1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(
581       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval or sret attributes by adding the
719   /// corresponding argument's pointee type.
720   void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(
728       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
729       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
730 
731   Error parseComdatRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
733   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
734   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
735                                         ArrayRef<uint64_t> Record);
736 
737   Error parseAttributeBlock();
738   Error parseAttributeGroupBlock();
739   Error parseTypeTable();
740   Error parseTypeTableBody();
741   Error parseOperandBundleTags();
742   Error parseSyncScopeNames();
743 
744   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
745                                 unsigned NameIndex, Triple &TT);
746   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
747                                ArrayRef<uint64_t> Record);
748   Error parseValueSymbolTable(uint64_t Offset = 0);
749   Error parseGlobalValueSymbolTable();
750   Error parseConstants();
751   Error rememberAndSkipFunctionBodies();
752   Error rememberAndSkipFunctionBody();
753   /// Save the positions of the Metadata blocks and skip parsing the blocks.
754   Error rememberAndSkipMetadata();
755   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
756   Error parseFunctionBody(Function *F);
757   Error globalCleanup();
758   Error resolveGlobalAndIndirectSymbolInits();
759   Error parseUseLists();
760   Error findFunctionInStream(
761       Function *F,
762       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
763 
764   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
765 };
766 
767 /// Class to manage reading and parsing function summary index bitcode
768 /// files/sections.
769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
770   /// The module index built during parsing.
771   ModuleSummaryIndex &TheIndex;
772 
773   /// Indicates whether we have encountered a global value summary section
774   /// yet during parsing.
775   bool SeenGlobalValSummary = false;
776 
777   /// Indicates whether we have already parsed the VST, used for error checking.
778   bool SeenValueSymbolTable = false;
779 
780   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
781   /// Used to enable on-demand parsing of the VST.
782   uint64_t VSTOffset = 0;
783 
784   // Map to save ValueId to ValueInfo association that was recorded in the
785   // ValueSymbolTable. It is used after the VST is parsed to convert
786   // call graph edges read from the function summary from referencing
787   // callees by their ValueId to using the ValueInfo instead, which is how
788   // they are recorded in the summary index being built.
789   // We save a GUID which refers to the same global as the ValueInfo, but
790   // ignoring the linkage, i.e. for values other than local linkage they are
791   // identical.
792   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
793       ValueIdToValueInfoMap;
794 
795   /// Map populated during module path string table parsing, from the
796   /// module ID to a string reference owned by the index's module
797   /// path string table, used to correlate with combined index
798   /// summary records.
799   DenseMap<uint64_t, StringRef> ModuleIdMap;
800 
801   /// Original source file name recorded in a bitcode record.
802   std::string SourceFileName;
803 
804   /// The string identifier given to this module by the client, normally the
805   /// path to the bitcode file.
806   StringRef ModulePath;
807 
808   /// For per-module summary indexes, the unique numerical identifier given to
809   /// this module by the client.
810   unsigned ModuleId;
811 
812 public:
813   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
814                                   ModuleSummaryIndex &TheIndex,
815                                   StringRef ModulePath, unsigned ModuleId);
816 
817   Error parseModule();
818 
819 private:
820   void setValueGUID(uint64_t ValueID, StringRef ValueName,
821                     GlobalValue::LinkageTypes Linkage,
822                     StringRef SourceFileName);
823   Error parseValueSymbolTable(
824       uint64_t Offset,
825       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
826   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
827   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
828                                                     bool IsOldProfileFormat,
829                                                     bool HasProfile,
830                                                     bool HasRelBF);
831   Error parseEntireSummary(unsigned ID);
832   Error parseModuleStringTable();
833   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
834   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
835                                        TypeIdCompatibleVtableInfo &TypeId);
836   std::vector<FunctionSummary::ParamAccess>
837   parseParamAccesses(ArrayRef<uint64_t> Record);
838 
839   std::pair<ValueInfo, GlobalValue::GUID>
840   getValueInfoFromValueId(unsigned ValueId);
841 
842   void addThisModule();
843   ModuleSummaryIndex::ModuleInfo *getThisModule();
844 };
845 
846 } // end anonymous namespace
847 
848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
849                                                     Error Err) {
850   if (Err) {
851     std::error_code EC;
852     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
853       EC = EIB.convertToErrorCode();
854       Ctx.emitError(EIB.message());
855     });
856     return EC;
857   }
858   return std::error_code();
859 }
860 
861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
862                              StringRef ProducerIdentification,
863                              LLVMContext &Context)
864     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
865       ValueList(Context, Stream.SizeInBytes()) {
866   this->ProducerIdentification = std::string(ProducerIdentification);
867 }
868 
869 Error BitcodeReader::materializeForwardReferencedFunctions() {
870   if (WillMaterializeAllForwardRefs)
871     return Error::success();
872 
873   // Prevent recursion.
874   WillMaterializeAllForwardRefs = true;
875 
876   while (!BasicBlockFwdRefQueue.empty()) {
877     Function *F = BasicBlockFwdRefQueue.front();
878     BasicBlockFwdRefQueue.pop_front();
879     assert(F && "Expected valid function");
880     if (!BasicBlockFwdRefs.count(F))
881       // Already materialized.
882       continue;
883 
884     // Check for a function that isn't materializable to prevent an infinite
885     // loop.  When parsing a blockaddress stored in a global variable, there
886     // isn't a trivial way to check if a function will have a body without a
887     // linear search through FunctionsWithBodies, so just check it here.
888     if (!F->isMaterializable())
889       return error("Never resolved function from blockaddress");
890 
891     // Try to materialize F.
892     if (Error Err = materialize(F))
893       return Err;
894   }
895   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
896 
897   // Reset state.
898   WillMaterializeAllForwardRefs = false;
899   return Error::success();
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //  Helper functions to implement forward reference resolution, etc.
904 //===----------------------------------------------------------------------===//
905 
906 static bool hasImplicitComdat(size_t Val) {
907   switch (Val) {
908   default:
909     return false;
910   case 1:  // Old WeakAnyLinkage
911   case 4:  // Old LinkOnceAnyLinkage
912   case 10: // Old WeakODRLinkage
913   case 11: // Old LinkOnceODRLinkage
914     return true;
915   }
916 }
917 
918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
919   switch (Val) {
920   default: // Map unknown/new linkages to external
921   case 0:
922     return GlobalValue::ExternalLinkage;
923   case 2:
924     return GlobalValue::AppendingLinkage;
925   case 3:
926     return GlobalValue::InternalLinkage;
927   case 5:
928     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
929   case 6:
930     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
931   case 7:
932     return GlobalValue::ExternalWeakLinkage;
933   case 8:
934     return GlobalValue::CommonLinkage;
935   case 9:
936     return GlobalValue::PrivateLinkage;
937   case 12:
938     return GlobalValue::AvailableExternallyLinkage;
939   case 13:
940     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
941   case 14:
942     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
943   case 15:
944     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
945   case 1: // Old value with implicit comdat.
946   case 16:
947     return GlobalValue::WeakAnyLinkage;
948   case 10: // Old value with implicit comdat.
949   case 17:
950     return GlobalValue::WeakODRLinkage;
951   case 4: // Old value with implicit comdat.
952   case 18:
953     return GlobalValue::LinkOnceAnyLinkage;
954   case 11: // Old value with implicit comdat.
955   case 19:
956     return GlobalValue::LinkOnceODRLinkage;
957   }
958 }
959 
960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
961   FunctionSummary::FFlags Flags;
962   Flags.ReadNone = RawFlags & 0x1;
963   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
964   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
965   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
966   Flags.NoInline = (RawFlags >> 4) & 0x1;
967   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
968   return Flags;
969 }
970 
971 /// Decode the flags for GlobalValue in the summary.
972 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
973                                                             uint64_t Version) {
974   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
975   // like getDecodedLinkage() above. Any future change to the linkage enum and
976   // to getDecodedLinkage() will need to be taken into account here as above.
977   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
978   RawFlags = RawFlags >> 4;
979   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
980   // The Live flag wasn't introduced until version 3. For dead stripping
981   // to work correctly on earlier versions, we must conservatively treat all
982   // values as live.
983   bool Live = (RawFlags & 0x2) || Version < 3;
984   bool Local = (RawFlags & 0x4);
985   bool AutoHide = (RawFlags & 0x8);
986 
987   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
988 }
989 
990 // Decode the flags for GlobalVariable in the summary
991 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
992   return GlobalVarSummary::GVarFlags(
993       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
994       (RawFlags & 0x4) ? true : false,
995       (GlobalObject::VCallVisibility)(RawFlags >> 3));
996 }
997 
998 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
999   switch (Val) {
1000   default: // Map unknown visibilities to default.
1001   case 0: return GlobalValue::DefaultVisibility;
1002   case 1: return GlobalValue::HiddenVisibility;
1003   case 2: return GlobalValue::ProtectedVisibility;
1004   }
1005 }
1006 
1007 static GlobalValue::DLLStorageClassTypes
1008 getDecodedDLLStorageClass(unsigned Val) {
1009   switch (Val) {
1010   default: // Map unknown values to default.
1011   case 0: return GlobalValue::DefaultStorageClass;
1012   case 1: return GlobalValue::DLLImportStorageClass;
1013   case 2: return GlobalValue::DLLExportStorageClass;
1014   }
1015 }
1016 
1017 static bool getDecodedDSOLocal(unsigned Val) {
1018   switch(Val) {
1019   default: // Map unknown values to preemptable.
1020   case 0:  return false;
1021   case 1:  return true;
1022   }
1023 }
1024 
1025 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1026   switch (Val) {
1027     case 0: return GlobalVariable::NotThreadLocal;
1028     default: // Map unknown non-zero value to general dynamic.
1029     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1030     case 2: return GlobalVariable::LocalDynamicTLSModel;
1031     case 3: return GlobalVariable::InitialExecTLSModel;
1032     case 4: return GlobalVariable::LocalExecTLSModel;
1033   }
1034 }
1035 
1036 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1037   switch (Val) {
1038     default: // Map unknown to UnnamedAddr::None.
1039     case 0: return GlobalVariable::UnnamedAddr::None;
1040     case 1: return GlobalVariable::UnnamedAddr::Global;
1041     case 2: return GlobalVariable::UnnamedAddr::Local;
1042   }
1043 }
1044 
1045 static int getDecodedCastOpcode(unsigned Val) {
1046   switch (Val) {
1047   default: return -1;
1048   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1049   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1050   case bitc::CAST_SEXT    : return Instruction::SExt;
1051   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1052   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1053   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1054   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1055   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1056   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1057   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1058   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1059   case bitc::CAST_BITCAST : return Instruction::BitCast;
1060   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1061   }
1062 }
1063 
1064 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1065   bool IsFP = Ty->isFPOrFPVectorTy();
1066   // UnOps are only valid for int/fp or vector of int/fp types
1067   if (!IsFP && !Ty->isIntOrIntVectorTy())
1068     return -1;
1069 
1070   switch (Val) {
1071   default:
1072     return -1;
1073   case bitc::UNOP_FNEG:
1074     return IsFP ? Instruction::FNeg : -1;
1075   }
1076 }
1077 
1078 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1079   bool IsFP = Ty->isFPOrFPVectorTy();
1080   // BinOps are only valid for int/fp or vector of int/fp types
1081   if (!IsFP && !Ty->isIntOrIntVectorTy())
1082     return -1;
1083 
1084   switch (Val) {
1085   default:
1086     return -1;
1087   case bitc::BINOP_ADD:
1088     return IsFP ? Instruction::FAdd : Instruction::Add;
1089   case bitc::BINOP_SUB:
1090     return IsFP ? Instruction::FSub : Instruction::Sub;
1091   case bitc::BINOP_MUL:
1092     return IsFP ? Instruction::FMul : Instruction::Mul;
1093   case bitc::BINOP_UDIV:
1094     return IsFP ? -1 : Instruction::UDiv;
1095   case bitc::BINOP_SDIV:
1096     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1097   case bitc::BINOP_UREM:
1098     return IsFP ? -1 : Instruction::URem;
1099   case bitc::BINOP_SREM:
1100     return IsFP ? Instruction::FRem : Instruction::SRem;
1101   case bitc::BINOP_SHL:
1102     return IsFP ? -1 : Instruction::Shl;
1103   case bitc::BINOP_LSHR:
1104     return IsFP ? -1 : Instruction::LShr;
1105   case bitc::BINOP_ASHR:
1106     return IsFP ? -1 : Instruction::AShr;
1107   case bitc::BINOP_AND:
1108     return IsFP ? -1 : Instruction::And;
1109   case bitc::BINOP_OR:
1110     return IsFP ? -1 : Instruction::Or;
1111   case bitc::BINOP_XOR:
1112     return IsFP ? -1 : Instruction::Xor;
1113   }
1114 }
1115 
1116 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1117   switch (Val) {
1118   default: return AtomicRMWInst::BAD_BINOP;
1119   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1120   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1121   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1122   case bitc::RMW_AND: return AtomicRMWInst::And;
1123   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1124   case bitc::RMW_OR: return AtomicRMWInst::Or;
1125   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1126   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1127   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1128   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1129   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1130   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1131   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1132   }
1133 }
1134 
1135 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1136   switch (Val) {
1137   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1138   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1139   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1140   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1141   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1142   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1143   default: // Map unknown orderings to sequentially-consistent.
1144   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1145   }
1146 }
1147 
1148 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1149   switch (Val) {
1150   default: // Map unknown selection kinds to any.
1151   case bitc::COMDAT_SELECTION_KIND_ANY:
1152     return Comdat::Any;
1153   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1154     return Comdat::ExactMatch;
1155   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1156     return Comdat::Largest;
1157   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1158     return Comdat::NoDuplicates;
1159   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1160     return Comdat::SameSize;
1161   }
1162 }
1163 
1164 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1165   FastMathFlags FMF;
1166   if (0 != (Val & bitc::UnsafeAlgebra))
1167     FMF.setFast();
1168   if (0 != (Val & bitc::AllowReassoc))
1169     FMF.setAllowReassoc();
1170   if (0 != (Val & bitc::NoNaNs))
1171     FMF.setNoNaNs();
1172   if (0 != (Val & bitc::NoInfs))
1173     FMF.setNoInfs();
1174   if (0 != (Val & bitc::NoSignedZeros))
1175     FMF.setNoSignedZeros();
1176   if (0 != (Val & bitc::AllowReciprocal))
1177     FMF.setAllowReciprocal();
1178   if (0 != (Val & bitc::AllowContract))
1179     FMF.setAllowContract(true);
1180   if (0 != (Val & bitc::ApproxFunc))
1181     FMF.setApproxFunc();
1182   return FMF;
1183 }
1184 
1185 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1186   switch (Val) {
1187   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1188   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1189   }
1190 }
1191 
1192 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1193   // The type table size is always specified correctly.
1194   if (ID >= TypeList.size())
1195     return nullptr;
1196 
1197   if (Type *Ty = TypeList[ID])
1198     return Ty;
1199 
1200   // If we have a forward reference, the only possible case is when it is to a
1201   // named struct.  Just create a placeholder for now.
1202   return TypeList[ID] = createIdentifiedStructType(Context);
1203 }
1204 
1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1206                                                       StringRef Name) {
1207   auto *Ret = StructType::create(Context, Name);
1208   IdentifiedStructTypes.push_back(Ret);
1209   return Ret;
1210 }
1211 
1212 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1213   auto *Ret = StructType::create(Context);
1214   IdentifiedStructTypes.push_back(Ret);
1215   return Ret;
1216 }
1217 
1218 //===----------------------------------------------------------------------===//
1219 //  Functions for parsing blocks from the bitcode file
1220 //===----------------------------------------------------------------------===//
1221 
1222 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1223   switch (Val) {
1224   case Attribute::EndAttrKinds:
1225   case Attribute::EmptyKey:
1226   case Attribute::TombstoneKey:
1227     llvm_unreachable("Synthetic enumerators which should never get here");
1228 
1229   case Attribute::None:            return 0;
1230   case Attribute::ZExt:            return 1 << 0;
1231   case Attribute::SExt:            return 1 << 1;
1232   case Attribute::NoReturn:        return 1 << 2;
1233   case Attribute::InReg:           return 1 << 3;
1234   case Attribute::StructRet:       return 1 << 4;
1235   case Attribute::NoUnwind:        return 1 << 5;
1236   case Attribute::NoAlias:         return 1 << 6;
1237   case Attribute::ByVal:           return 1 << 7;
1238   case Attribute::Nest:            return 1 << 8;
1239   case Attribute::ReadNone:        return 1 << 9;
1240   case Attribute::ReadOnly:        return 1 << 10;
1241   case Attribute::NoInline:        return 1 << 11;
1242   case Attribute::AlwaysInline:    return 1 << 12;
1243   case Attribute::OptimizeForSize: return 1 << 13;
1244   case Attribute::StackProtect:    return 1 << 14;
1245   case Attribute::StackProtectReq: return 1 << 15;
1246   case Attribute::Alignment:       return 31 << 16;
1247   case Attribute::NoCapture:       return 1 << 21;
1248   case Attribute::NoRedZone:       return 1 << 22;
1249   case Attribute::NoImplicitFloat: return 1 << 23;
1250   case Attribute::Naked:           return 1 << 24;
1251   case Attribute::InlineHint:      return 1 << 25;
1252   case Attribute::StackAlignment:  return 7 << 26;
1253   case Attribute::ReturnsTwice:    return 1 << 29;
1254   case Attribute::UWTable:         return 1 << 30;
1255   case Attribute::NonLazyBind:     return 1U << 31;
1256   case Attribute::SanitizeAddress: return 1ULL << 32;
1257   case Attribute::MinSize:         return 1ULL << 33;
1258   case Attribute::NoDuplicate:     return 1ULL << 34;
1259   case Attribute::StackProtectStrong: return 1ULL << 35;
1260   case Attribute::SanitizeThread:  return 1ULL << 36;
1261   case Attribute::SanitizeMemory:  return 1ULL << 37;
1262   case Attribute::NoBuiltin:       return 1ULL << 38;
1263   case Attribute::Returned:        return 1ULL << 39;
1264   case Attribute::Cold:            return 1ULL << 40;
1265   case Attribute::Builtin:         return 1ULL << 41;
1266   case Attribute::OptimizeNone:    return 1ULL << 42;
1267   case Attribute::InAlloca:        return 1ULL << 43;
1268   case Attribute::NonNull:         return 1ULL << 44;
1269   case Attribute::JumpTable:       return 1ULL << 45;
1270   case Attribute::Convergent:      return 1ULL << 46;
1271   case Attribute::SafeStack:       return 1ULL << 47;
1272   case Attribute::NoRecurse:       return 1ULL << 48;
1273   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1274   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1275   case Attribute::SwiftSelf:       return 1ULL << 51;
1276   case Attribute::SwiftError:      return 1ULL << 52;
1277   case Attribute::WriteOnly:       return 1ULL << 53;
1278   case Attribute::Speculatable:    return 1ULL << 54;
1279   case Attribute::StrictFP:        return 1ULL << 55;
1280   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1281   case Attribute::NoCfCheck:       return 1ULL << 57;
1282   case Attribute::OptForFuzzing:   return 1ULL << 58;
1283   case Attribute::ShadowCallStack: return 1ULL << 59;
1284   case Attribute::SpeculativeLoadHardening:
1285     return 1ULL << 60;
1286   case Attribute::ImmArg:
1287     return 1ULL << 61;
1288   case Attribute::WillReturn:
1289     return 1ULL << 62;
1290   case Attribute::NoFree:
1291     return 1ULL << 63;
1292   default:
1293     // Other attributes are not supported in the raw format,
1294     // as we ran out of space.
1295     return 0;
1296   }
1297   llvm_unreachable("Unsupported attribute type");
1298 }
1299 
1300 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1301   if (!Val) return;
1302 
1303   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1304        I = Attribute::AttrKind(I + 1)) {
1305     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1306       if (I == Attribute::Alignment)
1307         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1308       else if (I == Attribute::StackAlignment)
1309         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1310       else
1311         B.addAttribute(I);
1312     }
1313   }
1314 }
1315 
1316 /// This fills an AttrBuilder object with the LLVM attributes that have
1317 /// been decoded from the given integer. This function must stay in sync with
1318 /// 'encodeLLVMAttributesForBitcode'.
1319 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1320                                            uint64_t EncodedAttrs) {
1321   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1322   // the bits above 31 down by 11 bits.
1323   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1324   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1325          "Alignment must be a power of two.");
1326 
1327   if (Alignment)
1328     B.addAlignmentAttr(Alignment);
1329   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1330                           (EncodedAttrs & 0xffff));
1331 }
1332 
1333 Error BitcodeReader::parseAttributeBlock() {
1334   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1335     return Err;
1336 
1337   if (!MAttributes.empty())
1338     return error("Invalid multiple blocks");
1339 
1340   SmallVector<uint64_t, 64> Record;
1341 
1342   SmallVector<AttributeList, 8> Attrs;
1343 
1344   // Read all the records.
1345   while (true) {
1346     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1347     if (!MaybeEntry)
1348       return MaybeEntry.takeError();
1349     BitstreamEntry Entry = MaybeEntry.get();
1350 
1351     switch (Entry.Kind) {
1352     case BitstreamEntry::SubBlock: // Handled for us already.
1353     case BitstreamEntry::Error:
1354       return error("Malformed block");
1355     case BitstreamEntry::EndBlock:
1356       return Error::success();
1357     case BitstreamEntry::Record:
1358       // The interesting case.
1359       break;
1360     }
1361 
1362     // Read a record.
1363     Record.clear();
1364     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1365     if (!MaybeRecord)
1366       return MaybeRecord.takeError();
1367     switch (MaybeRecord.get()) {
1368     default:  // Default behavior: ignore.
1369       break;
1370     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1371       // Deprecated, but still needed to read old bitcode files.
1372       if (Record.size() & 1)
1373         return error("Invalid record");
1374 
1375       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1376         AttrBuilder B;
1377         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1378         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1379       }
1380 
1381       MAttributes.push_back(AttributeList::get(Context, Attrs));
1382       Attrs.clear();
1383       break;
1384     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1385       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1386         Attrs.push_back(MAttributeGroups[Record[i]]);
1387 
1388       MAttributes.push_back(AttributeList::get(Context, Attrs));
1389       Attrs.clear();
1390       break;
1391     }
1392   }
1393 }
1394 
1395 // Returns Attribute::None on unrecognized codes.
1396 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1397   switch (Code) {
1398   default:
1399     return Attribute::None;
1400   case bitc::ATTR_KIND_ALIGNMENT:
1401     return Attribute::Alignment;
1402   case bitc::ATTR_KIND_ALWAYS_INLINE:
1403     return Attribute::AlwaysInline;
1404   case bitc::ATTR_KIND_ARGMEMONLY:
1405     return Attribute::ArgMemOnly;
1406   case bitc::ATTR_KIND_BUILTIN:
1407     return Attribute::Builtin;
1408   case bitc::ATTR_KIND_BY_VAL:
1409     return Attribute::ByVal;
1410   case bitc::ATTR_KIND_IN_ALLOCA:
1411     return Attribute::InAlloca;
1412   case bitc::ATTR_KIND_COLD:
1413     return Attribute::Cold;
1414   case bitc::ATTR_KIND_CONVERGENT:
1415     return Attribute::Convergent;
1416   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1417     return Attribute::InaccessibleMemOnly;
1418   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1419     return Attribute::InaccessibleMemOrArgMemOnly;
1420   case bitc::ATTR_KIND_INLINE_HINT:
1421     return Attribute::InlineHint;
1422   case bitc::ATTR_KIND_IN_REG:
1423     return Attribute::InReg;
1424   case bitc::ATTR_KIND_JUMP_TABLE:
1425     return Attribute::JumpTable;
1426   case bitc::ATTR_KIND_MIN_SIZE:
1427     return Attribute::MinSize;
1428   case bitc::ATTR_KIND_NAKED:
1429     return Attribute::Naked;
1430   case bitc::ATTR_KIND_NEST:
1431     return Attribute::Nest;
1432   case bitc::ATTR_KIND_NO_ALIAS:
1433     return Attribute::NoAlias;
1434   case bitc::ATTR_KIND_NO_BUILTIN:
1435     return Attribute::NoBuiltin;
1436   case bitc::ATTR_KIND_NO_CALLBACK:
1437     return Attribute::NoCallback;
1438   case bitc::ATTR_KIND_NO_CAPTURE:
1439     return Attribute::NoCapture;
1440   case bitc::ATTR_KIND_NO_DUPLICATE:
1441     return Attribute::NoDuplicate;
1442   case bitc::ATTR_KIND_NOFREE:
1443     return Attribute::NoFree;
1444   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1445     return Attribute::NoImplicitFloat;
1446   case bitc::ATTR_KIND_NO_INLINE:
1447     return Attribute::NoInline;
1448   case bitc::ATTR_KIND_NO_RECURSE:
1449     return Attribute::NoRecurse;
1450   case bitc::ATTR_KIND_NO_MERGE:
1451     return Attribute::NoMerge;
1452   case bitc::ATTR_KIND_NON_LAZY_BIND:
1453     return Attribute::NonLazyBind;
1454   case bitc::ATTR_KIND_NON_NULL:
1455     return Attribute::NonNull;
1456   case bitc::ATTR_KIND_DEREFERENCEABLE:
1457     return Attribute::Dereferenceable;
1458   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1459     return Attribute::DereferenceableOrNull;
1460   case bitc::ATTR_KIND_ALLOC_SIZE:
1461     return Attribute::AllocSize;
1462   case bitc::ATTR_KIND_NO_RED_ZONE:
1463     return Attribute::NoRedZone;
1464   case bitc::ATTR_KIND_NO_RETURN:
1465     return Attribute::NoReturn;
1466   case bitc::ATTR_KIND_NOSYNC:
1467     return Attribute::NoSync;
1468   case bitc::ATTR_KIND_NOCF_CHECK:
1469     return Attribute::NoCfCheck;
1470   case bitc::ATTR_KIND_NO_UNWIND:
1471     return Attribute::NoUnwind;
1472   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1473     return Attribute::NullPointerIsValid;
1474   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1475     return Attribute::OptForFuzzing;
1476   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1477     return Attribute::OptimizeForSize;
1478   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1479     return Attribute::OptimizeNone;
1480   case bitc::ATTR_KIND_READ_NONE:
1481     return Attribute::ReadNone;
1482   case bitc::ATTR_KIND_READ_ONLY:
1483     return Attribute::ReadOnly;
1484   case bitc::ATTR_KIND_RETURNED:
1485     return Attribute::Returned;
1486   case bitc::ATTR_KIND_RETURNS_TWICE:
1487     return Attribute::ReturnsTwice;
1488   case bitc::ATTR_KIND_S_EXT:
1489     return Attribute::SExt;
1490   case bitc::ATTR_KIND_SPECULATABLE:
1491     return Attribute::Speculatable;
1492   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1493     return Attribute::StackAlignment;
1494   case bitc::ATTR_KIND_STACK_PROTECT:
1495     return Attribute::StackProtect;
1496   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1497     return Attribute::StackProtectReq;
1498   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1499     return Attribute::StackProtectStrong;
1500   case bitc::ATTR_KIND_SAFESTACK:
1501     return Attribute::SafeStack;
1502   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1503     return Attribute::ShadowCallStack;
1504   case bitc::ATTR_KIND_STRICT_FP:
1505     return Attribute::StrictFP;
1506   case bitc::ATTR_KIND_STRUCT_RET:
1507     return Attribute::StructRet;
1508   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1509     return Attribute::SanitizeAddress;
1510   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1511     return Attribute::SanitizeHWAddress;
1512   case bitc::ATTR_KIND_SANITIZE_THREAD:
1513     return Attribute::SanitizeThread;
1514   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1515     return Attribute::SanitizeMemory;
1516   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1517     return Attribute::SpeculativeLoadHardening;
1518   case bitc::ATTR_KIND_SWIFT_ERROR:
1519     return Attribute::SwiftError;
1520   case bitc::ATTR_KIND_SWIFT_SELF:
1521     return Attribute::SwiftSelf;
1522   case bitc::ATTR_KIND_UW_TABLE:
1523     return Attribute::UWTable;
1524   case bitc::ATTR_KIND_WILLRETURN:
1525     return Attribute::WillReturn;
1526   case bitc::ATTR_KIND_WRITEONLY:
1527     return Attribute::WriteOnly;
1528   case bitc::ATTR_KIND_Z_EXT:
1529     return Attribute::ZExt;
1530   case bitc::ATTR_KIND_IMMARG:
1531     return Attribute::ImmArg;
1532   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1533     return Attribute::SanitizeMemTag;
1534   case bitc::ATTR_KIND_PREALLOCATED:
1535     return Attribute::Preallocated;
1536   case bitc::ATTR_KIND_NOUNDEF:
1537     return Attribute::NoUndef;
1538   case bitc::ATTR_KIND_BYREF:
1539     return Attribute::ByRef;
1540   case bitc::ATTR_KIND_MUSTPROGRESS:
1541     return Attribute::MustProgress;
1542   case bitc::ATTR_KIND_HOT:
1543     return Attribute::Hot;
1544   }
1545 }
1546 
1547 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1548                                          MaybeAlign &Alignment) {
1549   // Note: Alignment in bitcode files is incremented by 1, so that zero
1550   // can be used for default alignment.
1551   if (Exponent > Value::MaxAlignmentExponent + 1)
1552     return error("Invalid alignment value");
1553   Alignment = decodeMaybeAlign(Exponent);
1554   return Error::success();
1555 }
1556 
1557 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1558   *Kind = getAttrFromCode(Code);
1559   if (*Kind == Attribute::None)
1560     return error("Unknown attribute kind (" + Twine(Code) + ")");
1561   return Error::success();
1562 }
1563 
1564 Error BitcodeReader::parseAttributeGroupBlock() {
1565   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1566     return Err;
1567 
1568   if (!MAttributeGroups.empty())
1569     return error("Invalid multiple blocks");
1570 
1571   SmallVector<uint64_t, 64> Record;
1572 
1573   // Read all the records.
1574   while (true) {
1575     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1576     if (!MaybeEntry)
1577       return MaybeEntry.takeError();
1578     BitstreamEntry Entry = MaybeEntry.get();
1579 
1580     switch (Entry.Kind) {
1581     case BitstreamEntry::SubBlock: // Handled for us already.
1582     case BitstreamEntry::Error:
1583       return error("Malformed block");
1584     case BitstreamEntry::EndBlock:
1585       return Error::success();
1586     case BitstreamEntry::Record:
1587       // The interesting case.
1588       break;
1589     }
1590 
1591     // Read a record.
1592     Record.clear();
1593     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1594     if (!MaybeRecord)
1595       return MaybeRecord.takeError();
1596     switch (MaybeRecord.get()) {
1597     default:  // Default behavior: ignore.
1598       break;
1599     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1600       if (Record.size() < 3)
1601         return error("Invalid record");
1602 
1603       uint64_t GrpID = Record[0];
1604       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1605 
1606       AttrBuilder B;
1607       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1608         if (Record[i] == 0) {        // Enum attribute
1609           Attribute::AttrKind Kind;
1610           if (Error Err = parseAttrKind(Record[++i], &Kind))
1611             return Err;
1612 
1613           // Upgrade old-style byval attribute to one with a type, even if it's
1614           // nullptr. We will have to insert the real type when we associate
1615           // this AttributeList with a function.
1616           if (Kind == Attribute::ByVal)
1617             B.addByValAttr(nullptr);
1618           else if (Kind == Attribute::StructRet)
1619             B.addStructRetAttr(nullptr);
1620 
1621           B.addAttribute(Kind);
1622         } else if (Record[i] == 1) { // Integer attribute
1623           Attribute::AttrKind Kind;
1624           if (Error Err = parseAttrKind(Record[++i], &Kind))
1625             return Err;
1626           if (Kind == Attribute::Alignment)
1627             B.addAlignmentAttr(Record[++i]);
1628           else if (Kind == Attribute::StackAlignment)
1629             B.addStackAlignmentAttr(Record[++i]);
1630           else if (Kind == Attribute::Dereferenceable)
1631             B.addDereferenceableAttr(Record[++i]);
1632           else if (Kind == Attribute::DereferenceableOrNull)
1633             B.addDereferenceableOrNullAttr(Record[++i]);
1634           else if (Kind == Attribute::AllocSize)
1635             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1636         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1637           bool HasValue = (Record[i++] == 4);
1638           SmallString<64> KindStr;
1639           SmallString<64> ValStr;
1640 
1641           while (Record[i] != 0 && i != e)
1642             KindStr += Record[i++];
1643           assert(Record[i] == 0 && "Kind string not null terminated");
1644 
1645           if (HasValue) {
1646             // Has a value associated with it.
1647             ++i; // Skip the '0' that terminates the "kind" string.
1648             while (Record[i] != 0 && i != e)
1649               ValStr += Record[i++];
1650             assert(Record[i] == 0 && "Value string not null terminated");
1651           }
1652 
1653           B.addAttribute(KindStr.str(), ValStr.str());
1654         } else {
1655           assert((Record[i] == 5 || Record[i] == 6) &&
1656                  "Invalid attribute group entry");
1657           bool HasType = Record[i] == 6;
1658           Attribute::AttrKind Kind;
1659           if (Error Err = parseAttrKind(Record[++i], &Kind))
1660             return Err;
1661           if (Kind == Attribute::ByVal) {
1662             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1663           } else if (Kind == Attribute::StructRet) {
1664             B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1665           } else if (Kind == Attribute::ByRef) {
1666             B.addByRefAttr(getTypeByID(Record[++i]));
1667           } else if (Kind == Attribute::Preallocated) {
1668             B.addPreallocatedAttr(getTypeByID(Record[++i]));
1669           }
1670         }
1671       }
1672 
1673       UpgradeAttributes(B);
1674       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1675       break;
1676     }
1677     }
1678   }
1679 }
1680 
1681 Error BitcodeReader::parseTypeTable() {
1682   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1683     return Err;
1684 
1685   return parseTypeTableBody();
1686 }
1687 
1688 Error BitcodeReader::parseTypeTableBody() {
1689   if (!TypeList.empty())
1690     return error("Invalid multiple blocks");
1691 
1692   SmallVector<uint64_t, 64> Record;
1693   unsigned NumRecords = 0;
1694 
1695   SmallString<64> TypeName;
1696 
1697   // Read all the records for this type table.
1698   while (true) {
1699     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1700     if (!MaybeEntry)
1701       return MaybeEntry.takeError();
1702     BitstreamEntry Entry = MaybeEntry.get();
1703 
1704     switch (Entry.Kind) {
1705     case BitstreamEntry::SubBlock: // Handled for us already.
1706     case BitstreamEntry::Error:
1707       return error("Malformed block");
1708     case BitstreamEntry::EndBlock:
1709       if (NumRecords != TypeList.size())
1710         return error("Malformed block");
1711       return Error::success();
1712     case BitstreamEntry::Record:
1713       // The interesting case.
1714       break;
1715     }
1716 
1717     // Read a record.
1718     Record.clear();
1719     Type *ResultTy = nullptr;
1720     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1721     if (!MaybeRecord)
1722       return MaybeRecord.takeError();
1723     switch (MaybeRecord.get()) {
1724     default:
1725       return error("Invalid value");
1726     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1727       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1728       // type list.  This allows us to reserve space.
1729       if (Record.empty())
1730         return error("Invalid record");
1731       TypeList.resize(Record[0]);
1732       continue;
1733     case bitc::TYPE_CODE_VOID:      // VOID
1734       ResultTy = Type::getVoidTy(Context);
1735       break;
1736     case bitc::TYPE_CODE_HALF:     // HALF
1737       ResultTy = Type::getHalfTy(Context);
1738       break;
1739     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1740       ResultTy = Type::getBFloatTy(Context);
1741       break;
1742     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1743       ResultTy = Type::getFloatTy(Context);
1744       break;
1745     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1746       ResultTy = Type::getDoubleTy(Context);
1747       break;
1748     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1749       ResultTy = Type::getX86_FP80Ty(Context);
1750       break;
1751     case bitc::TYPE_CODE_FP128:     // FP128
1752       ResultTy = Type::getFP128Ty(Context);
1753       break;
1754     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1755       ResultTy = Type::getPPC_FP128Ty(Context);
1756       break;
1757     case bitc::TYPE_CODE_LABEL:     // LABEL
1758       ResultTy = Type::getLabelTy(Context);
1759       break;
1760     case bitc::TYPE_CODE_METADATA:  // METADATA
1761       ResultTy = Type::getMetadataTy(Context);
1762       break;
1763     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1764       ResultTy = Type::getX86_MMXTy(Context);
1765       break;
1766     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1767       ResultTy = Type::getX86_AMXTy(Context);
1768       break;
1769     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1770       ResultTy = Type::getTokenTy(Context);
1771       break;
1772     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1773       if (Record.empty())
1774         return error("Invalid record");
1775 
1776       uint64_t NumBits = Record[0];
1777       if (NumBits < IntegerType::MIN_INT_BITS ||
1778           NumBits > IntegerType::MAX_INT_BITS)
1779         return error("Bitwidth for integer type out of range");
1780       ResultTy = IntegerType::get(Context, NumBits);
1781       break;
1782     }
1783     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1784                                     //          [pointee type, address space]
1785       if (Record.empty())
1786         return error("Invalid record");
1787       unsigned AddressSpace = 0;
1788       if (Record.size() == 2)
1789         AddressSpace = Record[1];
1790       ResultTy = getTypeByID(Record[0]);
1791       if (!ResultTy ||
1792           !PointerType::isValidElementType(ResultTy))
1793         return error("Invalid type");
1794       ResultTy = PointerType::get(ResultTy, AddressSpace);
1795       break;
1796     }
1797     case bitc::TYPE_CODE_FUNCTION_OLD: {
1798       // Deprecated, but still needed to read old bitcode files.
1799       // FUNCTION: [vararg, attrid, retty, paramty x N]
1800       if (Record.size() < 3)
1801         return error("Invalid record");
1802       SmallVector<Type*, 8> ArgTys;
1803       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1804         if (Type *T = getTypeByID(Record[i]))
1805           ArgTys.push_back(T);
1806         else
1807           break;
1808       }
1809 
1810       ResultTy = getTypeByID(Record[2]);
1811       if (!ResultTy || ArgTys.size() < Record.size()-3)
1812         return error("Invalid type");
1813 
1814       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1815       break;
1816     }
1817     case bitc::TYPE_CODE_FUNCTION: {
1818       // FUNCTION: [vararg, retty, paramty x N]
1819       if (Record.size() < 2)
1820         return error("Invalid record");
1821       SmallVector<Type*, 8> ArgTys;
1822       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1823         if (Type *T = getTypeByID(Record[i])) {
1824           if (!FunctionType::isValidArgumentType(T))
1825             return error("Invalid function argument type");
1826           ArgTys.push_back(T);
1827         }
1828         else
1829           break;
1830       }
1831 
1832       ResultTy = getTypeByID(Record[1]);
1833       if (!ResultTy || ArgTys.size() < Record.size()-2)
1834         return error("Invalid type");
1835 
1836       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1837       break;
1838     }
1839     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1840       if (Record.empty())
1841         return error("Invalid record");
1842       SmallVector<Type*, 8> EltTys;
1843       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1844         if (Type *T = getTypeByID(Record[i]))
1845           EltTys.push_back(T);
1846         else
1847           break;
1848       }
1849       if (EltTys.size() != Record.size()-1)
1850         return error("Invalid type");
1851       ResultTy = StructType::get(Context, EltTys, Record[0]);
1852       break;
1853     }
1854     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1855       if (convertToString(Record, 0, TypeName))
1856         return error("Invalid record");
1857       continue;
1858 
1859     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1860       if (Record.empty())
1861         return error("Invalid record");
1862 
1863       if (NumRecords >= TypeList.size())
1864         return error("Invalid TYPE table");
1865 
1866       // Check to see if this was forward referenced, if so fill in the temp.
1867       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1868       if (Res) {
1869         Res->setName(TypeName);
1870         TypeList[NumRecords] = nullptr;
1871       } else  // Otherwise, create a new struct.
1872         Res = createIdentifiedStructType(Context, TypeName);
1873       TypeName.clear();
1874 
1875       SmallVector<Type*, 8> EltTys;
1876       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1877         if (Type *T = getTypeByID(Record[i]))
1878           EltTys.push_back(T);
1879         else
1880           break;
1881       }
1882       if (EltTys.size() != Record.size()-1)
1883         return error("Invalid record");
1884       Res->setBody(EltTys, Record[0]);
1885       ResultTy = Res;
1886       break;
1887     }
1888     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1889       if (Record.size() != 1)
1890         return error("Invalid record");
1891 
1892       if (NumRecords >= TypeList.size())
1893         return error("Invalid TYPE table");
1894 
1895       // Check to see if this was forward referenced, if so fill in the temp.
1896       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1897       if (Res) {
1898         Res->setName(TypeName);
1899         TypeList[NumRecords] = nullptr;
1900       } else  // Otherwise, create a new struct with no body.
1901         Res = createIdentifiedStructType(Context, TypeName);
1902       TypeName.clear();
1903       ResultTy = Res;
1904       break;
1905     }
1906     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1907       if (Record.size() < 2)
1908         return error("Invalid record");
1909       ResultTy = getTypeByID(Record[1]);
1910       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1911         return error("Invalid type");
1912       ResultTy = ArrayType::get(ResultTy, Record[0]);
1913       break;
1914     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1915                                     //         [numelts, eltty, scalable]
1916       if (Record.size() < 2)
1917         return error("Invalid record");
1918       if (Record[0] == 0)
1919         return error("Invalid vector length");
1920       ResultTy = getTypeByID(Record[1]);
1921       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1922         return error("Invalid type");
1923       bool Scalable = Record.size() > 2 ? Record[2] : false;
1924       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1925       break;
1926     }
1927 
1928     if (NumRecords >= TypeList.size())
1929       return error("Invalid TYPE table");
1930     if (TypeList[NumRecords])
1931       return error(
1932           "Invalid TYPE table: Only named structs can be forward referenced");
1933     assert(ResultTy && "Didn't read a type?");
1934     TypeList[NumRecords++] = ResultTy;
1935   }
1936 }
1937 
1938 Error BitcodeReader::parseOperandBundleTags() {
1939   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1940     return Err;
1941 
1942   if (!BundleTags.empty())
1943     return error("Invalid multiple blocks");
1944 
1945   SmallVector<uint64_t, 64> Record;
1946 
1947   while (true) {
1948     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1949     if (!MaybeEntry)
1950       return MaybeEntry.takeError();
1951     BitstreamEntry Entry = MaybeEntry.get();
1952 
1953     switch (Entry.Kind) {
1954     case BitstreamEntry::SubBlock: // Handled for us already.
1955     case BitstreamEntry::Error:
1956       return error("Malformed block");
1957     case BitstreamEntry::EndBlock:
1958       return Error::success();
1959     case BitstreamEntry::Record:
1960       // The interesting case.
1961       break;
1962     }
1963 
1964     // Tags are implicitly mapped to integers by their order.
1965 
1966     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1967     if (!MaybeRecord)
1968       return MaybeRecord.takeError();
1969     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1970       return error("Invalid record");
1971 
1972     // OPERAND_BUNDLE_TAG: [strchr x N]
1973     BundleTags.emplace_back();
1974     if (convertToString(Record, 0, BundleTags.back()))
1975       return error("Invalid record");
1976     Record.clear();
1977   }
1978 }
1979 
1980 Error BitcodeReader::parseSyncScopeNames() {
1981   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1982     return Err;
1983 
1984   if (!SSIDs.empty())
1985     return error("Invalid multiple synchronization scope names blocks");
1986 
1987   SmallVector<uint64_t, 64> Record;
1988   while (true) {
1989     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1990     if (!MaybeEntry)
1991       return MaybeEntry.takeError();
1992     BitstreamEntry Entry = MaybeEntry.get();
1993 
1994     switch (Entry.Kind) {
1995     case BitstreamEntry::SubBlock: // Handled for us already.
1996     case BitstreamEntry::Error:
1997       return error("Malformed block");
1998     case BitstreamEntry::EndBlock:
1999       if (SSIDs.empty())
2000         return error("Invalid empty synchronization scope names block");
2001       return Error::success();
2002     case BitstreamEntry::Record:
2003       // The interesting case.
2004       break;
2005     }
2006 
2007     // Synchronization scope names are implicitly mapped to synchronization
2008     // scope IDs by their order.
2009 
2010     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2011     if (!MaybeRecord)
2012       return MaybeRecord.takeError();
2013     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2014       return error("Invalid record");
2015 
2016     SmallString<16> SSN;
2017     if (convertToString(Record, 0, SSN))
2018       return error("Invalid record");
2019 
2020     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2021     Record.clear();
2022   }
2023 }
2024 
2025 /// Associate a value with its name from the given index in the provided record.
2026 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2027                                              unsigned NameIndex, Triple &TT) {
2028   SmallString<128> ValueName;
2029   if (convertToString(Record, NameIndex, ValueName))
2030     return error("Invalid record");
2031   unsigned ValueID = Record[0];
2032   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2033     return error("Invalid record");
2034   Value *V = ValueList[ValueID];
2035 
2036   StringRef NameStr(ValueName.data(), ValueName.size());
2037   if (NameStr.find_first_of(0) != StringRef::npos)
2038     return error("Invalid value name");
2039   V->setName(NameStr);
2040   auto *GO = dyn_cast<GlobalObject>(V);
2041   if (GO) {
2042     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2043       if (TT.supportsCOMDAT())
2044         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2045       else
2046         GO->setComdat(nullptr);
2047     }
2048   }
2049   return V;
2050 }
2051 
2052 /// Helper to note and return the current location, and jump to the given
2053 /// offset.
2054 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2055                                                  BitstreamCursor &Stream) {
2056   // Save the current parsing location so we can jump back at the end
2057   // of the VST read.
2058   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2059   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2060     return std::move(JumpFailed);
2061   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2062   if (!MaybeEntry)
2063     return MaybeEntry.takeError();
2064   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2065   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2066   return CurrentBit;
2067 }
2068 
2069 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2070                                             Function *F,
2071                                             ArrayRef<uint64_t> Record) {
2072   // Note that we subtract 1 here because the offset is relative to one word
2073   // before the start of the identification or module block, which was
2074   // historically always the start of the regular bitcode header.
2075   uint64_t FuncWordOffset = Record[1] - 1;
2076   uint64_t FuncBitOffset = FuncWordOffset * 32;
2077   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2078   // Set the LastFunctionBlockBit to point to the last function block.
2079   // Later when parsing is resumed after function materialization,
2080   // we can simply skip that last function block.
2081   if (FuncBitOffset > LastFunctionBlockBit)
2082     LastFunctionBlockBit = FuncBitOffset;
2083 }
2084 
2085 /// Read a new-style GlobalValue symbol table.
2086 Error BitcodeReader::parseGlobalValueSymbolTable() {
2087   unsigned FuncBitcodeOffsetDelta =
2088       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2089 
2090   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2091     return Err;
2092 
2093   SmallVector<uint64_t, 64> Record;
2094   while (true) {
2095     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2096     if (!MaybeEntry)
2097       return MaybeEntry.takeError();
2098     BitstreamEntry Entry = MaybeEntry.get();
2099 
2100     switch (Entry.Kind) {
2101     case BitstreamEntry::SubBlock:
2102     case BitstreamEntry::Error:
2103       return error("Malformed block");
2104     case BitstreamEntry::EndBlock:
2105       return Error::success();
2106     case BitstreamEntry::Record:
2107       break;
2108     }
2109 
2110     Record.clear();
2111     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2112     if (!MaybeRecord)
2113       return MaybeRecord.takeError();
2114     switch (MaybeRecord.get()) {
2115     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2116       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2117                               cast<Function>(ValueList[Record[0]]), Record);
2118       break;
2119     }
2120   }
2121 }
2122 
2123 /// Parse the value symbol table at either the current parsing location or
2124 /// at the given bit offset if provided.
2125 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2126   uint64_t CurrentBit;
2127   // Pass in the Offset to distinguish between calling for the module-level
2128   // VST (where we want to jump to the VST offset) and the function-level
2129   // VST (where we don't).
2130   if (Offset > 0) {
2131     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2132     if (!MaybeCurrentBit)
2133       return MaybeCurrentBit.takeError();
2134     CurrentBit = MaybeCurrentBit.get();
2135     // If this module uses a string table, read this as a module-level VST.
2136     if (UseStrtab) {
2137       if (Error Err = parseGlobalValueSymbolTable())
2138         return Err;
2139       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2140         return JumpFailed;
2141       return Error::success();
2142     }
2143     // Otherwise, the VST will be in a similar format to a function-level VST,
2144     // and will contain symbol names.
2145   }
2146 
2147   // Compute the delta between the bitcode indices in the VST (the word offset
2148   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2149   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2150   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2151   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2152   // just before entering the VST subblock because: 1) the EnterSubBlock
2153   // changes the AbbrevID width; 2) the VST block is nested within the same
2154   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2155   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2156   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2157   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2158   unsigned FuncBitcodeOffsetDelta =
2159       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2160 
2161   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2162     return Err;
2163 
2164   SmallVector<uint64_t, 64> Record;
2165 
2166   Triple TT(TheModule->getTargetTriple());
2167 
2168   // Read all the records for this value table.
2169   SmallString<128> ValueName;
2170 
2171   while (true) {
2172     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2173     if (!MaybeEntry)
2174       return MaybeEntry.takeError();
2175     BitstreamEntry Entry = MaybeEntry.get();
2176 
2177     switch (Entry.Kind) {
2178     case BitstreamEntry::SubBlock: // Handled for us already.
2179     case BitstreamEntry::Error:
2180       return error("Malformed block");
2181     case BitstreamEntry::EndBlock:
2182       if (Offset > 0)
2183         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2184           return JumpFailed;
2185       return Error::success();
2186     case BitstreamEntry::Record:
2187       // The interesting case.
2188       break;
2189     }
2190 
2191     // Read a record.
2192     Record.clear();
2193     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2194     if (!MaybeRecord)
2195       return MaybeRecord.takeError();
2196     switch (MaybeRecord.get()) {
2197     default:  // Default behavior: unknown type.
2198       break;
2199     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2200       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2201       if (Error Err = ValOrErr.takeError())
2202         return Err;
2203       ValOrErr.get();
2204       break;
2205     }
2206     case bitc::VST_CODE_FNENTRY: {
2207       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2208       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2209       if (Error Err = ValOrErr.takeError())
2210         return Err;
2211       Value *V = ValOrErr.get();
2212 
2213       // Ignore function offsets emitted for aliases of functions in older
2214       // versions of LLVM.
2215       if (auto *F = dyn_cast<Function>(V))
2216         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2217       break;
2218     }
2219     case bitc::VST_CODE_BBENTRY: {
2220       if (convertToString(Record, 1, ValueName))
2221         return error("Invalid record");
2222       BasicBlock *BB = getBasicBlock(Record[0]);
2223       if (!BB)
2224         return error("Invalid record");
2225 
2226       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2227       ValueName.clear();
2228       break;
2229     }
2230     }
2231   }
2232 }
2233 
2234 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2235 /// encoding.
2236 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2237   if ((V & 1) == 0)
2238     return V >> 1;
2239   if (V != 1)
2240     return -(V >> 1);
2241   // There is no such thing as -0 with integers.  "-0" really means MININT.
2242   return 1ULL << 63;
2243 }
2244 
2245 /// Resolve all of the initializers for global values and aliases that we can.
2246 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2247   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2248   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2249       IndirectSymbolInitWorklist;
2250   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2251   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2252   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2253 
2254   GlobalInitWorklist.swap(GlobalInits);
2255   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2256   FunctionPrefixWorklist.swap(FunctionPrefixes);
2257   FunctionPrologueWorklist.swap(FunctionPrologues);
2258   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2259 
2260   while (!GlobalInitWorklist.empty()) {
2261     unsigned ValID = GlobalInitWorklist.back().second;
2262     if (ValID >= ValueList.size()) {
2263       // Not ready to resolve this yet, it requires something later in the file.
2264       GlobalInits.push_back(GlobalInitWorklist.back());
2265     } else {
2266       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2267         GlobalInitWorklist.back().first->setInitializer(C);
2268       else
2269         return error("Expected a constant");
2270     }
2271     GlobalInitWorklist.pop_back();
2272   }
2273 
2274   while (!IndirectSymbolInitWorklist.empty()) {
2275     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2276     if (ValID >= ValueList.size()) {
2277       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2278     } else {
2279       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2280       if (!C)
2281         return error("Expected a constant");
2282       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2283       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2284         return error("Alias and aliasee types don't match");
2285       GIS->setIndirectSymbol(C);
2286     }
2287     IndirectSymbolInitWorklist.pop_back();
2288   }
2289 
2290   while (!FunctionPrefixWorklist.empty()) {
2291     unsigned ValID = FunctionPrefixWorklist.back().second;
2292     if (ValID >= ValueList.size()) {
2293       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2294     } else {
2295       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2296         FunctionPrefixWorklist.back().first->setPrefixData(C);
2297       else
2298         return error("Expected a constant");
2299     }
2300     FunctionPrefixWorklist.pop_back();
2301   }
2302 
2303   while (!FunctionPrologueWorklist.empty()) {
2304     unsigned ValID = FunctionPrologueWorklist.back().second;
2305     if (ValID >= ValueList.size()) {
2306       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2307     } else {
2308       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2309         FunctionPrologueWorklist.back().first->setPrologueData(C);
2310       else
2311         return error("Expected a constant");
2312     }
2313     FunctionPrologueWorklist.pop_back();
2314   }
2315 
2316   while (!FunctionPersonalityFnWorklist.empty()) {
2317     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2318     if (ValID >= ValueList.size()) {
2319       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2320     } else {
2321       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2322         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2323       else
2324         return error("Expected a constant");
2325     }
2326     FunctionPersonalityFnWorklist.pop_back();
2327   }
2328 
2329   return Error::success();
2330 }
2331 
2332 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2333   SmallVector<uint64_t, 8> Words(Vals.size());
2334   transform(Vals, Words.begin(),
2335                  BitcodeReader::decodeSignRotatedValue);
2336 
2337   return APInt(TypeBits, Words);
2338 }
2339 
2340 Error BitcodeReader::parseConstants() {
2341   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2342     return Err;
2343 
2344   SmallVector<uint64_t, 64> Record;
2345 
2346   // Read all the records for this value table.
2347   Type *CurTy = Type::getInt32Ty(Context);
2348   Type *CurFullTy = Type::getInt32Ty(Context);
2349   unsigned NextCstNo = ValueList.size();
2350 
2351   struct DelayedShufTy {
2352     VectorType *OpTy;
2353     VectorType *RTy;
2354     Type *CurFullTy;
2355     uint64_t Op0Idx;
2356     uint64_t Op1Idx;
2357     uint64_t Op2Idx;
2358     unsigned CstNo;
2359   };
2360   std::vector<DelayedShufTy> DelayedShuffles;
2361   while (true) {
2362     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2363     if (!MaybeEntry)
2364       return MaybeEntry.takeError();
2365     BitstreamEntry Entry = MaybeEntry.get();
2366 
2367     switch (Entry.Kind) {
2368     case BitstreamEntry::SubBlock: // Handled for us already.
2369     case BitstreamEntry::Error:
2370       return error("Malformed block");
2371     case BitstreamEntry::EndBlock:
2372       // Once all the constants have been read, go through and resolve forward
2373       // references.
2374       //
2375       // We have to treat shuffles specially because they don't have three
2376       // operands anymore.  We need to convert the shuffle mask into an array,
2377       // and we can't convert a forward reference.
2378       for (auto &DelayedShuffle : DelayedShuffles) {
2379         VectorType *OpTy = DelayedShuffle.OpTy;
2380         VectorType *RTy = DelayedShuffle.RTy;
2381         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2382         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2383         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2384         uint64_t CstNo = DelayedShuffle.CstNo;
2385         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2386         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2387         Type *ShufTy =
2388             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2389         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2390         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2391           return error("Invalid shufflevector operands");
2392         SmallVector<int, 16> Mask;
2393         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2394         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2395         ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy);
2396       }
2397 
2398       if (NextCstNo != ValueList.size())
2399         return error("Invalid constant reference");
2400 
2401       ValueList.resolveConstantForwardRefs();
2402       return Error::success();
2403     case BitstreamEntry::Record:
2404       // The interesting case.
2405       break;
2406     }
2407 
2408     // Read a record.
2409     Record.clear();
2410     Type *VoidType = Type::getVoidTy(Context);
2411     Value *V = nullptr;
2412     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2413     if (!MaybeBitCode)
2414       return MaybeBitCode.takeError();
2415     switch (unsigned BitCode = MaybeBitCode.get()) {
2416     default:  // Default behavior: unknown constant
2417     case bitc::CST_CODE_UNDEF:     // UNDEF
2418       V = UndefValue::get(CurTy);
2419       break;
2420     case bitc::CST_CODE_POISON:    // POISON
2421       V = PoisonValue::get(CurTy);
2422       break;
2423     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2424       if (Record.empty())
2425         return error("Invalid record");
2426       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2427         return error("Invalid record");
2428       if (TypeList[Record[0]] == VoidType)
2429         return error("Invalid constant type");
2430       CurFullTy = TypeList[Record[0]];
2431       CurTy = flattenPointerTypes(CurFullTy);
2432       continue;  // Skip the ValueList manipulation.
2433     case bitc::CST_CODE_NULL:      // NULL
2434       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2435         return error("Invalid type for a constant null value");
2436       V = Constant::getNullValue(CurTy);
2437       break;
2438     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2439       if (!CurTy->isIntegerTy() || Record.empty())
2440         return error("Invalid record");
2441       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2442       break;
2443     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2444       if (!CurTy->isIntegerTy() || Record.empty())
2445         return error("Invalid record");
2446 
2447       APInt VInt =
2448           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2449       V = ConstantInt::get(Context, VInt);
2450 
2451       break;
2452     }
2453     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2454       if (Record.empty())
2455         return error("Invalid record");
2456       if (CurTy->isHalfTy())
2457         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2458                                              APInt(16, (uint16_t)Record[0])));
2459       else if (CurTy->isBFloatTy())
2460         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2461                                              APInt(16, (uint32_t)Record[0])));
2462       else if (CurTy->isFloatTy())
2463         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2464                                              APInt(32, (uint32_t)Record[0])));
2465       else if (CurTy->isDoubleTy())
2466         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2467                                              APInt(64, Record[0])));
2468       else if (CurTy->isX86_FP80Ty()) {
2469         // Bits are not stored the same way as a normal i80 APInt, compensate.
2470         uint64_t Rearrange[2];
2471         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2472         Rearrange[1] = Record[0] >> 48;
2473         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2474                                              APInt(80, Rearrange)));
2475       } else if (CurTy->isFP128Ty())
2476         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2477                                              APInt(128, Record)));
2478       else if (CurTy->isPPC_FP128Ty())
2479         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2480                                              APInt(128, Record)));
2481       else
2482         V = UndefValue::get(CurTy);
2483       break;
2484     }
2485 
2486     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2487       if (Record.empty())
2488         return error("Invalid record");
2489 
2490       unsigned Size = Record.size();
2491       SmallVector<Constant*, 16> Elts;
2492 
2493       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2494         for (unsigned i = 0; i != Size; ++i)
2495           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2496                                                      STy->getElementType(i)));
2497         V = ConstantStruct::get(STy, Elts);
2498       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2499         Type *EltTy = ATy->getElementType();
2500         for (unsigned i = 0; i != Size; ++i)
2501           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2502         V = ConstantArray::get(ATy, Elts);
2503       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2504         Type *EltTy = VTy->getElementType();
2505         for (unsigned i = 0; i != Size; ++i)
2506           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2507         V = ConstantVector::get(Elts);
2508       } else {
2509         V = UndefValue::get(CurTy);
2510       }
2511       break;
2512     }
2513     case bitc::CST_CODE_STRING:    // STRING: [values]
2514     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2515       if (Record.empty())
2516         return error("Invalid record");
2517 
2518       SmallString<16> Elts(Record.begin(), Record.end());
2519       V = ConstantDataArray::getString(Context, Elts,
2520                                        BitCode == bitc::CST_CODE_CSTRING);
2521       break;
2522     }
2523     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2524       if (Record.empty())
2525         return error("Invalid record");
2526 
2527       Type *EltTy;
2528       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2529         EltTy = Array->getElementType();
2530       else
2531         EltTy = cast<VectorType>(CurTy)->getElementType();
2532       if (EltTy->isIntegerTy(8)) {
2533         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2534         if (isa<VectorType>(CurTy))
2535           V = ConstantDataVector::get(Context, Elts);
2536         else
2537           V = ConstantDataArray::get(Context, Elts);
2538       } else if (EltTy->isIntegerTy(16)) {
2539         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2540         if (isa<VectorType>(CurTy))
2541           V = ConstantDataVector::get(Context, Elts);
2542         else
2543           V = ConstantDataArray::get(Context, Elts);
2544       } else if (EltTy->isIntegerTy(32)) {
2545         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2546         if (isa<VectorType>(CurTy))
2547           V = ConstantDataVector::get(Context, Elts);
2548         else
2549           V = ConstantDataArray::get(Context, Elts);
2550       } else if (EltTy->isIntegerTy(64)) {
2551         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2552         if (isa<VectorType>(CurTy))
2553           V = ConstantDataVector::get(Context, Elts);
2554         else
2555           V = ConstantDataArray::get(Context, Elts);
2556       } else if (EltTy->isHalfTy()) {
2557         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2558         if (isa<VectorType>(CurTy))
2559           V = ConstantDataVector::getFP(EltTy, Elts);
2560         else
2561           V = ConstantDataArray::getFP(EltTy, Elts);
2562       } else if (EltTy->isBFloatTy()) {
2563         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2564         if (isa<VectorType>(CurTy))
2565           V = ConstantDataVector::getFP(EltTy, Elts);
2566         else
2567           V = ConstantDataArray::getFP(EltTy, Elts);
2568       } else if (EltTy->isFloatTy()) {
2569         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2570         if (isa<VectorType>(CurTy))
2571           V = ConstantDataVector::getFP(EltTy, Elts);
2572         else
2573           V = ConstantDataArray::getFP(EltTy, Elts);
2574       } else if (EltTy->isDoubleTy()) {
2575         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2576         if (isa<VectorType>(CurTy))
2577           V = ConstantDataVector::getFP(EltTy, Elts);
2578         else
2579           V = ConstantDataArray::getFP(EltTy, Elts);
2580       } else {
2581         return error("Invalid type for value");
2582       }
2583       break;
2584     }
2585     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2586       if (Record.size() < 2)
2587         return error("Invalid record");
2588       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2589       if (Opc < 0) {
2590         V = UndefValue::get(CurTy);  // Unknown unop.
2591       } else {
2592         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2593         unsigned Flags = 0;
2594         V = ConstantExpr::get(Opc, LHS, Flags);
2595       }
2596       break;
2597     }
2598     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2599       if (Record.size() < 3)
2600         return error("Invalid record");
2601       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2602       if (Opc < 0) {
2603         V = UndefValue::get(CurTy);  // Unknown binop.
2604       } else {
2605         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2606         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2607         unsigned Flags = 0;
2608         if (Record.size() >= 4) {
2609           if (Opc == Instruction::Add ||
2610               Opc == Instruction::Sub ||
2611               Opc == Instruction::Mul ||
2612               Opc == Instruction::Shl) {
2613             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2614               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2615             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2616               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2617           } else if (Opc == Instruction::SDiv ||
2618                      Opc == Instruction::UDiv ||
2619                      Opc == Instruction::LShr ||
2620                      Opc == Instruction::AShr) {
2621             if (Record[3] & (1 << bitc::PEO_EXACT))
2622               Flags |= SDivOperator::IsExact;
2623           }
2624         }
2625         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2626       }
2627       break;
2628     }
2629     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2630       if (Record.size() < 3)
2631         return error("Invalid record");
2632       int Opc = getDecodedCastOpcode(Record[0]);
2633       if (Opc < 0) {
2634         V = UndefValue::get(CurTy);  // Unknown cast.
2635       } else {
2636         Type *OpTy = getTypeByID(Record[1]);
2637         if (!OpTy)
2638           return error("Invalid record");
2639         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2640         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2641         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2642       }
2643       break;
2644     }
2645     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2646     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2647     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2648                                                      // operands]
2649       unsigned OpNum = 0;
2650       Type *PointeeType = nullptr;
2651       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2652           Record.size() % 2)
2653         PointeeType = getTypeByID(Record[OpNum++]);
2654 
2655       bool InBounds = false;
2656       Optional<unsigned> InRangeIndex;
2657       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2658         uint64_t Op = Record[OpNum++];
2659         InBounds = Op & 1;
2660         InRangeIndex = Op >> 1;
2661       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2662         InBounds = true;
2663 
2664       SmallVector<Constant*, 16> Elts;
2665       Type *Elt0FullTy = nullptr;
2666       while (OpNum != Record.size()) {
2667         if (!Elt0FullTy)
2668           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2669         Type *ElTy = getTypeByID(Record[OpNum++]);
2670         if (!ElTy)
2671           return error("Invalid record");
2672         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2673       }
2674 
2675       if (Elts.size() < 1)
2676         return error("Invalid gep with no operands");
2677 
2678       Type *ImplicitPointeeType =
2679           getPointerElementFlatType(Elt0FullTy->getScalarType());
2680       if (!PointeeType)
2681         PointeeType = ImplicitPointeeType;
2682       else if (PointeeType != ImplicitPointeeType)
2683         return error("Explicit gep operator type does not match pointee type "
2684                      "of pointer operand");
2685 
2686       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2687       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2688                                          InBounds, InRangeIndex);
2689       break;
2690     }
2691     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2692       if (Record.size() < 3)
2693         return error("Invalid record");
2694 
2695       Type *SelectorTy = Type::getInt1Ty(Context);
2696 
2697       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2698       // Get the type from the ValueList before getting a forward ref.
2699       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2700         if (Value *V = ValueList[Record[0]])
2701           if (SelectorTy != V->getType())
2702             SelectorTy = VectorType::get(SelectorTy,
2703                                          VTy->getElementCount());
2704 
2705       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2706                                                               SelectorTy),
2707                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2708                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2709       break;
2710     }
2711     case bitc::CST_CODE_CE_EXTRACTELT
2712         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2713       if (Record.size() < 3)
2714         return error("Invalid record");
2715       VectorType *OpTy =
2716         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2717       if (!OpTy)
2718         return error("Invalid record");
2719       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2720       Constant *Op1 = nullptr;
2721       if (Record.size() == 4) {
2722         Type *IdxTy = getTypeByID(Record[2]);
2723         if (!IdxTy)
2724           return error("Invalid record");
2725         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2726       } else {
2727         // Deprecated, but still needed to read old bitcode files.
2728         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2729       }
2730       if (!Op1)
2731         return error("Invalid record");
2732       V = ConstantExpr::getExtractElement(Op0, Op1);
2733       break;
2734     }
2735     case bitc::CST_CODE_CE_INSERTELT
2736         : { // CE_INSERTELT: [opval, opval, opty, opval]
2737       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2738       if (Record.size() < 3 || !OpTy)
2739         return error("Invalid record");
2740       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2741       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2742                                                   OpTy->getElementType());
2743       Constant *Op2 = nullptr;
2744       if (Record.size() == 4) {
2745         Type *IdxTy = getTypeByID(Record[2]);
2746         if (!IdxTy)
2747           return error("Invalid record");
2748         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2749       } else {
2750         // Deprecated, but still needed to read old bitcode files.
2751         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2752       }
2753       if (!Op2)
2754         return error("Invalid record");
2755       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2756       break;
2757     }
2758     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2759       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2760       if (Record.size() < 3 || !OpTy)
2761         return error("Invalid record");
2762       DelayedShuffles.push_back(
2763           {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo});
2764       ++NextCstNo;
2765       continue;
2766     }
2767     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2768       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2769       VectorType *OpTy =
2770         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2771       if (Record.size() < 4 || !RTy || !OpTy)
2772         return error("Invalid record");
2773       DelayedShuffles.push_back(
2774           {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo});
2775       ++NextCstNo;
2776       continue;
2777     }
2778     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2779       if (Record.size() < 4)
2780         return error("Invalid record");
2781       Type *OpTy = getTypeByID(Record[0]);
2782       if (!OpTy)
2783         return error("Invalid record");
2784       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2785       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2786 
2787       if (OpTy->isFPOrFPVectorTy())
2788         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2789       else
2790         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2791       break;
2792     }
2793     // This maintains backward compatibility, pre-asm dialect keywords.
2794     // Deprecated, but still needed to read old bitcode files.
2795     case bitc::CST_CODE_INLINEASM_OLD: {
2796       if (Record.size() < 2)
2797         return error("Invalid record");
2798       std::string AsmStr, ConstrStr;
2799       bool HasSideEffects = Record[0] & 1;
2800       bool IsAlignStack = Record[0] >> 1;
2801       unsigned AsmStrSize = Record[1];
2802       if (2+AsmStrSize >= Record.size())
2803         return error("Invalid record");
2804       unsigned ConstStrSize = Record[2+AsmStrSize];
2805       if (3+AsmStrSize+ConstStrSize > Record.size())
2806         return error("Invalid record");
2807 
2808       for (unsigned i = 0; i != AsmStrSize; ++i)
2809         AsmStr += (char)Record[2+i];
2810       for (unsigned i = 0; i != ConstStrSize; ++i)
2811         ConstrStr += (char)Record[3+AsmStrSize+i];
2812       UpgradeInlineAsmString(&AsmStr);
2813       V = InlineAsm::get(
2814           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2815           ConstrStr, HasSideEffects, IsAlignStack);
2816       break;
2817     }
2818     // This version adds support for the asm dialect keywords (e.g.,
2819     // inteldialect).
2820     case bitc::CST_CODE_INLINEASM: {
2821       if (Record.size() < 2)
2822         return error("Invalid record");
2823       std::string AsmStr, ConstrStr;
2824       bool HasSideEffects = Record[0] & 1;
2825       bool IsAlignStack = (Record[0] >> 1) & 1;
2826       unsigned AsmDialect = Record[0] >> 2;
2827       unsigned AsmStrSize = Record[1];
2828       if (2+AsmStrSize >= Record.size())
2829         return error("Invalid record");
2830       unsigned ConstStrSize = Record[2+AsmStrSize];
2831       if (3+AsmStrSize+ConstStrSize > Record.size())
2832         return error("Invalid record");
2833 
2834       for (unsigned i = 0; i != AsmStrSize; ++i)
2835         AsmStr += (char)Record[2+i];
2836       for (unsigned i = 0; i != ConstStrSize; ++i)
2837         ConstrStr += (char)Record[3+AsmStrSize+i];
2838       UpgradeInlineAsmString(&AsmStr);
2839       V = InlineAsm::get(
2840           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2841           ConstrStr, HasSideEffects, IsAlignStack,
2842           InlineAsm::AsmDialect(AsmDialect));
2843       break;
2844     }
2845     case bitc::CST_CODE_BLOCKADDRESS:{
2846       if (Record.size() < 3)
2847         return error("Invalid record");
2848       Type *FnTy = getTypeByID(Record[0]);
2849       if (!FnTy)
2850         return error("Invalid record");
2851       Function *Fn =
2852         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2853       if (!Fn)
2854         return error("Invalid record");
2855 
2856       // If the function is already parsed we can insert the block address right
2857       // away.
2858       BasicBlock *BB;
2859       unsigned BBID = Record[2];
2860       if (!BBID)
2861         // Invalid reference to entry block.
2862         return error("Invalid ID");
2863       if (!Fn->empty()) {
2864         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2865         for (size_t I = 0, E = BBID; I != E; ++I) {
2866           if (BBI == BBE)
2867             return error("Invalid ID");
2868           ++BBI;
2869         }
2870         BB = &*BBI;
2871       } else {
2872         // Otherwise insert a placeholder and remember it so it can be inserted
2873         // when the function is parsed.
2874         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2875         if (FwdBBs.empty())
2876           BasicBlockFwdRefQueue.push_back(Fn);
2877         if (FwdBBs.size() < BBID + 1)
2878           FwdBBs.resize(BBID + 1);
2879         if (!FwdBBs[BBID])
2880           FwdBBs[BBID] = BasicBlock::Create(Context);
2881         BB = FwdBBs[BBID];
2882       }
2883       V = BlockAddress::get(Fn, BB);
2884       break;
2885     }
2886     }
2887 
2888     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2889            "Incorrect fully structured type provided for Constant");
2890     ValueList.assignValue(V, NextCstNo, CurFullTy);
2891     ++NextCstNo;
2892   }
2893 }
2894 
2895 Error BitcodeReader::parseUseLists() {
2896   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2897     return Err;
2898 
2899   // Read all the records.
2900   SmallVector<uint64_t, 64> Record;
2901 
2902   while (true) {
2903     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2904     if (!MaybeEntry)
2905       return MaybeEntry.takeError();
2906     BitstreamEntry Entry = MaybeEntry.get();
2907 
2908     switch (Entry.Kind) {
2909     case BitstreamEntry::SubBlock: // Handled for us already.
2910     case BitstreamEntry::Error:
2911       return error("Malformed block");
2912     case BitstreamEntry::EndBlock:
2913       return Error::success();
2914     case BitstreamEntry::Record:
2915       // The interesting case.
2916       break;
2917     }
2918 
2919     // Read a use list record.
2920     Record.clear();
2921     bool IsBB = false;
2922     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2923     if (!MaybeRecord)
2924       return MaybeRecord.takeError();
2925     switch (MaybeRecord.get()) {
2926     default:  // Default behavior: unknown type.
2927       break;
2928     case bitc::USELIST_CODE_BB:
2929       IsBB = true;
2930       LLVM_FALLTHROUGH;
2931     case bitc::USELIST_CODE_DEFAULT: {
2932       unsigned RecordLength = Record.size();
2933       if (RecordLength < 3)
2934         // Records should have at least an ID and two indexes.
2935         return error("Invalid record");
2936       unsigned ID = Record.back();
2937       Record.pop_back();
2938 
2939       Value *V;
2940       if (IsBB) {
2941         assert(ID < FunctionBBs.size() && "Basic block not found");
2942         V = FunctionBBs[ID];
2943       } else
2944         V = ValueList[ID];
2945       unsigned NumUses = 0;
2946       SmallDenseMap<const Use *, unsigned, 16> Order;
2947       for (const Use &U : V->materialized_uses()) {
2948         if (++NumUses > Record.size())
2949           break;
2950         Order[&U] = Record[NumUses - 1];
2951       }
2952       if (Order.size() != Record.size() || NumUses > Record.size())
2953         // Mismatches can happen if the functions are being materialized lazily
2954         // (out-of-order), or a value has been upgraded.
2955         break;
2956 
2957       V->sortUseList([&](const Use &L, const Use &R) {
2958         return Order.lookup(&L) < Order.lookup(&R);
2959       });
2960       break;
2961     }
2962     }
2963   }
2964 }
2965 
2966 /// When we see the block for metadata, remember where it is and then skip it.
2967 /// This lets us lazily deserialize the metadata.
2968 Error BitcodeReader::rememberAndSkipMetadata() {
2969   // Save the current stream state.
2970   uint64_t CurBit = Stream.GetCurrentBitNo();
2971   DeferredMetadataInfo.push_back(CurBit);
2972 
2973   // Skip over the block for now.
2974   if (Error Err = Stream.SkipBlock())
2975     return Err;
2976   return Error::success();
2977 }
2978 
2979 Error BitcodeReader::materializeMetadata() {
2980   for (uint64_t BitPos : DeferredMetadataInfo) {
2981     // Move the bit stream to the saved position.
2982     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2983       return JumpFailed;
2984     if (Error Err = MDLoader->parseModuleMetadata())
2985       return Err;
2986   }
2987 
2988   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2989   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
2990   // multiple times.
2991   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
2992     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2993       NamedMDNode *LinkerOpts =
2994           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2995       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2996         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2997     }
2998   }
2999 
3000   DeferredMetadataInfo.clear();
3001   return Error::success();
3002 }
3003 
3004 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3005 
3006 /// When we see the block for a function body, remember where it is and then
3007 /// skip it.  This lets us lazily deserialize the functions.
3008 Error BitcodeReader::rememberAndSkipFunctionBody() {
3009   // Get the function we are talking about.
3010   if (FunctionsWithBodies.empty())
3011     return error("Insufficient function protos");
3012 
3013   Function *Fn = FunctionsWithBodies.back();
3014   FunctionsWithBodies.pop_back();
3015 
3016   // Save the current stream state.
3017   uint64_t CurBit = Stream.GetCurrentBitNo();
3018   assert(
3019       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3020       "Mismatch between VST and scanned function offsets");
3021   DeferredFunctionInfo[Fn] = CurBit;
3022 
3023   // Skip over the function block for now.
3024   if (Error Err = Stream.SkipBlock())
3025     return Err;
3026   return Error::success();
3027 }
3028 
3029 Error BitcodeReader::globalCleanup() {
3030   // Patch the initializers for globals and aliases up.
3031   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3032     return Err;
3033   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3034     return error("Malformed global initializer set");
3035 
3036   // Look for intrinsic functions which need to be upgraded at some point
3037   // and functions that need to have their function attributes upgraded.
3038   for (Function &F : *TheModule) {
3039     MDLoader->upgradeDebugIntrinsics(F);
3040     Function *NewFn;
3041     if (UpgradeIntrinsicFunction(&F, NewFn))
3042       UpgradedIntrinsics[&F] = NewFn;
3043     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3044       // Some types could be renamed during loading if several modules are
3045       // loaded in the same LLVMContext (LTO scenario). In this case we should
3046       // remangle intrinsics names as well.
3047       RemangledIntrinsics[&F] = Remangled.getValue();
3048     // Look for functions that rely on old function attribute behavior.
3049     UpgradeFunctionAttributes(F);
3050   }
3051 
3052   // Look for global variables which need to be renamed.
3053   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3054   for (GlobalVariable &GV : TheModule->globals())
3055     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3056       UpgradedVariables.emplace_back(&GV, Upgraded);
3057   for (auto &Pair : UpgradedVariables) {
3058     Pair.first->eraseFromParent();
3059     TheModule->getGlobalList().push_back(Pair.second);
3060   }
3061 
3062   // Force deallocation of memory for these vectors to favor the client that
3063   // want lazy deserialization.
3064   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3065   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3066       IndirectSymbolInits);
3067   return Error::success();
3068 }
3069 
3070 /// Support for lazy parsing of function bodies. This is required if we
3071 /// either have an old bitcode file without a VST forward declaration record,
3072 /// or if we have an anonymous function being materialized, since anonymous
3073 /// functions do not have a name and are therefore not in the VST.
3074 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3075   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3076     return JumpFailed;
3077 
3078   if (Stream.AtEndOfStream())
3079     return error("Could not find function in stream");
3080 
3081   if (!SeenFirstFunctionBody)
3082     return error("Trying to materialize functions before seeing function blocks");
3083 
3084   // An old bitcode file with the symbol table at the end would have
3085   // finished the parse greedily.
3086   assert(SeenValueSymbolTable);
3087 
3088   SmallVector<uint64_t, 64> Record;
3089 
3090   while (true) {
3091     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3092     if (!MaybeEntry)
3093       return MaybeEntry.takeError();
3094     llvm::BitstreamEntry Entry = MaybeEntry.get();
3095 
3096     switch (Entry.Kind) {
3097     default:
3098       return error("Expect SubBlock");
3099     case BitstreamEntry::SubBlock:
3100       switch (Entry.ID) {
3101       default:
3102         return error("Expect function block");
3103       case bitc::FUNCTION_BLOCK_ID:
3104         if (Error Err = rememberAndSkipFunctionBody())
3105           return Err;
3106         NextUnreadBit = Stream.GetCurrentBitNo();
3107         return Error::success();
3108       }
3109     }
3110   }
3111 }
3112 
3113 bool BitcodeReaderBase::readBlockInfo() {
3114   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3115       Stream.ReadBlockInfoBlock();
3116   if (!MaybeNewBlockInfo)
3117     return true; // FIXME Handle the error.
3118   Optional<BitstreamBlockInfo> NewBlockInfo =
3119       std::move(MaybeNewBlockInfo.get());
3120   if (!NewBlockInfo)
3121     return true;
3122   BlockInfo = std::move(*NewBlockInfo);
3123   return false;
3124 }
3125 
3126 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3127   // v1: [selection_kind, name]
3128   // v2: [strtab_offset, strtab_size, selection_kind]
3129   StringRef Name;
3130   std::tie(Name, Record) = readNameFromStrtab(Record);
3131 
3132   if (Record.empty())
3133     return error("Invalid record");
3134   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3135   std::string OldFormatName;
3136   if (!UseStrtab) {
3137     if (Record.size() < 2)
3138       return error("Invalid record");
3139     unsigned ComdatNameSize = Record[1];
3140     OldFormatName.reserve(ComdatNameSize);
3141     for (unsigned i = 0; i != ComdatNameSize; ++i)
3142       OldFormatName += (char)Record[2 + i];
3143     Name = OldFormatName;
3144   }
3145   Comdat *C = TheModule->getOrInsertComdat(Name);
3146   C->setSelectionKind(SK);
3147   ComdatList.push_back(C);
3148   return Error::success();
3149 }
3150 
3151 static void inferDSOLocal(GlobalValue *GV) {
3152   // infer dso_local from linkage and visibility if it is not encoded.
3153   if (GV->hasLocalLinkage() ||
3154       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3155     GV->setDSOLocal(true);
3156 }
3157 
3158 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3159   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3160   // visibility, threadlocal, unnamed_addr, externally_initialized,
3161   // dllstorageclass, comdat, attributes, preemption specifier,
3162   // partition strtab offset, partition strtab size] (name in VST)
3163   // v2: [strtab_offset, strtab_size, v1]
3164   StringRef Name;
3165   std::tie(Name, Record) = readNameFromStrtab(Record);
3166 
3167   if (Record.size() < 6)
3168     return error("Invalid record");
3169   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3170   Type *Ty = flattenPointerTypes(FullTy);
3171   if (!Ty)
3172     return error("Invalid record");
3173   bool isConstant = Record[1] & 1;
3174   bool explicitType = Record[1] & 2;
3175   unsigned AddressSpace;
3176   if (explicitType) {
3177     AddressSpace = Record[1] >> 2;
3178   } else {
3179     if (!Ty->isPointerTy())
3180       return error("Invalid type for value");
3181     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3182     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3183   }
3184 
3185   uint64_t RawLinkage = Record[3];
3186   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3187   MaybeAlign Alignment;
3188   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3189     return Err;
3190   std::string Section;
3191   if (Record[5]) {
3192     if (Record[5] - 1 >= SectionTable.size())
3193       return error("Invalid ID");
3194     Section = SectionTable[Record[5] - 1];
3195   }
3196   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3197   // Local linkage must have default visibility.
3198   // auto-upgrade `hidden` and `protected` for old bitcode.
3199   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3200     Visibility = getDecodedVisibility(Record[6]);
3201 
3202   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3203   if (Record.size() > 7)
3204     TLM = getDecodedThreadLocalMode(Record[7]);
3205 
3206   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3207   if (Record.size() > 8)
3208     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3209 
3210   bool ExternallyInitialized = false;
3211   if (Record.size() > 9)
3212     ExternallyInitialized = Record[9];
3213 
3214   GlobalVariable *NewGV =
3215       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3216                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3217   NewGV->setAlignment(Alignment);
3218   if (!Section.empty())
3219     NewGV->setSection(Section);
3220   NewGV->setVisibility(Visibility);
3221   NewGV->setUnnamedAddr(UnnamedAddr);
3222 
3223   if (Record.size() > 10)
3224     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3225   else
3226     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3227 
3228   FullTy = PointerType::get(FullTy, AddressSpace);
3229   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3230          "Incorrect fully specified type for GlobalVariable");
3231   ValueList.push_back(NewGV, FullTy);
3232 
3233   // Remember which value to use for the global initializer.
3234   if (unsigned InitID = Record[2])
3235     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3236 
3237   if (Record.size() > 11) {
3238     if (unsigned ComdatID = Record[11]) {
3239       if (ComdatID > ComdatList.size())
3240         return error("Invalid global variable comdat ID");
3241       NewGV->setComdat(ComdatList[ComdatID - 1]);
3242     }
3243   } else if (hasImplicitComdat(RawLinkage)) {
3244     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3245   }
3246 
3247   if (Record.size() > 12) {
3248     auto AS = getAttributes(Record[12]).getFnAttributes();
3249     NewGV->setAttributes(AS);
3250   }
3251 
3252   if (Record.size() > 13) {
3253     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3254   }
3255   inferDSOLocal(NewGV);
3256 
3257   // Check whether we have enough values to read a partition name.
3258   if (Record.size() > 15)
3259     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3260 
3261   return Error::success();
3262 }
3263 
3264 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3265   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3266   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3267   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3268   // v2: [strtab_offset, strtab_size, v1]
3269   StringRef Name;
3270   std::tie(Name, Record) = readNameFromStrtab(Record);
3271 
3272   if (Record.size() < 8)
3273     return error("Invalid record");
3274   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3275   Type *FTy = flattenPointerTypes(FullFTy);
3276   if (!FTy)
3277     return error("Invalid record");
3278   if (isa<PointerType>(FTy))
3279     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3280 
3281   if (!isa<FunctionType>(FTy))
3282     return error("Invalid type for value");
3283   auto CC = static_cast<CallingConv::ID>(Record[1]);
3284   if (CC & ~CallingConv::MaxID)
3285     return error("Invalid calling convention ID");
3286 
3287   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3288   if (Record.size() > 16)
3289     AddrSpace = Record[16];
3290 
3291   Function *Func =
3292       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3293                        AddrSpace, Name, TheModule);
3294 
3295   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3296          "Incorrect fully specified type provided for function");
3297   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3298 
3299   Func->setCallingConv(CC);
3300   bool isProto = Record[2];
3301   uint64_t RawLinkage = Record[3];
3302   Func->setLinkage(getDecodedLinkage(RawLinkage));
3303   Func->setAttributes(getAttributes(Record[4]));
3304 
3305   // Upgrade any old-style byval or sret without a type by propagating the
3306   // argument's pointee type. There should be no opaque pointers where the byval
3307   // type is implicit.
3308   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3309     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) {
3310       if (!Func->hasParamAttribute(i, Kind))
3311         continue;
3312 
3313       Func->removeParamAttr(i, Kind);
3314 
3315       Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3316       Type *PtrEltTy = getPointerElementFlatType(PTy);
3317       Attribute NewAttr =
3318           Kind == Attribute::ByVal
3319               ? Attribute::getWithByValType(Context, PtrEltTy)
3320               : Attribute::getWithStructRetType(Context, PtrEltTy);
3321       Func->addParamAttr(i, NewAttr);
3322     }
3323   }
3324 
3325   MaybeAlign Alignment;
3326   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3327     return Err;
3328   Func->setAlignment(Alignment);
3329   if (Record[6]) {
3330     if (Record[6] - 1 >= SectionTable.size())
3331       return error("Invalid ID");
3332     Func->setSection(SectionTable[Record[6] - 1]);
3333   }
3334   // Local linkage must have default visibility.
3335   // auto-upgrade `hidden` and `protected` for old bitcode.
3336   if (!Func->hasLocalLinkage())
3337     Func->setVisibility(getDecodedVisibility(Record[7]));
3338   if (Record.size() > 8 && Record[8]) {
3339     if (Record[8] - 1 >= GCTable.size())
3340       return error("Invalid ID");
3341     Func->setGC(GCTable[Record[8] - 1]);
3342   }
3343   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3344   if (Record.size() > 9)
3345     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3346   Func->setUnnamedAddr(UnnamedAddr);
3347   if (Record.size() > 10 && Record[10] != 0)
3348     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3349 
3350   if (Record.size() > 11)
3351     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3352   else
3353     upgradeDLLImportExportLinkage(Func, RawLinkage);
3354 
3355   if (Record.size() > 12) {
3356     if (unsigned ComdatID = Record[12]) {
3357       if (ComdatID > ComdatList.size())
3358         return error("Invalid function comdat ID");
3359       Func->setComdat(ComdatList[ComdatID - 1]);
3360     }
3361   } else if (hasImplicitComdat(RawLinkage)) {
3362     Func->setComdat(reinterpret_cast<Comdat *>(1));
3363   }
3364 
3365   if (Record.size() > 13 && Record[13] != 0)
3366     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3367 
3368   if (Record.size() > 14 && Record[14] != 0)
3369     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3370 
3371   if (Record.size() > 15) {
3372     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3373   }
3374   inferDSOLocal(Func);
3375 
3376   // Record[16] is the address space number.
3377 
3378   // Check whether we have enough values to read a partition name.
3379   if (Record.size() > 18)
3380     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3381 
3382   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3383   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3384          "Incorrect fully specified type provided for Function");
3385   ValueList.push_back(Func, FullTy);
3386 
3387   // If this is a function with a body, remember the prototype we are
3388   // creating now, so that we can match up the body with them later.
3389   if (!isProto) {
3390     Func->setIsMaterializable(true);
3391     FunctionsWithBodies.push_back(Func);
3392     DeferredFunctionInfo[Func] = 0;
3393   }
3394   return Error::success();
3395 }
3396 
3397 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3398     unsigned BitCode, ArrayRef<uint64_t> Record) {
3399   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3400   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3401   // dllstorageclass, threadlocal, unnamed_addr,
3402   // preemption specifier] (name in VST)
3403   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3404   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3405   // preemption specifier] (name in VST)
3406   // v2: [strtab_offset, strtab_size, v1]
3407   StringRef Name;
3408   std::tie(Name, Record) = readNameFromStrtab(Record);
3409 
3410   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3411   if (Record.size() < (3 + (unsigned)NewRecord))
3412     return error("Invalid record");
3413   unsigned OpNum = 0;
3414   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3415   Type *Ty = flattenPointerTypes(FullTy);
3416   if (!Ty)
3417     return error("Invalid record");
3418 
3419   unsigned AddrSpace;
3420   if (!NewRecord) {
3421     auto *PTy = dyn_cast<PointerType>(Ty);
3422     if (!PTy)
3423       return error("Invalid type for value");
3424     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3425     AddrSpace = PTy->getAddressSpace();
3426   } else {
3427     AddrSpace = Record[OpNum++];
3428   }
3429 
3430   auto Val = Record[OpNum++];
3431   auto Linkage = Record[OpNum++];
3432   GlobalIndirectSymbol *NewGA;
3433   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3434       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3435     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3436                                 TheModule);
3437   else
3438     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3439                                 nullptr, TheModule);
3440 
3441   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3442          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3443   // Local linkage must have default visibility.
3444   // auto-upgrade `hidden` and `protected` for old bitcode.
3445   if (OpNum != Record.size()) {
3446     auto VisInd = OpNum++;
3447     if (!NewGA->hasLocalLinkage())
3448       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3449   }
3450   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3451       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3452     if (OpNum != Record.size())
3453       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3454     else
3455       upgradeDLLImportExportLinkage(NewGA, Linkage);
3456     if (OpNum != Record.size())
3457       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3458     if (OpNum != Record.size())
3459       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3460   }
3461   if (OpNum != Record.size())
3462     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3463   inferDSOLocal(NewGA);
3464 
3465   // Check whether we have enough values to read a partition name.
3466   if (OpNum + 1 < Record.size()) {
3467     NewGA->setPartition(
3468         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3469     OpNum += 2;
3470   }
3471 
3472   FullTy = PointerType::get(FullTy, AddrSpace);
3473   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3474          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3475   ValueList.push_back(NewGA, FullTy);
3476   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3477   return Error::success();
3478 }
3479 
3480 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3481                                  bool ShouldLazyLoadMetadata,
3482                                  DataLayoutCallbackTy DataLayoutCallback) {
3483   if (ResumeBit) {
3484     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3485       return JumpFailed;
3486   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3487     return Err;
3488 
3489   SmallVector<uint64_t, 64> Record;
3490 
3491   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3492   // finalize the datalayout before we run any of that code.
3493   bool ResolvedDataLayout = false;
3494   auto ResolveDataLayout = [&] {
3495     if (ResolvedDataLayout)
3496       return;
3497 
3498     // datalayout and triple can't be parsed after this point.
3499     ResolvedDataLayout = true;
3500 
3501     // Upgrade data layout string.
3502     std::string DL = llvm::UpgradeDataLayoutString(
3503         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3504     TheModule->setDataLayout(DL);
3505 
3506     if (auto LayoutOverride =
3507             DataLayoutCallback(TheModule->getTargetTriple()))
3508       TheModule->setDataLayout(*LayoutOverride);
3509   };
3510 
3511   // Read all the records for this module.
3512   while (true) {
3513     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3514     if (!MaybeEntry)
3515       return MaybeEntry.takeError();
3516     llvm::BitstreamEntry Entry = MaybeEntry.get();
3517 
3518     switch (Entry.Kind) {
3519     case BitstreamEntry::Error:
3520       return error("Malformed block");
3521     case BitstreamEntry::EndBlock:
3522       ResolveDataLayout();
3523       return globalCleanup();
3524 
3525     case BitstreamEntry::SubBlock:
3526       switch (Entry.ID) {
3527       default:  // Skip unknown content.
3528         if (Error Err = Stream.SkipBlock())
3529           return Err;
3530         break;
3531       case bitc::BLOCKINFO_BLOCK_ID:
3532         if (readBlockInfo())
3533           return error("Malformed block");
3534         break;
3535       case bitc::PARAMATTR_BLOCK_ID:
3536         if (Error Err = parseAttributeBlock())
3537           return Err;
3538         break;
3539       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3540         if (Error Err = parseAttributeGroupBlock())
3541           return Err;
3542         break;
3543       case bitc::TYPE_BLOCK_ID_NEW:
3544         if (Error Err = parseTypeTable())
3545           return Err;
3546         break;
3547       case bitc::VALUE_SYMTAB_BLOCK_ID:
3548         if (!SeenValueSymbolTable) {
3549           // Either this is an old form VST without function index and an
3550           // associated VST forward declaration record (which would have caused
3551           // the VST to be jumped to and parsed before it was encountered
3552           // normally in the stream), or there were no function blocks to
3553           // trigger an earlier parsing of the VST.
3554           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3555           if (Error Err = parseValueSymbolTable())
3556             return Err;
3557           SeenValueSymbolTable = true;
3558         } else {
3559           // We must have had a VST forward declaration record, which caused
3560           // the parser to jump to and parse the VST earlier.
3561           assert(VSTOffset > 0);
3562           if (Error Err = Stream.SkipBlock())
3563             return Err;
3564         }
3565         break;
3566       case bitc::CONSTANTS_BLOCK_ID:
3567         if (Error Err = parseConstants())
3568           return Err;
3569         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3570           return Err;
3571         break;
3572       case bitc::METADATA_BLOCK_ID:
3573         if (ShouldLazyLoadMetadata) {
3574           if (Error Err = rememberAndSkipMetadata())
3575             return Err;
3576           break;
3577         }
3578         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3579         if (Error Err = MDLoader->parseModuleMetadata())
3580           return Err;
3581         break;
3582       case bitc::METADATA_KIND_BLOCK_ID:
3583         if (Error Err = MDLoader->parseMetadataKinds())
3584           return Err;
3585         break;
3586       case bitc::FUNCTION_BLOCK_ID:
3587         ResolveDataLayout();
3588 
3589         // If this is the first function body we've seen, reverse the
3590         // FunctionsWithBodies list.
3591         if (!SeenFirstFunctionBody) {
3592           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3593           if (Error Err = globalCleanup())
3594             return Err;
3595           SeenFirstFunctionBody = true;
3596         }
3597 
3598         if (VSTOffset > 0) {
3599           // If we have a VST forward declaration record, make sure we
3600           // parse the VST now if we haven't already. It is needed to
3601           // set up the DeferredFunctionInfo vector for lazy reading.
3602           if (!SeenValueSymbolTable) {
3603             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3604               return Err;
3605             SeenValueSymbolTable = true;
3606             // Fall through so that we record the NextUnreadBit below.
3607             // This is necessary in case we have an anonymous function that
3608             // is later materialized. Since it will not have a VST entry we
3609             // need to fall back to the lazy parse to find its offset.
3610           } else {
3611             // If we have a VST forward declaration record, but have already
3612             // parsed the VST (just above, when the first function body was
3613             // encountered here), then we are resuming the parse after
3614             // materializing functions. The ResumeBit points to the
3615             // start of the last function block recorded in the
3616             // DeferredFunctionInfo map. Skip it.
3617             if (Error Err = Stream.SkipBlock())
3618               return Err;
3619             continue;
3620           }
3621         }
3622 
3623         // Support older bitcode files that did not have the function
3624         // index in the VST, nor a VST forward declaration record, as
3625         // well as anonymous functions that do not have VST entries.
3626         // Build the DeferredFunctionInfo vector on the fly.
3627         if (Error Err = rememberAndSkipFunctionBody())
3628           return Err;
3629 
3630         // Suspend parsing when we reach the function bodies. Subsequent
3631         // materialization calls will resume it when necessary. If the bitcode
3632         // file is old, the symbol table will be at the end instead and will not
3633         // have been seen yet. In this case, just finish the parse now.
3634         if (SeenValueSymbolTable) {
3635           NextUnreadBit = Stream.GetCurrentBitNo();
3636           // After the VST has been parsed, we need to make sure intrinsic name
3637           // are auto-upgraded.
3638           return globalCleanup();
3639         }
3640         break;
3641       case bitc::USELIST_BLOCK_ID:
3642         if (Error Err = parseUseLists())
3643           return Err;
3644         break;
3645       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3646         if (Error Err = parseOperandBundleTags())
3647           return Err;
3648         break;
3649       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3650         if (Error Err = parseSyncScopeNames())
3651           return Err;
3652         break;
3653       }
3654       continue;
3655 
3656     case BitstreamEntry::Record:
3657       // The interesting case.
3658       break;
3659     }
3660 
3661     // Read a record.
3662     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3663     if (!MaybeBitCode)
3664       return MaybeBitCode.takeError();
3665     switch (unsigned BitCode = MaybeBitCode.get()) {
3666     default: break;  // Default behavior, ignore unknown content.
3667     case bitc::MODULE_CODE_VERSION: {
3668       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3669       if (!VersionOrErr)
3670         return VersionOrErr.takeError();
3671       UseRelativeIDs = *VersionOrErr >= 1;
3672       break;
3673     }
3674     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3675       if (ResolvedDataLayout)
3676         return error("target triple too late in module");
3677       std::string S;
3678       if (convertToString(Record, 0, S))
3679         return error("Invalid record");
3680       TheModule->setTargetTriple(S);
3681       break;
3682     }
3683     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3684       if (ResolvedDataLayout)
3685         return error("datalayout too late in module");
3686       std::string S;
3687       if (convertToString(Record, 0, S))
3688         return error("Invalid record");
3689       TheModule->setDataLayout(S);
3690       break;
3691     }
3692     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3693       std::string S;
3694       if (convertToString(Record, 0, S))
3695         return error("Invalid record");
3696       TheModule->setModuleInlineAsm(S);
3697       break;
3698     }
3699     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3700       // Deprecated, but still needed to read old bitcode files.
3701       std::string S;
3702       if (convertToString(Record, 0, S))
3703         return error("Invalid record");
3704       // Ignore value.
3705       break;
3706     }
3707     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3708       std::string S;
3709       if (convertToString(Record, 0, S))
3710         return error("Invalid record");
3711       SectionTable.push_back(S);
3712       break;
3713     }
3714     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3715       std::string S;
3716       if (convertToString(Record, 0, S))
3717         return error("Invalid record");
3718       GCTable.push_back(S);
3719       break;
3720     }
3721     case bitc::MODULE_CODE_COMDAT:
3722       if (Error Err = parseComdatRecord(Record))
3723         return Err;
3724       break;
3725     case bitc::MODULE_CODE_GLOBALVAR:
3726       if (Error Err = parseGlobalVarRecord(Record))
3727         return Err;
3728       break;
3729     case bitc::MODULE_CODE_FUNCTION:
3730       ResolveDataLayout();
3731       if (Error Err = parseFunctionRecord(Record))
3732         return Err;
3733       break;
3734     case bitc::MODULE_CODE_IFUNC:
3735     case bitc::MODULE_CODE_ALIAS:
3736     case bitc::MODULE_CODE_ALIAS_OLD:
3737       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3738         return Err;
3739       break;
3740     /// MODULE_CODE_VSTOFFSET: [offset]
3741     case bitc::MODULE_CODE_VSTOFFSET:
3742       if (Record.empty())
3743         return error("Invalid record");
3744       // Note that we subtract 1 here because the offset is relative to one word
3745       // before the start of the identification or module block, which was
3746       // historically always the start of the regular bitcode header.
3747       VSTOffset = Record[0] - 1;
3748       break;
3749     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3750     case bitc::MODULE_CODE_SOURCE_FILENAME:
3751       SmallString<128> ValueName;
3752       if (convertToString(Record, 0, ValueName))
3753         return error("Invalid record");
3754       TheModule->setSourceFileName(ValueName);
3755       break;
3756     }
3757     Record.clear();
3758   }
3759 }
3760 
3761 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3762                                       bool IsImporting,
3763                                       DataLayoutCallbackTy DataLayoutCallback) {
3764   TheModule = M;
3765   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3766                             [&](unsigned ID) { return getTypeByID(ID); });
3767   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3768 }
3769 
3770 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3771   if (!isa<PointerType>(PtrType))
3772     return error("Load/Store operand is not a pointer type");
3773   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3774 
3775   if (ValType && ValType != ElemType)
3776     return error("Explicit load/store type does not match pointee "
3777                  "type of pointer operand");
3778   if (!PointerType::isLoadableOrStorableType(ElemType))
3779     return error("Cannot load/store from pointer");
3780   return Error::success();
3781 }
3782 
3783 void BitcodeReader::propagateByValSRetTypes(CallBase *CB,
3784                                             ArrayRef<Type *> ArgsFullTys) {
3785   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3786     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) {
3787       if (!CB->paramHasAttr(i, Kind))
3788         continue;
3789 
3790       CB->removeParamAttr(i, Kind);
3791 
3792       Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]);
3793       Attribute NewAttr =
3794           Kind == Attribute::ByVal
3795               ? Attribute::getWithByValType(Context, PtrEltTy)
3796               : Attribute::getWithStructRetType(Context, PtrEltTy);
3797       CB->addParamAttr(i, NewAttr);
3798     }
3799   }
3800 }
3801 
3802 /// Lazily parse the specified function body block.
3803 Error BitcodeReader::parseFunctionBody(Function *F) {
3804   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3805     return Err;
3806 
3807   // Unexpected unresolved metadata when parsing function.
3808   if (MDLoader->hasFwdRefs())
3809     return error("Invalid function metadata: incoming forward references");
3810 
3811   InstructionList.clear();
3812   unsigned ModuleValueListSize = ValueList.size();
3813   unsigned ModuleMDLoaderSize = MDLoader->size();
3814 
3815   // Add all the function arguments to the value table.
3816   unsigned ArgNo = 0;
3817   FunctionType *FullFTy = FunctionTypes[F];
3818   for (Argument &I : F->args()) {
3819     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3820            "Incorrect fully specified type for Function Argument");
3821     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3822   }
3823   unsigned NextValueNo = ValueList.size();
3824   BasicBlock *CurBB = nullptr;
3825   unsigned CurBBNo = 0;
3826 
3827   DebugLoc LastLoc;
3828   auto getLastInstruction = [&]() -> Instruction * {
3829     if (CurBB && !CurBB->empty())
3830       return &CurBB->back();
3831     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3832              !FunctionBBs[CurBBNo - 1]->empty())
3833       return &FunctionBBs[CurBBNo - 1]->back();
3834     return nullptr;
3835   };
3836 
3837   std::vector<OperandBundleDef> OperandBundles;
3838 
3839   // Read all the records.
3840   SmallVector<uint64_t, 64> Record;
3841 
3842   while (true) {
3843     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3844     if (!MaybeEntry)
3845       return MaybeEntry.takeError();
3846     llvm::BitstreamEntry Entry = MaybeEntry.get();
3847 
3848     switch (Entry.Kind) {
3849     case BitstreamEntry::Error:
3850       return error("Malformed block");
3851     case BitstreamEntry::EndBlock:
3852       goto OutOfRecordLoop;
3853 
3854     case BitstreamEntry::SubBlock:
3855       switch (Entry.ID) {
3856       default:  // Skip unknown content.
3857         if (Error Err = Stream.SkipBlock())
3858           return Err;
3859         break;
3860       case bitc::CONSTANTS_BLOCK_ID:
3861         if (Error Err = parseConstants())
3862           return Err;
3863         NextValueNo = ValueList.size();
3864         break;
3865       case bitc::VALUE_SYMTAB_BLOCK_ID:
3866         if (Error Err = parseValueSymbolTable())
3867           return Err;
3868         break;
3869       case bitc::METADATA_ATTACHMENT_ID:
3870         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3871           return Err;
3872         break;
3873       case bitc::METADATA_BLOCK_ID:
3874         assert(DeferredMetadataInfo.empty() &&
3875                "Must read all module-level metadata before function-level");
3876         if (Error Err = MDLoader->parseFunctionMetadata())
3877           return Err;
3878         break;
3879       case bitc::USELIST_BLOCK_ID:
3880         if (Error Err = parseUseLists())
3881           return Err;
3882         break;
3883       }
3884       continue;
3885 
3886     case BitstreamEntry::Record:
3887       // The interesting case.
3888       break;
3889     }
3890 
3891     // Read a record.
3892     Record.clear();
3893     Instruction *I = nullptr;
3894     Type *FullTy = nullptr;
3895     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3896     if (!MaybeBitCode)
3897       return MaybeBitCode.takeError();
3898     switch (unsigned BitCode = MaybeBitCode.get()) {
3899     default: // Default behavior: reject
3900       return error("Invalid value");
3901     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3902       if (Record.empty() || Record[0] == 0)
3903         return error("Invalid record");
3904       // Create all the basic blocks for the function.
3905       FunctionBBs.resize(Record[0]);
3906 
3907       // See if anything took the address of blocks in this function.
3908       auto BBFRI = BasicBlockFwdRefs.find(F);
3909       if (BBFRI == BasicBlockFwdRefs.end()) {
3910         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3911           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3912       } else {
3913         auto &BBRefs = BBFRI->second;
3914         // Check for invalid basic block references.
3915         if (BBRefs.size() > FunctionBBs.size())
3916           return error("Invalid ID");
3917         assert(!BBRefs.empty() && "Unexpected empty array");
3918         assert(!BBRefs.front() && "Invalid reference to entry block");
3919         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3920              ++I)
3921           if (I < RE && BBRefs[I]) {
3922             BBRefs[I]->insertInto(F);
3923             FunctionBBs[I] = BBRefs[I];
3924           } else {
3925             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3926           }
3927 
3928         // Erase from the table.
3929         BasicBlockFwdRefs.erase(BBFRI);
3930       }
3931 
3932       CurBB = FunctionBBs[0];
3933       continue;
3934     }
3935 
3936     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3937       // This record indicates that the last instruction is at the same
3938       // location as the previous instruction with a location.
3939       I = getLastInstruction();
3940 
3941       if (!I)
3942         return error("Invalid record");
3943       I->setDebugLoc(LastLoc);
3944       I = nullptr;
3945       continue;
3946 
3947     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3948       I = getLastInstruction();
3949       if (!I || Record.size() < 4)
3950         return error("Invalid record");
3951 
3952       unsigned Line = Record[0], Col = Record[1];
3953       unsigned ScopeID = Record[2], IAID = Record[3];
3954       bool isImplicitCode = Record.size() == 5 && Record[4];
3955 
3956       MDNode *Scope = nullptr, *IA = nullptr;
3957       if (ScopeID) {
3958         Scope = dyn_cast_or_null<MDNode>(
3959             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3960         if (!Scope)
3961           return error("Invalid record");
3962       }
3963       if (IAID) {
3964         IA = dyn_cast_or_null<MDNode>(
3965             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3966         if (!IA)
3967           return error("Invalid record");
3968       }
3969       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
3970                                 isImplicitCode);
3971       I->setDebugLoc(LastLoc);
3972       I = nullptr;
3973       continue;
3974     }
3975     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3976       unsigned OpNum = 0;
3977       Value *LHS;
3978       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3979           OpNum+1 > Record.size())
3980         return error("Invalid record");
3981 
3982       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3983       if (Opc == -1)
3984         return error("Invalid record");
3985       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3986       InstructionList.push_back(I);
3987       if (OpNum < Record.size()) {
3988         if (isa<FPMathOperator>(I)) {
3989           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3990           if (FMF.any())
3991             I->setFastMathFlags(FMF);
3992         }
3993       }
3994       break;
3995     }
3996     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3997       unsigned OpNum = 0;
3998       Value *LHS, *RHS;
3999       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4000           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4001           OpNum+1 > Record.size())
4002         return error("Invalid record");
4003 
4004       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4005       if (Opc == -1)
4006         return error("Invalid record");
4007       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4008       InstructionList.push_back(I);
4009       if (OpNum < Record.size()) {
4010         if (Opc == Instruction::Add ||
4011             Opc == Instruction::Sub ||
4012             Opc == Instruction::Mul ||
4013             Opc == Instruction::Shl) {
4014           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4015             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4016           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4017             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4018         } else if (Opc == Instruction::SDiv ||
4019                    Opc == Instruction::UDiv ||
4020                    Opc == Instruction::LShr ||
4021                    Opc == Instruction::AShr) {
4022           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4023             cast<BinaryOperator>(I)->setIsExact(true);
4024         } else if (isa<FPMathOperator>(I)) {
4025           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4026           if (FMF.any())
4027             I->setFastMathFlags(FMF);
4028         }
4029 
4030       }
4031       break;
4032     }
4033     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4034       unsigned OpNum = 0;
4035       Value *Op;
4036       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4037           OpNum+2 != Record.size())
4038         return error("Invalid record");
4039 
4040       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
4041       Type *ResTy = flattenPointerTypes(FullTy);
4042       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4043       if (Opc == -1 || !ResTy)
4044         return error("Invalid record");
4045       Instruction *Temp = nullptr;
4046       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4047         if (Temp) {
4048           InstructionList.push_back(Temp);
4049           assert(CurBB && "No current BB?");
4050           CurBB->getInstList().push_back(Temp);
4051         }
4052       } else {
4053         auto CastOp = (Instruction::CastOps)Opc;
4054         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4055           return error("Invalid cast");
4056         I = CastInst::Create(CastOp, Op, ResTy);
4057       }
4058       InstructionList.push_back(I);
4059       break;
4060     }
4061     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4062     case bitc::FUNC_CODE_INST_GEP_OLD:
4063     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4064       unsigned OpNum = 0;
4065 
4066       Type *Ty;
4067       bool InBounds;
4068 
4069       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4070         InBounds = Record[OpNum++];
4071         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4072         Ty = flattenPointerTypes(FullTy);
4073       } else {
4074         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4075         Ty = nullptr;
4076       }
4077 
4078       Value *BasePtr;
4079       Type *FullBaseTy = nullptr;
4080       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4081         return error("Invalid record");
4082 
4083       if (!Ty) {
4084         std::tie(FullTy, Ty) =
4085             getPointerElementTypes(FullBaseTy->getScalarType());
4086       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
4087         return error(
4088             "Explicit gep type does not match pointee type of pointer operand");
4089 
4090       SmallVector<Value*, 16> GEPIdx;
4091       while (OpNum != Record.size()) {
4092         Value *Op;
4093         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4094           return error("Invalid record");
4095         GEPIdx.push_back(Op);
4096       }
4097 
4098       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4099       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4100 
4101       InstructionList.push_back(I);
4102       if (InBounds)
4103         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4104       break;
4105     }
4106 
4107     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4108                                        // EXTRACTVAL: [opty, opval, n x indices]
4109       unsigned OpNum = 0;
4110       Value *Agg;
4111       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4112         return error("Invalid record");
4113 
4114       unsigned RecSize = Record.size();
4115       if (OpNum == RecSize)
4116         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4117 
4118       SmallVector<unsigned, 4> EXTRACTVALIdx;
4119       for (; OpNum != RecSize; ++OpNum) {
4120         bool IsArray = FullTy->isArrayTy();
4121         bool IsStruct = FullTy->isStructTy();
4122         uint64_t Index = Record[OpNum];
4123 
4124         if (!IsStruct && !IsArray)
4125           return error("EXTRACTVAL: Invalid type");
4126         if ((unsigned)Index != Index)
4127           return error("Invalid value");
4128         if (IsStruct && Index >= FullTy->getStructNumElements())
4129           return error("EXTRACTVAL: Invalid struct index");
4130         if (IsArray && Index >= FullTy->getArrayNumElements())
4131           return error("EXTRACTVAL: Invalid array index");
4132         EXTRACTVALIdx.push_back((unsigned)Index);
4133 
4134         if (IsStruct)
4135           FullTy = FullTy->getStructElementType(Index);
4136         else
4137           FullTy = FullTy->getArrayElementType();
4138       }
4139 
4140       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4141       InstructionList.push_back(I);
4142       break;
4143     }
4144 
4145     case bitc::FUNC_CODE_INST_INSERTVAL: {
4146                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4147       unsigned OpNum = 0;
4148       Value *Agg;
4149       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4150         return error("Invalid record");
4151       Value *Val;
4152       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4153         return error("Invalid record");
4154 
4155       unsigned RecSize = Record.size();
4156       if (OpNum == RecSize)
4157         return error("INSERTVAL: Invalid instruction with 0 indices");
4158 
4159       SmallVector<unsigned, 4> INSERTVALIdx;
4160       Type *CurTy = Agg->getType();
4161       for (; OpNum != RecSize; ++OpNum) {
4162         bool IsArray = CurTy->isArrayTy();
4163         bool IsStruct = CurTy->isStructTy();
4164         uint64_t Index = Record[OpNum];
4165 
4166         if (!IsStruct && !IsArray)
4167           return error("INSERTVAL: Invalid type");
4168         if ((unsigned)Index != Index)
4169           return error("Invalid value");
4170         if (IsStruct && Index >= CurTy->getStructNumElements())
4171           return error("INSERTVAL: Invalid struct index");
4172         if (IsArray && Index >= CurTy->getArrayNumElements())
4173           return error("INSERTVAL: Invalid array index");
4174 
4175         INSERTVALIdx.push_back((unsigned)Index);
4176         if (IsStruct)
4177           CurTy = CurTy->getStructElementType(Index);
4178         else
4179           CurTy = CurTy->getArrayElementType();
4180       }
4181 
4182       if (CurTy != Val->getType())
4183         return error("Inserted value type doesn't match aggregate type");
4184 
4185       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4186       InstructionList.push_back(I);
4187       break;
4188     }
4189 
4190     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4191       // obsolete form of select
4192       // handles select i1 ... in old bitcode
4193       unsigned OpNum = 0;
4194       Value *TrueVal, *FalseVal, *Cond;
4195       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4196           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4197           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4198         return error("Invalid record");
4199 
4200       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4201       InstructionList.push_back(I);
4202       break;
4203     }
4204 
4205     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4206       // new form of select
4207       // handles select i1 or select [N x i1]
4208       unsigned OpNum = 0;
4209       Value *TrueVal, *FalseVal, *Cond;
4210       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4211           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4212           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4213         return error("Invalid record");
4214 
4215       // select condition can be either i1 or [N x i1]
4216       if (VectorType* vector_type =
4217           dyn_cast<VectorType>(Cond->getType())) {
4218         // expect <n x i1>
4219         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4220           return error("Invalid type for value");
4221       } else {
4222         // expect i1
4223         if (Cond->getType() != Type::getInt1Ty(Context))
4224           return error("Invalid type for value");
4225       }
4226 
4227       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4228       InstructionList.push_back(I);
4229       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4230         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4231         if (FMF.any())
4232           I->setFastMathFlags(FMF);
4233       }
4234       break;
4235     }
4236 
4237     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4238       unsigned OpNum = 0;
4239       Value *Vec, *Idx;
4240       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4241           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4242         return error("Invalid record");
4243       if (!Vec->getType()->isVectorTy())
4244         return error("Invalid type for value");
4245       I = ExtractElementInst::Create(Vec, Idx);
4246       FullTy = cast<VectorType>(FullTy)->getElementType();
4247       InstructionList.push_back(I);
4248       break;
4249     }
4250 
4251     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4252       unsigned OpNum = 0;
4253       Value *Vec, *Elt, *Idx;
4254       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4255         return error("Invalid record");
4256       if (!Vec->getType()->isVectorTy())
4257         return error("Invalid type for value");
4258       if (popValue(Record, OpNum, NextValueNo,
4259                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4260           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4261         return error("Invalid record");
4262       I = InsertElementInst::Create(Vec, Elt, Idx);
4263       InstructionList.push_back(I);
4264       break;
4265     }
4266 
4267     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4268       unsigned OpNum = 0;
4269       Value *Vec1, *Vec2, *Mask;
4270       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4271           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4272         return error("Invalid record");
4273 
4274       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4275         return error("Invalid record");
4276       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4277         return error("Invalid type for value");
4278 
4279       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4280       FullTy =
4281           VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4282                           cast<VectorType>(Mask->getType())->getElementCount());
4283       InstructionList.push_back(I);
4284       break;
4285     }
4286 
4287     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4288       // Old form of ICmp/FCmp returning bool
4289       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4290       // both legal on vectors but had different behaviour.
4291     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4292       // FCmp/ICmp returning bool or vector of bool
4293 
4294       unsigned OpNum = 0;
4295       Value *LHS, *RHS;
4296       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4297           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4298         return error("Invalid record");
4299 
4300       if (OpNum >= Record.size())
4301         return error(
4302             "Invalid record: operand number exceeded available operands");
4303 
4304       unsigned PredVal = Record[OpNum];
4305       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4306       FastMathFlags FMF;
4307       if (IsFP && Record.size() > OpNum+1)
4308         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4309 
4310       if (OpNum+1 != Record.size())
4311         return error("Invalid record");
4312 
4313       if (LHS->getType()->isFPOrFPVectorTy())
4314         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4315       else
4316         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4317 
4318       if (FMF.any())
4319         I->setFastMathFlags(FMF);
4320       InstructionList.push_back(I);
4321       break;
4322     }
4323 
4324     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4325       {
4326         unsigned Size = Record.size();
4327         if (Size == 0) {
4328           I = ReturnInst::Create(Context);
4329           InstructionList.push_back(I);
4330           break;
4331         }
4332 
4333         unsigned OpNum = 0;
4334         Value *Op = nullptr;
4335         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4336           return error("Invalid record");
4337         if (OpNum != Record.size())
4338           return error("Invalid record");
4339 
4340         I = ReturnInst::Create(Context, Op);
4341         InstructionList.push_back(I);
4342         break;
4343       }
4344     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4345       if (Record.size() != 1 && Record.size() != 3)
4346         return error("Invalid record");
4347       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4348       if (!TrueDest)
4349         return error("Invalid record");
4350 
4351       if (Record.size() == 1) {
4352         I = BranchInst::Create(TrueDest);
4353         InstructionList.push_back(I);
4354       }
4355       else {
4356         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4357         Value *Cond = getValue(Record, 2, NextValueNo,
4358                                Type::getInt1Ty(Context));
4359         if (!FalseDest || !Cond)
4360           return error("Invalid record");
4361         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4362         InstructionList.push_back(I);
4363       }
4364       break;
4365     }
4366     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4367       if (Record.size() != 1 && Record.size() != 2)
4368         return error("Invalid record");
4369       unsigned Idx = 0;
4370       Value *CleanupPad =
4371           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4372       if (!CleanupPad)
4373         return error("Invalid record");
4374       BasicBlock *UnwindDest = nullptr;
4375       if (Record.size() == 2) {
4376         UnwindDest = getBasicBlock(Record[Idx++]);
4377         if (!UnwindDest)
4378           return error("Invalid record");
4379       }
4380 
4381       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4382       InstructionList.push_back(I);
4383       break;
4384     }
4385     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4386       if (Record.size() != 2)
4387         return error("Invalid record");
4388       unsigned Idx = 0;
4389       Value *CatchPad =
4390           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4391       if (!CatchPad)
4392         return error("Invalid record");
4393       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4394       if (!BB)
4395         return error("Invalid record");
4396 
4397       I = CatchReturnInst::Create(CatchPad, BB);
4398       InstructionList.push_back(I);
4399       break;
4400     }
4401     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4402       // We must have, at minimum, the outer scope and the number of arguments.
4403       if (Record.size() < 2)
4404         return error("Invalid record");
4405 
4406       unsigned Idx = 0;
4407 
4408       Value *ParentPad =
4409           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4410 
4411       unsigned NumHandlers = Record[Idx++];
4412 
4413       SmallVector<BasicBlock *, 2> Handlers;
4414       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4415         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4416         if (!BB)
4417           return error("Invalid record");
4418         Handlers.push_back(BB);
4419       }
4420 
4421       BasicBlock *UnwindDest = nullptr;
4422       if (Idx + 1 == Record.size()) {
4423         UnwindDest = getBasicBlock(Record[Idx++]);
4424         if (!UnwindDest)
4425           return error("Invalid record");
4426       }
4427 
4428       if (Record.size() != Idx)
4429         return error("Invalid record");
4430 
4431       auto *CatchSwitch =
4432           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4433       for (BasicBlock *Handler : Handlers)
4434         CatchSwitch->addHandler(Handler);
4435       I = CatchSwitch;
4436       InstructionList.push_back(I);
4437       break;
4438     }
4439     case bitc::FUNC_CODE_INST_CATCHPAD:
4440     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4441       // We must have, at minimum, the outer scope and the number of arguments.
4442       if (Record.size() < 2)
4443         return error("Invalid record");
4444 
4445       unsigned Idx = 0;
4446 
4447       Value *ParentPad =
4448           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4449 
4450       unsigned NumArgOperands = Record[Idx++];
4451 
4452       SmallVector<Value *, 2> Args;
4453       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4454         Value *Val;
4455         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4456           return error("Invalid record");
4457         Args.push_back(Val);
4458       }
4459 
4460       if (Record.size() != Idx)
4461         return error("Invalid record");
4462 
4463       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4464         I = CleanupPadInst::Create(ParentPad, Args);
4465       else
4466         I = CatchPadInst::Create(ParentPad, Args);
4467       InstructionList.push_back(I);
4468       break;
4469     }
4470     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4471       // Check magic
4472       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4473         // "New" SwitchInst format with case ranges. The changes to write this
4474         // format were reverted but we still recognize bitcode that uses it.
4475         // Hopefully someday we will have support for case ranges and can use
4476         // this format again.
4477 
4478         Type *OpTy = getTypeByID(Record[1]);
4479         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4480 
4481         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4482         BasicBlock *Default = getBasicBlock(Record[3]);
4483         if (!OpTy || !Cond || !Default)
4484           return error("Invalid record");
4485 
4486         unsigned NumCases = Record[4];
4487 
4488         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4489         InstructionList.push_back(SI);
4490 
4491         unsigned CurIdx = 5;
4492         for (unsigned i = 0; i != NumCases; ++i) {
4493           SmallVector<ConstantInt*, 1> CaseVals;
4494           unsigned NumItems = Record[CurIdx++];
4495           for (unsigned ci = 0; ci != NumItems; ++ci) {
4496             bool isSingleNumber = Record[CurIdx++];
4497 
4498             APInt Low;
4499             unsigned ActiveWords = 1;
4500             if (ValueBitWidth > 64)
4501               ActiveWords = Record[CurIdx++];
4502             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4503                                 ValueBitWidth);
4504             CurIdx += ActiveWords;
4505 
4506             if (!isSingleNumber) {
4507               ActiveWords = 1;
4508               if (ValueBitWidth > 64)
4509                 ActiveWords = Record[CurIdx++];
4510               APInt High = readWideAPInt(
4511                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4512               CurIdx += ActiveWords;
4513 
4514               // FIXME: It is not clear whether values in the range should be
4515               // compared as signed or unsigned values. The partially
4516               // implemented changes that used this format in the past used
4517               // unsigned comparisons.
4518               for ( ; Low.ule(High); ++Low)
4519                 CaseVals.push_back(ConstantInt::get(Context, Low));
4520             } else
4521               CaseVals.push_back(ConstantInt::get(Context, Low));
4522           }
4523           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4524           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4525                  cve = CaseVals.end(); cvi != cve; ++cvi)
4526             SI->addCase(*cvi, DestBB);
4527         }
4528         I = SI;
4529         break;
4530       }
4531 
4532       // Old SwitchInst format without case ranges.
4533 
4534       if (Record.size() < 3 || (Record.size() & 1) == 0)
4535         return error("Invalid record");
4536       Type *OpTy = getTypeByID(Record[0]);
4537       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4538       BasicBlock *Default = getBasicBlock(Record[2]);
4539       if (!OpTy || !Cond || !Default)
4540         return error("Invalid record");
4541       unsigned NumCases = (Record.size()-3)/2;
4542       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4543       InstructionList.push_back(SI);
4544       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4545         ConstantInt *CaseVal =
4546           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4547         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4548         if (!CaseVal || !DestBB) {
4549           delete SI;
4550           return error("Invalid record");
4551         }
4552         SI->addCase(CaseVal, DestBB);
4553       }
4554       I = SI;
4555       break;
4556     }
4557     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4558       if (Record.size() < 2)
4559         return error("Invalid record");
4560       Type *OpTy = getTypeByID(Record[0]);
4561       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4562       if (!OpTy || !Address)
4563         return error("Invalid record");
4564       unsigned NumDests = Record.size()-2;
4565       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4566       InstructionList.push_back(IBI);
4567       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4568         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4569           IBI->addDestination(DestBB);
4570         } else {
4571           delete IBI;
4572           return error("Invalid record");
4573         }
4574       }
4575       I = IBI;
4576       break;
4577     }
4578 
4579     case bitc::FUNC_CODE_INST_INVOKE: {
4580       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4581       if (Record.size() < 4)
4582         return error("Invalid record");
4583       unsigned OpNum = 0;
4584       AttributeList PAL = getAttributes(Record[OpNum++]);
4585       unsigned CCInfo = Record[OpNum++];
4586       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4587       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4588 
4589       FunctionType *FTy = nullptr;
4590       FunctionType *FullFTy = nullptr;
4591       if ((CCInfo >> 13) & 1) {
4592         FullFTy =
4593             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4594         if (!FullFTy)
4595           return error("Explicit invoke type is not a function type");
4596         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4597       }
4598 
4599       Value *Callee;
4600       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4601         return error("Invalid record");
4602 
4603       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4604       if (!CalleeTy)
4605         return error("Callee is not a pointer");
4606       if (!FTy) {
4607         FullFTy =
4608             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4609         if (!FullFTy)
4610           return error("Callee is not of pointer to function type");
4611         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4612       } else if (getPointerElementFlatType(FullTy) != FTy)
4613         return error("Explicit invoke type does not match pointee type of "
4614                      "callee operand");
4615       if (Record.size() < FTy->getNumParams() + OpNum)
4616         return error("Insufficient operands to call");
4617 
4618       SmallVector<Value*, 16> Ops;
4619       SmallVector<Type *, 16> ArgsFullTys;
4620       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4621         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4622                                FTy->getParamType(i)));
4623         ArgsFullTys.push_back(FullFTy->getParamType(i));
4624         if (!Ops.back())
4625           return error("Invalid record");
4626       }
4627 
4628       if (!FTy->isVarArg()) {
4629         if (Record.size() != OpNum)
4630           return error("Invalid record");
4631       } else {
4632         // Read type/value pairs for varargs params.
4633         while (OpNum != Record.size()) {
4634           Value *Op;
4635           Type *FullTy;
4636           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4637             return error("Invalid record");
4638           Ops.push_back(Op);
4639           ArgsFullTys.push_back(FullTy);
4640         }
4641       }
4642 
4643       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4644                              OperandBundles);
4645       FullTy = FullFTy->getReturnType();
4646       OperandBundles.clear();
4647       InstructionList.push_back(I);
4648       cast<InvokeInst>(I)->setCallingConv(
4649           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4650       cast<InvokeInst>(I)->setAttributes(PAL);
4651       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
4652 
4653       break;
4654     }
4655     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4656       unsigned Idx = 0;
4657       Value *Val = nullptr;
4658       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4659         return error("Invalid record");
4660       I = ResumeInst::Create(Val);
4661       InstructionList.push_back(I);
4662       break;
4663     }
4664     case bitc::FUNC_CODE_INST_CALLBR: {
4665       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4666       unsigned OpNum = 0;
4667       AttributeList PAL = getAttributes(Record[OpNum++]);
4668       unsigned CCInfo = Record[OpNum++];
4669 
4670       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4671       unsigned NumIndirectDests = Record[OpNum++];
4672       SmallVector<BasicBlock *, 16> IndirectDests;
4673       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4674         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4675 
4676       FunctionType *FTy = nullptr;
4677       FunctionType *FullFTy = nullptr;
4678       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4679         FullFTy =
4680             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4681         if (!FullFTy)
4682           return error("Explicit call type is not a function type");
4683         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4684       }
4685 
4686       Value *Callee;
4687       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4688         return error("Invalid record");
4689 
4690       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4691       if (!OpTy)
4692         return error("Callee is not a pointer type");
4693       if (!FTy) {
4694         FullFTy =
4695             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4696         if (!FullFTy)
4697           return error("Callee is not of pointer to function type");
4698         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4699       } else if (getPointerElementFlatType(FullTy) != FTy)
4700         return error("Explicit call type does not match pointee type of "
4701                      "callee operand");
4702       if (Record.size() < FTy->getNumParams() + OpNum)
4703         return error("Insufficient operands to call");
4704 
4705       SmallVector<Value*, 16> Args;
4706       // Read the fixed params.
4707       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4708         if (FTy->getParamType(i)->isLabelTy())
4709           Args.push_back(getBasicBlock(Record[OpNum]));
4710         else
4711           Args.push_back(getValue(Record, OpNum, NextValueNo,
4712                                   FTy->getParamType(i)));
4713         if (!Args.back())
4714           return error("Invalid record");
4715       }
4716 
4717       // Read type/value pairs for varargs params.
4718       if (!FTy->isVarArg()) {
4719         if (OpNum != Record.size())
4720           return error("Invalid record");
4721       } else {
4722         while (OpNum != Record.size()) {
4723           Value *Op;
4724           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4725             return error("Invalid record");
4726           Args.push_back(Op);
4727         }
4728       }
4729 
4730       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4731                              OperandBundles);
4732       FullTy = FullFTy->getReturnType();
4733       OperandBundles.clear();
4734       InstructionList.push_back(I);
4735       cast<CallBrInst>(I)->setCallingConv(
4736           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4737       cast<CallBrInst>(I)->setAttributes(PAL);
4738       break;
4739     }
4740     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4741       I = new UnreachableInst(Context);
4742       InstructionList.push_back(I);
4743       break;
4744     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4745       if (Record.empty())
4746         return error("Invalid record");
4747       // The first record specifies the type.
4748       FullTy = getFullyStructuredTypeByID(Record[0]);
4749       Type *Ty = flattenPointerTypes(FullTy);
4750       if (!Ty)
4751         return error("Invalid record");
4752 
4753       // Phi arguments are pairs of records of [value, basic block].
4754       // There is an optional final record for fast-math-flags if this phi has a
4755       // floating-point type.
4756       size_t NumArgs = (Record.size() - 1) / 2;
4757       PHINode *PN = PHINode::Create(Ty, NumArgs);
4758       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4759         return error("Invalid record");
4760       InstructionList.push_back(PN);
4761 
4762       for (unsigned i = 0; i != NumArgs; i++) {
4763         Value *V;
4764         // With the new function encoding, it is possible that operands have
4765         // negative IDs (for forward references).  Use a signed VBR
4766         // representation to keep the encoding small.
4767         if (UseRelativeIDs)
4768           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4769         else
4770           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4771         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4772         if (!V || !BB)
4773           return error("Invalid record");
4774         PN->addIncoming(V, BB);
4775       }
4776       I = PN;
4777 
4778       // If there are an even number of records, the final record must be FMF.
4779       if (Record.size() % 2 == 0) {
4780         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4781         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4782         if (FMF.any())
4783           I->setFastMathFlags(FMF);
4784       }
4785 
4786       break;
4787     }
4788 
4789     case bitc::FUNC_CODE_INST_LANDINGPAD:
4790     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4791       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4792       unsigned Idx = 0;
4793       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4794         if (Record.size() < 3)
4795           return error("Invalid record");
4796       } else {
4797         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4798         if (Record.size() < 4)
4799           return error("Invalid record");
4800       }
4801       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4802       Type *Ty = flattenPointerTypes(FullTy);
4803       if (!Ty)
4804         return error("Invalid record");
4805       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4806         Value *PersFn = nullptr;
4807         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4808           return error("Invalid record");
4809 
4810         if (!F->hasPersonalityFn())
4811           F->setPersonalityFn(cast<Constant>(PersFn));
4812         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4813           return error("Personality function mismatch");
4814       }
4815 
4816       bool IsCleanup = !!Record[Idx++];
4817       unsigned NumClauses = Record[Idx++];
4818       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4819       LP->setCleanup(IsCleanup);
4820       for (unsigned J = 0; J != NumClauses; ++J) {
4821         LandingPadInst::ClauseType CT =
4822           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4823         Value *Val;
4824 
4825         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4826           delete LP;
4827           return error("Invalid record");
4828         }
4829 
4830         assert((CT != LandingPadInst::Catch ||
4831                 !isa<ArrayType>(Val->getType())) &&
4832                "Catch clause has a invalid type!");
4833         assert((CT != LandingPadInst::Filter ||
4834                 isa<ArrayType>(Val->getType())) &&
4835                "Filter clause has invalid type!");
4836         LP->addClause(cast<Constant>(Val));
4837       }
4838 
4839       I = LP;
4840       InstructionList.push_back(I);
4841       break;
4842     }
4843 
4844     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4845       if (Record.size() != 4)
4846         return error("Invalid record");
4847       using APV = AllocaPackedValues;
4848       const uint64_t Rec = Record[3];
4849       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4850       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4851       FullTy = getFullyStructuredTypeByID(Record[0]);
4852       Type *Ty = flattenPointerTypes(FullTy);
4853       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4854         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4855         if (!PTy)
4856           return error("Old-style alloca with a non-pointer type");
4857         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4858       }
4859       Type *OpTy = getTypeByID(Record[1]);
4860       Value *Size = getFnValueByID(Record[2], OpTy);
4861       MaybeAlign Align;
4862       if (Error Err =
4863               parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4864         return Err;
4865       }
4866       if (!Ty || !Size)
4867         return error("Invalid record");
4868 
4869       // FIXME: Make this an optional field.
4870       const DataLayout &DL = TheModule->getDataLayout();
4871       unsigned AS = DL.getAllocaAddrSpace();
4872 
4873       SmallPtrSet<Type *, 4> Visited;
4874       if (!Align && !Ty->isSized(&Visited))
4875         return error("alloca of unsized type");
4876       if (!Align)
4877         Align = DL.getPrefTypeAlign(Ty);
4878 
4879       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4880       AI->setUsedWithInAlloca(InAlloca);
4881       AI->setSwiftError(SwiftError);
4882       I = AI;
4883       FullTy = PointerType::get(FullTy, AS);
4884       InstructionList.push_back(I);
4885       break;
4886     }
4887     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4888       unsigned OpNum = 0;
4889       Value *Op;
4890       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4891           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4892         return error("Invalid record");
4893 
4894       if (!isa<PointerType>(Op->getType()))
4895         return error("Load operand is not a pointer type");
4896 
4897       Type *Ty = nullptr;
4898       if (OpNum + 3 == Record.size()) {
4899         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4900         Ty = flattenPointerTypes(FullTy);
4901       } else
4902         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4903 
4904       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4905         return Err;
4906 
4907       MaybeAlign Align;
4908       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4909         return Err;
4910       SmallPtrSet<Type *, 4> Visited;
4911       if (!Align && !Ty->isSized(&Visited))
4912         return error("load of unsized type");
4913       if (!Align)
4914         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4915       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4916       InstructionList.push_back(I);
4917       break;
4918     }
4919     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4920        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4921       unsigned OpNum = 0;
4922       Value *Op;
4923       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4924           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4925         return error("Invalid record");
4926 
4927       if (!isa<PointerType>(Op->getType()))
4928         return error("Load operand is not a pointer type");
4929 
4930       Type *Ty = nullptr;
4931       if (OpNum + 5 == Record.size()) {
4932         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4933         Ty = flattenPointerTypes(FullTy);
4934       } else
4935         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4936 
4937       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4938         return Err;
4939 
4940       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4941       if (Ordering == AtomicOrdering::NotAtomic ||
4942           Ordering == AtomicOrdering::Release ||
4943           Ordering == AtomicOrdering::AcquireRelease)
4944         return error("Invalid record");
4945       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4946         return error("Invalid record");
4947       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4948 
4949       MaybeAlign Align;
4950       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4951         return Err;
4952       if (!Align)
4953         return error("Alignment missing from atomic load");
4954       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4955       InstructionList.push_back(I);
4956       break;
4957     }
4958     case bitc::FUNC_CODE_INST_STORE:
4959     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4960       unsigned OpNum = 0;
4961       Value *Val, *Ptr;
4962       Type *FullTy;
4963       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4964           (BitCode == bitc::FUNC_CODE_INST_STORE
4965                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4966                : popValue(Record, OpNum, NextValueNo,
4967                           getPointerElementFlatType(FullTy), Val)) ||
4968           OpNum + 2 != Record.size())
4969         return error("Invalid record");
4970 
4971       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4972         return Err;
4973       MaybeAlign Align;
4974       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4975         return Err;
4976       SmallPtrSet<Type *, 4> Visited;
4977       if (!Align && !Val->getType()->isSized(&Visited))
4978         return error("store of unsized type");
4979       if (!Align)
4980         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
4981       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
4982       InstructionList.push_back(I);
4983       break;
4984     }
4985     case bitc::FUNC_CODE_INST_STOREATOMIC:
4986     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4987       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4988       unsigned OpNum = 0;
4989       Value *Val, *Ptr;
4990       Type *FullTy;
4991       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4992           !isa<PointerType>(Ptr->getType()) ||
4993           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4994                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4995                : popValue(Record, OpNum, NextValueNo,
4996                           getPointerElementFlatType(FullTy), Val)) ||
4997           OpNum + 4 != Record.size())
4998         return error("Invalid record");
4999 
5000       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5001         return Err;
5002       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5003       if (Ordering == AtomicOrdering::NotAtomic ||
5004           Ordering == AtomicOrdering::Acquire ||
5005           Ordering == AtomicOrdering::AcquireRelease)
5006         return error("Invalid record");
5007       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5008       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5009         return error("Invalid record");
5010 
5011       MaybeAlign Align;
5012       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5013         return Err;
5014       if (!Align)
5015         return error("Alignment missing from atomic store");
5016       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5017       InstructionList.push_back(I);
5018       break;
5019     }
5020     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5021       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5022       // failure_ordering?, weak?]
5023       const size_t NumRecords = Record.size();
5024       unsigned OpNum = 0;
5025       Value *Ptr = nullptr;
5026       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5027         return error("Invalid record");
5028 
5029       if (!isa<PointerType>(Ptr->getType()))
5030         return error("Cmpxchg operand is not a pointer type");
5031 
5032       Value *Cmp = nullptr;
5033       if (popValue(Record, OpNum, NextValueNo,
5034                    getPointerElementFlatType(FullTy), Cmp))
5035         return error("Invalid record");
5036 
5037       FullTy = cast<PointerType>(FullTy)->getElementType();
5038 
5039       Value *New = nullptr;
5040       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5041           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5042         return error("Invalid record");
5043 
5044       const AtomicOrdering SuccessOrdering =
5045           getDecodedOrdering(Record[OpNum + 1]);
5046       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5047           SuccessOrdering == AtomicOrdering::Unordered)
5048         return error("Invalid record");
5049 
5050       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5051 
5052       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5053         return Err;
5054 
5055       const AtomicOrdering FailureOrdering =
5056           NumRecords < 7
5057               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5058               : getDecodedOrdering(Record[OpNum + 3]);
5059 
5060       const Align Alignment(
5061           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5062 
5063       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5064                                 FailureOrdering, SSID);
5065       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5066       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5067 
5068       if (NumRecords < 8) {
5069         // Before weak cmpxchgs existed, the instruction simply returned the
5070         // value loaded from memory, so bitcode files from that era will be
5071         // expecting the first component of a modern cmpxchg.
5072         CurBB->getInstList().push_back(I);
5073         I = ExtractValueInst::Create(I, 0);
5074         FullTy = cast<StructType>(FullTy)->getElementType(0);
5075       } else {
5076         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5077       }
5078 
5079       InstructionList.push_back(I);
5080       break;
5081     }
5082     case bitc::FUNC_CODE_INST_CMPXCHG: {
5083       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5084       // failure_ordering, weak]
5085       const size_t NumRecords = Record.size();
5086       unsigned OpNum = 0;
5087       Value *Ptr = nullptr;
5088       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5089         return error("Invalid record");
5090 
5091       if (!isa<PointerType>(Ptr->getType()))
5092         return error("Cmpxchg operand is not a pointer type");
5093 
5094       Value *Cmp = nullptr;
5095       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
5096         return error("Invalid record");
5097 
5098       Value *Val = nullptr;
5099       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val) ||
5100           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5101         return error("Invalid record");
5102 
5103       const AtomicOrdering SuccessOrdering =
5104           getDecodedOrdering(Record[OpNum + 1]);
5105       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5106           SuccessOrdering == AtomicOrdering::Unordered)
5107         return error("Invalid record");
5108 
5109       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5110 
5111       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5112         return Err;
5113 
5114       const AtomicOrdering FailureOrdering =
5115           getDecodedOrdering(Record[OpNum + 3]);
5116 
5117       const Align Alignment(
5118           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5119 
5120       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, Alignment, SuccessOrdering,
5121                                 FailureOrdering, SSID);
5122       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5123       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5124       cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5125 
5126       InstructionList.push_back(I);
5127       break;
5128     }
5129     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5130       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
5131       unsigned OpNum = 0;
5132       Value *Ptr, *Val;
5133       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5134           !isa<PointerType>(Ptr->getType()) ||
5135           popValue(Record, OpNum, NextValueNo,
5136                    getPointerElementFlatType(FullTy), Val) ||
5137           OpNum + 4 != Record.size())
5138         return error("Invalid record");
5139       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5140       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5141           Operation > AtomicRMWInst::LAST_BINOP)
5142         return error("Invalid record");
5143       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5144       if (Ordering == AtomicOrdering::NotAtomic ||
5145           Ordering == AtomicOrdering::Unordered)
5146         return error("Invalid record");
5147       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5148       Align Alignment(
5149           TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5150       I = new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID);
5151       FullTy = getPointerElementFlatType(FullTy);
5152       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5153       InstructionList.push_back(I);
5154       break;
5155     }
5156     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5157       if (2 != Record.size())
5158         return error("Invalid record");
5159       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5160       if (Ordering == AtomicOrdering::NotAtomic ||
5161           Ordering == AtomicOrdering::Unordered ||
5162           Ordering == AtomicOrdering::Monotonic)
5163         return error("Invalid record");
5164       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5165       I = new FenceInst(Context, Ordering, SSID);
5166       InstructionList.push_back(I);
5167       break;
5168     }
5169     case bitc::FUNC_CODE_INST_CALL: {
5170       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5171       if (Record.size() < 3)
5172         return error("Invalid record");
5173 
5174       unsigned OpNum = 0;
5175       AttributeList PAL = getAttributes(Record[OpNum++]);
5176       unsigned CCInfo = Record[OpNum++];
5177 
5178       FastMathFlags FMF;
5179       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5180         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5181         if (!FMF.any())
5182           return error("Fast math flags indicator set for call with no FMF");
5183       }
5184 
5185       FunctionType *FTy = nullptr;
5186       FunctionType *FullFTy = nullptr;
5187       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5188         FullFTy =
5189             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5190         if (!FullFTy)
5191           return error("Explicit call type is not a function type");
5192         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5193       }
5194 
5195       Value *Callee;
5196       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5197         return error("Invalid record");
5198 
5199       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5200       if (!OpTy)
5201         return error("Callee is not a pointer type");
5202       if (!FTy) {
5203         FullFTy =
5204             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5205         if (!FullFTy)
5206           return error("Callee is not of pointer to function type");
5207         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5208       } else if (getPointerElementFlatType(FullTy) != FTy)
5209         return error("Explicit call type does not match pointee type of "
5210                      "callee operand");
5211       if (Record.size() < FTy->getNumParams() + OpNum)
5212         return error("Insufficient operands to call");
5213 
5214       SmallVector<Value*, 16> Args;
5215       SmallVector<Type*, 16> ArgsFullTys;
5216       // Read the fixed params.
5217       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5218         if (FTy->getParamType(i)->isLabelTy())
5219           Args.push_back(getBasicBlock(Record[OpNum]));
5220         else
5221           Args.push_back(getValue(Record, OpNum, NextValueNo,
5222                                   FTy->getParamType(i)));
5223         ArgsFullTys.push_back(FullFTy->getParamType(i));
5224         if (!Args.back())
5225           return error("Invalid record");
5226       }
5227 
5228       // Read type/value pairs for varargs params.
5229       if (!FTy->isVarArg()) {
5230         if (OpNum != Record.size())
5231           return error("Invalid record");
5232       } else {
5233         while (OpNum != Record.size()) {
5234           Value *Op;
5235           Type *FullTy;
5236           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5237             return error("Invalid record");
5238           Args.push_back(Op);
5239           ArgsFullTys.push_back(FullTy);
5240         }
5241       }
5242 
5243       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5244       FullTy = FullFTy->getReturnType();
5245       OperandBundles.clear();
5246       InstructionList.push_back(I);
5247       cast<CallInst>(I)->setCallingConv(
5248           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5249       CallInst::TailCallKind TCK = CallInst::TCK_None;
5250       if (CCInfo & 1 << bitc::CALL_TAIL)
5251         TCK = CallInst::TCK_Tail;
5252       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5253         TCK = CallInst::TCK_MustTail;
5254       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5255         TCK = CallInst::TCK_NoTail;
5256       cast<CallInst>(I)->setTailCallKind(TCK);
5257       cast<CallInst>(I)->setAttributes(PAL);
5258       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
5259       if (FMF.any()) {
5260         if (!isa<FPMathOperator>(I))
5261           return error("Fast-math-flags specified for call without "
5262                        "floating-point scalar or vector return type");
5263         I->setFastMathFlags(FMF);
5264       }
5265       break;
5266     }
5267     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5268       if (Record.size() < 3)
5269         return error("Invalid record");
5270       Type *OpTy = getTypeByID(Record[0]);
5271       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5272       FullTy = getFullyStructuredTypeByID(Record[2]);
5273       Type *ResTy = flattenPointerTypes(FullTy);
5274       if (!OpTy || !Op || !ResTy)
5275         return error("Invalid record");
5276       I = new VAArgInst(Op, ResTy);
5277       InstructionList.push_back(I);
5278       break;
5279     }
5280 
5281     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5282       // A call or an invoke can be optionally prefixed with some variable
5283       // number of operand bundle blocks.  These blocks are read into
5284       // OperandBundles and consumed at the next call or invoke instruction.
5285 
5286       if (Record.empty() || Record[0] >= BundleTags.size())
5287         return error("Invalid record");
5288 
5289       std::vector<Value *> Inputs;
5290 
5291       unsigned OpNum = 1;
5292       while (OpNum != Record.size()) {
5293         Value *Op;
5294         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5295           return error("Invalid record");
5296         Inputs.push_back(Op);
5297       }
5298 
5299       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5300       continue;
5301     }
5302 
5303     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5304       unsigned OpNum = 0;
5305       Value *Op = nullptr;
5306       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5307         return error("Invalid record");
5308       if (OpNum != Record.size())
5309         return error("Invalid record");
5310 
5311       I = new FreezeInst(Op);
5312       InstructionList.push_back(I);
5313       break;
5314     }
5315     }
5316 
5317     // Add instruction to end of current BB.  If there is no current BB, reject
5318     // this file.
5319     if (!CurBB) {
5320       I->deleteValue();
5321       return error("Invalid instruction with no BB");
5322     }
5323     if (!OperandBundles.empty()) {
5324       I->deleteValue();
5325       return error("Operand bundles found with no consumer");
5326     }
5327     CurBB->getInstList().push_back(I);
5328 
5329     // If this was a terminator instruction, move to the next block.
5330     if (I->isTerminator()) {
5331       ++CurBBNo;
5332       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5333     }
5334 
5335     // Non-void values get registered in the value table for future use.
5336     if (!I->getType()->isVoidTy()) {
5337       if (!FullTy) {
5338         FullTy = I->getType();
5339         assert(
5340             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5341             !isa<ArrayType>(FullTy) &&
5342             (!isa<VectorType>(FullTy) ||
5343              cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5344              cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5345             "Structured types must be assigned with corresponding non-opaque "
5346             "pointer type");
5347       }
5348 
5349       assert(I->getType() == flattenPointerTypes(FullTy) &&
5350              "Incorrect fully structured type provided for Instruction");
5351       ValueList.assignValue(I, NextValueNo++, FullTy);
5352     }
5353   }
5354 
5355 OutOfRecordLoop:
5356 
5357   if (!OperandBundles.empty())
5358     return error("Operand bundles found with no consumer");
5359 
5360   // Check the function list for unresolved values.
5361   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5362     if (!A->getParent()) {
5363       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5364       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5365         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5366           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5367           delete A;
5368         }
5369       }
5370       return error("Never resolved value found in function");
5371     }
5372   }
5373 
5374   // Unexpected unresolved metadata about to be dropped.
5375   if (MDLoader->hasFwdRefs())
5376     return error("Invalid function metadata: outgoing forward refs");
5377 
5378   // Trim the value list down to the size it was before we parsed this function.
5379   ValueList.shrinkTo(ModuleValueListSize);
5380   MDLoader->shrinkTo(ModuleMDLoaderSize);
5381   std::vector<BasicBlock*>().swap(FunctionBBs);
5382   return Error::success();
5383 }
5384 
5385 /// Find the function body in the bitcode stream
5386 Error BitcodeReader::findFunctionInStream(
5387     Function *F,
5388     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5389   while (DeferredFunctionInfoIterator->second == 0) {
5390     // This is the fallback handling for the old format bitcode that
5391     // didn't contain the function index in the VST, or when we have
5392     // an anonymous function which would not have a VST entry.
5393     // Assert that we have one of those two cases.
5394     assert(VSTOffset == 0 || !F->hasName());
5395     // Parse the next body in the stream and set its position in the
5396     // DeferredFunctionInfo map.
5397     if (Error Err = rememberAndSkipFunctionBodies())
5398       return Err;
5399   }
5400   return Error::success();
5401 }
5402 
5403 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5404   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5405     return SyncScope::ID(Val);
5406   if (Val >= SSIDs.size())
5407     return SyncScope::System; // Map unknown synchronization scopes to system.
5408   return SSIDs[Val];
5409 }
5410 
5411 //===----------------------------------------------------------------------===//
5412 // GVMaterializer implementation
5413 //===----------------------------------------------------------------------===//
5414 
5415 Error BitcodeReader::materialize(GlobalValue *GV) {
5416   Function *F = dyn_cast<Function>(GV);
5417   // If it's not a function or is already material, ignore the request.
5418   if (!F || !F->isMaterializable())
5419     return Error::success();
5420 
5421   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5422   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5423   // If its position is recorded as 0, its body is somewhere in the stream
5424   // but we haven't seen it yet.
5425   if (DFII->second == 0)
5426     if (Error Err = findFunctionInStream(F, DFII))
5427       return Err;
5428 
5429   // Materialize metadata before parsing any function bodies.
5430   if (Error Err = materializeMetadata())
5431     return Err;
5432 
5433   // Move the bit stream to the saved position of the deferred function body.
5434   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5435     return JumpFailed;
5436   if (Error Err = parseFunctionBody(F))
5437     return Err;
5438   F->setIsMaterializable(false);
5439 
5440   if (StripDebugInfo)
5441     stripDebugInfo(*F);
5442 
5443   // Upgrade any old intrinsic calls in the function.
5444   for (auto &I : UpgradedIntrinsics) {
5445     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5446          UI != UE;) {
5447       User *U = *UI;
5448       ++UI;
5449       if (CallInst *CI = dyn_cast<CallInst>(U))
5450         UpgradeIntrinsicCall(CI, I.second);
5451     }
5452   }
5453 
5454   // Update calls to the remangled intrinsics
5455   for (auto &I : RemangledIntrinsics)
5456     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5457          UI != UE;)
5458       // Don't expect any other users than call sites
5459       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5460 
5461   // Finish fn->subprogram upgrade for materialized functions.
5462   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5463     F->setSubprogram(SP);
5464 
5465   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5466   if (!MDLoader->isStrippingTBAA()) {
5467     for (auto &I : instructions(F)) {
5468       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5469       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5470         continue;
5471       MDLoader->setStripTBAA(true);
5472       stripTBAA(F->getParent());
5473     }
5474   }
5475 
5476   // "Upgrade" older incorrect branch weights by dropping them.
5477   for (auto &I : instructions(F)) {
5478     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5479       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5480         MDString *MDS = cast<MDString>(MD->getOperand(0));
5481         StringRef ProfName = MDS->getString();
5482         // Check consistency of !prof branch_weights metadata.
5483         if (!ProfName.equals("branch_weights"))
5484           continue;
5485         unsigned ExpectedNumOperands = 0;
5486         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5487           ExpectedNumOperands = BI->getNumSuccessors();
5488         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5489           ExpectedNumOperands = SI->getNumSuccessors();
5490         else if (isa<CallInst>(&I))
5491           ExpectedNumOperands = 1;
5492         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5493           ExpectedNumOperands = IBI->getNumDestinations();
5494         else if (isa<SelectInst>(&I))
5495           ExpectedNumOperands = 2;
5496         else
5497           continue; // ignore and continue.
5498 
5499         // If branch weight doesn't match, just strip branch weight.
5500         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5501           I.setMetadata(LLVMContext::MD_prof, nullptr);
5502       }
5503     }
5504   }
5505 
5506   // Look for functions that rely on old function attribute behavior.
5507   UpgradeFunctionAttributes(*F);
5508 
5509   // Bring in any functions that this function forward-referenced via
5510   // blockaddresses.
5511   return materializeForwardReferencedFunctions();
5512 }
5513 
5514 Error BitcodeReader::materializeModule() {
5515   if (Error Err = materializeMetadata())
5516     return Err;
5517 
5518   // Promise to materialize all forward references.
5519   WillMaterializeAllForwardRefs = true;
5520 
5521   // Iterate over the module, deserializing any functions that are still on
5522   // disk.
5523   for (Function &F : *TheModule) {
5524     if (Error Err = materialize(&F))
5525       return Err;
5526   }
5527   // At this point, if there are any function bodies, parse the rest of
5528   // the bits in the module past the last function block we have recorded
5529   // through either lazy scanning or the VST.
5530   if (LastFunctionBlockBit || NextUnreadBit)
5531     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5532                                     ? LastFunctionBlockBit
5533                                     : NextUnreadBit))
5534       return Err;
5535 
5536   // Check that all block address forward references got resolved (as we
5537   // promised above).
5538   if (!BasicBlockFwdRefs.empty())
5539     return error("Never resolved function from blockaddress");
5540 
5541   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5542   // delete the old functions to clean up. We can't do this unless the entire
5543   // module is materialized because there could always be another function body
5544   // with calls to the old function.
5545   for (auto &I : UpgradedIntrinsics) {
5546     for (auto *U : I.first->users()) {
5547       if (CallInst *CI = dyn_cast<CallInst>(U))
5548         UpgradeIntrinsicCall(CI, I.second);
5549     }
5550     if (!I.first->use_empty())
5551       I.first->replaceAllUsesWith(I.second);
5552     I.first->eraseFromParent();
5553   }
5554   UpgradedIntrinsics.clear();
5555   // Do the same for remangled intrinsics
5556   for (auto &I : RemangledIntrinsics) {
5557     I.first->replaceAllUsesWith(I.second);
5558     I.first->eraseFromParent();
5559   }
5560   RemangledIntrinsics.clear();
5561 
5562   UpgradeDebugInfo(*TheModule);
5563 
5564   UpgradeModuleFlags(*TheModule);
5565 
5566   UpgradeARCRuntime(*TheModule);
5567 
5568   return Error::success();
5569 }
5570 
5571 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5572   return IdentifiedStructTypes;
5573 }
5574 
5575 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5576     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5577     StringRef ModulePath, unsigned ModuleId)
5578     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5579       ModulePath(ModulePath), ModuleId(ModuleId) {}
5580 
5581 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5582   TheIndex.addModule(ModulePath, ModuleId);
5583 }
5584 
5585 ModuleSummaryIndex::ModuleInfo *
5586 ModuleSummaryIndexBitcodeReader::getThisModule() {
5587   return TheIndex.getModule(ModulePath);
5588 }
5589 
5590 std::pair<ValueInfo, GlobalValue::GUID>
5591 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5592   auto VGI = ValueIdToValueInfoMap[ValueId];
5593   assert(VGI.first);
5594   return VGI;
5595 }
5596 
5597 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5598     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5599     StringRef SourceFileName) {
5600   std::string GlobalId =
5601       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5602   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5603   auto OriginalNameID = ValueGUID;
5604   if (GlobalValue::isLocalLinkage(Linkage))
5605     OriginalNameID = GlobalValue::getGUID(ValueName);
5606   if (PrintSummaryGUIDs)
5607     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5608            << ValueName << "\n";
5609 
5610   // UseStrtab is false for legacy summary formats and value names are
5611   // created on stack. In that case we save the name in a string saver in
5612   // the index so that the value name can be recorded.
5613   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5614       TheIndex.getOrInsertValueInfo(
5615           ValueGUID,
5616           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5617       OriginalNameID);
5618 }
5619 
5620 // Specialized value symbol table parser used when reading module index
5621 // blocks where we don't actually create global values. The parsed information
5622 // is saved in the bitcode reader for use when later parsing summaries.
5623 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5624     uint64_t Offset,
5625     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5626   // With a strtab the VST is not required to parse the summary.
5627   if (UseStrtab)
5628     return Error::success();
5629 
5630   assert(Offset > 0 && "Expected non-zero VST offset");
5631   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5632   if (!MaybeCurrentBit)
5633     return MaybeCurrentBit.takeError();
5634   uint64_t CurrentBit = MaybeCurrentBit.get();
5635 
5636   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5637     return Err;
5638 
5639   SmallVector<uint64_t, 64> Record;
5640 
5641   // Read all the records for this value table.
5642   SmallString<128> ValueName;
5643 
5644   while (true) {
5645     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5646     if (!MaybeEntry)
5647       return MaybeEntry.takeError();
5648     BitstreamEntry Entry = MaybeEntry.get();
5649 
5650     switch (Entry.Kind) {
5651     case BitstreamEntry::SubBlock: // Handled for us already.
5652     case BitstreamEntry::Error:
5653       return error("Malformed block");
5654     case BitstreamEntry::EndBlock:
5655       // Done parsing VST, jump back to wherever we came from.
5656       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5657         return JumpFailed;
5658       return Error::success();
5659     case BitstreamEntry::Record:
5660       // The interesting case.
5661       break;
5662     }
5663 
5664     // Read a record.
5665     Record.clear();
5666     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5667     if (!MaybeRecord)
5668       return MaybeRecord.takeError();
5669     switch (MaybeRecord.get()) {
5670     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5671       break;
5672     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5673       if (convertToString(Record, 1, ValueName))
5674         return error("Invalid record");
5675       unsigned ValueID = Record[0];
5676       assert(!SourceFileName.empty());
5677       auto VLI = ValueIdToLinkageMap.find(ValueID);
5678       assert(VLI != ValueIdToLinkageMap.end() &&
5679              "No linkage found for VST entry?");
5680       auto Linkage = VLI->second;
5681       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5682       ValueName.clear();
5683       break;
5684     }
5685     case bitc::VST_CODE_FNENTRY: {
5686       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5687       if (convertToString(Record, 2, ValueName))
5688         return error("Invalid record");
5689       unsigned ValueID = Record[0];
5690       assert(!SourceFileName.empty());
5691       auto VLI = ValueIdToLinkageMap.find(ValueID);
5692       assert(VLI != ValueIdToLinkageMap.end() &&
5693              "No linkage found for VST entry?");
5694       auto Linkage = VLI->second;
5695       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5696       ValueName.clear();
5697       break;
5698     }
5699     case bitc::VST_CODE_COMBINED_ENTRY: {
5700       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5701       unsigned ValueID = Record[0];
5702       GlobalValue::GUID RefGUID = Record[1];
5703       // The "original name", which is the second value of the pair will be
5704       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5705       ValueIdToValueInfoMap[ValueID] =
5706           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5707       break;
5708     }
5709     }
5710   }
5711 }
5712 
5713 // Parse just the blocks needed for building the index out of the module.
5714 // At the end of this routine the module Index is populated with a map
5715 // from global value id to GlobalValueSummary objects.
5716 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5717   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5718     return Err;
5719 
5720   SmallVector<uint64_t, 64> Record;
5721   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5722   unsigned ValueId = 0;
5723 
5724   // Read the index for this module.
5725   while (true) {
5726     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5727     if (!MaybeEntry)
5728       return MaybeEntry.takeError();
5729     llvm::BitstreamEntry Entry = MaybeEntry.get();
5730 
5731     switch (Entry.Kind) {
5732     case BitstreamEntry::Error:
5733       return error("Malformed block");
5734     case BitstreamEntry::EndBlock:
5735       return Error::success();
5736 
5737     case BitstreamEntry::SubBlock:
5738       switch (Entry.ID) {
5739       default: // Skip unknown content.
5740         if (Error Err = Stream.SkipBlock())
5741           return Err;
5742         break;
5743       case bitc::BLOCKINFO_BLOCK_ID:
5744         // Need to parse these to get abbrev ids (e.g. for VST)
5745         if (readBlockInfo())
5746           return error("Malformed block");
5747         break;
5748       case bitc::VALUE_SYMTAB_BLOCK_ID:
5749         // Should have been parsed earlier via VSTOffset, unless there
5750         // is no summary section.
5751         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5752                 !SeenGlobalValSummary) &&
5753                "Expected early VST parse via VSTOffset record");
5754         if (Error Err = Stream.SkipBlock())
5755           return Err;
5756         break;
5757       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5758       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5759         // Add the module if it is a per-module index (has a source file name).
5760         if (!SourceFileName.empty())
5761           addThisModule();
5762         assert(!SeenValueSymbolTable &&
5763                "Already read VST when parsing summary block?");
5764         // We might not have a VST if there were no values in the
5765         // summary. An empty summary block generated when we are
5766         // performing ThinLTO compiles so we don't later invoke
5767         // the regular LTO process on them.
5768         if (VSTOffset > 0) {
5769           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5770             return Err;
5771           SeenValueSymbolTable = true;
5772         }
5773         SeenGlobalValSummary = true;
5774         if (Error Err = parseEntireSummary(Entry.ID))
5775           return Err;
5776         break;
5777       case bitc::MODULE_STRTAB_BLOCK_ID:
5778         if (Error Err = parseModuleStringTable())
5779           return Err;
5780         break;
5781       }
5782       continue;
5783 
5784     case BitstreamEntry::Record: {
5785         Record.clear();
5786         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5787         if (!MaybeBitCode)
5788           return MaybeBitCode.takeError();
5789         switch (MaybeBitCode.get()) {
5790         default:
5791           break; // Default behavior, ignore unknown content.
5792         case bitc::MODULE_CODE_VERSION: {
5793           if (Error Err = parseVersionRecord(Record).takeError())
5794             return Err;
5795           break;
5796         }
5797         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5798         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5799           SmallString<128> ValueName;
5800           if (convertToString(Record, 0, ValueName))
5801             return error("Invalid record");
5802           SourceFileName = ValueName.c_str();
5803           break;
5804         }
5805         /// MODULE_CODE_HASH: [5*i32]
5806         case bitc::MODULE_CODE_HASH: {
5807           if (Record.size() != 5)
5808             return error("Invalid hash length " + Twine(Record.size()).str());
5809           auto &Hash = getThisModule()->second.second;
5810           int Pos = 0;
5811           for (auto &Val : Record) {
5812             assert(!(Val >> 32) && "Unexpected high bits set");
5813             Hash[Pos++] = Val;
5814           }
5815           break;
5816         }
5817         /// MODULE_CODE_VSTOFFSET: [offset]
5818         case bitc::MODULE_CODE_VSTOFFSET:
5819           if (Record.empty())
5820             return error("Invalid record");
5821           // Note that we subtract 1 here because the offset is relative to one
5822           // word before the start of the identification or module block, which
5823           // was historically always the start of the regular bitcode header.
5824           VSTOffset = Record[0] - 1;
5825           break;
5826         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5827         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5828         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5829         // v2: [strtab offset, strtab size, v1]
5830         case bitc::MODULE_CODE_GLOBALVAR:
5831         case bitc::MODULE_CODE_FUNCTION:
5832         case bitc::MODULE_CODE_ALIAS: {
5833           StringRef Name;
5834           ArrayRef<uint64_t> GVRecord;
5835           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5836           if (GVRecord.size() <= 3)
5837             return error("Invalid record");
5838           uint64_t RawLinkage = GVRecord[3];
5839           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5840           if (!UseStrtab) {
5841             ValueIdToLinkageMap[ValueId++] = Linkage;
5842             break;
5843           }
5844 
5845           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5846           break;
5847         }
5848         }
5849       }
5850       continue;
5851     }
5852   }
5853 }
5854 
5855 std::vector<ValueInfo>
5856 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5857   std::vector<ValueInfo> Ret;
5858   Ret.reserve(Record.size());
5859   for (uint64_t RefValueId : Record)
5860     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5861   return Ret;
5862 }
5863 
5864 std::vector<FunctionSummary::EdgeTy>
5865 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5866                                               bool IsOldProfileFormat,
5867                                               bool HasProfile, bool HasRelBF) {
5868   std::vector<FunctionSummary::EdgeTy> Ret;
5869   Ret.reserve(Record.size());
5870   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5871     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5872     uint64_t RelBF = 0;
5873     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5874     if (IsOldProfileFormat) {
5875       I += 1; // Skip old callsitecount field
5876       if (HasProfile)
5877         I += 1; // Skip old profilecount field
5878     } else if (HasProfile)
5879       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5880     else if (HasRelBF)
5881       RelBF = Record[++I];
5882     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5883   }
5884   return Ret;
5885 }
5886 
5887 static void
5888 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5889                                        WholeProgramDevirtResolution &Wpd) {
5890   uint64_t ArgNum = Record[Slot++];
5891   WholeProgramDevirtResolution::ByArg &B =
5892       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5893   Slot += ArgNum;
5894 
5895   B.TheKind =
5896       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5897   B.Info = Record[Slot++];
5898   B.Byte = Record[Slot++];
5899   B.Bit = Record[Slot++];
5900 }
5901 
5902 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5903                                               StringRef Strtab, size_t &Slot,
5904                                               TypeIdSummary &TypeId) {
5905   uint64_t Id = Record[Slot++];
5906   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5907 
5908   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5909   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5910                         static_cast<size_t>(Record[Slot + 1])};
5911   Slot += 2;
5912 
5913   uint64_t ResByArgNum = Record[Slot++];
5914   for (uint64_t I = 0; I != ResByArgNum; ++I)
5915     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5916 }
5917 
5918 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5919                                      StringRef Strtab,
5920                                      ModuleSummaryIndex &TheIndex) {
5921   size_t Slot = 0;
5922   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5923       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5924   Slot += 2;
5925 
5926   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5927   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5928   TypeId.TTRes.AlignLog2 = Record[Slot++];
5929   TypeId.TTRes.SizeM1 = Record[Slot++];
5930   TypeId.TTRes.BitMask = Record[Slot++];
5931   TypeId.TTRes.InlineBits = Record[Slot++];
5932 
5933   while (Slot < Record.size())
5934     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5935 }
5936 
5937 std::vector<FunctionSummary::ParamAccess>
5938 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
5939   auto ReadRange = [&]() {
5940     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
5941                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5942     Record = Record.drop_front();
5943     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
5944                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5945     Record = Record.drop_front();
5946     ConstantRange Range{Lower, Upper};
5947     assert(!Range.isFullSet());
5948     assert(!Range.isUpperSignWrapped());
5949     return Range;
5950   };
5951 
5952   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
5953   while (!Record.empty()) {
5954     PendingParamAccesses.emplace_back();
5955     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
5956     ParamAccess.ParamNo = Record.front();
5957     Record = Record.drop_front();
5958     ParamAccess.Use = ReadRange();
5959     ParamAccess.Calls.resize(Record.front());
5960     Record = Record.drop_front();
5961     for (auto &Call : ParamAccess.Calls) {
5962       Call.ParamNo = Record.front();
5963       Record = Record.drop_front();
5964       Call.Callee = getValueInfoFromValueId(Record.front()).first;
5965       Record = Record.drop_front();
5966       Call.Offsets = ReadRange();
5967     }
5968   }
5969   return PendingParamAccesses;
5970 }
5971 
5972 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5973     ArrayRef<uint64_t> Record, size_t &Slot,
5974     TypeIdCompatibleVtableInfo &TypeId) {
5975   uint64_t Offset = Record[Slot++];
5976   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5977   TypeId.push_back({Offset, Callee});
5978 }
5979 
5980 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5981     ArrayRef<uint64_t> Record) {
5982   size_t Slot = 0;
5983   TypeIdCompatibleVtableInfo &TypeId =
5984       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5985           {Strtab.data() + Record[Slot],
5986            static_cast<size_t>(Record[Slot + 1])});
5987   Slot += 2;
5988 
5989   while (Slot < Record.size())
5990     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5991 }
5992 
5993 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5994                            unsigned WOCnt) {
5995   // Readonly and writeonly refs are in the end of the refs list.
5996   assert(ROCnt + WOCnt <= Refs.size());
5997   unsigned FirstWORef = Refs.size() - WOCnt;
5998   unsigned RefNo = FirstWORef - ROCnt;
5999   for (; RefNo < FirstWORef; ++RefNo)
6000     Refs[RefNo].setReadOnly();
6001   for (; RefNo < Refs.size(); ++RefNo)
6002     Refs[RefNo].setWriteOnly();
6003 }
6004 
6005 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6006 // objects in the index.
6007 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6008   if (Error Err = Stream.EnterSubBlock(ID))
6009     return Err;
6010   SmallVector<uint64_t, 64> Record;
6011 
6012   // Parse version
6013   {
6014     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6015     if (!MaybeEntry)
6016       return MaybeEntry.takeError();
6017     BitstreamEntry Entry = MaybeEntry.get();
6018 
6019     if (Entry.Kind != BitstreamEntry::Record)
6020       return error("Invalid Summary Block: record for version expected");
6021     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6022     if (!MaybeRecord)
6023       return MaybeRecord.takeError();
6024     if (MaybeRecord.get() != bitc::FS_VERSION)
6025       return error("Invalid Summary Block: version expected");
6026   }
6027   const uint64_t Version = Record[0];
6028   const bool IsOldProfileFormat = Version == 1;
6029   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6030     return error("Invalid summary version " + Twine(Version) +
6031                  ". Version should be in the range [1-" +
6032                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6033                  "].");
6034   Record.clear();
6035 
6036   // Keep around the last seen summary to be used when we see an optional
6037   // "OriginalName" attachement.
6038   GlobalValueSummary *LastSeenSummary = nullptr;
6039   GlobalValue::GUID LastSeenGUID = 0;
6040 
6041   // We can expect to see any number of type ID information records before
6042   // each function summary records; these variables store the information
6043   // collected so far so that it can be used to create the summary object.
6044   std::vector<GlobalValue::GUID> PendingTypeTests;
6045   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6046       PendingTypeCheckedLoadVCalls;
6047   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6048       PendingTypeCheckedLoadConstVCalls;
6049   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6050 
6051   while (true) {
6052     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6053     if (!MaybeEntry)
6054       return MaybeEntry.takeError();
6055     BitstreamEntry Entry = MaybeEntry.get();
6056 
6057     switch (Entry.Kind) {
6058     case BitstreamEntry::SubBlock: // Handled for us already.
6059     case BitstreamEntry::Error:
6060       return error("Malformed block");
6061     case BitstreamEntry::EndBlock:
6062       return Error::success();
6063     case BitstreamEntry::Record:
6064       // The interesting case.
6065       break;
6066     }
6067 
6068     // Read a record. The record format depends on whether this
6069     // is a per-module index or a combined index file. In the per-module
6070     // case the records contain the associated value's ID for correlation
6071     // with VST entries. In the combined index the correlation is done
6072     // via the bitcode offset of the summary records (which were saved
6073     // in the combined index VST entries). The records also contain
6074     // information used for ThinLTO renaming and importing.
6075     Record.clear();
6076     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6077     if (!MaybeBitCode)
6078       return MaybeBitCode.takeError();
6079     switch (unsigned BitCode = MaybeBitCode.get()) {
6080     default: // Default behavior: ignore.
6081       break;
6082     case bitc::FS_FLAGS: {  // [flags]
6083       TheIndex.setFlags(Record[0]);
6084       break;
6085     }
6086     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6087       uint64_t ValueID = Record[0];
6088       GlobalValue::GUID RefGUID = Record[1];
6089       ValueIdToValueInfoMap[ValueID] =
6090           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6091       break;
6092     }
6093     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6094     //                numrefs x valueid, n x (valueid)]
6095     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6096     //                        numrefs x valueid,
6097     //                        n x (valueid, hotness)]
6098     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6099     //                      numrefs x valueid,
6100     //                      n x (valueid, relblockfreq)]
6101     case bitc::FS_PERMODULE:
6102     case bitc::FS_PERMODULE_RELBF:
6103     case bitc::FS_PERMODULE_PROFILE: {
6104       unsigned ValueID = Record[0];
6105       uint64_t RawFlags = Record[1];
6106       unsigned InstCount = Record[2];
6107       uint64_t RawFunFlags = 0;
6108       unsigned NumRefs = Record[3];
6109       unsigned NumRORefs = 0, NumWORefs = 0;
6110       int RefListStartIndex = 4;
6111       if (Version >= 4) {
6112         RawFunFlags = Record[3];
6113         NumRefs = Record[4];
6114         RefListStartIndex = 5;
6115         if (Version >= 5) {
6116           NumRORefs = Record[5];
6117           RefListStartIndex = 6;
6118           if (Version >= 7) {
6119             NumWORefs = Record[6];
6120             RefListStartIndex = 7;
6121           }
6122         }
6123       }
6124 
6125       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6126       // The module path string ref set in the summary must be owned by the
6127       // index's module string table. Since we don't have a module path
6128       // string table section in the per-module index, we create a single
6129       // module path string table entry with an empty (0) ID to take
6130       // ownership.
6131       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6132       assert(Record.size() >= RefListStartIndex + NumRefs &&
6133              "Record size inconsistent with number of references");
6134       std::vector<ValueInfo> Refs = makeRefList(
6135           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6136       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6137       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6138       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6139           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6140           IsOldProfileFormat, HasProfile, HasRelBF);
6141       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6142       auto FS = std::make_unique<FunctionSummary>(
6143           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6144           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6145           std::move(PendingTypeTestAssumeVCalls),
6146           std::move(PendingTypeCheckedLoadVCalls),
6147           std::move(PendingTypeTestAssumeConstVCalls),
6148           std::move(PendingTypeCheckedLoadConstVCalls),
6149           std::move(PendingParamAccesses));
6150       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6151       FS->setModulePath(getThisModule()->first());
6152       FS->setOriginalName(VIAndOriginalGUID.second);
6153       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6154       break;
6155     }
6156     // FS_ALIAS: [valueid, flags, valueid]
6157     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6158     // they expect all aliasee summaries to be available.
6159     case bitc::FS_ALIAS: {
6160       unsigned ValueID = Record[0];
6161       uint64_t RawFlags = Record[1];
6162       unsigned AliaseeID = Record[2];
6163       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6164       auto AS = std::make_unique<AliasSummary>(Flags);
6165       // The module path string ref set in the summary must be owned by the
6166       // index's module string table. Since we don't have a module path
6167       // string table section in the per-module index, we create a single
6168       // module path string table entry with an empty (0) ID to take
6169       // ownership.
6170       AS->setModulePath(getThisModule()->first());
6171 
6172       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6173       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6174       if (!AliaseeInModule)
6175         return error("Alias expects aliasee summary to be parsed");
6176       AS->setAliasee(AliaseeVI, AliaseeInModule);
6177 
6178       auto GUID = getValueInfoFromValueId(ValueID);
6179       AS->setOriginalName(GUID.second);
6180       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6181       break;
6182     }
6183     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6184     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6185       unsigned ValueID = Record[0];
6186       uint64_t RawFlags = Record[1];
6187       unsigned RefArrayStart = 2;
6188       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6189                                       /* WriteOnly */ false,
6190                                       /* Constant */ false,
6191                                       GlobalObject::VCallVisibilityPublic);
6192       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6193       if (Version >= 5) {
6194         GVF = getDecodedGVarFlags(Record[2]);
6195         RefArrayStart = 3;
6196       }
6197       std::vector<ValueInfo> Refs =
6198           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6199       auto FS =
6200           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6201       FS->setModulePath(getThisModule()->first());
6202       auto GUID = getValueInfoFromValueId(ValueID);
6203       FS->setOriginalName(GUID.second);
6204       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6205       break;
6206     }
6207     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6208     //                        numrefs, numrefs x valueid,
6209     //                        n x (valueid, offset)]
6210     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6211       unsigned ValueID = Record[0];
6212       uint64_t RawFlags = Record[1];
6213       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6214       unsigned NumRefs = Record[3];
6215       unsigned RefListStartIndex = 4;
6216       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6217       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6218       std::vector<ValueInfo> Refs = makeRefList(
6219           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6220       VTableFuncList VTableFuncs;
6221       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6222         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6223         uint64_t Offset = Record[++I];
6224         VTableFuncs.push_back({Callee, Offset});
6225       }
6226       auto VS =
6227           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6228       VS->setModulePath(getThisModule()->first());
6229       VS->setVTableFuncs(VTableFuncs);
6230       auto GUID = getValueInfoFromValueId(ValueID);
6231       VS->setOriginalName(GUID.second);
6232       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6233       break;
6234     }
6235     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6236     //               numrefs x valueid, n x (valueid)]
6237     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6238     //                       numrefs x valueid, n x (valueid, hotness)]
6239     case bitc::FS_COMBINED:
6240     case bitc::FS_COMBINED_PROFILE: {
6241       unsigned ValueID = Record[0];
6242       uint64_t ModuleId = Record[1];
6243       uint64_t RawFlags = Record[2];
6244       unsigned InstCount = Record[3];
6245       uint64_t RawFunFlags = 0;
6246       uint64_t EntryCount = 0;
6247       unsigned NumRefs = Record[4];
6248       unsigned NumRORefs = 0, NumWORefs = 0;
6249       int RefListStartIndex = 5;
6250 
6251       if (Version >= 4) {
6252         RawFunFlags = Record[4];
6253         RefListStartIndex = 6;
6254         size_t NumRefsIndex = 5;
6255         if (Version >= 5) {
6256           unsigned NumRORefsOffset = 1;
6257           RefListStartIndex = 7;
6258           if (Version >= 6) {
6259             NumRefsIndex = 6;
6260             EntryCount = Record[5];
6261             RefListStartIndex = 8;
6262             if (Version >= 7) {
6263               RefListStartIndex = 9;
6264               NumWORefs = Record[8];
6265               NumRORefsOffset = 2;
6266             }
6267           }
6268           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6269         }
6270         NumRefs = Record[NumRefsIndex];
6271       }
6272 
6273       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6274       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6275       assert(Record.size() >= RefListStartIndex + NumRefs &&
6276              "Record size inconsistent with number of references");
6277       std::vector<ValueInfo> Refs = makeRefList(
6278           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6279       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6280       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6281           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6282           IsOldProfileFormat, HasProfile, false);
6283       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6284       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6285       auto FS = std::make_unique<FunctionSummary>(
6286           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6287           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6288           std::move(PendingTypeTestAssumeVCalls),
6289           std::move(PendingTypeCheckedLoadVCalls),
6290           std::move(PendingTypeTestAssumeConstVCalls),
6291           std::move(PendingTypeCheckedLoadConstVCalls),
6292           std::move(PendingParamAccesses));
6293       LastSeenSummary = FS.get();
6294       LastSeenGUID = VI.getGUID();
6295       FS->setModulePath(ModuleIdMap[ModuleId]);
6296       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6297       break;
6298     }
6299     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6300     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6301     // they expect all aliasee summaries to be available.
6302     case bitc::FS_COMBINED_ALIAS: {
6303       unsigned ValueID = Record[0];
6304       uint64_t ModuleId = Record[1];
6305       uint64_t RawFlags = Record[2];
6306       unsigned AliaseeValueId = Record[3];
6307       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6308       auto AS = std::make_unique<AliasSummary>(Flags);
6309       LastSeenSummary = AS.get();
6310       AS->setModulePath(ModuleIdMap[ModuleId]);
6311 
6312       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6313       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6314       AS->setAliasee(AliaseeVI, AliaseeInModule);
6315 
6316       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6317       LastSeenGUID = VI.getGUID();
6318       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6319       break;
6320     }
6321     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6322     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6323       unsigned ValueID = Record[0];
6324       uint64_t ModuleId = Record[1];
6325       uint64_t RawFlags = Record[2];
6326       unsigned RefArrayStart = 3;
6327       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6328                                       /* WriteOnly */ false,
6329                                       /* Constant */ false,
6330                                       GlobalObject::VCallVisibilityPublic);
6331       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6332       if (Version >= 5) {
6333         GVF = getDecodedGVarFlags(Record[3]);
6334         RefArrayStart = 4;
6335       }
6336       std::vector<ValueInfo> Refs =
6337           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6338       auto FS =
6339           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6340       LastSeenSummary = FS.get();
6341       FS->setModulePath(ModuleIdMap[ModuleId]);
6342       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6343       LastSeenGUID = VI.getGUID();
6344       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6345       break;
6346     }
6347     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6348     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6349       uint64_t OriginalName = Record[0];
6350       if (!LastSeenSummary)
6351         return error("Name attachment that does not follow a combined record");
6352       LastSeenSummary->setOriginalName(OriginalName);
6353       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6354       // Reset the LastSeenSummary
6355       LastSeenSummary = nullptr;
6356       LastSeenGUID = 0;
6357       break;
6358     }
6359     case bitc::FS_TYPE_TESTS:
6360       assert(PendingTypeTests.empty());
6361       llvm::append_range(PendingTypeTests, Record);
6362       break;
6363 
6364     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6365       assert(PendingTypeTestAssumeVCalls.empty());
6366       for (unsigned I = 0; I != Record.size(); I += 2)
6367         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6368       break;
6369 
6370     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6371       assert(PendingTypeCheckedLoadVCalls.empty());
6372       for (unsigned I = 0; I != Record.size(); I += 2)
6373         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6374       break;
6375 
6376     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6377       PendingTypeTestAssumeConstVCalls.push_back(
6378           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6379       break;
6380 
6381     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6382       PendingTypeCheckedLoadConstVCalls.push_back(
6383           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6384       break;
6385 
6386     case bitc::FS_CFI_FUNCTION_DEFS: {
6387       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6388       for (unsigned I = 0; I != Record.size(); I += 2)
6389         CfiFunctionDefs.insert(
6390             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6391       break;
6392     }
6393 
6394     case bitc::FS_CFI_FUNCTION_DECLS: {
6395       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6396       for (unsigned I = 0; I != Record.size(); I += 2)
6397         CfiFunctionDecls.insert(
6398             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6399       break;
6400     }
6401 
6402     case bitc::FS_TYPE_ID:
6403       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6404       break;
6405 
6406     case bitc::FS_TYPE_ID_METADATA:
6407       parseTypeIdCompatibleVtableSummaryRecord(Record);
6408       break;
6409 
6410     case bitc::FS_BLOCK_COUNT:
6411       TheIndex.addBlockCount(Record[0]);
6412       break;
6413 
6414     case bitc::FS_PARAM_ACCESS: {
6415       PendingParamAccesses = parseParamAccesses(Record);
6416       break;
6417     }
6418     }
6419   }
6420   llvm_unreachable("Exit infinite loop");
6421 }
6422 
6423 // Parse the  module string table block into the Index.
6424 // This populates the ModulePathStringTable map in the index.
6425 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6426   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6427     return Err;
6428 
6429   SmallVector<uint64_t, 64> Record;
6430 
6431   SmallString<128> ModulePath;
6432   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6433 
6434   while (true) {
6435     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6436     if (!MaybeEntry)
6437       return MaybeEntry.takeError();
6438     BitstreamEntry Entry = MaybeEntry.get();
6439 
6440     switch (Entry.Kind) {
6441     case BitstreamEntry::SubBlock: // Handled for us already.
6442     case BitstreamEntry::Error:
6443       return error("Malformed block");
6444     case BitstreamEntry::EndBlock:
6445       return Error::success();
6446     case BitstreamEntry::Record:
6447       // The interesting case.
6448       break;
6449     }
6450 
6451     Record.clear();
6452     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6453     if (!MaybeRecord)
6454       return MaybeRecord.takeError();
6455     switch (MaybeRecord.get()) {
6456     default: // Default behavior: ignore.
6457       break;
6458     case bitc::MST_CODE_ENTRY: {
6459       // MST_ENTRY: [modid, namechar x N]
6460       uint64_t ModuleId = Record[0];
6461 
6462       if (convertToString(Record, 1, ModulePath))
6463         return error("Invalid record");
6464 
6465       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6466       ModuleIdMap[ModuleId] = LastSeenModule->first();
6467 
6468       ModulePath.clear();
6469       break;
6470     }
6471     /// MST_CODE_HASH: [5*i32]
6472     case bitc::MST_CODE_HASH: {
6473       if (Record.size() != 5)
6474         return error("Invalid hash length " + Twine(Record.size()).str());
6475       if (!LastSeenModule)
6476         return error("Invalid hash that does not follow a module path");
6477       int Pos = 0;
6478       for (auto &Val : Record) {
6479         assert(!(Val >> 32) && "Unexpected high bits set");
6480         LastSeenModule->second.second[Pos++] = Val;
6481       }
6482       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6483       LastSeenModule = nullptr;
6484       break;
6485     }
6486     }
6487   }
6488   llvm_unreachable("Exit infinite loop");
6489 }
6490 
6491 namespace {
6492 
6493 // FIXME: This class is only here to support the transition to llvm::Error. It
6494 // will be removed once this transition is complete. Clients should prefer to
6495 // deal with the Error value directly, rather than converting to error_code.
6496 class BitcodeErrorCategoryType : public std::error_category {
6497   const char *name() const noexcept override {
6498     return "llvm.bitcode";
6499   }
6500 
6501   std::string message(int IE) const override {
6502     BitcodeError E = static_cast<BitcodeError>(IE);
6503     switch (E) {
6504     case BitcodeError::CorruptedBitcode:
6505       return "Corrupted bitcode";
6506     }
6507     llvm_unreachable("Unknown error type!");
6508   }
6509 };
6510 
6511 } // end anonymous namespace
6512 
6513 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6514 
6515 const std::error_category &llvm::BitcodeErrorCategory() {
6516   return *ErrorCategory;
6517 }
6518 
6519 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6520                                             unsigned Block, unsigned RecordID) {
6521   if (Error Err = Stream.EnterSubBlock(Block))
6522     return std::move(Err);
6523 
6524   StringRef Strtab;
6525   while (true) {
6526     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6527     if (!MaybeEntry)
6528       return MaybeEntry.takeError();
6529     llvm::BitstreamEntry Entry = MaybeEntry.get();
6530 
6531     switch (Entry.Kind) {
6532     case BitstreamEntry::EndBlock:
6533       return Strtab;
6534 
6535     case BitstreamEntry::Error:
6536       return error("Malformed block");
6537 
6538     case BitstreamEntry::SubBlock:
6539       if (Error Err = Stream.SkipBlock())
6540         return std::move(Err);
6541       break;
6542 
6543     case BitstreamEntry::Record:
6544       StringRef Blob;
6545       SmallVector<uint64_t, 1> Record;
6546       Expected<unsigned> MaybeRecord =
6547           Stream.readRecord(Entry.ID, Record, &Blob);
6548       if (!MaybeRecord)
6549         return MaybeRecord.takeError();
6550       if (MaybeRecord.get() == RecordID)
6551         Strtab = Blob;
6552       break;
6553     }
6554   }
6555 }
6556 
6557 //===----------------------------------------------------------------------===//
6558 // External interface
6559 //===----------------------------------------------------------------------===//
6560 
6561 Expected<std::vector<BitcodeModule>>
6562 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6563   auto FOrErr = getBitcodeFileContents(Buffer);
6564   if (!FOrErr)
6565     return FOrErr.takeError();
6566   return std::move(FOrErr->Mods);
6567 }
6568 
6569 Expected<BitcodeFileContents>
6570 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6571   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6572   if (!StreamOrErr)
6573     return StreamOrErr.takeError();
6574   BitstreamCursor &Stream = *StreamOrErr;
6575 
6576   BitcodeFileContents F;
6577   while (true) {
6578     uint64_t BCBegin = Stream.getCurrentByteNo();
6579 
6580     // We may be consuming bitcode from a client that leaves garbage at the end
6581     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6582     // the end that there cannot possibly be another module, stop looking.
6583     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6584       return F;
6585 
6586     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6587     if (!MaybeEntry)
6588       return MaybeEntry.takeError();
6589     llvm::BitstreamEntry Entry = MaybeEntry.get();
6590 
6591     switch (Entry.Kind) {
6592     case BitstreamEntry::EndBlock:
6593     case BitstreamEntry::Error:
6594       return error("Malformed block");
6595 
6596     case BitstreamEntry::SubBlock: {
6597       uint64_t IdentificationBit = -1ull;
6598       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6599         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6600         if (Error Err = Stream.SkipBlock())
6601           return std::move(Err);
6602 
6603         {
6604           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6605           if (!MaybeEntry)
6606             return MaybeEntry.takeError();
6607           Entry = MaybeEntry.get();
6608         }
6609 
6610         if (Entry.Kind != BitstreamEntry::SubBlock ||
6611             Entry.ID != bitc::MODULE_BLOCK_ID)
6612           return error("Malformed block");
6613       }
6614 
6615       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6616         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6617         if (Error Err = Stream.SkipBlock())
6618           return std::move(Err);
6619 
6620         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6621                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6622                           Buffer.getBufferIdentifier(), IdentificationBit,
6623                           ModuleBit});
6624         continue;
6625       }
6626 
6627       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6628         Expected<StringRef> Strtab =
6629             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6630         if (!Strtab)
6631           return Strtab.takeError();
6632         // This string table is used by every preceding bitcode module that does
6633         // not have its own string table. A bitcode file may have multiple
6634         // string tables if it was created by binary concatenation, for example
6635         // with "llvm-cat -b".
6636         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6637           if (!I->Strtab.empty())
6638             break;
6639           I->Strtab = *Strtab;
6640         }
6641         // Similarly, the string table is used by every preceding symbol table;
6642         // normally there will be just one unless the bitcode file was created
6643         // by binary concatenation.
6644         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6645           F.StrtabForSymtab = *Strtab;
6646         continue;
6647       }
6648 
6649       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6650         Expected<StringRef> SymtabOrErr =
6651             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6652         if (!SymtabOrErr)
6653           return SymtabOrErr.takeError();
6654 
6655         // We can expect the bitcode file to have multiple symbol tables if it
6656         // was created by binary concatenation. In that case we silently
6657         // ignore any subsequent symbol tables, which is fine because this is a
6658         // low level function. The client is expected to notice that the number
6659         // of modules in the symbol table does not match the number of modules
6660         // in the input file and regenerate the symbol table.
6661         if (F.Symtab.empty())
6662           F.Symtab = *SymtabOrErr;
6663         continue;
6664       }
6665 
6666       if (Error Err = Stream.SkipBlock())
6667         return std::move(Err);
6668       continue;
6669     }
6670     case BitstreamEntry::Record:
6671       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6672         continue;
6673       else
6674         return StreamFailed.takeError();
6675     }
6676   }
6677 }
6678 
6679 /// Get a lazy one-at-time loading module from bitcode.
6680 ///
6681 /// This isn't always used in a lazy context.  In particular, it's also used by
6682 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6683 /// in forward-referenced functions from block address references.
6684 ///
6685 /// \param[in] MaterializeAll Set to \c true if we should materialize
6686 /// everything.
6687 Expected<std::unique_ptr<Module>>
6688 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6689                              bool ShouldLazyLoadMetadata, bool IsImporting,
6690                              DataLayoutCallbackTy DataLayoutCallback) {
6691   BitstreamCursor Stream(Buffer);
6692 
6693   std::string ProducerIdentification;
6694   if (IdentificationBit != -1ull) {
6695     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6696       return std::move(JumpFailed);
6697     Expected<std::string> ProducerIdentificationOrErr =
6698         readIdentificationBlock(Stream);
6699     if (!ProducerIdentificationOrErr)
6700       return ProducerIdentificationOrErr.takeError();
6701 
6702     ProducerIdentification = *ProducerIdentificationOrErr;
6703   }
6704 
6705   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6706     return std::move(JumpFailed);
6707   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6708                               Context);
6709 
6710   std::unique_ptr<Module> M =
6711       std::make_unique<Module>(ModuleIdentifier, Context);
6712   M->setMaterializer(R);
6713 
6714   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6715   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6716                                       IsImporting, DataLayoutCallback))
6717     return std::move(Err);
6718 
6719   if (MaterializeAll) {
6720     // Read in the entire module, and destroy the BitcodeReader.
6721     if (Error Err = M->materializeAll())
6722       return std::move(Err);
6723   } else {
6724     // Resolve forward references from blockaddresses.
6725     if (Error Err = R->materializeForwardReferencedFunctions())
6726       return std::move(Err);
6727   }
6728   return std::move(M);
6729 }
6730 
6731 Expected<std::unique_ptr<Module>>
6732 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6733                              bool IsImporting) {
6734   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6735                        [](StringRef) { return None; });
6736 }
6737 
6738 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6739 // We don't use ModuleIdentifier here because the client may need to control the
6740 // module path used in the combined summary (e.g. when reading summaries for
6741 // regular LTO modules).
6742 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6743                                  StringRef ModulePath, uint64_t ModuleId) {
6744   BitstreamCursor Stream(Buffer);
6745   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6746     return JumpFailed;
6747 
6748   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6749                                     ModulePath, ModuleId);
6750   return R.parseModule();
6751 }
6752 
6753 // Parse the specified bitcode buffer, returning the function info index.
6754 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6755   BitstreamCursor Stream(Buffer);
6756   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6757     return std::move(JumpFailed);
6758 
6759   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6760   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6761                                     ModuleIdentifier, 0);
6762 
6763   if (Error Err = R.parseModule())
6764     return std::move(Err);
6765 
6766   return std::move(Index);
6767 }
6768 
6769 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6770                                                 unsigned ID) {
6771   if (Error Err = Stream.EnterSubBlock(ID))
6772     return std::move(Err);
6773   SmallVector<uint64_t, 64> Record;
6774 
6775   while (true) {
6776     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6777     if (!MaybeEntry)
6778       return MaybeEntry.takeError();
6779     BitstreamEntry Entry = MaybeEntry.get();
6780 
6781     switch (Entry.Kind) {
6782     case BitstreamEntry::SubBlock: // Handled for us already.
6783     case BitstreamEntry::Error:
6784       return error("Malformed block");
6785     case BitstreamEntry::EndBlock:
6786       // If no flags record found, conservatively return true to mimic
6787       // behavior before this flag was added.
6788       return true;
6789     case BitstreamEntry::Record:
6790       // The interesting case.
6791       break;
6792     }
6793 
6794     // Look for the FS_FLAGS record.
6795     Record.clear();
6796     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6797     if (!MaybeBitCode)
6798       return MaybeBitCode.takeError();
6799     switch (MaybeBitCode.get()) {
6800     default: // Default behavior: ignore.
6801       break;
6802     case bitc::FS_FLAGS: { // [flags]
6803       uint64_t Flags = Record[0];
6804       // Scan flags.
6805       assert(Flags <= 0x3f && "Unexpected bits in flag");
6806 
6807       return Flags & 0x8;
6808     }
6809     }
6810   }
6811   llvm_unreachable("Exit infinite loop");
6812 }
6813 
6814 // Check if the given bitcode buffer contains a global value summary block.
6815 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6816   BitstreamCursor Stream(Buffer);
6817   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6818     return std::move(JumpFailed);
6819 
6820   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6821     return std::move(Err);
6822 
6823   while (true) {
6824     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6825     if (!MaybeEntry)
6826       return MaybeEntry.takeError();
6827     llvm::BitstreamEntry Entry = MaybeEntry.get();
6828 
6829     switch (Entry.Kind) {
6830     case BitstreamEntry::Error:
6831       return error("Malformed block");
6832     case BitstreamEntry::EndBlock:
6833       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6834                             /*EnableSplitLTOUnit=*/false};
6835 
6836     case BitstreamEntry::SubBlock:
6837       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6838         Expected<bool> EnableSplitLTOUnit =
6839             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6840         if (!EnableSplitLTOUnit)
6841           return EnableSplitLTOUnit.takeError();
6842         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6843                               *EnableSplitLTOUnit};
6844       }
6845 
6846       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6847         Expected<bool> EnableSplitLTOUnit =
6848             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6849         if (!EnableSplitLTOUnit)
6850           return EnableSplitLTOUnit.takeError();
6851         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6852                               *EnableSplitLTOUnit};
6853       }
6854 
6855       // Ignore other sub-blocks.
6856       if (Error Err = Stream.SkipBlock())
6857         return std::move(Err);
6858       continue;
6859 
6860     case BitstreamEntry::Record:
6861       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6862         continue;
6863       else
6864         return StreamFailed.takeError();
6865     }
6866   }
6867 }
6868 
6869 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6870   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6871   if (!MsOrErr)
6872     return MsOrErr.takeError();
6873 
6874   if (MsOrErr->size() != 1)
6875     return error("Expected a single module");
6876 
6877   return (*MsOrErr)[0];
6878 }
6879 
6880 Expected<std::unique_ptr<Module>>
6881 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6882                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6883   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6884   if (!BM)
6885     return BM.takeError();
6886 
6887   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6888 }
6889 
6890 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6891     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6892     bool ShouldLazyLoadMetadata, bool IsImporting) {
6893   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6894                                      IsImporting);
6895   if (MOrErr)
6896     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6897   return MOrErr;
6898 }
6899 
6900 Expected<std::unique_ptr<Module>>
6901 BitcodeModule::parseModule(LLVMContext &Context,
6902                            DataLayoutCallbackTy DataLayoutCallback) {
6903   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6904   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6905   // written.  We must defer until the Module has been fully materialized.
6906 }
6907 
6908 Expected<std::unique_ptr<Module>>
6909 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6910                        DataLayoutCallbackTy DataLayoutCallback) {
6911   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6912   if (!BM)
6913     return BM.takeError();
6914 
6915   return BM->parseModule(Context, DataLayoutCallback);
6916 }
6917 
6918 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6919   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6920   if (!StreamOrErr)
6921     return StreamOrErr.takeError();
6922 
6923   return readTriple(*StreamOrErr);
6924 }
6925 
6926 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6927   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6928   if (!StreamOrErr)
6929     return StreamOrErr.takeError();
6930 
6931   return hasObjCCategory(*StreamOrErr);
6932 }
6933 
6934 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6935   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6936   if (!StreamOrErr)
6937     return StreamOrErr.takeError();
6938 
6939   return readIdentificationCode(*StreamOrErr);
6940 }
6941 
6942 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6943                                    ModuleSummaryIndex &CombinedIndex,
6944                                    uint64_t ModuleId) {
6945   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6946   if (!BM)
6947     return BM.takeError();
6948 
6949   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6950 }
6951 
6952 Expected<std::unique_ptr<ModuleSummaryIndex>>
6953 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6954   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6955   if (!BM)
6956     return BM.takeError();
6957 
6958   return BM->getSummary();
6959 }
6960 
6961 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6962   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6963   if (!BM)
6964     return BM.takeError();
6965 
6966   return BM->getLTOInfo();
6967 }
6968 
6969 Expected<std::unique_ptr<ModuleSummaryIndex>>
6970 llvm::getModuleSummaryIndexForFile(StringRef Path,
6971                                    bool IgnoreEmptyThinLTOIndexFile) {
6972   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6973       MemoryBuffer::getFileOrSTDIN(Path);
6974   if (!FileOrErr)
6975     return errorCodeToError(FileOrErr.getError());
6976   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6977     return nullptr;
6978   return getModuleSummaryIndex(**FileOrErr);
6979 }
6980