encountered here), then we are resuming the parse after
3731             // materializing functions. The ResumeBit points to the
3732             // start of the last function block recorded in the
3733             // DeferredFunctionInfo map. Skip it.
3734             if (Error Err = Stream.SkipBlock())
3735               return Err;
3736             continue;
3737           }
3738         }
3739 
3740         // Support older bitcode files that did not have the function
3741         // index in the VST, nor a VST forward declaration record, as
3742         // well as anonymous functions that do not have VST entries.
3743         // Build the DeferredFunctionInfo vector on the fly.
3744         if (Error Err = rememberAndSkipFunctionBody())
3745           return Err;
3746 
3747         // Suspend parsing when we reach the function bodies. Subsequent
3748         // materialization calls will resume it when necessary. If the bitcode
3749         // file is old, the symbol table will be at the end instead and will not
3750         // have been seen yet. In this case, just finish the parse now.
3751         if (SeenValueSymbolTable) {
3752           NextUnreadBit = Stream.GetCurrentBitNo();
3753           // After the VST has been parsed, we need to make sure intrinsic name
3754           // are auto-upgraded.
3755           return globalCleanup();
3756         }
3757         break;
3758       case bitc::USELIST_BLOCK_ID:
3759         if (Error Err = parseUseLists())
3760           return Err;
3761         break;
3762       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3763         if (Error Err = parseOperandBundleTags())
3764           return Err;
3765         break;
3766       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3767         if (Error Err = parseSyncScopeNames())
3768           return Err;
3769         break;
3770       }
3771       continue;
3772 
3773     case BitstreamEntry::Record:
3774       // The interesting case.
3775       break;
3776     }
3777 
3778     // Read a record.
3779     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3780     if (!MaybeBitCode)
3781       return MaybeBitCode.takeError();
3782     switch (unsigned BitCode = MaybeBitCode.get()) {
3783     default: break;  // Default behavior, ignore unknown content.
3784     case bitc::MODULE_CODE_VERSION: {
3785       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3786       if (!VersionOrErr)
3787         return VersionOrErr.takeError();
3788       UseRelativeIDs = *VersionOrErr >= 1;
3789       break;
3790     }
3791     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3792       if (ResolvedDataLayout)
3793         return error("target triple too late in module");
3794       std::string S;
3795       if (convertToString(Record, 0, S))
3796         return error("Invalid record");
3797       TheModule->setTargetTriple(S);
3798       break;
3799     }
3800     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3801       if (ResolvedDataLayout)
3802         return error("datalayout too late in module");
3803       std::string S;
3804       if (convertToString(Record, 0, S))
3805         return error("Invalid record");
3806       Expected<DataLayout> MaybeDL = DataLayout::parse(S);
3807       if (!MaybeDL)
3808         return MaybeDL.takeError();
3809       TheModule->setDataLayout(MaybeDL.get());
3810       break;
3811     }
3812     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3813       std::string S;
3814       if (convertToString(Record, 0, S))
3815         return error("Invalid record");
3816       TheModule->setModuleInlineAsm(S);
3817       break;
3818     }
3819     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3820       // Deprecated, but still needed to read old bitcode files.
3821       std::string S;
3822       if (convertToString(Record, 0, S))
3823         return error("Invalid record");
3824       // Ignore value.
3825       break;
3826     }
3827     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3828       std::string S;
3829       if (convertToString(Record, 0, S))
3830         return error("Invalid record");
3831       SectionTable.push_back(S);
3832       break;
3833     }
3834     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3835       std::string S;
3836       if (convertToString(Record, 0, S))
3837         return error("Invalid record");
3838       GCTable.push_back(S);
3839       break;
3840     }
3841     case bitc::MODULE_CODE_COMDAT:
3842       if (Error Err = parseComdatRecord(Record))
3843         return Err;
3844       break;
3845     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
3846     // written by ThinLinkBitcodeWriter. See
3847     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
3848     // record
3849     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
3850     case bitc::MODULE_CODE_GLOBALVAR:
3851       if (Error Err = parseGlobalVarRecord(Record))
3852         return Err;
3853       break;
3854     case bitc::MODULE_CODE_FUNCTION:
3855       ResolveDataLayout();
3856       if (Error Err = parseFunctionRecord(Record))
3857         return Err;
3858       break;
3859     case bitc::MODULE_CODE_IFUNC:
3860     case bitc::MODULE_CODE_ALIAS:
3861     case bitc::MODULE_CODE_ALIAS_OLD:
3862       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3863         return Err;
3864       break;
3865     /// MODULE_CODE_VSTOFFSET: [offset]
3866     case bitc::MODULE_CODE_VSTOFFSET:
3867       if (Record.empty())
3868         return error("Invalid record");
3869       // Note that we subtract 1 here because the offset is relative to one word
3870       // before the start of the identification or module block, which was
3871       // historically always the start of the regular bitcode header.
3872       VSTOffset = Record[0] - 1;
3873       break;
3874     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3875     case bitc::MODULE_CODE_SOURCE_FILENAME:
3876       SmallString<128> ValueName;
3877       if (convertToString(Record, 0, ValueName))
3878         return error("Invalid record");
3879       TheModule->setSourceFileName(ValueName);
3880       break;
3881     }
3882     Record.clear();
3883   }
3884 }
3885 
3886 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3887                                       bool IsImporting,
3888                                       DataLayoutCallbackTy DataLayoutCallback) {
3889   TheModule = M;
3890   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3891                             [&](unsigned ID) { return getTypeByID(ID); });
3892   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3893 }
3894 
3895 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3896   if (!isa<PointerType>(PtrType))
3897     return error("Load/Store operand is not a pointer type");
3898 
3899   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3900     return error("Explicit load/store type does not match pointee "
3901                  "type of pointer operand");
3902   if (!PointerType::isLoadableOrStorableType(ValType))
3903     return error("Cannot load/store from pointer");
3904   return Error::success();
3905 }
3906 
3907 void BitcodeReader::propagateAttributeTypes(CallBase *CB,
3908                                             ArrayRef<Type *> ArgsTys) {
3909   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3910     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3911                                      Attribute::InAlloca}) {
3912       if (!CB->paramHasAttr(i, Kind) ||
3913           CB->getParamAttr(i, Kind).getValueAsType())
3914         continue;
3915 
3916       CB->removeParamAttr(i, Kind);
3917 
3918       Type *PtrEltTy = ArgsTys[i]->getPointerElementType();
3919       Attribute NewAttr;
3920       switch (Kind) {
3921       case Attribute::ByVal:
3922         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3923         break;
3924       case Attribute::StructRet:
3925         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3926         break;
3927       case Attribute::InAlloca:
3928         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3929         break;
3930       default:
3931         llvm_unreachable("not an upgraded type attribute");
3932       }
3933 
3934       CB->addParamAttr(i, NewAttr);
3935     }
3936   }
3937 
3938   if (CB->isInlineAsm()) {
3939     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
3940     unsigned ArgNo = 0;
3941     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3942       if (!CI.hasArg())
3943         continue;
3944 
3945       if (CI.isIndirect && !CB->getAttributes().getParamElementType(ArgNo)) {
3946         Type *ElemTy = ArgsTys[ArgNo]->getPointerElementType();
3947         CB->addParamAttr(
3948             ArgNo, Attribute::get(Context, Attribute::ElementType, ElemTy));
3949       }
3950 
3951       ArgNo++;
3952     }
3953   }
3954 
3955   switch (CB->getIntrinsicID()) {
3956   case Intrinsic::preserve_array_access_index:
3957   case Intrinsic::preserve_struct_access_index:
3958     if (!CB->getAttributes().getParamElementType(0)) {
3959       Type *ElTy = ArgsTys[0]->getPointerElementType();
3960       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
3961       CB->addParamAttr(0, NewAttr);
3962     }
3963     break;
3964   default:
3965     break;
3966   }
3967 }
3968 
3969 /// Lazily parse the specified function body block.
3970 Error BitcodeReader::parseFunctionBody(Function *F) {
3971   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3972     return Err;
3973 
3974   // Unexpected unresolved metadata when parsing function.
3975   if (MDLoader->hasFwdRefs())
3976     return error("Invalid function metadata: incoming forward references");
3977 
3978   InstructionList.clear();
3979   unsigned ModuleValueListSize = ValueList.size();
3980   unsigned ModuleMDLoaderSize = MDLoader->size();
3981 
3982   // Add all the function arguments to the value table.
3983 #ifndef NDEBUG
3984   unsigned ArgNo = 0;
3985   FunctionType *FTy = FunctionTypes[F];
3986 #endif
3987   for (Argument &I : F->args()) {
3988     assert(I.getType() == FTy->getParamType(ArgNo++) &&
3989            "Incorrect fully specified type for Function Argument");
3990     ValueList.push_back(&I);
3991   }
3992   unsigned NextValueNo = ValueList.size();
3993   BasicBlock *CurBB = nullptr;
3994   unsigned CurBBNo = 0;
3995 
3996   DebugLoc LastLoc;
3997   auto getLastInstruction = [&]() -> Instruction * {
3998     if (CurBB && !CurBB->empty())
3999       return &CurBB->back();
4000     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4001              !FunctionBBs[CurBBNo - 1]->empty())
4002       return &FunctionBBs[CurBBNo - 1]->back();
4003     return nullptr;
4004   };
4005 
4006   std::vector<OperandBundleDef> OperandBundles;
4007 
4008   // Read all the records.
4009   SmallVector<uint64_t, 64> Record;
4010 
4011   while (true) {
4012     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4013     if (!MaybeEntry)
4014       return MaybeEntry.takeError();
4015     llvm::BitstreamEntry Entry = MaybeEntry.get();
4016 
4017     switch (Entry.Kind) {
4018     case BitstreamEntry::Error:
4019       return error("Malformed block");
4020     case BitstreamEntry::EndBlock:
4021       goto OutOfRecordLoop;
4022 
4023     case BitstreamEntry::SubBlock:
4024       switch (Entry.ID) {
4025       default:  // Skip unknown content.
4026         if (Error Err = Stream.SkipBlock())
4027           return Err;
4028         break;
4029       case bitc::CONSTANTS_BLOCK_ID:
4030         if (Error Err = parseConstants())
4031           return Err;
4032         NextValueNo = ValueList.size();
4033         break;
4034       case bitc::VALUE_SYMTAB_BLOCK_ID:
4035         if (Error Err = parseValueSymbolTable())
4036           return Err;
4037         break;
4038       case bitc::METADATA_ATTACHMENT_ID:
4039         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4040           return Err;
4041         break;
4042       case bitc::METADATA_BLOCK_ID:
4043         assert(DeferredMetadataInfo.empty() &&
4044                "Must read all module-level metadata before function-level");
4045         if (Error Err = MDLoader->parseFunctionMetadata())
4046           return Err;
4047         break;
4048       case bitc::USELIST_BLOCK_ID:
4049         if (Error Err = parseUseLists())
4050           return Err;
4051         break;
4052       }
4053       continue;
4054 
4055     case BitstreamEntry::Record:
4056       // The interesting case.
4057       break;
4058     }
4059 
4060     // Read a record.
4061     Record.clear();
4062     Instruction *I = nullptr;
4063     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4064     if (!MaybeBitCode)
4065       return MaybeBitCode.takeError();
4066     switch (unsigned BitCode = MaybeBitCode.get()) {
4067     default: // Default behavior: reject
4068       return error("Invalid value");
4069     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4070       if (Record.empty() || Record[0] == 0)
4071         return error("Invalid record");
4072       // Create all the basic blocks for the function.
4073       FunctionBBs.resize(Record[0]);
4074 
4075       // See if anything took the address of blocks in this function.
4076       auto BBFRI = BasicBlockFwdRefs.find(F);
4077       if (BBFRI == BasicBlockFwdRefs.end()) {
4078         for (BasicBlock *&BB : FunctionBBs)
4079           BB = BasicBlock::Create(Context, "", F);
4080       } else {
4081         auto &BBRefs = BBFRI->second;
4082         // Check for invalid basic block references.
4083         if (BBRefs.size() > FunctionBBs.size())
4084           return error("Invalid ID");
4085         assert(!BBRefs.empty() && "Unexpected empty array");
4086         assert(!BBRefs.front() && "Invalid reference to entry block");
4087         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4088              ++I)
4089           if (I < RE && BBRefs[I]) {
4090             BBRefs[I]->insertInto(F);
4091             FunctionBBs[I] = BBRefs[I];
4092           } else {
4093             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4094           }
4095 
4096         // Erase from the table.
4097         BasicBlockFwdRefs.erase(BBFRI);
4098       }
4099 
4100       CurBB = FunctionBBs[0];
4101       continue;
4102     }
4103 
4104     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4105       // This record indicates that the last instruction is at the same
4106       // location as the previous instruction with a location.
4107       I = getLastInstruction();
4108 
4109       if (!I)
4110         return error("Invalid record");
4111       I->setDebugLoc(LastLoc);
4112       I = nullptr;
4113       continue;
4114 
4115     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4116       I = getLastInstruction();
4117       if (!I || Record.size() < 4)
4118         return error("Invalid record");
4119 
4120       unsigned Line = Record[0], Col = Record[1];
4121       unsigned ScopeID = Record[2], IAID = Record[3];
4122       bool isImplicitCode = Record.size() == 5 && Record[4];
4123 
4124       MDNode *Scope = nullptr, *IA = nullptr;
4125       if (ScopeID) {
4126         Scope = dyn_cast_or_null<MDNode>(
4127             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4128         if (!Scope)
4129           return error("Invalid record");
4130       }
4131       if (IAID) {
4132         IA = dyn_cast_or_null<MDNode>(
4133             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4134         if (!IA)
4135           return error("Invalid record");
4136       }
4137       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4138                                 isImplicitCode);
4139       I->setDebugLoc(LastLoc);
4140       I = nullptr;
4141       continue;
4142     }
4143     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4144       unsigned OpNum = 0;
4145       Value *LHS;
4146       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4147           OpNum+1 > Record.size())
4148         return error("Invalid record");
4149 
4150       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4151       if (Opc == -1)
4152         return error("Invalid record");
4153       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4154       InstructionList.push_back(I);
4155       if (OpNum < Record.size()) {
4156         if (isa<FPMathOperator>(I)) {
4157           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4158           if (FMF.any())
4159             I->setFastMathFlags(FMF);
4160         }
4161       }
4162       break;
4163     }
4164     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4165       unsigned OpNum = 0;
4166       Value *LHS, *RHS;
4167       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4168           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4169           OpNum+1 > Record.size())
4170         return error("Invalid record");
4171 
4172       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4173       if (Opc == -1)
4174         return error("Invalid record");
4175       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4176       InstructionList.push_back(I);
4177       if (OpNum < Record.size()) {
4178         if (Opc == Instruction::Add ||
4179             Opc == Instruction::Sub ||
4180             Opc == Instruction::Mul ||
4181             Opc == Instruction::Shl) {
4182           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4183             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4184           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4185             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4186         } else if (Opc == Instruction::SDiv ||
4187                    Opc == Instruction::UDiv ||
4188                    Opc == Instruction::LShr ||
4189                    Opc == Instruction::AShr) {
4190           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4191             cast<BinaryOperator>(I)->setIsExact(true);
4192         } else if (isa<FPMathOperator>(I)) {
4193           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4194           if (FMF.any())
4195             I->setFastMathFlags(FMF);
4196         }
4197 
4198       }
4199       break;
4200     }
4201     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4202       unsigned OpNum = 0;
4203       Value *Op;
4204       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4205           OpNum+2 != Record.size())
4206         return error("Invalid record");
4207 
4208       Type *ResTy = getTypeByID(Record[OpNum]);
4209       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4210       if (Opc == -1 || !ResTy)
4211         return error("Invalid record");
4212       Instruction *Temp = nullptr;
4213       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4214         if (Temp) {
4215           InstructionList.push_back(Temp);
4216           assert(CurBB && "No current BB?");
4217           CurBB->getInstList().push_back(Temp);
4218         }
4219       } else {
4220         auto CastOp = (Instruction::CastOps)Opc;
4221         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4222           return error("Invalid cast");
4223         I = CastInst::Create(CastOp, Op, ResTy);
4224       }
4225       InstructionList.push_back(I);
4226       break;
4227     }
4228     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4229     case bitc::FUNC_CODE_INST_GEP_OLD:
4230     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4231       unsigned OpNum = 0;
4232 
4233       Type *Ty;
4234       bool InBounds;
4235 
4236       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4237         InBounds = Record[OpNum++];
4238         Ty = getTypeByID(Record[OpNum++]);
4239       } else {
4240         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4241         Ty = nullptr;
4242       }
4243 
4244       Value *BasePtr;
4245       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4246         return error("Invalid record");
4247 
4248       if (!Ty) {
4249         Ty = BasePtr->getType()->getScalarType()->getPointerElementType();
4250       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4251                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4252         return error(
4253             "Explicit gep type does not match pointee type of pointer operand");
4254       }
4255 
4256       SmallVector<Value*, 16> GEPIdx;
4257       while (OpNum != Record.size()) {
4258         Value *Op;
4259         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4260           return error("Invalid record");
4261         GEPIdx.push_back(Op);
4262       }
4263 
4264       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4265 
4266       InstructionList.push_back(I);
4267       if (InBounds)
4268         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4269       break;
4270     }
4271 
4272     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4273                                        // EXTRACTVAL: [opty, opval, n x indices]
4274       unsigned OpNum = 0;
4275       Value *Agg;
4276       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4277         return error("Invalid record");
4278       Type *Ty = Agg->getType();
4279 
4280       unsigned RecSize = Record.size();
4281       if (OpNum == RecSize)
4282         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4283 
4284       SmallVector<unsigned, 4> EXTRACTVALIdx;
4285       for (; OpNum != RecSize; ++OpNum) {
4286         bool IsArray = Ty->isArrayTy();
4287         bool IsStruct = Ty->isStructTy();
4288         uint64_t Index = Record[OpNum];
4289 
4290         if (!IsStruct && !IsArray)
4291           return error("EXTRACTVAL: Invalid type");
4292         if ((unsigned)Index != Index)
4293           return error("Invalid value");
4294         if (IsStruct && Index >= Ty->getStructNumElements())
4295           return error("EXTRACTVAL: Invalid struct index");
4296         if (IsArray && Index >= Ty->getArrayNumElements())
4297           return error("EXTRACTVAL: Invalid array index");
4298         EXTRACTVALIdx.push_back((unsigned)Index);
4299 
4300         if (IsStruct)
4301           Ty = Ty->getStructElementType(Index);
4302         else
4303           Ty = Ty->getArrayElementType();
4304       }
4305 
4306       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4307       InstructionList.push_back(I);
4308       break;
4309     }
4310 
4311     case bitc::FUNC_CODE_INST_INSERTVAL: {
4312                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4313       unsigned OpNum = 0;
4314       Value *Agg;
4315       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4316         return error("Invalid record");
4317       Value *Val;
4318       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4319         return error("Invalid record");
4320 
4321       unsigned RecSize = Record.size();
4322       if (OpNum == RecSize)
4323         return error("INSERTVAL: Invalid instruction with 0 indices");
4324 
4325       SmallVector<unsigned, 4> INSERTVALIdx;
4326       Type *CurTy = Agg->getType();
4327       for (; OpNum != RecSize; ++OpNum) {
4328         bool IsArray = CurTy->isArrayTy();
4329         bool IsStruct = CurTy->isStructTy();
4330         uint64_t Index = Record[OpNum];
4331 
4332         if (!IsStruct && !IsArray)
4333           return error("INSERTVAL: Invalid type");
4334         if ((unsigned)Index != Index)
4335           return error("Invalid value");
4336         if (IsStruct && Index >= CurTy->getStructNumElements())
4337           return error("INSERTVAL: Invalid struct index");
4338         if (IsArray && Index >= CurTy->getArrayNumElements())
4339           return error("INSERTVAL: Invalid array index");
4340 
4341         INSERTVALIdx.push_back((unsigned)Index);
4342         if (IsStruct)
4343           CurTy = CurTy->getStructElementType(Index);
4344         else
4345           CurTy = CurTy->getArrayElementType();
4346       }
4347 
4348       if (CurTy != Val->getType())
4349         return error("Inserted value type doesn't match aggregate type");
4350 
4351       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4352       InstructionList.push_back(I);
4353       break;
4354     }
4355 
4356     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4357       // obsolete form of select
4358       // handles select i1 ... in old bitcode
4359       unsigned OpNum = 0;
4360       Value *TrueVal, *FalseVal, *Cond;
4361       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4362           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4363           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4364         return error("Invalid record");
4365 
4366       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4367       InstructionList.push_back(I);
4368       break;
4369     }
4370 
4371     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4372       // new form of select
4373       // handles select i1 or select [N x i1]
4374       unsigned OpNum = 0;
4375       Value *TrueVal, *FalseVal, *Cond;
4376       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4377           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4378           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4379         return error("Invalid record");
4380 
4381       // select condition can be either i1 or [N x i1]
4382       if (VectorType* vector_type =
4383           dyn_cast<VectorType>(Cond->getType())) {
4384         // expect <n x i1>
4385         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4386           return error("Invalid type for value");
4387       } else {
4388         // expect i1
4389         if (Cond->getType() != Type::getInt1Ty(Context))
4390           return error("Invalid type for value");
4391       }
4392 
4393       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4394       InstructionList.push_back(I);
4395       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4396         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4397         if (FMF.any())
4398           I->setFastMathFlags(FMF);
4399       }
4400       break;
4401     }
4402 
4403     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4404       unsigned OpNum = 0;
4405       Value *Vec, *Idx;
4406       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4407           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4408         return error("Invalid record");
4409       if (!Vec->getType()->isVectorTy())
4410         return error("Invalid type for value");
4411       I = ExtractElementInst::Create(Vec, Idx);
4412       InstructionList.push_back(I);
4413       break;
4414     }
4415 
4416     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4417       unsigned OpNum = 0;
4418       Value *Vec, *Elt, *Idx;
4419       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4420         return error("Invalid record");
4421       if (!Vec->getType()->isVectorTy())
4422         return error("Invalid type for value");
4423       if (popValue(Record, OpNum, NextValueNo,
4424                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4425           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4426         return error("Invalid record");
4427       I = InsertElementInst::Create(Vec, Elt, Idx);
4428       InstructionList.push_back(I);
4429       break;
4430     }
4431 
4432     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4433       unsigned OpNum = 0;
4434       Value *Vec1, *Vec2, *Mask;
4435       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4436           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4437         return error("Invalid record");
4438 
4439       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4440         return error("Invalid record");
4441       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4442         return error("Invalid type for value");
4443 
4444       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4445       InstructionList.push_back(I);
4446       break;
4447     }
4448 
4449     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4450       // Old form of ICmp/FCmp returning bool
4451       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4452       // both legal on vectors but had different behaviour.
4453     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4454       // FCmp/ICmp returning bool or vector of bool
4455 
4456       unsigned OpNum = 0;
4457       Value *LHS, *RHS;
4458       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4459           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4460         return error("Invalid record");
4461 
4462       if (OpNum >= Record.size())
4463         return error(
4464             "Invalid record: operand number exceeded available operands");
4465 
4466       unsigned PredVal = Record[OpNum];
4467       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4468       FastMathFlags FMF;
4469       if (IsFP && Record.size() > OpNum+1)
4470         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4471 
4472       if (OpNum+1 != Record.size())
4473         return error("Invalid record");
4474 
4475       if (LHS->getType()->isFPOrFPVectorTy())
4476         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4477       else
4478         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4479 
4480       if (FMF.any())
4481         I->setFastMathFlags(FMF);
4482       InstructionList.push_back(I);
4483       break;
4484     }
4485 
4486     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4487       {
4488         unsigned Size = Record.size();
4489         if (Size == 0) {
4490           I = ReturnInst::Create(Context);
4491           InstructionList.push_back(I);
4492           break;
4493         }
4494 
4495         unsigned OpNum = 0;
4496         Value *Op = nullptr;
4497         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4498           return error("Invalid record");
4499         if (OpNum != Record.size())
4500           return error("Invalid record");
4501 
4502         I = ReturnInst::Create(Context, Op);
4503         InstructionList.push_back(I);
4504         break;
4505       }
4506     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4507       if (Record.size() != 1 && Record.size() != 3)
4508         return error("Invalid record");
4509       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4510       if (!TrueDest)
4511         return error("Invalid record");
4512 
4513       if (Record.size() == 1) {
4514         I = BranchInst::Create(TrueDest);
4515         InstructionList.push_back(I);
4516       }
4517       else {
4518         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4519         Value *Cond = getValue(Record, 2, NextValueNo,
4520                                Type::getInt1Ty(Context));
4521         if (!FalseDest || !Cond)
4522           return error("Invalid record");
4523         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4524         InstructionList.push_back(I);
4525       }
4526       break;
4527     }
4528     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4529       if (Record.size() != 1 && Record.size() != 2)
4530         return error("Invalid record");
4531       unsigned Idx = 0;
4532       Value *CleanupPad =
4533           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4534       if (!CleanupPad)
4535         return error("Invalid record");
4536       BasicBlock *UnwindDest = nullptr;
4537       if (Record.size() == 2) {
4538         UnwindDest = getBasicBlock(Record[Idx++]);
4539         if (!UnwindDest)
4540           return error("Invalid record");
4541       }
4542 
4543       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4544       InstructionList.push_back(I);
4545       break;
4546     }
4547     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4548       if (Record.size() != 2)
4549         return error("Invalid record");
4550       unsigned Idx = 0;
4551       Value *CatchPad =
4552           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4553       if (!CatchPad)
4554         return error("Invalid record");
4555       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4556       if (!BB)
4557         return error("Invalid record");
4558 
4559       I = CatchReturnInst::Create(CatchPad, BB);
4560       InstructionList.push_back(I);
4561       break;
4562     }
4563     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4564       // We must have, at minimum, the outer scope and the number of arguments.
4565       if (Record.size() < 2)
4566         return error("Invalid record");
4567 
4568       unsigned Idx = 0;
4569 
4570       Value *ParentPad =
4571           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4572 
4573       unsigned NumHandlers = Record[Idx++];
4574 
4575       SmallVector<BasicBlock *, 2> Handlers;
4576       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4577         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4578         if (!BB)
4579           return error("Invalid record");
4580         Handlers.push_back(BB);
4581       }
4582 
4583       BasicBlock *UnwindDest = nullptr;
4584       if (Idx + 1 == Record.size()) {
4585         UnwindDest = getBasicBlock(Record[Idx++]);
4586         if (!UnwindDest)
4587           return error("Invalid record");
4588       }
4589 
4590       if (Record.size() != Idx)
4591         return error("Invalid record");
4592 
4593       auto *CatchSwitch =
4594           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4595       for (BasicBlock *Handler : Handlers)
4596         CatchSwitch->addHandler(Handler);
4597       I = CatchSwitch;
4598       InstructionList.push_back(I);
4599       break;
4600     }
4601     case bitc::FUNC_CODE_INST_CATCHPAD:
4602     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4603       // We must have, at minimum, the outer scope and the number of arguments.
4604       if (Record.size() < 2)
4605         return error("Invalid record");
4606 
4607       unsigned Idx = 0;
4608 
4609       Value *ParentPad =
4610           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4611 
4612       unsigned NumArgOperands = Record[Idx++];
4613 
4614       SmallVector<Value *, 2> Args;
4615       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4616         Value *Val;
4617         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4618           return error("Invalid record");
4619         Args.push_back(Val);
4620       }
4621 
4622       if (Record.size() != Idx)
4623         return error("Invalid record");
4624 
4625       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4626         I = CleanupPadInst::Create(ParentPad, Args);
4627       else
4628         I = CatchPadInst::Create(ParentPad, Args);
4629       InstructionList.push_back(I);
4630       break;
4631     }
4632     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4633       // Check magic
4634       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4635         // "New" SwitchInst format with case ranges. The changes to write this
4636         // format were reverted but we still recognize bitcode that uses it.
4637         // Hopefully someday we will have support for case ranges and can use
4638         // this format again.
4639 
4640         Type *OpTy = getTypeByID(Record[1]);
4641         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4642 
4643         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4644         BasicBlock *Default = getBasicBlock(Record[3]);
4645         if (!OpTy || !Cond || !Default)
4646           return error("Invalid record");
4647 
4648         unsigned NumCases = Record[4];
4649 
4650         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4651         InstructionList.push_back(SI);
4652 
4653         unsigned CurIdx = 5;
4654         for (unsigned i = 0; i != NumCases; ++i) {
4655           SmallVector<ConstantInt*, 1> CaseVals;
4656           unsigned NumItems = Record[CurIdx++];
4657           for (unsigned ci = 0; ci != NumItems; ++ci) {
4658             bool isSingleNumber = Record[CurIdx++];
4659 
4660             APInt Low;
4661             unsigned ActiveWords = 1;
4662             if (ValueBitWidth > 64)
4663               ActiveWords = Record[CurIdx++];
4664             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4665                                 ValueBitWidth);
4666             CurIdx += ActiveWords;
4667 
4668             if (!isSingleNumber) {
4669               ActiveWords = 1;
4670               if (ValueBitWidth > 64)
4671                 ActiveWords = Record[CurIdx++];
4672               APInt High = readWideAPInt(
4673                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4674               CurIdx += ActiveWords;
4675 
4676               // FIXME: It is not clear whether values in the range should be
4677               // compared as signed or unsigned values. The partially
4678               // implemented changes that used this format in the past used
4679               // unsigned comparisons.
4680               for ( ; Low.ule(High); ++Low)
4681                 CaseVals.push_back(ConstantInt::get(Context, Low));
4682             } else
4683               CaseVals.push_back(ConstantInt::get(Context, Low));
4684           }
4685           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4686           for (ConstantInt *Cst : CaseVals)
4687             SI->addCase(Cst, DestBB);
4688         }
4689         I = SI;
4690         break;
4691       }
4692 
4693       // Old SwitchInst format without case ranges.
4694 
4695       if (Record.size() < 3 || (Record.size() & 1) == 0)
4696         return error("Invalid record");
4697       Type *OpTy = getTypeByID(Record[0]);
4698       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4699       BasicBlock *Default = getBasicBlock(Record[2]);
4700       if (!OpTy || !Cond || !Default)
4701         return error("Invalid record");
4702       unsigned NumCases = (Record.size()-3)/2;
4703       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4704       InstructionList.push_back(SI);
4705       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4706         ConstantInt *CaseVal =
4707           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4708         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4709         if (!CaseVal || !DestBB) {
4710           delete SI;
4711           return error("Invalid record");
4712         }
4713         SI->addCase(CaseVal, DestBB);
4714       }
4715       I = SI;
4716       break;
4717     }
4718     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4719       if (Record.size() < 2)
4720         return error("Invalid record");
4721       Type *OpTy = getTypeByID(Record[0]);
4722       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4723       if (!OpTy || !Address)
4724         return error("Invalid record");
4725       unsigned NumDests = Record.size()-2;
4726       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4727       InstructionList.push_back(IBI);
4728       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4729         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4730           IBI->addDestination(DestBB);
4731         } else {
4732           delete IBI;
4733           return error("Invalid record");
4734         }
4735       }
4736       I = IBI;
4737       break;
4738     }
4739 
4740     case bitc::FUNC_CODE_INST_INVOKE: {
4741       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4742       if (Record.size() < 4)
4743         return error("Invalid record");
4744       unsigned OpNum = 0;
4745       AttributeList PAL = getAttributes(Record[OpNum++]);
4746       unsigned CCInfo = Record[OpNum++];
4747       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4748       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4749 
4750       FunctionType *FTy = nullptr;
4751       if ((CCInfo >> 13) & 1) {
4752         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4753         if (!FTy)
4754           return error("Explicit invoke type is not a function type");
4755       }
4756 
4757       Value *Callee;
4758       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4759         return error("Invalid record");
4760 
4761       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4762       if (!CalleeTy)
4763         return error("Callee is not a pointer");
4764       if (!FTy) {
4765         FTy =
4766             dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
4767         if (!FTy)
4768           return error("Callee is not of pointer to function type");
4769       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4770         return error("Explicit invoke type does not match pointee type of "
4771                      "callee operand");
4772       if (Record.size() < FTy->getNumParams() + OpNum)
4773         return error("Insufficient operands to call");
4774 
4775       SmallVector<Value*, 16> Ops;
4776       SmallVector<Type *, 16> ArgsTys;
4777       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4778         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4779                                FTy->getParamType(i)));
4780         ArgsTys.push_back(FTy->getParamType(i));
4781         if (!Ops.back())
4782           return error("Invalid record");
4783       }
4784 
4785       if (!FTy->isVarArg()) {
4786         if (Record.size() != OpNum)
4787           return error("Invalid record");
4788       } else {
4789         // Read type/value pairs for varargs params.
4790         while (OpNum != Record.size()) {
4791           Value *Op;
4792           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4793             return error("Invalid record");
4794           Ops.push_back(Op);
4795           ArgsTys.push_back(Op->getType());
4796         }
4797       }
4798 
4799       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4800                              OperandBundles);
4801       OperandBundles.clear();
4802       InstructionList.push_back(I);
4803       cast<InvokeInst>(I)->setCallingConv(
4804           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4805       cast<InvokeInst>(I)->setAttributes(PAL);
4806       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4807 
4808       break;
4809     }
4810     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4811       unsigned Idx = 0;
4812       Value *Val = nullptr;
4813       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4814         return error("Invalid record");
4815       I = ResumeInst::Create(Val);
4816       InstructionList.push_back(I);
4817       break;
4818     }
4819     case bitc::FUNC_CODE_INST_CALLBR: {
4820       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4821       unsigned OpNum = 0;
4822       AttributeList PAL = getAttributes(Record[OpNum++]);
4823       unsigned CCInfo = Record[OpNum++];
4824 
4825       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4826       unsigned NumIndirectDests = Record[OpNum++];
4827       SmallVector<BasicBlock *, 16> IndirectDests;
4828       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4829         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4830 
4831       FunctionType *FTy = nullptr;
4832       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4833         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4834         if (!FTy)
4835           return error("Explicit call type is not a function type");
4836       }
4837 
4838       Value *Callee;
4839       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4840         return error("Invalid record");
4841 
4842       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4843       if (!OpTy)
4844         return error("Callee is not a pointer type");
4845       if (!FTy) {
4846         FTy =
4847             dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
4848         if (!FTy)
4849           return error("Callee is not of pointer to function type");
4850       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
4851         return error("Explicit call type does not match pointee type of "
4852                      "callee operand");
4853       if (Record.size() < FTy->getNumParams() + OpNum)
4854         return error("Insufficient operands to call");
4855 
4856       SmallVector<Value*, 16> Args;
4857       SmallVector<Type *, 16> ArgsTys;
4858       // Read the fixed params.
4859       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4860         Value *Arg;
4861         if (FTy->getParamType(i)->isLabelTy())
4862           Arg = getBasicBlock(Record[OpNum]);
4863         else
4864           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i));
4865         if (!Arg)
4866           return error("Invalid record");
4867         Args.push_back(Arg);
4868         ArgsTys.push_back(Arg->getType());
4869       }
4870 
4871       // Read type/value pairs for varargs params.
4872       if (!FTy->isVarArg()) {
4873         if (OpNum != Record.size())
4874           return error("Invalid record");
4875       } else {
4876         while (OpNum != Record.size()) {
4877           Value *Op;
4878           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4879             return error("Invalid record");
4880           Args.push_back(Op);
4881           ArgsTys.push_back(Op->getType());
4882         }
4883       }
4884 
4885       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4886                              OperandBundles);
4887       OperandBundles.clear();
4888       InstructionList.push_back(I);
4889       cast<CallBrInst>(I)->setCallingConv(
4890           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4891       cast<CallBrInst>(I)->setAttributes(PAL);
4892       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4893       break;
4894     }
4895     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4896       I = new UnreachableInst(Context);
4897       InstructionList.push_back(I);
4898       break;
4899     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4900       if (Record.empty())
4901         return error("Invalid record");
4902       // The first record specifies the type.
4903       Type *Ty = getTypeByID(Record[0]);
4904       if (!Ty)
4905         return error("Invalid record");
4906 
4907       // Phi arguments are pairs of records of [value, basic block].
4908       // There is an optional final record for fast-math-flags if this phi has a
4909       // floating-point type.
4910       size_t NumArgs = (Record.size() - 1) / 2;
4911       PHINode *PN = PHINode::Create(Ty, NumArgs);
4912       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4913         return error("Invalid record");
4914       InstructionList.push_back(PN);
4915 
4916       for (unsigned i = 0; i != NumArgs; i++) {
4917         Value *V;
4918         // With the new function encoding, it is possible that operands have
4919         // negative IDs (for forward references).  Use a signed VBR
4920         // representation to keep the encoding small.
4921         if (UseRelativeIDs)
4922           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4923         else
4924           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4925         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4926         if (!V || !BB)
4927           return error("Invalid record");
4928         PN->addIncoming(V, BB);
4929       }
4930       I = PN;
4931 
4932       // If there are an even number of records, the final record must be FMF.
4933       if (Record.size() % 2 == 0) {
4934         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4935         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4936         if (FMF.any())
4937           I->setFastMathFlags(FMF);
4938       }
4939 
4940       break;
4941     }
4942 
4943     case bitc::FUNC_CODE_INST_LANDINGPAD:
4944     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4945       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4946       unsigned Idx = 0;
4947       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4948         if (Record.size() < 3)
4949           return error("Invalid record");
4950       } else {
4951         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4952         if (Record.size() < 4)
4953           return error("Invalid record");
4954       }
4955       Type *Ty = getTypeByID(Record[Idx++]);
4956       if (!Ty)
4957         return error("Invalid record");
4958       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4959         Value *PersFn = nullptr;
4960         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4961           return error("Invalid record");
4962 
4963         if (!F->hasPersonalityFn())
4964           F->setPersonalityFn(cast<Constant>(PersFn));
4965         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4966           return error("Personality function mismatch");
4967       }
4968 
4969       bool IsCleanup = !!Record[Idx++];
4970       unsigned NumClauses = Record[Idx++];
4971       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4972       LP->setCleanup(IsCleanup);
4973       for (unsigned J = 0; J != NumClauses; ++J) {
4974         LandingPadInst::ClauseType CT =
4975           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4976         Value *Val;
4977 
4978         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4979           delete LP;
4980           return error("Invalid record");
4981         }
4982 
4983         assert((CT != LandingPadInst::Catch ||
4984                 !isa<ArrayType>(Val->getType())) &&
4985                "Catch clause has a invalid type!");
4986         assert((CT != LandingPadInst::Filter ||
4987                 isa<ArrayType>(Val->getType())) &&
4988                "Filter clause has invalid type!");
4989         LP->addClause(cast<Constant>(Val));
4990       }
4991 
4992       I = LP;
4993       InstructionList.push_back(I);
4994       break;
4995     }
4996 
4997     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4998       if (Record.size() != 4)
4999         return error("Invalid record");
5000       using APV = AllocaPackedValues;
5001       const uint64_t Rec = Record[3];
5002       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5003       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5004       Type *Ty = getTypeByID(Record[0]);
5005       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5006         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5007         if (!PTy)
5008           return error("Old-style alloca with a non-pointer type");
5009         Ty = PTy->getPointerElementType();
5010       }
5011       Type *OpTy = getTypeByID(Record[1]);
5012       Value *Size = getFnValueByID(Record[2], OpTy);
5013       MaybeAlign Align;
5014       uint64_t AlignExp =
5015           Bitfield::get<APV::AlignLower>(Rec) |
5016           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5017       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5018         return Err;
5019       }
5020       if (!Ty || !Size)
5021         return error("Invalid record");
5022 
5023       // FIXME: Make this an optional field.
5024       const DataLayout &DL = TheModule->getDataLayout();
5025       unsigned AS = DL.getAllocaAddrSpace();
5026 
5027       SmallPtrSet<Type *, 4> Visited;
5028       if (!Align && !Ty->isSized(&Visited))
5029         return error("alloca of unsized type");
5030       if (!Align)
5031         Align = DL.getPrefTypeAlign(Ty);
5032 
5033       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5034       AI->setUsedWithInAlloca(InAlloca);
5035       AI->setSwiftError(SwiftError);
5036       I = AI;
5037       InstructionList.push_back(I);
5038       break;
5039     }
5040     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5041       unsigned OpNum = 0;
5042       Value *Op;
5043       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5044           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5045         return error("Invalid record");
5046 
5047       if (!isa<PointerType>(Op->getType()))
5048         return error("Load operand is not a pointer type");
5049 
5050       Type *Ty = nullptr;
5051       if (OpNum + 3 == Record.size()) {
5052         Ty = getTypeByID(Record[OpNum++]);
5053       } else {
5054         Ty = Op->getType()->getPointerElementType();
5055       }
5056 
5057       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5058         return Err;
5059 
5060       MaybeAlign Align;
5061       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5062         return Err;
5063       SmallPtrSet<Type *, 4> Visited;
5064       if (!Align && !Ty->isSized(&Visited))
5065         return error("load of unsized type");
5066       if (!Align)
5067         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5068       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5069       InstructionList.push_back(I);
5070       break;
5071     }
5072     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5073        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5074       unsigned OpNum = 0;
5075       Value *Op;
5076       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5077           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5078         return error("Invalid record");
5079 
5080       if (!isa<PointerType>(Op->getType()))
5081         return error("Load operand is not a pointer type");
5082 
5083       Type *Ty = nullptr;
5084       if (OpNum + 5 == Record.size()) {
5085         Ty = getTypeByID(Record[OpNum++]);
5086       } else {
5087         Ty = Op->getType()->getPointerElementType();
5088       }
5089 
5090       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5091         return Err;
5092 
5093       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5094       if (Ordering == AtomicOrdering::NotAtomic ||
5095           Ordering == AtomicOrdering::Release ||
5096           Ordering == AtomicOrdering::AcquireRelease)
5097         return error("Invalid record");
5098       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5099         return error("Invalid record");
5100       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5101 
5102       MaybeAlign Align;
5103       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5104         return Err;
5105       if (!Align)
5106         return error("Alignment missing from atomic load");
5107       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5108       InstructionList.push_back(I);
5109       break;
5110     }
5111     case bitc::FUNC_CODE_INST_STORE:
5112     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5113       unsigned OpNum = 0;
5114       Value *Val, *Ptr;
5115       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5116           (BitCode == bitc::FUNC_CODE_INST_STORE
5117                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5118                : popValue(Record, OpNum, NextValueNo,
5119                           Ptr->getType()->getPointerElementType(), Val)) ||
5120           OpNum + 2 != Record.size())
5121         return error("Invalid record");
5122 
5123       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5124         return Err;
5125       MaybeAlign Align;
5126       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5127         return Err;
5128       SmallPtrSet<Type *, 4> Visited;
5129       if (!Align && !Val->getType()->isSized(&Visited))
5130         return error("store of unsized type");
5131       if (!Align)
5132         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5133       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5134       InstructionList.push_back(I);
5135       break;
5136     }
5137     case bitc::FUNC_CODE_INST_STOREATOMIC:
5138     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5139       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5140       unsigned OpNum = 0;
5141       Value *Val, *Ptr;
5142       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5143           !isa<PointerType>(Ptr->getType()) ||
5144           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5145                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5146                : popValue(Record, OpNum, NextValueNo,
5147                           Ptr->getType()->getPointerElementType(), Val)) ||
5148           OpNum + 4 != Record.size())
5149         return error("Invalid record");
5150 
5151       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5152         return Err;
5153       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5154       if (Ordering == AtomicOrdering::NotAtomic ||
5155           Ordering == AtomicOrdering::Acquire ||
5156           Ordering == AtomicOrdering::AcquireRelease)
5157         return error("Invalid record");
5158       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5159       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5160         return error("Invalid record");
5161 
5162       MaybeAlign Align;
5163       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5164         return Err;
5165       if (!Align)
5166         return error("Alignment missing from atomic store");
5167       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5168       InstructionList.push_back(I);
5169       break;
5170     }
5171     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5172       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5173       // failure_ordering?, weak?]
5174       const size_t NumRecords = Record.size();
5175       unsigned OpNum = 0;
5176       Value *Ptr = nullptr;
5177       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5178         return error("Invalid record");
5179 
5180       if (!isa<PointerType>(Ptr->getType()))
5181         return error("Cmpxchg operand is not a pointer type");
5182 
5183       Value *Cmp = nullptr;
5184       if (popValue(Record, OpNum, NextValueNo,
5185                    cast<PointerType>(Ptr->getType())->getPointerElementType(),
5186                    Cmp))
5187         return error("Invalid record");
5188 
5189       Value *New = nullptr;
5190       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5191           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5192         return error("Invalid record");
5193 
5194       const AtomicOrdering SuccessOrdering =
5195           getDecodedOrdering(Record[OpNum + 1]);
5196       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5197           SuccessOrdering == AtomicOrdering::Unordered)
5198         return error("Invalid record");
5199 
5200       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5201 
5202       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5203         return Err;
5204 
5205       const AtomicOrdering FailureOrdering =
5206           NumRecords < 7
5207               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5208               : getDecodedOrdering(Record[OpNum + 3]);
5209 
5210       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5211           FailureOrdering == AtomicOrdering::Unordered)
5212         return error("Invalid record");
5213 
5214       const Align Alignment(
5215           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5216 
5217       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5218                                 FailureOrdering, SSID);
5219       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5220 
5221       if (NumRecords < 8) {
5222         // Before weak cmpxchgs existed, the instruction simply returned the
5223         // value loaded from memory, so bitcode files from that era will be
5224         // expecting the first component of a modern cmpxchg.
5225         CurBB->getInstList().push_back(I);
5226         I = ExtractValueInst::Create(I, 0);
5227       } else {
5228         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5229       }
5230 
5231       InstructionList.push_back(I);
5232       break;
5233     }
5234     case bitc::FUNC_CODE_INST_CMPXCHG: {
5235       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5236       // failure_ordering, weak, align?]
5237       const size_t NumRecords = Record.size();
5238       unsigned OpNum = 0;
5239       Value *Ptr = nullptr;
5240       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5241         return error("Invalid record");
5242 
5243       if (!isa<PointerType>(Ptr->getType()))
5244         return error("Cmpxchg operand is not a pointer type");
5245 
5246       Value *Cmp = nullptr;
5247       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5248         return error("Invalid record");
5249 
5250       Value *Val = nullptr;
5251       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5252         return error("Invalid record");
5253 
5254       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5255         return error("Invalid record");
5256 
5257       const bool IsVol = Record[OpNum];
5258 
5259       const AtomicOrdering SuccessOrdering =
5260           getDecodedOrdering(Record[OpNum + 1]);
5261       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5262         return error("Invalid cmpxchg success ordering");
5263 
5264       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5265 
5266       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5267         return Err;
5268 
5269       const AtomicOrdering FailureOrdering =
5270           getDecodedOrdering(Record[OpNum + 3]);
5271       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5272         return error("Invalid cmpxchg failure ordering");
5273 
5274       const bool IsWeak = Record[OpNum + 4];
5275 
5276       MaybeAlign Alignment;
5277 
5278       if (NumRecords == (OpNum + 6)) {
5279         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5280           return Err;
5281       }
5282       if (!Alignment)
5283         Alignment =
5284             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5285 
5286       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5287                                 FailureOrdering, SSID);
5288       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5289       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5290 
5291       InstructionList.push_back(I);
5292       break;
5293     }
5294     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5295     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5296       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5297       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5298       const size_t NumRecords = Record.size();
5299       unsigned OpNum = 0;
5300 
5301       Value *Ptr = nullptr;
5302       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5303         return error("Invalid record");
5304 
5305       if (!isa<PointerType>(Ptr->getType()))
5306         return error("Invalid record");
5307 
5308       Value *Val = nullptr;
5309       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5310         if (popValue(Record, OpNum, NextValueNo,
5311                      cast<PointerType>(Ptr->getType())->getPointerElementType(),
5312                      Val))
5313           return error("Invalid record");
5314       } else {
5315         if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5316           return error("Invalid record");
5317       }
5318 
5319       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5320         return error("Invalid record");
5321 
5322       const AtomicRMWInst::BinOp Operation =
5323           getDecodedRMWOperation(Record[OpNum]);
5324       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5325           Operation > AtomicRMWInst::LAST_BINOP)
5326         return error("Invalid record");
5327 
5328       const bool IsVol = Record[OpNum + 1];
5329 
5330       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5331       if (Ordering == AtomicOrdering::NotAtomic ||
5332           Ordering == AtomicOrdering::Unordered)
5333         return error("Invalid record");
5334 
5335       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5336 
5337       MaybeAlign Alignment;
5338 
5339       if (NumRecords == (OpNum + 5)) {
5340         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5341           return Err;
5342       }
5343 
5344       if (!Alignment)
5345         Alignment =
5346             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5347 
5348       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5349       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5350 
5351       InstructionList.push_back(I);
5352       break;
5353     }
5354     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5355       if (2 != Record.size())
5356         return error("Invalid record");
5357       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5358       if (Ordering == AtomicOrdering::NotAtomic ||
5359           Ordering == AtomicOrdering::Unordered ||
5360           Ordering == AtomicOrdering::Monotonic)
5361         return error("Invalid record");
5362       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5363       I = new FenceInst(Context, Ordering, SSID);
5364       InstructionList.push_back(I);
5365       break;
5366     }
5367     case bitc::FUNC_CODE_INST_CALL: {
5368       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5369       if (Record.size() < 3)
5370         return error("Invalid record");
5371 
5372       unsigned OpNum = 0;
5373       AttributeList PAL = getAttributes(Record[OpNum++]);
5374       unsigned CCInfo = Record[OpNum++];
5375 
5376       FastMathFlags FMF;
5377       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5378         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5379         if (!FMF.any())
5380           return error("Fast math flags indicator set for call with no FMF");
5381       }
5382 
5383       FunctionType *FTy = nullptr;
5384       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5385         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
5386         if (!FTy)
5387           return error("Explicit call type is not a function type");
5388       }
5389 
5390       Value *Callee;
5391       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5392         return error("Invalid record");
5393 
5394       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5395       if (!OpTy)
5396         return error("Callee is not a pointer type");
5397       if (!FTy) {
5398         FTy =
5399             dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
5400         if (!FTy)
5401           return error("Callee is not of pointer to function type");
5402       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5403         return error("Explicit call type does not match pointee type of "
5404                      "callee operand");
5405       if (Record.size() < FTy->getNumParams() + OpNum)
5406         return error("Insufficient operands to call");
5407 
5408       SmallVector<Value*, 16> Args;
5409       SmallVector<Type *, 16> ArgsTys;
5410       // Read the fixed params.
5411       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5412         if (FTy->getParamType(i)->isLabelTy())
5413           Args.push_back(getBasicBlock(Record[OpNum]));
5414         else
5415           Args.push_back(getValue(Record, OpNum, NextValueNo,
5416                                   FTy->getParamType(i)));
5417         ArgsTys.push_back(FTy->getParamType(i));
5418         if (!Args.back())
5419           return error("Invalid record");
5420       }
5421 
5422       // Read type/value pairs for varargs params.
5423       if (!FTy->isVarArg()) {
5424         if (OpNum != Record.size())
5425           return error("Invalid record");
5426       } else {
5427         while (OpNum != Record.size()) {
5428           Value *Op;
5429           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5430             return error("Invalid record");
5431           Args.push_back(Op);
5432           ArgsTys.push_back(Op->getType());
5433         }
5434       }
5435 
5436       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5437       OperandBundles.clear();
5438       InstructionList.push_back(I);
5439       cast<CallInst>(I)->setCallingConv(
5440           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5441       CallInst::TailCallKind TCK = CallInst::TCK_None;
5442       if (CCInfo & 1 << bitc::CALL_TAIL)
5443         TCK = CallInst::TCK_Tail;
5444       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5445         TCK = CallInst::TCK_MustTail;
5446       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5447         TCK = CallInst::TCK_NoTail;
5448       cast<CallInst>(I)->setTailCallKind(TCK);
5449       cast<CallInst>(I)->setAttributes(PAL);
5450       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
5451       if (FMF.any()) {
5452         if (!isa<FPMathOperator>(I))
5453           return error("Fast-math-flags specified for call without "
5454                        "floating-point scalar or vector return type");
5455         I->setFastMathFlags(FMF);
5456       }
5457       break;
5458     }
5459     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5460       if (Record.size() < 3)
5461         return error("Invalid record");
5462       Type *OpTy = getTypeByID(Record[0]);
5463       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5464       Type *ResTy = getTypeByID(Record[2]);
5465       if (!OpTy || !Op || !ResTy)
5466         return error("Invalid record");
5467       I = new VAArgInst(Op, ResTy);
5468       InstructionList.push_back(I);
5469       break;
5470     }
5471 
5472     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5473       // A call or an invoke can be optionally prefixed with some variable
5474       // number of operand bundle blocks.  These blocks are read into
5475       // OperandBundles and consumed at the next call or invoke instruction.
5476 
5477       if (Record.empty() || Record[0] >= BundleTags.size())
5478         return error("Invalid record");
5479 
5480       std::vector<Value *> Inputs;
5481 
5482       unsigned OpNum = 1;
5483       while (OpNum != Record.size()) {
5484         Value *Op;
5485         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5486           return error("Invalid record");
5487         Inputs.push_back(Op);
5488       }
5489 
5490       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5491       continue;
5492     }
5493 
5494     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5495       unsigned OpNum = 0;
5496       Value *Op = nullptr;
5497       if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5498         return error("Invalid record");
5499       if (OpNum != Record.size())
5500         return error("Invalid record");
5501 
5502       I = new FreezeInst(Op);
5503       InstructionList.push_back(I);
5504       break;
5505     }
5506     }
5507 
5508     // Add instruction to end of current BB.  If there is no current BB, reject
5509     // this file.
5510     if (!CurBB) {
5511       I->deleteValue();
5512       return error("Invalid instruction with no BB");
5513     }
5514     if (!OperandBundles.empty()) {
5515       I->deleteValue();
5516       return error("Operand bundles found with no consumer");
5517     }
5518     CurBB->getInstList().push_back(I);
5519 
5520     // If this was a terminator instruction, move to the next block.
5521     if (I->isTerminator()) {
5522       ++CurBBNo;
5523       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5524     }
5525 
5526     // Non-void values get registered in the value table for future use.
5527     if (!I->getType()->isVoidTy())
5528       ValueList.assignValue(I, NextValueNo++);
5529   }
5530 
5531 OutOfRecordLoop:
5532 
5533   if (!OperandBundles.empty())
5534     return error("Operand bundles found with no consumer");
5535 
5536   // Check the function list for unresolved values.
5537   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5538     if (!A->getParent()) {
5539       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5540       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5541         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5542           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5543           delete A;
5544         }
5545       }
5546       return error("Never resolved value found in function");
5547     }
5548   }
5549 
5550   // Unexpected unresolved metadata about to be dropped.
5551   if (MDLoader->hasFwdRefs())
5552     return error("Invalid function metadata: outgoing forward refs");
5553 
5554   // Trim the value list down to the size it was before we parsed this function.
5555   ValueList.shrinkTo(ModuleValueListSize);
5556   MDLoader->shrinkTo(ModuleMDLoaderSize);
5557   std::vector<BasicBlock*>().swap(FunctionBBs);
5558   return Error::success();
5559 }
5560 
5561 /// Find the function body in the bitcode stream
5562 Error BitcodeReader::findFunctionInStream(
5563     Function *F,
5564     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5565   while (DeferredFunctionInfoIterator->second == 0) {
5566     // This is the fallback handling for the old format bitcode that
5567     // didn't contain the function index in the VST, or when we have
5568     // an anonymous function which would not have a VST entry.
5569     // Assert that we have one of those two cases.
5570     assert(VSTOffset == 0 || !F->hasName());
5571     // Parse the next body in the stream and set its position in the
5572     // DeferredFunctionInfo map.
5573     if (Error Err = rememberAndSkipFunctionBodies())
5574       return Err;
5575   }
5576   return Error::success();
5577 }
5578 
5579 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5580   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5581     return SyncScope::ID(Val);
5582   if (Val >= SSIDs.size())
5583     return SyncScope::System; // Map unknown synchronization scopes to system.
5584   return SSIDs[Val];
5585 }
5586 
5587 //===----------------------------------------------------------------------===//
5588 // GVMaterializer implementation
5589 //===----------------------------------------------------------------------===//
5590 
5591 Error BitcodeReader::materialize(GlobalValue *GV) {
5592   Function *F = dyn_cast<Function>(GV);
5593   // If it's not a function or is already material, ignore the request.
5594   if (!F || !F->isMaterializable())
5595     return Error::success();
5596 
5597   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5598   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5599   // If its position is recorded as 0, its body is somewhere in the stream
5600   // but we haven't seen it yet.
5601   if (DFII->second == 0)
5602     if (Error Err = findFunctionInStream(F, DFII))
5603       return Err;
5604 
5605   // Materialize metadata before parsing any function bodies.
5606   if (Error Err = materializeMetadata())
5607     return Err;
5608 
5609   // Move the bit stream to the saved position of the deferred function body.
5610   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5611     return JumpFailed;
5612   if (Error Err = parseFunctionBody(F))
5613     return Err;
5614   F->setIsMaterializable(false);
5615 
5616   if (StripDebugInfo)
5617     stripDebugInfo(*F);
5618 
5619   // Upgrade any old intrinsic calls in the function.
5620   for (auto &I : UpgradedIntrinsics) {
5621     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5622       if (CallInst *CI = dyn_cast<CallInst>(U))
5623         UpgradeIntrinsicCall(CI, I.second);
5624   }
5625 
5626   // Update calls to the remangled intrinsics
5627   for (auto &I : RemangledIntrinsics)
5628     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5629       // Don't expect any other users than call sites
5630       cast<CallBase>(U)->setCalledFunction(I.second);
5631 
5632   // Finish fn->subprogram upgrade for materialized functions.
5633   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5634     F->setSubprogram(SP);
5635 
5636   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5637   if (!MDLoader->isStrippingTBAA()) {
5638     for (auto &I : instructions(F)) {
5639       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5640       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5641         continue;
5642       MDLoader->setStripTBAA(true);
5643       stripTBAA(F->getParent());
5644     }
5645   }
5646 
5647   for (auto &I : instructions(F)) {
5648     // "Upgrade" older incorrect branch weights by dropping them.
5649     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5650       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5651         MDString *MDS = cast<MDString>(MD->getOperand(0));
5652         StringRef ProfName = MDS->getString();
5653         // Check consistency of !prof branch_weights metadata.
5654         if (!ProfName.equals("branch_weights"))
5655           continue;
5656         unsigned ExpectedNumOperands = 0;
5657         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5658           ExpectedNumOperands = BI->getNumSuccessors();
5659         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5660           ExpectedNumOperands = SI->getNumSuccessors();
5661         else if (isa<CallInst>(&I))
5662           ExpectedNumOperands = 1;
5663         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5664           ExpectedNumOperands = IBI->getNumDestinations();
5665         else if (isa<SelectInst>(&I))
5666           ExpectedNumOperands = 2;
5667         else
5668           continue; // ignore and continue.
5669 
5670         // If branch weight doesn't match, just strip branch weight.
5671         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5672           I.setMetadata(LLVMContext::MD_prof, nullptr);
5673       }
5674     }
5675 
5676     // Remove incompatible attributes on function calls.
5677     if (auto *CI = dyn_cast<CallBase>(&I)) {
5678       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
5679           CI->getFunctionType()->getReturnType()));
5680 
5681       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5682         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5683                                         CI->getArgOperand(ArgNo)->getType()));
5684     }
5685   }
5686 
5687   // Look for functions that rely on old function attribute behavior.
5688   UpgradeFunctionAttributes(*F);
5689 
5690   // Bring in any functions that this function forward-referenced via
5691   // blockaddresses.
5692   return materializeForwardReferencedFunctions();
5693 }
5694 
5695 Error BitcodeReader::materializeModule() {
5696   if (Error Err = materializeMetadata())
5697     return Err;
5698 
5699   // Promise to materialize all forward references.
5700   WillMaterializeAllForwardRefs = true;
5701 
5702   // Iterate over the module, deserializing any functions that are still on
5703   // disk.
5704   for (Function &F : *TheModule) {
5705     if (Error Err = materialize(&F))
5706       return Err;
5707   }
5708   // At this point, if there are any function bodies, parse the rest of
5709   // the bits in the module past the last function block we have recorded
5710   // through either lazy scanning or the VST.
5711   if (LastFunctionBlockBit || NextUnreadBit)
5712     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5713                                     ? LastFunctionBlockBit
5714                                     : NextUnreadBit))
5715       return Err;
5716 
5717   // Check that all block address forward references got resolved (as we
5718   // promised above).
5719   if (!BasicBlockFwdRefs.empty())
5720     return error("Never resolved function from blockaddress");
5721 
5722   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5723   // delete the old functions to clean up. We can't do this unless the entire
5724   // module is materialized because there could always be another function body
5725   // with calls to the old function.
5726   for (auto &I : UpgradedIntrinsics) {
5727     for (auto *U : I.first->users()) {
5728       if (CallInst *CI = dyn_cast<CallInst>(U))
5729         UpgradeIntrinsicCall(CI, I.second);
5730     }
5731     if (!I.first->use_empty())
5732       I.first->replaceAllUsesWith(I.second);
5733     I.first->eraseFromParent();
5734   }
5735   UpgradedIntrinsics.clear();
5736   // Do the same for remangled intrinsics
5737   for (auto &I : RemangledIntrinsics) {
5738     I.first->replaceAllUsesWith(I.second);
5739     I.first->eraseFromParent();
5740   }
5741   RemangledIntrinsics.clear();
5742 
5743   UpgradeDebugInfo(*TheModule);
5744 
5745   UpgradeModuleFlags(*TheModule);
5746 
5747   UpgradeARCRuntime(*TheModule);
5748 
5749   return Error::success();
5750 }
5751 
5752 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5753   return IdentifiedStructTypes;
5754 }
5755 
5756 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5757     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5758     StringRef ModulePath, unsigned ModuleId)
5759     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5760       ModulePath(ModulePath), ModuleId(ModuleId) {}
5761 
5762 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5763   TheIndex.addModule(ModulePath, ModuleId);
5764 }
5765 
5766 ModuleSummaryIndex::ModuleInfo *
5767 ModuleSummaryIndexBitcodeReader::getThisModule() {
5768   return TheIndex.getModule(ModulePath);
5769 }
5770 
5771 std::pair<ValueInfo, GlobalValue::GUID>
5772 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5773   auto VGI = ValueIdToValueInfoMap[ValueId];
5774   assert(VGI.first);
5775   return VGI;
5776 }
5777 
5778 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5779     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5780     StringRef SourceFileName) {
5781   std::string GlobalId =
5782       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5783   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5784   auto OriginalNameID = ValueGUID;
5785   if (GlobalValue::isLocalLinkage(Linkage))
5786     OriginalNameID = GlobalValue::getGUID(ValueName);
5787   if (PrintSummaryGUIDs)
5788     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5789            << ValueName << "\n";
5790 
5791   // UseStrtab is false for legacy summary formats and value names are
5792   // created on stack. In that case we save the name in a string saver in
5793   // the index so that the value name can be recorded.
5794   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5795       TheIndex.getOrInsertValueInfo(
5796           ValueGUID,
5797           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5798       OriginalNameID);
5799 }
5800 
5801 // Specialized value symbol table parser used when reading module index
5802 // blocks where we don't actually create global values. The parsed information
5803 // is saved in the bitcode reader for use when later parsing summaries.
5804 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5805     uint64_t Offset,
5806     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5807   // With a strtab the VST is not required to parse the summary.
5808   if (UseStrtab)
5809     return Error::success();
5810 
5811   assert(Offset > 0 && "Expected non-zero VST offset");
5812   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5813   if (!MaybeCurrentBit)
5814     return MaybeCurrentBit.takeError();
5815   uint64_t CurrentBit = MaybeCurrentBit.get();
5816 
5817   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5818     return Err;
5819 
5820   SmallVector<uint64_t, 64> Record;
5821 
5822   // Read all the records for this value table.
5823   SmallString<128> ValueName;
5824 
5825   while (true) {
5826     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5827     if (!MaybeEntry)
5828       return MaybeEntry.takeError();
5829     BitstreamEntry Entry = MaybeEntry.get();
5830 
5831     switch (Entry.Kind) {
5832     case BitstreamEntry::SubBlock: // Handled for us already.
5833     case BitstreamEntry::Error:
5834       return error("Malformed block");
5835     case BitstreamEntry::EndBlock:
5836       // Done parsing VST, jump back to wherever we came from.
5837       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5838         return JumpFailed;
5839       return Error::success();
5840     case BitstreamEntry::Record:
5841       // The interesting case.
5842       break;
5843     }
5844 
5845     // Read a record.
5846     Record.clear();
5847     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5848     if (!MaybeRecord)
5849       return MaybeRecord.takeError();
5850     switch (MaybeRecord.get()) {
5851     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5852       break;
5853     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5854       if (convertToString(Record, 1, ValueName))
5855         return error("Invalid record");
5856       unsigned ValueID = Record[0];
5857       assert(!SourceFileName.empty());
5858       auto VLI = ValueIdToLinkageMap.find(ValueID);
5859       assert(VLI != ValueIdToLinkageMap.end() &&
5860              "No linkage found for VST entry?");
5861       auto Linkage = VLI->second;
5862       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5863       ValueName.clear();
5864       break;
5865     }
5866     case bitc::VST_CODE_FNENTRY: {
5867       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5868       if (convertToString(Record, 2, ValueName))
5869         return error("Invalid record");
5870       unsigned ValueID = Record[0];
5871       assert(!SourceFileName.empty());
5872       auto VLI = ValueIdToLinkageMap.find(ValueID);
5873       assert(VLI != ValueIdToLinkageMap.end() &&
5874              "No linkage found for VST entry?");
5875       auto Linkage = VLI->second;
5876       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5877       ValueName.clear();
5878       break;
5879     }
5880     case bitc::VST_CODE_COMBINED_ENTRY: {
5881       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5882       unsigned ValueID = Record[0];
5883       GlobalValue::GUID RefGUID = Record[1];
5884       // The "original name", which is the second value of the pair will be
5885       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5886       ValueIdToValueInfoMap[ValueID] =
5887           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5888       break;
5889     }
5890     }
5891   }
5892 }
5893 
5894 // Parse just the blocks needed for building the index out of the module.
5895 // At the end of this routine the module Index is populated with a map
5896 // from global value id to GlobalValueSummary objects.
5897 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5898   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5899     return Err;
5900 
5901   SmallVector<uint64_t, 64> Record;
5902   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5903   unsigned ValueId = 0;
5904 
5905   // Read the index for this module.
5906   while (true) {
5907     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5908     if (!MaybeEntry)
5909       return MaybeEntry.takeError();
5910     llvm::BitstreamEntry Entry = MaybeEntry.get();
5911 
5912     switch (Entry.Kind) {
5913     case BitstreamEntry::Error:
5914       return error("Malformed block");
5915     case BitstreamEntry::EndBlock:
5916       return Error::success();
5917 
5918     case BitstreamEntry::SubBlock:
5919       switch (Entry.ID) {
5920       default: // Skip unknown content.
5921         if (Error Err = Stream.SkipBlock())
5922           return Err;
5923         break;
5924       case bitc::BLOCKINFO_BLOCK_ID:
5925         // Need to parse these to get abbrev ids (e.g. for VST)
5926         if (Error Err = readBlockInfo())
5927           return Err;
5928         break;
5929       case bitc::VALUE_SYMTAB_BLOCK_ID:
5930         // Should have been parsed earlier via VSTOffset, unless there
5931         // is no summary section.
5932         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5933                 !SeenGlobalValSummary) &&
5934                "Expected early VST parse via VSTOffset record");
5935         if (Error Err = Stream.SkipBlock())
5936           return Err;
5937         break;
5938       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5939       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5940         // Add the module if it is a per-module index (has a source file name).
5941         if (!SourceFileName.empty())
5942           addThisModule();
5943         assert(!SeenValueSymbolTable &&
5944                "Already read VST when parsing summary block?");
5945         // We might not have a VST if there were no values in the
5946         // summary. An empty summary block generated when we are
5947         // performing ThinLTO compiles so we don't later invoke
5948         // the regular LTO process on them.
5949         if (VSTOffset > 0) {
5950           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5951             return Err;
5952           SeenValueSymbolTable = true;
5953         }
5954         SeenGlobalValSummary = true;
5955         if (Error Err = parseEntireSummary(Entry.ID))
5956           return Err;
5957         break;
5958       case bitc::MODULE_STRTAB_BLOCK_ID:
5959         if (Error Err = parseModuleStringTable())
5960           return Err;
5961         break;
5962       }
5963       continue;
5964 
5965     case BitstreamEntry::Record: {
5966         Record.clear();
5967         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5968         if (!MaybeBitCode)
5969           return MaybeBitCode.takeError();
5970         switch (MaybeBitCode.get()) {
5971         default:
5972           break; // Default behavior, ignore unknown content.
5973         case bitc::MODULE_CODE_VERSION: {
5974           if (Error Err = parseVersionRecord(Record).takeError())
5975             return Err;
5976           break;
5977         }
5978         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5979         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5980           SmallString<128> ValueName;
5981           if (convertToString(Record, 0, ValueName))
5982             return error("Invalid record");
5983           SourceFileName = ValueName.c_str();
5984           break;
5985         }
5986         /// MODULE_CODE_HASH: [5*i32]
5987         case bitc::MODULE_CODE_HASH: {
5988           if (Record.size() != 5)
5989             return error("Invalid hash length " + Twine(Record.size()).str());
5990           auto &Hash = getThisModule()->second.second;
5991           int Pos = 0;
5992           for (auto &Val : Record) {
5993             assert(!(Val >> 32) && "Unexpected high bits set");
5994             Hash[Pos++] = Val;
5995           }
5996           break;
5997         }
5998         /// MODULE_CODE_VSTOFFSET: [offset]
5999         case bitc::MODULE_CODE_VSTOFFSET:
6000           if (Record.empty())
6001             return error("Invalid record");
6002           // Note that we subtract 1 here because the offset is relative to one
6003           // word before the start of the identification or module block, which
6004           // was historically always the start of the regular bitcode header.
6005           VSTOffset = Record[0] - 1;
6006           break;
6007         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6008         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6009         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6010         // v2: [strtab offset, strtab size, v1]
6011         case bitc::MODULE_CODE_GLOBALVAR:
6012         case bitc::MODULE_CODE_FUNCTION:
6013         case bitc::MODULE_CODE_ALIAS: {
6014           StringRef Name;
6015           ArrayRef<uint64_t> GVRecord;
6016           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6017           if (GVRecord.size() <= 3)
6018             return error("Invalid record");
6019           uint64_t RawLinkage = GVRecord[3];
6020           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6021           if (!UseStrtab) {
6022             ValueIdToLinkageMap[ValueId++] = Linkage;
6023             break;
6024           }
6025 
6026           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6027           break;
6028         }
6029         }
6030       }
6031       continue;
6032     }
6033   }
6034 }
6035 
6036 std::vector<ValueInfo>
6037 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6038   std::vector<ValueInfo> Ret;
6039   Ret.reserve(Record.size());
6040   for (uint64_t RefValueId : Record)
6041     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6042   return Ret;
6043 }
6044 
6045 std::vector<FunctionSummary::EdgeTy>
6046 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6047                                               bool IsOldProfileFormat,
6048                                               bool HasProfile, bool HasRelBF) {
6049   std::vector<FunctionSummary::EdgeTy> Ret;
6050   Ret.reserve(Record.size());
6051   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6052     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6053     uint64_t RelBF = 0;
6054     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6055     if (IsOldProfileFormat) {
6056       I += 1; // Skip old callsitecount field
6057       if (HasProfile)
6058         I += 1; // Skip old profilecount field
6059     } else if (HasProfile)
6060       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6061     else if (HasRelBF)
6062       RelBF = Record[++I];
6063     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6064   }
6065   return Ret;
6066 }
6067 
6068 static void
6069 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6070                                        WholeProgramDevirtResolution &Wpd) {
6071   uint64_t ArgNum = Record[Slot++];
6072   WholeProgramDevirtResolution::ByArg &B =
6073       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6074   Slot += ArgNum;
6075 
6076   B.TheKind =
6077       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6078   B.Info = Record[Slot++];
6079   B.Byte = Record[Slot++];
6080   B.Bit = Record[Slot++];
6081 }
6082 
6083 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6084                                               StringRef Strtab, size_t &Slot,
6085                                               TypeIdSummary &TypeId) {
6086   uint64_t Id = Record[Slot++];
6087   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6088 
6089   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6090   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6091                         static_cast<size_t>(Record[Slot + 1])};
6092   Slot += 2;
6093 
6094   uint64_t ResByArgNum = Record[Slot++];
6095   for (uint64_t I = 0; I != ResByArgNum; ++I)
6096     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6097 }
6098 
6099 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6100                                      StringRef Strtab,
6101                                      ModuleSummaryIndex &TheIndex) {
6102   size_t Slot = 0;
6103   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6104       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6105   Slot += 2;
6106 
6107   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6108   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6109   TypeId.TTRes.AlignLog2 = Record[Slot++];
6110   TypeId.TTRes.SizeM1 = Record[Slot++];
6111   TypeId.TTRes.BitMask = Record[Slot++];
6112   TypeId.TTRes.InlineBits = Record[Slot++];
6113 
6114   while (Slot < Record.size())
6115     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6116 }
6117 
6118 std::vector<FunctionSummary::ParamAccess>
6119 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6120   auto ReadRange = [&]() {
6121     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6122                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6123     Record = Record.drop_front();
6124     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6125                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6126     Record = Record.drop_front();
6127     ConstantRange Range{Lower, Upper};
6128     assert(!Range.isFullSet());
6129     assert(!Range.isUpperSignWrapped());
6130     return Range;
6131   };
6132 
6133   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6134   while (!Record.empty()) {
6135     PendingParamAccesses.emplace_back();
6136     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6137     ParamAccess.ParamNo = Record.front();
6138     Record = Record.drop_front();
6139     ParamAccess.Use = ReadRange();
6140     ParamAccess.Calls.resize(Record.front());
6141     Record = Record.drop_front();
6142     for (auto &Call : ParamAccess.Calls) {
6143       Call.ParamNo = Record.front();
6144       Record = Record.drop_front();
6145       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6146       Record = Record.drop_front();
6147       Call.Offsets = ReadRange();
6148     }
6149   }
6150   return PendingParamAccesses;
6151 }
6152 
6153 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6154     ArrayRef<uint64_t> Record, size_t &Slot,
6155     TypeIdCompatibleVtableInfo &TypeId) {
6156   uint64_t Offset = Record[Slot++];
6157   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6158   TypeId.push_back({Offset, Callee});
6159 }
6160 
6161 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6162     ArrayRef<uint64_t> Record) {
6163   size_t Slot = 0;
6164   TypeIdCompatibleVtableInfo &TypeId =
6165       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6166           {Strtab.data() + Record[Slot],
6167            static_cast<size_t>(Record[Slot + 1])});
6168   Slot += 2;
6169 
6170   while (Slot < Record.size())
6171     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6172 }
6173 
6174 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6175                            unsigned WOCnt) {
6176   // Readonly and writeonly refs are in the end of the refs list.
6177   assert(ROCnt + WOCnt <= Refs.size());
6178   unsigned FirstWORef = Refs.size() - WOCnt;
6179   unsigned RefNo = FirstWORef - ROCnt;
6180   for (; RefNo < FirstWORef; ++RefNo)
6181     Refs[RefNo].setReadOnly();
6182   for (; RefNo < Refs.size(); ++RefNo)
6183     Refs[RefNo].setWriteOnly();
6184 }
6185 
6186 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6187 // objects in the index.
6188 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6189   if (Error Err = Stream.EnterSubBlock(ID))
6190     return Err;
6191   SmallVector<uint64_t, 64> Record;
6192 
6193   // Parse version
6194   {
6195     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6196     if (!MaybeEntry)
6197       return MaybeEntry.takeError();
6198     BitstreamEntry Entry = MaybeEntry.get();
6199 
6200     if (Entry.Kind != BitstreamEntry::Record)
6201       return error("Invalid Summary Block: record for version expected");
6202     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6203     if (!MaybeRecord)
6204       return MaybeRecord.takeError();
6205     if (MaybeRecord.get() != bitc::FS_VERSION)
6206       return error("Invalid Summary Block: version expected");
6207   }
6208   const uint64_t Version = Record[0];
6209   const bool IsOldProfileFormat = Version == 1;
6210   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6211     return error("Invalid summary version " + Twine(Version) +
6212                  ". Version should be in the range [1-" +
6213                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6214                  "].");
6215   Record.clear();
6216 
6217   // Keep around the last seen summary to be used when we see an optional
6218   // "OriginalName" attachement.
6219   GlobalValueSummary *LastSeenSummary = nullptr;
6220   GlobalValue::GUID LastSeenGUID = 0;
6221 
6222   // We can expect to see any number of type ID information records before
6223   // each function summary records; these variables store the information
6224   // collected so far so that it can be used to create the summary object.
6225   std::vector<GlobalValue::GUID> PendingTypeTests;
6226   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6227       PendingTypeCheckedLoadVCalls;
6228   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6229       PendingTypeCheckedLoadConstVCalls;
6230   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6231 
6232   while (true) {
6233     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6234     if (!MaybeEntry)
6235       return MaybeEntry.takeError();
6236     BitstreamEntry Entry = MaybeEntry.get();
6237 
6238     switch (Entry.Kind) {
6239     case BitstreamEntry::SubBlock: // Handled for us already.
6240     case BitstreamEntry::Error:
6241       return error("Malformed block");
6242     case BitstreamEntry::EndBlock:
6243       return Error::success();
6244     case BitstreamEntry::Record:
6245       // The interesting case.
6246       break;
6247     }
6248 
6249     // Read a record. The record format depends on whether this
6250     // is a per-module index or a combined index file. In the per-module
6251     // case the records contain the associated value's ID for correlation
6252     // with VST entries. In the combined index the correlation is done
6253     // via the bitcode offset of the summary records (which were saved
6254     // in the combined index VST entries). The records also contain
6255     // information used for ThinLTO renaming and importing.
6256     Record.clear();
6257     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6258     if (!MaybeBitCode)
6259       return MaybeBitCode.takeError();
6260     switch (unsigned BitCode = MaybeBitCode.get()) {
6261     default: // Default behavior: ignore.
6262       break;
6263     case bitc::FS_FLAGS: {  // [flags]
6264       TheIndex.setFlags(Record[0]);
6265       break;
6266     }
6267     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6268       uint64_t ValueID = Record[0];
6269       GlobalValue::GUID RefGUID = Record[1];
6270       ValueIdToValueInfoMap[ValueID] =
6271           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6272       break;
6273     }
6274     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6275     //                numrefs x valueid, n x (valueid)]
6276     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6277     //                        numrefs x valueid,
6278     //                        n x (valueid, hotness)]
6279     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6280     //                      numrefs x valueid,
6281     //                      n x (valueid, relblockfreq)]
6282     case bitc::FS_PERMODULE:
6283     case bitc::FS_PERMODULE_RELBF:
6284     case bitc::FS_PERMODULE_PROFILE: {
6285       unsigned ValueID = Record[0];
6286       uint64_t RawFlags = Record[1];
6287       unsigned InstCount = Record[2];
6288       uint64_t RawFunFlags = 0;
6289       unsigned NumRefs = Record[3];
6290       unsigned NumRORefs = 0, NumWORefs = 0;
6291       int RefListStartIndex = 4;
6292       if (Version >= 4) {
6293         RawFunFlags = Record[3];
6294         NumRefs = Record[4];
6295         RefListStartIndex = 5;
6296         if (Version >= 5) {
6297           NumRORefs = Record[5];
6298           RefListStartIndex = 6;
6299           if (Version >= 7) {
6300             NumWORefs = Record[6];
6301             RefListStartIndex = 7;
6302           }
6303         }
6304       }
6305 
6306       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6307       // The module path string ref set in the summary must be owned by the
6308       // index's module string table. Since we don't have a module path
6309       // string table section in the per-module index, we create a single
6310       // module path string table entry with an empty (0) ID to take
6311       // ownership.
6312       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6313       assert(Record.size() >= RefListStartIndex + NumRefs &&
6314              "Record size inconsistent with number of references");
6315       std::vector<ValueInfo> Refs = makeRefList(
6316           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6317       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6318       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6319       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6320           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6321           IsOldProfileFormat, HasProfile, HasRelBF);
6322       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6323       auto FS = std::make_unique<FunctionSummary>(
6324           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6325           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6326           std::move(PendingTypeTestAssumeVCalls),
6327           std::move(PendingTypeCheckedLoadVCalls),
6328           std::move(PendingTypeTestAssumeConstVCalls),
6329           std::move(PendingTypeCheckedLoadConstVCalls),
6330           std::move(PendingParamAccesses));
6331       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6332       FS->setModulePath(getThisModule()->first());
6333       FS->setOriginalName(VIAndOriginalGUID.second);
6334       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6335       break;
6336     }
6337     // FS_ALIAS: [valueid, flags, valueid]
6338     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6339     // they expect all aliasee summaries to be available.
6340     case bitc::FS_ALIAS: {
6341       unsigned ValueID = Record[0];
6342       uint64_t RawFlags = Record[1];
6343       unsigned AliaseeID = Record[2];
6344       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6345       auto AS = std::make_unique<AliasSummary>(Flags);
6346       // The module path string ref set in the summary must be owned by the
6347       // index's module string table. Since we don't have a module path
6348       // string table section in the per-module index, we create a single
6349       // module path string table entry with an empty (0) ID to take
6350       // ownership.
6351       AS->setModulePath(getThisModule()->first());
6352 
6353       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6354       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6355       if (!AliaseeInModule)
6356         return error("Alias expects aliasee summary to be parsed");
6357       AS->setAliasee(AliaseeVI, AliaseeInModule);
6358 
6359       auto GUID = getValueInfoFromValueId(ValueID);
6360       AS->setOriginalName(GUID.second);
6361       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6362       break;
6363     }
6364     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6365     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6366       unsigned ValueID = Record[0];
6367       uint64_t RawFlags = Record[1];
6368       unsigned RefArrayStart = 2;
6369       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6370                                       /* WriteOnly */ false,
6371                                       /* Constant */ false,
6372                                       GlobalObject::VCallVisibilityPublic);
6373       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6374       if (Version >= 5) {
6375         GVF = getDecodedGVarFlags(Record[2]);
6376         RefArrayStart = 3;
6377       }
6378       std::vector<ValueInfo> Refs =
6379           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6380       auto FS =
6381           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6382       FS->setModulePath(getThisModule()->first());
6383       auto GUID = getValueInfoFromValueId(ValueID);
6384       FS->setOriginalName(GUID.second);
6385       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6386       break;
6387     }
6388     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6389     //                        numrefs, numrefs x valueid,
6390     //                        n x (valueid, offset)]
6391     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6392       unsigned ValueID = Record[0];
6393       uint64_t RawFlags = Record[1];
6394       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6395       unsigned NumRefs = Record[3];
6396       unsigned RefListStartIndex = 4;
6397       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6398       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6399       std::vector<ValueInfo> Refs = makeRefList(
6400           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6401       VTableFuncList VTableFuncs;
6402       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6403         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6404         uint64_t Offset = Record[++I];
6405         VTableFuncs.push_back({Callee, Offset});
6406       }
6407       auto VS =
6408           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6409       VS->setModulePath(getThisModule()->first());
6410       VS->setVTableFuncs(VTableFuncs);
6411       auto GUID = getValueInfoFromValueId(ValueID);
6412       VS->setOriginalName(GUID.second);
6413       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6414       break;
6415     }
6416     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6417     //               numrefs x valueid, n x (valueid)]
6418     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6419     //                       numrefs x valueid, n x (valueid, hotness)]
6420     case bitc::FS_COMBINED:
6421     case bitc::FS_COMBINED_PROFILE: {
6422       unsigned ValueID = Record[0];
6423       uint64_t ModuleId = Record[1];
6424       uint64_t RawFlags = Record[2];
6425       unsigned InstCount = Record[3];
6426       uint64_t RawFunFlags = 0;
6427       uint64_t EntryCount = 0;
6428       unsigned NumRefs = Record[4];
6429       unsigned NumRORefs = 0, NumWORefs = 0;
6430       int RefListStartIndex = 5;
6431 
6432       if (Version >= 4) {
6433         RawFunFlags = Record[4];
6434         RefListStartIndex = 6;
6435         size_t NumRefsIndex = 5;
6436         if (Version >= 5) {
6437           unsigned NumRORefsOffset = 1;
6438           RefListStartIndex = 7;
6439           if (Version >= 6) {
6440             NumRefsIndex = 6;
6441             EntryCount = Record[5];
6442             RefListStartIndex = 8;
6443             if (Version >= 7) {
6444               RefListStartIndex = 9;
6445               NumWORefs = Record[8];
6446               NumRORefsOffset = 2;
6447             }
6448           }
6449           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6450         }
6451         NumRefs = Record[NumRefsIndex];
6452       }
6453 
6454       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6455       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6456       assert(Record.size() >= RefListStartIndex + NumRefs &&
6457              "Record size inconsistent with number of references");
6458       std::vector<ValueInfo> Refs = makeRefList(
6459           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6460       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6461       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6462           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6463           IsOldProfileFormat, HasProfile, false);
6464       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6465       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6466       auto FS = std::make_unique<FunctionSummary>(
6467           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6468           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6469           std::move(PendingTypeTestAssumeVCalls),
6470           std::move(PendingTypeCheckedLoadVCalls),
6471           std::move(PendingTypeTestAssumeConstVCalls),
6472           std::move(PendingTypeCheckedLoadConstVCalls),
6473           std::move(PendingParamAccesses));
6474       LastSeenSummary = FS.get();
6475       LastSeenGUID = VI.getGUID();
6476       FS->setModulePath(ModuleIdMap[ModuleId]);
6477       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6478       break;
6479     }
6480     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6481     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6482     // they expect all aliasee summaries to be available.
6483     case bitc::FS_COMBINED_ALIAS: {
6484       unsigned ValueID = Record[0];
6485       uint64_t ModuleId = Record[1];
6486       uint64_t RawFlags = Record[2];
6487       unsigned AliaseeValueId = Record[3];
6488       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6489       auto AS = std::make_unique<AliasSummary>(Flags);
6490       LastSeenSummary = AS.get();
6491       AS->setModulePath(ModuleIdMap[ModuleId]);
6492 
6493       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6494       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6495       AS->setAliasee(AliaseeVI, AliaseeInModule);
6496 
6497       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6498       LastSeenGUID = VI.getGUID();
6499       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6500       break;
6501     }
6502     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6503     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6504       unsigned ValueID = Record[0];
6505       uint64_t ModuleId = Record[1];
6506       uint64_t RawFlags = Record[2];
6507       unsigned RefArrayStart = 3;
6508       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6509                                       /* WriteOnly */ false,
6510                                       /* Constant */ false,
6511                                       GlobalObject::VCallVisibilityPublic);
6512       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6513       if (Version >= 5) {
6514         GVF = getDecodedGVarFlags(Record[3]);
6515         RefArrayStart = 4;
6516       }
6517       std::vector<ValueInfo> Refs =
6518           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6519       auto FS =
6520           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6521       LastSeenSummary = FS.get();
6522       FS->setModulePath(ModuleIdMap[ModuleId]);
6523       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6524       LastSeenGUID = VI.getGUID();
6525       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6526       break;
6527     }
6528     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6529     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6530       uint64_t OriginalName = Record[0];
6531       if (!LastSeenSummary)
6532         return error("Name attachment that does not follow a combined record");
6533       LastSeenSummary->setOriginalName(OriginalName);
6534       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6535       // Reset the LastSeenSummary
6536       LastSeenSummary = nullptr;
6537       LastSeenGUID = 0;
6538       break;
6539     }
6540     case bitc::FS_TYPE_TESTS:
6541       assert(PendingTypeTests.empty());
6542       llvm::append_range(PendingTypeTests, Record);
6543       break;
6544 
6545     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6546       assert(PendingTypeTestAssumeVCalls.empty());
6547       for (unsigned I = 0; I != Record.size(); I += 2)
6548         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6549       break;
6550 
6551     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6552       assert(PendingTypeCheckedLoadVCalls.empty());
6553       for (unsigned I = 0; I != Record.size(); I += 2)
6554         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6555       break;
6556 
6557     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6558       PendingTypeTestAssumeConstVCalls.push_back(
6559           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6560       break;
6561 
6562     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6563       PendingTypeCheckedLoadConstVCalls.push_back(
6564           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6565       break;
6566 
6567     case bitc::FS_CFI_FUNCTION_DEFS: {
6568       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6569       for (unsigned I = 0; I != Record.size(); I += 2)
6570         CfiFunctionDefs.insert(
6571             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6572       break;
6573     }
6574 
6575     case bitc::FS_CFI_FUNCTION_DECLS: {
6576       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6577       for (unsigned I = 0; I != Record.size(); I += 2)
6578         CfiFunctionDecls.insert(
6579             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6580       break;
6581     }
6582 
6583     case bitc::FS_TYPE_ID:
6584       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6585       break;
6586 
6587     case bitc::FS_TYPE_ID_METADATA:
6588       parseTypeIdCompatibleVtableSummaryRecord(Record);
6589       break;
6590 
6591     case bitc::FS_BLOCK_COUNT:
6592       TheIndex.addBlockCount(Record[0]);
6593       break;
6594 
6595     case bitc::FS_PARAM_ACCESS: {
6596       PendingParamAccesses = parseParamAccesses(Record);
6597       break;
6598     }
6599     }
6600   }
6601   llvm_unreachable("Exit infinite loop");
6602 }
6603 
6604 // Parse the  module string table block into the Index.
6605 // This populates the ModulePathStringTable map in the index.
6606 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6607   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6608     return Err;
6609 
6610   SmallVector<uint64_t, 64> Record;
6611 
6612   SmallString<128> ModulePath;
6613   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6614 
6615   while (true) {
6616     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6617     if (!MaybeEntry)
6618       return MaybeEntry.takeError();
6619     BitstreamEntry Entry = MaybeEntry.get();
6620 
6621     switch (Entry.Kind) {
6622     case BitstreamEntry::SubBlock: // Handled for us already.
6623     case BitstreamEntry::Error:
6624       return error("Malformed block");
6625     case BitstreamEntry::EndBlock:
6626       return Error::success();
6627     case BitstreamEntry::Record:
6628       // The interesting case.
6629       break;
6630     }
6631 
6632     Record.clear();
6633     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6634     if (!MaybeRecord)
6635       return MaybeRecord.takeError();
6636     switch (MaybeRecord.get()) {
6637     default: // Default behavior: ignore.
6638       break;
6639     case bitc::MST_CODE_ENTRY: {
6640       // MST_ENTRY: [modid, namechar x N]
6641       uint64_t ModuleId = Record[0];
6642 
6643       if (convertToString(Record, 1, ModulePath))
6644         return error("Invalid record");
6645 
6646       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6647       ModuleIdMap[ModuleId] = LastSeenModule->first();
6648 
6649       ModulePath.clear();
6650       break;
6651     }
6652     /// MST_CODE_HASH: [5*i32]
6653     case bitc::MST_CODE_HASH: {
6654       if (Record.size() != 5)
6655         return error("Invalid hash length " + Twine(Record.size()).str());
6656       if (!LastSeenModule)
6657         return error("Invalid hash that does not follow a module path");
6658       int Pos = 0;
6659       for (auto &Val : Record) {
6660         assert(!(Val >> 32) && "Unexpected high bits set");
6661         LastSeenModule->second.second[Pos++] = Val;
6662       }
6663       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6664       LastSeenModule = nullptr;
6665       break;
6666     }
6667     }
6668   }
6669   llvm_unreachable("Exit infinite loop");
6670 }
6671 
6672 namespace {
6673 
6674 // FIXME: This class is only here to support the transition to llvm::Error. It
6675 // will be removed once this transition is complete. Clients should prefer to
6676 // deal with the Error value directly, rather than converting to error_code.
6677 class BitcodeErrorCategoryType : public std::error_category {
6678   const char *name() const noexcept override {
6679     return "llvm.bitcode";
6680   }
6681 
6682   std::string message(int IE) const override {
6683     BitcodeError E = static_cast<BitcodeError>(IE);
6684     switch (E) {
6685     case BitcodeError::CorruptedBitcode:
6686       return "Corrupted bitcode";
6687     }
6688     llvm_unreachable("Unknown error type!");
6689   }
6690 };
6691 
6692 } // end anonymous namespace
6693 
6694 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6695 
6696 const std::error_category &llvm::BitcodeErrorCategory() {
6697   return *ErrorCategory;
6698 }
6699 
6700 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6701                                             unsigned Block, unsigned RecordID) {
6702   if (Error Err = Stream.EnterSubBlock(Block))
6703     return std::move(Err);
6704 
6705   StringRef Strtab;
6706   while (true) {
6707     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6708     if (!MaybeEntry)
6709       return MaybeEntry.takeError();
6710     llvm::BitstreamEntry Entry = MaybeEntry.get();
6711 
6712     switch (Entry.Kind) {
6713     case BitstreamEntry::EndBlock:
6714       return Strtab;
6715 
6716     case BitstreamEntry::Error:
6717       return error("Malformed block");
6718 
6719     case BitstreamEntry::SubBlock:
6720       if (Error Err = Stream.SkipBlock())
6721         return std::move(Err);
6722       break;
6723 
6724     case BitstreamEntry::Record:
6725       StringRef Blob;
6726       SmallVector<uint64_t, 1> Record;
6727       Expected<unsigned> MaybeRecord =
6728           Stream.readRecord(Entry.ID, Record, &Blob);
6729       if (!MaybeRecord)
6730         return MaybeRecord.takeError();
6731       if (MaybeRecord.get() == RecordID)
6732         Strtab = Blob;
6733       break;
6734     }
6735   }
6736 }
6737 
6738 //===----------------------------------------------------------------------===//
6739 // External interface
6740 //===----------------------------------------------------------------------===//
6741 
6742 Expected<std::vector<BitcodeModule>>
6743 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6744   auto FOrErr = getBitcodeFileContents(Buffer);
6745   if (!FOrErr)
6746     return FOrErr.takeError();
6747   return std::move(FOrErr->Mods);
6748 }
6749 
6750 Expected<BitcodeFileContents>
6751 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6752   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6753   if (!StreamOrErr)
6754     return StreamOrErr.takeError();
6755   BitstreamCursor &Stream = *StreamOrErr;
6756 
6757   BitcodeFileContents F;
6758   while (true) {
6759     uint64_t BCBegin = Stream.getCurrentByteNo();
6760 
6761     // We may be consuming bitcode from a client that leaves garbage at the end
6762     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6763     // the end that there cannot possibly be another module, stop looking.
6764     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6765       return F;
6766 
6767     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6768     if (!MaybeEntry)
6769       return MaybeEntry.takeError();
6770     llvm::BitstreamEntry Entry = MaybeEntry.get();
6771 
6772     switch (Entry.Kind) {
6773     case BitstreamEntry::EndBlock:
6774     case BitstreamEntry::Error:
6775       return error("Malformed block");
6776 
6777     case BitstreamEntry::SubBlock: {
6778       uint64_t IdentificationBit = -1ull;
6779       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6780         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6781         if (Error Err = Stream.SkipBlock())
6782           return std::move(Err);
6783 
6784         {
6785           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6786           if (!MaybeEntry)
6787             return MaybeEntry.takeError();
6788           Entry = MaybeEntry.get();
6789         }
6790 
6791         if (Entry.Kind != BitstreamEntry::SubBlock ||
6792             Entry.ID != bitc::MODULE_BLOCK_ID)
6793           return error("Malformed block");
6794       }
6795 
6796       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6797         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6798         if (Error Err = Stream.SkipBlock())
6799           return std::move(Err);
6800 
6801         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6802                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6803                           Buffer.getBufferIdentifier(), IdentificationBit,
6804                           ModuleBit});
6805         continue;
6806       }
6807 
6808       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6809         Expected<StringRef> Strtab =
6810             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6811         if (!Strtab)
6812           return Strtab.takeError();
6813         // This string table is used by every preceding bitcode module that does
6814         // not have its own string table. A bitcode file may have multiple
6815         // string tables if it was created by binary concatenation, for example
6816         // with "llvm-cat -b".
6817         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
6818           if (!I.Strtab.empty())
6819             break;
6820           I.Strtab = *Strtab;
6821         }
6822         // Similarly, the string table is used by every preceding symbol table;
6823         // normally there will be just one unless the bitcode file was created
6824         // by binary concatenation.
6825         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6826           F.StrtabForSymtab = *Strtab;
6827         continue;
6828       }
6829 
6830       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6831         Expected<StringRef> SymtabOrErr =
6832             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6833         if (!SymtabOrErr)
6834           return SymtabOrErr.takeError();
6835 
6836         // We can expect the bitcode file to have multiple symbol tables if it
6837         // was created by binary concatenation. In that case we silently
6838         // ignore any subsequent symbol tables, which is fine because this is a
6839         // low level function. The client is expected to notice that the number
6840         // of modules in the symbol table does not match the number of modules
6841         // in the input file and regenerate the symbol table.
6842         if (F.Symtab.empty())
6843           F.Symtab = *SymtabOrErr;
6844         continue;
6845       }
6846 
6847       if (Error Err = Stream.SkipBlock())
6848         return std::move(Err);
6849       continue;
6850     }
6851     case BitstreamEntry::Record:
6852       if (Error E = Stream.skipRecord(Entry.ID).takeError())
6853         return std::move(E);
6854       continue;
6855     }
6856   }
6857 }
6858 
6859 /// Get a lazy one-at-time loading module from bitcode.
6860 ///
6861 /// This isn't always used in a lazy context.  In particular, it's also used by
6862 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6863 /// in forward-referenced functions from block address references.
6864 ///
6865 /// \param[in] MaterializeAll Set to \c true if we should materialize
6866 /// everything.
6867 Expected<std::unique_ptr<Module>>
6868 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6869                              bool ShouldLazyLoadMetadata, bool IsImporting,
6870                              DataLayoutCallbackTy DataLayoutCallback) {
6871   BitstreamCursor Stream(Buffer);
6872 
6873   std::string ProducerIdentification;
6874   if (IdentificationBit != -1ull) {
6875     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6876       return std::move(JumpFailed);
6877     if (Error E =
6878             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
6879       return std::move(E);
6880   }
6881 
6882   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6883     return std::move(JumpFailed);
6884   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6885                               Context);
6886 
6887   std::unique_ptr<Module> M =
6888       std::make_unique<Module>(ModuleIdentifier, Context);
6889   M->setMaterializer(R);
6890 
6891   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6892   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6893                                       IsImporting, DataLayoutCallback))
6894     return std::move(Err);
6895 
6896   if (MaterializeAll) {
6897     // Read in the entire module, and destroy the BitcodeReader.
6898     if (Error Err = M->materializeAll())
6899       return std::move(Err);
6900   } else {
6901     // Resolve forward references from blockaddresses.
6902     if (Error Err = R->materializeForwardReferencedFunctions())
6903       return std::move(Err);
6904   }
6905   return std::move(M);
6906 }
6907 
6908 Expected<std::unique_ptr<Module>>
6909 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6910                              bool IsImporting) {
6911   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6912                        [](StringRef) { return None; });
6913 }
6914 
6915 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6916 // We don't use ModuleIdentifier here because the client may need to control the
6917 // module path used in the combined summary (e.g. when reading summaries for
6918 // regular LTO modules).
6919 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6920                                  StringRef ModulePath, uint64_t ModuleId) {
6921   BitstreamCursor Stream(Buffer);
6922   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6923     return JumpFailed;
6924 
6925   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6926                                     ModulePath, ModuleId);
6927   return R.parseModule();
6928 }
6929 
6930 // Parse the specified bitcode buffer, returning the function info index.
6931 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6932   BitstreamCursor Stream(Buffer);
6933   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6934     return std::move(JumpFailed);
6935 
6936   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6937   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6938                                     ModuleIdentifier, 0);
6939 
6940   if (Error Err = R.parseModule())
6941     return std::move(Err);
6942 
6943   return std::move(Index);
6944 }
6945 
6946 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6947                                                 unsigned ID) {
6948   if (Error Err = Stream.EnterSubBlock(ID))
6949     return std::move(Err);
6950   SmallVector<uint64_t, 64> Record;
6951 
6952   while (true) {
6953     BitstreamEntry Entry;
6954     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
6955       return std::move(E);
6956 
6957     switch (Entry.Kind) {
6958     case BitstreamEntry::SubBlock: // Handled for us already.
6959     case BitstreamEntry::Error:
6960       return error("Malformed block");
6961     case BitstreamEntry::EndBlock:
6962       // If no flags record found, conservatively return true to mimic
6963       // behavior before this flag was added.
6964       return true;
6965     case BitstreamEntry::Record:
6966       // The interesting case.
6967       break;
6968     }
6969 
6970     // Look for the FS_FLAGS record.
6971     Record.clear();
6972     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6973     if (!MaybeBitCode)
6974       return MaybeBitCode.takeError();
6975     switch (MaybeBitCode.get()) {
6976     default: // Default behavior: ignore.
6977       break;
6978     case bitc::FS_FLAGS: { // [flags]
6979       uint64_t Flags = Record[0];
6980       // Scan flags.
6981       assert(Flags <= 0x7f && "Unexpected bits in flag");
6982 
6983       return Flags & 0x8;
6984     }
6985     }
6986   }
6987   llvm_unreachable("Exit infinite loop");
6988 }
6989 
6990 // Check if the given bitcode buffer contains a global value summary block.
6991 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6992   BitstreamCursor Stream(Buffer);
6993   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6994     return std::move(JumpFailed);
6995 
6996   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6997     return std::move(Err);
6998 
6999   while (true) {
7000     llvm::BitstreamEntry Entry;
7001     if (Error E = Stream.advance().moveInto(Entry))
7002       return std::move(E);
7003 
7004     switch (Entry.Kind) {
7005     case BitstreamEntry::Error:
7006       return error("Malformed block");
7007     case BitstreamEntry::EndBlock:
7008       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
7009                             /*EnableSplitLTOUnit=*/false};
7010 
7011     case BitstreamEntry::SubBlock:
7012       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
7013         Expected<bool> EnableSplitLTOUnit =
7014             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7015         if (!EnableSplitLTOUnit)
7016           return EnableSplitLTOUnit.takeError();
7017         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
7018                               *EnableSplitLTOUnit};
7019       }
7020 
7021       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
7022         Expected<bool> EnableSplitLTOUnit =
7023             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7024         if (!EnableSplitLTOUnit)
7025           return EnableSplitLTOUnit.takeError();
7026         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7027                               *EnableSplitLTOUnit};
7028       }
7029 
7030       // Ignore other sub-blocks.
7031       if (Error Err = Stream.SkipBlock())
7032         return std::move(Err);
7033       continue;
7034 
7035     case BitstreamEntry::Record:
7036       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7037         continue;
7038       else
7039         return StreamFailed.takeError();
7040     }
7041   }
7042 }
7043 
7044 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7045   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7046   if (!MsOrErr)
7047     return MsOrErr.takeError();
7048 
7049   if (MsOrErr->size() != 1)
7050     return error("Expected a single module");
7051 
7052   return (*MsOrErr)[0];
7053 }
7054 
7055 Expected<std::unique_ptr<Module>>
7056 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7057                            bool ShouldLazyLoadMetadata, bool IsImporting) {
7058   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7059   if (!BM)
7060     return BM.takeError();
7061 
7062   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7063 }
7064 
7065 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7066     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7067     bool ShouldLazyLoadMetadata, bool IsImporting) {
7068   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7069                                      IsImporting);
7070   if (MOrErr)
7071     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7072   return MOrErr;
7073 }
7074 
7075 Expected<std::unique_ptr<Module>>
7076 BitcodeModule::parseModule(LLVMContext &Context,
7077                            DataLayoutCallbackTy DataLayoutCallback) {
7078   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7079   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7080   // written.  We must defer until the Module has been fully materialized.
7081 }
7082 
7083 Expected<std::unique_ptr<Module>>
7084 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7085                        DataLayoutCallbackTy DataLayoutCallback) {
7086   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7087   if (!BM)
7088     return BM.takeError();
7089 
7090   return BM->parseModule(Context, DataLayoutCallback);
7091 }
7092 
7093 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7094   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7095   if (!StreamOrErr)
7096     return StreamOrErr.takeError();
7097 
7098   return readTriple(*StreamOrErr);
7099 }
7100 
7101 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7102   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7103   if (!StreamOrErr)
7104     return StreamOrErr.takeError();
7105 
7106   return hasObjCCategory(*StreamOrErr);
7107 }
7108 
7109 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7110   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7111   if (!StreamOrErr)
7112     return StreamOrErr.takeError();
7113 
7114   return readIdentificationCode(*StreamOrErr);
7115 }
7116 
7117 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7118                                    ModuleSummaryIndex &CombinedIndex,
7119                                    uint64_t ModuleId) {
7120   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7121   if (!BM)
7122     return BM.takeError();
7123 
7124   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7125 }
7126 
7127 Expected<std::unique_ptr<ModuleSummaryIndex>>
7128 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7129   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7130   if (!BM)
7131     return BM.takeError();
7132 
7133   return BM->getSummary();
7134 }
7135 
7136 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7137   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7138   if (!BM)
7139     return BM.takeError();
7140 
7141   return BM->getLTOInfo();
7142 }
7143 
7144 Expected<std::unique_ptr<ModuleSummaryIndex>>
7145 llvm::getModuleSummaryIndexForFile(StringRef Path,
7146                                    bool IgnoreEmptyThinLTOIndexFile) {
7147   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7148       MemoryBuffer::getFileOrSTDIN(Path);
7149   if (!FileOrErr)
7150     return errorCodeToError(FileOrErr.getError());
7151   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7152     return nullptr;
7153   return getModuleSummaryIndex(**FileOrErr);
7154 }
7155