1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/Bitcode/BitstreamReader.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/Bitcode/ReaderWriter.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/ModuleSummaryIndex.h"
29 #include "llvm/IR/OperandTraits.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/DataStream.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <deque>
38 
39 using namespace llvm;
40 
41 namespace {
42 enum {
43   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
44 };
45 
46 class BitcodeReaderValueList {
47   std::vector<WeakVH> ValuePtrs;
48 
49   /// As we resolve forward-referenced constants, we add information about them
50   /// to this vector.  This allows us to resolve them in bulk instead of
51   /// resolving each reference at a time.  See the code in
52   /// ResolveConstantForwardRefs for more information about this.
53   ///
54   /// The key of this vector is the placeholder constant, the value is the slot
55   /// number that holds the resolved value.
56   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
57   ResolveConstantsTy ResolveConstants;
58   LLVMContext &Context;
59 public:
60   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
61   ~BitcodeReaderValueList() {
62     assert(ResolveConstants.empty() && "Constants not resolved?");
63   }
64 
65   // vector compatibility methods
66   unsigned size() const { return ValuePtrs.size(); }
67   void resize(unsigned N) { ValuePtrs.resize(N); }
68   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
69 
70   void clear() {
71     assert(ResolveConstants.empty() && "Constants not resolved?");
72     ValuePtrs.clear();
73   }
74 
75   Value *operator[](unsigned i) const {
76     assert(i < ValuePtrs.size());
77     return ValuePtrs[i];
78   }
79 
80   Value *back() const { return ValuePtrs.back(); }
81     void pop_back() { ValuePtrs.pop_back(); }
82   bool empty() const { return ValuePtrs.empty(); }
83   void shrinkTo(unsigned N) {
84     assert(N <= size() && "Invalid shrinkTo request!");
85     ValuePtrs.resize(N);
86   }
87 
88   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
89   Value *getValueFwdRef(unsigned Idx, Type *Ty);
90 
91   void assignValue(Value *V, unsigned Idx);
92 
93   /// Once all constants are read, this method bulk resolves any forward
94   /// references.
95   void resolveConstantForwardRefs();
96 };
97 
98 class BitcodeReaderMetadataList {
99   unsigned NumFwdRefs;
100   bool AnyFwdRefs;
101   unsigned MinFwdRef;
102   unsigned MaxFwdRef;
103   std::vector<TrackingMDRef> MetadataPtrs;
104 
105   LLVMContext &Context;
106 public:
107   BitcodeReaderMetadataList(LLVMContext &C)
108       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
109 
110   // vector compatibility methods
111   unsigned size() const { return MetadataPtrs.size(); }
112   void resize(unsigned N) { MetadataPtrs.resize(N); }
113   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
114   void clear() { MetadataPtrs.clear(); }
115   Metadata *back() const { return MetadataPtrs.back(); }
116   void pop_back() { MetadataPtrs.pop_back(); }
117   bool empty() const { return MetadataPtrs.empty(); }
118 
119   Metadata *operator[](unsigned i) const {
120     assert(i < MetadataPtrs.size());
121     return MetadataPtrs[i];
122   }
123 
124   void shrinkTo(unsigned N) {
125     assert(N <= size() && "Invalid shrinkTo request!");
126     MetadataPtrs.resize(N);
127   }
128 
129   Metadata *getMetadataFwdRef(unsigned Idx);
130   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
131   void assignValue(Metadata *MD, unsigned Idx);
132   void tryToResolveCycles();
133 };
134 
135 class BitcodeReader : public GVMaterializer {
136   LLVMContext &Context;
137   Module *TheModule = nullptr;
138   std::unique_ptr<MemoryBuffer> Buffer;
139   std::unique_ptr<BitstreamReader> StreamFile;
140   BitstreamCursor Stream;
141   // Next offset to start scanning for lazy parsing of function bodies.
142   uint64_t NextUnreadBit = 0;
143   // Last function offset found in the VST.
144   uint64_t LastFunctionBlockBit = 0;
145   bool SeenValueSymbolTable = false;
146   uint64_t VSTOffset = 0;
147   // Contains an arbitrary and optional string identifying the bitcode producer
148   std::string ProducerIdentification;
149 
150   std::vector<Type*> TypeList;
151   BitcodeReaderValueList ValueList;
152   BitcodeReaderMetadataList MetadataList;
153   std::vector<Comdat *> ComdatList;
154   SmallVector<Instruction *, 64> InstructionList;
155 
156   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
157   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
158   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
159   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
160   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
161 
162   SmallVector<Instruction*, 64> InstsWithTBAATag;
163 
164   bool HasSeenOldLoopTags = false;
165 
166   /// The set of attributes by index.  Index zero in the file is for null, and
167   /// is thus not represented here.  As such all indices are off by one.
168   std::vector<AttributeSet> MAttributes;
169 
170   /// The set of attribute groups.
171   std::map<unsigned, AttributeSet> MAttributeGroups;
172 
173   /// While parsing a function body, this is a list of the basic blocks for the
174   /// function.
175   std::vector<BasicBlock*> FunctionBBs;
176 
177   // When reading the module header, this list is populated with functions that
178   // have bodies later in the file.
179   std::vector<Function*> FunctionsWithBodies;
180 
181   // When intrinsic functions are encountered which require upgrading they are
182   // stored here with their replacement function.
183   typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
184   UpgradedIntrinsicMap UpgradedIntrinsics;
185 
186   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
187   DenseMap<unsigned, unsigned> MDKindMap;
188 
189   // Several operations happen after the module header has been read, but
190   // before function bodies are processed. This keeps track of whether
191   // we've done this yet.
192   bool SeenFirstFunctionBody = false;
193 
194   /// When function bodies are initially scanned, this map contains info about
195   /// where to find deferred function body in the stream.
196   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
197 
198   /// When Metadata block is initially scanned when parsing the module, we may
199   /// choose to defer parsing of the metadata. This vector contains info about
200   /// which Metadata blocks are deferred.
201   std::vector<uint64_t> DeferredMetadataInfo;
202 
203   /// These are basic blocks forward-referenced by block addresses.  They are
204   /// inserted lazily into functions when they're loaded.  The basic block ID is
205   /// its index into the vector.
206   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
207   std::deque<Function *> BasicBlockFwdRefQueue;
208 
209   /// Indicates that we are using a new encoding for instruction operands where
210   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
211   /// instruction number, for a more compact encoding.  Some instruction
212   /// operands are not relative to the instruction ID: basic block numbers, and
213   /// types. Once the old style function blocks have been phased out, we would
214   /// not need this flag.
215   bool UseRelativeIDs = false;
216 
217   /// True if all functions will be materialized, negating the need to process
218   /// (e.g.) blockaddress forward references.
219   bool WillMaterializeAllForwardRefs = false;
220 
221   /// True if any Metadata block has been materialized.
222   bool IsMetadataMaterialized = false;
223 
224   bool StripDebugInfo = false;
225 
226   /// Functions that need to be matched with subprograms when upgrading old
227   /// metadata.
228   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
229 
230   std::vector<std::string> BundleTags;
231 
232 public:
233   std::error_code error(BitcodeError E, const Twine &Message);
234   std::error_code error(BitcodeError E);
235   std::error_code error(const Twine &Message);
236 
237   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
238   BitcodeReader(LLVMContext &Context);
239   ~BitcodeReader() override { freeState(); }
240 
241   std::error_code materializeForwardReferencedFunctions();
242 
243   void freeState();
244 
245   void releaseBuffer();
246 
247   std::error_code materialize(GlobalValue *GV) override;
248   std::error_code materializeModule() override;
249   std::vector<StructType *> getIdentifiedStructTypes() const override;
250 
251   /// \brief Main interface to parsing a bitcode buffer.
252   /// \returns true if an error occurred.
253   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
254                                    Module *M,
255                                    bool ShouldLazyLoadMetadata = false);
256 
257   /// \brief Cheap mechanism to just extract module triple
258   /// \returns true if an error occurred.
259   ErrorOr<std::string> parseTriple();
260 
261   /// Cheap mechanism to just extract the identification block out of bitcode.
262   ErrorOr<std::string> parseIdentificationBlock();
263 
264   static uint64_t decodeSignRotatedValue(uint64_t V);
265 
266   /// Materialize any deferred Metadata block.
267   std::error_code materializeMetadata() override;
268 
269   void setStripDebugInfo() override;
270 
271   /// Save the mapping between the metadata values and the corresponding
272   /// value id that were recorded in the MetadataList during parsing. If
273   /// OnlyTempMD is true, then only record those entries that are still
274   /// temporary metadata. This interface is used when metadata linking is
275   /// performed as a postpass, such as during function importing.
276   void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs,
277                         bool OnlyTempMD) override;
278 
279 private:
280   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
281   // ProducerIdentification data member, and do some basic enforcement on the
282   // "epoch" encoded in the bitcode.
283   std::error_code parseBitcodeVersion();
284 
285   std::vector<StructType *> IdentifiedStructTypes;
286   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
287   StructType *createIdentifiedStructType(LLVMContext &Context);
288 
289   Type *getTypeByID(unsigned ID);
290   Value *getFnValueByID(unsigned ID, Type *Ty) {
291     if (Ty && Ty->isMetadataTy())
292       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
293     return ValueList.getValueFwdRef(ID, Ty);
294   }
295   Metadata *getFnMetadataByID(unsigned ID) {
296     return MetadataList.getMetadataFwdRef(ID);
297   }
298   BasicBlock *getBasicBlock(unsigned ID) const {
299     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
300     return FunctionBBs[ID];
301   }
302   AttributeSet getAttributes(unsigned i) const {
303     if (i-1 < MAttributes.size())
304       return MAttributes[i-1];
305     return AttributeSet();
306   }
307 
308   /// Read a value/type pair out of the specified record from slot 'Slot'.
309   /// Increment Slot past the number of slots used in the record. Return true on
310   /// failure.
311   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
312                         unsigned InstNum, Value *&ResVal) {
313     if (Slot == Record.size()) return true;
314     unsigned ValNo = (unsigned)Record[Slot++];
315     // Adjust the ValNo, if it was encoded relative to the InstNum.
316     if (UseRelativeIDs)
317       ValNo = InstNum - ValNo;
318     if (ValNo < InstNum) {
319       // If this is not a forward reference, just return the value we already
320       // have.
321       ResVal = getFnValueByID(ValNo, nullptr);
322       return ResVal == nullptr;
323     }
324     if (Slot == Record.size())
325       return true;
326 
327     unsigned TypeNo = (unsigned)Record[Slot++];
328     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
329     return ResVal == nullptr;
330   }
331 
332   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
333   /// past the number of slots used by the value in the record. Return true if
334   /// there is an error.
335   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
336                 unsigned InstNum, Type *Ty, Value *&ResVal) {
337     if (getValue(Record, Slot, InstNum, Ty, ResVal))
338       return true;
339     // All values currently take a single record slot.
340     ++Slot;
341     return false;
342   }
343 
344   /// Like popValue, but does not increment the Slot number.
345   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
346                 unsigned InstNum, Type *Ty, Value *&ResVal) {
347     ResVal = getValue(Record, Slot, InstNum, Ty);
348     return ResVal == nullptr;
349   }
350 
351   /// Version of getValue that returns ResVal directly, or 0 if there is an
352   /// error.
353   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
354                   unsigned InstNum, Type *Ty) {
355     if (Slot == Record.size()) return nullptr;
356     unsigned ValNo = (unsigned)Record[Slot];
357     // Adjust the ValNo, if it was encoded relative to the InstNum.
358     if (UseRelativeIDs)
359       ValNo = InstNum - ValNo;
360     return getFnValueByID(ValNo, Ty);
361   }
362 
363   /// Like getValue, but decodes signed VBRs.
364   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
365                         unsigned InstNum, Type *Ty) {
366     if (Slot == Record.size()) return nullptr;
367     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
368     // Adjust the ValNo, if it was encoded relative to the InstNum.
369     if (UseRelativeIDs)
370       ValNo = InstNum - ValNo;
371     return getFnValueByID(ValNo, Ty);
372   }
373 
374   /// Converts alignment exponent (i.e. power of two (or zero)) to the
375   /// corresponding alignment to use. If alignment is too large, returns
376   /// a corresponding error code.
377   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
378   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
379   std::error_code parseModule(uint64_t ResumeBit,
380                               bool ShouldLazyLoadMetadata = false);
381   std::error_code parseAttributeBlock();
382   std::error_code parseAttributeGroupBlock();
383   std::error_code parseTypeTable();
384   std::error_code parseTypeTableBody();
385   std::error_code parseOperandBundleTags();
386 
387   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
388                                unsigned NameIndex, Triple &TT);
389   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
390   std::error_code parseConstants();
391   std::error_code rememberAndSkipFunctionBodies();
392   std::error_code rememberAndSkipFunctionBody();
393   /// Save the positions of the Metadata blocks and skip parsing the blocks.
394   std::error_code rememberAndSkipMetadata();
395   std::error_code parseFunctionBody(Function *F);
396   std::error_code globalCleanup();
397   std::error_code resolveGlobalAndAliasInits();
398   std::error_code parseMetadata(bool ModuleLevel = false);
399   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
400                                        StringRef Blob,
401                                        unsigned &NextMetadataNo);
402   std::error_code parseMetadataKinds();
403   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
404   std::error_code parseMetadataAttachment(Function &F);
405   ErrorOr<std::string> parseModuleTriple();
406   std::error_code parseUseLists();
407   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
408   std::error_code initStreamFromBuffer();
409   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
410   std::error_code findFunctionInStream(
411       Function *F,
412       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
413 };
414 
415 /// Class to manage reading and parsing function summary index bitcode
416 /// files/sections.
417 class ModuleSummaryIndexBitcodeReader {
418   DiagnosticHandlerFunction DiagnosticHandler;
419 
420   /// Eventually points to the module index built during parsing.
421   ModuleSummaryIndex *TheIndex = nullptr;
422 
423   std::unique_ptr<MemoryBuffer> Buffer;
424   std::unique_ptr<BitstreamReader> StreamFile;
425   BitstreamCursor Stream;
426 
427   /// \brief Used to indicate whether we are doing lazy parsing of summary data.
428   ///
429   /// If false, the summary section is fully parsed into the index during
430   /// the initial parse. Otherwise, if true, the caller is expected to
431   /// invoke \a readGlobalValueSummary for each summary needed, and the summary
432   /// section is thus parsed lazily.
433   bool IsLazy = false;
434 
435   /// Used to indicate whether caller only wants to check for the presence
436   /// of the global value summary bitcode section. All blocks are skipped,
437   /// but the SeenGlobalValSummary boolean is set.
438   bool CheckGlobalValSummaryPresenceOnly = false;
439 
440   /// Indicates whether we have encountered a global value summary section
441   /// yet during parsing, used when checking if file contains global value
442   /// summary section.
443   bool SeenGlobalValSummary = false;
444 
445   /// Indicates whether we have already parsed the VST, used for error checking.
446   bool SeenValueSymbolTable = false;
447 
448   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
449   /// Used to enable on-demand parsing of the VST.
450   uint64_t VSTOffset = 0;
451 
452   // Map to save ValueId to GUID association that was recorded in the
453   // ValueSymbolTable. It is used after the VST is parsed to convert
454   // call graph edges read from the function summary from referencing
455   // callees by their ValueId to using the GUID instead, which is how
456   // they are recorded in the summary index being built.
457   DenseMap<unsigned, uint64_t> ValueIdToCallGraphGUIDMap;
458 
459   /// Map to save the association between summary offset in the VST to the
460   /// GlobalValueInfo object created when parsing it. Used to access the
461   /// info object when parsing the summary section.
462   DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap;
463 
464   /// Map populated during module path string table parsing, from the
465   /// module ID to a string reference owned by the index's module
466   /// path string table, used to correlate with combined index
467   /// summary records.
468   DenseMap<uint64_t, StringRef> ModuleIdMap;
469 
470   /// Original source file name recorded in a bitcode record.
471   std::string SourceFileName;
472 
473 public:
474   std::error_code error(BitcodeError E, const Twine &Message);
475   std::error_code error(BitcodeError E);
476   std::error_code error(const Twine &Message);
477 
478   ModuleSummaryIndexBitcodeReader(
479       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
480       bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false);
481   ModuleSummaryIndexBitcodeReader(
482       DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false,
483       bool CheckGlobalValSummaryPresenceOnly = false);
484   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
485 
486   void freeState();
487 
488   void releaseBuffer();
489 
490   /// Check if the parser has encountered a summary section.
491   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
492 
493   /// \brief Main interface to parsing a bitcode buffer.
494   /// \returns true if an error occurred.
495   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
496                                         ModuleSummaryIndex *I);
497 
498   /// \brief Interface for parsing a summary lazily.
499   std::error_code
500   parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer,
501                           ModuleSummaryIndex *I, size_t SummaryOffset);
502 
503 private:
504   std::error_code parseModule();
505   std::error_code parseValueSymbolTable(
506       uint64_t Offset,
507       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
508   std::error_code parseEntireSummary();
509   std::error_code parseModuleStringTable();
510   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
511   std::error_code initStreamFromBuffer();
512   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
513   uint64_t getGUIDFromValueId(unsigned ValueId);
514   GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset);
515 };
516 } // end anonymous namespace
517 
518 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
519                                              DiagnosticSeverity Severity,
520                                              const Twine &Msg)
521     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
522 
523 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
524 
525 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
526                              std::error_code EC, const Twine &Message) {
527   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
528   DiagnosticHandler(DI);
529   return EC;
530 }
531 
532 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
533                              std::error_code EC) {
534   return error(DiagnosticHandler, EC, EC.message());
535 }
536 
537 static std::error_code error(LLVMContext &Context, std::error_code EC,
538                              const Twine &Message) {
539   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
540                Message);
541 }
542 
543 static std::error_code error(LLVMContext &Context, std::error_code EC) {
544   return error(Context, EC, EC.message());
545 }
546 
547 static std::error_code error(LLVMContext &Context, const Twine &Message) {
548   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
549                Message);
550 }
551 
552 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
553   if (!ProducerIdentification.empty()) {
554     return ::error(Context, make_error_code(E),
555                    Message + " (Producer: '" + ProducerIdentification +
556                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
557   }
558   return ::error(Context, make_error_code(E), Message);
559 }
560 
561 std::error_code BitcodeReader::error(const Twine &Message) {
562   if (!ProducerIdentification.empty()) {
563     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
564                    Message + " (Producer: '" + ProducerIdentification +
565                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
566   }
567   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
568                  Message);
569 }
570 
571 std::error_code BitcodeReader::error(BitcodeError E) {
572   return ::error(Context, make_error_code(E));
573 }
574 
575 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
576     : Context(Context), Buffer(Buffer), ValueList(Context),
577       MetadataList(Context) {}
578 
579 BitcodeReader::BitcodeReader(LLVMContext &Context)
580     : Context(Context), Buffer(nullptr), ValueList(Context),
581       MetadataList(Context) {}
582 
583 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
584   if (WillMaterializeAllForwardRefs)
585     return std::error_code();
586 
587   // Prevent recursion.
588   WillMaterializeAllForwardRefs = true;
589 
590   while (!BasicBlockFwdRefQueue.empty()) {
591     Function *F = BasicBlockFwdRefQueue.front();
592     BasicBlockFwdRefQueue.pop_front();
593     assert(F && "Expected valid function");
594     if (!BasicBlockFwdRefs.count(F))
595       // Already materialized.
596       continue;
597 
598     // Check for a function that isn't materializable to prevent an infinite
599     // loop.  When parsing a blockaddress stored in a global variable, there
600     // isn't a trivial way to check if a function will have a body without a
601     // linear search through FunctionsWithBodies, so just check it here.
602     if (!F->isMaterializable())
603       return error("Never resolved function from blockaddress");
604 
605     // Try to materialize F.
606     if (std::error_code EC = materialize(F))
607       return EC;
608   }
609   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
610 
611   // Reset state.
612   WillMaterializeAllForwardRefs = false;
613   return std::error_code();
614 }
615 
616 void BitcodeReader::freeState() {
617   Buffer = nullptr;
618   std::vector<Type*>().swap(TypeList);
619   ValueList.clear();
620   MetadataList.clear();
621   std::vector<Comdat *>().swap(ComdatList);
622 
623   std::vector<AttributeSet>().swap(MAttributes);
624   std::vector<BasicBlock*>().swap(FunctionBBs);
625   std::vector<Function*>().swap(FunctionsWithBodies);
626   DeferredFunctionInfo.clear();
627   DeferredMetadataInfo.clear();
628   MDKindMap.clear();
629 
630   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
631   BasicBlockFwdRefQueue.clear();
632 }
633 
634 //===----------------------------------------------------------------------===//
635 //  Helper functions to implement forward reference resolution, etc.
636 //===----------------------------------------------------------------------===//
637 
638 /// Convert a string from a record into an std::string, return true on failure.
639 template <typename StrTy>
640 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
641                             StrTy &Result) {
642   if (Idx > Record.size())
643     return true;
644 
645   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
646     Result += (char)Record[i];
647   return false;
648 }
649 
650 static bool hasImplicitComdat(size_t Val) {
651   switch (Val) {
652   default:
653     return false;
654   case 1:  // Old WeakAnyLinkage
655   case 4:  // Old LinkOnceAnyLinkage
656   case 10: // Old WeakODRLinkage
657   case 11: // Old LinkOnceODRLinkage
658     return true;
659   }
660 }
661 
662 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
663   switch (Val) {
664   default: // Map unknown/new linkages to external
665   case 0:
666     return GlobalValue::ExternalLinkage;
667   case 2:
668     return GlobalValue::AppendingLinkage;
669   case 3:
670     return GlobalValue::InternalLinkage;
671   case 5:
672     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
673   case 6:
674     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
675   case 7:
676     return GlobalValue::ExternalWeakLinkage;
677   case 8:
678     return GlobalValue::CommonLinkage;
679   case 9:
680     return GlobalValue::PrivateLinkage;
681   case 12:
682     return GlobalValue::AvailableExternallyLinkage;
683   case 13:
684     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
685   case 14:
686     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
687   case 15:
688     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
689   case 1: // Old value with implicit comdat.
690   case 16:
691     return GlobalValue::WeakAnyLinkage;
692   case 10: // Old value with implicit comdat.
693   case 17:
694     return GlobalValue::WeakODRLinkage;
695   case 4: // Old value with implicit comdat.
696   case 18:
697     return GlobalValue::LinkOnceAnyLinkage;
698   case 11: // Old value with implicit comdat.
699   case 19:
700     return GlobalValue::LinkOnceODRLinkage;
701   }
702 }
703 
704 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
705   switch (Val) {
706   default: // Map unknown visibilities to default.
707   case 0: return GlobalValue::DefaultVisibility;
708   case 1: return GlobalValue::HiddenVisibility;
709   case 2: return GlobalValue::ProtectedVisibility;
710   }
711 }
712 
713 static GlobalValue::DLLStorageClassTypes
714 getDecodedDLLStorageClass(unsigned Val) {
715   switch (Val) {
716   default: // Map unknown values to default.
717   case 0: return GlobalValue::DefaultStorageClass;
718   case 1: return GlobalValue::DLLImportStorageClass;
719   case 2: return GlobalValue::DLLExportStorageClass;
720   }
721 }
722 
723 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
724   switch (Val) {
725     case 0: return GlobalVariable::NotThreadLocal;
726     default: // Map unknown non-zero value to general dynamic.
727     case 1: return GlobalVariable::GeneralDynamicTLSModel;
728     case 2: return GlobalVariable::LocalDynamicTLSModel;
729     case 3: return GlobalVariable::InitialExecTLSModel;
730     case 4: return GlobalVariable::LocalExecTLSModel;
731   }
732 }
733 
734 static int getDecodedCastOpcode(unsigned Val) {
735   switch (Val) {
736   default: return -1;
737   case bitc::CAST_TRUNC   : return Instruction::Trunc;
738   case bitc::CAST_ZEXT    : return Instruction::ZExt;
739   case bitc::CAST_SEXT    : return Instruction::SExt;
740   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
741   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
742   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
743   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
744   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
745   case bitc::CAST_FPEXT   : return Instruction::FPExt;
746   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
747   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
748   case bitc::CAST_BITCAST : return Instruction::BitCast;
749   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
750   }
751 }
752 
753 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
754   bool IsFP = Ty->isFPOrFPVectorTy();
755   // BinOps are only valid for int/fp or vector of int/fp types
756   if (!IsFP && !Ty->isIntOrIntVectorTy())
757     return -1;
758 
759   switch (Val) {
760   default:
761     return -1;
762   case bitc::BINOP_ADD:
763     return IsFP ? Instruction::FAdd : Instruction::Add;
764   case bitc::BINOP_SUB:
765     return IsFP ? Instruction::FSub : Instruction::Sub;
766   case bitc::BINOP_MUL:
767     return IsFP ? Instruction::FMul : Instruction::Mul;
768   case bitc::BINOP_UDIV:
769     return IsFP ? -1 : Instruction::UDiv;
770   case bitc::BINOP_SDIV:
771     return IsFP ? Instruction::FDiv : Instruction::SDiv;
772   case bitc::BINOP_UREM:
773     return IsFP ? -1 : Instruction::URem;
774   case bitc::BINOP_SREM:
775     return IsFP ? Instruction::FRem : Instruction::SRem;
776   case bitc::BINOP_SHL:
777     return IsFP ? -1 : Instruction::Shl;
778   case bitc::BINOP_LSHR:
779     return IsFP ? -1 : Instruction::LShr;
780   case bitc::BINOP_ASHR:
781     return IsFP ? -1 : Instruction::AShr;
782   case bitc::BINOP_AND:
783     return IsFP ? -1 : Instruction::And;
784   case bitc::BINOP_OR:
785     return IsFP ? -1 : Instruction::Or;
786   case bitc::BINOP_XOR:
787     return IsFP ? -1 : Instruction::Xor;
788   }
789 }
790 
791 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
792   switch (Val) {
793   default: return AtomicRMWInst::BAD_BINOP;
794   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
795   case bitc::RMW_ADD: return AtomicRMWInst::Add;
796   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
797   case bitc::RMW_AND: return AtomicRMWInst::And;
798   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
799   case bitc::RMW_OR: return AtomicRMWInst::Or;
800   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
801   case bitc::RMW_MAX: return AtomicRMWInst::Max;
802   case bitc::RMW_MIN: return AtomicRMWInst::Min;
803   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
804   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
805   }
806 }
807 
808 static AtomicOrdering getDecodedOrdering(unsigned Val) {
809   switch (Val) {
810   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
811   case bitc::ORDERING_UNORDERED: return Unordered;
812   case bitc::ORDERING_MONOTONIC: return Monotonic;
813   case bitc::ORDERING_ACQUIRE: return Acquire;
814   case bitc::ORDERING_RELEASE: return Release;
815   case bitc::ORDERING_ACQREL: return AcquireRelease;
816   default: // Map unknown orderings to sequentially-consistent.
817   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
818   }
819 }
820 
821 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
822   switch (Val) {
823   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
824   default: // Map unknown scopes to cross-thread.
825   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
826   }
827 }
828 
829 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
830   switch (Val) {
831   default: // Map unknown selection kinds to any.
832   case bitc::COMDAT_SELECTION_KIND_ANY:
833     return Comdat::Any;
834   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
835     return Comdat::ExactMatch;
836   case bitc::COMDAT_SELECTION_KIND_LARGEST:
837     return Comdat::Largest;
838   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
839     return Comdat::NoDuplicates;
840   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
841     return Comdat::SameSize;
842   }
843 }
844 
845 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
846   FastMathFlags FMF;
847   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
848     FMF.setUnsafeAlgebra();
849   if (0 != (Val & FastMathFlags::NoNaNs))
850     FMF.setNoNaNs();
851   if (0 != (Val & FastMathFlags::NoInfs))
852     FMF.setNoInfs();
853   if (0 != (Val & FastMathFlags::NoSignedZeros))
854     FMF.setNoSignedZeros();
855   if (0 != (Val & FastMathFlags::AllowReciprocal))
856     FMF.setAllowReciprocal();
857   return FMF;
858 }
859 
860 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
861   switch (Val) {
862   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
863   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
864   }
865 }
866 
867 namespace llvm {
868 namespace {
869 /// \brief A class for maintaining the slot number definition
870 /// as a placeholder for the actual definition for forward constants defs.
871 class ConstantPlaceHolder : public ConstantExpr {
872   void operator=(const ConstantPlaceHolder &) = delete;
873 
874 public:
875   // allocate space for exactly one operand
876   void *operator new(size_t s) { return User::operator new(s, 1); }
877   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
878       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
879     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
880   }
881 
882   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
883   static bool classof(const Value *V) {
884     return isa<ConstantExpr>(V) &&
885            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
886   }
887 
888   /// Provide fast operand accessors
889   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
890 };
891 } // end anonymous namespace
892 
893 // FIXME: can we inherit this from ConstantExpr?
894 template <>
895 struct OperandTraits<ConstantPlaceHolder> :
896   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
897 };
898 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
899 } // end namespace llvm
900 
901 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
902   if (Idx == size()) {
903     push_back(V);
904     return;
905   }
906 
907   if (Idx >= size())
908     resize(Idx+1);
909 
910   WeakVH &OldV = ValuePtrs[Idx];
911   if (!OldV) {
912     OldV = V;
913     return;
914   }
915 
916   // Handle constants and non-constants (e.g. instrs) differently for
917   // efficiency.
918   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
919     ResolveConstants.push_back(std::make_pair(PHC, Idx));
920     OldV = V;
921   } else {
922     // If there was a forward reference to this value, replace it.
923     Value *PrevVal = OldV;
924     OldV->replaceAllUsesWith(V);
925     delete PrevVal;
926   }
927 }
928 
929 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
930                                                     Type *Ty) {
931   if (Idx >= size())
932     resize(Idx + 1);
933 
934   if (Value *V = ValuePtrs[Idx]) {
935     if (Ty != V->getType())
936       report_fatal_error("Type mismatch in constant table!");
937     return cast<Constant>(V);
938   }
939 
940   // Create and return a placeholder, which will later be RAUW'd.
941   Constant *C = new ConstantPlaceHolder(Ty, Context);
942   ValuePtrs[Idx] = C;
943   return C;
944 }
945 
946 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
947   // Bail out for a clearly invalid value. This would make us call resize(0)
948   if (Idx == UINT_MAX)
949     return nullptr;
950 
951   if (Idx >= size())
952     resize(Idx + 1);
953 
954   if (Value *V = ValuePtrs[Idx]) {
955     // If the types don't match, it's invalid.
956     if (Ty && Ty != V->getType())
957       return nullptr;
958     return V;
959   }
960 
961   // No type specified, must be invalid reference.
962   if (!Ty) return nullptr;
963 
964   // Create and return a placeholder, which will later be RAUW'd.
965   Value *V = new Argument(Ty);
966   ValuePtrs[Idx] = V;
967   return V;
968 }
969 
970 /// Once all constants are read, this method bulk resolves any forward
971 /// references.  The idea behind this is that we sometimes get constants (such
972 /// as large arrays) which reference *many* forward ref constants.  Replacing
973 /// each of these causes a lot of thrashing when building/reuniquing the
974 /// constant.  Instead of doing this, we look at all the uses and rewrite all
975 /// the place holders at once for any constant that uses a placeholder.
976 void BitcodeReaderValueList::resolveConstantForwardRefs() {
977   // Sort the values by-pointer so that they are efficient to look up with a
978   // binary search.
979   std::sort(ResolveConstants.begin(), ResolveConstants.end());
980 
981   SmallVector<Constant*, 64> NewOps;
982 
983   while (!ResolveConstants.empty()) {
984     Value *RealVal = operator[](ResolveConstants.back().second);
985     Constant *Placeholder = ResolveConstants.back().first;
986     ResolveConstants.pop_back();
987 
988     // Loop over all users of the placeholder, updating them to reference the
989     // new value.  If they reference more than one placeholder, update them all
990     // at once.
991     while (!Placeholder->use_empty()) {
992       auto UI = Placeholder->user_begin();
993       User *U = *UI;
994 
995       // If the using object isn't uniqued, just update the operands.  This
996       // handles instructions and initializers for global variables.
997       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
998         UI.getUse().set(RealVal);
999         continue;
1000       }
1001 
1002       // Otherwise, we have a constant that uses the placeholder.  Replace that
1003       // constant with a new constant that has *all* placeholder uses updated.
1004       Constant *UserC = cast<Constant>(U);
1005       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1006            I != E; ++I) {
1007         Value *NewOp;
1008         if (!isa<ConstantPlaceHolder>(*I)) {
1009           // Not a placeholder reference.
1010           NewOp = *I;
1011         } else if (*I == Placeholder) {
1012           // Common case is that it just references this one placeholder.
1013           NewOp = RealVal;
1014         } else {
1015           // Otherwise, look up the placeholder in ResolveConstants.
1016           ResolveConstantsTy::iterator It =
1017             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1018                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1019                                                             0));
1020           assert(It != ResolveConstants.end() && It->first == *I);
1021           NewOp = operator[](It->second);
1022         }
1023 
1024         NewOps.push_back(cast<Constant>(NewOp));
1025       }
1026 
1027       // Make the new constant.
1028       Constant *NewC;
1029       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1030         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1031       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1032         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1033       } else if (isa<ConstantVector>(UserC)) {
1034         NewC = ConstantVector::get(NewOps);
1035       } else {
1036         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1037         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1038       }
1039 
1040       UserC->replaceAllUsesWith(NewC);
1041       UserC->destroyConstant();
1042       NewOps.clear();
1043     }
1044 
1045     // Update all ValueHandles, they should be the only users at this point.
1046     Placeholder->replaceAllUsesWith(RealVal);
1047     delete Placeholder;
1048   }
1049 }
1050 
1051 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1052   if (Idx == size()) {
1053     push_back(MD);
1054     return;
1055   }
1056 
1057   if (Idx >= size())
1058     resize(Idx+1);
1059 
1060   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1061   if (!OldMD) {
1062     OldMD.reset(MD);
1063     return;
1064   }
1065 
1066   // If there was a forward reference to this value, replace it.
1067   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1068   PrevMD->replaceAllUsesWith(MD);
1069   --NumFwdRefs;
1070 }
1071 
1072 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1073   if (Idx >= size())
1074     resize(Idx + 1);
1075 
1076   if (Metadata *MD = MetadataPtrs[Idx])
1077     return MD;
1078 
1079   // Track forward refs to be resolved later.
1080   if (AnyFwdRefs) {
1081     MinFwdRef = std::min(MinFwdRef, Idx);
1082     MaxFwdRef = std::max(MaxFwdRef, Idx);
1083   } else {
1084     AnyFwdRefs = true;
1085     MinFwdRef = MaxFwdRef = Idx;
1086   }
1087   ++NumFwdRefs;
1088 
1089   // Create and return a placeholder, which will later be RAUW'd.
1090   Metadata *MD = MDNode::getTemporary(Context, None).release();
1091   MetadataPtrs[Idx].reset(MD);
1092   return MD;
1093 }
1094 
1095 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1096   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1097 }
1098 
1099 void BitcodeReaderMetadataList::tryToResolveCycles() {
1100   if (!AnyFwdRefs)
1101     // Nothing to do.
1102     return;
1103 
1104   if (NumFwdRefs)
1105     // Still forward references... can't resolve cycles.
1106     return;
1107 
1108   // Resolve any cycles.
1109   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1110     auto &MD = MetadataPtrs[I];
1111     auto *N = dyn_cast_or_null<MDNode>(MD);
1112     if (!N)
1113       continue;
1114 
1115     assert(!N->isTemporary() && "Unexpected forward reference");
1116     N->resolveCycles();
1117   }
1118 
1119   // Make sure we return early again until there's another forward ref.
1120   AnyFwdRefs = false;
1121 }
1122 
1123 Type *BitcodeReader::getTypeByID(unsigned ID) {
1124   // The type table size is always specified correctly.
1125   if (ID >= TypeList.size())
1126     return nullptr;
1127 
1128   if (Type *Ty = TypeList[ID])
1129     return Ty;
1130 
1131   // If we have a forward reference, the only possible case is when it is to a
1132   // named struct.  Just create a placeholder for now.
1133   return TypeList[ID] = createIdentifiedStructType(Context);
1134 }
1135 
1136 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1137                                                       StringRef Name) {
1138   auto *Ret = StructType::create(Context, Name);
1139   IdentifiedStructTypes.push_back(Ret);
1140   return Ret;
1141 }
1142 
1143 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1144   auto *Ret = StructType::create(Context);
1145   IdentifiedStructTypes.push_back(Ret);
1146   return Ret;
1147 }
1148 
1149 //===----------------------------------------------------------------------===//
1150 //  Functions for parsing blocks from the bitcode file
1151 //===----------------------------------------------------------------------===//
1152 
1153 
1154 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1155 /// been decoded from the given integer. This function must stay in sync with
1156 /// 'encodeLLVMAttributesForBitcode'.
1157 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1158                                            uint64_t EncodedAttrs) {
1159   // FIXME: Remove in 4.0.
1160 
1161   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1162   // the bits above 31 down by 11 bits.
1163   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1164   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1165          "Alignment must be a power of two.");
1166 
1167   if (Alignment)
1168     B.addAlignmentAttr(Alignment);
1169   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1170                 (EncodedAttrs & 0xffff));
1171 }
1172 
1173 std::error_code BitcodeReader::parseAttributeBlock() {
1174   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1175     return error("Invalid record");
1176 
1177   if (!MAttributes.empty())
1178     return error("Invalid multiple blocks");
1179 
1180   SmallVector<uint64_t, 64> Record;
1181 
1182   SmallVector<AttributeSet, 8> Attrs;
1183 
1184   // Read all the records.
1185   while (1) {
1186     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1187 
1188     switch (Entry.Kind) {
1189     case BitstreamEntry::SubBlock: // Handled for us already.
1190     case BitstreamEntry::Error:
1191       return error("Malformed block");
1192     case BitstreamEntry::EndBlock:
1193       return std::error_code();
1194     case BitstreamEntry::Record:
1195       // The interesting case.
1196       break;
1197     }
1198 
1199     // Read a record.
1200     Record.clear();
1201     switch (Stream.readRecord(Entry.ID, Record)) {
1202     default:  // Default behavior: ignore.
1203       break;
1204     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1205       // FIXME: Remove in 4.0.
1206       if (Record.size() & 1)
1207         return error("Invalid record");
1208 
1209       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1210         AttrBuilder B;
1211         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1212         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1213       }
1214 
1215       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1216       Attrs.clear();
1217       break;
1218     }
1219     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1220       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1221         Attrs.push_back(MAttributeGroups[Record[i]]);
1222 
1223       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1224       Attrs.clear();
1225       break;
1226     }
1227     }
1228   }
1229 }
1230 
1231 // Returns Attribute::None on unrecognized codes.
1232 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1233   switch (Code) {
1234   default:
1235     return Attribute::None;
1236   case bitc::ATTR_KIND_ALIGNMENT:
1237     return Attribute::Alignment;
1238   case bitc::ATTR_KIND_ALWAYS_INLINE:
1239     return Attribute::AlwaysInline;
1240   case bitc::ATTR_KIND_ARGMEMONLY:
1241     return Attribute::ArgMemOnly;
1242   case bitc::ATTR_KIND_BUILTIN:
1243     return Attribute::Builtin;
1244   case bitc::ATTR_KIND_BY_VAL:
1245     return Attribute::ByVal;
1246   case bitc::ATTR_KIND_IN_ALLOCA:
1247     return Attribute::InAlloca;
1248   case bitc::ATTR_KIND_COLD:
1249     return Attribute::Cold;
1250   case bitc::ATTR_KIND_CONVERGENT:
1251     return Attribute::Convergent;
1252   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1253     return Attribute::InaccessibleMemOnly;
1254   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1255     return Attribute::InaccessibleMemOrArgMemOnly;
1256   case bitc::ATTR_KIND_INLINE_HINT:
1257     return Attribute::InlineHint;
1258   case bitc::ATTR_KIND_IN_REG:
1259     return Attribute::InReg;
1260   case bitc::ATTR_KIND_JUMP_TABLE:
1261     return Attribute::JumpTable;
1262   case bitc::ATTR_KIND_MIN_SIZE:
1263     return Attribute::MinSize;
1264   case bitc::ATTR_KIND_NAKED:
1265     return Attribute::Naked;
1266   case bitc::ATTR_KIND_NEST:
1267     return Attribute::Nest;
1268   case bitc::ATTR_KIND_NO_ALIAS:
1269     return Attribute::NoAlias;
1270   case bitc::ATTR_KIND_NO_BUILTIN:
1271     return Attribute::NoBuiltin;
1272   case bitc::ATTR_KIND_NO_CAPTURE:
1273     return Attribute::NoCapture;
1274   case bitc::ATTR_KIND_NO_DUPLICATE:
1275     return Attribute::NoDuplicate;
1276   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1277     return Attribute::NoImplicitFloat;
1278   case bitc::ATTR_KIND_NO_INLINE:
1279     return Attribute::NoInline;
1280   case bitc::ATTR_KIND_NO_RECURSE:
1281     return Attribute::NoRecurse;
1282   case bitc::ATTR_KIND_NON_LAZY_BIND:
1283     return Attribute::NonLazyBind;
1284   case bitc::ATTR_KIND_NON_NULL:
1285     return Attribute::NonNull;
1286   case bitc::ATTR_KIND_DEREFERENCEABLE:
1287     return Attribute::Dereferenceable;
1288   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1289     return Attribute::DereferenceableOrNull;
1290   case bitc::ATTR_KIND_NO_RED_ZONE:
1291     return Attribute::NoRedZone;
1292   case bitc::ATTR_KIND_NO_RETURN:
1293     return Attribute::NoReturn;
1294   case bitc::ATTR_KIND_NO_UNWIND:
1295     return Attribute::NoUnwind;
1296   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1297     return Attribute::OptimizeForSize;
1298   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1299     return Attribute::OptimizeNone;
1300   case bitc::ATTR_KIND_READ_NONE:
1301     return Attribute::ReadNone;
1302   case bitc::ATTR_KIND_READ_ONLY:
1303     return Attribute::ReadOnly;
1304   case bitc::ATTR_KIND_RETURNED:
1305     return Attribute::Returned;
1306   case bitc::ATTR_KIND_RETURNS_TWICE:
1307     return Attribute::ReturnsTwice;
1308   case bitc::ATTR_KIND_S_EXT:
1309     return Attribute::SExt;
1310   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1311     return Attribute::StackAlignment;
1312   case bitc::ATTR_KIND_STACK_PROTECT:
1313     return Attribute::StackProtect;
1314   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1315     return Attribute::StackProtectReq;
1316   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1317     return Attribute::StackProtectStrong;
1318   case bitc::ATTR_KIND_SAFESTACK:
1319     return Attribute::SafeStack;
1320   case bitc::ATTR_KIND_STRUCT_RET:
1321     return Attribute::StructRet;
1322   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1323     return Attribute::SanitizeAddress;
1324   case bitc::ATTR_KIND_SANITIZE_THREAD:
1325     return Attribute::SanitizeThread;
1326   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1327     return Attribute::SanitizeMemory;
1328   case bitc::ATTR_KIND_UW_TABLE:
1329     return Attribute::UWTable;
1330   case bitc::ATTR_KIND_Z_EXT:
1331     return Attribute::ZExt;
1332   }
1333 }
1334 
1335 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1336                                                    unsigned &Alignment) {
1337   // Note: Alignment in bitcode files is incremented by 1, so that zero
1338   // can be used for default alignment.
1339   if (Exponent > Value::MaxAlignmentExponent + 1)
1340     return error("Invalid alignment value");
1341   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1342   return std::error_code();
1343 }
1344 
1345 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1346                                              Attribute::AttrKind *Kind) {
1347   *Kind = getAttrFromCode(Code);
1348   if (*Kind == Attribute::None)
1349     return error(BitcodeError::CorruptedBitcode,
1350                  "Unknown attribute kind (" + Twine(Code) + ")");
1351   return std::error_code();
1352 }
1353 
1354 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1355   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1356     return error("Invalid record");
1357 
1358   if (!MAttributeGroups.empty())
1359     return error("Invalid multiple blocks");
1360 
1361   SmallVector<uint64_t, 64> Record;
1362 
1363   // Read all the records.
1364   while (1) {
1365     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1366 
1367     switch (Entry.Kind) {
1368     case BitstreamEntry::SubBlock: // Handled for us already.
1369     case BitstreamEntry::Error:
1370       return error("Malformed block");
1371     case BitstreamEntry::EndBlock:
1372       return std::error_code();
1373     case BitstreamEntry::Record:
1374       // The interesting case.
1375       break;
1376     }
1377 
1378     // Read a record.
1379     Record.clear();
1380     switch (Stream.readRecord(Entry.ID, Record)) {
1381     default:  // Default behavior: ignore.
1382       break;
1383     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1384       if (Record.size() < 3)
1385         return error("Invalid record");
1386 
1387       uint64_t GrpID = Record[0];
1388       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1389 
1390       AttrBuilder B;
1391       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1392         if (Record[i] == 0) {        // Enum attribute
1393           Attribute::AttrKind Kind;
1394           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1395             return EC;
1396 
1397           B.addAttribute(Kind);
1398         } else if (Record[i] == 1) { // Integer attribute
1399           Attribute::AttrKind Kind;
1400           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1401             return EC;
1402           if (Kind == Attribute::Alignment)
1403             B.addAlignmentAttr(Record[++i]);
1404           else if (Kind == Attribute::StackAlignment)
1405             B.addStackAlignmentAttr(Record[++i]);
1406           else if (Kind == Attribute::Dereferenceable)
1407             B.addDereferenceableAttr(Record[++i]);
1408           else if (Kind == Attribute::DereferenceableOrNull)
1409             B.addDereferenceableOrNullAttr(Record[++i]);
1410         } else {                     // String attribute
1411           assert((Record[i] == 3 || Record[i] == 4) &&
1412                  "Invalid attribute group entry");
1413           bool HasValue = (Record[i++] == 4);
1414           SmallString<64> KindStr;
1415           SmallString<64> ValStr;
1416 
1417           while (Record[i] != 0 && i != e)
1418             KindStr += Record[i++];
1419           assert(Record[i] == 0 && "Kind string not null terminated");
1420 
1421           if (HasValue) {
1422             // Has a value associated with it.
1423             ++i; // Skip the '0' that terminates the "kind" string.
1424             while (Record[i] != 0 && i != e)
1425               ValStr += Record[i++];
1426             assert(Record[i] == 0 && "Value string not null terminated");
1427           }
1428 
1429           B.addAttribute(KindStr.str(), ValStr.str());
1430         }
1431       }
1432 
1433       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1434       break;
1435     }
1436     }
1437   }
1438 }
1439 
1440 std::error_code BitcodeReader::parseTypeTable() {
1441   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1442     return error("Invalid record");
1443 
1444   return parseTypeTableBody();
1445 }
1446 
1447 std::error_code BitcodeReader::parseTypeTableBody() {
1448   if (!TypeList.empty())
1449     return error("Invalid multiple blocks");
1450 
1451   SmallVector<uint64_t, 64> Record;
1452   unsigned NumRecords = 0;
1453 
1454   SmallString<64> TypeName;
1455 
1456   // Read all the records for this type table.
1457   while (1) {
1458     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1459 
1460     switch (Entry.Kind) {
1461     case BitstreamEntry::SubBlock: // Handled for us already.
1462     case BitstreamEntry::Error:
1463       return error("Malformed block");
1464     case BitstreamEntry::EndBlock:
1465       if (NumRecords != TypeList.size())
1466         return error("Malformed block");
1467       return std::error_code();
1468     case BitstreamEntry::Record:
1469       // The interesting case.
1470       break;
1471     }
1472 
1473     // Read a record.
1474     Record.clear();
1475     Type *ResultTy = nullptr;
1476     switch (Stream.readRecord(Entry.ID, Record)) {
1477     default:
1478       return error("Invalid value");
1479     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1480       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1481       // type list.  This allows us to reserve space.
1482       if (Record.size() < 1)
1483         return error("Invalid record");
1484       TypeList.resize(Record[0]);
1485       continue;
1486     case bitc::TYPE_CODE_VOID:      // VOID
1487       ResultTy = Type::getVoidTy(Context);
1488       break;
1489     case bitc::TYPE_CODE_HALF:     // HALF
1490       ResultTy = Type::getHalfTy(Context);
1491       break;
1492     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1493       ResultTy = Type::getFloatTy(Context);
1494       break;
1495     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1496       ResultTy = Type::getDoubleTy(Context);
1497       break;
1498     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1499       ResultTy = Type::getX86_FP80Ty(Context);
1500       break;
1501     case bitc::TYPE_CODE_FP128:     // FP128
1502       ResultTy = Type::getFP128Ty(Context);
1503       break;
1504     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1505       ResultTy = Type::getPPC_FP128Ty(Context);
1506       break;
1507     case bitc::TYPE_CODE_LABEL:     // LABEL
1508       ResultTy = Type::getLabelTy(Context);
1509       break;
1510     case bitc::TYPE_CODE_METADATA:  // METADATA
1511       ResultTy = Type::getMetadataTy(Context);
1512       break;
1513     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1514       ResultTy = Type::getX86_MMXTy(Context);
1515       break;
1516     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1517       ResultTy = Type::getTokenTy(Context);
1518       break;
1519     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1520       if (Record.size() < 1)
1521         return error("Invalid record");
1522 
1523       uint64_t NumBits = Record[0];
1524       if (NumBits < IntegerType::MIN_INT_BITS ||
1525           NumBits > IntegerType::MAX_INT_BITS)
1526         return error("Bitwidth for integer type out of range");
1527       ResultTy = IntegerType::get(Context, NumBits);
1528       break;
1529     }
1530     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1531                                     //          [pointee type, address space]
1532       if (Record.size() < 1)
1533         return error("Invalid record");
1534       unsigned AddressSpace = 0;
1535       if (Record.size() == 2)
1536         AddressSpace = Record[1];
1537       ResultTy = getTypeByID(Record[0]);
1538       if (!ResultTy ||
1539           !PointerType::isValidElementType(ResultTy))
1540         return error("Invalid type");
1541       ResultTy = PointerType::get(ResultTy, AddressSpace);
1542       break;
1543     }
1544     case bitc::TYPE_CODE_FUNCTION_OLD: {
1545       // FIXME: attrid is dead, remove it in LLVM 4.0
1546       // FUNCTION: [vararg, attrid, retty, paramty x N]
1547       if (Record.size() < 3)
1548         return error("Invalid record");
1549       SmallVector<Type*, 8> ArgTys;
1550       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1551         if (Type *T = getTypeByID(Record[i]))
1552           ArgTys.push_back(T);
1553         else
1554           break;
1555       }
1556 
1557       ResultTy = getTypeByID(Record[2]);
1558       if (!ResultTy || ArgTys.size() < Record.size()-3)
1559         return error("Invalid type");
1560 
1561       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1562       break;
1563     }
1564     case bitc::TYPE_CODE_FUNCTION: {
1565       // FUNCTION: [vararg, retty, paramty x N]
1566       if (Record.size() < 2)
1567         return error("Invalid record");
1568       SmallVector<Type*, 8> ArgTys;
1569       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1570         if (Type *T = getTypeByID(Record[i])) {
1571           if (!FunctionType::isValidArgumentType(T))
1572             return error("Invalid function argument type");
1573           ArgTys.push_back(T);
1574         }
1575         else
1576           break;
1577       }
1578 
1579       ResultTy = getTypeByID(Record[1]);
1580       if (!ResultTy || ArgTys.size() < Record.size()-2)
1581         return error("Invalid type");
1582 
1583       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1584       break;
1585     }
1586     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1587       if (Record.size() < 1)
1588         return error("Invalid record");
1589       SmallVector<Type*, 8> EltTys;
1590       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1591         if (Type *T = getTypeByID(Record[i]))
1592           EltTys.push_back(T);
1593         else
1594           break;
1595       }
1596       if (EltTys.size() != Record.size()-1)
1597         return error("Invalid type");
1598       ResultTy = StructType::get(Context, EltTys, Record[0]);
1599       break;
1600     }
1601     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1602       if (convertToString(Record, 0, TypeName))
1603         return error("Invalid record");
1604       continue;
1605 
1606     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1607       if (Record.size() < 1)
1608         return error("Invalid record");
1609 
1610       if (NumRecords >= TypeList.size())
1611         return error("Invalid TYPE table");
1612 
1613       // Check to see if this was forward referenced, if so fill in the temp.
1614       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1615       if (Res) {
1616         Res->setName(TypeName);
1617         TypeList[NumRecords] = nullptr;
1618       } else  // Otherwise, create a new struct.
1619         Res = createIdentifiedStructType(Context, TypeName);
1620       TypeName.clear();
1621 
1622       SmallVector<Type*, 8> EltTys;
1623       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1624         if (Type *T = getTypeByID(Record[i]))
1625           EltTys.push_back(T);
1626         else
1627           break;
1628       }
1629       if (EltTys.size() != Record.size()-1)
1630         return error("Invalid record");
1631       Res->setBody(EltTys, Record[0]);
1632       ResultTy = Res;
1633       break;
1634     }
1635     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1636       if (Record.size() != 1)
1637         return error("Invalid record");
1638 
1639       if (NumRecords >= TypeList.size())
1640         return error("Invalid TYPE table");
1641 
1642       // Check to see if this was forward referenced, if so fill in the temp.
1643       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1644       if (Res) {
1645         Res->setName(TypeName);
1646         TypeList[NumRecords] = nullptr;
1647       } else  // Otherwise, create a new struct with no body.
1648         Res = createIdentifiedStructType(Context, TypeName);
1649       TypeName.clear();
1650       ResultTy = Res;
1651       break;
1652     }
1653     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1654       if (Record.size() < 2)
1655         return error("Invalid record");
1656       ResultTy = getTypeByID(Record[1]);
1657       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1658         return error("Invalid type");
1659       ResultTy = ArrayType::get(ResultTy, Record[0]);
1660       break;
1661     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1662       if (Record.size() < 2)
1663         return error("Invalid record");
1664       if (Record[0] == 0)
1665         return error("Invalid vector length");
1666       ResultTy = getTypeByID(Record[1]);
1667       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1668         return error("Invalid type");
1669       ResultTy = VectorType::get(ResultTy, Record[0]);
1670       break;
1671     }
1672 
1673     if (NumRecords >= TypeList.size())
1674       return error("Invalid TYPE table");
1675     if (TypeList[NumRecords])
1676       return error(
1677           "Invalid TYPE table: Only named structs can be forward referenced");
1678     assert(ResultTy && "Didn't read a type?");
1679     TypeList[NumRecords++] = ResultTy;
1680   }
1681 }
1682 
1683 std::error_code BitcodeReader::parseOperandBundleTags() {
1684   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1685     return error("Invalid record");
1686 
1687   if (!BundleTags.empty())
1688     return error("Invalid multiple blocks");
1689 
1690   SmallVector<uint64_t, 64> Record;
1691 
1692   while (1) {
1693     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1694 
1695     switch (Entry.Kind) {
1696     case BitstreamEntry::SubBlock: // Handled for us already.
1697     case BitstreamEntry::Error:
1698       return error("Malformed block");
1699     case BitstreamEntry::EndBlock:
1700       return std::error_code();
1701     case BitstreamEntry::Record:
1702       // The interesting case.
1703       break;
1704     }
1705 
1706     // Tags are implicitly mapped to integers by their order.
1707 
1708     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1709       return error("Invalid record");
1710 
1711     // OPERAND_BUNDLE_TAG: [strchr x N]
1712     BundleTags.emplace_back();
1713     if (convertToString(Record, 0, BundleTags.back()))
1714       return error("Invalid record");
1715     Record.clear();
1716   }
1717 }
1718 
1719 /// Associate a value with its name from the given index in the provided record.
1720 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1721                                             unsigned NameIndex, Triple &TT) {
1722   SmallString<128> ValueName;
1723   if (convertToString(Record, NameIndex, ValueName))
1724     return error("Invalid record");
1725   unsigned ValueID = Record[0];
1726   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1727     return error("Invalid record");
1728   Value *V = ValueList[ValueID];
1729 
1730   StringRef NameStr(ValueName.data(), ValueName.size());
1731   if (NameStr.find_first_of(0) != StringRef::npos)
1732     return error("Invalid value name");
1733   V->setName(NameStr);
1734   auto *GO = dyn_cast<GlobalObject>(V);
1735   if (GO) {
1736     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1737       if (TT.isOSBinFormatMachO())
1738         GO->setComdat(nullptr);
1739       else
1740         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1741     }
1742   }
1743   return V;
1744 }
1745 
1746 /// Helper to note and return the current location, and jump to the given
1747 /// offset.
1748 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1749                                        BitstreamCursor &Stream) {
1750   // Save the current parsing location so we can jump back at the end
1751   // of the VST read.
1752   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1753   Stream.JumpToBit(Offset * 32);
1754 #ifndef NDEBUG
1755   // Do some checking if we are in debug mode.
1756   BitstreamEntry Entry = Stream.advance();
1757   assert(Entry.Kind == BitstreamEntry::SubBlock);
1758   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1759 #else
1760   // In NDEBUG mode ignore the output so we don't get an unused variable
1761   // warning.
1762   Stream.advance();
1763 #endif
1764   return CurrentBit;
1765 }
1766 
1767 /// Parse the value symbol table at either the current parsing location or
1768 /// at the given bit offset if provided.
1769 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1770   uint64_t CurrentBit;
1771   // Pass in the Offset to distinguish between calling for the module-level
1772   // VST (where we want to jump to the VST offset) and the function-level
1773   // VST (where we don't).
1774   if (Offset > 0)
1775     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1776 
1777   // Compute the delta between the bitcode indices in the VST (the word offset
1778   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1779   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1780   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1781   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1782   // just before entering the VST subblock because: 1) the EnterSubBlock
1783   // changes the AbbrevID width; 2) the VST block is nested within the same
1784   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1785   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1786   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1787   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1788   unsigned FuncBitcodeOffsetDelta =
1789       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1790 
1791   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1792     return error("Invalid record");
1793 
1794   SmallVector<uint64_t, 64> Record;
1795 
1796   Triple TT(TheModule->getTargetTriple());
1797 
1798   // Read all the records for this value table.
1799   SmallString<128> ValueName;
1800   while (1) {
1801     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1802 
1803     switch (Entry.Kind) {
1804     case BitstreamEntry::SubBlock: // Handled for us already.
1805     case BitstreamEntry::Error:
1806       return error("Malformed block");
1807     case BitstreamEntry::EndBlock:
1808       if (Offset > 0)
1809         Stream.JumpToBit(CurrentBit);
1810       return std::error_code();
1811     case BitstreamEntry::Record:
1812       // The interesting case.
1813       break;
1814     }
1815 
1816     // Read a record.
1817     Record.clear();
1818     switch (Stream.readRecord(Entry.ID, Record)) {
1819     default:  // Default behavior: unknown type.
1820       break;
1821     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1822       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1823       if (std::error_code EC = ValOrErr.getError())
1824         return EC;
1825       ValOrErr.get();
1826       break;
1827     }
1828     case bitc::VST_CODE_FNENTRY: {
1829       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1830       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1831       if (std::error_code EC = ValOrErr.getError())
1832         return EC;
1833       Value *V = ValOrErr.get();
1834 
1835       auto *GO = dyn_cast<GlobalObject>(V);
1836       if (!GO) {
1837         // If this is an alias, need to get the actual Function object
1838         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1839         auto *GA = dyn_cast<GlobalAlias>(V);
1840         if (GA)
1841           GO = GA->getBaseObject();
1842         assert(GO);
1843       }
1844 
1845       uint64_t FuncWordOffset = Record[1];
1846       Function *F = dyn_cast<Function>(GO);
1847       assert(F);
1848       uint64_t FuncBitOffset = FuncWordOffset * 32;
1849       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1850       // Set the LastFunctionBlockBit to point to the last function block.
1851       // Later when parsing is resumed after function materialization,
1852       // we can simply skip that last function block.
1853       if (FuncBitOffset > LastFunctionBlockBit)
1854         LastFunctionBlockBit = FuncBitOffset;
1855       break;
1856     }
1857     case bitc::VST_CODE_BBENTRY: {
1858       if (convertToString(Record, 1, ValueName))
1859         return error("Invalid record");
1860       BasicBlock *BB = getBasicBlock(Record[0]);
1861       if (!BB)
1862         return error("Invalid record");
1863 
1864       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1865       ValueName.clear();
1866       break;
1867     }
1868     }
1869   }
1870 }
1871 
1872 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
1873 std::error_code
1874 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
1875   if (Record.size() < 2)
1876     return error("Invalid record");
1877 
1878   unsigned Kind = Record[0];
1879   SmallString<8> Name(Record.begin() + 1, Record.end());
1880 
1881   unsigned NewKind = TheModule->getMDKindID(Name.str());
1882   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1883     return error("Conflicting METADATA_KIND records");
1884   return std::error_code();
1885 }
1886 
1887 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1888 
1889 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
1890                                                     StringRef Blob,
1891                                                     unsigned &NextMetadataNo) {
1892   // All the MDStrings in the block are emitted together in a single
1893   // record.  The strings are concatenated and stored in a blob along with
1894   // their sizes.
1895   if (Record.size() != 2)
1896     return error("Invalid record: metadata strings layout");
1897 
1898   unsigned NumStrings = Record[0];
1899   unsigned StringsOffset = Record[1];
1900   if (!NumStrings)
1901     return error("Invalid record: metadata strings with no strings");
1902   if (StringsOffset >= Blob.size())
1903     return error("Invalid record: metadata strings corrupt offset");
1904 
1905   StringRef Lengths = Blob.slice(0, StringsOffset);
1906   SimpleBitstreamCursor R(*StreamFile);
1907   R.jumpToPointer(Lengths.begin());
1908 
1909   // Ensure that Blob doesn't get invalidated, even if this is reading from
1910   // a StreamingMemoryObject with corrupt data.
1911   R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset);
1912 
1913   StringRef Strings = Blob.drop_front(StringsOffset);
1914   do {
1915     if (R.AtEndOfStream())
1916       return error("Invalid record: metadata strings bad length");
1917 
1918     unsigned Size = R.ReadVBR(6);
1919     if (Strings.size() < Size)
1920       return error("Invalid record: metadata strings truncated chars");
1921 
1922     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
1923                              NextMetadataNo++);
1924     Strings = Strings.drop_front(Size);
1925   } while (--NumStrings);
1926 
1927   return std::error_code();
1928 }
1929 
1930 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
1931 /// module level metadata.
1932 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
1933   IsMetadataMaterialized = true;
1934   unsigned NextMetadataNo = MetadataList.size();
1935 
1936   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1937     return error("Invalid record");
1938 
1939   SmallVector<uint64_t, 64> Record;
1940 
1941   auto getMD = [&](unsigned ID) -> Metadata * {
1942     return MetadataList.getMetadataFwdRef(ID);
1943   };
1944   auto getMDOrNull = [&](unsigned ID) -> Metadata *{
1945     if (ID)
1946       return getMD(ID - 1);
1947     return nullptr;
1948   };
1949   auto getMDString = [&](unsigned ID) -> MDString *{
1950     // This requires that the ID is not really a forward reference.  In
1951     // particular, the MDString must already have been resolved.
1952     return cast_or_null<MDString>(getMDOrNull(ID));
1953   };
1954 
1955 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS)                                 \
1956   (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1957 
1958   // Read all the records.
1959   while (1) {
1960     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1961 
1962     switch (Entry.Kind) {
1963     case BitstreamEntry::SubBlock: // Handled for us already.
1964     case BitstreamEntry::Error:
1965       return error("Malformed block");
1966     case BitstreamEntry::EndBlock:
1967       MetadataList.tryToResolveCycles();
1968       return std::error_code();
1969     case BitstreamEntry::Record:
1970       // The interesting case.
1971       break;
1972     }
1973 
1974     // Read a record.
1975     Record.clear();
1976     StringRef Blob;
1977     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
1978     bool IsDistinct = false;
1979     switch (Code) {
1980     default:  // Default behavior: ignore.
1981       break;
1982     case bitc::METADATA_NAME: {
1983       // Read name of the named metadata.
1984       SmallString<8> Name(Record.begin(), Record.end());
1985       Record.clear();
1986       Code = Stream.ReadCode();
1987 
1988       unsigned NextBitCode = Stream.readRecord(Code, Record);
1989       if (NextBitCode != bitc::METADATA_NAMED_NODE)
1990         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
1991 
1992       // Read named metadata elements.
1993       unsigned Size = Record.size();
1994       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1995       for (unsigned i = 0; i != Size; ++i) {
1996         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
1997         if (!MD)
1998           return error("Invalid record");
1999         NMD->addOperand(MD);
2000       }
2001       break;
2002     }
2003     case bitc::METADATA_OLD_FN_NODE: {
2004       // FIXME: Remove in 4.0.
2005       // This is a LocalAsMetadata record, the only type of function-local
2006       // metadata.
2007       if (Record.size() % 2 == 1)
2008         return error("Invalid record");
2009 
2010       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2011       // to be legal, but there's no upgrade path.
2012       auto dropRecord = [&] {
2013         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2014       };
2015       if (Record.size() != 2) {
2016         dropRecord();
2017         break;
2018       }
2019 
2020       Type *Ty = getTypeByID(Record[0]);
2021       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2022         dropRecord();
2023         break;
2024       }
2025 
2026       MetadataList.assignValue(
2027           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2028           NextMetadataNo++);
2029       break;
2030     }
2031     case bitc::METADATA_OLD_NODE: {
2032       // FIXME: Remove in 4.0.
2033       if (Record.size() % 2 == 1)
2034         return error("Invalid record");
2035 
2036       unsigned Size = Record.size();
2037       SmallVector<Metadata *, 8> Elts;
2038       for (unsigned i = 0; i != Size; i += 2) {
2039         Type *Ty = getTypeByID(Record[i]);
2040         if (!Ty)
2041           return error("Invalid record");
2042         if (Ty->isMetadataTy())
2043           Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1]));
2044         else if (!Ty->isVoidTy()) {
2045           auto *MD =
2046               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2047           assert(isa<ConstantAsMetadata>(MD) &&
2048                  "Expected non-function-local metadata");
2049           Elts.push_back(MD);
2050         } else
2051           Elts.push_back(nullptr);
2052       }
2053       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2054       break;
2055     }
2056     case bitc::METADATA_VALUE: {
2057       if (Record.size() != 2)
2058         return error("Invalid record");
2059 
2060       Type *Ty = getTypeByID(Record[0]);
2061       if (Ty->isMetadataTy() || Ty->isVoidTy())
2062         return error("Invalid record");
2063 
2064       MetadataList.assignValue(
2065           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2066           NextMetadataNo++);
2067       break;
2068     }
2069     case bitc::METADATA_DISTINCT_NODE:
2070       IsDistinct = true;
2071       // fallthrough...
2072     case bitc::METADATA_NODE: {
2073       SmallVector<Metadata *, 8> Elts;
2074       Elts.reserve(Record.size());
2075       for (unsigned ID : Record)
2076         Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr);
2077       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2078                                           : MDNode::get(Context, Elts),
2079                                NextMetadataNo++);
2080       break;
2081     }
2082     case bitc::METADATA_LOCATION: {
2083       if (Record.size() != 5)
2084         return error("Invalid record");
2085 
2086       unsigned Line = Record[1];
2087       unsigned Column = Record[2];
2088       MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]);
2089       if (!Scope)
2090         return error("Invalid record");
2091       Metadata *InlinedAt =
2092           Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr;
2093       MetadataList.assignValue(
2094           GET_OR_DISTINCT(DILocation, Record[0],
2095                           (Context, Line, Column, Scope, InlinedAt)),
2096           NextMetadataNo++);
2097       break;
2098     }
2099     case bitc::METADATA_GENERIC_DEBUG: {
2100       if (Record.size() < 4)
2101         return error("Invalid record");
2102 
2103       unsigned Tag = Record[1];
2104       unsigned Version = Record[2];
2105 
2106       if (Tag >= 1u << 16 || Version != 0)
2107         return error("Invalid record");
2108 
2109       auto *Header = getMDString(Record[3]);
2110       SmallVector<Metadata *, 8> DwarfOps;
2111       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2112         DwarfOps.push_back(Record[I]
2113                                ? MetadataList.getMetadataFwdRef(Record[I] - 1)
2114                                : nullptr);
2115       MetadataList.assignValue(
2116           GET_OR_DISTINCT(GenericDINode, Record[0],
2117                           (Context, Tag, Header, DwarfOps)),
2118           NextMetadataNo++);
2119       break;
2120     }
2121     case bitc::METADATA_SUBRANGE: {
2122       if (Record.size() != 3)
2123         return error("Invalid record");
2124 
2125       MetadataList.assignValue(
2126           GET_OR_DISTINCT(DISubrange, Record[0],
2127                           (Context, Record[1], unrotateSign(Record[2]))),
2128           NextMetadataNo++);
2129       break;
2130     }
2131     case bitc::METADATA_ENUMERATOR: {
2132       if (Record.size() != 3)
2133         return error("Invalid record");
2134 
2135       MetadataList.assignValue(
2136           GET_OR_DISTINCT(
2137               DIEnumerator, Record[0],
2138               (Context, unrotateSign(Record[1]), getMDString(Record[2]))),
2139           NextMetadataNo++);
2140       break;
2141     }
2142     case bitc::METADATA_BASIC_TYPE: {
2143       if (Record.size() != 6)
2144         return error("Invalid record");
2145 
2146       MetadataList.assignValue(
2147           GET_OR_DISTINCT(DIBasicType, Record[0],
2148                           (Context, Record[1], getMDString(Record[2]),
2149                            Record[3], Record[4], Record[5])),
2150           NextMetadataNo++);
2151       break;
2152     }
2153     case bitc::METADATA_DERIVED_TYPE: {
2154       if (Record.size() != 12)
2155         return error("Invalid record");
2156 
2157       MetadataList.assignValue(
2158           GET_OR_DISTINCT(DIDerivedType, Record[0],
2159                           (Context, Record[1], getMDString(Record[2]),
2160                            getMDOrNull(Record[3]), Record[4],
2161                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2162                            Record[7], Record[8], Record[9], Record[10],
2163                            getMDOrNull(Record[11]))),
2164           NextMetadataNo++);
2165       break;
2166     }
2167     case bitc::METADATA_COMPOSITE_TYPE: {
2168       if (Record.size() != 16)
2169         return error("Invalid record");
2170 
2171       MetadataList.assignValue(
2172           GET_OR_DISTINCT(DICompositeType, Record[0],
2173                           (Context, Record[1], getMDString(Record[2]),
2174                            getMDOrNull(Record[3]), Record[4],
2175                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2176                            Record[7], Record[8], Record[9], Record[10],
2177                            getMDOrNull(Record[11]), Record[12],
2178                            getMDOrNull(Record[13]), getMDOrNull(Record[14]),
2179                            getMDString(Record[15]))),
2180           NextMetadataNo++);
2181       break;
2182     }
2183     case bitc::METADATA_SUBROUTINE_TYPE: {
2184       if (Record.size() != 3)
2185         return error("Invalid record");
2186 
2187       MetadataList.assignValue(
2188           GET_OR_DISTINCT(DISubroutineType, Record[0],
2189                           (Context, Record[1], getMDOrNull(Record[2]))),
2190           NextMetadataNo++);
2191       break;
2192     }
2193 
2194     case bitc::METADATA_MODULE: {
2195       if (Record.size() != 6)
2196         return error("Invalid record");
2197 
2198       MetadataList.assignValue(
2199           GET_OR_DISTINCT(DIModule, Record[0],
2200                           (Context, getMDOrNull(Record[1]),
2201                            getMDString(Record[2]), getMDString(Record[3]),
2202                            getMDString(Record[4]), getMDString(Record[5]))),
2203           NextMetadataNo++);
2204       break;
2205     }
2206 
2207     case bitc::METADATA_FILE: {
2208       if (Record.size() != 3)
2209         return error("Invalid record");
2210 
2211       MetadataList.assignValue(
2212           GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]),
2213                                               getMDString(Record[2]))),
2214           NextMetadataNo++);
2215       break;
2216     }
2217     case bitc::METADATA_COMPILE_UNIT: {
2218       if (Record.size() < 14 || Record.size() > 16)
2219         return error("Invalid record");
2220 
2221       // Ignore Record[0], which indicates whether this compile unit is
2222       // distinct.  It's always distinct.
2223       MetadataList.assignValue(
2224           DICompileUnit::getDistinct(
2225               Context, Record[1], getMDOrNull(Record[2]),
2226               getMDString(Record[3]), Record[4], getMDString(Record[5]),
2227               Record[6], getMDString(Record[7]), Record[8],
2228               getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2229               getMDOrNull(Record[11]), getMDOrNull(Record[12]),
2230               getMDOrNull(Record[13]),
2231               Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2232               Record.size() <= 14 ? 0 : Record[14]),
2233           NextMetadataNo++);
2234       break;
2235     }
2236     case bitc::METADATA_SUBPROGRAM: {
2237       if (Record.size() != 18 && Record.size() != 19)
2238         return error("Invalid record");
2239 
2240       bool HasFn = Record.size() == 19;
2241       DISubprogram *SP = GET_OR_DISTINCT(
2242           DISubprogram,
2243           Record[0] || Record[8], // All definitions should be distinct.
2244           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2245            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2246            getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2247            getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
2248            Record[14], getMDOrNull(Record[15 + HasFn]),
2249            getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn])));
2250       MetadataList.assignValue(SP, NextMetadataNo++);
2251 
2252       // Upgrade sp->function mapping to function->sp mapping.
2253       if (HasFn && Record[15]) {
2254         if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15])))
2255           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2256             if (F->isMaterializable())
2257               // Defer until materialized; unmaterialized functions may not have
2258               // metadata.
2259               FunctionsWithSPs[F] = SP;
2260             else if (!F->empty())
2261               F->setSubprogram(SP);
2262           }
2263       }
2264       break;
2265     }
2266     case bitc::METADATA_LEXICAL_BLOCK: {
2267       if (Record.size() != 5)
2268         return error("Invalid record");
2269 
2270       MetadataList.assignValue(
2271           GET_OR_DISTINCT(DILexicalBlock, Record[0],
2272                           (Context, getMDOrNull(Record[1]),
2273                            getMDOrNull(Record[2]), Record[3], Record[4])),
2274           NextMetadataNo++);
2275       break;
2276     }
2277     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2278       if (Record.size() != 4)
2279         return error("Invalid record");
2280 
2281       MetadataList.assignValue(
2282           GET_OR_DISTINCT(DILexicalBlockFile, Record[0],
2283                           (Context, getMDOrNull(Record[1]),
2284                            getMDOrNull(Record[2]), Record[3])),
2285           NextMetadataNo++);
2286       break;
2287     }
2288     case bitc::METADATA_NAMESPACE: {
2289       if (Record.size() != 5)
2290         return error("Invalid record");
2291 
2292       MetadataList.assignValue(
2293           GET_OR_DISTINCT(DINamespace, Record[0],
2294                           (Context, getMDOrNull(Record[1]),
2295                            getMDOrNull(Record[2]), getMDString(Record[3]),
2296                            Record[4])),
2297           NextMetadataNo++);
2298       break;
2299     }
2300     case bitc::METADATA_MACRO: {
2301       if (Record.size() != 5)
2302         return error("Invalid record");
2303 
2304       MetadataList.assignValue(
2305           GET_OR_DISTINCT(DIMacro, Record[0],
2306                           (Context, Record[1], Record[2],
2307                            getMDString(Record[3]), getMDString(Record[4]))),
2308           NextMetadataNo++);
2309       break;
2310     }
2311     case bitc::METADATA_MACRO_FILE: {
2312       if (Record.size() != 5)
2313         return error("Invalid record");
2314 
2315       MetadataList.assignValue(
2316           GET_OR_DISTINCT(DIMacroFile, Record[0],
2317                           (Context, Record[1], Record[2],
2318                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2319           NextMetadataNo++);
2320       break;
2321     }
2322     case bitc::METADATA_TEMPLATE_TYPE: {
2323       if (Record.size() != 3)
2324         return error("Invalid record");
2325 
2326       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2327                                                Record[0],
2328                                                (Context, getMDString(Record[1]),
2329                                                 getMDOrNull(Record[2]))),
2330                                NextMetadataNo++);
2331       break;
2332     }
2333     case bitc::METADATA_TEMPLATE_VALUE: {
2334       if (Record.size() != 5)
2335         return error("Invalid record");
2336 
2337       MetadataList.assignValue(
2338           GET_OR_DISTINCT(DITemplateValueParameter, Record[0],
2339                           (Context, Record[1], getMDString(Record[2]),
2340                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2341           NextMetadataNo++);
2342       break;
2343     }
2344     case bitc::METADATA_GLOBAL_VAR: {
2345       if (Record.size() != 11)
2346         return error("Invalid record");
2347 
2348       MetadataList.assignValue(
2349           GET_OR_DISTINCT(DIGlobalVariable, Record[0],
2350                           (Context, getMDOrNull(Record[1]),
2351                            getMDString(Record[2]), getMDString(Record[3]),
2352                            getMDOrNull(Record[4]), Record[5],
2353                            getMDOrNull(Record[6]), Record[7], Record[8],
2354                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2355           NextMetadataNo++);
2356       break;
2357     }
2358     case bitc::METADATA_LOCAL_VAR: {
2359       // 10th field is for the obseleted 'inlinedAt:' field.
2360       if (Record.size() < 8 || Record.size() > 10)
2361         return error("Invalid record");
2362 
2363       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2364       // DW_TAG_arg_variable.
2365       bool HasTag = Record.size() > 8;
2366       MetadataList.assignValue(
2367           GET_OR_DISTINCT(DILocalVariable, Record[0],
2368                           (Context, getMDOrNull(Record[1 + HasTag]),
2369                            getMDString(Record[2 + HasTag]),
2370                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2371                            getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
2372                            Record[7 + HasTag])),
2373           NextMetadataNo++);
2374       break;
2375     }
2376     case bitc::METADATA_EXPRESSION: {
2377       if (Record.size() < 1)
2378         return error("Invalid record");
2379 
2380       MetadataList.assignValue(
2381           GET_OR_DISTINCT(DIExpression, Record[0],
2382                           (Context, makeArrayRef(Record).slice(1))),
2383           NextMetadataNo++);
2384       break;
2385     }
2386     case bitc::METADATA_OBJC_PROPERTY: {
2387       if (Record.size() != 8)
2388         return error("Invalid record");
2389 
2390       MetadataList.assignValue(
2391           GET_OR_DISTINCT(DIObjCProperty, Record[0],
2392                           (Context, getMDString(Record[1]),
2393                            getMDOrNull(Record[2]), Record[3],
2394                            getMDString(Record[4]), getMDString(Record[5]),
2395                            Record[6], getMDOrNull(Record[7]))),
2396           NextMetadataNo++);
2397       break;
2398     }
2399     case bitc::METADATA_IMPORTED_ENTITY: {
2400       if (Record.size() != 6)
2401         return error("Invalid record");
2402 
2403       MetadataList.assignValue(
2404           GET_OR_DISTINCT(DIImportedEntity, Record[0],
2405                           (Context, Record[1], getMDOrNull(Record[2]),
2406                            getMDOrNull(Record[3]), Record[4],
2407                            getMDString(Record[5]))),
2408           NextMetadataNo++);
2409       break;
2410     }
2411     case bitc::METADATA_STRING_OLD: {
2412       std::string String(Record.begin(), Record.end());
2413 
2414       // Test for upgrading !llvm.loop.
2415       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2416 
2417       Metadata *MD = MDString::get(Context, String);
2418       MetadataList.assignValue(MD, NextMetadataNo++);
2419       break;
2420     }
2421     case bitc::METADATA_STRINGS:
2422       if (std::error_code EC =
2423               parseMetadataStrings(Record, Blob, NextMetadataNo))
2424         return EC;
2425       break;
2426     case bitc::METADATA_KIND: {
2427       // Support older bitcode files that had METADATA_KIND records in a
2428       // block with METADATA_BLOCK_ID.
2429       if (std::error_code EC = parseMetadataKindRecord(Record))
2430         return EC;
2431       break;
2432     }
2433     }
2434   }
2435 #undef GET_OR_DISTINCT
2436 }
2437 
2438 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2439 std::error_code BitcodeReader::parseMetadataKinds() {
2440   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2441     return error("Invalid record");
2442 
2443   SmallVector<uint64_t, 64> Record;
2444 
2445   // Read all the records.
2446   while (1) {
2447     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2448 
2449     switch (Entry.Kind) {
2450     case BitstreamEntry::SubBlock: // Handled for us already.
2451     case BitstreamEntry::Error:
2452       return error("Malformed block");
2453     case BitstreamEntry::EndBlock:
2454       return std::error_code();
2455     case BitstreamEntry::Record:
2456       // The interesting case.
2457       break;
2458     }
2459 
2460     // Read a record.
2461     Record.clear();
2462     unsigned Code = Stream.readRecord(Entry.ID, Record);
2463     switch (Code) {
2464     default: // Default behavior: ignore.
2465       break;
2466     case bitc::METADATA_KIND: {
2467       if (std::error_code EC = parseMetadataKindRecord(Record))
2468         return EC;
2469       break;
2470     }
2471     }
2472   }
2473 }
2474 
2475 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2476 /// encoding.
2477 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2478   if ((V & 1) == 0)
2479     return V >> 1;
2480   if (V != 1)
2481     return -(V >> 1);
2482   // There is no such thing as -0 with integers.  "-0" really means MININT.
2483   return 1ULL << 63;
2484 }
2485 
2486 /// Resolve all of the initializers for global values and aliases that we can.
2487 std::error_code BitcodeReader::resolveGlobalAndAliasInits() {
2488   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2489   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
2490   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2491   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2492   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2493 
2494   GlobalInitWorklist.swap(GlobalInits);
2495   AliasInitWorklist.swap(AliasInits);
2496   FunctionPrefixWorklist.swap(FunctionPrefixes);
2497   FunctionPrologueWorklist.swap(FunctionPrologues);
2498   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2499 
2500   while (!GlobalInitWorklist.empty()) {
2501     unsigned ValID = GlobalInitWorklist.back().second;
2502     if (ValID >= ValueList.size()) {
2503       // Not ready to resolve this yet, it requires something later in the file.
2504       GlobalInits.push_back(GlobalInitWorklist.back());
2505     } else {
2506       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2507         GlobalInitWorklist.back().first->setInitializer(C);
2508       else
2509         return error("Expected a constant");
2510     }
2511     GlobalInitWorklist.pop_back();
2512   }
2513 
2514   while (!AliasInitWorklist.empty()) {
2515     unsigned ValID = AliasInitWorklist.back().second;
2516     if (ValID >= ValueList.size()) {
2517       AliasInits.push_back(AliasInitWorklist.back());
2518     } else {
2519       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2520       if (!C)
2521         return error("Expected a constant");
2522       GlobalAlias *Alias = AliasInitWorklist.back().first;
2523       if (C->getType() != Alias->getType())
2524         return error("Alias and aliasee types don't match");
2525       Alias->setAliasee(C);
2526     }
2527     AliasInitWorklist.pop_back();
2528   }
2529 
2530   while (!FunctionPrefixWorklist.empty()) {
2531     unsigned ValID = FunctionPrefixWorklist.back().second;
2532     if (ValID >= ValueList.size()) {
2533       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2534     } else {
2535       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2536         FunctionPrefixWorklist.back().first->setPrefixData(C);
2537       else
2538         return error("Expected a constant");
2539     }
2540     FunctionPrefixWorklist.pop_back();
2541   }
2542 
2543   while (!FunctionPrologueWorklist.empty()) {
2544     unsigned ValID = FunctionPrologueWorklist.back().second;
2545     if (ValID >= ValueList.size()) {
2546       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2547     } else {
2548       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2549         FunctionPrologueWorklist.back().first->setPrologueData(C);
2550       else
2551         return error("Expected a constant");
2552     }
2553     FunctionPrologueWorklist.pop_back();
2554   }
2555 
2556   while (!FunctionPersonalityFnWorklist.empty()) {
2557     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2558     if (ValID >= ValueList.size()) {
2559       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2560     } else {
2561       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2562         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2563       else
2564         return error("Expected a constant");
2565     }
2566     FunctionPersonalityFnWorklist.pop_back();
2567   }
2568 
2569   return std::error_code();
2570 }
2571 
2572 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2573   SmallVector<uint64_t, 8> Words(Vals.size());
2574   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2575                  BitcodeReader::decodeSignRotatedValue);
2576 
2577   return APInt(TypeBits, Words);
2578 }
2579 
2580 std::error_code BitcodeReader::parseConstants() {
2581   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2582     return error("Invalid record");
2583 
2584   SmallVector<uint64_t, 64> Record;
2585 
2586   // Read all the records for this value table.
2587   Type *CurTy = Type::getInt32Ty(Context);
2588   unsigned NextCstNo = ValueList.size();
2589   while (1) {
2590     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2591 
2592     switch (Entry.Kind) {
2593     case BitstreamEntry::SubBlock: // Handled for us already.
2594     case BitstreamEntry::Error:
2595       return error("Malformed block");
2596     case BitstreamEntry::EndBlock:
2597       if (NextCstNo != ValueList.size())
2598         return error("Invalid constant reference");
2599 
2600       // Once all the constants have been read, go through and resolve forward
2601       // references.
2602       ValueList.resolveConstantForwardRefs();
2603       return std::error_code();
2604     case BitstreamEntry::Record:
2605       // The interesting case.
2606       break;
2607     }
2608 
2609     // Read a record.
2610     Record.clear();
2611     Value *V = nullptr;
2612     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2613     switch (BitCode) {
2614     default:  // Default behavior: unknown constant
2615     case bitc::CST_CODE_UNDEF:     // UNDEF
2616       V = UndefValue::get(CurTy);
2617       break;
2618     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2619       if (Record.empty())
2620         return error("Invalid record");
2621       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2622         return error("Invalid record");
2623       CurTy = TypeList[Record[0]];
2624       continue;  // Skip the ValueList manipulation.
2625     case bitc::CST_CODE_NULL:      // NULL
2626       V = Constant::getNullValue(CurTy);
2627       break;
2628     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2629       if (!CurTy->isIntegerTy() || Record.empty())
2630         return error("Invalid record");
2631       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2632       break;
2633     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2634       if (!CurTy->isIntegerTy() || Record.empty())
2635         return error("Invalid record");
2636 
2637       APInt VInt =
2638           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2639       V = ConstantInt::get(Context, VInt);
2640 
2641       break;
2642     }
2643     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2644       if (Record.empty())
2645         return error("Invalid record");
2646       if (CurTy->isHalfTy())
2647         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2648                                              APInt(16, (uint16_t)Record[0])));
2649       else if (CurTy->isFloatTy())
2650         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2651                                              APInt(32, (uint32_t)Record[0])));
2652       else if (CurTy->isDoubleTy())
2653         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2654                                              APInt(64, Record[0])));
2655       else if (CurTy->isX86_FP80Ty()) {
2656         // Bits are not stored the same way as a normal i80 APInt, compensate.
2657         uint64_t Rearrange[2];
2658         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2659         Rearrange[1] = Record[0] >> 48;
2660         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2661                                              APInt(80, Rearrange)));
2662       } else if (CurTy->isFP128Ty())
2663         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2664                                              APInt(128, Record)));
2665       else if (CurTy->isPPC_FP128Ty())
2666         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2667                                              APInt(128, Record)));
2668       else
2669         V = UndefValue::get(CurTy);
2670       break;
2671     }
2672 
2673     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2674       if (Record.empty())
2675         return error("Invalid record");
2676 
2677       unsigned Size = Record.size();
2678       SmallVector<Constant*, 16> Elts;
2679 
2680       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2681         for (unsigned i = 0; i != Size; ++i)
2682           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2683                                                      STy->getElementType(i)));
2684         V = ConstantStruct::get(STy, Elts);
2685       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2686         Type *EltTy = ATy->getElementType();
2687         for (unsigned i = 0; i != Size; ++i)
2688           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2689         V = ConstantArray::get(ATy, Elts);
2690       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2691         Type *EltTy = VTy->getElementType();
2692         for (unsigned i = 0; i != Size; ++i)
2693           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2694         V = ConstantVector::get(Elts);
2695       } else {
2696         V = UndefValue::get(CurTy);
2697       }
2698       break;
2699     }
2700     case bitc::CST_CODE_STRING:    // STRING: [values]
2701     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2702       if (Record.empty())
2703         return error("Invalid record");
2704 
2705       SmallString<16> Elts(Record.begin(), Record.end());
2706       V = ConstantDataArray::getString(Context, Elts,
2707                                        BitCode == bitc::CST_CODE_CSTRING);
2708       break;
2709     }
2710     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2711       if (Record.empty())
2712         return error("Invalid record");
2713 
2714       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2715       if (EltTy->isIntegerTy(8)) {
2716         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2717         if (isa<VectorType>(CurTy))
2718           V = ConstantDataVector::get(Context, Elts);
2719         else
2720           V = ConstantDataArray::get(Context, Elts);
2721       } else if (EltTy->isIntegerTy(16)) {
2722         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2723         if (isa<VectorType>(CurTy))
2724           V = ConstantDataVector::get(Context, Elts);
2725         else
2726           V = ConstantDataArray::get(Context, Elts);
2727       } else if (EltTy->isIntegerTy(32)) {
2728         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2729         if (isa<VectorType>(CurTy))
2730           V = ConstantDataVector::get(Context, Elts);
2731         else
2732           V = ConstantDataArray::get(Context, Elts);
2733       } else if (EltTy->isIntegerTy(64)) {
2734         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2735         if (isa<VectorType>(CurTy))
2736           V = ConstantDataVector::get(Context, Elts);
2737         else
2738           V = ConstantDataArray::get(Context, Elts);
2739       } else if (EltTy->isHalfTy()) {
2740         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2741         if (isa<VectorType>(CurTy))
2742           V = ConstantDataVector::getFP(Context, Elts);
2743         else
2744           V = ConstantDataArray::getFP(Context, Elts);
2745       } else if (EltTy->isFloatTy()) {
2746         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2747         if (isa<VectorType>(CurTy))
2748           V = ConstantDataVector::getFP(Context, Elts);
2749         else
2750           V = ConstantDataArray::getFP(Context, Elts);
2751       } else if (EltTy->isDoubleTy()) {
2752         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2753         if (isa<VectorType>(CurTy))
2754           V = ConstantDataVector::getFP(Context, Elts);
2755         else
2756           V = ConstantDataArray::getFP(Context, Elts);
2757       } else {
2758         return error("Invalid type for value");
2759       }
2760       break;
2761     }
2762     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2763       if (Record.size() < 3)
2764         return error("Invalid record");
2765       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2766       if (Opc < 0) {
2767         V = UndefValue::get(CurTy);  // Unknown binop.
2768       } else {
2769         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2770         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2771         unsigned Flags = 0;
2772         if (Record.size() >= 4) {
2773           if (Opc == Instruction::Add ||
2774               Opc == Instruction::Sub ||
2775               Opc == Instruction::Mul ||
2776               Opc == Instruction::Shl) {
2777             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2778               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2779             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2780               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2781           } else if (Opc == Instruction::SDiv ||
2782                      Opc == Instruction::UDiv ||
2783                      Opc == Instruction::LShr ||
2784                      Opc == Instruction::AShr) {
2785             if (Record[3] & (1 << bitc::PEO_EXACT))
2786               Flags |= SDivOperator::IsExact;
2787           }
2788         }
2789         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2790       }
2791       break;
2792     }
2793     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2794       if (Record.size() < 3)
2795         return error("Invalid record");
2796       int Opc = getDecodedCastOpcode(Record[0]);
2797       if (Opc < 0) {
2798         V = UndefValue::get(CurTy);  // Unknown cast.
2799       } else {
2800         Type *OpTy = getTypeByID(Record[1]);
2801         if (!OpTy)
2802           return error("Invalid record");
2803         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2804         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2805         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2806       }
2807       break;
2808     }
2809     case bitc::CST_CODE_CE_INBOUNDS_GEP:
2810     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2811       unsigned OpNum = 0;
2812       Type *PointeeType = nullptr;
2813       if (Record.size() % 2)
2814         PointeeType = getTypeByID(Record[OpNum++]);
2815       SmallVector<Constant*, 16> Elts;
2816       while (OpNum != Record.size()) {
2817         Type *ElTy = getTypeByID(Record[OpNum++]);
2818         if (!ElTy)
2819           return error("Invalid record");
2820         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2821       }
2822 
2823       if (PointeeType &&
2824           PointeeType !=
2825               cast<SequentialType>(Elts[0]->getType()->getScalarType())
2826                   ->getElementType())
2827         return error("Explicit gep operator type does not match pointee type "
2828                      "of pointer operand");
2829 
2830       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2831       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2832                                          BitCode ==
2833                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
2834       break;
2835     }
2836     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2837       if (Record.size() < 3)
2838         return error("Invalid record");
2839 
2840       Type *SelectorTy = Type::getInt1Ty(Context);
2841 
2842       // The selector might be an i1 or an <n x i1>
2843       // Get the type from the ValueList before getting a forward ref.
2844       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2845         if (Value *V = ValueList[Record[0]])
2846           if (SelectorTy != V->getType())
2847             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2848 
2849       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2850                                                               SelectorTy),
2851                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2852                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2853       break;
2854     }
2855     case bitc::CST_CODE_CE_EXTRACTELT
2856         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2857       if (Record.size() < 3)
2858         return error("Invalid record");
2859       VectorType *OpTy =
2860         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2861       if (!OpTy)
2862         return error("Invalid record");
2863       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2864       Constant *Op1 = nullptr;
2865       if (Record.size() == 4) {
2866         Type *IdxTy = getTypeByID(Record[2]);
2867         if (!IdxTy)
2868           return error("Invalid record");
2869         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2870       } else // TODO: Remove with llvm 4.0
2871         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2872       if (!Op1)
2873         return error("Invalid record");
2874       V = ConstantExpr::getExtractElement(Op0, Op1);
2875       break;
2876     }
2877     case bitc::CST_CODE_CE_INSERTELT
2878         : { // CE_INSERTELT: [opval, opval, opty, opval]
2879       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2880       if (Record.size() < 3 || !OpTy)
2881         return error("Invalid record");
2882       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2883       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2884                                                   OpTy->getElementType());
2885       Constant *Op2 = nullptr;
2886       if (Record.size() == 4) {
2887         Type *IdxTy = getTypeByID(Record[2]);
2888         if (!IdxTy)
2889           return error("Invalid record");
2890         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2891       } else // TODO: Remove with llvm 4.0
2892         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2893       if (!Op2)
2894         return error("Invalid record");
2895       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2896       break;
2897     }
2898     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2899       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2900       if (Record.size() < 3 || !OpTy)
2901         return error("Invalid record");
2902       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2903       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2904       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2905                                                  OpTy->getNumElements());
2906       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2907       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2908       break;
2909     }
2910     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2911       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2912       VectorType *OpTy =
2913         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2914       if (Record.size() < 4 || !RTy || !OpTy)
2915         return error("Invalid record");
2916       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2917       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2918       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2919                                                  RTy->getNumElements());
2920       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2921       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2922       break;
2923     }
2924     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2925       if (Record.size() < 4)
2926         return error("Invalid record");
2927       Type *OpTy = getTypeByID(Record[0]);
2928       if (!OpTy)
2929         return error("Invalid record");
2930       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2931       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2932 
2933       if (OpTy->isFPOrFPVectorTy())
2934         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2935       else
2936         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2937       break;
2938     }
2939     // This maintains backward compatibility, pre-asm dialect keywords.
2940     // FIXME: Remove with the 4.0 release.
2941     case bitc::CST_CODE_INLINEASM_OLD: {
2942       if (Record.size() < 2)
2943         return error("Invalid record");
2944       std::string AsmStr, ConstrStr;
2945       bool HasSideEffects = Record[0] & 1;
2946       bool IsAlignStack = Record[0] >> 1;
2947       unsigned AsmStrSize = Record[1];
2948       if (2+AsmStrSize >= Record.size())
2949         return error("Invalid record");
2950       unsigned ConstStrSize = Record[2+AsmStrSize];
2951       if (3+AsmStrSize+ConstStrSize > Record.size())
2952         return error("Invalid record");
2953 
2954       for (unsigned i = 0; i != AsmStrSize; ++i)
2955         AsmStr += (char)Record[2+i];
2956       for (unsigned i = 0; i != ConstStrSize; ++i)
2957         ConstrStr += (char)Record[3+AsmStrSize+i];
2958       PointerType *PTy = cast<PointerType>(CurTy);
2959       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2960                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2961       break;
2962     }
2963     // This version adds support for the asm dialect keywords (e.g.,
2964     // inteldialect).
2965     case bitc::CST_CODE_INLINEASM: {
2966       if (Record.size() < 2)
2967         return error("Invalid record");
2968       std::string AsmStr, ConstrStr;
2969       bool HasSideEffects = Record[0] & 1;
2970       bool IsAlignStack = (Record[0] >> 1) & 1;
2971       unsigned AsmDialect = Record[0] >> 2;
2972       unsigned AsmStrSize = Record[1];
2973       if (2+AsmStrSize >= Record.size())
2974         return error("Invalid record");
2975       unsigned ConstStrSize = Record[2+AsmStrSize];
2976       if (3+AsmStrSize+ConstStrSize > Record.size())
2977         return error("Invalid record");
2978 
2979       for (unsigned i = 0; i != AsmStrSize; ++i)
2980         AsmStr += (char)Record[2+i];
2981       for (unsigned i = 0; i != ConstStrSize; ++i)
2982         ConstrStr += (char)Record[3+AsmStrSize+i];
2983       PointerType *PTy = cast<PointerType>(CurTy);
2984       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2985                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2986                          InlineAsm::AsmDialect(AsmDialect));
2987       break;
2988     }
2989     case bitc::CST_CODE_BLOCKADDRESS:{
2990       if (Record.size() < 3)
2991         return error("Invalid record");
2992       Type *FnTy = getTypeByID(Record[0]);
2993       if (!FnTy)
2994         return error("Invalid record");
2995       Function *Fn =
2996         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2997       if (!Fn)
2998         return error("Invalid record");
2999 
3000       // If the function is already parsed we can insert the block address right
3001       // away.
3002       BasicBlock *BB;
3003       unsigned BBID = Record[2];
3004       if (!BBID)
3005         // Invalid reference to entry block.
3006         return error("Invalid ID");
3007       if (!Fn->empty()) {
3008         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3009         for (size_t I = 0, E = BBID; I != E; ++I) {
3010           if (BBI == BBE)
3011             return error("Invalid ID");
3012           ++BBI;
3013         }
3014         BB = &*BBI;
3015       } else {
3016         // Otherwise insert a placeholder and remember it so it can be inserted
3017         // when the function is parsed.
3018         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3019         if (FwdBBs.empty())
3020           BasicBlockFwdRefQueue.push_back(Fn);
3021         if (FwdBBs.size() < BBID + 1)
3022           FwdBBs.resize(BBID + 1);
3023         if (!FwdBBs[BBID])
3024           FwdBBs[BBID] = BasicBlock::Create(Context);
3025         BB = FwdBBs[BBID];
3026       }
3027       V = BlockAddress::get(Fn, BB);
3028       break;
3029     }
3030     }
3031 
3032     ValueList.assignValue(V, NextCstNo);
3033     ++NextCstNo;
3034   }
3035 }
3036 
3037 std::error_code BitcodeReader::parseUseLists() {
3038   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3039     return error("Invalid record");
3040 
3041   // Read all the records.
3042   SmallVector<uint64_t, 64> Record;
3043   while (1) {
3044     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3045 
3046     switch (Entry.Kind) {
3047     case BitstreamEntry::SubBlock: // Handled for us already.
3048     case BitstreamEntry::Error:
3049       return error("Malformed block");
3050     case BitstreamEntry::EndBlock:
3051       return std::error_code();
3052     case BitstreamEntry::Record:
3053       // The interesting case.
3054       break;
3055     }
3056 
3057     // Read a use list record.
3058     Record.clear();
3059     bool IsBB = false;
3060     switch (Stream.readRecord(Entry.ID, Record)) {
3061     default:  // Default behavior: unknown type.
3062       break;
3063     case bitc::USELIST_CODE_BB:
3064       IsBB = true;
3065       // fallthrough
3066     case bitc::USELIST_CODE_DEFAULT: {
3067       unsigned RecordLength = Record.size();
3068       if (RecordLength < 3)
3069         // Records should have at least an ID and two indexes.
3070         return error("Invalid record");
3071       unsigned ID = Record.back();
3072       Record.pop_back();
3073 
3074       Value *V;
3075       if (IsBB) {
3076         assert(ID < FunctionBBs.size() && "Basic block not found");
3077         V = FunctionBBs[ID];
3078       } else
3079         V = ValueList[ID];
3080       unsigned NumUses = 0;
3081       SmallDenseMap<const Use *, unsigned, 16> Order;
3082       for (const Use &U : V->materialized_uses()) {
3083         if (++NumUses > Record.size())
3084           break;
3085         Order[&U] = Record[NumUses - 1];
3086       }
3087       if (Order.size() != Record.size() || NumUses > Record.size())
3088         // Mismatches can happen if the functions are being materialized lazily
3089         // (out-of-order), or a value has been upgraded.
3090         break;
3091 
3092       V->sortUseList([&](const Use &L, const Use &R) {
3093         return Order.lookup(&L) < Order.lookup(&R);
3094       });
3095       break;
3096     }
3097     }
3098   }
3099 }
3100 
3101 /// When we see the block for metadata, remember where it is and then skip it.
3102 /// This lets us lazily deserialize the metadata.
3103 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3104   // Save the current stream state.
3105   uint64_t CurBit = Stream.GetCurrentBitNo();
3106   DeferredMetadataInfo.push_back(CurBit);
3107 
3108   // Skip over the block for now.
3109   if (Stream.SkipBlock())
3110     return error("Invalid record");
3111   return std::error_code();
3112 }
3113 
3114 std::error_code BitcodeReader::materializeMetadata() {
3115   for (uint64_t BitPos : DeferredMetadataInfo) {
3116     // Move the bit stream to the saved position.
3117     Stream.JumpToBit(BitPos);
3118     if (std::error_code EC = parseMetadata(true))
3119       return EC;
3120   }
3121   DeferredMetadataInfo.clear();
3122   return std::error_code();
3123 }
3124 
3125 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3126 
3127 void BitcodeReader::saveMetadataList(
3128     DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) {
3129   for (unsigned ID = 0; ID < MetadataList.size(); ++ID) {
3130     Metadata *MD = MetadataList[ID];
3131     auto *N = dyn_cast_or_null<MDNode>(MD);
3132     assert((!N || (N->isResolved() || N->isTemporary())) &&
3133            "Found non-resolved non-temp MDNode while saving metadata");
3134     // Save all values if !OnlyTempMD, otherwise just the temporary metadata.
3135     // Note that in the !OnlyTempMD case we need to save all Metadata, not
3136     // just MDNode, as we may have references to other types of module-level
3137     // metadata (e.g. ValueAsMetadata) from instructions.
3138     if (!OnlyTempMD || (N && N->isTemporary())) {
3139       // Will call this after materializing each function, in order to
3140       // handle remapping of the function's instructions/metadata.
3141       auto IterBool = MetadataToIDs.insert(std::make_pair(MD, ID));
3142       // See if we already have an entry in that case.
3143       if (OnlyTempMD && !IterBool.second) {
3144         assert(IterBool.first->second == ID &&
3145                "Inconsistent metadata value id");
3146         continue;
3147       }
3148       if (N && N->isTemporary())
3149         // Ensure that we assert if someone tries to RAUW this temporary
3150         // metadata while it is the key of a map. The flag will be set back
3151         // to true when the saved metadata list is destroyed.
3152         N->setCanReplace(false);
3153     }
3154   }
3155 }
3156 
3157 /// When we see the block for a function body, remember where it is and then
3158 /// skip it.  This lets us lazily deserialize the functions.
3159 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3160   // Get the function we are talking about.
3161   if (FunctionsWithBodies.empty())
3162     return error("Insufficient function protos");
3163 
3164   Function *Fn = FunctionsWithBodies.back();
3165   FunctionsWithBodies.pop_back();
3166 
3167   // Save the current stream state.
3168   uint64_t CurBit = Stream.GetCurrentBitNo();
3169   assert(
3170       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3171       "Mismatch between VST and scanned function offsets");
3172   DeferredFunctionInfo[Fn] = CurBit;
3173 
3174   // Skip over the function block for now.
3175   if (Stream.SkipBlock())
3176     return error("Invalid record");
3177   return std::error_code();
3178 }
3179 
3180 std::error_code BitcodeReader::globalCleanup() {
3181   // Patch the initializers for globals and aliases up.
3182   resolveGlobalAndAliasInits();
3183   if (!GlobalInits.empty() || !AliasInits.empty())
3184     return error("Malformed global initializer set");
3185 
3186   // Look for intrinsic functions which need to be upgraded at some point
3187   for (Function &F : *TheModule) {
3188     Function *NewFn;
3189     if (UpgradeIntrinsicFunction(&F, NewFn))
3190       UpgradedIntrinsics[&F] = NewFn;
3191   }
3192 
3193   // Look for global variables which need to be renamed.
3194   for (GlobalVariable &GV : TheModule->globals())
3195     UpgradeGlobalVariable(&GV);
3196 
3197   // Force deallocation of memory for these vectors to favor the client that
3198   // want lazy deserialization.
3199   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3200   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
3201   return std::error_code();
3202 }
3203 
3204 /// Support for lazy parsing of function bodies. This is required if we
3205 /// either have an old bitcode file without a VST forward declaration record,
3206 /// or if we have an anonymous function being materialized, since anonymous
3207 /// functions do not have a name and are therefore not in the VST.
3208 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3209   Stream.JumpToBit(NextUnreadBit);
3210 
3211   if (Stream.AtEndOfStream())
3212     return error("Could not find function in stream");
3213 
3214   if (!SeenFirstFunctionBody)
3215     return error("Trying to materialize functions before seeing function blocks");
3216 
3217   // An old bitcode file with the symbol table at the end would have
3218   // finished the parse greedily.
3219   assert(SeenValueSymbolTable);
3220 
3221   SmallVector<uint64_t, 64> Record;
3222 
3223   while (1) {
3224     BitstreamEntry Entry = Stream.advance();
3225     switch (Entry.Kind) {
3226     default:
3227       return error("Expect SubBlock");
3228     case BitstreamEntry::SubBlock:
3229       switch (Entry.ID) {
3230       default:
3231         return error("Expect function block");
3232       case bitc::FUNCTION_BLOCK_ID:
3233         if (std::error_code EC = rememberAndSkipFunctionBody())
3234           return EC;
3235         NextUnreadBit = Stream.GetCurrentBitNo();
3236         return std::error_code();
3237       }
3238     }
3239   }
3240 }
3241 
3242 std::error_code BitcodeReader::parseBitcodeVersion() {
3243   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3244     return error("Invalid record");
3245 
3246   // Read all the records.
3247   SmallVector<uint64_t, 64> Record;
3248   while (1) {
3249     BitstreamEntry Entry = Stream.advance();
3250 
3251     switch (Entry.Kind) {
3252     default:
3253     case BitstreamEntry::Error:
3254       return error("Malformed block");
3255     case BitstreamEntry::EndBlock:
3256       return std::error_code();
3257     case BitstreamEntry::Record:
3258       // The interesting case.
3259       break;
3260     }
3261 
3262     // Read a record.
3263     Record.clear();
3264     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3265     switch (BitCode) {
3266     default: // Default behavior: reject
3267       return error("Invalid value");
3268     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3269                                              // N]
3270       convertToString(Record, 0, ProducerIdentification);
3271       break;
3272     }
3273     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3274       unsigned epoch = (unsigned)Record[0];
3275       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3276         return error(
3277           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3278           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3279       }
3280     }
3281     }
3282   }
3283 }
3284 
3285 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3286                                            bool ShouldLazyLoadMetadata) {
3287   if (ResumeBit)
3288     Stream.JumpToBit(ResumeBit);
3289   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3290     return error("Invalid record");
3291 
3292   SmallVector<uint64_t, 64> Record;
3293   std::vector<std::string> SectionTable;
3294   std::vector<std::string> GCTable;
3295 
3296   // Read all the records for this module.
3297   while (1) {
3298     BitstreamEntry Entry = Stream.advance();
3299 
3300     switch (Entry.Kind) {
3301     case BitstreamEntry::Error:
3302       return error("Malformed block");
3303     case BitstreamEntry::EndBlock:
3304       return globalCleanup();
3305 
3306     case BitstreamEntry::SubBlock:
3307       switch (Entry.ID) {
3308       default:  // Skip unknown content.
3309         if (Stream.SkipBlock())
3310           return error("Invalid record");
3311         break;
3312       case bitc::BLOCKINFO_BLOCK_ID:
3313         if (Stream.ReadBlockInfoBlock())
3314           return error("Malformed block");
3315         break;
3316       case bitc::PARAMATTR_BLOCK_ID:
3317         if (std::error_code EC = parseAttributeBlock())
3318           return EC;
3319         break;
3320       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3321         if (std::error_code EC = parseAttributeGroupBlock())
3322           return EC;
3323         break;
3324       case bitc::TYPE_BLOCK_ID_NEW:
3325         if (std::error_code EC = parseTypeTable())
3326           return EC;
3327         break;
3328       case bitc::VALUE_SYMTAB_BLOCK_ID:
3329         if (!SeenValueSymbolTable) {
3330           // Either this is an old form VST without function index and an
3331           // associated VST forward declaration record (which would have caused
3332           // the VST to be jumped to and parsed before it was encountered
3333           // normally in the stream), or there were no function blocks to
3334           // trigger an earlier parsing of the VST.
3335           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3336           if (std::error_code EC = parseValueSymbolTable())
3337             return EC;
3338           SeenValueSymbolTable = true;
3339         } else {
3340           // We must have had a VST forward declaration record, which caused
3341           // the parser to jump to and parse the VST earlier.
3342           assert(VSTOffset > 0);
3343           if (Stream.SkipBlock())
3344             return error("Invalid record");
3345         }
3346         break;
3347       case bitc::CONSTANTS_BLOCK_ID:
3348         if (std::error_code EC = parseConstants())
3349           return EC;
3350         if (std::error_code EC = resolveGlobalAndAliasInits())
3351           return EC;
3352         break;
3353       case bitc::METADATA_BLOCK_ID:
3354         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3355           if (std::error_code EC = rememberAndSkipMetadata())
3356             return EC;
3357           break;
3358         }
3359         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3360         if (std::error_code EC = parseMetadata(true))
3361           return EC;
3362         break;
3363       case bitc::METADATA_KIND_BLOCK_ID:
3364         if (std::error_code EC = parseMetadataKinds())
3365           return EC;
3366         break;
3367       case bitc::FUNCTION_BLOCK_ID:
3368         // If this is the first function body we've seen, reverse the
3369         // FunctionsWithBodies list.
3370         if (!SeenFirstFunctionBody) {
3371           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3372           if (std::error_code EC = globalCleanup())
3373             return EC;
3374           SeenFirstFunctionBody = true;
3375         }
3376 
3377         if (VSTOffset > 0) {
3378           // If we have a VST forward declaration record, make sure we
3379           // parse the VST now if we haven't already. It is needed to
3380           // set up the DeferredFunctionInfo vector for lazy reading.
3381           if (!SeenValueSymbolTable) {
3382             if (std::error_code EC =
3383                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3384               return EC;
3385             SeenValueSymbolTable = true;
3386             // Fall through so that we record the NextUnreadBit below.
3387             // This is necessary in case we have an anonymous function that
3388             // is later materialized. Since it will not have a VST entry we
3389             // need to fall back to the lazy parse to find its offset.
3390           } else {
3391             // If we have a VST forward declaration record, but have already
3392             // parsed the VST (just above, when the first function body was
3393             // encountered here), then we are resuming the parse after
3394             // materializing functions. The ResumeBit points to the
3395             // start of the last function block recorded in the
3396             // DeferredFunctionInfo map. Skip it.
3397             if (Stream.SkipBlock())
3398               return error("Invalid record");
3399             continue;
3400           }
3401         }
3402 
3403         // Support older bitcode files that did not have the function
3404         // index in the VST, nor a VST forward declaration record, as
3405         // well as anonymous functions that do not have VST entries.
3406         // Build the DeferredFunctionInfo vector on the fly.
3407         if (std::error_code EC = rememberAndSkipFunctionBody())
3408           return EC;
3409 
3410         // Suspend parsing when we reach the function bodies. Subsequent
3411         // materialization calls will resume it when necessary. If the bitcode
3412         // file is old, the symbol table will be at the end instead and will not
3413         // have been seen yet. In this case, just finish the parse now.
3414         if (SeenValueSymbolTable) {
3415           NextUnreadBit = Stream.GetCurrentBitNo();
3416           return std::error_code();
3417         }
3418         break;
3419       case bitc::USELIST_BLOCK_ID:
3420         if (std::error_code EC = parseUseLists())
3421           return EC;
3422         break;
3423       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3424         if (std::error_code EC = parseOperandBundleTags())
3425           return EC;
3426         break;
3427       }
3428       continue;
3429 
3430     case BitstreamEntry::Record:
3431       // The interesting case.
3432       break;
3433     }
3434 
3435     // Read a record.
3436     auto BitCode = Stream.readRecord(Entry.ID, Record);
3437     switch (BitCode) {
3438     default: break;  // Default behavior, ignore unknown content.
3439     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3440       if (Record.size() < 1)
3441         return error("Invalid record");
3442       // Only version #0 and #1 are supported so far.
3443       unsigned module_version = Record[0];
3444       switch (module_version) {
3445         default:
3446           return error("Invalid value");
3447         case 0:
3448           UseRelativeIDs = false;
3449           break;
3450         case 1:
3451           UseRelativeIDs = true;
3452           break;
3453       }
3454       break;
3455     }
3456     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3457       std::string S;
3458       if (convertToString(Record, 0, S))
3459         return error("Invalid record");
3460       TheModule->setTargetTriple(S);
3461       break;
3462     }
3463     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3464       std::string S;
3465       if (convertToString(Record, 0, S))
3466         return error("Invalid record");
3467       TheModule->setDataLayout(S);
3468       break;
3469     }
3470     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3471       std::string S;
3472       if (convertToString(Record, 0, S))
3473         return error("Invalid record");
3474       TheModule->setModuleInlineAsm(S);
3475       break;
3476     }
3477     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3478       // FIXME: Remove in 4.0.
3479       std::string S;
3480       if (convertToString(Record, 0, S))
3481         return error("Invalid record");
3482       // Ignore value.
3483       break;
3484     }
3485     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3486       std::string S;
3487       if (convertToString(Record, 0, S))
3488         return error("Invalid record");
3489       SectionTable.push_back(S);
3490       break;
3491     }
3492     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3493       std::string S;
3494       if (convertToString(Record, 0, S))
3495         return error("Invalid record");
3496       GCTable.push_back(S);
3497       break;
3498     }
3499     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3500       if (Record.size() < 2)
3501         return error("Invalid record");
3502       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3503       unsigned ComdatNameSize = Record[1];
3504       std::string ComdatName;
3505       ComdatName.reserve(ComdatNameSize);
3506       for (unsigned i = 0; i != ComdatNameSize; ++i)
3507         ComdatName += (char)Record[2 + i];
3508       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3509       C->setSelectionKind(SK);
3510       ComdatList.push_back(C);
3511       break;
3512     }
3513     // GLOBALVAR: [pointer type, isconst, initid,
3514     //             linkage, alignment, section, visibility, threadlocal,
3515     //             unnamed_addr, externally_initialized, dllstorageclass,
3516     //             comdat]
3517     case bitc::MODULE_CODE_GLOBALVAR: {
3518       if (Record.size() < 6)
3519         return error("Invalid record");
3520       Type *Ty = getTypeByID(Record[0]);
3521       if (!Ty)
3522         return error("Invalid record");
3523       bool isConstant = Record[1] & 1;
3524       bool explicitType = Record[1] & 2;
3525       unsigned AddressSpace;
3526       if (explicitType) {
3527         AddressSpace = Record[1] >> 2;
3528       } else {
3529         if (!Ty->isPointerTy())
3530           return error("Invalid type for value");
3531         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3532         Ty = cast<PointerType>(Ty)->getElementType();
3533       }
3534 
3535       uint64_t RawLinkage = Record[3];
3536       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3537       unsigned Alignment;
3538       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3539         return EC;
3540       std::string Section;
3541       if (Record[5]) {
3542         if (Record[5]-1 >= SectionTable.size())
3543           return error("Invalid ID");
3544         Section = SectionTable[Record[5]-1];
3545       }
3546       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3547       // Local linkage must have default visibility.
3548       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3549         // FIXME: Change to an error if non-default in 4.0.
3550         Visibility = getDecodedVisibility(Record[6]);
3551 
3552       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3553       if (Record.size() > 7)
3554         TLM = getDecodedThreadLocalMode(Record[7]);
3555 
3556       bool UnnamedAddr = false;
3557       if (Record.size() > 8)
3558         UnnamedAddr = Record[8];
3559 
3560       bool ExternallyInitialized = false;
3561       if (Record.size() > 9)
3562         ExternallyInitialized = Record[9];
3563 
3564       GlobalVariable *NewGV =
3565         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3566                            TLM, AddressSpace, ExternallyInitialized);
3567       NewGV->setAlignment(Alignment);
3568       if (!Section.empty())
3569         NewGV->setSection(Section);
3570       NewGV->setVisibility(Visibility);
3571       NewGV->setUnnamedAddr(UnnamedAddr);
3572 
3573       if (Record.size() > 10)
3574         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3575       else
3576         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3577 
3578       ValueList.push_back(NewGV);
3579 
3580       // Remember which value to use for the global initializer.
3581       if (unsigned InitID = Record[2])
3582         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3583 
3584       if (Record.size() > 11) {
3585         if (unsigned ComdatID = Record[11]) {
3586           if (ComdatID > ComdatList.size())
3587             return error("Invalid global variable comdat ID");
3588           NewGV->setComdat(ComdatList[ComdatID - 1]);
3589         }
3590       } else if (hasImplicitComdat(RawLinkage)) {
3591         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3592       }
3593       break;
3594     }
3595     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3596     //             alignment, section, visibility, gc, unnamed_addr,
3597     //             prologuedata, dllstorageclass, comdat, prefixdata]
3598     case bitc::MODULE_CODE_FUNCTION: {
3599       if (Record.size() < 8)
3600         return error("Invalid record");
3601       Type *Ty = getTypeByID(Record[0]);
3602       if (!Ty)
3603         return error("Invalid record");
3604       if (auto *PTy = dyn_cast<PointerType>(Ty))
3605         Ty = PTy->getElementType();
3606       auto *FTy = dyn_cast<FunctionType>(Ty);
3607       if (!FTy)
3608         return error("Invalid type for value");
3609       auto CC = static_cast<CallingConv::ID>(Record[1]);
3610       if (CC & ~CallingConv::MaxID)
3611         return error("Invalid calling convention ID");
3612 
3613       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3614                                         "", TheModule);
3615 
3616       Func->setCallingConv(CC);
3617       bool isProto = Record[2];
3618       uint64_t RawLinkage = Record[3];
3619       Func->setLinkage(getDecodedLinkage(RawLinkage));
3620       Func->setAttributes(getAttributes(Record[4]));
3621 
3622       unsigned Alignment;
3623       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3624         return EC;
3625       Func->setAlignment(Alignment);
3626       if (Record[6]) {
3627         if (Record[6]-1 >= SectionTable.size())
3628           return error("Invalid ID");
3629         Func->setSection(SectionTable[Record[6]-1]);
3630       }
3631       // Local linkage must have default visibility.
3632       if (!Func->hasLocalLinkage())
3633         // FIXME: Change to an error if non-default in 4.0.
3634         Func->setVisibility(getDecodedVisibility(Record[7]));
3635       if (Record.size() > 8 && Record[8]) {
3636         if (Record[8]-1 >= GCTable.size())
3637           return error("Invalid ID");
3638         Func->setGC(GCTable[Record[8]-1].c_str());
3639       }
3640       bool UnnamedAddr = false;
3641       if (Record.size() > 9)
3642         UnnamedAddr = Record[9];
3643       Func->setUnnamedAddr(UnnamedAddr);
3644       if (Record.size() > 10 && Record[10] != 0)
3645         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3646 
3647       if (Record.size() > 11)
3648         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3649       else
3650         upgradeDLLImportExportLinkage(Func, RawLinkage);
3651 
3652       if (Record.size() > 12) {
3653         if (unsigned ComdatID = Record[12]) {
3654           if (ComdatID > ComdatList.size())
3655             return error("Invalid function comdat ID");
3656           Func->setComdat(ComdatList[ComdatID - 1]);
3657         }
3658       } else if (hasImplicitComdat(RawLinkage)) {
3659         Func->setComdat(reinterpret_cast<Comdat *>(1));
3660       }
3661 
3662       if (Record.size() > 13 && Record[13] != 0)
3663         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3664 
3665       if (Record.size() > 14 && Record[14] != 0)
3666         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3667 
3668       ValueList.push_back(Func);
3669 
3670       // If this is a function with a body, remember the prototype we are
3671       // creating now, so that we can match up the body with them later.
3672       if (!isProto) {
3673         Func->setIsMaterializable(true);
3674         FunctionsWithBodies.push_back(Func);
3675         DeferredFunctionInfo[Func] = 0;
3676       }
3677       break;
3678     }
3679     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3680     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3681     case bitc::MODULE_CODE_ALIAS:
3682     case bitc::MODULE_CODE_ALIAS_OLD: {
3683       bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS;
3684       if (Record.size() < (3 + (unsigned)NewRecord))
3685         return error("Invalid record");
3686       unsigned OpNum = 0;
3687       Type *Ty = getTypeByID(Record[OpNum++]);
3688       if (!Ty)
3689         return error("Invalid record");
3690 
3691       unsigned AddrSpace;
3692       if (!NewRecord) {
3693         auto *PTy = dyn_cast<PointerType>(Ty);
3694         if (!PTy)
3695           return error("Invalid type for value");
3696         Ty = PTy->getElementType();
3697         AddrSpace = PTy->getAddressSpace();
3698       } else {
3699         AddrSpace = Record[OpNum++];
3700       }
3701 
3702       auto Val = Record[OpNum++];
3703       auto Linkage = Record[OpNum++];
3704       auto *NewGA = GlobalAlias::create(
3705           Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule);
3706       // Old bitcode files didn't have visibility field.
3707       // Local linkage must have default visibility.
3708       if (OpNum != Record.size()) {
3709         auto VisInd = OpNum++;
3710         if (!NewGA->hasLocalLinkage())
3711           // FIXME: Change to an error if non-default in 4.0.
3712           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3713       }
3714       if (OpNum != Record.size())
3715         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3716       else
3717         upgradeDLLImportExportLinkage(NewGA, Linkage);
3718       if (OpNum != Record.size())
3719         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3720       if (OpNum != Record.size())
3721         NewGA->setUnnamedAddr(Record[OpNum++]);
3722       ValueList.push_back(NewGA);
3723       AliasInits.push_back(std::make_pair(NewGA, Val));
3724       break;
3725     }
3726     /// MODULE_CODE_PURGEVALS: [numvals]
3727     case bitc::MODULE_CODE_PURGEVALS:
3728       // Trim down the value list to the specified size.
3729       if (Record.size() < 1 || Record[0] > ValueList.size())
3730         return error("Invalid record");
3731       ValueList.shrinkTo(Record[0]);
3732       break;
3733     /// MODULE_CODE_VSTOFFSET: [offset]
3734     case bitc::MODULE_CODE_VSTOFFSET:
3735       if (Record.size() < 1)
3736         return error("Invalid record");
3737       VSTOffset = Record[0];
3738       break;
3739     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3740     case bitc::MODULE_CODE_SOURCE_FILENAME:
3741       SmallString<128> ValueName;
3742       if (convertToString(Record, 0, ValueName))
3743         return error("Invalid record");
3744       TheModule->setSourceFileName(ValueName);
3745       break;
3746     }
3747     Record.clear();
3748   }
3749 }
3750 
3751 /// Helper to read the header common to all bitcode files.
3752 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
3753   // Sniff for the signature.
3754   if (Stream.Read(8) != 'B' ||
3755       Stream.Read(8) != 'C' ||
3756       Stream.Read(4) != 0x0 ||
3757       Stream.Read(4) != 0xC ||
3758       Stream.Read(4) != 0xE ||
3759       Stream.Read(4) != 0xD)
3760     return false;
3761   return true;
3762 }
3763 
3764 std::error_code
3765 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
3766                                 Module *M, bool ShouldLazyLoadMetadata) {
3767   TheModule = M;
3768 
3769   if (std::error_code EC = initStream(std::move(Streamer)))
3770     return EC;
3771 
3772   // Sniff for the signature.
3773   if (!hasValidBitcodeHeader(Stream))
3774     return error("Invalid bitcode signature");
3775 
3776   // We expect a number of well-defined blocks, though we don't necessarily
3777   // need to understand them all.
3778   while (1) {
3779     if (Stream.AtEndOfStream()) {
3780       // We didn't really read a proper Module.
3781       return error("Malformed IR file");
3782     }
3783 
3784     BitstreamEntry Entry =
3785       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
3786 
3787     if (Entry.Kind != BitstreamEntry::SubBlock)
3788       return error("Malformed block");
3789 
3790     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3791       parseBitcodeVersion();
3792       continue;
3793     }
3794 
3795     if (Entry.ID == bitc::MODULE_BLOCK_ID)
3796       return parseModule(0, ShouldLazyLoadMetadata);
3797 
3798     if (Stream.SkipBlock())
3799       return error("Invalid record");
3800   }
3801 }
3802 
3803 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
3804   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3805     return error("Invalid record");
3806 
3807   SmallVector<uint64_t, 64> Record;
3808 
3809   std::string Triple;
3810   // Read all the records for this module.
3811   while (1) {
3812     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3813 
3814     switch (Entry.Kind) {
3815     case BitstreamEntry::SubBlock: // Handled for us already.
3816     case BitstreamEntry::Error:
3817       return error("Malformed block");
3818     case BitstreamEntry::EndBlock:
3819       return Triple;
3820     case BitstreamEntry::Record:
3821       // The interesting case.
3822       break;
3823     }
3824 
3825     // Read a record.
3826     switch (Stream.readRecord(Entry.ID, Record)) {
3827     default: break;  // Default behavior, ignore unknown content.
3828     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3829       std::string S;
3830       if (convertToString(Record, 0, S))
3831         return error("Invalid record");
3832       Triple = S;
3833       break;
3834     }
3835     }
3836     Record.clear();
3837   }
3838   llvm_unreachable("Exit infinite loop");
3839 }
3840 
3841 ErrorOr<std::string> BitcodeReader::parseTriple() {
3842   if (std::error_code EC = initStream(nullptr))
3843     return EC;
3844 
3845   // Sniff for the signature.
3846   if (!hasValidBitcodeHeader(Stream))
3847     return error("Invalid bitcode signature");
3848 
3849   // We expect a number of well-defined blocks, though we don't necessarily
3850   // need to understand them all.
3851   while (1) {
3852     BitstreamEntry Entry = Stream.advance();
3853 
3854     switch (Entry.Kind) {
3855     case BitstreamEntry::Error:
3856       return error("Malformed block");
3857     case BitstreamEntry::EndBlock:
3858       return std::error_code();
3859 
3860     case BitstreamEntry::SubBlock:
3861       if (Entry.ID == bitc::MODULE_BLOCK_ID)
3862         return parseModuleTriple();
3863 
3864       // Ignore other sub-blocks.
3865       if (Stream.SkipBlock())
3866         return error("Malformed block");
3867       continue;
3868 
3869     case BitstreamEntry::Record:
3870       Stream.skipRecord(Entry.ID);
3871       continue;
3872     }
3873   }
3874 }
3875 
3876 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
3877   if (std::error_code EC = initStream(nullptr))
3878     return EC;
3879 
3880   // Sniff for the signature.
3881   if (!hasValidBitcodeHeader(Stream))
3882     return error("Invalid bitcode signature");
3883 
3884   // We expect a number of well-defined blocks, though we don't necessarily
3885   // need to understand them all.
3886   while (1) {
3887     BitstreamEntry Entry = Stream.advance();
3888     switch (Entry.Kind) {
3889     case BitstreamEntry::Error:
3890       return error("Malformed block");
3891     case BitstreamEntry::EndBlock:
3892       return std::error_code();
3893 
3894     case BitstreamEntry::SubBlock:
3895       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3896         if (std::error_code EC = parseBitcodeVersion())
3897           return EC;
3898         return ProducerIdentification;
3899       }
3900       // Ignore other sub-blocks.
3901       if (Stream.SkipBlock())
3902         return error("Malformed block");
3903       continue;
3904     case BitstreamEntry::Record:
3905       Stream.skipRecord(Entry.ID);
3906       continue;
3907     }
3908   }
3909 }
3910 
3911 /// Parse metadata attachments.
3912 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
3913   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
3914     return error("Invalid record");
3915 
3916   SmallVector<uint64_t, 64> Record;
3917   while (1) {
3918     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3919 
3920     switch (Entry.Kind) {
3921     case BitstreamEntry::SubBlock: // Handled for us already.
3922     case BitstreamEntry::Error:
3923       return error("Malformed block");
3924     case BitstreamEntry::EndBlock:
3925       return std::error_code();
3926     case BitstreamEntry::Record:
3927       // The interesting case.
3928       break;
3929     }
3930 
3931     // Read a metadata attachment record.
3932     Record.clear();
3933     switch (Stream.readRecord(Entry.ID, Record)) {
3934     default:  // Default behavior: ignore.
3935       break;
3936     case bitc::METADATA_ATTACHMENT: {
3937       unsigned RecordLength = Record.size();
3938       if (Record.empty())
3939         return error("Invalid record");
3940       if (RecordLength % 2 == 0) {
3941         // A function attachment.
3942         for (unsigned I = 0; I != RecordLength; I += 2) {
3943           auto K = MDKindMap.find(Record[I]);
3944           if (K == MDKindMap.end())
3945             return error("Invalid ID");
3946           MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
3947           if (!MD)
3948             return error("Invalid metadata attachment");
3949           F.setMetadata(K->second, MD);
3950         }
3951         continue;
3952       }
3953 
3954       // An instruction attachment.
3955       Instruction *Inst = InstructionList[Record[0]];
3956       for (unsigned i = 1; i != RecordLength; i = i+2) {
3957         unsigned Kind = Record[i];
3958         DenseMap<unsigned, unsigned>::iterator I =
3959           MDKindMap.find(Kind);
3960         if (I == MDKindMap.end())
3961           return error("Invalid ID");
3962         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
3963         if (isa<LocalAsMetadata>(Node))
3964           // Drop the attachment.  This used to be legal, but there's no
3965           // upgrade path.
3966           break;
3967         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
3968         if (!MD)
3969           return error("Invalid metadata attachment");
3970 
3971         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
3972           MD = upgradeInstructionLoopAttachment(*MD);
3973 
3974         Inst->setMetadata(I->second, MD);
3975         if (I->second == LLVMContext::MD_tbaa) {
3976           InstsWithTBAATag.push_back(Inst);
3977           continue;
3978         }
3979       }
3980       break;
3981     }
3982     }
3983   }
3984 }
3985 
3986 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3987   LLVMContext &Context = PtrType->getContext();
3988   if (!isa<PointerType>(PtrType))
3989     return error(Context, "Load/Store operand is not a pointer type");
3990   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3991 
3992   if (ValType && ValType != ElemType)
3993     return error(Context, "Explicit load/store type does not match pointee "
3994                           "type of pointer operand");
3995   if (!PointerType::isLoadableOrStorableType(ElemType))
3996     return error(Context, "Cannot load/store from pointer");
3997   return std::error_code();
3998 }
3999 
4000 /// Lazily parse the specified function body block.
4001 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
4002   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4003     return error("Invalid record");
4004 
4005   InstructionList.clear();
4006   unsigned ModuleValueListSize = ValueList.size();
4007   unsigned ModuleMetadataListSize = MetadataList.size();
4008 
4009   // Add all the function arguments to the value table.
4010   for (Argument &I : F->args())
4011     ValueList.push_back(&I);
4012 
4013   unsigned NextValueNo = ValueList.size();
4014   BasicBlock *CurBB = nullptr;
4015   unsigned CurBBNo = 0;
4016 
4017   DebugLoc LastLoc;
4018   auto getLastInstruction = [&]() -> Instruction * {
4019     if (CurBB && !CurBB->empty())
4020       return &CurBB->back();
4021     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4022              !FunctionBBs[CurBBNo - 1]->empty())
4023       return &FunctionBBs[CurBBNo - 1]->back();
4024     return nullptr;
4025   };
4026 
4027   std::vector<OperandBundleDef> OperandBundles;
4028 
4029   // Read all the records.
4030   SmallVector<uint64_t, 64> Record;
4031   while (1) {
4032     BitstreamEntry Entry = Stream.advance();
4033 
4034     switch (Entry.Kind) {
4035     case BitstreamEntry::Error:
4036       return error("Malformed block");
4037     case BitstreamEntry::EndBlock:
4038       goto OutOfRecordLoop;
4039 
4040     case BitstreamEntry::SubBlock:
4041       switch (Entry.ID) {
4042       default:  // Skip unknown content.
4043         if (Stream.SkipBlock())
4044           return error("Invalid record");
4045         break;
4046       case bitc::CONSTANTS_BLOCK_ID:
4047         if (std::error_code EC = parseConstants())
4048           return EC;
4049         NextValueNo = ValueList.size();
4050         break;
4051       case bitc::VALUE_SYMTAB_BLOCK_ID:
4052         if (std::error_code EC = parseValueSymbolTable())
4053           return EC;
4054         break;
4055       case bitc::METADATA_ATTACHMENT_ID:
4056         if (std::error_code EC = parseMetadataAttachment(*F))
4057           return EC;
4058         break;
4059       case bitc::METADATA_BLOCK_ID:
4060         if (std::error_code EC = parseMetadata())
4061           return EC;
4062         break;
4063       case bitc::USELIST_BLOCK_ID:
4064         if (std::error_code EC = parseUseLists())
4065           return EC;
4066         break;
4067       }
4068       continue;
4069 
4070     case BitstreamEntry::Record:
4071       // The interesting case.
4072       break;
4073     }
4074 
4075     // Read a record.
4076     Record.clear();
4077     Instruction *I = nullptr;
4078     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4079     switch (BitCode) {
4080     default: // Default behavior: reject
4081       return error("Invalid value");
4082     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4083       if (Record.size() < 1 || Record[0] == 0)
4084         return error("Invalid record");
4085       // Create all the basic blocks for the function.
4086       FunctionBBs.resize(Record[0]);
4087 
4088       // See if anything took the address of blocks in this function.
4089       auto BBFRI = BasicBlockFwdRefs.find(F);
4090       if (BBFRI == BasicBlockFwdRefs.end()) {
4091         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4092           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4093       } else {
4094         auto &BBRefs = BBFRI->second;
4095         // Check for invalid basic block references.
4096         if (BBRefs.size() > FunctionBBs.size())
4097           return error("Invalid ID");
4098         assert(!BBRefs.empty() && "Unexpected empty array");
4099         assert(!BBRefs.front() && "Invalid reference to entry block");
4100         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4101              ++I)
4102           if (I < RE && BBRefs[I]) {
4103             BBRefs[I]->insertInto(F);
4104             FunctionBBs[I] = BBRefs[I];
4105           } else {
4106             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4107           }
4108 
4109         // Erase from the table.
4110         BasicBlockFwdRefs.erase(BBFRI);
4111       }
4112 
4113       CurBB = FunctionBBs[0];
4114       continue;
4115     }
4116 
4117     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4118       // This record indicates that the last instruction is at the same
4119       // location as the previous instruction with a location.
4120       I = getLastInstruction();
4121 
4122       if (!I)
4123         return error("Invalid record");
4124       I->setDebugLoc(LastLoc);
4125       I = nullptr;
4126       continue;
4127 
4128     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4129       I = getLastInstruction();
4130       if (!I || Record.size() < 4)
4131         return error("Invalid record");
4132 
4133       unsigned Line = Record[0], Col = Record[1];
4134       unsigned ScopeID = Record[2], IAID = Record[3];
4135 
4136       MDNode *Scope = nullptr, *IA = nullptr;
4137       if (ScopeID) {
4138         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4139         if (!Scope)
4140           return error("Invalid record");
4141       }
4142       if (IAID) {
4143         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4144         if (!IA)
4145           return error("Invalid record");
4146       }
4147       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4148       I->setDebugLoc(LastLoc);
4149       I = nullptr;
4150       continue;
4151     }
4152 
4153     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4154       unsigned OpNum = 0;
4155       Value *LHS, *RHS;
4156       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4157           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4158           OpNum+1 > Record.size())
4159         return error("Invalid record");
4160 
4161       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4162       if (Opc == -1)
4163         return error("Invalid record");
4164       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4165       InstructionList.push_back(I);
4166       if (OpNum < Record.size()) {
4167         if (Opc == Instruction::Add ||
4168             Opc == Instruction::Sub ||
4169             Opc == Instruction::Mul ||
4170             Opc == Instruction::Shl) {
4171           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4172             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4173           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4174             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4175         } else if (Opc == Instruction::SDiv ||
4176                    Opc == Instruction::UDiv ||
4177                    Opc == Instruction::LShr ||
4178                    Opc == Instruction::AShr) {
4179           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4180             cast<BinaryOperator>(I)->setIsExact(true);
4181         } else if (isa<FPMathOperator>(I)) {
4182           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4183           if (FMF.any())
4184             I->setFastMathFlags(FMF);
4185         }
4186 
4187       }
4188       break;
4189     }
4190     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4191       unsigned OpNum = 0;
4192       Value *Op;
4193       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4194           OpNum+2 != Record.size())
4195         return error("Invalid record");
4196 
4197       Type *ResTy = getTypeByID(Record[OpNum]);
4198       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4199       if (Opc == -1 || !ResTy)
4200         return error("Invalid record");
4201       Instruction *Temp = nullptr;
4202       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4203         if (Temp) {
4204           InstructionList.push_back(Temp);
4205           CurBB->getInstList().push_back(Temp);
4206         }
4207       } else {
4208         auto CastOp = (Instruction::CastOps)Opc;
4209         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4210           return error("Invalid cast");
4211         I = CastInst::Create(CastOp, Op, ResTy);
4212       }
4213       InstructionList.push_back(I);
4214       break;
4215     }
4216     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4217     case bitc::FUNC_CODE_INST_GEP_OLD:
4218     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4219       unsigned OpNum = 0;
4220 
4221       Type *Ty;
4222       bool InBounds;
4223 
4224       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4225         InBounds = Record[OpNum++];
4226         Ty = getTypeByID(Record[OpNum++]);
4227       } else {
4228         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4229         Ty = nullptr;
4230       }
4231 
4232       Value *BasePtr;
4233       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4234         return error("Invalid record");
4235 
4236       if (!Ty)
4237         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4238                  ->getElementType();
4239       else if (Ty !=
4240                cast<SequentialType>(BasePtr->getType()->getScalarType())
4241                    ->getElementType())
4242         return error(
4243             "Explicit gep type does not match pointee type of pointer operand");
4244 
4245       SmallVector<Value*, 16> GEPIdx;
4246       while (OpNum != Record.size()) {
4247         Value *Op;
4248         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4249           return error("Invalid record");
4250         GEPIdx.push_back(Op);
4251       }
4252 
4253       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4254 
4255       InstructionList.push_back(I);
4256       if (InBounds)
4257         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4258       break;
4259     }
4260 
4261     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4262                                        // EXTRACTVAL: [opty, opval, n x indices]
4263       unsigned OpNum = 0;
4264       Value *Agg;
4265       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4266         return error("Invalid record");
4267 
4268       unsigned RecSize = Record.size();
4269       if (OpNum == RecSize)
4270         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4271 
4272       SmallVector<unsigned, 4> EXTRACTVALIdx;
4273       Type *CurTy = Agg->getType();
4274       for (; OpNum != RecSize; ++OpNum) {
4275         bool IsArray = CurTy->isArrayTy();
4276         bool IsStruct = CurTy->isStructTy();
4277         uint64_t Index = Record[OpNum];
4278 
4279         if (!IsStruct && !IsArray)
4280           return error("EXTRACTVAL: Invalid type");
4281         if ((unsigned)Index != Index)
4282           return error("Invalid value");
4283         if (IsStruct && Index >= CurTy->subtypes().size())
4284           return error("EXTRACTVAL: Invalid struct index");
4285         if (IsArray && Index >= CurTy->getArrayNumElements())
4286           return error("EXTRACTVAL: Invalid array index");
4287         EXTRACTVALIdx.push_back((unsigned)Index);
4288 
4289         if (IsStruct)
4290           CurTy = CurTy->subtypes()[Index];
4291         else
4292           CurTy = CurTy->subtypes()[0];
4293       }
4294 
4295       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4296       InstructionList.push_back(I);
4297       break;
4298     }
4299 
4300     case bitc::FUNC_CODE_INST_INSERTVAL: {
4301                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4302       unsigned OpNum = 0;
4303       Value *Agg;
4304       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4305         return error("Invalid record");
4306       Value *Val;
4307       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4308         return error("Invalid record");
4309 
4310       unsigned RecSize = Record.size();
4311       if (OpNum == RecSize)
4312         return error("INSERTVAL: Invalid instruction with 0 indices");
4313 
4314       SmallVector<unsigned, 4> INSERTVALIdx;
4315       Type *CurTy = Agg->getType();
4316       for (; OpNum != RecSize; ++OpNum) {
4317         bool IsArray = CurTy->isArrayTy();
4318         bool IsStruct = CurTy->isStructTy();
4319         uint64_t Index = Record[OpNum];
4320 
4321         if (!IsStruct && !IsArray)
4322           return error("INSERTVAL: Invalid type");
4323         if ((unsigned)Index != Index)
4324           return error("Invalid value");
4325         if (IsStruct && Index >= CurTy->subtypes().size())
4326           return error("INSERTVAL: Invalid struct index");
4327         if (IsArray && Index >= CurTy->getArrayNumElements())
4328           return error("INSERTVAL: Invalid array index");
4329 
4330         INSERTVALIdx.push_back((unsigned)Index);
4331         if (IsStruct)
4332           CurTy = CurTy->subtypes()[Index];
4333         else
4334           CurTy = CurTy->subtypes()[0];
4335       }
4336 
4337       if (CurTy != Val->getType())
4338         return error("Inserted value type doesn't match aggregate type");
4339 
4340       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4341       InstructionList.push_back(I);
4342       break;
4343     }
4344 
4345     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4346       // obsolete form of select
4347       // handles select i1 ... in old bitcode
4348       unsigned OpNum = 0;
4349       Value *TrueVal, *FalseVal, *Cond;
4350       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4351           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4352           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4353         return error("Invalid record");
4354 
4355       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4356       InstructionList.push_back(I);
4357       break;
4358     }
4359 
4360     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4361       // new form of select
4362       // handles select i1 or select [N x i1]
4363       unsigned OpNum = 0;
4364       Value *TrueVal, *FalseVal, *Cond;
4365       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4366           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4367           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4368         return error("Invalid record");
4369 
4370       // select condition can be either i1 or [N x i1]
4371       if (VectorType* vector_type =
4372           dyn_cast<VectorType>(Cond->getType())) {
4373         // expect <n x i1>
4374         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4375           return error("Invalid type for value");
4376       } else {
4377         // expect i1
4378         if (Cond->getType() != Type::getInt1Ty(Context))
4379           return error("Invalid type for value");
4380       }
4381 
4382       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4383       InstructionList.push_back(I);
4384       break;
4385     }
4386 
4387     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4388       unsigned OpNum = 0;
4389       Value *Vec, *Idx;
4390       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4391           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4392         return error("Invalid record");
4393       if (!Vec->getType()->isVectorTy())
4394         return error("Invalid type for value");
4395       I = ExtractElementInst::Create(Vec, Idx);
4396       InstructionList.push_back(I);
4397       break;
4398     }
4399 
4400     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4401       unsigned OpNum = 0;
4402       Value *Vec, *Elt, *Idx;
4403       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4404         return error("Invalid record");
4405       if (!Vec->getType()->isVectorTy())
4406         return error("Invalid type for value");
4407       if (popValue(Record, OpNum, NextValueNo,
4408                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4409           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4410         return error("Invalid record");
4411       I = InsertElementInst::Create(Vec, Elt, Idx);
4412       InstructionList.push_back(I);
4413       break;
4414     }
4415 
4416     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4417       unsigned OpNum = 0;
4418       Value *Vec1, *Vec2, *Mask;
4419       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4420           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4421         return error("Invalid record");
4422 
4423       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4424         return error("Invalid record");
4425       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4426         return error("Invalid type for value");
4427       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4428       InstructionList.push_back(I);
4429       break;
4430     }
4431 
4432     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4433       // Old form of ICmp/FCmp returning bool
4434       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4435       // both legal on vectors but had different behaviour.
4436     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4437       // FCmp/ICmp returning bool or vector of bool
4438 
4439       unsigned OpNum = 0;
4440       Value *LHS, *RHS;
4441       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4442           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4443         return error("Invalid record");
4444 
4445       unsigned PredVal = Record[OpNum];
4446       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4447       FastMathFlags FMF;
4448       if (IsFP && Record.size() > OpNum+1)
4449         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4450 
4451       if (OpNum+1 != Record.size())
4452         return error("Invalid record");
4453 
4454       if (LHS->getType()->isFPOrFPVectorTy())
4455         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4456       else
4457         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4458 
4459       if (FMF.any())
4460         I->setFastMathFlags(FMF);
4461       InstructionList.push_back(I);
4462       break;
4463     }
4464 
4465     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4466       {
4467         unsigned Size = Record.size();
4468         if (Size == 0) {
4469           I = ReturnInst::Create(Context);
4470           InstructionList.push_back(I);
4471           break;
4472         }
4473 
4474         unsigned OpNum = 0;
4475         Value *Op = nullptr;
4476         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4477           return error("Invalid record");
4478         if (OpNum != Record.size())
4479           return error("Invalid record");
4480 
4481         I = ReturnInst::Create(Context, Op);
4482         InstructionList.push_back(I);
4483         break;
4484       }
4485     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4486       if (Record.size() != 1 && Record.size() != 3)
4487         return error("Invalid record");
4488       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4489       if (!TrueDest)
4490         return error("Invalid record");
4491 
4492       if (Record.size() == 1) {
4493         I = BranchInst::Create(TrueDest);
4494         InstructionList.push_back(I);
4495       }
4496       else {
4497         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4498         Value *Cond = getValue(Record, 2, NextValueNo,
4499                                Type::getInt1Ty(Context));
4500         if (!FalseDest || !Cond)
4501           return error("Invalid record");
4502         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4503         InstructionList.push_back(I);
4504       }
4505       break;
4506     }
4507     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4508       if (Record.size() != 1 && Record.size() != 2)
4509         return error("Invalid record");
4510       unsigned Idx = 0;
4511       Value *CleanupPad =
4512           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4513       if (!CleanupPad)
4514         return error("Invalid record");
4515       BasicBlock *UnwindDest = nullptr;
4516       if (Record.size() == 2) {
4517         UnwindDest = getBasicBlock(Record[Idx++]);
4518         if (!UnwindDest)
4519           return error("Invalid record");
4520       }
4521 
4522       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4523       InstructionList.push_back(I);
4524       break;
4525     }
4526     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4527       if (Record.size() != 2)
4528         return error("Invalid record");
4529       unsigned Idx = 0;
4530       Value *CatchPad =
4531           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4532       if (!CatchPad)
4533         return error("Invalid record");
4534       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4535       if (!BB)
4536         return error("Invalid record");
4537 
4538       I = CatchReturnInst::Create(CatchPad, BB);
4539       InstructionList.push_back(I);
4540       break;
4541     }
4542     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4543       // We must have, at minimum, the outer scope and the number of arguments.
4544       if (Record.size() < 2)
4545         return error("Invalid record");
4546 
4547       unsigned Idx = 0;
4548 
4549       Value *ParentPad =
4550           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4551 
4552       unsigned NumHandlers = Record[Idx++];
4553 
4554       SmallVector<BasicBlock *, 2> Handlers;
4555       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4556         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4557         if (!BB)
4558           return error("Invalid record");
4559         Handlers.push_back(BB);
4560       }
4561 
4562       BasicBlock *UnwindDest = nullptr;
4563       if (Idx + 1 == Record.size()) {
4564         UnwindDest = getBasicBlock(Record[Idx++]);
4565         if (!UnwindDest)
4566           return error("Invalid record");
4567       }
4568 
4569       if (Record.size() != Idx)
4570         return error("Invalid record");
4571 
4572       auto *CatchSwitch =
4573           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4574       for (BasicBlock *Handler : Handlers)
4575         CatchSwitch->addHandler(Handler);
4576       I = CatchSwitch;
4577       InstructionList.push_back(I);
4578       break;
4579     }
4580     case bitc::FUNC_CODE_INST_CATCHPAD:
4581     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4582       // We must have, at minimum, the outer scope and the number of arguments.
4583       if (Record.size() < 2)
4584         return error("Invalid record");
4585 
4586       unsigned Idx = 0;
4587 
4588       Value *ParentPad =
4589           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4590 
4591       unsigned NumArgOperands = Record[Idx++];
4592 
4593       SmallVector<Value *, 2> Args;
4594       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4595         Value *Val;
4596         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4597           return error("Invalid record");
4598         Args.push_back(Val);
4599       }
4600 
4601       if (Record.size() != Idx)
4602         return error("Invalid record");
4603 
4604       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4605         I = CleanupPadInst::Create(ParentPad, Args);
4606       else
4607         I = CatchPadInst::Create(ParentPad, Args);
4608       InstructionList.push_back(I);
4609       break;
4610     }
4611     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4612       // Check magic
4613       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4614         // "New" SwitchInst format with case ranges. The changes to write this
4615         // format were reverted but we still recognize bitcode that uses it.
4616         // Hopefully someday we will have support for case ranges and can use
4617         // this format again.
4618 
4619         Type *OpTy = getTypeByID(Record[1]);
4620         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4621 
4622         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4623         BasicBlock *Default = getBasicBlock(Record[3]);
4624         if (!OpTy || !Cond || !Default)
4625           return error("Invalid record");
4626 
4627         unsigned NumCases = Record[4];
4628 
4629         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4630         InstructionList.push_back(SI);
4631 
4632         unsigned CurIdx = 5;
4633         for (unsigned i = 0; i != NumCases; ++i) {
4634           SmallVector<ConstantInt*, 1> CaseVals;
4635           unsigned NumItems = Record[CurIdx++];
4636           for (unsigned ci = 0; ci != NumItems; ++ci) {
4637             bool isSingleNumber = Record[CurIdx++];
4638 
4639             APInt Low;
4640             unsigned ActiveWords = 1;
4641             if (ValueBitWidth > 64)
4642               ActiveWords = Record[CurIdx++];
4643             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4644                                 ValueBitWidth);
4645             CurIdx += ActiveWords;
4646 
4647             if (!isSingleNumber) {
4648               ActiveWords = 1;
4649               if (ValueBitWidth > 64)
4650                 ActiveWords = Record[CurIdx++];
4651               APInt High = readWideAPInt(
4652                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4653               CurIdx += ActiveWords;
4654 
4655               // FIXME: It is not clear whether values in the range should be
4656               // compared as signed or unsigned values. The partially
4657               // implemented changes that used this format in the past used
4658               // unsigned comparisons.
4659               for ( ; Low.ule(High); ++Low)
4660                 CaseVals.push_back(ConstantInt::get(Context, Low));
4661             } else
4662               CaseVals.push_back(ConstantInt::get(Context, Low));
4663           }
4664           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4665           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4666                  cve = CaseVals.end(); cvi != cve; ++cvi)
4667             SI->addCase(*cvi, DestBB);
4668         }
4669         I = SI;
4670         break;
4671       }
4672 
4673       // Old SwitchInst format without case ranges.
4674 
4675       if (Record.size() < 3 || (Record.size() & 1) == 0)
4676         return error("Invalid record");
4677       Type *OpTy = getTypeByID(Record[0]);
4678       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4679       BasicBlock *Default = getBasicBlock(Record[2]);
4680       if (!OpTy || !Cond || !Default)
4681         return error("Invalid record");
4682       unsigned NumCases = (Record.size()-3)/2;
4683       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4684       InstructionList.push_back(SI);
4685       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4686         ConstantInt *CaseVal =
4687           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4688         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4689         if (!CaseVal || !DestBB) {
4690           delete SI;
4691           return error("Invalid record");
4692         }
4693         SI->addCase(CaseVal, DestBB);
4694       }
4695       I = SI;
4696       break;
4697     }
4698     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4699       if (Record.size() < 2)
4700         return error("Invalid record");
4701       Type *OpTy = getTypeByID(Record[0]);
4702       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4703       if (!OpTy || !Address)
4704         return error("Invalid record");
4705       unsigned NumDests = Record.size()-2;
4706       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4707       InstructionList.push_back(IBI);
4708       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4709         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4710           IBI->addDestination(DestBB);
4711         } else {
4712           delete IBI;
4713           return error("Invalid record");
4714         }
4715       }
4716       I = IBI;
4717       break;
4718     }
4719 
4720     case bitc::FUNC_CODE_INST_INVOKE: {
4721       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4722       if (Record.size() < 4)
4723         return error("Invalid record");
4724       unsigned OpNum = 0;
4725       AttributeSet PAL = getAttributes(Record[OpNum++]);
4726       unsigned CCInfo = Record[OpNum++];
4727       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4728       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4729 
4730       FunctionType *FTy = nullptr;
4731       if (CCInfo >> 13 & 1 &&
4732           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4733         return error("Explicit invoke type is not a function type");
4734 
4735       Value *Callee;
4736       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4737         return error("Invalid record");
4738 
4739       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4740       if (!CalleeTy)
4741         return error("Callee is not a pointer");
4742       if (!FTy) {
4743         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4744         if (!FTy)
4745           return error("Callee is not of pointer to function type");
4746       } else if (CalleeTy->getElementType() != FTy)
4747         return error("Explicit invoke type does not match pointee type of "
4748                      "callee operand");
4749       if (Record.size() < FTy->getNumParams() + OpNum)
4750         return error("Insufficient operands to call");
4751 
4752       SmallVector<Value*, 16> Ops;
4753       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4754         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4755                                FTy->getParamType(i)));
4756         if (!Ops.back())
4757           return error("Invalid record");
4758       }
4759 
4760       if (!FTy->isVarArg()) {
4761         if (Record.size() != OpNum)
4762           return error("Invalid record");
4763       } else {
4764         // Read type/value pairs for varargs params.
4765         while (OpNum != Record.size()) {
4766           Value *Op;
4767           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4768             return error("Invalid record");
4769           Ops.push_back(Op);
4770         }
4771       }
4772 
4773       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4774       OperandBundles.clear();
4775       InstructionList.push_back(I);
4776       cast<InvokeInst>(I)->setCallingConv(
4777           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4778       cast<InvokeInst>(I)->setAttributes(PAL);
4779       break;
4780     }
4781     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4782       unsigned Idx = 0;
4783       Value *Val = nullptr;
4784       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4785         return error("Invalid record");
4786       I = ResumeInst::Create(Val);
4787       InstructionList.push_back(I);
4788       break;
4789     }
4790     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4791       I = new UnreachableInst(Context);
4792       InstructionList.push_back(I);
4793       break;
4794     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4795       if (Record.size() < 1 || ((Record.size()-1)&1))
4796         return error("Invalid record");
4797       Type *Ty = getTypeByID(Record[0]);
4798       if (!Ty)
4799         return error("Invalid record");
4800 
4801       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4802       InstructionList.push_back(PN);
4803 
4804       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4805         Value *V;
4806         // With the new function encoding, it is possible that operands have
4807         // negative IDs (for forward references).  Use a signed VBR
4808         // representation to keep the encoding small.
4809         if (UseRelativeIDs)
4810           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4811         else
4812           V = getValue(Record, 1+i, NextValueNo, Ty);
4813         BasicBlock *BB = getBasicBlock(Record[2+i]);
4814         if (!V || !BB)
4815           return error("Invalid record");
4816         PN->addIncoming(V, BB);
4817       }
4818       I = PN;
4819       break;
4820     }
4821 
4822     case bitc::FUNC_CODE_INST_LANDINGPAD:
4823     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4824       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4825       unsigned Idx = 0;
4826       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4827         if (Record.size() < 3)
4828           return error("Invalid record");
4829       } else {
4830         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4831         if (Record.size() < 4)
4832           return error("Invalid record");
4833       }
4834       Type *Ty = getTypeByID(Record[Idx++]);
4835       if (!Ty)
4836         return error("Invalid record");
4837       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4838         Value *PersFn = nullptr;
4839         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4840           return error("Invalid record");
4841 
4842         if (!F->hasPersonalityFn())
4843           F->setPersonalityFn(cast<Constant>(PersFn));
4844         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4845           return error("Personality function mismatch");
4846       }
4847 
4848       bool IsCleanup = !!Record[Idx++];
4849       unsigned NumClauses = Record[Idx++];
4850       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4851       LP->setCleanup(IsCleanup);
4852       for (unsigned J = 0; J != NumClauses; ++J) {
4853         LandingPadInst::ClauseType CT =
4854           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4855         Value *Val;
4856 
4857         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4858           delete LP;
4859           return error("Invalid record");
4860         }
4861 
4862         assert((CT != LandingPadInst::Catch ||
4863                 !isa<ArrayType>(Val->getType())) &&
4864                "Catch clause has a invalid type!");
4865         assert((CT != LandingPadInst::Filter ||
4866                 isa<ArrayType>(Val->getType())) &&
4867                "Filter clause has invalid type!");
4868         LP->addClause(cast<Constant>(Val));
4869       }
4870 
4871       I = LP;
4872       InstructionList.push_back(I);
4873       break;
4874     }
4875 
4876     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4877       if (Record.size() != 4)
4878         return error("Invalid record");
4879       uint64_t AlignRecord = Record[3];
4880       const uint64_t InAllocaMask = uint64_t(1) << 5;
4881       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4882       // Reserve bit 7 for SwiftError flag.
4883       // const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4884       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask;
4885       bool InAlloca = AlignRecord & InAllocaMask;
4886       Type *Ty = getTypeByID(Record[0]);
4887       if ((AlignRecord & ExplicitTypeMask) == 0) {
4888         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4889         if (!PTy)
4890           return error("Old-style alloca with a non-pointer type");
4891         Ty = PTy->getElementType();
4892       }
4893       Type *OpTy = getTypeByID(Record[1]);
4894       Value *Size = getFnValueByID(Record[2], OpTy);
4895       unsigned Align;
4896       if (std::error_code EC =
4897               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4898         return EC;
4899       }
4900       if (!Ty || !Size)
4901         return error("Invalid record");
4902       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
4903       AI->setUsedWithInAlloca(InAlloca);
4904       I = AI;
4905       InstructionList.push_back(I);
4906       break;
4907     }
4908     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4909       unsigned OpNum = 0;
4910       Value *Op;
4911       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4912           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4913         return error("Invalid record");
4914 
4915       Type *Ty = nullptr;
4916       if (OpNum + 3 == Record.size())
4917         Ty = getTypeByID(Record[OpNum++]);
4918       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4919         return EC;
4920       if (!Ty)
4921         Ty = cast<PointerType>(Op->getType())->getElementType();
4922 
4923       unsigned Align;
4924       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4925         return EC;
4926       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4927 
4928       InstructionList.push_back(I);
4929       break;
4930     }
4931     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4932        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4933       unsigned OpNum = 0;
4934       Value *Op;
4935       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4936           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4937         return error("Invalid record");
4938 
4939       Type *Ty = nullptr;
4940       if (OpNum + 5 == Record.size())
4941         Ty = getTypeByID(Record[OpNum++]);
4942       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4943         return EC;
4944       if (!Ty)
4945         Ty = cast<PointerType>(Op->getType())->getElementType();
4946 
4947       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4948       if (Ordering == NotAtomic || Ordering == Release ||
4949           Ordering == AcquireRelease)
4950         return error("Invalid record");
4951       if (Ordering != NotAtomic && Record[OpNum] == 0)
4952         return error("Invalid record");
4953       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4954 
4955       unsigned Align;
4956       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4957         return EC;
4958       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
4959 
4960       InstructionList.push_back(I);
4961       break;
4962     }
4963     case bitc::FUNC_CODE_INST_STORE:
4964     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4965       unsigned OpNum = 0;
4966       Value *Val, *Ptr;
4967       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4968           (BitCode == bitc::FUNC_CODE_INST_STORE
4969                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4970                : popValue(Record, OpNum, NextValueNo,
4971                           cast<PointerType>(Ptr->getType())->getElementType(),
4972                           Val)) ||
4973           OpNum + 2 != Record.size())
4974         return error("Invalid record");
4975 
4976       if (std::error_code EC =
4977               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4978         return EC;
4979       unsigned Align;
4980       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4981         return EC;
4982       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4983       InstructionList.push_back(I);
4984       break;
4985     }
4986     case bitc::FUNC_CODE_INST_STOREATOMIC:
4987     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4988       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
4989       unsigned OpNum = 0;
4990       Value *Val, *Ptr;
4991       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4992           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4993                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4994                : popValue(Record, OpNum, NextValueNo,
4995                           cast<PointerType>(Ptr->getType())->getElementType(),
4996                           Val)) ||
4997           OpNum + 4 != Record.size())
4998         return error("Invalid record");
4999 
5000       if (std::error_code EC =
5001               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5002         return EC;
5003       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5004       if (Ordering == NotAtomic || Ordering == Acquire ||
5005           Ordering == AcquireRelease)
5006         return error("Invalid record");
5007       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5008       if (Ordering != NotAtomic && Record[OpNum] == 0)
5009         return error("Invalid record");
5010 
5011       unsigned Align;
5012       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5013         return EC;
5014       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5015       InstructionList.push_back(I);
5016       break;
5017     }
5018     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5019     case bitc::FUNC_CODE_INST_CMPXCHG: {
5020       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5021       //          failureordering?, isweak?]
5022       unsigned OpNum = 0;
5023       Value *Ptr, *Cmp, *New;
5024       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5025           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5026                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5027                : popValue(Record, OpNum, NextValueNo,
5028                           cast<PointerType>(Ptr->getType())->getElementType(),
5029                           Cmp)) ||
5030           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5031           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5032         return error("Invalid record");
5033       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5034       if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
5035         return error("Invalid record");
5036       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5037 
5038       if (std::error_code EC =
5039               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5040         return EC;
5041       AtomicOrdering FailureOrdering;
5042       if (Record.size() < 7)
5043         FailureOrdering =
5044             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5045       else
5046         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5047 
5048       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5049                                 SynchScope);
5050       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5051 
5052       if (Record.size() < 8) {
5053         // Before weak cmpxchgs existed, the instruction simply returned the
5054         // value loaded from memory, so bitcode files from that era will be
5055         // expecting the first component of a modern cmpxchg.
5056         CurBB->getInstList().push_back(I);
5057         I = ExtractValueInst::Create(I, 0);
5058       } else {
5059         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5060       }
5061 
5062       InstructionList.push_back(I);
5063       break;
5064     }
5065     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5066       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5067       unsigned OpNum = 0;
5068       Value *Ptr, *Val;
5069       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5070           popValue(Record, OpNum, NextValueNo,
5071                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5072           OpNum+4 != Record.size())
5073         return error("Invalid record");
5074       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5075       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5076           Operation > AtomicRMWInst::LAST_BINOP)
5077         return error("Invalid record");
5078       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5079       if (Ordering == NotAtomic || Ordering == Unordered)
5080         return error("Invalid record");
5081       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5082       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5083       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5084       InstructionList.push_back(I);
5085       break;
5086     }
5087     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5088       if (2 != Record.size())
5089         return error("Invalid record");
5090       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5091       if (Ordering == NotAtomic || Ordering == Unordered ||
5092           Ordering == Monotonic)
5093         return error("Invalid record");
5094       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5095       I = new FenceInst(Context, Ordering, SynchScope);
5096       InstructionList.push_back(I);
5097       break;
5098     }
5099     case bitc::FUNC_CODE_INST_CALL: {
5100       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5101       if (Record.size() < 3)
5102         return error("Invalid record");
5103 
5104       unsigned OpNum = 0;
5105       AttributeSet PAL = getAttributes(Record[OpNum++]);
5106       unsigned CCInfo = Record[OpNum++];
5107 
5108       FastMathFlags FMF;
5109       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5110         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5111         if (!FMF.any())
5112           return error("Fast math flags indicator set for call with no FMF");
5113       }
5114 
5115       FunctionType *FTy = nullptr;
5116       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5117           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5118         return error("Explicit call type is not a function type");
5119 
5120       Value *Callee;
5121       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5122         return error("Invalid record");
5123 
5124       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5125       if (!OpTy)
5126         return error("Callee is not a pointer type");
5127       if (!FTy) {
5128         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5129         if (!FTy)
5130           return error("Callee is not of pointer to function type");
5131       } else if (OpTy->getElementType() != FTy)
5132         return error("Explicit call type does not match pointee type of "
5133                      "callee operand");
5134       if (Record.size() < FTy->getNumParams() + OpNum)
5135         return error("Insufficient operands to call");
5136 
5137       SmallVector<Value*, 16> Args;
5138       // Read the fixed params.
5139       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5140         if (FTy->getParamType(i)->isLabelTy())
5141           Args.push_back(getBasicBlock(Record[OpNum]));
5142         else
5143           Args.push_back(getValue(Record, OpNum, NextValueNo,
5144                                   FTy->getParamType(i)));
5145         if (!Args.back())
5146           return error("Invalid record");
5147       }
5148 
5149       // Read type/value pairs for varargs params.
5150       if (!FTy->isVarArg()) {
5151         if (OpNum != Record.size())
5152           return error("Invalid record");
5153       } else {
5154         while (OpNum != Record.size()) {
5155           Value *Op;
5156           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5157             return error("Invalid record");
5158           Args.push_back(Op);
5159         }
5160       }
5161 
5162       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5163       OperandBundles.clear();
5164       InstructionList.push_back(I);
5165       cast<CallInst>(I)->setCallingConv(
5166           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5167       CallInst::TailCallKind TCK = CallInst::TCK_None;
5168       if (CCInfo & 1 << bitc::CALL_TAIL)
5169         TCK = CallInst::TCK_Tail;
5170       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5171         TCK = CallInst::TCK_MustTail;
5172       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5173         TCK = CallInst::TCK_NoTail;
5174       cast<CallInst>(I)->setTailCallKind(TCK);
5175       cast<CallInst>(I)->setAttributes(PAL);
5176       if (FMF.any()) {
5177         if (!isa<FPMathOperator>(I))
5178           return error("Fast-math-flags specified for call without "
5179                        "floating-point scalar or vector return type");
5180         I->setFastMathFlags(FMF);
5181       }
5182       break;
5183     }
5184     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5185       if (Record.size() < 3)
5186         return error("Invalid record");
5187       Type *OpTy = getTypeByID(Record[0]);
5188       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5189       Type *ResTy = getTypeByID(Record[2]);
5190       if (!OpTy || !Op || !ResTy)
5191         return error("Invalid record");
5192       I = new VAArgInst(Op, ResTy);
5193       InstructionList.push_back(I);
5194       break;
5195     }
5196 
5197     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5198       // A call or an invoke can be optionally prefixed with some variable
5199       // number of operand bundle blocks.  These blocks are read into
5200       // OperandBundles and consumed at the next call or invoke instruction.
5201 
5202       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5203         return error("Invalid record");
5204 
5205       std::vector<Value *> Inputs;
5206 
5207       unsigned OpNum = 1;
5208       while (OpNum != Record.size()) {
5209         Value *Op;
5210         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5211           return error("Invalid record");
5212         Inputs.push_back(Op);
5213       }
5214 
5215       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5216       continue;
5217     }
5218     }
5219 
5220     // Add instruction to end of current BB.  If there is no current BB, reject
5221     // this file.
5222     if (!CurBB) {
5223       delete I;
5224       return error("Invalid instruction with no BB");
5225     }
5226     if (!OperandBundles.empty()) {
5227       delete I;
5228       return error("Operand bundles found with no consumer");
5229     }
5230     CurBB->getInstList().push_back(I);
5231 
5232     // If this was a terminator instruction, move to the next block.
5233     if (isa<TerminatorInst>(I)) {
5234       ++CurBBNo;
5235       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5236     }
5237 
5238     // Non-void values get registered in the value table for future use.
5239     if (I && !I->getType()->isVoidTy())
5240       ValueList.assignValue(I, NextValueNo++);
5241   }
5242 
5243 OutOfRecordLoop:
5244 
5245   if (!OperandBundles.empty())
5246     return error("Operand bundles found with no consumer");
5247 
5248   // Check the function list for unresolved values.
5249   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5250     if (!A->getParent()) {
5251       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5252       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5253         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5254           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5255           delete A;
5256         }
5257       }
5258       return error("Never resolved value found in function");
5259     }
5260   }
5261 
5262   // FIXME: Check for unresolved forward-declared metadata references
5263   // and clean up leaks.
5264 
5265   // Trim the value list down to the size it was before we parsed this function.
5266   ValueList.shrinkTo(ModuleValueListSize);
5267   MetadataList.shrinkTo(ModuleMetadataListSize);
5268   std::vector<BasicBlock*>().swap(FunctionBBs);
5269   return std::error_code();
5270 }
5271 
5272 /// Find the function body in the bitcode stream
5273 std::error_code BitcodeReader::findFunctionInStream(
5274     Function *F,
5275     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5276   while (DeferredFunctionInfoIterator->second == 0) {
5277     // This is the fallback handling for the old format bitcode that
5278     // didn't contain the function index in the VST, or when we have
5279     // an anonymous function which would not have a VST entry.
5280     // Assert that we have one of those two cases.
5281     assert(VSTOffset == 0 || !F->hasName());
5282     // Parse the next body in the stream and set its position in the
5283     // DeferredFunctionInfo map.
5284     if (std::error_code EC = rememberAndSkipFunctionBodies())
5285       return EC;
5286   }
5287   return std::error_code();
5288 }
5289 
5290 //===----------------------------------------------------------------------===//
5291 // GVMaterializer implementation
5292 //===----------------------------------------------------------------------===//
5293 
5294 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5295 
5296 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5297   if (std::error_code EC = materializeMetadata())
5298     return EC;
5299 
5300   Function *F = dyn_cast<Function>(GV);
5301   // If it's not a function or is already material, ignore the request.
5302   if (!F || !F->isMaterializable())
5303     return std::error_code();
5304 
5305   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5306   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5307   // If its position is recorded as 0, its body is somewhere in the stream
5308   // but we haven't seen it yet.
5309   if (DFII->second == 0)
5310     if (std::error_code EC = findFunctionInStream(F, DFII))
5311       return EC;
5312 
5313   // Move the bit stream to the saved position of the deferred function body.
5314   Stream.JumpToBit(DFII->second);
5315 
5316   if (std::error_code EC = parseFunctionBody(F))
5317     return EC;
5318   F->setIsMaterializable(false);
5319 
5320   if (StripDebugInfo)
5321     stripDebugInfo(*F);
5322 
5323   // Upgrade any old intrinsic calls in the function.
5324   for (auto &I : UpgradedIntrinsics) {
5325     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5326          UI != UE;) {
5327       User *U = *UI;
5328       ++UI;
5329       if (CallInst *CI = dyn_cast<CallInst>(U))
5330         UpgradeIntrinsicCall(CI, I.second);
5331     }
5332   }
5333 
5334   // Finish fn->subprogram upgrade for materialized functions.
5335   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5336     F->setSubprogram(SP);
5337 
5338   // Bring in any functions that this function forward-referenced via
5339   // blockaddresses.
5340   return materializeForwardReferencedFunctions();
5341 }
5342 
5343 std::error_code BitcodeReader::materializeModule() {
5344   if (std::error_code EC = materializeMetadata())
5345     return EC;
5346 
5347   // Promise to materialize all forward references.
5348   WillMaterializeAllForwardRefs = true;
5349 
5350   // Iterate over the module, deserializing any functions that are still on
5351   // disk.
5352   for (Function &F : *TheModule) {
5353     if (std::error_code EC = materialize(&F))
5354       return EC;
5355   }
5356   // At this point, if there are any function bodies, parse the rest of
5357   // the bits in the module past the last function block we have recorded
5358   // through either lazy scanning or the VST.
5359   if (LastFunctionBlockBit || NextUnreadBit)
5360     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5361                                                      : NextUnreadBit);
5362 
5363   // Check that all block address forward references got resolved (as we
5364   // promised above).
5365   if (!BasicBlockFwdRefs.empty())
5366     return error("Never resolved function from blockaddress");
5367 
5368   // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost,
5369   // to prevent this instructions with TBAA tags should be upgraded first.
5370   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5371     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5372 
5373   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5374   // delete the old functions to clean up. We can't do this unless the entire
5375   // module is materialized because there could always be another function body
5376   // with calls to the old function.
5377   for (auto &I : UpgradedIntrinsics) {
5378     for (auto *U : I.first->users()) {
5379       if (CallInst *CI = dyn_cast<CallInst>(U))
5380         UpgradeIntrinsicCall(CI, I.second);
5381     }
5382     if (!I.first->use_empty())
5383       I.first->replaceAllUsesWith(I.second);
5384     I.first->eraseFromParent();
5385   }
5386   UpgradedIntrinsics.clear();
5387 
5388   UpgradeDebugInfo(*TheModule);
5389   return std::error_code();
5390 }
5391 
5392 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5393   return IdentifiedStructTypes;
5394 }
5395 
5396 std::error_code
5397 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5398   if (Streamer)
5399     return initLazyStream(std::move(Streamer));
5400   return initStreamFromBuffer();
5401 }
5402 
5403 std::error_code BitcodeReader::initStreamFromBuffer() {
5404   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5405   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5406 
5407   if (Buffer->getBufferSize() & 3)
5408     return error("Invalid bitcode signature");
5409 
5410   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5411   // The magic number is 0x0B17C0DE stored in little endian.
5412   if (isBitcodeWrapper(BufPtr, BufEnd))
5413     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5414       return error("Invalid bitcode wrapper header");
5415 
5416   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5417   Stream.init(&*StreamFile);
5418 
5419   return std::error_code();
5420 }
5421 
5422 std::error_code
5423 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5424   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5425   // see it.
5426   auto OwnedBytes =
5427       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5428   StreamingMemoryObject &Bytes = *OwnedBytes;
5429   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5430   Stream.init(&*StreamFile);
5431 
5432   unsigned char buf[16];
5433   if (Bytes.readBytes(buf, 16, 0) != 16)
5434     return error("Invalid bitcode signature");
5435 
5436   if (!isBitcode(buf, buf + 16))
5437     return error("Invalid bitcode signature");
5438 
5439   if (isBitcodeWrapper(buf, buf + 4)) {
5440     const unsigned char *bitcodeStart = buf;
5441     const unsigned char *bitcodeEnd = buf + 16;
5442     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5443     Bytes.dropLeadingBytes(bitcodeStart - buf);
5444     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5445   }
5446   return std::error_code();
5447 }
5448 
5449 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E,
5450                                                        const Twine &Message) {
5451   return ::error(DiagnosticHandler, make_error_code(E), Message);
5452 }
5453 
5454 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5455   return ::error(DiagnosticHandler,
5456                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5457 }
5458 
5459 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) {
5460   return ::error(DiagnosticHandler, make_error_code(E));
5461 }
5462 
5463 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5464     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5465     bool IsLazy, bool CheckGlobalValSummaryPresenceOnly)
5466     : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy),
5467       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5468 
5469 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5470     DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy,
5471     bool CheckGlobalValSummaryPresenceOnly)
5472     : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy),
5473       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5474 
5475 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5476 
5477 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5478 
5479 uint64_t ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5480   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5481   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5482   return VGI->second;
5483 }
5484 
5485 GlobalValueInfo *
5486 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) {
5487   auto I = SummaryOffsetToInfoMap.find(Offset);
5488   assert(I != SummaryOffsetToInfoMap.end());
5489   return I->second;
5490 }
5491 
5492 // Specialized value symbol table parser used when reading module index
5493 // blocks where we don't actually create global values.
5494 // At the end of this routine the module index is populated with a map
5495 // from global value name to GlobalValueInfo. The global value info contains
5496 // the function block's bitcode offset (if applicable), or the offset into the
5497 // summary section for the combined index.
5498 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5499     uint64_t Offset,
5500     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5501   assert(Offset > 0 && "Expected non-zero VST offset");
5502   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5503 
5504   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5505     return error("Invalid record");
5506 
5507   SmallVector<uint64_t, 64> Record;
5508 
5509   // Read all the records for this value table.
5510   SmallString<128> ValueName;
5511   while (1) {
5512     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5513 
5514     switch (Entry.Kind) {
5515     case BitstreamEntry::SubBlock: // Handled for us already.
5516     case BitstreamEntry::Error:
5517       return error("Malformed block");
5518     case BitstreamEntry::EndBlock:
5519       // Done parsing VST, jump back to wherever we came from.
5520       Stream.JumpToBit(CurrentBit);
5521       return std::error_code();
5522     case BitstreamEntry::Record:
5523       // The interesting case.
5524       break;
5525     }
5526 
5527     // Read a record.
5528     Record.clear();
5529     switch (Stream.readRecord(Entry.ID, Record)) {
5530     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5531       break;
5532     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5533       if (convertToString(Record, 1, ValueName))
5534         return error("Invalid record");
5535       unsigned ValueID = Record[0];
5536       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5537           llvm::make_unique<GlobalValueInfo>();
5538       assert(!SourceFileName.empty());
5539       auto VLI = ValueIdToLinkageMap.find(ValueID);
5540       assert(VLI != ValueIdToLinkageMap.end() &&
5541              "No linkage found for VST entry?");
5542       std::string GlobalId = GlobalValue::getGlobalIdentifier(
5543           ValueName, VLI->second, SourceFileName);
5544       TheIndex->addGlobalValueInfo(GlobalId, std::move(GlobalValInfo));
5545       ValueIdToCallGraphGUIDMap[ValueID] = GlobalValue::getGUID(GlobalId);
5546       ValueName.clear();
5547       break;
5548     }
5549     case bitc::VST_CODE_FNENTRY: {
5550       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5551       if (convertToString(Record, 2, ValueName))
5552         return error("Invalid record");
5553       unsigned ValueID = Record[0];
5554       uint64_t FuncOffset = Record[1];
5555       assert(!IsLazy && "Lazy summary read only supported for combined index");
5556       std::unique_ptr<GlobalValueInfo> FuncInfo =
5557           llvm::make_unique<GlobalValueInfo>(FuncOffset);
5558       assert(!SourceFileName.empty());
5559       auto VLI = ValueIdToLinkageMap.find(ValueID);
5560       assert(VLI != ValueIdToLinkageMap.end() &&
5561              "No linkage found for VST entry?");
5562       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5563           ValueName, VLI->second, SourceFileName);
5564       TheIndex->addGlobalValueInfo(FunctionGlobalId, std::move(FuncInfo));
5565       ValueIdToCallGraphGUIDMap[ValueID] =
5566           GlobalValue::getGUID(FunctionGlobalId);
5567 
5568       ValueName.clear();
5569       break;
5570     }
5571     case bitc::VST_CODE_COMBINED_GVDEFENTRY: {
5572       // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid]
5573       unsigned ValueID = Record[0];
5574       uint64_t GlobalValSummaryOffset = Record[1];
5575       uint64_t GlobalValGUID = Record[2];
5576       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5577           llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset);
5578       SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get();
5579       TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo));
5580       ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID;
5581       break;
5582     }
5583     case bitc::VST_CODE_COMBINED_ENTRY: {
5584       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5585       unsigned ValueID = Record[0];
5586       uint64_t RefGUID = Record[1];
5587       ValueIdToCallGraphGUIDMap[ValueID] = RefGUID;
5588       break;
5589     }
5590     }
5591   }
5592 }
5593 
5594 // Parse just the blocks needed for building the index out of the module.
5595 // At the end of this routine the module Index is populated with a map
5596 // from global value name to GlobalValueInfo. The global value info contains
5597 // either the parsed summary information (when parsing summaries
5598 // eagerly), or just to the summary record's offset
5599 // if parsing lazily (IsLazy).
5600 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
5601   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5602     return error("Invalid record");
5603 
5604   SmallVector<uint64_t, 64> Record;
5605   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5606   unsigned ValueId = 0;
5607 
5608   // Read the index for this module.
5609   while (1) {
5610     BitstreamEntry Entry = Stream.advance();
5611 
5612     switch (Entry.Kind) {
5613     case BitstreamEntry::Error:
5614       return error("Malformed block");
5615     case BitstreamEntry::EndBlock:
5616       return std::error_code();
5617 
5618     case BitstreamEntry::SubBlock:
5619       if (CheckGlobalValSummaryPresenceOnly) {
5620         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5621           SeenGlobalValSummary = true;
5622           // No need to parse the rest since we found the summary.
5623           return std::error_code();
5624         }
5625         if (Stream.SkipBlock())
5626           return error("Invalid record");
5627         continue;
5628       }
5629       switch (Entry.ID) {
5630       default: // Skip unknown content.
5631         if (Stream.SkipBlock())
5632           return error("Invalid record");
5633         break;
5634       case bitc::BLOCKINFO_BLOCK_ID:
5635         // Need to parse these to get abbrev ids (e.g. for VST)
5636         if (Stream.ReadBlockInfoBlock())
5637           return error("Malformed block");
5638         break;
5639       case bitc::VALUE_SYMTAB_BLOCK_ID:
5640         // Should have been parsed earlier via VSTOffset, unless there
5641         // is no summary section.
5642         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5643                 !SeenGlobalValSummary) &&
5644                "Expected early VST parse via VSTOffset record");
5645         if (Stream.SkipBlock())
5646           return error("Invalid record");
5647         break;
5648       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5649         assert(VSTOffset > 0 && "Expected non-zero VST offset");
5650         assert(!SeenValueSymbolTable &&
5651                "Already read VST when parsing summary block?");
5652         if (std::error_code EC =
5653                 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5654           return EC;
5655         SeenValueSymbolTable = true;
5656         SeenGlobalValSummary = true;
5657         if (IsLazy) {
5658           // Lazy parsing of summary info, skip it.
5659           if (Stream.SkipBlock())
5660             return error("Invalid record");
5661         } else if (std::error_code EC = parseEntireSummary())
5662           return EC;
5663         break;
5664       case bitc::MODULE_STRTAB_BLOCK_ID:
5665         if (std::error_code EC = parseModuleStringTable())
5666           return EC;
5667         break;
5668       }
5669       continue;
5670 
5671     case BitstreamEntry::Record:
5672       // Once we find the last record of interest, skip the rest.
5673       if (VSTOffset > 0)
5674         Stream.skipRecord(Entry.ID);
5675       else {
5676         Record.clear();
5677         auto BitCode = Stream.readRecord(Entry.ID, Record);
5678         switch (BitCode) {
5679         default:
5680           break; // Default behavior, ignore unknown content.
5681         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5682         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5683           SmallString<128> ValueName;
5684           if (convertToString(Record, 0, ValueName))
5685             return error("Invalid record");
5686           SourceFileName = ValueName.c_str();
5687           break;
5688         }
5689         /// MODULE_CODE_VSTOFFSET: [offset]
5690         case bitc::MODULE_CODE_VSTOFFSET:
5691           if (Record.size() < 1)
5692             return error("Invalid record");
5693           VSTOffset = Record[0];
5694           break;
5695         // GLOBALVAR: [pointer type, isconst, initid,
5696         //             linkage, alignment, section, visibility, threadlocal,
5697         //             unnamed_addr, externally_initialized, dllstorageclass,
5698         //             comdat]
5699         case bitc::MODULE_CODE_GLOBALVAR: {
5700           if (Record.size() < 6)
5701             return error("Invalid record");
5702           uint64_t RawLinkage = Record[3];
5703           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5704           ValueIdToLinkageMap[ValueId++] = Linkage;
5705           break;
5706         }
5707         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
5708         //             alignment, section, visibility, gc, unnamed_addr,
5709         //             prologuedata, dllstorageclass, comdat, prefixdata]
5710         case bitc::MODULE_CODE_FUNCTION: {
5711           if (Record.size() < 8)
5712             return error("Invalid record");
5713           uint64_t RawLinkage = Record[3];
5714           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5715           ValueIdToLinkageMap[ValueId++] = Linkage;
5716           break;
5717         }
5718         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
5719         // dllstorageclass]
5720         case bitc::MODULE_CODE_ALIAS: {
5721           if (Record.size() < 6)
5722             return error("Invalid record");
5723           uint64_t RawLinkage = Record[3];
5724           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5725           ValueIdToLinkageMap[ValueId++] = Linkage;
5726           break;
5727         }
5728         }
5729       }
5730       continue;
5731     }
5732   }
5733 }
5734 
5735 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5736 // objects in the index.
5737 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
5738   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
5739     return error("Invalid record");
5740 
5741   SmallVector<uint64_t, 64> Record;
5742 
5743   bool Combined = false;
5744   while (1) {
5745     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5746 
5747     switch (Entry.Kind) {
5748     case BitstreamEntry::SubBlock: // Handled for us already.
5749     case BitstreamEntry::Error:
5750       return error("Malformed block");
5751     case BitstreamEntry::EndBlock:
5752       // For a per-module index, remove any entries that still have empty
5753       // summaries. The VST parsing creates entries eagerly for all symbols,
5754       // but not all have associated summaries (e.g. it doesn't know how to
5755       // distinguish between VST_CODE_ENTRY for function declarations vs global
5756       // variables with initializers that end up with a summary). Remove those
5757       // entries now so that we don't need to rely on the combined index merger
5758       // to clean them up (especially since that may not run for the first
5759       // module's index if we merge into that).
5760       if (!Combined)
5761         TheIndex->removeEmptySummaryEntries();
5762       return std::error_code();
5763     case BitstreamEntry::Record:
5764       // The interesting case.
5765       break;
5766     }
5767 
5768     // Read a record. The record format depends on whether this
5769     // is a per-module index or a combined index file. In the per-module
5770     // case the records contain the associated value's ID for correlation
5771     // with VST entries. In the combined index the correlation is done
5772     // via the bitcode offset of the summary records (which were saved
5773     // in the combined index VST entries). The records also contain
5774     // information used for ThinLTO renaming and importing.
5775     Record.clear();
5776     uint64_t CurRecordBit = Stream.GetCurrentBitNo();
5777     auto BitCode = Stream.readRecord(Entry.ID, Record);
5778     switch (BitCode) {
5779     default: // Default behavior: ignore.
5780       break;
5781     // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid,
5782     //                n x (valueid, callsitecount)]
5783     // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs,
5784     //                        numrefs x valueid,
5785     //                        n x (valueid, callsitecount, profilecount)]
5786     case bitc::FS_PERMODULE:
5787     case bitc::FS_PERMODULE_PROFILE: {
5788       unsigned ValueID = Record[0];
5789       uint64_t RawLinkage = Record[1];
5790       unsigned InstCount = Record[2];
5791       unsigned NumRefs = Record[3];
5792       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5793           getDecodedLinkage(RawLinkage), InstCount);
5794       // The module path string ref set in the summary must be owned by the
5795       // index's module string table. Since we don't have a module path
5796       // string table section in the per-module index, we create a single
5797       // module path string table entry with an empty (0) ID to take
5798       // ownership.
5799       FS->setModulePath(
5800           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0));
5801       static int RefListStartIndex = 4;
5802       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5803       assert(Record.size() >= RefListStartIndex + NumRefs &&
5804              "Record size inconsistent with number of references");
5805       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5806         unsigned RefValueId = Record[I];
5807         uint64_t RefGUID = getGUIDFromValueId(RefValueId);
5808         FS->addRefEdge(RefGUID);
5809       }
5810       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5811       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5812            ++I) {
5813         unsigned CalleeValueId = Record[I];
5814         unsigned CallsiteCount = Record[++I];
5815         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5816         uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId);
5817         FS->addCallGraphEdge(CalleeGUID,
5818                              CalleeInfo(CallsiteCount, ProfileCount));
5819       }
5820       uint64_t GUID = getGUIDFromValueId(ValueID);
5821       auto InfoList = TheIndex->findGlobalValueInfoList(GUID);
5822       assert(InfoList != TheIndex->end() &&
5823              "Expected VST parse to create GlobalValueInfo entry");
5824       assert(InfoList->second.size() == 1 &&
5825              "Expected a single GlobalValueInfo per GUID in module");
5826       auto &Info = InfoList->second[0];
5827       assert(!Info->summary() && "Expected a single summary per VST entry");
5828       Info->setSummary(std::move(FS));
5829       break;
5830     }
5831     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid]
5832     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5833       unsigned ValueID = Record[0];
5834       uint64_t RawLinkage = Record[1];
5835       std::unique_ptr<GlobalVarSummary> FS =
5836           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
5837       FS->setModulePath(
5838           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0));
5839       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
5840         unsigned RefValueId = Record[I];
5841         uint64_t RefGUID = getGUIDFromValueId(RefValueId);
5842         FS->addRefEdge(RefGUID);
5843       }
5844       uint64_t GUID = getGUIDFromValueId(ValueID);
5845       auto InfoList = TheIndex->findGlobalValueInfoList(GUID);
5846       assert(InfoList != TheIndex->end() &&
5847              "Expected VST parse to create GlobalValueInfo entry");
5848       assert(InfoList->second.size() == 1 &&
5849              "Expected a single GlobalValueInfo per GUID in module");
5850       auto &Info = InfoList->second[0];
5851       assert(!Info->summary() && "Expected a single summary per VST entry");
5852       Info->setSummary(std::move(FS));
5853       break;
5854     }
5855     // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid,
5856     //               n x (valueid, callsitecount)]
5857     // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs,
5858     //                       numrefs x valueid,
5859     //                       n x (valueid, callsitecount, profilecount)]
5860     case bitc::FS_COMBINED:
5861     case bitc::FS_COMBINED_PROFILE: {
5862       uint64_t ModuleId = Record[0];
5863       uint64_t RawLinkage = Record[1];
5864       unsigned InstCount = Record[2];
5865       unsigned NumRefs = Record[3];
5866       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5867           getDecodedLinkage(RawLinkage), InstCount);
5868       FS->setModulePath(ModuleIdMap[ModuleId]);
5869       static int RefListStartIndex = 4;
5870       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5871       assert(Record.size() >= RefListStartIndex + NumRefs &&
5872              "Record size inconsistent with number of references");
5873       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5874         unsigned RefValueId = Record[I];
5875         uint64_t RefGUID = getGUIDFromValueId(RefValueId);
5876         FS->addRefEdge(RefGUID);
5877       }
5878       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5879       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5880            ++I) {
5881         unsigned CalleeValueId = Record[I];
5882         unsigned CallsiteCount = Record[++I];
5883         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5884         uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId);
5885         FS->addCallGraphEdge(CalleeGUID,
5886                              CalleeInfo(CallsiteCount, ProfileCount));
5887       }
5888       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
5889       assert(!Info->summary() && "Expected a single summary per VST entry");
5890       Info->setSummary(std::move(FS));
5891       Combined = true;
5892       break;
5893     }
5894     // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid]
5895     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5896       uint64_t ModuleId = Record[0];
5897       uint64_t RawLinkage = Record[1];
5898       std::unique_ptr<GlobalVarSummary> FS =
5899           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
5900       FS->setModulePath(ModuleIdMap[ModuleId]);
5901       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
5902         unsigned RefValueId = Record[I];
5903         uint64_t RefGUID = getGUIDFromValueId(RefValueId);
5904         FS->addRefEdge(RefGUID);
5905       }
5906       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
5907       assert(!Info->summary() && "Expected a single summary per VST entry");
5908       Info->setSummary(std::move(FS));
5909       Combined = true;
5910       break;
5911     }
5912     }
5913   }
5914   llvm_unreachable("Exit infinite loop");
5915 }
5916 
5917 // Parse the  module string table block into the Index.
5918 // This populates the ModulePathStringTable map in the index.
5919 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5920   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5921     return error("Invalid record");
5922 
5923   SmallVector<uint64_t, 64> Record;
5924 
5925   SmallString<128> ModulePath;
5926   while (1) {
5927     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5928 
5929     switch (Entry.Kind) {
5930     case BitstreamEntry::SubBlock: // Handled for us already.
5931     case BitstreamEntry::Error:
5932       return error("Malformed block");
5933     case BitstreamEntry::EndBlock:
5934       return std::error_code();
5935     case BitstreamEntry::Record:
5936       // The interesting case.
5937       break;
5938     }
5939 
5940     Record.clear();
5941     switch (Stream.readRecord(Entry.ID, Record)) {
5942     default: // Default behavior: ignore.
5943       break;
5944     case bitc::MST_CODE_ENTRY: {
5945       // MST_ENTRY: [modid, namechar x N]
5946       if (convertToString(Record, 1, ModulePath))
5947         return error("Invalid record");
5948       uint64_t ModuleId = Record[0];
5949       StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId);
5950       ModuleIdMap[ModuleId] = ModulePathInMap;
5951       ModulePath.clear();
5952       break;
5953     }
5954     }
5955   }
5956   llvm_unreachable("Exit infinite loop");
5957 }
5958 
5959 // Parse the function info index from the bitcode streamer into the given index.
5960 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
5961     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
5962   TheIndex = I;
5963 
5964   if (std::error_code EC = initStream(std::move(Streamer)))
5965     return EC;
5966 
5967   // Sniff for the signature.
5968   if (!hasValidBitcodeHeader(Stream))
5969     return error("Invalid bitcode signature");
5970 
5971   // We expect a number of well-defined blocks, though we don't necessarily
5972   // need to understand them all.
5973   while (1) {
5974     if (Stream.AtEndOfStream()) {
5975       // We didn't really read a proper Module block.
5976       return error("Malformed block");
5977     }
5978 
5979     BitstreamEntry Entry =
5980         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
5981 
5982     if (Entry.Kind != BitstreamEntry::SubBlock)
5983       return error("Malformed block");
5984 
5985     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
5986     // building the function summary index.
5987     if (Entry.ID == bitc::MODULE_BLOCK_ID)
5988       return parseModule();
5989 
5990     if (Stream.SkipBlock())
5991       return error("Invalid record");
5992   }
5993 }
5994 
5995 // Parse the summary information at the given offset in the buffer into
5996 // the index. Used to support lazy parsing of summaries from the
5997 // combined index during importing.
5998 // TODO: This function is not yet complete as it won't have a consumer
5999 // until ThinLTO function importing is added.
6000 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary(
6001     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I,
6002     size_t SummaryOffset) {
6003   TheIndex = I;
6004 
6005   if (std::error_code EC = initStream(std::move(Streamer)))
6006     return EC;
6007 
6008   // Sniff for the signature.
6009   if (!hasValidBitcodeHeader(Stream))
6010     return error("Invalid bitcode signature");
6011 
6012   Stream.JumpToBit(SummaryOffset);
6013 
6014   BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6015 
6016   switch (Entry.Kind) {
6017   default:
6018     return error("Malformed block");
6019   case BitstreamEntry::Record:
6020     // The expected case.
6021     break;
6022   }
6023 
6024   // TODO: Read a record. This interface will be completed when ThinLTO
6025   // importing is added so that it can be tested.
6026   SmallVector<uint64_t, 64> Record;
6027   switch (Stream.readRecord(Entry.ID, Record)) {
6028   case bitc::FS_COMBINED:
6029   case bitc::FS_COMBINED_PROFILE:
6030   case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS:
6031   default:
6032     return error("Invalid record");
6033   }
6034 
6035   return std::error_code();
6036 }
6037 
6038 std::error_code ModuleSummaryIndexBitcodeReader::initStream(
6039     std::unique_ptr<DataStreamer> Streamer) {
6040   if (Streamer)
6041     return initLazyStream(std::move(Streamer));
6042   return initStreamFromBuffer();
6043 }
6044 
6045 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() {
6046   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
6047   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
6048 
6049   if (Buffer->getBufferSize() & 3)
6050     return error("Invalid bitcode signature");
6051 
6052   // If we have a wrapper header, parse it and ignore the non-bc file contents.
6053   // The magic number is 0x0B17C0DE stored in little endian.
6054   if (isBitcodeWrapper(BufPtr, BufEnd))
6055     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
6056       return error("Invalid bitcode wrapper header");
6057 
6058   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
6059   Stream.init(&*StreamFile);
6060 
6061   return std::error_code();
6062 }
6063 
6064 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream(
6065     std::unique_ptr<DataStreamer> Streamer) {
6066   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
6067   // see it.
6068   auto OwnedBytes =
6069       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
6070   StreamingMemoryObject &Bytes = *OwnedBytes;
6071   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
6072   Stream.init(&*StreamFile);
6073 
6074   unsigned char buf[16];
6075   if (Bytes.readBytes(buf, 16, 0) != 16)
6076     return error("Invalid bitcode signature");
6077 
6078   if (!isBitcode(buf, buf + 16))
6079     return error("Invalid bitcode signature");
6080 
6081   if (isBitcodeWrapper(buf, buf + 4)) {
6082     const unsigned char *bitcodeStart = buf;
6083     const unsigned char *bitcodeEnd = buf + 16;
6084     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
6085     Bytes.dropLeadingBytes(bitcodeStart - buf);
6086     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
6087   }
6088   return std::error_code();
6089 }
6090 
6091 namespace {
6092 class BitcodeErrorCategoryType : public std::error_category {
6093   const char *name() const LLVM_NOEXCEPT override {
6094     return "llvm.bitcode";
6095   }
6096   std::string message(int IE) const override {
6097     BitcodeError E = static_cast<BitcodeError>(IE);
6098     switch (E) {
6099     case BitcodeError::InvalidBitcodeSignature:
6100       return "Invalid bitcode signature";
6101     case BitcodeError::CorruptedBitcode:
6102       return "Corrupted bitcode";
6103     }
6104     llvm_unreachable("Unknown error type!");
6105   }
6106 };
6107 } // end anonymous namespace
6108 
6109 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6110 
6111 const std::error_category &llvm::BitcodeErrorCategory() {
6112   return *ErrorCategory;
6113 }
6114 
6115 //===----------------------------------------------------------------------===//
6116 // External interface
6117 //===----------------------------------------------------------------------===//
6118 
6119 static ErrorOr<std::unique_ptr<Module>>
6120 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6121                      BitcodeReader *R, LLVMContext &Context,
6122                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6123   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6124   M->setMaterializer(R);
6125 
6126   auto cleanupOnError = [&](std::error_code EC) {
6127     R->releaseBuffer(); // Never take ownership on error.
6128     return EC;
6129   };
6130 
6131   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6132   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6133                                                ShouldLazyLoadMetadata))
6134     return cleanupOnError(EC);
6135 
6136   if (MaterializeAll) {
6137     // Read in the entire module, and destroy the BitcodeReader.
6138     if (std::error_code EC = M->materializeAll())
6139       return cleanupOnError(EC);
6140   } else {
6141     // Resolve forward references from blockaddresses.
6142     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6143       return cleanupOnError(EC);
6144   }
6145   return std::move(M);
6146 }
6147 
6148 /// \brief Get a lazy one-at-time loading module from bitcode.
6149 ///
6150 /// This isn't always used in a lazy context.  In particular, it's also used by
6151 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6152 /// in forward-referenced functions from block address references.
6153 ///
6154 /// \param[in] MaterializeAll Set to \c true if we should materialize
6155 /// everything.
6156 static ErrorOr<std::unique_ptr<Module>>
6157 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6158                          LLVMContext &Context, bool MaterializeAll,
6159                          bool ShouldLazyLoadMetadata = false) {
6160   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6161 
6162   ErrorOr<std::unique_ptr<Module>> Ret =
6163       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6164                            MaterializeAll, ShouldLazyLoadMetadata);
6165   if (!Ret)
6166     return Ret;
6167 
6168   Buffer.release(); // The BitcodeReader owns it now.
6169   return Ret;
6170 }
6171 
6172 ErrorOr<std::unique_ptr<Module>>
6173 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6174                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6175   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6176                                   ShouldLazyLoadMetadata);
6177 }
6178 
6179 ErrorOr<std::unique_ptr<Module>>
6180 llvm::getStreamedBitcodeModule(StringRef Name,
6181                                std::unique_ptr<DataStreamer> Streamer,
6182                                LLVMContext &Context) {
6183   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6184   BitcodeReader *R = new BitcodeReader(Context);
6185 
6186   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6187                               false);
6188 }
6189 
6190 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6191                                                         LLVMContext &Context) {
6192   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6193   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6194   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6195   // written.  We must defer until the Module has been fully materialized.
6196 }
6197 
6198 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6199                                          LLVMContext &Context) {
6200   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6201   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6202   ErrorOr<std::string> Triple = R->parseTriple();
6203   if (Triple.getError())
6204     return "";
6205   return Triple.get();
6206 }
6207 
6208 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6209                                            LLVMContext &Context) {
6210   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6211   BitcodeReader R(Buf.release(), Context);
6212   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6213   if (ProducerString.getError())
6214     return "";
6215   return ProducerString.get();
6216 }
6217 
6218 // Parse the specified bitcode buffer, returning the function info index.
6219 // If IsLazy is false, parse the entire function summary into
6220 // the index. Otherwise skip the function summary section, and only create
6221 // an index object with a map from function name to function summary offset.
6222 // The index is used to perform lazy function summary reading later.
6223 ErrorOr<std::unique_ptr<ModuleSummaryIndex>>
6224 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer,
6225                             DiagnosticHandlerFunction DiagnosticHandler,
6226                             bool IsLazy) {
6227   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6228   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy);
6229 
6230   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6231 
6232   auto cleanupOnError = [&](std::error_code EC) {
6233     R.releaseBuffer(); // Never take ownership on error.
6234     return EC;
6235   };
6236 
6237   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6238     return cleanupOnError(EC);
6239 
6240   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6241   return std::move(Index);
6242 }
6243 
6244 // Check if the given bitcode buffer contains a global value summary block.
6245 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer,
6246                                  DiagnosticHandlerFunction DiagnosticHandler) {
6247   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6248   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true);
6249 
6250   auto cleanupOnError = [&](std::error_code EC) {
6251     R.releaseBuffer(); // Never take ownership on error.
6252     return false;
6253   };
6254 
6255   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6256     return cleanupOnError(EC);
6257 
6258   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6259   return R.foundGlobalValSummary();
6260 }
6261 
6262 // This method supports lazy reading of summary data from the combined
6263 // index during ThinLTO function importing. When reading the combined index
6264 // file, getModuleSummaryIndex is first invoked with IsLazy=true.
6265 // Then this method is called for each value considered for importing,
6266 // to parse the summary information for the given value name into
6267 // the index.
6268 std::error_code llvm::readGlobalValueSummary(
6269     MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler,
6270     StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) {
6271   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6272   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6273 
6274   auto cleanupOnError = [&](std::error_code EC) {
6275     R.releaseBuffer(); // Never take ownership on error.
6276     return EC;
6277   };
6278 
6279   // Lookup the given value name in the GlobalValueMap, which may
6280   // contain a list of global value infos in the case of a COMDAT. Walk through
6281   // and parse each summary info at the summary offset
6282   // recorded when parsing the value symbol table.
6283   for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) {
6284     size_t SummaryOffset = FI->bitcodeIndex();
6285     if (std::error_code EC =
6286             R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset))
6287       return cleanupOnError(EC);
6288   }
6289 
6290   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6291   return std::error_code();
6292 }
6293