1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// ResolveConstants - As we resolve forward-referenced constants, we add 48 /// information about them to this vector. This allows us to resolve them in 49 /// bulk instead of resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { 67 ValuePtrs.push_back(V); 68 } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void AssignValue(Value *V, unsigned Idx); 92 93 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 94 /// resolves any forward references. 95 void ResolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMDValueList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MDValuePtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMDValueList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MDValuePtrs.size(); } 112 void resize(unsigned N) { MDValuePtrs.resize(N); } 113 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 114 void clear() { MDValuePtrs.clear(); } 115 Metadata *back() const { return MDValuePtrs.back(); } 116 void pop_back() { MDValuePtrs.pop_back(); } 117 bool empty() const { return MDValuePtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MDValuePtrs.size()); 121 return MDValuePtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MDValuePtrs.resize(N); 127 } 128 129 Metadata *getValueFwdRef(unsigned Idx); 130 void AssignValue(Metadata *MD, unsigned Idx); 131 void tryToResolveCycles(); 132 }; 133 134 class BitcodeReader : public GVMaterializer { 135 LLVMContext &Context; 136 DiagnosticHandlerFunction DiagnosticHandler; 137 Module *TheModule; 138 std::unique_ptr<MemoryBuffer> Buffer; 139 std::unique_ptr<BitstreamReader> StreamFile; 140 BitstreamCursor Stream; 141 DataStreamer *LazyStreamer; 142 uint64_t NextUnreadBit; 143 bool SeenValueSymbolTable; 144 145 std::vector<Type*> TypeList; 146 BitcodeReaderValueList ValueList; 147 BitcodeReaderMDValueList MDValueList; 148 std::vector<Comdat *> ComdatList; 149 SmallVector<Instruction *, 64> InstructionList; 150 151 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 152 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 153 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 154 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 155 156 SmallVector<Instruction*, 64> InstsWithTBAATag; 157 158 /// MAttributes - The set of attributes by index. Index zero in the 159 /// file is for null, and is thus not represented here. As such all indices 160 /// are off by one. 161 std::vector<AttributeSet> MAttributes; 162 163 /// \brief The set of attribute groups. 164 std::map<unsigned, AttributeSet> MAttributeGroups; 165 166 /// FunctionBBs - While parsing a function body, this is a list of the basic 167 /// blocks for the function. 168 std::vector<BasicBlock*> FunctionBBs; 169 170 // When reading the module header, this list is populated with functions that 171 // have bodies later in the file. 172 std::vector<Function*> FunctionsWithBodies; 173 174 // When intrinsic functions are encountered which require upgrading they are 175 // stored here with their replacement function. 176 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 177 UpgradedIntrinsicMap UpgradedIntrinsics; 178 179 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 180 DenseMap<unsigned, unsigned> MDKindMap; 181 182 // Several operations happen after the module header has been read, but 183 // before function bodies are processed. This keeps track of whether 184 // we've done this yet. 185 bool SeenFirstFunctionBody; 186 187 /// DeferredFunctionInfo - When function bodies are initially scanned, this 188 /// map contains info about where to find deferred function body in the 189 /// stream. 190 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 191 192 /// When Metadata block is initially scanned when parsing the module, we may 193 /// choose to defer parsing of the metadata. This vector contains info about 194 /// which Metadata blocks are deferred. 195 std::vector<uint64_t> DeferredMetadataInfo; 196 197 /// These are basic blocks forward-referenced by block addresses. They are 198 /// inserted lazily into functions when they're loaded. The basic block ID is 199 /// its index into the vector. 200 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 201 std::deque<Function *> BasicBlockFwdRefQueue; 202 203 /// UseRelativeIDs - Indicates that we are using a new encoding for 204 /// instruction operands where most operands in the current 205 /// FUNCTION_BLOCK are encoded relative to the instruction number, 206 /// for a more compact encoding. Some instruction operands are not 207 /// relative to the instruction ID: basic block numbers, and types. 208 /// Once the old style function blocks have been phased out, we would 209 /// not need this flag. 210 bool UseRelativeIDs; 211 212 /// True if all functions will be materialized, negating the need to process 213 /// (e.g.) blockaddress forward references. 214 bool WillMaterializeAllForwardRefs; 215 216 /// Functions that have block addresses taken. This is usually empty. 217 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 218 219 /// True if any Metadata block has been materialized. 220 bool IsMetadataMaterialized; 221 222 bool StripDebugInfo = false; 223 224 public: 225 std::error_code Error(BitcodeError E, const Twine &Message); 226 std::error_code Error(BitcodeError E); 227 std::error_code Error(const Twine &Message); 228 229 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 230 DiagnosticHandlerFunction DiagnosticHandler); 231 explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C, 232 DiagnosticHandlerFunction DiagnosticHandler); 233 ~BitcodeReader() override { FreeState(); } 234 235 std::error_code materializeForwardReferencedFunctions(); 236 237 void FreeState(); 238 239 void releaseBuffer(); 240 241 bool isDematerializable(const GlobalValue *GV) const override; 242 std::error_code materialize(GlobalValue *GV) override; 243 std::error_code MaterializeModule(Module *M) override; 244 std::vector<StructType *> getIdentifiedStructTypes() const override; 245 void Dematerialize(GlobalValue *GV) override; 246 247 /// @brief Main interface to parsing a bitcode buffer. 248 /// @returns true if an error occurred. 249 std::error_code ParseBitcodeInto(Module *M, 250 bool ShouldLazyLoadMetadata = false); 251 252 /// @brief Cheap mechanism to just extract module triple 253 /// @returns true if an error occurred. 254 ErrorOr<std::string> parseTriple(); 255 256 static uint64_t decodeSignRotatedValue(uint64_t V); 257 258 /// Materialize any deferred Metadata block. 259 std::error_code materializeMetadata() override; 260 261 void setStripDebugInfo() override; 262 263 private: 264 std::vector<StructType *> IdentifiedStructTypes; 265 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 266 StructType *createIdentifiedStructType(LLVMContext &Context); 267 268 Type *getTypeByID(unsigned ID); 269 Value *getFnValueByID(unsigned ID, Type *Ty) { 270 if (Ty && Ty->isMetadataTy()) 271 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 272 return ValueList.getValueFwdRef(ID, Ty); 273 } 274 Metadata *getFnMetadataByID(unsigned ID) { 275 return MDValueList.getValueFwdRef(ID); 276 } 277 BasicBlock *getBasicBlock(unsigned ID) const { 278 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 279 return FunctionBBs[ID]; 280 } 281 AttributeSet getAttributes(unsigned i) const { 282 if (i-1 < MAttributes.size()) 283 return MAttributes[i-1]; 284 return AttributeSet(); 285 } 286 287 /// getValueTypePair - Read a value/type pair out of the specified record from 288 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 289 /// Return true on failure. 290 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 291 unsigned InstNum, Value *&ResVal) { 292 if (Slot == Record.size()) return true; 293 unsigned ValNo = (unsigned)Record[Slot++]; 294 // Adjust the ValNo, if it was encoded relative to the InstNum. 295 if (UseRelativeIDs) 296 ValNo = InstNum - ValNo; 297 if (ValNo < InstNum) { 298 // If this is not a forward reference, just return the value we already 299 // have. 300 ResVal = getFnValueByID(ValNo, nullptr); 301 return ResVal == nullptr; 302 } else if (Slot == Record.size()) { 303 return true; 304 } 305 306 unsigned TypeNo = (unsigned)Record[Slot++]; 307 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 308 return ResVal == nullptr; 309 } 310 311 /// popValue - Read a value out of the specified record from slot 'Slot'. 312 /// Increment Slot past the number of slots used by the value in the record. 313 /// Return true if there is an error. 314 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 315 unsigned InstNum, Type *Ty, Value *&ResVal) { 316 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 317 return true; 318 // All values currently take a single record slot. 319 ++Slot; 320 return false; 321 } 322 323 /// getValue -- Like popValue, but does not increment the Slot number. 324 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 325 unsigned InstNum, Type *Ty, Value *&ResVal) { 326 ResVal = getValue(Record, Slot, InstNum, Ty); 327 return ResVal == nullptr; 328 } 329 330 /// getValue -- Version of getValue that returns ResVal directly, 331 /// or 0 if there is an error. 332 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 333 unsigned InstNum, Type *Ty) { 334 if (Slot == Record.size()) return nullptr; 335 unsigned ValNo = (unsigned)Record[Slot]; 336 // Adjust the ValNo, if it was encoded relative to the InstNum. 337 if (UseRelativeIDs) 338 ValNo = InstNum - ValNo; 339 return getFnValueByID(ValNo, Ty); 340 } 341 342 /// getValueSigned -- Like getValue, but decodes signed VBRs. 343 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 344 unsigned InstNum, Type *Ty) { 345 if (Slot == Record.size()) return nullptr; 346 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 347 // Adjust the ValNo, if it was encoded relative to the InstNum. 348 if (UseRelativeIDs) 349 ValNo = InstNum - ValNo; 350 return getFnValueByID(ValNo, Ty); 351 } 352 353 /// Converts alignment exponent (i.e. power of two (or zero)) to the 354 /// corresponding alignment to use. If alignment is too large, returns 355 /// a corresponding error code. 356 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 357 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 358 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 359 std::error_code ParseAttributeBlock(); 360 std::error_code ParseAttributeGroupBlock(); 361 std::error_code ParseTypeTable(); 362 std::error_code ParseTypeTableBody(); 363 364 std::error_code ParseValueSymbolTable(); 365 std::error_code ParseConstants(); 366 std::error_code RememberAndSkipFunctionBody(); 367 /// Save the positions of the Metadata blocks and skip parsing the blocks. 368 std::error_code rememberAndSkipMetadata(); 369 std::error_code ParseFunctionBody(Function *F); 370 std::error_code GlobalCleanup(); 371 std::error_code ResolveGlobalAndAliasInits(); 372 std::error_code ParseMetadata(); 373 std::error_code ParseMetadataAttachment(); 374 ErrorOr<std::string> parseModuleTriple(); 375 std::error_code ParseUseLists(); 376 std::error_code InitStream(); 377 std::error_code InitStreamFromBuffer(); 378 std::error_code InitLazyStream(); 379 std::error_code FindFunctionInStream( 380 Function *F, 381 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 382 }; 383 } // namespace 384 385 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 386 DiagnosticSeverity Severity, 387 const Twine &Msg) 388 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 389 390 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 391 392 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 393 std::error_code EC, const Twine &Message) { 394 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 395 DiagnosticHandler(DI); 396 return EC; 397 } 398 399 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 400 std::error_code EC) { 401 return Error(DiagnosticHandler, EC, EC.message()); 402 } 403 404 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 405 return ::Error(DiagnosticHandler, make_error_code(E), Message); 406 } 407 408 std::error_code BitcodeReader::Error(const Twine &Message) { 409 return ::Error(DiagnosticHandler, 410 make_error_code(BitcodeError::CorruptedBitcode), Message); 411 } 412 413 std::error_code BitcodeReader::Error(BitcodeError E) { 414 return ::Error(DiagnosticHandler, make_error_code(E)); 415 } 416 417 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 418 LLVMContext &C) { 419 if (F) 420 return F; 421 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 422 } 423 424 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 425 DiagnosticHandlerFunction DiagnosticHandler) 426 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 427 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 428 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 429 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 430 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 431 432 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 433 DiagnosticHandlerFunction DiagnosticHandler) 434 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 435 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 436 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 437 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 438 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 439 440 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 441 if (WillMaterializeAllForwardRefs) 442 return std::error_code(); 443 444 // Prevent recursion. 445 WillMaterializeAllForwardRefs = true; 446 447 while (!BasicBlockFwdRefQueue.empty()) { 448 Function *F = BasicBlockFwdRefQueue.front(); 449 BasicBlockFwdRefQueue.pop_front(); 450 assert(F && "Expected valid function"); 451 if (!BasicBlockFwdRefs.count(F)) 452 // Already materialized. 453 continue; 454 455 // Check for a function that isn't materializable to prevent an infinite 456 // loop. When parsing a blockaddress stored in a global variable, there 457 // isn't a trivial way to check if a function will have a body without a 458 // linear search through FunctionsWithBodies, so just check it here. 459 if (!F->isMaterializable()) 460 return Error("Never resolved function from blockaddress"); 461 462 // Try to materialize F. 463 if (std::error_code EC = materialize(F)) 464 return EC; 465 } 466 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 467 468 // Reset state. 469 WillMaterializeAllForwardRefs = false; 470 return std::error_code(); 471 } 472 473 void BitcodeReader::FreeState() { 474 Buffer = nullptr; 475 std::vector<Type*>().swap(TypeList); 476 ValueList.clear(); 477 MDValueList.clear(); 478 std::vector<Comdat *>().swap(ComdatList); 479 480 std::vector<AttributeSet>().swap(MAttributes); 481 std::vector<BasicBlock*>().swap(FunctionBBs); 482 std::vector<Function*>().swap(FunctionsWithBodies); 483 DeferredFunctionInfo.clear(); 484 DeferredMetadataInfo.clear(); 485 MDKindMap.clear(); 486 487 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 488 BasicBlockFwdRefQueue.clear(); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // Helper functions to implement forward reference resolution, etc. 493 //===----------------------------------------------------------------------===// 494 495 /// ConvertToString - Convert a string from a record into an std::string, return 496 /// true on failure. 497 template<typename StrTy> 498 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 499 StrTy &Result) { 500 if (Idx > Record.size()) 501 return true; 502 503 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 504 Result += (char)Record[i]; 505 return false; 506 } 507 508 static bool hasImplicitComdat(size_t Val) { 509 switch (Val) { 510 default: 511 return false; 512 case 1: // Old WeakAnyLinkage 513 case 4: // Old LinkOnceAnyLinkage 514 case 10: // Old WeakODRLinkage 515 case 11: // Old LinkOnceODRLinkage 516 return true; 517 } 518 } 519 520 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 521 switch (Val) { 522 default: // Map unknown/new linkages to external 523 case 0: 524 return GlobalValue::ExternalLinkage; 525 case 2: 526 return GlobalValue::AppendingLinkage; 527 case 3: 528 return GlobalValue::InternalLinkage; 529 case 5: 530 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 531 case 6: 532 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 533 case 7: 534 return GlobalValue::ExternalWeakLinkage; 535 case 8: 536 return GlobalValue::CommonLinkage; 537 case 9: 538 return GlobalValue::PrivateLinkage; 539 case 12: 540 return GlobalValue::AvailableExternallyLinkage; 541 case 13: 542 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 543 case 14: 544 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 545 case 15: 546 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 547 case 1: // Old value with implicit comdat. 548 case 16: 549 return GlobalValue::WeakAnyLinkage; 550 case 10: // Old value with implicit comdat. 551 case 17: 552 return GlobalValue::WeakODRLinkage; 553 case 4: // Old value with implicit comdat. 554 case 18: 555 return GlobalValue::LinkOnceAnyLinkage; 556 case 11: // Old value with implicit comdat. 557 case 19: 558 return GlobalValue::LinkOnceODRLinkage; 559 } 560 } 561 562 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 563 switch (Val) { 564 default: // Map unknown visibilities to default. 565 case 0: return GlobalValue::DefaultVisibility; 566 case 1: return GlobalValue::HiddenVisibility; 567 case 2: return GlobalValue::ProtectedVisibility; 568 } 569 } 570 571 static GlobalValue::DLLStorageClassTypes 572 GetDecodedDLLStorageClass(unsigned Val) { 573 switch (Val) { 574 default: // Map unknown values to default. 575 case 0: return GlobalValue::DefaultStorageClass; 576 case 1: return GlobalValue::DLLImportStorageClass; 577 case 2: return GlobalValue::DLLExportStorageClass; 578 } 579 } 580 581 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 582 switch (Val) { 583 case 0: return GlobalVariable::NotThreadLocal; 584 default: // Map unknown non-zero value to general dynamic. 585 case 1: return GlobalVariable::GeneralDynamicTLSModel; 586 case 2: return GlobalVariable::LocalDynamicTLSModel; 587 case 3: return GlobalVariable::InitialExecTLSModel; 588 case 4: return GlobalVariable::LocalExecTLSModel; 589 } 590 } 591 592 static int GetDecodedCastOpcode(unsigned Val) { 593 switch (Val) { 594 default: return -1; 595 case bitc::CAST_TRUNC : return Instruction::Trunc; 596 case bitc::CAST_ZEXT : return Instruction::ZExt; 597 case bitc::CAST_SEXT : return Instruction::SExt; 598 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 599 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 600 case bitc::CAST_UITOFP : return Instruction::UIToFP; 601 case bitc::CAST_SITOFP : return Instruction::SIToFP; 602 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 603 case bitc::CAST_FPEXT : return Instruction::FPExt; 604 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 605 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 606 case bitc::CAST_BITCAST : return Instruction::BitCast; 607 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 608 } 609 } 610 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 611 switch (Val) { 612 default: return -1; 613 case bitc::BINOP_ADD: 614 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 615 case bitc::BINOP_SUB: 616 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 617 case bitc::BINOP_MUL: 618 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 619 case bitc::BINOP_UDIV: return Instruction::UDiv; 620 case bitc::BINOP_SDIV: 621 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 622 case bitc::BINOP_UREM: return Instruction::URem; 623 case bitc::BINOP_SREM: 624 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 625 case bitc::BINOP_SHL: return Instruction::Shl; 626 case bitc::BINOP_LSHR: return Instruction::LShr; 627 case bitc::BINOP_ASHR: return Instruction::AShr; 628 case bitc::BINOP_AND: return Instruction::And; 629 case bitc::BINOP_OR: return Instruction::Or; 630 case bitc::BINOP_XOR: return Instruction::Xor; 631 } 632 } 633 634 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 635 switch (Val) { 636 default: return AtomicRMWInst::BAD_BINOP; 637 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 638 case bitc::RMW_ADD: return AtomicRMWInst::Add; 639 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 640 case bitc::RMW_AND: return AtomicRMWInst::And; 641 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 642 case bitc::RMW_OR: return AtomicRMWInst::Or; 643 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 644 case bitc::RMW_MAX: return AtomicRMWInst::Max; 645 case bitc::RMW_MIN: return AtomicRMWInst::Min; 646 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 647 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 648 } 649 } 650 651 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 652 switch (Val) { 653 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 654 case bitc::ORDERING_UNORDERED: return Unordered; 655 case bitc::ORDERING_MONOTONIC: return Monotonic; 656 case bitc::ORDERING_ACQUIRE: return Acquire; 657 case bitc::ORDERING_RELEASE: return Release; 658 case bitc::ORDERING_ACQREL: return AcquireRelease; 659 default: // Map unknown orderings to sequentially-consistent. 660 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 661 } 662 } 663 664 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 665 switch (Val) { 666 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 667 default: // Map unknown scopes to cross-thread. 668 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 669 } 670 } 671 672 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 673 switch (Val) { 674 default: // Map unknown selection kinds to any. 675 case bitc::COMDAT_SELECTION_KIND_ANY: 676 return Comdat::Any; 677 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 678 return Comdat::ExactMatch; 679 case bitc::COMDAT_SELECTION_KIND_LARGEST: 680 return Comdat::Largest; 681 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 682 return Comdat::NoDuplicates; 683 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 684 return Comdat::SameSize; 685 } 686 } 687 688 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 689 switch (Val) { 690 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 691 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 692 } 693 } 694 695 namespace llvm { 696 namespace { 697 /// @brief A class for maintaining the slot number definition 698 /// as a placeholder for the actual definition for forward constants defs. 699 class ConstantPlaceHolder : public ConstantExpr { 700 void operator=(const ConstantPlaceHolder &) = delete; 701 public: 702 // allocate space for exactly one operand 703 void *operator new(size_t s) { 704 return User::operator new(s, 1); 705 } 706 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 707 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 708 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 709 } 710 711 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 712 static bool classof(const Value *V) { 713 return isa<ConstantExpr>(V) && 714 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 715 } 716 717 718 /// Provide fast operand accessors 719 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 720 }; 721 } 722 723 // FIXME: can we inherit this from ConstantExpr? 724 template <> 725 struct OperandTraits<ConstantPlaceHolder> : 726 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 727 }; 728 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 729 } 730 731 732 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 733 if (Idx == size()) { 734 push_back(V); 735 return; 736 } 737 738 if (Idx >= size()) 739 resize(Idx+1); 740 741 WeakVH &OldV = ValuePtrs[Idx]; 742 if (!OldV) { 743 OldV = V; 744 return; 745 } 746 747 // Handle constants and non-constants (e.g. instrs) differently for 748 // efficiency. 749 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 750 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 751 OldV = V; 752 } else { 753 // If there was a forward reference to this value, replace it. 754 Value *PrevVal = OldV; 755 OldV->replaceAllUsesWith(V); 756 delete PrevVal; 757 } 758 } 759 760 761 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 762 Type *Ty) { 763 if (Idx >= size()) 764 resize(Idx + 1); 765 766 if (Value *V = ValuePtrs[Idx]) { 767 assert(Ty == V->getType() && "Type mismatch in constant table!"); 768 return cast<Constant>(V); 769 } 770 771 // Create and return a placeholder, which will later be RAUW'd. 772 Constant *C = new ConstantPlaceHolder(Ty, Context); 773 ValuePtrs[Idx] = C; 774 return C; 775 } 776 777 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 778 if (Idx >= size()) 779 resize(Idx + 1); 780 781 if (Value *V = ValuePtrs[Idx]) { 782 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 783 return V; 784 } 785 786 // No type specified, must be invalid reference. 787 if (!Ty) return nullptr; 788 789 // Create and return a placeholder, which will later be RAUW'd. 790 Value *V = new Argument(Ty); 791 ValuePtrs[Idx] = V; 792 return V; 793 } 794 795 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 796 /// resolves any forward references. The idea behind this is that we sometimes 797 /// get constants (such as large arrays) which reference *many* forward ref 798 /// constants. Replacing each of these causes a lot of thrashing when 799 /// building/reuniquing the constant. Instead of doing this, we look at all the 800 /// uses and rewrite all the place holders at once for any constant that uses 801 /// a placeholder. 802 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 803 // Sort the values by-pointer so that they are efficient to look up with a 804 // binary search. 805 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 806 807 SmallVector<Constant*, 64> NewOps; 808 809 while (!ResolveConstants.empty()) { 810 Value *RealVal = operator[](ResolveConstants.back().second); 811 Constant *Placeholder = ResolveConstants.back().first; 812 ResolveConstants.pop_back(); 813 814 // Loop over all users of the placeholder, updating them to reference the 815 // new value. If they reference more than one placeholder, update them all 816 // at once. 817 while (!Placeholder->use_empty()) { 818 auto UI = Placeholder->user_begin(); 819 User *U = *UI; 820 821 // If the using object isn't uniqued, just update the operands. This 822 // handles instructions and initializers for global variables. 823 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 824 UI.getUse().set(RealVal); 825 continue; 826 } 827 828 // Otherwise, we have a constant that uses the placeholder. Replace that 829 // constant with a new constant that has *all* placeholder uses updated. 830 Constant *UserC = cast<Constant>(U); 831 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 832 I != E; ++I) { 833 Value *NewOp; 834 if (!isa<ConstantPlaceHolder>(*I)) { 835 // Not a placeholder reference. 836 NewOp = *I; 837 } else if (*I == Placeholder) { 838 // Common case is that it just references this one placeholder. 839 NewOp = RealVal; 840 } else { 841 // Otherwise, look up the placeholder in ResolveConstants. 842 ResolveConstantsTy::iterator It = 843 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 844 std::pair<Constant*, unsigned>(cast<Constant>(*I), 845 0)); 846 assert(It != ResolveConstants.end() && It->first == *I); 847 NewOp = operator[](It->second); 848 } 849 850 NewOps.push_back(cast<Constant>(NewOp)); 851 } 852 853 // Make the new constant. 854 Constant *NewC; 855 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 856 NewC = ConstantArray::get(UserCA->getType(), NewOps); 857 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 858 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 859 } else if (isa<ConstantVector>(UserC)) { 860 NewC = ConstantVector::get(NewOps); 861 } else { 862 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 863 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 864 } 865 866 UserC->replaceAllUsesWith(NewC); 867 UserC->destroyConstant(); 868 NewOps.clear(); 869 } 870 871 // Update all ValueHandles, they should be the only users at this point. 872 Placeholder->replaceAllUsesWith(RealVal); 873 delete Placeholder; 874 } 875 } 876 877 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 878 if (Idx == size()) { 879 push_back(MD); 880 return; 881 } 882 883 if (Idx >= size()) 884 resize(Idx+1); 885 886 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 887 if (!OldMD) { 888 OldMD.reset(MD); 889 return; 890 } 891 892 // If there was a forward reference to this value, replace it. 893 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 894 PrevMD->replaceAllUsesWith(MD); 895 --NumFwdRefs; 896 } 897 898 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 899 if (Idx >= size()) 900 resize(Idx + 1); 901 902 if (Metadata *MD = MDValuePtrs[Idx]) 903 return MD; 904 905 // Track forward refs to be resolved later. 906 if (AnyFwdRefs) { 907 MinFwdRef = std::min(MinFwdRef, Idx); 908 MaxFwdRef = std::max(MaxFwdRef, Idx); 909 } else { 910 AnyFwdRefs = true; 911 MinFwdRef = MaxFwdRef = Idx; 912 } 913 ++NumFwdRefs; 914 915 // Create and return a placeholder, which will later be RAUW'd. 916 Metadata *MD = MDNode::getTemporary(Context, None).release(); 917 MDValuePtrs[Idx].reset(MD); 918 return MD; 919 } 920 921 void BitcodeReaderMDValueList::tryToResolveCycles() { 922 if (!AnyFwdRefs) 923 // Nothing to do. 924 return; 925 926 if (NumFwdRefs) 927 // Still forward references... can't resolve cycles. 928 return; 929 930 // Resolve any cycles. 931 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 932 auto &MD = MDValuePtrs[I]; 933 auto *N = dyn_cast_or_null<MDNode>(MD); 934 if (!N) 935 continue; 936 937 assert(!N->isTemporary() && "Unexpected forward reference"); 938 N->resolveCycles(); 939 } 940 941 // Make sure we return early again until there's another forward ref. 942 AnyFwdRefs = false; 943 } 944 945 Type *BitcodeReader::getTypeByID(unsigned ID) { 946 // The type table size is always specified correctly. 947 if (ID >= TypeList.size()) 948 return nullptr; 949 950 if (Type *Ty = TypeList[ID]) 951 return Ty; 952 953 // If we have a forward reference, the only possible case is when it is to a 954 // named struct. Just create a placeholder for now. 955 return TypeList[ID] = createIdentifiedStructType(Context); 956 } 957 958 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 959 StringRef Name) { 960 auto *Ret = StructType::create(Context, Name); 961 IdentifiedStructTypes.push_back(Ret); 962 return Ret; 963 } 964 965 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 966 auto *Ret = StructType::create(Context); 967 IdentifiedStructTypes.push_back(Ret); 968 return Ret; 969 } 970 971 972 //===----------------------------------------------------------------------===// 973 // Functions for parsing blocks from the bitcode file 974 //===----------------------------------------------------------------------===// 975 976 977 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 978 /// been decoded from the given integer. This function must stay in sync with 979 /// 'encodeLLVMAttributesForBitcode'. 980 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 981 uint64_t EncodedAttrs) { 982 // FIXME: Remove in 4.0. 983 984 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 985 // the bits above 31 down by 11 bits. 986 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 987 assert((!Alignment || isPowerOf2_32(Alignment)) && 988 "Alignment must be a power of two."); 989 990 if (Alignment) 991 B.addAlignmentAttr(Alignment); 992 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 993 (EncodedAttrs & 0xffff)); 994 } 995 996 std::error_code BitcodeReader::ParseAttributeBlock() { 997 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 998 return Error("Invalid record"); 999 1000 if (!MAttributes.empty()) 1001 return Error("Invalid multiple blocks"); 1002 1003 SmallVector<uint64_t, 64> Record; 1004 1005 SmallVector<AttributeSet, 8> Attrs; 1006 1007 // Read all the records. 1008 while (1) { 1009 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1010 1011 switch (Entry.Kind) { 1012 case BitstreamEntry::SubBlock: // Handled for us already. 1013 case BitstreamEntry::Error: 1014 return Error("Malformed block"); 1015 case BitstreamEntry::EndBlock: 1016 return std::error_code(); 1017 case BitstreamEntry::Record: 1018 // The interesting case. 1019 break; 1020 } 1021 1022 // Read a record. 1023 Record.clear(); 1024 switch (Stream.readRecord(Entry.ID, Record)) { 1025 default: // Default behavior: ignore. 1026 break; 1027 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1028 // FIXME: Remove in 4.0. 1029 if (Record.size() & 1) 1030 return Error("Invalid record"); 1031 1032 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1033 AttrBuilder B; 1034 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1035 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1036 } 1037 1038 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1039 Attrs.clear(); 1040 break; 1041 } 1042 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1043 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1044 Attrs.push_back(MAttributeGroups[Record[i]]); 1045 1046 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1047 Attrs.clear(); 1048 break; 1049 } 1050 } 1051 } 1052 } 1053 1054 // Returns Attribute::None on unrecognized codes. 1055 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1056 switch (Code) { 1057 default: 1058 return Attribute::None; 1059 case bitc::ATTR_KIND_ALIGNMENT: 1060 return Attribute::Alignment; 1061 case bitc::ATTR_KIND_ALWAYS_INLINE: 1062 return Attribute::AlwaysInline; 1063 case bitc::ATTR_KIND_BUILTIN: 1064 return Attribute::Builtin; 1065 case bitc::ATTR_KIND_BY_VAL: 1066 return Attribute::ByVal; 1067 case bitc::ATTR_KIND_IN_ALLOCA: 1068 return Attribute::InAlloca; 1069 case bitc::ATTR_KIND_COLD: 1070 return Attribute::Cold; 1071 case bitc::ATTR_KIND_INLINE_HINT: 1072 return Attribute::InlineHint; 1073 case bitc::ATTR_KIND_IN_REG: 1074 return Attribute::InReg; 1075 case bitc::ATTR_KIND_JUMP_TABLE: 1076 return Attribute::JumpTable; 1077 case bitc::ATTR_KIND_MIN_SIZE: 1078 return Attribute::MinSize; 1079 case bitc::ATTR_KIND_NAKED: 1080 return Attribute::Naked; 1081 case bitc::ATTR_KIND_NEST: 1082 return Attribute::Nest; 1083 case bitc::ATTR_KIND_NO_ALIAS: 1084 return Attribute::NoAlias; 1085 case bitc::ATTR_KIND_NO_BUILTIN: 1086 return Attribute::NoBuiltin; 1087 case bitc::ATTR_KIND_NO_CAPTURE: 1088 return Attribute::NoCapture; 1089 case bitc::ATTR_KIND_NO_DUPLICATE: 1090 return Attribute::NoDuplicate; 1091 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1092 return Attribute::NoImplicitFloat; 1093 case bitc::ATTR_KIND_NO_INLINE: 1094 return Attribute::NoInline; 1095 case bitc::ATTR_KIND_NON_LAZY_BIND: 1096 return Attribute::NonLazyBind; 1097 case bitc::ATTR_KIND_NON_NULL: 1098 return Attribute::NonNull; 1099 case bitc::ATTR_KIND_DEREFERENCEABLE: 1100 return Attribute::Dereferenceable; 1101 case bitc::ATTR_KIND_NO_RED_ZONE: 1102 return Attribute::NoRedZone; 1103 case bitc::ATTR_KIND_NO_RETURN: 1104 return Attribute::NoReturn; 1105 case bitc::ATTR_KIND_NO_UNWIND: 1106 return Attribute::NoUnwind; 1107 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1108 return Attribute::OptimizeForSize; 1109 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1110 return Attribute::OptimizeNone; 1111 case bitc::ATTR_KIND_READ_NONE: 1112 return Attribute::ReadNone; 1113 case bitc::ATTR_KIND_READ_ONLY: 1114 return Attribute::ReadOnly; 1115 case bitc::ATTR_KIND_RETURNED: 1116 return Attribute::Returned; 1117 case bitc::ATTR_KIND_RETURNS_TWICE: 1118 return Attribute::ReturnsTwice; 1119 case bitc::ATTR_KIND_S_EXT: 1120 return Attribute::SExt; 1121 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1122 return Attribute::StackAlignment; 1123 case bitc::ATTR_KIND_STACK_PROTECT: 1124 return Attribute::StackProtect; 1125 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1126 return Attribute::StackProtectReq; 1127 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1128 return Attribute::StackProtectStrong; 1129 case bitc::ATTR_KIND_STRUCT_RET: 1130 return Attribute::StructRet; 1131 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1132 return Attribute::SanitizeAddress; 1133 case bitc::ATTR_KIND_SANITIZE_THREAD: 1134 return Attribute::SanitizeThread; 1135 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1136 return Attribute::SanitizeMemory; 1137 case bitc::ATTR_KIND_UW_TABLE: 1138 return Attribute::UWTable; 1139 case bitc::ATTR_KIND_Z_EXT: 1140 return Attribute::ZExt; 1141 } 1142 } 1143 1144 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1145 unsigned &Alignment) { 1146 // Note: Alignment in bitcode files is incremented by 1, so that zero 1147 // can be used for default alignment. 1148 if (Exponent > Value::MaxAlignmentExponent + 1) 1149 return Error("Invalid alignment value"); 1150 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1151 return std::error_code(); 1152 } 1153 1154 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1155 Attribute::AttrKind *Kind) { 1156 *Kind = GetAttrFromCode(Code); 1157 if (*Kind == Attribute::None) 1158 return Error(BitcodeError::CorruptedBitcode, 1159 "Unknown attribute kind (" + Twine(Code) + ")"); 1160 return std::error_code(); 1161 } 1162 1163 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1164 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1165 return Error("Invalid record"); 1166 1167 if (!MAttributeGroups.empty()) 1168 return Error("Invalid multiple blocks"); 1169 1170 SmallVector<uint64_t, 64> Record; 1171 1172 // Read all the records. 1173 while (1) { 1174 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1175 1176 switch (Entry.Kind) { 1177 case BitstreamEntry::SubBlock: // Handled for us already. 1178 case BitstreamEntry::Error: 1179 return Error("Malformed block"); 1180 case BitstreamEntry::EndBlock: 1181 return std::error_code(); 1182 case BitstreamEntry::Record: 1183 // The interesting case. 1184 break; 1185 } 1186 1187 // Read a record. 1188 Record.clear(); 1189 switch (Stream.readRecord(Entry.ID, Record)) { 1190 default: // Default behavior: ignore. 1191 break; 1192 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1193 if (Record.size() < 3) 1194 return Error("Invalid record"); 1195 1196 uint64_t GrpID = Record[0]; 1197 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1198 1199 AttrBuilder B; 1200 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1201 if (Record[i] == 0) { // Enum attribute 1202 Attribute::AttrKind Kind; 1203 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1204 return EC; 1205 1206 B.addAttribute(Kind); 1207 } else if (Record[i] == 1) { // Integer attribute 1208 Attribute::AttrKind Kind; 1209 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1210 return EC; 1211 if (Kind == Attribute::Alignment) 1212 B.addAlignmentAttr(Record[++i]); 1213 else if (Kind == Attribute::StackAlignment) 1214 B.addStackAlignmentAttr(Record[++i]); 1215 else if (Kind == Attribute::Dereferenceable) 1216 B.addDereferenceableAttr(Record[++i]); 1217 } else { // String attribute 1218 assert((Record[i] == 3 || Record[i] == 4) && 1219 "Invalid attribute group entry"); 1220 bool HasValue = (Record[i++] == 4); 1221 SmallString<64> KindStr; 1222 SmallString<64> ValStr; 1223 1224 while (Record[i] != 0 && i != e) 1225 KindStr += Record[i++]; 1226 assert(Record[i] == 0 && "Kind string not null terminated"); 1227 1228 if (HasValue) { 1229 // Has a value associated with it. 1230 ++i; // Skip the '0' that terminates the "kind" string. 1231 while (Record[i] != 0 && i != e) 1232 ValStr += Record[i++]; 1233 assert(Record[i] == 0 && "Value string not null terminated"); 1234 } 1235 1236 B.addAttribute(KindStr.str(), ValStr.str()); 1237 } 1238 } 1239 1240 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1241 break; 1242 } 1243 } 1244 } 1245 } 1246 1247 std::error_code BitcodeReader::ParseTypeTable() { 1248 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1249 return Error("Invalid record"); 1250 1251 return ParseTypeTableBody(); 1252 } 1253 1254 std::error_code BitcodeReader::ParseTypeTableBody() { 1255 if (!TypeList.empty()) 1256 return Error("Invalid multiple blocks"); 1257 1258 SmallVector<uint64_t, 64> Record; 1259 unsigned NumRecords = 0; 1260 1261 SmallString<64> TypeName; 1262 1263 // Read all the records for this type table. 1264 while (1) { 1265 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1266 1267 switch (Entry.Kind) { 1268 case BitstreamEntry::SubBlock: // Handled for us already. 1269 case BitstreamEntry::Error: 1270 return Error("Malformed block"); 1271 case BitstreamEntry::EndBlock: 1272 if (NumRecords != TypeList.size()) 1273 return Error("Malformed block"); 1274 return std::error_code(); 1275 case BitstreamEntry::Record: 1276 // The interesting case. 1277 break; 1278 } 1279 1280 // Read a record. 1281 Record.clear(); 1282 Type *ResultTy = nullptr; 1283 switch (Stream.readRecord(Entry.ID, Record)) { 1284 default: 1285 return Error("Invalid value"); 1286 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1287 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1288 // type list. This allows us to reserve space. 1289 if (Record.size() < 1) 1290 return Error("Invalid record"); 1291 TypeList.resize(Record[0]); 1292 continue; 1293 case bitc::TYPE_CODE_VOID: // VOID 1294 ResultTy = Type::getVoidTy(Context); 1295 break; 1296 case bitc::TYPE_CODE_HALF: // HALF 1297 ResultTy = Type::getHalfTy(Context); 1298 break; 1299 case bitc::TYPE_CODE_FLOAT: // FLOAT 1300 ResultTy = Type::getFloatTy(Context); 1301 break; 1302 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1303 ResultTy = Type::getDoubleTy(Context); 1304 break; 1305 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1306 ResultTy = Type::getX86_FP80Ty(Context); 1307 break; 1308 case bitc::TYPE_CODE_FP128: // FP128 1309 ResultTy = Type::getFP128Ty(Context); 1310 break; 1311 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1312 ResultTy = Type::getPPC_FP128Ty(Context); 1313 break; 1314 case bitc::TYPE_CODE_LABEL: // LABEL 1315 ResultTy = Type::getLabelTy(Context); 1316 break; 1317 case bitc::TYPE_CODE_METADATA: // METADATA 1318 ResultTy = Type::getMetadataTy(Context); 1319 break; 1320 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1321 ResultTy = Type::getX86_MMXTy(Context); 1322 break; 1323 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1324 if (Record.size() < 1) 1325 return Error("Invalid record"); 1326 1327 uint64_t NumBits = Record[0]; 1328 if (NumBits < IntegerType::MIN_INT_BITS || 1329 NumBits > IntegerType::MAX_INT_BITS) 1330 return Error("Bitwidth for integer type out of range"); 1331 ResultTy = IntegerType::get(Context, NumBits); 1332 break; 1333 } 1334 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1335 // [pointee type, address space] 1336 if (Record.size() < 1) 1337 return Error("Invalid record"); 1338 unsigned AddressSpace = 0; 1339 if (Record.size() == 2) 1340 AddressSpace = Record[1]; 1341 ResultTy = getTypeByID(Record[0]); 1342 if (!ResultTy) 1343 return Error("Invalid type"); 1344 ResultTy = PointerType::get(ResultTy, AddressSpace); 1345 break; 1346 } 1347 case bitc::TYPE_CODE_FUNCTION_OLD: { 1348 // FIXME: attrid is dead, remove it in LLVM 4.0 1349 // FUNCTION: [vararg, attrid, retty, paramty x N] 1350 if (Record.size() < 3) 1351 return Error("Invalid record"); 1352 SmallVector<Type*, 8> ArgTys; 1353 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1354 if (Type *T = getTypeByID(Record[i])) 1355 ArgTys.push_back(T); 1356 else 1357 break; 1358 } 1359 1360 ResultTy = getTypeByID(Record[2]); 1361 if (!ResultTy || ArgTys.size() < Record.size()-3) 1362 return Error("Invalid type"); 1363 1364 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1365 break; 1366 } 1367 case bitc::TYPE_CODE_FUNCTION: { 1368 // FUNCTION: [vararg, retty, paramty x N] 1369 if (Record.size() < 2) 1370 return Error("Invalid record"); 1371 SmallVector<Type*, 8> ArgTys; 1372 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1373 if (Type *T = getTypeByID(Record[i])) 1374 ArgTys.push_back(T); 1375 else 1376 break; 1377 } 1378 1379 ResultTy = getTypeByID(Record[1]); 1380 if (!ResultTy || ArgTys.size() < Record.size()-2) 1381 return Error("Invalid type"); 1382 1383 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1384 break; 1385 } 1386 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1387 if (Record.size() < 1) 1388 return Error("Invalid record"); 1389 SmallVector<Type*, 8> EltTys; 1390 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1391 if (Type *T = getTypeByID(Record[i])) 1392 EltTys.push_back(T); 1393 else 1394 break; 1395 } 1396 if (EltTys.size() != Record.size()-1) 1397 return Error("Invalid type"); 1398 ResultTy = StructType::get(Context, EltTys, Record[0]); 1399 break; 1400 } 1401 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1402 if (ConvertToString(Record, 0, TypeName)) 1403 return Error("Invalid record"); 1404 continue; 1405 1406 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1407 if (Record.size() < 1) 1408 return Error("Invalid record"); 1409 1410 if (NumRecords >= TypeList.size()) 1411 return Error("Invalid TYPE table"); 1412 1413 // Check to see if this was forward referenced, if so fill in the temp. 1414 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1415 if (Res) { 1416 Res->setName(TypeName); 1417 TypeList[NumRecords] = nullptr; 1418 } else // Otherwise, create a new struct. 1419 Res = createIdentifiedStructType(Context, TypeName); 1420 TypeName.clear(); 1421 1422 SmallVector<Type*, 8> EltTys; 1423 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1424 if (Type *T = getTypeByID(Record[i])) 1425 EltTys.push_back(T); 1426 else 1427 break; 1428 } 1429 if (EltTys.size() != Record.size()-1) 1430 return Error("Invalid record"); 1431 Res->setBody(EltTys, Record[0]); 1432 ResultTy = Res; 1433 break; 1434 } 1435 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1436 if (Record.size() != 1) 1437 return Error("Invalid record"); 1438 1439 if (NumRecords >= TypeList.size()) 1440 return Error("Invalid TYPE table"); 1441 1442 // Check to see if this was forward referenced, if so fill in the temp. 1443 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1444 if (Res) { 1445 Res->setName(TypeName); 1446 TypeList[NumRecords] = nullptr; 1447 } else // Otherwise, create a new struct with no body. 1448 Res = createIdentifiedStructType(Context, TypeName); 1449 TypeName.clear(); 1450 ResultTy = Res; 1451 break; 1452 } 1453 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1454 if (Record.size() < 2) 1455 return Error("Invalid record"); 1456 if ((ResultTy = getTypeByID(Record[1]))) 1457 ResultTy = ArrayType::get(ResultTy, Record[0]); 1458 else 1459 return Error("Invalid type"); 1460 break; 1461 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1462 if (Record.size() < 2) 1463 return Error("Invalid record"); 1464 if ((ResultTy = getTypeByID(Record[1]))) 1465 ResultTy = VectorType::get(ResultTy, Record[0]); 1466 else 1467 return Error("Invalid type"); 1468 break; 1469 } 1470 1471 if (NumRecords >= TypeList.size()) 1472 return Error("Invalid TYPE table"); 1473 if (TypeList[NumRecords]) 1474 return Error( 1475 "Invalid TYPE table: Only named structs can be forward referenced"); 1476 assert(ResultTy && "Didn't read a type?"); 1477 TypeList[NumRecords++] = ResultTy; 1478 } 1479 } 1480 1481 std::error_code BitcodeReader::ParseValueSymbolTable() { 1482 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1483 return Error("Invalid record"); 1484 1485 SmallVector<uint64_t, 64> Record; 1486 1487 Triple TT(TheModule->getTargetTriple()); 1488 1489 // Read all the records for this value table. 1490 SmallString<128> ValueName; 1491 while (1) { 1492 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1493 1494 switch (Entry.Kind) { 1495 case BitstreamEntry::SubBlock: // Handled for us already. 1496 case BitstreamEntry::Error: 1497 return Error("Malformed block"); 1498 case BitstreamEntry::EndBlock: 1499 return std::error_code(); 1500 case BitstreamEntry::Record: 1501 // The interesting case. 1502 break; 1503 } 1504 1505 // Read a record. 1506 Record.clear(); 1507 switch (Stream.readRecord(Entry.ID, Record)) { 1508 default: // Default behavior: unknown type. 1509 break; 1510 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1511 if (ConvertToString(Record, 1, ValueName)) 1512 return Error("Invalid record"); 1513 unsigned ValueID = Record[0]; 1514 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1515 return Error("Invalid record"); 1516 Value *V = ValueList[ValueID]; 1517 1518 V->setName(StringRef(ValueName.data(), ValueName.size())); 1519 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1520 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1521 if (TT.isOSBinFormatMachO()) 1522 GO->setComdat(nullptr); 1523 else 1524 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1525 } 1526 } 1527 ValueName.clear(); 1528 break; 1529 } 1530 case bitc::VST_CODE_BBENTRY: { 1531 if (ConvertToString(Record, 1, ValueName)) 1532 return Error("Invalid record"); 1533 BasicBlock *BB = getBasicBlock(Record[0]); 1534 if (!BB) 1535 return Error("Invalid record"); 1536 1537 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1538 ValueName.clear(); 1539 break; 1540 } 1541 } 1542 } 1543 } 1544 1545 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1546 1547 std::error_code BitcodeReader::ParseMetadata() { 1548 IsMetadataMaterialized = true; 1549 unsigned NextMDValueNo = MDValueList.size(); 1550 1551 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1552 return Error("Invalid record"); 1553 1554 SmallVector<uint64_t, 64> Record; 1555 1556 auto getMD = 1557 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1558 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1559 if (ID) 1560 return getMD(ID - 1); 1561 return nullptr; 1562 }; 1563 auto getMDString = [&](unsigned ID) -> MDString *{ 1564 // This requires that the ID is not really a forward reference. In 1565 // particular, the MDString must already have been resolved. 1566 return cast_or_null<MDString>(getMDOrNull(ID)); 1567 }; 1568 1569 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1570 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1571 1572 // Read all the records. 1573 while (1) { 1574 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1575 1576 switch (Entry.Kind) { 1577 case BitstreamEntry::SubBlock: // Handled for us already. 1578 case BitstreamEntry::Error: 1579 return Error("Malformed block"); 1580 case BitstreamEntry::EndBlock: 1581 MDValueList.tryToResolveCycles(); 1582 return std::error_code(); 1583 case BitstreamEntry::Record: 1584 // The interesting case. 1585 break; 1586 } 1587 1588 // Read a record. 1589 Record.clear(); 1590 unsigned Code = Stream.readRecord(Entry.ID, Record); 1591 bool IsDistinct = false; 1592 switch (Code) { 1593 default: // Default behavior: ignore. 1594 break; 1595 case bitc::METADATA_NAME: { 1596 // Read name of the named metadata. 1597 SmallString<8> Name(Record.begin(), Record.end()); 1598 Record.clear(); 1599 Code = Stream.ReadCode(); 1600 1601 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1602 unsigned NextBitCode = Stream.readRecord(Code, Record); 1603 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1604 1605 // Read named metadata elements. 1606 unsigned Size = Record.size(); 1607 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1608 for (unsigned i = 0; i != Size; ++i) { 1609 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1610 if (!MD) 1611 return Error("Invalid record"); 1612 NMD->addOperand(MD); 1613 } 1614 break; 1615 } 1616 case bitc::METADATA_OLD_FN_NODE: { 1617 // FIXME: Remove in 4.0. 1618 // This is a LocalAsMetadata record, the only type of function-local 1619 // metadata. 1620 if (Record.size() % 2 == 1) 1621 return Error("Invalid record"); 1622 1623 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1624 // to be legal, but there's no upgrade path. 1625 auto dropRecord = [&] { 1626 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1627 }; 1628 if (Record.size() != 2) { 1629 dropRecord(); 1630 break; 1631 } 1632 1633 Type *Ty = getTypeByID(Record[0]); 1634 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1635 dropRecord(); 1636 break; 1637 } 1638 1639 MDValueList.AssignValue( 1640 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1641 NextMDValueNo++); 1642 break; 1643 } 1644 case bitc::METADATA_OLD_NODE: { 1645 // FIXME: Remove in 4.0. 1646 if (Record.size() % 2 == 1) 1647 return Error("Invalid record"); 1648 1649 unsigned Size = Record.size(); 1650 SmallVector<Metadata *, 8> Elts; 1651 for (unsigned i = 0; i != Size; i += 2) { 1652 Type *Ty = getTypeByID(Record[i]); 1653 if (!Ty) 1654 return Error("Invalid record"); 1655 if (Ty->isMetadataTy()) 1656 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1657 else if (!Ty->isVoidTy()) { 1658 auto *MD = 1659 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1660 assert(isa<ConstantAsMetadata>(MD) && 1661 "Expected non-function-local metadata"); 1662 Elts.push_back(MD); 1663 } else 1664 Elts.push_back(nullptr); 1665 } 1666 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1667 break; 1668 } 1669 case bitc::METADATA_VALUE: { 1670 if (Record.size() != 2) 1671 return Error("Invalid record"); 1672 1673 Type *Ty = getTypeByID(Record[0]); 1674 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1675 return Error("Invalid record"); 1676 1677 MDValueList.AssignValue( 1678 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1679 NextMDValueNo++); 1680 break; 1681 } 1682 case bitc::METADATA_DISTINCT_NODE: 1683 IsDistinct = true; 1684 // fallthrough... 1685 case bitc::METADATA_NODE: { 1686 SmallVector<Metadata *, 8> Elts; 1687 Elts.reserve(Record.size()); 1688 for (unsigned ID : Record) 1689 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1690 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1691 : MDNode::get(Context, Elts), 1692 NextMDValueNo++); 1693 break; 1694 } 1695 case bitc::METADATA_LOCATION: { 1696 if (Record.size() != 5) 1697 return Error("Invalid record"); 1698 1699 unsigned Line = Record[1]; 1700 unsigned Column = Record[2]; 1701 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1702 Metadata *InlinedAt = 1703 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1704 MDValueList.AssignValue( 1705 GET_OR_DISTINCT(MDLocation, Record[0], 1706 (Context, Line, Column, Scope, InlinedAt)), 1707 NextMDValueNo++); 1708 break; 1709 } 1710 case bitc::METADATA_GENERIC_DEBUG: { 1711 if (Record.size() < 4) 1712 return Error("Invalid record"); 1713 1714 unsigned Tag = Record[1]; 1715 unsigned Version = Record[2]; 1716 1717 if (Tag >= 1u << 16 || Version != 0) 1718 return Error("Invalid record"); 1719 1720 auto *Header = getMDString(Record[3]); 1721 SmallVector<Metadata *, 8> DwarfOps; 1722 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1723 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1724 : nullptr); 1725 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1726 (Context, Tag, Header, DwarfOps)), 1727 NextMDValueNo++); 1728 break; 1729 } 1730 case bitc::METADATA_SUBRANGE: { 1731 if (Record.size() != 3) 1732 return Error("Invalid record"); 1733 1734 MDValueList.AssignValue( 1735 GET_OR_DISTINCT(MDSubrange, Record[0], 1736 (Context, Record[1], unrotateSign(Record[2]))), 1737 NextMDValueNo++); 1738 break; 1739 } 1740 case bitc::METADATA_ENUMERATOR: { 1741 if (Record.size() != 3) 1742 return Error("Invalid record"); 1743 1744 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1745 (Context, unrotateSign(Record[1]), 1746 getMDString(Record[2]))), 1747 NextMDValueNo++); 1748 break; 1749 } 1750 case bitc::METADATA_BASIC_TYPE: { 1751 if (Record.size() != 6) 1752 return Error("Invalid record"); 1753 1754 MDValueList.AssignValue( 1755 GET_OR_DISTINCT(MDBasicType, Record[0], 1756 (Context, Record[1], getMDString(Record[2]), 1757 Record[3], Record[4], Record[5])), 1758 NextMDValueNo++); 1759 break; 1760 } 1761 case bitc::METADATA_DERIVED_TYPE: { 1762 if (Record.size() != 12) 1763 return Error("Invalid record"); 1764 1765 MDValueList.AssignValue( 1766 GET_OR_DISTINCT(MDDerivedType, Record[0], 1767 (Context, Record[1], getMDString(Record[2]), 1768 getMDOrNull(Record[3]), Record[4], 1769 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1770 Record[7], Record[8], Record[9], Record[10], 1771 getMDOrNull(Record[11]))), 1772 NextMDValueNo++); 1773 break; 1774 } 1775 case bitc::METADATA_COMPOSITE_TYPE: { 1776 if (Record.size() != 16) 1777 return Error("Invalid record"); 1778 1779 MDValueList.AssignValue( 1780 GET_OR_DISTINCT(MDCompositeType, Record[0], 1781 (Context, Record[1], getMDString(Record[2]), 1782 getMDOrNull(Record[3]), Record[4], 1783 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1784 Record[7], Record[8], Record[9], Record[10], 1785 getMDOrNull(Record[11]), Record[12], 1786 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1787 getMDString(Record[15]))), 1788 NextMDValueNo++); 1789 break; 1790 } 1791 case bitc::METADATA_SUBROUTINE_TYPE: { 1792 if (Record.size() != 3) 1793 return Error("Invalid record"); 1794 1795 MDValueList.AssignValue( 1796 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1797 (Context, Record[1], getMDOrNull(Record[2]))), 1798 NextMDValueNo++); 1799 break; 1800 } 1801 case bitc::METADATA_FILE: { 1802 if (Record.size() != 3) 1803 return Error("Invalid record"); 1804 1805 MDValueList.AssignValue( 1806 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1807 getMDString(Record[2]))), 1808 NextMDValueNo++); 1809 break; 1810 } 1811 case bitc::METADATA_COMPILE_UNIT: { 1812 if (Record.size() != 14) 1813 return Error("Invalid record"); 1814 1815 MDValueList.AssignValue( 1816 GET_OR_DISTINCT(MDCompileUnit, Record[0], 1817 (Context, Record[1], getMDOrNull(Record[2]), 1818 getMDString(Record[3]), Record[4], 1819 getMDString(Record[5]), Record[6], 1820 getMDString(Record[7]), Record[8], 1821 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1822 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1823 getMDOrNull(Record[13]))), 1824 NextMDValueNo++); 1825 break; 1826 } 1827 case bitc::METADATA_SUBPROGRAM: { 1828 if (Record.size() != 19) 1829 return Error("Invalid record"); 1830 1831 MDValueList.AssignValue( 1832 GET_OR_DISTINCT( 1833 MDSubprogram, Record[0], 1834 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1835 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1836 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1837 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1838 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1839 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1840 NextMDValueNo++); 1841 break; 1842 } 1843 case bitc::METADATA_LEXICAL_BLOCK: { 1844 if (Record.size() != 5) 1845 return Error("Invalid record"); 1846 1847 MDValueList.AssignValue( 1848 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1849 (Context, getMDOrNull(Record[1]), 1850 getMDOrNull(Record[2]), Record[3], Record[4])), 1851 NextMDValueNo++); 1852 break; 1853 } 1854 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1855 if (Record.size() != 4) 1856 return Error("Invalid record"); 1857 1858 MDValueList.AssignValue( 1859 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1860 (Context, getMDOrNull(Record[1]), 1861 getMDOrNull(Record[2]), Record[3])), 1862 NextMDValueNo++); 1863 break; 1864 } 1865 case bitc::METADATA_NAMESPACE: { 1866 if (Record.size() != 5) 1867 return Error("Invalid record"); 1868 1869 MDValueList.AssignValue( 1870 GET_OR_DISTINCT(MDNamespace, Record[0], 1871 (Context, getMDOrNull(Record[1]), 1872 getMDOrNull(Record[2]), getMDString(Record[3]), 1873 Record[4])), 1874 NextMDValueNo++); 1875 break; 1876 } 1877 case bitc::METADATA_TEMPLATE_TYPE: { 1878 if (Record.size() != 3) 1879 return Error("Invalid record"); 1880 1881 MDValueList.AssignValue(GET_OR_DISTINCT(MDTemplateTypeParameter, 1882 Record[0], 1883 (Context, getMDString(Record[1]), 1884 getMDOrNull(Record[2]))), 1885 NextMDValueNo++); 1886 break; 1887 } 1888 case bitc::METADATA_TEMPLATE_VALUE: { 1889 if (Record.size() != 5) 1890 return Error("Invalid record"); 1891 1892 MDValueList.AssignValue( 1893 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1894 (Context, Record[1], getMDString(Record[2]), 1895 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1896 NextMDValueNo++); 1897 break; 1898 } 1899 case bitc::METADATA_GLOBAL_VAR: { 1900 if (Record.size() != 11) 1901 return Error("Invalid record"); 1902 1903 MDValueList.AssignValue( 1904 GET_OR_DISTINCT(MDGlobalVariable, Record[0], 1905 (Context, getMDOrNull(Record[1]), 1906 getMDString(Record[2]), getMDString(Record[3]), 1907 getMDOrNull(Record[4]), Record[5], 1908 getMDOrNull(Record[6]), Record[7], Record[8], 1909 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1910 NextMDValueNo++); 1911 break; 1912 } 1913 case bitc::METADATA_LOCAL_VAR: { 1914 // 10th field is for the obseleted 'inlinedAt:' field. 1915 if (Record.size() != 9 && Record.size() != 10) 1916 return Error("Invalid record"); 1917 1918 MDValueList.AssignValue( 1919 GET_OR_DISTINCT(MDLocalVariable, Record[0], 1920 (Context, Record[1], getMDOrNull(Record[2]), 1921 getMDString(Record[3]), getMDOrNull(Record[4]), 1922 Record[5], getMDOrNull(Record[6]), Record[7], 1923 Record[8])), 1924 NextMDValueNo++); 1925 break; 1926 } 1927 case bitc::METADATA_EXPRESSION: { 1928 if (Record.size() < 1) 1929 return Error("Invalid record"); 1930 1931 MDValueList.AssignValue( 1932 GET_OR_DISTINCT(MDExpression, Record[0], 1933 (Context, makeArrayRef(Record).slice(1))), 1934 NextMDValueNo++); 1935 break; 1936 } 1937 case bitc::METADATA_OBJC_PROPERTY: { 1938 if (Record.size() != 8) 1939 return Error("Invalid record"); 1940 1941 MDValueList.AssignValue( 1942 GET_OR_DISTINCT(MDObjCProperty, Record[0], 1943 (Context, getMDString(Record[1]), 1944 getMDOrNull(Record[2]), Record[3], 1945 getMDString(Record[4]), getMDString(Record[5]), 1946 Record[6], getMDOrNull(Record[7]))), 1947 NextMDValueNo++); 1948 break; 1949 } 1950 case bitc::METADATA_IMPORTED_ENTITY: { 1951 if (Record.size() != 6) 1952 return Error("Invalid record"); 1953 1954 MDValueList.AssignValue( 1955 GET_OR_DISTINCT(MDImportedEntity, Record[0], 1956 (Context, Record[1], getMDOrNull(Record[2]), 1957 getMDOrNull(Record[3]), Record[4], 1958 getMDString(Record[5]))), 1959 NextMDValueNo++); 1960 break; 1961 } 1962 case bitc::METADATA_STRING: { 1963 std::string String(Record.begin(), Record.end()); 1964 llvm::UpgradeMDStringConstant(String); 1965 Metadata *MD = MDString::get(Context, String); 1966 MDValueList.AssignValue(MD, NextMDValueNo++); 1967 break; 1968 } 1969 case bitc::METADATA_KIND: { 1970 if (Record.size() < 2) 1971 return Error("Invalid record"); 1972 1973 unsigned Kind = Record[0]; 1974 SmallString<8> Name(Record.begin()+1, Record.end()); 1975 1976 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1977 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1978 return Error("Conflicting METADATA_KIND records"); 1979 break; 1980 } 1981 } 1982 } 1983 #undef GET_OR_DISTINCT 1984 } 1985 1986 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1987 /// the LSB for dense VBR encoding. 1988 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1989 if ((V & 1) == 0) 1990 return V >> 1; 1991 if (V != 1) 1992 return -(V >> 1); 1993 // There is no such thing as -0 with integers. "-0" really means MININT. 1994 return 1ULL << 63; 1995 } 1996 1997 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1998 /// values and aliases that we can. 1999 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 2000 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2001 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2002 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2003 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2004 2005 GlobalInitWorklist.swap(GlobalInits); 2006 AliasInitWorklist.swap(AliasInits); 2007 FunctionPrefixWorklist.swap(FunctionPrefixes); 2008 FunctionPrologueWorklist.swap(FunctionPrologues); 2009 2010 while (!GlobalInitWorklist.empty()) { 2011 unsigned ValID = GlobalInitWorklist.back().second; 2012 if (ValID >= ValueList.size()) { 2013 // Not ready to resolve this yet, it requires something later in the file. 2014 GlobalInits.push_back(GlobalInitWorklist.back()); 2015 } else { 2016 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2017 GlobalInitWorklist.back().first->setInitializer(C); 2018 else 2019 return Error("Expected a constant"); 2020 } 2021 GlobalInitWorklist.pop_back(); 2022 } 2023 2024 while (!AliasInitWorklist.empty()) { 2025 unsigned ValID = AliasInitWorklist.back().second; 2026 if (ValID >= ValueList.size()) { 2027 AliasInits.push_back(AliasInitWorklist.back()); 2028 } else { 2029 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2030 AliasInitWorklist.back().first->setAliasee(C); 2031 else 2032 return Error("Expected a constant"); 2033 } 2034 AliasInitWorklist.pop_back(); 2035 } 2036 2037 while (!FunctionPrefixWorklist.empty()) { 2038 unsigned ValID = FunctionPrefixWorklist.back().second; 2039 if (ValID >= ValueList.size()) { 2040 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2041 } else { 2042 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2043 FunctionPrefixWorklist.back().first->setPrefixData(C); 2044 else 2045 return Error("Expected a constant"); 2046 } 2047 FunctionPrefixWorklist.pop_back(); 2048 } 2049 2050 while (!FunctionPrologueWorklist.empty()) { 2051 unsigned ValID = FunctionPrologueWorklist.back().second; 2052 if (ValID >= ValueList.size()) { 2053 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2054 } else { 2055 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2056 FunctionPrologueWorklist.back().first->setPrologueData(C); 2057 else 2058 return Error("Expected a constant"); 2059 } 2060 FunctionPrologueWorklist.pop_back(); 2061 } 2062 2063 return std::error_code(); 2064 } 2065 2066 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2067 SmallVector<uint64_t, 8> Words(Vals.size()); 2068 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2069 BitcodeReader::decodeSignRotatedValue); 2070 2071 return APInt(TypeBits, Words); 2072 } 2073 2074 std::error_code BitcodeReader::ParseConstants() { 2075 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2076 return Error("Invalid record"); 2077 2078 SmallVector<uint64_t, 64> Record; 2079 2080 // Read all the records for this value table. 2081 Type *CurTy = Type::getInt32Ty(Context); 2082 unsigned NextCstNo = ValueList.size(); 2083 while (1) { 2084 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2085 2086 switch (Entry.Kind) { 2087 case BitstreamEntry::SubBlock: // Handled for us already. 2088 case BitstreamEntry::Error: 2089 return Error("Malformed block"); 2090 case BitstreamEntry::EndBlock: 2091 if (NextCstNo != ValueList.size()) 2092 return Error("Invalid ronstant reference"); 2093 2094 // Once all the constants have been read, go through and resolve forward 2095 // references. 2096 ValueList.ResolveConstantForwardRefs(); 2097 return std::error_code(); 2098 case BitstreamEntry::Record: 2099 // The interesting case. 2100 break; 2101 } 2102 2103 // Read a record. 2104 Record.clear(); 2105 Value *V = nullptr; 2106 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2107 switch (BitCode) { 2108 default: // Default behavior: unknown constant 2109 case bitc::CST_CODE_UNDEF: // UNDEF 2110 V = UndefValue::get(CurTy); 2111 break; 2112 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2113 if (Record.empty()) 2114 return Error("Invalid record"); 2115 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2116 return Error("Invalid record"); 2117 CurTy = TypeList[Record[0]]; 2118 continue; // Skip the ValueList manipulation. 2119 case bitc::CST_CODE_NULL: // NULL 2120 V = Constant::getNullValue(CurTy); 2121 break; 2122 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2123 if (!CurTy->isIntegerTy() || Record.empty()) 2124 return Error("Invalid record"); 2125 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2126 break; 2127 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2128 if (!CurTy->isIntegerTy() || Record.empty()) 2129 return Error("Invalid record"); 2130 2131 APInt VInt = ReadWideAPInt(Record, 2132 cast<IntegerType>(CurTy)->getBitWidth()); 2133 V = ConstantInt::get(Context, VInt); 2134 2135 break; 2136 } 2137 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2138 if (Record.empty()) 2139 return Error("Invalid record"); 2140 if (CurTy->isHalfTy()) 2141 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2142 APInt(16, (uint16_t)Record[0]))); 2143 else if (CurTy->isFloatTy()) 2144 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2145 APInt(32, (uint32_t)Record[0]))); 2146 else if (CurTy->isDoubleTy()) 2147 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2148 APInt(64, Record[0]))); 2149 else if (CurTy->isX86_FP80Ty()) { 2150 // Bits are not stored the same way as a normal i80 APInt, compensate. 2151 uint64_t Rearrange[2]; 2152 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2153 Rearrange[1] = Record[0] >> 48; 2154 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2155 APInt(80, Rearrange))); 2156 } else if (CurTy->isFP128Ty()) 2157 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2158 APInt(128, Record))); 2159 else if (CurTy->isPPC_FP128Ty()) 2160 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2161 APInt(128, Record))); 2162 else 2163 V = UndefValue::get(CurTy); 2164 break; 2165 } 2166 2167 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2168 if (Record.empty()) 2169 return Error("Invalid record"); 2170 2171 unsigned Size = Record.size(); 2172 SmallVector<Constant*, 16> Elts; 2173 2174 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2175 for (unsigned i = 0; i != Size; ++i) 2176 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2177 STy->getElementType(i))); 2178 V = ConstantStruct::get(STy, Elts); 2179 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2180 Type *EltTy = ATy->getElementType(); 2181 for (unsigned i = 0; i != Size; ++i) 2182 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2183 V = ConstantArray::get(ATy, Elts); 2184 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2185 Type *EltTy = VTy->getElementType(); 2186 for (unsigned i = 0; i != Size; ++i) 2187 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2188 V = ConstantVector::get(Elts); 2189 } else { 2190 V = UndefValue::get(CurTy); 2191 } 2192 break; 2193 } 2194 case bitc::CST_CODE_STRING: // STRING: [values] 2195 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2196 if (Record.empty()) 2197 return Error("Invalid record"); 2198 2199 SmallString<16> Elts(Record.begin(), Record.end()); 2200 V = ConstantDataArray::getString(Context, Elts, 2201 BitCode == bitc::CST_CODE_CSTRING); 2202 break; 2203 } 2204 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2205 if (Record.empty()) 2206 return Error("Invalid record"); 2207 2208 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2209 unsigned Size = Record.size(); 2210 2211 if (EltTy->isIntegerTy(8)) { 2212 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2213 if (isa<VectorType>(CurTy)) 2214 V = ConstantDataVector::get(Context, Elts); 2215 else 2216 V = ConstantDataArray::get(Context, Elts); 2217 } else if (EltTy->isIntegerTy(16)) { 2218 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2219 if (isa<VectorType>(CurTy)) 2220 V = ConstantDataVector::get(Context, Elts); 2221 else 2222 V = ConstantDataArray::get(Context, Elts); 2223 } else if (EltTy->isIntegerTy(32)) { 2224 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2225 if (isa<VectorType>(CurTy)) 2226 V = ConstantDataVector::get(Context, Elts); 2227 else 2228 V = ConstantDataArray::get(Context, Elts); 2229 } else if (EltTy->isIntegerTy(64)) { 2230 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2231 if (isa<VectorType>(CurTy)) 2232 V = ConstantDataVector::get(Context, Elts); 2233 else 2234 V = ConstantDataArray::get(Context, Elts); 2235 } else if (EltTy->isFloatTy()) { 2236 SmallVector<float, 16> Elts(Size); 2237 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2238 if (isa<VectorType>(CurTy)) 2239 V = ConstantDataVector::get(Context, Elts); 2240 else 2241 V = ConstantDataArray::get(Context, Elts); 2242 } else if (EltTy->isDoubleTy()) { 2243 SmallVector<double, 16> Elts(Size); 2244 std::transform(Record.begin(), Record.end(), Elts.begin(), 2245 BitsToDouble); 2246 if (isa<VectorType>(CurTy)) 2247 V = ConstantDataVector::get(Context, Elts); 2248 else 2249 V = ConstantDataArray::get(Context, Elts); 2250 } else { 2251 return Error("Invalid type for value"); 2252 } 2253 break; 2254 } 2255 2256 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2257 if (Record.size() < 3) 2258 return Error("Invalid record"); 2259 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2260 if (Opc < 0) { 2261 V = UndefValue::get(CurTy); // Unknown binop. 2262 } else { 2263 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2264 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2265 unsigned Flags = 0; 2266 if (Record.size() >= 4) { 2267 if (Opc == Instruction::Add || 2268 Opc == Instruction::Sub || 2269 Opc == Instruction::Mul || 2270 Opc == Instruction::Shl) { 2271 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2272 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2273 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2274 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2275 } else if (Opc == Instruction::SDiv || 2276 Opc == Instruction::UDiv || 2277 Opc == Instruction::LShr || 2278 Opc == Instruction::AShr) { 2279 if (Record[3] & (1 << bitc::PEO_EXACT)) 2280 Flags |= SDivOperator::IsExact; 2281 } 2282 } 2283 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2284 } 2285 break; 2286 } 2287 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2288 if (Record.size() < 3) 2289 return Error("Invalid record"); 2290 int Opc = GetDecodedCastOpcode(Record[0]); 2291 if (Opc < 0) { 2292 V = UndefValue::get(CurTy); // Unknown cast. 2293 } else { 2294 Type *OpTy = getTypeByID(Record[1]); 2295 if (!OpTy) 2296 return Error("Invalid record"); 2297 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2298 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2299 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2300 } 2301 break; 2302 } 2303 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2304 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2305 unsigned OpNum = 0; 2306 Type *PointeeType = nullptr; 2307 if (Record.size() % 2) 2308 PointeeType = getTypeByID(Record[OpNum++]); 2309 SmallVector<Constant*, 16> Elts; 2310 while (OpNum != Record.size()) { 2311 Type *ElTy = getTypeByID(Record[OpNum++]); 2312 if (!ElTy) 2313 return Error("Invalid record"); 2314 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2315 } 2316 2317 if (PointeeType && 2318 PointeeType != 2319 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2320 ->getElementType()) 2321 return Error("Explicit gep operator type does not match pointee type " 2322 "of pointer operand"); 2323 2324 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2325 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2326 BitCode == 2327 bitc::CST_CODE_CE_INBOUNDS_GEP); 2328 break; 2329 } 2330 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2331 if (Record.size() < 3) 2332 return Error("Invalid record"); 2333 2334 Type *SelectorTy = Type::getInt1Ty(Context); 2335 2336 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2337 // vector. Otherwise, it must be a single bit. 2338 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2339 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2340 VTy->getNumElements()); 2341 2342 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2343 SelectorTy), 2344 ValueList.getConstantFwdRef(Record[1],CurTy), 2345 ValueList.getConstantFwdRef(Record[2],CurTy)); 2346 break; 2347 } 2348 case bitc::CST_CODE_CE_EXTRACTELT 2349 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2350 if (Record.size() < 3) 2351 return Error("Invalid record"); 2352 VectorType *OpTy = 2353 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2354 if (!OpTy) 2355 return Error("Invalid record"); 2356 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2357 Constant *Op1 = nullptr; 2358 if (Record.size() == 4) { 2359 Type *IdxTy = getTypeByID(Record[2]); 2360 if (!IdxTy) 2361 return Error("Invalid record"); 2362 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2363 } else // TODO: Remove with llvm 4.0 2364 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2365 if (!Op1) 2366 return Error("Invalid record"); 2367 V = ConstantExpr::getExtractElement(Op0, Op1); 2368 break; 2369 } 2370 case bitc::CST_CODE_CE_INSERTELT 2371 : { // CE_INSERTELT: [opval, opval, opty, opval] 2372 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2373 if (Record.size() < 3 || !OpTy) 2374 return Error("Invalid record"); 2375 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2376 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2377 OpTy->getElementType()); 2378 Constant *Op2 = nullptr; 2379 if (Record.size() == 4) { 2380 Type *IdxTy = getTypeByID(Record[2]); 2381 if (!IdxTy) 2382 return Error("Invalid record"); 2383 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2384 } else // TODO: Remove with llvm 4.0 2385 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2386 if (!Op2) 2387 return Error("Invalid record"); 2388 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2389 break; 2390 } 2391 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2392 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2393 if (Record.size() < 3 || !OpTy) 2394 return Error("Invalid record"); 2395 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2396 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2397 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2398 OpTy->getNumElements()); 2399 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2400 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2401 break; 2402 } 2403 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2404 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2405 VectorType *OpTy = 2406 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2407 if (Record.size() < 4 || !RTy || !OpTy) 2408 return Error("Invalid record"); 2409 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2410 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2411 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2412 RTy->getNumElements()); 2413 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2414 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2415 break; 2416 } 2417 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2418 if (Record.size() < 4) 2419 return Error("Invalid record"); 2420 Type *OpTy = getTypeByID(Record[0]); 2421 if (!OpTy) 2422 return Error("Invalid record"); 2423 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2424 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2425 2426 if (OpTy->isFPOrFPVectorTy()) 2427 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2428 else 2429 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2430 break; 2431 } 2432 // This maintains backward compatibility, pre-asm dialect keywords. 2433 // FIXME: Remove with the 4.0 release. 2434 case bitc::CST_CODE_INLINEASM_OLD: { 2435 if (Record.size() < 2) 2436 return Error("Invalid record"); 2437 std::string AsmStr, ConstrStr; 2438 bool HasSideEffects = Record[0] & 1; 2439 bool IsAlignStack = Record[0] >> 1; 2440 unsigned AsmStrSize = Record[1]; 2441 if (2+AsmStrSize >= Record.size()) 2442 return Error("Invalid record"); 2443 unsigned ConstStrSize = Record[2+AsmStrSize]; 2444 if (3+AsmStrSize+ConstStrSize > Record.size()) 2445 return Error("Invalid record"); 2446 2447 for (unsigned i = 0; i != AsmStrSize; ++i) 2448 AsmStr += (char)Record[2+i]; 2449 for (unsigned i = 0; i != ConstStrSize; ++i) 2450 ConstrStr += (char)Record[3+AsmStrSize+i]; 2451 PointerType *PTy = cast<PointerType>(CurTy); 2452 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2453 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2454 break; 2455 } 2456 // This version adds support for the asm dialect keywords (e.g., 2457 // inteldialect). 2458 case bitc::CST_CODE_INLINEASM: { 2459 if (Record.size() < 2) 2460 return Error("Invalid record"); 2461 std::string AsmStr, ConstrStr; 2462 bool HasSideEffects = Record[0] & 1; 2463 bool IsAlignStack = (Record[0] >> 1) & 1; 2464 unsigned AsmDialect = Record[0] >> 2; 2465 unsigned AsmStrSize = Record[1]; 2466 if (2+AsmStrSize >= Record.size()) 2467 return Error("Invalid record"); 2468 unsigned ConstStrSize = Record[2+AsmStrSize]; 2469 if (3+AsmStrSize+ConstStrSize > Record.size()) 2470 return Error("Invalid record"); 2471 2472 for (unsigned i = 0; i != AsmStrSize; ++i) 2473 AsmStr += (char)Record[2+i]; 2474 for (unsigned i = 0; i != ConstStrSize; ++i) 2475 ConstrStr += (char)Record[3+AsmStrSize+i]; 2476 PointerType *PTy = cast<PointerType>(CurTy); 2477 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2478 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2479 InlineAsm::AsmDialect(AsmDialect)); 2480 break; 2481 } 2482 case bitc::CST_CODE_BLOCKADDRESS:{ 2483 if (Record.size() < 3) 2484 return Error("Invalid record"); 2485 Type *FnTy = getTypeByID(Record[0]); 2486 if (!FnTy) 2487 return Error("Invalid record"); 2488 Function *Fn = 2489 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2490 if (!Fn) 2491 return Error("Invalid record"); 2492 2493 // Don't let Fn get dematerialized. 2494 BlockAddressesTaken.insert(Fn); 2495 2496 // If the function is already parsed we can insert the block address right 2497 // away. 2498 BasicBlock *BB; 2499 unsigned BBID = Record[2]; 2500 if (!BBID) 2501 // Invalid reference to entry block. 2502 return Error("Invalid ID"); 2503 if (!Fn->empty()) { 2504 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2505 for (size_t I = 0, E = BBID; I != E; ++I) { 2506 if (BBI == BBE) 2507 return Error("Invalid ID"); 2508 ++BBI; 2509 } 2510 BB = BBI; 2511 } else { 2512 // Otherwise insert a placeholder and remember it so it can be inserted 2513 // when the function is parsed. 2514 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2515 if (FwdBBs.empty()) 2516 BasicBlockFwdRefQueue.push_back(Fn); 2517 if (FwdBBs.size() < BBID + 1) 2518 FwdBBs.resize(BBID + 1); 2519 if (!FwdBBs[BBID]) 2520 FwdBBs[BBID] = BasicBlock::Create(Context); 2521 BB = FwdBBs[BBID]; 2522 } 2523 V = BlockAddress::get(Fn, BB); 2524 break; 2525 } 2526 } 2527 2528 ValueList.AssignValue(V, NextCstNo); 2529 ++NextCstNo; 2530 } 2531 } 2532 2533 std::error_code BitcodeReader::ParseUseLists() { 2534 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2535 return Error("Invalid record"); 2536 2537 // Read all the records. 2538 SmallVector<uint64_t, 64> Record; 2539 while (1) { 2540 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2541 2542 switch (Entry.Kind) { 2543 case BitstreamEntry::SubBlock: // Handled for us already. 2544 case BitstreamEntry::Error: 2545 return Error("Malformed block"); 2546 case BitstreamEntry::EndBlock: 2547 return std::error_code(); 2548 case BitstreamEntry::Record: 2549 // The interesting case. 2550 break; 2551 } 2552 2553 // Read a use list record. 2554 Record.clear(); 2555 bool IsBB = false; 2556 switch (Stream.readRecord(Entry.ID, Record)) { 2557 default: // Default behavior: unknown type. 2558 break; 2559 case bitc::USELIST_CODE_BB: 2560 IsBB = true; 2561 // fallthrough 2562 case bitc::USELIST_CODE_DEFAULT: { 2563 unsigned RecordLength = Record.size(); 2564 if (RecordLength < 3) 2565 // Records should have at least an ID and two indexes. 2566 return Error("Invalid record"); 2567 unsigned ID = Record.back(); 2568 Record.pop_back(); 2569 2570 Value *V; 2571 if (IsBB) { 2572 assert(ID < FunctionBBs.size() && "Basic block not found"); 2573 V = FunctionBBs[ID]; 2574 } else 2575 V = ValueList[ID]; 2576 unsigned NumUses = 0; 2577 SmallDenseMap<const Use *, unsigned, 16> Order; 2578 for (const Use &U : V->uses()) { 2579 if (++NumUses > Record.size()) 2580 break; 2581 Order[&U] = Record[NumUses - 1]; 2582 } 2583 if (Order.size() != Record.size() || NumUses > Record.size()) 2584 // Mismatches can happen if the functions are being materialized lazily 2585 // (out-of-order), or a value has been upgraded. 2586 break; 2587 2588 V->sortUseList([&](const Use &L, const Use &R) { 2589 return Order.lookup(&L) < Order.lookup(&R); 2590 }); 2591 break; 2592 } 2593 } 2594 } 2595 } 2596 2597 /// When we see the block for metadata, remember where it is and then skip it. 2598 /// This lets us lazily deserialize the metadata. 2599 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2600 // Save the current stream state. 2601 uint64_t CurBit = Stream.GetCurrentBitNo(); 2602 DeferredMetadataInfo.push_back(CurBit); 2603 2604 // Skip over the block for now. 2605 if (Stream.SkipBlock()) 2606 return Error("Invalid record"); 2607 return std::error_code(); 2608 } 2609 2610 std::error_code BitcodeReader::materializeMetadata() { 2611 for (uint64_t BitPos : DeferredMetadataInfo) { 2612 // Move the bit stream to the saved position. 2613 Stream.JumpToBit(BitPos); 2614 if (std::error_code EC = ParseMetadata()) 2615 return EC; 2616 } 2617 DeferredMetadataInfo.clear(); 2618 return std::error_code(); 2619 } 2620 2621 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2622 2623 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2624 /// remember where it is and then skip it. This lets us lazily deserialize the 2625 /// functions. 2626 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2627 // Get the function we are talking about. 2628 if (FunctionsWithBodies.empty()) 2629 return Error("Insufficient function protos"); 2630 2631 Function *Fn = FunctionsWithBodies.back(); 2632 FunctionsWithBodies.pop_back(); 2633 2634 // Save the current stream state. 2635 uint64_t CurBit = Stream.GetCurrentBitNo(); 2636 DeferredFunctionInfo[Fn] = CurBit; 2637 2638 // Skip over the function block for now. 2639 if (Stream.SkipBlock()) 2640 return Error("Invalid record"); 2641 return std::error_code(); 2642 } 2643 2644 std::error_code BitcodeReader::GlobalCleanup() { 2645 // Patch the initializers for globals and aliases up. 2646 ResolveGlobalAndAliasInits(); 2647 if (!GlobalInits.empty() || !AliasInits.empty()) 2648 return Error("Malformed global initializer set"); 2649 2650 // Look for intrinsic functions which need to be upgraded at some point 2651 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2652 FI != FE; ++FI) { 2653 Function *NewFn; 2654 if (UpgradeIntrinsicFunction(FI, NewFn)) 2655 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2656 } 2657 2658 // Look for global variables which need to be renamed. 2659 for (Module::global_iterator 2660 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2661 GI != GE;) { 2662 GlobalVariable *GV = GI++; 2663 UpgradeGlobalVariable(GV); 2664 } 2665 2666 // Force deallocation of memory for these vectors to favor the client that 2667 // want lazy deserialization. 2668 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2669 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2670 return std::error_code(); 2671 } 2672 2673 std::error_code BitcodeReader::ParseModule(bool Resume, 2674 bool ShouldLazyLoadMetadata) { 2675 if (Resume) 2676 Stream.JumpToBit(NextUnreadBit); 2677 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2678 return Error("Invalid record"); 2679 2680 SmallVector<uint64_t, 64> Record; 2681 std::vector<std::string> SectionTable; 2682 std::vector<std::string> GCTable; 2683 2684 // Read all the records for this module. 2685 while (1) { 2686 BitstreamEntry Entry = Stream.advance(); 2687 2688 switch (Entry.Kind) { 2689 case BitstreamEntry::Error: 2690 return Error("Malformed block"); 2691 case BitstreamEntry::EndBlock: 2692 return GlobalCleanup(); 2693 2694 case BitstreamEntry::SubBlock: 2695 switch (Entry.ID) { 2696 default: // Skip unknown content. 2697 if (Stream.SkipBlock()) 2698 return Error("Invalid record"); 2699 break; 2700 case bitc::BLOCKINFO_BLOCK_ID: 2701 if (Stream.ReadBlockInfoBlock()) 2702 return Error("Malformed block"); 2703 break; 2704 case bitc::PARAMATTR_BLOCK_ID: 2705 if (std::error_code EC = ParseAttributeBlock()) 2706 return EC; 2707 break; 2708 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2709 if (std::error_code EC = ParseAttributeGroupBlock()) 2710 return EC; 2711 break; 2712 case bitc::TYPE_BLOCK_ID_NEW: 2713 if (std::error_code EC = ParseTypeTable()) 2714 return EC; 2715 break; 2716 case bitc::VALUE_SYMTAB_BLOCK_ID: 2717 if (std::error_code EC = ParseValueSymbolTable()) 2718 return EC; 2719 SeenValueSymbolTable = true; 2720 break; 2721 case bitc::CONSTANTS_BLOCK_ID: 2722 if (std::error_code EC = ParseConstants()) 2723 return EC; 2724 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2725 return EC; 2726 break; 2727 case bitc::METADATA_BLOCK_ID: 2728 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2729 if (std::error_code EC = rememberAndSkipMetadata()) 2730 return EC; 2731 break; 2732 } 2733 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2734 if (std::error_code EC = ParseMetadata()) 2735 return EC; 2736 break; 2737 case bitc::FUNCTION_BLOCK_ID: 2738 // If this is the first function body we've seen, reverse the 2739 // FunctionsWithBodies list. 2740 if (!SeenFirstFunctionBody) { 2741 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2742 if (std::error_code EC = GlobalCleanup()) 2743 return EC; 2744 SeenFirstFunctionBody = true; 2745 } 2746 2747 if (std::error_code EC = RememberAndSkipFunctionBody()) 2748 return EC; 2749 // For streaming bitcode, suspend parsing when we reach the function 2750 // bodies. Subsequent materialization calls will resume it when 2751 // necessary. For streaming, the function bodies must be at the end of 2752 // the bitcode. If the bitcode file is old, the symbol table will be 2753 // at the end instead and will not have been seen yet. In this case, 2754 // just finish the parse now. 2755 if (LazyStreamer && SeenValueSymbolTable) { 2756 NextUnreadBit = Stream.GetCurrentBitNo(); 2757 return std::error_code(); 2758 } 2759 break; 2760 case bitc::USELIST_BLOCK_ID: 2761 if (std::error_code EC = ParseUseLists()) 2762 return EC; 2763 break; 2764 } 2765 continue; 2766 2767 case BitstreamEntry::Record: 2768 // The interesting case. 2769 break; 2770 } 2771 2772 2773 // Read a record. 2774 switch (Stream.readRecord(Entry.ID, Record)) { 2775 default: break; // Default behavior, ignore unknown content. 2776 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2777 if (Record.size() < 1) 2778 return Error("Invalid record"); 2779 // Only version #0 and #1 are supported so far. 2780 unsigned module_version = Record[0]; 2781 switch (module_version) { 2782 default: 2783 return Error("Invalid value"); 2784 case 0: 2785 UseRelativeIDs = false; 2786 break; 2787 case 1: 2788 UseRelativeIDs = true; 2789 break; 2790 } 2791 break; 2792 } 2793 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2794 std::string S; 2795 if (ConvertToString(Record, 0, S)) 2796 return Error("Invalid record"); 2797 TheModule->setTargetTriple(S); 2798 break; 2799 } 2800 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2801 std::string S; 2802 if (ConvertToString(Record, 0, S)) 2803 return Error("Invalid record"); 2804 TheModule->setDataLayout(S); 2805 break; 2806 } 2807 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2808 std::string S; 2809 if (ConvertToString(Record, 0, S)) 2810 return Error("Invalid record"); 2811 TheModule->setModuleInlineAsm(S); 2812 break; 2813 } 2814 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2815 // FIXME: Remove in 4.0. 2816 std::string S; 2817 if (ConvertToString(Record, 0, S)) 2818 return Error("Invalid record"); 2819 // Ignore value. 2820 break; 2821 } 2822 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2823 std::string S; 2824 if (ConvertToString(Record, 0, S)) 2825 return Error("Invalid record"); 2826 SectionTable.push_back(S); 2827 break; 2828 } 2829 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2830 std::string S; 2831 if (ConvertToString(Record, 0, S)) 2832 return Error("Invalid record"); 2833 GCTable.push_back(S); 2834 break; 2835 } 2836 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2837 if (Record.size() < 2) 2838 return Error("Invalid record"); 2839 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2840 unsigned ComdatNameSize = Record[1]; 2841 std::string ComdatName; 2842 ComdatName.reserve(ComdatNameSize); 2843 for (unsigned i = 0; i != ComdatNameSize; ++i) 2844 ComdatName += (char)Record[2 + i]; 2845 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2846 C->setSelectionKind(SK); 2847 ComdatList.push_back(C); 2848 break; 2849 } 2850 // GLOBALVAR: [pointer type, isconst, initid, 2851 // linkage, alignment, section, visibility, threadlocal, 2852 // unnamed_addr, externally_initialized, dllstorageclass, 2853 // comdat] 2854 case bitc::MODULE_CODE_GLOBALVAR: { 2855 if (Record.size() < 6) 2856 return Error("Invalid record"); 2857 Type *Ty = getTypeByID(Record[0]); 2858 if (!Ty) 2859 return Error("Invalid record"); 2860 if (!Ty->isPointerTy()) 2861 return Error("Invalid type for value"); 2862 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2863 Ty = cast<PointerType>(Ty)->getElementType(); 2864 2865 bool isConstant = Record[1]; 2866 uint64_t RawLinkage = Record[3]; 2867 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2868 unsigned Alignment; 2869 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2870 return EC; 2871 std::string Section; 2872 if (Record[5]) { 2873 if (Record[5]-1 >= SectionTable.size()) 2874 return Error("Invalid ID"); 2875 Section = SectionTable[Record[5]-1]; 2876 } 2877 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2878 // Local linkage must have default visibility. 2879 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2880 // FIXME: Change to an error if non-default in 4.0. 2881 Visibility = GetDecodedVisibility(Record[6]); 2882 2883 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2884 if (Record.size() > 7) 2885 TLM = GetDecodedThreadLocalMode(Record[7]); 2886 2887 bool UnnamedAddr = false; 2888 if (Record.size() > 8) 2889 UnnamedAddr = Record[8]; 2890 2891 bool ExternallyInitialized = false; 2892 if (Record.size() > 9) 2893 ExternallyInitialized = Record[9]; 2894 2895 GlobalVariable *NewGV = 2896 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2897 TLM, AddressSpace, ExternallyInitialized); 2898 NewGV->setAlignment(Alignment); 2899 if (!Section.empty()) 2900 NewGV->setSection(Section); 2901 NewGV->setVisibility(Visibility); 2902 NewGV->setUnnamedAddr(UnnamedAddr); 2903 2904 if (Record.size() > 10) 2905 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2906 else 2907 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2908 2909 ValueList.push_back(NewGV); 2910 2911 // Remember which value to use for the global initializer. 2912 if (unsigned InitID = Record[2]) 2913 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2914 2915 if (Record.size() > 11) { 2916 if (unsigned ComdatID = Record[11]) { 2917 assert(ComdatID <= ComdatList.size()); 2918 NewGV->setComdat(ComdatList[ComdatID - 1]); 2919 } 2920 } else if (hasImplicitComdat(RawLinkage)) { 2921 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2922 } 2923 break; 2924 } 2925 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2926 // alignment, section, visibility, gc, unnamed_addr, 2927 // prologuedata, dllstorageclass, comdat, prefixdata] 2928 case bitc::MODULE_CODE_FUNCTION: { 2929 if (Record.size() < 8) 2930 return Error("Invalid record"); 2931 Type *Ty = getTypeByID(Record[0]); 2932 if (!Ty) 2933 return Error("Invalid record"); 2934 if (!Ty->isPointerTy()) 2935 return Error("Invalid type for value"); 2936 FunctionType *FTy = 2937 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2938 if (!FTy) 2939 return Error("Invalid type for value"); 2940 2941 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2942 "", TheModule); 2943 2944 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2945 bool isProto = Record[2]; 2946 uint64_t RawLinkage = Record[3]; 2947 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2948 Func->setAttributes(getAttributes(Record[4])); 2949 2950 unsigned Alignment; 2951 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2952 return EC; 2953 Func->setAlignment(Alignment); 2954 if (Record[6]) { 2955 if (Record[6]-1 >= SectionTable.size()) 2956 return Error("Invalid ID"); 2957 Func->setSection(SectionTable[Record[6]-1]); 2958 } 2959 // Local linkage must have default visibility. 2960 if (!Func->hasLocalLinkage()) 2961 // FIXME: Change to an error if non-default in 4.0. 2962 Func->setVisibility(GetDecodedVisibility(Record[7])); 2963 if (Record.size() > 8 && Record[8]) { 2964 if (Record[8]-1 > GCTable.size()) 2965 return Error("Invalid ID"); 2966 Func->setGC(GCTable[Record[8]-1].c_str()); 2967 } 2968 bool UnnamedAddr = false; 2969 if (Record.size() > 9) 2970 UnnamedAddr = Record[9]; 2971 Func->setUnnamedAddr(UnnamedAddr); 2972 if (Record.size() > 10 && Record[10] != 0) 2973 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2974 2975 if (Record.size() > 11) 2976 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2977 else 2978 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2979 2980 if (Record.size() > 12) { 2981 if (unsigned ComdatID = Record[12]) { 2982 assert(ComdatID <= ComdatList.size()); 2983 Func->setComdat(ComdatList[ComdatID - 1]); 2984 } 2985 } else if (hasImplicitComdat(RawLinkage)) { 2986 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2987 } 2988 2989 if (Record.size() > 13 && Record[13] != 0) 2990 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2991 2992 ValueList.push_back(Func); 2993 2994 // If this is a function with a body, remember the prototype we are 2995 // creating now, so that we can match up the body with them later. 2996 if (!isProto) { 2997 Func->setIsMaterializable(true); 2998 FunctionsWithBodies.push_back(Func); 2999 if (LazyStreamer) 3000 DeferredFunctionInfo[Func] = 0; 3001 } 3002 break; 3003 } 3004 // ALIAS: [alias type, aliasee val#, linkage] 3005 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3006 case bitc::MODULE_CODE_ALIAS: { 3007 if (Record.size() < 3) 3008 return Error("Invalid record"); 3009 Type *Ty = getTypeByID(Record[0]); 3010 if (!Ty) 3011 return Error("Invalid record"); 3012 auto *PTy = dyn_cast<PointerType>(Ty); 3013 if (!PTy) 3014 return Error("Invalid type for value"); 3015 3016 auto *NewGA = 3017 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 3018 getDecodedLinkage(Record[2]), "", TheModule); 3019 // Old bitcode files didn't have visibility field. 3020 // Local linkage must have default visibility. 3021 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3022 // FIXME: Change to an error if non-default in 4.0. 3023 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3024 if (Record.size() > 4) 3025 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3026 else 3027 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3028 if (Record.size() > 5) 3029 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3030 if (Record.size() > 6) 3031 NewGA->setUnnamedAddr(Record[6]); 3032 ValueList.push_back(NewGA); 3033 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3034 break; 3035 } 3036 /// MODULE_CODE_PURGEVALS: [numvals] 3037 case bitc::MODULE_CODE_PURGEVALS: 3038 // Trim down the value list to the specified size. 3039 if (Record.size() < 1 || Record[0] > ValueList.size()) 3040 return Error("Invalid record"); 3041 ValueList.shrinkTo(Record[0]); 3042 break; 3043 } 3044 Record.clear(); 3045 } 3046 } 3047 3048 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3049 bool ShouldLazyLoadMetadata) { 3050 TheModule = nullptr; 3051 3052 if (std::error_code EC = InitStream()) 3053 return EC; 3054 3055 // Sniff for the signature. 3056 if (Stream.Read(8) != 'B' || 3057 Stream.Read(8) != 'C' || 3058 Stream.Read(4) != 0x0 || 3059 Stream.Read(4) != 0xC || 3060 Stream.Read(4) != 0xE || 3061 Stream.Read(4) != 0xD) 3062 return Error("Invalid bitcode signature"); 3063 3064 // We expect a number of well-defined blocks, though we don't necessarily 3065 // need to understand them all. 3066 while (1) { 3067 if (Stream.AtEndOfStream()) { 3068 if (TheModule) 3069 return std::error_code(); 3070 // We didn't really read a proper Module. 3071 return Error("Malformed IR file"); 3072 } 3073 3074 BitstreamEntry Entry = 3075 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3076 3077 switch (Entry.Kind) { 3078 case BitstreamEntry::Error: 3079 return Error("Malformed block"); 3080 case BitstreamEntry::EndBlock: 3081 return std::error_code(); 3082 3083 case BitstreamEntry::SubBlock: 3084 switch (Entry.ID) { 3085 case bitc::BLOCKINFO_BLOCK_ID: 3086 if (Stream.ReadBlockInfoBlock()) 3087 return Error("Malformed block"); 3088 break; 3089 case bitc::MODULE_BLOCK_ID: 3090 // Reject multiple MODULE_BLOCK's in a single bitstream. 3091 if (TheModule) 3092 return Error("Invalid multiple blocks"); 3093 TheModule = M; 3094 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3095 return EC; 3096 if (LazyStreamer) 3097 return std::error_code(); 3098 break; 3099 default: 3100 if (Stream.SkipBlock()) 3101 return Error("Invalid record"); 3102 break; 3103 } 3104 continue; 3105 case BitstreamEntry::Record: 3106 // There should be no records in the top-level of blocks. 3107 3108 // The ranlib in Xcode 4 will align archive members by appending newlines 3109 // to the end of them. If this file size is a multiple of 4 but not 8, we 3110 // have to read and ignore these final 4 bytes :-( 3111 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3112 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3113 Stream.AtEndOfStream()) 3114 return std::error_code(); 3115 3116 return Error("Invalid record"); 3117 } 3118 } 3119 } 3120 3121 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3122 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3123 return Error("Invalid record"); 3124 3125 SmallVector<uint64_t, 64> Record; 3126 3127 std::string Triple; 3128 // Read all the records for this module. 3129 while (1) { 3130 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3131 3132 switch (Entry.Kind) { 3133 case BitstreamEntry::SubBlock: // Handled for us already. 3134 case BitstreamEntry::Error: 3135 return Error("Malformed block"); 3136 case BitstreamEntry::EndBlock: 3137 return Triple; 3138 case BitstreamEntry::Record: 3139 // The interesting case. 3140 break; 3141 } 3142 3143 // Read a record. 3144 switch (Stream.readRecord(Entry.ID, Record)) { 3145 default: break; // Default behavior, ignore unknown content. 3146 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3147 std::string S; 3148 if (ConvertToString(Record, 0, S)) 3149 return Error("Invalid record"); 3150 Triple = S; 3151 break; 3152 } 3153 } 3154 Record.clear(); 3155 } 3156 llvm_unreachable("Exit infinite loop"); 3157 } 3158 3159 ErrorOr<std::string> BitcodeReader::parseTriple() { 3160 if (std::error_code EC = InitStream()) 3161 return EC; 3162 3163 // Sniff for the signature. 3164 if (Stream.Read(8) != 'B' || 3165 Stream.Read(8) != 'C' || 3166 Stream.Read(4) != 0x0 || 3167 Stream.Read(4) != 0xC || 3168 Stream.Read(4) != 0xE || 3169 Stream.Read(4) != 0xD) 3170 return Error("Invalid bitcode signature"); 3171 3172 // We expect a number of well-defined blocks, though we don't necessarily 3173 // need to understand them all. 3174 while (1) { 3175 BitstreamEntry Entry = Stream.advance(); 3176 3177 switch (Entry.Kind) { 3178 case BitstreamEntry::Error: 3179 return Error("Malformed block"); 3180 case BitstreamEntry::EndBlock: 3181 return std::error_code(); 3182 3183 case BitstreamEntry::SubBlock: 3184 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3185 return parseModuleTriple(); 3186 3187 // Ignore other sub-blocks. 3188 if (Stream.SkipBlock()) 3189 return Error("Malformed block"); 3190 continue; 3191 3192 case BitstreamEntry::Record: 3193 Stream.skipRecord(Entry.ID); 3194 continue; 3195 } 3196 } 3197 } 3198 3199 /// ParseMetadataAttachment - Parse metadata attachments. 3200 std::error_code BitcodeReader::ParseMetadataAttachment() { 3201 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3202 return Error("Invalid record"); 3203 3204 SmallVector<uint64_t, 64> Record; 3205 while (1) { 3206 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3207 3208 switch (Entry.Kind) { 3209 case BitstreamEntry::SubBlock: // Handled for us already. 3210 case BitstreamEntry::Error: 3211 return Error("Malformed block"); 3212 case BitstreamEntry::EndBlock: 3213 return std::error_code(); 3214 case BitstreamEntry::Record: 3215 // The interesting case. 3216 break; 3217 } 3218 3219 // Read a metadata attachment record. 3220 Record.clear(); 3221 switch (Stream.readRecord(Entry.ID, Record)) { 3222 default: // Default behavior: ignore. 3223 break; 3224 case bitc::METADATA_ATTACHMENT: { 3225 unsigned RecordLength = Record.size(); 3226 if (Record.empty() || (RecordLength - 1) % 2 == 1) 3227 return Error("Invalid record"); 3228 Instruction *Inst = InstructionList[Record[0]]; 3229 for (unsigned i = 1; i != RecordLength; i = i+2) { 3230 unsigned Kind = Record[i]; 3231 DenseMap<unsigned, unsigned>::iterator I = 3232 MDKindMap.find(Kind); 3233 if (I == MDKindMap.end()) 3234 return Error("Invalid ID"); 3235 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3236 if (isa<LocalAsMetadata>(Node)) 3237 // Drop the attachment. This used to be legal, but there's no 3238 // upgrade path. 3239 break; 3240 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3241 if (I->second == LLVMContext::MD_tbaa) 3242 InstsWithTBAATag.push_back(Inst); 3243 } 3244 break; 3245 } 3246 } 3247 } 3248 } 3249 3250 /// ParseFunctionBody - Lazily parse the specified function body block. 3251 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3252 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3253 return Error("Invalid record"); 3254 3255 InstructionList.clear(); 3256 unsigned ModuleValueListSize = ValueList.size(); 3257 unsigned ModuleMDValueListSize = MDValueList.size(); 3258 3259 // Add all the function arguments to the value table. 3260 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3261 ValueList.push_back(I); 3262 3263 unsigned NextValueNo = ValueList.size(); 3264 BasicBlock *CurBB = nullptr; 3265 unsigned CurBBNo = 0; 3266 3267 DebugLoc LastLoc; 3268 auto getLastInstruction = [&]() -> Instruction * { 3269 if (CurBB && !CurBB->empty()) 3270 return &CurBB->back(); 3271 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3272 !FunctionBBs[CurBBNo - 1]->empty()) 3273 return &FunctionBBs[CurBBNo - 1]->back(); 3274 return nullptr; 3275 }; 3276 3277 // Read all the records. 3278 SmallVector<uint64_t, 64> Record; 3279 while (1) { 3280 BitstreamEntry Entry = Stream.advance(); 3281 3282 switch (Entry.Kind) { 3283 case BitstreamEntry::Error: 3284 return Error("Malformed block"); 3285 case BitstreamEntry::EndBlock: 3286 goto OutOfRecordLoop; 3287 3288 case BitstreamEntry::SubBlock: 3289 switch (Entry.ID) { 3290 default: // Skip unknown content. 3291 if (Stream.SkipBlock()) 3292 return Error("Invalid record"); 3293 break; 3294 case bitc::CONSTANTS_BLOCK_ID: 3295 if (std::error_code EC = ParseConstants()) 3296 return EC; 3297 NextValueNo = ValueList.size(); 3298 break; 3299 case bitc::VALUE_SYMTAB_BLOCK_ID: 3300 if (std::error_code EC = ParseValueSymbolTable()) 3301 return EC; 3302 break; 3303 case bitc::METADATA_ATTACHMENT_ID: 3304 if (std::error_code EC = ParseMetadataAttachment()) 3305 return EC; 3306 break; 3307 case bitc::METADATA_BLOCK_ID: 3308 if (std::error_code EC = ParseMetadata()) 3309 return EC; 3310 break; 3311 case bitc::USELIST_BLOCK_ID: 3312 if (std::error_code EC = ParseUseLists()) 3313 return EC; 3314 break; 3315 } 3316 continue; 3317 3318 case BitstreamEntry::Record: 3319 // The interesting case. 3320 break; 3321 } 3322 3323 // Read a record. 3324 Record.clear(); 3325 Instruction *I = nullptr; 3326 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3327 switch (BitCode) { 3328 default: // Default behavior: reject 3329 return Error("Invalid value"); 3330 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3331 if (Record.size() < 1 || Record[0] == 0) 3332 return Error("Invalid record"); 3333 // Create all the basic blocks for the function. 3334 FunctionBBs.resize(Record[0]); 3335 3336 // See if anything took the address of blocks in this function. 3337 auto BBFRI = BasicBlockFwdRefs.find(F); 3338 if (BBFRI == BasicBlockFwdRefs.end()) { 3339 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3340 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3341 } else { 3342 auto &BBRefs = BBFRI->second; 3343 // Check for invalid basic block references. 3344 if (BBRefs.size() > FunctionBBs.size()) 3345 return Error("Invalid ID"); 3346 assert(!BBRefs.empty() && "Unexpected empty array"); 3347 assert(!BBRefs.front() && "Invalid reference to entry block"); 3348 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3349 ++I) 3350 if (I < RE && BBRefs[I]) { 3351 BBRefs[I]->insertInto(F); 3352 FunctionBBs[I] = BBRefs[I]; 3353 } else { 3354 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3355 } 3356 3357 // Erase from the table. 3358 BasicBlockFwdRefs.erase(BBFRI); 3359 } 3360 3361 CurBB = FunctionBBs[0]; 3362 continue; 3363 } 3364 3365 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3366 // This record indicates that the last instruction is at the same 3367 // location as the previous instruction with a location. 3368 I = getLastInstruction(); 3369 3370 if (!I) 3371 return Error("Invalid record"); 3372 I->setDebugLoc(LastLoc); 3373 I = nullptr; 3374 continue; 3375 3376 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3377 I = getLastInstruction(); 3378 if (!I || Record.size() < 4) 3379 return Error("Invalid record"); 3380 3381 unsigned Line = Record[0], Col = Record[1]; 3382 unsigned ScopeID = Record[2], IAID = Record[3]; 3383 3384 MDNode *Scope = nullptr, *IA = nullptr; 3385 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3386 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3387 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3388 I->setDebugLoc(LastLoc); 3389 I = nullptr; 3390 continue; 3391 } 3392 3393 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3394 unsigned OpNum = 0; 3395 Value *LHS, *RHS; 3396 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3397 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3398 OpNum+1 > Record.size()) 3399 return Error("Invalid record"); 3400 3401 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3402 if (Opc == -1) 3403 return Error("Invalid record"); 3404 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3405 InstructionList.push_back(I); 3406 if (OpNum < Record.size()) { 3407 if (Opc == Instruction::Add || 3408 Opc == Instruction::Sub || 3409 Opc == Instruction::Mul || 3410 Opc == Instruction::Shl) { 3411 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3412 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3413 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3414 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3415 } else if (Opc == Instruction::SDiv || 3416 Opc == Instruction::UDiv || 3417 Opc == Instruction::LShr || 3418 Opc == Instruction::AShr) { 3419 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3420 cast<BinaryOperator>(I)->setIsExact(true); 3421 } else if (isa<FPMathOperator>(I)) { 3422 FastMathFlags FMF; 3423 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3424 FMF.setUnsafeAlgebra(); 3425 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3426 FMF.setNoNaNs(); 3427 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3428 FMF.setNoInfs(); 3429 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3430 FMF.setNoSignedZeros(); 3431 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3432 FMF.setAllowReciprocal(); 3433 if (FMF.any()) 3434 I->setFastMathFlags(FMF); 3435 } 3436 3437 } 3438 break; 3439 } 3440 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3441 unsigned OpNum = 0; 3442 Value *Op; 3443 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3444 OpNum+2 != Record.size()) 3445 return Error("Invalid record"); 3446 3447 Type *ResTy = getTypeByID(Record[OpNum]); 3448 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3449 if (Opc == -1 || !ResTy) 3450 return Error("Invalid record"); 3451 Instruction *Temp = nullptr; 3452 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3453 if (Temp) { 3454 InstructionList.push_back(Temp); 3455 CurBB->getInstList().push_back(Temp); 3456 } 3457 } else { 3458 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3459 } 3460 InstructionList.push_back(I); 3461 break; 3462 } 3463 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3464 case bitc::FUNC_CODE_INST_GEP_OLD: 3465 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3466 unsigned OpNum = 0; 3467 3468 Type *Ty; 3469 bool InBounds; 3470 3471 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3472 InBounds = Record[OpNum++]; 3473 Ty = getTypeByID(Record[OpNum++]); 3474 } else { 3475 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3476 Ty = nullptr; 3477 } 3478 3479 Value *BasePtr; 3480 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3481 return Error("Invalid record"); 3482 3483 if (Ty && 3484 Ty != 3485 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3486 ->getElementType()) 3487 return Error( 3488 "Explicit gep type does not match pointee type of pointer operand"); 3489 3490 SmallVector<Value*, 16> GEPIdx; 3491 while (OpNum != Record.size()) { 3492 Value *Op; 3493 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3494 return Error("Invalid record"); 3495 GEPIdx.push_back(Op); 3496 } 3497 3498 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3499 3500 InstructionList.push_back(I); 3501 if (InBounds) 3502 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3503 break; 3504 } 3505 3506 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3507 // EXTRACTVAL: [opty, opval, n x indices] 3508 unsigned OpNum = 0; 3509 Value *Agg; 3510 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3511 return Error("Invalid record"); 3512 3513 SmallVector<unsigned, 4> EXTRACTVALIdx; 3514 Type *CurTy = Agg->getType(); 3515 for (unsigned RecSize = Record.size(); 3516 OpNum != RecSize; ++OpNum) { 3517 bool IsArray = CurTy->isArrayTy(); 3518 bool IsStruct = CurTy->isStructTy(); 3519 uint64_t Index = Record[OpNum]; 3520 3521 if (!IsStruct && !IsArray) 3522 return Error("EXTRACTVAL: Invalid type"); 3523 if ((unsigned)Index != Index) 3524 return Error("Invalid value"); 3525 if (IsStruct && Index >= CurTy->subtypes().size()) 3526 return Error("EXTRACTVAL: Invalid struct index"); 3527 if (IsArray && Index >= CurTy->getArrayNumElements()) 3528 return Error("EXTRACTVAL: Invalid array index"); 3529 EXTRACTVALIdx.push_back((unsigned)Index); 3530 3531 if (IsStruct) 3532 CurTy = CurTy->subtypes()[Index]; 3533 else 3534 CurTy = CurTy->subtypes()[0]; 3535 } 3536 3537 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3538 InstructionList.push_back(I); 3539 break; 3540 } 3541 3542 case bitc::FUNC_CODE_INST_INSERTVAL: { 3543 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3544 unsigned OpNum = 0; 3545 Value *Agg; 3546 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3547 return Error("Invalid record"); 3548 Value *Val; 3549 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3550 return Error("Invalid record"); 3551 3552 SmallVector<unsigned, 4> INSERTVALIdx; 3553 Type *CurTy = Agg->getType(); 3554 for (unsigned RecSize = Record.size(); 3555 OpNum != RecSize; ++OpNum) { 3556 bool IsArray = CurTy->isArrayTy(); 3557 bool IsStruct = CurTy->isStructTy(); 3558 uint64_t Index = Record[OpNum]; 3559 3560 if (!IsStruct && !IsArray) 3561 return Error("INSERTVAL: Invalid type"); 3562 if (!CurTy->isStructTy() && !CurTy->isArrayTy()) 3563 return Error("Invalid type"); 3564 if ((unsigned)Index != Index) 3565 return Error("Invalid value"); 3566 if (IsStruct && Index >= CurTy->subtypes().size()) 3567 return Error("INSERTVAL: Invalid struct index"); 3568 if (IsArray && Index >= CurTy->getArrayNumElements()) 3569 return Error("INSERTVAL: Invalid array index"); 3570 3571 INSERTVALIdx.push_back((unsigned)Index); 3572 if (IsStruct) 3573 CurTy = CurTy->subtypes()[Index]; 3574 else 3575 CurTy = CurTy->subtypes()[0]; 3576 } 3577 3578 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3579 InstructionList.push_back(I); 3580 break; 3581 } 3582 3583 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3584 // obsolete form of select 3585 // handles select i1 ... in old bitcode 3586 unsigned OpNum = 0; 3587 Value *TrueVal, *FalseVal, *Cond; 3588 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3589 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3590 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3591 return Error("Invalid record"); 3592 3593 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3594 InstructionList.push_back(I); 3595 break; 3596 } 3597 3598 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3599 // new form of select 3600 // handles select i1 or select [N x i1] 3601 unsigned OpNum = 0; 3602 Value *TrueVal, *FalseVal, *Cond; 3603 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3604 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3605 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3606 return Error("Invalid record"); 3607 3608 // select condition can be either i1 or [N x i1] 3609 if (VectorType* vector_type = 3610 dyn_cast<VectorType>(Cond->getType())) { 3611 // expect <n x i1> 3612 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3613 return Error("Invalid type for value"); 3614 } else { 3615 // expect i1 3616 if (Cond->getType() != Type::getInt1Ty(Context)) 3617 return Error("Invalid type for value"); 3618 } 3619 3620 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3621 InstructionList.push_back(I); 3622 break; 3623 } 3624 3625 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3626 unsigned OpNum = 0; 3627 Value *Vec, *Idx; 3628 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3629 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3630 return Error("Invalid record"); 3631 I = ExtractElementInst::Create(Vec, Idx); 3632 InstructionList.push_back(I); 3633 break; 3634 } 3635 3636 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3637 unsigned OpNum = 0; 3638 Value *Vec, *Elt, *Idx; 3639 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3640 popValue(Record, OpNum, NextValueNo, 3641 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3642 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3643 return Error("Invalid record"); 3644 I = InsertElementInst::Create(Vec, Elt, Idx); 3645 InstructionList.push_back(I); 3646 break; 3647 } 3648 3649 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3650 unsigned OpNum = 0; 3651 Value *Vec1, *Vec2, *Mask; 3652 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3653 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3654 return Error("Invalid record"); 3655 3656 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3657 return Error("Invalid record"); 3658 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3659 InstructionList.push_back(I); 3660 break; 3661 } 3662 3663 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3664 // Old form of ICmp/FCmp returning bool 3665 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3666 // both legal on vectors but had different behaviour. 3667 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3668 // FCmp/ICmp returning bool or vector of bool 3669 3670 unsigned OpNum = 0; 3671 Value *LHS, *RHS; 3672 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3673 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3674 OpNum+1 != Record.size()) 3675 return Error("Invalid record"); 3676 3677 if (LHS->getType()->isFPOrFPVectorTy()) 3678 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3679 else 3680 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3681 InstructionList.push_back(I); 3682 break; 3683 } 3684 3685 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3686 { 3687 unsigned Size = Record.size(); 3688 if (Size == 0) { 3689 I = ReturnInst::Create(Context); 3690 InstructionList.push_back(I); 3691 break; 3692 } 3693 3694 unsigned OpNum = 0; 3695 Value *Op = nullptr; 3696 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3697 return Error("Invalid record"); 3698 if (OpNum != Record.size()) 3699 return Error("Invalid record"); 3700 3701 I = ReturnInst::Create(Context, Op); 3702 InstructionList.push_back(I); 3703 break; 3704 } 3705 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3706 if (Record.size() != 1 && Record.size() != 3) 3707 return Error("Invalid record"); 3708 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3709 if (!TrueDest) 3710 return Error("Invalid record"); 3711 3712 if (Record.size() == 1) { 3713 I = BranchInst::Create(TrueDest); 3714 InstructionList.push_back(I); 3715 } 3716 else { 3717 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3718 Value *Cond = getValue(Record, 2, NextValueNo, 3719 Type::getInt1Ty(Context)); 3720 if (!FalseDest || !Cond) 3721 return Error("Invalid record"); 3722 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3723 InstructionList.push_back(I); 3724 } 3725 break; 3726 } 3727 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3728 // Check magic 3729 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3730 // "New" SwitchInst format with case ranges. The changes to write this 3731 // format were reverted but we still recognize bitcode that uses it. 3732 // Hopefully someday we will have support for case ranges and can use 3733 // this format again. 3734 3735 Type *OpTy = getTypeByID(Record[1]); 3736 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3737 3738 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3739 BasicBlock *Default = getBasicBlock(Record[3]); 3740 if (!OpTy || !Cond || !Default) 3741 return Error("Invalid record"); 3742 3743 unsigned NumCases = Record[4]; 3744 3745 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3746 InstructionList.push_back(SI); 3747 3748 unsigned CurIdx = 5; 3749 for (unsigned i = 0; i != NumCases; ++i) { 3750 SmallVector<ConstantInt*, 1> CaseVals; 3751 unsigned NumItems = Record[CurIdx++]; 3752 for (unsigned ci = 0; ci != NumItems; ++ci) { 3753 bool isSingleNumber = Record[CurIdx++]; 3754 3755 APInt Low; 3756 unsigned ActiveWords = 1; 3757 if (ValueBitWidth > 64) 3758 ActiveWords = Record[CurIdx++]; 3759 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3760 ValueBitWidth); 3761 CurIdx += ActiveWords; 3762 3763 if (!isSingleNumber) { 3764 ActiveWords = 1; 3765 if (ValueBitWidth > 64) 3766 ActiveWords = Record[CurIdx++]; 3767 APInt High = 3768 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3769 ValueBitWidth); 3770 CurIdx += ActiveWords; 3771 3772 // FIXME: It is not clear whether values in the range should be 3773 // compared as signed or unsigned values. The partially 3774 // implemented changes that used this format in the past used 3775 // unsigned comparisons. 3776 for ( ; Low.ule(High); ++Low) 3777 CaseVals.push_back(ConstantInt::get(Context, Low)); 3778 } else 3779 CaseVals.push_back(ConstantInt::get(Context, Low)); 3780 } 3781 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3782 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3783 cve = CaseVals.end(); cvi != cve; ++cvi) 3784 SI->addCase(*cvi, DestBB); 3785 } 3786 I = SI; 3787 break; 3788 } 3789 3790 // Old SwitchInst format without case ranges. 3791 3792 if (Record.size() < 3 || (Record.size() & 1) == 0) 3793 return Error("Invalid record"); 3794 Type *OpTy = getTypeByID(Record[0]); 3795 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3796 BasicBlock *Default = getBasicBlock(Record[2]); 3797 if (!OpTy || !Cond || !Default) 3798 return Error("Invalid record"); 3799 unsigned NumCases = (Record.size()-3)/2; 3800 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3801 InstructionList.push_back(SI); 3802 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3803 ConstantInt *CaseVal = 3804 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3805 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3806 if (!CaseVal || !DestBB) { 3807 delete SI; 3808 return Error("Invalid record"); 3809 } 3810 SI->addCase(CaseVal, DestBB); 3811 } 3812 I = SI; 3813 break; 3814 } 3815 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3816 if (Record.size() < 2) 3817 return Error("Invalid record"); 3818 Type *OpTy = getTypeByID(Record[0]); 3819 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3820 if (!OpTy || !Address) 3821 return Error("Invalid record"); 3822 unsigned NumDests = Record.size()-2; 3823 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3824 InstructionList.push_back(IBI); 3825 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3826 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3827 IBI->addDestination(DestBB); 3828 } else { 3829 delete IBI; 3830 return Error("Invalid record"); 3831 } 3832 } 3833 I = IBI; 3834 break; 3835 } 3836 3837 case bitc::FUNC_CODE_INST_INVOKE: { 3838 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3839 if (Record.size() < 4) 3840 return Error("Invalid record"); 3841 AttributeSet PAL = getAttributes(Record[0]); 3842 unsigned CCInfo = Record[1]; 3843 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3844 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3845 3846 unsigned OpNum = 4; 3847 Value *Callee; 3848 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3849 return Error("Invalid record"); 3850 3851 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3852 FunctionType *FTy = !CalleeTy ? nullptr : 3853 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3854 3855 // Check that the right number of fixed parameters are here. 3856 if (!FTy || !NormalBB || !UnwindBB || 3857 Record.size() < OpNum+FTy->getNumParams()) 3858 return Error("Invalid record"); 3859 3860 SmallVector<Value*, 16> Ops; 3861 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3862 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3863 FTy->getParamType(i))); 3864 if (!Ops.back()) 3865 return Error("Invalid record"); 3866 } 3867 3868 if (!FTy->isVarArg()) { 3869 if (Record.size() != OpNum) 3870 return Error("Invalid record"); 3871 } else { 3872 // Read type/value pairs for varargs params. 3873 while (OpNum != Record.size()) { 3874 Value *Op; 3875 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3876 return Error("Invalid record"); 3877 Ops.push_back(Op); 3878 } 3879 } 3880 3881 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3882 InstructionList.push_back(I); 3883 cast<InvokeInst>(I)->setCallingConv( 3884 static_cast<CallingConv::ID>(CCInfo)); 3885 cast<InvokeInst>(I)->setAttributes(PAL); 3886 break; 3887 } 3888 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3889 unsigned Idx = 0; 3890 Value *Val = nullptr; 3891 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3892 return Error("Invalid record"); 3893 I = ResumeInst::Create(Val); 3894 InstructionList.push_back(I); 3895 break; 3896 } 3897 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3898 I = new UnreachableInst(Context); 3899 InstructionList.push_back(I); 3900 break; 3901 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3902 if (Record.size() < 1 || ((Record.size()-1)&1)) 3903 return Error("Invalid record"); 3904 Type *Ty = getTypeByID(Record[0]); 3905 if (!Ty) 3906 return Error("Invalid record"); 3907 3908 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3909 InstructionList.push_back(PN); 3910 3911 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3912 Value *V; 3913 // With the new function encoding, it is possible that operands have 3914 // negative IDs (for forward references). Use a signed VBR 3915 // representation to keep the encoding small. 3916 if (UseRelativeIDs) 3917 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3918 else 3919 V = getValue(Record, 1+i, NextValueNo, Ty); 3920 BasicBlock *BB = getBasicBlock(Record[2+i]); 3921 if (!V || !BB) 3922 return Error("Invalid record"); 3923 PN->addIncoming(V, BB); 3924 } 3925 I = PN; 3926 break; 3927 } 3928 3929 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3930 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3931 unsigned Idx = 0; 3932 if (Record.size() < 4) 3933 return Error("Invalid record"); 3934 Type *Ty = getTypeByID(Record[Idx++]); 3935 if (!Ty) 3936 return Error("Invalid record"); 3937 Value *PersFn = nullptr; 3938 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3939 return Error("Invalid record"); 3940 3941 bool IsCleanup = !!Record[Idx++]; 3942 unsigned NumClauses = Record[Idx++]; 3943 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3944 LP->setCleanup(IsCleanup); 3945 for (unsigned J = 0; J != NumClauses; ++J) { 3946 LandingPadInst::ClauseType CT = 3947 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3948 Value *Val; 3949 3950 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3951 delete LP; 3952 return Error("Invalid record"); 3953 } 3954 3955 assert((CT != LandingPadInst::Catch || 3956 !isa<ArrayType>(Val->getType())) && 3957 "Catch clause has a invalid type!"); 3958 assert((CT != LandingPadInst::Filter || 3959 isa<ArrayType>(Val->getType())) && 3960 "Filter clause has invalid type!"); 3961 LP->addClause(cast<Constant>(Val)); 3962 } 3963 3964 I = LP; 3965 InstructionList.push_back(I); 3966 break; 3967 } 3968 3969 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3970 if (Record.size() != 4) 3971 return Error("Invalid record"); 3972 PointerType *Ty = 3973 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3974 Type *OpTy = getTypeByID(Record[1]); 3975 Value *Size = getFnValueByID(Record[2], OpTy); 3976 uint64_t AlignRecord = Record[3]; 3977 const uint64_t InAllocaMask = uint64_t(1) << 5; 3978 bool InAlloca = AlignRecord & InAllocaMask; 3979 unsigned Align; 3980 if (std::error_code EC = 3981 parseAlignmentValue(AlignRecord & ~InAllocaMask, Align)) { 3982 return EC; 3983 } 3984 if (!Ty || !Size) 3985 return Error("Invalid record"); 3986 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, Align); 3987 AI->setUsedWithInAlloca(InAlloca); 3988 I = AI; 3989 InstructionList.push_back(I); 3990 break; 3991 } 3992 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3993 unsigned OpNum = 0; 3994 Value *Op; 3995 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3996 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 3997 return Error("Invalid record"); 3998 3999 Type *Ty = nullptr; 4000 if (OpNum + 3 == Record.size()) 4001 Ty = getTypeByID(Record[OpNum++]); 4002 4003 unsigned Align; 4004 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4005 return EC; 4006 I = new LoadInst(Op, "", Record[OpNum+1], Align); 4007 4008 if (Ty && Ty != I->getType()) 4009 return Error("Explicit load type does not match pointee type of " 4010 "pointer operand"); 4011 4012 InstructionList.push_back(I); 4013 break; 4014 } 4015 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4016 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4017 unsigned OpNum = 0; 4018 Value *Op; 4019 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4020 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4021 return Error("Invalid record"); 4022 4023 Type *Ty = nullptr; 4024 if (OpNum + 5 == Record.size()) 4025 Ty = getTypeByID(Record[OpNum++]); 4026 4027 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4028 if (Ordering == NotAtomic || Ordering == Release || 4029 Ordering == AcquireRelease) 4030 return Error("Invalid record"); 4031 if (Ordering != NotAtomic && Record[OpNum] == 0) 4032 return Error("Invalid record"); 4033 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4034 4035 unsigned Align; 4036 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4037 return EC; 4038 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4039 4040 (void)Ty; 4041 assert((!Ty || Ty == I->getType()) && 4042 "Explicit type doesn't match pointee type of the first operand"); 4043 4044 InstructionList.push_back(I); 4045 break; 4046 } 4047 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 4048 unsigned OpNum = 0; 4049 Value *Val, *Ptr; 4050 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4051 popValue(Record, OpNum, NextValueNo, 4052 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4053 OpNum+2 != Record.size()) 4054 return Error("Invalid record"); 4055 unsigned Align; 4056 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4057 return EC; 4058 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4059 InstructionList.push_back(I); 4060 break; 4061 } 4062 case bitc::FUNC_CODE_INST_STOREATOMIC: { 4063 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4064 unsigned OpNum = 0; 4065 Value *Val, *Ptr; 4066 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4067 popValue(Record, OpNum, NextValueNo, 4068 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4069 OpNum+4 != Record.size()) 4070 return Error("Invalid record"); 4071 4072 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4073 if (Ordering == NotAtomic || Ordering == Acquire || 4074 Ordering == AcquireRelease) 4075 return Error("Invalid record"); 4076 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4077 if (Ordering != NotAtomic && Record[OpNum] == 0) 4078 return Error("Invalid record"); 4079 4080 unsigned Align; 4081 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4082 return EC; 4083 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4084 InstructionList.push_back(I); 4085 break; 4086 } 4087 case bitc::FUNC_CODE_INST_CMPXCHG: { 4088 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4089 // failureordering?, isweak?] 4090 unsigned OpNum = 0; 4091 Value *Ptr, *Cmp, *New; 4092 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4093 popValue(Record, OpNum, NextValueNo, 4094 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 4095 popValue(Record, OpNum, NextValueNo, 4096 cast<PointerType>(Ptr->getType())->getElementType(), New) || 4097 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 4098 return Error("Invalid record"); 4099 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4100 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4101 return Error("Invalid record"); 4102 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4103 4104 AtomicOrdering FailureOrdering; 4105 if (Record.size() < 7) 4106 FailureOrdering = 4107 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4108 else 4109 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4110 4111 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4112 SynchScope); 4113 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4114 4115 if (Record.size() < 8) { 4116 // Before weak cmpxchgs existed, the instruction simply returned the 4117 // value loaded from memory, so bitcode files from that era will be 4118 // expecting the first component of a modern cmpxchg. 4119 CurBB->getInstList().push_back(I); 4120 I = ExtractValueInst::Create(I, 0); 4121 } else { 4122 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4123 } 4124 4125 InstructionList.push_back(I); 4126 break; 4127 } 4128 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4129 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4130 unsigned OpNum = 0; 4131 Value *Ptr, *Val; 4132 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4133 popValue(Record, OpNum, NextValueNo, 4134 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4135 OpNum+4 != Record.size()) 4136 return Error("Invalid record"); 4137 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4138 if (Operation < AtomicRMWInst::FIRST_BINOP || 4139 Operation > AtomicRMWInst::LAST_BINOP) 4140 return Error("Invalid record"); 4141 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4142 if (Ordering == NotAtomic || Ordering == Unordered) 4143 return Error("Invalid record"); 4144 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4145 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4146 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4147 InstructionList.push_back(I); 4148 break; 4149 } 4150 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4151 if (2 != Record.size()) 4152 return Error("Invalid record"); 4153 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4154 if (Ordering == NotAtomic || Ordering == Unordered || 4155 Ordering == Monotonic) 4156 return Error("Invalid record"); 4157 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4158 I = new FenceInst(Context, Ordering, SynchScope); 4159 InstructionList.push_back(I); 4160 break; 4161 } 4162 case bitc::FUNC_CODE_INST_CALL: { 4163 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4164 if (Record.size() < 3) 4165 return Error("Invalid record"); 4166 4167 AttributeSet PAL = getAttributes(Record[0]); 4168 unsigned CCInfo = Record[1]; 4169 4170 unsigned OpNum = 2; 4171 Value *Callee; 4172 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4173 return Error("Invalid record"); 4174 4175 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4176 FunctionType *FTy = nullptr; 4177 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4178 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 4179 return Error("Invalid record"); 4180 4181 SmallVector<Value*, 16> Args; 4182 // Read the fixed params. 4183 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4184 if (FTy->getParamType(i)->isLabelTy()) 4185 Args.push_back(getBasicBlock(Record[OpNum])); 4186 else 4187 Args.push_back(getValue(Record, OpNum, NextValueNo, 4188 FTy->getParamType(i))); 4189 if (!Args.back()) 4190 return Error("Invalid record"); 4191 } 4192 4193 // Read type/value pairs for varargs params. 4194 if (!FTy->isVarArg()) { 4195 if (OpNum != Record.size()) 4196 return Error("Invalid record"); 4197 } else { 4198 while (OpNum != Record.size()) { 4199 Value *Op; 4200 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4201 return Error("Invalid record"); 4202 Args.push_back(Op); 4203 } 4204 } 4205 4206 I = CallInst::Create(Callee, Args); 4207 InstructionList.push_back(I); 4208 cast<CallInst>(I)->setCallingConv( 4209 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4210 CallInst::TailCallKind TCK = CallInst::TCK_None; 4211 if (CCInfo & 1) 4212 TCK = CallInst::TCK_Tail; 4213 if (CCInfo & (1 << 14)) 4214 TCK = CallInst::TCK_MustTail; 4215 cast<CallInst>(I)->setTailCallKind(TCK); 4216 cast<CallInst>(I)->setAttributes(PAL); 4217 break; 4218 } 4219 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4220 if (Record.size() < 3) 4221 return Error("Invalid record"); 4222 Type *OpTy = getTypeByID(Record[0]); 4223 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4224 Type *ResTy = getTypeByID(Record[2]); 4225 if (!OpTy || !Op || !ResTy) 4226 return Error("Invalid record"); 4227 I = new VAArgInst(Op, ResTy); 4228 InstructionList.push_back(I); 4229 break; 4230 } 4231 } 4232 4233 // Add instruction to end of current BB. If there is no current BB, reject 4234 // this file. 4235 if (!CurBB) { 4236 delete I; 4237 return Error("Invalid instruction with no BB"); 4238 } 4239 CurBB->getInstList().push_back(I); 4240 4241 // If this was a terminator instruction, move to the next block. 4242 if (isa<TerminatorInst>(I)) { 4243 ++CurBBNo; 4244 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4245 } 4246 4247 // Non-void values get registered in the value table for future use. 4248 if (I && !I->getType()->isVoidTy()) 4249 ValueList.AssignValue(I, NextValueNo++); 4250 } 4251 4252 OutOfRecordLoop: 4253 4254 // Check the function list for unresolved values. 4255 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4256 if (!A->getParent()) { 4257 // We found at least one unresolved value. Nuke them all to avoid leaks. 4258 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4259 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4260 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4261 delete A; 4262 } 4263 } 4264 return Error("Never resolved value found in function"); 4265 } 4266 } 4267 4268 // FIXME: Check for unresolved forward-declared metadata references 4269 // and clean up leaks. 4270 4271 // Trim the value list down to the size it was before we parsed this function. 4272 ValueList.shrinkTo(ModuleValueListSize); 4273 MDValueList.shrinkTo(ModuleMDValueListSize); 4274 std::vector<BasicBlock*>().swap(FunctionBBs); 4275 return std::error_code(); 4276 } 4277 4278 /// Find the function body in the bitcode stream 4279 std::error_code BitcodeReader::FindFunctionInStream( 4280 Function *F, 4281 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4282 while (DeferredFunctionInfoIterator->second == 0) { 4283 if (Stream.AtEndOfStream()) 4284 return Error("Could not find function in stream"); 4285 // ParseModule will parse the next body in the stream and set its 4286 // position in the DeferredFunctionInfo map. 4287 if (std::error_code EC = ParseModule(true)) 4288 return EC; 4289 } 4290 return std::error_code(); 4291 } 4292 4293 //===----------------------------------------------------------------------===// 4294 // GVMaterializer implementation 4295 //===----------------------------------------------------------------------===// 4296 4297 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4298 4299 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4300 if (std::error_code EC = materializeMetadata()) 4301 return EC; 4302 4303 Function *F = dyn_cast<Function>(GV); 4304 // If it's not a function or is already material, ignore the request. 4305 if (!F || !F->isMaterializable()) 4306 return std::error_code(); 4307 4308 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4309 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4310 // If its position is recorded as 0, its body is somewhere in the stream 4311 // but we haven't seen it yet. 4312 if (DFII->second == 0 && LazyStreamer) 4313 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4314 return EC; 4315 4316 // Move the bit stream to the saved position of the deferred function body. 4317 Stream.JumpToBit(DFII->second); 4318 4319 if (std::error_code EC = ParseFunctionBody(F)) 4320 return EC; 4321 F->setIsMaterializable(false); 4322 4323 if (StripDebugInfo) 4324 stripDebugInfo(*F); 4325 4326 // Upgrade any old intrinsic calls in the function. 4327 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4328 E = UpgradedIntrinsics.end(); I != E; ++I) { 4329 if (I->first != I->second) { 4330 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4331 UI != UE;) { 4332 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4333 UpgradeIntrinsicCall(CI, I->second); 4334 } 4335 } 4336 } 4337 4338 // Bring in any functions that this function forward-referenced via 4339 // blockaddresses. 4340 return materializeForwardReferencedFunctions(); 4341 } 4342 4343 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4344 const Function *F = dyn_cast<Function>(GV); 4345 if (!F || F->isDeclaration()) 4346 return false; 4347 4348 // Dematerializing F would leave dangling references that wouldn't be 4349 // reconnected on re-materialization. 4350 if (BlockAddressesTaken.count(F)) 4351 return false; 4352 4353 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4354 } 4355 4356 void BitcodeReader::Dematerialize(GlobalValue *GV) { 4357 Function *F = dyn_cast<Function>(GV); 4358 // If this function isn't dematerializable, this is a noop. 4359 if (!F || !isDematerializable(F)) 4360 return; 4361 4362 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4363 4364 // Just forget the function body, we can remat it later. 4365 F->dropAllReferences(); 4366 F->setIsMaterializable(true); 4367 } 4368 4369 std::error_code BitcodeReader::MaterializeModule(Module *M) { 4370 assert(M == TheModule && 4371 "Can only Materialize the Module this BitcodeReader is attached to."); 4372 4373 if (std::error_code EC = materializeMetadata()) 4374 return EC; 4375 4376 // Promise to materialize all forward references. 4377 WillMaterializeAllForwardRefs = true; 4378 4379 // Iterate over the module, deserializing any functions that are still on 4380 // disk. 4381 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4382 F != E; ++F) { 4383 if (std::error_code EC = materialize(F)) 4384 return EC; 4385 } 4386 // At this point, if there are any function bodies, the current bit is 4387 // pointing to the END_BLOCK record after them. Now make sure the rest 4388 // of the bits in the module have been read. 4389 if (NextUnreadBit) 4390 ParseModule(true); 4391 4392 // Check that all block address forward references got resolved (as we 4393 // promised above). 4394 if (!BasicBlockFwdRefs.empty()) 4395 return Error("Never resolved function from blockaddress"); 4396 4397 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4398 // delete the old functions to clean up. We can't do this unless the entire 4399 // module is materialized because there could always be another function body 4400 // with calls to the old function. 4401 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4402 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4403 if (I->first != I->second) { 4404 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4405 UI != UE;) { 4406 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4407 UpgradeIntrinsicCall(CI, I->second); 4408 } 4409 if (!I->first->use_empty()) 4410 I->first->replaceAllUsesWith(I->second); 4411 I->first->eraseFromParent(); 4412 } 4413 } 4414 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4415 4416 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4417 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4418 4419 UpgradeDebugInfo(*M); 4420 return std::error_code(); 4421 } 4422 4423 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4424 return IdentifiedStructTypes; 4425 } 4426 4427 std::error_code BitcodeReader::InitStream() { 4428 if (LazyStreamer) 4429 return InitLazyStream(); 4430 return InitStreamFromBuffer(); 4431 } 4432 4433 std::error_code BitcodeReader::InitStreamFromBuffer() { 4434 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4435 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4436 4437 if (Buffer->getBufferSize() & 3) 4438 return Error("Invalid bitcode signature"); 4439 4440 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4441 // The magic number is 0x0B17C0DE stored in little endian. 4442 if (isBitcodeWrapper(BufPtr, BufEnd)) 4443 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4444 return Error("Invalid bitcode wrapper header"); 4445 4446 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4447 Stream.init(&*StreamFile); 4448 4449 return std::error_code(); 4450 } 4451 4452 std::error_code BitcodeReader::InitLazyStream() { 4453 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4454 // see it. 4455 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4456 StreamingMemoryObject &Bytes = *OwnedBytes; 4457 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4458 Stream.init(&*StreamFile); 4459 4460 unsigned char buf[16]; 4461 if (Bytes.readBytes(buf, 16, 0) != 16) 4462 return Error("Invalid bitcode signature"); 4463 4464 if (!isBitcode(buf, buf + 16)) 4465 return Error("Invalid bitcode signature"); 4466 4467 if (isBitcodeWrapper(buf, buf + 4)) { 4468 const unsigned char *bitcodeStart = buf; 4469 const unsigned char *bitcodeEnd = buf + 16; 4470 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4471 Bytes.dropLeadingBytes(bitcodeStart - buf); 4472 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4473 } 4474 return std::error_code(); 4475 } 4476 4477 namespace { 4478 class BitcodeErrorCategoryType : public std::error_category { 4479 const char *name() const LLVM_NOEXCEPT override { 4480 return "llvm.bitcode"; 4481 } 4482 std::string message(int IE) const override { 4483 BitcodeError E = static_cast<BitcodeError>(IE); 4484 switch (E) { 4485 case BitcodeError::InvalidBitcodeSignature: 4486 return "Invalid bitcode signature"; 4487 case BitcodeError::CorruptedBitcode: 4488 return "Corrupted bitcode"; 4489 } 4490 llvm_unreachable("Unknown error type!"); 4491 } 4492 }; 4493 } 4494 4495 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4496 4497 const std::error_category &llvm::BitcodeErrorCategory() { 4498 return *ErrorCategory; 4499 } 4500 4501 //===----------------------------------------------------------------------===// 4502 // External interface 4503 //===----------------------------------------------------------------------===// 4504 4505 /// \brief Get a lazy one-at-time loading module from bitcode. 4506 /// 4507 /// This isn't always used in a lazy context. In particular, it's also used by 4508 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4509 /// in forward-referenced functions from block address references. 4510 /// 4511 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4512 /// materialize everything -- in particular, if this isn't truly lazy. 4513 static ErrorOr<Module *> 4514 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4515 LLVMContext &Context, bool WillMaterializeAll, 4516 DiagnosticHandlerFunction DiagnosticHandler, 4517 bool ShouldLazyLoadMetadata = false) { 4518 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4519 BitcodeReader *R = 4520 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4521 M->setMaterializer(R); 4522 4523 auto cleanupOnError = [&](std::error_code EC) { 4524 R->releaseBuffer(); // Never take ownership on error. 4525 delete M; // Also deletes R. 4526 return EC; 4527 }; 4528 4529 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4530 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4531 return cleanupOnError(EC); 4532 4533 if (!WillMaterializeAll) 4534 // Resolve forward references from blockaddresses. 4535 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4536 return cleanupOnError(EC); 4537 4538 Buffer.release(); // The BitcodeReader owns it now. 4539 return M; 4540 } 4541 4542 ErrorOr<Module *> 4543 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4544 LLVMContext &Context, 4545 DiagnosticHandlerFunction DiagnosticHandler, 4546 bool ShouldLazyLoadMetadata) { 4547 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4548 DiagnosticHandler, ShouldLazyLoadMetadata); 4549 } 4550 4551 ErrorOr<std::unique_ptr<Module>> 4552 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4553 LLVMContext &Context, 4554 DiagnosticHandlerFunction DiagnosticHandler) { 4555 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4556 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4557 M->setMaterializer(R); 4558 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4559 return EC; 4560 return std::move(M); 4561 } 4562 4563 ErrorOr<Module *> 4564 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4565 DiagnosticHandlerFunction DiagnosticHandler) { 4566 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4567 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4568 std::move(Buf), Context, true, DiagnosticHandler); 4569 if (!ModuleOrErr) 4570 return ModuleOrErr; 4571 Module *M = ModuleOrErr.get(); 4572 // Read in the entire module, and destroy the BitcodeReader. 4573 if (std::error_code EC = M->materializeAllPermanently()) { 4574 delete M; 4575 return EC; 4576 } 4577 4578 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4579 // written. We must defer until the Module has been fully materialized. 4580 4581 return M; 4582 } 4583 4584 std::string 4585 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4586 DiagnosticHandlerFunction DiagnosticHandler) { 4587 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4588 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4589 DiagnosticHandler); 4590 ErrorOr<std::string> Triple = R->parseTriple(); 4591 if (Triple.getError()) 4592 return ""; 4593 return Triple.get(); 4594 } 4595