1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DebugInfo.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GVMaterializer.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalIndirectSymbol.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstIterator.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/ManagedStatic.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <map> 81 #include <memory> 82 #include <set> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 } // end anonymous namespace 103 104 static Error error(const Twine &Message) { 105 return make_error<StringError>( 106 Message, make_error_code(BitcodeError::CorruptedBitcode)); 107 } 108 109 /// Helper to read the header common to all bitcode files. 110 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 111 // Sniff for the signature. 112 if (!Stream.canSkipToPos(4) || 113 Stream.Read(8) != 'B' || 114 Stream.Read(8) != 'C' || 115 Stream.Read(4) != 0x0 || 116 Stream.Read(4) != 0xC || 117 Stream.Read(4) != 0xE || 118 Stream.Read(4) != 0xD) 119 return false; 120 return true; 121 } 122 123 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 124 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 125 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 126 127 if (Buffer.getBufferSize() & 3) 128 return error("Invalid bitcode signature"); 129 130 // If we have a wrapper header, parse it and ignore the non-bc file contents. 131 // The magic number is 0x0B17C0DE stored in little endian. 132 if (isBitcodeWrapper(BufPtr, BufEnd)) 133 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 134 return error("Invalid bitcode wrapper header"); 135 136 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 137 if (!hasValidBitcodeHeader(Stream)) 138 return error("Invalid bitcode signature"); 139 140 return std::move(Stream); 141 } 142 143 /// Convert a string from a record into an std::string, return true on failure. 144 template <typename StrTy> 145 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 146 StrTy &Result) { 147 if (Idx > Record.size()) 148 return true; 149 150 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 151 Result += (char)Record[i]; 152 return false; 153 } 154 155 // Strip all the TBAA attachment for the module. 156 static void stripTBAA(Module *M) { 157 for (auto &F : *M) { 158 if (F.isMaterializable()) 159 continue; 160 for (auto &I : instructions(F)) 161 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 162 } 163 } 164 165 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 166 /// "epoch" encoded in the bitcode, and return the producer name if any. 167 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 168 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 169 return error("Invalid record"); 170 171 // Read all the records. 172 SmallVector<uint64_t, 64> Record; 173 174 std::string ProducerIdentification; 175 176 while (true) { 177 BitstreamEntry Entry = Stream.advance(); 178 179 switch (Entry.Kind) { 180 default: 181 case BitstreamEntry::Error: 182 return error("Malformed block"); 183 case BitstreamEntry::EndBlock: 184 return ProducerIdentification; 185 case BitstreamEntry::Record: 186 // The interesting case. 187 break; 188 } 189 190 // Read a record. 191 Record.clear(); 192 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 193 switch (BitCode) { 194 default: // Default behavior: reject 195 return error("Invalid value"); 196 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 197 convertToString(Record, 0, ProducerIdentification); 198 break; 199 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 200 unsigned epoch = (unsigned)Record[0]; 201 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 202 return error( 203 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 204 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 205 } 206 } 207 } 208 } 209 } 210 211 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 212 // We expect a number of well-defined blocks, though we don't necessarily 213 // need to understand them all. 214 while (true) { 215 if (Stream.AtEndOfStream()) 216 return ""; 217 218 BitstreamEntry Entry = Stream.advance(); 219 switch (Entry.Kind) { 220 case BitstreamEntry::EndBlock: 221 case BitstreamEntry::Error: 222 return error("Malformed block"); 223 224 case BitstreamEntry::SubBlock: 225 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 226 return readIdentificationBlock(Stream); 227 228 // Ignore other sub-blocks. 229 if (Stream.SkipBlock()) 230 return error("Malformed block"); 231 continue; 232 case BitstreamEntry::Record: 233 Stream.skipRecord(Entry.ID); 234 continue; 235 } 236 } 237 } 238 239 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 240 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 241 return error("Invalid record"); 242 243 SmallVector<uint64_t, 64> Record; 244 // Read all the records for this module. 245 246 while (true) { 247 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 248 249 switch (Entry.Kind) { 250 case BitstreamEntry::SubBlock: // Handled for us already. 251 case BitstreamEntry::Error: 252 return error("Malformed block"); 253 case BitstreamEntry::EndBlock: 254 return false; 255 case BitstreamEntry::Record: 256 // The interesting case. 257 break; 258 } 259 260 // Read a record. 261 switch (Stream.readRecord(Entry.ID, Record)) { 262 default: 263 break; // Default behavior, ignore unknown content. 264 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 265 std::string S; 266 if (convertToString(Record, 0, S)) 267 return error("Invalid record"); 268 // Check for the i386 and other (x86_64, ARM) conventions 269 if (S.find("__DATA,__objc_catlist") != std::string::npos || 270 S.find("__OBJC,__category") != std::string::npos) 271 return true; 272 break; 273 } 274 } 275 Record.clear(); 276 } 277 llvm_unreachable("Exit infinite loop"); 278 } 279 280 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 281 // We expect a number of well-defined blocks, though we don't necessarily 282 // need to understand them all. 283 while (true) { 284 BitstreamEntry Entry = Stream.advance(); 285 286 switch (Entry.Kind) { 287 case BitstreamEntry::Error: 288 return error("Malformed block"); 289 case BitstreamEntry::EndBlock: 290 return false; 291 292 case BitstreamEntry::SubBlock: 293 if (Entry.ID == bitc::MODULE_BLOCK_ID) 294 return hasObjCCategoryInModule(Stream); 295 296 // Ignore other sub-blocks. 297 if (Stream.SkipBlock()) 298 return error("Malformed block"); 299 continue; 300 301 case BitstreamEntry::Record: 302 Stream.skipRecord(Entry.ID); 303 continue; 304 } 305 } 306 } 307 308 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 309 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 310 return error("Invalid record"); 311 312 SmallVector<uint64_t, 64> Record; 313 314 std::string Triple; 315 316 // Read all the records for this module. 317 while (true) { 318 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 319 320 switch (Entry.Kind) { 321 case BitstreamEntry::SubBlock: // Handled for us already. 322 case BitstreamEntry::Error: 323 return error("Malformed block"); 324 case BitstreamEntry::EndBlock: 325 return Triple; 326 case BitstreamEntry::Record: 327 // The interesting case. 328 break; 329 } 330 331 // Read a record. 332 switch (Stream.readRecord(Entry.ID, Record)) { 333 default: break; // Default behavior, ignore unknown content. 334 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 335 std::string S; 336 if (convertToString(Record, 0, S)) 337 return error("Invalid record"); 338 Triple = S; 339 break; 340 } 341 } 342 Record.clear(); 343 } 344 llvm_unreachable("Exit infinite loop"); 345 } 346 347 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 348 // We expect a number of well-defined blocks, though we don't necessarily 349 // need to understand them all. 350 while (true) { 351 BitstreamEntry Entry = Stream.advance(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return ""; 358 359 case BitstreamEntry::SubBlock: 360 if (Entry.ID == bitc::MODULE_BLOCK_ID) 361 return readModuleTriple(Stream); 362 363 // Ignore other sub-blocks. 364 if (Stream.SkipBlock()) 365 return error("Malformed block"); 366 continue; 367 368 case BitstreamEntry::Record: 369 Stream.skipRecord(Entry.ID); 370 continue; 371 } 372 } 373 } 374 375 namespace { 376 377 class BitcodeReaderBase { 378 protected: 379 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 380 : Stream(std::move(Stream)), Strtab(Strtab) { 381 this->Stream.setBlockInfo(&BlockInfo); 382 } 383 384 BitstreamBlockInfo BlockInfo; 385 BitstreamCursor Stream; 386 StringRef Strtab; 387 388 /// In version 2 of the bitcode we store names of global values and comdats in 389 /// a string table rather than in the VST. 390 bool UseStrtab = false; 391 392 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 393 394 /// If this module uses a string table, pop the reference to the string table 395 /// and return the referenced string and the rest of the record. Otherwise 396 /// just return the record itself. 397 std::pair<StringRef, ArrayRef<uint64_t>> 398 readNameFromStrtab(ArrayRef<uint64_t> Record); 399 400 bool readBlockInfo(); 401 402 // Contains an arbitrary and optional string identifying the bitcode producer 403 std::string ProducerIdentification; 404 405 Error error(const Twine &Message); 406 }; 407 408 } // end anonymous namespace 409 410 Error BitcodeReaderBase::error(const Twine &Message) { 411 std::string FullMsg = Message.str(); 412 if (!ProducerIdentification.empty()) 413 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 414 LLVM_VERSION_STRING "')"; 415 return ::error(FullMsg); 416 } 417 418 Expected<unsigned> 419 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 420 if (Record.empty()) 421 return error("Invalid record"); 422 unsigned ModuleVersion = Record[0]; 423 if (ModuleVersion > 2) 424 return error("Invalid value"); 425 UseStrtab = ModuleVersion >= 2; 426 return ModuleVersion; 427 } 428 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 431 if (!UseStrtab) 432 return {"", Record}; 433 // Invalid reference. Let the caller complain about the record being empty. 434 if (Record[0] + Record[1] > Strtab.size()) 435 return {"", {}}; 436 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 437 } 438 439 namespace { 440 441 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 442 LLVMContext &Context; 443 Module *TheModule = nullptr; 444 // Next offset to start scanning for lazy parsing of function bodies. 445 uint64_t NextUnreadBit = 0; 446 // Last function offset found in the VST. 447 uint64_t LastFunctionBlockBit = 0; 448 bool SeenValueSymbolTable = false; 449 uint64_t VSTOffset = 0; 450 451 std::vector<std::string> SectionTable; 452 std::vector<std::string> GCTable; 453 454 std::vector<Type*> TypeList; 455 BitcodeReaderValueList ValueList; 456 Optional<MetadataLoader> MDLoader; 457 std::vector<Comdat *> ComdatList; 458 SmallVector<Instruction *, 64> InstructionList; 459 460 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 461 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 463 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 464 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 465 466 /// The set of attributes by index. Index zero in the file is for null, and 467 /// is thus not represented here. As such all indices are off by one. 468 std::vector<AttributeList> MAttributes; 469 470 /// The set of attribute groups. 471 std::map<unsigned, AttributeList> MAttributeGroups; 472 473 /// While parsing a function body, this is a list of the basic blocks for the 474 /// function. 475 std::vector<BasicBlock*> FunctionBBs; 476 477 // When reading the module header, this list is populated with functions that 478 // have bodies later in the file. 479 std::vector<Function*> FunctionsWithBodies; 480 481 // When intrinsic functions are encountered which require upgrading they are 482 // stored here with their replacement function. 483 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 484 UpdatedIntrinsicMap UpgradedIntrinsics; 485 // Intrinsics which were remangled because of types rename 486 UpdatedIntrinsicMap RemangledIntrinsics; 487 488 // Several operations happen after the module header has been read, but 489 // before function bodies are processed. This keeps track of whether 490 // we've done this yet. 491 bool SeenFirstFunctionBody = false; 492 493 /// When function bodies are initially scanned, this map contains info about 494 /// where to find deferred function body in the stream. 495 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 496 497 /// When Metadata block is initially scanned when parsing the module, we may 498 /// choose to defer parsing of the metadata. This vector contains info about 499 /// which Metadata blocks are deferred. 500 std::vector<uint64_t> DeferredMetadataInfo; 501 502 /// These are basic blocks forward-referenced by block addresses. They are 503 /// inserted lazily into functions when they're loaded. The basic block ID is 504 /// its index into the vector. 505 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 506 std::deque<Function *> BasicBlockFwdRefQueue; 507 508 /// Indicates that we are using a new encoding for instruction operands where 509 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 510 /// instruction number, for a more compact encoding. Some instruction 511 /// operands are not relative to the instruction ID: basic block numbers, and 512 /// types. Once the old style function blocks have been phased out, we would 513 /// not need this flag. 514 bool UseRelativeIDs = false; 515 516 /// True if all functions will be materialized, negating the need to process 517 /// (e.g.) blockaddress forward references. 518 bool WillMaterializeAllForwardRefs = false; 519 520 bool StripDebugInfo = false; 521 TBAAVerifier TBAAVerifyHelper; 522 523 std::vector<std::string> BundleTags; 524 SmallVector<SyncScope::ID, 8> SSIDs; 525 526 public: 527 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 528 StringRef ProducerIdentification, LLVMContext &Context); 529 530 Error materializeForwardReferencedFunctions(); 531 532 Error materialize(GlobalValue *GV) override; 533 Error materializeModule() override; 534 std::vector<StructType *> getIdentifiedStructTypes() const override; 535 536 /// Main interface to parsing a bitcode buffer. 537 /// \returns true if an error occurred. 538 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 539 bool IsImporting = false); 540 541 static uint64_t decodeSignRotatedValue(uint64_t V); 542 543 /// Materialize any deferred Metadata block. 544 Error materializeMetadata() override; 545 546 void setStripDebugInfo() override; 547 548 private: 549 std::vector<StructType *> IdentifiedStructTypes; 550 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 551 StructType *createIdentifiedStructType(LLVMContext &Context); 552 553 Type *getTypeByID(unsigned ID); 554 555 Value *getFnValueByID(unsigned ID, Type *Ty) { 556 if (Ty && Ty->isMetadataTy()) 557 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 558 return ValueList.getValueFwdRef(ID, Ty); 559 } 560 561 Metadata *getFnMetadataByID(unsigned ID) { 562 return MDLoader->getMetadataFwdRefOrLoad(ID); 563 } 564 565 BasicBlock *getBasicBlock(unsigned ID) const { 566 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 567 return FunctionBBs[ID]; 568 } 569 570 AttributeList getAttributes(unsigned i) const { 571 if (i-1 < MAttributes.size()) 572 return MAttributes[i-1]; 573 return AttributeList(); 574 } 575 576 /// Read a value/type pair out of the specified record from slot 'Slot'. 577 /// Increment Slot past the number of slots used in the record. Return true on 578 /// failure. 579 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 580 unsigned InstNum, Value *&ResVal) { 581 if (Slot == Record.size()) return true; 582 unsigned ValNo = (unsigned)Record[Slot++]; 583 // Adjust the ValNo, if it was encoded relative to the InstNum. 584 if (UseRelativeIDs) 585 ValNo = InstNum - ValNo; 586 if (ValNo < InstNum) { 587 // If this is not a forward reference, just return the value we already 588 // have. 589 ResVal = getFnValueByID(ValNo, nullptr); 590 return ResVal == nullptr; 591 } 592 if (Slot == Record.size()) 593 return true; 594 595 unsigned TypeNo = (unsigned)Record[Slot++]; 596 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 597 return ResVal == nullptr; 598 } 599 600 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 601 /// past the number of slots used by the value in the record. Return true if 602 /// there is an error. 603 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 604 unsigned InstNum, Type *Ty, Value *&ResVal) { 605 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 606 return true; 607 // All values currently take a single record slot. 608 ++Slot; 609 return false; 610 } 611 612 /// Like popValue, but does not increment the Slot number. 613 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 614 unsigned InstNum, Type *Ty, Value *&ResVal) { 615 ResVal = getValue(Record, Slot, InstNum, Ty); 616 return ResVal == nullptr; 617 } 618 619 /// Version of getValue that returns ResVal directly, or 0 if there is an 620 /// error. 621 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 622 unsigned InstNum, Type *Ty) { 623 if (Slot == Record.size()) return nullptr; 624 unsigned ValNo = (unsigned)Record[Slot]; 625 // Adjust the ValNo, if it was encoded relative to the InstNum. 626 if (UseRelativeIDs) 627 ValNo = InstNum - ValNo; 628 return getFnValueByID(ValNo, Ty); 629 } 630 631 /// Like getValue, but decodes signed VBRs. 632 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 633 unsigned InstNum, Type *Ty) { 634 if (Slot == Record.size()) return nullptr; 635 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 636 // Adjust the ValNo, if it was encoded relative to the InstNum. 637 if (UseRelativeIDs) 638 ValNo = InstNum - ValNo; 639 return getFnValueByID(ValNo, Ty); 640 } 641 642 /// Converts alignment exponent (i.e. power of two (or zero)) to the 643 /// corresponding alignment to use. If alignment is too large, returns 644 /// a corresponding error code. 645 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 646 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 647 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 648 649 Error parseComdatRecord(ArrayRef<uint64_t> Record); 650 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 651 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 652 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 653 ArrayRef<uint64_t> Record); 654 655 Error parseAttributeBlock(); 656 Error parseAttributeGroupBlock(); 657 Error parseTypeTable(); 658 Error parseTypeTableBody(); 659 Error parseOperandBundleTags(); 660 Error parseSyncScopeNames(); 661 662 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 663 unsigned NameIndex, Triple &TT); 664 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 665 ArrayRef<uint64_t> Record); 666 Error parseValueSymbolTable(uint64_t Offset = 0); 667 Error parseGlobalValueSymbolTable(); 668 Error parseConstants(); 669 Error rememberAndSkipFunctionBodies(); 670 Error rememberAndSkipFunctionBody(); 671 /// Save the positions of the Metadata blocks and skip parsing the blocks. 672 Error rememberAndSkipMetadata(); 673 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 674 Error parseFunctionBody(Function *F); 675 Error globalCleanup(); 676 Error resolveGlobalAndIndirectSymbolInits(); 677 Error parseUseLists(); 678 Error findFunctionInStream( 679 Function *F, 680 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 681 682 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 683 }; 684 685 /// Class to manage reading and parsing function summary index bitcode 686 /// files/sections. 687 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 688 /// The module index built during parsing. 689 ModuleSummaryIndex &TheIndex; 690 691 /// Indicates whether we have encountered a global value summary section 692 /// yet during parsing. 693 bool SeenGlobalValSummary = false; 694 695 /// Indicates whether we have already parsed the VST, used for error checking. 696 bool SeenValueSymbolTable = false; 697 698 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 699 /// Used to enable on-demand parsing of the VST. 700 uint64_t VSTOffset = 0; 701 702 // Map to save ValueId to ValueInfo association that was recorded in the 703 // ValueSymbolTable. It is used after the VST is parsed to convert 704 // call graph edges read from the function summary from referencing 705 // callees by their ValueId to using the ValueInfo instead, which is how 706 // they are recorded in the summary index being built. 707 // We save a GUID which refers to the same global as the ValueInfo, but 708 // ignoring the linkage, i.e. for values other than local linkage they are 709 // identical. 710 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 711 ValueIdToValueInfoMap; 712 713 /// Map populated during module path string table parsing, from the 714 /// module ID to a string reference owned by the index's module 715 /// path string table, used to correlate with combined index 716 /// summary records. 717 DenseMap<uint64_t, StringRef> ModuleIdMap; 718 719 /// Original source file name recorded in a bitcode record. 720 std::string SourceFileName; 721 722 /// The string identifier given to this module by the client, normally the 723 /// path to the bitcode file. 724 StringRef ModulePath; 725 726 /// For per-module summary indexes, the unique numerical identifier given to 727 /// this module by the client. 728 unsigned ModuleId; 729 730 public: 731 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 732 ModuleSummaryIndex &TheIndex, 733 StringRef ModulePath, unsigned ModuleId); 734 735 Error parseModule(); 736 737 private: 738 void setValueGUID(uint64_t ValueID, StringRef ValueName, 739 GlobalValue::LinkageTypes Linkage, 740 StringRef SourceFileName); 741 Error parseValueSymbolTable( 742 uint64_t Offset, 743 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 744 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 745 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 746 bool IsOldProfileFormat, 747 bool HasProfile, 748 bool HasRelBF); 749 Error parseEntireSummary(unsigned ID); 750 Error parseModuleStringTable(); 751 752 std::pair<ValueInfo, GlobalValue::GUID> 753 getValueInfoFromValueId(unsigned ValueId); 754 755 void addThisModule(); 756 ModuleSummaryIndex::ModuleInfo *getThisModule(); 757 }; 758 759 } // end anonymous namespace 760 761 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 762 Error Err) { 763 if (Err) { 764 std::error_code EC; 765 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 766 EC = EIB.convertToErrorCode(); 767 Ctx.emitError(EIB.message()); 768 }); 769 return EC; 770 } 771 return std::error_code(); 772 } 773 774 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 775 StringRef ProducerIdentification, 776 LLVMContext &Context) 777 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 778 ValueList(Context) { 779 this->ProducerIdentification = ProducerIdentification; 780 } 781 782 Error BitcodeReader::materializeForwardReferencedFunctions() { 783 if (WillMaterializeAllForwardRefs) 784 return Error::success(); 785 786 // Prevent recursion. 787 WillMaterializeAllForwardRefs = true; 788 789 while (!BasicBlockFwdRefQueue.empty()) { 790 Function *F = BasicBlockFwdRefQueue.front(); 791 BasicBlockFwdRefQueue.pop_front(); 792 assert(F && "Expected valid function"); 793 if (!BasicBlockFwdRefs.count(F)) 794 // Already materialized. 795 continue; 796 797 // Check for a function that isn't materializable to prevent an infinite 798 // loop. When parsing a blockaddress stored in a global variable, there 799 // isn't a trivial way to check if a function will have a body without a 800 // linear search through FunctionsWithBodies, so just check it here. 801 if (!F->isMaterializable()) 802 return error("Never resolved function from blockaddress"); 803 804 // Try to materialize F. 805 if (Error Err = materialize(F)) 806 return Err; 807 } 808 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 809 810 // Reset state. 811 WillMaterializeAllForwardRefs = false; 812 return Error::success(); 813 } 814 815 //===----------------------------------------------------------------------===// 816 // Helper functions to implement forward reference resolution, etc. 817 //===----------------------------------------------------------------------===// 818 819 static bool hasImplicitComdat(size_t Val) { 820 switch (Val) { 821 default: 822 return false; 823 case 1: // Old WeakAnyLinkage 824 case 4: // Old LinkOnceAnyLinkage 825 case 10: // Old WeakODRLinkage 826 case 11: // Old LinkOnceODRLinkage 827 return true; 828 } 829 } 830 831 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 832 switch (Val) { 833 default: // Map unknown/new linkages to external 834 case 0: 835 return GlobalValue::ExternalLinkage; 836 case 2: 837 return GlobalValue::AppendingLinkage; 838 case 3: 839 return GlobalValue::InternalLinkage; 840 case 5: 841 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 842 case 6: 843 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 844 case 7: 845 return GlobalValue::ExternalWeakLinkage; 846 case 8: 847 return GlobalValue::CommonLinkage; 848 case 9: 849 return GlobalValue::PrivateLinkage; 850 case 12: 851 return GlobalValue::AvailableExternallyLinkage; 852 case 13: 853 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 854 case 14: 855 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 856 case 15: 857 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 858 case 1: // Old value with implicit comdat. 859 case 16: 860 return GlobalValue::WeakAnyLinkage; 861 case 10: // Old value with implicit comdat. 862 case 17: 863 return GlobalValue::WeakODRLinkage; 864 case 4: // Old value with implicit comdat. 865 case 18: 866 return GlobalValue::LinkOnceAnyLinkage; 867 case 11: // Old value with implicit comdat. 868 case 19: 869 return GlobalValue::LinkOnceODRLinkage; 870 } 871 } 872 873 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 874 FunctionSummary::FFlags Flags; 875 Flags.ReadNone = RawFlags & 0x1; 876 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 877 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 878 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 879 return Flags; 880 } 881 882 /// Decode the flags for GlobalValue in the summary. 883 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 884 uint64_t Version) { 885 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 886 // like getDecodedLinkage() above. Any future change to the linkage enum and 887 // to getDecodedLinkage() will need to be taken into account here as above. 888 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 889 RawFlags = RawFlags >> 4; 890 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 891 // The Live flag wasn't introduced until version 3. For dead stripping 892 // to work correctly on earlier versions, we must conservatively treat all 893 // values as live. 894 bool Live = (RawFlags & 0x2) || Version < 3; 895 bool Local = (RawFlags & 0x4); 896 897 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 898 } 899 900 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 901 switch (Val) { 902 default: // Map unknown visibilities to default. 903 case 0: return GlobalValue::DefaultVisibility; 904 case 1: return GlobalValue::HiddenVisibility; 905 case 2: return GlobalValue::ProtectedVisibility; 906 } 907 } 908 909 static GlobalValue::DLLStorageClassTypes 910 getDecodedDLLStorageClass(unsigned Val) { 911 switch (Val) { 912 default: // Map unknown values to default. 913 case 0: return GlobalValue::DefaultStorageClass; 914 case 1: return GlobalValue::DLLImportStorageClass; 915 case 2: return GlobalValue::DLLExportStorageClass; 916 } 917 } 918 919 static bool getDecodedDSOLocal(unsigned Val) { 920 switch(Val) { 921 default: // Map unknown values to preemptable. 922 case 0: return false; 923 case 1: return true; 924 } 925 } 926 927 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 928 switch (Val) { 929 case 0: return GlobalVariable::NotThreadLocal; 930 default: // Map unknown non-zero value to general dynamic. 931 case 1: return GlobalVariable::GeneralDynamicTLSModel; 932 case 2: return GlobalVariable::LocalDynamicTLSModel; 933 case 3: return GlobalVariable::InitialExecTLSModel; 934 case 4: return GlobalVariable::LocalExecTLSModel; 935 } 936 } 937 938 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 939 switch (Val) { 940 default: // Map unknown to UnnamedAddr::None. 941 case 0: return GlobalVariable::UnnamedAddr::None; 942 case 1: return GlobalVariable::UnnamedAddr::Global; 943 case 2: return GlobalVariable::UnnamedAddr::Local; 944 } 945 } 946 947 static int getDecodedCastOpcode(unsigned Val) { 948 switch (Val) { 949 default: return -1; 950 case bitc::CAST_TRUNC : return Instruction::Trunc; 951 case bitc::CAST_ZEXT : return Instruction::ZExt; 952 case bitc::CAST_SEXT : return Instruction::SExt; 953 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 954 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 955 case bitc::CAST_UITOFP : return Instruction::UIToFP; 956 case bitc::CAST_SITOFP : return Instruction::SIToFP; 957 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 958 case bitc::CAST_FPEXT : return Instruction::FPExt; 959 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 960 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 961 case bitc::CAST_BITCAST : return Instruction::BitCast; 962 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 963 } 964 } 965 966 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 967 bool IsFP = Ty->isFPOrFPVectorTy(); 968 // BinOps are only valid for int/fp or vector of int/fp types 969 if (!IsFP && !Ty->isIntOrIntVectorTy()) 970 return -1; 971 972 switch (Val) { 973 default: 974 return -1; 975 case bitc::BINOP_ADD: 976 return IsFP ? Instruction::FAdd : Instruction::Add; 977 case bitc::BINOP_SUB: 978 return IsFP ? Instruction::FSub : Instruction::Sub; 979 case bitc::BINOP_MUL: 980 return IsFP ? Instruction::FMul : Instruction::Mul; 981 case bitc::BINOP_UDIV: 982 return IsFP ? -1 : Instruction::UDiv; 983 case bitc::BINOP_SDIV: 984 return IsFP ? Instruction::FDiv : Instruction::SDiv; 985 case bitc::BINOP_UREM: 986 return IsFP ? -1 : Instruction::URem; 987 case bitc::BINOP_SREM: 988 return IsFP ? Instruction::FRem : Instruction::SRem; 989 case bitc::BINOP_SHL: 990 return IsFP ? -1 : Instruction::Shl; 991 case bitc::BINOP_LSHR: 992 return IsFP ? -1 : Instruction::LShr; 993 case bitc::BINOP_ASHR: 994 return IsFP ? -1 : Instruction::AShr; 995 case bitc::BINOP_AND: 996 return IsFP ? -1 : Instruction::And; 997 case bitc::BINOP_OR: 998 return IsFP ? -1 : Instruction::Or; 999 case bitc::BINOP_XOR: 1000 return IsFP ? -1 : Instruction::Xor; 1001 } 1002 } 1003 1004 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1005 switch (Val) { 1006 default: return AtomicRMWInst::BAD_BINOP; 1007 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1008 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1009 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1010 case bitc::RMW_AND: return AtomicRMWInst::And; 1011 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1012 case bitc::RMW_OR: return AtomicRMWInst::Or; 1013 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1014 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1015 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1016 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1017 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1018 } 1019 } 1020 1021 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1022 switch (Val) { 1023 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1024 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1025 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1026 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1027 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1028 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1029 default: // Map unknown orderings to sequentially-consistent. 1030 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1031 } 1032 } 1033 1034 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1035 switch (Val) { 1036 default: // Map unknown selection kinds to any. 1037 case bitc::COMDAT_SELECTION_KIND_ANY: 1038 return Comdat::Any; 1039 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1040 return Comdat::ExactMatch; 1041 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1042 return Comdat::Largest; 1043 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1044 return Comdat::NoDuplicates; 1045 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1046 return Comdat::SameSize; 1047 } 1048 } 1049 1050 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1051 FastMathFlags FMF; 1052 if (0 != (Val & bitc::UnsafeAlgebra)) 1053 FMF.setFast(); 1054 if (0 != (Val & bitc::AllowReassoc)) 1055 FMF.setAllowReassoc(); 1056 if (0 != (Val & bitc::NoNaNs)) 1057 FMF.setNoNaNs(); 1058 if (0 != (Val & bitc::NoInfs)) 1059 FMF.setNoInfs(); 1060 if (0 != (Val & bitc::NoSignedZeros)) 1061 FMF.setNoSignedZeros(); 1062 if (0 != (Val & bitc::AllowReciprocal)) 1063 FMF.setAllowReciprocal(); 1064 if (0 != (Val & bitc::AllowContract)) 1065 FMF.setAllowContract(true); 1066 if (0 != (Val & bitc::ApproxFunc)) 1067 FMF.setApproxFunc(); 1068 return FMF; 1069 } 1070 1071 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1072 switch (Val) { 1073 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1074 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1075 } 1076 } 1077 1078 Type *BitcodeReader::getTypeByID(unsigned ID) { 1079 // The type table size is always specified correctly. 1080 if (ID >= TypeList.size()) 1081 return nullptr; 1082 1083 if (Type *Ty = TypeList[ID]) 1084 return Ty; 1085 1086 // If we have a forward reference, the only possible case is when it is to a 1087 // named struct. Just create a placeholder for now. 1088 return TypeList[ID] = createIdentifiedStructType(Context); 1089 } 1090 1091 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1092 StringRef Name) { 1093 auto *Ret = StructType::create(Context, Name); 1094 IdentifiedStructTypes.push_back(Ret); 1095 return Ret; 1096 } 1097 1098 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1099 auto *Ret = StructType::create(Context); 1100 IdentifiedStructTypes.push_back(Ret); 1101 return Ret; 1102 } 1103 1104 //===----------------------------------------------------------------------===// 1105 // Functions for parsing blocks from the bitcode file 1106 //===----------------------------------------------------------------------===// 1107 1108 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1109 switch (Val) { 1110 case Attribute::EndAttrKinds: 1111 llvm_unreachable("Synthetic enumerators which should never get here"); 1112 1113 case Attribute::None: return 0; 1114 case Attribute::ZExt: return 1 << 0; 1115 case Attribute::SExt: return 1 << 1; 1116 case Attribute::NoReturn: return 1 << 2; 1117 case Attribute::InReg: return 1 << 3; 1118 case Attribute::StructRet: return 1 << 4; 1119 case Attribute::NoUnwind: return 1 << 5; 1120 case Attribute::NoAlias: return 1 << 6; 1121 case Attribute::ByVal: return 1 << 7; 1122 case Attribute::Nest: return 1 << 8; 1123 case Attribute::ReadNone: return 1 << 9; 1124 case Attribute::ReadOnly: return 1 << 10; 1125 case Attribute::NoInline: return 1 << 11; 1126 case Attribute::AlwaysInline: return 1 << 12; 1127 case Attribute::OptimizeForSize: return 1 << 13; 1128 case Attribute::StackProtect: return 1 << 14; 1129 case Attribute::StackProtectReq: return 1 << 15; 1130 case Attribute::Alignment: return 31 << 16; 1131 case Attribute::NoCapture: return 1 << 21; 1132 case Attribute::NoRedZone: return 1 << 22; 1133 case Attribute::NoImplicitFloat: return 1 << 23; 1134 case Attribute::Naked: return 1 << 24; 1135 case Attribute::InlineHint: return 1 << 25; 1136 case Attribute::StackAlignment: return 7 << 26; 1137 case Attribute::ReturnsTwice: return 1 << 29; 1138 case Attribute::UWTable: return 1 << 30; 1139 case Attribute::NonLazyBind: return 1U << 31; 1140 case Attribute::SanitizeAddress: return 1ULL << 32; 1141 case Attribute::MinSize: return 1ULL << 33; 1142 case Attribute::NoDuplicate: return 1ULL << 34; 1143 case Attribute::StackProtectStrong: return 1ULL << 35; 1144 case Attribute::SanitizeThread: return 1ULL << 36; 1145 case Attribute::SanitizeMemory: return 1ULL << 37; 1146 case Attribute::NoBuiltin: return 1ULL << 38; 1147 case Attribute::Returned: return 1ULL << 39; 1148 case Attribute::Cold: return 1ULL << 40; 1149 case Attribute::Builtin: return 1ULL << 41; 1150 case Attribute::OptimizeNone: return 1ULL << 42; 1151 case Attribute::InAlloca: return 1ULL << 43; 1152 case Attribute::NonNull: return 1ULL << 44; 1153 case Attribute::JumpTable: return 1ULL << 45; 1154 case Attribute::Convergent: return 1ULL << 46; 1155 case Attribute::SafeStack: return 1ULL << 47; 1156 case Attribute::NoRecurse: return 1ULL << 48; 1157 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1158 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1159 case Attribute::SwiftSelf: return 1ULL << 51; 1160 case Attribute::SwiftError: return 1ULL << 52; 1161 case Attribute::WriteOnly: return 1ULL << 53; 1162 case Attribute::Speculatable: return 1ULL << 54; 1163 case Attribute::StrictFP: return 1ULL << 55; 1164 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1165 case Attribute::NoCfCheck: return 1ULL << 57; 1166 case Attribute::OptForFuzzing: return 1ULL << 58; 1167 case Attribute::ShadowCallStack: return 1ULL << 59; 1168 case Attribute::Dereferenceable: 1169 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1170 break; 1171 case Attribute::DereferenceableOrNull: 1172 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1173 "format"); 1174 break; 1175 case Attribute::ArgMemOnly: 1176 llvm_unreachable("argmemonly attribute not supported in raw format"); 1177 break; 1178 case Attribute::AllocSize: 1179 llvm_unreachable("allocsize not supported in raw format"); 1180 break; 1181 } 1182 llvm_unreachable("Unsupported attribute type"); 1183 } 1184 1185 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1186 if (!Val) return; 1187 1188 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1189 I = Attribute::AttrKind(I + 1)) { 1190 if (I == Attribute::Dereferenceable || 1191 I == Attribute::DereferenceableOrNull || 1192 I == Attribute::ArgMemOnly || 1193 I == Attribute::AllocSize) 1194 continue; 1195 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1196 if (I == Attribute::Alignment) 1197 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1198 else if (I == Attribute::StackAlignment) 1199 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1200 else 1201 B.addAttribute(I); 1202 } 1203 } 1204 } 1205 1206 /// This fills an AttrBuilder object with the LLVM attributes that have 1207 /// been decoded from the given integer. This function must stay in sync with 1208 /// 'encodeLLVMAttributesForBitcode'. 1209 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1210 uint64_t EncodedAttrs) { 1211 // FIXME: Remove in 4.0. 1212 1213 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1214 // the bits above 31 down by 11 bits. 1215 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1216 assert((!Alignment || isPowerOf2_32(Alignment)) && 1217 "Alignment must be a power of two."); 1218 1219 if (Alignment) 1220 B.addAlignmentAttr(Alignment); 1221 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1222 (EncodedAttrs & 0xffff)); 1223 } 1224 1225 Error BitcodeReader::parseAttributeBlock() { 1226 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1227 return error("Invalid record"); 1228 1229 if (!MAttributes.empty()) 1230 return error("Invalid multiple blocks"); 1231 1232 SmallVector<uint64_t, 64> Record; 1233 1234 SmallVector<AttributeList, 8> Attrs; 1235 1236 // Read all the records. 1237 while (true) { 1238 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1239 1240 switch (Entry.Kind) { 1241 case BitstreamEntry::SubBlock: // Handled for us already. 1242 case BitstreamEntry::Error: 1243 return error("Malformed block"); 1244 case BitstreamEntry::EndBlock: 1245 return Error::success(); 1246 case BitstreamEntry::Record: 1247 // The interesting case. 1248 break; 1249 } 1250 1251 // Read a record. 1252 Record.clear(); 1253 switch (Stream.readRecord(Entry.ID, Record)) { 1254 default: // Default behavior: ignore. 1255 break; 1256 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1257 // FIXME: Remove in 4.0. 1258 if (Record.size() & 1) 1259 return error("Invalid record"); 1260 1261 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1262 AttrBuilder B; 1263 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1264 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1265 } 1266 1267 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1268 Attrs.clear(); 1269 break; 1270 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1271 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1272 Attrs.push_back(MAttributeGroups[Record[i]]); 1273 1274 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1275 Attrs.clear(); 1276 break; 1277 } 1278 } 1279 } 1280 1281 // Returns Attribute::None on unrecognized codes. 1282 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1283 switch (Code) { 1284 default: 1285 return Attribute::None; 1286 case bitc::ATTR_KIND_ALIGNMENT: 1287 return Attribute::Alignment; 1288 case bitc::ATTR_KIND_ALWAYS_INLINE: 1289 return Attribute::AlwaysInline; 1290 case bitc::ATTR_KIND_ARGMEMONLY: 1291 return Attribute::ArgMemOnly; 1292 case bitc::ATTR_KIND_BUILTIN: 1293 return Attribute::Builtin; 1294 case bitc::ATTR_KIND_BY_VAL: 1295 return Attribute::ByVal; 1296 case bitc::ATTR_KIND_IN_ALLOCA: 1297 return Attribute::InAlloca; 1298 case bitc::ATTR_KIND_COLD: 1299 return Attribute::Cold; 1300 case bitc::ATTR_KIND_CONVERGENT: 1301 return Attribute::Convergent; 1302 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1303 return Attribute::InaccessibleMemOnly; 1304 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1305 return Attribute::InaccessibleMemOrArgMemOnly; 1306 case bitc::ATTR_KIND_INLINE_HINT: 1307 return Attribute::InlineHint; 1308 case bitc::ATTR_KIND_IN_REG: 1309 return Attribute::InReg; 1310 case bitc::ATTR_KIND_JUMP_TABLE: 1311 return Attribute::JumpTable; 1312 case bitc::ATTR_KIND_MIN_SIZE: 1313 return Attribute::MinSize; 1314 case bitc::ATTR_KIND_NAKED: 1315 return Attribute::Naked; 1316 case bitc::ATTR_KIND_NEST: 1317 return Attribute::Nest; 1318 case bitc::ATTR_KIND_NO_ALIAS: 1319 return Attribute::NoAlias; 1320 case bitc::ATTR_KIND_NO_BUILTIN: 1321 return Attribute::NoBuiltin; 1322 case bitc::ATTR_KIND_NO_CAPTURE: 1323 return Attribute::NoCapture; 1324 case bitc::ATTR_KIND_NO_DUPLICATE: 1325 return Attribute::NoDuplicate; 1326 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1327 return Attribute::NoImplicitFloat; 1328 case bitc::ATTR_KIND_NO_INLINE: 1329 return Attribute::NoInline; 1330 case bitc::ATTR_KIND_NO_RECURSE: 1331 return Attribute::NoRecurse; 1332 case bitc::ATTR_KIND_NON_LAZY_BIND: 1333 return Attribute::NonLazyBind; 1334 case bitc::ATTR_KIND_NON_NULL: 1335 return Attribute::NonNull; 1336 case bitc::ATTR_KIND_DEREFERENCEABLE: 1337 return Attribute::Dereferenceable; 1338 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1339 return Attribute::DereferenceableOrNull; 1340 case bitc::ATTR_KIND_ALLOC_SIZE: 1341 return Attribute::AllocSize; 1342 case bitc::ATTR_KIND_NO_RED_ZONE: 1343 return Attribute::NoRedZone; 1344 case bitc::ATTR_KIND_NO_RETURN: 1345 return Attribute::NoReturn; 1346 case bitc::ATTR_KIND_NOCF_CHECK: 1347 return Attribute::NoCfCheck; 1348 case bitc::ATTR_KIND_NO_UNWIND: 1349 return Attribute::NoUnwind; 1350 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1351 return Attribute::OptForFuzzing; 1352 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1353 return Attribute::OptimizeForSize; 1354 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1355 return Attribute::OptimizeNone; 1356 case bitc::ATTR_KIND_READ_NONE: 1357 return Attribute::ReadNone; 1358 case bitc::ATTR_KIND_READ_ONLY: 1359 return Attribute::ReadOnly; 1360 case bitc::ATTR_KIND_RETURNED: 1361 return Attribute::Returned; 1362 case bitc::ATTR_KIND_RETURNS_TWICE: 1363 return Attribute::ReturnsTwice; 1364 case bitc::ATTR_KIND_S_EXT: 1365 return Attribute::SExt; 1366 case bitc::ATTR_KIND_SPECULATABLE: 1367 return Attribute::Speculatable; 1368 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1369 return Attribute::StackAlignment; 1370 case bitc::ATTR_KIND_STACK_PROTECT: 1371 return Attribute::StackProtect; 1372 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1373 return Attribute::StackProtectReq; 1374 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1375 return Attribute::StackProtectStrong; 1376 case bitc::ATTR_KIND_SAFESTACK: 1377 return Attribute::SafeStack; 1378 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1379 return Attribute::ShadowCallStack; 1380 case bitc::ATTR_KIND_STRICT_FP: 1381 return Attribute::StrictFP; 1382 case bitc::ATTR_KIND_STRUCT_RET: 1383 return Attribute::StructRet; 1384 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1385 return Attribute::SanitizeAddress; 1386 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1387 return Attribute::SanitizeHWAddress; 1388 case bitc::ATTR_KIND_SANITIZE_THREAD: 1389 return Attribute::SanitizeThread; 1390 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1391 return Attribute::SanitizeMemory; 1392 case bitc::ATTR_KIND_SWIFT_ERROR: 1393 return Attribute::SwiftError; 1394 case bitc::ATTR_KIND_SWIFT_SELF: 1395 return Attribute::SwiftSelf; 1396 case bitc::ATTR_KIND_UW_TABLE: 1397 return Attribute::UWTable; 1398 case bitc::ATTR_KIND_WRITEONLY: 1399 return Attribute::WriteOnly; 1400 case bitc::ATTR_KIND_Z_EXT: 1401 return Attribute::ZExt; 1402 } 1403 } 1404 1405 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1406 unsigned &Alignment) { 1407 // Note: Alignment in bitcode files is incremented by 1, so that zero 1408 // can be used for default alignment. 1409 if (Exponent > Value::MaxAlignmentExponent + 1) 1410 return error("Invalid alignment value"); 1411 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1412 return Error::success(); 1413 } 1414 1415 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1416 *Kind = getAttrFromCode(Code); 1417 if (*Kind == Attribute::None) 1418 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1419 return Error::success(); 1420 } 1421 1422 Error BitcodeReader::parseAttributeGroupBlock() { 1423 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1424 return error("Invalid record"); 1425 1426 if (!MAttributeGroups.empty()) 1427 return error("Invalid multiple blocks"); 1428 1429 SmallVector<uint64_t, 64> Record; 1430 1431 // Read all the records. 1432 while (true) { 1433 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1434 1435 switch (Entry.Kind) { 1436 case BitstreamEntry::SubBlock: // Handled for us already. 1437 case BitstreamEntry::Error: 1438 return error("Malformed block"); 1439 case BitstreamEntry::EndBlock: 1440 return Error::success(); 1441 case BitstreamEntry::Record: 1442 // The interesting case. 1443 break; 1444 } 1445 1446 // Read a record. 1447 Record.clear(); 1448 switch (Stream.readRecord(Entry.ID, Record)) { 1449 default: // Default behavior: ignore. 1450 break; 1451 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1452 if (Record.size() < 3) 1453 return error("Invalid record"); 1454 1455 uint64_t GrpID = Record[0]; 1456 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1457 1458 AttrBuilder B; 1459 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1460 if (Record[i] == 0) { // Enum attribute 1461 Attribute::AttrKind Kind; 1462 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1463 return Err; 1464 1465 B.addAttribute(Kind); 1466 } else if (Record[i] == 1) { // Integer attribute 1467 Attribute::AttrKind Kind; 1468 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1469 return Err; 1470 if (Kind == Attribute::Alignment) 1471 B.addAlignmentAttr(Record[++i]); 1472 else if (Kind == Attribute::StackAlignment) 1473 B.addStackAlignmentAttr(Record[++i]); 1474 else if (Kind == Attribute::Dereferenceable) 1475 B.addDereferenceableAttr(Record[++i]); 1476 else if (Kind == Attribute::DereferenceableOrNull) 1477 B.addDereferenceableOrNullAttr(Record[++i]); 1478 else if (Kind == Attribute::AllocSize) 1479 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1480 } else { // String attribute 1481 assert((Record[i] == 3 || Record[i] == 4) && 1482 "Invalid attribute group entry"); 1483 bool HasValue = (Record[i++] == 4); 1484 SmallString<64> KindStr; 1485 SmallString<64> ValStr; 1486 1487 while (Record[i] != 0 && i != e) 1488 KindStr += Record[i++]; 1489 assert(Record[i] == 0 && "Kind string not null terminated"); 1490 1491 if (HasValue) { 1492 // Has a value associated with it. 1493 ++i; // Skip the '0' that terminates the "kind" string. 1494 while (Record[i] != 0 && i != e) 1495 ValStr += Record[i++]; 1496 assert(Record[i] == 0 && "Value string not null terminated"); 1497 } 1498 1499 B.addAttribute(KindStr.str(), ValStr.str()); 1500 } 1501 } 1502 1503 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1504 break; 1505 } 1506 } 1507 } 1508 } 1509 1510 Error BitcodeReader::parseTypeTable() { 1511 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1512 return error("Invalid record"); 1513 1514 return parseTypeTableBody(); 1515 } 1516 1517 Error BitcodeReader::parseTypeTableBody() { 1518 if (!TypeList.empty()) 1519 return error("Invalid multiple blocks"); 1520 1521 SmallVector<uint64_t, 64> Record; 1522 unsigned NumRecords = 0; 1523 1524 SmallString<64> TypeName; 1525 1526 // Read all the records for this type table. 1527 while (true) { 1528 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1529 1530 switch (Entry.Kind) { 1531 case BitstreamEntry::SubBlock: // Handled for us already. 1532 case BitstreamEntry::Error: 1533 return error("Malformed block"); 1534 case BitstreamEntry::EndBlock: 1535 if (NumRecords != TypeList.size()) 1536 return error("Malformed block"); 1537 return Error::success(); 1538 case BitstreamEntry::Record: 1539 // The interesting case. 1540 break; 1541 } 1542 1543 // Read a record. 1544 Record.clear(); 1545 Type *ResultTy = nullptr; 1546 switch (Stream.readRecord(Entry.ID, Record)) { 1547 default: 1548 return error("Invalid value"); 1549 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1550 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1551 // type list. This allows us to reserve space. 1552 if (Record.size() < 1) 1553 return error("Invalid record"); 1554 TypeList.resize(Record[0]); 1555 continue; 1556 case bitc::TYPE_CODE_VOID: // VOID 1557 ResultTy = Type::getVoidTy(Context); 1558 break; 1559 case bitc::TYPE_CODE_HALF: // HALF 1560 ResultTy = Type::getHalfTy(Context); 1561 break; 1562 case bitc::TYPE_CODE_FLOAT: // FLOAT 1563 ResultTy = Type::getFloatTy(Context); 1564 break; 1565 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1566 ResultTy = Type::getDoubleTy(Context); 1567 break; 1568 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1569 ResultTy = Type::getX86_FP80Ty(Context); 1570 break; 1571 case bitc::TYPE_CODE_FP128: // FP128 1572 ResultTy = Type::getFP128Ty(Context); 1573 break; 1574 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1575 ResultTy = Type::getPPC_FP128Ty(Context); 1576 break; 1577 case bitc::TYPE_CODE_LABEL: // LABEL 1578 ResultTy = Type::getLabelTy(Context); 1579 break; 1580 case bitc::TYPE_CODE_METADATA: // METADATA 1581 ResultTy = Type::getMetadataTy(Context); 1582 break; 1583 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1584 ResultTy = Type::getX86_MMXTy(Context); 1585 break; 1586 case bitc::TYPE_CODE_TOKEN: // TOKEN 1587 ResultTy = Type::getTokenTy(Context); 1588 break; 1589 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1590 if (Record.size() < 1) 1591 return error("Invalid record"); 1592 1593 uint64_t NumBits = Record[0]; 1594 if (NumBits < IntegerType::MIN_INT_BITS || 1595 NumBits > IntegerType::MAX_INT_BITS) 1596 return error("Bitwidth for integer type out of range"); 1597 ResultTy = IntegerType::get(Context, NumBits); 1598 break; 1599 } 1600 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1601 // [pointee type, address space] 1602 if (Record.size() < 1) 1603 return error("Invalid record"); 1604 unsigned AddressSpace = 0; 1605 if (Record.size() == 2) 1606 AddressSpace = Record[1]; 1607 ResultTy = getTypeByID(Record[0]); 1608 if (!ResultTy || 1609 !PointerType::isValidElementType(ResultTy)) 1610 return error("Invalid type"); 1611 ResultTy = PointerType::get(ResultTy, AddressSpace); 1612 break; 1613 } 1614 case bitc::TYPE_CODE_FUNCTION_OLD: { 1615 // FIXME: attrid is dead, remove it in LLVM 4.0 1616 // FUNCTION: [vararg, attrid, retty, paramty x N] 1617 if (Record.size() < 3) 1618 return error("Invalid record"); 1619 SmallVector<Type*, 8> ArgTys; 1620 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1621 if (Type *T = getTypeByID(Record[i])) 1622 ArgTys.push_back(T); 1623 else 1624 break; 1625 } 1626 1627 ResultTy = getTypeByID(Record[2]); 1628 if (!ResultTy || ArgTys.size() < Record.size()-3) 1629 return error("Invalid type"); 1630 1631 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1632 break; 1633 } 1634 case bitc::TYPE_CODE_FUNCTION: { 1635 // FUNCTION: [vararg, retty, paramty x N] 1636 if (Record.size() < 2) 1637 return error("Invalid record"); 1638 SmallVector<Type*, 8> ArgTys; 1639 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1640 if (Type *T = getTypeByID(Record[i])) { 1641 if (!FunctionType::isValidArgumentType(T)) 1642 return error("Invalid function argument type"); 1643 ArgTys.push_back(T); 1644 } 1645 else 1646 break; 1647 } 1648 1649 ResultTy = getTypeByID(Record[1]); 1650 if (!ResultTy || ArgTys.size() < Record.size()-2) 1651 return error("Invalid type"); 1652 1653 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1654 break; 1655 } 1656 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1657 if (Record.size() < 1) 1658 return error("Invalid record"); 1659 SmallVector<Type*, 8> EltTys; 1660 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1661 if (Type *T = getTypeByID(Record[i])) 1662 EltTys.push_back(T); 1663 else 1664 break; 1665 } 1666 if (EltTys.size() != Record.size()-1) 1667 return error("Invalid type"); 1668 ResultTy = StructType::get(Context, EltTys, Record[0]); 1669 break; 1670 } 1671 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1672 if (convertToString(Record, 0, TypeName)) 1673 return error("Invalid record"); 1674 continue; 1675 1676 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1677 if (Record.size() < 1) 1678 return error("Invalid record"); 1679 1680 if (NumRecords >= TypeList.size()) 1681 return error("Invalid TYPE table"); 1682 1683 // Check to see if this was forward referenced, if so fill in the temp. 1684 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1685 if (Res) { 1686 Res->setName(TypeName); 1687 TypeList[NumRecords] = nullptr; 1688 } else // Otherwise, create a new struct. 1689 Res = createIdentifiedStructType(Context, TypeName); 1690 TypeName.clear(); 1691 1692 SmallVector<Type*, 8> EltTys; 1693 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1694 if (Type *T = getTypeByID(Record[i])) 1695 EltTys.push_back(T); 1696 else 1697 break; 1698 } 1699 if (EltTys.size() != Record.size()-1) 1700 return error("Invalid record"); 1701 Res->setBody(EltTys, Record[0]); 1702 ResultTy = Res; 1703 break; 1704 } 1705 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1706 if (Record.size() != 1) 1707 return error("Invalid record"); 1708 1709 if (NumRecords >= TypeList.size()) 1710 return error("Invalid TYPE table"); 1711 1712 // Check to see if this was forward referenced, if so fill in the temp. 1713 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1714 if (Res) { 1715 Res->setName(TypeName); 1716 TypeList[NumRecords] = nullptr; 1717 } else // Otherwise, create a new struct with no body. 1718 Res = createIdentifiedStructType(Context, TypeName); 1719 TypeName.clear(); 1720 ResultTy = Res; 1721 break; 1722 } 1723 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1724 if (Record.size() < 2) 1725 return error("Invalid record"); 1726 ResultTy = getTypeByID(Record[1]); 1727 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1728 return error("Invalid type"); 1729 ResultTy = ArrayType::get(ResultTy, Record[0]); 1730 break; 1731 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1732 if (Record.size() < 2) 1733 return error("Invalid record"); 1734 if (Record[0] == 0) 1735 return error("Invalid vector length"); 1736 ResultTy = getTypeByID(Record[1]); 1737 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1738 return error("Invalid type"); 1739 ResultTy = VectorType::get(ResultTy, Record[0]); 1740 break; 1741 } 1742 1743 if (NumRecords >= TypeList.size()) 1744 return error("Invalid TYPE table"); 1745 if (TypeList[NumRecords]) 1746 return error( 1747 "Invalid TYPE table: Only named structs can be forward referenced"); 1748 assert(ResultTy && "Didn't read a type?"); 1749 TypeList[NumRecords++] = ResultTy; 1750 } 1751 } 1752 1753 Error BitcodeReader::parseOperandBundleTags() { 1754 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1755 return error("Invalid record"); 1756 1757 if (!BundleTags.empty()) 1758 return error("Invalid multiple blocks"); 1759 1760 SmallVector<uint64_t, 64> Record; 1761 1762 while (true) { 1763 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1764 1765 switch (Entry.Kind) { 1766 case BitstreamEntry::SubBlock: // Handled for us already. 1767 case BitstreamEntry::Error: 1768 return error("Malformed block"); 1769 case BitstreamEntry::EndBlock: 1770 return Error::success(); 1771 case BitstreamEntry::Record: 1772 // The interesting case. 1773 break; 1774 } 1775 1776 // Tags are implicitly mapped to integers by their order. 1777 1778 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1779 return error("Invalid record"); 1780 1781 // OPERAND_BUNDLE_TAG: [strchr x N] 1782 BundleTags.emplace_back(); 1783 if (convertToString(Record, 0, BundleTags.back())) 1784 return error("Invalid record"); 1785 Record.clear(); 1786 } 1787 } 1788 1789 Error BitcodeReader::parseSyncScopeNames() { 1790 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1791 return error("Invalid record"); 1792 1793 if (!SSIDs.empty()) 1794 return error("Invalid multiple synchronization scope names blocks"); 1795 1796 SmallVector<uint64_t, 64> Record; 1797 while (true) { 1798 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1799 switch (Entry.Kind) { 1800 case BitstreamEntry::SubBlock: // Handled for us already. 1801 case BitstreamEntry::Error: 1802 return error("Malformed block"); 1803 case BitstreamEntry::EndBlock: 1804 if (SSIDs.empty()) 1805 return error("Invalid empty synchronization scope names block"); 1806 return Error::success(); 1807 case BitstreamEntry::Record: 1808 // The interesting case. 1809 break; 1810 } 1811 1812 // Synchronization scope names are implicitly mapped to synchronization 1813 // scope IDs by their order. 1814 1815 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1816 return error("Invalid record"); 1817 1818 SmallString<16> SSN; 1819 if (convertToString(Record, 0, SSN)) 1820 return error("Invalid record"); 1821 1822 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1823 Record.clear(); 1824 } 1825 } 1826 1827 /// Associate a value with its name from the given index in the provided record. 1828 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1829 unsigned NameIndex, Triple &TT) { 1830 SmallString<128> ValueName; 1831 if (convertToString(Record, NameIndex, ValueName)) 1832 return error("Invalid record"); 1833 unsigned ValueID = Record[0]; 1834 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1835 return error("Invalid record"); 1836 Value *V = ValueList[ValueID]; 1837 1838 StringRef NameStr(ValueName.data(), ValueName.size()); 1839 if (NameStr.find_first_of(0) != StringRef::npos) 1840 return error("Invalid value name"); 1841 V->setName(NameStr); 1842 auto *GO = dyn_cast<GlobalObject>(V); 1843 if (GO) { 1844 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1845 if (TT.supportsCOMDAT()) 1846 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1847 else 1848 GO->setComdat(nullptr); 1849 } 1850 } 1851 return V; 1852 } 1853 1854 /// Helper to note and return the current location, and jump to the given 1855 /// offset. 1856 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1857 BitstreamCursor &Stream) { 1858 // Save the current parsing location so we can jump back at the end 1859 // of the VST read. 1860 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1861 Stream.JumpToBit(Offset * 32); 1862 #ifndef NDEBUG 1863 // Do some checking if we are in debug mode. 1864 BitstreamEntry Entry = Stream.advance(); 1865 assert(Entry.Kind == BitstreamEntry::SubBlock); 1866 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1867 #else 1868 // In NDEBUG mode ignore the output so we don't get an unused variable 1869 // warning. 1870 Stream.advance(); 1871 #endif 1872 return CurrentBit; 1873 } 1874 1875 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1876 Function *F, 1877 ArrayRef<uint64_t> Record) { 1878 // Note that we subtract 1 here because the offset is relative to one word 1879 // before the start of the identification or module block, which was 1880 // historically always the start of the regular bitcode header. 1881 uint64_t FuncWordOffset = Record[1] - 1; 1882 uint64_t FuncBitOffset = FuncWordOffset * 32; 1883 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1884 // Set the LastFunctionBlockBit to point to the last function block. 1885 // Later when parsing is resumed after function materialization, 1886 // we can simply skip that last function block. 1887 if (FuncBitOffset > LastFunctionBlockBit) 1888 LastFunctionBlockBit = FuncBitOffset; 1889 } 1890 1891 /// Read a new-style GlobalValue symbol table. 1892 Error BitcodeReader::parseGlobalValueSymbolTable() { 1893 unsigned FuncBitcodeOffsetDelta = 1894 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1895 1896 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1897 return error("Invalid record"); 1898 1899 SmallVector<uint64_t, 64> Record; 1900 while (true) { 1901 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1902 1903 switch (Entry.Kind) { 1904 case BitstreamEntry::SubBlock: 1905 case BitstreamEntry::Error: 1906 return error("Malformed block"); 1907 case BitstreamEntry::EndBlock: 1908 return Error::success(); 1909 case BitstreamEntry::Record: 1910 break; 1911 } 1912 1913 Record.clear(); 1914 switch (Stream.readRecord(Entry.ID, Record)) { 1915 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1916 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1917 cast<Function>(ValueList[Record[0]]), Record); 1918 break; 1919 } 1920 } 1921 } 1922 1923 /// Parse the value symbol table at either the current parsing location or 1924 /// at the given bit offset if provided. 1925 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1926 uint64_t CurrentBit; 1927 // Pass in the Offset to distinguish between calling for the module-level 1928 // VST (where we want to jump to the VST offset) and the function-level 1929 // VST (where we don't). 1930 if (Offset > 0) { 1931 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1932 // If this module uses a string table, read this as a module-level VST. 1933 if (UseStrtab) { 1934 if (Error Err = parseGlobalValueSymbolTable()) 1935 return Err; 1936 Stream.JumpToBit(CurrentBit); 1937 return Error::success(); 1938 } 1939 // Otherwise, the VST will be in a similar format to a function-level VST, 1940 // and will contain symbol names. 1941 } 1942 1943 // Compute the delta between the bitcode indices in the VST (the word offset 1944 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1945 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1946 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1947 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1948 // just before entering the VST subblock because: 1) the EnterSubBlock 1949 // changes the AbbrevID width; 2) the VST block is nested within the same 1950 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1951 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1952 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1953 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1954 unsigned FuncBitcodeOffsetDelta = 1955 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1956 1957 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1958 return error("Invalid record"); 1959 1960 SmallVector<uint64_t, 64> Record; 1961 1962 Triple TT(TheModule->getTargetTriple()); 1963 1964 // Read all the records for this value table. 1965 SmallString<128> ValueName; 1966 1967 while (true) { 1968 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1969 1970 switch (Entry.Kind) { 1971 case BitstreamEntry::SubBlock: // Handled for us already. 1972 case BitstreamEntry::Error: 1973 return error("Malformed block"); 1974 case BitstreamEntry::EndBlock: 1975 if (Offset > 0) 1976 Stream.JumpToBit(CurrentBit); 1977 return Error::success(); 1978 case BitstreamEntry::Record: 1979 // The interesting case. 1980 break; 1981 } 1982 1983 // Read a record. 1984 Record.clear(); 1985 switch (Stream.readRecord(Entry.ID, Record)) { 1986 default: // Default behavior: unknown type. 1987 break; 1988 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1989 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1990 if (Error Err = ValOrErr.takeError()) 1991 return Err; 1992 ValOrErr.get(); 1993 break; 1994 } 1995 case bitc::VST_CODE_FNENTRY: { 1996 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1997 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1998 if (Error Err = ValOrErr.takeError()) 1999 return Err; 2000 Value *V = ValOrErr.get(); 2001 2002 // Ignore function offsets emitted for aliases of functions in older 2003 // versions of LLVM. 2004 if (auto *F = dyn_cast<Function>(V)) 2005 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2006 break; 2007 } 2008 case bitc::VST_CODE_BBENTRY: { 2009 if (convertToString(Record, 1, ValueName)) 2010 return error("Invalid record"); 2011 BasicBlock *BB = getBasicBlock(Record[0]); 2012 if (!BB) 2013 return error("Invalid record"); 2014 2015 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2016 ValueName.clear(); 2017 break; 2018 } 2019 } 2020 } 2021 } 2022 2023 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2024 /// encoding. 2025 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2026 if ((V & 1) == 0) 2027 return V >> 1; 2028 if (V != 1) 2029 return -(V >> 1); 2030 // There is no such thing as -0 with integers. "-0" really means MININT. 2031 return 1ULL << 63; 2032 } 2033 2034 /// Resolve all of the initializers for global values and aliases that we can. 2035 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2036 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2037 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2038 IndirectSymbolInitWorklist; 2039 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2040 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2041 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2042 2043 GlobalInitWorklist.swap(GlobalInits); 2044 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2045 FunctionPrefixWorklist.swap(FunctionPrefixes); 2046 FunctionPrologueWorklist.swap(FunctionPrologues); 2047 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2048 2049 while (!GlobalInitWorklist.empty()) { 2050 unsigned ValID = GlobalInitWorklist.back().second; 2051 if (ValID >= ValueList.size()) { 2052 // Not ready to resolve this yet, it requires something later in the file. 2053 GlobalInits.push_back(GlobalInitWorklist.back()); 2054 } else { 2055 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2056 GlobalInitWorklist.back().first->setInitializer(C); 2057 else 2058 return error("Expected a constant"); 2059 } 2060 GlobalInitWorklist.pop_back(); 2061 } 2062 2063 while (!IndirectSymbolInitWorklist.empty()) { 2064 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2065 if (ValID >= ValueList.size()) { 2066 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2067 } else { 2068 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2069 if (!C) 2070 return error("Expected a constant"); 2071 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2072 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2073 return error("Alias and aliasee types don't match"); 2074 GIS->setIndirectSymbol(C); 2075 } 2076 IndirectSymbolInitWorklist.pop_back(); 2077 } 2078 2079 while (!FunctionPrefixWorklist.empty()) { 2080 unsigned ValID = FunctionPrefixWorklist.back().second; 2081 if (ValID >= ValueList.size()) { 2082 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2083 } else { 2084 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2085 FunctionPrefixWorklist.back().first->setPrefixData(C); 2086 else 2087 return error("Expected a constant"); 2088 } 2089 FunctionPrefixWorklist.pop_back(); 2090 } 2091 2092 while (!FunctionPrologueWorklist.empty()) { 2093 unsigned ValID = FunctionPrologueWorklist.back().second; 2094 if (ValID >= ValueList.size()) { 2095 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2096 } else { 2097 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2098 FunctionPrologueWorklist.back().first->setPrologueData(C); 2099 else 2100 return error("Expected a constant"); 2101 } 2102 FunctionPrologueWorklist.pop_back(); 2103 } 2104 2105 while (!FunctionPersonalityFnWorklist.empty()) { 2106 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2107 if (ValID >= ValueList.size()) { 2108 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2109 } else { 2110 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2111 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2112 else 2113 return error("Expected a constant"); 2114 } 2115 FunctionPersonalityFnWorklist.pop_back(); 2116 } 2117 2118 return Error::success(); 2119 } 2120 2121 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2122 SmallVector<uint64_t, 8> Words(Vals.size()); 2123 transform(Vals, Words.begin(), 2124 BitcodeReader::decodeSignRotatedValue); 2125 2126 return APInt(TypeBits, Words); 2127 } 2128 2129 Error BitcodeReader::parseConstants() { 2130 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2131 return error("Invalid record"); 2132 2133 SmallVector<uint64_t, 64> Record; 2134 2135 // Read all the records for this value table. 2136 Type *CurTy = Type::getInt32Ty(Context); 2137 unsigned NextCstNo = ValueList.size(); 2138 2139 while (true) { 2140 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2141 2142 switch (Entry.Kind) { 2143 case BitstreamEntry::SubBlock: // Handled for us already. 2144 case BitstreamEntry::Error: 2145 return error("Malformed block"); 2146 case BitstreamEntry::EndBlock: 2147 if (NextCstNo != ValueList.size()) 2148 return error("Invalid constant reference"); 2149 2150 // Once all the constants have been read, go through and resolve forward 2151 // references. 2152 ValueList.resolveConstantForwardRefs(); 2153 return Error::success(); 2154 case BitstreamEntry::Record: 2155 // The interesting case. 2156 break; 2157 } 2158 2159 // Read a record. 2160 Record.clear(); 2161 Type *VoidType = Type::getVoidTy(Context); 2162 Value *V = nullptr; 2163 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2164 switch (BitCode) { 2165 default: // Default behavior: unknown constant 2166 case bitc::CST_CODE_UNDEF: // UNDEF 2167 V = UndefValue::get(CurTy); 2168 break; 2169 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2170 if (Record.empty()) 2171 return error("Invalid record"); 2172 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2173 return error("Invalid record"); 2174 if (TypeList[Record[0]] == VoidType) 2175 return error("Invalid constant type"); 2176 CurTy = TypeList[Record[0]]; 2177 continue; // Skip the ValueList manipulation. 2178 case bitc::CST_CODE_NULL: // NULL 2179 V = Constant::getNullValue(CurTy); 2180 break; 2181 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2182 if (!CurTy->isIntegerTy() || Record.empty()) 2183 return error("Invalid record"); 2184 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2185 break; 2186 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2187 if (!CurTy->isIntegerTy() || Record.empty()) 2188 return error("Invalid record"); 2189 2190 APInt VInt = 2191 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2192 V = ConstantInt::get(Context, VInt); 2193 2194 break; 2195 } 2196 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2197 if (Record.empty()) 2198 return error("Invalid record"); 2199 if (CurTy->isHalfTy()) 2200 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2201 APInt(16, (uint16_t)Record[0]))); 2202 else if (CurTy->isFloatTy()) 2203 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2204 APInt(32, (uint32_t)Record[0]))); 2205 else if (CurTy->isDoubleTy()) 2206 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2207 APInt(64, Record[0]))); 2208 else if (CurTy->isX86_FP80Ty()) { 2209 // Bits are not stored the same way as a normal i80 APInt, compensate. 2210 uint64_t Rearrange[2]; 2211 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2212 Rearrange[1] = Record[0] >> 48; 2213 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2214 APInt(80, Rearrange))); 2215 } else if (CurTy->isFP128Ty()) 2216 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2217 APInt(128, Record))); 2218 else if (CurTy->isPPC_FP128Ty()) 2219 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2220 APInt(128, Record))); 2221 else 2222 V = UndefValue::get(CurTy); 2223 break; 2224 } 2225 2226 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2227 if (Record.empty()) 2228 return error("Invalid record"); 2229 2230 unsigned Size = Record.size(); 2231 SmallVector<Constant*, 16> Elts; 2232 2233 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2234 for (unsigned i = 0; i != Size; ++i) 2235 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2236 STy->getElementType(i))); 2237 V = ConstantStruct::get(STy, Elts); 2238 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2239 Type *EltTy = ATy->getElementType(); 2240 for (unsigned i = 0; i != Size; ++i) 2241 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2242 V = ConstantArray::get(ATy, Elts); 2243 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2244 Type *EltTy = VTy->getElementType(); 2245 for (unsigned i = 0; i != Size; ++i) 2246 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2247 V = ConstantVector::get(Elts); 2248 } else { 2249 V = UndefValue::get(CurTy); 2250 } 2251 break; 2252 } 2253 case bitc::CST_CODE_STRING: // STRING: [values] 2254 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2255 if (Record.empty()) 2256 return error("Invalid record"); 2257 2258 SmallString<16> Elts(Record.begin(), Record.end()); 2259 V = ConstantDataArray::getString(Context, Elts, 2260 BitCode == bitc::CST_CODE_CSTRING); 2261 break; 2262 } 2263 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2264 if (Record.empty()) 2265 return error("Invalid record"); 2266 2267 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2268 if (EltTy->isIntegerTy(8)) { 2269 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2270 if (isa<VectorType>(CurTy)) 2271 V = ConstantDataVector::get(Context, Elts); 2272 else 2273 V = ConstantDataArray::get(Context, Elts); 2274 } else if (EltTy->isIntegerTy(16)) { 2275 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2276 if (isa<VectorType>(CurTy)) 2277 V = ConstantDataVector::get(Context, Elts); 2278 else 2279 V = ConstantDataArray::get(Context, Elts); 2280 } else if (EltTy->isIntegerTy(32)) { 2281 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2282 if (isa<VectorType>(CurTy)) 2283 V = ConstantDataVector::get(Context, Elts); 2284 else 2285 V = ConstantDataArray::get(Context, Elts); 2286 } else if (EltTy->isIntegerTy(64)) { 2287 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2288 if (isa<VectorType>(CurTy)) 2289 V = ConstantDataVector::get(Context, Elts); 2290 else 2291 V = ConstantDataArray::get(Context, Elts); 2292 } else if (EltTy->isHalfTy()) { 2293 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2294 if (isa<VectorType>(CurTy)) 2295 V = ConstantDataVector::getFP(Context, Elts); 2296 else 2297 V = ConstantDataArray::getFP(Context, Elts); 2298 } else if (EltTy->isFloatTy()) { 2299 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2300 if (isa<VectorType>(CurTy)) 2301 V = ConstantDataVector::getFP(Context, Elts); 2302 else 2303 V = ConstantDataArray::getFP(Context, Elts); 2304 } else if (EltTy->isDoubleTy()) { 2305 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2306 if (isa<VectorType>(CurTy)) 2307 V = ConstantDataVector::getFP(Context, Elts); 2308 else 2309 V = ConstantDataArray::getFP(Context, Elts); 2310 } else { 2311 return error("Invalid type for value"); 2312 } 2313 break; 2314 } 2315 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2316 if (Record.size() < 3) 2317 return error("Invalid record"); 2318 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2319 if (Opc < 0) { 2320 V = UndefValue::get(CurTy); // Unknown binop. 2321 } else { 2322 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2323 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2324 unsigned Flags = 0; 2325 if (Record.size() >= 4) { 2326 if (Opc == Instruction::Add || 2327 Opc == Instruction::Sub || 2328 Opc == Instruction::Mul || 2329 Opc == Instruction::Shl) { 2330 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2331 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2332 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2333 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2334 } else if (Opc == Instruction::SDiv || 2335 Opc == Instruction::UDiv || 2336 Opc == Instruction::LShr || 2337 Opc == Instruction::AShr) { 2338 if (Record[3] & (1 << bitc::PEO_EXACT)) 2339 Flags |= SDivOperator::IsExact; 2340 } 2341 } 2342 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2343 } 2344 break; 2345 } 2346 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2347 if (Record.size() < 3) 2348 return error("Invalid record"); 2349 int Opc = getDecodedCastOpcode(Record[0]); 2350 if (Opc < 0) { 2351 V = UndefValue::get(CurTy); // Unknown cast. 2352 } else { 2353 Type *OpTy = getTypeByID(Record[1]); 2354 if (!OpTy) 2355 return error("Invalid record"); 2356 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2357 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2358 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2359 } 2360 break; 2361 } 2362 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2363 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2364 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2365 // operands] 2366 unsigned OpNum = 0; 2367 Type *PointeeType = nullptr; 2368 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2369 Record.size() % 2) 2370 PointeeType = getTypeByID(Record[OpNum++]); 2371 2372 bool InBounds = false; 2373 Optional<unsigned> InRangeIndex; 2374 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2375 uint64_t Op = Record[OpNum++]; 2376 InBounds = Op & 1; 2377 InRangeIndex = Op >> 1; 2378 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2379 InBounds = true; 2380 2381 SmallVector<Constant*, 16> Elts; 2382 while (OpNum != Record.size()) { 2383 Type *ElTy = getTypeByID(Record[OpNum++]); 2384 if (!ElTy) 2385 return error("Invalid record"); 2386 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2387 } 2388 2389 if (PointeeType && 2390 PointeeType != 2391 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2392 ->getElementType()) 2393 return error("Explicit gep operator type does not match pointee type " 2394 "of pointer operand"); 2395 2396 if (Elts.size() < 1) 2397 return error("Invalid gep with no operands"); 2398 2399 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2400 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2401 InBounds, InRangeIndex); 2402 break; 2403 } 2404 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2405 if (Record.size() < 3) 2406 return error("Invalid record"); 2407 2408 Type *SelectorTy = Type::getInt1Ty(Context); 2409 2410 // The selector might be an i1 or an <n x i1> 2411 // Get the type from the ValueList before getting a forward ref. 2412 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2413 if (Value *V = ValueList[Record[0]]) 2414 if (SelectorTy != V->getType()) 2415 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2416 2417 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2418 SelectorTy), 2419 ValueList.getConstantFwdRef(Record[1],CurTy), 2420 ValueList.getConstantFwdRef(Record[2],CurTy)); 2421 break; 2422 } 2423 case bitc::CST_CODE_CE_EXTRACTELT 2424 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2425 if (Record.size() < 3) 2426 return error("Invalid record"); 2427 VectorType *OpTy = 2428 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2429 if (!OpTy) 2430 return error("Invalid record"); 2431 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2432 Constant *Op1 = nullptr; 2433 if (Record.size() == 4) { 2434 Type *IdxTy = getTypeByID(Record[2]); 2435 if (!IdxTy) 2436 return error("Invalid record"); 2437 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2438 } else // TODO: Remove with llvm 4.0 2439 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2440 if (!Op1) 2441 return error("Invalid record"); 2442 V = ConstantExpr::getExtractElement(Op0, Op1); 2443 break; 2444 } 2445 case bitc::CST_CODE_CE_INSERTELT 2446 : { // CE_INSERTELT: [opval, opval, opty, opval] 2447 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2448 if (Record.size() < 3 || !OpTy) 2449 return error("Invalid record"); 2450 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2451 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2452 OpTy->getElementType()); 2453 Constant *Op2 = nullptr; 2454 if (Record.size() == 4) { 2455 Type *IdxTy = getTypeByID(Record[2]); 2456 if (!IdxTy) 2457 return error("Invalid record"); 2458 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2459 } else // TODO: Remove with llvm 4.0 2460 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2461 if (!Op2) 2462 return error("Invalid record"); 2463 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2464 break; 2465 } 2466 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2467 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2468 if (Record.size() < 3 || !OpTy) 2469 return error("Invalid record"); 2470 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2471 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2472 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2473 OpTy->getNumElements()); 2474 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2475 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2476 break; 2477 } 2478 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2479 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2480 VectorType *OpTy = 2481 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2482 if (Record.size() < 4 || !RTy || !OpTy) 2483 return error("Invalid record"); 2484 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2485 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2486 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2487 RTy->getNumElements()); 2488 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2489 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2490 break; 2491 } 2492 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2493 if (Record.size() < 4) 2494 return error("Invalid record"); 2495 Type *OpTy = getTypeByID(Record[0]); 2496 if (!OpTy) 2497 return error("Invalid record"); 2498 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2499 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2500 2501 if (OpTy->isFPOrFPVectorTy()) 2502 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2503 else 2504 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2505 break; 2506 } 2507 // This maintains backward compatibility, pre-asm dialect keywords. 2508 // FIXME: Remove with the 4.0 release. 2509 case bitc::CST_CODE_INLINEASM_OLD: { 2510 if (Record.size() < 2) 2511 return error("Invalid record"); 2512 std::string AsmStr, ConstrStr; 2513 bool HasSideEffects = Record[0] & 1; 2514 bool IsAlignStack = Record[0] >> 1; 2515 unsigned AsmStrSize = Record[1]; 2516 if (2+AsmStrSize >= Record.size()) 2517 return error("Invalid record"); 2518 unsigned ConstStrSize = Record[2+AsmStrSize]; 2519 if (3+AsmStrSize+ConstStrSize > Record.size()) 2520 return error("Invalid record"); 2521 2522 for (unsigned i = 0; i != AsmStrSize; ++i) 2523 AsmStr += (char)Record[2+i]; 2524 for (unsigned i = 0; i != ConstStrSize; ++i) 2525 ConstrStr += (char)Record[3+AsmStrSize+i]; 2526 PointerType *PTy = cast<PointerType>(CurTy); 2527 UpgradeInlineAsmString(&AsmStr); 2528 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2529 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2530 break; 2531 } 2532 // This version adds support for the asm dialect keywords (e.g., 2533 // inteldialect). 2534 case bitc::CST_CODE_INLINEASM: { 2535 if (Record.size() < 2) 2536 return error("Invalid record"); 2537 std::string AsmStr, ConstrStr; 2538 bool HasSideEffects = Record[0] & 1; 2539 bool IsAlignStack = (Record[0] >> 1) & 1; 2540 unsigned AsmDialect = Record[0] >> 2; 2541 unsigned AsmStrSize = Record[1]; 2542 if (2+AsmStrSize >= Record.size()) 2543 return error("Invalid record"); 2544 unsigned ConstStrSize = Record[2+AsmStrSize]; 2545 if (3+AsmStrSize+ConstStrSize > Record.size()) 2546 return error("Invalid record"); 2547 2548 for (unsigned i = 0; i != AsmStrSize; ++i) 2549 AsmStr += (char)Record[2+i]; 2550 for (unsigned i = 0; i != ConstStrSize; ++i) 2551 ConstrStr += (char)Record[3+AsmStrSize+i]; 2552 PointerType *PTy = cast<PointerType>(CurTy); 2553 UpgradeInlineAsmString(&AsmStr); 2554 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2555 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2556 InlineAsm::AsmDialect(AsmDialect)); 2557 break; 2558 } 2559 case bitc::CST_CODE_BLOCKADDRESS:{ 2560 if (Record.size() < 3) 2561 return error("Invalid record"); 2562 Type *FnTy = getTypeByID(Record[0]); 2563 if (!FnTy) 2564 return error("Invalid record"); 2565 Function *Fn = 2566 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2567 if (!Fn) 2568 return error("Invalid record"); 2569 2570 // If the function is already parsed we can insert the block address right 2571 // away. 2572 BasicBlock *BB; 2573 unsigned BBID = Record[2]; 2574 if (!BBID) 2575 // Invalid reference to entry block. 2576 return error("Invalid ID"); 2577 if (!Fn->empty()) { 2578 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2579 for (size_t I = 0, E = BBID; I != E; ++I) { 2580 if (BBI == BBE) 2581 return error("Invalid ID"); 2582 ++BBI; 2583 } 2584 BB = &*BBI; 2585 } else { 2586 // Otherwise insert a placeholder and remember it so it can be inserted 2587 // when the function is parsed. 2588 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2589 if (FwdBBs.empty()) 2590 BasicBlockFwdRefQueue.push_back(Fn); 2591 if (FwdBBs.size() < BBID + 1) 2592 FwdBBs.resize(BBID + 1); 2593 if (!FwdBBs[BBID]) 2594 FwdBBs[BBID] = BasicBlock::Create(Context); 2595 BB = FwdBBs[BBID]; 2596 } 2597 V = BlockAddress::get(Fn, BB); 2598 break; 2599 } 2600 } 2601 2602 ValueList.assignValue(V, NextCstNo); 2603 ++NextCstNo; 2604 } 2605 } 2606 2607 Error BitcodeReader::parseUseLists() { 2608 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2609 return error("Invalid record"); 2610 2611 // Read all the records. 2612 SmallVector<uint64_t, 64> Record; 2613 2614 while (true) { 2615 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2616 2617 switch (Entry.Kind) { 2618 case BitstreamEntry::SubBlock: // Handled for us already. 2619 case BitstreamEntry::Error: 2620 return error("Malformed block"); 2621 case BitstreamEntry::EndBlock: 2622 return Error::success(); 2623 case BitstreamEntry::Record: 2624 // The interesting case. 2625 break; 2626 } 2627 2628 // Read a use list record. 2629 Record.clear(); 2630 bool IsBB = false; 2631 switch (Stream.readRecord(Entry.ID, Record)) { 2632 default: // Default behavior: unknown type. 2633 break; 2634 case bitc::USELIST_CODE_BB: 2635 IsBB = true; 2636 LLVM_FALLTHROUGH; 2637 case bitc::USELIST_CODE_DEFAULT: { 2638 unsigned RecordLength = Record.size(); 2639 if (RecordLength < 3) 2640 // Records should have at least an ID and two indexes. 2641 return error("Invalid record"); 2642 unsigned ID = Record.back(); 2643 Record.pop_back(); 2644 2645 Value *V; 2646 if (IsBB) { 2647 assert(ID < FunctionBBs.size() && "Basic block not found"); 2648 V = FunctionBBs[ID]; 2649 } else 2650 V = ValueList[ID]; 2651 unsigned NumUses = 0; 2652 SmallDenseMap<const Use *, unsigned, 16> Order; 2653 for (const Use &U : V->materialized_uses()) { 2654 if (++NumUses > Record.size()) 2655 break; 2656 Order[&U] = Record[NumUses - 1]; 2657 } 2658 if (Order.size() != Record.size() || NumUses > Record.size()) 2659 // Mismatches can happen if the functions are being materialized lazily 2660 // (out-of-order), or a value has been upgraded. 2661 break; 2662 2663 V->sortUseList([&](const Use &L, const Use &R) { 2664 return Order.lookup(&L) < Order.lookup(&R); 2665 }); 2666 break; 2667 } 2668 } 2669 } 2670 } 2671 2672 /// When we see the block for metadata, remember where it is and then skip it. 2673 /// This lets us lazily deserialize the metadata. 2674 Error BitcodeReader::rememberAndSkipMetadata() { 2675 // Save the current stream state. 2676 uint64_t CurBit = Stream.GetCurrentBitNo(); 2677 DeferredMetadataInfo.push_back(CurBit); 2678 2679 // Skip over the block for now. 2680 if (Stream.SkipBlock()) 2681 return error("Invalid record"); 2682 return Error::success(); 2683 } 2684 2685 Error BitcodeReader::materializeMetadata() { 2686 for (uint64_t BitPos : DeferredMetadataInfo) { 2687 // Move the bit stream to the saved position. 2688 Stream.JumpToBit(BitPos); 2689 if (Error Err = MDLoader->parseModuleMetadata()) 2690 return Err; 2691 } 2692 2693 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2694 // metadata. 2695 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2696 NamedMDNode *LinkerOpts = 2697 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2698 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2699 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2700 } 2701 2702 DeferredMetadataInfo.clear(); 2703 return Error::success(); 2704 } 2705 2706 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2707 2708 /// When we see the block for a function body, remember where it is and then 2709 /// skip it. This lets us lazily deserialize the functions. 2710 Error BitcodeReader::rememberAndSkipFunctionBody() { 2711 // Get the function we are talking about. 2712 if (FunctionsWithBodies.empty()) 2713 return error("Insufficient function protos"); 2714 2715 Function *Fn = FunctionsWithBodies.back(); 2716 FunctionsWithBodies.pop_back(); 2717 2718 // Save the current stream state. 2719 uint64_t CurBit = Stream.GetCurrentBitNo(); 2720 assert( 2721 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2722 "Mismatch between VST and scanned function offsets"); 2723 DeferredFunctionInfo[Fn] = CurBit; 2724 2725 // Skip over the function block for now. 2726 if (Stream.SkipBlock()) 2727 return error("Invalid record"); 2728 return Error::success(); 2729 } 2730 2731 Error BitcodeReader::globalCleanup() { 2732 // Patch the initializers for globals and aliases up. 2733 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2734 return Err; 2735 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2736 return error("Malformed global initializer set"); 2737 2738 // Look for intrinsic functions which need to be upgraded at some point 2739 for (Function &F : *TheModule) { 2740 MDLoader->upgradeDebugIntrinsics(F); 2741 Function *NewFn; 2742 if (UpgradeIntrinsicFunction(&F, NewFn)) 2743 UpgradedIntrinsics[&F] = NewFn; 2744 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2745 // Some types could be renamed during loading if several modules are 2746 // loaded in the same LLVMContext (LTO scenario). In this case we should 2747 // remangle intrinsics names as well. 2748 RemangledIntrinsics[&F] = Remangled.getValue(); 2749 } 2750 2751 // Look for global variables which need to be renamed. 2752 for (GlobalVariable &GV : TheModule->globals()) 2753 UpgradeGlobalVariable(&GV); 2754 2755 // Force deallocation of memory for these vectors to favor the client that 2756 // want lazy deserialization. 2757 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2758 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2759 IndirectSymbolInits); 2760 return Error::success(); 2761 } 2762 2763 /// Support for lazy parsing of function bodies. This is required if we 2764 /// either have an old bitcode file without a VST forward declaration record, 2765 /// or if we have an anonymous function being materialized, since anonymous 2766 /// functions do not have a name and are therefore not in the VST. 2767 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2768 Stream.JumpToBit(NextUnreadBit); 2769 2770 if (Stream.AtEndOfStream()) 2771 return error("Could not find function in stream"); 2772 2773 if (!SeenFirstFunctionBody) 2774 return error("Trying to materialize functions before seeing function blocks"); 2775 2776 // An old bitcode file with the symbol table at the end would have 2777 // finished the parse greedily. 2778 assert(SeenValueSymbolTable); 2779 2780 SmallVector<uint64_t, 64> Record; 2781 2782 while (true) { 2783 BitstreamEntry Entry = Stream.advance(); 2784 switch (Entry.Kind) { 2785 default: 2786 return error("Expect SubBlock"); 2787 case BitstreamEntry::SubBlock: 2788 switch (Entry.ID) { 2789 default: 2790 return error("Expect function block"); 2791 case bitc::FUNCTION_BLOCK_ID: 2792 if (Error Err = rememberAndSkipFunctionBody()) 2793 return Err; 2794 NextUnreadBit = Stream.GetCurrentBitNo(); 2795 return Error::success(); 2796 } 2797 } 2798 } 2799 } 2800 2801 bool BitcodeReaderBase::readBlockInfo() { 2802 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2803 if (!NewBlockInfo) 2804 return true; 2805 BlockInfo = std::move(*NewBlockInfo); 2806 return false; 2807 } 2808 2809 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2810 // v1: [selection_kind, name] 2811 // v2: [strtab_offset, strtab_size, selection_kind] 2812 StringRef Name; 2813 std::tie(Name, Record) = readNameFromStrtab(Record); 2814 2815 if (Record.empty()) 2816 return error("Invalid record"); 2817 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2818 std::string OldFormatName; 2819 if (!UseStrtab) { 2820 if (Record.size() < 2) 2821 return error("Invalid record"); 2822 unsigned ComdatNameSize = Record[1]; 2823 OldFormatName.reserve(ComdatNameSize); 2824 for (unsigned i = 0; i != ComdatNameSize; ++i) 2825 OldFormatName += (char)Record[2 + i]; 2826 Name = OldFormatName; 2827 } 2828 Comdat *C = TheModule->getOrInsertComdat(Name); 2829 C->setSelectionKind(SK); 2830 ComdatList.push_back(C); 2831 return Error::success(); 2832 } 2833 2834 static void inferDSOLocal(GlobalValue *GV) { 2835 // infer dso_local from linkage and visibility if it is not encoded. 2836 if (GV->hasLocalLinkage() || 2837 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 2838 GV->setDSOLocal(true); 2839 } 2840 2841 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2842 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2843 // visibility, threadlocal, unnamed_addr, externally_initialized, 2844 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2845 // v2: [strtab_offset, strtab_size, v1] 2846 StringRef Name; 2847 std::tie(Name, Record) = readNameFromStrtab(Record); 2848 2849 if (Record.size() < 6) 2850 return error("Invalid record"); 2851 Type *Ty = getTypeByID(Record[0]); 2852 if (!Ty) 2853 return error("Invalid record"); 2854 bool isConstant = Record[1] & 1; 2855 bool explicitType = Record[1] & 2; 2856 unsigned AddressSpace; 2857 if (explicitType) { 2858 AddressSpace = Record[1] >> 2; 2859 } else { 2860 if (!Ty->isPointerTy()) 2861 return error("Invalid type for value"); 2862 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2863 Ty = cast<PointerType>(Ty)->getElementType(); 2864 } 2865 2866 uint64_t RawLinkage = Record[3]; 2867 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2868 unsigned Alignment; 2869 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2870 return Err; 2871 std::string Section; 2872 if (Record[5]) { 2873 if (Record[5] - 1 >= SectionTable.size()) 2874 return error("Invalid ID"); 2875 Section = SectionTable[Record[5] - 1]; 2876 } 2877 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2878 // Local linkage must have default visibility. 2879 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2880 // FIXME: Change to an error if non-default in 4.0. 2881 Visibility = getDecodedVisibility(Record[6]); 2882 2883 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2884 if (Record.size() > 7) 2885 TLM = getDecodedThreadLocalMode(Record[7]); 2886 2887 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2888 if (Record.size() > 8) 2889 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2890 2891 bool ExternallyInitialized = false; 2892 if (Record.size() > 9) 2893 ExternallyInitialized = Record[9]; 2894 2895 GlobalVariable *NewGV = 2896 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2897 nullptr, TLM, AddressSpace, ExternallyInitialized); 2898 NewGV->setAlignment(Alignment); 2899 if (!Section.empty()) 2900 NewGV->setSection(Section); 2901 NewGV->setVisibility(Visibility); 2902 NewGV->setUnnamedAddr(UnnamedAddr); 2903 2904 if (Record.size() > 10) 2905 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2906 else 2907 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2908 2909 ValueList.push_back(NewGV); 2910 2911 // Remember which value to use for the global initializer. 2912 if (unsigned InitID = Record[2]) 2913 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2914 2915 if (Record.size() > 11) { 2916 if (unsigned ComdatID = Record[11]) { 2917 if (ComdatID > ComdatList.size()) 2918 return error("Invalid global variable comdat ID"); 2919 NewGV->setComdat(ComdatList[ComdatID - 1]); 2920 } 2921 } else if (hasImplicitComdat(RawLinkage)) { 2922 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2923 } 2924 2925 if (Record.size() > 12) { 2926 auto AS = getAttributes(Record[12]).getFnAttributes(); 2927 NewGV->setAttributes(AS); 2928 } 2929 2930 if (Record.size() > 13) { 2931 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2932 } 2933 inferDSOLocal(NewGV); 2934 2935 return Error::success(); 2936 } 2937 2938 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2939 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2940 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2941 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 2942 // v2: [strtab_offset, strtab_size, v1] 2943 StringRef Name; 2944 std::tie(Name, Record) = readNameFromStrtab(Record); 2945 2946 if (Record.size() < 8) 2947 return error("Invalid record"); 2948 Type *Ty = getTypeByID(Record[0]); 2949 if (!Ty) 2950 return error("Invalid record"); 2951 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2952 Ty = PTy->getElementType(); 2953 auto *FTy = dyn_cast<FunctionType>(Ty); 2954 if (!FTy) 2955 return error("Invalid type for value"); 2956 auto CC = static_cast<CallingConv::ID>(Record[1]); 2957 if (CC & ~CallingConv::MaxID) 2958 return error("Invalid calling convention ID"); 2959 2960 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 2961 if (Record.size() > 16) 2962 AddrSpace = Record[16]; 2963 2964 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2965 AddrSpace, Name, TheModule); 2966 2967 Func->setCallingConv(CC); 2968 bool isProto = Record[2]; 2969 uint64_t RawLinkage = Record[3]; 2970 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2971 Func->setAttributes(getAttributes(Record[4])); 2972 2973 unsigned Alignment; 2974 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2975 return Err; 2976 Func->setAlignment(Alignment); 2977 if (Record[6]) { 2978 if (Record[6] - 1 >= SectionTable.size()) 2979 return error("Invalid ID"); 2980 Func->setSection(SectionTable[Record[6] - 1]); 2981 } 2982 // Local linkage must have default visibility. 2983 if (!Func->hasLocalLinkage()) 2984 // FIXME: Change to an error if non-default in 4.0. 2985 Func->setVisibility(getDecodedVisibility(Record[7])); 2986 if (Record.size() > 8 && Record[8]) { 2987 if (Record[8] - 1 >= GCTable.size()) 2988 return error("Invalid ID"); 2989 Func->setGC(GCTable[Record[8] - 1]); 2990 } 2991 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2992 if (Record.size() > 9) 2993 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2994 Func->setUnnamedAddr(UnnamedAddr); 2995 if (Record.size() > 10 && Record[10] != 0) 2996 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2997 2998 if (Record.size() > 11) 2999 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3000 else 3001 upgradeDLLImportExportLinkage(Func, RawLinkage); 3002 3003 if (Record.size() > 12) { 3004 if (unsigned ComdatID = Record[12]) { 3005 if (ComdatID > ComdatList.size()) 3006 return error("Invalid function comdat ID"); 3007 Func->setComdat(ComdatList[ComdatID - 1]); 3008 } 3009 } else if (hasImplicitComdat(RawLinkage)) { 3010 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3011 } 3012 3013 if (Record.size() > 13 && Record[13] != 0) 3014 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3015 3016 if (Record.size() > 14 && Record[14] != 0) 3017 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3018 3019 if (Record.size() > 15) { 3020 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3021 } 3022 inferDSOLocal(Func); 3023 3024 ValueList.push_back(Func); 3025 3026 // If this is a function with a body, remember the prototype we are 3027 // creating now, so that we can match up the body with them later. 3028 if (!isProto) { 3029 Func->setIsMaterializable(true); 3030 FunctionsWithBodies.push_back(Func); 3031 DeferredFunctionInfo[Func] = 0; 3032 } 3033 return Error::success(); 3034 } 3035 3036 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3037 unsigned BitCode, ArrayRef<uint64_t> Record) { 3038 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3039 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3040 // dllstorageclass, threadlocal, unnamed_addr, 3041 // preemption specifier] (name in VST) 3042 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3043 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3044 // preemption specifier] (name in VST) 3045 // v2: [strtab_offset, strtab_size, v1] 3046 StringRef Name; 3047 std::tie(Name, Record) = readNameFromStrtab(Record); 3048 3049 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3050 if (Record.size() < (3 + (unsigned)NewRecord)) 3051 return error("Invalid record"); 3052 unsigned OpNum = 0; 3053 Type *Ty = getTypeByID(Record[OpNum++]); 3054 if (!Ty) 3055 return error("Invalid record"); 3056 3057 unsigned AddrSpace; 3058 if (!NewRecord) { 3059 auto *PTy = dyn_cast<PointerType>(Ty); 3060 if (!PTy) 3061 return error("Invalid type for value"); 3062 Ty = PTy->getElementType(); 3063 AddrSpace = PTy->getAddressSpace(); 3064 } else { 3065 AddrSpace = Record[OpNum++]; 3066 } 3067 3068 auto Val = Record[OpNum++]; 3069 auto Linkage = Record[OpNum++]; 3070 GlobalIndirectSymbol *NewGA; 3071 if (BitCode == bitc::MODULE_CODE_ALIAS || 3072 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3073 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3074 TheModule); 3075 else 3076 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3077 nullptr, TheModule); 3078 // Old bitcode files didn't have visibility field. 3079 // Local linkage must have default visibility. 3080 if (OpNum != Record.size()) { 3081 auto VisInd = OpNum++; 3082 if (!NewGA->hasLocalLinkage()) 3083 // FIXME: Change to an error if non-default in 4.0. 3084 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3085 } 3086 if (BitCode == bitc::MODULE_CODE_ALIAS || 3087 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3088 if (OpNum != Record.size()) 3089 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3090 else 3091 upgradeDLLImportExportLinkage(NewGA, Linkage); 3092 if (OpNum != Record.size()) 3093 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3094 if (OpNum != Record.size()) 3095 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3096 } 3097 if (OpNum != Record.size()) 3098 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3099 inferDSOLocal(NewGA); 3100 3101 ValueList.push_back(NewGA); 3102 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3103 return Error::success(); 3104 } 3105 3106 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3107 bool ShouldLazyLoadMetadata) { 3108 if (ResumeBit) 3109 Stream.JumpToBit(ResumeBit); 3110 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3111 return error("Invalid record"); 3112 3113 SmallVector<uint64_t, 64> Record; 3114 3115 // Read all the records for this module. 3116 while (true) { 3117 BitstreamEntry Entry = Stream.advance(); 3118 3119 switch (Entry.Kind) { 3120 case BitstreamEntry::Error: 3121 return error("Malformed block"); 3122 case BitstreamEntry::EndBlock: 3123 return globalCleanup(); 3124 3125 case BitstreamEntry::SubBlock: 3126 switch (Entry.ID) { 3127 default: // Skip unknown content. 3128 if (Stream.SkipBlock()) 3129 return error("Invalid record"); 3130 break; 3131 case bitc::BLOCKINFO_BLOCK_ID: 3132 if (readBlockInfo()) 3133 return error("Malformed block"); 3134 break; 3135 case bitc::PARAMATTR_BLOCK_ID: 3136 if (Error Err = parseAttributeBlock()) 3137 return Err; 3138 break; 3139 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3140 if (Error Err = parseAttributeGroupBlock()) 3141 return Err; 3142 break; 3143 case bitc::TYPE_BLOCK_ID_NEW: 3144 if (Error Err = parseTypeTable()) 3145 return Err; 3146 break; 3147 case bitc::VALUE_SYMTAB_BLOCK_ID: 3148 if (!SeenValueSymbolTable) { 3149 // Either this is an old form VST without function index and an 3150 // associated VST forward declaration record (which would have caused 3151 // the VST to be jumped to and parsed before it was encountered 3152 // normally in the stream), or there were no function blocks to 3153 // trigger an earlier parsing of the VST. 3154 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3155 if (Error Err = parseValueSymbolTable()) 3156 return Err; 3157 SeenValueSymbolTable = true; 3158 } else { 3159 // We must have had a VST forward declaration record, which caused 3160 // the parser to jump to and parse the VST earlier. 3161 assert(VSTOffset > 0); 3162 if (Stream.SkipBlock()) 3163 return error("Invalid record"); 3164 } 3165 break; 3166 case bitc::CONSTANTS_BLOCK_ID: 3167 if (Error Err = parseConstants()) 3168 return Err; 3169 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3170 return Err; 3171 break; 3172 case bitc::METADATA_BLOCK_ID: 3173 if (ShouldLazyLoadMetadata) { 3174 if (Error Err = rememberAndSkipMetadata()) 3175 return Err; 3176 break; 3177 } 3178 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3179 if (Error Err = MDLoader->parseModuleMetadata()) 3180 return Err; 3181 break; 3182 case bitc::METADATA_KIND_BLOCK_ID: 3183 if (Error Err = MDLoader->parseMetadataKinds()) 3184 return Err; 3185 break; 3186 case bitc::FUNCTION_BLOCK_ID: 3187 // If this is the first function body we've seen, reverse the 3188 // FunctionsWithBodies list. 3189 if (!SeenFirstFunctionBody) { 3190 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3191 if (Error Err = globalCleanup()) 3192 return Err; 3193 SeenFirstFunctionBody = true; 3194 } 3195 3196 if (VSTOffset > 0) { 3197 // If we have a VST forward declaration record, make sure we 3198 // parse the VST now if we haven't already. It is needed to 3199 // set up the DeferredFunctionInfo vector for lazy reading. 3200 if (!SeenValueSymbolTable) { 3201 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3202 return Err; 3203 SeenValueSymbolTable = true; 3204 // Fall through so that we record the NextUnreadBit below. 3205 // This is necessary in case we have an anonymous function that 3206 // is later materialized. Since it will not have a VST entry we 3207 // need to fall back to the lazy parse to find its offset. 3208 } else { 3209 // If we have a VST forward declaration record, but have already 3210 // parsed the VST (just above, when the first function body was 3211 // encountered here), then we are resuming the parse after 3212 // materializing functions. The ResumeBit points to the 3213 // start of the last function block recorded in the 3214 // DeferredFunctionInfo map. Skip it. 3215 if (Stream.SkipBlock()) 3216 return error("Invalid record"); 3217 continue; 3218 } 3219 } 3220 3221 // Support older bitcode files that did not have the function 3222 // index in the VST, nor a VST forward declaration record, as 3223 // well as anonymous functions that do not have VST entries. 3224 // Build the DeferredFunctionInfo vector on the fly. 3225 if (Error Err = rememberAndSkipFunctionBody()) 3226 return Err; 3227 3228 // Suspend parsing when we reach the function bodies. Subsequent 3229 // materialization calls will resume it when necessary. If the bitcode 3230 // file is old, the symbol table will be at the end instead and will not 3231 // have been seen yet. In this case, just finish the parse now. 3232 if (SeenValueSymbolTable) { 3233 NextUnreadBit = Stream.GetCurrentBitNo(); 3234 // After the VST has been parsed, we need to make sure intrinsic name 3235 // are auto-upgraded. 3236 return globalCleanup(); 3237 } 3238 break; 3239 case bitc::USELIST_BLOCK_ID: 3240 if (Error Err = parseUseLists()) 3241 return Err; 3242 break; 3243 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3244 if (Error Err = parseOperandBundleTags()) 3245 return Err; 3246 break; 3247 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3248 if (Error Err = parseSyncScopeNames()) 3249 return Err; 3250 break; 3251 } 3252 continue; 3253 3254 case BitstreamEntry::Record: 3255 // The interesting case. 3256 break; 3257 } 3258 3259 // Read a record. 3260 auto BitCode = Stream.readRecord(Entry.ID, Record); 3261 switch (BitCode) { 3262 default: break; // Default behavior, ignore unknown content. 3263 case bitc::MODULE_CODE_VERSION: { 3264 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3265 if (!VersionOrErr) 3266 return VersionOrErr.takeError(); 3267 UseRelativeIDs = *VersionOrErr >= 1; 3268 break; 3269 } 3270 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3271 std::string S; 3272 if (convertToString(Record, 0, S)) 3273 return error("Invalid record"); 3274 TheModule->setTargetTriple(S); 3275 break; 3276 } 3277 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3278 std::string S; 3279 if (convertToString(Record, 0, S)) 3280 return error("Invalid record"); 3281 TheModule->setDataLayout(S); 3282 break; 3283 } 3284 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3285 std::string S; 3286 if (convertToString(Record, 0, S)) 3287 return error("Invalid record"); 3288 TheModule->setModuleInlineAsm(S); 3289 break; 3290 } 3291 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3292 // FIXME: Remove in 4.0. 3293 std::string S; 3294 if (convertToString(Record, 0, S)) 3295 return error("Invalid record"); 3296 // Ignore value. 3297 break; 3298 } 3299 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3300 std::string S; 3301 if (convertToString(Record, 0, S)) 3302 return error("Invalid record"); 3303 SectionTable.push_back(S); 3304 break; 3305 } 3306 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3307 std::string S; 3308 if (convertToString(Record, 0, S)) 3309 return error("Invalid record"); 3310 GCTable.push_back(S); 3311 break; 3312 } 3313 case bitc::MODULE_CODE_COMDAT: 3314 if (Error Err = parseComdatRecord(Record)) 3315 return Err; 3316 break; 3317 case bitc::MODULE_CODE_GLOBALVAR: 3318 if (Error Err = parseGlobalVarRecord(Record)) 3319 return Err; 3320 break; 3321 case bitc::MODULE_CODE_FUNCTION: 3322 if (Error Err = parseFunctionRecord(Record)) 3323 return Err; 3324 break; 3325 case bitc::MODULE_CODE_IFUNC: 3326 case bitc::MODULE_CODE_ALIAS: 3327 case bitc::MODULE_CODE_ALIAS_OLD: 3328 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3329 return Err; 3330 break; 3331 /// MODULE_CODE_VSTOFFSET: [offset] 3332 case bitc::MODULE_CODE_VSTOFFSET: 3333 if (Record.size() < 1) 3334 return error("Invalid record"); 3335 // Note that we subtract 1 here because the offset is relative to one word 3336 // before the start of the identification or module block, which was 3337 // historically always the start of the regular bitcode header. 3338 VSTOffset = Record[0] - 1; 3339 break; 3340 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3341 case bitc::MODULE_CODE_SOURCE_FILENAME: 3342 SmallString<128> ValueName; 3343 if (convertToString(Record, 0, ValueName)) 3344 return error("Invalid record"); 3345 TheModule->setSourceFileName(ValueName); 3346 break; 3347 } 3348 Record.clear(); 3349 } 3350 } 3351 3352 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3353 bool IsImporting) { 3354 TheModule = M; 3355 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3356 [&](unsigned ID) { return getTypeByID(ID); }); 3357 return parseModule(0, ShouldLazyLoadMetadata); 3358 } 3359 3360 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3361 if (!isa<PointerType>(PtrType)) 3362 return error("Load/Store operand is not a pointer type"); 3363 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3364 3365 if (ValType && ValType != ElemType) 3366 return error("Explicit load/store type does not match pointee " 3367 "type of pointer operand"); 3368 if (!PointerType::isLoadableOrStorableType(ElemType)) 3369 return error("Cannot load/store from pointer"); 3370 return Error::success(); 3371 } 3372 3373 /// Lazily parse the specified function body block. 3374 Error BitcodeReader::parseFunctionBody(Function *F) { 3375 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3376 return error("Invalid record"); 3377 3378 // Unexpected unresolved metadata when parsing function. 3379 if (MDLoader->hasFwdRefs()) 3380 return error("Invalid function metadata: incoming forward references"); 3381 3382 InstructionList.clear(); 3383 unsigned ModuleValueListSize = ValueList.size(); 3384 unsigned ModuleMDLoaderSize = MDLoader->size(); 3385 3386 // Add all the function arguments to the value table. 3387 for (Argument &I : F->args()) 3388 ValueList.push_back(&I); 3389 3390 unsigned NextValueNo = ValueList.size(); 3391 BasicBlock *CurBB = nullptr; 3392 unsigned CurBBNo = 0; 3393 3394 DebugLoc LastLoc; 3395 auto getLastInstruction = [&]() -> Instruction * { 3396 if (CurBB && !CurBB->empty()) 3397 return &CurBB->back(); 3398 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3399 !FunctionBBs[CurBBNo - 1]->empty()) 3400 return &FunctionBBs[CurBBNo - 1]->back(); 3401 return nullptr; 3402 }; 3403 3404 std::vector<OperandBundleDef> OperandBundles; 3405 3406 // Read all the records. 3407 SmallVector<uint64_t, 64> Record; 3408 3409 while (true) { 3410 BitstreamEntry Entry = Stream.advance(); 3411 3412 switch (Entry.Kind) { 3413 case BitstreamEntry::Error: 3414 return error("Malformed block"); 3415 case BitstreamEntry::EndBlock: 3416 goto OutOfRecordLoop; 3417 3418 case BitstreamEntry::SubBlock: 3419 switch (Entry.ID) { 3420 default: // Skip unknown content. 3421 if (Stream.SkipBlock()) 3422 return error("Invalid record"); 3423 break; 3424 case bitc::CONSTANTS_BLOCK_ID: 3425 if (Error Err = parseConstants()) 3426 return Err; 3427 NextValueNo = ValueList.size(); 3428 break; 3429 case bitc::VALUE_SYMTAB_BLOCK_ID: 3430 if (Error Err = parseValueSymbolTable()) 3431 return Err; 3432 break; 3433 case bitc::METADATA_ATTACHMENT_ID: 3434 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3435 return Err; 3436 break; 3437 case bitc::METADATA_BLOCK_ID: 3438 assert(DeferredMetadataInfo.empty() && 3439 "Must read all module-level metadata before function-level"); 3440 if (Error Err = MDLoader->parseFunctionMetadata()) 3441 return Err; 3442 break; 3443 case bitc::USELIST_BLOCK_ID: 3444 if (Error Err = parseUseLists()) 3445 return Err; 3446 break; 3447 } 3448 continue; 3449 3450 case BitstreamEntry::Record: 3451 // The interesting case. 3452 break; 3453 } 3454 3455 // Read a record. 3456 Record.clear(); 3457 Instruction *I = nullptr; 3458 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3459 switch (BitCode) { 3460 default: // Default behavior: reject 3461 return error("Invalid value"); 3462 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3463 if (Record.size() < 1 || Record[0] == 0) 3464 return error("Invalid record"); 3465 // Create all the basic blocks for the function. 3466 FunctionBBs.resize(Record[0]); 3467 3468 // See if anything took the address of blocks in this function. 3469 auto BBFRI = BasicBlockFwdRefs.find(F); 3470 if (BBFRI == BasicBlockFwdRefs.end()) { 3471 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3472 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3473 } else { 3474 auto &BBRefs = BBFRI->second; 3475 // Check for invalid basic block references. 3476 if (BBRefs.size() > FunctionBBs.size()) 3477 return error("Invalid ID"); 3478 assert(!BBRefs.empty() && "Unexpected empty array"); 3479 assert(!BBRefs.front() && "Invalid reference to entry block"); 3480 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3481 ++I) 3482 if (I < RE && BBRefs[I]) { 3483 BBRefs[I]->insertInto(F); 3484 FunctionBBs[I] = BBRefs[I]; 3485 } else { 3486 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3487 } 3488 3489 // Erase from the table. 3490 BasicBlockFwdRefs.erase(BBFRI); 3491 } 3492 3493 CurBB = FunctionBBs[0]; 3494 continue; 3495 } 3496 3497 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3498 // This record indicates that the last instruction is at the same 3499 // location as the previous instruction with a location. 3500 I = getLastInstruction(); 3501 3502 if (!I) 3503 return error("Invalid record"); 3504 I->setDebugLoc(LastLoc); 3505 I = nullptr; 3506 continue; 3507 3508 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3509 I = getLastInstruction(); 3510 if (!I || Record.size() < 4) 3511 return error("Invalid record"); 3512 3513 unsigned Line = Record[0], Col = Record[1]; 3514 unsigned ScopeID = Record[2], IAID = Record[3]; 3515 3516 MDNode *Scope = nullptr, *IA = nullptr; 3517 if (ScopeID) { 3518 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3519 if (!Scope) 3520 return error("Invalid record"); 3521 } 3522 if (IAID) { 3523 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3524 if (!IA) 3525 return error("Invalid record"); 3526 } 3527 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3528 I->setDebugLoc(LastLoc); 3529 I = nullptr; 3530 continue; 3531 } 3532 3533 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3534 unsigned OpNum = 0; 3535 Value *LHS, *RHS; 3536 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3537 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3538 OpNum+1 > Record.size()) 3539 return error("Invalid record"); 3540 3541 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3542 if (Opc == -1) 3543 return error("Invalid record"); 3544 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3545 InstructionList.push_back(I); 3546 if (OpNum < Record.size()) { 3547 if (Opc == Instruction::Add || 3548 Opc == Instruction::Sub || 3549 Opc == Instruction::Mul || 3550 Opc == Instruction::Shl) { 3551 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3552 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3553 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3554 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3555 } else if (Opc == Instruction::SDiv || 3556 Opc == Instruction::UDiv || 3557 Opc == Instruction::LShr || 3558 Opc == Instruction::AShr) { 3559 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3560 cast<BinaryOperator>(I)->setIsExact(true); 3561 } else if (isa<FPMathOperator>(I)) { 3562 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3563 if (FMF.any()) 3564 I->setFastMathFlags(FMF); 3565 } 3566 3567 } 3568 break; 3569 } 3570 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3571 unsigned OpNum = 0; 3572 Value *Op; 3573 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3574 OpNum+2 != Record.size()) 3575 return error("Invalid record"); 3576 3577 Type *ResTy = getTypeByID(Record[OpNum]); 3578 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3579 if (Opc == -1 || !ResTy) 3580 return error("Invalid record"); 3581 Instruction *Temp = nullptr; 3582 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3583 if (Temp) { 3584 InstructionList.push_back(Temp); 3585 CurBB->getInstList().push_back(Temp); 3586 } 3587 } else { 3588 auto CastOp = (Instruction::CastOps)Opc; 3589 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3590 return error("Invalid cast"); 3591 I = CastInst::Create(CastOp, Op, ResTy); 3592 } 3593 InstructionList.push_back(I); 3594 break; 3595 } 3596 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3597 case bitc::FUNC_CODE_INST_GEP_OLD: 3598 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3599 unsigned OpNum = 0; 3600 3601 Type *Ty; 3602 bool InBounds; 3603 3604 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3605 InBounds = Record[OpNum++]; 3606 Ty = getTypeByID(Record[OpNum++]); 3607 } else { 3608 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3609 Ty = nullptr; 3610 } 3611 3612 Value *BasePtr; 3613 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3614 return error("Invalid record"); 3615 3616 if (!Ty) 3617 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3618 ->getElementType(); 3619 else if (Ty != 3620 cast<PointerType>(BasePtr->getType()->getScalarType()) 3621 ->getElementType()) 3622 return error( 3623 "Explicit gep type does not match pointee type of pointer operand"); 3624 3625 SmallVector<Value*, 16> GEPIdx; 3626 while (OpNum != Record.size()) { 3627 Value *Op; 3628 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3629 return error("Invalid record"); 3630 GEPIdx.push_back(Op); 3631 } 3632 3633 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3634 3635 InstructionList.push_back(I); 3636 if (InBounds) 3637 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3638 break; 3639 } 3640 3641 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3642 // EXTRACTVAL: [opty, opval, n x indices] 3643 unsigned OpNum = 0; 3644 Value *Agg; 3645 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3646 return error("Invalid record"); 3647 3648 unsigned RecSize = Record.size(); 3649 if (OpNum == RecSize) 3650 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3651 3652 SmallVector<unsigned, 4> EXTRACTVALIdx; 3653 Type *CurTy = Agg->getType(); 3654 for (; OpNum != RecSize; ++OpNum) { 3655 bool IsArray = CurTy->isArrayTy(); 3656 bool IsStruct = CurTy->isStructTy(); 3657 uint64_t Index = Record[OpNum]; 3658 3659 if (!IsStruct && !IsArray) 3660 return error("EXTRACTVAL: Invalid type"); 3661 if ((unsigned)Index != Index) 3662 return error("Invalid value"); 3663 if (IsStruct && Index >= CurTy->subtypes().size()) 3664 return error("EXTRACTVAL: Invalid struct index"); 3665 if (IsArray && Index >= CurTy->getArrayNumElements()) 3666 return error("EXTRACTVAL: Invalid array index"); 3667 EXTRACTVALIdx.push_back((unsigned)Index); 3668 3669 if (IsStruct) 3670 CurTy = CurTy->subtypes()[Index]; 3671 else 3672 CurTy = CurTy->subtypes()[0]; 3673 } 3674 3675 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3676 InstructionList.push_back(I); 3677 break; 3678 } 3679 3680 case bitc::FUNC_CODE_INST_INSERTVAL: { 3681 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3682 unsigned OpNum = 0; 3683 Value *Agg; 3684 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3685 return error("Invalid record"); 3686 Value *Val; 3687 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3688 return error("Invalid record"); 3689 3690 unsigned RecSize = Record.size(); 3691 if (OpNum == RecSize) 3692 return error("INSERTVAL: Invalid instruction with 0 indices"); 3693 3694 SmallVector<unsigned, 4> INSERTVALIdx; 3695 Type *CurTy = Agg->getType(); 3696 for (; OpNum != RecSize; ++OpNum) { 3697 bool IsArray = CurTy->isArrayTy(); 3698 bool IsStruct = CurTy->isStructTy(); 3699 uint64_t Index = Record[OpNum]; 3700 3701 if (!IsStruct && !IsArray) 3702 return error("INSERTVAL: Invalid type"); 3703 if ((unsigned)Index != Index) 3704 return error("Invalid value"); 3705 if (IsStruct && Index >= CurTy->subtypes().size()) 3706 return error("INSERTVAL: Invalid struct index"); 3707 if (IsArray && Index >= CurTy->getArrayNumElements()) 3708 return error("INSERTVAL: Invalid array index"); 3709 3710 INSERTVALIdx.push_back((unsigned)Index); 3711 if (IsStruct) 3712 CurTy = CurTy->subtypes()[Index]; 3713 else 3714 CurTy = CurTy->subtypes()[0]; 3715 } 3716 3717 if (CurTy != Val->getType()) 3718 return error("Inserted value type doesn't match aggregate type"); 3719 3720 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3721 InstructionList.push_back(I); 3722 break; 3723 } 3724 3725 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3726 // obsolete form of select 3727 // handles select i1 ... in old bitcode 3728 unsigned OpNum = 0; 3729 Value *TrueVal, *FalseVal, *Cond; 3730 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3731 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3732 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3733 return error("Invalid record"); 3734 3735 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3736 InstructionList.push_back(I); 3737 break; 3738 } 3739 3740 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3741 // new form of select 3742 // handles select i1 or select [N x i1] 3743 unsigned OpNum = 0; 3744 Value *TrueVal, *FalseVal, *Cond; 3745 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3746 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3747 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3748 return error("Invalid record"); 3749 3750 // select condition can be either i1 or [N x i1] 3751 if (VectorType* vector_type = 3752 dyn_cast<VectorType>(Cond->getType())) { 3753 // expect <n x i1> 3754 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3755 return error("Invalid type for value"); 3756 } else { 3757 // expect i1 3758 if (Cond->getType() != Type::getInt1Ty(Context)) 3759 return error("Invalid type for value"); 3760 } 3761 3762 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3763 InstructionList.push_back(I); 3764 break; 3765 } 3766 3767 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3768 unsigned OpNum = 0; 3769 Value *Vec, *Idx; 3770 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3771 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3772 return error("Invalid record"); 3773 if (!Vec->getType()->isVectorTy()) 3774 return error("Invalid type for value"); 3775 I = ExtractElementInst::Create(Vec, Idx); 3776 InstructionList.push_back(I); 3777 break; 3778 } 3779 3780 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3781 unsigned OpNum = 0; 3782 Value *Vec, *Elt, *Idx; 3783 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3784 return error("Invalid record"); 3785 if (!Vec->getType()->isVectorTy()) 3786 return error("Invalid type for value"); 3787 if (popValue(Record, OpNum, NextValueNo, 3788 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3789 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3790 return error("Invalid record"); 3791 I = InsertElementInst::Create(Vec, Elt, Idx); 3792 InstructionList.push_back(I); 3793 break; 3794 } 3795 3796 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3797 unsigned OpNum = 0; 3798 Value *Vec1, *Vec2, *Mask; 3799 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3800 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3801 return error("Invalid record"); 3802 3803 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3804 return error("Invalid record"); 3805 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3806 return error("Invalid type for value"); 3807 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3808 InstructionList.push_back(I); 3809 break; 3810 } 3811 3812 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3813 // Old form of ICmp/FCmp returning bool 3814 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3815 // both legal on vectors but had different behaviour. 3816 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3817 // FCmp/ICmp returning bool or vector of bool 3818 3819 unsigned OpNum = 0; 3820 Value *LHS, *RHS; 3821 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3822 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3823 return error("Invalid record"); 3824 3825 unsigned PredVal = Record[OpNum]; 3826 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3827 FastMathFlags FMF; 3828 if (IsFP && Record.size() > OpNum+1) 3829 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3830 3831 if (OpNum+1 != Record.size()) 3832 return error("Invalid record"); 3833 3834 if (LHS->getType()->isFPOrFPVectorTy()) 3835 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3836 else 3837 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3838 3839 if (FMF.any()) 3840 I->setFastMathFlags(FMF); 3841 InstructionList.push_back(I); 3842 break; 3843 } 3844 3845 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3846 { 3847 unsigned Size = Record.size(); 3848 if (Size == 0) { 3849 I = ReturnInst::Create(Context); 3850 InstructionList.push_back(I); 3851 break; 3852 } 3853 3854 unsigned OpNum = 0; 3855 Value *Op = nullptr; 3856 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3857 return error("Invalid record"); 3858 if (OpNum != Record.size()) 3859 return error("Invalid record"); 3860 3861 I = ReturnInst::Create(Context, Op); 3862 InstructionList.push_back(I); 3863 break; 3864 } 3865 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3866 if (Record.size() != 1 && Record.size() != 3) 3867 return error("Invalid record"); 3868 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3869 if (!TrueDest) 3870 return error("Invalid record"); 3871 3872 if (Record.size() == 1) { 3873 I = BranchInst::Create(TrueDest); 3874 InstructionList.push_back(I); 3875 } 3876 else { 3877 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3878 Value *Cond = getValue(Record, 2, NextValueNo, 3879 Type::getInt1Ty(Context)); 3880 if (!FalseDest || !Cond) 3881 return error("Invalid record"); 3882 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3883 InstructionList.push_back(I); 3884 } 3885 break; 3886 } 3887 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3888 if (Record.size() != 1 && Record.size() != 2) 3889 return error("Invalid record"); 3890 unsigned Idx = 0; 3891 Value *CleanupPad = 3892 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3893 if (!CleanupPad) 3894 return error("Invalid record"); 3895 BasicBlock *UnwindDest = nullptr; 3896 if (Record.size() == 2) { 3897 UnwindDest = getBasicBlock(Record[Idx++]); 3898 if (!UnwindDest) 3899 return error("Invalid record"); 3900 } 3901 3902 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3903 InstructionList.push_back(I); 3904 break; 3905 } 3906 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3907 if (Record.size() != 2) 3908 return error("Invalid record"); 3909 unsigned Idx = 0; 3910 Value *CatchPad = 3911 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3912 if (!CatchPad) 3913 return error("Invalid record"); 3914 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3915 if (!BB) 3916 return error("Invalid record"); 3917 3918 I = CatchReturnInst::Create(CatchPad, BB); 3919 InstructionList.push_back(I); 3920 break; 3921 } 3922 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3923 // We must have, at minimum, the outer scope and the number of arguments. 3924 if (Record.size() < 2) 3925 return error("Invalid record"); 3926 3927 unsigned Idx = 0; 3928 3929 Value *ParentPad = 3930 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3931 3932 unsigned NumHandlers = Record[Idx++]; 3933 3934 SmallVector<BasicBlock *, 2> Handlers; 3935 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3936 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3937 if (!BB) 3938 return error("Invalid record"); 3939 Handlers.push_back(BB); 3940 } 3941 3942 BasicBlock *UnwindDest = nullptr; 3943 if (Idx + 1 == Record.size()) { 3944 UnwindDest = getBasicBlock(Record[Idx++]); 3945 if (!UnwindDest) 3946 return error("Invalid record"); 3947 } 3948 3949 if (Record.size() != Idx) 3950 return error("Invalid record"); 3951 3952 auto *CatchSwitch = 3953 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3954 for (BasicBlock *Handler : Handlers) 3955 CatchSwitch->addHandler(Handler); 3956 I = CatchSwitch; 3957 InstructionList.push_back(I); 3958 break; 3959 } 3960 case bitc::FUNC_CODE_INST_CATCHPAD: 3961 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3962 // We must have, at minimum, the outer scope and the number of arguments. 3963 if (Record.size() < 2) 3964 return error("Invalid record"); 3965 3966 unsigned Idx = 0; 3967 3968 Value *ParentPad = 3969 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3970 3971 unsigned NumArgOperands = Record[Idx++]; 3972 3973 SmallVector<Value *, 2> Args; 3974 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3975 Value *Val; 3976 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3977 return error("Invalid record"); 3978 Args.push_back(Val); 3979 } 3980 3981 if (Record.size() != Idx) 3982 return error("Invalid record"); 3983 3984 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3985 I = CleanupPadInst::Create(ParentPad, Args); 3986 else 3987 I = CatchPadInst::Create(ParentPad, Args); 3988 InstructionList.push_back(I); 3989 break; 3990 } 3991 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3992 // Check magic 3993 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3994 // "New" SwitchInst format with case ranges. The changes to write this 3995 // format were reverted but we still recognize bitcode that uses it. 3996 // Hopefully someday we will have support for case ranges and can use 3997 // this format again. 3998 3999 Type *OpTy = getTypeByID(Record[1]); 4000 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4001 4002 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4003 BasicBlock *Default = getBasicBlock(Record[3]); 4004 if (!OpTy || !Cond || !Default) 4005 return error("Invalid record"); 4006 4007 unsigned NumCases = Record[4]; 4008 4009 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4010 InstructionList.push_back(SI); 4011 4012 unsigned CurIdx = 5; 4013 for (unsigned i = 0; i != NumCases; ++i) { 4014 SmallVector<ConstantInt*, 1> CaseVals; 4015 unsigned NumItems = Record[CurIdx++]; 4016 for (unsigned ci = 0; ci != NumItems; ++ci) { 4017 bool isSingleNumber = Record[CurIdx++]; 4018 4019 APInt Low; 4020 unsigned ActiveWords = 1; 4021 if (ValueBitWidth > 64) 4022 ActiveWords = Record[CurIdx++]; 4023 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4024 ValueBitWidth); 4025 CurIdx += ActiveWords; 4026 4027 if (!isSingleNumber) { 4028 ActiveWords = 1; 4029 if (ValueBitWidth > 64) 4030 ActiveWords = Record[CurIdx++]; 4031 APInt High = readWideAPInt( 4032 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4033 CurIdx += ActiveWords; 4034 4035 // FIXME: It is not clear whether values in the range should be 4036 // compared as signed or unsigned values. The partially 4037 // implemented changes that used this format in the past used 4038 // unsigned comparisons. 4039 for ( ; Low.ule(High); ++Low) 4040 CaseVals.push_back(ConstantInt::get(Context, Low)); 4041 } else 4042 CaseVals.push_back(ConstantInt::get(Context, Low)); 4043 } 4044 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4045 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4046 cve = CaseVals.end(); cvi != cve; ++cvi) 4047 SI->addCase(*cvi, DestBB); 4048 } 4049 I = SI; 4050 break; 4051 } 4052 4053 // Old SwitchInst format without case ranges. 4054 4055 if (Record.size() < 3 || (Record.size() & 1) == 0) 4056 return error("Invalid record"); 4057 Type *OpTy = getTypeByID(Record[0]); 4058 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4059 BasicBlock *Default = getBasicBlock(Record[2]); 4060 if (!OpTy || !Cond || !Default) 4061 return error("Invalid record"); 4062 unsigned NumCases = (Record.size()-3)/2; 4063 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4064 InstructionList.push_back(SI); 4065 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4066 ConstantInt *CaseVal = 4067 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4068 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4069 if (!CaseVal || !DestBB) { 4070 delete SI; 4071 return error("Invalid record"); 4072 } 4073 SI->addCase(CaseVal, DestBB); 4074 } 4075 I = SI; 4076 break; 4077 } 4078 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4079 if (Record.size() < 2) 4080 return error("Invalid record"); 4081 Type *OpTy = getTypeByID(Record[0]); 4082 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4083 if (!OpTy || !Address) 4084 return error("Invalid record"); 4085 unsigned NumDests = Record.size()-2; 4086 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4087 InstructionList.push_back(IBI); 4088 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4089 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4090 IBI->addDestination(DestBB); 4091 } else { 4092 delete IBI; 4093 return error("Invalid record"); 4094 } 4095 } 4096 I = IBI; 4097 break; 4098 } 4099 4100 case bitc::FUNC_CODE_INST_INVOKE: { 4101 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4102 if (Record.size() < 4) 4103 return error("Invalid record"); 4104 unsigned OpNum = 0; 4105 AttributeList PAL = getAttributes(Record[OpNum++]); 4106 unsigned CCInfo = Record[OpNum++]; 4107 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4108 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4109 4110 FunctionType *FTy = nullptr; 4111 if (CCInfo >> 13 & 1 && 4112 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4113 return error("Explicit invoke type is not a function type"); 4114 4115 Value *Callee; 4116 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4117 return error("Invalid record"); 4118 4119 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4120 if (!CalleeTy) 4121 return error("Callee is not a pointer"); 4122 if (!FTy) { 4123 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4124 if (!FTy) 4125 return error("Callee is not of pointer to function type"); 4126 } else if (CalleeTy->getElementType() != FTy) 4127 return error("Explicit invoke type does not match pointee type of " 4128 "callee operand"); 4129 if (Record.size() < FTy->getNumParams() + OpNum) 4130 return error("Insufficient operands to call"); 4131 4132 SmallVector<Value*, 16> Ops; 4133 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4134 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4135 FTy->getParamType(i))); 4136 if (!Ops.back()) 4137 return error("Invalid record"); 4138 } 4139 4140 if (!FTy->isVarArg()) { 4141 if (Record.size() != OpNum) 4142 return error("Invalid record"); 4143 } else { 4144 // Read type/value pairs for varargs params. 4145 while (OpNum != Record.size()) { 4146 Value *Op; 4147 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4148 return error("Invalid record"); 4149 Ops.push_back(Op); 4150 } 4151 } 4152 4153 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4154 OperandBundles.clear(); 4155 InstructionList.push_back(I); 4156 cast<InvokeInst>(I)->setCallingConv( 4157 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4158 cast<InvokeInst>(I)->setAttributes(PAL); 4159 break; 4160 } 4161 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4162 unsigned Idx = 0; 4163 Value *Val = nullptr; 4164 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4165 return error("Invalid record"); 4166 I = ResumeInst::Create(Val); 4167 InstructionList.push_back(I); 4168 break; 4169 } 4170 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4171 I = new UnreachableInst(Context); 4172 InstructionList.push_back(I); 4173 break; 4174 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4175 if (Record.size() < 1 || ((Record.size()-1)&1)) 4176 return error("Invalid record"); 4177 Type *Ty = getTypeByID(Record[0]); 4178 if (!Ty) 4179 return error("Invalid record"); 4180 4181 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4182 InstructionList.push_back(PN); 4183 4184 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4185 Value *V; 4186 // With the new function encoding, it is possible that operands have 4187 // negative IDs (for forward references). Use a signed VBR 4188 // representation to keep the encoding small. 4189 if (UseRelativeIDs) 4190 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4191 else 4192 V = getValue(Record, 1+i, NextValueNo, Ty); 4193 BasicBlock *BB = getBasicBlock(Record[2+i]); 4194 if (!V || !BB) 4195 return error("Invalid record"); 4196 PN->addIncoming(V, BB); 4197 } 4198 I = PN; 4199 break; 4200 } 4201 4202 case bitc::FUNC_CODE_INST_LANDINGPAD: 4203 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4204 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4205 unsigned Idx = 0; 4206 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4207 if (Record.size() < 3) 4208 return error("Invalid record"); 4209 } else { 4210 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4211 if (Record.size() < 4) 4212 return error("Invalid record"); 4213 } 4214 Type *Ty = getTypeByID(Record[Idx++]); 4215 if (!Ty) 4216 return error("Invalid record"); 4217 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4218 Value *PersFn = nullptr; 4219 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4220 return error("Invalid record"); 4221 4222 if (!F->hasPersonalityFn()) 4223 F->setPersonalityFn(cast<Constant>(PersFn)); 4224 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4225 return error("Personality function mismatch"); 4226 } 4227 4228 bool IsCleanup = !!Record[Idx++]; 4229 unsigned NumClauses = Record[Idx++]; 4230 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4231 LP->setCleanup(IsCleanup); 4232 for (unsigned J = 0; J != NumClauses; ++J) { 4233 LandingPadInst::ClauseType CT = 4234 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4235 Value *Val; 4236 4237 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4238 delete LP; 4239 return error("Invalid record"); 4240 } 4241 4242 assert((CT != LandingPadInst::Catch || 4243 !isa<ArrayType>(Val->getType())) && 4244 "Catch clause has a invalid type!"); 4245 assert((CT != LandingPadInst::Filter || 4246 isa<ArrayType>(Val->getType())) && 4247 "Filter clause has invalid type!"); 4248 LP->addClause(cast<Constant>(Val)); 4249 } 4250 4251 I = LP; 4252 InstructionList.push_back(I); 4253 break; 4254 } 4255 4256 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4257 if (Record.size() != 4) 4258 return error("Invalid record"); 4259 uint64_t AlignRecord = Record[3]; 4260 const uint64_t InAllocaMask = uint64_t(1) << 5; 4261 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4262 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4263 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4264 SwiftErrorMask; 4265 bool InAlloca = AlignRecord & InAllocaMask; 4266 bool SwiftError = AlignRecord & SwiftErrorMask; 4267 Type *Ty = getTypeByID(Record[0]); 4268 if ((AlignRecord & ExplicitTypeMask) == 0) { 4269 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4270 if (!PTy) 4271 return error("Old-style alloca with a non-pointer type"); 4272 Ty = PTy->getElementType(); 4273 } 4274 Type *OpTy = getTypeByID(Record[1]); 4275 Value *Size = getFnValueByID(Record[2], OpTy); 4276 unsigned Align; 4277 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4278 return Err; 4279 } 4280 if (!Ty || !Size) 4281 return error("Invalid record"); 4282 4283 // FIXME: Make this an optional field. 4284 const DataLayout &DL = TheModule->getDataLayout(); 4285 unsigned AS = DL.getAllocaAddrSpace(); 4286 4287 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4288 AI->setUsedWithInAlloca(InAlloca); 4289 AI->setSwiftError(SwiftError); 4290 I = AI; 4291 InstructionList.push_back(I); 4292 break; 4293 } 4294 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4295 unsigned OpNum = 0; 4296 Value *Op; 4297 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4298 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4299 return error("Invalid record"); 4300 4301 Type *Ty = nullptr; 4302 if (OpNum + 3 == Record.size()) 4303 Ty = getTypeByID(Record[OpNum++]); 4304 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4305 return Err; 4306 if (!Ty) 4307 Ty = cast<PointerType>(Op->getType())->getElementType(); 4308 4309 unsigned Align; 4310 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4311 return Err; 4312 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4313 4314 InstructionList.push_back(I); 4315 break; 4316 } 4317 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4318 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4319 unsigned OpNum = 0; 4320 Value *Op; 4321 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4322 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4323 return error("Invalid record"); 4324 4325 Type *Ty = nullptr; 4326 if (OpNum + 5 == Record.size()) 4327 Ty = getTypeByID(Record[OpNum++]); 4328 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4329 return Err; 4330 if (!Ty) 4331 Ty = cast<PointerType>(Op->getType())->getElementType(); 4332 4333 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4334 if (Ordering == AtomicOrdering::NotAtomic || 4335 Ordering == AtomicOrdering::Release || 4336 Ordering == AtomicOrdering::AcquireRelease) 4337 return error("Invalid record"); 4338 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4339 return error("Invalid record"); 4340 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4341 4342 unsigned Align; 4343 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4344 return Err; 4345 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4346 4347 InstructionList.push_back(I); 4348 break; 4349 } 4350 case bitc::FUNC_CODE_INST_STORE: 4351 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4352 unsigned OpNum = 0; 4353 Value *Val, *Ptr; 4354 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4355 (BitCode == bitc::FUNC_CODE_INST_STORE 4356 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4357 : popValue(Record, OpNum, NextValueNo, 4358 cast<PointerType>(Ptr->getType())->getElementType(), 4359 Val)) || 4360 OpNum + 2 != Record.size()) 4361 return error("Invalid record"); 4362 4363 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4364 return Err; 4365 unsigned Align; 4366 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4367 return Err; 4368 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4369 InstructionList.push_back(I); 4370 break; 4371 } 4372 case bitc::FUNC_CODE_INST_STOREATOMIC: 4373 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4374 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4375 unsigned OpNum = 0; 4376 Value *Val, *Ptr; 4377 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4378 !isa<PointerType>(Ptr->getType()) || 4379 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4380 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4381 : popValue(Record, OpNum, NextValueNo, 4382 cast<PointerType>(Ptr->getType())->getElementType(), 4383 Val)) || 4384 OpNum + 4 != Record.size()) 4385 return error("Invalid record"); 4386 4387 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4388 return Err; 4389 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4390 if (Ordering == AtomicOrdering::NotAtomic || 4391 Ordering == AtomicOrdering::Acquire || 4392 Ordering == AtomicOrdering::AcquireRelease) 4393 return error("Invalid record"); 4394 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4395 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4396 return error("Invalid record"); 4397 4398 unsigned Align; 4399 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4400 return Err; 4401 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4402 InstructionList.push_back(I); 4403 break; 4404 } 4405 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4406 case bitc::FUNC_CODE_INST_CMPXCHG: { 4407 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4408 // failureordering?, isweak?] 4409 unsigned OpNum = 0; 4410 Value *Ptr, *Cmp, *New; 4411 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4412 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4413 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4414 : popValue(Record, OpNum, NextValueNo, 4415 cast<PointerType>(Ptr->getType())->getElementType(), 4416 Cmp)) || 4417 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4418 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4419 return error("Invalid record"); 4420 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4421 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4422 SuccessOrdering == AtomicOrdering::Unordered) 4423 return error("Invalid record"); 4424 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4425 4426 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4427 return Err; 4428 AtomicOrdering FailureOrdering; 4429 if (Record.size() < 7) 4430 FailureOrdering = 4431 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4432 else 4433 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4434 4435 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4436 SSID); 4437 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4438 4439 if (Record.size() < 8) { 4440 // Before weak cmpxchgs existed, the instruction simply returned the 4441 // value loaded from memory, so bitcode files from that era will be 4442 // expecting the first component of a modern cmpxchg. 4443 CurBB->getInstList().push_back(I); 4444 I = ExtractValueInst::Create(I, 0); 4445 } else { 4446 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4447 } 4448 4449 InstructionList.push_back(I); 4450 break; 4451 } 4452 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4453 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4454 unsigned OpNum = 0; 4455 Value *Ptr, *Val; 4456 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4457 !isa<PointerType>(Ptr->getType()) || 4458 popValue(Record, OpNum, NextValueNo, 4459 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4460 OpNum+4 != Record.size()) 4461 return error("Invalid record"); 4462 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4463 if (Operation < AtomicRMWInst::FIRST_BINOP || 4464 Operation > AtomicRMWInst::LAST_BINOP) 4465 return error("Invalid record"); 4466 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4467 if (Ordering == AtomicOrdering::NotAtomic || 4468 Ordering == AtomicOrdering::Unordered) 4469 return error("Invalid record"); 4470 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4471 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4472 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4473 InstructionList.push_back(I); 4474 break; 4475 } 4476 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4477 if (2 != Record.size()) 4478 return error("Invalid record"); 4479 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4480 if (Ordering == AtomicOrdering::NotAtomic || 4481 Ordering == AtomicOrdering::Unordered || 4482 Ordering == AtomicOrdering::Monotonic) 4483 return error("Invalid record"); 4484 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4485 I = new FenceInst(Context, Ordering, SSID); 4486 InstructionList.push_back(I); 4487 break; 4488 } 4489 case bitc::FUNC_CODE_INST_CALL: { 4490 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4491 if (Record.size() < 3) 4492 return error("Invalid record"); 4493 4494 unsigned OpNum = 0; 4495 AttributeList PAL = getAttributes(Record[OpNum++]); 4496 unsigned CCInfo = Record[OpNum++]; 4497 4498 FastMathFlags FMF; 4499 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4500 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4501 if (!FMF.any()) 4502 return error("Fast math flags indicator set for call with no FMF"); 4503 } 4504 4505 FunctionType *FTy = nullptr; 4506 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4507 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4508 return error("Explicit call type is not a function type"); 4509 4510 Value *Callee; 4511 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4512 return error("Invalid record"); 4513 4514 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4515 if (!OpTy) 4516 return error("Callee is not a pointer type"); 4517 if (!FTy) { 4518 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4519 if (!FTy) 4520 return error("Callee is not of pointer to function type"); 4521 } else if (OpTy->getElementType() != FTy) 4522 return error("Explicit call type does not match pointee type of " 4523 "callee operand"); 4524 if (Record.size() < FTy->getNumParams() + OpNum) 4525 return error("Insufficient operands to call"); 4526 4527 SmallVector<Value*, 16> Args; 4528 // Read the fixed params. 4529 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4530 if (FTy->getParamType(i)->isLabelTy()) 4531 Args.push_back(getBasicBlock(Record[OpNum])); 4532 else 4533 Args.push_back(getValue(Record, OpNum, NextValueNo, 4534 FTy->getParamType(i))); 4535 if (!Args.back()) 4536 return error("Invalid record"); 4537 } 4538 4539 // Read type/value pairs for varargs params. 4540 if (!FTy->isVarArg()) { 4541 if (OpNum != Record.size()) 4542 return error("Invalid record"); 4543 } else { 4544 while (OpNum != Record.size()) { 4545 Value *Op; 4546 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4547 return error("Invalid record"); 4548 Args.push_back(Op); 4549 } 4550 } 4551 4552 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4553 OperandBundles.clear(); 4554 InstructionList.push_back(I); 4555 cast<CallInst>(I)->setCallingConv( 4556 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4557 CallInst::TailCallKind TCK = CallInst::TCK_None; 4558 if (CCInfo & 1 << bitc::CALL_TAIL) 4559 TCK = CallInst::TCK_Tail; 4560 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4561 TCK = CallInst::TCK_MustTail; 4562 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4563 TCK = CallInst::TCK_NoTail; 4564 cast<CallInst>(I)->setTailCallKind(TCK); 4565 cast<CallInst>(I)->setAttributes(PAL); 4566 if (FMF.any()) { 4567 if (!isa<FPMathOperator>(I)) 4568 return error("Fast-math-flags specified for call without " 4569 "floating-point scalar or vector return type"); 4570 I->setFastMathFlags(FMF); 4571 } 4572 break; 4573 } 4574 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4575 if (Record.size() < 3) 4576 return error("Invalid record"); 4577 Type *OpTy = getTypeByID(Record[0]); 4578 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4579 Type *ResTy = getTypeByID(Record[2]); 4580 if (!OpTy || !Op || !ResTy) 4581 return error("Invalid record"); 4582 I = new VAArgInst(Op, ResTy); 4583 InstructionList.push_back(I); 4584 break; 4585 } 4586 4587 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4588 // A call or an invoke can be optionally prefixed with some variable 4589 // number of operand bundle blocks. These blocks are read into 4590 // OperandBundles and consumed at the next call or invoke instruction. 4591 4592 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4593 return error("Invalid record"); 4594 4595 std::vector<Value *> Inputs; 4596 4597 unsigned OpNum = 1; 4598 while (OpNum != Record.size()) { 4599 Value *Op; 4600 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4601 return error("Invalid record"); 4602 Inputs.push_back(Op); 4603 } 4604 4605 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4606 continue; 4607 } 4608 } 4609 4610 // Add instruction to end of current BB. If there is no current BB, reject 4611 // this file. 4612 if (!CurBB) { 4613 I->deleteValue(); 4614 return error("Invalid instruction with no BB"); 4615 } 4616 if (!OperandBundles.empty()) { 4617 I->deleteValue(); 4618 return error("Operand bundles found with no consumer"); 4619 } 4620 CurBB->getInstList().push_back(I); 4621 4622 // If this was a terminator instruction, move to the next block. 4623 if (isa<TerminatorInst>(I)) { 4624 ++CurBBNo; 4625 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4626 } 4627 4628 // Non-void values get registered in the value table for future use. 4629 if (I && !I->getType()->isVoidTy()) 4630 ValueList.assignValue(I, NextValueNo++); 4631 } 4632 4633 OutOfRecordLoop: 4634 4635 if (!OperandBundles.empty()) 4636 return error("Operand bundles found with no consumer"); 4637 4638 // Check the function list for unresolved values. 4639 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4640 if (!A->getParent()) { 4641 // We found at least one unresolved value. Nuke them all to avoid leaks. 4642 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4643 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4644 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4645 delete A; 4646 } 4647 } 4648 return error("Never resolved value found in function"); 4649 } 4650 } 4651 4652 // Unexpected unresolved metadata about to be dropped. 4653 if (MDLoader->hasFwdRefs()) 4654 return error("Invalid function metadata: outgoing forward refs"); 4655 4656 // Trim the value list down to the size it was before we parsed this function. 4657 ValueList.shrinkTo(ModuleValueListSize); 4658 MDLoader->shrinkTo(ModuleMDLoaderSize); 4659 std::vector<BasicBlock*>().swap(FunctionBBs); 4660 return Error::success(); 4661 } 4662 4663 /// Find the function body in the bitcode stream 4664 Error BitcodeReader::findFunctionInStream( 4665 Function *F, 4666 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4667 while (DeferredFunctionInfoIterator->second == 0) { 4668 // This is the fallback handling for the old format bitcode that 4669 // didn't contain the function index in the VST, or when we have 4670 // an anonymous function which would not have a VST entry. 4671 // Assert that we have one of those two cases. 4672 assert(VSTOffset == 0 || !F->hasName()); 4673 // Parse the next body in the stream and set its position in the 4674 // DeferredFunctionInfo map. 4675 if (Error Err = rememberAndSkipFunctionBodies()) 4676 return Err; 4677 } 4678 return Error::success(); 4679 } 4680 4681 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4682 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4683 return SyncScope::ID(Val); 4684 if (Val >= SSIDs.size()) 4685 return SyncScope::System; // Map unknown synchronization scopes to system. 4686 return SSIDs[Val]; 4687 } 4688 4689 //===----------------------------------------------------------------------===// 4690 // GVMaterializer implementation 4691 //===----------------------------------------------------------------------===// 4692 4693 Error BitcodeReader::materialize(GlobalValue *GV) { 4694 Function *F = dyn_cast<Function>(GV); 4695 // If it's not a function or is already material, ignore the request. 4696 if (!F || !F->isMaterializable()) 4697 return Error::success(); 4698 4699 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4700 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4701 // If its position is recorded as 0, its body is somewhere in the stream 4702 // but we haven't seen it yet. 4703 if (DFII->second == 0) 4704 if (Error Err = findFunctionInStream(F, DFII)) 4705 return Err; 4706 4707 // Materialize metadata before parsing any function bodies. 4708 if (Error Err = materializeMetadata()) 4709 return Err; 4710 4711 // Move the bit stream to the saved position of the deferred function body. 4712 Stream.JumpToBit(DFII->second); 4713 4714 if (Error Err = parseFunctionBody(F)) 4715 return Err; 4716 F->setIsMaterializable(false); 4717 4718 if (StripDebugInfo) 4719 stripDebugInfo(*F); 4720 4721 // Upgrade any old intrinsic calls in the function. 4722 for (auto &I : UpgradedIntrinsics) { 4723 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4724 UI != UE;) { 4725 User *U = *UI; 4726 ++UI; 4727 if (CallInst *CI = dyn_cast<CallInst>(U)) 4728 UpgradeIntrinsicCall(CI, I.second); 4729 } 4730 } 4731 4732 // Update calls to the remangled intrinsics 4733 for (auto &I : RemangledIntrinsics) 4734 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4735 UI != UE;) 4736 // Don't expect any other users than call sites 4737 CallSite(*UI++).setCalledFunction(I.second); 4738 4739 // Finish fn->subprogram upgrade for materialized functions. 4740 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4741 F->setSubprogram(SP); 4742 4743 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4744 if (!MDLoader->isStrippingTBAA()) { 4745 for (auto &I : instructions(F)) { 4746 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4747 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4748 continue; 4749 MDLoader->setStripTBAA(true); 4750 stripTBAA(F->getParent()); 4751 } 4752 } 4753 4754 // Bring in any functions that this function forward-referenced via 4755 // blockaddresses. 4756 return materializeForwardReferencedFunctions(); 4757 } 4758 4759 Error BitcodeReader::materializeModule() { 4760 if (Error Err = materializeMetadata()) 4761 return Err; 4762 4763 // Promise to materialize all forward references. 4764 WillMaterializeAllForwardRefs = true; 4765 4766 // Iterate over the module, deserializing any functions that are still on 4767 // disk. 4768 for (Function &F : *TheModule) { 4769 if (Error Err = materialize(&F)) 4770 return Err; 4771 } 4772 // At this point, if there are any function bodies, parse the rest of 4773 // the bits in the module past the last function block we have recorded 4774 // through either lazy scanning or the VST. 4775 if (LastFunctionBlockBit || NextUnreadBit) 4776 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4777 ? LastFunctionBlockBit 4778 : NextUnreadBit)) 4779 return Err; 4780 4781 // Check that all block address forward references got resolved (as we 4782 // promised above). 4783 if (!BasicBlockFwdRefs.empty()) 4784 return error("Never resolved function from blockaddress"); 4785 4786 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4787 // delete the old functions to clean up. We can't do this unless the entire 4788 // module is materialized because there could always be another function body 4789 // with calls to the old function. 4790 for (auto &I : UpgradedIntrinsics) { 4791 for (auto *U : I.first->users()) { 4792 if (CallInst *CI = dyn_cast<CallInst>(U)) 4793 UpgradeIntrinsicCall(CI, I.second); 4794 } 4795 if (!I.first->use_empty()) 4796 I.first->replaceAllUsesWith(I.second); 4797 I.first->eraseFromParent(); 4798 } 4799 UpgradedIntrinsics.clear(); 4800 // Do the same for remangled intrinsics 4801 for (auto &I : RemangledIntrinsics) { 4802 I.first->replaceAllUsesWith(I.second); 4803 I.first->eraseFromParent(); 4804 } 4805 RemangledIntrinsics.clear(); 4806 4807 UpgradeDebugInfo(*TheModule); 4808 4809 UpgradeModuleFlags(*TheModule); 4810 4811 UpgradeRetainReleaseMarker(*TheModule); 4812 4813 return Error::success(); 4814 } 4815 4816 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4817 return IdentifiedStructTypes; 4818 } 4819 4820 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4821 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4822 StringRef ModulePath, unsigned ModuleId) 4823 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4824 ModulePath(ModulePath), ModuleId(ModuleId) {} 4825 4826 void ModuleSummaryIndexBitcodeReader::addThisModule() { 4827 TheIndex.addModule(ModulePath, ModuleId); 4828 } 4829 4830 ModuleSummaryIndex::ModuleInfo * 4831 ModuleSummaryIndexBitcodeReader::getThisModule() { 4832 return TheIndex.getModule(ModulePath); 4833 } 4834 4835 std::pair<ValueInfo, GlobalValue::GUID> 4836 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4837 auto VGI = ValueIdToValueInfoMap[ValueId]; 4838 assert(VGI.first); 4839 return VGI; 4840 } 4841 4842 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4843 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4844 StringRef SourceFileName) { 4845 std::string GlobalId = 4846 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4847 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4848 auto OriginalNameID = ValueGUID; 4849 if (GlobalValue::isLocalLinkage(Linkage)) 4850 OriginalNameID = GlobalValue::getGUID(ValueName); 4851 if (PrintSummaryGUIDs) 4852 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4853 << ValueName << "\n"; 4854 4855 // UseStrtab is false for legacy summary formats and value names are 4856 // created on stack. In that case we save the name in a string saver in 4857 // the index so that the value name can be recorded. 4858 ValueIdToValueInfoMap[ValueID] = std::make_pair( 4859 TheIndex.getOrInsertValueInfo( 4860 ValueGUID, 4861 UseStrtab ? ValueName : TheIndex.saveString(ValueName.str())), 4862 OriginalNameID); 4863 } 4864 4865 // Specialized value symbol table parser used when reading module index 4866 // blocks where we don't actually create global values. The parsed information 4867 // is saved in the bitcode reader for use when later parsing summaries. 4868 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4869 uint64_t Offset, 4870 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4871 // With a strtab the VST is not required to parse the summary. 4872 if (UseStrtab) 4873 return Error::success(); 4874 4875 assert(Offset > 0 && "Expected non-zero VST offset"); 4876 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4877 4878 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4879 return error("Invalid record"); 4880 4881 SmallVector<uint64_t, 64> Record; 4882 4883 // Read all the records for this value table. 4884 SmallString<128> ValueName; 4885 4886 while (true) { 4887 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4888 4889 switch (Entry.Kind) { 4890 case BitstreamEntry::SubBlock: // Handled for us already. 4891 case BitstreamEntry::Error: 4892 return error("Malformed block"); 4893 case BitstreamEntry::EndBlock: 4894 // Done parsing VST, jump back to wherever we came from. 4895 Stream.JumpToBit(CurrentBit); 4896 return Error::success(); 4897 case BitstreamEntry::Record: 4898 // The interesting case. 4899 break; 4900 } 4901 4902 // Read a record. 4903 Record.clear(); 4904 switch (Stream.readRecord(Entry.ID, Record)) { 4905 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4906 break; 4907 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4908 if (convertToString(Record, 1, ValueName)) 4909 return error("Invalid record"); 4910 unsigned ValueID = Record[0]; 4911 assert(!SourceFileName.empty()); 4912 auto VLI = ValueIdToLinkageMap.find(ValueID); 4913 assert(VLI != ValueIdToLinkageMap.end() && 4914 "No linkage found for VST entry?"); 4915 auto Linkage = VLI->second; 4916 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4917 ValueName.clear(); 4918 break; 4919 } 4920 case bitc::VST_CODE_FNENTRY: { 4921 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4922 if (convertToString(Record, 2, ValueName)) 4923 return error("Invalid record"); 4924 unsigned ValueID = Record[0]; 4925 assert(!SourceFileName.empty()); 4926 auto VLI = ValueIdToLinkageMap.find(ValueID); 4927 assert(VLI != ValueIdToLinkageMap.end() && 4928 "No linkage found for VST entry?"); 4929 auto Linkage = VLI->second; 4930 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4931 ValueName.clear(); 4932 break; 4933 } 4934 case bitc::VST_CODE_COMBINED_ENTRY: { 4935 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4936 unsigned ValueID = Record[0]; 4937 GlobalValue::GUID RefGUID = Record[1]; 4938 // The "original name", which is the second value of the pair will be 4939 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4940 ValueIdToValueInfoMap[ValueID] = 4941 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4942 break; 4943 } 4944 } 4945 } 4946 } 4947 4948 // Parse just the blocks needed for building the index out of the module. 4949 // At the end of this routine the module Index is populated with a map 4950 // from global value id to GlobalValueSummary objects. 4951 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4952 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4953 return error("Invalid record"); 4954 4955 SmallVector<uint64_t, 64> Record; 4956 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4957 unsigned ValueId = 0; 4958 4959 // Read the index for this module. 4960 while (true) { 4961 BitstreamEntry Entry = Stream.advance(); 4962 4963 switch (Entry.Kind) { 4964 case BitstreamEntry::Error: 4965 return error("Malformed block"); 4966 case BitstreamEntry::EndBlock: 4967 return Error::success(); 4968 4969 case BitstreamEntry::SubBlock: 4970 switch (Entry.ID) { 4971 default: // Skip unknown content. 4972 if (Stream.SkipBlock()) 4973 return error("Invalid record"); 4974 break; 4975 case bitc::BLOCKINFO_BLOCK_ID: 4976 // Need to parse these to get abbrev ids (e.g. for VST) 4977 if (readBlockInfo()) 4978 return error("Malformed block"); 4979 break; 4980 case bitc::VALUE_SYMTAB_BLOCK_ID: 4981 // Should have been parsed earlier via VSTOffset, unless there 4982 // is no summary section. 4983 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4984 !SeenGlobalValSummary) && 4985 "Expected early VST parse via VSTOffset record"); 4986 if (Stream.SkipBlock()) 4987 return error("Invalid record"); 4988 break; 4989 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4990 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4991 // Add the module if it is a per-module index (has a source file name). 4992 if (!SourceFileName.empty()) 4993 addThisModule(); 4994 assert(!SeenValueSymbolTable && 4995 "Already read VST when parsing summary block?"); 4996 // We might not have a VST if there were no values in the 4997 // summary. An empty summary block generated when we are 4998 // performing ThinLTO compiles so we don't later invoke 4999 // the regular LTO process on them. 5000 if (VSTOffset > 0) { 5001 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5002 return Err; 5003 SeenValueSymbolTable = true; 5004 } 5005 SeenGlobalValSummary = true; 5006 if (Error Err = parseEntireSummary(Entry.ID)) 5007 return Err; 5008 break; 5009 case bitc::MODULE_STRTAB_BLOCK_ID: 5010 if (Error Err = parseModuleStringTable()) 5011 return Err; 5012 break; 5013 } 5014 continue; 5015 5016 case BitstreamEntry::Record: { 5017 Record.clear(); 5018 auto BitCode = Stream.readRecord(Entry.ID, Record); 5019 switch (BitCode) { 5020 default: 5021 break; // Default behavior, ignore unknown content. 5022 case bitc::MODULE_CODE_VERSION: { 5023 if (Error Err = parseVersionRecord(Record).takeError()) 5024 return Err; 5025 break; 5026 } 5027 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5028 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5029 SmallString<128> ValueName; 5030 if (convertToString(Record, 0, ValueName)) 5031 return error("Invalid record"); 5032 SourceFileName = ValueName.c_str(); 5033 break; 5034 } 5035 /// MODULE_CODE_HASH: [5*i32] 5036 case bitc::MODULE_CODE_HASH: { 5037 if (Record.size() != 5) 5038 return error("Invalid hash length " + Twine(Record.size()).str()); 5039 auto &Hash = getThisModule()->second.second; 5040 int Pos = 0; 5041 for (auto &Val : Record) { 5042 assert(!(Val >> 32) && "Unexpected high bits set"); 5043 Hash[Pos++] = Val; 5044 } 5045 break; 5046 } 5047 /// MODULE_CODE_VSTOFFSET: [offset] 5048 case bitc::MODULE_CODE_VSTOFFSET: 5049 if (Record.size() < 1) 5050 return error("Invalid record"); 5051 // Note that we subtract 1 here because the offset is relative to one 5052 // word before the start of the identification or module block, which 5053 // was historically always the start of the regular bitcode header. 5054 VSTOffset = Record[0] - 1; 5055 break; 5056 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5057 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5058 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5059 // v2: [strtab offset, strtab size, v1] 5060 case bitc::MODULE_CODE_GLOBALVAR: 5061 case bitc::MODULE_CODE_FUNCTION: 5062 case bitc::MODULE_CODE_ALIAS: { 5063 StringRef Name; 5064 ArrayRef<uint64_t> GVRecord; 5065 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5066 if (GVRecord.size() <= 3) 5067 return error("Invalid record"); 5068 uint64_t RawLinkage = GVRecord[3]; 5069 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5070 if (!UseStrtab) { 5071 ValueIdToLinkageMap[ValueId++] = Linkage; 5072 break; 5073 } 5074 5075 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5076 break; 5077 } 5078 } 5079 } 5080 continue; 5081 } 5082 } 5083 } 5084 5085 std::vector<ValueInfo> 5086 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5087 std::vector<ValueInfo> Ret; 5088 Ret.reserve(Record.size()); 5089 for (uint64_t RefValueId : Record) 5090 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5091 return Ret; 5092 } 5093 5094 std::vector<FunctionSummary::EdgeTy> 5095 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5096 bool IsOldProfileFormat, 5097 bool HasProfile, bool HasRelBF) { 5098 std::vector<FunctionSummary::EdgeTy> Ret; 5099 Ret.reserve(Record.size()); 5100 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5101 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5102 uint64_t RelBF = 0; 5103 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5104 if (IsOldProfileFormat) { 5105 I += 1; // Skip old callsitecount field 5106 if (HasProfile) 5107 I += 1; // Skip old profilecount field 5108 } else if (HasProfile) 5109 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5110 else if (HasRelBF) 5111 RelBF = Record[++I]; 5112 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5113 } 5114 return Ret; 5115 } 5116 5117 static void 5118 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5119 WholeProgramDevirtResolution &Wpd) { 5120 uint64_t ArgNum = Record[Slot++]; 5121 WholeProgramDevirtResolution::ByArg &B = 5122 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5123 Slot += ArgNum; 5124 5125 B.TheKind = 5126 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5127 B.Info = Record[Slot++]; 5128 B.Byte = Record[Slot++]; 5129 B.Bit = Record[Slot++]; 5130 } 5131 5132 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5133 StringRef Strtab, size_t &Slot, 5134 TypeIdSummary &TypeId) { 5135 uint64_t Id = Record[Slot++]; 5136 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5137 5138 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5139 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5140 static_cast<size_t>(Record[Slot + 1])}; 5141 Slot += 2; 5142 5143 uint64_t ResByArgNum = Record[Slot++]; 5144 for (uint64_t I = 0; I != ResByArgNum; ++I) 5145 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5146 } 5147 5148 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5149 StringRef Strtab, 5150 ModuleSummaryIndex &TheIndex) { 5151 size_t Slot = 0; 5152 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5153 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5154 Slot += 2; 5155 5156 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5157 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5158 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5159 TypeId.TTRes.SizeM1 = Record[Slot++]; 5160 TypeId.TTRes.BitMask = Record[Slot++]; 5161 TypeId.TTRes.InlineBits = Record[Slot++]; 5162 5163 while (Slot < Record.size()) 5164 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5165 } 5166 5167 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5168 // objects in the index. 5169 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5170 if (Stream.EnterSubBlock(ID)) 5171 return error("Invalid record"); 5172 SmallVector<uint64_t, 64> Record; 5173 5174 // Parse version 5175 { 5176 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5177 if (Entry.Kind != BitstreamEntry::Record) 5178 return error("Invalid Summary Block: record for version expected"); 5179 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5180 return error("Invalid Summary Block: version expected"); 5181 } 5182 const uint64_t Version = Record[0]; 5183 const bool IsOldProfileFormat = Version == 1; 5184 if (Version < 1 || Version > 4) 5185 return error("Invalid summary version " + Twine(Version) + 5186 ", 1, 2, 3 or 4 expected"); 5187 Record.clear(); 5188 5189 // Keep around the last seen summary to be used when we see an optional 5190 // "OriginalName" attachement. 5191 GlobalValueSummary *LastSeenSummary = nullptr; 5192 GlobalValue::GUID LastSeenGUID = 0; 5193 5194 // We can expect to see any number of type ID information records before 5195 // each function summary records; these variables store the information 5196 // collected so far so that it can be used to create the summary object. 5197 std::vector<GlobalValue::GUID> PendingTypeTests; 5198 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5199 PendingTypeCheckedLoadVCalls; 5200 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5201 PendingTypeCheckedLoadConstVCalls; 5202 5203 while (true) { 5204 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5205 5206 switch (Entry.Kind) { 5207 case BitstreamEntry::SubBlock: // Handled for us already. 5208 case BitstreamEntry::Error: 5209 return error("Malformed block"); 5210 case BitstreamEntry::EndBlock: 5211 return Error::success(); 5212 case BitstreamEntry::Record: 5213 // The interesting case. 5214 break; 5215 } 5216 5217 // Read a record. The record format depends on whether this 5218 // is a per-module index or a combined index file. In the per-module 5219 // case the records contain the associated value's ID for correlation 5220 // with VST entries. In the combined index the correlation is done 5221 // via the bitcode offset of the summary records (which were saved 5222 // in the combined index VST entries). The records also contain 5223 // information used for ThinLTO renaming and importing. 5224 Record.clear(); 5225 auto BitCode = Stream.readRecord(Entry.ID, Record); 5226 switch (BitCode) { 5227 default: // Default behavior: ignore. 5228 break; 5229 case bitc::FS_FLAGS: { // [flags] 5230 uint64_t Flags = Record[0]; 5231 // Scan flags (set only on the combined index). 5232 assert(Flags <= 0x3 && "Unexpected bits in flag"); 5233 5234 // 1 bit: WithGlobalValueDeadStripping flag. 5235 if (Flags & 0x1) 5236 TheIndex.setWithGlobalValueDeadStripping(); 5237 // 1 bit: SkipModuleByDistributedBackend flag. 5238 if (Flags & 0x2) 5239 TheIndex.setSkipModuleByDistributedBackend(); 5240 break; 5241 } 5242 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5243 uint64_t ValueID = Record[0]; 5244 GlobalValue::GUID RefGUID = Record[1]; 5245 ValueIdToValueInfoMap[ValueID] = 5246 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5247 break; 5248 } 5249 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5250 // numrefs x valueid, n x (valueid)] 5251 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5252 // numrefs x valueid, 5253 // n x (valueid, hotness)] 5254 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5255 // numrefs x valueid, 5256 // n x (valueid, relblockfreq)] 5257 case bitc::FS_PERMODULE: 5258 case bitc::FS_PERMODULE_RELBF: 5259 case bitc::FS_PERMODULE_PROFILE: { 5260 unsigned ValueID = Record[0]; 5261 uint64_t RawFlags = Record[1]; 5262 unsigned InstCount = Record[2]; 5263 uint64_t RawFunFlags = 0; 5264 unsigned NumRefs = Record[3]; 5265 int RefListStartIndex = 4; 5266 if (Version >= 4) { 5267 RawFunFlags = Record[3]; 5268 NumRefs = Record[4]; 5269 RefListStartIndex = 5; 5270 } 5271 5272 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5273 // The module path string ref set in the summary must be owned by the 5274 // index's module string table. Since we don't have a module path 5275 // string table section in the per-module index, we create a single 5276 // module path string table entry with an empty (0) ID to take 5277 // ownership. 5278 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5279 assert(Record.size() >= RefListStartIndex + NumRefs && 5280 "Record size inconsistent with number of references"); 5281 std::vector<ValueInfo> Refs = makeRefList( 5282 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5283 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5284 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5285 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5286 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5287 IsOldProfileFormat, HasProfile, HasRelBF); 5288 auto FS = llvm::make_unique<FunctionSummary>( 5289 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5290 std::move(Calls), std::move(PendingTypeTests), 5291 std::move(PendingTypeTestAssumeVCalls), 5292 std::move(PendingTypeCheckedLoadVCalls), 5293 std::move(PendingTypeTestAssumeConstVCalls), 5294 std::move(PendingTypeCheckedLoadConstVCalls)); 5295 PendingTypeTests.clear(); 5296 PendingTypeTestAssumeVCalls.clear(); 5297 PendingTypeCheckedLoadVCalls.clear(); 5298 PendingTypeTestAssumeConstVCalls.clear(); 5299 PendingTypeCheckedLoadConstVCalls.clear(); 5300 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5301 FS->setModulePath(getThisModule()->first()); 5302 FS->setOriginalName(VIAndOriginalGUID.second); 5303 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5304 break; 5305 } 5306 // FS_ALIAS: [valueid, flags, valueid] 5307 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5308 // they expect all aliasee summaries to be available. 5309 case bitc::FS_ALIAS: { 5310 unsigned ValueID = Record[0]; 5311 uint64_t RawFlags = Record[1]; 5312 unsigned AliaseeID = Record[2]; 5313 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5314 auto AS = llvm::make_unique<AliasSummary>(Flags); 5315 // The module path string ref set in the summary must be owned by the 5316 // index's module string table. Since we don't have a module path 5317 // string table section in the per-module index, we create a single 5318 // module path string table entry with an empty (0) ID to take 5319 // ownership. 5320 AS->setModulePath(getThisModule()->first()); 5321 5322 GlobalValue::GUID AliaseeGUID = 5323 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5324 auto AliaseeInModule = 5325 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5326 if (!AliaseeInModule) 5327 return error("Alias expects aliasee summary to be parsed"); 5328 AS->setAliasee(AliaseeInModule); 5329 AS->setAliaseeGUID(AliaseeGUID); 5330 5331 auto GUID = getValueInfoFromValueId(ValueID); 5332 AS->setOriginalName(GUID.second); 5333 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5334 break; 5335 } 5336 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5337 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5338 unsigned ValueID = Record[0]; 5339 uint64_t RawFlags = Record[1]; 5340 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5341 std::vector<ValueInfo> Refs = 5342 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5343 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5344 FS->setModulePath(getThisModule()->first()); 5345 auto GUID = getValueInfoFromValueId(ValueID); 5346 FS->setOriginalName(GUID.second); 5347 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5348 break; 5349 } 5350 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5351 // numrefs x valueid, n x (valueid)] 5352 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5353 // numrefs x valueid, n x (valueid, hotness)] 5354 case bitc::FS_COMBINED: 5355 case bitc::FS_COMBINED_PROFILE: { 5356 unsigned ValueID = Record[0]; 5357 uint64_t ModuleId = Record[1]; 5358 uint64_t RawFlags = Record[2]; 5359 unsigned InstCount = Record[3]; 5360 uint64_t RawFunFlags = 0; 5361 unsigned NumRefs = Record[4]; 5362 int RefListStartIndex = 5; 5363 5364 if (Version >= 4) { 5365 RawFunFlags = Record[4]; 5366 NumRefs = Record[5]; 5367 RefListStartIndex = 6; 5368 } 5369 5370 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5371 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5372 assert(Record.size() >= RefListStartIndex + NumRefs && 5373 "Record size inconsistent with number of references"); 5374 std::vector<ValueInfo> Refs = makeRefList( 5375 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5376 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5377 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5378 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5379 IsOldProfileFormat, HasProfile, false); 5380 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5381 auto FS = llvm::make_unique<FunctionSummary>( 5382 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5383 std::move(Edges), std::move(PendingTypeTests), 5384 std::move(PendingTypeTestAssumeVCalls), 5385 std::move(PendingTypeCheckedLoadVCalls), 5386 std::move(PendingTypeTestAssumeConstVCalls), 5387 std::move(PendingTypeCheckedLoadConstVCalls)); 5388 PendingTypeTests.clear(); 5389 PendingTypeTestAssumeVCalls.clear(); 5390 PendingTypeCheckedLoadVCalls.clear(); 5391 PendingTypeTestAssumeConstVCalls.clear(); 5392 PendingTypeCheckedLoadConstVCalls.clear(); 5393 LastSeenSummary = FS.get(); 5394 LastSeenGUID = VI.getGUID(); 5395 FS->setModulePath(ModuleIdMap[ModuleId]); 5396 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5397 break; 5398 } 5399 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5400 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5401 // they expect all aliasee summaries to be available. 5402 case bitc::FS_COMBINED_ALIAS: { 5403 unsigned ValueID = Record[0]; 5404 uint64_t ModuleId = Record[1]; 5405 uint64_t RawFlags = Record[2]; 5406 unsigned AliaseeValueId = Record[3]; 5407 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5408 auto AS = llvm::make_unique<AliasSummary>(Flags); 5409 LastSeenSummary = AS.get(); 5410 AS->setModulePath(ModuleIdMap[ModuleId]); 5411 5412 auto AliaseeGUID = 5413 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5414 auto AliaseeInModule = 5415 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5416 AS->setAliasee(AliaseeInModule); 5417 AS->setAliaseeGUID(AliaseeGUID); 5418 5419 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5420 LastSeenGUID = VI.getGUID(); 5421 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5422 break; 5423 } 5424 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5425 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5426 unsigned ValueID = Record[0]; 5427 uint64_t ModuleId = Record[1]; 5428 uint64_t RawFlags = Record[2]; 5429 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5430 std::vector<ValueInfo> Refs = 5431 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5432 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5433 LastSeenSummary = FS.get(); 5434 FS->setModulePath(ModuleIdMap[ModuleId]); 5435 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5436 LastSeenGUID = VI.getGUID(); 5437 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5438 break; 5439 } 5440 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5441 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5442 uint64_t OriginalName = Record[0]; 5443 if (!LastSeenSummary) 5444 return error("Name attachment that does not follow a combined record"); 5445 LastSeenSummary->setOriginalName(OriginalName); 5446 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5447 // Reset the LastSeenSummary 5448 LastSeenSummary = nullptr; 5449 LastSeenGUID = 0; 5450 break; 5451 } 5452 case bitc::FS_TYPE_TESTS: 5453 assert(PendingTypeTests.empty()); 5454 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5455 Record.end()); 5456 break; 5457 5458 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5459 assert(PendingTypeTestAssumeVCalls.empty()); 5460 for (unsigned I = 0; I != Record.size(); I += 2) 5461 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5462 break; 5463 5464 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5465 assert(PendingTypeCheckedLoadVCalls.empty()); 5466 for (unsigned I = 0; I != Record.size(); I += 2) 5467 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5468 break; 5469 5470 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5471 PendingTypeTestAssumeConstVCalls.push_back( 5472 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5473 break; 5474 5475 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5476 PendingTypeCheckedLoadConstVCalls.push_back( 5477 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5478 break; 5479 5480 case bitc::FS_CFI_FUNCTION_DEFS: { 5481 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5482 for (unsigned I = 0; I != Record.size(); I += 2) 5483 CfiFunctionDefs.insert( 5484 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5485 break; 5486 } 5487 5488 case bitc::FS_CFI_FUNCTION_DECLS: { 5489 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5490 for (unsigned I = 0; I != Record.size(); I += 2) 5491 CfiFunctionDecls.insert( 5492 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5493 break; 5494 } 5495 5496 case bitc::FS_TYPE_ID: 5497 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5498 break; 5499 } 5500 } 5501 llvm_unreachable("Exit infinite loop"); 5502 } 5503 5504 // Parse the module string table block into the Index. 5505 // This populates the ModulePathStringTable map in the index. 5506 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5507 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5508 return error("Invalid record"); 5509 5510 SmallVector<uint64_t, 64> Record; 5511 5512 SmallString<128> ModulePath; 5513 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5514 5515 while (true) { 5516 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5517 5518 switch (Entry.Kind) { 5519 case BitstreamEntry::SubBlock: // Handled for us already. 5520 case BitstreamEntry::Error: 5521 return error("Malformed block"); 5522 case BitstreamEntry::EndBlock: 5523 return Error::success(); 5524 case BitstreamEntry::Record: 5525 // The interesting case. 5526 break; 5527 } 5528 5529 Record.clear(); 5530 switch (Stream.readRecord(Entry.ID, Record)) { 5531 default: // Default behavior: ignore. 5532 break; 5533 case bitc::MST_CODE_ENTRY: { 5534 // MST_ENTRY: [modid, namechar x N] 5535 uint64_t ModuleId = Record[0]; 5536 5537 if (convertToString(Record, 1, ModulePath)) 5538 return error("Invalid record"); 5539 5540 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5541 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5542 5543 ModulePath.clear(); 5544 break; 5545 } 5546 /// MST_CODE_HASH: [5*i32] 5547 case bitc::MST_CODE_HASH: { 5548 if (Record.size() != 5) 5549 return error("Invalid hash length " + Twine(Record.size()).str()); 5550 if (!LastSeenModule) 5551 return error("Invalid hash that does not follow a module path"); 5552 int Pos = 0; 5553 for (auto &Val : Record) { 5554 assert(!(Val >> 32) && "Unexpected high bits set"); 5555 LastSeenModule->second.second[Pos++] = Val; 5556 } 5557 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5558 LastSeenModule = nullptr; 5559 break; 5560 } 5561 } 5562 } 5563 llvm_unreachable("Exit infinite loop"); 5564 } 5565 5566 namespace { 5567 5568 // FIXME: This class is only here to support the transition to llvm::Error. It 5569 // will be removed once this transition is complete. Clients should prefer to 5570 // deal with the Error value directly, rather than converting to error_code. 5571 class BitcodeErrorCategoryType : public std::error_category { 5572 const char *name() const noexcept override { 5573 return "llvm.bitcode"; 5574 } 5575 5576 std::string message(int IE) const override { 5577 BitcodeError E = static_cast<BitcodeError>(IE); 5578 switch (E) { 5579 case BitcodeError::CorruptedBitcode: 5580 return "Corrupted bitcode"; 5581 } 5582 llvm_unreachable("Unknown error type!"); 5583 } 5584 }; 5585 5586 } // end anonymous namespace 5587 5588 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5589 5590 const std::error_category &llvm::BitcodeErrorCategory() { 5591 return *ErrorCategory; 5592 } 5593 5594 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5595 unsigned Block, unsigned RecordID) { 5596 if (Stream.EnterSubBlock(Block)) 5597 return error("Invalid record"); 5598 5599 StringRef Strtab; 5600 while (true) { 5601 BitstreamEntry Entry = Stream.advance(); 5602 switch (Entry.Kind) { 5603 case BitstreamEntry::EndBlock: 5604 return Strtab; 5605 5606 case BitstreamEntry::Error: 5607 return error("Malformed block"); 5608 5609 case BitstreamEntry::SubBlock: 5610 if (Stream.SkipBlock()) 5611 return error("Malformed block"); 5612 break; 5613 5614 case BitstreamEntry::Record: 5615 StringRef Blob; 5616 SmallVector<uint64_t, 1> Record; 5617 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5618 Strtab = Blob; 5619 break; 5620 } 5621 } 5622 } 5623 5624 //===----------------------------------------------------------------------===// 5625 // External interface 5626 //===----------------------------------------------------------------------===// 5627 5628 Expected<std::vector<BitcodeModule>> 5629 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5630 auto FOrErr = getBitcodeFileContents(Buffer); 5631 if (!FOrErr) 5632 return FOrErr.takeError(); 5633 return std::move(FOrErr->Mods); 5634 } 5635 5636 Expected<BitcodeFileContents> 5637 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5638 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5639 if (!StreamOrErr) 5640 return StreamOrErr.takeError(); 5641 BitstreamCursor &Stream = *StreamOrErr; 5642 5643 BitcodeFileContents F; 5644 while (true) { 5645 uint64_t BCBegin = Stream.getCurrentByteNo(); 5646 5647 // We may be consuming bitcode from a client that leaves garbage at the end 5648 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5649 // the end that there cannot possibly be another module, stop looking. 5650 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5651 return F; 5652 5653 BitstreamEntry Entry = Stream.advance(); 5654 switch (Entry.Kind) { 5655 case BitstreamEntry::EndBlock: 5656 case BitstreamEntry::Error: 5657 return error("Malformed block"); 5658 5659 case BitstreamEntry::SubBlock: { 5660 uint64_t IdentificationBit = -1ull; 5661 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5662 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5663 if (Stream.SkipBlock()) 5664 return error("Malformed block"); 5665 5666 Entry = Stream.advance(); 5667 if (Entry.Kind != BitstreamEntry::SubBlock || 5668 Entry.ID != bitc::MODULE_BLOCK_ID) 5669 return error("Malformed block"); 5670 } 5671 5672 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5673 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5674 if (Stream.SkipBlock()) 5675 return error("Malformed block"); 5676 5677 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5678 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5679 Buffer.getBufferIdentifier(), IdentificationBit, 5680 ModuleBit}); 5681 continue; 5682 } 5683 5684 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5685 Expected<StringRef> Strtab = 5686 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5687 if (!Strtab) 5688 return Strtab.takeError(); 5689 // This string table is used by every preceding bitcode module that does 5690 // not have its own string table. A bitcode file may have multiple 5691 // string tables if it was created by binary concatenation, for example 5692 // with "llvm-cat -b". 5693 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5694 if (!I->Strtab.empty()) 5695 break; 5696 I->Strtab = *Strtab; 5697 } 5698 // Similarly, the string table is used by every preceding symbol table; 5699 // normally there will be just one unless the bitcode file was created 5700 // by binary concatenation. 5701 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5702 F.StrtabForSymtab = *Strtab; 5703 continue; 5704 } 5705 5706 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5707 Expected<StringRef> SymtabOrErr = 5708 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5709 if (!SymtabOrErr) 5710 return SymtabOrErr.takeError(); 5711 5712 // We can expect the bitcode file to have multiple symbol tables if it 5713 // was created by binary concatenation. In that case we silently 5714 // ignore any subsequent symbol tables, which is fine because this is a 5715 // low level function. The client is expected to notice that the number 5716 // of modules in the symbol table does not match the number of modules 5717 // in the input file and regenerate the symbol table. 5718 if (F.Symtab.empty()) 5719 F.Symtab = *SymtabOrErr; 5720 continue; 5721 } 5722 5723 if (Stream.SkipBlock()) 5724 return error("Malformed block"); 5725 continue; 5726 } 5727 case BitstreamEntry::Record: 5728 Stream.skipRecord(Entry.ID); 5729 continue; 5730 } 5731 } 5732 } 5733 5734 /// Get a lazy one-at-time loading module from bitcode. 5735 /// 5736 /// This isn't always used in a lazy context. In particular, it's also used by 5737 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5738 /// in forward-referenced functions from block address references. 5739 /// 5740 /// \param[in] MaterializeAll Set to \c true if we should materialize 5741 /// everything. 5742 Expected<std::unique_ptr<Module>> 5743 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5744 bool ShouldLazyLoadMetadata, bool IsImporting) { 5745 BitstreamCursor Stream(Buffer); 5746 5747 std::string ProducerIdentification; 5748 if (IdentificationBit != -1ull) { 5749 Stream.JumpToBit(IdentificationBit); 5750 Expected<std::string> ProducerIdentificationOrErr = 5751 readIdentificationBlock(Stream); 5752 if (!ProducerIdentificationOrErr) 5753 return ProducerIdentificationOrErr.takeError(); 5754 5755 ProducerIdentification = *ProducerIdentificationOrErr; 5756 } 5757 5758 Stream.JumpToBit(ModuleBit); 5759 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5760 Context); 5761 5762 std::unique_ptr<Module> M = 5763 llvm::make_unique<Module>(ModuleIdentifier, Context); 5764 M->setMaterializer(R); 5765 5766 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5767 if (Error Err = 5768 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5769 return std::move(Err); 5770 5771 if (MaterializeAll) { 5772 // Read in the entire module, and destroy the BitcodeReader. 5773 if (Error Err = M->materializeAll()) 5774 return std::move(Err); 5775 } else { 5776 // Resolve forward references from blockaddresses. 5777 if (Error Err = R->materializeForwardReferencedFunctions()) 5778 return std::move(Err); 5779 } 5780 return std::move(M); 5781 } 5782 5783 Expected<std::unique_ptr<Module>> 5784 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5785 bool IsImporting) { 5786 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5787 } 5788 5789 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5790 // We don't use ModuleIdentifier here because the client may need to control the 5791 // module path used in the combined summary (e.g. when reading summaries for 5792 // regular LTO modules). 5793 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5794 StringRef ModulePath, uint64_t ModuleId) { 5795 BitstreamCursor Stream(Buffer); 5796 Stream.JumpToBit(ModuleBit); 5797 5798 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5799 ModulePath, ModuleId); 5800 return R.parseModule(); 5801 } 5802 5803 // Parse the specified bitcode buffer, returning the function info index. 5804 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5805 BitstreamCursor Stream(Buffer); 5806 Stream.JumpToBit(ModuleBit); 5807 5808 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 5809 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5810 ModuleIdentifier, 0); 5811 5812 if (Error Err = R.parseModule()) 5813 return std::move(Err); 5814 5815 return std::move(Index); 5816 } 5817 5818 // Check if the given bitcode buffer contains a global value summary block. 5819 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5820 BitstreamCursor Stream(Buffer); 5821 Stream.JumpToBit(ModuleBit); 5822 5823 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5824 return error("Invalid record"); 5825 5826 while (true) { 5827 BitstreamEntry Entry = Stream.advance(); 5828 5829 switch (Entry.Kind) { 5830 case BitstreamEntry::Error: 5831 return error("Malformed block"); 5832 case BitstreamEntry::EndBlock: 5833 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5834 5835 case BitstreamEntry::SubBlock: 5836 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5837 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5838 5839 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5840 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5841 5842 // Ignore other sub-blocks. 5843 if (Stream.SkipBlock()) 5844 return error("Malformed block"); 5845 continue; 5846 5847 case BitstreamEntry::Record: 5848 Stream.skipRecord(Entry.ID); 5849 continue; 5850 } 5851 } 5852 } 5853 5854 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5855 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5856 if (!MsOrErr) 5857 return MsOrErr.takeError(); 5858 5859 if (MsOrErr->size() != 1) 5860 return error("Expected a single module"); 5861 5862 return (*MsOrErr)[0]; 5863 } 5864 5865 Expected<std::unique_ptr<Module>> 5866 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5867 bool ShouldLazyLoadMetadata, bool IsImporting) { 5868 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5869 if (!BM) 5870 return BM.takeError(); 5871 5872 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5873 } 5874 5875 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5876 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5877 bool ShouldLazyLoadMetadata, bool IsImporting) { 5878 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5879 IsImporting); 5880 if (MOrErr) 5881 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5882 return MOrErr; 5883 } 5884 5885 Expected<std::unique_ptr<Module>> 5886 BitcodeModule::parseModule(LLVMContext &Context) { 5887 return getModuleImpl(Context, true, false, false); 5888 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5889 // written. We must defer until the Module has been fully materialized. 5890 } 5891 5892 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5893 LLVMContext &Context) { 5894 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5895 if (!BM) 5896 return BM.takeError(); 5897 5898 return BM->parseModule(Context); 5899 } 5900 5901 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5902 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5903 if (!StreamOrErr) 5904 return StreamOrErr.takeError(); 5905 5906 return readTriple(*StreamOrErr); 5907 } 5908 5909 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5910 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5911 if (!StreamOrErr) 5912 return StreamOrErr.takeError(); 5913 5914 return hasObjCCategory(*StreamOrErr); 5915 } 5916 5917 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5918 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5919 if (!StreamOrErr) 5920 return StreamOrErr.takeError(); 5921 5922 return readIdentificationCode(*StreamOrErr); 5923 } 5924 5925 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5926 ModuleSummaryIndex &CombinedIndex, 5927 uint64_t ModuleId) { 5928 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5929 if (!BM) 5930 return BM.takeError(); 5931 5932 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5933 } 5934 5935 Expected<std::unique_ptr<ModuleSummaryIndex>> 5936 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5937 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5938 if (!BM) 5939 return BM.takeError(); 5940 5941 return BM->getSummary(); 5942 } 5943 5944 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5945 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5946 if (!BM) 5947 return BM.takeError(); 5948 5949 return BM->getLTOInfo(); 5950 } 5951 5952 Expected<std::unique_ptr<ModuleSummaryIndex>> 5953 llvm::getModuleSummaryIndexForFile(StringRef Path, 5954 bool IgnoreEmptyThinLTOIndexFile) { 5955 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5956 MemoryBuffer::getFileOrSTDIN(Path); 5957 if (!FileOrErr) 5958 return errorCodeToError(FileOrErr.getError()); 5959 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5960 return nullptr; 5961 return getModuleSummaryIndex(**FileOrErr); 5962 } 5963