1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
157     Result += (char)Record[i];
158   return false;
159 }
160 
161 // Strip all the TBAA attachment for the module.
162 static void stripTBAA(Module *M) {
163   for (auto &F : *M) {
164     if (F.isMaterializable())
165       continue;
166     for (auto &I : instructions(F))
167       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
168   }
169 }
170 
171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
172 /// "epoch" encoded in the bitcode, and return the producer name if any.
173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
174   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
175     return std::move(Err);
176 
177   // Read all the records.
178   SmallVector<uint64_t, 64> Record;
179 
180   std::string ProducerIdentification;
181 
182   while (true) {
183     BitstreamEntry Entry;
184     if (Expected<BitstreamEntry> Res = Stream.advance())
185       Entry = Res.get();
186     else
187       return Res.takeError();
188 
189     switch (Entry.Kind) {
190     default:
191     case BitstreamEntry::Error:
192       return error("Malformed block");
193     case BitstreamEntry::EndBlock:
194       return ProducerIdentification;
195     case BitstreamEntry::Record:
196       // The interesting case.
197       break;
198     }
199 
200     // Read a record.
201     Record.clear();
202     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
203     if (!MaybeBitCode)
204       return MaybeBitCode.takeError();
205     switch (MaybeBitCode.get()) {
206     default: // Default behavior: reject
207       return error("Invalid value");
208     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
209       convertToString(Record, 0, ProducerIdentification);
210       break;
211     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
212       unsigned epoch = (unsigned)Record[0];
213       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
214         return error(
215           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
216           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
217       }
218     }
219     }
220   }
221 }
222 
223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
224   // We expect a number of well-defined blocks, though we don't necessarily
225   // need to understand them all.
226   while (true) {
227     if (Stream.AtEndOfStream())
228       return "";
229 
230     BitstreamEntry Entry;
231     if (Expected<BitstreamEntry> Res = Stream.advance())
232       Entry = std::move(Res.get());
233     else
234       return Res.takeError();
235 
236     switch (Entry.Kind) {
237     case BitstreamEntry::EndBlock:
238     case BitstreamEntry::Error:
239       return error("Malformed block");
240 
241     case BitstreamEntry::SubBlock:
242       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
243         return readIdentificationBlock(Stream);
244 
245       // Ignore other sub-blocks.
246       if (Error Err = Stream.SkipBlock())
247         return std::move(Err);
248       continue;
249     case BitstreamEntry::Record:
250       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
251         continue;
252       else
253         return Skipped.takeError();
254     }
255   }
256 }
257 
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260     return std::move(Err);
261 
262   SmallVector<uint64_t, 64> Record;
263   // Read all the records for this module.
264 
265   while (true) {
266     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267     if (!MaybeEntry)
268       return MaybeEntry.takeError();
269     BitstreamEntry Entry = MaybeEntry.get();
270 
271     switch (Entry.Kind) {
272     case BitstreamEntry::SubBlock: // Handled for us already.
273     case BitstreamEntry::Error:
274       return error("Malformed block");
275     case BitstreamEntry::EndBlock:
276       return false;
277     case BitstreamEntry::Record:
278       // The interesting case.
279       break;
280     }
281 
282     // Read a record.
283     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284     if (!MaybeRecord)
285       return MaybeRecord.takeError();
286     switch (MaybeRecord.get()) {
287     default:
288       break; // Default behavior, ignore unknown content.
289     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290       std::string S;
291       if (convertToString(Record, 0, S))
292         return error("Invalid record");
293       // Check for the i386 and other (x86_64, ARM) conventions
294       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295           S.find("__OBJC,__category") != std::string::npos)
296         return true;
297       break;
298     }
299     }
300     Record.clear();
301   }
302   llvm_unreachable("Exit infinite loop");
303 }
304 
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306   // We expect a number of well-defined blocks, though we don't necessarily
307   // need to understand them all.
308   while (true) {
309     BitstreamEntry Entry;
310     if (Expected<BitstreamEntry> Res = Stream.advance())
311       Entry = std::move(Res.get());
312     else
313       return Res.takeError();
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
332         continue;
333       else
334         return Skipped.takeError();
335     }
336   }
337 }
338 
339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
340   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
341     return std::move(Err);
342 
343   SmallVector<uint64_t, 64> Record;
344 
345   std::string Triple;
346 
347   // Read all the records for this module.
348   while (true) {
349     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
350     if (!MaybeEntry)
351       return MaybeEntry.takeError();
352     BitstreamEntry Entry = MaybeEntry.get();
353 
354     switch (Entry.Kind) {
355     case BitstreamEntry::SubBlock: // Handled for us already.
356     case BitstreamEntry::Error:
357       return error("Malformed block");
358     case BitstreamEntry::EndBlock:
359       return Triple;
360     case BitstreamEntry::Record:
361       // The interesting case.
362       break;
363     }
364 
365     // Read a record.
366     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
367     if (!MaybeRecord)
368       return MaybeRecord.takeError();
369     switch (MaybeRecord.get()) {
370     default: break;  // Default behavior, ignore unknown content.
371     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
372       std::string S;
373       if (convertToString(Record, 0, S))
374         return error("Invalid record");
375       Triple = S;
376       break;
377     }
378     }
379     Record.clear();
380   }
381   llvm_unreachable("Exit infinite loop");
382 }
383 
384 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
385   // We expect a number of well-defined blocks, though we don't necessarily
386   // need to understand them all.
387   while (true) {
388     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
389     if (!MaybeEntry)
390       return MaybeEntry.takeError();
391     BitstreamEntry Entry = MaybeEntry.get();
392 
393     switch (Entry.Kind) {
394     case BitstreamEntry::Error:
395       return error("Malformed block");
396     case BitstreamEntry::EndBlock:
397       return "";
398 
399     case BitstreamEntry::SubBlock:
400       if (Entry.ID == bitc::MODULE_BLOCK_ID)
401         return readModuleTriple(Stream);
402 
403       // Ignore other sub-blocks.
404       if (Error Err = Stream.SkipBlock())
405         return std::move(Err);
406       continue;
407 
408     case BitstreamEntry::Record:
409       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
410         continue;
411       else
412         return Skipped.takeError();
413     }
414   }
415 }
416 
417 namespace {
418 
419 class BitcodeReaderBase {
420 protected:
421   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
422       : Stream(std::move(Stream)), Strtab(Strtab) {
423     this->Stream.setBlockInfo(&BlockInfo);
424   }
425 
426   BitstreamBlockInfo BlockInfo;
427   BitstreamCursor Stream;
428   StringRef Strtab;
429 
430   /// In version 2 of the bitcode we store names of global values and comdats in
431   /// a string table rather than in the VST.
432   bool UseStrtab = false;
433 
434   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
435 
436   /// If this module uses a string table, pop the reference to the string table
437   /// and return the referenced string and the rest of the record. Otherwise
438   /// just return the record itself.
439   std::pair<StringRef, ArrayRef<uint64_t>>
440   readNameFromStrtab(ArrayRef<uint64_t> Record);
441 
442   bool readBlockInfo();
443 
444   // Contains an arbitrary and optional string identifying the bitcode producer
445   std::string ProducerIdentification;
446 
447   Error error(const Twine &Message);
448 };
449 
450 } // end anonymous namespace
451 
452 Error BitcodeReaderBase::error(const Twine &Message) {
453   std::string FullMsg = Message.str();
454   if (!ProducerIdentification.empty())
455     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
456                LLVM_VERSION_STRING "')";
457   return ::error(FullMsg);
458 }
459 
460 Expected<unsigned>
461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
462   if (Record.empty())
463     return error("Invalid record");
464   unsigned ModuleVersion = Record[0];
465   if (ModuleVersion > 2)
466     return error("Invalid value");
467   UseStrtab = ModuleVersion >= 2;
468   return ModuleVersion;
469 }
470 
471 std::pair<StringRef, ArrayRef<uint64_t>>
472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
473   if (!UseStrtab)
474     return {"", Record};
475   // Invalid reference. Let the caller complain about the record being empty.
476   if (Record[0] + Record[1] > Strtab.size())
477     return {"", {}};
478   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
479 }
480 
481 namespace {
482 
483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
484   LLVMContext &Context;
485   Module *TheModule = nullptr;
486   // Next offset to start scanning for lazy parsing of function bodies.
487   uint64_t NextUnreadBit = 0;
488   // Last function offset found in the VST.
489   uint64_t LastFunctionBlockBit = 0;
490   bool SeenValueSymbolTable = false;
491   uint64_t VSTOffset = 0;
492 
493   std::vector<std::string> SectionTable;
494   std::vector<std::string> GCTable;
495 
496   std::vector<Type*> TypeList;
497   DenseMap<Function *, FunctionType *> FunctionTypes;
498   BitcodeReaderValueList ValueList;
499   Optional<MetadataLoader> MDLoader;
500   std::vector<Comdat *> ComdatList;
501   SmallVector<Instruction *, 64> InstructionList;
502 
503   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
504   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
506   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
507   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
508 
509   /// The set of attributes by index.  Index zero in the file is for null, and
510   /// is thus not represented here.  As such all indices are off by one.
511   std::vector<AttributeList> MAttributes;
512 
513   /// The set of attribute groups.
514   std::map<unsigned, AttributeList> MAttributeGroups;
515 
516   /// While parsing a function body, this is a list of the basic blocks for the
517   /// function.
518   std::vector<BasicBlock*> FunctionBBs;
519 
520   // When reading the module header, this list is populated with functions that
521   // have bodies later in the file.
522   std::vector<Function*> FunctionsWithBodies;
523 
524   // When intrinsic functions are encountered which require upgrading they are
525   // stored here with their replacement function.
526   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
527   UpdatedIntrinsicMap UpgradedIntrinsics;
528   // Intrinsics which were remangled because of types rename
529   UpdatedIntrinsicMap RemangledIntrinsics;
530 
531   // Several operations happen after the module header has been read, but
532   // before function bodies are processed. This keeps track of whether
533   // we've done this yet.
534   bool SeenFirstFunctionBody = false;
535 
536   /// When function bodies are initially scanned, this map contains info about
537   /// where to find deferred function body in the stream.
538   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
539 
540   /// When Metadata block is initially scanned when parsing the module, we may
541   /// choose to defer parsing of the metadata. This vector contains info about
542   /// which Metadata blocks are deferred.
543   std::vector<uint64_t> DeferredMetadataInfo;
544 
545   /// These are basic blocks forward-referenced by block addresses.  They are
546   /// inserted lazily into functions when they're loaded.  The basic block ID is
547   /// its index into the vector.
548   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
549   std::deque<Function *> BasicBlockFwdRefQueue;
550 
551   /// Indicates that we are using a new encoding for instruction operands where
552   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
553   /// instruction number, for a more compact encoding.  Some instruction
554   /// operands are not relative to the instruction ID: basic block numbers, and
555   /// types. Once the old style function blocks have been phased out, we would
556   /// not need this flag.
557   bool UseRelativeIDs = false;
558 
559   /// True if all functions will be materialized, negating the need to process
560   /// (e.g.) blockaddress forward references.
561   bool WillMaterializeAllForwardRefs = false;
562 
563   bool StripDebugInfo = false;
564   TBAAVerifier TBAAVerifyHelper;
565 
566   std::vector<std::string> BundleTags;
567   SmallVector<SyncScope::ID, 8> SSIDs;
568 
569 public:
570   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
571                 StringRef ProducerIdentification, LLVMContext &Context);
572 
573   Error materializeForwardReferencedFunctions();
574 
575   Error materialize(GlobalValue *GV) override;
576   Error materializeModule() override;
577   std::vector<StructType *> getIdentifiedStructTypes() const override;
578 
579   /// Main interface to parsing a bitcode buffer.
580   /// \returns true if an error occurred.
581   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
582                          bool IsImporting = false);
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval attributes by adding the corresponding
719   /// argument's pointee type.
720   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
728 
729   Error parseComdatRecord(ArrayRef<uint64_t> Record);
730   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
731   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
733                                         ArrayRef<uint64_t> Record);
734 
735   Error parseAttributeBlock();
736   Error parseAttributeGroupBlock();
737   Error parseTypeTable();
738   Error parseTypeTableBody();
739   Error parseOperandBundleTags();
740   Error parseSyncScopeNames();
741 
742   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
743                                 unsigned NameIndex, Triple &TT);
744   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
745                                ArrayRef<uint64_t> Record);
746   Error parseValueSymbolTable(uint64_t Offset = 0);
747   Error parseGlobalValueSymbolTable();
748   Error parseConstants();
749   Error rememberAndSkipFunctionBodies();
750   Error rememberAndSkipFunctionBody();
751   /// Save the positions of the Metadata blocks and skip parsing the blocks.
752   Error rememberAndSkipMetadata();
753   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
754   Error parseFunctionBody(Function *F);
755   Error globalCleanup();
756   Error resolveGlobalAndIndirectSymbolInits();
757   Error parseUseLists();
758   Error findFunctionInStream(
759       Function *F,
760       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
761 
762   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
763 };
764 
765 /// Class to manage reading and parsing function summary index bitcode
766 /// files/sections.
767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
768   /// The module index built during parsing.
769   ModuleSummaryIndex &TheIndex;
770 
771   /// Indicates whether we have encountered a global value summary section
772   /// yet during parsing.
773   bool SeenGlobalValSummary = false;
774 
775   /// Indicates whether we have already parsed the VST, used for error checking.
776   bool SeenValueSymbolTable = false;
777 
778   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
779   /// Used to enable on-demand parsing of the VST.
780   uint64_t VSTOffset = 0;
781 
782   // Map to save ValueId to ValueInfo association that was recorded in the
783   // ValueSymbolTable. It is used after the VST is parsed to convert
784   // call graph edges read from the function summary from referencing
785   // callees by their ValueId to using the ValueInfo instead, which is how
786   // they are recorded in the summary index being built.
787   // We save a GUID which refers to the same global as the ValueInfo, but
788   // ignoring the linkage, i.e. for values other than local linkage they are
789   // identical.
790   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
791       ValueIdToValueInfoMap;
792 
793   /// Map populated during module path string table parsing, from the
794   /// module ID to a string reference owned by the index's module
795   /// path string table, used to correlate with combined index
796   /// summary records.
797   DenseMap<uint64_t, StringRef> ModuleIdMap;
798 
799   /// Original source file name recorded in a bitcode record.
800   std::string SourceFileName;
801 
802   /// The string identifier given to this module by the client, normally the
803   /// path to the bitcode file.
804   StringRef ModulePath;
805 
806   /// For per-module summary indexes, the unique numerical identifier given to
807   /// this module by the client.
808   unsigned ModuleId;
809 
810 public:
811   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
812                                   ModuleSummaryIndex &TheIndex,
813                                   StringRef ModulePath, unsigned ModuleId);
814 
815   Error parseModule();
816 
817 private:
818   void setValueGUID(uint64_t ValueID, StringRef ValueName,
819                     GlobalValue::LinkageTypes Linkage,
820                     StringRef SourceFileName);
821   Error parseValueSymbolTable(
822       uint64_t Offset,
823       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
824   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
825   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
826                                                     bool IsOldProfileFormat,
827                                                     bool HasProfile,
828                                                     bool HasRelBF);
829   Error parseEntireSummary(unsigned ID);
830   Error parseModuleStringTable();
831   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
832   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
833                                        TypeIdCompatibleVtableInfo &TypeId);
834 
835   std::pair<ValueInfo, GlobalValue::GUID>
836   getValueInfoFromValueId(unsigned ValueId);
837 
838   void addThisModule();
839   ModuleSummaryIndex::ModuleInfo *getThisModule();
840 };
841 
842 } // end anonymous namespace
843 
844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
845                                                     Error Err) {
846   if (Err) {
847     std::error_code EC;
848     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
849       EC = EIB.convertToErrorCode();
850       Ctx.emitError(EIB.message());
851     });
852     return EC;
853   }
854   return std::error_code();
855 }
856 
857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
858                              StringRef ProducerIdentification,
859                              LLVMContext &Context)
860     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
861       ValueList(Context, Stream.SizeInBytes()) {
862   this->ProducerIdentification = std::string(ProducerIdentification);
863 }
864 
865 Error BitcodeReader::materializeForwardReferencedFunctions() {
866   if (WillMaterializeAllForwardRefs)
867     return Error::success();
868 
869   // Prevent recursion.
870   WillMaterializeAllForwardRefs = true;
871 
872   while (!BasicBlockFwdRefQueue.empty()) {
873     Function *F = BasicBlockFwdRefQueue.front();
874     BasicBlockFwdRefQueue.pop_front();
875     assert(F && "Expected valid function");
876     if (!BasicBlockFwdRefs.count(F))
877       // Already materialized.
878       continue;
879 
880     // Check for a function that isn't materializable to prevent an infinite
881     // loop.  When parsing a blockaddress stored in a global variable, there
882     // isn't a trivial way to check if a function will have a body without a
883     // linear search through FunctionsWithBodies, so just check it here.
884     if (!F->isMaterializable())
885       return error("Never resolved function from blockaddress");
886 
887     // Try to materialize F.
888     if (Error Err = materialize(F))
889       return Err;
890   }
891   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
892 
893   // Reset state.
894   WillMaterializeAllForwardRefs = false;
895   return Error::success();
896 }
897 
898 //===----------------------------------------------------------------------===//
899 //  Helper functions to implement forward reference resolution, etc.
900 //===----------------------------------------------------------------------===//
901 
902 static bool hasImplicitComdat(size_t Val) {
903   switch (Val) {
904   default:
905     return false;
906   case 1:  // Old WeakAnyLinkage
907   case 4:  // Old LinkOnceAnyLinkage
908   case 10: // Old WeakODRLinkage
909   case 11: // Old LinkOnceODRLinkage
910     return true;
911   }
912 }
913 
914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
915   switch (Val) {
916   default: // Map unknown/new linkages to external
917   case 0:
918     return GlobalValue::ExternalLinkage;
919   case 2:
920     return GlobalValue::AppendingLinkage;
921   case 3:
922     return GlobalValue::InternalLinkage;
923   case 5:
924     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
925   case 6:
926     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
927   case 7:
928     return GlobalValue::ExternalWeakLinkage;
929   case 8:
930     return GlobalValue::CommonLinkage;
931   case 9:
932     return GlobalValue::PrivateLinkage;
933   case 12:
934     return GlobalValue::AvailableExternallyLinkage;
935   case 13:
936     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
937   case 14:
938     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
939   case 15:
940     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
941   case 1: // Old value with implicit comdat.
942   case 16:
943     return GlobalValue::WeakAnyLinkage;
944   case 10: // Old value with implicit comdat.
945   case 17:
946     return GlobalValue::WeakODRLinkage;
947   case 4: // Old value with implicit comdat.
948   case 18:
949     return GlobalValue::LinkOnceAnyLinkage;
950   case 11: // Old value with implicit comdat.
951   case 19:
952     return GlobalValue::LinkOnceODRLinkage;
953   }
954 }
955 
956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
957   FunctionSummary::FFlags Flags;
958   Flags.ReadNone = RawFlags & 0x1;
959   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
960   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
961   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
962   Flags.NoInline = (RawFlags >> 4) & 0x1;
963   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
964   return Flags;
965 }
966 
967 /// Decode the flags for GlobalValue in the summary.
968 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
969                                                             uint64_t Version) {
970   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
971   // like getDecodedLinkage() above. Any future change to the linkage enum and
972   // to getDecodedLinkage() will need to be taken into account here as above.
973   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
974   RawFlags = RawFlags >> 4;
975   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
976   // The Live flag wasn't introduced until version 3. For dead stripping
977   // to work correctly on earlier versions, we must conservatively treat all
978   // values as live.
979   bool Live = (RawFlags & 0x2) || Version < 3;
980   bool Local = (RawFlags & 0x4);
981   bool AutoHide = (RawFlags & 0x8);
982 
983   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
984 }
985 
986 // Decode the flags for GlobalVariable in the summary
987 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
988   return GlobalVarSummary::GVarFlags(
989       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
990       (RawFlags & 0x4) ? true : false,
991       (GlobalObject::VCallVisibility)(RawFlags >> 3));
992 }
993 
994 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
995   switch (Val) {
996   default: // Map unknown visibilities to default.
997   case 0: return GlobalValue::DefaultVisibility;
998   case 1: return GlobalValue::HiddenVisibility;
999   case 2: return GlobalValue::ProtectedVisibility;
1000   }
1001 }
1002 
1003 static GlobalValue::DLLStorageClassTypes
1004 getDecodedDLLStorageClass(unsigned Val) {
1005   switch (Val) {
1006   default: // Map unknown values to default.
1007   case 0: return GlobalValue::DefaultStorageClass;
1008   case 1: return GlobalValue::DLLImportStorageClass;
1009   case 2: return GlobalValue::DLLExportStorageClass;
1010   }
1011 }
1012 
1013 static bool getDecodedDSOLocal(unsigned Val) {
1014   switch(Val) {
1015   default: // Map unknown values to preemptable.
1016   case 0:  return false;
1017   case 1:  return true;
1018   }
1019 }
1020 
1021 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1022   switch (Val) {
1023     case 0: return GlobalVariable::NotThreadLocal;
1024     default: // Map unknown non-zero value to general dynamic.
1025     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1026     case 2: return GlobalVariable::LocalDynamicTLSModel;
1027     case 3: return GlobalVariable::InitialExecTLSModel;
1028     case 4: return GlobalVariable::LocalExecTLSModel;
1029   }
1030 }
1031 
1032 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1033   switch (Val) {
1034     default: // Map unknown to UnnamedAddr::None.
1035     case 0: return GlobalVariable::UnnamedAddr::None;
1036     case 1: return GlobalVariable::UnnamedAddr::Global;
1037     case 2: return GlobalVariable::UnnamedAddr::Local;
1038   }
1039 }
1040 
1041 static int getDecodedCastOpcode(unsigned Val) {
1042   switch (Val) {
1043   default: return -1;
1044   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1045   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1046   case bitc::CAST_SEXT    : return Instruction::SExt;
1047   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1048   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1049   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1050   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1051   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1052   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1053   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1054   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1055   case bitc::CAST_BITCAST : return Instruction::BitCast;
1056   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1057   }
1058 }
1059 
1060 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1061   bool IsFP = Ty->isFPOrFPVectorTy();
1062   // UnOps are only valid for int/fp or vector of int/fp types
1063   if (!IsFP && !Ty->isIntOrIntVectorTy())
1064     return -1;
1065 
1066   switch (Val) {
1067   default:
1068     return -1;
1069   case bitc::UNOP_FNEG:
1070     return IsFP ? Instruction::FNeg : -1;
1071   }
1072 }
1073 
1074 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1075   bool IsFP = Ty->isFPOrFPVectorTy();
1076   // BinOps are only valid for int/fp or vector of int/fp types
1077   if (!IsFP && !Ty->isIntOrIntVectorTy())
1078     return -1;
1079 
1080   switch (Val) {
1081   default:
1082     return -1;
1083   case bitc::BINOP_ADD:
1084     return IsFP ? Instruction::FAdd : Instruction::Add;
1085   case bitc::BINOP_SUB:
1086     return IsFP ? Instruction::FSub : Instruction::Sub;
1087   case bitc::BINOP_MUL:
1088     return IsFP ? Instruction::FMul : Instruction::Mul;
1089   case bitc::BINOP_UDIV:
1090     return IsFP ? -1 : Instruction::UDiv;
1091   case bitc::BINOP_SDIV:
1092     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1093   case bitc::BINOP_UREM:
1094     return IsFP ? -1 : Instruction::URem;
1095   case bitc::BINOP_SREM:
1096     return IsFP ? Instruction::FRem : Instruction::SRem;
1097   case bitc::BINOP_SHL:
1098     return IsFP ? -1 : Instruction::Shl;
1099   case bitc::BINOP_LSHR:
1100     return IsFP ? -1 : Instruction::LShr;
1101   case bitc::BINOP_ASHR:
1102     return IsFP ? -1 : Instruction::AShr;
1103   case bitc::BINOP_AND:
1104     return IsFP ? -1 : Instruction::And;
1105   case bitc::BINOP_OR:
1106     return IsFP ? -1 : Instruction::Or;
1107   case bitc::BINOP_XOR:
1108     return IsFP ? -1 : Instruction::Xor;
1109   }
1110 }
1111 
1112 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1113   switch (Val) {
1114   default: return AtomicRMWInst::BAD_BINOP;
1115   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1116   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1117   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1118   case bitc::RMW_AND: return AtomicRMWInst::And;
1119   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1120   case bitc::RMW_OR: return AtomicRMWInst::Or;
1121   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1122   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1123   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1124   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1125   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1126   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1127   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1128   }
1129 }
1130 
1131 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1132   switch (Val) {
1133   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1134   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1135   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1136   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1137   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1138   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1139   default: // Map unknown orderings to sequentially-consistent.
1140   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1141   }
1142 }
1143 
1144 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1145   switch (Val) {
1146   default: // Map unknown selection kinds to any.
1147   case bitc::COMDAT_SELECTION_KIND_ANY:
1148     return Comdat::Any;
1149   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1150     return Comdat::ExactMatch;
1151   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1152     return Comdat::Largest;
1153   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1154     return Comdat::NoDuplicates;
1155   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1156     return Comdat::SameSize;
1157   }
1158 }
1159 
1160 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1161   FastMathFlags FMF;
1162   if (0 != (Val & bitc::UnsafeAlgebra))
1163     FMF.setFast();
1164   if (0 != (Val & bitc::AllowReassoc))
1165     FMF.setAllowReassoc();
1166   if (0 != (Val & bitc::NoNaNs))
1167     FMF.setNoNaNs();
1168   if (0 != (Val & bitc::NoInfs))
1169     FMF.setNoInfs();
1170   if (0 != (Val & bitc::NoSignedZeros))
1171     FMF.setNoSignedZeros();
1172   if (0 != (Val & bitc::AllowReciprocal))
1173     FMF.setAllowReciprocal();
1174   if (0 != (Val & bitc::AllowContract))
1175     FMF.setAllowContract(true);
1176   if (0 != (Val & bitc::ApproxFunc))
1177     FMF.setApproxFunc();
1178   return FMF;
1179 }
1180 
1181 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1182   switch (Val) {
1183   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1184   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1185   }
1186 }
1187 
1188 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1189   // The type table size is always specified correctly.
1190   if (ID >= TypeList.size())
1191     return nullptr;
1192 
1193   if (Type *Ty = TypeList[ID])
1194     return Ty;
1195 
1196   // If we have a forward reference, the only possible case is when it is to a
1197   // named struct.  Just create a placeholder for now.
1198   return TypeList[ID] = createIdentifiedStructType(Context);
1199 }
1200 
1201 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1202                                                       StringRef Name) {
1203   auto *Ret = StructType::create(Context, Name);
1204   IdentifiedStructTypes.push_back(Ret);
1205   return Ret;
1206 }
1207 
1208 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1209   auto *Ret = StructType::create(Context);
1210   IdentifiedStructTypes.push_back(Ret);
1211   return Ret;
1212 }
1213 
1214 //===----------------------------------------------------------------------===//
1215 //  Functions for parsing blocks from the bitcode file
1216 //===----------------------------------------------------------------------===//
1217 
1218 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1219   switch (Val) {
1220   case Attribute::EndAttrKinds:
1221   case Attribute::EmptyKey:
1222   case Attribute::TombstoneKey:
1223     llvm_unreachable("Synthetic enumerators which should never get here");
1224 
1225   case Attribute::None:            return 0;
1226   case Attribute::ZExt:            return 1 << 0;
1227   case Attribute::SExt:            return 1 << 1;
1228   case Attribute::NoReturn:        return 1 << 2;
1229   case Attribute::InReg:           return 1 << 3;
1230   case Attribute::StructRet:       return 1 << 4;
1231   case Attribute::NoUnwind:        return 1 << 5;
1232   case Attribute::NoAlias:         return 1 << 6;
1233   case Attribute::ByVal:           return 1 << 7;
1234   case Attribute::Nest:            return 1 << 8;
1235   case Attribute::ReadNone:        return 1 << 9;
1236   case Attribute::ReadOnly:        return 1 << 10;
1237   case Attribute::NoInline:        return 1 << 11;
1238   case Attribute::AlwaysInline:    return 1 << 12;
1239   case Attribute::OptimizeForSize: return 1 << 13;
1240   case Attribute::StackProtect:    return 1 << 14;
1241   case Attribute::StackProtectReq: return 1 << 15;
1242   case Attribute::Alignment:       return 31 << 16;
1243   case Attribute::NoCapture:       return 1 << 21;
1244   case Attribute::NoRedZone:       return 1 << 22;
1245   case Attribute::NoImplicitFloat: return 1 << 23;
1246   case Attribute::Naked:           return 1 << 24;
1247   case Attribute::InlineHint:      return 1 << 25;
1248   case Attribute::StackAlignment:  return 7 << 26;
1249   case Attribute::ReturnsTwice:    return 1 << 29;
1250   case Attribute::UWTable:         return 1 << 30;
1251   case Attribute::NonLazyBind:     return 1U << 31;
1252   case Attribute::SanitizeAddress: return 1ULL << 32;
1253   case Attribute::MinSize:         return 1ULL << 33;
1254   case Attribute::NoDuplicate:     return 1ULL << 34;
1255   case Attribute::StackProtectStrong: return 1ULL << 35;
1256   case Attribute::SanitizeThread:  return 1ULL << 36;
1257   case Attribute::SanitizeMemory:  return 1ULL << 37;
1258   case Attribute::NoBuiltin:       return 1ULL << 38;
1259   case Attribute::Returned:        return 1ULL << 39;
1260   case Attribute::Cold:            return 1ULL << 40;
1261   case Attribute::Builtin:         return 1ULL << 41;
1262   case Attribute::OptimizeNone:    return 1ULL << 42;
1263   case Attribute::InAlloca:        return 1ULL << 43;
1264   case Attribute::NonNull:         return 1ULL << 44;
1265   case Attribute::JumpTable:       return 1ULL << 45;
1266   case Attribute::Convergent:      return 1ULL << 46;
1267   case Attribute::SafeStack:       return 1ULL << 47;
1268   case Attribute::NoRecurse:       return 1ULL << 48;
1269   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1270   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1271   case Attribute::SwiftSelf:       return 1ULL << 51;
1272   case Attribute::SwiftError:      return 1ULL << 52;
1273   case Attribute::WriteOnly:       return 1ULL << 53;
1274   case Attribute::Speculatable:    return 1ULL << 54;
1275   case Attribute::StrictFP:        return 1ULL << 55;
1276   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1277   case Attribute::NoCfCheck:       return 1ULL << 57;
1278   case Attribute::OptForFuzzing:   return 1ULL << 58;
1279   case Attribute::ShadowCallStack: return 1ULL << 59;
1280   case Attribute::SpeculativeLoadHardening:
1281     return 1ULL << 60;
1282   case Attribute::ImmArg:
1283     return 1ULL << 61;
1284   case Attribute::WillReturn:
1285     return 1ULL << 62;
1286   case Attribute::NoFree:
1287     return 1ULL << 63;
1288   case Attribute::NoSync:
1289     llvm_unreachable("nosync attribute not supported in raw format");
1290     break;
1291   case Attribute::Dereferenceable:
1292     llvm_unreachable("dereferenceable attribute not supported in raw format");
1293     break;
1294   case Attribute::DereferenceableOrNull:
1295     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1296                      "format");
1297     break;
1298   case Attribute::ArgMemOnly:
1299     llvm_unreachable("argmemonly attribute not supported in raw format");
1300     break;
1301   case Attribute::AllocSize:
1302     llvm_unreachable("allocsize not supported in raw format");
1303     break;
1304   case Attribute::SanitizeMemTag:
1305     llvm_unreachable("sanitize_memtag attribute not supported in raw format");
1306     break;
1307   }
1308   llvm_unreachable("Unsupported attribute type");
1309 }
1310 
1311 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1312   if (!Val) return;
1313 
1314   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1315        I = Attribute::AttrKind(I + 1)) {
1316     if (I == Attribute::SanitizeMemTag ||
1317         I == Attribute::Dereferenceable ||
1318         I == Attribute::DereferenceableOrNull ||
1319         I == Attribute::ArgMemOnly ||
1320         I == Attribute::AllocSize ||
1321         I == Attribute::NoSync)
1322       continue;
1323     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1324       if (I == Attribute::Alignment)
1325         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1326       else if (I == Attribute::StackAlignment)
1327         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1328       else
1329         B.addAttribute(I);
1330     }
1331   }
1332 }
1333 
1334 /// This fills an AttrBuilder object with the LLVM attributes that have
1335 /// been decoded from the given integer. This function must stay in sync with
1336 /// 'encodeLLVMAttributesForBitcode'.
1337 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1338                                            uint64_t EncodedAttrs) {
1339   // FIXME: Remove in 4.0.
1340 
1341   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1342   // the bits above 31 down by 11 bits.
1343   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1344   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1345          "Alignment must be a power of two.");
1346 
1347   if (Alignment)
1348     B.addAlignmentAttr(Alignment);
1349   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1350                           (EncodedAttrs & 0xffff));
1351 }
1352 
1353 Error BitcodeReader::parseAttributeBlock() {
1354   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1355     return Err;
1356 
1357   if (!MAttributes.empty())
1358     return error("Invalid multiple blocks");
1359 
1360   SmallVector<uint64_t, 64> Record;
1361 
1362   SmallVector<AttributeList, 8> Attrs;
1363 
1364   // Read all the records.
1365   while (true) {
1366     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1367     if (!MaybeEntry)
1368       return MaybeEntry.takeError();
1369     BitstreamEntry Entry = MaybeEntry.get();
1370 
1371     switch (Entry.Kind) {
1372     case BitstreamEntry::SubBlock: // Handled for us already.
1373     case BitstreamEntry::Error:
1374       return error("Malformed block");
1375     case BitstreamEntry::EndBlock:
1376       return Error::success();
1377     case BitstreamEntry::Record:
1378       // The interesting case.
1379       break;
1380     }
1381 
1382     // Read a record.
1383     Record.clear();
1384     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1385     if (!MaybeRecord)
1386       return MaybeRecord.takeError();
1387     switch (MaybeRecord.get()) {
1388     default:  // Default behavior: ignore.
1389       break;
1390     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1391       // FIXME: Remove in 4.0.
1392       if (Record.size() & 1)
1393         return error("Invalid record");
1394 
1395       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1396         AttrBuilder B;
1397         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1398         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1399       }
1400 
1401       MAttributes.push_back(AttributeList::get(Context, Attrs));
1402       Attrs.clear();
1403       break;
1404     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1405       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1406         Attrs.push_back(MAttributeGroups[Record[i]]);
1407 
1408       MAttributes.push_back(AttributeList::get(Context, Attrs));
1409       Attrs.clear();
1410       break;
1411     }
1412   }
1413 }
1414 
1415 // Returns Attribute::None on unrecognized codes.
1416 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1417   switch (Code) {
1418   default:
1419     return Attribute::None;
1420   case bitc::ATTR_KIND_ALIGNMENT:
1421     return Attribute::Alignment;
1422   case bitc::ATTR_KIND_ALWAYS_INLINE:
1423     return Attribute::AlwaysInline;
1424   case bitc::ATTR_KIND_ARGMEMONLY:
1425     return Attribute::ArgMemOnly;
1426   case bitc::ATTR_KIND_BUILTIN:
1427     return Attribute::Builtin;
1428   case bitc::ATTR_KIND_BY_VAL:
1429     return Attribute::ByVal;
1430   case bitc::ATTR_KIND_IN_ALLOCA:
1431     return Attribute::InAlloca;
1432   case bitc::ATTR_KIND_COLD:
1433     return Attribute::Cold;
1434   case bitc::ATTR_KIND_CONVERGENT:
1435     return Attribute::Convergent;
1436   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1437     return Attribute::InaccessibleMemOnly;
1438   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1439     return Attribute::InaccessibleMemOrArgMemOnly;
1440   case bitc::ATTR_KIND_INLINE_HINT:
1441     return Attribute::InlineHint;
1442   case bitc::ATTR_KIND_IN_REG:
1443     return Attribute::InReg;
1444   case bitc::ATTR_KIND_JUMP_TABLE:
1445     return Attribute::JumpTable;
1446   case bitc::ATTR_KIND_MIN_SIZE:
1447     return Attribute::MinSize;
1448   case bitc::ATTR_KIND_NAKED:
1449     return Attribute::Naked;
1450   case bitc::ATTR_KIND_NEST:
1451     return Attribute::Nest;
1452   case bitc::ATTR_KIND_NO_ALIAS:
1453     return Attribute::NoAlias;
1454   case bitc::ATTR_KIND_NO_BUILTIN:
1455     return Attribute::NoBuiltin;
1456   case bitc::ATTR_KIND_NO_CAPTURE:
1457     return Attribute::NoCapture;
1458   case bitc::ATTR_KIND_NO_DUPLICATE:
1459     return Attribute::NoDuplicate;
1460   case bitc::ATTR_KIND_NOFREE:
1461     return Attribute::NoFree;
1462   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1463     return Attribute::NoImplicitFloat;
1464   case bitc::ATTR_KIND_NO_INLINE:
1465     return Attribute::NoInline;
1466   case bitc::ATTR_KIND_NO_RECURSE:
1467     return Attribute::NoRecurse;
1468   case bitc::ATTR_KIND_NON_LAZY_BIND:
1469     return Attribute::NonLazyBind;
1470   case bitc::ATTR_KIND_NON_NULL:
1471     return Attribute::NonNull;
1472   case bitc::ATTR_KIND_DEREFERENCEABLE:
1473     return Attribute::Dereferenceable;
1474   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1475     return Attribute::DereferenceableOrNull;
1476   case bitc::ATTR_KIND_ALLOC_SIZE:
1477     return Attribute::AllocSize;
1478   case bitc::ATTR_KIND_NO_RED_ZONE:
1479     return Attribute::NoRedZone;
1480   case bitc::ATTR_KIND_NO_RETURN:
1481     return Attribute::NoReturn;
1482   case bitc::ATTR_KIND_NOSYNC:
1483     return Attribute::NoSync;
1484   case bitc::ATTR_KIND_NOCF_CHECK:
1485     return Attribute::NoCfCheck;
1486   case bitc::ATTR_KIND_NO_UNWIND:
1487     return Attribute::NoUnwind;
1488   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1489     return Attribute::OptForFuzzing;
1490   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1491     return Attribute::OptimizeForSize;
1492   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1493     return Attribute::OptimizeNone;
1494   case bitc::ATTR_KIND_READ_NONE:
1495     return Attribute::ReadNone;
1496   case bitc::ATTR_KIND_READ_ONLY:
1497     return Attribute::ReadOnly;
1498   case bitc::ATTR_KIND_RETURNED:
1499     return Attribute::Returned;
1500   case bitc::ATTR_KIND_RETURNS_TWICE:
1501     return Attribute::ReturnsTwice;
1502   case bitc::ATTR_KIND_S_EXT:
1503     return Attribute::SExt;
1504   case bitc::ATTR_KIND_SPECULATABLE:
1505     return Attribute::Speculatable;
1506   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1507     return Attribute::StackAlignment;
1508   case bitc::ATTR_KIND_STACK_PROTECT:
1509     return Attribute::StackProtect;
1510   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1511     return Attribute::StackProtectReq;
1512   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1513     return Attribute::StackProtectStrong;
1514   case bitc::ATTR_KIND_SAFESTACK:
1515     return Attribute::SafeStack;
1516   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1517     return Attribute::ShadowCallStack;
1518   case bitc::ATTR_KIND_STRICT_FP:
1519     return Attribute::StrictFP;
1520   case bitc::ATTR_KIND_STRUCT_RET:
1521     return Attribute::StructRet;
1522   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1523     return Attribute::SanitizeAddress;
1524   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1525     return Attribute::SanitizeHWAddress;
1526   case bitc::ATTR_KIND_SANITIZE_THREAD:
1527     return Attribute::SanitizeThread;
1528   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1529     return Attribute::SanitizeMemory;
1530   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1531     return Attribute::SpeculativeLoadHardening;
1532   case bitc::ATTR_KIND_SWIFT_ERROR:
1533     return Attribute::SwiftError;
1534   case bitc::ATTR_KIND_SWIFT_SELF:
1535     return Attribute::SwiftSelf;
1536   case bitc::ATTR_KIND_UW_TABLE:
1537     return Attribute::UWTable;
1538   case bitc::ATTR_KIND_WILLRETURN:
1539     return Attribute::WillReturn;
1540   case bitc::ATTR_KIND_WRITEONLY:
1541     return Attribute::WriteOnly;
1542   case bitc::ATTR_KIND_Z_EXT:
1543     return Attribute::ZExt;
1544   case bitc::ATTR_KIND_IMMARG:
1545     return Attribute::ImmArg;
1546   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1547     return Attribute::SanitizeMemTag;
1548   }
1549 }
1550 
1551 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1552                                          MaybeAlign &Alignment) {
1553   // Note: Alignment in bitcode files is incremented by 1, so that zero
1554   // can be used for default alignment.
1555   if (Exponent > Value::MaxAlignmentExponent + 1)
1556     return error("Invalid alignment value");
1557   Alignment = decodeMaybeAlign(Exponent);
1558   return Error::success();
1559 }
1560 
1561 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1562   *Kind = getAttrFromCode(Code);
1563   if (*Kind == Attribute::None)
1564     return error("Unknown attribute kind (" + Twine(Code) + ")");
1565   return Error::success();
1566 }
1567 
1568 Error BitcodeReader::parseAttributeGroupBlock() {
1569   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1570     return Err;
1571 
1572   if (!MAttributeGroups.empty())
1573     return error("Invalid multiple blocks");
1574 
1575   SmallVector<uint64_t, 64> Record;
1576 
1577   // Read all the records.
1578   while (true) {
1579     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1580     if (!MaybeEntry)
1581       return MaybeEntry.takeError();
1582     BitstreamEntry Entry = MaybeEntry.get();
1583 
1584     switch (Entry.Kind) {
1585     case BitstreamEntry::SubBlock: // Handled for us already.
1586     case BitstreamEntry::Error:
1587       return error("Malformed block");
1588     case BitstreamEntry::EndBlock:
1589       return Error::success();
1590     case BitstreamEntry::Record:
1591       // The interesting case.
1592       break;
1593     }
1594 
1595     // Read a record.
1596     Record.clear();
1597     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1598     if (!MaybeRecord)
1599       return MaybeRecord.takeError();
1600     switch (MaybeRecord.get()) {
1601     default:  // Default behavior: ignore.
1602       break;
1603     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1604       if (Record.size() < 3)
1605         return error("Invalid record");
1606 
1607       uint64_t GrpID = Record[0];
1608       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1609 
1610       AttrBuilder B;
1611       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1612         if (Record[i] == 0) {        // Enum attribute
1613           Attribute::AttrKind Kind;
1614           if (Error Err = parseAttrKind(Record[++i], &Kind))
1615             return Err;
1616 
1617           // Upgrade old-style byval attribute to one with a type, even if it's
1618           // nullptr. We will have to insert the real type when we associate
1619           // this AttributeList with a function.
1620           if (Kind == Attribute::ByVal)
1621             B.addByValAttr(nullptr);
1622 
1623           B.addAttribute(Kind);
1624         } else if (Record[i] == 1) { // Integer attribute
1625           Attribute::AttrKind Kind;
1626           if (Error Err = parseAttrKind(Record[++i], &Kind))
1627             return Err;
1628           if (Kind == Attribute::Alignment)
1629             B.addAlignmentAttr(Record[++i]);
1630           else if (Kind == Attribute::StackAlignment)
1631             B.addStackAlignmentAttr(Record[++i]);
1632           else if (Kind == Attribute::Dereferenceable)
1633             B.addDereferenceableAttr(Record[++i]);
1634           else if (Kind == Attribute::DereferenceableOrNull)
1635             B.addDereferenceableOrNullAttr(Record[++i]);
1636           else if (Kind == Attribute::AllocSize)
1637             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1638         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1639           bool HasValue = (Record[i++] == 4);
1640           SmallString<64> KindStr;
1641           SmallString<64> ValStr;
1642 
1643           while (Record[i] != 0 && i != e)
1644             KindStr += Record[i++];
1645           assert(Record[i] == 0 && "Kind string not null terminated");
1646 
1647           if (HasValue) {
1648             // Has a value associated with it.
1649             ++i; // Skip the '0' that terminates the "kind" string.
1650             while (Record[i] != 0 && i != e)
1651               ValStr += Record[i++];
1652             assert(Record[i] == 0 && "Value string not null terminated");
1653           }
1654 
1655           B.addAttribute(KindStr.str(), ValStr.str());
1656         } else {
1657           assert((Record[i] == 5 || Record[i] == 6) &&
1658                  "Invalid attribute group entry");
1659           bool HasType = Record[i] == 6;
1660           Attribute::AttrKind Kind;
1661           if (Error Err = parseAttrKind(Record[++i], &Kind))
1662             return Err;
1663           if (Kind == Attribute::ByVal)
1664             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1665         }
1666       }
1667 
1668       UpgradeFramePointerAttributes(B);
1669       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1670       break;
1671     }
1672     }
1673   }
1674 }
1675 
1676 Error BitcodeReader::parseTypeTable() {
1677   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1678     return Err;
1679 
1680   return parseTypeTableBody();
1681 }
1682 
1683 Error BitcodeReader::parseTypeTableBody() {
1684   if (!TypeList.empty())
1685     return error("Invalid multiple blocks");
1686 
1687   SmallVector<uint64_t, 64> Record;
1688   unsigned NumRecords = 0;
1689 
1690   SmallString<64> TypeName;
1691 
1692   // Read all the records for this type table.
1693   while (true) {
1694     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1695     if (!MaybeEntry)
1696       return MaybeEntry.takeError();
1697     BitstreamEntry Entry = MaybeEntry.get();
1698 
1699     switch (Entry.Kind) {
1700     case BitstreamEntry::SubBlock: // Handled for us already.
1701     case BitstreamEntry::Error:
1702       return error("Malformed block");
1703     case BitstreamEntry::EndBlock:
1704       if (NumRecords != TypeList.size())
1705         return error("Malformed block");
1706       return Error::success();
1707     case BitstreamEntry::Record:
1708       // The interesting case.
1709       break;
1710     }
1711 
1712     // Read a record.
1713     Record.clear();
1714     Type *ResultTy = nullptr;
1715     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1716     if (!MaybeRecord)
1717       return MaybeRecord.takeError();
1718     switch (MaybeRecord.get()) {
1719     default:
1720       return error("Invalid value");
1721     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1722       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1723       // type list.  This allows us to reserve space.
1724       if (Record.size() < 1)
1725         return error("Invalid record");
1726       TypeList.resize(Record[0]);
1727       continue;
1728     case bitc::TYPE_CODE_VOID:      // VOID
1729       ResultTy = Type::getVoidTy(Context);
1730       break;
1731     case bitc::TYPE_CODE_HALF:     // HALF
1732       ResultTy = Type::getHalfTy(Context);
1733       break;
1734     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1735       ResultTy = Type::getFloatTy(Context);
1736       break;
1737     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1738       ResultTy = Type::getDoubleTy(Context);
1739       break;
1740     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1741       ResultTy = Type::getX86_FP80Ty(Context);
1742       break;
1743     case bitc::TYPE_CODE_FP128:     // FP128
1744       ResultTy = Type::getFP128Ty(Context);
1745       break;
1746     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1747       ResultTy = Type::getPPC_FP128Ty(Context);
1748       break;
1749     case bitc::TYPE_CODE_LABEL:     // LABEL
1750       ResultTy = Type::getLabelTy(Context);
1751       break;
1752     case bitc::TYPE_CODE_METADATA:  // METADATA
1753       ResultTy = Type::getMetadataTy(Context);
1754       break;
1755     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1756       ResultTy = Type::getX86_MMXTy(Context);
1757       break;
1758     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1759       ResultTy = Type::getTokenTy(Context);
1760       break;
1761     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1762       if (Record.size() < 1)
1763         return error("Invalid record");
1764 
1765       uint64_t NumBits = Record[0];
1766       if (NumBits < IntegerType::MIN_INT_BITS ||
1767           NumBits > IntegerType::MAX_INT_BITS)
1768         return error("Bitwidth for integer type out of range");
1769       ResultTy = IntegerType::get(Context, NumBits);
1770       break;
1771     }
1772     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1773                                     //          [pointee type, address space]
1774       if (Record.size() < 1)
1775         return error("Invalid record");
1776       unsigned AddressSpace = 0;
1777       if (Record.size() == 2)
1778         AddressSpace = Record[1];
1779       ResultTy = getTypeByID(Record[0]);
1780       if (!ResultTy ||
1781           !PointerType::isValidElementType(ResultTy))
1782         return error("Invalid type");
1783       ResultTy = PointerType::get(ResultTy, AddressSpace);
1784       break;
1785     }
1786     case bitc::TYPE_CODE_FUNCTION_OLD: {
1787       // FIXME: attrid is dead, remove it in LLVM 4.0
1788       // FUNCTION: [vararg, attrid, retty, paramty x N]
1789       if (Record.size() < 3)
1790         return error("Invalid record");
1791       SmallVector<Type*, 8> ArgTys;
1792       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1793         if (Type *T = getTypeByID(Record[i]))
1794           ArgTys.push_back(T);
1795         else
1796           break;
1797       }
1798 
1799       ResultTy = getTypeByID(Record[2]);
1800       if (!ResultTy || ArgTys.size() < Record.size()-3)
1801         return error("Invalid type");
1802 
1803       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1804       break;
1805     }
1806     case bitc::TYPE_CODE_FUNCTION: {
1807       // FUNCTION: [vararg, retty, paramty x N]
1808       if (Record.size() < 2)
1809         return error("Invalid record");
1810       SmallVector<Type*, 8> ArgTys;
1811       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1812         if (Type *T = getTypeByID(Record[i])) {
1813           if (!FunctionType::isValidArgumentType(T))
1814             return error("Invalid function argument type");
1815           ArgTys.push_back(T);
1816         }
1817         else
1818           break;
1819       }
1820 
1821       ResultTy = getTypeByID(Record[1]);
1822       if (!ResultTy || ArgTys.size() < Record.size()-2)
1823         return error("Invalid type");
1824 
1825       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1826       break;
1827     }
1828     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1829       if (Record.size() < 1)
1830         return error("Invalid record");
1831       SmallVector<Type*, 8> EltTys;
1832       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1833         if (Type *T = getTypeByID(Record[i]))
1834           EltTys.push_back(T);
1835         else
1836           break;
1837       }
1838       if (EltTys.size() != Record.size()-1)
1839         return error("Invalid type");
1840       ResultTy = StructType::get(Context, EltTys, Record[0]);
1841       break;
1842     }
1843     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1844       if (convertToString(Record, 0, TypeName))
1845         return error("Invalid record");
1846       continue;
1847 
1848     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1849       if (Record.size() < 1)
1850         return error("Invalid record");
1851 
1852       if (NumRecords >= TypeList.size())
1853         return error("Invalid TYPE table");
1854 
1855       // Check to see if this was forward referenced, if so fill in the temp.
1856       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1857       if (Res) {
1858         Res->setName(TypeName);
1859         TypeList[NumRecords] = nullptr;
1860       } else  // Otherwise, create a new struct.
1861         Res = createIdentifiedStructType(Context, TypeName);
1862       TypeName.clear();
1863 
1864       SmallVector<Type*, 8> EltTys;
1865       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1866         if (Type *T = getTypeByID(Record[i]))
1867           EltTys.push_back(T);
1868         else
1869           break;
1870       }
1871       if (EltTys.size() != Record.size()-1)
1872         return error("Invalid record");
1873       Res->setBody(EltTys, Record[0]);
1874       ResultTy = Res;
1875       break;
1876     }
1877     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1878       if (Record.size() != 1)
1879         return error("Invalid record");
1880 
1881       if (NumRecords >= TypeList.size())
1882         return error("Invalid TYPE table");
1883 
1884       // Check to see if this was forward referenced, if so fill in the temp.
1885       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1886       if (Res) {
1887         Res->setName(TypeName);
1888         TypeList[NumRecords] = nullptr;
1889       } else  // Otherwise, create a new struct with no body.
1890         Res = createIdentifiedStructType(Context, TypeName);
1891       TypeName.clear();
1892       ResultTy = Res;
1893       break;
1894     }
1895     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1896       if (Record.size() < 2)
1897         return error("Invalid record");
1898       ResultTy = getTypeByID(Record[1]);
1899       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1900         return error("Invalid type");
1901       ResultTy = ArrayType::get(ResultTy, Record[0]);
1902       break;
1903     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1904                                     //         [numelts, eltty, scalable]
1905       if (Record.size() < 2)
1906         return error("Invalid record");
1907       if (Record[0] == 0)
1908         return error("Invalid vector length");
1909       ResultTy = getTypeByID(Record[1]);
1910       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1911         return error("Invalid type");
1912       bool Scalable = Record.size() > 2 ? Record[2] : false;
1913       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1914       break;
1915     }
1916 
1917     if (NumRecords >= TypeList.size())
1918       return error("Invalid TYPE table");
1919     if (TypeList[NumRecords])
1920       return error(
1921           "Invalid TYPE table: Only named structs can be forward referenced");
1922     assert(ResultTy && "Didn't read a type?");
1923     TypeList[NumRecords++] = ResultTy;
1924   }
1925 }
1926 
1927 Error BitcodeReader::parseOperandBundleTags() {
1928   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1929     return Err;
1930 
1931   if (!BundleTags.empty())
1932     return error("Invalid multiple blocks");
1933 
1934   SmallVector<uint64_t, 64> Record;
1935 
1936   while (true) {
1937     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1938     if (!MaybeEntry)
1939       return MaybeEntry.takeError();
1940     BitstreamEntry Entry = MaybeEntry.get();
1941 
1942     switch (Entry.Kind) {
1943     case BitstreamEntry::SubBlock: // Handled for us already.
1944     case BitstreamEntry::Error:
1945       return error("Malformed block");
1946     case BitstreamEntry::EndBlock:
1947       return Error::success();
1948     case BitstreamEntry::Record:
1949       // The interesting case.
1950       break;
1951     }
1952 
1953     // Tags are implicitly mapped to integers by their order.
1954 
1955     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1956     if (!MaybeRecord)
1957       return MaybeRecord.takeError();
1958     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1959       return error("Invalid record");
1960 
1961     // OPERAND_BUNDLE_TAG: [strchr x N]
1962     BundleTags.emplace_back();
1963     if (convertToString(Record, 0, BundleTags.back()))
1964       return error("Invalid record");
1965     Record.clear();
1966   }
1967 }
1968 
1969 Error BitcodeReader::parseSyncScopeNames() {
1970   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1971     return Err;
1972 
1973   if (!SSIDs.empty())
1974     return error("Invalid multiple synchronization scope names blocks");
1975 
1976   SmallVector<uint64_t, 64> Record;
1977   while (true) {
1978     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1979     if (!MaybeEntry)
1980       return MaybeEntry.takeError();
1981     BitstreamEntry Entry = MaybeEntry.get();
1982 
1983     switch (Entry.Kind) {
1984     case BitstreamEntry::SubBlock: // Handled for us already.
1985     case BitstreamEntry::Error:
1986       return error("Malformed block");
1987     case BitstreamEntry::EndBlock:
1988       if (SSIDs.empty())
1989         return error("Invalid empty synchronization scope names block");
1990       return Error::success();
1991     case BitstreamEntry::Record:
1992       // The interesting case.
1993       break;
1994     }
1995 
1996     // Synchronization scope names are implicitly mapped to synchronization
1997     // scope IDs by their order.
1998 
1999     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2000     if (!MaybeRecord)
2001       return MaybeRecord.takeError();
2002     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2003       return error("Invalid record");
2004 
2005     SmallString<16> SSN;
2006     if (convertToString(Record, 0, SSN))
2007       return error("Invalid record");
2008 
2009     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2010     Record.clear();
2011   }
2012 }
2013 
2014 /// Associate a value with its name from the given index in the provided record.
2015 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2016                                              unsigned NameIndex, Triple &TT) {
2017   SmallString<128> ValueName;
2018   if (convertToString(Record, NameIndex, ValueName))
2019     return error("Invalid record");
2020   unsigned ValueID = Record[0];
2021   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2022     return error("Invalid record");
2023   Value *V = ValueList[ValueID];
2024 
2025   StringRef NameStr(ValueName.data(), ValueName.size());
2026   if (NameStr.find_first_of(0) != StringRef::npos)
2027     return error("Invalid value name");
2028   V->setName(NameStr);
2029   auto *GO = dyn_cast<GlobalObject>(V);
2030   if (GO) {
2031     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2032       if (TT.supportsCOMDAT())
2033         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2034       else
2035         GO->setComdat(nullptr);
2036     }
2037   }
2038   return V;
2039 }
2040 
2041 /// Helper to note and return the current location, and jump to the given
2042 /// offset.
2043 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2044                                                  BitstreamCursor &Stream) {
2045   // Save the current parsing location so we can jump back at the end
2046   // of the VST read.
2047   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2048   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2049     return std::move(JumpFailed);
2050   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2051   if (!MaybeEntry)
2052     return MaybeEntry.takeError();
2053   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2054   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2055   return CurrentBit;
2056 }
2057 
2058 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2059                                             Function *F,
2060                                             ArrayRef<uint64_t> Record) {
2061   // Note that we subtract 1 here because the offset is relative to one word
2062   // before the start of the identification or module block, which was
2063   // historically always the start of the regular bitcode header.
2064   uint64_t FuncWordOffset = Record[1] - 1;
2065   uint64_t FuncBitOffset = FuncWordOffset * 32;
2066   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2067   // Set the LastFunctionBlockBit to point to the last function block.
2068   // Later when parsing is resumed after function materialization,
2069   // we can simply skip that last function block.
2070   if (FuncBitOffset > LastFunctionBlockBit)
2071     LastFunctionBlockBit = FuncBitOffset;
2072 }
2073 
2074 /// Read a new-style GlobalValue symbol table.
2075 Error BitcodeReader::parseGlobalValueSymbolTable() {
2076   unsigned FuncBitcodeOffsetDelta =
2077       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2078 
2079   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2080     return Err;
2081 
2082   SmallVector<uint64_t, 64> Record;
2083   while (true) {
2084     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2085     if (!MaybeEntry)
2086       return MaybeEntry.takeError();
2087     BitstreamEntry Entry = MaybeEntry.get();
2088 
2089     switch (Entry.Kind) {
2090     case BitstreamEntry::SubBlock:
2091     case BitstreamEntry::Error:
2092       return error("Malformed block");
2093     case BitstreamEntry::EndBlock:
2094       return Error::success();
2095     case BitstreamEntry::Record:
2096       break;
2097     }
2098 
2099     Record.clear();
2100     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2101     if (!MaybeRecord)
2102       return MaybeRecord.takeError();
2103     switch (MaybeRecord.get()) {
2104     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2105       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2106                               cast<Function>(ValueList[Record[0]]), Record);
2107       break;
2108     }
2109   }
2110 }
2111 
2112 /// Parse the value symbol table at either the current parsing location or
2113 /// at the given bit offset if provided.
2114 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2115   uint64_t CurrentBit;
2116   // Pass in the Offset to distinguish between calling for the module-level
2117   // VST (where we want to jump to the VST offset) and the function-level
2118   // VST (where we don't).
2119   if (Offset > 0) {
2120     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2121     if (!MaybeCurrentBit)
2122       return MaybeCurrentBit.takeError();
2123     CurrentBit = MaybeCurrentBit.get();
2124     // If this module uses a string table, read this as a module-level VST.
2125     if (UseStrtab) {
2126       if (Error Err = parseGlobalValueSymbolTable())
2127         return Err;
2128       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2129         return JumpFailed;
2130       return Error::success();
2131     }
2132     // Otherwise, the VST will be in a similar format to a function-level VST,
2133     // and will contain symbol names.
2134   }
2135 
2136   // Compute the delta between the bitcode indices in the VST (the word offset
2137   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2138   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2139   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2140   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2141   // just before entering the VST subblock because: 1) the EnterSubBlock
2142   // changes the AbbrevID width; 2) the VST block is nested within the same
2143   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2144   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2145   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2146   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2147   unsigned FuncBitcodeOffsetDelta =
2148       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2149 
2150   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2151     return Err;
2152 
2153   SmallVector<uint64_t, 64> Record;
2154 
2155   Triple TT(TheModule->getTargetTriple());
2156 
2157   // Read all the records for this value table.
2158   SmallString<128> ValueName;
2159 
2160   while (true) {
2161     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2162     if (!MaybeEntry)
2163       return MaybeEntry.takeError();
2164     BitstreamEntry Entry = MaybeEntry.get();
2165 
2166     switch (Entry.Kind) {
2167     case BitstreamEntry::SubBlock: // Handled for us already.
2168     case BitstreamEntry::Error:
2169       return error("Malformed block");
2170     case BitstreamEntry::EndBlock:
2171       if (Offset > 0)
2172         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2173           return JumpFailed;
2174       return Error::success();
2175     case BitstreamEntry::Record:
2176       // The interesting case.
2177       break;
2178     }
2179 
2180     // Read a record.
2181     Record.clear();
2182     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2183     if (!MaybeRecord)
2184       return MaybeRecord.takeError();
2185     switch (MaybeRecord.get()) {
2186     default:  // Default behavior: unknown type.
2187       break;
2188     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2189       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2190       if (Error Err = ValOrErr.takeError())
2191         return Err;
2192       ValOrErr.get();
2193       break;
2194     }
2195     case bitc::VST_CODE_FNENTRY: {
2196       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2197       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2198       if (Error Err = ValOrErr.takeError())
2199         return Err;
2200       Value *V = ValOrErr.get();
2201 
2202       // Ignore function offsets emitted for aliases of functions in older
2203       // versions of LLVM.
2204       if (auto *F = dyn_cast<Function>(V))
2205         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2206       break;
2207     }
2208     case bitc::VST_CODE_BBENTRY: {
2209       if (convertToString(Record, 1, ValueName))
2210         return error("Invalid record");
2211       BasicBlock *BB = getBasicBlock(Record[0]);
2212       if (!BB)
2213         return error("Invalid record");
2214 
2215       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2216       ValueName.clear();
2217       break;
2218     }
2219     }
2220   }
2221 }
2222 
2223 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2224 /// encoding.
2225 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2226   if ((V & 1) == 0)
2227     return V >> 1;
2228   if (V != 1)
2229     return -(V >> 1);
2230   // There is no such thing as -0 with integers.  "-0" really means MININT.
2231   return 1ULL << 63;
2232 }
2233 
2234 /// Resolve all of the initializers for global values and aliases that we can.
2235 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2236   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2237   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2238       IndirectSymbolInitWorklist;
2239   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2240   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2241   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2242 
2243   GlobalInitWorklist.swap(GlobalInits);
2244   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2245   FunctionPrefixWorklist.swap(FunctionPrefixes);
2246   FunctionPrologueWorklist.swap(FunctionPrologues);
2247   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2248 
2249   while (!GlobalInitWorklist.empty()) {
2250     unsigned ValID = GlobalInitWorklist.back().second;
2251     if (ValID >= ValueList.size()) {
2252       // Not ready to resolve this yet, it requires something later in the file.
2253       GlobalInits.push_back(GlobalInitWorklist.back());
2254     } else {
2255       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2256         GlobalInitWorklist.back().first->setInitializer(C);
2257       else
2258         return error("Expected a constant");
2259     }
2260     GlobalInitWorklist.pop_back();
2261   }
2262 
2263   while (!IndirectSymbolInitWorklist.empty()) {
2264     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2265     if (ValID >= ValueList.size()) {
2266       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2267     } else {
2268       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2269       if (!C)
2270         return error("Expected a constant");
2271       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2272       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2273         return error("Alias and aliasee types don't match");
2274       GIS->setIndirectSymbol(C);
2275     }
2276     IndirectSymbolInitWorklist.pop_back();
2277   }
2278 
2279   while (!FunctionPrefixWorklist.empty()) {
2280     unsigned ValID = FunctionPrefixWorklist.back().second;
2281     if (ValID >= ValueList.size()) {
2282       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2283     } else {
2284       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2285         FunctionPrefixWorklist.back().first->setPrefixData(C);
2286       else
2287         return error("Expected a constant");
2288     }
2289     FunctionPrefixWorklist.pop_back();
2290   }
2291 
2292   while (!FunctionPrologueWorklist.empty()) {
2293     unsigned ValID = FunctionPrologueWorklist.back().second;
2294     if (ValID >= ValueList.size()) {
2295       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2296     } else {
2297       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2298         FunctionPrologueWorklist.back().first->setPrologueData(C);
2299       else
2300         return error("Expected a constant");
2301     }
2302     FunctionPrologueWorklist.pop_back();
2303   }
2304 
2305   while (!FunctionPersonalityFnWorklist.empty()) {
2306     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2307     if (ValID >= ValueList.size()) {
2308       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2309     } else {
2310       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2311         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2312       else
2313         return error("Expected a constant");
2314     }
2315     FunctionPersonalityFnWorklist.pop_back();
2316   }
2317 
2318   return Error::success();
2319 }
2320 
2321 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2322   SmallVector<uint64_t, 8> Words(Vals.size());
2323   transform(Vals, Words.begin(),
2324                  BitcodeReader::decodeSignRotatedValue);
2325 
2326   return APInt(TypeBits, Words);
2327 }
2328 
2329 Error BitcodeReader::parseConstants() {
2330   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2331     return Err;
2332 
2333   SmallVector<uint64_t, 64> Record;
2334 
2335   // Read all the records for this value table.
2336   Type *CurTy = Type::getInt32Ty(Context);
2337   Type *CurFullTy = Type::getInt32Ty(Context);
2338   unsigned NextCstNo = ValueList.size();
2339 
2340   struct DelayedShufTy {
2341     VectorType *OpTy;
2342     VectorType *RTy;
2343     Type *CurFullTy;
2344     uint64_t Op0Idx;
2345     uint64_t Op1Idx;
2346     uint64_t Op2Idx;
2347   };
2348   std::vector<DelayedShufTy> DelayedShuffles;
2349   while (true) {
2350     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2351     if (!MaybeEntry)
2352       return MaybeEntry.takeError();
2353     BitstreamEntry Entry = MaybeEntry.get();
2354 
2355     switch (Entry.Kind) {
2356     case BitstreamEntry::SubBlock: // Handled for us already.
2357     case BitstreamEntry::Error:
2358       return error("Malformed block");
2359     case BitstreamEntry::EndBlock:
2360       if (NextCstNo != ValueList.size())
2361         return error("Invalid constant reference");
2362 
2363       // Once all the constants have been read, go through and resolve forward
2364       // references.
2365       //
2366       // We have to treat shuffles specially because they don't have three
2367       // operands anymore.  We need to convert the shuffle mask into an array,
2368       // and we can't convert a forward reference.
2369       for (auto &DelayedShuffle : DelayedShuffles) {
2370         VectorType *OpTy = DelayedShuffle.OpTy;
2371         VectorType *RTy = DelayedShuffle.RTy;
2372         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2373         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2374         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2375         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2376         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2377         Type *ShufTy =
2378             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2379         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2380         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2381           return error("Invalid shufflevector operands");
2382         SmallVector<int, 16> Mask;
2383         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2384         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2385         ValueList.assignValue(V, NextCstNo, DelayedShuffle.CurFullTy);
2386         ++NextCstNo;
2387       }
2388       ValueList.resolveConstantForwardRefs();
2389       return Error::success();
2390     case BitstreamEntry::Record:
2391       // The interesting case.
2392       break;
2393     }
2394 
2395     // Read a record.
2396     Record.clear();
2397     Type *VoidType = Type::getVoidTy(Context);
2398     Value *V = nullptr;
2399     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2400     if (!MaybeBitCode)
2401       return MaybeBitCode.takeError();
2402     switch (unsigned BitCode = MaybeBitCode.get()) {
2403     default:  // Default behavior: unknown constant
2404     case bitc::CST_CODE_UNDEF:     // UNDEF
2405       V = UndefValue::get(CurTy);
2406       break;
2407     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2408       if (Record.empty())
2409         return error("Invalid record");
2410       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2411         return error("Invalid record");
2412       if (TypeList[Record[0]] == VoidType)
2413         return error("Invalid constant type");
2414       CurFullTy = TypeList[Record[0]];
2415       CurTy = flattenPointerTypes(CurFullTy);
2416       continue;  // Skip the ValueList manipulation.
2417     case bitc::CST_CODE_NULL:      // NULL
2418       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2419         return error("Invalid type for a constant null value");
2420       V = Constant::getNullValue(CurTy);
2421       break;
2422     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2423       if (!CurTy->isIntegerTy() || Record.empty())
2424         return error("Invalid record");
2425       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2426       break;
2427     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2428       if (!CurTy->isIntegerTy() || Record.empty())
2429         return error("Invalid record");
2430 
2431       APInt VInt =
2432           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2433       V = ConstantInt::get(Context, VInt);
2434 
2435       break;
2436     }
2437     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2438       if (Record.empty())
2439         return error("Invalid record");
2440       if (CurTy->isHalfTy())
2441         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2442                                              APInt(16, (uint16_t)Record[0])));
2443       else if (CurTy->isFloatTy())
2444         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2445                                              APInt(32, (uint32_t)Record[0])));
2446       else if (CurTy->isDoubleTy())
2447         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2448                                              APInt(64, Record[0])));
2449       else if (CurTy->isX86_FP80Ty()) {
2450         // Bits are not stored the same way as a normal i80 APInt, compensate.
2451         uint64_t Rearrange[2];
2452         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2453         Rearrange[1] = Record[0] >> 48;
2454         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2455                                              APInt(80, Rearrange)));
2456       } else if (CurTy->isFP128Ty())
2457         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2458                                              APInt(128, Record)));
2459       else if (CurTy->isPPC_FP128Ty())
2460         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2461                                              APInt(128, Record)));
2462       else
2463         V = UndefValue::get(CurTy);
2464       break;
2465     }
2466 
2467     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2468       if (Record.empty())
2469         return error("Invalid record");
2470 
2471       unsigned Size = Record.size();
2472       SmallVector<Constant*, 16> Elts;
2473 
2474       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2475         for (unsigned i = 0; i != Size; ++i)
2476           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2477                                                      STy->getElementType(i)));
2478         V = ConstantStruct::get(STy, Elts);
2479       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2480         Type *EltTy = ATy->getElementType();
2481         for (unsigned i = 0; i != Size; ++i)
2482           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2483         V = ConstantArray::get(ATy, Elts);
2484       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2485         Type *EltTy = VTy->getElementType();
2486         for (unsigned i = 0; i != Size; ++i)
2487           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2488         V = ConstantVector::get(Elts);
2489       } else {
2490         V = UndefValue::get(CurTy);
2491       }
2492       break;
2493     }
2494     case bitc::CST_CODE_STRING:    // STRING: [values]
2495     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2496       if (Record.empty())
2497         return error("Invalid record");
2498 
2499       SmallString<16> Elts(Record.begin(), Record.end());
2500       V = ConstantDataArray::getString(Context, Elts,
2501                                        BitCode == bitc::CST_CODE_CSTRING);
2502       break;
2503     }
2504     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2505       if (Record.empty())
2506         return error("Invalid record");
2507 
2508       Type *EltTy;
2509       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2510         EltTy = Array->getElementType();
2511       else
2512         EltTy = cast<VectorType>(CurTy)->getElementType();
2513       if (EltTy->isIntegerTy(8)) {
2514         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2515         if (isa<VectorType>(CurTy))
2516           V = ConstantDataVector::get(Context, Elts);
2517         else
2518           V = ConstantDataArray::get(Context, Elts);
2519       } else if (EltTy->isIntegerTy(16)) {
2520         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2521         if (isa<VectorType>(CurTy))
2522           V = ConstantDataVector::get(Context, Elts);
2523         else
2524           V = ConstantDataArray::get(Context, Elts);
2525       } else if (EltTy->isIntegerTy(32)) {
2526         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2527         if (isa<VectorType>(CurTy))
2528           V = ConstantDataVector::get(Context, Elts);
2529         else
2530           V = ConstantDataArray::get(Context, Elts);
2531       } else if (EltTy->isIntegerTy(64)) {
2532         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2533         if (isa<VectorType>(CurTy))
2534           V = ConstantDataVector::get(Context, Elts);
2535         else
2536           V = ConstantDataArray::get(Context, Elts);
2537       } else if (EltTy->isHalfTy()) {
2538         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2539         if (isa<VectorType>(CurTy))
2540           V = ConstantDataVector::getFP(Context, Elts);
2541         else
2542           V = ConstantDataArray::getFP(Context, Elts);
2543       } else if (EltTy->isFloatTy()) {
2544         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2545         if (isa<VectorType>(CurTy))
2546           V = ConstantDataVector::getFP(Context, Elts);
2547         else
2548           V = ConstantDataArray::getFP(Context, Elts);
2549       } else if (EltTy->isDoubleTy()) {
2550         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2551         if (isa<VectorType>(CurTy))
2552           V = ConstantDataVector::getFP(Context, Elts);
2553         else
2554           V = ConstantDataArray::getFP(Context, Elts);
2555       } else {
2556         return error("Invalid type for value");
2557       }
2558       break;
2559     }
2560     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2561       if (Record.size() < 2)
2562         return error("Invalid record");
2563       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2564       if (Opc < 0) {
2565         V = UndefValue::get(CurTy);  // Unknown unop.
2566       } else {
2567         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2568         unsigned Flags = 0;
2569         V = ConstantExpr::get(Opc, LHS, Flags);
2570       }
2571       break;
2572     }
2573     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2574       if (Record.size() < 3)
2575         return error("Invalid record");
2576       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2577       if (Opc < 0) {
2578         V = UndefValue::get(CurTy);  // Unknown binop.
2579       } else {
2580         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2581         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2582         unsigned Flags = 0;
2583         if (Record.size() >= 4) {
2584           if (Opc == Instruction::Add ||
2585               Opc == Instruction::Sub ||
2586               Opc == Instruction::Mul ||
2587               Opc == Instruction::Shl) {
2588             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2589               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2590             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2591               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2592           } else if (Opc == Instruction::SDiv ||
2593                      Opc == Instruction::UDiv ||
2594                      Opc == Instruction::LShr ||
2595                      Opc == Instruction::AShr) {
2596             if (Record[3] & (1 << bitc::PEO_EXACT))
2597               Flags |= SDivOperator::IsExact;
2598           }
2599         }
2600         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2601       }
2602       break;
2603     }
2604     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2605       if (Record.size() < 3)
2606         return error("Invalid record");
2607       int Opc = getDecodedCastOpcode(Record[0]);
2608       if (Opc < 0) {
2609         V = UndefValue::get(CurTy);  // Unknown cast.
2610       } else {
2611         Type *OpTy = getTypeByID(Record[1]);
2612         if (!OpTy)
2613           return error("Invalid record");
2614         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2615         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2616         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2617       }
2618       break;
2619     }
2620     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2621     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2622     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2623                                                      // operands]
2624       unsigned OpNum = 0;
2625       Type *PointeeType = nullptr;
2626       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2627           Record.size() % 2)
2628         PointeeType = getTypeByID(Record[OpNum++]);
2629 
2630       bool InBounds = false;
2631       Optional<unsigned> InRangeIndex;
2632       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2633         uint64_t Op = Record[OpNum++];
2634         InBounds = Op & 1;
2635         InRangeIndex = Op >> 1;
2636       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2637         InBounds = true;
2638 
2639       SmallVector<Constant*, 16> Elts;
2640       Type *Elt0FullTy = nullptr;
2641       while (OpNum != Record.size()) {
2642         if (!Elt0FullTy)
2643           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2644         Type *ElTy = getTypeByID(Record[OpNum++]);
2645         if (!ElTy)
2646           return error("Invalid record");
2647         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2648       }
2649 
2650       if (Elts.size() < 1)
2651         return error("Invalid gep with no operands");
2652 
2653       Type *ImplicitPointeeType =
2654           getPointerElementFlatType(Elt0FullTy->getScalarType());
2655       if (!PointeeType)
2656         PointeeType = ImplicitPointeeType;
2657       else if (PointeeType != ImplicitPointeeType)
2658         return error("Explicit gep operator type does not match pointee type "
2659                      "of pointer operand");
2660 
2661       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2662       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2663                                          InBounds, InRangeIndex);
2664       break;
2665     }
2666     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2667       if (Record.size() < 3)
2668         return error("Invalid record");
2669 
2670       Type *SelectorTy = Type::getInt1Ty(Context);
2671 
2672       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2673       // Get the type from the ValueList before getting a forward ref.
2674       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2675         if (Value *V = ValueList[Record[0]])
2676           if (SelectorTy != V->getType())
2677             SelectorTy = VectorType::get(SelectorTy,
2678                                          VTy->getElementCount());
2679 
2680       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2681                                                               SelectorTy),
2682                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2683                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2684       break;
2685     }
2686     case bitc::CST_CODE_CE_EXTRACTELT
2687         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2688       if (Record.size() < 3)
2689         return error("Invalid record");
2690       VectorType *OpTy =
2691         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2692       if (!OpTy)
2693         return error("Invalid record");
2694       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2695       Constant *Op1 = nullptr;
2696       if (Record.size() == 4) {
2697         Type *IdxTy = getTypeByID(Record[2]);
2698         if (!IdxTy)
2699           return error("Invalid record");
2700         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2701       } else // TODO: Remove with llvm 4.0
2702         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2703       if (!Op1)
2704         return error("Invalid record");
2705       V = ConstantExpr::getExtractElement(Op0, Op1);
2706       break;
2707     }
2708     case bitc::CST_CODE_CE_INSERTELT
2709         : { // CE_INSERTELT: [opval, opval, opty, opval]
2710       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2711       if (Record.size() < 3 || !OpTy)
2712         return error("Invalid record");
2713       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2714       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2715                                                   OpTy->getElementType());
2716       Constant *Op2 = nullptr;
2717       if (Record.size() == 4) {
2718         Type *IdxTy = getTypeByID(Record[2]);
2719         if (!IdxTy)
2720           return error("Invalid record");
2721         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2722       } else // TODO: Remove with llvm 4.0
2723         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2724       if (!Op2)
2725         return error("Invalid record");
2726       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2727       break;
2728     }
2729     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2730       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2731       if (Record.size() < 3 || !OpTy)
2732         return error("Invalid record");
2733       DelayedShuffles.push_back(
2734           {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2]});
2735       continue;
2736     }
2737     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2738       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2739       VectorType *OpTy =
2740         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2741       if (Record.size() < 4 || !RTy || !OpTy)
2742         return error("Invalid record");
2743       DelayedShuffles.push_back(
2744           {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3]});
2745       continue;
2746     }
2747     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2748       if (Record.size() < 4)
2749         return error("Invalid record");
2750       Type *OpTy = getTypeByID(Record[0]);
2751       if (!OpTy)
2752         return error("Invalid record");
2753       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2754       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2755 
2756       if (OpTy->isFPOrFPVectorTy())
2757         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2758       else
2759         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2760       break;
2761     }
2762     // This maintains backward compatibility, pre-asm dialect keywords.
2763     // FIXME: Remove with the 4.0 release.
2764     case bitc::CST_CODE_INLINEASM_OLD: {
2765       if (Record.size() < 2)
2766         return error("Invalid record");
2767       std::string AsmStr, ConstrStr;
2768       bool HasSideEffects = Record[0] & 1;
2769       bool IsAlignStack = Record[0] >> 1;
2770       unsigned AsmStrSize = Record[1];
2771       if (2+AsmStrSize >= Record.size())
2772         return error("Invalid record");
2773       unsigned ConstStrSize = Record[2+AsmStrSize];
2774       if (3+AsmStrSize+ConstStrSize > Record.size())
2775         return error("Invalid record");
2776 
2777       for (unsigned i = 0; i != AsmStrSize; ++i)
2778         AsmStr += (char)Record[2+i];
2779       for (unsigned i = 0; i != ConstStrSize; ++i)
2780         ConstrStr += (char)Record[3+AsmStrSize+i];
2781       UpgradeInlineAsmString(&AsmStr);
2782       V = InlineAsm::get(
2783           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2784           ConstrStr, HasSideEffects, IsAlignStack);
2785       break;
2786     }
2787     // This version adds support for the asm dialect keywords (e.g.,
2788     // inteldialect).
2789     case bitc::CST_CODE_INLINEASM: {
2790       if (Record.size() < 2)
2791         return error("Invalid record");
2792       std::string AsmStr, ConstrStr;
2793       bool HasSideEffects = Record[0] & 1;
2794       bool IsAlignStack = (Record[0] >> 1) & 1;
2795       unsigned AsmDialect = Record[0] >> 2;
2796       unsigned AsmStrSize = Record[1];
2797       if (2+AsmStrSize >= Record.size())
2798         return error("Invalid record");
2799       unsigned ConstStrSize = Record[2+AsmStrSize];
2800       if (3+AsmStrSize+ConstStrSize > Record.size())
2801         return error("Invalid record");
2802 
2803       for (unsigned i = 0; i != AsmStrSize; ++i)
2804         AsmStr += (char)Record[2+i];
2805       for (unsigned i = 0; i != ConstStrSize; ++i)
2806         ConstrStr += (char)Record[3+AsmStrSize+i];
2807       UpgradeInlineAsmString(&AsmStr);
2808       V = InlineAsm::get(
2809           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2810           ConstrStr, HasSideEffects, IsAlignStack,
2811           InlineAsm::AsmDialect(AsmDialect));
2812       break;
2813     }
2814     case bitc::CST_CODE_BLOCKADDRESS:{
2815       if (Record.size() < 3)
2816         return error("Invalid record");
2817       Type *FnTy = getTypeByID(Record[0]);
2818       if (!FnTy)
2819         return error("Invalid record");
2820       Function *Fn =
2821         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2822       if (!Fn)
2823         return error("Invalid record");
2824 
2825       // If the function is already parsed we can insert the block address right
2826       // away.
2827       BasicBlock *BB;
2828       unsigned BBID = Record[2];
2829       if (!BBID)
2830         // Invalid reference to entry block.
2831         return error("Invalid ID");
2832       if (!Fn->empty()) {
2833         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2834         for (size_t I = 0, E = BBID; I != E; ++I) {
2835           if (BBI == BBE)
2836             return error("Invalid ID");
2837           ++BBI;
2838         }
2839         BB = &*BBI;
2840       } else {
2841         // Otherwise insert a placeholder and remember it so it can be inserted
2842         // when the function is parsed.
2843         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2844         if (FwdBBs.empty())
2845           BasicBlockFwdRefQueue.push_back(Fn);
2846         if (FwdBBs.size() < BBID + 1)
2847           FwdBBs.resize(BBID + 1);
2848         if (!FwdBBs[BBID])
2849           FwdBBs[BBID] = BasicBlock::Create(Context);
2850         BB = FwdBBs[BBID];
2851       }
2852       V = BlockAddress::get(Fn, BB);
2853       break;
2854     }
2855     }
2856 
2857     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2858            "Incorrect fully structured type provided for Constant");
2859     ValueList.assignValue(V, NextCstNo, CurFullTy);
2860     ++NextCstNo;
2861   }
2862 }
2863 
2864 Error BitcodeReader::parseUseLists() {
2865   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2866     return Err;
2867 
2868   // Read all the records.
2869   SmallVector<uint64_t, 64> Record;
2870 
2871   while (true) {
2872     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2873     if (!MaybeEntry)
2874       return MaybeEntry.takeError();
2875     BitstreamEntry Entry = MaybeEntry.get();
2876 
2877     switch (Entry.Kind) {
2878     case BitstreamEntry::SubBlock: // Handled for us already.
2879     case BitstreamEntry::Error:
2880       return error("Malformed block");
2881     case BitstreamEntry::EndBlock:
2882       return Error::success();
2883     case BitstreamEntry::Record:
2884       // The interesting case.
2885       break;
2886     }
2887 
2888     // Read a use list record.
2889     Record.clear();
2890     bool IsBB = false;
2891     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2892     if (!MaybeRecord)
2893       return MaybeRecord.takeError();
2894     switch (MaybeRecord.get()) {
2895     default:  // Default behavior: unknown type.
2896       break;
2897     case bitc::USELIST_CODE_BB:
2898       IsBB = true;
2899       LLVM_FALLTHROUGH;
2900     case bitc::USELIST_CODE_DEFAULT: {
2901       unsigned RecordLength = Record.size();
2902       if (RecordLength < 3)
2903         // Records should have at least an ID and two indexes.
2904         return error("Invalid record");
2905       unsigned ID = Record.back();
2906       Record.pop_back();
2907 
2908       Value *V;
2909       if (IsBB) {
2910         assert(ID < FunctionBBs.size() && "Basic block not found");
2911         V = FunctionBBs[ID];
2912       } else
2913         V = ValueList[ID];
2914       unsigned NumUses = 0;
2915       SmallDenseMap<const Use *, unsigned, 16> Order;
2916       for (const Use &U : V->materialized_uses()) {
2917         if (++NumUses > Record.size())
2918           break;
2919         Order[&U] = Record[NumUses - 1];
2920       }
2921       if (Order.size() != Record.size() || NumUses > Record.size())
2922         // Mismatches can happen if the functions are being materialized lazily
2923         // (out-of-order), or a value has been upgraded.
2924         break;
2925 
2926       V->sortUseList([&](const Use &L, const Use &R) {
2927         return Order.lookup(&L) < Order.lookup(&R);
2928       });
2929       break;
2930     }
2931     }
2932   }
2933 }
2934 
2935 /// When we see the block for metadata, remember where it is and then skip it.
2936 /// This lets us lazily deserialize the metadata.
2937 Error BitcodeReader::rememberAndSkipMetadata() {
2938   // Save the current stream state.
2939   uint64_t CurBit = Stream.GetCurrentBitNo();
2940   DeferredMetadataInfo.push_back(CurBit);
2941 
2942   // Skip over the block for now.
2943   if (Error Err = Stream.SkipBlock())
2944     return Err;
2945   return Error::success();
2946 }
2947 
2948 Error BitcodeReader::materializeMetadata() {
2949   for (uint64_t BitPos : DeferredMetadataInfo) {
2950     // Move the bit stream to the saved position.
2951     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2952       return JumpFailed;
2953     if (Error Err = MDLoader->parseModuleMetadata())
2954       return Err;
2955   }
2956 
2957   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2958   // metadata.
2959   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2960     NamedMDNode *LinkerOpts =
2961         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2962     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2963       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2964   }
2965 
2966   DeferredMetadataInfo.clear();
2967   return Error::success();
2968 }
2969 
2970 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2971 
2972 /// When we see the block for a function body, remember where it is and then
2973 /// skip it.  This lets us lazily deserialize the functions.
2974 Error BitcodeReader::rememberAndSkipFunctionBody() {
2975   // Get the function we are talking about.
2976   if (FunctionsWithBodies.empty())
2977     return error("Insufficient function protos");
2978 
2979   Function *Fn = FunctionsWithBodies.back();
2980   FunctionsWithBodies.pop_back();
2981 
2982   // Save the current stream state.
2983   uint64_t CurBit = Stream.GetCurrentBitNo();
2984   assert(
2985       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2986       "Mismatch between VST and scanned function offsets");
2987   DeferredFunctionInfo[Fn] = CurBit;
2988 
2989   // Skip over the function block for now.
2990   if (Error Err = Stream.SkipBlock())
2991     return Err;
2992   return Error::success();
2993 }
2994 
2995 Error BitcodeReader::globalCleanup() {
2996   // Patch the initializers for globals and aliases up.
2997   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2998     return Err;
2999   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3000     return error("Malformed global initializer set");
3001 
3002   // Look for intrinsic functions which need to be upgraded at some point
3003   for (Function &F : *TheModule) {
3004     MDLoader->upgradeDebugIntrinsics(F);
3005     Function *NewFn;
3006     if (UpgradeIntrinsicFunction(&F, NewFn))
3007       UpgradedIntrinsics[&F] = NewFn;
3008     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3009       // Some types could be renamed during loading if several modules are
3010       // loaded in the same LLVMContext (LTO scenario). In this case we should
3011       // remangle intrinsics names as well.
3012       RemangledIntrinsics[&F] = Remangled.getValue();
3013   }
3014 
3015   // Look for global variables which need to be renamed.
3016   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3017   for (GlobalVariable &GV : TheModule->globals())
3018     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3019       UpgradedVariables.emplace_back(&GV, Upgraded);
3020   for (auto &Pair : UpgradedVariables) {
3021     Pair.first->eraseFromParent();
3022     TheModule->getGlobalList().push_back(Pair.second);
3023   }
3024 
3025   // Force deallocation of memory for these vectors to favor the client that
3026   // want lazy deserialization.
3027   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3028   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3029       IndirectSymbolInits);
3030   return Error::success();
3031 }
3032 
3033 /// Support for lazy parsing of function bodies. This is required if we
3034 /// either have an old bitcode file without a VST forward declaration record,
3035 /// or if we have an anonymous function being materialized, since anonymous
3036 /// functions do not have a name and are therefore not in the VST.
3037 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3038   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3039     return JumpFailed;
3040 
3041   if (Stream.AtEndOfStream())
3042     return error("Could not find function in stream");
3043 
3044   if (!SeenFirstFunctionBody)
3045     return error("Trying to materialize functions before seeing function blocks");
3046 
3047   // An old bitcode file with the symbol table at the end would have
3048   // finished the parse greedily.
3049   assert(SeenValueSymbolTable);
3050 
3051   SmallVector<uint64_t, 64> Record;
3052 
3053   while (true) {
3054     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3055     if (!MaybeEntry)
3056       return MaybeEntry.takeError();
3057     llvm::BitstreamEntry Entry = MaybeEntry.get();
3058 
3059     switch (Entry.Kind) {
3060     default:
3061       return error("Expect SubBlock");
3062     case BitstreamEntry::SubBlock:
3063       switch (Entry.ID) {
3064       default:
3065         return error("Expect function block");
3066       case bitc::FUNCTION_BLOCK_ID:
3067         if (Error Err = rememberAndSkipFunctionBody())
3068           return Err;
3069         NextUnreadBit = Stream.GetCurrentBitNo();
3070         return Error::success();
3071       }
3072     }
3073   }
3074 }
3075 
3076 bool BitcodeReaderBase::readBlockInfo() {
3077   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3078       Stream.ReadBlockInfoBlock();
3079   if (!MaybeNewBlockInfo)
3080     return true; // FIXME Handle the error.
3081   Optional<BitstreamBlockInfo> NewBlockInfo =
3082       std::move(MaybeNewBlockInfo.get());
3083   if (!NewBlockInfo)
3084     return true;
3085   BlockInfo = std::move(*NewBlockInfo);
3086   return false;
3087 }
3088 
3089 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3090   // v1: [selection_kind, name]
3091   // v2: [strtab_offset, strtab_size, selection_kind]
3092   StringRef Name;
3093   std::tie(Name, Record) = readNameFromStrtab(Record);
3094 
3095   if (Record.empty())
3096     return error("Invalid record");
3097   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3098   std::string OldFormatName;
3099   if (!UseStrtab) {
3100     if (Record.size() < 2)
3101       return error("Invalid record");
3102     unsigned ComdatNameSize = Record[1];
3103     OldFormatName.reserve(ComdatNameSize);
3104     for (unsigned i = 0; i != ComdatNameSize; ++i)
3105       OldFormatName += (char)Record[2 + i];
3106     Name = OldFormatName;
3107   }
3108   Comdat *C = TheModule->getOrInsertComdat(Name);
3109   C->setSelectionKind(SK);
3110   ComdatList.push_back(C);
3111   return Error::success();
3112 }
3113 
3114 static void inferDSOLocal(GlobalValue *GV) {
3115   // infer dso_local from linkage and visibility if it is not encoded.
3116   if (GV->hasLocalLinkage() ||
3117       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3118     GV->setDSOLocal(true);
3119 }
3120 
3121 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3122   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3123   // visibility, threadlocal, unnamed_addr, externally_initialized,
3124   // dllstorageclass, comdat, attributes, preemption specifier,
3125   // partition strtab offset, partition strtab size] (name in VST)
3126   // v2: [strtab_offset, strtab_size, v1]
3127   StringRef Name;
3128   std::tie(Name, Record) = readNameFromStrtab(Record);
3129 
3130   if (Record.size() < 6)
3131     return error("Invalid record");
3132   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3133   Type *Ty = flattenPointerTypes(FullTy);
3134   if (!Ty)
3135     return error("Invalid record");
3136   bool isConstant = Record[1] & 1;
3137   bool explicitType = Record[1] & 2;
3138   unsigned AddressSpace;
3139   if (explicitType) {
3140     AddressSpace = Record[1] >> 2;
3141   } else {
3142     if (!Ty->isPointerTy())
3143       return error("Invalid type for value");
3144     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3145     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3146   }
3147 
3148   uint64_t RawLinkage = Record[3];
3149   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3150   MaybeAlign Alignment;
3151   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3152     return Err;
3153   std::string Section;
3154   if (Record[5]) {
3155     if (Record[5] - 1 >= SectionTable.size())
3156       return error("Invalid ID");
3157     Section = SectionTable[Record[5] - 1];
3158   }
3159   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3160   // Local linkage must have default visibility.
3161   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3162     // FIXME: Change to an error if non-default in 4.0.
3163     Visibility = getDecodedVisibility(Record[6]);
3164 
3165   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3166   if (Record.size() > 7)
3167     TLM = getDecodedThreadLocalMode(Record[7]);
3168 
3169   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3170   if (Record.size() > 8)
3171     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3172 
3173   bool ExternallyInitialized = false;
3174   if (Record.size() > 9)
3175     ExternallyInitialized = Record[9];
3176 
3177   GlobalVariable *NewGV =
3178       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3179                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3180   NewGV->setAlignment(Alignment);
3181   if (!Section.empty())
3182     NewGV->setSection(Section);
3183   NewGV->setVisibility(Visibility);
3184   NewGV->setUnnamedAddr(UnnamedAddr);
3185 
3186   if (Record.size() > 10)
3187     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3188   else
3189     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3190 
3191   FullTy = PointerType::get(FullTy, AddressSpace);
3192   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3193          "Incorrect fully specified type for GlobalVariable");
3194   ValueList.push_back(NewGV, FullTy);
3195 
3196   // Remember which value to use for the global initializer.
3197   if (unsigned InitID = Record[2])
3198     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3199 
3200   if (Record.size() > 11) {
3201     if (unsigned ComdatID = Record[11]) {
3202       if (ComdatID > ComdatList.size())
3203         return error("Invalid global variable comdat ID");
3204       NewGV->setComdat(ComdatList[ComdatID - 1]);
3205     }
3206   } else if (hasImplicitComdat(RawLinkage)) {
3207     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3208   }
3209 
3210   if (Record.size() > 12) {
3211     auto AS = getAttributes(Record[12]).getFnAttributes();
3212     NewGV->setAttributes(AS);
3213   }
3214 
3215   if (Record.size() > 13) {
3216     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3217   }
3218   inferDSOLocal(NewGV);
3219 
3220   // Check whether we have enough values to read a partition name.
3221   if (Record.size() > 15)
3222     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3223 
3224   return Error::success();
3225 }
3226 
3227 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3228   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3229   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3230   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3231   // v2: [strtab_offset, strtab_size, v1]
3232   StringRef Name;
3233   std::tie(Name, Record) = readNameFromStrtab(Record);
3234 
3235   if (Record.size() < 8)
3236     return error("Invalid record");
3237   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3238   Type *FTy = flattenPointerTypes(FullFTy);
3239   if (!FTy)
3240     return error("Invalid record");
3241   if (isa<PointerType>(FTy))
3242     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3243 
3244   if (!isa<FunctionType>(FTy))
3245     return error("Invalid type for value");
3246   auto CC = static_cast<CallingConv::ID>(Record[1]);
3247   if (CC & ~CallingConv::MaxID)
3248     return error("Invalid calling convention ID");
3249 
3250   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3251   if (Record.size() > 16)
3252     AddrSpace = Record[16];
3253 
3254   Function *Func =
3255       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3256                        AddrSpace, Name, TheModule);
3257 
3258   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3259          "Incorrect fully specified type provided for function");
3260   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3261 
3262   Func->setCallingConv(CC);
3263   bool isProto = Record[2];
3264   uint64_t RawLinkage = Record[3];
3265   Func->setLinkage(getDecodedLinkage(RawLinkage));
3266   Func->setAttributes(getAttributes(Record[4]));
3267 
3268   // Upgrade any old-style byval without a type by propagating the argument's
3269   // pointee type. There should be no opaque pointers where the byval type is
3270   // implicit.
3271   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3272     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3273       continue;
3274 
3275     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3276     Func->removeParamAttr(i, Attribute::ByVal);
3277     Func->addParamAttr(i, Attribute::getWithByValType(
3278                               Context, getPointerElementFlatType(PTy)));
3279   }
3280 
3281   MaybeAlign Alignment;
3282   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3283     return Err;
3284   Func->setAlignment(Alignment);
3285   if (Record[6]) {
3286     if (Record[6] - 1 >= SectionTable.size())
3287       return error("Invalid ID");
3288     Func->setSection(SectionTable[Record[6] - 1]);
3289   }
3290   // Local linkage must have default visibility.
3291   if (!Func->hasLocalLinkage())
3292     // FIXME: Change to an error if non-default in 4.0.
3293     Func->setVisibility(getDecodedVisibility(Record[7]));
3294   if (Record.size() > 8 && Record[8]) {
3295     if (Record[8] - 1 >= GCTable.size())
3296       return error("Invalid ID");
3297     Func->setGC(GCTable[Record[8] - 1]);
3298   }
3299   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3300   if (Record.size() > 9)
3301     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3302   Func->setUnnamedAddr(UnnamedAddr);
3303   if (Record.size() > 10 && Record[10] != 0)
3304     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3305 
3306   if (Record.size() > 11)
3307     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3308   else
3309     upgradeDLLImportExportLinkage(Func, RawLinkage);
3310 
3311   if (Record.size() > 12) {
3312     if (unsigned ComdatID = Record[12]) {
3313       if (ComdatID > ComdatList.size())
3314         return error("Invalid function comdat ID");
3315       Func->setComdat(ComdatList[ComdatID - 1]);
3316     }
3317   } else if (hasImplicitComdat(RawLinkage)) {
3318     Func->setComdat(reinterpret_cast<Comdat *>(1));
3319   }
3320 
3321   if (Record.size() > 13 && Record[13] != 0)
3322     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3323 
3324   if (Record.size() > 14 && Record[14] != 0)
3325     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3326 
3327   if (Record.size() > 15) {
3328     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3329   }
3330   inferDSOLocal(Func);
3331 
3332   // Record[16] is the address space number.
3333 
3334   // Check whether we have enough values to read a partition name.
3335   if (Record.size() > 18)
3336     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3337 
3338   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3339   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3340          "Incorrect fully specified type provided for Function");
3341   ValueList.push_back(Func, FullTy);
3342 
3343   // If this is a function with a body, remember the prototype we are
3344   // creating now, so that we can match up the body with them later.
3345   if (!isProto) {
3346     Func->setIsMaterializable(true);
3347     FunctionsWithBodies.push_back(Func);
3348     DeferredFunctionInfo[Func] = 0;
3349   }
3350   return Error::success();
3351 }
3352 
3353 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3354     unsigned BitCode, ArrayRef<uint64_t> Record) {
3355   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3356   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3357   // dllstorageclass, threadlocal, unnamed_addr,
3358   // preemption specifier] (name in VST)
3359   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3360   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3361   // preemption specifier] (name in VST)
3362   // v2: [strtab_offset, strtab_size, v1]
3363   StringRef Name;
3364   std::tie(Name, Record) = readNameFromStrtab(Record);
3365 
3366   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3367   if (Record.size() < (3 + (unsigned)NewRecord))
3368     return error("Invalid record");
3369   unsigned OpNum = 0;
3370   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3371   Type *Ty = flattenPointerTypes(FullTy);
3372   if (!Ty)
3373     return error("Invalid record");
3374 
3375   unsigned AddrSpace;
3376   if (!NewRecord) {
3377     auto *PTy = dyn_cast<PointerType>(Ty);
3378     if (!PTy)
3379       return error("Invalid type for value");
3380     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3381     AddrSpace = PTy->getAddressSpace();
3382   } else {
3383     AddrSpace = Record[OpNum++];
3384   }
3385 
3386   auto Val = Record[OpNum++];
3387   auto Linkage = Record[OpNum++];
3388   GlobalIndirectSymbol *NewGA;
3389   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3390       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3391     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3392                                 TheModule);
3393   else
3394     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3395                                 nullptr, TheModule);
3396 
3397   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3398          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3399   // Old bitcode files didn't have visibility field.
3400   // Local linkage must have default visibility.
3401   if (OpNum != Record.size()) {
3402     auto VisInd = OpNum++;
3403     if (!NewGA->hasLocalLinkage())
3404       // FIXME: Change to an error if non-default in 4.0.
3405       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3406   }
3407   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3408       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3409     if (OpNum != Record.size())
3410       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3411     else
3412       upgradeDLLImportExportLinkage(NewGA, Linkage);
3413     if (OpNum != Record.size())
3414       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3415     if (OpNum != Record.size())
3416       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3417   }
3418   if (OpNum != Record.size())
3419     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3420   inferDSOLocal(NewGA);
3421 
3422   // Check whether we have enough values to read a partition name.
3423   if (OpNum + 1 < Record.size()) {
3424     NewGA->setPartition(
3425         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3426     OpNum += 2;
3427   }
3428 
3429   FullTy = PointerType::get(FullTy, AddrSpace);
3430   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3431          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3432   ValueList.push_back(NewGA, FullTy);
3433   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3434   return Error::success();
3435 }
3436 
3437 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3438                                  bool ShouldLazyLoadMetadata) {
3439   if (ResumeBit) {
3440     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3441       return JumpFailed;
3442   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3443     return Err;
3444 
3445   SmallVector<uint64_t, 64> Record;
3446 
3447   // Read all the records for this module.
3448   while (true) {
3449     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3450     if (!MaybeEntry)
3451       return MaybeEntry.takeError();
3452     llvm::BitstreamEntry Entry = MaybeEntry.get();
3453 
3454     switch (Entry.Kind) {
3455     case BitstreamEntry::Error:
3456       return error("Malformed block");
3457     case BitstreamEntry::EndBlock:
3458       return globalCleanup();
3459 
3460     case BitstreamEntry::SubBlock:
3461       switch (Entry.ID) {
3462       default:  // Skip unknown content.
3463         if (Error Err = Stream.SkipBlock())
3464           return Err;
3465         break;
3466       case bitc::BLOCKINFO_BLOCK_ID:
3467         if (readBlockInfo())
3468           return error("Malformed block");
3469         break;
3470       case bitc::PARAMATTR_BLOCK_ID:
3471         if (Error Err = parseAttributeBlock())
3472           return Err;
3473         break;
3474       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3475         if (Error Err = parseAttributeGroupBlock())
3476           return Err;
3477         break;
3478       case bitc::TYPE_BLOCK_ID_NEW:
3479         if (Error Err = parseTypeTable())
3480           return Err;
3481         break;
3482       case bitc::VALUE_SYMTAB_BLOCK_ID:
3483         if (!SeenValueSymbolTable) {
3484           // Either this is an old form VST without function index and an
3485           // associated VST forward declaration record (which would have caused
3486           // the VST to be jumped to and parsed before it was encountered
3487           // normally in the stream), or there were no function blocks to
3488           // trigger an earlier parsing of the VST.
3489           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3490           if (Error Err = parseValueSymbolTable())
3491             return Err;
3492           SeenValueSymbolTable = true;
3493         } else {
3494           // We must have had a VST forward declaration record, which caused
3495           // the parser to jump to and parse the VST earlier.
3496           assert(VSTOffset > 0);
3497           if (Error Err = Stream.SkipBlock())
3498             return Err;
3499         }
3500         break;
3501       case bitc::CONSTANTS_BLOCK_ID:
3502         if (Error Err = parseConstants())
3503           return Err;
3504         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3505           return Err;
3506         break;
3507       case bitc::METADATA_BLOCK_ID:
3508         if (ShouldLazyLoadMetadata) {
3509           if (Error Err = rememberAndSkipMetadata())
3510             return Err;
3511           break;
3512         }
3513         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3514         if (Error Err = MDLoader->parseModuleMetadata())
3515           return Err;
3516         break;
3517       case bitc::METADATA_KIND_BLOCK_ID:
3518         if (Error Err = MDLoader->parseMetadataKinds())
3519           return Err;
3520         break;
3521       case bitc::FUNCTION_BLOCK_ID:
3522         // If this is the first function body we've seen, reverse the
3523         // FunctionsWithBodies list.
3524         if (!SeenFirstFunctionBody) {
3525           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3526           if (Error Err = globalCleanup())
3527             return Err;
3528           SeenFirstFunctionBody = true;
3529         }
3530 
3531         if (VSTOffset > 0) {
3532           // If we have a VST forward declaration record, make sure we
3533           // parse the VST now if we haven't already. It is needed to
3534           // set up the DeferredFunctionInfo vector for lazy reading.
3535           if (!SeenValueSymbolTable) {
3536             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3537               return Err;
3538             SeenValueSymbolTable = true;
3539             // Fall through so that we record the NextUnreadBit below.
3540             // This is necessary in case we have an anonymous function that
3541             // is later materialized. Since it will not have a VST entry we
3542             // need to fall back to the lazy parse to find its offset.
3543           } else {
3544             // If we have a VST forward declaration record, but have already
3545             // parsed the VST (just above, when the first function body was
3546             // encountered here), then we are resuming the parse after
3547             // materializing functions. The ResumeBit points to the
3548             // start of the last function block recorded in the
3549             // DeferredFunctionInfo map. Skip it.
3550             if (Error Err = Stream.SkipBlock())
3551               return Err;
3552             continue;
3553           }
3554         }
3555 
3556         // Support older bitcode files that did not have the function
3557         // index in the VST, nor a VST forward declaration record, as
3558         // well as anonymous functions that do not have VST entries.
3559         // Build the DeferredFunctionInfo vector on the fly.
3560         if (Error Err = rememberAndSkipFunctionBody())
3561           return Err;
3562 
3563         // Suspend parsing when we reach the function bodies. Subsequent
3564         // materialization calls will resume it when necessary. If the bitcode
3565         // file is old, the symbol table will be at the end instead and will not
3566         // have been seen yet. In this case, just finish the parse now.
3567         if (SeenValueSymbolTable) {
3568           NextUnreadBit = Stream.GetCurrentBitNo();
3569           // After the VST has been parsed, we need to make sure intrinsic name
3570           // are auto-upgraded.
3571           return globalCleanup();
3572         }
3573         break;
3574       case bitc::USELIST_BLOCK_ID:
3575         if (Error Err = parseUseLists())
3576           return Err;
3577         break;
3578       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3579         if (Error Err = parseOperandBundleTags())
3580           return Err;
3581         break;
3582       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3583         if (Error Err = parseSyncScopeNames())
3584           return Err;
3585         break;
3586       }
3587       continue;
3588 
3589     case BitstreamEntry::Record:
3590       // The interesting case.
3591       break;
3592     }
3593 
3594     // Read a record.
3595     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3596     if (!MaybeBitCode)
3597       return MaybeBitCode.takeError();
3598     switch (unsigned BitCode = MaybeBitCode.get()) {
3599     default: break;  // Default behavior, ignore unknown content.
3600     case bitc::MODULE_CODE_VERSION: {
3601       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3602       if (!VersionOrErr)
3603         return VersionOrErr.takeError();
3604       UseRelativeIDs = *VersionOrErr >= 1;
3605       break;
3606     }
3607     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3608       std::string S;
3609       if (convertToString(Record, 0, S))
3610         return error("Invalid record");
3611       TheModule->setTargetTriple(S);
3612       break;
3613     }
3614     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3615       std::string S;
3616       if (convertToString(Record, 0, S))
3617         return error("Invalid record");
3618       TheModule->setDataLayout(S);
3619       break;
3620     }
3621     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3622       std::string S;
3623       if (convertToString(Record, 0, S))
3624         return error("Invalid record");
3625       TheModule->setModuleInlineAsm(S);
3626       break;
3627     }
3628     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3629       // FIXME: Remove in 4.0.
3630       std::string S;
3631       if (convertToString(Record, 0, S))
3632         return error("Invalid record");
3633       // Ignore value.
3634       break;
3635     }
3636     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3637       std::string S;
3638       if (convertToString(Record, 0, S))
3639         return error("Invalid record");
3640       SectionTable.push_back(S);
3641       break;
3642     }
3643     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3644       std::string S;
3645       if (convertToString(Record, 0, S))
3646         return error("Invalid record");
3647       GCTable.push_back(S);
3648       break;
3649     }
3650     case bitc::MODULE_CODE_COMDAT:
3651       if (Error Err = parseComdatRecord(Record))
3652         return Err;
3653       break;
3654     case bitc::MODULE_CODE_GLOBALVAR:
3655       if (Error Err = parseGlobalVarRecord(Record))
3656         return Err;
3657       break;
3658     case bitc::MODULE_CODE_FUNCTION:
3659       if (Error Err = parseFunctionRecord(Record))
3660         return Err;
3661       break;
3662     case bitc::MODULE_CODE_IFUNC:
3663     case bitc::MODULE_CODE_ALIAS:
3664     case bitc::MODULE_CODE_ALIAS_OLD:
3665       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3666         return Err;
3667       break;
3668     /// MODULE_CODE_VSTOFFSET: [offset]
3669     case bitc::MODULE_CODE_VSTOFFSET:
3670       if (Record.size() < 1)
3671         return error("Invalid record");
3672       // Note that we subtract 1 here because the offset is relative to one word
3673       // before the start of the identification or module block, which was
3674       // historically always the start of the regular bitcode header.
3675       VSTOffset = Record[0] - 1;
3676       break;
3677     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3678     case bitc::MODULE_CODE_SOURCE_FILENAME:
3679       SmallString<128> ValueName;
3680       if (convertToString(Record, 0, ValueName))
3681         return error("Invalid record");
3682       TheModule->setSourceFileName(ValueName);
3683       break;
3684     }
3685     Record.clear();
3686 
3687     // Upgrade data layout string.
3688     std::string DL = llvm::UpgradeDataLayoutString(
3689         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3690     TheModule->setDataLayout(DL);
3691   }
3692 }
3693 
3694 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3695                                       bool IsImporting) {
3696   TheModule = M;
3697   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3698                             [&](unsigned ID) { return getTypeByID(ID); });
3699   return parseModule(0, ShouldLazyLoadMetadata);
3700 }
3701 
3702 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3703   if (!isa<PointerType>(PtrType))
3704     return error("Load/Store operand is not a pointer type");
3705   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3706 
3707   if (ValType && ValType != ElemType)
3708     return error("Explicit load/store type does not match pointee "
3709                  "type of pointer operand");
3710   if (!PointerType::isLoadableOrStorableType(ElemType))
3711     return error("Cannot load/store from pointer");
3712   return Error::success();
3713 }
3714 
3715 void BitcodeReader::propagateByValTypes(CallBase *CB,
3716                                         ArrayRef<Type *> ArgsFullTys) {
3717   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3718     if (!CB->paramHasAttr(i, Attribute::ByVal))
3719       continue;
3720 
3721     CB->removeParamAttr(i, Attribute::ByVal);
3722     CB->addParamAttr(
3723         i, Attribute::getWithByValType(
3724                Context, getPointerElementFlatType(ArgsFullTys[i])));
3725   }
3726 }
3727 
3728 /// Lazily parse the specified function body block.
3729 Error BitcodeReader::parseFunctionBody(Function *F) {
3730   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3731     return Err;
3732 
3733   // Unexpected unresolved metadata when parsing function.
3734   if (MDLoader->hasFwdRefs())
3735     return error("Invalid function metadata: incoming forward references");
3736 
3737   InstructionList.clear();
3738   unsigned ModuleValueListSize = ValueList.size();
3739   unsigned ModuleMDLoaderSize = MDLoader->size();
3740 
3741   // Add all the function arguments to the value table.
3742   unsigned ArgNo = 0;
3743   FunctionType *FullFTy = FunctionTypes[F];
3744   for (Argument &I : F->args()) {
3745     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3746            "Incorrect fully specified type for Function Argument");
3747     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3748   }
3749   unsigned NextValueNo = ValueList.size();
3750   BasicBlock *CurBB = nullptr;
3751   unsigned CurBBNo = 0;
3752 
3753   DebugLoc LastLoc;
3754   auto getLastInstruction = [&]() -> Instruction * {
3755     if (CurBB && !CurBB->empty())
3756       return &CurBB->back();
3757     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3758              !FunctionBBs[CurBBNo - 1]->empty())
3759       return &FunctionBBs[CurBBNo - 1]->back();
3760     return nullptr;
3761   };
3762 
3763   std::vector<OperandBundleDef> OperandBundles;
3764 
3765   // Read all the records.
3766   SmallVector<uint64_t, 64> Record;
3767 
3768   while (true) {
3769     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3770     if (!MaybeEntry)
3771       return MaybeEntry.takeError();
3772     llvm::BitstreamEntry Entry = MaybeEntry.get();
3773 
3774     switch (Entry.Kind) {
3775     case BitstreamEntry::Error:
3776       return error("Malformed block");
3777     case BitstreamEntry::EndBlock:
3778       goto OutOfRecordLoop;
3779 
3780     case BitstreamEntry::SubBlock:
3781       switch (Entry.ID) {
3782       default:  // Skip unknown content.
3783         if (Error Err = Stream.SkipBlock())
3784           return Err;
3785         break;
3786       case bitc::CONSTANTS_BLOCK_ID:
3787         if (Error Err = parseConstants())
3788           return Err;
3789         NextValueNo = ValueList.size();
3790         break;
3791       case bitc::VALUE_SYMTAB_BLOCK_ID:
3792         if (Error Err = parseValueSymbolTable())
3793           return Err;
3794         break;
3795       case bitc::METADATA_ATTACHMENT_ID:
3796         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3797           return Err;
3798         break;
3799       case bitc::METADATA_BLOCK_ID:
3800         assert(DeferredMetadataInfo.empty() &&
3801                "Must read all module-level metadata before function-level");
3802         if (Error Err = MDLoader->parseFunctionMetadata())
3803           return Err;
3804         break;
3805       case bitc::USELIST_BLOCK_ID:
3806         if (Error Err = parseUseLists())
3807           return Err;
3808         break;
3809       }
3810       continue;
3811 
3812     case BitstreamEntry::Record:
3813       // The interesting case.
3814       break;
3815     }
3816 
3817     // Read a record.
3818     Record.clear();
3819     Instruction *I = nullptr;
3820     Type *FullTy = nullptr;
3821     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3822     if (!MaybeBitCode)
3823       return MaybeBitCode.takeError();
3824     switch (unsigned BitCode = MaybeBitCode.get()) {
3825     default: // Default behavior: reject
3826       return error("Invalid value");
3827     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3828       if (Record.size() < 1 || Record[0] == 0)
3829         return error("Invalid record");
3830       // Create all the basic blocks for the function.
3831       FunctionBBs.resize(Record[0]);
3832 
3833       // See if anything took the address of blocks in this function.
3834       auto BBFRI = BasicBlockFwdRefs.find(F);
3835       if (BBFRI == BasicBlockFwdRefs.end()) {
3836         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3837           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3838       } else {
3839         auto &BBRefs = BBFRI->second;
3840         // Check for invalid basic block references.
3841         if (BBRefs.size() > FunctionBBs.size())
3842           return error("Invalid ID");
3843         assert(!BBRefs.empty() && "Unexpected empty array");
3844         assert(!BBRefs.front() && "Invalid reference to entry block");
3845         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3846              ++I)
3847           if (I < RE && BBRefs[I]) {
3848             BBRefs[I]->insertInto(F);
3849             FunctionBBs[I] = BBRefs[I];
3850           } else {
3851             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3852           }
3853 
3854         // Erase from the table.
3855         BasicBlockFwdRefs.erase(BBFRI);
3856       }
3857 
3858       CurBB = FunctionBBs[0];
3859       continue;
3860     }
3861 
3862     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3863       // This record indicates that the last instruction is at the same
3864       // location as the previous instruction with a location.
3865       I = getLastInstruction();
3866 
3867       if (!I)
3868         return error("Invalid record");
3869       I->setDebugLoc(LastLoc);
3870       I = nullptr;
3871       continue;
3872 
3873     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3874       I = getLastInstruction();
3875       if (!I || Record.size() < 4)
3876         return error("Invalid record");
3877 
3878       unsigned Line = Record[0], Col = Record[1];
3879       unsigned ScopeID = Record[2], IAID = Record[3];
3880       bool isImplicitCode = Record.size() == 5 && Record[4];
3881 
3882       MDNode *Scope = nullptr, *IA = nullptr;
3883       if (ScopeID) {
3884         Scope = dyn_cast_or_null<MDNode>(
3885             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3886         if (!Scope)
3887           return error("Invalid record");
3888       }
3889       if (IAID) {
3890         IA = dyn_cast_or_null<MDNode>(
3891             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3892         if (!IA)
3893           return error("Invalid record");
3894       }
3895       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3896       I->setDebugLoc(LastLoc);
3897       I = nullptr;
3898       continue;
3899     }
3900     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3901       unsigned OpNum = 0;
3902       Value *LHS;
3903       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3904           OpNum+1 > Record.size())
3905         return error("Invalid record");
3906 
3907       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3908       if (Opc == -1)
3909         return error("Invalid record");
3910       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3911       InstructionList.push_back(I);
3912       if (OpNum < Record.size()) {
3913         if (isa<FPMathOperator>(I)) {
3914           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3915           if (FMF.any())
3916             I->setFastMathFlags(FMF);
3917         }
3918       }
3919       break;
3920     }
3921     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3922       unsigned OpNum = 0;
3923       Value *LHS, *RHS;
3924       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3925           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3926           OpNum+1 > Record.size())
3927         return error("Invalid record");
3928 
3929       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3930       if (Opc == -1)
3931         return error("Invalid record");
3932       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3933       InstructionList.push_back(I);
3934       if (OpNum < Record.size()) {
3935         if (Opc == Instruction::Add ||
3936             Opc == Instruction::Sub ||
3937             Opc == Instruction::Mul ||
3938             Opc == Instruction::Shl) {
3939           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3940             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3941           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3942             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3943         } else if (Opc == Instruction::SDiv ||
3944                    Opc == Instruction::UDiv ||
3945                    Opc == Instruction::LShr ||
3946                    Opc == Instruction::AShr) {
3947           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3948             cast<BinaryOperator>(I)->setIsExact(true);
3949         } else if (isa<FPMathOperator>(I)) {
3950           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3951           if (FMF.any())
3952             I->setFastMathFlags(FMF);
3953         }
3954 
3955       }
3956       break;
3957     }
3958     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3959       unsigned OpNum = 0;
3960       Value *Op;
3961       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3962           OpNum+2 != Record.size())
3963         return error("Invalid record");
3964 
3965       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
3966       Type *ResTy = flattenPointerTypes(FullTy);
3967       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3968       if (Opc == -1 || !ResTy)
3969         return error("Invalid record");
3970       Instruction *Temp = nullptr;
3971       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3972         if (Temp) {
3973           InstructionList.push_back(Temp);
3974           assert(CurBB && "No current BB?");
3975           CurBB->getInstList().push_back(Temp);
3976         }
3977       } else {
3978         auto CastOp = (Instruction::CastOps)Opc;
3979         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3980           return error("Invalid cast");
3981         I = CastInst::Create(CastOp, Op, ResTy);
3982       }
3983       InstructionList.push_back(I);
3984       break;
3985     }
3986     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3987     case bitc::FUNC_CODE_INST_GEP_OLD:
3988     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3989       unsigned OpNum = 0;
3990 
3991       Type *Ty;
3992       bool InBounds;
3993 
3994       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3995         InBounds = Record[OpNum++];
3996         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3997         Ty = flattenPointerTypes(FullTy);
3998       } else {
3999         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4000         Ty = nullptr;
4001       }
4002 
4003       Value *BasePtr;
4004       Type *FullBaseTy = nullptr;
4005       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4006         return error("Invalid record");
4007 
4008       if (!Ty) {
4009         std::tie(FullTy, Ty) =
4010             getPointerElementTypes(FullBaseTy->getScalarType());
4011       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
4012         return error(
4013             "Explicit gep type does not match pointee type of pointer operand");
4014 
4015       SmallVector<Value*, 16> GEPIdx;
4016       while (OpNum != Record.size()) {
4017         Value *Op;
4018         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4019           return error("Invalid record");
4020         GEPIdx.push_back(Op);
4021       }
4022 
4023       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4024       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4025 
4026       InstructionList.push_back(I);
4027       if (InBounds)
4028         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4029       break;
4030     }
4031 
4032     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4033                                        // EXTRACTVAL: [opty, opval, n x indices]
4034       unsigned OpNum = 0;
4035       Value *Agg;
4036       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4037         return error("Invalid record");
4038 
4039       unsigned RecSize = Record.size();
4040       if (OpNum == RecSize)
4041         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4042 
4043       SmallVector<unsigned, 4> EXTRACTVALIdx;
4044       for (; OpNum != RecSize; ++OpNum) {
4045         bool IsArray = FullTy->isArrayTy();
4046         bool IsStruct = FullTy->isStructTy();
4047         uint64_t Index = Record[OpNum];
4048 
4049         if (!IsStruct && !IsArray)
4050           return error("EXTRACTVAL: Invalid type");
4051         if ((unsigned)Index != Index)
4052           return error("Invalid value");
4053         if (IsStruct && Index >= FullTy->getStructNumElements())
4054           return error("EXTRACTVAL: Invalid struct index");
4055         if (IsArray && Index >= FullTy->getArrayNumElements())
4056           return error("EXTRACTVAL: Invalid array index");
4057         EXTRACTVALIdx.push_back((unsigned)Index);
4058 
4059         if (IsStruct)
4060           FullTy = FullTy->getStructElementType(Index);
4061         else
4062           FullTy = FullTy->getArrayElementType();
4063       }
4064 
4065       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4066       InstructionList.push_back(I);
4067       break;
4068     }
4069 
4070     case bitc::FUNC_CODE_INST_INSERTVAL: {
4071                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4072       unsigned OpNum = 0;
4073       Value *Agg;
4074       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4075         return error("Invalid record");
4076       Value *Val;
4077       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4078         return error("Invalid record");
4079 
4080       unsigned RecSize = Record.size();
4081       if (OpNum == RecSize)
4082         return error("INSERTVAL: Invalid instruction with 0 indices");
4083 
4084       SmallVector<unsigned, 4> INSERTVALIdx;
4085       Type *CurTy = Agg->getType();
4086       for (; OpNum != RecSize; ++OpNum) {
4087         bool IsArray = CurTy->isArrayTy();
4088         bool IsStruct = CurTy->isStructTy();
4089         uint64_t Index = Record[OpNum];
4090 
4091         if (!IsStruct && !IsArray)
4092           return error("INSERTVAL: Invalid type");
4093         if ((unsigned)Index != Index)
4094           return error("Invalid value");
4095         if (IsStruct && Index >= CurTy->getStructNumElements())
4096           return error("INSERTVAL: Invalid struct index");
4097         if (IsArray && Index >= CurTy->getArrayNumElements())
4098           return error("INSERTVAL: Invalid array index");
4099 
4100         INSERTVALIdx.push_back((unsigned)Index);
4101         if (IsStruct)
4102           CurTy = CurTy->getStructElementType(Index);
4103         else
4104           CurTy = CurTy->getArrayElementType();
4105       }
4106 
4107       if (CurTy != Val->getType())
4108         return error("Inserted value type doesn't match aggregate type");
4109 
4110       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4111       InstructionList.push_back(I);
4112       break;
4113     }
4114 
4115     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4116       // obsolete form of select
4117       // handles select i1 ... in old bitcode
4118       unsigned OpNum = 0;
4119       Value *TrueVal, *FalseVal, *Cond;
4120       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4121           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4122           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4123         return error("Invalid record");
4124 
4125       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4126       InstructionList.push_back(I);
4127       break;
4128     }
4129 
4130     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4131       // new form of select
4132       // handles select i1 or select [N x i1]
4133       unsigned OpNum = 0;
4134       Value *TrueVal, *FalseVal, *Cond;
4135       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4136           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4137           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4138         return error("Invalid record");
4139 
4140       // select condition can be either i1 or [N x i1]
4141       if (VectorType* vector_type =
4142           dyn_cast<VectorType>(Cond->getType())) {
4143         // expect <n x i1>
4144         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4145           return error("Invalid type for value");
4146       } else {
4147         // expect i1
4148         if (Cond->getType() != Type::getInt1Ty(Context))
4149           return error("Invalid type for value");
4150       }
4151 
4152       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4153       InstructionList.push_back(I);
4154       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4155         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4156         if (FMF.any())
4157           I->setFastMathFlags(FMF);
4158       }
4159       break;
4160     }
4161 
4162     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4163       unsigned OpNum = 0;
4164       Value *Vec, *Idx;
4165       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4166           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4167         return error("Invalid record");
4168       if (!Vec->getType()->isVectorTy())
4169         return error("Invalid type for value");
4170       I = ExtractElementInst::Create(Vec, Idx);
4171       FullTy = FullTy->getVectorElementType();
4172       InstructionList.push_back(I);
4173       break;
4174     }
4175 
4176     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4177       unsigned OpNum = 0;
4178       Value *Vec, *Elt, *Idx;
4179       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4180         return error("Invalid record");
4181       if (!Vec->getType()->isVectorTy())
4182         return error("Invalid type for value");
4183       if (popValue(Record, OpNum, NextValueNo,
4184                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4185           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4186         return error("Invalid record");
4187       I = InsertElementInst::Create(Vec, Elt, Idx);
4188       InstructionList.push_back(I);
4189       break;
4190     }
4191 
4192     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4193       unsigned OpNum = 0;
4194       Value *Vec1, *Vec2, *Mask;
4195       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4196           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4197         return error("Invalid record");
4198 
4199       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4200         return error("Invalid record");
4201       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4202         return error("Invalid type for value");
4203 
4204       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4205       FullTy = VectorType::get(FullTy->getVectorElementType(),
4206                                Mask->getType()->getVectorElementCount());
4207       InstructionList.push_back(I);
4208       break;
4209     }
4210 
4211     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4212       // Old form of ICmp/FCmp returning bool
4213       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4214       // both legal on vectors but had different behaviour.
4215     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4216       // FCmp/ICmp returning bool or vector of bool
4217 
4218       unsigned OpNum = 0;
4219       Value *LHS, *RHS;
4220       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4221           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4222         return error("Invalid record");
4223 
4224       if (OpNum >= Record.size())
4225         return error(
4226             "Invalid record: operand number exceeded available operands");
4227 
4228       unsigned PredVal = Record[OpNum];
4229       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4230       FastMathFlags FMF;
4231       if (IsFP && Record.size() > OpNum+1)
4232         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4233 
4234       if (OpNum+1 != Record.size())
4235         return error("Invalid record");
4236 
4237       if (LHS->getType()->isFPOrFPVectorTy())
4238         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4239       else
4240         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4241 
4242       if (FMF.any())
4243         I->setFastMathFlags(FMF);
4244       InstructionList.push_back(I);
4245       break;
4246     }
4247 
4248     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4249       {
4250         unsigned Size = Record.size();
4251         if (Size == 0) {
4252           I = ReturnInst::Create(Context);
4253           InstructionList.push_back(I);
4254           break;
4255         }
4256 
4257         unsigned OpNum = 0;
4258         Value *Op = nullptr;
4259         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4260           return error("Invalid record");
4261         if (OpNum != Record.size())
4262           return error("Invalid record");
4263 
4264         I = ReturnInst::Create(Context, Op);
4265         InstructionList.push_back(I);
4266         break;
4267       }
4268     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4269       if (Record.size() != 1 && Record.size() != 3)
4270         return error("Invalid record");
4271       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4272       if (!TrueDest)
4273         return error("Invalid record");
4274 
4275       if (Record.size() == 1) {
4276         I = BranchInst::Create(TrueDest);
4277         InstructionList.push_back(I);
4278       }
4279       else {
4280         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4281         Value *Cond = getValue(Record, 2, NextValueNo,
4282                                Type::getInt1Ty(Context));
4283         if (!FalseDest || !Cond)
4284           return error("Invalid record");
4285         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4286         InstructionList.push_back(I);
4287       }
4288       break;
4289     }
4290     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4291       if (Record.size() != 1 && Record.size() != 2)
4292         return error("Invalid record");
4293       unsigned Idx = 0;
4294       Value *CleanupPad =
4295           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4296       if (!CleanupPad)
4297         return error("Invalid record");
4298       BasicBlock *UnwindDest = nullptr;
4299       if (Record.size() == 2) {
4300         UnwindDest = getBasicBlock(Record[Idx++]);
4301         if (!UnwindDest)
4302           return error("Invalid record");
4303       }
4304 
4305       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4306       InstructionList.push_back(I);
4307       break;
4308     }
4309     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4310       if (Record.size() != 2)
4311         return error("Invalid record");
4312       unsigned Idx = 0;
4313       Value *CatchPad =
4314           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4315       if (!CatchPad)
4316         return error("Invalid record");
4317       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4318       if (!BB)
4319         return error("Invalid record");
4320 
4321       I = CatchReturnInst::Create(CatchPad, BB);
4322       InstructionList.push_back(I);
4323       break;
4324     }
4325     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4326       // We must have, at minimum, the outer scope and the number of arguments.
4327       if (Record.size() < 2)
4328         return error("Invalid record");
4329 
4330       unsigned Idx = 0;
4331 
4332       Value *ParentPad =
4333           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4334 
4335       unsigned NumHandlers = Record[Idx++];
4336 
4337       SmallVector<BasicBlock *, 2> Handlers;
4338       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4339         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4340         if (!BB)
4341           return error("Invalid record");
4342         Handlers.push_back(BB);
4343       }
4344 
4345       BasicBlock *UnwindDest = nullptr;
4346       if (Idx + 1 == Record.size()) {
4347         UnwindDest = getBasicBlock(Record[Idx++]);
4348         if (!UnwindDest)
4349           return error("Invalid record");
4350       }
4351 
4352       if (Record.size() != Idx)
4353         return error("Invalid record");
4354 
4355       auto *CatchSwitch =
4356           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4357       for (BasicBlock *Handler : Handlers)
4358         CatchSwitch->addHandler(Handler);
4359       I = CatchSwitch;
4360       InstructionList.push_back(I);
4361       break;
4362     }
4363     case bitc::FUNC_CODE_INST_CATCHPAD:
4364     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4365       // We must have, at minimum, the outer scope and the number of arguments.
4366       if (Record.size() < 2)
4367         return error("Invalid record");
4368 
4369       unsigned Idx = 0;
4370 
4371       Value *ParentPad =
4372           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4373 
4374       unsigned NumArgOperands = Record[Idx++];
4375 
4376       SmallVector<Value *, 2> Args;
4377       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4378         Value *Val;
4379         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4380           return error("Invalid record");
4381         Args.push_back(Val);
4382       }
4383 
4384       if (Record.size() != Idx)
4385         return error("Invalid record");
4386 
4387       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4388         I = CleanupPadInst::Create(ParentPad, Args);
4389       else
4390         I = CatchPadInst::Create(ParentPad, Args);
4391       InstructionList.push_back(I);
4392       break;
4393     }
4394     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4395       // Check magic
4396       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4397         // "New" SwitchInst format with case ranges. The changes to write this
4398         // format were reverted but we still recognize bitcode that uses it.
4399         // Hopefully someday we will have support for case ranges and can use
4400         // this format again.
4401 
4402         Type *OpTy = getTypeByID(Record[1]);
4403         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4404 
4405         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4406         BasicBlock *Default = getBasicBlock(Record[3]);
4407         if (!OpTy || !Cond || !Default)
4408           return error("Invalid record");
4409 
4410         unsigned NumCases = Record[4];
4411 
4412         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4413         InstructionList.push_back(SI);
4414 
4415         unsigned CurIdx = 5;
4416         for (unsigned i = 0; i != NumCases; ++i) {
4417           SmallVector<ConstantInt*, 1> CaseVals;
4418           unsigned NumItems = Record[CurIdx++];
4419           for (unsigned ci = 0; ci != NumItems; ++ci) {
4420             bool isSingleNumber = Record[CurIdx++];
4421 
4422             APInt Low;
4423             unsigned ActiveWords = 1;
4424             if (ValueBitWidth > 64)
4425               ActiveWords = Record[CurIdx++];
4426             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4427                                 ValueBitWidth);
4428             CurIdx += ActiveWords;
4429 
4430             if (!isSingleNumber) {
4431               ActiveWords = 1;
4432               if (ValueBitWidth > 64)
4433                 ActiveWords = Record[CurIdx++];
4434               APInt High = readWideAPInt(
4435                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4436               CurIdx += ActiveWords;
4437 
4438               // FIXME: It is not clear whether values in the range should be
4439               // compared as signed or unsigned values. The partially
4440               // implemented changes that used this format in the past used
4441               // unsigned comparisons.
4442               for ( ; Low.ule(High); ++Low)
4443                 CaseVals.push_back(ConstantInt::get(Context, Low));
4444             } else
4445               CaseVals.push_back(ConstantInt::get(Context, Low));
4446           }
4447           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4448           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4449                  cve = CaseVals.end(); cvi != cve; ++cvi)
4450             SI->addCase(*cvi, DestBB);
4451         }
4452         I = SI;
4453         break;
4454       }
4455 
4456       // Old SwitchInst format without case ranges.
4457 
4458       if (Record.size() < 3 || (Record.size() & 1) == 0)
4459         return error("Invalid record");
4460       Type *OpTy = getTypeByID(Record[0]);
4461       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4462       BasicBlock *Default = getBasicBlock(Record[2]);
4463       if (!OpTy || !Cond || !Default)
4464         return error("Invalid record");
4465       unsigned NumCases = (Record.size()-3)/2;
4466       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4467       InstructionList.push_back(SI);
4468       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4469         ConstantInt *CaseVal =
4470           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4471         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4472         if (!CaseVal || !DestBB) {
4473           delete SI;
4474           return error("Invalid record");
4475         }
4476         SI->addCase(CaseVal, DestBB);
4477       }
4478       I = SI;
4479       break;
4480     }
4481     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4482       if (Record.size() < 2)
4483         return error("Invalid record");
4484       Type *OpTy = getTypeByID(Record[0]);
4485       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4486       if (!OpTy || !Address)
4487         return error("Invalid record");
4488       unsigned NumDests = Record.size()-2;
4489       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4490       InstructionList.push_back(IBI);
4491       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4492         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4493           IBI->addDestination(DestBB);
4494         } else {
4495           delete IBI;
4496           return error("Invalid record");
4497         }
4498       }
4499       I = IBI;
4500       break;
4501     }
4502 
4503     case bitc::FUNC_CODE_INST_INVOKE: {
4504       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4505       if (Record.size() < 4)
4506         return error("Invalid record");
4507       unsigned OpNum = 0;
4508       AttributeList PAL = getAttributes(Record[OpNum++]);
4509       unsigned CCInfo = Record[OpNum++];
4510       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4511       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4512 
4513       FunctionType *FTy = nullptr;
4514       FunctionType *FullFTy = nullptr;
4515       if ((CCInfo >> 13) & 1) {
4516         FullFTy =
4517             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4518         if (!FullFTy)
4519           return error("Explicit invoke type is not a function type");
4520         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4521       }
4522 
4523       Value *Callee;
4524       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4525         return error("Invalid record");
4526 
4527       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4528       if (!CalleeTy)
4529         return error("Callee is not a pointer");
4530       if (!FTy) {
4531         FullFTy =
4532             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4533         if (!FullFTy)
4534           return error("Callee is not of pointer to function type");
4535         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4536       } else if (getPointerElementFlatType(FullTy) != FTy)
4537         return error("Explicit invoke type does not match pointee type of "
4538                      "callee operand");
4539       if (Record.size() < FTy->getNumParams() + OpNum)
4540         return error("Insufficient operands to call");
4541 
4542       SmallVector<Value*, 16> Ops;
4543       SmallVector<Type *, 16> ArgsFullTys;
4544       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4545         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4546                                FTy->getParamType(i)));
4547         ArgsFullTys.push_back(FullFTy->getParamType(i));
4548         if (!Ops.back())
4549           return error("Invalid record");
4550       }
4551 
4552       if (!FTy->isVarArg()) {
4553         if (Record.size() != OpNum)
4554           return error("Invalid record");
4555       } else {
4556         // Read type/value pairs for varargs params.
4557         while (OpNum != Record.size()) {
4558           Value *Op;
4559           Type *FullTy;
4560           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4561             return error("Invalid record");
4562           Ops.push_back(Op);
4563           ArgsFullTys.push_back(FullTy);
4564         }
4565       }
4566 
4567       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4568                              OperandBundles);
4569       FullTy = FullFTy->getReturnType();
4570       OperandBundles.clear();
4571       InstructionList.push_back(I);
4572       cast<InvokeInst>(I)->setCallingConv(
4573           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4574       cast<InvokeInst>(I)->setAttributes(PAL);
4575       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4576 
4577       break;
4578     }
4579     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4580       unsigned Idx = 0;
4581       Value *Val = nullptr;
4582       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4583         return error("Invalid record");
4584       I = ResumeInst::Create(Val);
4585       InstructionList.push_back(I);
4586       break;
4587     }
4588     case bitc::FUNC_CODE_INST_CALLBR: {
4589       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4590       unsigned OpNum = 0;
4591       AttributeList PAL = getAttributes(Record[OpNum++]);
4592       unsigned CCInfo = Record[OpNum++];
4593 
4594       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4595       unsigned NumIndirectDests = Record[OpNum++];
4596       SmallVector<BasicBlock *, 16> IndirectDests;
4597       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4598         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4599 
4600       FunctionType *FTy = nullptr;
4601       FunctionType *FullFTy = nullptr;
4602       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4603         FullFTy =
4604             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4605         if (!FullFTy)
4606           return error("Explicit call type is not a function type");
4607         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4608       }
4609 
4610       Value *Callee;
4611       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4612         return error("Invalid record");
4613 
4614       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4615       if (!OpTy)
4616         return error("Callee is not a pointer type");
4617       if (!FTy) {
4618         FullFTy =
4619             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4620         if (!FullFTy)
4621           return error("Callee is not of pointer to function type");
4622         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4623       } else if (getPointerElementFlatType(FullTy) != FTy)
4624         return error("Explicit call type does not match pointee type of "
4625                      "callee operand");
4626       if (Record.size() < FTy->getNumParams() + OpNum)
4627         return error("Insufficient operands to call");
4628 
4629       SmallVector<Value*, 16> Args;
4630       // Read the fixed params.
4631       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4632         if (FTy->getParamType(i)->isLabelTy())
4633           Args.push_back(getBasicBlock(Record[OpNum]));
4634         else
4635           Args.push_back(getValue(Record, OpNum, NextValueNo,
4636                                   FTy->getParamType(i)));
4637         if (!Args.back())
4638           return error("Invalid record");
4639       }
4640 
4641       // Read type/value pairs for varargs params.
4642       if (!FTy->isVarArg()) {
4643         if (OpNum != Record.size())
4644           return error("Invalid record");
4645       } else {
4646         while (OpNum != Record.size()) {
4647           Value *Op;
4648           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4649             return error("Invalid record");
4650           Args.push_back(Op);
4651         }
4652       }
4653 
4654       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4655                              OperandBundles);
4656       FullTy = FullFTy->getReturnType();
4657       OperandBundles.clear();
4658       InstructionList.push_back(I);
4659       cast<CallBrInst>(I)->setCallingConv(
4660           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4661       cast<CallBrInst>(I)->setAttributes(PAL);
4662       break;
4663     }
4664     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4665       I = new UnreachableInst(Context);
4666       InstructionList.push_back(I);
4667       break;
4668     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4669       if (Record.size() < 1)
4670         return error("Invalid record");
4671       // The first record specifies the type.
4672       FullTy = getFullyStructuredTypeByID(Record[0]);
4673       Type *Ty = flattenPointerTypes(FullTy);
4674       if (!Ty)
4675         return error("Invalid record");
4676 
4677       // Phi arguments are pairs of records of [value, basic block].
4678       // There is an optional final record for fast-math-flags if this phi has a
4679       // floating-point type.
4680       size_t NumArgs = (Record.size() - 1) / 2;
4681       PHINode *PN = PHINode::Create(Ty, NumArgs);
4682       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4683         return error("Invalid record");
4684       InstructionList.push_back(PN);
4685 
4686       for (unsigned i = 0; i != NumArgs; i++) {
4687         Value *V;
4688         // With the new function encoding, it is possible that operands have
4689         // negative IDs (for forward references).  Use a signed VBR
4690         // representation to keep the encoding small.
4691         if (UseRelativeIDs)
4692           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4693         else
4694           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4695         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4696         if (!V || !BB)
4697           return error("Invalid record");
4698         PN->addIncoming(V, BB);
4699       }
4700       I = PN;
4701 
4702       // If there are an even number of records, the final record must be FMF.
4703       if (Record.size() % 2 == 0) {
4704         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4705         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4706         if (FMF.any())
4707           I->setFastMathFlags(FMF);
4708       }
4709 
4710       break;
4711     }
4712 
4713     case bitc::FUNC_CODE_INST_LANDINGPAD:
4714     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4715       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4716       unsigned Idx = 0;
4717       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4718         if (Record.size() < 3)
4719           return error("Invalid record");
4720       } else {
4721         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4722         if (Record.size() < 4)
4723           return error("Invalid record");
4724       }
4725       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4726       Type *Ty = flattenPointerTypes(FullTy);
4727       if (!Ty)
4728         return error("Invalid record");
4729       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4730         Value *PersFn = nullptr;
4731         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4732           return error("Invalid record");
4733 
4734         if (!F->hasPersonalityFn())
4735           F->setPersonalityFn(cast<Constant>(PersFn));
4736         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4737           return error("Personality function mismatch");
4738       }
4739 
4740       bool IsCleanup = !!Record[Idx++];
4741       unsigned NumClauses = Record[Idx++];
4742       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4743       LP->setCleanup(IsCleanup);
4744       for (unsigned J = 0; J != NumClauses; ++J) {
4745         LandingPadInst::ClauseType CT =
4746           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4747         Value *Val;
4748 
4749         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4750           delete LP;
4751           return error("Invalid record");
4752         }
4753 
4754         assert((CT != LandingPadInst::Catch ||
4755                 !isa<ArrayType>(Val->getType())) &&
4756                "Catch clause has a invalid type!");
4757         assert((CT != LandingPadInst::Filter ||
4758                 isa<ArrayType>(Val->getType())) &&
4759                "Filter clause has invalid type!");
4760         LP->addClause(cast<Constant>(Val));
4761       }
4762 
4763       I = LP;
4764       InstructionList.push_back(I);
4765       break;
4766     }
4767 
4768     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4769       if (Record.size() != 4)
4770         return error("Invalid record");
4771       uint64_t AlignRecord = Record[3];
4772       const uint64_t InAllocaMask = uint64_t(1) << 5;
4773       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4774       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4775       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4776                                 SwiftErrorMask;
4777       bool InAlloca = AlignRecord & InAllocaMask;
4778       bool SwiftError = AlignRecord & SwiftErrorMask;
4779       FullTy = getFullyStructuredTypeByID(Record[0]);
4780       Type *Ty = flattenPointerTypes(FullTy);
4781       if ((AlignRecord & ExplicitTypeMask) == 0) {
4782         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4783         if (!PTy)
4784           return error("Old-style alloca with a non-pointer type");
4785         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4786       }
4787       Type *OpTy = getTypeByID(Record[1]);
4788       Value *Size = getFnValueByID(Record[2], OpTy);
4789       MaybeAlign Align;
4790       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4791         return Err;
4792       }
4793       if (!Ty || !Size)
4794         return error("Invalid record");
4795 
4796       // FIXME: Make this an optional field.
4797       const DataLayout &DL = TheModule->getDataLayout();
4798       unsigned AS = DL.getAllocaAddrSpace();
4799 
4800       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4801       AI->setUsedWithInAlloca(InAlloca);
4802       AI->setSwiftError(SwiftError);
4803       I = AI;
4804       FullTy = PointerType::get(FullTy, AS);
4805       InstructionList.push_back(I);
4806       break;
4807     }
4808     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4809       unsigned OpNum = 0;
4810       Value *Op;
4811       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4812           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4813         return error("Invalid record");
4814 
4815       if (!isa<PointerType>(Op->getType()))
4816         return error("Load operand is not a pointer type");
4817 
4818       Type *Ty = nullptr;
4819       if (OpNum + 3 == Record.size()) {
4820         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4821         Ty = flattenPointerTypes(FullTy);
4822       } else
4823         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4824 
4825       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4826         return Err;
4827 
4828       MaybeAlign Align;
4829       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4830         return Err;
4831       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4832       InstructionList.push_back(I);
4833       break;
4834     }
4835     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4836        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4837       unsigned OpNum = 0;
4838       Value *Op;
4839       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4840           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4841         return error("Invalid record");
4842 
4843       if (!isa<PointerType>(Op->getType()))
4844         return error("Load operand is not a pointer type");
4845 
4846       Type *Ty = nullptr;
4847       if (OpNum + 5 == Record.size()) {
4848         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4849         Ty = flattenPointerTypes(FullTy);
4850       } else
4851         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4852 
4853       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4854         return Err;
4855 
4856       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4857       if (Ordering == AtomicOrdering::NotAtomic ||
4858           Ordering == AtomicOrdering::Release ||
4859           Ordering == AtomicOrdering::AcquireRelease)
4860         return error("Invalid record");
4861       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4862         return error("Invalid record");
4863       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4864 
4865       MaybeAlign Align;
4866       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4867         return Err;
4868       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4869       InstructionList.push_back(I);
4870       break;
4871     }
4872     case bitc::FUNC_CODE_INST_STORE:
4873     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4874       unsigned OpNum = 0;
4875       Value *Val, *Ptr;
4876       Type *FullTy;
4877       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4878           (BitCode == bitc::FUNC_CODE_INST_STORE
4879                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4880                : popValue(Record, OpNum, NextValueNo,
4881                           getPointerElementFlatType(FullTy), Val)) ||
4882           OpNum + 2 != Record.size())
4883         return error("Invalid record");
4884 
4885       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4886         return Err;
4887       MaybeAlign Align;
4888       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4889         return Err;
4890       I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align);
4891       InstructionList.push_back(I);
4892       break;
4893     }
4894     case bitc::FUNC_CODE_INST_STOREATOMIC:
4895     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4896       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4897       unsigned OpNum = 0;
4898       Value *Val, *Ptr;
4899       Type *FullTy;
4900       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4901           !isa<PointerType>(Ptr->getType()) ||
4902           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4903                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4904                : popValue(Record, OpNum, NextValueNo,
4905                           getPointerElementFlatType(FullTy), Val)) ||
4906           OpNum + 4 != Record.size())
4907         return error("Invalid record");
4908 
4909       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4910         return Err;
4911       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4912       if (Ordering == AtomicOrdering::NotAtomic ||
4913           Ordering == AtomicOrdering::Acquire ||
4914           Ordering == AtomicOrdering::AcquireRelease)
4915         return error("Invalid record");
4916       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4917       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4918         return error("Invalid record");
4919 
4920       MaybeAlign Align;
4921       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4922         return Err;
4923       I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID);
4924       InstructionList.push_back(I);
4925       break;
4926     }
4927     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4928     case bitc::FUNC_CODE_INST_CMPXCHG: {
4929       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4930       //          failureordering?, isweak?]
4931       unsigned OpNum = 0;
4932       Value *Ptr, *Cmp, *New;
4933       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4934         return error("Invalid record");
4935 
4936       if (!isa<PointerType>(Ptr->getType()))
4937         return error("Cmpxchg operand is not a pointer type");
4938 
4939       if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4940         if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4941           return error("Invalid record");
4942       } else if (popValue(Record, OpNum, NextValueNo,
4943                           getPointerElementFlatType(FullTy), Cmp))
4944         return error("Invalid record");
4945       else
4946         FullTy = cast<PointerType>(FullTy)->getElementType();
4947 
4948       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4949           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4950         return error("Invalid record");
4951 
4952       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4953       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4954           SuccessOrdering == AtomicOrdering::Unordered)
4955         return error("Invalid record");
4956       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4957 
4958       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4959         return Err;
4960       AtomicOrdering FailureOrdering;
4961       if (Record.size() < 7)
4962         FailureOrdering =
4963             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4964       else
4965         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4966 
4967       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4968                                 SSID);
4969       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
4970       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4971 
4972       if (Record.size() < 8) {
4973         // Before weak cmpxchgs existed, the instruction simply returned the
4974         // value loaded from memory, so bitcode files from that era will be
4975         // expecting the first component of a modern cmpxchg.
4976         CurBB->getInstList().push_back(I);
4977         I = ExtractValueInst::Create(I, 0);
4978         FullTy = cast<StructType>(FullTy)->getElementType(0);
4979       } else {
4980         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4981       }
4982 
4983       InstructionList.push_back(I);
4984       break;
4985     }
4986     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4987       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4988       unsigned OpNum = 0;
4989       Value *Ptr, *Val;
4990       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4991           !isa<PointerType>(Ptr->getType()) ||
4992           popValue(Record, OpNum, NextValueNo,
4993                    getPointerElementFlatType(FullTy), Val) ||
4994           OpNum + 4 != Record.size())
4995         return error("Invalid record");
4996       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4997       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4998           Operation > AtomicRMWInst::LAST_BINOP)
4999         return error("Invalid record");
5000       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5001       if (Ordering == AtomicOrdering::NotAtomic ||
5002           Ordering == AtomicOrdering::Unordered)
5003         return error("Invalid record");
5004       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5005       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
5006       FullTy = getPointerElementFlatType(FullTy);
5007       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5008       InstructionList.push_back(I);
5009       break;
5010     }
5011     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5012       if (2 != Record.size())
5013         return error("Invalid record");
5014       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5015       if (Ordering == AtomicOrdering::NotAtomic ||
5016           Ordering == AtomicOrdering::Unordered ||
5017           Ordering == AtomicOrdering::Monotonic)
5018         return error("Invalid record");
5019       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5020       I = new FenceInst(Context, Ordering, SSID);
5021       InstructionList.push_back(I);
5022       break;
5023     }
5024     case bitc::FUNC_CODE_INST_CALL: {
5025       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5026       if (Record.size() < 3)
5027         return error("Invalid record");
5028 
5029       unsigned OpNum = 0;
5030       AttributeList PAL = getAttributes(Record[OpNum++]);
5031       unsigned CCInfo = Record[OpNum++];
5032 
5033       FastMathFlags FMF;
5034       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5035         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5036         if (!FMF.any())
5037           return error("Fast math flags indicator set for call with no FMF");
5038       }
5039 
5040       FunctionType *FTy = nullptr;
5041       FunctionType *FullFTy = nullptr;
5042       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5043         FullFTy =
5044             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5045         if (!FullFTy)
5046           return error("Explicit call type is not a function type");
5047         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5048       }
5049 
5050       Value *Callee;
5051       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5052         return error("Invalid record");
5053 
5054       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5055       if (!OpTy)
5056         return error("Callee is not a pointer type");
5057       if (!FTy) {
5058         FullFTy =
5059             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5060         if (!FullFTy)
5061           return error("Callee is not of pointer to function type");
5062         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5063       } else if (getPointerElementFlatType(FullTy) != FTy)
5064         return error("Explicit call type does not match pointee type of "
5065                      "callee operand");
5066       if (Record.size() < FTy->getNumParams() + OpNum)
5067         return error("Insufficient operands to call");
5068 
5069       SmallVector<Value*, 16> Args;
5070       SmallVector<Type*, 16> ArgsFullTys;
5071       // Read the fixed params.
5072       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5073         if (FTy->getParamType(i)->isLabelTy())
5074           Args.push_back(getBasicBlock(Record[OpNum]));
5075         else
5076           Args.push_back(getValue(Record, OpNum, NextValueNo,
5077                                   FTy->getParamType(i)));
5078         ArgsFullTys.push_back(FullFTy->getParamType(i));
5079         if (!Args.back())
5080           return error("Invalid record");
5081       }
5082 
5083       // Read type/value pairs for varargs params.
5084       if (!FTy->isVarArg()) {
5085         if (OpNum != Record.size())
5086           return error("Invalid record");
5087       } else {
5088         while (OpNum != Record.size()) {
5089           Value *Op;
5090           Type *FullTy;
5091           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5092             return error("Invalid record");
5093           Args.push_back(Op);
5094           ArgsFullTys.push_back(FullTy);
5095         }
5096       }
5097 
5098       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5099       FullTy = FullFTy->getReturnType();
5100       OperandBundles.clear();
5101       InstructionList.push_back(I);
5102       cast<CallInst>(I)->setCallingConv(
5103           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5104       CallInst::TailCallKind TCK = CallInst::TCK_None;
5105       if (CCInfo & 1 << bitc::CALL_TAIL)
5106         TCK = CallInst::TCK_Tail;
5107       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5108         TCK = CallInst::TCK_MustTail;
5109       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5110         TCK = CallInst::TCK_NoTail;
5111       cast<CallInst>(I)->setTailCallKind(TCK);
5112       cast<CallInst>(I)->setAttributes(PAL);
5113       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5114       if (FMF.any()) {
5115         if (!isa<FPMathOperator>(I))
5116           return error("Fast-math-flags specified for call without "
5117                        "floating-point scalar or vector return type");
5118         I->setFastMathFlags(FMF);
5119       }
5120       break;
5121     }
5122     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5123       if (Record.size() < 3)
5124         return error("Invalid record");
5125       Type *OpTy = getTypeByID(Record[0]);
5126       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5127       FullTy = getFullyStructuredTypeByID(Record[2]);
5128       Type *ResTy = flattenPointerTypes(FullTy);
5129       if (!OpTy || !Op || !ResTy)
5130         return error("Invalid record");
5131       I = new VAArgInst(Op, ResTy);
5132       InstructionList.push_back(I);
5133       break;
5134     }
5135 
5136     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5137       // A call or an invoke can be optionally prefixed with some variable
5138       // number of operand bundle blocks.  These blocks are read into
5139       // OperandBundles and consumed at the next call or invoke instruction.
5140 
5141       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5142         return error("Invalid record");
5143 
5144       std::vector<Value *> Inputs;
5145 
5146       unsigned OpNum = 1;
5147       while (OpNum != Record.size()) {
5148         Value *Op;
5149         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5150           return error("Invalid record");
5151         Inputs.push_back(Op);
5152       }
5153 
5154       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5155       continue;
5156     }
5157 
5158     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5159       unsigned OpNum = 0;
5160       Value *Op = nullptr;
5161       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5162         return error("Invalid record");
5163       if (OpNum != Record.size())
5164         return error("Invalid record");
5165 
5166       I = new FreezeInst(Op);
5167       InstructionList.push_back(I);
5168       break;
5169     }
5170     }
5171 
5172     // Add instruction to end of current BB.  If there is no current BB, reject
5173     // this file.
5174     if (!CurBB) {
5175       I->deleteValue();
5176       return error("Invalid instruction with no BB");
5177     }
5178     if (!OperandBundles.empty()) {
5179       I->deleteValue();
5180       return error("Operand bundles found with no consumer");
5181     }
5182     CurBB->getInstList().push_back(I);
5183 
5184     // If this was a terminator instruction, move to the next block.
5185     if (I->isTerminator()) {
5186       ++CurBBNo;
5187       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5188     }
5189 
5190     // Non-void values get registered in the value table for future use.
5191     if (!I->getType()->isVoidTy()) {
5192       if (!FullTy) {
5193         FullTy = I->getType();
5194         assert(
5195             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5196             !isa<ArrayType>(FullTy) &&
5197             (!isa<VectorType>(FullTy) ||
5198              FullTy->getVectorElementType()->isFloatingPointTy() ||
5199              FullTy->getVectorElementType()->isIntegerTy()) &&
5200             "Structured types must be assigned with corresponding non-opaque "
5201             "pointer type");
5202       }
5203 
5204       assert(I->getType() == flattenPointerTypes(FullTy) &&
5205              "Incorrect fully structured type provided for Instruction");
5206       ValueList.assignValue(I, NextValueNo++, FullTy);
5207     }
5208   }
5209 
5210 OutOfRecordLoop:
5211 
5212   if (!OperandBundles.empty())
5213     return error("Operand bundles found with no consumer");
5214 
5215   // Check the function list for unresolved values.
5216   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5217     if (!A->getParent()) {
5218       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5219       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5220         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5221           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5222           delete A;
5223         }
5224       }
5225       return error("Never resolved value found in function");
5226     }
5227   }
5228 
5229   // Unexpected unresolved metadata about to be dropped.
5230   if (MDLoader->hasFwdRefs())
5231     return error("Invalid function metadata: outgoing forward refs");
5232 
5233   // Trim the value list down to the size it was before we parsed this function.
5234   ValueList.shrinkTo(ModuleValueListSize);
5235   MDLoader->shrinkTo(ModuleMDLoaderSize);
5236   std::vector<BasicBlock*>().swap(FunctionBBs);
5237   return Error::success();
5238 }
5239 
5240 /// Find the function body in the bitcode stream
5241 Error BitcodeReader::findFunctionInStream(
5242     Function *F,
5243     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5244   while (DeferredFunctionInfoIterator->second == 0) {
5245     // This is the fallback handling for the old format bitcode that
5246     // didn't contain the function index in the VST, or when we have
5247     // an anonymous function which would not have a VST entry.
5248     // Assert that we have one of those two cases.
5249     assert(VSTOffset == 0 || !F->hasName());
5250     // Parse the next body in the stream and set its position in the
5251     // DeferredFunctionInfo map.
5252     if (Error Err = rememberAndSkipFunctionBodies())
5253       return Err;
5254   }
5255   return Error::success();
5256 }
5257 
5258 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5259   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5260     return SyncScope::ID(Val);
5261   if (Val >= SSIDs.size())
5262     return SyncScope::System; // Map unknown synchronization scopes to system.
5263   return SSIDs[Val];
5264 }
5265 
5266 //===----------------------------------------------------------------------===//
5267 // GVMaterializer implementation
5268 //===----------------------------------------------------------------------===//
5269 
5270 Error BitcodeReader::materialize(GlobalValue *GV) {
5271   Function *F = dyn_cast<Function>(GV);
5272   // If it's not a function or is already material, ignore the request.
5273   if (!F || !F->isMaterializable())
5274     return Error::success();
5275 
5276   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5277   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5278   // If its position is recorded as 0, its body is somewhere in the stream
5279   // but we haven't seen it yet.
5280   if (DFII->second == 0)
5281     if (Error Err = findFunctionInStream(F, DFII))
5282       return Err;
5283 
5284   // Materialize metadata before parsing any function bodies.
5285   if (Error Err = materializeMetadata())
5286     return Err;
5287 
5288   // Move the bit stream to the saved position of the deferred function body.
5289   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5290     return JumpFailed;
5291   if (Error Err = parseFunctionBody(F))
5292     return Err;
5293   F->setIsMaterializable(false);
5294 
5295   if (StripDebugInfo)
5296     stripDebugInfo(*F);
5297 
5298   // Upgrade any old intrinsic calls in the function.
5299   for (auto &I : UpgradedIntrinsics) {
5300     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5301          UI != UE;) {
5302       User *U = *UI;
5303       ++UI;
5304       if (CallInst *CI = dyn_cast<CallInst>(U))
5305         UpgradeIntrinsicCall(CI, I.second);
5306     }
5307   }
5308 
5309   // Update calls to the remangled intrinsics
5310   for (auto &I : RemangledIntrinsics)
5311     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5312          UI != UE;)
5313       // Don't expect any other users than call sites
5314       CallSite(*UI++).setCalledFunction(I.second);
5315 
5316   // Finish fn->subprogram upgrade for materialized functions.
5317   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5318     F->setSubprogram(SP);
5319 
5320   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5321   if (!MDLoader->isStrippingTBAA()) {
5322     for (auto &I : instructions(F)) {
5323       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5324       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5325         continue;
5326       MDLoader->setStripTBAA(true);
5327       stripTBAA(F->getParent());
5328     }
5329   }
5330 
5331   // Bring in any functions that this function forward-referenced via
5332   // blockaddresses.
5333   return materializeForwardReferencedFunctions();
5334 }
5335 
5336 Error BitcodeReader::materializeModule() {
5337   if (Error Err = materializeMetadata())
5338     return Err;
5339 
5340   // Promise to materialize all forward references.
5341   WillMaterializeAllForwardRefs = true;
5342 
5343   // Iterate over the module, deserializing any functions that are still on
5344   // disk.
5345   for (Function &F : *TheModule) {
5346     if (Error Err = materialize(&F))
5347       return Err;
5348   }
5349   // At this point, if there are any function bodies, parse the rest of
5350   // the bits in the module past the last function block we have recorded
5351   // through either lazy scanning or the VST.
5352   if (LastFunctionBlockBit || NextUnreadBit)
5353     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5354                                     ? LastFunctionBlockBit
5355                                     : NextUnreadBit))
5356       return Err;
5357 
5358   // Check that all block address forward references got resolved (as we
5359   // promised above).
5360   if (!BasicBlockFwdRefs.empty())
5361     return error("Never resolved function from blockaddress");
5362 
5363   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5364   // delete the old functions to clean up. We can't do this unless the entire
5365   // module is materialized because there could always be another function body
5366   // with calls to the old function.
5367   for (auto &I : UpgradedIntrinsics) {
5368     for (auto *U : I.first->users()) {
5369       if (CallInst *CI = dyn_cast<CallInst>(U))
5370         UpgradeIntrinsicCall(CI, I.second);
5371     }
5372     if (!I.first->use_empty())
5373       I.first->replaceAllUsesWith(I.second);
5374     I.first->eraseFromParent();
5375   }
5376   UpgradedIntrinsics.clear();
5377   // Do the same for remangled intrinsics
5378   for (auto &I : RemangledIntrinsics) {
5379     I.first->replaceAllUsesWith(I.second);
5380     I.first->eraseFromParent();
5381   }
5382   RemangledIntrinsics.clear();
5383 
5384   UpgradeDebugInfo(*TheModule);
5385 
5386   UpgradeModuleFlags(*TheModule);
5387 
5388   UpgradeARCRuntime(*TheModule);
5389 
5390   return Error::success();
5391 }
5392 
5393 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5394   return IdentifiedStructTypes;
5395 }
5396 
5397 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5398     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5399     StringRef ModulePath, unsigned ModuleId)
5400     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5401       ModulePath(ModulePath), ModuleId(ModuleId) {}
5402 
5403 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5404   TheIndex.addModule(ModulePath, ModuleId);
5405 }
5406 
5407 ModuleSummaryIndex::ModuleInfo *
5408 ModuleSummaryIndexBitcodeReader::getThisModule() {
5409   return TheIndex.getModule(ModulePath);
5410 }
5411 
5412 std::pair<ValueInfo, GlobalValue::GUID>
5413 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5414   auto VGI = ValueIdToValueInfoMap[ValueId];
5415   assert(VGI.first);
5416   return VGI;
5417 }
5418 
5419 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5420     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5421     StringRef SourceFileName) {
5422   std::string GlobalId =
5423       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5424   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5425   auto OriginalNameID = ValueGUID;
5426   if (GlobalValue::isLocalLinkage(Linkage))
5427     OriginalNameID = GlobalValue::getGUID(ValueName);
5428   if (PrintSummaryGUIDs)
5429     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5430            << ValueName << "\n";
5431 
5432   // UseStrtab is false for legacy summary formats and value names are
5433   // created on stack. In that case we save the name in a string saver in
5434   // the index so that the value name can be recorded.
5435   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5436       TheIndex.getOrInsertValueInfo(
5437           ValueGUID,
5438           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5439       OriginalNameID);
5440 }
5441 
5442 // Specialized value symbol table parser used when reading module index
5443 // blocks where we don't actually create global values. The parsed information
5444 // is saved in the bitcode reader for use when later parsing summaries.
5445 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5446     uint64_t Offset,
5447     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5448   // With a strtab the VST is not required to parse the summary.
5449   if (UseStrtab)
5450     return Error::success();
5451 
5452   assert(Offset > 0 && "Expected non-zero VST offset");
5453   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5454   if (!MaybeCurrentBit)
5455     return MaybeCurrentBit.takeError();
5456   uint64_t CurrentBit = MaybeCurrentBit.get();
5457 
5458   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5459     return Err;
5460 
5461   SmallVector<uint64_t, 64> Record;
5462 
5463   // Read all the records for this value table.
5464   SmallString<128> ValueName;
5465 
5466   while (true) {
5467     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5468     if (!MaybeEntry)
5469       return MaybeEntry.takeError();
5470     BitstreamEntry Entry = MaybeEntry.get();
5471 
5472     switch (Entry.Kind) {
5473     case BitstreamEntry::SubBlock: // Handled for us already.
5474     case BitstreamEntry::Error:
5475       return error("Malformed block");
5476     case BitstreamEntry::EndBlock:
5477       // Done parsing VST, jump back to wherever we came from.
5478       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5479         return JumpFailed;
5480       return Error::success();
5481     case BitstreamEntry::Record:
5482       // The interesting case.
5483       break;
5484     }
5485 
5486     // Read a record.
5487     Record.clear();
5488     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5489     if (!MaybeRecord)
5490       return MaybeRecord.takeError();
5491     switch (MaybeRecord.get()) {
5492     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5493       break;
5494     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5495       if (convertToString(Record, 1, ValueName))
5496         return error("Invalid record");
5497       unsigned ValueID = Record[0];
5498       assert(!SourceFileName.empty());
5499       auto VLI = ValueIdToLinkageMap.find(ValueID);
5500       assert(VLI != ValueIdToLinkageMap.end() &&
5501              "No linkage found for VST entry?");
5502       auto Linkage = VLI->second;
5503       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5504       ValueName.clear();
5505       break;
5506     }
5507     case bitc::VST_CODE_FNENTRY: {
5508       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5509       if (convertToString(Record, 2, ValueName))
5510         return error("Invalid record");
5511       unsigned ValueID = Record[0];
5512       assert(!SourceFileName.empty());
5513       auto VLI = ValueIdToLinkageMap.find(ValueID);
5514       assert(VLI != ValueIdToLinkageMap.end() &&
5515              "No linkage found for VST entry?");
5516       auto Linkage = VLI->second;
5517       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5518       ValueName.clear();
5519       break;
5520     }
5521     case bitc::VST_CODE_COMBINED_ENTRY: {
5522       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5523       unsigned ValueID = Record[0];
5524       GlobalValue::GUID RefGUID = Record[1];
5525       // The "original name", which is the second value of the pair will be
5526       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5527       ValueIdToValueInfoMap[ValueID] =
5528           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5529       break;
5530     }
5531     }
5532   }
5533 }
5534 
5535 // Parse just the blocks needed for building the index out of the module.
5536 // At the end of this routine the module Index is populated with a map
5537 // from global value id to GlobalValueSummary objects.
5538 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5539   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5540     return Err;
5541 
5542   SmallVector<uint64_t, 64> Record;
5543   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5544   unsigned ValueId = 0;
5545 
5546   // Read the index for this module.
5547   while (true) {
5548     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5549     if (!MaybeEntry)
5550       return MaybeEntry.takeError();
5551     llvm::BitstreamEntry Entry = MaybeEntry.get();
5552 
5553     switch (Entry.Kind) {
5554     case BitstreamEntry::Error:
5555       return error("Malformed block");
5556     case BitstreamEntry::EndBlock:
5557       return Error::success();
5558 
5559     case BitstreamEntry::SubBlock:
5560       switch (Entry.ID) {
5561       default: // Skip unknown content.
5562         if (Error Err = Stream.SkipBlock())
5563           return Err;
5564         break;
5565       case bitc::BLOCKINFO_BLOCK_ID:
5566         // Need to parse these to get abbrev ids (e.g. for VST)
5567         if (readBlockInfo())
5568           return error("Malformed block");
5569         break;
5570       case bitc::VALUE_SYMTAB_BLOCK_ID:
5571         // Should have been parsed earlier via VSTOffset, unless there
5572         // is no summary section.
5573         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5574                 !SeenGlobalValSummary) &&
5575                "Expected early VST parse via VSTOffset record");
5576         if (Error Err = Stream.SkipBlock())
5577           return Err;
5578         break;
5579       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5580       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5581         // Add the module if it is a per-module index (has a source file name).
5582         if (!SourceFileName.empty())
5583           addThisModule();
5584         assert(!SeenValueSymbolTable &&
5585                "Already read VST when parsing summary block?");
5586         // We might not have a VST if there were no values in the
5587         // summary. An empty summary block generated when we are
5588         // performing ThinLTO compiles so we don't later invoke
5589         // the regular LTO process on them.
5590         if (VSTOffset > 0) {
5591           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5592             return Err;
5593           SeenValueSymbolTable = true;
5594         }
5595         SeenGlobalValSummary = true;
5596         if (Error Err = parseEntireSummary(Entry.ID))
5597           return Err;
5598         break;
5599       case bitc::MODULE_STRTAB_BLOCK_ID:
5600         if (Error Err = parseModuleStringTable())
5601           return Err;
5602         break;
5603       }
5604       continue;
5605 
5606     case BitstreamEntry::Record: {
5607         Record.clear();
5608         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5609         if (!MaybeBitCode)
5610           return MaybeBitCode.takeError();
5611         switch (MaybeBitCode.get()) {
5612         default:
5613           break; // Default behavior, ignore unknown content.
5614         case bitc::MODULE_CODE_VERSION: {
5615           if (Error Err = parseVersionRecord(Record).takeError())
5616             return Err;
5617           break;
5618         }
5619         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5620         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5621           SmallString<128> ValueName;
5622           if (convertToString(Record, 0, ValueName))
5623             return error("Invalid record");
5624           SourceFileName = ValueName.c_str();
5625           break;
5626         }
5627         /// MODULE_CODE_HASH: [5*i32]
5628         case bitc::MODULE_CODE_HASH: {
5629           if (Record.size() != 5)
5630             return error("Invalid hash length " + Twine(Record.size()).str());
5631           auto &Hash = getThisModule()->second.second;
5632           int Pos = 0;
5633           for (auto &Val : Record) {
5634             assert(!(Val >> 32) && "Unexpected high bits set");
5635             Hash[Pos++] = Val;
5636           }
5637           break;
5638         }
5639         /// MODULE_CODE_VSTOFFSET: [offset]
5640         case bitc::MODULE_CODE_VSTOFFSET:
5641           if (Record.size() < 1)
5642             return error("Invalid record");
5643           // Note that we subtract 1 here because the offset is relative to one
5644           // word before the start of the identification or module block, which
5645           // was historically always the start of the regular bitcode header.
5646           VSTOffset = Record[0] - 1;
5647           break;
5648         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5649         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5650         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5651         // v2: [strtab offset, strtab size, v1]
5652         case bitc::MODULE_CODE_GLOBALVAR:
5653         case bitc::MODULE_CODE_FUNCTION:
5654         case bitc::MODULE_CODE_ALIAS: {
5655           StringRef Name;
5656           ArrayRef<uint64_t> GVRecord;
5657           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5658           if (GVRecord.size() <= 3)
5659             return error("Invalid record");
5660           uint64_t RawLinkage = GVRecord[3];
5661           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5662           if (!UseStrtab) {
5663             ValueIdToLinkageMap[ValueId++] = Linkage;
5664             break;
5665           }
5666 
5667           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5668           break;
5669         }
5670         }
5671       }
5672       continue;
5673     }
5674   }
5675 }
5676 
5677 std::vector<ValueInfo>
5678 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5679   std::vector<ValueInfo> Ret;
5680   Ret.reserve(Record.size());
5681   for (uint64_t RefValueId : Record)
5682     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5683   return Ret;
5684 }
5685 
5686 std::vector<FunctionSummary::EdgeTy>
5687 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5688                                               bool IsOldProfileFormat,
5689                                               bool HasProfile, bool HasRelBF) {
5690   std::vector<FunctionSummary::EdgeTy> Ret;
5691   Ret.reserve(Record.size());
5692   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5693     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5694     uint64_t RelBF = 0;
5695     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5696     if (IsOldProfileFormat) {
5697       I += 1; // Skip old callsitecount field
5698       if (HasProfile)
5699         I += 1; // Skip old profilecount field
5700     } else if (HasProfile)
5701       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5702     else if (HasRelBF)
5703       RelBF = Record[++I];
5704     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5705   }
5706   return Ret;
5707 }
5708 
5709 static void
5710 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5711                                        WholeProgramDevirtResolution &Wpd) {
5712   uint64_t ArgNum = Record[Slot++];
5713   WholeProgramDevirtResolution::ByArg &B =
5714       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5715   Slot += ArgNum;
5716 
5717   B.TheKind =
5718       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5719   B.Info = Record[Slot++];
5720   B.Byte = Record[Slot++];
5721   B.Bit = Record[Slot++];
5722 }
5723 
5724 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5725                                               StringRef Strtab, size_t &Slot,
5726                                               TypeIdSummary &TypeId) {
5727   uint64_t Id = Record[Slot++];
5728   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5729 
5730   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5731   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5732                         static_cast<size_t>(Record[Slot + 1])};
5733   Slot += 2;
5734 
5735   uint64_t ResByArgNum = Record[Slot++];
5736   for (uint64_t I = 0; I != ResByArgNum; ++I)
5737     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5738 }
5739 
5740 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5741                                      StringRef Strtab,
5742                                      ModuleSummaryIndex &TheIndex) {
5743   size_t Slot = 0;
5744   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5745       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5746   Slot += 2;
5747 
5748   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5749   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5750   TypeId.TTRes.AlignLog2 = Record[Slot++];
5751   TypeId.TTRes.SizeM1 = Record[Slot++];
5752   TypeId.TTRes.BitMask = Record[Slot++];
5753   TypeId.TTRes.InlineBits = Record[Slot++];
5754 
5755   while (Slot < Record.size())
5756     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5757 }
5758 
5759 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5760     ArrayRef<uint64_t> Record, size_t &Slot,
5761     TypeIdCompatibleVtableInfo &TypeId) {
5762   uint64_t Offset = Record[Slot++];
5763   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5764   TypeId.push_back({Offset, Callee});
5765 }
5766 
5767 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5768     ArrayRef<uint64_t> Record) {
5769   size_t Slot = 0;
5770   TypeIdCompatibleVtableInfo &TypeId =
5771       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5772           {Strtab.data() + Record[Slot],
5773            static_cast<size_t>(Record[Slot + 1])});
5774   Slot += 2;
5775 
5776   while (Slot < Record.size())
5777     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5778 }
5779 
5780 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5781                            unsigned WOCnt) {
5782   // Readonly and writeonly refs are in the end of the refs list.
5783   assert(ROCnt + WOCnt <= Refs.size());
5784   unsigned FirstWORef = Refs.size() - WOCnt;
5785   unsigned RefNo = FirstWORef - ROCnt;
5786   for (; RefNo < FirstWORef; ++RefNo)
5787     Refs[RefNo].setReadOnly();
5788   for (; RefNo < Refs.size(); ++RefNo)
5789     Refs[RefNo].setWriteOnly();
5790 }
5791 
5792 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5793 // objects in the index.
5794 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5795   if (Error Err = Stream.EnterSubBlock(ID))
5796     return Err;
5797   SmallVector<uint64_t, 64> Record;
5798 
5799   // Parse version
5800   {
5801     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5802     if (!MaybeEntry)
5803       return MaybeEntry.takeError();
5804     BitstreamEntry Entry = MaybeEntry.get();
5805 
5806     if (Entry.Kind != BitstreamEntry::Record)
5807       return error("Invalid Summary Block: record for version expected");
5808     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5809     if (!MaybeRecord)
5810       return MaybeRecord.takeError();
5811     if (MaybeRecord.get() != bitc::FS_VERSION)
5812       return error("Invalid Summary Block: version expected");
5813   }
5814   const uint64_t Version = Record[0];
5815   const bool IsOldProfileFormat = Version == 1;
5816   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
5817     return error("Invalid summary version " + Twine(Version) +
5818                  ". Version should be in the range [1-" +
5819                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
5820                  "].");
5821   Record.clear();
5822 
5823   // Keep around the last seen summary to be used when we see an optional
5824   // "OriginalName" attachement.
5825   GlobalValueSummary *LastSeenSummary = nullptr;
5826   GlobalValue::GUID LastSeenGUID = 0;
5827 
5828   // We can expect to see any number of type ID information records before
5829   // each function summary records; these variables store the information
5830   // collected so far so that it can be used to create the summary object.
5831   std::vector<GlobalValue::GUID> PendingTypeTests;
5832   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5833       PendingTypeCheckedLoadVCalls;
5834   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5835       PendingTypeCheckedLoadConstVCalls;
5836 
5837   while (true) {
5838     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5839     if (!MaybeEntry)
5840       return MaybeEntry.takeError();
5841     BitstreamEntry Entry = MaybeEntry.get();
5842 
5843     switch (Entry.Kind) {
5844     case BitstreamEntry::SubBlock: // Handled for us already.
5845     case BitstreamEntry::Error:
5846       return error("Malformed block");
5847     case BitstreamEntry::EndBlock:
5848       return Error::success();
5849     case BitstreamEntry::Record:
5850       // The interesting case.
5851       break;
5852     }
5853 
5854     // Read a record. The record format depends on whether this
5855     // is a per-module index or a combined index file. In the per-module
5856     // case the records contain the associated value's ID for correlation
5857     // with VST entries. In the combined index the correlation is done
5858     // via the bitcode offset of the summary records (which were saved
5859     // in the combined index VST entries). The records also contain
5860     // information used for ThinLTO renaming and importing.
5861     Record.clear();
5862     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5863     if (!MaybeBitCode)
5864       return MaybeBitCode.takeError();
5865     switch (unsigned BitCode = MaybeBitCode.get()) {
5866     default: // Default behavior: ignore.
5867       break;
5868     case bitc::FS_FLAGS: {  // [flags]
5869       TheIndex.setFlags(Record[0]);
5870       break;
5871     }
5872     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5873       uint64_t ValueID = Record[0];
5874       GlobalValue::GUID RefGUID = Record[1];
5875       ValueIdToValueInfoMap[ValueID] =
5876           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5877       break;
5878     }
5879     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5880     //                numrefs x valueid, n x (valueid)]
5881     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5882     //                        numrefs x valueid,
5883     //                        n x (valueid, hotness)]
5884     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5885     //                      numrefs x valueid,
5886     //                      n x (valueid, relblockfreq)]
5887     case bitc::FS_PERMODULE:
5888     case bitc::FS_PERMODULE_RELBF:
5889     case bitc::FS_PERMODULE_PROFILE: {
5890       unsigned ValueID = Record[0];
5891       uint64_t RawFlags = Record[1];
5892       unsigned InstCount = Record[2];
5893       uint64_t RawFunFlags = 0;
5894       unsigned NumRefs = Record[3];
5895       unsigned NumRORefs = 0, NumWORefs = 0;
5896       int RefListStartIndex = 4;
5897       if (Version >= 4) {
5898         RawFunFlags = Record[3];
5899         NumRefs = Record[4];
5900         RefListStartIndex = 5;
5901         if (Version >= 5) {
5902           NumRORefs = Record[5];
5903           RefListStartIndex = 6;
5904           if (Version >= 7) {
5905             NumWORefs = Record[6];
5906             RefListStartIndex = 7;
5907           }
5908         }
5909       }
5910 
5911       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5912       // The module path string ref set in the summary must be owned by the
5913       // index's module string table. Since we don't have a module path
5914       // string table section in the per-module index, we create a single
5915       // module path string table entry with an empty (0) ID to take
5916       // ownership.
5917       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5918       assert(Record.size() >= RefListStartIndex + NumRefs &&
5919              "Record size inconsistent with number of references");
5920       std::vector<ValueInfo> Refs = makeRefList(
5921           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5922       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5923       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5924       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5925           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5926           IsOldProfileFormat, HasProfile, HasRelBF);
5927       setSpecialRefs(Refs, NumRORefs, NumWORefs);
5928       auto FS = std::make_unique<FunctionSummary>(
5929           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5930           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5931           std::move(PendingTypeTestAssumeVCalls),
5932           std::move(PendingTypeCheckedLoadVCalls),
5933           std::move(PendingTypeTestAssumeConstVCalls),
5934           std::move(PendingTypeCheckedLoadConstVCalls));
5935       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5936       FS->setModulePath(getThisModule()->first());
5937       FS->setOriginalName(VIAndOriginalGUID.second);
5938       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5939       break;
5940     }
5941     // FS_ALIAS: [valueid, flags, valueid]
5942     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5943     // they expect all aliasee summaries to be available.
5944     case bitc::FS_ALIAS: {
5945       unsigned ValueID = Record[0];
5946       uint64_t RawFlags = Record[1];
5947       unsigned AliaseeID = Record[2];
5948       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5949       auto AS = std::make_unique<AliasSummary>(Flags);
5950       // The module path string ref set in the summary must be owned by the
5951       // index's module string table. Since we don't have a module path
5952       // string table section in the per-module index, we create a single
5953       // module path string table entry with an empty (0) ID to take
5954       // ownership.
5955       AS->setModulePath(getThisModule()->first());
5956 
5957       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5958       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5959       if (!AliaseeInModule)
5960         return error("Alias expects aliasee summary to be parsed");
5961       AS->setAliasee(AliaseeVI, AliaseeInModule);
5962 
5963       auto GUID = getValueInfoFromValueId(ValueID);
5964       AS->setOriginalName(GUID.second);
5965       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5966       break;
5967     }
5968     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5969     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5970       unsigned ValueID = Record[0];
5971       uint64_t RawFlags = Record[1];
5972       unsigned RefArrayStart = 2;
5973       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
5974                                       /* WriteOnly */ false,
5975                                       /* Constant */ false,
5976                                       GlobalObject::VCallVisibilityPublic);
5977       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5978       if (Version >= 5) {
5979         GVF = getDecodedGVarFlags(Record[2]);
5980         RefArrayStart = 3;
5981       }
5982       std::vector<ValueInfo> Refs =
5983           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5984       auto FS =
5985           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5986       FS->setModulePath(getThisModule()->first());
5987       auto GUID = getValueInfoFromValueId(ValueID);
5988       FS->setOriginalName(GUID.second);
5989       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5990       break;
5991     }
5992     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
5993     //                        numrefs, numrefs x valueid,
5994     //                        n x (valueid, offset)]
5995     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
5996       unsigned ValueID = Record[0];
5997       uint64_t RawFlags = Record[1];
5998       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
5999       unsigned NumRefs = Record[3];
6000       unsigned RefListStartIndex = 4;
6001       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6002       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6003       std::vector<ValueInfo> Refs = makeRefList(
6004           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6005       VTableFuncList VTableFuncs;
6006       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6007         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6008         uint64_t Offset = Record[++I];
6009         VTableFuncs.push_back({Callee, Offset});
6010       }
6011       auto VS =
6012           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6013       VS->setModulePath(getThisModule()->first());
6014       VS->setVTableFuncs(VTableFuncs);
6015       auto GUID = getValueInfoFromValueId(ValueID);
6016       VS->setOriginalName(GUID.second);
6017       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6018       break;
6019     }
6020     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6021     //               numrefs x valueid, n x (valueid)]
6022     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6023     //                       numrefs x valueid, n x (valueid, hotness)]
6024     case bitc::FS_COMBINED:
6025     case bitc::FS_COMBINED_PROFILE: {
6026       unsigned ValueID = Record[0];
6027       uint64_t ModuleId = Record[1];
6028       uint64_t RawFlags = Record[2];
6029       unsigned InstCount = Record[3];
6030       uint64_t RawFunFlags = 0;
6031       uint64_t EntryCount = 0;
6032       unsigned NumRefs = Record[4];
6033       unsigned NumRORefs = 0, NumWORefs = 0;
6034       int RefListStartIndex = 5;
6035 
6036       if (Version >= 4) {
6037         RawFunFlags = Record[4];
6038         RefListStartIndex = 6;
6039         size_t NumRefsIndex = 5;
6040         if (Version >= 5) {
6041           unsigned NumRORefsOffset = 1;
6042           RefListStartIndex = 7;
6043           if (Version >= 6) {
6044             NumRefsIndex = 6;
6045             EntryCount = Record[5];
6046             RefListStartIndex = 8;
6047             if (Version >= 7) {
6048               RefListStartIndex = 9;
6049               NumWORefs = Record[8];
6050               NumRORefsOffset = 2;
6051             }
6052           }
6053           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6054         }
6055         NumRefs = Record[NumRefsIndex];
6056       }
6057 
6058       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6059       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6060       assert(Record.size() >= RefListStartIndex + NumRefs &&
6061              "Record size inconsistent with number of references");
6062       std::vector<ValueInfo> Refs = makeRefList(
6063           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6064       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6065       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6066           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6067           IsOldProfileFormat, HasProfile, false);
6068       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6069       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6070       auto FS = std::make_unique<FunctionSummary>(
6071           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6072           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6073           std::move(PendingTypeTestAssumeVCalls),
6074           std::move(PendingTypeCheckedLoadVCalls),
6075           std::move(PendingTypeTestAssumeConstVCalls),
6076           std::move(PendingTypeCheckedLoadConstVCalls));
6077       LastSeenSummary = FS.get();
6078       LastSeenGUID = VI.getGUID();
6079       FS->setModulePath(ModuleIdMap[ModuleId]);
6080       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6081       break;
6082     }
6083     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6084     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6085     // they expect all aliasee summaries to be available.
6086     case bitc::FS_COMBINED_ALIAS: {
6087       unsigned ValueID = Record[0];
6088       uint64_t ModuleId = Record[1];
6089       uint64_t RawFlags = Record[2];
6090       unsigned AliaseeValueId = Record[3];
6091       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6092       auto AS = std::make_unique<AliasSummary>(Flags);
6093       LastSeenSummary = AS.get();
6094       AS->setModulePath(ModuleIdMap[ModuleId]);
6095 
6096       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6097       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6098       AS->setAliasee(AliaseeVI, AliaseeInModule);
6099 
6100       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6101       LastSeenGUID = VI.getGUID();
6102       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6103       break;
6104     }
6105     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6106     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6107       unsigned ValueID = Record[0];
6108       uint64_t ModuleId = Record[1];
6109       uint64_t RawFlags = Record[2];
6110       unsigned RefArrayStart = 3;
6111       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6112                                       /* WriteOnly */ false,
6113                                       /* Constant */ false,
6114                                       GlobalObject::VCallVisibilityPublic);
6115       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6116       if (Version >= 5) {
6117         GVF = getDecodedGVarFlags(Record[3]);
6118         RefArrayStart = 4;
6119       }
6120       std::vector<ValueInfo> Refs =
6121           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6122       auto FS =
6123           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6124       LastSeenSummary = FS.get();
6125       FS->setModulePath(ModuleIdMap[ModuleId]);
6126       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6127       LastSeenGUID = VI.getGUID();
6128       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6129       break;
6130     }
6131     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6132     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6133       uint64_t OriginalName = Record[0];
6134       if (!LastSeenSummary)
6135         return error("Name attachment that does not follow a combined record");
6136       LastSeenSummary->setOriginalName(OriginalName);
6137       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6138       // Reset the LastSeenSummary
6139       LastSeenSummary = nullptr;
6140       LastSeenGUID = 0;
6141       break;
6142     }
6143     case bitc::FS_TYPE_TESTS:
6144       assert(PendingTypeTests.empty());
6145       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6146                               Record.end());
6147       break;
6148 
6149     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6150       assert(PendingTypeTestAssumeVCalls.empty());
6151       for (unsigned I = 0; I != Record.size(); I += 2)
6152         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6153       break;
6154 
6155     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6156       assert(PendingTypeCheckedLoadVCalls.empty());
6157       for (unsigned I = 0; I != Record.size(); I += 2)
6158         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6159       break;
6160 
6161     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6162       PendingTypeTestAssumeConstVCalls.push_back(
6163           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6164       break;
6165 
6166     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6167       PendingTypeCheckedLoadConstVCalls.push_back(
6168           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6169       break;
6170 
6171     case bitc::FS_CFI_FUNCTION_DEFS: {
6172       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6173       for (unsigned I = 0; I != Record.size(); I += 2)
6174         CfiFunctionDefs.insert(
6175             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6176       break;
6177     }
6178 
6179     case bitc::FS_CFI_FUNCTION_DECLS: {
6180       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6181       for (unsigned I = 0; I != Record.size(); I += 2)
6182         CfiFunctionDecls.insert(
6183             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6184       break;
6185     }
6186 
6187     case bitc::FS_TYPE_ID:
6188       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6189       break;
6190 
6191     case bitc::FS_TYPE_ID_METADATA:
6192       parseTypeIdCompatibleVtableSummaryRecord(Record);
6193       break;
6194     }
6195   }
6196   llvm_unreachable("Exit infinite loop");
6197 }
6198 
6199 // Parse the  module string table block into the Index.
6200 // This populates the ModulePathStringTable map in the index.
6201 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6202   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6203     return Err;
6204 
6205   SmallVector<uint64_t, 64> Record;
6206 
6207   SmallString<128> ModulePath;
6208   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6209 
6210   while (true) {
6211     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6212     if (!MaybeEntry)
6213       return MaybeEntry.takeError();
6214     BitstreamEntry Entry = MaybeEntry.get();
6215 
6216     switch (Entry.Kind) {
6217     case BitstreamEntry::SubBlock: // Handled for us already.
6218     case BitstreamEntry::Error:
6219       return error("Malformed block");
6220     case BitstreamEntry::EndBlock:
6221       return Error::success();
6222     case BitstreamEntry::Record:
6223       // The interesting case.
6224       break;
6225     }
6226 
6227     Record.clear();
6228     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6229     if (!MaybeRecord)
6230       return MaybeRecord.takeError();
6231     switch (MaybeRecord.get()) {
6232     default: // Default behavior: ignore.
6233       break;
6234     case bitc::MST_CODE_ENTRY: {
6235       // MST_ENTRY: [modid, namechar x N]
6236       uint64_t ModuleId = Record[0];
6237 
6238       if (convertToString(Record, 1, ModulePath))
6239         return error("Invalid record");
6240 
6241       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6242       ModuleIdMap[ModuleId] = LastSeenModule->first();
6243 
6244       ModulePath.clear();
6245       break;
6246     }
6247     /// MST_CODE_HASH: [5*i32]
6248     case bitc::MST_CODE_HASH: {
6249       if (Record.size() != 5)
6250         return error("Invalid hash length " + Twine(Record.size()).str());
6251       if (!LastSeenModule)
6252         return error("Invalid hash that does not follow a module path");
6253       int Pos = 0;
6254       for (auto &Val : Record) {
6255         assert(!(Val >> 32) && "Unexpected high bits set");
6256         LastSeenModule->second.second[Pos++] = Val;
6257       }
6258       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6259       LastSeenModule = nullptr;
6260       break;
6261     }
6262     }
6263   }
6264   llvm_unreachable("Exit infinite loop");
6265 }
6266 
6267 namespace {
6268 
6269 // FIXME: This class is only here to support the transition to llvm::Error. It
6270 // will be removed once this transition is complete. Clients should prefer to
6271 // deal with the Error value directly, rather than converting to error_code.
6272 class BitcodeErrorCategoryType : public std::error_category {
6273   const char *name() const noexcept override {
6274     return "llvm.bitcode";
6275   }
6276 
6277   std::string message(int IE) const override {
6278     BitcodeError E = static_cast<BitcodeError>(IE);
6279     switch (E) {
6280     case BitcodeError::CorruptedBitcode:
6281       return "Corrupted bitcode";
6282     }
6283     llvm_unreachable("Unknown error type!");
6284   }
6285 };
6286 
6287 } // end anonymous namespace
6288 
6289 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6290 
6291 const std::error_category &llvm::BitcodeErrorCategory() {
6292   return *ErrorCategory;
6293 }
6294 
6295 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6296                                             unsigned Block, unsigned RecordID) {
6297   if (Error Err = Stream.EnterSubBlock(Block))
6298     return std::move(Err);
6299 
6300   StringRef Strtab;
6301   while (true) {
6302     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6303     if (!MaybeEntry)
6304       return MaybeEntry.takeError();
6305     llvm::BitstreamEntry Entry = MaybeEntry.get();
6306 
6307     switch (Entry.Kind) {
6308     case BitstreamEntry::EndBlock:
6309       return Strtab;
6310 
6311     case BitstreamEntry::Error:
6312       return error("Malformed block");
6313 
6314     case BitstreamEntry::SubBlock:
6315       if (Error Err = Stream.SkipBlock())
6316         return std::move(Err);
6317       break;
6318 
6319     case BitstreamEntry::Record:
6320       StringRef Blob;
6321       SmallVector<uint64_t, 1> Record;
6322       Expected<unsigned> MaybeRecord =
6323           Stream.readRecord(Entry.ID, Record, &Blob);
6324       if (!MaybeRecord)
6325         return MaybeRecord.takeError();
6326       if (MaybeRecord.get() == RecordID)
6327         Strtab = Blob;
6328       break;
6329     }
6330   }
6331 }
6332 
6333 //===----------------------------------------------------------------------===//
6334 // External interface
6335 //===----------------------------------------------------------------------===//
6336 
6337 Expected<std::vector<BitcodeModule>>
6338 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6339   auto FOrErr = getBitcodeFileContents(Buffer);
6340   if (!FOrErr)
6341     return FOrErr.takeError();
6342   return std::move(FOrErr->Mods);
6343 }
6344 
6345 Expected<BitcodeFileContents>
6346 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6347   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6348   if (!StreamOrErr)
6349     return StreamOrErr.takeError();
6350   BitstreamCursor &Stream = *StreamOrErr;
6351 
6352   BitcodeFileContents F;
6353   while (true) {
6354     uint64_t BCBegin = Stream.getCurrentByteNo();
6355 
6356     // We may be consuming bitcode from a client that leaves garbage at the end
6357     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6358     // the end that there cannot possibly be another module, stop looking.
6359     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6360       return F;
6361 
6362     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6363     if (!MaybeEntry)
6364       return MaybeEntry.takeError();
6365     llvm::BitstreamEntry Entry = MaybeEntry.get();
6366 
6367     switch (Entry.Kind) {
6368     case BitstreamEntry::EndBlock:
6369     case BitstreamEntry::Error:
6370       return error("Malformed block");
6371 
6372     case BitstreamEntry::SubBlock: {
6373       uint64_t IdentificationBit = -1ull;
6374       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6375         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6376         if (Error Err = Stream.SkipBlock())
6377           return std::move(Err);
6378 
6379         {
6380           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6381           if (!MaybeEntry)
6382             return MaybeEntry.takeError();
6383           Entry = MaybeEntry.get();
6384         }
6385 
6386         if (Entry.Kind != BitstreamEntry::SubBlock ||
6387             Entry.ID != bitc::MODULE_BLOCK_ID)
6388           return error("Malformed block");
6389       }
6390 
6391       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6392         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6393         if (Error Err = Stream.SkipBlock())
6394           return std::move(Err);
6395 
6396         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6397                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6398                           Buffer.getBufferIdentifier(), IdentificationBit,
6399                           ModuleBit});
6400         continue;
6401       }
6402 
6403       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6404         Expected<StringRef> Strtab =
6405             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6406         if (!Strtab)
6407           return Strtab.takeError();
6408         // This string table is used by every preceding bitcode module that does
6409         // not have its own string table. A bitcode file may have multiple
6410         // string tables if it was created by binary concatenation, for example
6411         // with "llvm-cat -b".
6412         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6413           if (!I->Strtab.empty())
6414             break;
6415           I->Strtab = *Strtab;
6416         }
6417         // Similarly, the string table is used by every preceding symbol table;
6418         // normally there will be just one unless the bitcode file was created
6419         // by binary concatenation.
6420         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6421           F.StrtabForSymtab = *Strtab;
6422         continue;
6423       }
6424 
6425       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6426         Expected<StringRef> SymtabOrErr =
6427             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6428         if (!SymtabOrErr)
6429           return SymtabOrErr.takeError();
6430 
6431         // We can expect the bitcode file to have multiple symbol tables if it
6432         // was created by binary concatenation. In that case we silently
6433         // ignore any subsequent symbol tables, which is fine because this is a
6434         // low level function. The client is expected to notice that the number
6435         // of modules in the symbol table does not match the number of modules
6436         // in the input file and regenerate the symbol table.
6437         if (F.Symtab.empty())
6438           F.Symtab = *SymtabOrErr;
6439         continue;
6440       }
6441 
6442       if (Error Err = Stream.SkipBlock())
6443         return std::move(Err);
6444       continue;
6445     }
6446     case BitstreamEntry::Record:
6447       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6448         continue;
6449       else
6450         return StreamFailed.takeError();
6451     }
6452   }
6453 }
6454 
6455 /// Get a lazy one-at-time loading module from bitcode.
6456 ///
6457 /// This isn't always used in a lazy context.  In particular, it's also used by
6458 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6459 /// in forward-referenced functions from block address references.
6460 ///
6461 /// \param[in] MaterializeAll Set to \c true if we should materialize
6462 /// everything.
6463 Expected<std::unique_ptr<Module>>
6464 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6465                              bool ShouldLazyLoadMetadata, bool IsImporting) {
6466   BitstreamCursor Stream(Buffer);
6467 
6468   std::string ProducerIdentification;
6469   if (IdentificationBit != -1ull) {
6470     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6471       return std::move(JumpFailed);
6472     Expected<std::string> ProducerIdentificationOrErr =
6473         readIdentificationBlock(Stream);
6474     if (!ProducerIdentificationOrErr)
6475       return ProducerIdentificationOrErr.takeError();
6476 
6477     ProducerIdentification = *ProducerIdentificationOrErr;
6478   }
6479 
6480   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6481     return std::move(JumpFailed);
6482   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6483                               Context);
6484 
6485   std::unique_ptr<Module> M =
6486       std::make_unique<Module>(ModuleIdentifier, Context);
6487   M->setMaterializer(R);
6488 
6489   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6490   if (Error Err =
6491           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6492     return std::move(Err);
6493 
6494   if (MaterializeAll) {
6495     // Read in the entire module, and destroy the BitcodeReader.
6496     if (Error Err = M->materializeAll())
6497       return std::move(Err);
6498   } else {
6499     // Resolve forward references from blockaddresses.
6500     if (Error Err = R->materializeForwardReferencedFunctions())
6501       return std::move(Err);
6502   }
6503   return std::move(M);
6504 }
6505 
6506 Expected<std::unique_ptr<Module>>
6507 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6508                              bool IsImporting) {
6509   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6510 }
6511 
6512 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6513 // We don't use ModuleIdentifier here because the client may need to control the
6514 // module path used in the combined summary (e.g. when reading summaries for
6515 // regular LTO modules).
6516 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6517                                  StringRef ModulePath, uint64_t ModuleId) {
6518   BitstreamCursor Stream(Buffer);
6519   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6520     return JumpFailed;
6521 
6522   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6523                                     ModulePath, ModuleId);
6524   return R.parseModule();
6525 }
6526 
6527 // Parse the specified bitcode buffer, returning the function info index.
6528 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6529   BitstreamCursor Stream(Buffer);
6530   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6531     return std::move(JumpFailed);
6532 
6533   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6534   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6535                                     ModuleIdentifier, 0);
6536 
6537   if (Error Err = R.parseModule())
6538     return std::move(Err);
6539 
6540   return std::move(Index);
6541 }
6542 
6543 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6544                                                 unsigned ID) {
6545   if (Error Err = Stream.EnterSubBlock(ID))
6546     return std::move(Err);
6547   SmallVector<uint64_t, 64> Record;
6548 
6549   while (true) {
6550     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6551     if (!MaybeEntry)
6552       return MaybeEntry.takeError();
6553     BitstreamEntry Entry = MaybeEntry.get();
6554 
6555     switch (Entry.Kind) {
6556     case BitstreamEntry::SubBlock: // Handled for us already.
6557     case BitstreamEntry::Error:
6558       return error("Malformed block");
6559     case BitstreamEntry::EndBlock:
6560       // If no flags record found, conservatively return true to mimic
6561       // behavior before this flag was added.
6562       return true;
6563     case BitstreamEntry::Record:
6564       // The interesting case.
6565       break;
6566     }
6567 
6568     // Look for the FS_FLAGS record.
6569     Record.clear();
6570     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6571     if (!MaybeBitCode)
6572       return MaybeBitCode.takeError();
6573     switch (MaybeBitCode.get()) {
6574     default: // Default behavior: ignore.
6575       break;
6576     case bitc::FS_FLAGS: { // [flags]
6577       uint64_t Flags = Record[0];
6578       // Scan flags.
6579       assert(Flags <= 0x3f && "Unexpected bits in flag");
6580 
6581       return Flags & 0x8;
6582     }
6583     }
6584   }
6585   llvm_unreachable("Exit infinite loop");
6586 }
6587 
6588 // Check if the given bitcode buffer contains a global value summary block.
6589 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6590   BitstreamCursor Stream(Buffer);
6591   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6592     return std::move(JumpFailed);
6593 
6594   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6595     return std::move(Err);
6596 
6597   while (true) {
6598     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6599     if (!MaybeEntry)
6600       return MaybeEntry.takeError();
6601     llvm::BitstreamEntry Entry = MaybeEntry.get();
6602 
6603     switch (Entry.Kind) {
6604     case BitstreamEntry::Error:
6605       return error("Malformed block");
6606     case BitstreamEntry::EndBlock:
6607       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6608                             /*EnableSplitLTOUnit=*/false};
6609 
6610     case BitstreamEntry::SubBlock:
6611       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6612         Expected<bool> EnableSplitLTOUnit =
6613             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6614         if (!EnableSplitLTOUnit)
6615           return EnableSplitLTOUnit.takeError();
6616         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6617                               *EnableSplitLTOUnit};
6618       }
6619 
6620       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6621         Expected<bool> EnableSplitLTOUnit =
6622             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6623         if (!EnableSplitLTOUnit)
6624           return EnableSplitLTOUnit.takeError();
6625         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6626                               *EnableSplitLTOUnit};
6627       }
6628 
6629       // Ignore other sub-blocks.
6630       if (Error Err = Stream.SkipBlock())
6631         return std::move(Err);
6632       continue;
6633 
6634     case BitstreamEntry::Record:
6635       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6636         continue;
6637       else
6638         return StreamFailed.takeError();
6639     }
6640   }
6641 }
6642 
6643 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6644   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6645   if (!MsOrErr)
6646     return MsOrErr.takeError();
6647 
6648   if (MsOrErr->size() != 1)
6649     return error("Expected a single module");
6650 
6651   return (*MsOrErr)[0];
6652 }
6653 
6654 Expected<std::unique_ptr<Module>>
6655 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6656                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6657   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6658   if (!BM)
6659     return BM.takeError();
6660 
6661   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6662 }
6663 
6664 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6665     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6666     bool ShouldLazyLoadMetadata, bool IsImporting) {
6667   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6668                                      IsImporting);
6669   if (MOrErr)
6670     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6671   return MOrErr;
6672 }
6673 
6674 Expected<std::unique_ptr<Module>>
6675 BitcodeModule::parseModule(LLVMContext &Context) {
6676   return getModuleImpl(Context, true, false, false);
6677   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6678   // written.  We must defer until the Module has been fully materialized.
6679 }
6680 
6681 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6682                                                          LLVMContext &Context) {
6683   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6684   if (!BM)
6685     return BM.takeError();
6686 
6687   return BM->parseModule(Context);
6688 }
6689 
6690 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6691   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6692   if (!StreamOrErr)
6693     return StreamOrErr.takeError();
6694 
6695   return readTriple(*StreamOrErr);
6696 }
6697 
6698 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6699   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6700   if (!StreamOrErr)
6701     return StreamOrErr.takeError();
6702 
6703   return hasObjCCategory(*StreamOrErr);
6704 }
6705 
6706 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6707   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6708   if (!StreamOrErr)
6709     return StreamOrErr.takeError();
6710 
6711   return readIdentificationCode(*StreamOrErr);
6712 }
6713 
6714 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6715                                    ModuleSummaryIndex &CombinedIndex,
6716                                    uint64_t ModuleId) {
6717   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6718   if (!BM)
6719     return BM.takeError();
6720 
6721   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6722 }
6723 
6724 Expected<std::unique_ptr<ModuleSummaryIndex>>
6725 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6726   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6727   if (!BM)
6728     return BM.takeError();
6729 
6730   return BM->getSummary();
6731 }
6732 
6733 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6734   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6735   if (!BM)
6736     return BM.takeError();
6737 
6738   return BM->getLTOInfo();
6739 }
6740 
6741 Expected<std::unique_ptr<ModuleSummaryIndex>>
6742 llvm::getModuleSummaryIndexForFile(StringRef Path,
6743                                    bool IgnoreEmptyThinLTOIndexFile) {
6744   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6745       MemoryBuffer::getFileOrSTDIN(Path);
6746   if (!FileOrErr)
6747     return errorCodeToError(FileOrErr.getError());
6748   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6749     return nullptr;
6750   return getModuleSummaryIndex(**FileOrErr);
6751 }
6752