1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/APFloat.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/ADT/ArrayRef.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/None.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitstreamReader.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/Comdat.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/IR/DiagnosticPrinter.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalIFunc.h" 42 #include "llvm/IR/GlobalIndirectSymbol.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/GVMaterializer.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/OperandTraits.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/TrackingMDRef.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/ValueHandle.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/DataStream.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/ErrorOr.h" 68 #include "llvm/Support/ManagedStatic.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Support/StreamingMemoryObject.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <deque> 77 #include <limits> 78 #include <map> 79 #include <memory> 80 #include <string> 81 #include <system_error> 82 #include <tuple> 83 #include <utility> 84 #include <vector> 85 86 using namespace llvm; 87 88 static cl::opt<bool> PrintSummaryGUIDs( 89 "print-summary-global-ids", cl::init(false), cl::Hidden, 90 cl::desc( 91 "Print the global id for each value when reading the module summary")); 92 93 namespace { 94 95 enum { 96 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 97 }; 98 99 class BitcodeReaderValueList { 100 std::vector<WeakVH> ValuePtrs; 101 102 /// As we resolve forward-referenced constants, we add information about them 103 /// to this vector. This allows us to resolve them in bulk instead of 104 /// resolving each reference at a time. See the code in 105 /// ResolveConstantForwardRefs for more information about this. 106 /// 107 /// The key of this vector is the placeholder constant, the value is the slot 108 /// number that holds the resolved value. 109 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 110 ResolveConstantsTy ResolveConstants; 111 LLVMContext &Context; 112 113 public: 114 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 115 ~BitcodeReaderValueList() { 116 assert(ResolveConstants.empty() && "Constants not resolved?"); 117 } 118 119 // vector compatibility methods 120 unsigned size() const { return ValuePtrs.size(); } 121 void resize(unsigned N) { ValuePtrs.resize(N); } 122 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 123 124 void clear() { 125 assert(ResolveConstants.empty() && "Constants not resolved?"); 126 ValuePtrs.clear(); 127 } 128 129 Value *operator[](unsigned i) const { 130 assert(i < ValuePtrs.size()); 131 return ValuePtrs[i]; 132 } 133 134 Value *back() const { return ValuePtrs.back(); } 135 void pop_back() { ValuePtrs.pop_back(); } 136 bool empty() const { return ValuePtrs.empty(); } 137 138 void shrinkTo(unsigned N) { 139 assert(N <= size() && "Invalid shrinkTo request!"); 140 ValuePtrs.resize(N); 141 } 142 143 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 144 Value *getValueFwdRef(unsigned Idx, Type *Ty); 145 146 void assignValue(Value *V, unsigned Idx); 147 148 /// Once all constants are read, this method bulk resolves any forward 149 /// references. 150 void resolveConstantForwardRefs(); 151 }; 152 153 class BitcodeReaderMetadataList { 154 unsigned NumFwdRefs; 155 bool AnyFwdRefs; 156 unsigned MinFwdRef; 157 unsigned MaxFwdRef; 158 159 /// Array of metadata references. 160 /// 161 /// Don't use std::vector here. Some versions of libc++ copy (instead of 162 /// move) on resize, and TrackingMDRef is very expensive to copy. 163 SmallVector<TrackingMDRef, 1> MetadataPtrs; 164 165 /// Structures for resolving old type refs. 166 struct { 167 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 168 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 169 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 170 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 171 } OldTypeRefs; 172 173 LLVMContext &Context; 174 175 public: 176 BitcodeReaderMetadataList(LLVMContext &C) 177 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 178 179 // vector compatibility methods 180 unsigned size() const { return MetadataPtrs.size(); } 181 void resize(unsigned N) { MetadataPtrs.resize(N); } 182 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 183 void clear() { MetadataPtrs.clear(); } 184 Metadata *back() const { return MetadataPtrs.back(); } 185 void pop_back() { MetadataPtrs.pop_back(); } 186 bool empty() const { return MetadataPtrs.empty(); } 187 188 Metadata *operator[](unsigned i) const { 189 assert(i < MetadataPtrs.size()); 190 return MetadataPtrs[i]; 191 } 192 193 Metadata *lookup(unsigned I) const { 194 if (I < MetadataPtrs.size()) 195 return MetadataPtrs[I]; 196 return nullptr; 197 } 198 199 void shrinkTo(unsigned N) { 200 assert(N <= size() && "Invalid shrinkTo request!"); 201 assert(!AnyFwdRefs && "Unexpected forward refs"); 202 MetadataPtrs.resize(N); 203 } 204 205 /// Return the given metadata, creating a replaceable forward reference if 206 /// necessary. 207 Metadata *getMetadataFwdRef(unsigned Idx); 208 209 /// Return the the given metadata only if it is fully resolved. 210 /// 211 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 212 /// would give \c false. 213 Metadata *getMetadataIfResolved(unsigned Idx); 214 215 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 216 void assignValue(Metadata *MD, unsigned Idx); 217 void tryToResolveCycles(); 218 bool hasFwdRefs() const { return AnyFwdRefs; } 219 220 /// Upgrade a type that had an MDString reference. 221 void addTypeRef(MDString &UUID, DICompositeType &CT); 222 223 /// Upgrade a type that had an MDString reference. 224 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 225 226 /// Upgrade a type ref array that may have MDString references. 227 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 228 229 private: 230 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 231 }; 232 233 class BitcodeReader : public GVMaterializer { 234 LLVMContext &Context; 235 Module *TheModule = nullptr; 236 std::unique_ptr<MemoryBuffer> Buffer; 237 std::unique_ptr<BitstreamReader> StreamFile; 238 BitstreamCursor Stream; 239 // Next offset to start scanning for lazy parsing of function bodies. 240 uint64_t NextUnreadBit = 0; 241 // Last function offset found in the VST. 242 uint64_t LastFunctionBlockBit = 0; 243 bool SeenValueSymbolTable = false; 244 uint64_t VSTOffset = 0; 245 // Contains an arbitrary and optional string identifying the bitcode producer 246 std::string ProducerIdentification; 247 248 std::vector<Type*> TypeList; 249 BitcodeReaderValueList ValueList; 250 BitcodeReaderMetadataList MetadataList; 251 std::vector<Comdat *> ComdatList; 252 SmallVector<Instruction *, 64> InstructionList; 253 254 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 255 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 256 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 257 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 258 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 259 260 SmallVector<Instruction*, 64> InstsWithTBAATag; 261 262 bool HasSeenOldLoopTags = false; 263 264 /// The set of attributes by index. Index zero in the file is for null, and 265 /// is thus not represented here. As such all indices are off by one. 266 std::vector<AttributeSet> MAttributes; 267 268 /// The set of attribute groups. 269 std::map<unsigned, AttributeSet> MAttributeGroups; 270 271 /// While parsing a function body, this is a list of the basic blocks for the 272 /// function. 273 std::vector<BasicBlock*> FunctionBBs; 274 275 // When reading the module header, this list is populated with functions that 276 // have bodies later in the file. 277 std::vector<Function*> FunctionsWithBodies; 278 279 // When intrinsic functions are encountered which require upgrading they are 280 // stored here with their replacement function. 281 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 282 UpdatedIntrinsicMap UpgradedIntrinsics; 283 // Intrinsics which were remangled because of types rename 284 UpdatedIntrinsicMap RemangledIntrinsics; 285 286 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 287 DenseMap<unsigned, unsigned> MDKindMap; 288 289 // Several operations happen after the module header has been read, but 290 // before function bodies are processed. This keeps track of whether 291 // we've done this yet. 292 bool SeenFirstFunctionBody = false; 293 294 /// When function bodies are initially scanned, this map contains info about 295 /// where to find deferred function body in the stream. 296 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 297 298 /// When Metadata block is initially scanned when parsing the module, we may 299 /// choose to defer parsing of the metadata. This vector contains info about 300 /// which Metadata blocks are deferred. 301 std::vector<uint64_t> DeferredMetadataInfo; 302 303 /// These are basic blocks forward-referenced by block addresses. They are 304 /// inserted lazily into functions when they're loaded. The basic block ID is 305 /// its index into the vector. 306 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 307 std::deque<Function *> BasicBlockFwdRefQueue; 308 309 /// Indicates that we are using a new encoding for instruction operands where 310 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 311 /// instruction number, for a more compact encoding. Some instruction 312 /// operands are not relative to the instruction ID: basic block numbers, and 313 /// types. Once the old style function blocks have been phased out, we would 314 /// not need this flag. 315 bool UseRelativeIDs = false; 316 317 /// True if all functions will be materialized, negating the need to process 318 /// (e.g.) blockaddress forward references. 319 bool WillMaterializeAllForwardRefs = false; 320 321 /// True if any Metadata block has been materialized. 322 bool IsMetadataMaterialized = false; 323 324 bool StripDebugInfo = false; 325 326 /// Functions that need to be matched with subprograms when upgrading old 327 /// metadata. 328 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 329 330 std::vector<std::string> BundleTags; 331 332 public: 333 std::error_code error(BitcodeError E, const Twine &Message); 334 std::error_code error(const Twine &Message); 335 336 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 337 BitcodeReader(LLVMContext &Context); 338 ~BitcodeReader() override { freeState(); } 339 340 std::error_code materializeForwardReferencedFunctions(); 341 342 void freeState(); 343 344 void releaseBuffer(); 345 346 std::error_code materialize(GlobalValue *GV) override; 347 std::error_code materializeModule() override; 348 std::vector<StructType *> getIdentifiedStructTypes() const override; 349 350 /// \brief Main interface to parsing a bitcode buffer. 351 /// \returns true if an error occurred. 352 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 353 Module *M, 354 bool ShouldLazyLoadMetadata = false); 355 356 /// \brief Cheap mechanism to just extract module triple 357 /// \returns true if an error occurred. 358 ErrorOr<std::string> parseTriple(); 359 360 /// Cheap mechanism to just extract the identification block out of bitcode. 361 ErrorOr<std::string> parseIdentificationBlock(); 362 363 /// Peak at the module content and return true if any ObjC category or class 364 /// is found. 365 ErrorOr<bool> hasObjCCategory(); 366 367 static uint64_t decodeSignRotatedValue(uint64_t V); 368 369 /// Materialize any deferred Metadata block. 370 std::error_code materializeMetadata() override; 371 372 void setStripDebugInfo() override; 373 374 private: 375 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 376 // ProducerIdentification data member, and do some basic enforcement on the 377 // "epoch" encoded in the bitcode. 378 std::error_code parseBitcodeVersion(); 379 380 std::vector<StructType *> IdentifiedStructTypes; 381 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 382 StructType *createIdentifiedStructType(LLVMContext &Context); 383 384 Type *getTypeByID(unsigned ID); 385 386 Value *getFnValueByID(unsigned ID, Type *Ty) { 387 if (Ty && Ty->isMetadataTy()) 388 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 389 return ValueList.getValueFwdRef(ID, Ty); 390 } 391 392 Metadata *getFnMetadataByID(unsigned ID) { 393 return MetadataList.getMetadataFwdRef(ID); 394 } 395 396 BasicBlock *getBasicBlock(unsigned ID) const { 397 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 398 return FunctionBBs[ID]; 399 } 400 401 AttributeSet getAttributes(unsigned i) const { 402 if (i-1 < MAttributes.size()) 403 return MAttributes[i-1]; 404 return AttributeSet(); 405 } 406 407 /// Read a value/type pair out of the specified record from slot 'Slot'. 408 /// Increment Slot past the number of slots used in the record. Return true on 409 /// failure. 410 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 411 unsigned InstNum, Value *&ResVal) { 412 if (Slot == Record.size()) return true; 413 unsigned ValNo = (unsigned)Record[Slot++]; 414 // Adjust the ValNo, if it was encoded relative to the InstNum. 415 if (UseRelativeIDs) 416 ValNo = InstNum - ValNo; 417 if (ValNo < InstNum) { 418 // If this is not a forward reference, just return the value we already 419 // have. 420 ResVal = getFnValueByID(ValNo, nullptr); 421 return ResVal == nullptr; 422 } 423 if (Slot == Record.size()) 424 return true; 425 426 unsigned TypeNo = (unsigned)Record[Slot++]; 427 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 428 return ResVal == nullptr; 429 } 430 431 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 432 /// past the number of slots used by the value in the record. Return true if 433 /// there is an error. 434 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 435 unsigned InstNum, Type *Ty, Value *&ResVal) { 436 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 437 return true; 438 // All values currently take a single record slot. 439 ++Slot; 440 return false; 441 } 442 443 /// Like popValue, but does not increment the Slot number. 444 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 445 unsigned InstNum, Type *Ty, Value *&ResVal) { 446 ResVal = getValue(Record, Slot, InstNum, Ty); 447 return ResVal == nullptr; 448 } 449 450 /// Version of getValue that returns ResVal directly, or 0 if there is an 451 /// error. 452 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 453 unsigned InstNum, Type *Ty) { 454 if (Slot == Record.size()) return nullptr; 455 unsigned ValNo = (unsigned)Record[Slot]; 456 // Adjust the ValNo, if it was encoded relative to the InstNum. 457 if (UseRelativeIDs) 458 ValNo = InstNum - ValNo; 459 return getFnValueByID(ValNo, Ty); 460 } 461 462 /// Like getValue, but decodes signed VBRs. 463 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 464 unsigned InstNum, Type *Ty) { 465 if (Slot == Record.size()) return nullptr; 466 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 467 // Adjust the ValNo, if it was encoded relative to the InstNum. 468 if (UseRelativeIDs) 469 ValNo = InstNum - ValNo; 470 return getFnValueByID(ValNo, Ty); 471 } 472 473 /// Converts alignment exponent (i.e. power of two (or zero)) to the 474 /// corresponding alignment to use. If alignment is too large, returns 475 /// a corresponding error code. 476 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 477 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 478 std::error_code parseModule(uint64_t ResumeBit, 479 bool ShouldLazyLoadMetadata = false); 480 std::error_code parseAttributeBlock(); 481 std::error_code parseAttributeGroupBlock(); 482 std::error_code parseTypeTable(); 483 std::error_code parseTypeTableBody(); 484 std::error_code parseOperandBundleTags(); 485 486 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 487 unsigned NameIndex, Triple &TT); 488 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 489 std::error_code parseConstants(); 490 std::error_code rememberAndSkipFunctionBodies(); 491 std::error_code rememberAndSkipFunctionBody(); 492 /// Save the positions of the Metadata blocks and skip parsing the blocks. 493 std::error_code rememberAndSkipMetadata(); 494 std::error_code parseFunctionBody(Function *F); 495 std::error_code globalCleanup(); 496 std::error_code resolveGlobalAndIndirectSymbolInits(); 497 std::error_code parseMetadata(bool ModuleLevel = false); 498 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 499 StringRef Blob, 500 unsigned &NextMetadataNo); 501 std::error_code parseMetadataKinds(); 502 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 503 std::error_code 504 parseGlobalObjectAttachment(GlobalObject &GO, 505 ArrayRef<uint64_t> Record); 506 std::error_code parseMetadataAttachment(Function &F); 507 ErrorOr<std::string> parseModuleTriple(); 508 ErrorOr<bool> hasObjCCategoryInModule(); 509 std::error_code parseUseLists(); 510 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 511 std::error_code initStreamFromBuffer(); 512 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 513 std::error_code findFunctionInStream( 514 Function *F, 515 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 516 }; 517 518 /// Class to manage reading and parsing function summary index bitcode 519 /// files/sections. 520 class ModuleSummaryIndexBitcodeReader { 521 DiagnosticHandlerFunction DiagnosticHandler; 522 523 /// Eventually points to the module index built during parsing. 524 ModuleSummaryIndex *TheIndex = nullptr; 525 526 std::unique_ptr<MemoryBuffer> Buffer; 527 std::unique_ptr<BitstreamReader> StreamFile; 528 BitstreamCursor Stream; 529 530 /// Used to indicate whether caller only wants to check for the presence 531 /// of the global value summary bitcode section. All blocks are skipped, 532 /// but the SeenGlobalValSummary boolean is set. 533 bool CheckGlobalValSummaryPresenceOnly = false; 534 535 /// Indicates whether we have encountered a global value summary section 536 /// yet during parsing, used when checking if file contains global value 537 /// summary section. 538 bool SeenGlobalValSummary = false; 539 540 /// Indicates whether we have already parsed the VST, used for error checking. 541 bool SeenValueSymbolTable = false; 542 543 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 544 /// Used to enable on-demand parsing of the VST. 545 uint64_t VSTOffset = 0; 546 547 // Map to save ValueId to GUID association that was recorded in the 548 // ValueSymbolTable. It is used after the VST is parsed to convert 549 // call graph edges read from the function summary from referencing 550 // callees by their ValueId to using the GUID instead, which is how 551 // they are recorded in the summary index being built. 552 // We save a second GUID which is the same as the first one, but ignoring the 553 // linkage, i.e. for value other than local linkage they are identical. 554 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 555 ValueIdToCallGraphGUIDMap; 556 557 /// Map populated during module path string table parsing, from the 558 /// module ID to a string reference owned by the index's module 559 /// path string table, used to correlate with combined index 560 /// summary records. 561 DenseMap<uint64_t, StringRef> ModuleIdMap; 562 563 /// Original source file name recorded in a bitcode record. 564 std::string SourceFileName; 565 566 public: 567 std::error_code error(const Twine &Message); 568 569 ModuleSummaryIndexBitcodeReader( 570 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 571 bool CheckGlobalValSummaryPresenceOnly = false); 572 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 573 574 void freeState(); 575 576 void releaseBuffer(); 577 578 /// Check if the parser has encountered a summary section. 579 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 580 581 /// \brief Main interface to parsing a bitcode buffer. 582 /// \returns true if an error occurred. 583 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 584 ModuleSummaryIndex *I); 585 586 private: 587 std::error_code parseModule(); 588 std::error_code parseValueSymbolTable( 589 uint64_t Offset, 590 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 591 std::error_code parseEntireSummary(); 592 std::error_code parseModuleStringTable(); 593 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 594 std::error_code initStreamFromBuffer(); 595 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 596 std::pair<GlobalValue::GUID, GlobalValue::GUID> 597 598 getGUIDFromValueId(unsigned ValueId); 599 }; 600 601 } // end anonymous namespace 602 603 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 604 DiagnosticSeverity Severity, 605 const Twine &Msg) 606 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 607 608 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 609 610 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler, 611 std::error_code EC, const Twine &Message) { 612 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 613 DiagnosticHandler(DI); 614 return EC; 615 } 616 617 static std::error_code error(LLVMContext &Context, std::error_code EC, 618 const Twine &Message) { 619 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 620 Message); 621 } 622 623 static std::error_code error(LLVMContext &Context, const Twine &Message) { 624 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 625 Message); 626 } 627 628 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 629 if (!ProducerIdentification.empty()) { 630 return ::error(Context, make_error_code(E), 631 Message + " (Producer: '" + ProducerIdentification + 632 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 633 } 634 return ::error(Context, make_error_code(E), Message); 635 } 636 637 std::error_code BitcodeReader::error(const Twine &Message) { 638 if (!ProducerIdentification.empty()) { 639 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 640 Message + " (Producer: '" + ProducerIdentification + 641 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 642 } 643 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 644 Message); 645 } 646 647 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 648 : Context(Context), Buffer(Buffer), ValueList(Context), 649 MetadataList(Context) {} 650 651 BitcodeReader::BitcodeReader(LLVMContext &Context) 652 : Context(Context), Buffer(nullptr), ValueList(Context), 653 MetadataList(Context) {} 654 655 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 656 if (WillMaterializeAllForwardRefs) 657 return std::error_code(); 658 659 // Prevent recursion. 660 WillMaterializeAllForwardRefs = true; 661 662 while (!BasicBlockFwdRefQueue.empty()) { 663 Function *F = BasicBlockFwdRefQueue.front(); 664 BasicBlockFwdRefQueue.pop_front(); 665 assert(F && "Expected valid function"); 666 if (!BasicBlockFwdRefs.count(F)) 667 // Already materialized. 668 continue; 669 670 // Check for a function that isn't materializable to prevent an infinite 671 // loop. When parsing a blockaddress stored in a global variable, there 672 // isn't a trivial way to check if a function will have a body without a 673 // linear search through FunctionsWithBodies, so just check it here. 674 if (!F->isMaterializable()) 675 return error("Never resolved function from blockaddress"); 676 677 // Try to materialize F. 678 if (std::error_code EC = materialize(F)) 679 return EC; 680 } 681 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 682 683 // Reset state. 684 WillMaterializeAllForwardRefs = false; 685 return std::error_code(); 686 } 687 688 void BitcodeReader::freeState() { 689 Buffer = nullptr; 690 std::vector<Type*>().swap(TypeList); 691 ValueList.clear(); 692 MetadataList.clear(); 693 std::vector<Comdat *>().swap(ComdatList); 694 695 std::vector<AttributeSet>().swap(MAttributes); 696 std::vector<BasicBlock*>().swap(FunctionBBs); 697 std::vector<Function*>().swap(FunctionsWithBodies); 698 DeferredFunctionInfo.clear(); 699 DeferredMetadataInfo.clear(); 700 MDKindMap.clear(); 701 702 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 703 BasicBlockFwdRefQueue.clear(); 704 } 705 706 //===----------------------------------------------------------------------===// 707 // Helper functions to implement forward reference resolution, etc. 708 //===----------------------------------------------------------------------===// 709 710 /// Convert a string from a record into an std::string, return true on failure. 711 template <typename StrTy> 712 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 713 StrTy &Result) { 714 if (Idx > Record.size()) 715 return true; 716 717 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 718 Result += (char)Record[i]; 719 return false; 720 } 721 722 static bool hasImplicitComdat(size_t Val) { 723 switch (Val) { 724 default: 725 return false; 726 case 1: // Old WeakAnyLinkage 727 case 4: // Old LinkOnceAnyLinkage 728 case 10: // Old WeakODRLinkage 729 case 11: // Old LinkOnceODRLinkage 730 return true; 731 } 732 } 733 734 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 735 switch (Val) { 736 default: // Map unknown/new linkages to external 737 case 0: 738 return GlobalValue::ExternalLinkage; 739 case 2: 740 return GlobalValue::AppendingLinkage; 741 case 3: 742 return GlobalValue::InternalLinkage; 743 case 5: 744 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 745 case 6: 746 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 747 case 7: 748 return GlobalValue::ExternalWeakLinkage; 749 case 8: 750 return GlobalValue::CommonLinkage; 751 case 9: 752 return GlobalValue::PrivateLinkage; 753 case 12: 754 return GlobalValue::AvailableExternallyLinkage; 755 case 13: 756 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 757 case 14: 758 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 759 case 15: 760 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 761 case 1: // Old value with implicit comdat. 762 case 16: 763 return GlobalValue::WeakAnyLinkage; 764 case 10: // Old value with implicit comdat. 765 case 17: 766 return GlobalValue::WeakODRLinkage; 767 case 4: // Old value with implicit comdat. 768 case 18: 769 return GlobalValue::LinkOnceAnyLinkage; 770 case 11: // Old value with implicit comdat. 771 case 19: 772 return GlobalValue::LinkOnceODRLinkage; 773 } 774 } 775 776 /// Decode the flags for GlobalValue in the summary. 777 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 778 uint64_t Version) { 779 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 780 // like getDecodedLinkage() above. Any future change to the linkage enum and 781 // to getDecodedLinkage() will need to be taken into account here as above. 782 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 783 RawFlags = RawFlags >> 4; 784 bool HasSection = RawFlags & 0x1; 785 bool IsNotViableToInline = RawFlags & 0x2; 786 return GlobalValueSummary::GVFlags(Linkage, HasSection, IsNotViableToInline); 787 } 788 789 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 790 switch (Val) { 791 default: // Map unknown visibilities to default. 792 case 0: return GlobalValue::DefaultVisibility; 793 case 1: return GlobalValue::HiddenVisibility; 794 case 2: return GlobalValue::ProtectedVisibility; 795 } 796 } 797 798 static GlobalValue::DLLStorageClassTypes 799 getDecodedDLLStorageClass(unsigned Val) { 800 switch (Val) { 801 default: // Map unknown values to default. 802 case 0: return GlobalValue::DefaultStorageClass; 803 case 1: return GlobalValue::DLLImportStorageClass; 804 case 2: return GlobalValue::DLLExportStorageClass; 805 } 806 } 807 808 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 809 switch (Val) { 810 case 0: return GlobalVariable::NotThreadLocal; 811 default: // Map unknown non-zero value to general dynamic. 812 case 1: return GlobalVariable::GeneralDynamicTLSModel; 813 case 2: return GlobalVariable::LocalDynamicTLSModel; 814 case 3: return GlobalVariable::InitialExecTLSModel; 815 case 4: return GlobalVariable::LocalExecTLSModel; 816 } 817 } 818 819 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 820 switch (Val) { 821 default: // Map unknown to UnnamedAddr::None. 822 case 0: return GlobalVariable::UnnamedAddr::None; 823 case 1: return GlobalVariable::UnnamedAddr::Global; 824 case 2: return GlobalVariable::UnnamedAddr::Local; 825 } 826 } 827 828 static int getDecodedCastOpcode(unsigned Val) { 829 switch (Val) { 830 default: return -1; 831 case bitc::CAST_TRUNC : return Instruction::Trunc; 832 case bitc::CAST_ZEXT : return Instruction::ZExt; 833 case bitc::CAST_SEXT : return Instruction::SExt; 834 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 835 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 836 case bitc::CAST_UITOFP : return Instruction::UIToFP; 837 case bitc::CAST_SITOFP : return Instruction::SIToFP; 838 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 839 case bitc::CAST_FPEXT : return Instruction::FPExt; 840 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 841 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 842 case bitc::CAST_BITCAST : return Instruction::BitCast; 843 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 844 } 845 } 846 847 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 848 bool IsFP = Ty->isFPOrFPVectorTy(); 849 // BinOps are only valid for int/fp or vector of int/fp types 850 if (!IsFP && !Ty->isIntOrIntVectorTy()) 851 return -1; 852 853 switch (Val) { 854 default: 855 return -1; 856 case bitc::BINOP_ADD: 857 return IsFP ? Instruction::FAdd : Instruction::Add; 858 case bitc::BINOP_SUB: 859 return IsFP ? Instruction::FSub : Instruction::Sub; 860 case bitc::BINOP_MUL: 861 return IsFP ? Instruction::FMul : Instruction::Mul; 862 case bitc::BINOP_UDIV: 863 return IsFP ? -1 : Instruction::UDiv; 864 case bitc::BINOP_SDIV: 865 return IsFP ? Instruction::FDiv : Instruction::SDiv; 866 case bitc::BINOP_UREM: 867 return IsFP ? -1 : Instruction::URem; 868 case bitc::BINOP_SREM: 869 return IsFP ? Instruction::FRem : Instruction::SRem; 870 case bitc::BINOP_SHL: 871 return IsFP ? -1 : Instruction::Shl; 872 case bitc::BINOP_LSHR: 873 return IsFP ? -1 : Instruction::LShr; 874 case bitc::BINOP_ASHR: 875 return IsFP ? -1 : Instruction::AShr; 876 case bitc::BINOP_AND: 877 return IsFP ? -1 : Instruction::And; 878 case bitc::BINOP_OR: 879 return IsFP ? -1 : Instruction::Or; 880 case bitc::BINOP_XOR: 881 return IsFP ? -1 : Instruction::Xor; 882 } 883 } 884 885 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 886 switch (Val) { 887 default: return AtomicRMWInst::BAD_BINOP; 888 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 889 case bitc::RMW_ADD: return AtomicRMWInst::Add; 890 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 891 case bitc::RMW_AND: return AtomicRMWInst::And; 892 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 893 case bitc::RMW_OR: return AtomicRMWInst::Or; 894 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 895 case bitc::RMW_MAX: return AtomicRMWInst::Max; 896 case bitc::RMW_MIN: return AtomicRMWInst::Min; 897 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 898 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 899 } 900 } 901 902 static AtomicOrdering getDecodedOrdering(unsigned Val) { 903 switch (Val) { 904 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 905 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 906 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 907 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 908 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 909 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 910 default: // Map unknown orderings to sequentially-consistent. 911 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 912 } 913 } 914 915 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 916 switch (Val) { 917 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 918 default: // Map unknown scopes to cross-thread. 919 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 920 } 921 } 922 923 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 924 switch (Val) { 925 default: // Map unknown selection kinds to any. 926 case bitc::COMDAT_SELECTION_KIND_ANY: 927 return Comdat::Any; 928 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 929 return Comdat::ExactMatch; 930 case bitc::COMDAT_SELECTION_KIND_LARGEST: 931 return Comdat::Largest; 932 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 933 return Comdat::NoDuplicates; 934 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 935 return Comdat::SameSize; 936 } 937 } 938 939 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 940 FastMathFlags FMF; 941 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 942 FMF.setUnsafeAlgebra(); 943 if (0 != (Val & FastMathFlags::NoNaNs)) 944 FMF.setNoNaNs(); 945 if (0 != (Val & FastMathFlags::NoInfs)) 946 FMF.setNoInfs(); 947 if (0 != (Val & FastMathFlags::NoSignedZeros)) 948 FMF.setNoSignedZeros(); 949 if (0 != (Val & FastMathFlags::AllowReciprocal)) 950 FMF.setAllowReciprocal(); 951 return FMF; 952 } 953 954 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 955 switch (Val) { 956 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 957 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 958 } 959 } 960 961 namespace llvm { 962 namespace { 963 964 /// \brief A class for maintaining the slot number definition 965 /// as a placeholder for the actual definition for forward constants defs. 966 class ConstantPlaceHolder : public ConstantExpr { 967 void operator=(const ConstantPlaceHolder &) = delete; 968 969 public: 970 // allocate space for exactly one operand 971 void *operator new(size_t s) { return User::operator new(s, 1); } 972 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 973 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 974 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 975 } 976 977 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 978 static bool classof(const Value *V) { 979 return isa<ConstantExpr>(V) && 980 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 981 } 982 983 /// Provide fast operand accessors 984 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 985 }; 986 987 } // end anonymous namespace 988 989 // FIXME: can we inherit this from ConstantExpr? 990 template <> 991 struct OperandTraits<ConstantPlaceHolder> : 992 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 993 }; 994 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 995 996 } // end namespace llvm 997 998 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 999 if (Idx == size()) { 1000 push_back(V); 1001 return; 1002 } 1003 1004 if (Idx >= size()) 1005 resize(Idx+1); 1006 1007 WeakVH &OldV = ValuePtrs[Idx]; 1008 if (!OldV) { 1009 OldV = V; 1010 return; 1011 } 1012 1013 // Handle constants and non-constants (e.g. instrs) differently for 1014 // efficiency. 1015 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 1016 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 1017 OldV = V; 1018 } else { 1019 // If there was a forward reference to this value, replace it. 1020 Value *PrevVal = OldV; 1021 OldV->replaceAllUsesWith(V); 1022 delete PrevVal; 1023 } 1024 } 1025 1026 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 1027 Type *Ty) { 1028 if (Idx >= size()) 1029 resize(Idx + 1); 1030 1031 if (Value *V = ValuePtrs[Idx]) { 1032 if (Ty != V->getType()) 1033 report_fatal_error("Type mismatch in constant table!"); 1034 return cast<Constant>(V); 1035 } 1036 1037 // Create and return a placeholder, which will later be RAUW'd. 1038 Constant *C = new ConstantPlaceHolder(Ty, Context); 1039 ValuePtrs[Idx] = C; 1040 return C; 1041 } 1042 1043 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 1044 // Bail out for a clearly invalid value. This would make us call resize(0) 1045 if (Idx == std::numeric_limits<unsigned>::max()) 1046 return nullptr; 1047 1048 if (Idx >= size()) 1049 resize(Idx + 1); 1050 1051 if (Value *V = ValuePtrs[Idx]) { 1052 // If the types don't match, it's invalid. 1053 if (Ty && Ty != V->getType()) 1054 return nullptr; 1055 return V; 1056 } 1057 1058 // No type specified, must be invalid reference. 1059 if (!Ty) return nullptr; 1060 1061 // Create and return a placeholder, which will later be RAUW'd. 1062 Value *V = new Argument(Ty); 1063 ValuePtrs[Idx] = V; 1064 return V; 1065 } 1066 1067 /// Once all constants are read, this method bulk resolves any forward 1068 /// references. The idea behind this is that we sometimes get constants (such 1069 /// as large arrays) which reference *many* forward ref constants. Replacing 1070 /// each of these causes a lot of thrashing when building/reuniquing the 1071 /// constant. Instead of doing this, we look at all the uses and rewrite all 1072 /// the place holders at once for any constant that uses a placeholder. 1073 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1074 // Sort the values by-pointer so that they are efficient to look up with a 1075 // binary search. 1076 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1077 1078 SmallVector<Constant*, 64> NewOps; 1079 1080 while (!ResolveConstants.empty()) { 1081 Value *RealVal = operator[](ResolveConstants.back().second); 1082 Constant *Placeholder = ResolveConstants.back().first; 1083 ResolveConstants.pop_back(); 1084 1085 // Loop over all users of the placeholder, updating them to reference the 1086 // new value. If they reference more than one placeholder, update them all 1087 // at once. 1088 while (!Placeholder->use_empty()) { 1089 auto UI = Placeholder->user_begin(); 1090 User *U = *UI; 1091 1092 // If the using object isn't uniqued, just update the operands. This 1093 // handles instructions and initializers for global variables. 1094 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1095 UI.getUse().set(RealVal); 1096 continue; 1097 } 1098 1099 // Otherwise, we have a constant that uses the placeholder. Replace that 1100 // constant with a new constant that has *all* placeholder uses updated. 1101 Constant *UserC = cast<Constant>(U); 1102 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1103 I != E; ++I) { 1104 Value *NewOp; 1105 if (!isa<ConstantPlaceHolder>(*I)) { 1106 // Not a placeholder reference. 1107 NewOp = *I; 1108 } else if (*I == Placeholder) { 1109 // Common case is that it just references this one placeholder. 1110 NewOp = RealVal; 1111 } else { 1112 // Otherwise, look up the placeholder in ResolveConstants. 1113 ResolveConstantsTy::iterator It = 1114 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1115 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1116 0)); 1117 assert(It != ResolveConstants.end() && It->first == *I); 1118 NewOp = operator[](It->second); 1119 } 1120 1121 NewOps.push_back(cast<Constant>(NewOp)); 1122 } 1123 1124 // Make the new constant. 1125 Constant *NewC; 1126 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1127 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1128 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1129 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1130 } else if (isa<ConstantVector>(UserC)) { 1131 NewC = ConstantVector::get(NewOps); 1132 } else { 1133 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1134 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1135 } 1136 1137 UserC->replaceAllUsesWith(NewC); 1138 UserC->destroyConstant(); 1139 NewOps.clear(); 1140 } 1141 1142 // Update all ValueHandles, they should be the only users at this point. 1143 Placeholder->replaceAllUsesWith(RealVal); 1144 delete Placeholder; 1145 } 1146 } 1147 1148 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1149 if (Idx == size()) { 1150 push_back(MD); 1151 return; 1152 } 1153 1154 if (Idx >= size()) 1155 resize(Idx+1); 1156 1157 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1158 if (!OldMD) { 1159 OldMD.reset(MD); 1160 return; 1161 } 1162 1163 // If there was a forward reference to this value, replace it. 1164 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1165 PrevMD->replaceAllUsesWith(MD); 1166 --NumFwdRefs; 1167 } 1168 1169 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1170 if (Idx >= size()) 1171 resize(Idx + 1); 1172 1173 if (Metadata *MD = MetadataPtrs[Idx]) 1174 return MD; 1175 1176 // Track forward refs to be resolved later. 1177 if (AnyFwdRefs) { 1178 MinFwdRef = std::min(MinFwdRef, Idx); 1179 MaxFwdRef = std::max(MaxFwdRef, Idx); 1180 } else { 1181 AnyFwdRefs = true; 1182 MinFwdRef = MaxFwdRef = Idx; 1183 } 1184 ++NumFwdRefs; 1185 1186 // Create and return a placeholder, which will later be RAUW'd. 1187 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1188 MetadataPtrs[Idx].reset(MD); 1189 return MD; 1190 } 1191 1192 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1193 Metadata *MD = lookup(Idx); 1194 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1195 if (!N->isResolved()) 1196 return nullptr; 1197 return MD; 1198 } 1199 1200 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1201 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1202 } 1203 1204 void BitcodeReaderMetadataList::tryToResolveCycles() { 1205 if (NumFwdRefs) 1206 // Still forward references... can't resolve cycles. 1207 return; 1208 1209 bool DidReplaceTypeRefs = false; 1210 1211 // Give up on finding a full definition for any forward decls that remain. 1212 for (const auto &Ref : OldTypeRefs.FwdDecls) 1213 OldTypeRefs.Final.insert(Ref); 1214 OldTypeRefs.FwdDecls.clear(); 1215 1216 // Upgrade from old type ref arrays. In strange cases, this could add to 1217 // OldTypeRefs.Unknown. 1218 for (const auto &Array : OldTypeRefs.Arrays) { 1219 DidReplaceTypeRefs = true; 1220 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1221 } 1222 OldTypeRefs.Arrays.clear(); 1223 1224 // Replace old string-based type refs with the resolved node, if possible. 1225 // If we haven't seen the node, leave it to the verifier to complain about 1226 // the invalid string reference. 1227 for (const auto &Ref : OldTypeRefs.Unknown) { 1228 DidReplaceTypeRefs = true; 1229 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1230 Ref.second->replaceAllUsesWith(CT); 1231 else 1232 Ref.second->replaceAllUsesWith(Ref.first); 1233 } 1234 OldTypeRefs.Unknown.clear(); 1235 1236 // Make sure all the upgraded types are resolved. 1237 if (DidReplaceTypeRefs) { 1238 AnyFwdRefs = true; 1239 MinFwdRef = 0; 1240 MaxFwdRef = MetadataPtrs.size() - 1; 1241 } 1242 1243 if (!AnyFwdRefs) 1244 // Nothing to do. 1245 return; 1246 1247 // Resolve any cycles. 1248 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1249 auto &MD = MetadataPtrs[I]; 1250 auto *N = dyn_cast_or_null<MDNode>(MD); 1251 if (!N) 1252 continue; 1253 1254 assert(!N->isTemporary() && "Unexpected forward reference"); 1255 N->resolveCycles(); 1256 } 1257 1258 // Make sure we return early again until there's another forward ref. 1259 AnyFwdRefs = false; 1260 } 1261 1262 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1263 DICompositeType &CT) { 1264 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1265 if (CT.isForwardDecl()) 1266 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1267 else 1268 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1269 } 1270 1271 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1272 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1273 if (LLVM_LIKELY(!UUID)) 1274 return MaybeUUID; 1275 1276 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1277 return CT; 1278 1279 auto &Ref = OldTypeRefs.Unknown[UUID]; 1280 if (!Ref) 1281 Ref = MDNode::getTemporary(Context, None); 1282 return Ref.get(); 1283 } 1284 1285 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1286 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1287 if (!Tuple || Tuple->isDistinct()) 1288 return MaybeTuple; 1289 1290 // Look through the array immediately if possible. 1291 if (!Tuple->isTemporary()) 1292 return resolveTypeRefArray(Tuple); 1293 1294 // Create and return a placeholder to use for now. Eventually 1295 // resolveTypeRefArrays() will be resolve this forward reference. 1296 OldTypeRefs.Arrays.emplace_back( 1297 std::piecewise_construct, std::forward_as_tuple(Tuple), 1298 std::forward_as_tuple(MDTuple::getTemporary(Context, None))); 1299 return OldTypeRefs.Arrays.back().second.get(); 1300 } 1301 1302 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1303 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1304 if (!Tuple || Tuple->isDistinct()) 1305 return MaybeTuple; 1306 1307 // Look through the DITypeRefArray, upgrading each DITypeRef. 1308 SmallVector<Metadata *, 32> Ops; 1309 Ops.reserve(Tuple->getNumOperands()); 1310 for (Metadata *MD : Tuple->operands()) 1311 Ops.push_back(upgradeTypeRef(MD)); 1312 1313 return MDTuple::get(Context, Ops); 1314 } 1315 1316 Type *BitcodeReader::getTypeByID(unsigned ID) { 1317 // The type table size is always specified correctly. 1318 if (ID >= TypeList.size()) 1319 return nullptr; 1320 1321 if (Type *Ty = TypeList[ID]) 1322 return Ty; 1323 1324 // If we have a forward reference, the only possible case is when it is to a 1325 // named struct. Just create a placeholder for now. 1326 return TypeList[ID] = createIdentifiedStructType(Context); 1327 } 1328 1329 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1330 StringRef Name) { 1331 auto *Ret = StructType::create(Context, Name); 1332 IdentifiedStructTypes.push_back(Ret); 1333 return Ret; 1334 } 1335 1336 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1337 auto *Ret = StructType::create(Context); 1338 IdentifiedStructTypes.push_back(Ret); 1339 return Ret; 1340 } 1341 1342 //===----------------------------------------------------------------------===// 1343 // Functions for parsing blocks from the bitcode file 1344 //===----------------------------------------------------------------------===// 1345 1346 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1347 /// been decoded from the given integer. This function must stay in sync with 1348 /// 'encodeLLVMAttributesForBitcode'. 1349 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1350 uint64_t EncodedAttrs) { 1351 // FIXME: Remove in 4.0. 1352 1353 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1354 // the bits above 31 down by 11 bits. 1355 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1356 assert((!Alignment || isPowerOf2_32(Alignment)) && 1357 "Alignment must be a power of two."); 1358 1359 if (Alignment) 1360 B.addAlignmentAttr(Alignment); 1361 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1362 (EncodedAttrs & 0xffff)); 1363 } 1364 1365 std::error_code BitcodeReader::parseAttributeBlock() { 1366 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1367 return error("Invalid record"); 1368 1369 if (!MAttributes.empty()) 1370 return error("Invalid multiple blocks"); 1371 1372 SmallVector<uint64_t, 64> Record; 1373 1374 SmallVector<AttributeSet, 8> Attrs; 1375 1376 // Read all the records. 1377 while (true) { 1378 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1379 1380 switch (Entry.Kind) { 1381 case BitstreamEntry::SubBlock: // Handled for us already. 1382 case BitstreamEntry::Error: 1383 return error("Malformed block"); 1384 case BitstreamEntry::EndBlock: 1385 return std::error_code(); 1386 case BitstreamEntry::Record: 1387 // The interesting case. 1388 break; 1389 } 1390 1391 // Read a record. 1392 Record.clear(); 1393 switch (Stream.readRecord(Entry.ID, Record)) { 1394 default: // Default behavior: ignore. 1395 break; 1396 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1397 // FIXME: Remove in 4.0. 1398 if (Record.size() & 1) 1399 return error("Invalid record"); 1400 1401 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1402 AttrBuilder B; 1403 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1404 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1405 } 1406 1407 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1408 Attrs.clear(); 1409 break; 1410 } 1411 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1412 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1413 Attrs.push_back(MAttributeGroups[Record[i]]); 1414 1415 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1416 Attrs.clear(); 1417 break; 1418 } 1419 } 1420 } 1421 } 1422 1423 // Returns Attribute::None on unrecognized codes. 1424 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1425 switch (Code) { 1426 default: 1427 return Attribute::None; 1428 case bitc::ATTR_KIND_ALIGNMENT: 1429 return Attribute::Alignment; 1430 case bitc::ATTR_KIND_ALWAYS_INLINE: 1431 return Attribute::AlwaysInline; 1432 case bitc::ATTR_KIND_ARGMEMONLY: 1433 return Attribute::ArgMemOnly; 1434 case bitc::ATTR_KIND_BUILTIN: 1435 return Attribute::Builtin; 1436 case bitc::ATTR_KIND_BY_VAL: 1437 return Attribute::ByVal; 1438 case bitc::ATTR_KIND_IN_ALLOCA: 1439 return Attribute::InAlloca; 1440 case bitc::ATTR_KIND_COLD: 1441 return Attribute::Cold; 1442 case bitc::ATTR_KIND_CONVERGENT: 1443 return Attribute::Convergent; 1444 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1445 return Attribute::InaccessibleMemOnly; 1446 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1447 return Attribute::InaccessibleMemOrArgMemOnly; 1448 case bitc::ATTR_KIND_INLINE_HINT: 1449 return Attribute::InlineHint; 1450 case bitc::ATTR_KIND_IN_REG: 1451 return Attribute::InReg; 1452 case bitc::ATTR_KIND_JUMP_TABLE: 1453 return Attribute::JumpTable; 1454 case bitc::ATTR_KIND_MIN_SIZE: 1455 return Attribute::MinSize; 1456 case bitc::ATTR_KIND_NAKED: 1457 return Attribute::Naked; 1458 case bitc::ATTR_KIND_NEST: 1459 return Attribute::Nest; 1460 case bitc::ATTR_KIND_NO_ALIAS: 1461 return Attribute::NoAlias; 1462 case bitc::ATTR_KIND_NO_BUILTIN: 1463 return Attribute::NoBuiltin; 1464 case bitc::ATTR_KIND_NO_CAPTURE: 1465 return Attribute::NoCapture; 1466 case bitc::ATTR_KIND_NO_DUPLICATE: 1467 return Attribute::NoDuplicate; 1468 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1469 return Attribute::NoImplicitFloat; 1470 case bitc::ATTR_KIND_NO_INLINE: 1471 return Attribute::NoInline; 1472 case bitc::ATTR_KIND_NO_RECURSE: 1473 return Attribute::NoRecurse; 1474 case bitc::ATTR_KIND_NON_LAZY_BIND: 1475 return Attribute::NonLazyBind; 1476 case bitc::ATTR_KIND_NON_NULL: 1477 return Attribute::NonNull; 1478 case bitc::ATTR_KIND_DEREFERENCEABLE: 1479 return Attribute::Dereferenceable; 1480 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1481 return Attribute::DereferenceableOrNull; 1482 case bitc::ATTR_KIND_ALLOC_SIZE: 1483 return Attribute::AllocSize; 1484 case bitc::ATTR_KIND_NO_RED_ZONE: 1485 return Attribute::NoRedZone; 1486 case bitc::ATTR_KIND_NO_RETURN: 1487 return Attribute::NoReturn; 1488 case bitc::ATTR_KIND_NO_UNWIND: 1489 return Attribute::NoUnwind; 1490 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1491 return Attribute::OptimizeForSize; 1492 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1493 return Attribute::OptimizeNone; 1494 case bitc::ATTR_KIND_READ_NONE: 1495 return Attribute::ReadNone; 1496 case bitc::ATTR_KIND_READ_ONLY: 1497 return Attribute::ReadOnly; 1498 case bitc::ATTR_KIND_RETURNED: 1499 return Attribute::Returned; 1500 case bitc::ATTR_KIND_RETURNS_TWICE: 1501 return Attribute::ReturnsTwice; 1502 case bitc::ATTR_KIND_S_EXT: 1503 return Attribute::SExt; 1504 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1505 return Attribute::StackAlignment; 1506 case bitc::ATTR_KIND_STACK_PROTECT: 1507 return Attribute::StackProtect; 1508 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1509 return Attribute::StackProtectReq; 1510 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1511 return Attribute::StackProtectStrong; 1512 case bitc::ATTR_KIND_SAFESTACK: 1513 return Attribute::SafeStack; 1514 case bitc::ATTR_KIND_STRUCT_RET: 1515 return Attribute::StructRet; 1516 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1517 return Attribute::SanitizeAddress; 1518 case bitc::ATTR_KIND_SANITIZE_THREAD: 1519 return Attribute::SanitizeThread; 1520 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1521 return Attribute::SanitizeMemory; 1522 case bitc::ATTR_KIND_SWIFT_ERROR: 1523 return Attribute::SwiftError; 1524 case bitc::ATTR_KIND_SWIFT_SELF: 1525 return Attribute::SwiftSelf; 1526 case bitc::ATTR_KIND_UW_TABLE: 1527 return Attribute::UWTable; 1528 case bitc::ATTR_KIND_WRITEONLY: 1529 return Attribute::WriteOnly; 1530 case bitc::ATTR_KIND_Z_EXT: 1531 return Attribute::ZExt; 1532 } 1533 } 1534 1535 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1536 unsigned &Alignment) { 1537 // Note: Alignment in bitcode files is incremented by 1, so that zero 1538 // can be used for default alignment. 1539 if (Exponent > Value::MaxAlignmentExponent + 1) 1540 return error("Invalid alignment value"); 1541 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1542 return std::error_code(); 1543 } 1544 1545 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1546 Attribute::AttrKind *Kind) { 1547 *Kind = getAttrFromCode(Code); 1548 if (*Kind == Attribute::None) 1549 return error(BitcodeError::CorruptedBitcode, 1550 "Unknown attribute kind (" + Twine(Code) + ")"); 1551 return std::error_code(); 1552 } 1553 1554 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1555 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1556 return error("Invalid record"); 1557 1558 if (!MAttributeGroups.empty()) 1559 return error("Invalid multiple blocks"); 1560 1561 SmallVector<uint64_t, 64> Record; 1562 1563 // Read all the records. 1564 while (true) { 1565 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1566 1567 switch (Entry.Kind) { 1568 case BitstreamEntry::SubBlock: // Handled for us already. 1569 case BitstreamEntry::Error: 1570 return error("Malformed block"); 1571 case BitstreamEntry::EndBlock: 1572 return std::error_code(); 1573 case BitstreamEntry::Record: 1574 // The interesting case. 1575 break; 1576 } 1577 1578 // Read a record. 1579 Record.clear(); 1580 switch (Stream.readRecord(Entry.ID, Record)) { 1581 default: // Default behavior: ignore. 1582 break; 1583 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1584 if (Record.size() < 3) 1585 return error("Invalid record"); 1586 1587 uint64_t GrpID = Record[0]; 1588 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1589 1590 AttrBuilder B; 1591 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1592 if (Record[i] == 0) { // Enum attribute 1593 Attribute::AttrKind Kind; 1594 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1595 return EC; 1596 1597 B.addAttribute(Kind); 1598 } else if (Record[i] == 1) { // Integer attribute 1599 Attribute::AttrKind Kind; 1600 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1601 return EC; 1602 if (Kind == Attribute::Alignment) 1603 B.addAlignmentAttr(Record[++i]); 1604 else if (Kind == Attribute::StackAlignment) 1605 B.addStackAlignmentAttr(Record[++i]); 1606 else if (Kind == Attribute::Dereferenceable) 1607 B.addDereferenceableAttr(Record[++i]); 1608 else if (Kind == Attribute::DereferenceableOrNull) 1609 B.addDereferenceableOrNullAttr(Record[++i]); 1610 else if (Kind == Attribute::AllocSize) 1611 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1612 } else { // String attribute 1613 assert((Record[i] == 3 || Record[i] == 4) && 1614 "Invalid attribute group entry"); 1615 bool HasValue = (Record[i++] == 4); 1616 SmallString<64> KindStr; 1617 SmallString<64> ValStr; 1618 1619 while (Record[i] != 0 && i != e) 1620 KindStr += Record[i++]; 1621 assert(Record[i] == 0 && "Kind string not null terminated"); 1622 1623 if (HasValue) { 1624 // Has a value associated with it. 1625 ++i; // Skip the '0' that terminates the "kind" string. 1626 while (Record[i] != 0 && i != e) 1627 ValStr += Record[i++]; 1628 assert(Record[i] == 0 && "Value string not null terminated"); 1629 } 1630 1631 B.addAttribute(KindStr.str(), ValStr.str()); 1632 } 1633 } 1634 1635 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1636 break; 1637 } 1638 } 1639 } 1640 } 1641 1642 std::error_code BitcodeReader::parseTypeTable() { 1643 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1644 return error("Invalid record"); 1645 1646 return parseTypeTableBody(); 1647 } 1648 1649 std::error_code BitcodeReader::parseTypeTableBody() { 1650 if (!TypeList.empty()) 1651 return error("Invalid multiple blocks"); 1652 1653 SmallVector<uint64_t, 64> Record; 1654 unsigned NumRecords = 0; 1655 1656 SmallString<64> TypeName; 1657 1658 // Read all the records for this type table. 1659 while (true) { 1660 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1661 1662 switch (Entry.Kind) { 1663 case BitstreamEntry::SubBlock: // Handled for us already. 1664 case BitstreamEntry::Error: 1665 return error("Malformed block"); 1666 case BitstreamEntry::EndBlock: 1667 if (NumRecords != TypeList.size()) 1668 return error("Malformed block"); 1669 return std::error_code(); 1670 case BitstreamEntry::Record: 1671 // The interesting case. 1672 break; 1673 } 1674 1675 // Read a record. 1676 Record.clear(); 1677 Type *ResultTy = nullptr; 1678 switch (Stream.readRecord(Entry.ID, Record)) { 1679 default: 1680 return error("Invalid value"); 1681 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1682 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1683 // type list. This allows us to reserve space. 1684 if (Record.size() < 1) 1685 return error("Invalid record"); 1686 TypeList.resize(Record[0]); 1687 continue; 1688 case bitc::TYPE_CODE_VOID: // VOID 1689 ResultTy = Type::getVoidTy(Context); 1690 break; 1691 case bitc::TYPE_CODE_HALF: // HALF 1692 ResultTy = Type::getHalfTy(Context); 1693 break; 1694 case bitc::TYPE_CODE_FLOAT: // FLOAT 1695 ResultTy = Type::getFloatTy(Context); 1696 break; 1697 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1698 ResultTy = Type::getDoubleTy(Context); 1699 break; 1700 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1701 ResultTy = Type::getX86_FP80Ty(Context); 1702 break; 1703 case bitc::TYPE_CODE_FP128: // FP128 1704 ResultTy = Type::getFP128Ty(Context); 1705 break; 1706 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1707 ResultTy = Type::getPPC_FP128Ty(Context); 1708 break; 1709 case bitc::TYPE_CODE_LABEL: // LABEL 1710 ResultTy = Type::getLabelTy(Context); 1711 break; 1712 case bitc::TYPE_CODE_METADATA: // METADATA 1713 ResultTy = Type::getMetadataTy(Context); 1714 break; 1715 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1716 ResultTy = Type::getX86_MMXTy(Context); 1717 break; 1718 case bitc::TYPE_CODE_TOKEN: // TOKEN 1719 ResultTy = Type::getTokenTy(Context); 1720 break; 1721 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1722 if (Record.size() < 1) 1723 return error("Invalid record"); 1724 1725 uint64_t NumBits = Record[0]; 1726 if (NumBits < IntegerType::MIN_INT_BITS || 1727 NumBits > IntegerType::MAX_INT_BITS) 1728 return error("Bitwidth for integer type out of range"); 1729 ResultTy = IntegerType::get(Context, NumBits); 1730 break; 1731 } 1732 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1733 // [pointee type, address space] 1734 if (Record.size() < 1) 1735 return error("Invalid record"); 1736 unsigned AddressSpace = 0; 1737 if (Record.size() == 2) 1738 AddressSpace = Record[1]; 1739 ResultTy = getTypeByID(Record[0]); 1740 if (!ResultTy || 1741 !PointerType::isValidElementType(ResultTy)) 1742 return error("Invalid type"); 1743 ResultTy = PointerType::get(ResultTy, AddressSpace); 1744 break; 1745 } 1746 case bitc::TYPE_CODE_FUNCTION_OLD: { 1747 // FIXME: attrid is dead, remove it in LLVM 4.0 1748 // FUNCTION: [vararg, attrid, retty, paramty x N] 1749 if (Record.size() < 3) 1750 return error("Invalid record"); 1751 SmallVector<Type*, 8> ArgTys; 1752 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1753 if (Type *T = getTypeByID(Record[i])) 1754 ArgTys.push_back(T); 1755 else 1756 break; 1757 } 1758 1759 ResultTy = getTypeByID(Record[2]); 1760 if (!ResultTy || ArgTys.size() < Record.size()-3) 1761 return error("Invalid type"); 1762 1763 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1764 break; 1765 } 1766 case bitc::TYPE_CODE_FUNCTION: { 1767 // FUNCTION: [vararg, retty, paramty x N] 1768 if (Record.size() < 2) 1769 return error("Invalid record"); 1770 SmallVector<Type*, 8> ArgTys; 1771 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1772 if (Type *T = getTypeByID(Record[i])) { 1773 if (!FunctionType::isValidArgumentType(T)) 1774 return error("Invalid function argument type"); 1775 ArgTys.push_back(T); 1776 } 1777 else 1778 break; 1779 } 1780 1781 ResultTy = getTypeByID(Record[1]); 1782 if (!ResultTy || ArgTys.size() < Record.size()-2) 1783 return error("Invalid type"); 1784 1785 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1786 break; 1787 } 1788 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1789 if (Record.size() < 1) 1790 return error("Invalid record"); 1791 SmallVector<Type*, 8> EltTys; 1792 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1793 if (Type *T = getTypeByID(Record[i])) 1794 EltTys.push_back(T); 1795 else 1796 break; 1797 } 1798 if (EltTys.size() != Record.size()-1) 1799 return error("Invalid type"); 1800 ResultTy = StructType::get(Context, EltTys, Record[0]); 1801 break; 1802 } 1803 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1804 if (convertToString(Record, 0, TypeName)) 1805 return error("Invalid record"); 1806 continue; 1807 1808 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1809 if (Record.size() < 1) 1810 return error("Invalid record"); 1811 1812 if (NumRecords >= TypeList.size()) 1813 return error("Invalid TYPE table"); 1814 1815 // Check to see if this was forward referenced, if so fill in the temp. 1816 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1817 if (Res) { 1818 Res->setName(TypeName); 1819 TypeList[NumRecords] = nullptr; 1820 } else // Otherwise, create a new struct. 1821 Res = createIdentifiedStructType(Context, TypeName); 1822 TypeName.clear(); 1823 1824 SmallVector<Type*, 8> EltTys; 1825 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1826 if (Type *T = getTypeByID(Record[i])) 1827 EltTys.push_back(T); 1828 else 1829 break; 1830 } 1831 if (EltTys.size() != Record.size()-1) 1832 return error("Invalid record"); 1833 Res->setBody(EltTys, Record[0]); 1834 ResultTy = Res; 1835 break; 1836 } 1837 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1838 if (Record.size() != 1) 1839 return error("Invalid record"); 1840 1841 if (NumRecords >= TypeList.size()) 1842 return error("Invalid TYPE table"); 1843 1844 // Check to see if this was forward referenced, if so fill in the temp. 1845 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1846 if (Res) { 1847 Res->setName(TypeName); 1848 TypeList[NumRecords] = nullptr; 1849 } else // Otherwise, create a new struct with no body. 1850 Res = createIdentifiedStructType(Context, TypeName); 1851 TypeName.clear(); 1852 ResultTy = Res; 1853 break; 1854 } 1855 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1856 if (Record.size() < 2) 1857 return error("Invalid record"); 1858 ResultTy = getTypeByID(Record[1]); 1859 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1860 return error("Invalid type"); 1861 ResultTy = ArrayType::get(ResultTy, Record[0]); 1862 break; 1863 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1864 if (Record.size() < 2) 1865 return error("Invalid record"); 1866 if (Record[0] == 0) 1867 return error("Invalid vector length"); 1868 ResultTy = getTypeByID(Record[1]); 1869 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1870 return error("Invalid type"); 1871 ResultTy = VectorType::get(ResultTy, Record[0]); 1872 break; 1873 } 1874 1875 if (NumRecords >= TypeList.size()) 1876 return error("Invalid TYPE table"); 1877 if (TypeList[NumRecords]) 1878 return error( 1879 "Invalid TYPE table: Only named structs can be forward referenced"); 1880 assert(ResultTy && "Didn't read a type?"); 1881 TypeList[NumRecords++] = ResultTy; 1882 } 1883 } 1884 1885 std::error_code BitcodeReader::parseOperandBundleTags() { 1886 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1887 return error("Invalid record"); 1888 1889 if (!BundleTags.empty()) 1890 return error("Invalid multiple blocks"); 1891 1892 SmallVector<uint64_t, 64> Record; 1893 1894 while (true) { 1895 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1896 1897 switch (Entry.Kind) { 1898 case BitstreamEntry::SubBlock: // Handled for us already. 1899 case BitstreamEntry::Error: 1900 return error("Malformed block"); 1901 case BitstreamEntry::EndBlock: 1902 return std::error_code(); 1903 case BitstreamEntry::Record: 1904 // The interesting case. 1905 break; 1906 } 1907 1908 // Tags are implicitly mapped to integers by their order. 1909 1910 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1911 return error("Invalid record"); 1912 1913 // OPERAND_BUNDLE_TAG: [strchr x N] 1914 BundleTags.emplace_back(); 1915 if (convertToString(Record, 0, BundleTags.back())) 1916 return error("Invalid record"); 1917 Record.clear(); 1918 } 1919 } 1920 1921 /// Associate a value with its name from the given index in the provided record. 1922 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1923 unsigned NameIndex, Triple &TT) { 1924 SmallString<128> ValueName; 1925 if (convertToString(Record, NameIndex, ValueName)) 1926 return error("Invalid record"); 1927 unsigned ValueID = Record[0]; 1928 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1929 return error("Invalid record"); 1930 Value *V = ValueList[ValueID]; 1931 1932 StringRef NameStr(ValueName.data(), ValueName.size()); 1933 if (NameStr.find_first_of(0) != StringRef::npos) 1934 return error("Invalid value name"); 1935 V->setName(NameStr); 1936 auto *GO = dyn_cast<GlobalObject>(V); 1937 if (GO) { 1938 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1939 if (TT.isOSBinFormatMachO()) 1940 GO->setComdat(nullptr); 1941 else 1942 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1943 } 1944 } 1945 return V; 1946 } 1947 1948 /// Helper to note and return the current location, and jump to the given 1949 /// offset. 1950 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1951 BitstreamCursor &Stream) { 1952 // Save the current parsing location so we can jump back at the end 1953 // of the VST read. 1954 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1955 Stream.JumpToBit(Offset * 32); 1956 #ifndef NDEBUG 1957 // Do some checking if we are in debug mode. 1958 BitstreamEntry Entry = Stream.advance(); 1959 assert(Entry.Kind == BitstreamEntry::SubBlock); 1960 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1961 #else 1962 // In NDEBUG mode ignore the output so we don't get an unused variable 1963 // warning. 1964 Stream.advance(); 1965 #endif 1966 return CurrentBit; 1967 } 1968 1969 /// Parse the value symbol table at either the current parsing location or 1970 /// at the given bit offset if provided. 1971 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1972 uint64_t CurrentBit; 1973 // Pass in the Offset to distinguish between calling for the module-level 1974 // VST (where we want to jump to the VST offset) and the function-level 1975 // VST (where we don't). 1976 if (Offset > 0) 1977 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1978 1979 // Compute the delta between the bitcode indices in the VST (the word offset 1980 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1981 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1982 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1983 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1984 // just before entering the VST subblock because: 1) the EnterSubBlock 1985 // changes the AbbrevID width; 2) the VST block is nested within the same 1986 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1987 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1988 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1989 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1990 unsigned FuncBitcodeOffsetDelta = 1991 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1992 1993 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1994 return error("Invalid record"); 1995 1996 SmallVector<uint64_t, 64> Record; 1997 1998 Triple TT(TheModule->getTargetTriple()); 1999 2000 // Read all the records for this value table. 2001 SmallString<128> ValueName; 2002 2003 while (true) { 2004 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2005 2006 switch (Entry.Kind) { 2007 case BitstreamEntry::SubBlock: // Handled for us already. 2008 case BitstreamEntry::Error: 2009 return error("Malformed block"); 2010 case BitstreamEntry::EndBlock: 2011 if (Offset > 0) 2012 Stream.JumpToBit(CurrentBit); 2013 return std::error_code(); 2014 case BitstreamEntry::Record: 2015 // The interesting case. 2016 break; 2017 } 2018 2019 // Read a record. 2020 Record.clear(); 2021 switch (Stream.readRecord(Entry.ID, Record)) { 2022 default: // Default behavior: unknown type. 2023 break; 2024 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2025 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 2026 if (std::error_code EC = ValOrErr.getError()) 2027 return EC; 2028 ValOrErr.get(); 2029 break; 2030 } 2031 case bitc::VST_CODE_FNENTRY: { 2032 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2033 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 2034 if (std::error_code EC = ValOrErr.getError()) 2035 return EC; 2036 Value *V = ValOrErr.get(); 2037 2038 auto *GO = dyn_cast<GlobalObject>(V); 2039 if (!GO) { 2040 // If this is an alias, need to get the actual Function object 2041 // it aliases, in order to set up the DeferredFunctionInfo entry below. 2042 auto *GA = dyn_cast<GlobalAlias>(V); 2043 if (GA) 2044 GO = GA->getBaseObject(); 2045 assert(GO); 2046 } 2047 2048 uint64_t FuncWordOffset = Record[1]; 2049 Function *F = dyn_cast<Function>(GO); 2050 assert(F); 2051 uint64_t FuncBitOffset = FuncWordOffset * 32; 2052 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2053 // Set the LastFunctionBlockBit to point to the last function block. 2054 // Later when parsing is resumed after function materialization, 2055 // we can simply skip that last function block. 2056 if (FuncBitOffset > LastFunctionBlockBit) 2057 LastFunctionBlockBit = FuncBitOffset; 2058 break; 2059 } 2060 case bitc::VST_CODE_BBENTRY: { 2061 if (convertToString(Record, 1, ValueName)) 2062 return error("Invalid record"); 2063 BasicBlock *BB = getBasicBlock(Record[0]); 2064 if (!BB) 2065 return error("Invalid record"); 2066 2067 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2068 ValueName.clear(); 2069 break; 2070 } 2071 } 2072 } 2073 } 2074 2075 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2076 std::error_code 2077 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2078 if (Record.size() < 2) 2079 return error("Invalid record"); 2080 2081 unsigned Kind = Record[0]; 2082 SmallString<8> Name(Record.begin() + 1, Record.end()); 2083 2084 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2085 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2086 return error("Conflicting METADATA_KIND records"); 2087 return std::error_code(); 2088 } 2089 2090 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2091 2092 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2093 StringRef Blob, 2094 unsigned &NextMetadataNo) { 2095 // All the MDStrings in the block are emitted together in a single 2096 // record. The strings are concatenated and stored in a blob along with 2097 // their sizes. 2098 if (Record.size() != 2) 2099 return error("Invalid record: metadata strings layout"); 2100 2101 unsigned NumStrings = Record[0]; 2102 unsigned StringsOffset = Record[1]; 2103 if (!NumStrings) 2104 return error("Invalid record: metadata strings with no strings"); 2105 if (StringsOffset > Blob.size()) 2106 return error("Invalid record: metadata strings corrupt offset"); 2107 2108 StringRef Lengths = Blob.slice(0, StringsOffset); 2109 SimpleBitstreamCursor R(*StreamFile); 2110 R.jumpToPointer(Lengths.begin()); 2111 2112 // Ensure that Blob doesn't get invalidated, even if this is reading from 2113 // a StreamingMemoryObject with corrupt data. 2114 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2115 2116 StringRef Strings = Blob.drop_front(StringsOffset); 2117 do { 2118 if (R.AtEndOfStream()) 2119 return error("Invalid record: metadata strings bad length"); 2120 2121 unsigned Size = R.ReadVBR(6); 2122 if (Strings.size() < Size) 2123 return error("Invalid record: metadata strings truncated chars"); 2124 2125 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2126 NextMetadataNo++); 2127 Strings = Strings.drop_front(Size); 2128 } while (--NumStrings); 2129 2130 return std::error_code(); 2131 } 2132 2133 namespace { 2134 2135 class PlaceholderQueue { 2136 // Placeholders would thrash around when moved, so store in a std::deque 2137 // instead of some sort of vector. 2138 std::deque<DistinctMDOperandPlaceholder> PHs; 2139 2140 public: 2141 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2142 void flush(BitcodeReaderMetadataList &MetadataList); 2143 }; 2144 2145 } // end anonymous namespace 2146 2147 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2148 PHs.emplace_back(ID); 2149 return PHs.back(); 2150 } 2151 2152 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2153 while (!PHs.empty()) { 2154 PHs.front().replaceUseWith( 2155 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2156 PHs.pop_front(); 2157 } 2158 } 2159 2160 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2161 /// module level metadata. 2162 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2163 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2164 "Must read all module-level metadata before function-level"); 2165 2166 IsMetadataMaterialized = true; 2167 unsigned NextMetadataNo = MetadataList.size(); 2168 2169 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2170 return error("Invalid metadata: fwd refs into function blocks"); 2171 2172 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2173 return error("Invalid record"); 2174 2175 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2176 SmallVector<uint64_t, 64> Record; 2177 2178 PlaceholderQueue Placeholders; 2179 bool IsDistinct; 2180 auto getMD = [&](unsigned ID) -> Metadata * { 2181 if (!IsDistinct) 2182 return MetadataList.getMetadataFwdRef(ID); 2183 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2184 return MD; 2185 return &Placeholders.getPlaceholderOp(ID); 2186 }; 2187 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2188 if (ID) 2189 return getMD(ID - 1); 2190 return nullptr; 2191 }; 2192 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2193 if (ID) 2194 return MetadataList.getMetadataFwdRef(ID - 1); 2195 return nullptr; 2196 }; 2197 auto getMDString = [&](unsigned ID) -> MDString *{ 2198 // This requires that the ID is not really a forward reference. In 2199 // particular, the MDString must already have been resolved. 2200 return cast_or_null<MDString>(getMDOrNull(ID)); 2201 }; 2202 2203 // Support for old type refs. 2204 auto getDITypeRefOrNull = [&](unsigned ID) { 2205 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2206 }; 2207 2208 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2209 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2210 2211 // Read all the records. 2212 while (true) { 2213 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2214 2215 switch (Entry.Kind) { 2216 case BitstreamEntry::SubBlock: // Handled for us already. 2217 case BitstreamEntry::Error: 2218 return error("Malformed block"); 2219 case BitstreamEntry::EndBlock: 2220 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2221 for (auto CU_SP : CUSubprograms) 2222 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2223 for (auto &Op : SPs->operands()) 2224 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2225 SP->replaceOperandWith(7, CU_SP.first); 2226 2227 MetadataList.tryToResolveCycles(); 2228 Placeholders.flush(MetadataList); 2229 return std::error_code(); 2230 case BitstreamEntry::Record: 2231 // The interesting case. 2232 break; 2233 } 2234 2235 // Read a record. 2236 Record.clear(); 2237 StringRef Blob; 2238 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2239 IsDistinct = false; 2240 switch (Code) { 2241 default: // Default behavior: ignore. 2242 break; 2243 case bitc::METADATA_NAME: { 2244 // Read name of the named metadata. 2245 SmallString<8> Name(Record.begin(), Record.end()); 2246 Record.clear(); 2247 Code = Stream.ReadCode(); 2248 2249 unsigned NextBitCode = Stream.readRecord(Code, Record); 2250 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2251 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2252 2253 // Read named metadata elements. 2254 unsigned Size = Record.size(); 2255 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2256 for (unsigned i = 0; i != Size; ++i) { 2257 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2258 if (!MD) 2259 return error("Invalid record"); 2260 NMD->addOperand(MD); 2261 } 2262 break; 2263 } 2264 case bitc::METADATA_OLD_FN_NODE: { 2265 // FIXME: Remove in 4.0. 2266 // This is a LocalAsMetadata record, the only type of function-local 2267 // metadata. 2268 if (Record.size() % 2 == 1) 2269 return error("Invalid record"); 2270 2271 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2272 // to be legal, but there's no upgrade path. 2273 auto dropRecord = [&] { 2274 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2275 }; 2276 if (Record.size() != 2) { 2277 dropRecord(); 2278 break; 2279 } 2280 2281 Type *Ty = getTypeByID(Record[0]); 2282 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2283 dropRecord(); 2284 break; 2285 } 2286 2287 MetadataList.assignValue( 2288 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2289 NextMetadataNo++); 2290 break; 2291 } 2292 case bitc::METADATA_OLD_NODE: { 2293 // FIXME: Remove in 4.0. 2294 if (Record.size() % 2 == 1) 2295 return error("Invalid record"); 2296 2297 unsigned Size = Record.size(); 2298 SmallVector<Metadata *, 8> Elts; 2299 for (unsigned i = 0; i != Size; i += 2) { 2300 Type *Ty = getTypeByID(Record[i]); 2301 if (!Ty) 2302 return error("Invalid record"); 2303 if (Ty->isMetadataTy()) 2304 Elts.push_back(getMD(Record[i + 1])); 2305 else if (!Ty->isVoidTy()) { 2306 auto *MD = 2307 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2308 assert(isa<ConstantAsMetadata>(MD) && 2309 "Expected non-function-local metadata"); 2310 Elts.push_back(MD); 2311 } else 2312 Elts.push_back(nullptr); 2313 } 2314 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2315 break; 2316 } 2317 case bitc::METADATA_VALUE: { 2318 if (Record.size() != 2) 2319 return error("Invalid record"); 2320 2321 Type *Ty = getTypeByID(Record[0]); 2322 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2323 return error("Invalid record"); 2324 2325 MetadataList.assignValue( 2326 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2327 NextMetadataNo++); 2328 break; 2329 } 2330 case bitc::METADATA_DISTINCT_NODE: 2331 IsDistinct = true; 2332 LLVM_FALLTHROUGH; 2333 case bitc::METADATA_NODE: { 2334 SmallVector<Metadata *, 8> Elts; 2335 Elts.reserve(Record.size()); 2336 for (unsigned ID : Record) 2337 Elts.push_back(getMDOrNull(ID)); 2338 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2339 : MDNode::get(Context, Elts), 2340 NextMetadataNo++); 2341 break; 2342 } 2343 case bitc::METADATA_LOCATION: { 2344 if (Record.size() != 5) 2345 return error("Invalid record"); 2346 2347 IsDistinct = Record[0]; 2348 unsigned Line = Record[1]; 2349 unsigned Column = Record[2]; 2350 Metadata *Scope = getMD(Record[3]); 2351 Metadata *InlinedAt = getMDOrNull(Record[4]); 2352 MetadataList.assignValue( 2353 GET_OR_DISTINCT(DILocation, 2354 (Context, Line, Column, Scope, InlinedAt)), 2355 NextMetadataNo++); 2356 break; 2357 } 2358 case bitc::METADATA_GENERIC_DEBUG: { 2359 if (Record.size() < 4) 2360 return error("Invalid record"); 2361 2362 IsDistinct = Record[0]; 2363 unsigned Tag = Record[1]; 2364 unsigned Version = Record[2]; 2365 2366 if (Tag >= 1u << 16 || Version != 0) 2367 return error("Invalid record"); 2368 2369 auto *Header = getMDString(Record[3]); 2370 SmallVector<Metadata *, 8> DwarfOps; 2371 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2372 DwarfOps.push_back(getMDOrNull(Record[I])); 2373 MetadataList.assignValue( 2374 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2375 NextMetadataNo++); 2376 break; 2377 } 2378 case bitc::METADATA_SUBRANGE: { 2379 if (Record.size() != 3) 2380 return error("Invalid record"); 2381 2382 IsDistinct = Record[0]; 2383 MetadataList.assignValue( 2384 GET_OR_DISTINCT(DISubrange, 2385 (Context, Record[1], unrotateSign(Record[2]))), 2386 NextMetadataNo++); 2387 break; 2388 } 2389 case bitc::METADATA_ENUMERATOR: { 2390 if (Record.size() != 3) 2391 return error("Invalid record"); 2392 2393 IsDistinct = Record[0]; 2394 MetadataList.assignValue( 2395 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2396 getMDString(Record[2]))), 2397 NextMetadataNo++); 2398 break; 2399 } 2400 case bitc::METADATA_BASIC_TYPE: { 2401 if (Record.size() != 6) 2402 return error("Invalid record"); 2403 2404 IsDistinct = Record[0]; 2405 MetadataList.assignValue( 2406 GET_OR_DISTINCT(DIBasicType, 2407 (Context, Record[1], getMDString(Record[2]), 2408 Record[3], Record[4], Record[5])), 2409 NextMetadataNo++); 2410 break; 2411 } 2412 case bitc::METADATA_DERIVED_TYPE: { 2413 if (Record.size() != 12) 2414 return error("Invalid record"); 2415 2416 IsDistinct = Record[0]; 2417 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2418 MetadataList.assignValue( 2419 GET_OR_DISTINCT( 2420 DIDerivedType, 2421 (Context, Record[1], getMDString(Record[2]), 2422 getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]), 2423 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9], 2424 Flags, getDITypeRefOrNull(Record[11]))), 2425 NextMetadataNo++); 2426 break; 2427 } 2428 case bitc::METADATA_COMPOSITE_TYPE: { 2429 if (Record.size() != 16) 2430 return error("Invalid record"); 2431 2432 // If we have a UUID and this is not a forward declaration, lookup the 2433 // mapping. 2434 IsDistinct = Record[0] & 0x1; 2435 bool IsNotUsedInTypeRef = Record[0] >= 2; 2436 unsigned Tag = Record[1]; 2437 MDString *Name = getMDString(Record[2]); 2438 Metadata *File = getMDOrNull(Record[3]); 2439 unsigned Line = Record[4]; 2440 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2441 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2442 uint64_t SizeInBits = Record[7]; 2443 uint64_t AlignInBits = Record[8]; 2444 uint64_t OffsetInBits = Record[9]; 2445 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2446 Metadata *Elements = getMDOrNull(Record[11]); 2447 unsigned RuntimeLang = Record[12]; 2448 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2449 Metadata *TemplateParams = getMDOrNull(Record[14]); 2450 auto *Identifier = getMDString(Record[15]); 2451 DICompositeType *CT = nullptr; 2452 if (Identifier) 2453 CT = DICompositeType::buildODRType( 2454 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2455 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2456 VTableHolder, TemplateParams); 2457 2458 // Create a node if we didn't get a lazy ODR type. 2459 if (!CT) 2460 CT = GET_OR_DISTINCT(DICompositeType, 2461 (Context, Tag, Name, File, Line, Scope, BaseType, 2462 SizeInBits, AlignInBits, OffsetInBits, Flags, 2463 Elements, RuntimeLang, VTableHolder, 2464 TemplateParams, Identifier)); 2465 if (!IsNotUsedInTypeRef && Identifier) 2466 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2467 2468 MetadataList.assignValue(CT, NextMetadataNo++); 2469 break; 2470 } 2471 case bitc::METADATA_SUBROUTINE_TYPE: { 2472 if (Record.size() < 3 || Record.size() > 4) 2473 return error("Invalid record"); 2474 bool IsOldTypeRefArray = Record[0] < 2; 2475 unsigned CC = (Record.size() > 3) ? Record[3] : 0; 2476 2477 IsDistinct = Record[0] & 0x1; 2478 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]); 2479 Metadata *Types = getMDOrNull(Record[2]); 2480 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2481 Types = MetadataList.upgradeTypeRefArray(Types); 2482 2483 MetadataList.assignValue( 2484 GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)), 2485 NextMetadataNo++); 2486 break; 2487 } 2488 2489 case bitc::METADATA_MODULE: { 2490 if (Record.size() != 6) 2491 return error("Invalid record"); 2492 2493 IsDistinct = Record[0]; 2494 MetadataList.assignValue( 2495 GET_OR_DISTINCT(DIModule, 2496 (Context, getMDOrNull(Record[1]), 2497 getMDString(Record[2]), getMDString(Record[3]), 2498 getMDString(Record[4]), getMDString(Record[5]))), 2499 NextMetadataNo++); 2500 break; 2501 } 2502 2503 case bitc::METADATA_FILE: { 2504 if (Record.size() != 3) 2505 return error("Invalid record"); 2506 2507 IsDistinct = Record[0]; 2508 MetadataList.assignValue( 2509 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2510 getMDString(Record[2]))), 2511 NextMetadataNo++); 2512 break; 2513 } 2514 case bitc::METADATA_COMPILE_UNIT: { 2515 if (Record.size() < 14 || Record.size() > 17) 2516 return error("Invalid record"); 2517 2518 // Ignore Record[0], which indicates whether this compile unit is 2519 // distinct. It's always distinct. 2520 IsDistinct = true; 2521 auto *CU = DICompileUnit::getDistinct( 2522 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2523 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2524 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2525 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2526 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2527 Record.size() <= 14 ? 0 : Record[14], 2528 Record.size() <= 16 ? true : Record[16]); 2529 2530 MetadataList.assignValue(CU, NextMetadataNo++); 2531 2532 // Move the Upgrade the list of subprograms. 2533 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2534 CUSubprograms.push_back({CU, SPs}); 2535 break; 2536 } 2537 case bitc::METADATA_SUBPROGRAM: { 2538 if (Record.size() < 18 || Record.size() > 20) 2539 return error("Invalid record"); 2540 2541 IsDistinct = 2542 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2543 // Version 1 has a Function as Record[15]. 2544 // Version 2 has removed Record[15]. 2545 // Version 3 has the Unit as Record[15]. 2546 // Version 4 added thisAdjustment. 2547 bool HasUnit = Record[0] >= 2; 2548 if (HasUnit && Record.size() < 19) 2549 return error("Invalid record"); 2550 Metadata *CUorFn = getMDOrNull(Record[15]); 2551 unsigned Offset = Record.size() >= 19 ? 1 : 0; 2552 bool HasFn = Offset && !HasUnit; 2553 bool HasThisAdj = Record.size() >= 20; 2554 DISubprogram *SP = GET_OR_DISTINCT( 2555 DISubprogram, (Context, 2556 getDITypeRefOrNull(Record[1]), // scope 2557 getMDString(Record[2]), // name 2558 getMDString(Record[3]), // linkageName 2559 getMDOrNull(Record[4]), // file 2560 Record[5], // line 2561 getMDOrNull(Record[6]), // type 2562 Record[7], // isLocal 2563 Record[8], // isDefinition 2564 Record[9], // scopeLine 2565 getDITypeRefOrNull(Record[10]), // containingType 2566 Record[11], // virtuality 2567 Record[12], // virtualIndex 2568 HasThisAdj ? Record[19] : 0, // thisAdjustment 2569 static_cast<DINode::DIFlags>( 2570 Record[13] // flags 2571 ), 2572 Record[14], // isOptimized 2573 HasUnit ? CUorFn : nullptr, // unit 2574 getMDOrNull(Record[15 + Offset]), // templateParams 2575 getMDOrNull(Record[16 + Offset]), // declaration 2576 getMDOrNull(Record[17 + Offset]) // variables 2577 )); 2578 MetadataList.assignValue(SP, NextMetadataNo++); 2579 2580 // Upgrade sp->function mapping to function->sp mapping. 2581 if (HasFn) { 2582 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2583 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2584 if (F->isMaterializable()) 2585 // Defer until materialized; unmaterialized functions may not have 2586 // metadata. 2587 FunctionsWithSPs[F] = SP; 2588 else if (!F->empty()) 2589 F->setSubprogram(SP); 2590 } 2591 } 2592 break; 2593 } 2594 case bitc::METADATA_LEXICAL_BLOCK: { 2595 if (Record.size() != 5) 2596 return error("Invalid record"); 2597 2598 IsDistinct = Record[0]; 2599 MetadataList.assignValue( 2600 GET_OR_DISTINCT(DILexicalBlock, 2601 (Context, getMDOrNull(Record[1]), 2602 getMDOrNull(Record[2]), Record[3], Record[4])), 2603 NextMetadataNo++); 2604 break; 2605 } 2606 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2607 if (Record.size() != 4) 2608 return error("Invalid record"); 2609 2610 IsDistinct = Record[0]; 2611 MetadataList.assignValue( 2612 GET_OR_DISTINCT(DILexicalBlockFile, 2613 (Context, getMDOrNull(Record[1]), 2614 getMDOrNull(Record[2]), Record[3])), 2615 NextMetadataNo++); 2616 break; 2617 } 2618 case bitc::METADATA_NAMESPACE: { 2619 if (Record.size() != 5) 2620 return error("Invalid record"); 2621 2622 IsDistinct = Record[0]; 2623 MetadataList.assignValue( 2624 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2625 getMDOrNull(Record[2]), 2626 getMDString(Record[3]), Record[4])), 2627 NextMetadataNo++); 2628 break; 2629 } 2630 case bitc::METADATA_MACRO: { 2631 if (Record.size() != 5) 2632 return error("Invalid record"); 2633 2634 IsDistinct = Record[0]; 2635 MetadataList.assignValue( 2636 GET_OR_DISTINCT(DIMacro, 2637 (Context, Record[1], Record[2], 2638 getMDString(Record[3]), getMDString(Record[4]))), 2639 NextMetadataNo++); 2640 break; 2641 } 2642 case bitc::METADATA_MACRO_FILE: { 2643 if (Record.size() != 5) 2644 return error("Invalid record"); 2645 2646 IsDistinct = Record[0]; 2647 MetadataList.assignValue( 2648 GET_OR_DISTINCT(DIMacroFile, 2649 (Context, Record[1], Record[2], 2650 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2651 NextMetadataNo++); 2652 break; 2653 } 2654 case bitc::METADATA_TEMPLATE_TYPE: { 2655 if (Record.size() != 3) 2656 return error("Invalid record"); 2657 2658 IsDistinct = Record[0]; 2659 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2660 (Context, getMDString(Record[1]), 2661 getDITypeRefOrNull(Record[2]))), 2662 NextMetadataNo++); 2663 break; 2664 } 2665 case bitc::METADATA_TEMPLATE_VALUE: { 2666 if (Record.size() != 5) 2667 return error("Invalid record"); 2668 2669 IsDistinct = Record[0]; 2670 MetadataList.assignValue( 2671 GET_OR_DISTINCT(DITemplateValueParameter, 2672 (Context, Record[1], getMDString(Record[2]), 2673 getDITypeRefOrNull(Record[3]), 2674 getMDOrNull(Record[4]))), 2675 NextMetadataNo++); 2676 break; 2677 } 2678 case bitc::METADATA_GLOBAL_VAR: { 2679 if (Record.size() != 11) 2680 return error("Invalid record"); 2681 2682 IsDistinct = Record[0]; 2683 MetadataList.assignValue( 2684 GET_OR_DISTINCT(DIGlobalVariable, 2685 (Context, getMDOrNull(Record[1]), 2686 getMDString(Record[2]), getMDString(Record[3]), 2687 getMDOrNull(Record[4]), Record[5], 2688 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2689 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2690 NextMetadataNo++); 2691 break; 2692 } 2693 case bitc::METADATA_LOCAL_VAR: { 2694 // 10th field is for the obseleted 'inlinedAt:' field. 2695 if (Record.size() < 8 || Record.size() > 10) 2696 return error("Invalid record"); 2697 2698 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2699 // DW_TAG_arg_variable. 2700 IsDistinct = Record[0]; 2701 bool HasTag = Record.size() > 8; 2702 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]); 2703 MetadataList.assignValue( 2704 GET_OR_DISTINCT(DILocalVariable, 2705 (Context, getMDOrNull(Record[1 + HasTag]), 2706 getMDString(Record[2 + HasTag]), 2707 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2708 getDITypeRefOrNull(Record[5 + HasTag]), 2709 Record[6 + HasTag], Flags)), 2710 NextMetadataNo++); 2711 break; 2712 } 2713 case bitc::METADATA_EXPRESSION: { 2714 if (Record.size() < 1) 2715 return error("Invalid record"); 2716 2717 IsDistinct = Record[0]; 2718 MetadataList.assignValue( 2719 GET_OR_DISTINCT(DIExpression, 2720 (Context, makeArrayRef(Record).slice(1))), 2721 NextMetadataNo++); 2722 break; 2723 } 2724 case bitc::METADATA_OBJC_PROPERTY: { 2725 if (Record.size() != 8) 2726 return error("Invalid record"); 2727 2728 IsDistinct = Record[0]; 2729 MetadataList.assignValue( 2730 GET_OR_DISTINCT(DIObjCProperty, 2731 (Context, getMDString(Record[1]), 2732 getMDOrNull(Record[2]), Record[3], 2733 getMDString(Record[4]), getMDString(Record[5]), 2734 Record[6], getDITypeRefOrNull(Record[7]))), 2735 NextMetadataNo++); 2736 break; 2737 } 2738 case bitc::METADATA_IMPORTED_ENTITY: { 2739 if (Record.size() != 6) 2740 return error("Invalid record"); 2741 2742 IsDistinct = Record[0]; 2743 MetadataList.assignValue( 2744 GET_OR_DISTINCT(DIImportedEntity, 2745 (Context, Record[1], getMDOrNull(Record[2]), 2746 getDITypeRefOrNull(Record[3]), Record[4], 2747 getMDString(Record[5]))), 2748 NextMetadataNo++); 2749 break; 2750 } 2751 case bitc::METADATA_STRING_OLD: { 2752 std::string String(Record.begin(), Record.end()); 2753 2754 // Test for upgrading !llvm.loop. 2755 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2756 2757 Metadata *MD = MDString::get(Context, String); 2758 MetadataList.assignValue(MD, NextMetadataNo++); 2759 break; 2760 } 2761 case bitc::METADATA_STRINGS: 2762 if (std::error_code EC = 2763 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2764 return EC; 2765 break; 2766 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { 2767 if (Record.size() % 2 == 0) 2768 return error("Invalid record"); 2769 unsigned ValueID = Record[0]; 2770 if (ValueID >= ValueList.size()) 2771 return error("Invalid record"); 2772 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID])) 2773 parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1)); 2774 break; 2775 } 2776 case bitc::METADATA_KIND: { 2777 // Support older bitcode files that had METADATA_KIND records in a 2778 // block with METADATA_BLOCK_ID. 2779 if (std::error_code EC = parseMetadataKindRecord(Record)) 2780 return EC; 2781 break; 2782 } 2783 } 2784 } 2785 2786 #undef GET_OR_DISTINCT 2787 } 2788 2789 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2790 std::error_code BitcodeReader::parseMetadataKinds() { 2791 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2792 return error("Invalid record"); 2793 2794 SmallVector<uint64_t, 64> Record; 2795 2796 // Read all the records. 2797 while (true) { 2798 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2799 2800 switch (Entry.Kind) { 2801 case BitstreamEntry::SubBlock: // Handled for us already. 2802 case BitstreamEntry::Error: 2803 return error("Malformed block"); 2804 case BitstreamEntry::EndBlock: 2805 return std::error_code(); 2806 case BitstreamEntry::Record: 2807 // The interesting case. 2808 break; 2809 } 2810 2811 // Read a record. 2812 Record.clear(); 2813 unsigned Code = Stream.readRecord(Entry.ID, Record); 2814 switch (Code) { 2815 default: // Default behavior: ignore. 2816 break; 2817 case bitc::METADATA_KIND: { 2818 if (std::error_code EC = parseMetadataKindRecord(Record)) 2819 return EC; 2820 break; 2821 } 2822 } 2823 } 2824 } 2825 2826 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2827 /// encoding. 2828 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2829 if ((V & 1) == 0) 2830 return V >> 1; 2831 if (V != 1) 2832 return -(V >> 1); 2833 // There is no such thing as -0 with integers. "-0" really means MININT. 2834 return 1ULL << 63; 2835 } 2836 2837 /// Resolve all of the initializers for global values and aliases that we can. 2838 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2839 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2840 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2841 IndirectSymbolInitWorklist; 2842 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2843 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2844 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2845 2846 GlobalInitWorklist.swap(GlobalInits); 2847 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2848 FunctionPrefixWorklist.swap(FunctionPrefixes); 2849 FunctionPrologueWorklist.swap(FunctionPrologues); 2850 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2851 2852 while (!GlobalInitWorklist.empty()) { 2853 unsigned ValID = GlobalInitWorklist.back().second; 2854 if (ValID >= ValueList.size()) { 2855 // Not ready to resolve this yet, it requires something later in the file. 2856 GlobalInits.push_back(GlobalInitWorklist.back()); 2857 } else { 2858 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2859 GlobalInitWorklist.back().first->setInitializer(C); 2860 else 2861 return error("Expected a constant"); 2862 } 2863 GlobalInitWorklist.pop_back(); 2864 } 2865 2866 while (!IndirectSymbolInitWorklist.empty()) { 2867 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2868 if (ValID >= ValueList.size()) { 2869 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2870 } else { 2871 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2872 if (!C) 2873 return error("Expected a constant"); 2874 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2875 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2876 return error("Alias and aliasee types don't match"); 2877 GIS->setIndirectSymbol(C); 2878 } 2879 IndirectSymbolInitWorklist.pop_back(); 2880 } 2881 2882 while (!FunctionPrefixWorklist.empty()) { 2883 unsigned ValID = FunctionPrefixWorklist.back().second; 2884 if (ValID >= ValueList.size()) { 2885 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2886 } else { 2887 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2888 FunctionPrefixWorklist.back().first->setPrefixData(C); 2889 else 2890 return error("Expected a constant"); 2891 } 2892 FunctionPrefixWorklist.pop_back(); 2893 } 2894 2895 while (!FunctionPrologueWorklist.empty()) { 2896 unsigned ValID = FunctionPrologueWorklist.back().second; 2897 if (ValID >= ValueList.size()) { 2898 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2899 } else { 2900 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2901 FunctionPrologueWorklist.back().first->setPrologueData(C); 2902 else 2903 return error("Expected a constant"); 2904 } 2905 FunctionPrologueWorklist.pop_back(); 2906 } 2907 2908 while (!FunctionPersonalityFnWorklist.empty()) { 2909 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2910 if (ValID >= ValueList.size()) { 2911 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2912 } else { 2913 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2914 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2915 else 2916 return error("Expected a constant"); 2917 } 2918 FunctionPersonalityFnWorklist.pop_back(); 2919 } 2920 2921 return std::error_code(); 2922 } 2923 2924 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2925 SmallVector<uint64_t, 8> Words(Vals.size()); 2926 transform(Vals, Words.begin(), 2927 BitcodeReader::decodeSignRotatedValue); 2928 2929 return APInt(TypeBits, Words); 2930 } 2931 2932 std::error_code BitcodeReader::parseConstants() { 2933 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2934 return error("Invalid record"); 2935 2936 SmallVector<uint64_t, 64> Record; 2937 2938 // Read all the records for this value table. 2939 Type *CurTy = Type::getInt32Ty(Context); 2940 unsigned NextCstNo = ValueList.size(); 2941 2942 while (true) { 2943 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2944 2945 switch (Entry.Kind) { 2946 case BitstreamEntry::SubBlock: // Handled for us already. 2947 case BitstreamEntry::Error: 2948 return error("Malformed block"); 2949 case BitstreamEntry::EndBlock: 2950 if (NextCstNo != ValueList.size()) 2951 return error("Invalid constant reference"); 2952 2953 // Once all the constants have been read, go through and resolve forward 2954 // references. 2955 ValueList.resolveConstantForwardRefs(); 2956 return std::error_code(); 2957 case BitstreamEntry::Record: 2958 // The interesting case. 2959 break; 2960 } 2961 2962 // Read a record. 2963 Record.clear(); 2964 Type *VoidType = Type::getVoidTy(Context); 2965 Value *V = nullptr; 2966 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2967 switch (BitCode) { 2968 default: // Default behavior: unknown constant 2969 case bitc::CST_CODE_UNDEF: // UNDEF 2970 V = UndefValue::get(CurTy); 2971 break; 2972 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2973 if (Record.empty()) 2974 return error("Invalid record"); 2975 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2976 return error("Invalid record"); 2977 if (TypeList[Record[0]] == VoidType) 2978 return error("Invalid constant type"); 2979 CurTy = TypeList[Record[0]]; 2980 continue; // Skip the ValueList manipulation. 2981 case bitc::CST_CODE_NULL: // NULL 2982 V = Constant::getNullValue(CurTy); 2983 break; 2984 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2985 if (!CurTy->isIntegerTy() || Record.empty()) 2986 return error("Invalid record"); 2987 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2988 break; 2989 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2990 if (!CurTy->isIntegerTy() || Record.empty()) 2991 return error("Invalid record"); 2992 2993 APInt VInt = 2994 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2995 V = ConstantInt::get(Context, VInt); 2996 2997 break; 2998 } 2999 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3000 if (Record.empty()) 3001 return error("Invalid record"); 3002 if (CurTy->isHalfTy()) 3003 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 3004 APInt(16, (uint16_t)Record[0]))); 3005 else if (CurTy->isFloatTy()) 3006 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 3007 APInt(32, (uint32_t)Record[0]))); 3008 else if (CurTy->isDoubleTy()) 3009 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 3010 APInt(64, Record[0]))); 3011 else if (CurTy->isX86_FP80Ty()) { 3012 // Bits are not stored the same way as a normal i80 APInt, compensate. 3013 uint64_t Rearrange[2]; 3014 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3015 Rearrange[1] = Record[0] >> 48; 3016 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 3017 APInt(80, Rearrange))); 3018 } else if (CurTy->isFP128Ty()) 3019 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 3020 APInt(128, Record))); 3021 else if (CurTy->isPPC_FP128Ty()) 3022 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 3023 APInt(128, Record))); 3024 else 3025 V = UndefValue::get(CurTy); 3026 break; 3027 } 3028 3029 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3030 if (Record.empty()) 3031 return error("Invalid record"); 3032 3033 unsigned Size = Record.size(); 3034 SmallVector<Constant*, 16> Elts; 3035 3036 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3037 for (unsigned i = 0; i != Size; ++i) 3038 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 3039 STy->getElementType(i))); 3040 V = ConstantStruct::get(STy, Elts); 3041 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 3042 Type *EltTy = ATy->getElementType(); 3043 for (unsigned i = 0; i != Size; ++i) 3044 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3045 V = ConstantArray::get(ATy, Elts); 3046 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 3047 Type *EltTy = VTy->getElementType(); 3048 for (unsigned i = 0; i != Size; ++i) 3049 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3050 V = ConstantVector::get(Elts); 3051 } else { 3052 V = UndefValue::get(CurTy); 3053 } 3054 break; 3055 } 3056 case bitc::CST_CODE_STRING: // STRING: [values] 3057 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3058 if (Record.empty()) 3059 return error("Invalid record"); 3060 3061 SmallString<16> Elts(Record.begin(), Record.end()); 3062 V = ConstantDataArray::getString(Context, Elts, 3063 BitCode == bitc::CST_CODE_CSTRING); 3064 break; 3065 } 3066 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3067 if (Record.empty()) 3068 return error("Invalid record"); 3069 3070 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 3071 if (EltTy->isIntegerTy(8)) { 3072 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3073 if (isa<VectorType>(CurTy)) 3074 V = ConstantDataVector::get(Context, Elts); 3075 else 3076 V = ConstantDataArray::get(Context, Elts); 3077 } else if (EltTy->isIntegerTy(16)) { 3078 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3079 if (isa<VectorType>(CurTy)) 3080 V = ConstantDataVector::get(Context, Elts); 3081 else 3082 V = ConstantDataArray::get(Context, Elts); 3083 } else if (EltTy->isIntegerTy(32)) { 3084 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3085 if (isa<VectorType>(CurTy)) 3086 V = ConstantDataVector::get(Context, Elts); 3087 else 3088 V = ConstantDataArray::get(Context, Elts); 3089 } else if (EltTy->isIntegerTy(64)) { 3090 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3091 if (isa<VectorType>(CurTy)) 3092 V = ConstantDataVector::get(Context, Elts); 3093 else 3094 V = ConstantDataArray::get(Context, Elts); 3095 } else if (EltTy->isHalfTy()) { 3096 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3097 if (isa<VectorType>(CurTy)) 3098 V = ConstantDataVector::getFP(Context, Elts); 3099 else 3100 V = ConstantDataArray::getFP(Context, Elts); 3101 } else if (EltTy->isFloatTy()) { 3102 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3103 if (isa<VectorType>(CurTy)) 3104 V = ConstantDataVector::getFP(Context, Elts); 3105 else 3106 V = ConstantDataArray::getFP(Context, Elts); 3107 } else if (EltTy->isDoubleTy()) { 3108 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3109 if (isa<VectorType>(CurTy)) 3110 V = ConstantDataVector::getFP(Context, Elts); 3111 else 3112 V = ConstantDataArray::getFP(Context, Elts); 3113 } else { 3114 return error("Invalid type for value"); 3115 } 3116 break; 3117 } 3118 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3119 if (Record.size() < 3) 3120 return error("Invalid record"); 3121 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3122 if (Opc < 0) { 3123 V = UndefValue::get(CurTy); // Unknown binop. 3124 } else { 3125 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3126 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3127 unsigned Flags = 0; 3128 if (Record.size() >= 4) { 3129 if (Opc == Instruction::Add || 3130 Opc == Instruction::Sub || 3131 Opc == Instruction::Mul || 3132 Opc == Instruction::Shl) { 3133 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3134 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3135 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3136 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3137 } else if (Opc == Instruction::SDiv || 3138 Opc == Instruction::UDiv || 3139 Opc == Instruction::LShr || 3140 Opc == Instruction::AShr) { 3141 if (Record[3] & (1 << bitc::PEO_EXACT)) 3142 Flags |= SDivOperator::IsExact; 3143 } 3144 } 3145 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3146 } 3147 break; 3148 } 3149 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3150 if (Record.size() < 3) 3151 return error("Invalid record"); 3152 int Opc = getDecodedCastOpcode(Record[0]); 3153 if (Opc < 0) { 3154 V = UndefValue::get(CurTy); // Unknown cast. 3155 } else { 3156 Type *OpTy = getTypeByID(Record[1]); 3157 if (!OpTy) 3158 return error("Invalid record"); 3159 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3160 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3161 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3162 } 3163 break; 3164 } 3165 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3166 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3167 unsigned OpNum = 0; 3168 Type *PointeeType = nullptr; 3169 if (Record.size() % 2) 3170 PointeeType = getTypeByID(Record[OpNum++]); 3171 SmallVector<Constant*, 16> Elts; 3172 while (OpNum != Record.size()) { 3173 Type *ElTy = getTypeByID(Record[OpNum++]); 3174 if (!ElTy) 3175 return error("Invalid record"); 3176 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3177 } 3178 3179 if (PointeeType && 3180 PointeeType != 3181 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3182 ->getElementType()) 3183 return error("Explicit gep operator type does not match pointee type " 3184 "of pointer operand"); 3185 3186 if (Elts.size() < 1) 3187 return error("Invalid gep with no operands"); 3188 3189 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3190 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3191 BitCode == 3192 bitc::CST_CODE_CE_INBOUNDS_GEP); 3193 break; 3194 } 3195 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3196 if (Record.size() < 3) 3197 return error("Invalid record"); 3198 3199 Type *SelectorTy = Type::getInt1Ty(Context); 3200 3201 // The selector might be an i1 or an <n x i1> 3202 // Get the type from the ValueList before getting a forward ref. 3203 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3204 if (Value *V = ValueList[Record[0]]) 3205 if (SelectorTy != V->getType()) 3206 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3207 3208 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3209 SelectorTy), 3210 ValueList.getConstantFwdRef(Record[1],CurTy), 3211 ValueList.getConstantFwdRef(Record[2],CurTy)); 3212 break; 3213 } 3214 case bitc::CST_CODE_CE_EXTRACTELT 3215 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3216 if (Record.size() < 3) 3217 return error("Invalid record"); 3218 VectorType *OpTy = 3219 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3220 if (!OpTy) 3221 return error("Invalid record"); 3222 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3223 Constant *Op1 = nullptr; 3224 if (Record.size() == 4) { 3225 Type *IdxTy = getTypeByID(Record[2]); 3226 if (!IdxTy) 3227 return error("Invalid record"); 3228 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3229 } else // TODO: Remove with llvm 4.0 3230 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3231 if (!Op1) 3232 return error("Invalid record"); 3233 V = ConstantExpr::getExtractElement(Op0, Op1); 3234 break; 3235 } 3236 case bitc::CST_CODE_CE_INSERTELT 3237 : { // CE_INSERTELT: [opval, opval, opty, opval] 3238 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3239 if (Record.size() < 3 || !OpTy) 3240 return error("Invalid record"); 3241 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3242 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3243 OpTy->getElementType()); 3244 Constant *Op2 = nullptr; 3245 if (Record.size() == 4) { 3246 Type *IdxTy = getTypeByID(Record[2]); 3247 if (!IdxTy) 3248 return error("Invalid record"); 3249 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3250 } else // TODO: Remove with llvm 4.0 3251 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3252 if (!Op2) 3253 return error("Invalid record"); 3254 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3255 break; 3256 } 3257 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3258 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3259 if (Record.size() < 3 || !OpTy) 3260 return error("Invalid record"); 3261 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3262 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3263 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3264 OpTy->getNumElements()); 3265 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3266 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3267 break; 3268 } 3269 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3270 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3271 VectorType *OpTy = 3272 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3273 if (Record.size() < 4 || !RTy || !OpTy) 3274 return error("Invalid record"); 3275 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3276 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3277 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3278 RTy->getNumElements()); 3279 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3280 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3281 break; 3282 } 3283 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3284 if (Record.size() < 4) 3285 return error("Invalid record"); 3286 Type *OpTy = getTypeByID(Record[0]); 3287 if (!OpTy) 3288 return error("Invalid record"); 3289 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3290 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3291 3292 if (OpTy->isFPOrFPVectorTy()) 3293 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3294 else 3295 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3296 break; 3297 } 3298 // This maintains backward compatibility, pre-asm dialect keywords. 3299 // FIXME: Remove with the 4.0 release. 3300 case bitc::CST_CODE_INLINEASM_OLD: { 3301 if (Record.size() < 2) 3302 return error("Invalid record"); 3303 std::string AsmStr, ConstrStr; 3304 bool HasSideEffects = Record[0] & 1; 3305 bool IsAlignStack = Record[0] >> 1; 3306 unsigned AsmStrSize = Record[1]; 3307 if (2+AsmStrSize >= Record.size()) 3308 return error("Invalid record"); 3309 unsigned ConstStrSize = Record[2+AsmStrSize]; 3310 if (3+AsmStrSize+ConstStrSize > Record.size()) 3311 return error("Invalid record"); 3312 3313 for (unsigned i = 0; i != AsmStrSize; ++i) 3314 AsmStr += (char)Record[2+i]; 3315 for (unsigned i = 0; i != ConstStrSize; ++i) 3316 ConstrStr += (char)Record[3+AsmStrSize+i]; 3317 PointerType *PTy = cast<PointerType>(CurTy); 3318 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3319 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3320 break; 3321 } 3322 // This version adds support for the asm dialect keywords (e.g., 3323 // inteldialect). 3324 case bitc::CST_CODE_INLINEASM: { 3325 if (Record.size() < 2) 3326 return error("Invalid record"); 3327 std::string AsmStr, ConstrStr; 3328 bool HasSideEffects = Record[0] & 1; 3329 bool IsAlignStack = (Record[0] >> 1) & 1; 3330 unsigned AsmDialect = Record[0] >> 2; 3331 unsigned AsmStrSize = Record[1]; 3332 if (2+AsmStrSize >= Record.size()) 3333 return error("Invalid record"); 3334 unsigned ConstStrSize = Record[2+AsmStrSize]; 3335 if (3+AsmStrSize+ConstStrSize > Record.size()) 3336 return error("Invalid record"); 3337 3338 for (unsigned i = 0; i != AsmStrSize; ++i) 3339 AsmStr += (char)Record[2+i]; 3340 for (unsigned i = 0; i != ConstStrSize; ++i) 3341 ConstrStr += (char)Record[3+AsmStrSize+i]; 3342 PointerType *PTy = cast<PointerType>(CurTy); 3343 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3344 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3345 InlineAsm::AsmDialect(AsmDialect)); 3346 break; 3347 } 3348 case bitc::CST_CODE_BLOCKADDRESS:{ 3349 if (Record.size() < 3) 3350 return error("Invalid record"); 3351 Type *FnTy = getTypeByID(Record[0]); 3352 if (!FnTy) 3353 return error("Invalid record"); 3354 Function *Fn = 3355 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3356 if (!Fn) 3357 return error("Invalid record"); 3358 3359 // If the function is already parsed we can insert the block address right 3360 // away. 3361 BasicBlock *BB; 3362 unsigned BBID = Record[2]; 3363 if (!BBID) 3364 // Invalid reference to entry block. 3365 return error("Invalid ID"); 3366 if (!Fn->empty()) { 3367 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3368 for (size_t I = 0, E = BBID; I != E; ++I) { 3369 if (BBI == BBE) 3370 return error("Invalid ID"); 3371 ++BBI; 3372 } 3373 BB = &*BBI; 3374 } else { 3375 // Otherwise insert a placeholder and remember it so it can be inserted 3376 // when the function is parsed. 3377 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3378 if (FwdBBs.empty()) 3379 BasicBlockFwdRefQueue.push_back(Fn); 3380 if (FwdBBs.size() < BBID + 1) 3381 FwdBBs.resize(BBID + 1); 3382 if (!FwdBBs[BBID]) 3383 FwdBBs[BBID] = BasicBlock::Create(Context); 3384 BB = FwdBBs[BBID]; 3385 } 3386 V = BlockAddress::get(Fn, BB); 3387 break; 3388 } 3389 } 3390 3391 ValueList.assignValue(V, NextCstNo); 3392 ++NextCstNo; 3393 } 3394 } 3395 3396 std::error_code BitcodeReader::parseUseLists() { 3397 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3398 return error("Invalid record"); 3399 3400 // Read all the records. 3401 SmallVector<uint64_t, 64> Record; 3402 3403 while (true) { 3404 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3405 3406 switch (Entry.Kind) { 3407 case BitstreamEntry::SubBlock: // Handled for us already. 3408 case BitstreamEntry::Error: 3409 return error("Malformed block"); 3410 case BitstreamEntry::EndBlock: 3411 return std::error_code(); 3412 case BitstreamEntry::Record: 3413 // The interesting case. 3414 break; 3415 } 3416 3417 // Read a use list record. 3418 Record.clear(); 3419 bool IsBB = false; 3420 switch (Stream.readRecord(Entry.ID, Record)) { 3421 default: // Default behavior: unknown type. 3422 break; 3423 case bitc::USELIST_CODE_BB: 3424 IsBB = true; 3425 LLVM_FALLTHROUGH; 3426 case bitc::USELIST_CODE_DEFAULT: { 3427 unsigned RecordLength = Record.size(); 3428 if (RecordLength < 3) 3429 // Records should have at least an ID and two indexes. 3430 return error("Invalid record"); 3431 unsigned ID = Record.back(); 3432 Record.pop_back(); 3433 3434 Value *V; 3435 if (IsBB) { 3436 assert(ID < FunctionBBs.size() && "Basic block not found"); 3437 V = FunctionBBs[ID]; 3438 } else 3439 V = ValueList[ID]; 3440 unsigned NumUses = 0; 3441 SmallDenseMap<const Use *, unsigned, 16> Order; 3442 for (const Use &U : V->materialized_uses()) { 3443 if (++NumUses > Record.size()) 3444 break; 3445 Order[&U] = Record[NumUses - 1]; 3446 } 3447 if (Order.size() != Record.size() || NumUses > Record.size()) 3448 // Mismatches can happen if the functions are being materialized lazily 3449 // (out-of-order), or a value has been upgraded. 3450 break; 3451 3452 V->sortUseList([&](const Use &L, const Use &R) { 3453 return Order.lookup(&L) < Order.lookup(&R); 3454 }); 3455 break; 3456 } 3457 } 3458 } 3459 } 3460 3461 /// When we see the block for metadata, remember where it is and then skip it. 3462 /// This lets us lazily deserialize the metadata. 3463 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3464 // Save the current stream state. 3465 uint64_t CurBit = Stream.GetCurrentBitNo(); 3466 DeferredMetadataInfo.push_back(CurBit); 3467 3468 // Skip over the block for now. 3469 if (Stream.SkipBlock()) 3470 return error("Invalid record"); 3471 return std::error_code(); 3472 } 3473 3474 std::error_code BitcodeReader::materializeMetadata() { 3475 for (uint64_t BitPos : DeferredMetadataInfo) { 3476 // Move the bit stream to the saved position. 3477 Stream.JumpToBit(BitPos); 3478 if (std::error_code EC = parseMetadata(true)) 3479 return EC; 3480 } 3481 DeferredMetadataInfo.clear(); 3482 return std::error_code(); 3483 } 3484 3485 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3486 3487 /// When we see the block for a function body, remember where it is and then 3488 /// skip it. This lets us lazily deserialize the functions. 3489 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3490 // Get the function we are talking about. 3491 if (FunctionsWithBodies.empty()) 3492 return error("Insufficient function protos"); 3493 3494 Function *Fn = FunctionsWithBodies.back(); 3495 FunctionsWithBodies.pop_back(); 3496 3497 // Save the current stream state. 3498 uint64_t CurBit = Stream.GetCurrentBitNo(); 3499 assert( 3500 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3501 "Mismatch between VST and scanned function offsets"); 3502 DeferredFunctionInfo[Fn] = CurBit; 3503 3504 // Skip over the function block for now. 3505 if (Stream.SkipBlock()) 3506 return error("Invalid record"); 3507 return std::error_code(); 3508 } 3509 3510 std::error_code BitcodeReader::globalCleanup() { 3511 // Patch the initializers for globals and aliases up. 3512 resolveGlobalAndIndirectSymbolInits(); 3513 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3514 return error("Malformed global initializer set"); 3515 3516 // Look for intrinsic functions which need to be upgraded at some point 3517 for (Function &F : *TheModule) { 3518 Function *NewFn; 3519 if (UpgradeIntrinsicFunction(&F, NewFn)) 3520 UpgradedIntrinsics[&F] = NewFn; 3521 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3522 // Some types could be renamed during loading if several modules are 3523 // loaded in the same LLVMContext (LTO scenario). In this case we should 3524 // remangle intrinsics names as well. 3525 RemangledIntrinsics[&F] = Remangled.getValue(); 3526 } 3527 3528 // Look for global variables which need to be renamed. 3529 for (GlobalVariable &GV : TheModule->globals()) 3530 UpgradeGlobalVariable(&GV); 3531 3532 // Force deallocation of memory for these vectors to favor the client that 3533 // want lazy deserialization. 3534 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3535 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3536 IndirectSymbolInits); 3537 return std::error_code(); 3538 } 3539 3540 /// Support for lazy parsing of function bodies. This is required if we 3541 /// either have an old bitcode file without a VST forward declaration record, 3542 /// or if we have an anonymous function being materialized, since anonymous 3543 /// functions do not have a name and are therefore not in the VST. 3544 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3545 Stream.JumpToBit(NextUnreadBit); 3546 3547 if (Stream.AtEndOfStream()) 3548 return error("Could not find function in stream"); 3549 3550 if (!SeenFirstFunctionBody) 3551 return error("Trying to materialize functions before seeing function blocks"); 3552 3553 // An old bitcode file with the symbol table at the end would have 3554 // finished the parse greedily. 3555 assert(SeenValueSymbolTable); 3556 3557 SmallVector<uint64_t, 64> Record; 3558 3559 while (true) { 3560 BitstreamEntry Entry = Stream.advance(); 3561 switch (Entry.Kind) { 3562 default: 3563 return error("Expect SubBlock"); 3564 case BitstreamEntry::SubBlock: 3565 switch (Entry.ID) { 3566 default: 3567 return error("Expect function block"); 3568 case bitc::FUNCTION_BLOCK_ID: 3569 if (std::error_code EC = rememberAndSkipFunctionBody()) 3570 return EC; 3571 NextUnreadBit = Stream.GetCurrentBitNo(); 3572 return std::error_code(); 3573 } 3574 } 3575 } 3576 } 3577 3578 std::error_code BitcodeReader::parseBitcodeVersion() { 3579 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3580 return error("Invalid record"); 3581 3582 // Read all the records. 3583 SmallVector<uint64_t, 64> Record; 3584 3585 while (true) { 3586 BitstreamEntry Entry = Stream.advance(); 3587 3588 switch (Entry.Kind) { 3589 default: 3590 case BitstreamEntry::Error: 3591 return error("Malformed block"); 3592 case BitstreamEntry::EndBlock: 3593 return std::error_code(); 3594 case BitstreamEntry::Record: 3595 // The interesting case. 3596 break; 3597 } 3598 3599 // Read a record. 3600 Record.clear(); 3601 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3602 switch (BitCode) { 3603 default: // Default behavior: reject 3604 return error("Invalid value"); 3605 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3606 // N] 3607 convertToString(Record, 0, ProducerIdentification); 3608 break; 3609 } 3610 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3611 unsigned epoch = (unsigned)Record[0]; 3612 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3613 return error( 3614 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3615 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3616 } 3617 } 3618 } 3619 } 3620 } 3621 3622 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3623 bool ShouldLazyLoadMetadata) { 3624 if (ResumeBit) 3625 Stream.JumpToBit(ResumeBit); 3626 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3627 return error("Invalid record"); 3628 3629 SmallVector<uint64_t, 64> Record; 3630 std::vector<std::string> SectionTable; 3631 std::vector<std::string> GCTable; 3632 3633 // Read all the records for this module. 3634 while (true) { 3635 BitstreamEntry Entry = Stream.advance(); 3636 3637 switch (Entry.Kind) { 3638 case BitstreamEntry::Error: 3639 return error("Malformed block"); 3640 case BitstreamEntry::EndBlock: 3641 return globalCleanup(); 3642 3643 case BitstreamEntry::SubBlock: 3644 switch (Entry.ID) { 3645 default: // Skip unknown content. 3646 if (Stream.SkipBlock()) 3647 return error("Invalid record"); 3648 break; 3649 case bitc::BLOCKINFO_BLOCK_ID: 3650 if (Stream.ReadBlockInfoBlock()) 3651 return error("Malformed block"); 3652 break; 3653 case bitc::PARAMATTR_BLOCK_ID: 3654 if (std::error_code EC = parseAttributeBlock()) 3655 return EC; 3656 break; 3657 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3658 if (std::error_code EC = parseAttributeGroupBlock()) 3659 return EC; 3660 break; 3661 case bitc::TYPE_BLOCK_ID_NEW: 3662 if (std::error_code EC = parseTypeTable()) 3663 return EC; 3664 break; 3665 case bitc::VALUE_SYMTAB_BLOCK_ID: 3666 if (!SeenValueSymbolTable) { 3667 // Either this is an old form VST without function index and an 3668 // associated VST forward declaration record (which would have caused 3669 // the VST to be jumped to and parsed before it was encountered 3670 // normally in the stream), or there were no function blocks to 3671 // trigger an earlier parsing of the VST. 3672 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3673 if (std::error_code EC = parseValueSymbolTable()) 3674 return EC; 3675 SeenValueSymbolTable = true; 3676 } else { 3677 // We must have had a VST forward declaration record, which caused 3678 // the parser to jump to and parse the VST earlier. 3679 assert(VSTOffset > 0); 3680 if (Stream.SkipBlock()) 3681 return error("Invalid record"); 3682 } 3683 break; 3684 case bitc::CONSTANTS_BLOCK_ID: 3685 if (std::error_code EC = parseConstants()) 3686 return EC; 3687 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3688 return EC; 3689 break; 3690 case bitc::METADATA_BLOCK_ID: 3691 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3692 if (std::error_code EC = rememberAndSkipMetadata()) 3693 return EC; 3694 break; 3695 } 3696 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3697 if (std::error_code EC = parseMetadata(true)) 3698 return EC; 3699 break; 3700 case bitc::METADATA_KIND_BLOCK_ID: 3701 if (std::error_code EC = parseMetadataKinds()) 3702 return EC; 3703 break; 3704 case bitc::FUNCTION_BLOCK_ID: 3705 // If this is the first function body we've seen, reverse the 3706 // FunctionsWithBodies list. 3707 if (!SeenFirstFunctionBody) { 3708 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3709 if (std::error_code EC = globalCleanup()) 3710 return EC; 3711 SeenFirstFunctionBody = true; 3712 } 3713 3714 if (VSTOffset > 0) { 3715 // If we have a VST forward declaration record, make sure we 3716 // parse the VST now if we haven't already. It is needed to 3717 // set up the DeferredFunctionInfo vector for lazy reading. 3718 if (!SeenValueSymbolTable) { 3719 if (std::error_code EC = 3720 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3721 return EC; 3722 SeenValueSymbolTable = true; 3723 // Fall through so that we record the NextUnreadBit below. 3724 // This is necessary in case we have an anonymous function that 3725 // is later materialized. Since it will not have a VST entry we 3726 // need to fall back to the lazy parse to find its offset. 3727 } else { 3728 // If we have a VST forward declaration record, but have already 3729 // parsed the VST (just above, when the first function body was 3730 // encountered here), then we are resuming the parse after 3731 // materializing functions. The ResumeBit points to the 3732 // start of the last function block recorded in the 3733 // DeferredFunctionInfo map. Skip it. 3734 if (Stream.SkipBlock()) 3735 return error("Invalid record"); 3736 continue; 3737 } 3738 } 3739 3740 // Support older bitcode files that did not have the function 3741 // index in the VST, nor a VST forward declaration record, as 3742 // well as anonymous functions that do not have VST entries. 3743 // Build the DeferredFunctionInfo vector on the fly. 3744 if (std::error_code EC = rememberAndSkipFunctionBody()) 3745 return EC; 3746 3747 // Suspend parsing when we reach the function bodies. Subsequent 3748 // materialization calls will resume it when necessary. If the bitcode 3749 // file is old, the symbol table will be at the end instead and will not 3750 // have been seen yet. In this case, just finish the parse now. 3751 if (SeenValueSymbolTable) { 3752 NextUnreadBit = Stream.GetCurrentBitNo(); 3753 // After the VST has been parsed, we need to make sure intrinsic name 3754 // are auto-upgraded. 3755 return globalCleanup(); 3756 } 3757 break; 3758 case bitc::USELIST_BLOCK_ID: 3759 if (std::error_code EC = parseUseLists()) 3760 return EC; 3761 break; 3762 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3763 if (std::error_code EC = parseOperandBundleTags()) 3764 return EC; 3765 break; 3766 } 3767 continue; 3768 3769 case BitstreamEntry::Record: 3770 // The interesting case. 3771 break; 3772 } 3773 3774 // Read a record. 3775 auto BitCode = Stream.readRecord(Entry.ID, Record); 3776 switch (BitCode) { 3777 default: break; // Default behavior, ignore unknown content. 3778 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3779 if (Record.size() < 1) 3780 return error("Invalid record"); 3781 // Only version #0 and #1 are supported so far. 3782 unsigned module_version = Record[0]; 3783 switch (module_version) { 3784 default: 3785 return error("Invalid value"); 3786 case 0: 3787 UseRelativeIDs = false; 3788 break; 3789 case 1: 3790 UseRelativeIDs = true; 3791 break; 3792 } 3793 break; 3794 } 3795 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3796 std::string S; 3797 if (convertToString(Record, 0, S)) 3798 return error("Invalid record"); 3799 TheModule->setTargetTriple(S); 3800 break; 3801 } 3802 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3803 std::string S; 3804 if (convertToString(Record, 0, S)) 3805 return error("Invalid record"); 3806 TheModule->setDataLayout(S); 3807 break; 3808 } 3809 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3810 std::string S; 3811 if (convertToString(Record, 0, S)) 3812 return error("Invalid record"); 3813 TheModule->setModuleInlineAsm(S); 3814 break; 3815 } 3816 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3817 // FIXME: Remove in 4.0. 3818 std::string S; 3819 if (convertToString(Record, 0, S)) 3820 return error("Invalid record"); 3821 // Ignore value. 3822 break; 3823 } 3824 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3825 std::string S; 3826 if (convertToString(Record, 0, S)) 3827 return error("Invalid record"); 3828 SectionTable.push_back(S); 3829 break; 3830 } 3831 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3832 std::string S; 3833 if (convertToString(Record, 0, S)) 3834 return error("Invalid record"); 3835 GCTable.push_back(S); 3836 break; 3837 } 3838 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3839 if (Record.size() < 2) 3840 return error("Invalid record"); 3841 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3842 unsigned ComdatNameSize = Record[1]; 3843 std::string ComdatName; 3844 ComdatName.reserve(ComdatNameSize); 3845 for (unsigned i = 0; i != ComdatNameSize; ++i) 3846 ComdatName += (char)Record[2 + i]; 3847 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3848 C->setSelectionKind(SK); 3849 ComdatList.push_back(C); 3850 break; 3851 } 3852 // GLOBALVAR: [pointer type, isconst, initid, 3853 // linkage, alignment, section, visibility, threadlocal, 3854 // unnamed_addr, externally_initialized, dllstorageclass, 3855 // comdat] 3856 case bitc::MODULE_CODE_GLOBALVAR: { 3857 if (Record.size() < 6) 3858 return error("Invalid record"); 3859 Type *Ty = getTypeByID(Record[0]); 3860 if (!Ty) 3861 return error("Invalid record"); 3862 bool isConstant = Record[1] & 1; 3863 bool explicitType = Record[1] & 2; 3864 unsigned AddressSpace; 3865 if (explicitType) { 3866 AddressSpace = Record[1] >> 2; 3867 } else { 3868 if (!Ty->isPointerTy()) 3869 return error("Invalid type for value"); 3870 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3871 Ty = cast<PointerType>(Ty)->getElementType(); 3872 } 3873 3874 uint64_t RawLinkage = Record[3]; 3875 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3876 unsigned Alignment; 3877 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3878 return EC; 3879 std::string Section; 3880 if (Record[5]) { 3881 if (Record[5]-1 >= SectionTable.size()) 3882 return error("Invalid ID"); 3883 Section = SectionTable[Record[5]-1]; 3884 } 3885 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3886 // Local linkage must have default visibility. 3887 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3888 // FIXME: Change to an error if non-default in 4.0. 3889 Visibility = getDecodedVisibility(Record[6]); 3890 3891 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3892 if (Record.size() > 7) 3893 TLM = getDecodedThreadLocalMode(Record[7]); 3894 3895 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3896 if (Record.size() > 8) 3897 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3898 3899 bool ExternallyInitialized = false; 3900 if (Record.size() > 9) 3901 ExternallyInitialized = Record[9]; 3902 3903 GlobalVariable *NewGV = 3904 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3905 TLM, AddressSpace, ExternallyInitialized); 3906 NewGV->setAlignment(Alignment); 3907 if (!Section.empty()) 3908 NewGV->setSection(Section); 3909 NewGV->setVisibility(Visibility); 3910 NewGV->setUnnamedAddr(UnnamedAddr); 3911 3912 if (Record.size() > 10) 3913 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3914 else 3915 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3916 3917 ValueList.push_back(NewGV); 3918 3919 // Remember which value to use for the global initializer. 3920 if (unsigned InitID = Record[2]) 3921 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3922 3923 if (Record.size() > 11) { 3924 if (unsigned ComdatID = Record[11]) { 3925 if (ComdatID > ComdatList.size()) 3926 return error("Invalid global variable comdat ID"); 3927 NewGV->setComdat(ComdatList[ComdatID - 1]); 3928 } 3929 } else if (hasImplicitComdat(RawLinkage)) { 3930 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3931 } 3932 3933 break; 3934 } 3935 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3936 // alignment, section, visibility, gc, unnamed_addr, 3937 // prologuedata, dllstorageclass, comdat, prefixdata] 3938 case bitc::MODULE_CODE_FUNCTION: { 3939 if (Record.size() < 8) 3940 return error("Invalid record"); 3941 Type *Ty = getTypeByID(Record[0]); 3942 if (!Ty) 3943 return error("Invalid record"); 3944 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3945 Ty = PTy->getElementType(); 3946 auto *FTy = dyn_cast<FunctionType>(Ty); 3947 if (!FTy) 3948 return error("Invalid type for value"); 3949 auto CC = static_cast<CallingConv::ID>(Record[1]); 3950 if (CC & ~CallingConv::MaxID) 3951 return error("Invalid calling convention ID"); 3952 3953 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3954 "", TheModule); 3955 3956 Func->setCallingConv(CC); 3957 bool isProto = Record[2]; 3958 uint64_t RawLinkage = Record[3]; 3959 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3960 Func->setAttributes(getAttributes(Record[4])); 3961 3962 unsigned Alignment; 3963 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3964 return EC; 3965 Func->setAlignment(Alignment); 3966 if (Record[6]) { 3967 if (Record[6]-1 >= SectionTable.size()) 3968 return error("Invalid ID"); 3969 Func->setSection(SectionTable[Record[6]-1]); 3970 } 3971 // Local linkage must have default visibility. 3972 if (!Func->hasLocalLinkage()) 3973 // FIXME: Change to an error if non-default in 4.0. 3974 Func->setVisibility(getDecodedVisibility(Record[7])); 3975 if (Record.size() > 8 && Record[8]) { 3976 if (Record[8]-1 >= GCTable.size()) 3977 return error("Invalid ID"); 3978 Func->setGC(GCTable[Record[8] - 1]); 3979 } 3980 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3981 if (Record.size() > 9) 3982 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3983 Func->setUnnamedAddr(UnnamedAddr); 3984 if (Record.size() > 10 && Record[10] != 0) 3985 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3986 3987 if (Record.size() > 11) 3988 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3989 else 3990 upgradeDLLImportExportLinkage(Func, RawLinkage); 3991 3992 if (Record.size() > 12) { 3993 if (unsigned ComdatID = Record[12]) { 3994 if (ComdatID > ComdatList.size()) 3995 return error("Invalid function comdat ID"); 3996 Func->setComdat(ComdatList[ComdatID - 1]); 3997 } 3998 } else if (hasImplicitComdat(RawLinkage)) { 3999 Func->setComdat(reinterpret_cast<Comdat *>(1)); 4000 } 4001 4002 if (Record.size() > 13 && Record[13] != 0) 4003 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 4004 4005 if (Record.size() > 14 && Record[14] != 0) 4006 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 4007 4008 ValueList.push_back(Func); 4009 4010 // If this is a function with a body, remember the prototype we are 4011 // creating now, so that we can match up the body with them later. 4012 if (!isProto) { 4013 Func->setIsMaterializable(true); 4014 FunctionsWithBodies.push_back(Func); 4015 DeferredFunctionInfo[Func] = 0; 4016 } 4017 break; 4018 } 4019 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 4020 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4021 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4022 case bitc::MODULE_CODE_IFUNC: 4023 case bitc::MODULE_CODE_ALIAS: 4024 case bitc::MODULE_CODE_ALIAS_OLD: { 4025 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4026 if (Record.size() < (3 + (unsigned)NewRecord)) 4027 return error("Invalid record"); 4028 unsigned OpNum = 0; 4029 Type *Ty = getTypeByID(Record[OpNum++]); 4030 if (!Ty) 4031 return error("Invalid record"); 4032 4033 unsigned AddrSpace; 4034 if (!NewRecord) { 4035 auto *PTy = dyn_cast<PointerType>(Ty); 4036 if (!PTy) 4037 return error("Invalid type for value"); 4038 Ty = PTy->getElementType(); 4039 AddrSpace = PTy->getAddressSpace(); 4040 } else { 4041 AddrSpace = Record[OpNum++]; 4042 } 4043 4044 auto Val = Record[OpNum++]; 4045 auto Linkage = Record[OpNum++]; 4046 GlobalIndirectSymbol *NewGA; 4047 if (BitCode == bitc::MODULE_CODE_ALIAS || 4048 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4049 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4050 "", TheModule); 4051 else 4052 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4053 "", nullptr, TheModule); 4054 // Old bitcode files didn't have visibility field. 4055 // Local linkage must have default visibility. 4056 if (OpNum != Record.size()) { 4057 auto VisInd = OpNum++; 4058 if (!NewGA->hasLocalLinkage()) 4059 // FIXME: Change to an error if non-default in 4.0. 4060 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4061 } 4062 if (OpNum != Record.size()) 4063 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 4064 else 4065 upgradeDLLImportExportLinkage(NewGA, Linkage); 4066 if (OpNum != Record.size()) 4067 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4068 if (OpNum != Record.size()) 4069 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4070 ValueList.push_back(NewGA); 4071 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4072 break; 4073 } 4074 /// MODULE_CODE_PURGEVALS: [numvals] 4075 case bitc::MODULE_CODE_PURGEVALS: 4076 // Trim down the value list to the specified size. 4077 if (Record.size() < 1 || Record[0] > ValueList.size()) 4078 return error("Invalid record"); 4079 ValueList.shrinkTo(Record[0]); 4080 break; 4081 /// MODULE_CODE_VSTOFFSET: [offset] 4082 case bitc::MODULE_CODE_VSTOFFSET: 4083 if (Record.size() < 1) 4084 return error("Invalid record"); 4085 VSTOffset = Record[0]; 4086 break; 4087 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4088 case bitc::MODULE_CODE_SOURCE_FILENAME: 4089 SmallString<128> ValueName; 4090 if (convertToString(Record, 0, ValueName)) 4091 return error("Invalid record"); 4092 TheModule->setSourceFileName(ValueName); 4093 break; 4094 } 4095 Record.clear(); 4096 } 4097 } 4098 4099 /// Helper to read the header common to all bitcode files. 4100 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 4101 // Sniff for the signature. 4102 if (Stream.Read(8) != 'B' || 4103 Stream.Read(8) != 'C' || 4104 Stream.Read(4) != 0x0 || 4105 Stream.Read(4) != 0xC || 4106 Stream.Read(4) != 0xE || 4107 Stream.Read(4) != 0xD) 4108 return false; 4109 return true; 4110 } 4111 4112 std::error_code 4113 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 4114 Module *M, bool ShouldLazyLoadMetadata) { 4115 TheModule = M; 4116 4117 if (std::error_code EC = initStream(std::move(Streamer))) 4118 return EC; 4119 4120 // Sniff for the signature. 4121 if (!hasValidBitcodeHeader(Stream)) 4122 return error("Invalid bitcode signature"); 4123 4124 // We expect a number of well-defined blocks, though we don't necessarily 4125 // need to understand them all. 4126 while (true) { 4127 if (Stream.AtEndOfStream()) { 4128 // We didn't really read a proper Module. 4129 return error("Malformed IR file"); 4130 } 4131 4132 BitstreamEntry Entry = 4133 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4134 4135 if (Entry.Kind != BitstreamEntry::SubBlock) 4136 return error("Malformed block"); 4137 4138 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4139 parseBitcodeVersion(); 4140 continue; 4141 } 4142 4143 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4144 return parseModule(0, ShouldLazyLoadMetadata); 4145 4146 if (Stream.SkipBlock()) 4147 return error("Invalid record"); 4148 } 4149 } 4150 4151 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4152 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4153 return error("Invalid record"); 4154 4155 SmallVector<uint64_t, 64> Record; 4156 4157 std::string Triple; 4158 4159 // Read all the records for this module. 4160 while (true) { 4161 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4162 4163 switch (Entry.Kind) { 4164 case BitstreamEntry::SubBlock: // Handled for us already. 4165 case BitstreamEntry::Error: 4166 return error("Malformed block"); 4167 case BitstreamEntry::EndBlock: 4168 return Triple; 4169 case BitstreamEntry::Record: 4170 // The interesting case. 4171 break; 4172 } 4173 4174 // Read a record. 4175 switch (Stream.readRecord(Entry.ID, Record)) { 4176 default: break; // Default behavior, ignore unknown content. 4177 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4178 std::string S; 4179 if (convertToString(Record, 0, S)) 4180 return error("Invalid record"); 4181 Triple = S; 4182 break; 4183 } 4184 } 4185 Record.clear(); 4186 } 4187 llvm_unreachable("Exit infinite loop"); 4188 } 4189 4190 ErrorOr<std::string> BitcodeReader::parseTriple() { 4191 if (std::error_code EC = initStream(nullptr)) 4192 return EC; 4193 4194 // Sniff for the signature. 4195 if (!hasValidBitcodeHeader(Stream)) 4196 return error("Invalid bitcode signature"); 4197 4198 // We expect a number of well-defined blocks, though we don't necessarily 4199 // need to understand them all. 4200 while (true) { 4201 BitstreamEntry Entry = Stream.advance(); 4202 4203 switch (Entry.Kind) { 4204 case BitstreamEntry::Error: 4205 return error("Malformed block"); 4206 case BitstreamEntry::EndBlock: 4207 return std::error_code(); 4208 4209 case BitstreamEntry::SubBlock: 4210 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4211 return parseModuleTriple(); 4212 4213 // Ignore other sub-blocks. 4214 if (Stream.SkipBlock()) 4215 return error("Malformed block"); 4216 continue; 4217 4218 case BitstreamEntry::Record: 4219 Stream.skipRecord(Entry.ID); 4220 continue; 4221 } 4222 } 4223 } 4224 4225 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4226 if (std::error_code EC = initStream(nullptr)) 4227 return EC; 4228 4229 // Sniff for the signature. 4230 if (!hasValidBitcodeHeader(Stream)) 4231 return error("Invalid bitcode signature"); 4232 4233 // We expect a number of well-defined blocks, though we don't necessarily 4234 // need to understand them all. 4235 while (true) { 4236 BitstreamEntry Entry = Stream.advance(); 4237 switch (Entry.Kind) { 4238 case BitstreamEntry::Error: 4239 return error("Malformed block"); 4240 case BitstreamEntry::EndBlock: 4241 return std::error_code(); 4242 4243 case BitstreamEntry::SubBlock: 4244 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4245 if (std::error_code EC = parseBitcodeVersion()) 4246 return EC; 4247 return ProducerIdentification; 4248 } 4249 // Ignore other sub-blocks. 4250 if (Stream.SkipBlock()) 4251 return error("Malformed block"); 4252 continue; 4253 case BitstreamEntry::Record: 4254 Stream.skipRecord(Entry.ID); 4255 continue; 4256 } 4257 } 4258 } 4259 4260 std::error_code BitcodeReader::parseGlobalObjectAttachment( 4261 GlobalObject &GO, ArrayRef<uint64_t> Record) { 4262 assert(Record.size() % 2 == 0); 4263 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4264 auto K = MDKindMap.find(Record[I]); 4265 if (K == MDKindMap.end()) 4266 return error("Invalid ID"); 4267 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4268 if (!MD) 4269 return error("Invalid metadata attachment"); 4270 GO.addMetadata(K->second, *MD); 4271 } 4272 return std::error_code(); 4273 } 4274 4275 ErrorOr<bool> BitcodeReader::hasObjCCategory() { 4276 if (std::error_code EC = initStream(nullptr)) 4277 return EC; 4278 4279 // Sniff for the signature. 4280 if (!hasValidBitcodeHeader(Stream)) 4281 return error("Invalid bitcode signature"); 4282 4283 // We expect a number of well-defined blocks, though we don't necessarily 4284 // need to understand them all. 4285 while (true) { 4286 BitstreamEntry Entry = Stream.advance(); 4287 4288 switch (Entry.Kind) { 4289 case BitstreamEntry::Error: 4290 return error("Malformed block"); 4291 case BitstreamEntry::EndBlock: 4292 return std::error_code(); 4293 4294 case BitstreamEntry::SubBlock: 4295 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4296 return hasObjCCategoryInModule(); 4297 4298 // Ignore other sub-blocks. 4299 if (Stream.SkipBlock()) 4300 return error("Malformed block"); 4301 continue; 4302 4303 case BitstreamEntry::Record: 4304 Stream.skipRecord(Entry.ID); 4305 continue; 4306 } 4307 } 4308 } 4309 4310 ErrorOr<bool> BitcodeReader::hasObjCCategoryInModule() { 4311 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4312 return error("Invalid record"); 4313 4314 SmallVector<uint64_t, 64> Record; 4315 // Read all the records for this module. 4316 4317 while (true) { 4318 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4319 4320 switch (Entry.Kind) { 4321 case BitstreamEntry::SubBlock: // Handled for us already. 4322 case BitstreamEntry::Error: 4323 return error("Malformed block"); 4324 case BitstreamEntry::EndBlock: 4325 return false; 4326 case BitstreamEntry::Record: 4327 // The interesting case. 4328 break; 4329 } 4330 4331 // Read a record. 4332 switch (Stream.readRecord(Entry.ID, Record)) { 4333 default: 4334 break; // Default behavior, ignore unknown content. 4335 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4336 std::string S; 4337 if (convertToString(Record, 0, S)) 4338 return error("Invalid record"); 4339 // Check for the i386 and other (x86_64, ARM) conventions 4340 if (S.find("__DATA, __objc_catlist") != std::string::npos || 4341 S.find("__OBJC,__category") != std::string::npos) 4342 return true; 4343 break; 4344 } 4345 } 4346 Record.clear(); 4347 } 4348 llvm_unreachable("Exit infinite loop"); 4349 } 4350 4351 /// Parse metadata attachments. 4352 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4353 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4354 return error("Invalid record"); 4355 4356 SmallVector<uint64_t, 64> Record; 4357 4358 while (true) { 4359 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4360 4361 switch (Entry.Kind) { 4362 case BitstreamEntry::SubBlock: // Handled for us already. 4363 case BitstreamEntry::Error: 4364 return error("Malformed block"); 4365 case BitstreamEntry::EndBlock: 4366 return std::error_code(); 4367 case BitstreamEntry::Record: 4368 // The interesting case. 4369 break; 4370 } 4371 4372 // Read a metadata attachment record. 4373 Record.clear(); 4374 switch (Stream.readRecord(Entry.ID, Record)) { 4375 default: // Default behavior: ignore. 4376 break; 4377 case bitc::METADATA_ATTACHMENT: { 4378 unsigned RecordLength = Record.size(); 4379 if (Record.empty()) 4380 return error("Invalid record"); 4381 if (RecordLength % 2 == 0) { 4382 // A function attachment. 4383 if (std::error_code EC = parseGlobalObjectAttachment(F, Record)) 4384 return EC; 4385 continue; 4386 } 4387 4388 // An instruction attachment. 4389 Instruction *Inst = InstructionList[Record[0]]; 4390 for (unsigned i = 1; i != RecordLength; i = i+2) { 4391 unsigned Kind = Record[i]; 4392 DenseMap<unsigned, unsigned>::iterator I = 4393 MDKindMap.find(Kind); 4394 if (I == MDKindMap.end()) 4395 return error("Invalid ID"); 4396 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4397 if (isa<LocalAsMetadata>(Node)) 4398 // Drop the attachment. This used to be legal, but there's no 4399 // upgrade path. 4400 break; 4401 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4402 if (!MD) 4403 return error("Invalid metadata attachment"); 4404 4405 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4406 MD = upgradeInstructionLoopAttachment(*MD); 4407 4408 Inst->setMetadata(I->second, MD); 4409 if (I->second == LLVMContext::MD_tbaa) { 4410 InstsWithTBAATag.push_back(Inst); 4411 continue; 4412 } 4413 } 4414 break; 4415 } 4416 } 4417 } 4418 } 4419 4420 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4421 LLVMContext &Context = PtrType->getContext(); 4422 if (!isa<PointerType>(PtrType)) 4423 return error(Context, "Load/Store operand is not a pointer type"); 4424 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4425 4426 if (ValType && ValType != ElemType) 4427 return error(Context, "Explicit load/store type does not match pointee " 4428 "type of pointer operand"); 4429 if (!PointerType::isLoadableOrStorableType(ElemType)) 4430 return error(Context, "Cannot load/store from pointer"); 4431 return std::error_code(); 4432 } 4433 4434 /// Lazily parse the specified function body block. 4435 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4436 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4437 return error("Invalid record"); 4438 4439 // Unexpected unresolved metadata when parsing function. 4440 if (MetadataList.hasFwdRefs()) 4441 return error("Invalid function metadata: incoming forward references"); 4442 4443 InstructionList.clear(); 4444 unsigned ModuleValueListSize = ValueList.size(); 4445 unsigned ModuleMetadataListSize = MetadataList.size(); 4446 4447 // Add all the function arguments to the value table. 4448 for (Argument &I : F->args()) 4449 ValueList.push_back(&I); 4450 4451 unsigned NextValueNo = ValueList.size(); 4452 BasicBlock *CurBB = nullptr; 4453 unsigned CurBBNo = 0; 4454 4455 DebugLoc LastLoc; 4456 auto getLastInstruction = [&]() -> Instruction * { 4457 if (CurBB && !CurBB->empty()) 4458 return &CurBB->back(); 4459 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4460 !FunctionBBs[CurBBNo - 1]->empty()) 4461 return &FunctionBBs[CurBBNo - 1]->back(); 4462 return nullptr; 4463 }; 4464 4465 std::vector<OperandBundleDef> OperandBundles; 4466 4467 // Read all the records. 4468 SmallVector<uint64_t, 64> Record; 4469 4470 while (true) { 4471 BitstreamEntry Entry = Stream.advance(); 4472 4473 switch (Entry.Kind) { 4474 case BitstreamEntry::Error: 4475 return error("Malformed block"); 4476 case BitstreamEntry::EndBlock: 4477 goto OutOfRecordLoop; 4478 4479 case BitstreamEntry::SubBlock: 4480 switch (Entry.ID) { 4481 default: // Skip unknown content. 4482 if (Stream.SkipBlock()) 4483 return error("Invalid record"); 4484 break; 4485 case bitc::CONSTANTS_BLOCK_ID: 4486 if (std::error_code EC = parseConstants()) 4487 return EC; 4488 NextValueNo = ValueList.size(); 4489 break; 4490 case bitc::VALUE_SYMTAB_BLOCK_ID: 4491 if (std::error_code EC = parseValueSymbolTable()) 4492 return EC; 4493 break; 4494 case bitc::METADATA_ATTACHMENT_ID: 4495 if (std::error_code EC = parseMetadataAttachment(*F)) 4496 return EC; 4497 break; 4498 case bitc::METADATA_BLOCK_ID: 4499 if (std::error_code EC = parseMetadata()) 4500 return EC; 4501 break; 4502 case bitc::USELIST_BLOCK_ID: 4503 if (std::error_code EC = parseUseLists()) 4504 return EC; 4505 break; 4506 } 4507 continue; 4508 4509 case BitstreamEntry::Record: 4510 // The interesting case. 4511 break; 4512 } 4513 4514 // Read a record. 4515 Record.clear(); 4516 Instruction *I = nullptr; 4517 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4518 switch (BitCode) { 4519 default: // Default behavior: reject 4520 return error("Invalid value"); 4521 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4522 if (Record.size() < 1 || Record[0] == 0) 4523 return error("Invalid record"); 4524 // Create all the basic blocks for the function. 4525 FunctionBBs.resize(Record[0]); 4526 4527 // See if anything took the address of blocks in this function. 4528 auto BBFRI = BasicBlockFwdRefs.find(F); 4529 if (BBFRI == BasicBlockFwdRefs.end()) { 4530 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4531 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4532 } else { 4533 auto &BBRefs = BBFRI->second; 4534 // Check for invalid basic block references. 4535 if (BBRefs.size() > FunctionBBs.size()) 4536 return error("Invalid ID"); 4537 assert(!BBRefs.empty() && "Unexpected empty array"); 4538 assert(!BBRefs.front() && "Invalid reference to entry block"); 4539 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4540 ++I) 4541 if (I < RE && BBRefs[I]) { 4542 BBRefs[I]->insertInto(F); 4543 FunctionBBs[I] = BBRefs[I]; 4544 } else { 4545 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4546 } 4547 4548 // Erase from the table. 4549 BasicBlockFwdRefs.erase(BBFRI); 4550 } 4551 4552 CurBB = FunctionBBs[0]; 4553 continue; 4554 } 4555 4556 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4557 // This record indicates that the last instruction is at the same 4558 // location as the previous instruction with a location. 4559 I = getLastInstruction(); 4560 4561 if (!I) 4562 return error("Invalid record"); 4563 I->setDebugLoc(LastLoc); 4564 I = nullptr; 4565 continue; 4566 4567 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4568 I = getLastInstruction(); 4569 if (!I || Record.size() < 4) 4570 return error("Invalid record"); 4571 4572 unsigned Line = Record[0], Col = Record[1]; 4573 unsigned ScopeID = Record[2], IAID = Record[3]; 4574 4575 MDNode *Scope = nullptr, *IA = nullptr; 4576 if (ScopeID) { 4577 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4578 if (!Scope) 4579 return error("Invalid record"); 4580 } 4581 if (IAID) { 4582 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4583 if (!IA) 4584 return error("Invalid record"); 4585 } 4586 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4587 I->setDebugLoc(LastLoc); 4588 I = nullptr; 4589 continue; 4590 } 4591 4592 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4593 unsigned OpNum = 0; 4594 Value *LHS, *RHS; 4595 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4596 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4597 OpNum+1 > Record.size()) 4598 return error("Invalid record"); 4599 4600 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4601 if (Opc == -1) 4602 return error("Invalid record"); 4603 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4604 InstructionList.push_back(I); 4605 if (OpNum < Record.size()) { 4606 if (Opc == Instruction::Add || 4607 Opc == Instruction::Sub || 4608 Opc == Instruction::Mul || 4609 Opc == Instruction::Shl) { 4610 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4611 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4612 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4613 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4614 } else if (Opc == Instruction::SDiv || 4615 Opc == Instruction::UDiv || 4616 Opc == Instruction::LShr || 4617 Opc == Instruction::AShr) { 4618 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4619 cast<BinaryOperator>(I)->setIsExact(true); 4620 } else if (isa<FPMathOperator>(I)) { 4621 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4622 if (FMF.any()) 4623 I->setFastMathFlags(FMF); 4624 } 4625 4626 } 4627 break; 4628 } 4629 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4630 unsigned OpNum = 0; 4631 Value *Op; 4632 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4633 OpNum+2 != Record.size()) 4634 return error("Invalid record"); 4635 4636 Type *ResTy = getTypeByID(Record[OpNum]); 4637 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4638 if (Opc == -1 || !ResTy) 4639 return error("Invalid record"); 4640 Instruction *Temp = nullptr; 4641 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4642 if (Temp) { 4643 InstructionList.push_back(Temp); 4644 CurBB->getInstList().push_back(Temp); 4645 } 4646 } else { 4647 auto CastOp = (Instruction::CastOps)Opc; 4648 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4649 return error("Invalid cast"); 4650 I = CastInst::Create(CastOp, Op, ResTy); 4651 } 4652 InstructionList.push_back(I); 4653 break; 4654 } 4655 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4656 case bitc::FUNC_CODE_INST_GEP_OLD: 4657 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4658 unsigned OpNum = 0; 4659 4660 Type *Ty; 4661 bool InBounds; 4662 4663 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4664 InBounds = Record[OpNum++]; 4665 Ty = getTypeByID(Record[OpNum++]); 4666 } else { 4667 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4668 Ty = nullptr; 4669 } 4670 4671 Value *BasePtr; 4672 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4673 return error("Invalid record"); 4674 4675 if (!Ty) 4676 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4677 ->getElementType(); 4678 else if (Ty != 4679 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4680 ->getElementType()) 4681 return error( 4682 "Explicit gep type does not match pointee type of pointer operand"); 4683 4684 SmallVector<Value*, 16> GEPIdx; 4685 while (OpNum != Record.size()) { 4686 Value *Op; 4687 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4688 return error("Invalid record"); 4689 GEPIdx.push_back(Op); 4690 } 4691 4692 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4693 4694 InstructionList.push_back(I); 4695 if (InBounds) 4696 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4697 break; 4698 } 4699 4700 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4701 // EXTRACTVAL: [opty, opval, n x indices] 4702 unsigned OpNum = 0; 4703 Value *Agg; 4704 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4705 return error("Invalid record"); 4706 4707 unsigned RecSize = Record.size(); 4708 if (OpNum == RecSize) 4709 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4710 4711 SmallVector<unsigned, 4> EXTRACTVALIdx; 4712 Type *CurTy = Agg->getType(); 4713 for (; OpNum != RecSize; ++OpNum) { 4714 bool IsArray = CurTy->isArrayTy(); 4715 bool IsStruct = CurTy->isStructTy(); 4716 uint64_t Index = Record[OpNum]; 4717 4718 if (!IsStruct && !IsArray) 4719 return error("EXTRACTVAL: Invalid type"); 4720 if ((unsigned)Index != Index) 4721 return error("Invalid value"); 4722 if (IsStruct && Index >= CurTy->subtypes().size()) 4723 return error("EXTRACTVAL: Invalid struct index"); 4724 if (IsArray && Index >= CurTy->getArrayNumElements()) 4725 return error("EXTRACTVAL: Invalid array index"); 4726 EXTRACTVALIdx.push_back((unsigned)Index); 4727 4728 if (IsStruct) 4729 CurTy = CurTy->subtypes()[Index]; 4730 else 4731 CurTy = CurTy->subtypes()[0]; 4732 } 4733 4734 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4735 InstructionList.push_back(I); 4736 break; 4737 } 4738 4739 case bitc::FUNC_CODE_INST_INSERTVAL: { 4740 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4741 unsigned OpNum = 0; 4742 Value *Agg; 4743 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4744 return error("Invalid record"); 4745 Value *Val; 4746 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4747 return error("Invalid record"); 4748 4749 unsigned RecSize = Record.size(); 4750 if (OpNum == RecSize) 4751 return error("INSERTVAL: Invalid instruction with 0 indices"); 4752 4753 SmallVector<unsigned, 4> INSERTVALIdx; 4754 Type *CurTy = Agg->getType(); 4755 for (; OpNum != RecSize; ++OpNum) { 4756 bool IsArray = CurTy->isArrayTy(); 4757 bool IsStruct = CurTy->isStructTy(); 4758 uint64_t Index = Record[OpNum]; 4759 4760 if (!IsStruct && !IsArray) 4761 return error("INSERTVAL: Invalid type"); 4762 if ((unsigned)Index != Index) 4763 return error("Invalid value"); 4764 if (IsStruct && Index >= CurTy->subtypes().size()) 4765 return error("INSERTVAL: Invalid struct index"); 4766 if (IsArray && Index >= CurTy->getArrayNumElements()) 4767 return error("INSERTVAL: Invalid array index"); 4768 4769 INSERTVALIdx.push_back((unsigned)Index); 4770 if (IsStruct) 4771 CurTy = CurTy->subtypes()[Index]; 4772 else 4773 CurTy = CurTy->subtypes()[0]; 4774 } 4775 4776 if (CurTy != Val->getType()) 4777 return error("Inserted value type doesn't match aggregate type"); 4778 4779 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4780 InstructionList.push_back(I); 4781 break; 4782 } 4783 4784 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4785 // obsolete form of select 4786 // handles select i1 ... in old bitcode 4787 unsigned OpNum = 0; 4788 Value *TrueVal, *FalseVal, *Cond; 4789 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4790 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4791 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4792 return error("Invalid record"); 4793 4794 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4795 InstructionList.push_back(I); 4796 break; 4797 } 4798 4799 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4800 // new form of select 4801 // handles select i1 or select [N x i1] 4802 unsigned OpNum = 0; 4803 Value *TrueVal, *FalseVal, *Cond; 4804 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4805 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4806 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4807 return error("Invalid record"); 4808 4809 // select condition can be either i1 or [N x i1] 4810 if (VectorType* vector_type = 4811 dyn_cast<VectorType>(Cond->getType())) { 4812 // expect <n x i1> 4813 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4814 return error("Invalid type for value"); 4815 } else { 4816 // expect i1 4817 if (Cond->getType() != Type::getInt1Ty(Context)) 4818 return error("Invalid type for value"); 4819 } 4820 4821 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4822 InstructionList.push_back(I); 4823 break; 4824 } 4825 4826 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4827 unsigned OpNum = 0; 4828 Value *Vec, *Idx; 4829 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4830 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4831 return error("Invalid record"); 4832 if (!Vec->getType()->isVectorTy()) 4833 return error("Invalid type for value"); 4834 I = ExtractElementInst::Create(Vec, Idx); 4835 InstructionList.push_back(I); 4836 break; 4837 } 4838 4839 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4840 unsigned OpNum = 0; 4841 Value *Vec, *Elt, *Idx; 4842 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4843 return error("Invalid record"); 4844 if (!Vec->getType()->isVectorTy()) 4845 return error("Invalid type for value"); 4846 if (popValue(Record, OpNum, NextValueNo, 4847 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4848 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4849 return error("Invalid record"); 4850 I = InsertElementInst::Create(Vec, Elt, Idx); 4851 InstructionList.push_back(I); 4852 break; 4853 } 4854 4855 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4856 unsigned OpNum = 0; 4857 Value *Vec1, *Vec2, *Mask; 4858 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4859 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4860 return error("Invalid record"); 4861 4862 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4863 return error("Invalid record"); 4864 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4865 return error("Invalid type for value"); 4866 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4867 InstructionList.push_back(I); 4868 break; 4869 } 4870 4871 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4872 // Old form of ICmp/FCmp returning bool 4873 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4874 // both legal on vectors but had different behaviour. 4875 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4876 // FCmp/ICmp returning bool or vector of bool 4877 4878 unsigned OpNum = 0; 4879 Value *LHS, *RHS; 4880 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4881 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4882 return error("Invalid record"); 4883 4884 unsigned PredVal = Record[OpNum]; 4885 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4886 FastMathFlags FMF; 4887 if (IsFP && Record.size() > OpNum+1) 4888 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4889 4890 if (OpNum+1 != Record.size()) 4891 return error("Invalid record"); 4892 4893 if (LHS->getType()->isFPOrFPVectorTy()) 4894 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4895 else 4896 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4897 4898 if (FMF.any()) 4899 I->setFastMathFlags(FMF); 4900 InstructionList.push_back(I); 4901 break; 4902 } 4903 4904 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4905 { 4906 unsigned Size = Record.size(); 4907 if (Size == 0) { 4908 I = ReturnInst::Create(Context); 4909 InstructionList.push_back(I); 4910 break; 4911 } 4912 4913 unsigned OpNum = 0; 4914 Value *Op = nullptr; 4915 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4916 return error("Invalid record"); 4917 if (OpNum != Record.size()) 4918 return error("Invalid record"); 4919 4920 I = ReturnInst::Create(Context, Op); 4921 InstructionList.push_back(I); 4922 break; 4923 } 4924 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4925 if (Record.size() != 1 && Record.size() != 3) 4926 return error("Invalid record"); 4927 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4928 if (!TrueDest) 4929 return error("Invalid record"); 4930 4931 if (Record.size() == 1) { 4932 I = BranchInst::Create(TrueDest); 4933 InstructionList.push_back(I); 4934 } 4935 else { 4936 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4937 Value *Cond = getValue(Record, 2, NextValueNo, 4938 Type::getInt1Ty(Context)); 4939 if (!FalseDest || !Cond) 4940 return error("Invalid record"); 4941 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4942 InstructionList.push_back(I); 4943 } 4944 break; 4945 } 4946 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4947 if (Record.size() != 1 && Record.size() != 2) 4948 return error("Invalid record"); 4949 unsigned Idx = 0; 4950 Value *CleanupPad = 4951 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4952 if (!CleanupPad) 4953 return error("Invalid record"); 4954 BasicBlock *UnwindDest = nullptr; 4955 if (Record.size() == 2) { 4956 UnwindDest = getBasicBlock(Record[Idx++]); 4957 if (!UnwindDest) 4958 return error("Invalid record"); 4959 } 4960 4961 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4962 InstructionList.push_back(I); 4963 break; 4964 } 4965 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4966 if (Record.size() != 2) 4967 return error("Invalid record"); 4968 unsigned Idx = 0; 4969 Value *CatchPad = 4970 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4971 if (!CatchPad) 4972 return error("Invalid record"); 4973 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4974 if (!BB) 4975 return error("Invalid record"); 4976 4977 I = CatchReturnInst::Create(CatchPad, BB); 4978 InstructionList.push_back(I); 4979 break; 4980 } 4981 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4982 // We must have, at minimum, the outer scope and the number of arguments. 4983 if (Record.size() < 2) 4984 return error("Invalid record"); 4985 4986 unsigned Idx = 0; 4987 4988 Value *ParentPad = 4989 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4990 4991 unsigned NumHandlers = Record[Idx++]; 4992 4993 SmallVector<BasicBlock *, 2> Handlers; 4994 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4995 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4996 if (!BB) 4997 return error("Invalid record"); 4998 Handlers.push_back(BB); 4999 } 5000 5001 BasicBlock *UnwindDest = nullptr; 5002 if (Idx + 1 == Record.size()) { 5003 UnwindDest = getBasicBlock(Record[Idx++]); 5004 if (!UnwindDest) 5005 return error("Invalid record"); 5006 } 5007 5008 if (Record.size() != Idx) 5009 return error("Invalid record"); 5010 5011 auto *CatchSwitch = 5012 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5013 for (BasicBlock *Handler : Handlers) 5014 CatchSwitch->addHandler(Handler); 5015 I = CatchSwitch; 5016 InstructionList.push_back(I); 5017 break; 5018 } 5019 case bitc::FUNC_CODE_INST_CATCHPAD: 5020 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5021 // We must have, at minimum, the outer scope and the number of arguments. 5022 if (Record.size() < 2) 5023 return error("Invalid record"); 5024 5025 unsigned Idx = 0; 5026 5027 Value *ParentPad = 5028 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5029 5030 unsigned NumArgOperands = Record[Idx++]; 5031 5032 SmallVector<Value *, 2> Args; 5033 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5034 Value *Val; 5035 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5036 return error("Invalid record"); 5037 Args.push_back(Val); 5038 } 5039 5040 if (Record.size() != Idx) 5041 return error("Invalid record"); 5042 5043 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5044 I = CleanupPadInst::Create(ParentPad, Args); 5045 else 5046 I = CatchPadInst::Create(ParentPad, Args); 5047 InstructionList.push_back(I); 5048 break; 5049 } 5050 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5051 // Check magic 5052 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5053 // "New" SwitchInst format with case ranges. The changes to write this 5054 // format were reverted but we still recognize bitcode that uses it. 5055 // Hopefully someday we will have support for case ranges and can use 5056 // this format again. 5057 5058 Type *OpTy = getTypeByID(Record[1]); 5059 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5060 5061 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 5062 BasicBlock *Default = getBasicBlock(Record[3]); 5063 if (!OpTy || !Cond || !Default) 5064 return error("Invalid record"); 5065 5066 unsigned NumCases = Record[4]; 5067 5068 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5069 InstructionList.push_back(SI); 5070 5071 unsigned CurIdx = 5; 5072 for (unsigned i = 0; i != NumCases; ++i) { 5073 SmallVector<ConstantInt*, 1> CaseVals; 5074 unsigned NumItems = Record[CurIdx++]; 5075 for (unsigned ci = 0; ci != NumItems; ++ci) { 5076 bool isSingleNumber = Record[CurIdx++]; 5077 5078 APInt Low; 5079 unsigned ActiveWords = 1; 5080 if (ValueBitWidth > 64) 5081 ActiveWords = Record[CurIdx++]; 5082 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5083 ValueBitWidth); 5084 CurIdx += ActiveWords; 5085 5086 if (!isSingleNumber) { 5087 ActiveWords = 1; 5088 if (ValueBitWidth > 64) 5089 ActiveWords = Record[CurIdx++]; 5090 APInt High = readWideAPInt( 5091 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5092 CurIdx += ActiveWords; 5093 5094 // FIXME: It is not clear whether values in the range should be 5095 // compared as signed or unsigned values. The partially 5096 // implemented changes that used this format in the past used 5097 // unsigned comparisons. 5098 for ( ; Low.ule(High); ++Low) 5099 CaseVals.push_back(ConstantInt::get(Context, Low)); 5100 } else 5101 CaseVals.push_back(ConstantInt::get(Context, Low)); 5102 } 5103 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5104 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 5105 cve = CaseVals.end(); cvi != cve; ++cvi) 5106 SI->addCase(*cvi, DestBB); 5107 } 5108 I = SI; 5109 break; 5110 } 5111 5112 // Old SwitchInst format without case ranges. 5113 5114 if (Record.size() < 3 || (Record.size() & 1) == 0) 5115 return error("Invalid record"); 5116 Type *OpTy = getTypeByID(Record[0]); 5117 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 5118 BasicBlock *Default = getBasicBlock(Record[2]); 5119 if (!OpTy || !Cond || !Default) 5120 return error("Invalid record"); 5121 unsigned NumCases = (Record.size()-3)/2; 5122 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5123 InstructionList.push_back(SI); 5124 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5125 ConstantInt *CaseVal = 5126 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 5127 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5128 if (!CaseVal || !DestBB) { 5129 delete SI; 5130 return error("Invalid record"); 5131 } 5132 SI->addCase(CaseVal, DestBB); 5133 } 5134 I = SI; 5135 break; 5136 } 5137 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5138 if (Record.size() < 2) 5139 return error("Invalid record"); 5140 Type *OpTy = getTypeByID(Record[0]); 5141 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 5142 if (!OpTy || !Address) 5143 return error("Invalid record"); 5144 unsigned NumDests = Record.size()-2; 5145 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5146 InstructionList.push_back(IBI); 5147 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5148 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5149 IBI->addDestination(DestBB); 5150 } else { 5151 delete IBI; 5152 return error("Invalid record"); 5153 } 5154 } 5155 I = IBI; 5156 break; 5157 } 5158 5159 case bitc::FUNC_CODE_INST_INVOKE: { 5160 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5161 if (Record.size() < 4) 5162 return error("Invalid record"); 5163 unsigned OpNum = 0; 5164 AttributeSet PAL = getAttributes(Record[OpNum++]); 5165 unsigned CCInfo = Record[OpNum++]; 5166 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5167 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5168 5169 FunctionType *FTy = nullptr; 5170 if (CCInfo >> 13 & 1 && 5171 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5172 return error("Explicit invoke type is not a function type"); 5173 5174 Value *Callee; 5175 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5176 return error("Invalid record"); 5177 5178 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5179 if (!CalleeTy) 5180 return error("Callee is not a pointer"); 5181 if (!FTy) { 5182 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5183 if (!FTy) 5184 return error("Callee is not of pointer to function type"); 5185 } else if (CalleeTy->getElementType() != FTy) 5186 return error("Explicit invoke type does not match pointee type of " 5187 "callee operand"); 5188 if (Record.size() < FTy->getNumParams() + OpNum) 5189 return error("Insufficient operands to call"); 5190 5191 SmallVector<Value*, 16> Ops; 5192 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5193 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5194 FTy->getParamType(i))); 5195 if (!Ops.back()) 5196 return error("Invalid record"); 5197 } 5198 5199 if (!FTy->isVarArg()) { 5200 if (Record.size() != OpNum) 5201 return error("Invalid record"); 5202 } else { 5203 // Read type/value pairs for varargs params. 5204 while (OpNum != Record.size()) { 5205 Value *Op; 5206 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5207 return error("Invalid record"); 5208 Ops.push_back(Op); 5209 } 5210 } 5211 5212 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5213 OperandBundles.clear(); 5214 InstructionList.push_back(I); 5215 cast<InvokeInst>(I)->setCallingConv( 5216 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5217 cast<InvokeInst>(I)->setAttributes(PAL); 5218 break; 5219 } 5220 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5221 unsigned Idx = 0; 5222 Value *Val = nullptr; 5223 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5224 return error("Invalid record"); 5225 I = ResumeInst::Create(Val); 5226 InstructionList.push_back(I); 5227 break; 5228 } 5229 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5230 I = new UnreachableInst(Context); 5231 InstructionList.push_back(I); 5232 break; 5233 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5234 if (Record.size() < 1 || ((Record.size()-1)&1)) 5235 return error("Invalid record"); 5236 Type *Ty = getTypeByID(Record[0]); 5237 if (!Ty) 5238 return error("Invalid record"); 5239 5240 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5241 InstructionList.push_back(PN); 5242 5243 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5244 Value *V; 5245 // With the new function encoding, it is possible that operands have 5246 // negative IDs (for forward references). Use a signed VBR 5247 // representation to keep the encoding small. 5248 if (UseRelativeIDs) 5249 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5250 else 5251 V = getValue(Record, 1+i, NextValueNo, Ty); 5252 BasicBlock *BB = getBasicBlock(Record[2+i]); 5253 if (!V || !BB) 5254 return error("Invalid record"); 5255 PN->addIncoming(V, BB); 5256 } 5257 I = PN; 5258 break; 5259 } 5260 5261 case bitc::FUNC_CODE_INST_LANDINGPAD: 5262 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5263 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5264 unsigned Idx = 0; 5265 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5266 if (Record.size() < 3) 5267 return error("Invalid record"); 5268 } else { 5269 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5270 if (Record.size() < 4) 5271 return error("Invalid record"); 5272 } 5273 Type *Ty = getTypeByID(Record[Idx++]); 5274 if (!Ty) 5275 return error("Invalid record"); 5276 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5277 Value *PersFn = nullptr; 5278 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5279 return error("Invalid record"); 5280 5281 if (!F->hasPersonalityFn()) 5282 F->setPersonalityFn(cast<Constant>(PersFn)); 5283 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5284 return error("Personality function mismatch"); 5285 } 5286 5287 bool IsCleanup = !!Record[Idx++]; 5288 unsigned NumClauses = Record[Idx++]; 5289 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5290 LP->setCleanup(IsCleanup); 5291 for (unsigned J = 0; J != NumClauses; ++J) { 5292 LandingPadInst::ClauseType CT = 5293 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5294 Value *Val; 5295 5296 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5297 delete LP; 5298 return error("Invalid record"); 5299 } 5300 5301 assert((CT != LandingPadInst::Catch || 5302 !isa<ArrayType>(Val->getType())) && 5303 "Catch clause has a invalid type!"); 5304 assert((CT != LandingPadInst::Filter || 5305 isa<ArrayType>(Val->getType())) && 5306 "Filter clause has invalid type!"); 5307 LP->addClause(cast<Constant>(Val)); 5308 } 5309 5310 I = LP; 5311 InstructionList.push_back(I); 5312 break; 5313 } 5314 5315 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5316 if (Record.size() != 4) 5317 return error("Invalid record"); 5318 uint64_t AlignRecord = Record[3]; 5319 const uint64_t InAllocaMask = uint64_t(1) << 5; 5320 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5321 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5322 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5323 SwiftErrorMask; 5324 bool InAlloca = AlignRecord & InAllocaMask; 5325 bool SwiftError = AlignRecord & SwiftErrorMask; 5326 Type *Ty = getTypeByID(Record[0]); 5327 if ((AlignRecord & ExplicitTypeMask) == 0) { 5328 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5329 if (!PTy) 5330 return error("Old-style alloca with a non-pointer type"); 5331 Ty = PTy->getElementType(); 5332 } 5333 Type *OpTy = getTypeByID(Record[1]); 5334 Value *Size = getFnValueByID(Record[2], OpTy); 5335 unsigned Align; 5336 if (std::error_code EC = 5337 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5338 return EC; 5339 } 5340 if (!Ty || !Size) 5341 return error("Invalid record"); 5342 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5343 AI->setUsedWithInAlloca(InAlloca); 5344 AI->setSwiftError(SwiftError); 5345 I = AI; 5346 InstructionList.push_back(I); 5347 break; 5348 } 5349 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5350 unsigned OpNum = 0; 5351 Value *Op; 5352 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5353 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5354 return error("Invalid record"); 5355 5356 Type *Ty = nullptr; 5357 if (OpNum + 3 == Record.size()) 5358 Ty = getTypeByID(Record[OpNum++]); 5359 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5360 return EC; 5361 if (!Ty) 5362 Ty = cast<PointerType>(Op->getType())->getElementType(); 5363 5364 unsigned Align; 5365 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5366 return EC; 5367 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5368 5369 InstructionList.push_back(I); 5370 break; 5371 } 5372 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5373 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5374 unsigned OpNum = 0; 5375 Value *Op; 5376 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5377 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5378 return error("Invalid record"); 5379 5380 Type *Ty = nullptr; 5381 if (OpNum + 5 == Record.size()) 5382 Ty = getTypeByID(Record[OpNum++]); 5383 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5384 return EC; 5385 if (!Ty) 5386 Ty = cast<PointerType>(Op->getType())->getElementType(); 5387 5388 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5389 if (Ordering == AtomicOrdering::NotAtomic || 5390 Ordering == AtomicOrdering::Release || 5391 Ordering == AtomicOrdering::AcquireRelease) 5392 return error("Invalid record"); 5393 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5394 return error("Invalid record"); 5395 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5396 5397 unsigned Align; 5398 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5399 return EC; 5400 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5401 5402 InstructionList.push_back(I); 5403 break; 5404 } 5405 case bitc::FUNC_CODE_INST_STORE: 5406 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5407 unsigned OpNum = 0; 5408 Value *Val, *Ptr; 5409 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5410 (BitCode == bitc::FUNC_CODE_INST_STORE 5411 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5412 : popValue(Record, OpNum, NextValueNo, 5413 cast<PointerType>(Ptr->getType())->getElementType(), 5414 Val)) || 5415 OpNum + 2 != Record.size()) 5416 return error("Invalid record"); 5417 5418 if (std::error_code EC = 5419 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5420 return EC; 5421 unsigned Align; 5422 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5423 return EC; 5424 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5425 InstructionList.push_back(I); 5426 break; 5427 } 5428 case bitc::FUNC_CODE_INST_STOREATOMIC: 5429 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5430 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5431 unsigned OpNum = 0; 5432 Value *Val, *Ptr; 5433 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5434 !isa<PointerType>(Ptr->getType()) || 5435 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5436 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5437 : popValue(Record, OpNum, NextValueNo, 5438 cast<PointerType>(Ptr->getType())->getElementType(), 5439 Val)) || 5440 OpNum + 4 != Record.size()) 5441 return error("Invalid record"); 5442 5443 if (std::error_code EC = 5444 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5445 return EC; 5446 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5447 if (Ordering == AtomicOrdering::NotAtomic || 5448 Ordering == AtomicOrdering::Acquire || 5449 Ordering == AtomicOrdering::AcquireRelease) 5450 return error("Invalid record"); 5451 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5452 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5453 return error("Invalid record"); 5454 5455 unsigned Align; 5456 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5457 return EC; 5458 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5459 InstructionList.push_back(I); 5460 break; 5461 } 5462 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5463 case bitc::FUNC_CODE_INST_CMPXCHG: { 5464 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5465 // failureordering?, isweak?] 5466 unsigned OpNum = 0; 5467 Value *Ptr, *Cmp, *New; 5468 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5469 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5470 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5471 : popValue(Record, OpNum, NextValueNo, 5472 cast<PointerType>(Ptr->getType())->getElementType(), 5473 Cmp)) || 5474 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5475 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5476 return error("Invalid record"); 5477 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5478 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5479 SuccessOrdering == AtomicOrdering::Unordered) 5480 return error("Invalid record"); 5481 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5482 5483 if (std::error_code EC = 5484 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5485 return EC; 5486 AtomicOrdering FailureOrdering; 5487 if (Record.size() < 7) 5488 FailureOrdering = 5489 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5490 else 5491 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5492 5493 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5494 SynchScope); 5495 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5496 5497 if (Record.size() < 8) { 5498 // Before weak cmpxchgs existed, the instruction simply returned the 5499 // value loaded from memory, so bitcode files from that era will be 5500 // expecting the first component of a modern cmpxchg. 5501 CurBB->getInstList().push_back(I); 5502 I = ExtractValueInst::Create(I, 0); 5503 } else { 5504 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5505 } 5506 5507 InstructionList.push_back(I); 5508 break; 5509 } 5510 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5511 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5512 unsigned OpNum = 0; 5513 Value *Ptr, *Val; 5514 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5515 !isa<PointerType>(Ptr->getType()) || 5516 popValue(Record, OpNum, NextValueNo, 5517 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5518 OpNum+4 != Record.size()) 5519 return error("Invalid record"); 5520 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5521 if (Operation < AtomicRMWInst::FIRST_BINOP || 5522 Operation > AtomicRMWInst::LAST_BINOP) 5523 return error("Invalid record"); 5524 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5525 if (Ordering == AtomicOrdering::NotAtomic || 5526 Ordering == AtomicOrdering::Unordered) 5527 return error("Invalid record"); 5528 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5529 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5530 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5531 InstructionList.push_back(I); 5532 break; 5533 } 5534 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5535 if (2 != Record.size()) 5536 return error("Invalid record"); 5537 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5538 if (Ordering == AtomicOrdering::NotAtomic || 5539 Ordering == AtomicOrdering::Unordered || 5540 Ordering == AtomicOrdering::Monotonic) 5541 return error("Invalid record"); 5542 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5543 I = new FenceInst(Context, Ordering, SynchScope); 5544 InstructionList.push_back(I); 5545 break; 5546 } 5547 case bitc::FUNC_CODE_INST_CALL: { 5548 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5549 if (Record.size() < 3) 5550 return error("Invalid record"); 5551 5552 unsigned OpNum = 0; 5553 AttributeSet PAL = getAttributes(Record[OpNum++]); 5554 unsigned CCInfo = Record[OpNum++]; 5555 5556 FastMathFlags FMF; 5557 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5558 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5559 if (!FMF.any()) 5560 return error("Fast math flags indicator set for call with no FMF"); 5561 } 5562 5563 FunctionType *FTy = nullptr; 5564 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5565 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5566 return error("Explicit call type is not a function type"); 5567 5568 Value *Callee; 5569 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5570 return error("Invalid record"); 5571 5572 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5573 if (!OpTy) 5574 return error("Callee is not a pointer type"); 5575 if (!FTy) { 5576 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5577 if (!FTy) 5578 return error("Callee is not of pointer to function type"); 5579 } else if (OpTy->getElementType() != FTy) 5580 return error("Explicit call type does not match pointee type of " 5581 "callee operand"); 5582 if (Record.size() < FTy->getNumParams() + OpNum) 5583 return error("Insufficient operands to call"); 5584 5585 SmallVector<Value*, 16> Args; 5586 // Read the fixed params. 5587 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5588 if (FTy->getParamType(i)->isLabelTy()) 5589 Args.push_back(getBasicBlock(Record[OpNum])); 5590 else 5591 Args.push_back(getValue(Record, OpNum, NextValueNo, 5592 FTy->getParamType(i))); 5593 if (!Args.back()) 5594 return error("Invalid record"); 5595 } 5596 5597 // Read type/value pairs for varargs params. 5598 if (!FTy->isVarArg()) { 5599 if (OpNum != Record.size()) 5600 return error("Invalid record"); 5601 } else { 5602 while (OpNum != Record.size()) { 5603 Value *Op; 5604 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5605 return error("Invalid record"); 5606 Args.push_back(Op); 5607 } 5608 } 5609 5610 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5611 OperandBundles.clear(); 5612 InstructionList.push_back(I); 5613 cast<CallInst>(I)->setCallingConv( 5614 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5615 CallInst::TailCallKind TCK = CallInst::TCK_None; 5616 if (CCInfo & 1 << bitc::CALL_TAIL) 5617 TCK = CallInst::TCK_Tail; 5618 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5619 TCK = CallInst::TCK_MustTail; 5620 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5621 TCK = CallInst::TCK_NoTail; 5622 cast<CallInst>(I)->setTailCallKind(TCK); 5623 cast<CallInst>(I)->setAttributes(PAL); 5624 if (FMF.any()) { 5625 if (!isa<FPMathOperator>(I)) 5626 return error("Fast-math-flags specified for call without " 5627 "floating-point scalar or vector return type"); 5628 I->setFastMathFlags(FMF); 5629 } 5630 break; 5631 } 5632 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5633 if (Record.size() < 3) 5634 return error("Invalid record"); 5635 Type *OpTy = getTypeByID(Record[0]); 5636 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5637 Type *ResTy = getTypeByID(Record[2]); 5638 if (!OpTy || !Op || !ResTy) 5639 return error("Invalid record"); 5640 I = new VAArgInst(Op, ResTy); 5641 InstructionList.push_back(I); 5642 break; 5643 } 5644 5645 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5646 // A call or an invoke can be optionally prefixed with some variable 5647 // number of operand bundle blocks. These blocks are read into 5648 // OperandBundles and consumed at the next call or invoke instruction. 5649 5650 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5651 return error("Invalid record"); 5652 5653 std::vector<Value *> Inputs; 5654 5655 unsigned OpNum = 1; 5656 while (OpNum != Record.size()) { 5657 Value *Op; 5658 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5659 return error("Invalid record"); 5660 Inputs.push_back(Op); 5661 } 5662 5663 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5664 continue; 5665 } 5666 } 5667 5668 // Add instruction to end of current BB. If there is no current BB, reject 5669 // this file. 5670 if (!CurBB) { 5671 delete I; 5672 return error("Invalid instruction with no BB"); 5673 } 5674 if (!OperandBundles.empty()) { 5675 delete I; 5676 return error("Operand bundles found with no consumer"); 5677 } 5678 CurBB->getInstList().push_back(I); 5679 5680 // If this was a terminator instruction, move to the next block. 5681 if (isa<TerminatorInst>(I)) { 5682 ++CurBBNo; 5683 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5684 } 5685 5686 // Non-void values get registered in the value table for future use. 5687 if (I && !I->getType()->isVoidTy()) 5688 ValueList.assignValue(I, NextValueNo++); 5689 } 5690 5691 OutOfRecordLoop: 5692 5693 if (!OperandBundles.empty()) 5694 return error("Operand bundles found with no consumer"); 5695 5696 // Check the function list for unresolved values. 5697 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5698 if (!A->getParent()) { 5699 // We found at least one unresolved value. Nuke them all to avoid leaks. 5700 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5701 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5702 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5703 delete A; 5704 } 5705 } 5706 return error("Never resolved value found in function"); 5707 } 5708 } 5709 5710 // Unexpected unresolved metadata about to be dropped. 5711 if (MetadataList.hasFwdRefs()) 5712 return error("Invalid function metadata: outgoing forward refs"); 5713 5714 // Trim the value list down to the size it was before we parsed this function. 5715 ValueList.shrinkTo(ModuleValueListSize); 5716 MetadataList.shrinkTo(ModuleMetadataListSize); 5717 std::vector<BasicBlock*>().swap(FunctionBBs); 5718 return std::error_code(); 5719 } 5720 5721 /// Find the function body in the bitcode stream 5722 std::error_code BitcodeReader::findFunctionInStream( 5723 Function *F, 5724 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5725 while (DeferredFunctionInfoIterator->second == 0) { 5726 // This is the fallback handling for the old format bitcode that 5727 // didn't contain the function index in the VST, or when we have 5728 // an anonymous function which would not have a VST entry. 5729 // Assert that we have one of those two cases. 5730 assert(VSTOffset == 0 || !F->hasName()); 5731 // Parse the next body in the stream and set its position in the 5732 // DeferredFunctionInfo map. 5733 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5734 return EC; 5735 } 5736 return std::error_code(); 5737 } 5738 5739 //===----------------------------------------------------------------------===// 5740 // GVMaterializer implementation 5741 //===----------------------------------------------------------------------===// 5742 5743 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5744 5745 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5746 Function *F = dyn_cast<Function>(GV); 5747 // If it's not a function or is already material, ignore the request. 5748 if (!F || !F->isMaterializable()) 5749 return std::error_code(); 5750 5751 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5752 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5753 // If its position is recorded as 0, its body is somewhere in the stream 5754 // but we haven't seen it yet. 5755 if (DFII->second == 0) 5756 if (std::error_code EC = findFunctionInStream(F, DFII)) 5757 return EC; 5758 5759 // Materialize metadata before parsing any function bodies. 5760 if (std::error_code EC = materializeMetadata()) 5761 return EC; 5762 5763 // Move the bit stream to the saved position of the deferred function body. 5764 Stream.JumpToBit(DFII->second); 5765 5766 if (std::error_code EC = parseFunctionBody(F)) 5767 return EC; 5768 F->setIsMaterializable(false); 5769 5770 if (StripDebugInfo) 5771 stripDebugInfo(*F); 5772 5773 // Upgrade any old intrinsic calls in the function. 5774 for (auto &I : UpgradedIntrinsics) { 5775 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5776 UI != UE;) { 5777 User *U = *UI; 5778 ++UI; 5779 if (CallInst *CI = dyn_cast<CallInst>(U)) 5780 UpgradeIntrinsicCall(CI, I.second); 5781 } 5782 } 5783 5784 // Update calls to the remangled intrinsics 5785 for (auto &I : RemangledIntrinsics) 5786 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5787 UI != UE;) 5788 // Don't expect any other users than call sites 5789 CallSite(*UI++).setCalledFunction(I.second); 5790 5791 // Finish fn->subprogram upgrade for materialized functions. 5792 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5793 F->setSubprogram(SP); 5794 5795 // Bring in any functions that this function forward-referenced via 5796 // blockaddresses. 5797 return materializeForwardReferencedFunctions(); 5798 } 5799 5800 std::error_code BitcodeReader::materializeModule() { 5801 if (std::error_code EC = materializeMetadata()) 5802 return EC; 5803 5804 // Promise to materialize all forward references. 5805 WillMaterializeAllForwardRefs = true; 5806 5807 // Iterate over the module, deserializing any functions that are still on 5808 // disk. 5809 for (Function &F : *TheModule) { 5810 if (std::error_code EC = materialize(&F)) 5811 return EC; 5812 } 5813 // At this point, if there are any function bodies, parse the rest of 5814 // the bits in the module past the last function block we have recorded 5815 // through either lazy scanning or the VST. 5816 if (LastFunctionBlockBit || NextUnreadBit) 5817 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5818 : NextUnreadBit); 5819 5820 // Check that all block address forward references got resolved (as we 5821 // promised above). 5822 if (!BasicBlockFwdRefs.empty()) 5823 return error("Never resolved function from blockaddress"); 5824 5825 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5826 // to prevent this instructions with TBAA tags should be upgraded first. 5827 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5828 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5829 5830 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5831 // delete the old functions to clean up. We can't do this unless the entire 5832 // module is materialized because there could always be another function body 5833 // with calls to the old function. 5834 for (auto &I : UpgradedIntrinsics) { 5835 for (auto *U : I.first->users()) { 5836 if (CallInst *CI = dyn_cast<CallInst>(U)) 5837 UpgradeIntrinsicCall(CI, I.second); 5838 } 5839 if (!I.first->use_empty()) 5840 I.first->replaceAllUsesWith(I.second); 5841 I.first->eraseFromParent(); 5842 } 5843 UpgradedIntrinsics.clear(); 5844 // Do the same for remangled intrinsics 5845 for (auto &I : RemangledIntrinsics) { 5846 I.first->replaceAllUsesWith(I.second); 5847 I.first->eraseFromParent(); 5848 } 5849 RemangledIntrinsics.clear(); 5850 5851 UpgradeDebugInfo(*TheModule); 5852 5853 UpgradeModuleFlags(*TheModule); 5854 return std::error_code(); 5855 } 5856 5857 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5858 return IdentifiedStructTypes; 5859 } 5860 5861 std::error_code 5862 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5863 if (Streamer) 5864 return initLazyStream(std::move(Streamer)); 5865 return initStreamFromBuffer(); 5866 } 5867 5868 std::error_code BitcodeReader::initStreamFromBuffer() { 5869 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5870 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5871 5872 if (Buffer->getBufferSize() & 3) 5873 return error("Invalid bitcode signature"); 5874 5875 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5876 // The magic number is 0x0B17C0DE stored in little endian. 5877 if (isBitcodeWrapper(BufPtr, BufEnd)) 5878 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5879 return error("Invalid bitcode wrapper header"); 5880 5881 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5882 Stream.init(&*StreamFile); 5883 5884 return std::error_code(); 5885 } 5886 5887 std::error_code 5888 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5889 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5890 // see it. 5891 auto OwnedBytes = 5892 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5893 StreamingMemoryObject &Bytes = *OwnedBytes; 5894 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5895 Stream.init(&*StreamFile); 5896 5897 unsigned char buf[16]; 5898 if (Bytes.readBytes(buf, 16, 0) != 16) 5899 return error("Invalid bitcode signature"); 5900 5901 if (!isBitcode(buf, buf + 16)) 5902 return error("Invalid bitcode signature"); 5903 5904 if (isBitcodeWrapper(buf, buf + 4)) { 5905 const unsigned char *bitcodeStart = buf; 5906 const unsigned char *bitcodeEnd = buf + 16; 5907 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5908 Bytes.dropLeadingBytes(bitcodeStart - buf); 5909 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5910 } 5911 return std::error_code(); 5912 } 5913 5914 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5915 return ::error(DiagnosticHandler, 5916 make_error_code(BitcodeError::CorruptedBitcode), Message); 5917 } 5918 5919 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5920 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5921 bool CheckGlobalValSummaryPresenceOnly) 5922 : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(Buffer), 5923 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5924 5925 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5926 5927 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5928 5929 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5930 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5931 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5932 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5933 return VGI->second; 5934 } 5935 5936 // Specialized value symbol table parser used when reading module index 5937 // blocks where we don't actually create global values. The parsed information 5938 // is saved in the bitcode reader for use when later parsing summaries. 5939 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5940 uint64_t Offset, 5941 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5942 assert(Offset > 0 && "Expected non-zero VST offset"); 5943 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5944 5945 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5946 return error("Invalid record"); 5947 5948 SmallVector<uint64_t, 64> Record; 5949 5950 // Read all the records for this value table. 5951 SmallString<128> ValueName; 5952 5953 while (true) { 5954 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5955 5956 switch (Entry.Kind) { 5957 case BitstreamEntry::SubBlock: // Handled for us already. 5958 case BitstreamEntry::Error: 5959 return error("Malformed block"); 5960 case BitstreamEntry::EndBlock: 5961 // Done parsing VST, jump back to wherever we came from. 5962 Stream.JumpToBit(CurrentBit); 5963 return std::error_code(); 5964 case BitstreamEntry::Record: 5965 // The interesting case. 5966 break; 5967 } 5968 5969 // Read a record. 5970 Record.clear(); 5971 switch (Stream.readRecord(Entry.ID, Record)) { 5972 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5973 break; 5974 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5975 if (convertToString(Record, 1, ValueName)) 5976 return error("Invalid record"); 5977 unsigned ValueID = Record[0]; 5978 assert(!SourceFileName.empty()); 5979 auto VLI = ValueIdToLinkageMap.find(ValueID); 5980 assert(VLI != ValueIdToLinkageMap.end() && 5981 "No linkage found for VST entry?"); 5982 auto Linkage = VLI->second; 5983 std::string GlobalId = 5984 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5985 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5986 auto OriginalNameID = ValueGUID; 5987 if (GlobalValue::isLocalLinkage(Linkage)) 5988 OriginalNameID = GlobalValue::getGUID(ValueName); 5989 if (PrintSummaryGUIDs) 5990 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5991 << ValueName << "\n"; 5992 ValueIdToCallGraphGUIDMap[ValueID] = 5993 std::make_pair(ValueGUID, OriginalNameID); 5994 ValueName.clear(); 5995 break; 5996 } 5997 case bitc::VST_CODE_FNENTRY: { 5998 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5999 if (convertToString(Record, 2, ValueName)) 6000 return error("Invalid record"); 6001 unsigned ValueID = Record[0]; 6002 assert(!SourceFileName.empty()); 6003 auto VLI = ValueIdToLinkageMap.find(ValueID); 6004 assert(VLI != ValueIdToLinkageMap.end() && 6005 "No linkage found for VST entry?"); 6006 auto Linkage = VLI->second; 6007 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 6008 ValueName, VLI->second, SourceFileName); 6009 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 6010 auto OriginalNameID = FunctionGUID; 6011 if (GlobalValue::isLocalLinkage(Linkage)) 6012 OriginalNameID = GlobalValue::getGUID(ValueName); 6013 if (PrintSummaryGUIDs) 6014 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 6015 << ValueName << "\n"; 6016 ValueIdToCallGraphGUIDMap[ValueID] = 6017 std::make_pair(FunctionGUID, OriginalNameID); 6018 6019 ValueName.clear(); 6020 break; 6021 } 6022 case bitc::VST_CODE_COMBINED_ENTRY: { 6023 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6024 unsigned ValueID = Record[0]; 6025 GlobalValue::GUID RefGUID = Record[1]; 6026 // The "original name", which is the second value of the pair will be 6027 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6028 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 6029 break; 6030 } 6031 } 6032 } 6033 } 6034 6035 // Parse just the blocks needed for building the index out of the module. 6036 // At the end of this routine the module Index is populated with a map 6037 // from global value id to GlobalValueSummary objects. 6038 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 6039 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6040 return error("Invalid record"); 6041 6042 SmallVector<uint64_t, 64> Record; 6043 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6044 unsigned ValueId = 0; 6045 6046 // Read the index for this module. 6047 while (true) { 6048 BitstreamEntry Entry = Stream.advance(); 6049 6050 switch (Entry.Kind) { 6051 case BitstreamEntry::Error: 6052 return error("Malformed block"); 6053 case BitstreamEntry::EndBlock: 6054 return std::error_code(); 6055 6056 case BitstreamEntry::SubBlock: 6057 if (CheckGlobalValSummaryPresenceOnly) { 6058 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6059 SeenGlobalValSummary = true; 6060 // No need to parse the rest since we found the summary. 6061 return std::error_code(); 6062 } 6063 if (Stream.SkipBlock()) 6064 return error("Invalid record"); 6065 continue; 6066 } 6067 switch (Entry.ID) { 6068 default: // Skip unknown content. 6069 if (Stream.SkipBlock()) 6070 return error("Invalid record"); 6071 break; 6072 case bitc::BLOCKINFO_BLOCK_ID: 6073 // Need to parse these to get abbrev ids (e.g. for VST) 6074 if (Stream.ReadBlockInfoBlock()) 6075 return error("Malformed block"); 6076 break; 6077 case bitc::VALUE_SYMTAB_BLOCK_ID: 6078 // Should have been parsed earlier via VSTOffset, unless there 6079 // is no summary section. 6080 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6081 !SeenGlobalValSummary) && 6082 "Expected early VST parse via VSTOffset record"); 6083 if (Stream.SkipBlock()) 6084 return error("Invalid record"); 6085 break; 6086 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6087 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 6088 assert(!SeenValueSymbolTable && 6089 "Already read VST when parsing summary block?"); 6090 if (std::error_code EC = 6091 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6092 return EC; 6093 SeenValueSymbolTable = true; 6094 SeenGlobalValSummary = true; 6095 if (std::error_code EC = parseEntireSummary()) 6096 return EC; 6097 break; 6098 case bitc::MODULE_STRTAB_BLOCK_ID: 6099 if (std::error_code EC = parseModuleStringTable()) 6100 return EC; 6101 break; 6102 } 6103 continue; 6104 6105 case BitstreamEntry::Record: { 6106 Record.clear(); 6107 auto BitCode = Stream.readRecord(Entry.ID, Record); 6108 switch (BitCode) { 6109 default: 6110 break; // Default behavior, ignore unknown content. 6111 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6112 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6113 SmallString<128> ValueName; 6114 if (convertToString(Record, 0, ValueName)) 6115 return error("Invalid record"); 6116 SourceFileName = ValueName.c_str(); 6117 break; 6118 } 6119 /// MODULE_CODE_HASH: [5*i32] 6120 case bitc::MODULE_CODE_HASH: { 6121 if (Record.size() != 5) 6122 return error("Invalid hash length " + Twine(Record.size()).str()); 6123 if (!TheIndex) 6124 break; 6125 if (TheIndex->modulePaths().empty()) 6126 // Does not have any summary emitted. 6127 break; 6128 if (TheIndex->modulePaths().size() != 1) 6129 return error("Don't expect multiple modules defined?"); 6130 auto &Hash = TheIndex->modulePaths().begin()->second.second; 6131 int Pos = 0; 6132 for (auto &Val : Record) { 6133 assert(!(Val >> 32) && "Unexpected high bits set"); 6134 Hash[Pos++] = Val; 6135 } 6136 break; 6137 } 6138 /// MODULE_CODE_VSTOFFSET: [offset] 6139 case bitc::MODULE_CODE_VSTOFFSET: 6140 if (Record.size() < 1) 6141 return error("Invalid record"); 6142 VSTOffset = Record[0]; 6143 break; 6144 // GLOBALVAR: [pointer type, isconst, initid, 6145 // linkage, alignment, section, visibility, threadlocal, 6146 // unnamed_addr, externally_initialized, dllstorageclass, 6147 // comdat] 6148 case bitc::MODULE_CODE_GLOBALVAR: { 6149 if (Record.size() < 6) 6150 return error("Invalid record"); 6151 uint64_t RawLinkage = Record[3]; 6152 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6153 ValueIdToLinkageMap[ValueId++] = Linkage; 6154 break; 6155 } 6156 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 6157 // alignment, section, visibility, gc, unnamed_addr, 6158 // prologuedata, dllstorageclass, comdat, prefixdata] 6159 case bitc::MODULE_CODE_FUNCTION: { 6160 if (Record.size() < 8) 6161 return error("Invalid record"); 6162 uint64_t RawLinkage = Record[3]; 6163 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6164 ValueIdToLinkageMap[ValueId++] = Linkage; 6165 break; 6166 } 6167 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 6168 // dllstorageclass] 6169 case bitc::MODULE_CODE_ALIAS: { 6170 if (Record.size() < 6) 6171 return error("Invalid record"); 6172 uint64_t RawLinkage = Record[3]; 6173 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6174 ValueIdToLinkageMap[ValueId++] = Linkage; 6175 break; 6176 } 6177 } 6178 } 6179 continue; 6180 } 6181 } 6182 } 6183 6184 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6185 // objects in the index. 6186 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 6187 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6188 return error("Invalid record"); 6189 SmallVector<uint64_t, 64> Record; 6190 6191 // Parse version 6192 { 6193 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6194 if (Entry.Kind != BitstreamEntry::Record) 6195 return error("Invalid Summary Block: record for version expected"); 6196 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6197 return error("Invalid Summary Block: version expected"); 6198 } 6199 const uint64_t Version = Record[0]; 6200 if (Version != 1) 6201 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 6202 Record.clear(); 6203 6204 // Keep around the last seen summary to be used when we see an optional 6205 // "OriginalName" attachement. 6206 GlobalValueSummary *LastSeenSummary = nullptr; 6207 bool Combined = false; 6208 6209 while (true) { 6210 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6211 6212 switch (Entry.Kind) { 6213 case BitstreamEntry::SubBlock: // Handled for us already. 6214 case BitstreamEntry::Error: 6215 return error("Malformed block"); 6216 case BitstreamEntry::EndBlock: 6217 // For a per-module index, remove any entries that still have empty 6218 // summaries. The VST parsing creates entries eagerly for all symbols, 6219 // but not all have associated summaries (e.g. it doesn't know how to 6220 // distinguish between VST_CODE_ENTRY for function declarations vs global 6221 // variables with initializers that end up with a summary). Remove those 6222 // entries now so that we don't need to rely on the combined index merger 6223 // to clean them up (especially since that may not run for the first 6224 // module's index if we merge into that). 6225 if (!Combined) 6226 TheIndex->removeEmptySummaryEntries(); 6227 return std::error_code(); 6228 case BitstreamEntry::Record: 6229 // The interesting case. 6230 break; 6231 } 6232 6233 // Read a record. The record format depends on whether this 6234 // is a per-module index or a combined index file. In the per-module 6235 // case the records contain the associated value's ID for correlation 6236 // with VST entries. In the combined index the correlation is done 6237 // via the bitcode offset of the summary records (which were saved 6238 // in the combined index VST entries). The records also contain 6239 // information used for ThinLTO renaming and importing. 6240 Record.clear(); 6241 auto BitCode = Stream.readRecord(Entry.ID, Record); 6242 switch (BitCode) { 6243 default: // Default behavior: ignore. 6244 break; 6245 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6246 // n x (valueid, callsitecount)] 6247 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6248 // numrefs x valueid, 6249 // n x (valueid, callsitecount, profilecount)] 6250 case bitc::FS_PERMODULE: 6251 case bitc::FS_PERMODULE_PROFILE: { 6252 unsigned ValueID = Record[0]; 6253 uint64_t RawFlags = Record[1]; 6254 unsigned InstCount = Record[2]; 6255 unsigned NumRefs = Record[3]; 6256 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6257 std::unique_ptr<FunctionSummary> FS = 6258 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6259 // The module path string ref set in the summary must be owned by the 6260 // index's module string table. Since we don't have a module path 6261 // string table section in the per-module index, we create a single 6262 // module path string table entry with an empty (0) ID to take 6263 // ownership. 6264 FS->setModulePath( 6265 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6266 static int RefListStartIndex = 4; 6267 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6268 assert(Record.size() >= RefListStartIndex + NumRefs && 6269 "Record size inconsistent with number of references"); 6270 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6271 unsigned RefValueId = Record[I]; 6272 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6273 FS->addRefEdge(RefGUID); 6274 } 6275 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6276 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6277 ++I) { 6278 unsigned CalleeValueId = Record[I]; 6279 unsigned CallsiteCount = Record[++I]; 6280 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6281 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6282 FS->addCallGraphEdge(CalleeGUID, 6283 CalleeInfo(CallsiteCount, ProfileCount)); 6284 } 6285 auto GUID = getGUIDFromValueId(ValueID); 6286 FS->setOriginalName(GUID.second); 6287 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6288 break; 6289 } 6290 // FS_ALIAS: [valueid, flags, valueid] 6291 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6292 // they expect all aliasee summaries to be available. 6293 case bitc::FS_ALIAS: { 6294 unsigned ValueID = Record[0]; 6295 uint64_t RawFlags = Record[1]; 6296 unsigned AliaseeID = Record[2]; 6297 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6298 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6299 // The module path string ref set in the summary must be owned by the 6300 // index's module string table. Since we don't have a module path 6301 // string table section in the per-module index, we create a single 6302 // module path string table entry with an empty (0) ID to take 6303 // ownership. 6304 AS->setModulePath( 6305 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6306 6307 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6308 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6309 if (!AliaseeSummary) 6310 return error("Alias expects aliasee summary to be parsed"); 6311 AS->setAliasee(AliaseeSummary); 6312 6313 auto GUID = getGUIDFromValueId(ValueID); 6314 AS->setOriginalName(GUID.second); 6315 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6316 break; 6317 } 6318 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6319 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6320 unsigned ValueID = Record[0]; 6321 uint64_t RawFlags = Record[1]; 6322 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6323 std::unique_ptr<GlobalVarSummary> FS = 6324 llvm::make_unique<GlobalVarSummary>(Flags); 6325 FS->setModulePath( 6326 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6327 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6328 unsigned RefValueId = Record[I]; 6329 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6330 FS->addRefEdge(RefGUID); 6331 } 6332 auto GUID = getGUIDFromValueId(ValueID); 6333 FS->setOriginalName(GUID.second); 6334 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6335 break; 6336 } 6337 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6338 // numrefs x valueid, n x (valueid, callsitecount)] 6339 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6340 // numrefs x valueid, 6341 // n x (valueid, callsitecount, profilecount)] 6342 case bitc::FS_COMBINED: 6343 case bitc::FS_COMBINED_PROFILE: { 6344 unsigned ValueID = Record[0]; 6345 uint64_t ModuleId = Record[1]; 6346 uint64_t RawFlags = Record[2]; 6347 unsigned InstCount = Record[3]; 6348 unsigned NumRefs = Record[4]; 6349 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6350 std::unique_ptr<FunctionSummary> FS = 6351 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6352 LastSeenSummary = FS.get(); 6353 FS->setModulePath(ModuleIdMap[ModuleId]); 6354 static int RefListStartIndex = 5; 6355 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6356 assert(Record.size() >= RefListStartIndex + NumRefs && 6357 "Record size inconsistent with number of references"); 6358 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6359 ++I) { 6360 unsigned RefValueId = Record[I]; 6361 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6362 FS->addRefEdge(RefGUID); 6363 } 6364 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6365 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6366 ++I) { 6367 unsigned CalleeValueId = Record[I]; 6368 unsigned CallsiteCount = Record[++I]; 6369 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6370 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6371 FS->addCallGraphEdge(CalleeGUID, 6372 CalleeInfo(CallsiteCount, ProfileCount)); 6373 } 6374 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6375 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6376 Combined = true; 6377 break; 6378 } 6379 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6380 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6381 // they expect all aliasee summaries to be available. 6382 case bitc::FS_COMBINED_ALIAS: { 6383 unsigned ValueID = Record[0]; 6384 uint64_t ModuleId = Record[1]; 6385 uint64_t RawFlags = Record[2]; 6386 unsigned AliaseeValueId = Record[3]; 6387 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6388 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6389 LastSeenSummary = AS.get(); 6390 AS->setModulePath(ModuleIdMap[ModuleId]); 6391 6392 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6393 auto AliaseeInModule = 6394 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6395 if (!AliaseeInModule) 6396 return error("Alias expects aliasee summary to be parsed"); 6397 AS->setAliasee(AliaseeInModule); 6398 6399 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6400 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6401 Combined = true; 6402 break; 6403 } 6404 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6405 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6406 unsigned ValueID = Record[0]; 6407 uint64_t ModuleId = Record[1]; 6408 uint64_t RawFlags = Record[2]; 6409 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6410 std::unique_ptr<GlobalVarSummary> FS = 6411 llvm::make_unique<GlobalVarSummary>(Flags); 6412 LastSeenSummary = FS.get(); 6413 FS->setModulePath(ModuleIdMap[ModuleId]); 6414 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6415 unsigned RefValueId = Record[I]; 6416 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6417 FS->addRefEdge(RefGUID); 6418 } 6419 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6420 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6421 Combined = true; 6422 break; 6423 } 6424 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6425 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6426 uint64_t OriginalName = Record[0]; 6427 if (!LastSeenSummary) 6428 return error("Name attachment that does not follow a combined record"); 6429 LastSeenSummary->setOriginalName(OriginalName); 6430 // Reset the LastSeenSummary 6431 LastSeenSummary = nullptr; 6432 } 6433 } 6434 } 6435 llvm_unreachable("Exit infinite loop"); 6436 } 6437 6438 // Parse the module string table block into the Index. 6439 // This populates the ModulePathStringTable map in the index. 6440 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6441 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6442 return error("Invalid record"); 6443 6444 SmallVector<uint64_t, 64> Record; 6445 6446 SmallString<128> ModulePath; 6447 ModulePathStringTableTy::iterator LastSeenModulePath; 6448 6449 while (true) { 6450 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6451 6452 switch (Entry.Kind) { 6453 case BitstreamEntry::SubBlock: // Handled for us already. 6454 case BitstreamEntry::Error: 6455 return error("Malformed block"); 6456 case BitstreamEntry::EndBlock: 6457 return std::error_code(); 6458 case BitstreamEntry::Record: 6459 // The interesting case. 6460 break; 6461 } 6462 6463 Record.clear(); 6464 switch (Stream.readRecord(Entry.ID, Record)) { 6465 default: // Default behavior: ignore. 6466 break; 6467 case bitc::MST_CODE_ENTRY: { 6468 // MST_ENTRY: [modid, namechar x N] 6469 uint64_t ModuleId = Record[0]; 6470 6471 if (convertToString(Record, 1, ModulePath)) 6472 return error("Invalid record"); 6473 6474 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6475 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6476 6477 ModulePath.clear(); 6478 break; 6479 } 6480 /// MST_CODE_HASH: [5*i32] 6481 case bitc::MST_CODE_HASH: { 6482 if (Record.size() != 5) 6483 return error("Invalid hash length " + Twine(Record.size()).str()); 6484 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6485 return error("Invalid hash that does not follow a module path"); 6486 int Pos = 0; 6487 for (auto &Val : Record) { 6488 assert(!(Val >> 32) && "Unexpected high bits set"); 6489 LastSeenModulePath->second.second[Pos++] = Val; 6490 } 6491 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6492 LastSeenModulePath = TheIndex->modulePaths().end(); 6493 break; 6494 } 6495 } 6496 } 6497 llvm_unreachable("Exit infinite loop"); 6498 } 6499 6500 // Parse the function info index from the bitcode streamer into the given index. 6501 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6502 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6503 TheIndex = I; 6504 6505 if (std::error_code EC = initStream(std::move(Streamer))) 6506 return EC; 6507 6508 // Sniff for the signature. 6509 if (!hasValidBitcodeHeader(Stream)) 6510 return error("Invalid bitcode signature"); 6511 6512 // We expect a number of well-defined blocks, though we don't necessarily 6513 // need to understand them all. 6514 while (true) { 6515 if (Stream.AtEndOfStream()) { 6516 // We didn't really read a proper Module block. 6517 return error("Malformed block"); 6518 } 6519 6520 BitstreamEntry Entry = 6521 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6522 6523 if (Entry.Kind != BitstreamEntry::SubBlock) 6524 return error("Malformed block"); 6525 6526 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6527 // building the function summary index. 6528 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6529 return parseModule(); 6530 6531 if (Stream.SkipBlock()) 6532 return error("Invalid record"); 6533 } 6534 } 6535 6536 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6537 std::unique_ptr<DataStreamer> Streamer) { 6538 if (Streamer) 6539 return initLazyStream(std::move(Streamer)); 6540 return initStreamFromBuffer(); 6541 } 6542 6543 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6544 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6545 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6546 6547 if (Buffer->getBufferSize() & 3) 6548 return error("Invalid bitcode signature"); 6549 6550 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6551 // The magic number is 0x0B17C0DE stored in little endian. 6552 if (isBitcodeWrapper(BufPtr, BufEnd)) 6553 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6554 return error("Invalid bitcode wrapper header"); 6555 6556 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6557 Stream.init(&*StreamFile); 6558 6559 return std::error_code(); 6560 } 6561 6562 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6563 std::unique_ptr<DataStreamer> Streamer) { 6564 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6565 // see it. 6566 auto OwnedBytes = 6567 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6568 StreamingMemoryObject &Bytes = *OwnedBytes; 6569 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6570 Stream.init(&*StreamFile); 6571 6572 unsigned char buf[16]; 6573 if (Bytes.readBytes(buf, 16, 0) != 16) 6574 return error("Invalid bitcode signature"); 6575 6576 if (!isBitcode(buf, buf + 16)) 6577 return error("Invalid bitcode signature"); 6578 6579 if (isBitcodeWrapper(buf, buf + 4)) { 6580 const unsigned char *bitcodeStart = buf; 6581 const unsigned char *bitcodeEnd = buf + 16; 6582 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6583 Bytes.dropLeadingBytes(bitcodeStart - buf); 6584 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6585 } 6586 return std::error_code(); 6587 } 6588 6589 namespace { 6590 6591 // FIXME: This class is only here to support the transition to llvm::Error. It 6592 // will be removed once this transition is complete. Clients should prefer to 6593 // deal with the Error value directly, rather than converting to error_code. 6594 class BitcodeErrorCategoryType : public std::error_category { 6595 const char *name() const LLVM_NOEXCEPT override { 6596 return "llvm.bitcode"; 6597 } 6598 std::string message(int IE) const override { 6599 BitcodeError E = static_cast<BitcodeError>(IE); 6600 switch (E) { 6601 case BitcodeError::InvalidBitcodeSignature: 6602 return "Invalid bitcode signature"; 6603 case BitcodeError::CorruptedBitcode: 6604 return "Corrupted bitcode"; 6605 } 6606 llvm_unreachable("Unknown error type!"); 6607 } 6608 }; 6609 6610 } // end anonymous namespace 6611 6612 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6613 6614 const std::error_category &llvm::BitcodeErrorCategory() { 6615 return *ErrorCategory; 6616 } 6617 6618 //===----------------------------------------------------------------------===// 6619 // External interface 6620 //===----------------------------------------------------------------------===// 6621 6622 static ErrorOr<std::unique_ptr<Module>> 6623 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6624 BitcodeReader *R, LLVMContext &Context, 6625 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6626 std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context); 6627 M->setMaterializer(R); 6628 6629 auto cleanupOnError = [&](std::error_code EC) { 6630 R->releaseBuffer(); // Never take ownership on error. 6631 return EC; 6632 }; 6633 6634 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6635 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6636 ShouldLazyLoadMetadata)) 6637 return cleanupOnError(EC); 6638 6639 if (MaterializeAll) { 6640 // Read in the entire module, and destroy the BitcodeReader. 6641 if (std::error_code EC = M->materializeAll()) 6642 return cleanupOnError(EC); 6643 } else { 6644 // Resolve forward references from blockaddresses. 6645 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6646 return cleanupOnError(EC); 6647 } 6648 return std::move(M); 6649 } 6650 6651 /// \brief Get a lazy one-at-time loading module from bitcode. 6652 /// 6653 /// This isn't always used in a lazy context. In particular, it's also used by 6654 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6655 /// in forward-referenced functions from block address references. 6656 /// 6657 /// \param[in] MaterializeAll Set to \c true if we should materialize 6658 /// everything. 6659 static ErrorOr<std::unique_ptr<Module>> 6660 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6661 LLVMContext &Context, bool MaterializeAll, 6662 bool ShouldLazyLoadMetadata = false) { 6663 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6664 6665 ErrorOr<std::unique_ptr<Module>> Ret = 6666 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6667 MaterializeAll, ShouldLazyLoadMetadata); 6668 if (!Ret) 6669 return Ret; 6670 6671 Buffer.release(); // The BitcodeReader owns it now. 6672 return Ret; 6673 } 6674 6675 ErrorOr<std::unique_ptr<Module>> 6676 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6677 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6678 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6679 ShouldLazyLoadMetadata); 6680 } 6681 6682 ErrorOr<std::unique_ptr<Module>> 6683 llvm::getStreamedBitcodeModule(StringRef Name, 6684 std::unique_ptr<DataStreamer> Streamer, 6685 LLVMContext &Context) { 6686 std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context); 6687 BitcodeReader *R = new BitcodeReader(Context); 6688 6689 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6690 false); 6691 } 6692 6693 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6694 LLVMContext &Context) { 6695 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6696 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6697 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6698 // written. We must defer until the Module has been fully materialized. 6699 } 6700 6701 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6702 LLVMContext &Context) { 6703 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6704 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6705 ErrorOr<std::string> Triple = R->parseTriple(); 6706 if (Triple.getError()) 6707 return ""; 6708 return Triple.get(); 6709 } 6710 6711 bool llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer, 6712 LLVMContext &Context) { 6713 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6714 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6715 ErrorOr<bool> hasObjCCategory = R->hasObjCCategory(); 6716 if (hasObjCCategory.getError()) 6717 return false; 6718 return hasObjCCategory.get(); 6719 } 6720 6721 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6722 LLVMContext &Context) { 6723 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6724 BitcodeReader R(Buf.release(), Context); 6725 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6726 if (ProducerString.getError()) 6727 return ""; 6728 return ProducerString.get(); 6729 } 6730 6731 // Parse the specified bitcode buffer, returning the function info index. 6732 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex( 6733 MemoryBufferRef Buffer, 6734 const DiagnosticHandlerFunction &DiagnosticHandler) { 6735 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6736 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6737 6738 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6739 6740 auto cleanupOnError = [&](std::error_code EC) { 6741 R.releaseBuffer(); // Never take ownership on error. 6742 return EC; 6743 }; 6744 6745 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6746 return cleanupOnError(EC); 6747 6748 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6749 return std::move(Index); 6750 } 6751 6752 // Check if the given bitcode buffer contains a global value summary block. 6753 bool llvm::hasGlobalValueSummary( 6754 MemoryBufferRef Buffer, 6755 const DiagnosticHandlerFunction &DiagnosticHandler) { 6756 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6757 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6758 6759 auto cleanupOnError = [&](std::error_code EC) { 6760 R.releaseBuffer(); // Never take ownership on error. 6761 return false; 6762 }; 6763 6764 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6765 return cleanupOnError(EC); 6766 6767 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6768 return R.foundGlobalValSummary(); 6769 } 6770