1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// As we resolve forward-referenced constants, we add information about them 48 /// to this vector. This allows us to resolve them in bulk instead of 49 /// resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 67 68 void clear() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 ValuePtrs.clear(); 71 } 72 73 Value *operator[](unsigned i) const { 74 assert(i < ValuePtrs.size()); 75 return ValuePtrs[i]; 76 } 77 78 Value *back() const { return ValuePtrs.back(); } 79 void pop_back() { ValuePtrs.pop_back(); } 80 bool empty() const { return ValuePtrs.empty(); } 81 void shrinkTo(unsigned N) { 82 assert(N <= size() && "Invalid shrinkTo request!"); 83 ValuePtrs.resize(N); 84 } 85 86 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 87 Value *getValueFwdRef(unsigned Idx, Type *Ty); 88 89 void assignValue(Value *V, unsigned Idx); 90 91 /// Once all constants are read, this method bulk resolves any forward 92 /// references. 93 void resolveConstantForwardRefs(); 94 }; 95 96 class BitcodeReaderMDValueList { 97 unsigned NumFwdRefs; 98 bool AnyFwdRefs; 99 unsigned MinFwdRef; 100 unsigned MaxFwdRef; 101 std::vector<TrackingMDRef> MDValuePtrs; 102 103 LLVMContext &Context; 104 public: 105 BitcodeReaderMDValueList(LLVMContext &C) 106 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 107 108 // vector compatibility methods 109 unsigned size() const { return MDValuePtrs.size(); } 110 void resize(unsigned N) { MDValuePtrs.resize(N); } 111 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 112 void clear() { MDValuePtrs.clear(); } 113 Metadata *back() const { return MDValuePtrs.back(); } 114 void pop_back() { MDValuePtrs.pop_back(); } 115 bool empty() const { return MDValuePtrs.empty(); } 116 117 Metadata *operator[](unsigned i) const { 118 assert(i < MDValuePtrs.size()); 119 return MDValuePtrs[i]; 120 } 121 122 void shrinkTo(unsigned N) { 123 assert(N <= size() && "Invalid shrinkTo request!"); 124 MDValuePtrs.resize(N); 125 } 126 127 Metadata *getValueFwdRef(unsigned Idx); 128 void assignValue(Metadata *MD, unsigned Idx); 129 void tryToResolveCycles(); 130 }; 131 132 class BitcodeReader : public GVMaterializer { 133 LLVMContext &Context; 134 DiagnosticHandlerFunction DiagnosticHandler; 135 Module *TheModule = nullptr; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 DataStreamer *Streamer; 140 uint64_t NextUnreadBit = 0; 141 bool SeenValueSymbolTable = false; 142 143 std::vector<Type*> TypeList; 144 BitcodeReaderValueList ValueList; 145 BitcodeReaderMDValueList MDValueList; 146 std::vector<Comdat *> ComdatList; 147 SmallVector<Instruction *, 64> InstructionList; 148 149 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 150 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 151 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 152 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 153 154 SmallVector<Instruction*, 64> InstsWithTBAATag; 155 156 /// The set of attributes by index. Index zero in the file is for null, and 157 /// is thus not represented here. As such all indices are off by one. 158 std::vector<AttributeSet> MAttributes; 159 160 /// \brief The set of attribute groups. 161 std::map<unsigned, AttributeSet> MAttributeGroups; 162 163 /// While parsing a function body, this is a list of the basic blocks for the 164 /// function. 165 std::vector<BasicBlock*> FunctionBBs; 166 167 // When reading the module header, this list is populated with functions that 168 // have bodies later in the file. 169 std::vector<Function*> FunctionsWithBodies; 170 171 // When intrinsic functions are encountered which require upgrading they are 172 // stored here with their replacement function. 173 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 174 UpgradedIntrinsicMap UpgradedIntrinsics; 175 176 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 177 DenseMap<unsigned, unsigned> MDKindMap; 178 179 // Several operations happen after the module header has been read, but 180 // before function bodies are processed. This keeps track of whether 181 // we've done this yet. 182 bool SeenFirstFunctionBody = false; 183 184 /// When function bodies are initially scanned, this map contains info about 185 /// where to find deferred function body in the stream. 186 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 187 188 /// When Metadata block is initially scanned when parsing the module, we may 189 /// choose to defer parsing of the metadata. This vector contains info about 190 /// which Metadata blocks are deferred. 191 std::vector<uint64_t> DeferredMetadataInfo; 192 193 /// These are basic blocks forward-referenced by block addresses. They are 194 /// inserted lazily into functions when they're loaded. The basic block ID is 195 /// its index into the vector. 196 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 197 std::deque<Function *> BasicBlockFwdRefQueue; 198 199 /// Indicates that we are using a new encoding for instruction operands where 200 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 201 /// instruction number, for a more compact encoding. Some instruction 202 /// operands are not relative to the instruction ID: basic block numbers, and 203 /// types. Once the old style function blocks have been phased out, we would 204 /// not need this flag. 205 bool UseRelativeIDs = false; 206 207 /// True if all functions will be materialized, negating the need to process 208 /// (e.g.) blockaddress forward references. 209 bool WillMaterializeAllForwardRefs = false; 210 211 /// Functions that have block addresses taken. This is usually empty. 212 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 213 214 /// True if any Metadata block has been materialized. 215 bool IsMetadataMaterialized = false; 216 217 bool StripDebugInfo = false; 218 219 public: 220 std::error_code error(BitcodeError E, const Twine &Message); 221 std::error_code error(BitcodeError E); 222 std::error_code error(const Twine &Message); 223 224 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 225 DiagnosticHandlerFunction DiagnosticHandler); 226 BitcodeReader(DataStreamer *Streamer, LLVMContext &Context, 227 DiagnosticHandlerFunction DiagnosticHandler); 228 ~BitcodeReader() override { freeState(); } 229 230 std::error_code materializeForwardReferencedFunctions(); 231 232 void freeState(); 233 234 void releaseBuffer(); 235 236 bool isDematerializable(const GlobalValue *GV) const override; 237 std::error_code materialize(GlobalValue *GV) override; 238 std::error_code materializeModule(Module *M) override; 239 std::vector<StructType *> getIdentifiedStructTypes() const override; 240 void dematerialize(GlobalValue *GV) override; 241 242 /// \brief Main interface to parsing a bitcode buffer. 243 /// \returns true if an error occurred. 244 std::error_code parseBitcodeInto(Module *M, 245 bool ShouldLazyLoadMetadata = false); 246 247 /// \brief Cheap mechanism to just extract module triple 248 /// \returns true if an error occurred. 249 ErrorOr<std::string> parseTriple(); 250 251 static uint64_t decodeSignRotatedValue(uint64_t V); 252 253 /// Materialize any deferred Metadata block. 254 std::error_code materializeMetadata() override; 255 256 void setStripDebugInfo() override; 257 258 private: 259 std::vector<StructType *> IdentifiedStructTypes; 260 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 261 StructType *createIdentifiedStructType(LLVMContext &Context); 262 263 Type *getTypeByID(unsigned ID); 264 Value *getFnValueByID(unsigned ID, Type *Ty) { 265 if (Ty && Ty->isMetadataTy()) 266 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 267 return ValueList.getValueFwdRef(ID, Ty); 268 } 269 Metadata *getFnMetadataByID(unsigned ID) { 270 return MDValueList.getValueFwdRef(ID); 271 } 272 BasicBlock *getBasicBlock(unsigned ID) const { 273 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 274 return FunctionBBs[ID]; 275 } 276 AttributeSet getAttributes(unsigned i) const { 277 if (i-1 < MAttributes.size()) 278 return MAttributes[i-1]; 279 return AttributeSet(); 280 } 281 282 /// Read a value/type pair out of the specified record from slot 'Slot'. 283 /// Increment Slot past the number of slots used in the record. Return true on 284 /// failure. 285 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 286 unsigned InstNum, Value *&ResVal) { 287 if (Slot == Record.size()) return true; 288 unsigned ValNo = (unsigned)Record[Slot++]; 289 // Adjust the ValNo, if it was encoded relative to the InstNum. 290 if (UseRelativeIDs) 291 ValNo = InstNum - ValNo; 292 if (ValNo < InstNum) { 293 // If this is not a forward reference, just return the value we already 294 // have. 295 ResVal = getFnValueByID(ValNo, nullptr); 296 return ResVal == nullptr; 297 } 298 if (Slot == Record.size()) 299 return true; 300 301 unsigned TypeNo = (unsigned)Record[Slot++]; 302 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 303 return ResVal == nullptr; 304 } 305 306 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 307 /// past the number of slots used by the value in the record. Return true if 308 /// there is an error. 309 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 310 unsigned InstNum, Type *Ty, Value *&ResVal) { 311 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 312 return true; 313 // All values currently take a single record slot. 314 ++Slot; 315 return false; 316 } 317 318 /// Like popValue, but does not increment the Slot number. 319 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 320 unsigned InstNum, Type *Ty, Value *&ResVal) { 321 ResVal = getValue(Record, Slot, InstNum, Ty); 322 return ResVal == nullptr; 323 } 324 325 /// Version of getValue that returns ResVal directly, or 0 if there is an 326 /// error. 327 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 328 unsigned InstNum, Type *Ty) { 329 if (Slot == Record.size()) return nullptr; 330 unsigned ValNo = (unsigned)Record[Slot]; 331 // Adjust the ValNo, if it was encoded relative to the InstNum. 332 if (UseRelativeIDs) 333 ValNo = InstNum - ValNo; 334 return getFnValueByID(ValNo, Ty); 335 } 336 337 /// Like getValue, but decodes signed VBRs. 338 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 339 unsigned InstNum, Type *Ty) { 340 if (Slot == Record.size()) return nullptr; 341 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 342 // Adjust the ValNo, if it was encoded relative to the InstNum. 343 if (UseRelativeIDs) 344 ValNo = InstNum - ValNo; 345 return getFnValueByID(ValNo, Ty); 346 } 347 348 /// Converts alignment exponent (i.e. power of two (or zero)) to the 349 /// corresponding alignment to use. If alignment is too large, returns 350 /// a corresponding error code. 351 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 352 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 353 std::error_code parseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 354 std::error_code parseAttributeBlock(); 355 std::error_code parseAttributeGroupBlock(); 356 std::error_code parseTypeTable(); 357 std::error_code parseTypeTableBody(); 358 359 std::error_code parseValueSymbolTable(); 360 std::error_code parseConstants(); 361 std::error_code rememberAndSkipFunctionBody(); 362 /// Save the positions of the Metadata blocks and skip parsing the blocks. 363 std::error_code rememberAndSkipMetadata(); 364 std::error_code parseFunctionBody(Function *F); 365 std::error_code globalCleanup(); 366 std::error_code resolveGlobalAndAliasInits(); 367 std::error_code parseMetadata(); 368 std::error_code parseMetadataAttachment(Function &F); 369 ErrorOr<std::string> parseModuleTriple(); 370 std::error_code parseUseLists(); 371 std::error_code initStream(); 372 std::error_code initStreamFromBuffer(); 373 std::error_code initLazyStream(); 374 std::error_code findFunctionInStream( 375 Function *F, 376 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 377 }; 378 } // namespace 379 380 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 381 DiagnosticSeverity Severity, 382 const Twine &Msg) 383 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 384 385 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 386 387 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 388 std::error_code EC, const Twine &Message) { 389 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 390 DiagnosticHandler(DI); 391 return EC; 392 } 393 394 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 395 std::error_code EC) { 396 return error(DiagnosticHandler, EC, EC.message()); 397 } 398 399 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 400 const Twine &Message) { 401 return error(DiagnosticHandler, 402 make_error_code(BitcodeError::CorruptedBitcode), Message); 403 } 404 405 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 406 return ::error(DiagnosticHandler, make_error_code(E), Message); 407 } 408 409 std::error_code BitcodeReader::error(const Twine &Message) { 410 return ::error(DiagnosticHandler, 411 make_error_code(BitcodeError::CorruptedBitcode), Message); 412 } 413 414 std::error_code BitcodeReader::error(BitcodeError E) { 415 return ::error(DiagnosticHandler, make_error_code(E)); 416 } 417 418 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 419 LLVMContext &C) { 420 if (F) 421 return F; 422 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 423 } 424 425 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 426 DiagnosticHandlerFunction DiagnosticHandler) 427 : Context(Context), 428 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 429 Buffer(Buffer), Streamer(nullptr), ValueList(Context), 430 MDValueList(Context) {} 431 432 BitcodeReader::BitcodeReader(DataStreamer *Streamer, LLVMContext &Context, 433 DiagnosticHandlerFunction DiagnosticHandler) 434 : Context(Context), 435 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 436 Buffer(nullptr), Streamer(Streamer), ValueList(Context), 437 MDValueList(Context) {} 438 439 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 440 if (WillMaterializeAllForwardRefs) 441 return std::error_code(); 442 443 // Prevent recursion. 444 WillMaterializeAllForwardRefs = true; 445 446 while (!BasicBlockFwdRefQueue.empty()) { 447 Function *F = BasicBlockFwdRefQueue.front(); 448 BasicBlockFwdRefQueue.pop_front(); 449 assert(F && "Expected valid function"); 450 if (!BasicBlockFwdRefs.count(F)) 451 // Already materialized. 452 continue; 453 454 // Check for a function that isn't materializable to prevent an infinite 455 // loop. When parsing a blockaddress stored in a global variable, there 456 // isn't a trivial way to check if a function will have a body without a 457 // linear search through FunctionsWithBodies, so just check it here. 458 if (!F->isMaterializable()) 459 return error("Never resolved function from blockaddress"); 460 461 // Try to materialize F. 462 if (std::error_code EC = materialize(F)) 463 return EC; 464 } 465 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 466 467 // Reset state. 468 WillMaterializeAllForwardRefs = false; 469 return std::error_code(); 470 } 471 472 void BitcodeReader::freeState() { 473 Buffer = nullptr; 474 std::vector<Type*>().swap(TypeList); 475 ValueList.clear(); 476 MDValueList.clear(); 477 std::vector<Comdat *>().swap(ComdatList); 478 479 std::vector<AttributeSet>().swap(MAttributes); 480 std::vector<BasicBlock*>().swap(FunctionBBs); 481 std::vector<Function*>().swap(FunctionsWithBodies); 482 DeferredFunctionInfo.clear(); 483 DeferredMetadataInfo.clear(); 484 MDKindMap.clear(); 485 486 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 487 BasicBlockFwdRefQueue.clear(); 488 } 489 490 //===----------------------------------------------------------------------===// 491 // Helper functions to implement forward reference resolution, etc. 492 //===----------------------------------------------------------------------===// 493 494 /// Convert a string from a record into an std::string, return true on failure. 495 template <typename StrTy> 496 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 497 StrTy &Result) { 498 if (Idx > Record.size()) 499 return true; 500 501 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 502 Result += (char)Record[i]; 503 return false; 504 } 505 506 static bool hasImplicitComdat(size_t Val) { 507 switch (Val) { 508 default: 509 return false; 510 case 1: // Old WeakAnyLinkage 511 case 4: // Old LinkOnceAnyLinkage 512 case 10: // Old WeakODRLinkage 513 case 11: // Old LinkOnceODRLinkage 514 return true; 515 } 516 } 517 518 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 519 switch (Val) { 520 default: // Map unknown/new linkages to external 521 case 0: 522 return GlobalValue::ExternalLinkage; 523 case 2: 524 return GlobalValue::AppendingLinkage; 525 case 3: 526 return GlobalValue::InternalLinkage; 527 case 5: 528 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 529 case 6: 530 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 531 case 7: 532 return GlobalValue::ExternalWeakLinkage; 533 case 8: 534 return GlobalValue::CommonLinkage; 535 case 9: 536 return GlobalValue::PrivateLinkage; 537 case 12: 538 return GlobalValue::AvailableExternallyLinkage; 539 case 13: 540 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 541 case 14: 542 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 543 case 15: 544 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 545 case 1: // Old value with implicit comdat. 546 case 16: 547 return GlobalValue::WeakAnyLinkage; 548 case 10: // Old value with implicit comdat. 549 case 17: 550 return GlobalValue::WeakODRLinkage; 551 case 4: // Old value with implicit comdat. 552 case 18: 553 return GlobalValue::LinkOnceAnyLinkage; 554 case 11: // Old value with implicit comdat. 555 case 19: 556 return GlobalValue::LinkOnceODRLinkage; 557 } 558 } 559 560 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 561 switch (Val) { 562 default: // Map unknown visibilities to default. 563 case 0: return GlobalValue::DefaultVisibility; 564 case 1: return GlobalValue::HiddenVisibility; 565 case 2: return GlobalValue::ProtectedVisibility; 566 } 567 } 568 569 static GlobalValue::DLLStorageClassTypes 570 getDecodedDLLStorageClass(unsigned Val) { 571 switch (Val) { 572 default: // Map unknown values to default. 573 case 0: return GlobalValue::DefaultStorageClass; 574 case 1: return GlobalValue::DLLImportStorageClass; 575 case 2: return GlobalValue::DLLExportStorageClass; 576 } 577 } 578 579 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 580 switch (Val) { 581 case 0: return GlobalVariable::NotThreadLocal; 582 default: // Map unknown non-zero value to general dynamic. 583 case 1: return GlobalVariable::GeneralDynamicTLSModel; 584 case 2: return GlobalVariable::LocalDynamicTLSModel; 585 case 3: return GlobalVariable::InitialExecTLSModel; 586 case 4: return GlobalVariable::LocalExecTLSModel; 587 } 588 } 589 590 static int getDecodedCastOpcode(unsigned Val) { 591 switch (Val) { 592 default: return -1; 593 case bitc::CAST_TRUNC : return Instruction::Trunc; 594 case bitc::CAST_ZEXT : return Instruction::ZExt; 595 case bitc::CAST_SEXT : return Instruction::SExt; 596 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 597 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 598 case bitc::CAST_UITOFP : return Instruction::UIToFP; 599 case bitc::CAST_SITOFP : return Instruction::SIToFP; 600 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 601 case bitc::CAST_FPEXT : return Instruction::FPExt; 602 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 603 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 604 case bitc::CAST_BITCAST : return Instruction::BitCast; 605 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 606 } 607 } 608 609 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 610 bool IsFP = Ty->isFPOrFPVectorTy(); 611 // BinOps are only valid for int/fp or vector of int/fp types 612 if (!IsFP && !Ty->isIntOrIntVectorTy()) 613 return -1; 614 615 switch (Val) { 616 default: 617 return -1; 618 case bitc::BINOP_ADD: 619 return IsFP ? Instruction::FAdd : Instruction::Add; 620 case bitc::BINOP_SUB: 621 return IsFP ? Instruction::FSub : Instruction::Sub; 622 case bitc::BINOP_MUL: 623 return IsFP ? Instruction::FMul : Instruction::Mul; 624 case bitc::BINOP_UDIV: 625 return IsFP ? -1 : Instruction::UDiv; 626 case bitc::BINOP_SDIV: 627 return IsFP ? Instruction::FDiv : Instruction::SDiv; 628 case bitc::BINOP_UREM: 629 return IsFP ? -1 : Instruction::URem; 630 case bitc::BINOP_SREM: 631 return IsFP ? Instruction::FRem : Instruction::SRem; 632 case bitc::BINOP_SHL: 633 return IsFP ? -1 : Instruction::Shl; 634 case bitc::BINOP_LSHR: 635 return IsFP ? -1 : Instruction::LShr; 636 case bitc::BINOP_ASHR: 637 return IsFP ? -1 : Instruction::AShr; 638 case bitc::BINOP_AND: 639 return IsFP ? -1 : Instruction::And; 640 case bitc::BINOP_OR: 641 return IsFP ? -1 : Instruction::Or; 642 case bitc::BINOP_XOR: 643 return IsFP ? -1 : Instruction::Xor; 644 } 645 } 646 647 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 648 switch (Val) { 649 default: return AtomicRMWInst::BAD_BINOP; 650 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 651 case bitc::RMW_ADD: return AtomicRMWInst::Add; 652 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 653 case bitc::RMW_AND: return AtomicRMWInst::And; 654 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 655 case bitc::RMW_OR: return AtomicRMWInst::Or; 656 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 657 case bitc::RMW_MAX: return AtomicRMWInst::Max; 658 case bitc::RMW_MIN: return AtomicRMWInst::Min; 659 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 660 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 661 } 662 } 663 664 static AtomicOrdering getDecodedOrdering(unsigned Val) { 665 switch (Val) { 666 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 667 case bitc::ORDERING_UNORDERED: return Unordered; 668 case bitc::ORDERING_MONOTONIC: return Monotonic; 669 case bitc::ORDERING_ACQUIRE: return Acquire; 670 case bitc::ORDERING_RELEASE: return Release; 671 case bitc::ORDERING_ACQREL: return AcquireRelease; 672 default: // Map unknown orderings to sequentially-consistent. 673 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 674 } 675 } 676 677 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 678 switch (Val) { 679 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 680 default: // Map unknown scopes to cross-thread. 681 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 682 } 683 } 684 685 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 686 switch (Val) { 687 default: // Map unknown selection kinds to any. 688 case bitc::COMDAT_SELECTION_KIND_ANY: 689 return Comdat::Any; 690 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 691 return Comdat::ExactMatch; 692 case bitc::COMDAT_SELECTION_KIND_LARGEST: 693 return Comdat::Largest; 694 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 695 return Comdat::NoDuplicates; 696 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 697 return Comdat::SameSize; 698 } 699 } 700 701 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 702 switch (Val) { 703 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 704 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 705 } 706 } 707 708 namespace llvm { 709 namespace { 710 /// \brief A class for maintaining the slot number definition 711 /// as a placeholder for the actual definition for forward constants defs. 712 class ConstantPlaceHolder : public ConstantExpr { 713 void operator=(const ConstantPlaceHolder &) = delete; 714 715 public: 716 // allocate space for exactly one operand 717 void *operator new(size_t s) { return User::operator new(s, 1); } 718 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 719 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 720 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 721 } 722 723 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 724 static bool classof(const Value *V) { 725 return isa<ConstantExpr>(V) && 726 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 727 } 728 729 /// Provide fast operand accessors 730 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 731 }; 732 } 733 734 // FIXME: can we inherit this from ConstantExpr? 735 template <> 736 struct OperandTraits<ConstantPlaceHolder> : 737 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 738 }; 739 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 740 } 741 742 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 743 if (Idx == size()) { 744 push_back(V); 745 return; 746 } 747 748 if (Idx >= size()) 749 resize(Idx+1); 750 751 WeakVH &OldV = ValuePtrs[Idx]; 752 if (!OldV) { 753 OldV = V; 754 return; 755 } 756 757 // Handle constants and non-constants (e.g. instrs) differently for 758 // efficiency. 759 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 760 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 761 OldV = V; 762 } else { 763 // If there was a forward reference to this value, replace it. 764 Value *PrevVal = OldV; 765 OldV->replaceAllUsesWith(V); 766 delete PrevVal; 767 } 768 } 769 770 771 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 772 Type *Ty) { 773 if (Idx >= size()) 774 resize(Idx + 1); 775 776 if (Value *V = ValuePtrs[Idx]) { 777 if (Ty != V->getType()) 778 report_fatal_error("Type mismatch in constant table!"); 779 return cast<Constant>(V); 780 } 781 782 // Create and return a placeholder, which will later be RAUW'd. 783 Constant *C = new ConstantPlaceHolder(Ty, Context); 784 ValuePtrs[Idx] = C; 785 return C; 786 } 787 788 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 789 // Bail out for a clearly invalid value. This would make us call resize(0) 790 if (Idx == UINT_MAX) 791 return nullptr; 792 793 if (Idx >= size()) 794 resize(Idx + 1); 795 796 if (Value *V = ValuePtrs[Idx]) { 797 // If the types don't match, it's invalid. 798 if (Ty && Ty != V->getType()) 799 return nullptr; 800 return V; 801 } 802 803 // No type specified, must be invalid reference. 804 if (!Ty) return nullptr; 805 806 // Create and return a placeholder, which will later be RAUW'd. 807 Value *V = new Argument(Ty); 808 ValuePtrs[Idx] = V; 809 return V; 810 } 811 812 /// Once all constants are read, this method bulk resolves any forward 813 /// references. The idea behind this is that we sometimes get constants (such 814 /// as large arrays) which reference *many* forward ref constants. Replacing 815 /// each of these causes a lot of thrashing when building/reuniquing the 816 /// constant. Instead of doing this, we look at all the uses and rewrite all 817 /// the place holders at once for any constant that uses a placeholder. 818 void BitcodeReaderValueList::resolveConstantForwardRefs() { 819 // Sort the values by-pointer so that they are efficient to look up with a 820 // binary search. 821 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 822 823 SmallVector<Constant*, 64> NewOps; 824 825 while (!ResolveConstants.empty()) { 826 Value *RealVal = operator[](ResolveConstants.back().second); 827 Constant *Placeholder = ResolveConstants.back().first; 828 ResolveConstants.pop_back(); 829 830 // Loop over all users of the placeholder, updating them to reference the 831 // new value. If they reference more than one placeholder, update them all 832 // at once. 833 while (!Placeholder->use_empty()) { 834 auto UI = Placeholder->user_begin(); 835 User *U = *UI; 836 837 // If the using object isn't uniqued, just update the operands. This 838 // handles instructions and initializers for global variables. 839 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 840 UI.getUse().set(RealVal); 841 continue; 842 } 843 844 // Otherwise, we have a constant that uses the placeholder. Replace that 845 // constant with a new constant that has *all* placeholder uses updated. 846 Constant *UserC = cast<Constant>(U); 847 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 848 I != E; ++I) { 849 Value *NewOp; 850 if (!isa<ConstantPlaceHolder>(*I)) { 851 // Not a placeholder reference. 852 NewOp = *I; 853 } else if (*I == Placeholder) { 854 // Common case is that it just references this one placeholder. 855 NewOp = RealVal; 856 } else { 857 // Otherwise, look up the placeholder in ResolveConstants. 858 ResolveConstantsTy::iterator It = 859 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 860 std::pair<Constant*, unsigned>(cast<Constant>(*I), 861 0)); 862 assert(It != ResolveConstants.end() && It->first == *I); 863 NewOp = operator[](It->second); 864 } 865 866 NewOps.push_back(cast<Constant>(NewOp)); 867 } 868 869 // Make the new constant. 870 Constant *NewC; 871 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 872 NewC = ConstantArray::get(UserCA->getType(), NewOps); 873 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 874 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 875 } else if (isa<ConstantVector>(UserC)) { 876 NewC = ConstantVector::get(NewOps); 877 } else { 878 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 879 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 880 } 881 882 UserC->replaceAllUsesWith(NewC); 883 UserC->destroyConstant(); 884 NewOps.clear(); 885 } 886 887 // Update all ValueHandles, they should be the only users at this point. 888 Placeholder->replaceAllUsesWith(RealVal); 889 delete Placeholder; 890 } 891 } 892 893 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 894 if (Idx == size()) { 895 push_back(MD); 896 return; 897 } 898 899 if (Idx >= size()) 900 resize(Idx+1); 901 902 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 903 if (!OldMD) { 904 OldMD.reset(MD); 905 return; 906 } 907 908 // If there was a forward reference to this value, replace it. 909 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 910 PrevMD->replaceAllUsesWith(MD); 911 --NumFwdRefs; 912 } 913 914 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 915 if (Idx >= size()) 916 resize(Idx + 1); 917 918 if (Metadata *MD = MDValuePtrs[Idx]) 919 return MD; 920 921 // Track forward refs to be resolved later. 922 if (AnyFwdRefs) { 923 MinFwdRef = std::min(MinFwdRef, Idx); 924 MaxFwdRef = std::max(MaxFwdRef, Idx); 925 } else { 926 AnyFwdRefs = true; 927 MinFwdRef = MaxFwdRef = Idx; 928 } 929 ++NumFwdRefs; 930 931 // Create and return a placeholder, which will later be RAUW'd. 932 Metadata *MD = MDNode::getTemporary(Context, None).release(); 933 MDValuePtrs[Idx].reset(MD); 934 return MD; 935 } 936 937 void BitcodeReaderMDValueList::tryToResolveCycles() { 938 if (!AnyFwdRefs) 939 // Nothing to do. 940 return; 941 942 if (NumFwdRefs) 943 // Still forward references... can't resolve cycles. 944 return; 945 946 // Resolve any cycles. 947 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 948 auto &MD = MDValuePtrs[I]; 949 auto *N = dyn_cast_or_null<MDNode>(MD); 950 if (!N) 951 continue; 952 953 assert(!N->isTemporary() && "Unexpected forward reference"); 954 N->resolveCycles(); 955 } 956 957 // Make sure we return early again until there's another forward ref. 958 AnyFwdRefs = false; 959 } 960 961 Type *BitcodeReader::getTypeByID(unsigned ID) { 962 // The type table size is always specified correctly. 963 if (ID >= TypeList.size()) 964 return nullptr; 965 966 if (Type *Ty = TypeList[ID]) 967 return Ty; 968 969 // If we have a forward reference, the only possible case is when it is to a 970 // named struct. Just create a placeholder for now. 971 return TypeList[ID] = createIdentifiedStructType(Context); 972 } 973 974 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 975 StringRef Name) { 976 auto *Ret = StructType::create(Context, Name); 977 IdentifiedStructTypes.push_back(Ret); 978 return Ret; 979 } 980 981 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 982 auto *Ret = StructType::create(Context); 983 IdentifiedStructTypes.push_back(Ret); 984 return Ret; 985 } 986 987 988 //===----------------------------------------------------------------------===// 989 // Functions for parsing blocks from the bitcode file 990 //===----------------------------------------------------------------------===// 991 992 993 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 994 /// been decoded from the given integer. This function must stay in sync with 995 /// 'encodeLLVMAttributesForBitcode'. 996 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 997 uint64_t EncodedAttrs) { 998 // FIXME: Remove in 4.0. 999 1000 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1001 // the bits above 31 down by 11 bits. 1002 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1003 assert((!Alignment || isPowerOf2_32(Alignment)) && 1004 "Alignment must be a power of two."); 1005 1006 if (Alignment) 1007 B.addAlignmentAttr(Alignment); 1008 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1009 (EncodedAttrs & 0xffff)); 1010 } 1011 1012 std::error_code BitcodeReader::parseAttributeBlock() { 1013 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1014 return error("Invalid record"); 1015 1016 if (!MAttributes.empty()) 1017 return error("Invalid multiple blocks"); 1018 1019 SmallVector<uint64_t, 64> Record; 1020 1021 SmallVector<AttributeSet, 8> Attrs; 1022 1023 // Read all the records. 1024 while (1) { 1025 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1026 1027 switch (Entry.Kind) { 1028 case BitstreamEntry::SubBlock: // Handled for us already. 1029 case BitstreamEntry::Error: 1030 return error("Malformed block"); 1031 case BitstreamEntry::EndBlock: 1032 return std::error_code(); 1033 case BitstreamEntry::Record: 1034 // The interesting case. 1035 break; 1036 } 1037 1038 // Read a record. 1039 Record.clear(); 1040 switch (Stream.readRecord(Entry.ID, Record)) { 1041 default: // Default behavior: ignore. 1042 break; 1043 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1044 // FIXME: Remove in 4.0. 1045 if (Record.size() & 1) 1046 return error("Invalid record"); 1047 1048 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1049 AttrBuilder B; 1050 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1051 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1052 } 1053 1054 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1055 Attrs.clear(); 1056 break; 1057 } 1058 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1059 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1060 Attrs.push_back(MAttributeGroups[Record[i]]); 1061 1062 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1063 Attrs.clear(); 1064 break; 1065 } 1066 } 1067 } 1068 } 1069 1070 // Returns Attribute::None on unrecognized codes. 1071 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1072 switch (Code) { 1073 default: 1074 return Attribute::None; 1075 case bitc::ATTR_KIND_ALIGNMENT: 1076 return Attribute::Alignment; 1077 case bitc::ATTR_KIND_ALWAYS_INLINE: 1078 return Attribute::AlwaysInline; 1079 case bitc::ATTR_KIND_BUILTIN: 1080 return Attribute::Builtin; 1081 case bitc::ATTR_KIND_BY_VAL: 1082 return Attribute::ByVal; 1083 case bitc::ATTR_KIND_IN_ALLOCA: 1084 return Attribute::InAlloca; 1085 case bitc::ATTR_KIND_COLD: 1086 return Attribute::Cold; 1087 case bitc::ATTR_KIND_CONVERGENT: 1088 return Attribute::Convergent; 1089 case bitc::ATTR_KIND_INLINE_HINT: 1090 return Attribute::InlineHint; 1091 case bitc::ATTR_KIND_IN_REG: 1092 return Attribute::InReg; 1093 case bitc::ATTR_KIND_JUMP_TABLE: 1094 return Attribute::JumpTable; 1095 case bitc::ATTR_KIND_MIN_SIZE: 1096 return Attribute::MinSize; 1097 case bitc::ATTR_KIND_NAKED: 1098 return Attribute::Naked; 1099 case bitc::ATTR_KIND_NEST: 1100 return Attribute::Nest; 1101 case bitc::ATTR_KIND_NO_ALIAS: 1102 return Attribute::NoAlias; 1103 case bitc::ATTR_KIND_NO_BUILTIN: 1104 return Attribute::NoBuiltin; 1105 case bitc::ATTR_KIND_NO_CAPTURE: 1106 return Attribute::NoCapture; 1107 case bitc::ATTR_KIND_NO_DUPLICATE: 1108 return Attribute::NoDuplicate; 1109 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1110 return Attribute::NoImplicitFloat; 1111 case bitc::ATTR_KIND_NO_INLINE: 1112 return Attribute::NoInline; 1113 case bitc::ATTR_KIND_NON_LAZY_BIND: 1114 return Attribute::NonLazyBind; 1115 case bitc::ATTR_KIND_NON_NULL: 1116 return Attribute::NonNull; 1117 case bitc::ATTR_KIND_DEREFERENCEABLE: 1118 return Attribute::Dereferenceable; 1119 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1120 return Attribute::DereferenceableOrNull; 1121 case bitc::ATTR_KIND_NO_RED_ZONE: 1122 return Attribute::NoRedZone; 1123 case bitc::ATTR_KIND_NO_RETURN: 1124 return Attribute::NoReturn; 1125 case bitc::ATTR_KIND_NO_UNWIND: 1126 return Attribute::NoUnwind; 1127 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1128 return Attribute::OptimizeForSize; 1129 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1130 return Attribute::OptimizeNone; 1131 case bitc::ATTR_KIND_READ_NONE: 1132 return Attribute::ReadNone; 1133 case bitc::ATTR_KIND_READ_ONLY: 1134 return Attribute::ReadOnly; 1135 case bitc::ATTR_KIND_RETURNED: 1136 return Attribute::Returned; 1137 case bitc::ATTR_KIND_RETURNS_TWICE: 1138 return Attribute::ReturnsTwice; 1139 case bitc::ATTR_KIND_S_EXT: 1140 return Attribute::SExt; 1141 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1142 return Attribute::StackAlignment; 1143 case bitc::ATTR_KIND_STACK_PROTECT: 1144 return Attribute::StackProtect; 1145 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1146 return Attribute::StackProtectReq; 1147 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1148 return Attribute::StackProtectStrong; 1149 case bitc::ATTR_KIND_STRUCT_RET: 1150 return Attribute::StructRet; 1151 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1152 return Attribute::SanitizeAddress; 1153 case bitc::ATTR_KIND_SANITIZE_THREAD: 1154 return Attribute::SanitizeThread; 1155 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1156 return Attribute::SanitizeMemory; 1157 case bitc::ATTR_KIND_UW_TABLE: 1158 return Attribute::UWTable; 1159 case bitc::ATTR_KIND_Z_EXT: 1160 return Attribute::ZExt; 1161 } 1162 } 1163 1164 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1165 unsigned &Alignment) { 1166 // Note: Alignment in bitcode files is incremented by 1, so that zero 1167 // can be used for default alignment. 1168 if (Exponent > Value::MaxAlignmentExponent + 1) 1169 return error("Invalid alignment value"); 1170 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1171 return std::error_code(); 1172 } 1173 1174 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1175 Attribute::AttrKind *Kind) { 1176 *Kind = getAttrFromCode(Code); 1177 if (*Kind == Attribute::None) 1178 return error(BitcodeError::CorruptedBitcode, 1179 "Unknown attribute kind (" + Twine(Code) + ")"); 1180 return std::error_code(); 1181 } 1182 1183 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1184 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1185 return error("Invalid record"); 1186 1187 if (!MAttributeGroups.empty()) 1188 return error("Invalid multiple blocks"); 1189 1190 SmallVector<uint64_t, 64> Record; 1191 1192 // Read all the records. 1193 while (1) { 1194 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1195 1196 switch (Entry.Kind) { 1197 case BitstreamEntry::SubBlock: // Handled for us already. 1198 case BitstreamEntry::Error: 1199 return error("Malformed block"); 1200 case BitstreamEntry::EndBlock: 1201 return std::error_code(); 1202 case BitstreamEntry::Record: 1203 // The interesting case. 1204 break; 1205 } 1206 1207 // Read a record. 1208 Record.clear(); 1209 switch (Stream.readRecord(Entry.ID, Record)) { 1210 default: // Default behavior: ignore. 1211 break; 1212 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1213 if (Record.size() < 3) 1214 return error("Invalid record"); 1215 1216 uint64_t GrpID = Record[0]; 1217 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1218 1219 AttrBuilder B; 1220 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1221 if (Record[i] == 0) { // Enum attribute 1222 Attribute::AttrKind Kind; 1223 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1224 return EC; 1225 1226 B.addAttribute(Kind); 1227 } else if (Record[i] == 1) { // Integer attribute 1228 Attribute::AttrKind Kind; 1229 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1230 return EC; 1231 if (Kind == Attribute::Alignment) 1232 B.addAlignmentAttr(Record[++i]); 1233 else if (Kind == Attribute::StackAlignment) 1234 B.addStackAlignmentAttr(Record[++i]); 1235 else if (Kind == Attribute::Dereferenceable) 1236 B.addDereferenceableAttr(Record[++i]); 1237 else if (Kind == Attribute::DereferenceableOrNull) 1238 B.addDereferenceableOrNullAttr(Record[++i]); 1239 } else { // String attribute 1240 assert((Record[i] == 3 || Record[i] == 4) && 1241 "Invalid attribute group entry"); 1242 bool HasValue = (Record[i++] == 4); 1243 SmallString<64> KindStr; 1244 SmallString<64> ValStr; 1245 1246 while (Record[i] != 0 && i != e) 1247 KindStr += Record[i++]; 1248 assert(Record[i] == 0 && "Kind string not null terminated"); 1249 1250 if (HasValue) { 1251 // Has a value associated with it. 1252 ++i; // Skip the '0' that terminates the "kind" string. 1253 while (Record[i] != 0 && i != e) 1254 ValStr += Record[i++]; 1255 assert(Record[i] == 0 && "Value string not null terminated"); 1256 } 1257 1258 B.addAttribute(KindStr.str(), ValStr.str()); 1259 } 1260 } 1261 1262 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1263 break; 1264 } 1265 } 1266 } 1267 } 1268 1269 std::error_code BitcodeReader::parseTypeTable() { 1270 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1271 return error("Invalid record"); 1272 1273 return parseTypeTableBody(); 1274 } 1275 1276 std::error_code BitcodeReader::parseTypeTableBody() { 1277 if (!TypeList.empty()) 1278 return error("Invalid multiple blocks"); 1279 1280 SmallVector<uint64_t, 64> Record; 1281 unsigned NumRecords = 0; 1282 1283 SmallString<64> TypeName; 1284 1285 // Read all the records for this type table. 1286 while (1) { 1287 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1288 1289 switch (Entry.Kind) { 1290 case BitstreamEntry::SubBlock: // Handled for us already. 1291 case BitstreamEntry::Error: 1292 return error("Malformed block"); 1293 case BitstreamEntry::EndBlock: 1294 if (NumRecords != TypeList.size()) 1295 return error("Malformed block"); 1296 return std::error_code(); 1297 case BitstreamEntry::Record: 1298 // The interesting case. 1299 break; 1300 } 1301 1302 // Read a record. 1303 Record.clear(); 1304 Type *ResultTy = nullptr; 1305 switch (Stream.readRecord(Entry.ID, Record)) { 1306 default: 1307 return error("Invalid value"); 1308 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1309 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1310 // type list. This allows us to reserve space. 1311 if (Record.size() < 1) 1312 return error("Invalid record"); 1313 TypeList.resize(Record[0]); 1314 continue; 1315 case bitc::TYPE_CODE_VOID: // VOID 1316 ResultTy = Type::getVoidTy(Context); 1317 break; 1318 case bitc::TYPE_CODE_HALF: // HALF 1319 ResultTy = Type::getHalfTy(Context); 1320 break; 1321 case bitc::TYPE_CODE_FLOAT: // FLOAT 1322 ResultTy = Type::getFloatTy(Context); 1323 break; 1324 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1325 ResultTy = Type::getDoubleTy(Context); 1326 break; 1327 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1328 ResultTy = Type::getX86_FP80Ty(Context); 1329 break; 1330 case bitc::TYPE_CODE_FP128: // FP128 1331 ResultTy = Type::getFP128Ty(Context); 1332 break; 1333 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1334 ResultTy = Type::getPPC_FP128Ty(Context); 1335 break; 1336 case bitc::TYPE_CODE_LABEL: // LABEL 1337 ResultTy = Type::getLabelTy(Context); 1338 break; 1339 case bitc::TYPE_CODE_METADATA: // METADATA 1340 ResultTy = Type::getMetadataTy(Context); 1341 break; 1342 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1343 ResultTy = Type::getX86_MMXTy(Context); 1344 break; 1345 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1346 if (Record.size() < 1) 1347 return error("Invalid record"); 1348 1349 uint64_t NumBits = Record[0]; 1350 if (NumBits < IntegerType::MIN_INT_BITS || 1351 NumBits > IntegerType::MAX_INT_BITS) 1352 return error("Bitwidth for integer type out of range"); 1353 ResultTy = IntegerType::get(Context, NumBits); 1354 break; 1355 } 1356 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1357 // [pointee type, address space] 1358 if (Record.size() < 1) 1359 return error("Invalid record"); 1360 unsigned AddressSpace = 0; 1361 if (Record.size() == 2) 1362 AddressSpace = Record[1]; 1363 ResultTy = getTypeByID(Record[0]); 1364 if (!ResultTy || 1365 !PointerType::isValidElementType(ResultTy)) 1366 return error("Invalid type"); 1367 ResultTy = PointerType::get(ResultTy, AddressSpace); 1368 break; 1369 } 1370 case bitc::TYPE_CODE_FUNCTION_OLD: { 1371 // FIXME: attrid is dead, remove it in LLVM 4.0 1372 // FUNCTION: [vararg, attrid, retty, paramty x N] 1373 if (Record.size() < 3) 1374 return error("Invalid record"); 1375 SmallVector<Type*, 8> ArgTys; 1376 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1377 if (Type *T = getTypeByID(Record[i])) 1378 ArgTys.push_back(T); 1379 else 1380 break; 1381 } 1382 1383 ResultTy = getTypeByID(Record[2]); 1384 if (!ResultTy || ArgTys.size() < Record.size()-3) 1385 return error("Invalid type"); 1386 1387 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1388 break; 1389 } 1390 case bitc::TYPE_CODE_FUNCTION: { 1391 // FUNCTION: [vararg, retty, paramty x N] 1392 if (Record.size() < 2) 1393 return error("Invalid record"); 1394 SmallVector<Type*, 8> ArgTys; 1395 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1396 if (Type *T = getTypeByID(Record[i])) { 1397 if (!FunctionType::isValidArgumentType(T)) 1398 return error("Invalid function argument type"); 1399 ArgTys.push_back(T); 1400 } 1401 else 1402 break; 1403 } 1404 1405 ResultTy = getTypeByID(Record[1]); 1406 if (!ResultTy || ArgTys.size() < Record.size()-2) 1407 return error("Invalid type"); 1408 1409 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1410 break; 1411 } 1412 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1413 if (Record.size() < 1) 1414 return error("Invalid record"); 1415 SmallVector<Type*, 8> EltTys; 1416 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1417 if (Type *T = getTypeByID(Record[i])) 1418 EltTys.push_back(T); 1419 else 1420 break; 1421 } 1422 if (EltTys.size() != Record.size()-1) 1423 return error("Invalid type"); 1424 ResultTy = StructType::get(Context, EltTys, Record[0]); 1425 break; 1426 } 1427 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1428 if (convertToString(Record, 0, TypeName)) 1429 return error("Invalid record"); 1430 continue; 1431 1432 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1433 if (Record.size() < 1) 1434 return error("Invalid record"); 1435 1436 if (NumRecords >= TypeList.size()) 1437 return error("Invalid TYPE table"); 1438 1439 // Check to see if this was forward referenced, if so fill in the temp. 1440 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1441 if (Res) { 1442 Res->setName(TypeName); 1443 TypeList[NumRecords] = nullptr; 1444 } else // Otherwise, create a new struct. 1445 Res = createIdentifiedStructType(Context, TypeName); 1446 TypeName.clear(); 1447 1448 SmallVector<Type*, 8> EltTys; 1449 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1450 if (Type *T = getTypeByID(Record[i])) 1451 EltTys.push_back(T); 1452 else 1453 break; 1454 } 1455 if (EltTys.size() != Record.size()-1) 1456 return error("Invalid record"); 1457 Res->setBody(EltTys, Record[0]); 1458 ResultTy = Res; 1459 break; 1460 } 1461 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1462 if (Record.size() != 1) 1463 return error("Invalid record"); 1464 1465 if (NumRecords >= TypeList.size()) 1466 return error("Invalid TYPE table"); 1467 1468 // Check to see if this was forward referenced, if so fill in the temp. 1469 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1470 if (Res) { 1471 Res->setName(TypeName); 1472 TypeList[NumRecords] = nullptr; 1473 } else // Otherwise, create a new struct with no body. 1474 Res = createIdentifiedStructType(Context, TypeName); 1475 TypeName.clear(); 1476 ResultTy = Res; 1477 break; 1478 } 1479 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1480 if (Record.size() < 2) 1481 return error("Invalid record"); 1482 ResultTy = getTypeByID(Record[1]); 1483 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1484 return error("Invalid type"); 1485 ResultTy = ArrayType::get(ResultTy, Record[0]); 1486 break; 1487 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1488 if (Record.size() < 2) 1489 return error("Invalid record"); 1490 if (Record[0] == 0) 1491 return error("Invalid vector length"); 1492 ResultTy = getTypeByID(Record[1]); 1493 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1494 return error("Invalid type"); 1495 ResultTy = VectorType::get(ResultTy, Record[0]); 1496 break; 1497 } 1498 1499 if (NumRecords >= TypeList.size()) 1500 return error("Invalid TYPE table"); 1501 if (TypeList[NumRecords]) 1502 return error( 1503 "Invalid TYPE table: Only named structs can be forward referenced"); 1504 assert(ResultTy && "Didn't read a type?"); 1505 TypeList[NumRecords++] = ResultTy; 1506 } 1507 } 1508 1509 std::error_code BitcodeReader::parseValueSymbolTable() { 1510 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1511 return error("Invalid record"); 1512 1513 SmallVector<uint64_t, 64> Record; 1514 1515 Triple TT(TheModule->getTargetTriple()); 1516 1517 // Read all the records for this value table. 1518 SmallString<128> ValueName; 1519 while (1) { 1520 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1521 1522 switch (Entry.Kind) { 1523 case BitstreamEntry::SubBlock: // Handled for us already. 1524 case BitstreamEntry::Error: 1525 return error("Malformed block"); 1526 case BitstreamEntry::EndBlock: 1527 return std::error_code(); 1528 case BitstreamEntry::Record: 1529 // The interesting case. 1530 break; 1531 } 1532 1533 // Read a record. 1534 Record.clear(); 1535 switch (Stream.readRecord(Entry.ID, Record)) { 1536 default: // Default behavior: unknown type. 1537 break; 1538 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1539 if (convertToString(Record, 1, ValueName)) 1540 return error("Invalid record"); 1541 unsigned ValueID = Record[0]; 1542 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1543 return error("Invalid record"); 1544 Value *V = ValueList[ValueID]; 1545 1546 V->setName(StringRef(ValueName.data(), ValueName.size())); 1547 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1548 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1549 if (TT.isOSBinFormatMachO()) 1550 GO->setComdat(nullptr); 1551 else 1552 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1553 } 1554 } 1555 ValueName.clear(); 1556 break; 1557 } 1558 case bitc::VST_CODE_BBENTRY: { 1559 if (convertToString(Record, 1, ValueName)) 1560 return error("Invalid record"); 1561 BasicBlock *BB = getBasicBlock(Record[0]); 1562 if (!BB) 1563 return error("Invalid record"); 1564 1565 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1566 ValueName.clear(); 1567 break; 1568 } 1569 } 1570 } 1571 } 1572 1573 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1574 1575 std::error_code BitcodeReader::parseMetadata() { 1576 IsMetadataMaterialized = true; 1577 unsigned NextMDValueNo = MDValueList.size(); 1578 1579 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1580 return error("Invalid record"); 1581 1582 SmallVector<uint64_t, 64> Record; 1583 1584 auto getMD = 1585 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1586 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1587 if (ID) 1588 return getMD(ID - 1); 1589 return nullptr; 1590 }; 1591 auto getMDString = [&](unsigned ID) -> MDString *{ 1592 // This requires that the ID is not really a forward reference. In 1593 // particular, the MDString must already have been resolved. 1594 return cast_or_null<MDString>(getMDOrNull(ID)); 1595 }; 1596 1597 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1598 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1599 1600 // Read all the records. 1601 while (1) { 1602 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1603 1604 switch (Entry.Kind) { 1605 case BitstreamEntry::SubBlock: // Handled for us already. 1606 case BitstreamEntry::Error: 1607 return error("Malformed block"); 1608 case BitstreamEntry::EndBlock: 1609 MDValueList.tryToResolveCycles(); 1610 return std::error_code(); 1611 case BitstreamEntry::Record: 1612 // The interesting case. 1613 break; 1614 } 1615 1616 // Read a record. 1617 Record.clear(); 1618 unsigned Code = Stream.readRecord(Entry.ID, Record); 1619 bool IsDistinct = false; 1620 switch (Code) { 1621 default: // Default behavior: ignore. 1622 break; 1623 case bitc::METADATA_NAME: { 1624 // Read name of the named metadata. 1625 SmallString<8> Name(Record.begin(), Record.end()); 1626 Record.clear(); 1627 Code = Stream.ReadCode(); 1628 1629 unsigned NextBitCode = Stream.readRecord(Code, Record); 1630 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1631 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1632 1633 // Read named metadata elements. 1634 unsigned Size = Record.size(); 1635 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1636 for (unsigned i = 0; i != Size; ++i) { 1637 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1638 if (!MD) 1639 return error("Invalid record"); 1640 NMD->addOperand(MD); 1641 } 1642 break; 1643 } 1644 case bitc::METADATA_OLD_FN_NODE: { 1645 // FIXME: Remove in 4.0. 1646 // This is a LocalAsMetadata record, the only type of function-local 1647 // metadata. 1648 if (Record.size() % 2 == 1) 1649 return error("Invalid record"); 1650 1651 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1652 // to be legal, but there's no upgrade path. 1653 auto dropRecord = [&] { 1654 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1655 }; 1656 if (Record.size() != 2) { 1657 dropRecord(); 1658 break; 1659 } 1660 1661 Type *Ty = getTypeByID(Record[0]); 1662 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1663 dropRecord(); 1664 break; 1665 } 1666 1667 MDValueList.assignValue( 1668 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1669 NextMDValueNo++); 1670 break; 1671 } 1672 case bitc::METADATA_OLD_NODE: { 1673 // FIXME: Remove in 4.0. 1674 if (Record.size() % 2 == 1) 1675 return error("Invalid record"); 1676 1677 unsigned Size = Record.size(); 1678 SmallVector<Metadata *, 8> Elts; 1679 for (unsigned i = 0; i != Size; i += 2) { 1680 Type *Ty = getTypeByID(Record[i]); 1681 if (!Ty) 1682 return error("Invalid record"); 1683 if (Ty->isMetadataTy()) 1684 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1685 else if (!Ty->isVoidTy()) { 1686 auto *MD = 1687 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1688 assert(isa<ConstantAsMetadata>(MD) && 1689 "Expected non-function-local metadata"); 1690 Elts.push_back(MD); 1691 } else 1692 Elts.push_back(nullptr); 1693 } 1694 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1695 break; 1696 } 1697 case bitc::METADATA_VALUE: { 1698 if (Record.size() != 2) 1699 return error("Invalid record"); 1700 1701 Type *Ty = getTypeByID(Record[0]); 1702 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1703 return error("Invalid record"); 1704 1705 MDValueList.assignValue( 1706 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1707 NextMDValueNo++); 1708 break; 1709 } 1710 case bitc::METADATA_DISTINCT_NODE: 1711 IsDistinct = true; 1712 // fallthrough... 1713 case bitc::METADATA_NODE: { 1714 SmallVector<Metadata *, 8> Elts; 1715 Elts.reserve(Record.size()); 1716 for (unsigned ID : Record) 1717 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1718 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1719 : MDNode::get(Context, Elts), 1720 NextMDValueNo++); 1721 break; 1722 } 1723 case bitc::METADATA_LOCATION: { 1724 if (Record.size() != 5) 1725 return error("Invalid record"); 1726 1727 unsigned Line = Record[1]; 1728 unsigned Column = Record[2]; 1729 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1730 Metadata *InlinedAt = 1731 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1732 MDValueList.assignValue( 1733 GET_OR_DISTINCT(DILocation, Record[0], 1734 (Context, Line, Column, Scope, InlinedAt)), 1735 NextMDValueNo++); 1736 break; 1737 } 1738 case bitc::METADATA_GENERIC_DEBUG: { 1739 if (Record.size() < 4) 1740 return error("Invalid record"); 1741 1742 unsigned Tag = Record[1]; 1743 unsigned Version = Record[2]; 1744 1745 if (Tag >= 1u << 16 || Version != 0) 1746 return error("Invalid record"); 1747 1748 auto *Header = getMDString(Record[3]); 1749 SmallVector<Metadata *, 8> DwarfOps; 1750 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1751 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1752 : nullptr); 1753 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1754 (Context, Tag, Header, DwarfOps)), 1755 NextMDValueNo++); 1756 break; 1757 } 1758 case bitc::METADATA_SUBRANGE: { 1759 if (Record.size() != 3) 1760 return error("Invalid record"); 1761 1762 MDValueList.assignValue( 1763 GET_OR_DISTINCT(DISubrange, Record[0], 1764 (Context, Record[1], unrotateSign(Record[2]))), 1765 NextMDValueNo++); 1766 break; 1767 } 1768 case bitc::METADATA_ENUMERATOR: { 1769 if (Record.size() != 3) 1770 return error("Invalid record"); 1771 1772 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1773 (Context, unrotateSign(Record[1]), 1774 getMDString(Record[2]))), 1775 NextMDValueNo++); 1776 break; 1777 } 1778 case bitc::METADATA_BASIC_TYPE: { 1779 if (Record.size() != 6) 1780 return error("Invalid record"); 1781 1782 MDValueList.assignValue( 1783 GET_OR_DISTINCT(DIBasicType, Record[0], 1784 (Context, Record[1], getMDString(Record[2]), 1785 Record[3], Record[4], Record[5])), 1786 NextMDValueNo++); 1787 break; 1788 } 1789 case bitc::METADATA_DERIVED_TYPE: { 1790 if (Record.size() != 12) 1791 return error("Invalid record"); 1792 1793 MDValueList.assignValue( 1794 GET_OR_DISTINCT(DIDerivedType, Record[0], 1795 (Context, Record[1], getMDString(Record[2]), 1796 getMDOrNull(Record[3]), Record[4], 1797 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1798 Record[7], Record[8], Record[9], Record[10], 1799 getMDOrNull(Record[11]))), 1800 NextMDValueNo++); 1801 break; 1802 } 1803 case bitc::METADATA_COMPOSITE_TYPE: { 1804 if (Record.size() != 16) 1805 return error("Invalid record"); 1806 1807 MDValueList.assignValue( 1808 GET_OR_DISTINCT(DICompositeType, Record[0], 1809 (Context, Record[1], getMDString(Record[2]), 1810 getMDOrNull(Record[3]), Record[4], 1811 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1812 Record[7], Record[8], Record[9], Record[10], 1813 getMDOrNull(Record[11]), Record[12], 1814 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1815 getMDString(Record[15]))), 1816 NextMDValueNo++); 1817 break; 1818 } 1819 case bitc::METADATA_SUBROUTINE_TYPE: { 1820 if (Record.size() != 3) 1821 return error("Invalid record"); 1822 1823 MDValueList.assignValue( 1824 GET_OR_DISTINCT(DISubroutineType, Record[0], 1825 (Context, Record[1], getMDOrNull(Record[2]))), 1826 NextMDValueNo++); 1827 break; 1828 } 1829 case bitc::METADATA_FILE: { 1830 if (Record.size() != 3) 1831 return error("Invalid record"); 1832 1833 MDValueList.assignValue( 1834 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1835 getMDString(Record[2]))), 1836 NextMDValueNo++); 1837 break; 1838 } 1839 case bitc::METADATA_COMPILE_UNIT: { 1840 if (Record.size() < 14 || Record.size() > 15) 1841 return error("Invalid record"); 1842 1843 MDValueList.assignValue( 1844 GET_OR_DISTINCT( 1845 DICompileUnit, Record[0], 1846 (Context, Record[1], getMDOrNull(Record[2]), 1847 getMDString(Record[3]), Record[4], getMDString(Record[5]), 1848 Record[6], getMDString(Record[7]), Record[8], 1849 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1850 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1851 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14])), 1852 NextMDValueNo++); 1853 break; 1854 } 1855 case bitc::METADATA_SUBPROGRAM: { 1856 if (Record.size() != 19) 1857 return error("Invalid record"); 1858 1859 MDValueList.assignValue( 1860 GET_OR_DISTINCT( 1861 DISubprogram, Record[0], 1862 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1863 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1864 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1865 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1866 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1867 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1868 NextMDValueNo++); 1869 break; 1870 } 1871 case bitc::METADATA_LEXICAL_BLOCK: { 1872 if (Record.size() != 5) 1873 return error("Invalid record"); 1874 1875 MDValueList.assignValue( 1876 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1877 (Context, getMDOrNull(Record[1]), 1878 getMDOrNull(Record[2]), Record[3], Record[4])), 1879 NextMDValueNo++); 1880 break; 1881 } 1882 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1883 if (Record.size() != 4) 1884 return error("Invalid record"); 1885 1886 MDValueList.assignValue( 1887 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1888 (Context, getMDOrNull(Record[1]), 1889 getMDOrNull(Record[2]), Record[3])), 1890 NextMDValueNo++); 1891 break; 1892 } 1893 case bitc::METADATA_NAMESPACE: { 1894 if (Record.size() != 5) 1895 return error("Invalid record"); 1896 1897 MDValueList.assignValue( 1898 GET_OR_DISTINCT(DINamespace, Record[0], 1899 (Context, getMDOrNull(Record[1]), 1900 getMDOrNull(Record[2]), getMDString(Record[3]), 1901 Record[4])), 1902 NextMDValueNo++); 1903 break; 1904 } 1905 case bitc::METADATA_TEMPLATE_TYPE: { 1906 if (Record.size() != 3) 1907 return error("Invalid record"); 1908 1909 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1910 Record[0], 1911 (Context, getMDString(Record[1]), 1912 getMDOrNull(Record[2]))), 1913 NextMDValueNo++); 1914 break; 1915 } 1916 case bitc::METADATA_TEMPLATE_VALUE: { 1917 if (Record.size() != 5) 1918 return error("Invalid record"); 1919 1920 MDValueList.assignValue( 1921 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1922 (Context, Record[1], getMDString(Record[2]), 1923 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1924 NextMDValueNo++); 1925 break; 1926 } 1927 case bitc::METADATA_GLOBAL_VAR: { 1928 if (Record.size() != 11) 1929 return error("Invalid record"); 1930 1931 MDValueList.assignValue( 1932 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1933 (Context, getMDOrNull(Record[1]), 1934 getMDString(Record[2]), getMDString(Record[3]), 1935 getMDOrNull(Record[4]), Record[5], 1936 getMDOrNull(Record[6]), Record[7], Record[8], 1937 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1938 NextMDValueNo++); 1939 break; 1940 } 1941 case bitc::METADATA_LOCAL_VAR: { 1942 // 10th field is for the obseleted 'inlinedAt:' field. 1943 if (Record.size() != 9 && Record.size() != 10) 1944 return error("Invalid record"); 1945 1946 MDValueList.assignValue( 1947 GET_OR_DISTINCT(DILocalVariable, Record[0], 1948 (Context, Record[1], getMDOrNull(Record[2]), 1949 getMDString(Record[3]), getMDOrNull(Record[4]), 1950 Record[5], getMDOrNull(Record[6]), Record[7], 1951 Record[8])), 1952 NextMDValueNo++); 1953 break; 1954 } 1955 case bitc::METADATA_EXPRESSION: { 1956 if (Record.size() < 1) 1957 return error("Invalid record"); 1958 1959 MDValueList.assignValue( 1960 GET_OR_DISTINCT(DIExpression, Record[0], 1961 (Context, makeArrayRef(Record).slice(1))), 1962 NextMDValueNo++); 1963 break; 1964 } 1965 case bitc::METADATA_OBJC_PROPERTY: { 1966 if (Record.size() != 8) 1967 return error("Invalid record"); 1968 1969 MDValueList.assignValue( 1970 GET_OR_DISTINCT(DIObjCProperty, Record[0], 1971 (Context, getMDString(Record[1]), 1972 getMDOrNull(Record[2]), Record[3], 1973 getMDString(Record[4]), getMDString(Record[5]), 1974 Record[6], getMDOrNull(Record[7]))), 1975 NextMDValueNo++); 1976 break; 1977 } 1978 case bitc::METADATA_IMPORTED_ENTITY: { 1979 if (Record.size() != 6) 1980 return error("Invalid record"); 1981 1982 MDValueList.assignValue( 1983 GET_OR_DISTINCT(DIImportedEntity, Record[0], 1984 (Context, Record[1], getMDOrNull(Record[2]), 1985 getMDOrNull(Record[3]), Record[4], 1986 getMDString(Record[5]))), 1987 NextMDValueNo++); 1988 break; 1989 } 1990 case bitc::METADATA_STRING: { 1991 std::string String(Record.begin(), Record.end()); 1992 llvm::UpgradeMDStringConstant(String); 1993 Metadata *MD = MDString::get(Context, String); 1994 MDValueList.assignValue(MD, NextMDValueNo++); 1995 break; 1996 } 1997 case bitc::METADATA_KIND: { 1998 if (Record.size() < 2) 1999 return error("Invalid record"); 2000 2001 unsigned Kind = Record[0]; 2002 SmallString<8> Name(Record.begin()+1, Record.end()); 2003 2004 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2005 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2006 return error("Conflicting METADATA_KIND records"); 2007 break; 2008 } 2009 } 2010 } 2011 #undef GET_OR_DISTINCT 2012 } 2013 2014 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2015 /// encoding. 2016 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2017 if ((V & 1) == 0) 2018 return V >> 1; 2019 if (V != 1) 2020 return -(V >> 1); 2021 // There is no such thing as -0 with integers. "-0" really means MININT. 2022 return 1ULL << 63; 2023 } 2024 2025 /// Resolve all of the initializers for global values and aliases that we can. 2026 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2027 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2028 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2029 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2030 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2031 2032 GlobalInitWorklist.swap(GlobalInits); 2033 AliasInitWorklist.swap(AliasInits); 2034 FunctionPrefixWorklist.swap(FunctionPrefixes); 2035 FunctionPrologueWorklist.swap(FunctionPrologues); 2036 2037 while (!GlobalInitWorklist.empty()) { 2038 unsigned ValID = GlobalInitWorklist.back().second; 2039 if (ValID >= ValueList.size()) { 2040 // Not ready to resolve this yet, it requires something later in the file. 2041 GlobalInits.push_back(GlobalInitWorklist.back()); 2042 } else { 2043 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2044 GlobalInitWorklist.back().first->setInitializer(C); 2045 else 2046 return error("Expected a constant"); 2047 } 2048 GlobalInitWorklist.pop_back(); 2049 } 2050 2051 while (!AliasInitWorklist.empty()) { 2052 unsigned ValID = AliasInitWorklist.back().second; 2053 if (ValID >= ValueList.size()) { 2054 AliasInits.push_back(AliasInitWorklist.back()); 2055 } else { 2056 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2057 if (!C) 2058 return error("Expected a constant"); 2059 GlobalAlias *Alias = AliasInitWorklist.back().first; 2060 if (C->getType() != Alias->getType()) 2061 return error("Alias and aliasee types don't match"); 2062 Alias->setAliasee(C); 2063 } 2064 AliasInitWorklist.pop_back(); 2065 } 2066 2067 while (!FunctionPrefixWorklist.empty()) { 2068 unsigned ValID = FunctionPrefixWorklist.back().second; 2069 if (ValID >= ValueList.size()) { 2070 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2071 } else { 2072 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2073 FunctionPrefixWorklist.back().first->setPrefixData(C); 2074 else 2075 return error("Expected a constant"); 2076 } 2077 FunctionPrefixWorklist.pop_back(); 2078 } 2079 2080 while (!FunctionPrologueWorklist.empty()) { 2081 unsigned ValID = FunctionPrologueWorklist.back().second; 2082 if (ValID >= ValueList.size()) { 2083 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2084 } else { 2085 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2086 FunctionPrologueWorklist.back().first->setPrologueData(C); 2087 else 2088 return error("Expected a constant"); 2089 } 2090 FunctionPrologueWorklist.pop_back(); 2091 } 2092 2093 return std::error_code(); 2094 } 2095 2096 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2097 SmallVector<uint64_t, 8> Words(Vals.size()); 2098 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2099 BitcodeReader::decodeSignRotatedValue); 2100 2101 return APInt(TypeBits, Words); 2102 } 2103 2104 std::error_code BitcodeReader::parseConstants() { 2105 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2106 return error("Invalid record"); 2107 2108 SmallVector<uint64_t, 64> Record; 2109 2110 // Read all the records for this value table. 2111 Type *CurTy = Type::getInt32Ty(Context); 2112 unsigned NextCstNo = ValueList.size(); 2113 while (1) { 2114 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2115 2116 switch (Entry.Kind) { 2117 case BitstreamEntry::SubBlock: // Handled for us already. 2118 case BitstreamEntry::Error: 2119 return error("Malformed block"); 2120 case BitstreamEntry::EndBlock: 2121 if (NextCstNo != ValueList.size()) 2122 return error("Invalid ronstant reference"); 2123 2124 // Once all the constants have been read, go through and resolve forward 2125 // references. 2126 ValueList.resolveConstantForwardRefs(); 2127 return std::error_code(); 2128 case BitstreamEntry::Record: 2129 // The interesting case. 2130 break; 2131 } 2132 2133 // Read a record. 2134 Record.clear(); 2135 Value *V = nullptr; 2136 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2137 switch (BitCode) { 2138 default: // Default behavior: unknown constant 2139 case bitc::CST_CODE_UNDEF: // UNDEF 2140 V = UndefValue::get(CurTy); 2141 break; 2142 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2143 if (Record.empty()) 2144 return error("Invalid record"); 2145 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2146 return error("Invalid record"); 2147 CurTy = TypeList[Record[0]]; 2148 continue; // Skip the ValueList manipulation. 2149 case bitc::CST_CODE_NULL: // NULL 2150 V = Constant::getNullValue(CurTy); 2151 break; 2152 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2153 if (!CurTy->isIntegerTy() || Record.empty()) 2154 return error("Invalid record"); 2155 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2156 break; 2157 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2158 if (!CurTy->isIntegerTy() || Record.empty()) 2159 return error("Invalid record"); 2160 2161 APInt VInt = 2162 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2163 V = ConstantInt::get(Context, VInt); 2164 2165 break; 2166 } 2167 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2168 if (Record.empty()) 2169 return error("Invalid record"); 2170 if (CurTy->isHalfTy()) 2171 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2172 APInt(16, (uint16_t)Record[0]))); 2173 else if (CurTy->isFloatTy()) 2174 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2175 APInt(32, (uint32_t)Record[0]))); 2176 else if (CurTy->isDoubleTy()) 2177 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2178 APInt(64, Record[0]))); 2179 else if (CurTy->isX86_FP80Ty()) { 2180 // Bits are not stored the same way as a normal i80 APInt, compensate. 2181 uint64_t Rearrange[2]; 2182 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2183 Rearrange[1] = Record[0] >> 48; 2184 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2185 APInt(80, Rearrange))); 2186 } else if (CurTy->isFP128Ty()) 2187 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2188 APInt(128, Record))); 2189 else if (CurTy->isPPC_FP128Ty()) 2190 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2191 APInt(128, Record))); 2192 else 2193 V = UndefValue::get(CurTy); 2194 break; 2195 } 2196 2197 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2198 if (Record.empty()) 2199 return error("Invalid record"); 2200 2201 unsigned Size = Record.size(); 2202 SmallVector<Constant*, 16> Elts; 2203 2204 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2205 for (unsigned i = 0; i != Size; ++i) 2206 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2207 STy->getElementType(i))); 2208 V = ConstantStruct::get(STy, Elts); 2209 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2210 Type *EltTy = ATy->getElementType(); 2211 for (unsigned i = 0; i != Size; ++i) 2212 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2213 V = ConstantArray::get(ATy, Elts); 2214 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2215 Type *EltTy = VTy->getElementType(); 2216 for (unsigned i = 0; i != Size; ++i) 2217 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2218 V = ConstantVector::get(Elts); 2219 } else { 2220 V = UndefValue::get(CurTy); 2221 } 2222 break; 2223 } 2224 case bitc::CST_CODE_STRING: // STRING: [values] 2225 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2226 if (Record.empty()) 2227 return error("Invalid record"); 2228 2229 SmallString<16> Elts(Record.begin(), Record.end()); 2230 V = ConstantDataArray::getString(Context, Elts, 2231 BitCode == bitc::CST_CODE_CSTRING); 2232 break; 2233 } 2234 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2235 if (Record.empty()) 2236 return error("Invalid record"); 2237 2238 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2239 unsigned Size = Record.size(); 2240 2241 if (EltTy->isIntegerTy(8)) { 2242 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2243 if (isa<VectorType>(CurTy)) 2244 V = ConstantDataVector::get(Context, Elts); 2245 else 2246 V = ConstantDataArray::get(Context, Elts); 2247 } else if (EltTy->isIntegerTy(16)) { 2248 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2249 if (isa<VectorType>(CurTy)) 2250 V = ConstantDataVector::get(Context, Elts); 2251 else 2252 V = ConstantDataArray::get(Context, Elts); 2253 } else if (EltTy->isIntegerTy(32)) { 2254 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2255 if (isa<VectorType>(CurTy)) 2256 V = ConstantDataVector::get(Context, Elts); 2257 else 2258 V = ConstantDataArray::get(Context, Elts); 2259 } else if (EltTy->isIntegerTy(64)) { 2260 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2261 if (isa<VectorType>(CurTy)) 2262 V = ConstantDataVector::get(Context, Elts); 2263 else 2264 V = ConstantDataArray::get(Context, Elts); 2265 } else if (EltTy->isFloatTy()) { 2266 SmallVector<float, 16> Elts(Size); 2267 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2268 if (isa<VectorType>(CurTy)) 2269 V = ConstantDataVector::get(Context, Elts); 2270 else 2271 V = ConstantDataArray::get(Context, Elts); 2272 } else if (EltTy->isDoubleTy()) { 2273 SmallVector<double, 16> Elts(Size); 2274 std::transform(Record.begin(), Record.end(), Elts.begin(), 2275 BitsToDouble); 2276 if (isa<VectorType>(CurTy)) 2277 V = ConstantDataVector::get(Context, Elts); 2278 else 2279 V = ConstantDataArray::get(Context, Elts); 2280 } else { 2281 return error("Invalid type for value"); 2282 } 2283 break; 2284 } 2285 2286 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2287 if (Record.size() < 3) 2288 return error("Invalid record"); 2289 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2290 if (Opc < 0) { 2291 V = UndefValue::get(CurTy); // Unknown binop. 2292 } else { 2293 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2294 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2295 unsigned Flags = 0; 2296 if (Record.size() >= 4) { 2297 if (Opc == Instruction::Add || 2298 Opc == Instruction::Sub || 2299 Opc == Instruction::Mul || 2300 Opc == Instruction::Shl) { 2301 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2302 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2303 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2304 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2305 } else if (Opc == Instruction::SDiv || 2306 Opc == Instruction::UDiv || 2307 Opc == Instruction::LShr || 2308 Opc == Instruction::AShr) { 2309 if (Record[3] & (1 << bitc::PEO_EXACT)) 2310 Flags |= SDivOperator::IsExact; 2311 } 2312 } 2313 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2314 } 2315 break; 2316 } 2317 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2318 if (Record.size() < 3) 2319 return error("Invalid record"); 2320 int Opc = getDecodedCastOpcode(Record[0]); 2321 if (Opc < 0) { 2322 V = UndefValue::get(CurTy); // Unknown cast. 2323 } else { 2324 Type *OpTy = getTypeByID(Record[1]); 2325 if (!OpTy) 2326 return error("Invalid record"); 2327 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2328 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2329 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2330 } 2331 break; 2332 } 2333 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2334 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2335 unsigned OpNum = 0; 2336 Type *PointeeType = nullptr; 2337 if (Record.size() % 2) 2338 PointeeType = getTypeByID(Record[OpNum++]); 2339 SmallVector<Constant*, 16> Elts; 2340 while (OpNum != Record.size()) { 2341 Type *ElTy = getTypeByID(Record[OpNum++]); 2342 if (!ElTy) 2343 return error("Invalid record"); 2344 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2345 } 2346 2347 if (PointeeType && 2348 PointeeType != 2349 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2350 ->getElementType()) 2351 return error("Explicit gep operator type does not match pointee type " 2352 "of pointer operand"); 2353 2354 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2355 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2356 BitCode == 2357 bitc::CST_CODE_CE_INBOUNDS_GEP); 2358 break; 2359 } 2360 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2361 if (Record.size() < 3) 2362 return error("Invalid record"); 2363 2364 Type *SelectorTy = Type::getInt1Ty(Context); 2365 2366 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2367 // vector. Otherwise, it must be a single bit. 2368 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2369 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2370 VTy->getNumElements()); 2371 2372 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2373 SelectorTy), 2374 ValueList.getConstantFwdRef(Record[1],CurTy), 2375 ValueList.getConstantFwdRef(Record[2],CurTy)); 2376 break; 2377 } 2378 case bitc::CST_CODE_CE_EXTRACTELT 2379 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2380 if (Record.size() < 3) 2381 return error("Invalid record"); 2382 VectorType *OpTy = 2383 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2384 if (!OpTy) 2385 return error("Invalid record"); 2386 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2387 Constant *Op1 = nullptr; 2388 if (Record.size() == 4) { 2389 Type *IdxTy = getTypeByID(Record[2]); 2390 if (!IdxTy) 2391 return error("Invalid record"); 2392 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2393 } else // TODO: Remove with llvm 4.0 2394 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2395 if (!Op1) 2396 return error("Invalid record"); 2397 V = ConstantExpr::getExtractElement(Op0, Op1); 2398 break; 2399 } 2400 case bitc::CST_CODE_CE_INSERTELT 2401 : { // CE_INSERTELT: [opval, opval, opty, opval] 2402 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2403 if (Record.size() < 3 || !OpTy) 2404 return error("Invalid record"); 2405 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2406 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2407 OpTy->getElementType()); 2408 Constant *Op2 = nullptr; 2409 if (Record.size() == 4) { 2410 Type *IdxTy = getTypeByID(Record[2]); 2411 if (!IdxTy) 2412 return error("Invalid record"); 2413 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2414 } else // TODO: Remove with llvm 4.0 2415 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2416 if (!Op2) 2417 return error("Invalid record"); 2418 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2419 break; 2420 } 2421 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2422 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2423 if (Record.size() < 3 || !OpTy) 2424 return error("Invalid record"); 2425 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2426 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2427 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2428 OpTy->getNumElements()); 2429 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2430 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2431 break; 2432 } 2433 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2434 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2435 VectorType *OpTy = 2436 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2437 if (Record.size() < 4 || !RTy || !OpTy) 2438 return error("Invalid record"); 2439 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2440 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2441 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2442 RTy->getNumElements()); 2443 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2444 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2445 break; 2446 } 2447 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2448 if (Record.size() < 4) 2449 return error("Invalid record"); 2450 Type *OpTy = getTypeByID(Record[0]); 2451 if (!OpTy) 2452 return error("Invalid record"); 2453 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2454 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2455 2456 if (OpTy->isFPOrFPVectorTy()) 2457 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2458 else 2459 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2460 break; 2461 } 2462 // This maintains backward compatibility, pre-asm dialect keywords. 2463 // FIXME: Remove with the 4.0 release. 2464 case bitc::CST_CODE_INLINEASM_OLD: { 2465 if (Record.size() < 2) 2466 return error("Invalid record"); 2467 std::string AsmStr, ConstrStr; 2468 bool HasSideEffects = Record[0] & 1; 2469 bool IsAlignStack = Record[0] >> 1; 2470 unsigned AsmStrSize = Record[1]; 2471 if (2+AsmStrSize >= Record.size()) 2472 return error("Invalid record"); 2473 unsigned ConstStrSize = Record[2+AsmStrSize]; 2474 if (3+AsmStrSize+ConstStrSize > Record.size()) 2475 return error("Invalid record"); 2476 2477 for (unsigned i = 0; i != AsmStrSize; ++i) 2478 AsmStr += (char)Record[2+i]; 2479 for (unsigned i = 0; i != ConstStrSize; ++i) 2480 ConstrStr += (char)Record[3+AsmStrSize+i]; 2481 PointerType *PTy = cast<PointerType>(CurTy); 2482 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2483 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2484 break; 2485 } 2486 // This version adds support for the asm dialect keywords (e.g., 2487 // inteldialect). 2488 case bitc::CST_CODE_INLINEASM: { 2489 if (Record.size() < 2) 2490 return error("Invalid record"); 2491 std::string AsmStr, ConstrStr; 2492 bool HasSideEffects = Record[0] & 1; 2493 bool IsAlignStack = (Record[0] >> 1) & 1; 2494 unsigned AsmDialect = Record[0] >> 2; 2495 unsigned AsmStrSize = Record[1]; 2496 if (2+AsmStrSize >= Record.size()) 2497 return error("Invalid record"); 2498 unsigned ConstStrSize = Record[2+AsmStrSize]; 2499 if (3+AsmStrSize+ConstStrSize > Record.size()) 2500 return error("Invalid record"); 2501 2502 for (unsigned i = 0; i != AsmStrSize; ++i) 2503 AsmStr += (char)Record[2+i]; 2504 for (unsigned i = 0; i != ConstStrSize; ++i) 2505 ConstrStr += (char)Record[3+AsmStrSize+i]; 2506 PointerType *PTy = cast<PointerType>(CurTy); 2507 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2508 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2509 InlineAsm::AsmDialect(AsmDialect)); 2510 break; 2511 } 2512 case bitc::CST_CODE_BLOCKADDRESS:{ 2513 if (Record.size() < 3) 2514 return error("Invalid record"); 2515 Type *FnTy = getTypeByID(Record[0]); 2516 if (!FnTy) 2517 return error("Invalid record"); 2518 Function *Fn = 2519 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2520 if (!Fn) 2521 return error("Invalid record"); 2522 2523 // Don't let Fn get dematerialized. 2524 BlockAddressesTaken.insert(Fn); 2525 2526 // If the function is already parsed we can insert the block address right 2527 // away. 2528 BasicBlock *BB; 2529 unsigned BBID = Record[2]; 2530 if (!BBID) 2531 // Invalid reference to entry block. 2532 return error("Invalid ID"); 2533 if (!Fn->empty()) { 2534 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2535 for (size_t I = 0, E = BBID; I != E; ++I) { 2536 if (BBI == BBE) 2537 return error("Invalid ID"); 2538 ++BBI; 2539 } 2540 BB = BBI; 2541 } else { 2542 // Otherwise insert a placeholder and remember it so it can be inserted 2543 // when the function is parsed. 2544 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2545 if (FwdBBs.empty()) 2546 BasicBlockFwdRefQueue.push_back(Fn); 2547 if (FwdBBs.size() < BBID + 1) 2548 FwdBBs.resize(BBID + 1); 2549 if (!FwdBBs[BBID]) 2550 FwdBBs[BBID] = BasicBlock::Create(Context); 2551 BB = FwdBBs[BBID]; 2552 } 2553 V = BlockAddress::get(Fn, BB); 2554 break; 2555 } 2556 } 2557 2558 ValueList.assignValue(V, NextCstNo); 2559 ++NextCstNo; 2560 } 2561 } 2562 2563 std::error_code BitcodeReader::parseUseLists() { 2564 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2565 return error("Invalid record"); 2566 2567 // Read all the records. 2568 SmallVector<uint64_t, 64> Record; 2569 while (1) { 2570 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2571 2572 switch (Entry.Kind) { 2573 case BitstreamEntry::SubBlock: // Handled for us already. 2574 case BitstreamEntry::Error: 2575 return error("Malformed block"); 2576 case BitstreamEntry::EndBlock: 2577 return std::error_code(); 2578 case BitstreamEntry::Record: 2579 // The interesting case. 2580 break; 2581 } 2582 2583 // Read a use list record. 2584 Record.clear(); 2585 bool IsBB = false; 2586 switch (Stream.readRecord(Entry.ID, Record)) { 2587 default: // Default behavior: unknown type. 2588 break; 2589 case bitc::USELIST_CODE_BB: 2590 IsBB = true; 2591 // fallthrough 2592 case bitc::USELIST_CODE_DEFAULT: { 2593 unsigned RecordLength = Record.size(); 2594 if (RecordLength < 3) 2595 // Records should have at least an ID and two indexes. 2596 return error("Invalid record"); 2597 unsigned ID = Record.back(); 2598 Record.pop_back(); 2599 2600 Value *V; 2601 if (IsBB) { 2602 assert(ID < FunctionBBs.size() && "Basic block not found"); 2603 V = FunctionBBs[ID]; 2604 } else 2605 V = ValueList[ID]; 2606 unsigned NumUses = 0; 2607 SmallDenseMap<const Use *, unsigned, 16> Order; 2608 for (const Use &U : V->uses()) { 2609 if (++NumUses > Record.size()) 2610 break; 2611 Order[&U] = Record[NumUses - 1]; 2612 } 2613 if (Order.size() != Record.size() || NumUses > Record.size()) 2614 // Mismatches can happen if the functions are being materialized lazily 2615 // (out-of-order), or a value has been upgraded. 2616 break; 2617 2618 V->sortUseList([&](const Use &L, const Use &R) { 2619 return Order.lookup(&L) < Order.lookup(&R); 2620 }); 2621 break; 2622 } 2623 } 2624 } 2625 } 2626 2627 /// When we see the block for metadata, remember where it is and then skip it. 2628 /// This lets us lazily deserialize the metadata. 2629 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2630 // Save the current stream state. 2631 uint64_t CurBit = Stream.GetCurrentBitNo(); 2632 DeferredMetadataInfo.push_back(CurBit); 2633 2634 // Skip over the block for now. 2635 if (Stream.SkipBlock()) 2636 return error("Invalid record"); 2637 return std::error_code(); 2638 } 2639 2640 std::error_code BitcodeReader::materializeMetadata() { 2641 for (uint64_t BitPos : DeferredMetadataInfo) { 2642 // Move the bit stream to the saved position. 2643 Stream.JumpToBit(BitPos); 2644 if (std::error_code EC = parseMetadata()) 2645 return EC; 2646 } 2647 DeferredMetadataInfo.clear(); 2648 return std::error_code(); 2649 } 2650 2651 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2652 2653 /// When we see the block for a function body, remember where it is and then 2654 /// skip it. This lets us lazily deserialize the functions. 2655 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 2656 // Get the function we are talking about. 2657 if (FunctionsWithBodies.empty()) 2658 return error("Insufficient function protos"); 2659 2660 Function *Fn = FunctionsWithBodies.back(); 2661 FunctionsWithBodies.pop_back(); 2662 2663 // Save the current stream state. 2664 uint64_t CurBit = Stream.GetCurrentBitNo(); 2665 DeferredFunctionInfo[Fn] = CurBit; 2666 2667 // Skip over the function block for now. 2668 if (Stream.SkipBlock()) 2669 return error("Invalid record"); 2670 return std::error_code(); 2671 } 2672 2673 std::error_code BitcodeReader::globalCleanup() { 2674 // Patch the initializers for globals and aliases up. 2675 resolveGlobalAndAliasInits(); 2676 if (!GlobalInits.empty() || !AliasInits.empty()) 2677 return error("Malformed global initializer set"); 2678 2679 // Look for intrinsic functions which need to be upgraded at some point 2680 for (Function &F : *TheModule) { 2681 Function *NewFn; 2682 if (UpgradeIntrinsicFunction(&F, NewFn)) 2683 UpgradedIntrinsics.push_back(std::make_pair(&F, NewFn)); 2684 } 2685 2686 // Look for global variables which need to be renamed. 2687 for (GlobalVariable &GV : TheModule->globals()) 2688 UpgradeGlobalVariable(&GV); 2689 2690 // Force deallocation of memory for these vectors to favor the client that 2691 // want lazy deserialization. 2692 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2693 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2694 return std::error_code(); 2695 } 2696 2697 std::error_code BitcodeReader::parseModule(bool Resume, 2698 bool ShouldLazyLoadMetadata) { 2699 if (Resume) 2700 Stream.JumpToBit(NextUnreadBit); 2701 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2702 return error("Invalid record"); 2703 2704 SmallVector<uint64_t, 64> Record; 2705 std::vector<std::string> SectionTable; 2706 std::vector<std::string> GCTable; 2707 2708 // Read all the records for this module. 2709 while (1) { 2710 BitstreamEntry Entry = Stream.advance(); 2711 2712 switch (Entry.Kind) { 2713 case BitstreamEntry::Error: 2714 return error("Malformed block"); 2715 case BitstreamEntry::EndBlock: 2716 return globalCleanup(); 2717 2718 case BitstreamEntry::SubBlock: 2719 switch (Entry.ID) { 2720 default: // Skip unknown content. 2721 if (Stream.SkipBlock()) 2722 return error("Invalid record"); 2723 break; 2724 case bitc::BLOCKINFO_BLOCK_ID: 2725 if (Stream.ReadBlockInfoBlock()) 2726 return error("Malformed block"); 2727 break; 2728 case bitc::PARAMATTR_BLOCK_ID: 2729 if (std::error_code EC = parseAttributeBlock()) 2730 return EC; 2731 break; 2732 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2733 if (std::error_code EC = parseAttributeGroupBlock()) 2734 return EC; 2735 break; 2736 case bitc::TYPE_BLOCK_ID_NEW: 2737 if (std::error_code EC = parseTypeTable()) 2738 return EC; 2739 break; 2740 case bitc::VALUE_SYMTAB_BLOCK_ID: 2741 if (std::error_code EC = parseValueSymbolTable()) 2742 return EC; 2743 SeenValueSymbolTable = true; 2744 break; 2745 case bitc::CONSTANTS_BLOCK_ID: 2746 if (std::error_code EC = parseConstants()) 2747 return EC; 2748 if (std::error_code EC = resolveGlobalAndAliasInits()) 2749 return EC; 2750 break; 2751 case bitc::METADATA_BLOCK_ID: 2752 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2753 if (std::error_code EC = rememberAndSkipMetadata()) 2754 return EC; 2755 break; 2756 } 2757 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2758 if (std::error_code EC = parseMetadata()) 2759 return EC; 2760 break; 2761 case bitc::FUNCTION_BLOCK_ID: 2762 // If this is the first function body we've seen, reverse the 2763 // FunctionsWithBodies list. 2764 if (!SeenFirstFunctionBody) { 2765 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2766 if (std::error_code EC = globalCleanup()) 2767 return EC; 2768 SeenFirstFunctionBody = true; 2769 } 2770 2771 if (std::error_code EC = rememberAndSkipFunctionBody()) 2772 return EC; 2773 // For streaming bitcode, suspend parsing when we reach the function 2774 // bodies. Subsequent materialization calls will resume it when 2775 // necessary. For streaming, the function bodies must be at the end of 2776 // the bitcode. If the bitcode file is old, the symbol table will be 2777 // at the end instead and will not have been seen yet. In this case, 2778 // just finish the parse now. 2779 if (Streamer && SeenValueSymbolTable) { 2780 NextUnreadBit = Stream.GetCurrentBitNo(); 2781 return std::error_code(); 2782 } 2783 break; 2784 case bitc::USELIST_BLOCK_ID: 2785 if (std::error_code EC = parseUseLists()) 2786 return EC; 2787 break; 2788 } 2789 continue; 2790 2791 case BitstreamEntry::Record: 2792 // The interesting case. 2793 break; 2794 } 2795 2796 2797 // Read a record. 2798 switch (Stream.readRecord(Entry.ID, Record)) { 2799 default: break; // Default behavior, ignore unknown content. 2800 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2801 if (Record.size() < 1) 2802 return error("Invalid record"); 2803 // Only version #0 and #1 are supported so far. 2804 unsigned module_version = Record[0]; 2805 switch (module_version) { 2806 default: 2807 return error("Invalid value"); 2808 case 0: 2809 UseRelativeIDs = false; 2810 break; 2811 case 1: 2812 UseRelativeIDs = true; 2813 break; 2814 } 2815 break; 2816 } 2817 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2818 std::string S; 2819 if (convertToString(Record, 0, S)) 2820 return error("Invalid record"); 2821 TheModule->setTargetTriple(S); 2822 break; 2823 } 2824 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2825 std::string S; 2826 if (convertToString(Record, 0, S)) 2827 return error("Invalid record"); 2828 TheModule->setDataLayout(S); 2829 break; 2830 } 2831 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2832 std::string S; 2833 if (convertToString(Record, 0, S)) 2834 return error("Invalid record"); 2835 TheModule->setModuleInlineAsm(S); 2836 break; 2837 } 2838 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2839 // FIXME: Remove in 4.0. 2840 std::string S; 2841 if (convertToString(Record, 0, S)) 2842 return error("Invalid record"); 2843 // Ignore value. 2844 break; 2845 } 2846 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2847 std::string S; 2848 if (convertToString(Record, 0, S)) 2849 return error("Invalid record"); 2850 SectionTable.push_back(S); 2851 break; 2852 } 2853 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2854 std::string S; 2855 if (convertToString(Record, 0, S)) 2856 return error("Invalid record"); 2857 GCTable.push_back(S); 2858 break; 2859 } 2860 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2861 if (Record.size() < 2) 2862 return error("Invalid record"); 2863 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2864 unsigned ComdatNameSize = Record[1]; 2865 std::string ComdatName; 2866 ComdatName.reserve(ComdatNameSize); 2867 for (unsigned i = 0; i != ComdatNameSize; ++i) 2868 ComdatName += (char)Record[2 + i]; 2869 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2870 C->setSelectionKind(SK); 2871 ComdatList.push_back(C); 2872 break; 2873 } 2874 // GLOBALVAR: [pointer type, isconst, initid, 2875 // linkage, alignment, section, visibility, threadlocal, 2876 // unnamed_addr, externally_initialized, dllstorageclass, 2877 // comdat] 2878 case bitc::MODULE_CODE_GLOBALVAR: { 2879 if (Record.size() < 6) 2880 return error("Invalid record"); 2881 Type *Ty = getTypeByID(Record[0]); 2882 if (!Ty) 2883 return error("Invalid record"); 2884 bool isConstant = Record[1] & 1; 2885 bool explicitType = Record[1] & 2; 2886 unsigned AddressSpace; 2887 if (explicitType) { 2888 AddressSpace = Record[1] >> 2; 2889 } else { 2890 if (!Ty->isPointerTy()) 2891 return error("Invalid type for value"); 2892 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2893 Ty = cast<PointerType>(Ty)->getElementType(); 2894 } 2895 2896 uint64_t RawLinkage = Record[3]; 2897 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2898 unsigned Alignment; 2899 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2900 return EC; 2901 std::string Section; 2902 if (Record[5]) { 2903 if (Record[5]-1 >= SectionTable.size()) 2904 return error("Invalid ID"); 2905 Section = SectionTable[Record[5]-1]; 2906 } 2907 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2908 // Local linkage must have default visibility. 2909 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2910 // FIXME: Change to an error if non-default in 4.0. 2911 Visibility = getDecodedVisibility(Record[6]); 2912 2913 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2914 if (Record.size() > 7) 2915 TLM = getDecodedThreadLocalMode(Record[7]); 2916 2917 bool UnnamedAddr = false; 2918 if (Record.size() > 8) 2919 UnnamedAddr = Record[8]; 2920 2921 bool ExternallyInitialized = false; 2922 if (Record.size() > 9) 2923 ExternallyInitialized = Record[9]; 2924 2925 GlobalVariable *NewGV = 2926 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2927 TLM, AddressSpace, ExternallyInitialized); 2928 NewGV->setAlignment(Alignment); 2929 if (!Section.empty()) 2930 NewGV->setSection(Section); 2931 NewGV->setVisibility(Visibility); 2932 NewGV->setUnnamedAddr(UnnamedAddr); 2933 2934 if (Record.size() > 10) 2935 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2936 else 2937 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2938 2939 ValueList.push_back(NewGV); 2940 2941 // Remember which value to use for the global initializer. 2942 if (unsigned InitID = Record[2]) 2943 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2944 2945 if (Record.size() > 11) { 2946 if (unsigned ComdatID = Record[11]) { 2947 if (ComdatID > ComdatList.size()) 2948 return error("Invalid global variable comdat ID"); 2949 NewGV->setComdat(ComdatList[ComdatID - 1]); 2950 } 2951 } else if (hasImplicitComdat(RawLinkage)) { 2952 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2953 } 2954 break; 2955 } 2956 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2957 // alignment, section, visibility, gc, unnamed_addr, 2958 // prologuedata, dllstorageclass, comdat, prefixdata] 2959 case bitc::MODULE_CODE_FUNCTION: { 2960 if (Record.size() < 8) 2961 return error("Invalid record"); 2962 Type *Ty = getTypeByID(Record[0]); 2963 if (!Ty) 2964 return error("Invalid record"); 2965 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2966 Ty = PTy->getElementType(); 2967 auto *FTy = dyn_cast<FunctionType>(Ty); 2968 if (!FTy) 2969 return error("Invalid type for value"); 2970 2971 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2972 "", TheModule); 2973 2974 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2975 bool isProto = Record[2]; 2976 uint64_t RawLinkage = Record[3]; 2977 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2978 Func->setAttributes(getAttributes(Record[4])); 2979 2980 unsigned Alignment; 2981 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2982 return EC; 2983 Func->setAlignment(Alignment); 2984 if (Record[6]) { 2985 if (Record[6]-1 >= SectionTable.size()) 2986 return error("Invalid ID"); 2987 Func->setSection(SectionTable[Record[6]-1]); 2988 } 2989 // Local linkage must have default visibility. 2990 if (!Func->hasLocalLinkage()) 2991 // FIXME: Change to an error if non-default in 4.0. 2992 Func->setVisibility(getDecodedVisibility(Record[7])); 2993 if (Record.size() > 8 && Record[8]) { 2994 if (Record[8]-1 >= GCTable.size()) 2995 return error("Invalid ID"); 2996 Func->setGC(GCTable[Record[8]-1].c_str()); 2997 } 2998 bool UnnamedAddr = false; 2999 if (Record.size() > 9) 3000 UnnamedAddr = Record[9]; 3001 Func->setUnnamedAddr(UnnamedAddr); 3002 if (Record.size() > 10 && Record[10] != 0) 3003 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3004 3005 if (Record.size() > 11) 3006 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3007 else 3008 upgradeDLLImportExportLinkage(Func, RawLinkage); 3009 3010 if (Record.size() > 12) { 3011 if (unsigned ComdatID = Record[12]) { 3012 if (ComdatID > ComdatList.size()) 3013 return error("Invalid function comdat ID"); 3014 Func->setComdat(ComdatList[ComdatID - 1]); 3015 } 3016 } else if (hasImplicitComdat(RawLinkage)) { 3017 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3018 } 3019 3020 if (Record.size() > 13 && Record[13] != 0) 3021 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3022 3023 ValueList.push_back(Func); 3024 3025 // If this is a function with a body, remember the prototype we are 3026 // creating now, so that we can match up the body with them later. 3027 if (!isProto) { 3028 Func->setIsMaterializable(true); 3029 FunctionsWithBodies.push_back(Func); 3030 if (Streamer) 3031 DeferredFunctionInfo[Func] = 0; 3032 } 3033 break; 3034 } 3035 // ALIAS: [alias type, aliasee val#, linkage] 3036 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3037 case bitc::MODULE_CODE_ALIAS: { 3038 if (Record.size() < 3) 3039 return error("Invalid record"); 3040 Type *Ty = getTypeByID(Record[0]); 3041 if (!Ty) 3042 return error("Invalid record"); 3043 auto *PTy = dyn_cast<PointerType>(Ty); 3044 if (!PTy) 3045 return error("Invalid type for value"); 3046 3047 auto *NewGA = 3048 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3049 // Old bitcode files didn't have visibility field. 3050 // Local linkage must have default visibility. 3051 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3052 // FIXME: Change to an error if non-default in 4.0. 3053 NewGA->setVisibility(getDecodedVisibility(Record[3])); 3054 if (Record.size() > 4) 3055 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[4])); 3056 else 3057 upgradeDLLImportExportLinkage(NewGA, Record[2]); 3058 if (Record.size() > 5) 3059 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[5])); 3060 if (Record.size() > 6) 3061 NewGA->setUnnamedAddr(Record[6]); 3062 ValueList.push_back(NewGA); 3063 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3064 break; 3065 } 3066 /// MODULE_CODE_PURGEVALS: [numvals] 3067 case bitc::MODULE_CODE_PURGEVALS: 3068 // Trim down the value list to the specified size. 3069 if (Record.size() < 1 || Record[0] > ValueList.size()) 3070 return error("Invalid record"); 3071 ValueList.shrinkTo(Record[0]); 3072 break; 3073 } 3074 Record.clear(); 3075 } 3076 } 3077 3078 std::error_code BitcodeReader::parseBitcodeInto(Module *M, 3079 bool ShouldLazyLoadMetadata) { 3080 TheModule = nullptr; 3081 3082 if (std::error_code EC = initStream()) 3083 return EC; 3084 3085 // Sniff for the signature. 3086 if (Stream.Read(8) != 'B' || 3087 Stream.Read(8) != 'C' || 3088 Stream.Read(4) != 0x0 || 3089 Stream.Read(4) != 0xC || 3090 Stream.Read(4) != 0xE || 3091 Stream.Read(4) != 0xD) 3092 return error("Invalid bitcode signature"); 3093 3094 // We expect a number of well-defined blocks, though we don't necessarily 3095 // need to understand them all. 3096 while (1) { 3097 if (Stream.AtEndOfStream()) { 3098 if (TheModule) 3099 return std::error_code(); 3100 // We didn't really read a proper Module. 3101 return error("Malformed IR file"); 3102 } 3103 3104 BitstreamEntry Entry = 3105 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3106 3107 switch (Entry.Kind) { 3108 case BitstreamEntry::Error: 3109 return error("Malformed block"); 3110 case BitstreamEntry::EndBlock: 3111 return std::error_code(); 3112 3113 case BitstreamEntry::SubBlock: 3114 switch (Entry.ID) { 3115 case bitc::BLOCKINFO_BLOCK_ID: 3116 if (Stream.ReadBlockInfoBlock()) 3117 return error("Malformed block"); 3118 break; 3119 case bitc::MODULE_BLOCK_ID: 3120 // Reject multiple MODULE_BLOCK's in a single bitstream. 3121 if (TheModule) 3122 return error("Invalid multiple blocks"); 3123 TheModule = M; 3124 if (std::error_code EC = parseModule(false, ShouldLazyLoadMetadata)) 3125 return EC; 3126 if (Streamer) 3127 return std::error_code(); 3128 break; 3129 default: 3130 if (Stream.SkipBlock()) 3131 return error("Invalid record"); 3132 break; 3133 } 3134 continue; 3135 case BitstreamEntry::Record: 3136 // There should be no records in the top-level of blocks. 3137 3138 // The ranlib in Xcode 4 will align archive members by appending newlines 3139 // to the end of them. If this file size is a multiple of 4 but not 8, we 3140 // have to read and ignore these final 4 bytes :-( 3141 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3142 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3143 Stream.AtEndOfStream()) 3144 return std::error_code(); 3145 3146 return error("Invalid record"); 3147 } 3148 } 3149 } 3150 3151 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3152 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3153 return error("Invalid record"); 3154 3155 SmallVector<uint64_t, 64> Record; 3156 3157 std::string Triple; 3158 // Read all the records for this module. 3159 while (1) { 3160 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3161 3162 switch (Entry.Kind) { 3163 case BitstreamEntry::SubBlock: // Handled for us already. 3164 case BitstreamEntry::Error: 3165 return error("Malformed block"); 3166 case BitstreamEntry::EndBlock: 3167 return Triple; 3168 case BitstreamEntry::Record: 3169 // The interesting case. 3170 break; 3171 } 3172 3173 // Read a record. 3174 switch (Stream.readRecord(Entry.ID, Record)) { 3175 default: break; // Default behavior, ignore unknown content. 3176 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3177 std::string S; 3178 if (convertToString(Record, 0, S)) 3179 return error("Invalid record"); 3180 Triple = S; 3181 break; 3182 } 3183 } 3184 Record.clear(); 3185 } 3186 llvm_unreachable("Exit infinite loop"); 3187 } 3188 3189 ErrorOr<std::string> BitcodeReader::parseTriple() { 3190 if (std::error_code EC = initStream()) 3191 return EC; 3192 3193 // Sniff for the signature. 3194 if (Stream.Read(8) != 'B' || 3195 Stream.Read(8) != 'C' || 3196 Stream.Read(4) != 0x0 || 3197 Stream.Read(4) != 0xC || 3198 Stream.Read(4) != 0xE || 3199 Stream.Read(4) != 0xD) 3200 return error("Invalid bitcode signature"); 3201 3202 // We expect a number of well-defined blocks, though we don't necessarily 3203 // need to understand them all. 3204 while (1) { 3205 BitstreamEntry Entry = Stream.advance(); 3206 3207 switch (Entry.Kind) { 3208 case BitstreamEntry::Error: 3209 return error("Malformed block"); 3210 case BitstreamEntry::EndBlock: 3211 return std::error_code(); 3212 3213 case BitstreamEntry::SubBlock: 3214 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3215 return parseModuleTriple(); 3216 3217 // Ignore other sub-blocks. 3218 if (Stream.SkipBlock()) 3219 return error("Malformed block"); 3220 continue; 3221 3222 case BitstreamEntry::Record: 3223 Stream.skipRecord(Entry.ID); 3224 continue; 3225 } 3226 } 3227 } 3228 3229 /// Parse metadata attachments. 3230 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3231 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3232 return error("Invalid record"); 3233 3234 SmallVector<uint64_t, 64> Record; 3235 while (1) { 3236 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3237 3238 switch (Entry.Kind) { 3239 case BitstreamEntry::SubBlock: // Handled for us already. 3240 case BitstreamEntry::Error: 3241 return error("Malformed block"); 3242 case BitstreamEntry::EndBlock: 3243 return std::error_code(); 3244 case BitstreamEntry::Record: 3245 // The interesting case. 3246 break; 3247 } 3248 3249 // Read a metadata attachment record. 3250 Record.clear(); 3251 switch (Stream.readRecord(Entry.ID, Record)) { 3252 default: // Default behavior: ignore. 3253 break; 3254 case bitc::METADATA_ATTACHMENT: { 3255 unsigned RecordLength = Record.size(); 3256 if (Record.empty()) 3257 return error("Invalid record"); 3258 if (RecordLength % 2 == 0) { 3259 // A function attachment. 3260 for (unsigned I = 0; I != RecordLength; I += 2) { 3261 auto K = MDKindMap.find(Record[I]); 3262 if (K == MDKindMap.end()) 3263 return error("Invalid ID"); 3264 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3265 F.setMetadata(K->second, cast<MDNode>(MD)); 3266 } 3267 continue; 3268 } 3269 3270 // An instruction attachment. 3271 Instruction *Inst = InstructionList[Record[0]]; 3272 for (unsigned i = 1; i != RecordLength; i = i+2) { 3273 unsigned Kind = Record[i]; 3274 DenseMap<unsigned, unsigned>::iterator I = 3275 MDKindMap.find(Kind); 3276 if (I == MDKindMap.end()) 3277 return error("Invalid ID"); 3278 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3279 if (isa<LocalAsMetadata>(Node)) 3280 // Drop the attachment. This used to be legal, but there's no 3281 // upgrade path. 3282 break; 3283 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3284 if (I->second == LLVMContext::MD_tbaa) 3285 InstsWithTBAATag.push_back(Inst); 3286 } 3287 break; 3288 } 3289 } 3290 } 3291 } 3292 3293 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3294 Type *ValType, Type *PtrType) { 3295 if (!isa<PointerType>(PtrType)) 3296 return error(DH, "Load/Store operand is not a pointer type"); 3297 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3298 3299 if (ValType && ValType != ElemType) 3300 return error(DH, "Explicit load/store type does not match pointee type of " 3301 "pointer operand"); 3302 if (!PointerType::isLoadableOrStorableType(ElemType)) 3303 return error(DH, "Cannot load/store from pointer"); 3304 return std::error_code(); 3305 } 3306 3307 /// Lazily parse the specified function body block. 3308 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3309 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3310 return error("Invalid record"); 3311 3312 InstructionList.clear(); 3313 unsigned ModuleValueListSize = ValueList.size(); 3314 unsigned ModuleMDValueListSize = MDValueList.size(); 3315 3316 // Add all the function arguments to the value table. 3317 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3318 ValueList.push_back(I); 3319 3320 unsigned NextValueNo = ValueList.size(); 3321 BasicBlock *CurBB = nullptr; 3322 unsigned CurBBNo = 0; 3323 3324 DebugLoc LastLoc; 3325 auto getLastInstruction = [&]() -> Instruction * { 3326 if (CurBB && !CurBB->empty()) 3327 return &CurBB->back(); 3328 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3329 !FunctionBBs[CurBBNo - 1]->empty()) 3330 return &FunctionBBs[CurBBNo - 1]->back(); 3331 return nullptr; 3332 }; 3333 3334 // Read all the records. 3335 SmallVector<uint64_t, 64> Record; 3336 while (1) { 3337 BitstreamEntry Entry = Stream.advance(); 3338 3339 switch (Entry.Kind) { 3340 case BitstreamEntry::Error: 3341 return error("Malformed block"); 3342 case BitstreamEntry::EndBlock: 3343 goto OutOfRecordLoop; 3344 3345 case BitstreamEntry::SubBlock: 3346 switch (Entry.ID) { 3347 default: // Skip unknown content. 3348 if (Stream.SkipBlock()) 3349 return error("Invalid record"); 3350 break; 3351 case bitc::CONSTANTS_BLOCK_ID: 3352 if (std::error_code EC = parseConstants()) 3353 return EC; 3354 NextValueNo = ValueList.size(); 3355 break; 3356 case bitc::VALUE_SYMTAB_BLOCK_ID: 3357 if (std::error_code EC = parseValueSymbolTable()) 3358 return EC; 3359 break; 3360 case bitc::METADATA_ATTACHMENT_ID: 3361 if (std::error_code EC = parseMetadataAttachment(*F)) 3362 return EC; 3363 break; 3364 case bitc::METADATA_BLOCK_ID: 3365 if (std::error_code EC = parseMetadata()) 3366 return EC; 3367 break; 3368 case bitc::USELIST_BLOCK_ID: 3369 if (std::error_code EC = parseUseLists()) 3370 return EC; 3371 break; 3372 } 3373 continue; 3374 3375 case BitstreamEntry::Record: 3376 // The interesting case. 3377 break; 3378 } 3379 3380 // Read a record. 3381 Record.clear(); 3382 Instruction *I = nullptr; 3383 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3384 switch (BitCode) { 3385 default: // Default behavior: reject 3386 return error("Invalid value"); 3387 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3388 if (Record.size() < 1 || Record[0] == 0) 3389 return error("Invalid record"); 3390 // Create all the basic blocks for the function. 3391 FunctionBBs.resize(Record[0]); 3392 3393 // See if anything took the address of blocks in this function. 3394 auto BBFRI = BasicBlockFwdRefs.find(F); 3395 if (BBFRI == BasicBlockFwdRefs.end()) { 3396 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3397 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3398 } else { 3399 auto &BBRefs = BBFRI->second; 3400 // Check for invalid basic block references. 3401 if (BBRefs.size() > FunctionBBs.size()) 3402 return error("Invalid ID"); 3403 assert(!BBRefs.empty() && "Unexpected empty array"); 3404 assert(!BBRefs.front() && "Invalid reference to entry block"); 3405 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3406 ++I) 3407 if (I < RE && BBRefs[I]) { 3408 BBRefs[I]->insertInto(F); 3409 FunctionBBs[I] = BBRefs[I]; 3410 } else { 3411 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3412 } 3413 3414 // Erase from the table. 3415 BasicBlockFwdRefs.erase(BBFRI); 3416 } 3417 3418 CurBB = FunctionBBs[0]; 3419 continue; 3420 } 3421 3422 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3423 // This record indicates that the last instruction is at the same 3424 // location as the previous instruction with a location. 3425 I = getLastInstruction(); 3426 3427 if (!I) 3428 return error("Invalid record"); 3429 I->setDebugLoc(LastLoc); 3430 I = nullptr; 3431 continue; 3432 3433 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3434 I = getLastInstruction(); 3435 if (!I || Record.size() < 4) 3436 return error("Invalid record"); 3437 3438 unsigned Line = Record[0], Col = Record[1]; 3439 unsigned ScopeID = Record[2], IAID = Record[3]; 3440 3441 MDNode *Scope = nullptr, *IA = nullptr; 3442 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3443 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3444 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3445 I->setDebugLoc(LastLoc); 3446 I = nullptr; 3447 continue; 3448 } 3449 3450 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3451 unsigned OpNum = 0; 3452 Value *LHS, *RHS; 3453 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3454 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3455 OpNum+1 > Record.size()) 3456 return error("Invalid record"); 3457 3458 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3459 if (Opc == -1) 3460 return error("Invalid record"); 3461 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3462 InstructionList.push_back(I); 3463 if (OpNum < Record.size()) { 3464 if (Opc == Instruction::Add || 3465 Opc == Instruction::Sub || 3466 Opc == Instruction::Mul || 3467 Opc == Instruction::Shl) { 3468 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3469 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3470 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3471 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3472 } else if (Opc == Instruction::SDiv || 3473 Opc == Instruction::UDiv || 3474 Opc == Instruction::LShr || 3475 Opc == Instruction::AShr) { 3476 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3477 cast<BinaryOperator>(I)->setIsExact(true); 3478 } else if (isa<FPMathOperator>(I)) { 3479 FastMathFlags FMF; 3480 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3481 FMF.setUnsafeAlgebra(); 3482 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3483 FMF.setNoNaNs(); 3484 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3485 FMF.setNoInfs(); 3486 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3487 FMF.setNoSignedZeros(); 3488 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3489 FMF.setAllowReciprocal(); 3490 if (FMF.any()) 3491 I->setFastMathFlags(FMF); 3492 } 3493 3494 } 3495 break; 3496 } 3497 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3498 unsigned OpNum = 0; 3499 Value *Op; 3500 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3501 OpNum+2 != Record.size()) 3502 return error("Invalid record"); 3503 3504 Type *ResTy = getTypeByID(Record[OpNum]); 3505 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3506 if (Opc == -1 || !ResTy) 3507 return error("Invalid record"); 3508 Instruction *Temp = nullptr; 3509 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3510 if (Temp) { 3511 InstructionList.push_back(Temp); 3512 CurBB->getInstList().push_back(Temp); 3513 } 3514 } else { 3515 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3516 } 3517 InstructionList.push_back(I); 3518 break; 3519 } 3520 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3521 case bitc::FUNC_CODE_INST_GEP_OLD: 3522 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3523 unsigned OpNum = 0; 3524 3525 Type *Ty; 3526 bool InBounds; 3527 3528 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3529 InBounds = Record[OpNum++]; 3530 Ty = getTypeByID(Record[OpNum++]); 3531 } else { 3532 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3533 Ty = nullptr; 3534 } 3535 3536 Value *BasePtr; 3537 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3538 return error("Invalid record"); 3539 3540 if (!Ty) 3541 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3542 ->getElementType(); 3543 else if (Ty != 3544 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3545 ->getElementType()) 3546 return error( 3547 "Explicit gep type does not match pointee type of pointer operand"); 3548 3549 SmallVector<Value*, 16> GEPIdx; 3550 while (OpNum != Record.size()) { 3551 Value *Op; 3552 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3553 return error("Invalid record"); 3554 GEPIdx.push_back(Op); 3555 } 3556 3557 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3558 3559 InstructionList.push_back(I); 3560 if (InBounds) 3561 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3562 break; 3563 } 3564 3565 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3566 // EXTRACTVAL: [opty, opval, n x indices] 3567 unsigned OpNum = 0; 3568 Value *Agg; 3569 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3570 return error("Invalid record"); 3571 3572 unsigned RecSize = Record.size(); 3573 if (OpNum == RecSize) 3574 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3575 3576 SmallVector<unsigned, 4> EXTRACTVALIdx; 3577 Type *CurTy = Agg->getType(); 3578 for (; OpNum != RecSize; ++OpNum) { 3579 bool IsArray = CurTy->isArrayTy(); 3580 bool IsStruct = CurTy->isStructTy(); 3581 uint64_t Index = Record[OpNum]; 3582 3583 if (!IsStruct && !IsArray) 3584 return error("EXTRACTVAL: Invalid type"); 3585 if ((unsigned)Index != Index) 3586 return error("Invalid value"); 3587 if (IsStruct && Index >= CurTy->subtypes().size()) 3588 return error("EXTRACTVAL: Invalid struct index"); 3589 if (IsArray && Index >= CurTy->getArrayNumElements()) 3590 return error("EXTRACTVAL: Invalid array index"); 3591 EXTRACTVALIdx.push_back((unsigned)Index); 3592 3593 if (IsStruct) 3594 CurTy = CurTy->subtypes()[Index]; 3595 else 3596 CurTy = CurTy->subtypes()[0]; 3597 } 3598 3599 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3600 InstructionList.push_back(I); 3601 break; 3602 } 3603 3604 case bitc::FUNC_CODE_INST_INSERTVAL: { 3605 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3606 unsigned OpNum = 0; 3607 Value *Agg; 3608 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3609 return error("Invalid record"); 3610 Value *Val; 3611 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3612 return error("Invalid record"); 3613 3614 unsigned RecSize = Record.size(); 3615 if (OpNum == RecSize) 3616 return error("INSERTVAL: Invalid instruction with 0 indices"); 3617 3618 SmallVector<unsigned, 4> INSERTVALIdx; 3619 Type *CurTy = Agg->getType(); 3620 for (; OpNum != RecSize; ++OpNum) { 3621 bool IsArray = CurTy->isArrayTy(); 3622 bool IsStruct = CurTy->isStructTy(); 3623 uint64_t Index = Record[OpNum]; 3624 3625 if (!IsStruct && !IsArray) 3626 return error("INSERTVAL: Invalid type"); 3627 if ((unsigned)Index != Index) 3628 return error("Invalid value"); 3629 if (IsStruct && Index >= CurTy->subtypes().size()) 3630 return error("INSERTVAL: Invalid struct index"); 3631 if (IsArray && Index >= CurTy->getArrayNumElements()) 3632 return error("INSERTVAL: Invalid array index"); 3633 3634 INSERTVALIdx.push_back((unsigned)Index); 3635 if (IsStruct) 3636 CurTy = CurTy->subtypes()[Index]; 3637 else 3638 CurTy = CurTy->subtypes()[0]; 3639 } 3640 3641 if (CurTy != Val->getType()) 3642 return error("Inserted value type doesn't match aggregate type"); 3643 3644 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3645 InstructionList.push_back(I); 3646 break; 3647 } 3648 3649 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3650 // obsolete form of select 3651 // handles select i1 ... in old bitcode 3652 unsigned OpNum = 0; 3653 Value *TrueVal, *FalseVal, *Cond; 3654 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3655 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3656 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3657 return error("Invalid record"); 3658 3659 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3660 InstructionList.push_back(I); 3661 break; 3662 } 3663 3664 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3665 // new form of select 3666 // handles select i1 or select [N x i1] 3667 unsigned OpNum = 0; 3668 Value *TrueVal, *FalseVal, *Cond; 3669 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3670 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3671 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3672 return error("Invalid record"); 3673 3674 // select condition can be either i1 or [N x i1] 3675 if (VectorType* vector_type = 3676 dyn_cast<VectorType>(Cond->getType())) { 3677 // expect <n x i1> 3678 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3679 return error("Invalid type for value"); 3680 } else { 3681 // expect i1 3682 if (Cond->getType() != Type::getInt1Ty(Context)) 3683 return error("Invalid type for value"); 3684 } 3685 3686 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3687 InstructionList.push_back(I); 3688 break; 3689 } 3690 3691 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3692 unsigned OpNum = 0; 3693 Value *Vec, *Idx; 3694 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3695 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3696 return error("Invalid record"); 3697 if (!Vec->getType()->isVectorTy()) 3698 return error("Invalid type for value"); 3699 I = ExtractElementInst::Create(Vec, Idx); 3700 InstructionList.push_back(I); 3701 break; 3702 } 3703 3704 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3705 unsigned OpNum = 0; 3706 Value *Vec, *Elt, *Idx; 3707 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3708 return error("Invalid record"); 3709 if (!Vec->getType()->isVectorTy()) 3710 return error("Invalid type for value"); 3711 if (popValue(Record, OpNum, NextValueNo, 3712 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3713 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3714 return error("Invalid record"); 3715 I = InsertElementInst::Create(Vec, Elt, Idx); 3716 InstructionList.push_back(I); 3717 break; 3718 } 3719 3720 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3721 unsigned OpNum = 0; 3722 Value *Vec1, *Vec2, *Mask; 3723 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3724 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3725 return error("Invalid record"); 3726 3727 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3728 return error("Invalid record"); 3729 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3730 return error("Invalid type for value"); 3731 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3732 InstructionList.push_back(I); 3733 break; 3734 } 3735 3736 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3737 // Old form of ICmp/FCmp returning bool 3738 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3739 // both legal on vectors but had different behaviour. 3740 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3741 // FCmp/ICmp returning bool or vector of bool 3742 3743 unsigned OpNum = 0; 3744 Value *LHS, *RHS; 3745 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3746 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3747 OpNum+1 != Record.size()) 3748 return error("Invalid record"); 3749 3750 if (LHS->getType()->isFPOrFPVectorTy()) 3751 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3752 else 3753 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3754 InstructionList.push_back(I); 3755 break; 3756 } 3757 3758 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3759 { 3760 unsigned Size = Record.size(); 3761 if (Size == 0) { 3762 I = ReturnInst::Create(Context); 3763 InstructionList.push_back(I); 3764 break; 3765 } 3766 3767 unsigned OpNum = 0; 3768 Value *Op = nullptr; 3769 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3770 return error("Invalid record"); 3771 if (OpNum != Record.size()) 3772 return error("Invalid record"); 3773 3774 I = ReturnInst::Create(Context, Op); 3775 InstructionList.push_back(I); 3776 break; 3777 } 3778 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3779 if (Record.size() != 1 && Record.size() != 3) 3780 return error("Invalid record"); 3781 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3782 if (!TrueDest) 3783 return error("Invalid record"); 3784 3785 if (Record.size() == 1) { 3786 I = BranchInst::Create(TrueDest); 3787 InstructionList.push_back(I); 3788 } 3789 else { 3790 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3791 Value *Cond = getValue(Record, 2, NextValueNo, 3792 Type::getInt1Ty(Context)); 3793 if (!FalseDest || !Cond) 3794 return error("Invalid record"); 3795 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3796 InstructionList.push_back(I); 3797 } 3798 break; 3799 } 3800 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3801 // Check magic 3802 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3803 // "New" SwitchInst format with case ranges. The changes to write this 3804 // format were reverted but we still recognize bitcode that uses it. 3805 // Hopefully someday we will have support for case ranges and can use 3806 // this format again. 3807 3808 Type *OpTy = getTypeByID(Record[1]); 3809 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3810 3811 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3812 BasicBlock *Default = getBasicBlock(Record[3]); 3813 if (!OpTy || !Cond || !Default) 3814 return error("Invalid record"); 3815 3816 unsigned NumCases = Record[4]; 3817 3818 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3819 InstructionList.push_back(SI); 3820 3821 unsigned CurIdx = 5; 3822 for (unsigned i = 0; i != NumCases; ++i) { 3823 SmallVector<ConstantInt*, 1> CaseVals; 3824 unsigned NumItems = Record[CurIdx++]; 3825 for (unsigned ci = 0; ci != NumItems; ++ci) { 3826 bool isSingleNumber = Record[CurIdx++]; 3827 3828 APInt Low; 3829 unsigned ActiveWords = 1; 3830 if (ValueBitWidth > 64) 3831 ActiveWords = Record[CurIdx++]; 3832 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3833 ValueBitWidth); 3834 CurIdx += ActiveWords; 3835 3836 if (!isSingleNumber) { 3837 ActiveWords = 1; 3838 if (ValueBitWidth > 64) 3839 ActiveWords = Record[CurIdx++]; 3840 APInt High = readWideAPInt( 3841 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3842 CurIdx += ActiveWords; 3843 3844 // FIXME: It is not clear whether values in the range should be 3845 // compared as signed or unsigned values. The partially 3846 // implemented changes that used this format in the past used 3847 // unsigned comparisons. 3848 for ( ; Low.ule(High); ++Low) 3849 CaseVals.push_back(ConstantInt::get(Context, Low)); 3850 } else 3851 CaseVals.push_back(ConstantInt::get(Context, Low)); 3852 } 3853 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3854 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3855 cve = CaseVals.end(); cvi != cve; ++cvi) 3856 SI->addCase(*cvi, DestBB); 3857 } 3858 I = SI; 3859 break; 3860 } 3861 3862 // Old SwitchInst format without case ranges. 3863 3864 if (Record.size() < 3 || (Record.size() & 1) == 0) 3865 return error("Invalid record"); 3866 Type *OpTy = getTypeByID(Record[0]); 3867 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3868 BasicBlock *Default = getBasicBlock(Record[2]); 3869 if (!OpTy || !Cond || !Default) 3870 return error("Invalid record"); 3871 unsigned NumCases = (Record.size()-3)/2; 3872 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3873 InstructionList.push_back(SI); 3874 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3875 ConstantInt *CaseVal = 3876 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3877 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3878 if (!CaseVal || !DestBB) { 3879 delete SI; 3880 return error("Invalid record"); 3881 } 3882 SI->addCase(CaseVal, DestBB); 3883 } 3884 I = SI; 3885 break; 3886 } 3887 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3888 if (Record.size() < 2) 3889 return error("Invalid record"); 3890 Type *OpTy = getTypeByID(Record[0]); 3891 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3892 if (!OpTy || !Address) 3893 return error("Invalid record"); 3894 unsigned NumDests = Record.size()-2; 3895 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3896 InstructionList.push_back(IBI); 3897 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3898 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3899 IBI->addDestination(DestBB); 3900 } else { 3901 delete IBI; 3902 return error("Invalid record"); 3903 } 3904 } 3905 I = IBI; 3906 break; 3907 } 3908 3909 case bitc::FUNC_CODE_INST_INVOKE: { 3910 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3911 if (Record.size() < 4) 3912 return error("Invalid record"); 3913 unsigned OpNum = 0; 3914 AttributeSet PAL = getAttributes(Record[OpNum++]); 3915 unsigned CCInfo = Record[OpNum++]; 3916 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3917 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3918 3919 FunctionType *FTy = nullptr; 3920 if (CCInfo >> 13 & 1 && 3921 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3922 return error("Explicit invoke type is not a function type"); 3923 3924 Value *Callee; 3925 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3926 return error("Invalid record"); 3927 3928 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3929 if (!CalleeTy) 3930 return error("Callee is not a pointer"); 3931 if (!FTy) { 3932 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3933 if (!FTy) 3934 return error("Callee is not of pointer to function type"); 3935 } else if (CalleeTy->getElementType() != FTy) 3936 return error("Explicit invoke type does not match pointee type of " 3937 "callee operand"); 3938 if (Record.size() < FTy->getNumParams() + OpNum) 3939 return error("Insufficient operands to call"); 3940 3941 SmallVector<Value*, 16> Ops; 3942 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3943 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3944 FTy->getParamType(i))); 3945 if (!Ops.back()) 3946 return error("Invalid record"); 3947 } 3948 3949 if (!FTy->isVarArg()) { 3950 if (Record.size() != OpNum) 3951 return error("Invalid record"); 3952 } else { 3953 // Read type/value pairs for varargs params. 3954 while (OpNum != Record.size()) { 3955 Value *Op; 3956 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3957 return error("Invalid record"); 3958 Ops.push_back(Op); 3959 } 3960 } 3961 3962 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3963 InstructionList.push_back(I); 3964 cast<InvokeInst>(I) 3965 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3966 cast<InvokeInst>(I)->setAttributes(PAL); 3967 break; 3968 } 3969 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3970 unsigned Idx = 0; 3971 Value *Val = nullptr; 3972 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3973 return error("Invalid record"); 3974 I = ResumeInst::Create(Val); 3975 InstructionList.push_back(I); 3976 break; 3977 } 3978 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3979 I = new UnreachableInst(Context); 3980 InstructionList.push_back(I); 3981 break; 3982 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3983 if (Record.size() < 1 || ((Record.size()-1)&1)) 3984 return error("Invalid record"); 3985 Type *Ty = getTypeByID(Record[0]); 3986 if (!Ty) 3987 return error("Invalid record"); 3988 3989 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3990 InstructionList.push_back(PN); 3991 3992 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3993 Value *V; 3994 // With the new function encoding, it is possible that operands have 3995 // negative IDs (for forward references). Use a signed VBR 3996 // representation to keep the encoding small. 3997 if (UseRelativeIDs) 3998 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3999 else 4000 V = getValue(Record, 1+i, NextValueNo, Ty); 4001 BasicBlock *BB = getBasicBlock(Record[2+i]); 4002 if (!V || !BB) 4003 return error("Invalid record"); 4004 PN->addIncoming(V, BB); 4005 } 4006 I = PN; 4007 break; 4008 } 4009 4010 case bitc::FUNC_CODE_INST_LANDINGPAD: { 4011 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4012 unsigned Idx = 0; 4013 if (Record.size() < 4) 4014 return error("Invalid record"); 4015 Type *Ty = getTypeByID(Record[Idx++]); 4016 if (!Ty) 4017 return error("Invalid record"); 4018 Value *PersFn = nullptr; 4019 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4020 return error("Invalid record"); 4021 4022 bool IsCleanup = !!Record[Idx++]; 4023 unsigned NumClauses = Record[Idx++]; 4024 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 4025 LP->setCleanup(IsCleanup); 4026 for (unsigned J = 0; J != NumClauses; ++J) { 4027 LandingPadInst::ClauseType CT = 4028 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4029 Value *Val; 4030 4031 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4032 delete LP; 4033 return error("Invalid record"); 4034 } 4035 4036 assert((CT != LandingPadInst::Catch || 4037 !isa<ArrayType>(Val->getType())) && 4038 "Catch clause has a invalid type!"); 4039 assert((CT != LandingPadInst::Filter || 4040 isa<ArrayType>(Val->getType())) && 4041 "Filter clause has invalid type!"); 4042 LP->addClause(cast<Constant>(Val)); 4043 } 4044 4045 I = LP; 4046 InstructionList.push_back(I); 4047 break; 4048 } 4049 4050 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4051 if (Record.size() != 4) 4052 return error("Invalid record"); 4053 uint64_t AlignRecord = Record[3]; 4054 const uint64_t InAllocaMask = uint64_t(1) << 5; 4055 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4056 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4057 bool InAlloca = AlignRecord & InAllocaMask; 4058 Type *Ty = getTypeByID(Record[0]); 4059 if ((AlignRecord & ExplicitTypeMask) == 0) { 4060 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4061 if (!PTy) 4062 return error("Old-style alloca with a non-pointer type"); 4063 Ty = PTy->getElementType(); 4064 } 4065 Type *OpTy = getTypeByID(Record[1]); 4066 Value *Size = getFnValueByID(Record[2], OpTy); 4067 unsigned Align; 4068 if (std::error_code EC = 4069 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4070 return EC; 4071 } 4072 if (!Ty || !Size) 4073 return error("Invalid record"); 4074 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4075 AI->setUsedWithInAlloca(InAlloca); 4076 I = AI; 4077 InstructionList.push_back(I); 4078 break; 4079 } 4080 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4081 unsigned OpNum = 0; 4082 Value *Op; 4083 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4084 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4085 return error("Invalid record"); 4086 4087 Type *Ty = nullptr; 4088 if (OpNum + 3 == Record.size()) 4089 Ty = getTypeByID(Record[OpNum++]); 4090 if (std::error_code EC = 4091 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4092 return EC; 4093 if (!Ty) 4094 Ty = cast<PointerType>(Op->getType())->getElementType(); 4095 4096 unsigned Align; 4097 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4098 return EC; 4099 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4100 4101 InstructionList.push_back(I); 4102 break; 4103 } 4104 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4105 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4106 unsigned OpNum = 0; 4107 Value *Op; 4108 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4109 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4110 return error("Invalid record"); 4111 4112 Type *Ty = nullptr; 4113 if (OpNum + 5 == Record.size()) 4114 Ty = getTypeByID(Record[OpNum++]); 4115 if (std::error_code EC = 4116 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4117 return EC; 4118 if (!Ty) 4119 Ty = cast<PointerType>(Op->getType())->getElementType(); 4120 4121 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4122 if (Ordering == NotAtomic || Ordering == Release || 4123 Ordering == AcquireRelease) 4124 return error("Invalid record"); 4125 if (Ordering != NotAtomic && Record[OpNum] == 0) 4126 return error("Invalid record"); 4127 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4128 4129 unsigned Align; 4130 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4131 return EC; 4132 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4133 4134 InstructionList.push_back(I); 4135 break; 4136 } 4137 case bitc::FUNC_CODE_INST_STORE: 4138 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4139 unsigned OpNum = 0; 4140 Value *Val, *Ptr; 4141 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4142 (BitCode == bitc::FUNC_CODE_INST_STORE 4143 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4144 : popValue(Record, OpNum, NextValueNo, 4145 cast<PointerType>(Ptr->getType())->getElementType(), 4146 Val)) || 4147 OpNum + 2 != Record.size()) 4148 return error("Invalid record"); 4149 4150 if (std::error_code EC = typeCheckLoadStoreInst( 4151 DiagnosticHandler, Val->getType(), Ptr->getType())) 4152 return EC; 4153 unsigned Align; 4154 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4155 return EC; 4156 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4157 InstructionList.push_back(I); 4158 break; 4159 } 4160 case bitc::FUNC_CODE_INST_STOREATOMIC: 4161 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4162 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4163 unsigned OpNum = 0; 4164 Value *Val, *Ptr; 4165 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4166 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4167 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4168 : popValue(Record, OpNum, NextValueNo, 4169 cast<PointerType>(Ptr->getType())->getElementType(), 4170 Val)) || 4171 OpNum + 4 != Record.size()) 4172 return error("Invalid record"); 4173 4174 if (std::error_code EC = typeCheckLoadStoreInst( 4175 DiagnosticHandler, Val->getType(), Ptr->getType())) 4176 return EC; 4177 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4178 if (Ordering == NotAtomic || Ordering == Acquire || 4179 Ordering == AcquireRelease) 4180 return error("Invalid record"); 4181 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4182 if (Ordering != NotAtomic && Record[OpNum] == 0) 4183 return error("Invalid record"); 4184 4185 unsigned Align; 4186 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4187 return EC; 4188 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4189 InstructionList.push_back(I); 4190 break; 4191 } 4192 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4193 case bitc::FUNC_CODE_INST_CMPXCHG: { 4194 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4195 // failureordering?, isweak?] 4196 unsigned OpNum = 0; 4197 Value *Ptr, *Cmp, *New; 4198 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4199 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4200 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4201 : popValue(Record, OpNum, NextValueNo, 4202 cast<PointerType>(Ptr->getType())->getElementType(), 4203 Cmp)) || 4204 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4205 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4206 return error("Invalid record"); 4207 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4208 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4209 return error("Invalid record"); 4210 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4211 4212 if (std::error_code EC = typeCheckLoadStoreInst( 4213 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4214 return EC; 4215 AtomicOrdering FailureOrdering; 4216 if (Record.size() < 7) 4217 FailureOrdering = 4218 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4219 else 4220 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4221 4222 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4223 SynchScope); 4224 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4225 4226 if (Record.size() < 8) { 4227 // Before weak cmpxchgs existed, the instruction simply returned the 4228 // value loaded from memory, so bitcode files from that era will be 4229 // expecting the first component of a modern cmpxchg. 4230 CurBB->getInstList().push_back(I); 4231 I = ExtractValueInst::Create(I, 0); 4232 } else { 4233 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4234 } 4235 4236 InstructionList.push_back(I); 4237 break; 4238 } 4239 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4240 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4241 unsigned OpNum = 0; 4242 Value *Ptr, *Val; 4243 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4244 popValue(Record, OpNum, NextValueNo, 4245 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4246 OpNum+4 != Record.size()) 4247 return error("Invalid record"); 4248 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4249 if (Operation < AtomicRMWInst::FIRST_BINOP || 4250 Operation > AtomicRMWInst::LAST_BINOP) 4251 return error("Invalid record"); 4252 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4253 if (Ordering == NotAtomic || Ordering == Unordered) 4254 return error("Invalid record"); 4255 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4256 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4257 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4258 InstructionList.push_back(I); 4259 break; 4260 } 4261 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4262 if (2 != Record.size()) 4263 return error("Invalid record"); 4264 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4265 if (Ordering == NotAtomic || Ordering == Unordered || 4266 Ordering == Monotonic) 4267 return error("Invalid record"); 4268 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4269 I = new FenceInst(Context, Ordering, SynchScope); 4270 InstructionList.push_back(I); 4271 break; 4272 } 4273 case bitc::FUNC_CODE_INST_CALL: { 4274 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4275 if (Record.size() < 3) 4276 return error("Invalid record"); 4277 4278 unsigned OpNum = 0; 4279 AttributeSet PAL = getAttributes(Record[OpNum++]); 4280 unsigned CCInfo = Record[OpNum++]; 4281 4282 FunctionType *FTy = nullptr; 4283 if (CCInfo >> 15 & 1 && 4284 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4285 return error("Explicit call type is not a function type"); 4286 4287 Value *Callee; 4288 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4289 return error("Invalid record"); 4290 4291 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4292 if (!OpTy) 4293 return error("Callee is not a pointer type"); 4294 if (!FTy) { 4295 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4296 if (!FTy) 4297 return error("Callee is not of pointer to function type"); 4298 } else if (OpTy->getElementType() != FTy) 4299 return error("Explicit call type does not match pointee type of " 4300 "callee operand"); 4301 if (Record.size() < FTy->getNumParams() + OpNum) 4302 return error("Insufficient operands to call"); 4303 4304 SmallVector<Value*, 16> Args; 4305 // Read the fixed params. 4306 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4307 if (FTy->getParamType(i)->isLabelTy()) 4308 Args.push_back(getBasicBlock(Record[OpNum])); 4309 else 4310 Args.push_back(getValue(Record, OpNum, NextValueNo, 4311 FTy->getParamType(i))); 4312 if (!Args.back()) 4313 return error("Invalid record"); 4314 } 4315 4316 // Read type/value pairs for varargs params. 4317 if (!FTy->isVarArg()) { 4318 if (OpNum != Record.size()) 4319 return error("Invalid record"); 4320 } else { 4321 while (OpNum != Record.size()) { 4322 Value *Op; 4323 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4324 return error("Invalid record"); 4325 Args.push_back(Op); 4326 } 4327 } 4328 4329 I = CallInst::Create(FTy, Callee, Args); 4330 InstructionList.push_back(I); 4331 cast<CallInst>(I)->setCallingConv( 4332 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4333 CallInst::TailCallKind TCK = CallInst::TCK_None; 4334 if (CCInfo & 1) 4335 TCK = CallInst::TCK_Tail; 4336 if (CCInfo & (1 << 14)) 4337 TCK = CallInst::TCK_MustTail; 4338 cast<CallInst>(I)->setTailCallKind(TCK); 4339 cast<CallInst>(I)->setAttributes(PAL); 4340 break; 4341 } 4342 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4343 if (Record.size() < 3) 4344 return error("Invalid record"); 4345 Type *OpTy = getTypeByID(Record[0]); 4346 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4347 Type *ResTy = getTypeByID(Record[2]); 4348 if (!OpTy || !Op || !ResTy) 4349 return error("Invalid record"); 4350 I = new VAArgInst(Op, ResTy); 4351 InstructionList.push_back(I); 4352 break; 4353 } 4354 } 4355 4356 // Add instruction to end of current BB. If there is no current BB, reject 4357 // this file. 4358 if (!CurBB) { 4359 delete I; 4360 return error("Invalid instruction with no BB"); 4361 } 4362 CurBB->getInstList().push_back(I); 4363 4364 // If this was a terminator instruction, move to the next block. 4365 if (isa<TerminatorInst>(I)) { 4366 ++CurBBNo; 4367 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4368 } 4369 4370 // Non-void values get registered in the value table for future use. 4371 if (I && !I->getType()->isVoidTy()) 4372 ValueList.assignValue(I, NextValueNo++); 4373 } 4374 4375 OutOfRecordLoop: 4376 4377 // Check the function list for unresolved values. 4378 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4379 if (!A->getParent()) { 4380 // We found at least one unresolved value. Nuke them all to avoid leaks. 4381 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4382 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4383 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4384 delete A; 4385 } 4386 } 4387 return error("Never resolved value found in function"); 4388 } 4389 } 4390 4391 // FIXME: Check for unresolved forward-declared metadata references 4392 // and clean up leaks. 4393 4394 // Trim the value list down to the size it was before we parsed this function. 4395 ValueList.shrinkTo(ModuleValueListSize); 4396 MDValueList.shrinkTo(ModuleMDValueListSize); 4397 std::vector<BasicBlock*>().swap(FunctionBBs); 4398 return std::error_code(); 4399 } 4400 4401 /// Find the function body in the bitcode stream 4402 std::error_code BitcodeReader::findFunctionInStream( 4403 Function *F, 4404 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4405 while (DeferredFunctionInfoIterator->second == 0) { 4406 if (Stream.AtEndOfStream()) 4407 return error("Could not find function in stream"); 4408 // ParseModule will parse the next body in the stream and set its 4409 // position in the DeferredFunctionInfo map. 4410 if (std::error_code EC = parseModule(true)) 4411 return EC; 4412 } 4413 return std::error_code(); 4414 } 4415 4416 //===----------------------------------------------------------------------===// 4417 // GVMaterializer implementation 4418 //===----------------------------------------------------------------------===// 4419 4420 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4421 4422 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4423 if (std::error_code EC = materializeMetadata()) 4424 return EC; 4425 4426 Function *F = dyn_cast<Function>(GV); 4427 // If it's not a function or is already material, ignore the request. 4428 if (!F || !F->isMaterializable()) 4429 return std::error_code(); 4430 4431 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4432 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4433 // If its position is recorded as 0, its body is somewhere in the stream 4434 // but we haven't seen it yet. 4435 if (DFII->second == 0 && Streamer) 4436 if (std::error_code EC = findFunctionInStream(F, DFII)) 4437 return EC; 4438 4439 // Move the bit stream to the saved position of the deferred function body. 4440 Stream.JumpToBit(DFII->second); 4441 4442 if (std::error_code EC = parseFunctionBody(F)) 4443 return EC; 4444 F->setIsMaterializable(false); 4445 4446 if (StripDebugInfo) 4447 stripDebugInfo(*F); 4448 4449 // Upgrade any old intrinsic calls in the function. 4450 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4451 E = UpgradedIntrinsics.end(); I != E; ++I) { 4452 if (I->first != I->second) { 4453 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4454 UI != UE;) { 4455 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4456 UpgradeIntrinsicCall(CI, I->second); 4457 } 4458 } 4459 } 4460 4461 // Bring in any functions that this function forward-referenced via 4462 // blockaddresses. 4463 return materializeForwardReferencedFunctions(); 4464 } 4465 4466 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4467 const Function *F = dyn_cast<Function>(GV); 4468 if (!F || F->isDeclaration()) 4469 return false; 4470 4471 // Dematerializing F would leave dangling references that wouldn't be 4472 // reconnected on re-materialization. 4473 if (BlockAddressesTaken.count(F)) 4474 return false; 4475 4476 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4477 } 4478 4479 void BitcodeReader::dematerialize(GlobalValue *GV) { 4480 Function *F = dyn_cast<Function>(GV); 4481 // If this function isn't dematerializable, this is a noop. 4482 if (!F || !isDematerializable(F)) 4483 return; 4484 4485 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4486 4487 // Just forget the function body, we can remat it later. 4488 F->dropAllReferences(); 4489 F->setIsMaterializable(true); 4490 } 4491 4492 std::error_code BitcodeReader::materializeModule(Module *M) { 4493 assert(M == TheModule && 4494 "Can only Materialize the Module this BitcodeReader is attached to."); 4495 4496 if (std::error_code EC = materializeMetadata()) 4497 return EC; 4498 4499 // Promise to materialize all forward references. 4500 WillMaterializeAllForwardRefs = true; 4501 4502 // Iterate over the module, deserializing any functions that are still on 4503 // disk. 4504 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4505 F != E; ++F) { 4506 if (std::error_code EC = materialize(F)) 4507 return EC; 4508 } 4509 // At this point, if there are any function bodies, the current bit is 4510 // pointing to the END_BLOCK record after them. Now make sure the rest 4511 // of the bits in the module have been read. 4512 if (NextUnreadBit) 4513 parseModule(true); 4514 4515 // Check that all block address forward references got resolved (as we 4516 // promised above). 4517 if (!BasicBlockFwdRefs.empty()) 4518 return error("Never resolved function from blockaddress"); 4519 4520 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4521 // delete the old functions to clean up. We can't do this unless the entire 4522 // module is materialized because there could always be another function body 4523 // with calls to the old function. 4524 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4525 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4526 if (I->first != I->second) { 4527 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4528 UI != UE;) { 4529 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4530 UpgradeIntrinsicCall(CI, I->second); 4531 } 4532 if (!I->first->use_empty()) 4533 I->first->replaceAllUsesWith(I->second); 4534 I->first->eraseFromParent(); 4535 } 4536 } 4537 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4538 4539 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4540 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4541 4542 UpgradeDebugInfo(*M); 4543 return std::error_code(); 4544 } 4545 4546 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4547 return IdentifiedStructTypes; 4548 } 4549 4550 std::error_code BitcodeReader::initStream() { 4551 if (Streamer) 4552 return initLazyStream(); 4553 return initStreamFromBuffer(); 4554 } 4555 4556 std::error_code BitcodeReader::initStreamFromBuffer() { 4557 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4558 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4559 4560 if (Buffer->getBufferSize() & 3) 4561 return error("Invalid bitcode signature"); 4562 4563 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4564 // The magic number is 0x0B17C0DE stored in little endian. 4565 if (isBitcodeWrapper(BufPtr, BufEnd)) 4566 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4567 return error("Invalid bitcode wrapper header"); 4568 4569 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4570 Stream.init(&*StreamFile); 4571 4572 return std::error_code(); 4573 } 4574 4575 std::error_code BitcodeReader::initLazyStream() { 4576 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4577 // see it. 4578 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(Streamer); 4579 StreamingMemoryObject &Bytes = *OwnedBytes; 4580 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4581 Stream.init(&*StreamFile); 4582 4583 unsigned char buf[16]; 4584 if (Bytes.readBytes(buf, 16, 0) != 16) 4585 return error("Invalid bitcode signature"); 4586 4587 if (!isBitcode(buf, buf + 16)) 4588 return error("Invalid bitcode signature"); 4589 4590 if (isBitcodeWrapper(buf, buf + 4)) { 4591 const unsigned char *bitcodeStart = buf; 4592 const unsigned char *bitcodeEnd = buf + 16; 4593 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4594 Bytes.dropLeadingBytes(bitcodeStart - buf); 4595 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4596 } 4597 return std::error_code(); 4598 } 4599 4600 namespace { 4601 class BitcodeErrorCategoryType : public std::error_category { 4602 const char *name() const LLVM_NOEXCEPT override { 4603 return "llvm.bitcode"; 4604 } 4605 std::string message(int IE) const override { 4606 BitcodeError E = static_cast<BitcodeError>(IE); 4607 switch (E) { 4608 case BitcodeError::InvalidBitcodeSignature: 4609 return "Invalid bitcode signature"; 4610 case BitcodeError::CorruptedBitcode: 4611 return "Corrupted bitcode"; 4612 } 4613 llvm_unreachable("Unknown error type!"); 4614 } 4615 }; 4616 } 4617 4618 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4619 4620 const std::error_category &llvm::BitcodeErrorCategory() { 4621 return *ErrorCategory; 4622 } 4623 4624 //===----------------------------------------------------------------------===// 4625 // External interface 4626 //===----------------------------------------------------------------------===// 4627 4628 /// \brief Get a lazy one-at-time loading module from bitcode. 4629 /// 4630 /// This isn't always used in a lazy context. In particular, it's also used by 4631 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4632 /// in forward-referenced functions from block address references. 4633 /// 4634 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4635 /// materialize everything -- in particular, if this isn't truly lazy. 4636 static ErrorOr<Module *> 4637 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4638 LLVMContext &Context, bool WillMaterializeAll, 4639 DiagnosticHandlerFunction DiagnosticHandler, 4640 bool ShouldLazyLoadMetadata = false) { 4641 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4642 BitcodeReader *R = 4643 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4644 M->setMaterializer(R); 4645 4646 auto cleanupOnError = [&](std::error_code EC) { 4647 R->releaseBuffer(); // Never take ownership on error. 4648 delete M; // Also deletes R. 4649 return EC; 4650 }; 4651 4652 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4653 if (std::error_code EC = R->parseBitcodeInto(M, ShouldLazyLoadMetadata)) 4654 return cleanupOnError(EC); 4655 4656 if (!WillMaterializeAll) 4657 // Resolve forward references from blockaddresses. 4658 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4659 return cleanupOnError(EC); 4660 4661 Buffer.release(); // The BitcodeReader owns it now. 4662 return M; 4663 } 4664 4665 ErrorOr<Module *> 4666 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4667 LLVMContext &Context, 4668 DiagnosticHandlerFunction DiagnosticHandler, 4669 bool ShouldLazyLoadMetadata) { 4670 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4671 DiagnosticHandler, ShouldLazyLoadMetadata); 4672 } 4673 4674 ErrorOr<std::unique_ptr<Module>> 4675 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4676 LLVMContext &Context, 4677 DiagnosticHandlerFunction DiagnosticHandler) { 4678 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4679 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4680 M->setMaterializer(R); 4681 if (std::error_code EC = R->parseBitcodeInto(M.get())) 4682 return EC; 4683 return std::move(M); 4684 } 4685 4686 ErrorOr<Module *> 4687 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4688 DiagnosticHandlerFunction DiagnosticHandler) { 4689 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4690 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4691 std::move(Buf), Context, true, DiagnosticHandler); 4692 if (!ModuleOrErr) 4693 return ModuleOrErr; 4694 Module *M = ModuleOrErr.get(); 4695 // Read in the entire module, and destroy the BitcodeReader. 4696 if (std::error_code EC = M->materializeAllPermanently()) { 4697 delete M; 4698 return EC; 4699 } 4700 4701 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4702 // written. We must defer until the Module has been fully materialized. 4703 4704 return M; 4705 } 4706 4707 std::string 4708 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4709 DiagnosticHandlerFunction DiagnosticHandler) { 4710 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4711 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4712 DiagnosticHandler); 4713 ErrorOr<std::string> Triple = R->parseTriple(); 4714 if (Triple.getError()) 4715 return ""; 4716 return Triple.get(); 4717 } 4718