1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
157     Result += (char)Record[i];
158   return false;
159 }
160 
161 // Strip all the TBAA attachment for the module.
162 static void stripTBAA(Module *M) {
163   for (auto &F : *M) {
164     if (F.isMaterializable())
165       continue;
166     for (auto &I : instructions(F))
167       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
168   }
169 }
170 
171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
172 /// "epoch" encoded in the bitcode, and return the producer name if any.
173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
174   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
175     return std::move(Err);
176 
177   // Read all the records.
178   SmallVector<uint64_t, 64> Record;
179 
180   std::string ProducerIdentification;
181 
182   while (true) {
183     BitstreamEntry Entry;
184     if (Expected<BitstreamEntry> Res = Stream.advance())
185       Entry = Res.get();
186     else
187       return Res.takeError();
188 
189     switch (Entry.Kind) {
190     default:
191     case BitstreamEntry::Error:
192       return error("Malformed block");
193     case BitstreamEntry::EndBlock:
194       return ProducerIdentification;
195     case BitstreamEntry::Record:
196       // The interesting case.
197       break;
198     }
199 
200     // Read a record.
201     Record.clear();
202     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
203     if (!MaybeBitCode)
204       return MaybeBitCode.takeError();
205     switch (MaybeBitCode.get()) {
206     default: // Default behavior: reject
207       return error("Invalid value");
208     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
209       convertToString(Record, 0, ProducerIdentification);
210       break;
211     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
212       unsigned epoch = (unsigned)Record[0];
213       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
214         return error(
215           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
216           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
217       }
218     }
219     }
220   }
221 }
222 
223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
224   // We expect a number of well-defined blocks, though we don't necessarily
225   // need to understand them all.
226   while (true) {
227     if (Stream.AtEndOfStream())
228       return "";
229 
230     BitstreamEntry Entry;
231     if (Expected<BitstreamEntry> Res = Stream.advance())
232       Entry = std::move(Res.get());
233     else
234       return Res.takeError();
235 
236     switch (Entry.Kind) {
237     case BitstreamEntry::EndBlock:
238     case BitstreamEntry::Error:
239       return error("Malformed block");
240 
241     case BitstreamEntry::SubBlock:
242       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
243         return readIdentificationBlock(Stream);
244 
245       // Ignore other sub-blocks.
246       if (Error Err = Stream.SkipBlock())
247         return std::move(Err);
248       continue;
249     case BitstreamEntry::Record:
250       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
251         continue;
252       else
253         return Skipped.takeError();
254     }
255   }
256 }
257 
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260     return std::move(Err);
261 
262   SmallVector<uint64_t, 64> Record;
263   // Read all the records for this module.
264 
265   while (true) {
266     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267     if (!MaybeEntry)
268       return MaybeEntry.takeError();
269     BitstreamEntry Entry = MaybeEntry.get();
270 
271     switch (Entry.Kind) {
272     case BitstreamEntry::SubBlock: // Handled for us already.
273     case BitstreamEntry::Error:
274       return error("Malformed block");
275     case BitstreamEntry::EndBlock:
276       return false;
277     case BitstreamEntry::Record:
278       // The interesting case.
279       break;
280     }
281 
282     // Read a record.
283     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284     if (!MaybeRecord)
285       return MaybeRecord.takeError();
286     switch (MaybeRecord.get()) {
287     default:
288       break; // Default behavior, ignore unknown content.
289     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290       std::string S;
291       if (convertToString(Record, 0, S))
292         return error("Invalid record");
293       // Check for the i386 and other (x86_64, ARM) conventions
294       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295           S.find("__OBJC,__category") != std::string::npos)
296         return true;
297       break;
298     }
299     }
300     Record.clear();
301   }
302   llvm_unreachable("Exit infinite loop");
303 }
304 
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306   // We expect a number of well-defined blocks, though we don't necessarily
307   // need to understand them all.
308   while (true) {
309     BitstreamEntry Entry;
310     if (Expected<BitstreamEntry> Res = Stream.advance())
311       Entry = std::move(Res.get());
312     else
313       return Res.takeError();
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
332         continue;
333       else
334         return Skipped.takeError();
335     }
336   }
337 }
338 
339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
340   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
341     return std::move(Err);
342 
343   SmallVector<uint64_t, 64> Record;
344 
345   std::string Triple;
346 
347   // Read all the records for this module.
348   while (true) {
349     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
350     if (!MaybeEntry)
351       return MaybeEntry.takeError();
352     BitstreamEntry Entry = MaybeEntry.get();
353 
354     switch (Entry.Kind) {
355     case BitstreamEntry::SubBlock: // Handled for us already.
356     case BitstreamEntry::Error:
357       return error("Malformed block");
358     case BitstreamEntry::EndBlock:
359       return Triple;
360     case BitstreamEntry::Record:
361       // The interesting case.
362       break;
363     }
364 
365     // Read a record.
366     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
367     if (!MaybeRecord)
368       return MaybeRecord.takeError();
369     switch (MaybeRecord.get()) {
370     default: break;  // Default behavior, ignore unknown content.
371     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
372       std::string S;
373       if (convertToString(Record, 0, S))
374         return error("Invalid record");
375       Triple = S;
376       break;
377     }
378     }
379     Record.clear();
380   }
381   llvm_unreachable("Exit infinite loop");
382 }
383 
384 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
385   // We expect a number of well-defined blocks, though we don't necessarily
386   // need to understand them all.
387   while (true) {
388     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
389     if (!MaybeEntry)
390       return MaybeEntry.takeError();
391     BitstreamEntry Entry = MaybeEntry.get();
392 
393     switch (Entry.Kind) {
394     case BitstreamEntry::Error:
395       return error("Malformed block");
396     case BitstreamEntry::EndBlock:
397       return "";
398 
399     case BitstreamEntry::SubBlock:
400       if (Entry.ID == bitc::MODULE_BLOCK_ID)
401         return readModuleTriple(Stream);
402 
403       // Ignore other sub-blocks.
404       if (Error Err = Stream.SkipBlock())
405         return std::move(Err);
406       continue;
407 
408     case BitstreamEntry::Record:
409       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
410         continue;
411       else
412         return Skipped.takeError();
413     }
414   }
415 }
416 
417 namespace {
418 
419 class BitcodeReaderBase {
420 protected:
421   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
422       : Stream(std::move(Stream)), Strtab(Strtab) {
423     this->Stream.setBlockInfo(&BlockInfo);
424   }
425 
426   BitstreamBlockInfo BlockInfo;
427   BitstreamCursor Stream;
428   StringRef Strtab;
429 
430   /// In version 2 of the bitcode we store names of global values and comdats in
431   /// a string table rather than in the VST.
432   bool UseStrtab = false;
433 
434   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
435 
436   /// If this module uses a string table, pop the reference to the string table
437   /// and return the referenced string and the rest of the record. Otherwise
438   /// just return the record itself.
439   std::pair<StringRef, ArrayRef<uint64_t>>
440   readNameFromStrtab(ArrayRef<uint64_t> Record);
441 
442   bool readBlockInfo();
443 
444   // Contains an arbitrary and optional string identifying the bitcode producer
445   std::string ProducerIdentification;
446 
447   Error error(const Twine &Message);
448 };
449 
450 } // end anonymous namespace
451 
452 Error BitcodeReaderBase::error(const Twine &Message) {
453   std::string FullMsg = Message.str();
454   if (!ProducerIdentification.empty())
455     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
456                LLVM_VERSION_STRING "')";
457   return ::error(FullMsg);
458 }
459 
460 Expected<unsigned>
461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
462   if (Record.empty())
463     return error("Invalid record");
464   unsigned ModuleVersion = Record[0];
465   if (ModuleVersion > 2)
466     return error("Invalid value");
467   UseStrtab = ModuleVersion >= 2;
468   return ModuleVersion;
469 }
470 
471 std::pair<StringRef, ArrayRef<uint64_t>>
472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
473   if (!UseStrtab)
474     return {"", Record};
475   // Invalid reference. Let the caller complain about the record being empty.
476   if (Record[0] + Record[1] > Strtab.size())
477     return {"", {}};
478   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
479 }
480 
481 namespace {
482 
483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
484   LLVMContext &Context;
485   Module *TheModule = nullptr;
486   // Next offset to start scanning for lazy parsing of function bodies.
487   uint64_t NextUnreadBit = 0;
488   // Last function offset found in the VST.
489   uint64_t LastFunctionBlockBit = 0;
490   bool SeenValueSymbolTable = false;
491   uint64_t VSTOffset = 0;
492 
493   std::vector<std::string> SectionTable;
494   std::vector<std::string> GCTable;
495 
496   std::vector<Type*> TypeList;
497   DenseMap<Function *, FunctionType *> FunctionTypes;
498   BitcodeReaderValueList ValueList;
499   Optional<MetadataLoader> MDLoader;
500   std::vector<Comdat *> ComdatList;
501   SmallVector<Instruction *, 64> InstructionList;
502 
503   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
504   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
506   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
507   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
508 
509   /// The set of attributes by index.  Index zero in the file is for null, and
510   /// is thus not represented here.  As such all indices are off by one.
511   std::vector<AttributeList> MAttributes;
512 
513   /// The set of attribute groups.
514   std::map<unsigned, AttributeList> MAttributeGroups;
515 
516   /// While parsing a function body, this is a list of the basic blocks for the
517   /// function.
518   std::vector<BasicBlock*> FunctionBBs;
519 
520   // When reading the module header, this list is populated with functions that
521   // have bodies later in the file.
522   std::vector<Function*> FunctionsWithBodies;
523 
524   // When intrinsic functions are encountered which require upgrading they are
525   // stored here with their replacement function.
526   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
527   UpdatedIntrinsicMap UpgradedIntrinsics;
528   // Intrinsics which were remangled because of types rename
529   UpdatedIntrinsicMap RemangledIntrinsics;
530 
531   // Several operations happen after the module header has been read, but
532   // before function bodies are processed. This keeps track of whether
533   // we've done this yet.
534   bool SeenFirstFunctionBody = false;
535 
536   /// When function bodies are initially scanned, this map contains info about
537   /// where to find deferred function body in the stream.
538   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
539 
540   /// When Metadata block is initially scanned when parsing the module, we may
541   /// choose to defer parsing of the metadata. This vector contains info about
542   /// which Metadata blocks are deferred.
543   std::vector<uint64_t> DeferredMetadataInfo;
544 
545   /// These are basic blocks forward-referenced by block addresses.  They are
546   /// inserted lazily into functions when they're loaded.  The basic block ID is
547   /// its index into the vector.
548   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
549   std::deque<Function *> BasicBlockFwdRefQueue;
550 
551   /// Indicates that we are using a new encoding for instruction operands where
552   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
553   /// instruction number, for a more compact encoding.  Some instruction
554   /// operands are not relative to the instruction ID: basic block numbers, and
555   /// types. Once the old style function blocks have been phased out, we would
556   /// not need this flag.
557   bool UseRelativeIDs = false;
558 
559   /// True if all functions will be materialized, negating the need to process
560   /// (e.g.) blockaddress forward references.
561   bool WillMaterializeAllForwardRefs = false;
562 
563   bool StripDebugInfo = false;
564   TBAAVerifier TBAAVerifyHelper;
565 
566   std::vector<std::string> BundleTags;
567   SmallVector<SyncScope::ID, 8> SSIDs;
568 
569 public:
570   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
571                 StringRef ProducerIdentification, LLVMContext &Context);
572 
573   Error materializeForwardReferencedFunctions();
574 
575   Error materialize(GlobalValue *GV) override;
576   Error materializeModule() override;
577   std::vector<StructType *> getIdentifiedStructTypes() const override;
578 
579   /// Main interface to parsing a bitcode buffer.
580   /// \returns true if an error occurred.
581   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
582                          bool IsImporting = false);
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval attributes by adding the corresponding
719   /// argument's pointee type.
720   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
728 
729   Error parseComdatRecord(ArrayRef<uint64_t> Record);
730   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
731   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
733                                         ArrayRef<uint64_t> Record);
734 
735   Error parseAttributeBlock();
736   Error parseAttributeGroupBlock();
737   Error parseTypeTable();
738   Error parseTypeTableBody();
739   Error parseOperandBundleTags();
740   Error parseSyncScopeNames();
741 
742   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
743                                 unsigned NameIndex, Triple &TT);
744   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
745                                ArrayRef<uint64_t> Record);
746   Error parseValueSymbolTable(uint64_t Offset = 0);
747   Error parseGlobalValueSymbolTable();
748   Error parseConstants();
749   Error rememberAndSkipFunctionBodies();
750   Error rememberAndSkipFunctionBody();
751   /// Save the positions of the Metadata blocks and skip parsing the blocks.
752   Error rememberAndSkipMetadata();
753   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
754   Error parseFunctionBody(Function *F);
755   Error globalCleanup();
756   Error resolveGlobalAndIndirectSymbolInits();
757   Error parseUseLists();
758   Error findFunctionInStream(
759       Function *F,
760       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
761 
762   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
763 };
764 
765 /// Class to manage reading and parsing function summary index bitcode
766 /// files/sections.
767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
768   /// The module index built during parsing.
769   ModuleSummaryIndex &TheIndex;
770 
771   /// Indicates whether we have encountered a global value summary section
772   /// yet during parsing.
773   bool SeenGlobalValSummary = false;
774 
775   /// Indicates whether we have already parsed the VST, used for error checking.
776   bool SeenValueSymbolTable = false;
777 
778   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
779   /// Used to enable on-demand parsing of the VST.
780   uint64_t VSTOffset = 0;
781 
782   // Map to save ValueId to ValueInfo association that was recorded in the
783   // ValueSymbolTable. It is used after the VST is parsed to convert
784   // call graph edges read from the function summary from referencing
785   // callees by their ValueId to using the ValueInfo instead, which is how
786   // they are recorded in the summary index being built.
787   // We save a GUID which refers to the same global as the ValueInfo, but
788   // ignoring the linkage, i.e. for values other than local linkage they are
789   // identical.
790   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
791       ValueIdToValueInfoMap;
792 
793   /// Map populated during module path string table parsing, from the
794   /// module ID to a string reference owned by the index's module
795   /// path string table, used to correlate with combined index
796   /// summary records.
797   DenseMap<uint64_t, StringRef> ModuleIdMap;
798 
799   /// Original source file name recorded in a bitcode record.
800   std::string SourceFileName;
801 
802   /// The string identifier given to this module by the client, normally the
803   /// path to the bitcode file.
804   StringRef ModulePath;
805 
806   /// For per-module summary indexes, the unique numerical identifier given to
807   /// this module by the client.
808   unsigned ModuleId;
809 
810 public:
811   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
812                                   ModuleSummaryIndex &TheIndex,
813                                   StringRef ModulePath, unsigned ModuleId);
814 
815   Error parseModule();
816 
817 private:
818   void setValueGUID(uint64_t ValueID, StringRef ValueName,
819                     GlobalValue::LinkageTypes Linkage,
820                     StringRef SourceFileName);
821   Error parseValueSymbolTable(
822       uint64_t Offset,
823       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
824   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
825   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
826                                                     bool IsOldProfileFormat,
827                                                     bool HasProfile,
828                                                     bool HasRelBF);
829   Error parseEntireSummary(unsigned ID);
830   Error parseModuleStringTable();
831   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
832   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
833                                        TypeIdCompatibleVtableInfo &TypeId);
834 
835   std::pair<ValueInfo, GlobalValue::GUID>
836   getValueInfoFromValueId(unsigned ValueId);
837 
838   void addThisModule();
839   ModuleSummaryIndex::ModuleInfo *getThisModule();
840 };
841 
842 } // end anonymous namespace
843 
844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
845                                                     Error Err) {
846   if (Err) {
847     std::error_code EC;
848     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
849       EC = EIB.convertToErrorCode();
850       Ctx.emitError(EIB.message());
851     });
852     return EC;
853   }
854   return std::error_code();
855 }
856 
857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
858                              StringRef ProducerIdentification,
859                              LLVMContext &Context)
860     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
861       ValueList(Context, Stream.SizeInBytes()) {
862   this->ProducerIdentification = ProducerIdentification;
863 }
864 
865 Error BitcodeReader::materializeForwardReferencedFunctions() {
866   if (WillMaterializeAllForwardRefs)
867     return Error::success();
868 
869   // Prevent recursion.
870   WillMaterializeAllForwardRefs = true;
871 
872   while (!BasicBlockFwdRefQueue.empty()) {
873     Function *F = BasicBlockFwdRefQueue.front();
874     BasicBlockFwdRefQueue.pop_front();
875     assert(F && "Expected valid function");
876     if (!BasicBlockFwdRefs.count(F))
877       // Already materialized.
878       continue;
879 
880     // Check for a function that isn't materializable to prevent an infinite
881     // loop.  When parsing a blockaddress stored in a global variable, there
882     // isn't a trivial way to check if a function will have a body without a
883     // linear search through FunctionsWithBodies, so just check it here.
884     if (!F->isMaterializable())
885       return error("Never resolved function from blockaddress");
886 
887     // Try to materialize F.
888     if (Error Err = materialize(F))
889       return Err;
890   }
891   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
892 
893   // Reset state.
894   WillMaterializeAllForwardRefs = false;
895   return Error::success();
896 }
897 
898 //===----------------------------------------------------------------------===//
899 //  Helper functions to implement forward reference resolution, etc.
900 //===----------------------------------------------------------------------===//
901 
902 static bool hasImplicitComdat(size_t Val) {
903   switch (Val) {
904   default:
905     return false;
906   case 1:  // Old WeakAnyLinkage
907   case 4:  // Old LinkOnceAnyLinkage
908   case 10: // Old WeakODRLinkage
909   case 11: // Old LinkOnceODRLinkage
910     return true;
911   }
912 }
913 
914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
915   switch (Val) {
916   default: // Map unknown/new linkages to external
917   case 0:
918     return GlobalValue::ExternalLinkage;
919   case 2:
920     return GlobalValue::AppendingLinkage;
921   case 3:
922     return GlobalValue::InternalLinkage;
923   case 5:
924     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
925   case 6:
926     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
927   case 7:
928     return GlobalValue::ExternalWeakLinkage;
929   case 8:
930     return GlobalValue::CommonLinkage;
931   case 9:
932     return GlobalValue::PrivateLinkage;
933   case 12:
934     return GlobalValue::AvailableExternallyLinkage;
935   case 13:
936     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
937   case 14:
938     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
939   case 15:
940     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
941   case 1: // Old value with implicit comdat.
942   case 16:
943     return GlobalValue::WeakAnyLinkage;
944   case 10: // Old value with implicit comdat.
945   case 17:
946     return GlobalValue::WeakODRLinkage;
947   case 4: // Old value with implicit comdat.
948   case 18:
949     return GlobalValue::LinkOnceAnyLinkage;
950   case 11: // Old value with implicit comdat.
951   case 19:
952     return GlobalValue::LinkOnceODRLinkage;
953   }
954 }
955 
956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
957   FunctionSummary::FFlags Flags;
958   Flags.ReadNone = RawFlags & 0x1;
959   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
960   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
961   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
962   Flags.NoInline = (RawFlags >> 4) & 0x1;
963   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
964   return Flags;
965 }
966 
967 /// Decode the flags for GlobalValue in the summary.
968 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
969                                                             uint64_t Version) {
970   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
971   // like getDecodedLinkage() above. Any future change to the linkage enum and
972   // to getDecodedLinkage() will need to be taken into account here as above.
973   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
974   RawFlags = RawFlags >> 4;
975   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
976   // The Live flag wasn't introduced until version 3. For dead stripping
977   // to work correctly on earlier versions, we must conservatively treat all
978   // values as live.
979   bool Live = (RawFlags & 0x2) || Version < 3;
980   bool Local = (RawFlags & 0x4);
981   bool AutoHide = (RawFlags & 0x8);
982 
983   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
984 }
985 
986 // Decode the flags for GlobalVariable in the summary
987 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
988   return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false,
989                                      (RawFlags & 0x2) ? true : false,
990                                      (RawFlags & 0x4) ? true : false);
991 }
992 
993 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
994   switch (Val) {
995   default: // Map unknown visibilities to default.
996   case 0: return GlobalValue::DefaultVisibility;
997   case 1: return GlobalValue::HiddenVisibility;
998   case 2: return GlobalValue::ProtectedVisibility;
999   }
1000 }
1001 
1002 static GlobalValue::DLLStorageClassTypes
1003 getDecodedDLLStorageClass(unsigned Val) {
1004   switch (Val) {
1005   default: // Map unknown values to default.
1006   case 0: return GlobalValue::DefaultStorageClass;
1007   case 1: return GlobalValue::DLLImportStorageClass;
1008   case 2: return GlobalValue::DLLExportStorageClass;
1009   }
1010 }
1011 
1012 static bool getDecodedDSOLocal(unsigned Val) {
1013   switch(Val) {
1014   default: // Map unknown values to preemptable.
1015   case 0:  return false;
1016   case 1:  return true;
1017   }
1018 }
1019 
1020 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1021   switch (Val) {
1022     case 0: return GlobalVariable::NotThreadLocal;
1023     default: // Map unknown non-zero value to general dynamic.
1024     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1025     case 2: return GlobalVariable::LocalDynamicTLSModel;
1026     case 3: return GlobalVariable::InitialExecTLSModel;
1027     case 4: return GlobalVariable::LocalExecTLSModel;
1028   }
1029 }
1030 
1031 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1032   switch (Val) {
1033     default: // Map unknown to UnnamedAddr::None.
1034     case 0: return GlobalVariable::UnnamedAddr::None;
1035     case 1: return GlobalVariable::UnnamedAddr::Global;
1036     case 2: return GlobalVariable::UnnamedAddr::Local;
1037   }
1038 }
1039 
1040 static int getDecodedCastOpcode(unsigned Val) {
1041   switch (Val) {
1042   default: return -1;
1043   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1044   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1045   case bitc::CAST_SEXT    : return Instruction::SExt;
1046   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1047   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1048   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1049   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1050   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1051   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1052   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1053   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1054   case bitc::CAST_BITCAST : return Instruction::BitCast;
1055   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1056   }
1057 }
1058 
1059 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1060   bool IsFP = Ty->isFPOrFPVectorTy();
1061   // UnOps are only valid for int/fp or vector of int/fp types
1062   if (!IsFP && !Ty->isIntOrIntVectorTy())
1063     return -1;
1064 
1065   switch (Val) {
1066   default:
1067     return -1;
1068   case bitc::UNOP_FNEG:
1069     return IsFP ? Instruction::FNeg : -1;
1070   }
1071 }
1072 
1073 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1074   bool IsFP = Ty->isFPOrFPVectorTy();
1075   // BinOps are only valid for int/fp or vector of int/fp types
1076   if (!IsFP && !Ty->isIntOrIntVectorTy())
1077     return -1;
1078 
1079   switch (Val) {
1080   default:
1081     return -1;
1082   case bitc::BINOP_ADD:
1083     return IsFP ? Instruction::FAdd : Instruction::Add;
1084   case bitc::BINOP_SUB:
1085     return IsFP ? Instruction::FSub : Instruction::Sub;
1086   case bitc::BINOP_MUL:
1087     return IsFP ? Instruction::FMul : Instruction::Mul;
1088   case bitc::BINOP_UDIV:
1089     return IsFP ? -1 : Instruction::UDiv;
1090   case bitc::BINOP_SDIV:
1091     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1092   case bitc::BINOP_UREM:
1093     return IsFP ? -1 : Instruction::URem;
1094   case bitc::BINOP_SREM:
1095     return IsFP ? Instruction::FRem : Instruction::SRem;
1096   case bitc::BINOP_SHL:
1097     return IsFP ? -1 : Instruction::Shl;
1098   case bitc::BINOP_LSHR:
1099     return IsFP ? -1 : Instruction::LShr;
1100   case bitc::BINOP_ASHR:
1101     return IsFP ? -1 : Instruction::AShr;
1102   case bitc::BINOP_AND:
1103     return IsFP ? -1 : Instruction::And;
1104   case bitc::BINOP_OR:
1105     return IsFP ? -1 : Instruction::Or;
1106   case bitc::BINOP_XOR:
1107     return IsFP ? -1 : Instruction::Xor;
1108   }
1109 }
1110 
1111 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1112   switch (Val) {
1113   default: return AtomicRMWInst::BAD_BINOP;
1114   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1115   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1116   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1117   case bitc::RMW_AND: return AtomicRMWInst::And;
1118   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1119   case bitc::RMW_OR: return AtomicRMWInst::Or;
1120   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1121   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1122   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1123   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1124   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1125   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1126   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1127   }
1128 }
1129 
1130 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1131   switch (Val) {
1132   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1133   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1134   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1135   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1136   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1137   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1138   default: // Map unknown orderings to sequentially-consistent.
1139   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1140   }
1141 }
1142 
1143 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1144   switch (Val) {
1145   default: // Map unknown selection kinds to any.
1146   case bitc::COMDAT_SELECTION_KIND_ANY:
1147     return Comdat::Any;
1148   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1149     return Comdat::ExactMatch;
1150   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1151     return Comdat::Largest;
1152   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1153     return Comdat::NoDuplicates;
1154   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1155     return Comdat::SameSize;
1156   }
1157 }
1158 
1159 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1160   FastMathFlags FMF;
1161   if (0 != (Val & bitc::UnsafeAlgebra))
1162     FMF.setFast();
1163   if (0 != (Val & bitc::AllowReassoc))
1164     FMF.setAllowReassoc();
1165   if (0 != (Val & bitc::NoNaNs))
1166     FMF.setNoNaNs();
1167   if (0 != (Val & bitc::NoInfs))
1168     FMF.setNoInfs();
1169   if (0 != (Val & bitc::NoSignedZeros))
1170     FMF.setNoSignedZeros();
1171   if (0 != (Val & bitc::AllowReciprocal))
1172     FMF.setAllowReciprocal();
1173   if (0 != (Val & bitc::AllowContract))
1174     FMF.setAllowContract(true);
1175   if (0 != (Val & bitc::ApproxFunc))
1176     FMF.setApproxFunc();
1177   return FMF;
1178 }
1179 
1180 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1181   switch (Val) {
1182   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1183   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1184   }
1185 }
1186 
1187 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1188   // The type table size is always specified correctly.
1189   if (ID >= TypeList.size())
1190     return nullptr;
1191 
1192   if (Type *Ty = TypeList[ID])
1193     return Ty;
1194 
1195   // If we have a forward reference, the only possible case is when it is to a
1196   // named struct.  Just create a placeholder for now.
1197   return TypeList[ID] = createIdentifiedStructType(Context);
1198 }
1199 
1200 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1201                                                       StringRef Name) {
1202   auto *Ret = StructType::create(Context, Name);
1203   IdentifiedStructTypes.push_back(Ret);
1204   return Ret;
1205 }
1206 
1207 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1208   auto *Ret = StructType::create(Context);
1209   IdentifiedStructTypes.push_back(Ret);
1210   return Ret;
1211 }
1212 
1213 //===----------------------------------------------------------------------===//
1214 //  Functions for parsing blocks from the bitcode file
1215 //===----------------------------------------------------------------------===//
1216 
1217 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1218   switch (Val) {
1219   case Attribute::EndAttrKinds:
1220     llvm_unreachable("Synthetic enumerators which should never get here");
1221 
1222   case Attribute::None:            return 0;
1223   case Attribute::ZExt:            return 1 << 0;
1224   case Attribute::SExt:            return 1 << 1;
1225   case Attribute::NoReturn:        return 1 << 2;
1226   case Attribute::InReg:           return 1 << 3;
1227   case Attribute::StructRet:       return 1 << 4;
1228   case Attribute::NoUnwind:        return 1 << 5;
1229   case Attribute::NoAlias:         return 1 << 6;
1230   case Attribute::ByVal:           return 1 << 7;
1231   case Attribute::Nest:            return 1 << 8;
1232   case Attribute::ReadNone:        return 1 << 9;
1233   case Attribute::ReadOnly:        return 1 << 10;
1234   case Attribute::NoInline:        return 1 << 11;
1235   case Attribute::AlwaysInline:    return 1 << 12;
1236   case Attribute::OptimizeForSize: return 1 << 13;
1237   case Attribute::StackProtect:    return 1 << 14;
1238   case Attribute::StackProtectReq: return 1 << 15;
1239   case Attribute::Alignment:       return 31 << 16;
1240   case Attribute::NoCapture:       return 1 << 21;
1241   case Attribute::NoRedZone:       return 1 << 22;
1242   case Attribute::NoImplicitFloat: return 1 << 23;
1243   case Attribute::Naked:           return 1 << 24;
1244   case Attribute::InlineHint:      return 1 << 25;
1245   case Attribute::StackAlignment:  return 7 << 26;
1246   case Attribute::ReturnsTwice:    return 1 << 29;
1247   case Attribute::UWTable:         return 1 << 30;
1248   case Attribute::NonLazyBind:     return 1U << 31;
1249   case Attribute::SanitizeAddress: return 1ULL << 32;
1250   case Attribute::MinSize:         return 1ULL << 33;
1251   case Attribute::NoDuplicate:     return 1ULL << 34;
1252   case Attribute::StackProtectStrong: return 1ULL << 35;
1253   case Attribute::SanitizeThread:  return 1ULL << 36;
1254   case Attribute::SanitizeMemory:  return 1ULL << 37;
1255   case Attribute::NoBuiltin:       return 1ULL << 38;
1256   case Attribute::Returned:        return 1ULL << 39;
1257   case Attribute::Cold:            return 1ULL << 40;
1258   case Attribute::Builtin:         return 1ULL << 41;
1259   case Attribute::OptimizeNone:    return 1ULL << 42;
1260   case Attribute::InAlloca:        return 1ULL << 43;
1261   case Attribute::NonNull:         return 1ULL << 44;
1262   case Attribute::JumpTable:       return 1ULL << 45;
1263   case Attribute::Convergent:      return 1ULL << 46;
1264   case Attribute::SafeStack:       return 1ULL << 47;
1265   case Attribute::NoRecurse:       return 1ULL << 48;
1266   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1267   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1268   case Attribute::SwiftSelf:       return 1ULL << 51;
1269   case Attribute::SwiftError:      return 1ULL << 52;
1270   case Attribute::WriteOnly:       return 1ULL << 53;
1271   case Attribute::Speculatable:    return 1ULL << 54;
1272   case Attribute::StrictFP:        return 1ULL << 55;
1273   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1274   case Attribute::NoCfCheck:       return 1ULL << 57;
1275   case Attribute::OptForFuzzing:   return 1ULL << 58;
1276   case Attribute::ShadowCallStack: return 1ULL << 59;
1277   case Attribute::SpeculativeLoadHardening:
1278     return 1ULL << 60;
1279   case Attribute::ImmArg:
1280     return 1ULL << 61;
1281   case Attribute::WillReturn:
1282     return 1ULL << 62;
1283   case Attribute::NoFree:
1284     return 1ULL << 63;
1285   case Attribute::NoSync:
1286     llvm_unreachable("nosync attribute not supported in raw format");
1287     break;
1288   case Attribute::Dereferenceable:
1289     llvm_unreachable("dereferenceable attribute not supported in raw format");
1290     break;
1291   case Attribute::DereferenceableOrNull:
1292     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1293                      "format");
1294     break;
1295   case Attribute::ArgMemOnly:
1296     llvm_unreachable("argmemonly attribute not supported in raw format");
1297     break;
1298   case Attribute::AllocSize:
1299     llvm_unreachable("allocsize not supported in raw format");
1300     break;
1301   case Attribute::SanitizeMemTag:
1302     llvm_unreachable("sanitize_memtag attribute not supported in raw format");
1303     break;
1304   }
1305   llvm_unreachable("Unsupported attribute type");
1306 }
1307 
1308 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1309   if (!Val) return;
1310 
1311   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1312        I = Attribute::AttrKind(I + 1)) {
1313     if (I == Attribute::SanitizeMemTag ||
1314         I == Attribute::Dereferenceable ||
1315         I == Attribute::DereferenceableOrNull ||
1316         I == Attribute::ArgMemOnly ||
1317         I == Attribute::AllocSize ||
1318         I == Attribute::NoSync)
1319       continue;
1320     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1321       if (I == Attribute::Alignment)
1322         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1323       else if (I == Attribute::StackAlignment)
1324         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1325       else
1326         B.addAttribute(I);
1327     }
1328   }
1329 }
1330 
1331 /// This fills an AttrBuilder object with the LLVM attributes that have
1332 /// been decoded from the given integer. This function must stay in sync with
1333 /// 'encodeLLVMAttributesForBitcode'.
1334 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1335                                            uint64_t EncodedAttrs) {
1336   // FIXME: Remove in 4.0.
1337 
1338   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1339   // the bits above 31 down by 11 bits.
1340   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1341   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1342          "Alignment must be a power of two.");
1343 
1344   if (Alignment)
1345     B.addAlignmentAttr(Alignment);
1346   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1347                           (EncodedAttrs & 0xffff));
1348 }
1349 
1350 Error BitcodeReader::parseAttributeBlock() {
1351   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1352     return Err;
1353 
1354   if (!MAttributes.empty())
1355     return error("Invalid multiple blocks");
1356 
1357   SmallVector<uint64_t, 64> Record;
1358 
1359   SmallVector<AttributeList, 8> Attrs;
1360 
1361   // Read all the records.
1362   while (true) {
1363     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1364     if (!MaybeEntry)
1365       return MaybeEntry.takeError();
1366     BitstreamEntry Entry = MaybeEntry.get();
1367 
1368     switch (Entry.Kind) {
1369     case BitstreamEntry::SubBlock: // Handled for us already.
1370     case BitstreamEntry::Error:
1371       return error("Malformed block");
1372     case BitstreamEntry::EndBlock:
1373       return Error::success();
1374     case BitstreamEntry::Record:
1375       // The interesting case.
1376       break;
1377     }
1378 
1379     // Read a record.
1380     Record.clear();
1381     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1382     if (!MaybeRecord)
1383       return MaybeRecord.takeError();
1384     switch (MaybeRecord.get()) {
1385     default:  // Default behavior: ignore.
1386       break;
1387     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1388       // FIXME: Remove in 4.0.
1389       if (Record.size() & 1)
1390         return error("Invalid record");
1391 
1392       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1393         AttrBuilder B;
1394         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1395         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1396       }
1397 
1398       MAttributes.push_back(AttributeList::get(Context, Attrs));
1399       Attrs.clear();
1400       break;
1401     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1402       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1403         Attrs.push_back(MAttributeGroups[Record[i]]);
1404 
1405       MAttributes.push_back(AttributeList::get(Context, Attrs));
1406       Attrs.clear();
1407       break;
1408     }
1409   }
1410 }
1411 
1412 // Returns Attribute::None on unrecognized codes.
1413 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1414   switch (Code) {
1415   default:
1416     return Attribute::None;
1417   case bitc::ATTR_KIND_ALIGNMENT:
1418     return Attribute::Alignment;
1419   case bitc::ATTR_KIND_ALWAYS_INLINE:
1420     return Attribute::AlwaysInline;
1421   case bitc::ATTR_KIND_ARGMEMONLY:
1422     return Attribute::ArgMemOnly;
1423   case bitc::ATTR_KIND_BUILTIN:
1424     return Attribute::Builtin;
1425   case bitc::ATTR_KIND_BY_VAL:
1426     return Attribute::ByVal;
1427   case bitc::ATTR_KIND_IN_ALLOCA:
1428     return Attribute::InAlloca;
1429   case bitc::ATTR_KIND_COLD:
1430     return Attribute::Cold;
1431   case bitc::ATTR_KIND_CONVERGENT:
1432     return Attribute::Convergent;
1433   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1434     return Attribute::InaccessibleMemOnly;
1435   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1436     return Attribute::InaccessibleMemOrArgMemOnly;
1437   case bitc::ATTR_KIND_INLINE_HINT:
1438     return Attribute::InlineHint;
1439   case bitc::ATTR_KIND_IN_REG:
1440     return Attribute::InReg;
1441   case bitc::ATTR_KIND_JUMP_TABLE:
1442     return Attribute::JumpTable;
1443   case bitc::ATTR_KIND_MIN_SIZE:
1444     return Attribute::MinSize;
1445   case bitc::ATTR_KIND_NAKED:
1446     return Attribute::Naked;
1447   case bitc::ATTR_KIND_NEST:
1448     return Attribute::Nest;
1449   case bitc::ATTR_KIND_NO_ALIAS:
1450     return Attribute::NoAlias;
1451   case bitc::ATTR_KIND_NO_BUILTIN:
1452     return Attribute::NoBuiltin;
1453   case bitc::ATTR_KIND_NO_CAPTURE:
1454     return Attribute::NoCapture;
1455   case bitc::ATTR_KIND_NO_DUPLICATE:
1456     return Attribute::NoDuplicate;
1457   case bitc::ATTR_KIND_NOFREE:
1458     return Attribute::NoFree;
1459   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1460     return Attribute::NoImplicitFloat;
1461   case bitc::ATTR_KIND_NO_INLINE:
1462     return Attribute::NoInline;
1463   case bitc::ATTR_KIND_NO_RECURSE:
1464     return Attribute::NoRecurse;
1465   case bitc::ATTR_KIND_NON_LAZY_BIND:
1466     return Attribute::NonLazyBind;
1467   case bitc::ATTR_KIND_NON_NULL:
1468     return Attribute::NonNull;
1469   case bitc::ATTR_KIND_DEREFERENCEABLE:
1470     return Attribute::Dereferenceable;
1471   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1472     return Attribute::DereferenceableOrNull;
1473   case bitc::ATTR_KIND_ALLOC_SIZE:
1474     return Attribute::AllocSize;
1475   case bitc::ATTR_KIND_NO_RED_ZONE:
1476     return Attribute::NoRedZone;
1477   case bitc::ATTR_KIND_NO_RETURN:
1478     return Attribute::NoReturn;
1479   case bitc::ATTR_KIND_NOSYNC:
1480     return Attribute::NoSync;
1481   case bitc::ATTR_KIND_NOCF_CHECK:
1482     return Attribute::NoCfCheck;
1483   case bitc::ATTR_KIND_NO_UNWIND:
1484     return Attribute::NoUnwind;
1485   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1486     return Attribute::OptForFuzzing;
1487   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1488     return Attribute::OptimizeForSize;
1489   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1490     return Attribute::OptimizeNone;
1491   case bitc::ATTR_KIND_READ_NONE:
1492     return Attribute::ReadNone;
1493   case bitc::ATTR_KIND_READ_ONLY:
1494     return Attribute::ReadOnly;
1495   case bitc::ATTR_KIND_RETURNED:
1496     return Attribute::Returned;
1497   case bitc::ATTR_KIND_RETURNS_TWICE:
1498     return Attribute::ReturnsTwice;
1499   case bitc::ATTR_KIND_S_EXT:
1500     return Attribute::SExt;
1501   case bitc::ATTR_KIND_SPECULATABLE:
1502     return Attribute::Speculatable;
1503   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1504     return Attribute::StackAlignment;
1505   case bitc::ATTR_KIND_STACK_PROTECT:
1506     return Attribute::StackProtect;
1507   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1508     return Attribute::StackProtectReq;
1509   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1510     return Attribute::StackProtectStrong;
1511   case bitc::ATTR_KIND_SAFESTACK:
1512     return Attribute::SafeStack;
1513   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1514     return Attribute::ShadowCallStack;
1515   case bitc::ATTR_KIND_STRICT_FP:
1516     return Attribute::StrictFP;
1517   case bitc::ATTR_KIND_STRUCT_RET:
1518     return Attribute::StructRet;
1519   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1520     return Attribute::SanitizeAddress;
1521   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1522     return Attribute::SanitizeHWAddress;
1523   case bitc::ATTR_KIND_SANITIZE_THREAD:
1524     return Attribute::SanitizeThread;
1525   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1526     return Attribute::SanitizeMemory;
1527   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1528     return Attribute::SpeculativeLoadHardening;
1529   case bitc::ATTR_KIND_SWIFT_ERROR:
1530     return Attribute::SwiftError;
1531   case bitc::ATTR_KIND_SWIFT_SELF:
1532     return Attribute::SwiftSelf;
1533   case bitc::ATTR_KIND_UW_TABLE:
1534     return Attribute::UWTable;
1535   case bitc::ATTR_KIND_WILLRETURN:
1536     return Attribute::WillReturn;
1537   case bitc::ATTR_KIND_WRITEONLY:
1538     return Attribute::WriteOnly;
1539   case bitc::ATTR_KIND_Z_EXT:
1540     return Attribute::ZExt;
1541   case bitc::ATTR_KIND_IMMARG:
1542     return Attribute::ImmArg;
1543   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1544     return Attribute::SanitizeMemTag;
1545   }
1546 }
1547 
1548 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1549                                          MaybeAlign &Alignment) {
1550   // Note: Alignment in bitcode files is incremented by 1, so that zero
1551   // can be used for default alignment.
1552   if (Exponent > Value::MaxAlignmentExponent + 1)
1553     return error("Invalid alignment value");
1554   Alignment = decodeMaybeAlign(Exponent);
1555   return Error::success();
1556 }
1557 
1558 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1559   *Kind = getAttrFromCode(Code);
1560   if (*Kind == Attribute::None)
1561     return error("Unknown attribute kind (" + Twine(Code) + ")");
1562   return Error::success();
1563 }
1564 
1565 Error BitcodeReader::parseAttributeGroupBlock() {
1566   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1567     return Err;
1568 
1569   if (!MAttributeGroups.empty())
1570     return error("Invalid multiple blocks");
1571 
1572   SmallVector<uint64_t, 64> Record;
1573 
1574   // Read all the records.
1575   while (true) {
1576     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1577     if (!MaybeEntry)
1578       return MaybeEntry.takeError();
1579     BitstreamEntry Entry = MaybeEntry.get();
1580 
1581     switch (Entry.Kind) {
1582     case BitstreamEntry::SubBlock: // Handled for us already.
1583     case BitstreamEntry::Error:
1584       return error("Malformed block");
1585     case BitstreamEntry::EndBlock:
1586       return Error::success();
1587     case BitstreamEntry::Record:
1588       // The interesting case.
1589       break;
1590     }
1591 
1592     // Read a record.
1593     Record.clear();
1594     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1595     if (!MaybeRecord)
1596       return MaybeRecord.takeError();
1597     switch (MaybeRecord.get()) {
1598     default:  // Default behavior: ignore.
1599       break;
1600     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1601       if (Record.size() < 3)
1602         return error("Invalid record");
1603 
1604       uint64_t GrpID = Record[0];
1605       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1606 
1607       AttrBuilder B;
1608       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1609         if (Record[i] == 0) {        // Enum attribute
1610           Attribute::AttrKind Kind;
1611           if (Error Err = parseAttrKind(Record[++i], &Kind))
1612             return Err;
1613 
1614           // Upgrade old-style byval attribute to one with a type, even if it's
1615           // nullptr. We will have to insert the real type when we associate
1616           // this AttributeList with a function.
1617           if (Kind == Attribute::ByVal)
1618             B.addByValAttr(nullptr);
1619 
1620           B.addAttribute(Kind);
1621         } else if (Record[i] == 1) { // Integer attribute
1622           Attribute::AttrKind Kind;
1623           if (Error Err = parseAttrKind(Record[++i], &Kind))
1624             return Err;
1625           if (Kind == Attribute::Alignment)
1626             B.addAlignmentAttr(Record[++i]);
1627           else if (Kind == Attribute::StackAlignment)
1628             B.addStackAlignmentAttr(Record[++i]);
1629           else if (Kind == Attribute::Dereferenceable)
1630             B.addDereferenceableAttr(Record[++i]);
1631           else if (Kind == Attribute::DereferenceableOrNull)
1632             B.addDereferenceableOrNullAttr(Record[++i]);
1633           else if (Kind == Attribute::AllocSize)
1634             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1635         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1636           bool HasValue = (Record[i++] == 4);
1637           SmallString<64> KindStr;
1638           SmallString<64> ValStr;
1639 
1640           while (Record[i] != 0 && i != e)
1641             KindStr += Record[i++];
1642           assert(Record[i] == 0 && "Kind string not null terminated");
1643 
1644           if (HasValue) {
1645             // Has a value associated with it.
1646             ++i; // Skip the '0' that terminates the "kind" string.
1647             while (Record[i] != 0 && i != e)
1648               ValStr += Record[i++];
1649             assert(Record[i] == 0 && "Value string not null terminated");
1650           }
1651 
1652           B.addAttribute(KindStr.str(), ValStr.str());
1653         } else {
1654           assert((Record[i] == 5 || Record[i] == 6) &&
1655                  "Invalid attribute group entry");
1656           bool HasType = Record[i] == 6;
1657           Attribute::AttrKind Kind;
1658           if (Error Err = parseAttrKind(Record[++i], &Kind))
1659             return Err;
1660           if (Kind == Attribute::ByVal)
1661             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1662         }
1663       }
1664 
1665       UpgradeFramePointerAttributes(B);
1666       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1667       break;
1668     }
1669     }
1670   }
1671 }
1672 
1673 Error BitcodeReader::parseTypeTable() {
1674   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1675     return Err;
1676 
1677   return parseTypeTableBody();
1678 }
1679 
1680 Error BitcodeReader::parseTypeTableBody() {
1681   if (!TypeList.empty())
1682     return error("Invalid multiple blocks");
1683 
1684   SmallVector<uint64_t, 64> Record;
1685   unsigned NumRecords = 0;
1686 
1687   SmallString<64> TypeName;
1688 
1689   // Read all the records for this type table.
1690   while (true) {
1691     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1692     if (!MaybeEntry)
1693       return MaybeEntry.takeError();
1694     BitstreamEntry Entry = MaybeEntry.get();
1695 
1696     switch (Entry.Kind) {
1697     case BitstreamEntry::SubBlock: // Handled for us already.
1698     case BitstreamEntry::Error:
1699       return error("Malformed block");
1700     case BitstreamEntry::EndBlock:
1701       if (NumRecords != TypeList.size())
1702         return error("Malformed block");
1703       return Error::success();
1704     case BitstreamEntry::Record:
1705       // The interesting case.
1706       break;
1707     }
1708 
1709     // Read a record.
1710     Record.clear();
1711     Type *ResultTy = nullptr;
1712     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1713     if (!MaybeRecord)
1714       return MaybeRecord.takeError();
1715     switch (MaybeRecord.get()) {
1716     default:
1717       return error("Invalid value");
1718     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1719       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1720       // type list.  This allows us to reserve space.
1721       if (Record.size() < 1)
1722         return error("Invalid record");
1723       TypeList.resize(Record[0]);
1724       continue;
1725     case bitc::TYPE_CODE_VOID:      // VOID
1726       ResultTy = Type::getVoidTy(Context);
1727       break;
1728     case bitc::TYPE_CODE_HALF:     // HALF
1729       ResultTy = Type::getHalfTy(Context);
1730       break;
1731     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1732       ResultTy = Type::getFloatTy(Context);
1733       break;
1734     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1735       ResultTy = Type::getDoubleTy(Context);
1736       break;
1737     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1738       ResultTy = Type::getX86_FP80Ty(Context);
1739       break;
1740     case bitc::TYPE_CODE_FP128:     // FP128
1741       ResultTy = Type::getFP128Ty(Context);
1742       break;
1743     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1744       ResultTy = Type::getPPC_FP128Ty(Context);
1745       break;
1746     case bitc::TYPE_CODE_LABEL:     // LABEL
1747       ResultTy = Type::getLabelTy(Context);
1748       break;
1749     case bitc::TYPE_CODE_METADATA:  // METADATA
1750       ResultTy = Type::getMetadataTy(Context);
1751       break;
1752     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1753       ResultTy = Type::getX86_MMXTy(Context);
1754       break;
1755     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1756       ResultTy = Type::getTokenTy(Context);
1757       break;
1758     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1759       if (Record.size() < 1)
1760         return error("Invalid record");
1761 
1762       uint64_t NumBits = Record[0];
1763       if (NumBits < IntegerType::MIN_INT_BITS ||
1764           NumBits > IntegerType::MAX_INT_BITS)
1765         return error("Bitwidth for integer type out of range");
1766       ResultTy = IntegerType::get(Context, NumBits);
1767       break;
1768     }
1769     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1770                                     //          [pointee type, address space]
1771       if (Record.size() < 1)
1772         return error("Invalid record");
1773       unsigned AddressSpace = 0;
1774       if (Record.size() == 2)
1775         AddressSpace = Record[1];
1776       ResultTy = getTypeByID(Record[0]);
1777       if (!ResultTy ||
1778           !PointerType::isValidElementType(ResultTy))
1779         return error("Invalid type");
1780       ResultTy = PointerType::get(ResultTy, AddressSpace);
1781       break;
1782     }
1783     case bitc::TYPE_CODE_FUNCTION_OLD: {
1784       // FIXME: attrid is dead, remove it in LLVM 4.0
1785       // FUNCTION: [vararg, attrid, retty, paramty x N]
1786       if (Record.size() < 3)
1787         return error("Invalid record");
1788       SmallVector<Type*, 8> ArgTys;
1789       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1790         if (Type *T = getTypeByID(Record[i]))
1791           ArgTys.push_back(T);
1792         else
1793           break;
1794       }
1795 
1796       ResultTy = getTypeByID(Record[2]);
1797       if (!ResultTy || ArgTys.size() < Record.size()-3)
1798         return error("Invalid type");
1799 
1800       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1801       break;
1802     }
1803     case bitc::TYPE_CODE_FUNCTION: {
1804       // FUNCTION: [vararg, retty, paramty x N]
1805       if (Record.size() < 2)
1806         return error("Invalid record");
1807       SmallVector<Type*, 8> ArgTys;
1808       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1809         if (Type *T = getTypeByID(Record[i])) {
1810           if (!FunctionType::isValidArgumentType(T))
1811             return error("Invalid function argument type");
1812           ArgTys.push_back(T);
1813         }
1814         else
1815           break;
1816       }
1817 
1818       ResultTy = getTypeByID(Record[1]);
1819       if (!ResultTy || ArgTys.size() < Record.size()-2)
1820         return error("Invalid type");
1821 
1822       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1823       break;
1824     }
1825     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1826       if (Record.size() < 1)
1827         return error("Invalid record");
1828       SmallVector<Type*, 8> EltTys;
1829       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1830         if (Type *T = getTypeByID(Record[i]))
1831           EltTys.push_back(T);
1832         else
1833           break;
1834       }
1835       if (EltTys.size() != Record.size()-1)
1836         return error("Invalid type");
1837       ResultTy = StructType::get(Context, EltTys, Record[0]);
1838       break;
1839     }
1840     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1841       if (convertToString(Record, 0, TypeName))
1842         return error("Invalid record");
1843       continue;
1844 
1845     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1846       if (Record.size() < 1)
1847         return error("Invalid record");
1848 
1849       if (NumRecords >= TypeList.size())
1850         return error("Invalid TYPE table");
1851 
1852       // Check to see if this was forward referenced, if so fill in the temp.
1853       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1854       if (Res) {
1855         Res->setName(TypeName);
1856         TypeList[NumRecords] = nullptr;
1857       } else  // Otherwise, create a new struct.
1858         Res = createIdentifiedStructType(Context, TypeName);
1859       TypeName.clear();
1860 
1861       SmallVector<Type*, 8> EltTys;
1862       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1863         if (Type *T = getTypeByID(Record[i]))
1864           EltTys.push_back(T);
1865         else
1866           break;
1867       }
1868       if (EltTys.size() != Record.size()-1)
1869         return error("Invalid record");
1870       Res->setBody(EltTys, Record[0]);
1871       ResultTy = Res;
1872       break;
1873     }
1874     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1875       if (Record.size() != 1)
1876         return error("Invalid record");
1877 
1878       if (NumRecords >= TypeList.size())
1879         return error("Invalid TYPE table");
1880 
1881       // Check to see if this was forward referenced, if so fill in the temp.
1882       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1883       if (Res) {
1884         Res->setName(TypeName);
1885         TypeList[NumRecords] = nullptr;
1886       } else  // Otherwise, create a new struct with no body.
1887         Res = createIdentifiedStructType(Context, TypeName);
1888       TypeName.clear();
1889       ResultTy = Res;
1890       break;
1891     }
1892     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1893       if (Record.size() < 2)
1894         return error("Invalid record");
1895       ResultTy = getTypeByID(Record[1]);
1896       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1897         return error("Invalid type");
1898       ResultTy = ArrayType::get(ResultTy, Record[0]);
1899       break;
1900     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1901                                     //         [numelts, eltty, scalable]
1902       if (Record.size() < 2)
1903         return error("Invalid record");
1904       if (Record[0] == 0)
1905         return error("Invalid vector length");
1906       ResultTy = getTypeByID(Record[1]);
1907       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1908         return error("Invalid type");
1909       bool Scalable = Record.size() > 2 ? Record[2] : false;
1910       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1911       break;
1912     }
1913 
1914     if (NumRecords >= TypeList.size())
1915       return error("Invalid TYPE table");
1916     if (TypeList[NumRecords])
1917       return error(
1918           "Invalid TYPE table: Only named structs can be forward referenced");
1919     assert(ResultTy && "Didn't read a type?");
1920     TypeList[NumRecords++] = ResultTy;
1921   }
1922 }
1923 
1924 Error BitcodeReader::parseOperandBundleTags() {
1925   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1926     return Err;
1927 
1928   if (!BundleTags.empty())
1929     return error("Invalid multiple blocks");
1930 
1931   SmallVector<uint64_t, 64> Record;
1932 
1933   while (true) {
1934     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1935     if (!MaybeEntry)
1936       return MaybeEntry.takeError();
1937     BitstreamEntry Entry = MaybeEntry.get();
1938 
1939     switch (Entry.Kind) {
1940     case BitstreamEntry::SubBlock: // Handled for us already.
1941     case BitstreamEntry::Error:
1942       return error("Malformed block");
1943     case BitstreamEntry::EndBlock:
1944       return Error::success();
1945     case BitstreamEntry::Record:
1946       // The interesting case.
1947       break;
1948     }
1949 
1950     // Tags are implicitly mapped to integers by their order.
1951 
1952     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1953     if (!MaybeRecord)
1954       return MaybeRecord.takeError();
1955     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1956       return error("Invalid record");
1957 
1958     // OPERAND_BUNDLE_TAG: [strchr x N]
1959     BundleTags.emplace_back();
1960     if (convertToString(Record, 0, BundleTags.back()))
1961       return error("Invalid record");
1962     Record.clear();
1963   }
1964 }
1965 
1966 Error BitcodeReader::parseSyncScopeNames() {
1967   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1968     return Err;
1969 
1970   if (!SSIDs.empty())
1971     return error("Invalid multiple synchronization scope names blocks");
1972 
1973   SmallVector<uint64_t, 64> Record;
1974   while (true) {
1975     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1976     if (!MaybeEntry)
1977       return MaybeEntry.takeError();
1978     BitstreamEntry Entry = MaybeEntry.get();
1979 
1980     switch (Entry.Kind) {
1981     case BitstreamEntry::SubBlock: // Handled for us already.
1982     case BitstreamEntry::Error:
1983       return error("Malformed block");
1984     case BitstreamEntry::EndBlock:
1985       if (SSIDs.empty())
1986         return error("Invalid empty synchronization scope names block");
1987       return Error::success();
1988     case BitstreamEntry::Record:
1989       // The interesting case.
1990       break;
1991     }
1992 
1993     // Synchronization scope names are implicitly mapped to synchronization
1994     // scope IDs by their order.
1995 
1996     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1997     if (!MaybeRecord)
1998       return MaybeRecord.takeError();
1999     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2000       return error("Invalid record");
2001 
2002     SmallString<16> SSN;
2003     if (convertToString(Record, 0, SSN))
2004       return error("Invalid record");
2005 
2006     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2007     Record.clear();
2008   }
2009 }
2010 
2011 /// Associate a value with its name from the given index in the provided record.
2012 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2013                                              unsigned NameIndex, Triple &TT) {
2014   SmallString<128> ValueName;
2015   if (convertToString(Record, NameIndex, ValueName))
2016     return error("Invalid record");
2017   unsigned ValueID = Record[0];
2018   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2019     return error("Invalid record");
2020   Value *V = ValueList[ValueID];
2021 
2022   StringRef NameStr(ValueName.data(), ValueName.size());
2023   if (NameStr.find_first_of(0) != StringRef::npos)
2024     return error("Invalid value name");
2025   V->setName(NameStr);
2026   auto *GO = dyn_cast<GlobalObject>(V);
2027   if (GO) {
2028     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2029       if (TT.supportsCOMDAT())
2030         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2031       else
2032         GO->setComdat(nullptr);
2033     }
2034   }
2035   return V;
2036 }
2037 
2038 /// Helper to note and return the current location, and jump to the given
2039 /// offset.
2040 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2041                                                  BitstreamCursor &Stream) {
2042   // Save the current parsing location so we can jump back at the end
2043   // of the VST read.
2044   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2045   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2046     return std::move(JumpFailed);
2047   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2048   if (!MaybeEntry)
2049     return MaybeEntry.takeError();
2050   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2051   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2052   return CurrentBit;
2053 }
2054 
2055 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2056                                             Function *F,
2057                                             ArrayRef<uint64_t> Record) {
2058   // Note that we subtract 1 here because the offset is relative to one word
2059   // before the start of the identification or module block, which was
2060   // historically always the start of the regular bitcode header.
2061   uint64_t FuncWordOffset = Record[1] - 1;
2062   uint64_t FuncBitOffset = FuncWordOffset * 32;
2063   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2064   // Set the LastFunctionBlockBit to point to the last function block.
2065   // Later when parsing is resumed after function materialization,
2066   // we can simply skip that last function block.
2067   if (FuncBitOffset > LastFunctionBlockBit)
2068     LastFunctionBlockBit = FuncBitOffset;
2069 }
2070 
2071 /// Read a new-style GlobalValue symbol table.
2072 Error BitcodeReader::parseGlobalValueSymbolTable() {
2073   unsigned FuncBitcodeOffsetDelta =
2074       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2075 
2076   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2077     return Err;
2078 
2079   SmallVector<uint64_t, 64> Record;
2080   while (true) {
2081     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2082     if (!MaybeEntry)
2083       return MaybeEntry.takeError();
2084     BitstreamEntry Entry = MaybeEntry.get();
2085 
2086     switch (Entry.Kind) {
2087     case BitstreamEntry::SubBlock:
2088     case BitstreamEntry::Error:
2089       return error("Malformed block");
2090     case BitstreamEntry::EndBlock:
2091       return Error::success();
2092     case BitstreamEntry::Record:
2093       break;
2094     }
2095 
2096     Record.clear();
2097     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2098     if (!MaybeRecord)
2099       return MaybeRecord.takeError();
2100     switch (MaybeRecord.get()) {
2101     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2102       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2103                               cast<Function>(ValueList[Record[0]]), Record);
2104       break;
2105     }
2106   }
2107 }
2108 
2109 /// Parse the value symbol table at either the current parsing location or
2110 /// at the given bit offset if provided.
2111 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2112   uint64_t CurrentBit;
2113   // Pass in the Offset to distinguish between calling for the module-level
2114   // VST (where we want to jump to the VST offset) and the function-level
2115   // VST (where we don't).
2116   if (Offset > 0) {
2117     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2118     if (!MaybeCurrentBit)
2119       return MaybeCurrentBit.takeError();
2120     CurrentBit = MaybeCurrentBit.get();
2121     // If this module uses a string table, read this as a module-level VST.
2122     if (UseStrtab) {
2123       if (Error Err = parseGlobalValueSymbolTable())
2124         return Err;
2125       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2126         return JumpFailed;
2127       return Error::success();
2128     }
2129     // Otherwise, the VST will be in a similar format to a function-level VST,
2130     // and will contain symbol names.
2131   }
2132 
2133   // Compute the delta between the bitcode indices in the VST (the word offset
2134   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2135   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2136   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2137   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2138   // just before entering the VST subblock because: 1) the EnterSubBlock
2139   // changes the AbbrevID width; 2) the VST block is nested within the same
2140   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2141   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2142   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2143   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2144   unsigned FuncBitcodeOffsetDelta =
2145       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2146 
2147   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2148     return Err;
2149 
2150   SmallVector<uint64_t, 64> Record;
2151 
2152   Triple TT(TheModule->getTargetTriple());
2153 
2154   // Read all the records for this value table.
2155   SmallString<128> ValueName;
2156 
2157   while (true) {
2158     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2159     if (!MaybeEntry)
2160       return MaybeEntry.takeError();
2161     BitstreamEntry Entry = MaybeEntry.get();
2162 
2163     switch (Entry.Kind) {
2164     case BitstreamEntry::SubBlock: // Handled for us already.
2165     case BitstreamEntry::Error:
2166       return error("Malformed block");
2167     case BitstreamEntry::EndBlock:
2168       if (Offset > 0)
2169         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2170           return JumpFailed;
2171       return Error::success();
2172     case BitstreamEntry::Record:
2173       // The interesting case.
2174       break;
2175     }
2176 
2177     // Read a record.
2178     Record.clear();
2179     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2180     if (!MaybeRecord)
2181       return MaybeRecord.takeError();
2182     switch (MaybeRecord.get()) {
2183     default:  // Default behavior: unknown type.
2184       break;
2185     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2186       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2187       if (Error Err = ValOrErr.takeError())
2188         return Err;
2189       ValOrErr.get();
2190       break;
2191     }
2192     case bitc::VST_CODE_FNENTRY: {
2193       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2194       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2195       if (Error Err = ValOrErr.takeError())
2196         return Err;
2197       Value *V = ValOrErr.get();
2198 
2199       // Ignore function offsets emitted for aliases of functions in older
2200       // versions of LLVM.
2201       if (auto *F = dyn_cast<Function>(V))
2202         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2203       break;
2204     }
2205     case bitc::VST_CODE_BBENTRY: {
2206       if (convertToString(Record, 1, ValueName))
2207         return error("Invalid record");
2208       BasicBlock *BB = getBasicBlock(Record[0]);
2209       if (!BB)
2210         return error("Invalid record");
2211 
2212       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2213       ValueName.clear();
2214       break;
2215     }
2216     }
2217   }
2218 }
2219 
2220 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2221 /// encoding.
2222 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2223   if ((V & 1) == 0)
2224     return V >> 1;
2225   if (V != 1)
2226     return -(V >> 1);
2227   // There is no such thing as -0 with integers.  "-0" really means MININT.
2228   return 1ULL << 63;
2229 }
2230 
2231 /// Resolve all of the initializers for global values and aliases that we can.
2232 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2233   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2234   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2235       IndirectSymbolInitWorklist;
2236   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2237   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2238   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2239 
2240   GlobalInitWorklist.swap(GlobalInits);
2241   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2242   FunctionPrefixWorklist.swap(FunctionPrefixes);
2243   FunctionPrologueWorklist.swap(FunctionPrologues);
2244   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2245 
2246   while (!GlobalInitWorklist.empty()) {
2247     unsigned ValID = GlobalInitWorklist.back().second;
2248     if (ValID >= ValueList.size()) {
2249       // Not ready to resolve this yet, it requires something later in the file.
2250       GlobalInits.push_back(GlobalInitWorklist.back());
2251     } else {
2252       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2253         GlobalInitWorklist.back().first->setInitializer(C);
2254       else
2255         return error("Expected a constant");
2256     }
2257     GlobalInitWorklist.pop_back();
2258   }
2259 
2260   while (!IndirectSymbolInitWorklist.empty()) {
2261     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2262     if (ValID >= ValueList.size()) {
2263       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2264     } else {
2265       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2266       if (!C)
2267         return error("Expected a constant");
2268       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2269       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2270         return error("Alias and aliasee types don't match");
2271       GIS->setIndirectSymbol(C);
2272     }
2273     IndirectSymbolInitWorklist.pop_back();
2274   }
2275 
2276   while (!FunctionPrefixWorklist.empty()) {
2277     unsigned ValID = FunctionPrefixWorklist.back().second;
2278     if (ValID >= ValueList.size()) {
2279       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2280     } else {
2281       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2282         FunctionPrefixWorklist.back().first->setPrefixData(C);
2283       else
2284         return error("Expected a constant");
2285     }
2286     FunctionPrefixWorklist.pop_back();
2287   }
2288 
2289   while (!FunctionPrologueWorklist.empty()) {
2290     unsigned ValID = FunctionPrologueWorklist.back().second;
2291     if (ValID >= ValueList.size()) {
2292       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2293     } else {
2294       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2295         FunctionPrologueWorklist.back().first->setPrologueData(C);
2296       else
2297         return error("Expected a constant");
2298     }
2299     FunctionPrologueWorklist.pop_back();
2300   }
2301 
2302   while (!FunctionPersonalityFnWorklist.empty()) {
2303     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2304     if (ValID >= ValueList.size()) {
2305       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2306     } else {
2307       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2308         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2309       else
2310         return error("Expected a constant");
2311     }
2312     FunctionPersonalityFnWorklist.pop_back();
2313   }
2314 
2315   return Error::success();
2316 }
2317 
2318 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2319   SmallVector<uint64_t, 8> Words(Vals.size());
2320   transform(Vals, Words.begin(),
2321                  BitcodeReader::decodeSignRotatedValue);
2322 
2323   return APInt(TypeBits, Words);
2324 }
2325 
2326 Error BitcodeReader::parseConstants() {
2327   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2328     return Err;
2329 
2330   SmallVector<uint64_t, 64> Record;
2331 
2332   // Read all the records for this value table.
2333   Type *CurTy = Type::getInt32Ty(Context);
2334   Type *CurFullTy = Type::getInt32Ty(Context);
2335   unsigned NextCstNo = ValueList.size();
2336 
2337   while (true) {
2338     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2339     if (!MaybeEntry)
2340       return MaybeEntry.takeError();
2341     BitstreamEntry Entry = MaybeEntry.get();
2342 
2343     switch (Entry.Kind) {
2344     case BitstreamEntry::SubBlock: // Handled for us already.
2345     case BitstreamEntry::Error:
2346       return error("Malformed block");
2347     case BitstreamEntry::EndBlock:
2348       if (NextCstNo != ValueList.size())
2349         return error("Invalid constant reference");
2350 
2351       // Once all the constants have been read, go through and resolve forward
2352       // references.
2353       ValueList.resolveConstantForwardRefs();
2354       return Error::success();
2355     case BitstreamEntry::Record:
2356       // The interesting case.
2357       break;
2358     }
2359 
2360     // Read a record.
2361     Record.clear();
2362     Type *VoidType = Type::getVoidTy(Context);
2363     Value *V = nullptr;
2364     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2365     if (!MaybeBitCode)
2366       return MaybeBitCode.takeError();
2367     switch (unsigned BitCode = MaybeBitCode.get()) {
2368     default:  // Default behavior: unknown constant
2369     case bitc::CST_CODE_UNDEF:     // UNDEF
2370       V = UndefValue::get(CurTy);
2371       break;
2372     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2373       if (Record.empty())
2374         return error("Invalid record");
2375       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2376         return error("Invalid record");
2377       if (TypeList[Record[0]] == VoidType)
2378         return error("Invalid constant type");
2379       CurFullTy = TypeList[Record[0]];
2380       CurTy = flattenPointerTypes(CurFullTy);
2381       continue;  // Skip the ValueList manipulation.
2382     case bitc::CST_CODE_NULL:      // NULL
2383       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2384         return error("Invalid type for a constant null value");
2385       V = Constant::getNullValue(CurTy);
2386       break;
2387     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2388       if (!CurTy->isIntegerTy() || Record.empty())
2389         return error("Invalid record");
2390       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2391       break;
2392     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2393       if (!CurTy->isIntegerTy() || Record.empty())
2394         return error("Invalid record");
2395 
2396       APInt VInt =
2397           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2398       V = ConstantInt::get(Context, VInt);
2399 
2400       break;
2401     }
2402     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2403       if (Record.empty())
2404         return error("Invalid record");
2405       if (CurTy->isHalfTy())
2406         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2407                                              APInt(16, (uint16_t)Record[0])));
2408       else if (CurTy->isFloatTy())
2409         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2410                                              APInt(32, (uint32_t)Record[0])));
2411       else if (CurTy->isDoubleTy())
2412         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2413                                              APInt(64, Record[0])));
2414       else if (CurTy->isX86_FP80Ty()) {
2415         // Bits are not stored the same way as a normal i80 APInt, compensate.
2416         uint64_t Rearrange[2];
2417         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2418         Rearrange[1] = Record[0] >> 48;
2419         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2420                                              APInt(80, Rearrange)));
2421       } else if (CurTy->isFP128Ty())
2422         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2423                                              APInt(128, Record)));
2424       else if (CurTy->isPPC_FP128Ty())
2425         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2426                                              APInt(128, Record)));
2427       else
2428         V = UndefValue::get(CurTy);
2429       break;
2430     }
2431 
2432     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2433       if (Record.empty())
2434         return error("Invalid record");
2435 
2436       unsigned Size = Record.size();
2437       SmallVector<Constant*, 16> Elts;
2438 
2439       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2440         for (unsigned i = 0; i != Size; ++i)
2441           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2442                                                      STy->getElementType(i)));
2443         V = ConstantStruct::get(STy, Elts);
2444       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2445         Type *EltTy = ATy->getElementType();
2446         for (unsigned i = 0; i != Size; ++i)
2447           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2448         V = ConstantArray::get(ATy, Elts);
2449       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2450         Type *EltTy = VTy->getElementType();
2451         for (unsigned i = 0; i != Size; ++i)
2452           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2453         V = ConstantVector::get(Elts);
2454       } else {
2455         V = UndefValue::get(CurTy);
2456       }
2457       break;
2458     }
2459     case bitc::CST_CODE_STRING:    // STRING: [values]
2460     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2461       if (Record.empty())
2462         return error("Invalid record");
2463 
2464       SmallString<16> Elts(Record.begin(), Record.end());
2465       V = ConstantDataArray::getString(Context, Elts,
2466                                        BitCode == bitc::CST_CODE_CSTRING);
2467       break;
2468     }
2469     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2470       if (Record.empty())
2471         return error("Invalid record");
2472 
2473       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2474       if (EltTy->isIntegerTy(8)) {
2475         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2476         if (isa<VectorType>(CurTy))
2477           V = ConstantDataVector::get(Context, Elts);
2478         else
2479           V = ConstantDataArray::get(Context, Elts);
2480       } else if (EltTy->isIntegerTy(16)) {
2481         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2482         if (isa<VectorType>(CurTy))
2483           V = ConstantDataVector::get(Context, Elts);
2484         else
2485           V = ConstantDataArray::get(Context, Elts);
2486       } else if (EltTy->isIntegerTy(32)) {
2487         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2488         if (isa<VectorType>(CurTy))
2489           V = ConstantDataVector::get(Context, Elts);
2490         else
2491           V = ConstantDataArray::get(Context, Elts);
2492       } else if (EltTy->isIntegerTy(64)) {
2493         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2494         if (isa<VectorType>(CurTy))
2495           V = ConstantDataVector::get(Context, Elts);
2496         else
2497           V = ConstantDataArray::get(Context, Elts);
2498       } else if (EltTy->isHalfTy()) {
2499         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2500         if (isa<VectorType>(CurTy))
2501           V = ConstantDataVector::getFP(Context, Elts);
2502         else
2503           V = ConstantDataArray::getFP(Context, Elts);
2504       } else if (EltTy->isFloatTy()) {
2505         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2506         if (isa<VectorType>(CurTy))
2507           V = ConstantDataVector::getFP(Context, Elts);
2508         else
2509           V = ConstantDataArray::getFP(Context, Elts);
2510       } else if (EltTy->isDoubleTy()) {
2511         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2512         if (isa<VectorType>(CurTy))
2513           V = ConstantDataVector::getFP(Context, Elts);
2514         else
2515           V = ConstantDataArray::getFP(Context, Elts);
2516       } else {
2517         return error("Invalid type for value");
2518       }
2519       break;
2520     }
2521     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2522       if (Record.size() < 2)
2523         return error("Invalid record");
2524       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2525       if (Opc < 0) {
2526         V = UndefValue::get(CurTy);  // Unknown unop.
2527       } else {
2528         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2529         unsigned Flags = 0;
2530         V = ConstantExpr::get(Opc, LHS, Flags);
2531       }
2532       break;
2533     }
2534     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2535       if (Record.size() < 3)
2536         return error("Invalid record");
2537       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2538       if (Opc < 0) {
2539         V = UndefValue::get(CurTy);  // Unknown binop.
2540       } else {
2541         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2542         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2543         unsigned Flags = 0;
2544         if (Record.size() >= 4) {
2545           if (Opc == Instruction::Add ||
2546               Opc == Instruction::Sub ||
2547               Opc == Instruction::Mul ||
2548               Opc == Instruction::Shl) {
2549             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2550               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2551             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2552               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2553           } else if (Opc == Instruction::SDiv ||
2554                      Opc == Instruction::UDiv ||
2555                      Opc == Instruction::LShr ||
2556                      Opc == Instruction::AShr) {
2557             if (Record[3] & (1 << bitc::PEO_EXACT))
2558               Flags |= SDivOperator::IsExact;
2559           }
2560         }
2561         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2562       }
2563       break;
2564     }
2565     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2566       if (Record.size() < 3)
2567         return error("Invalid record");
2568       int Opc = getDecodedCastOpcode(Record[0]);
2569       if (Opc < 0) {
2570         V = UndefValue::get(CurTy);  // Unknown cast.
2571       } else {
2572         Type *OpTy = getTypeByID(Record[1]);
2573         if (!OpTy)
2574           return error("Invalid record");
2575         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2576         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2577         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2578       }
2579       break;
2580     }
2581     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2582     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2583     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2584                                                      // operands]
2585       unsigned OpNum = 0;
2586       Type *PointeeType = nullptr;
2587       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2588           Record.size() % 2)
2589         PointeeType = getTypeByID(Record[OpNum++]);
2590 
2591       bool InBounds = false;
2592       Optional<unsigned> InRangeIndex;
2593       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2594         uint64_t Op = Record[OpNum++];
2595         InBounds = Op & 1;
2596         InRangeIndex = Op >> 1;
2597       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2598         InBounds = true;
2599 
2600       SmallVector<Constant*, 16> Elts;
2601       Type *Elt0FullTy = nullptr;
2602       while (OpNum != Record.size()) {
2603         if (!Elt0FullTy)
2604           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2605         Type *ElTy = getTypeByID(Record[OpNum++]);
2606         if (!ElTy)
2607           return error("Invalid record");
2608         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2609       }
2610 
2611       if (Elts.size() < 1)
2612         return error("Invalid gep with no operands");
2613 
2614       Type *ImplicitPointeeType =
2615           getPointerElementFlatType(Elt0FullTy->getScalarType());
2616       if (!PointeeType)
2617         PointeeType = ImplicitPointeeType;
2618       else if (PointeeType != ImplicitPointeeType)
2619         return error("Explicit gep operator type does not match pointee type "
2620                      "of pointer operand");
2621 
2622       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2623       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2624                                          InBounds, InRangeIndex);
2625       break;
2626     }
2627     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2628       if (Record.size() < 3)
2629         return error("Invalid record");
2630 
2631       Type *SelectorTy = Type::getInt1Ty(Context);
2632 
2633       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2634       // Get the type from the ValueList before getting a forward ref.
2635       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2636         if (Value *V = ValueList[Record[0]])
2637           if (SelectorTy != V->getType())
2638             SelectorTy = VectorType::get(SelectorTy,
2639                                          VTy->getElementCount());
2640 
2641       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2642                                                               SelectorTy),
2643                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2644                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2645       break;
2646     }
2647     case bitc::CST_CODE_CE_EXTRACTELT
2648         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2649       if (Record.size() < 3)
2650         return error("Invalid record");
2651       VectorType *OpTy =
2652         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2653       if (!OpTy)
2654         return error("Invalid record");
2655       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2656       Constant *Op1 = nullptr;
2657       if (Record.size() == 4) {
2658         Type *IdxTy = getTypeByID(Record[2]);
2659         if (!IdxTy)
2660           return error("Invalid record");
2661         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2662       } else // TODO: Remove with llvm 4.0
2663         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2664       if (!Op1)
2665         return error("Invalid record");
2666       V = ConstantExpr::getExtractElement(Op0, Op1);
2667       break;
2668     }
2669     case bitc::CST_CODE_CE_INSERTELT
2670         : { // CE_INSERTELT: [opval, opval, opty, opval]
2671       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2672       if (Record.size() < 3 || !OpTy)
2673         return error("Invalid record");
2674       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2675       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2676                                                   OpTy->getElementType());
2677       Constant *Op2 = nullptr;
2678       if (Record.size() == 4) {
2679         Type *IdxTy = getTypeByID(Record[2]);
2680         if (!IdxTy)
2681           return error("Invalid record");
2682         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2683       } else // TODO: Remove with llvm 4.0
2684         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2685       if (!Op2)
2686         return error("Invalid record");
2687       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2688       break;
2689     }
2690     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2691       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2692       if (Record.size() < 3 || !OpTy)
2693         return error("Invalid record");
2694       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2695       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2696       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2697                                      OpTy->getElementCount());
2698       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2699       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2700       break;
2701     }
2702     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2703       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2704       VectorType *OpTy =
2705         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2706       if (Record.size() < 4 || !RTy || !OpTy)
2707         return error("Invalid record");
2708       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2709       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2710       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2711                                      RTy->getElementCount());
2712       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2713       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2714       break;
2715     }
2716     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2717       if (Record.size() < 4)
2718         return error("Invalid record");
2719       Type *OpTy = getTypeByID(Record[0]);
2720       if (!OpTy)
2721         return error("Invalid record");
2722       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2723       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2724 
2725       if (OpTy->isFPOrFPVectorTy())
2726         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2727       else
2728         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2729       break;
2730     }
2731     // This maintains backward compatibility, pre-asm dialect keywords.
2732     // FIXME: Remove with the 4.0 release.
2733     case bitc::CST_CODE_INLINEASM_OLD: {
2734       if (Record.size() < 2)
2735         return error("Invalid record");
2736       std::string AsmStr, ConstrStr;
2737       bool HasSideEffects = Record[0] & 1;
2738       bool IsAlignStack = Record[0] >> 1;
2739       unsigned AsmStrSize = Record[1];
2740       if (2+AsmStrSize >= Record.size())
2741         return error("Invalid record");
2742       unsigned ConstStrSize = Record[2+AsmStrSize];
2743       if (3+AsmStrSize+ConstStrSize > Record.size())
2744         return error("Invalid record");
2745 
2746       for (unsigned i = 0; i != AsmStrSize; ++i)
2747         AsmStr += (char)Record[2+i];
2748       for (unsigned i = 0; i != ConstStrSize; ++i)
2749         ConstrStr += (char)Record[3+AsmStrSize+i];
2750       UpgradeInlineAsmString(&AsmStr);
2751       V = InlineAsm::get(
2752           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2753           ConstrStr, HasSideEffects, IsAlignStack);
2754       break;
2755     }
2756     // This version adds support for the asm dialect keywords (e.g.,
2757     // inteldialect).
2758     case bitc::CST_CODE_INLINEASM: {
2759       if (Record.size() < 2)
2760         return error("Invalid record");
2761       std::string AsmStr, ConstrStr;
2762       bool HasSideEffects = Record[0] & 1;
2763       bool IsAlignStack = (Record[0] >> 1) & 1;
2764       unsigned AsmDialect = Record[0] >> 2;
2765       unsigned AsmStrSize = Record[1];
2766       if (2+AsmStrSize >= Record.size())
2767         return error("Invalid record");
2768       unsigned ConstStrSize = Record[2+AsmStrSize];
2769       if (3+AsmStrSize+ConstStrSize > Record.size())
2770         return error("Invalid record");
2771 
2772       for (unsigned i = 0; i != AsmStrSize; ++i)
2773         AsmStr += (char)Record[2+i];
2774       for (unsigned i = 0; i != ConstStrSize; ++i)
2775         ConstrStr += (char)Record[3+AsmStrSize+i];
2776       UpgradeInlineAsmString(&AsmStr);
2777       V = InlineAsm::get(
2778           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2779           ConstrStr, HasSideEffects, IsAlignStack,
2780           InlineAsm::AsmDialect(AsmDialect));
2781       break;
2782     }
2783     case bitc::CST_CODE_BLOCKADDRESS:{
2784       if (Record.size() < 3)
2785         return error("Invalid record");
2786       Type *FnTy = getTypeByID(Record[0]);
2787       if (!FnTy)
2788         return error("Invalid record");
2789       Function *Fn =
2790         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2791       if (!Fn)
2792         return error("Invalid record");
2793 
2794       // If the function is already parsed we can insert the block address right
2795       // away.
2796       BasicBlock *BB;
2797       unsigned BBID = Record[2];
2798       if (!BBID)
2799         // Invalid reference to entry block.
2800         return error("Invalid ID");
2801       if (!Fn->empty()) {
2802         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2803         for (size_t I = 0, E = BBID; I != E; ++I) {
2804           if (BBI == BBE)
2805             return error("Invalid ID");
2806           ++BBI;
2807         }
2808         BB = &*BBI;
2809       } else {
2810         // Otherwise insert a placeholder and remember it so it can be inserted
2811         // when the function is parsed.
2812         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2813         if (FwdBBs.empty())
2814           BasicBlockFwdRefQueue.push_back(Fn);
2815         if (FwdBBs.size() < BBID + 1)
2816           FwdBBs.resize(BBID + 1);
2817         if (!FwdBBs[BBID])
2818           FwdBBs[BBID] = BasicBlock::Create(Context);
2819         BB = FwdBBs[BBID];
2820       }
2821       V = BlockAddress::get(Fn, BB);
2822       break;
2823     }
2824     }
2825 
2826     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2827            "Incorrect fully structured type provided for Constant");
2828     ValueList.assignValue(V, NextCstNo, CurFullTy);
2829     ++NextCstNo;
2830   }
2831 }
2832 
2833 Error BitcodeReader::parseUseLists() {
2834   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2835     return Err;
2836 
2837   // Read all the records.
2838   SmallVector<uint64_t, 64> Record;
2839 
2840   while (true) {
2841     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2842     if (!MaybeEntry)
2843       return MaybeEntry.takeError();
2844     BitstreamEntry Entry = MaybeEntry.get();
2845 
2846     switch (Entry.Kind) {
2847     case BitstreamEntry::SubBlock: // Handled for us already.
2848     case BitstreamEntry::Error:
2849       return error("Malformed block");
2850     case BitstreamEntry::EndBlock:
2851       return Error::success();
2852     case BitstreamEntry::Record:
2853       // The interesting case.
2854       break;
2855     }
2856 
2857     // Read a use list record.
2858     Record.clear();
2859     bool IsBB = false;
2860     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2861     if (!MaybeRecord)
2862       return MaybeRecord.takeError();
2863     switch (MaybeRecord.get()) {
2864     default:  // Default behavior: unknown type.
2865       break;
2866     case bitc::USELIST_CODE_BB:
2867       IsBB = true;
2868       LLVM_FALLTHROUGH;
2869     case bitc::USELIST_CODE_DEFAULT: {
2870       unsigned RecordLength = Record.size();
2871       if (RecordLength < 3)
2872         // Records should have at least an ID and two indexes.
2873         return error("Invalid record");
2874       unsigned ID = Record.back();
2875       Record.pop_back();
2876 
2877       Value *V;
2878       if (IsBB) {
2879         assert(ID < FunctionBBs.size() && "Basic block not found");
2880         V = FunctionBBs[ID];
2881       } else
2882         V = ValueList[ID];
2883       unsigned NumUses = 0;
2884       SmallDenseMap<const Use *, unsigned, 16> Order;
2885       for (const Use &U : V->materialized_uses()) {
2886         if (++NumUses > Record.size())
2887           break;
2888         Order[&U] = Record[NumUses - 1];
2889       }
2890       if (Order.size() != Record.size() || NumUses > Record.size())
2891         // Mismatches can happen if the functions are being materialized lazily
2892         // (out-of-order), or a value has been upgraded.
2893         break;
2894 
2895       V->sortUseList([&](const Use &L, const Use &R) {
2896         return Order.lookup(&L) < Order.lookup(&R);
2897       });
2898       break;
2899     }
2900     }
2901   }
2902 }
2903 
2904 /// When we see the block for metadata, remember where it is and then skip it.
2905 /// This lets us lazily deserialize the metadata.
2906 Error BitcodeReader::rememberAndSkipMetadata() {
2907   // Save the current stream state.
2908   uint64_t CurBit = Stream.GetCurrentBitNo();
2909   DeferredMetadataInfo.push_back(CurBit);
2910 
2911   // Skip over the block for now.
2912   if (Error Err = Stream.SkipBlock())
2913     return Err;
2914   return Error::success();
2915 }
2916 
2917 Error BitcodeReader::materializeMetadata() {
2918   for (uint64_t BitPos : DeferredMetadataInfo) {
2919     // Move the bit stream to the saved position.
2920     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2921       return JumpFailed;
2922     if (Error Err = MDLoader->parseModuleMetadata())
2923       return Err;
2924   }
2925 
2926   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2927   // metadata.
2928   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2929     NamedMDNode *LinkerOpts =
2930         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2931     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2932       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2933   }
2934 
2935   DeferredMetadataInfo.clear();
2936   return Error::success();
2937 }
2938 
2939 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2940 
2941 /// When we see the block for a function body, remember where it is and then
2942 /// skip it.  This lets us lazily deserialize the functions.
2943 Error BitcodeReader::rememberAndSkipFunctionBody() {
2944   // Get the function we are talking about.
2945   if (FunctionsWithBodies.empty())
2946     return error("Insufficient function protos");
2947 
2948   Function *Fn = FunctionsWithBodies.back();
2949   FunctionsWithBodies.pop_back();
2950 
2951   // Save the current stream state.
2952   uint64_t CurBit = Stream.GetCurrentBitNo();
2953   assert(
2954       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2955       "Mismatch between VST and scanned function offsets");
2956   DeferredFunctionInfo[Fn] = CurBit;
2957 
2958   // Skip over the function block for now.
2959   if (Error Err = Stream.SkipBlock())
2960     return Err;
2961   return Error::success();
2962 }
2963 
2964 Error BitcodeReader::globalCleanup() {
2965   // Patch the initializers for globals and aliases up.
2966   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2967     return Err;
2968   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2969     return error("Malformed global initializer set");
2970 
2971   // Look for intrinsic functions which need to be upgraded at some point
2972   for (Function &F : *TheModule) {
2973     MDLoader->upgradeDebugIntrinsics(F);
2974     Function *NewFn;
2975     if (UpgradeIntrinsicFunction(&F, NewFn))
2976       UpgradedIntrinsics[&F] = NewFn;
2977     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2978       // Some types could be renamed during loading if several modules are
2979       // loaded in the same LLVMContext (LTO scenario). In this case we should
2980       // remangle intrinsics names as well.
2981       RemangledIntrinsics[&F] = Remangled.getValue();
2982   }
2983 
2984   // Look for global variables which need to be renamed.
2985   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2986   for (GlobalVariable &GV : TheModule->globals())
2987     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
2988       UpgradedVariables.emplace_back(&GV, Upgraded);
2989   for (auto &Pair : UpgradedVariables) {
2990     Pair.first->eraseFromParent();
2991     TheModule->getGlobalList().push_back(Pair.second);
2992   }
2993 
2994   // Force deallocation of memory for these vectors to favor the client that
2995   // want lazy deserialization.
2996   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2997   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2998       IndirectSymbolInits);
2999   return Error::success();
3000 }
3001 
3002 /// Support for lazy parsing of function bodies. This is required if we
3003 /// either have an old bitcode file without a VST forward declaration record,
3004 /// or if we have an anonymous function being materialized, since anonymous
3005 /// functions do not have a name and are therefore not in the VST.
3006 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3007   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3008     return JumpFailed;
3009 
3010   if (Stream.AtEndOfStream())
3011     return error("Could not find function in stream");
3012 
3013   if (!SeenFirstFunctionBody)
3014     return error("Trying to materialize functions before seeing function blocks");
3015 
3016   // An old bitcode file with the symbol table at the end would have
3017   // finished the parse greedily.
3018   assert(SeenValueSymbolTable);
3019 
3020   SmallVector<uint64_t, 64> Record;
3021 
3022   while (true) {
3023     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3024     if (!MaybeEntry)
3025       return MaybeEntry.takeError();
3026     llvm::BitstreamEntry Entry = MaybeEntry.get();
3027 
3028     switch (Entry.Kind) {
3029     default:
3030       return error("Expect SubBlock");
3031     case BitstreamEntry::SubBlock:
3032       switch (Entry.ID) {
3033       default:
3034         return error("Expect function block");
3035       case bitc::FUNCTION_BLOCK_ID:
3036         if (Error Err = rememberAndSkipFunctionBody())
3037           return Err;
3038         NextUnreadBit = Stream.GetCurrentBitNo();
3039         return Error::success();
3040       }
3041     }
3042   }
3043 }
3044 
3045 bool BitcodeReaderBase::readBlockInfo() {
3046   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3047       Stream.ReadBlockInfoBlock();
3048   if (!MaybeNewBlockInfo)
3049     return true; // FIXME Handle the error.
3050   Optional<BitstreamBlockInfo> NewBlockInfo =
3051       std::move(MaybeNewBlockInfo.get());
3052   if (!NewBlockInfo)
3053     return true;
3054   BlockInfo = std::move(*NewBlockInfo);
3055   return false;
3056 }
3057 
3058 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3059   // v1: [selection_kind, name]
3060   // v2: [strtab_offset, strtab_size, selection_kind]
3061   StringRef Name;
3062   std::tie(Name, Record) = readNameFromStrtab(Record);
3063 
3064   if (Record.empty())
3065     return error("Invalid record");
3066   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3067   std::string OldFormatName;
3068   if (!UseStrtab) {
3069     if (Record.size() < 2)
3070       return error("Invalid record");
3071     unsigned ComdatNameSize = Record[1];
3072     OldFormatName.reserve(ComdatNameSize);
3073     for (unsigned i = 0; i != ComdatNameSize; ++i)
3074       OldFormatName += (char)Record[2 + i];
3075     Name = OldFormatName;
3076   }
3077   Comdat *C = TheModule->getOrInsertComdat(Name);
3078   C->setSelectionKind(SK);
3079   ComdatList.push_back(C);
3080   return Error::success();
3081 }
3082 
3083 static void inferDSOLocal(GlobalValue *GV) {
3084   // infer dso_local from linkage and visibility if it is not encoded.
3085   if (GV->hasLocalLinkage() ||
3086       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3087     GV->setDSOLocal(true);
3088 }
3089 
3090 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3091   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3092   // visibility, threadlocal, unnamed_addr, externally_initialized,
3093   // dllstorageclass, comdat, attributes, preemption specifier,
3094   // partition strtab offset, partition strtab size] (name in VST)
3095   // v2: [strtab_offset, strtab_size, v1]
3096   StringRef Name;
3097   std::tie(Name, Record) = readNameFromStrtab(Record);
3098 
3099   if (Record.size() < 6)
3100     return error("Invalid record");
3101   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3102   Type *Ty = flattenPointerTypes(FullTy);
3103   if (!Ty)
3104     return error("Invalid record");
3105   bool isConstant = Record[1] & 1;
3106   bool explicitType = Record[1] & 2;
3107   unsigned AddressSpace;
3108   if (explicitType) {
3109     AddressSpace = Record[1] >> 2;
3110   } else {
3111     if (!Ty->isPointerTy())
3112       return error("Invalid type for value");
3113     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3114     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3115   }
3116 
3117   uint64_t RawLinkage = Record[3];
3118   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3119   MaybeAlign Alignment;
3120   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3121     return Err;
3122   std::string Section;
3123   if (Record[5]) {
3124     if (Record[5] - 1 >= SectionTable.size())
3125       return error("Invalid ID");
3126     Section = SectionTable[Record[5] - 1];
3127   }
3128   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3129   // Local linkage must have default visibility.
3130   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3131     // FIXME: Change to an error if non-default in 4.0.
3132     Visibility = getDecodedVisibility(Record[6]);
3133 
3134   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3135   if (Record.size() > 7)
3136     TLM = getDecodedThreadLocalMode(Record[7]);
3137 
3138   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3139   if (Record.size() > 8)
3140     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3141 
3142   bool ExternallyInitialized = false;
3143   if (Record.size() > 9)
3144     ExternallyInitialized = Record[9];
3145 
3146   GlobalVariable *NewGV =
3147       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3148                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3149   NewGV->setAlignment(Alignment);
3150   if (!Section.empty())
3151     NewGV->setSection(Section);
3152   NewGV->setVisibility(Visibility);
3153   NewGV->setUnnamedAddr(UnnamedAddr);
3154 
3155   if (Record.size() > 10)
3156     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3157   else
3158     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3159 
3160   FullTy = PointerType::get(FullTy, AddressSpace);
3161   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3162          "Incorrect fully specified type for GlobalVariable");
3163   ValueList.push_back(NewGV, FullTy);
3164 
3165   // Remember which value to use for the global initializer.
3166   if (unsigned InitID = Record[2])
3167     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3168 
3169   if (Record.size() > 11) {
3170     if (unsigned ComdatID = Record[11]) {
3171       if (ComdatID > ComdatList.size())
3172         return error("Invalid global variable comdat ID");
3173       NewGV->setComdat(ComdatList[ComdatID - 1]);
3174     }
3175   } else if (hasImplicitComdat(RawLinkage)) {
3176     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3177   }
3178 
3179   if (Record.size() > 12) {
3180     auto AS = getAttributes(Record[12]).getFnAttributes();
3181     NewGV->setAttributes(AS);
3182   }
3183 
3184   if (Record.size() > 13) {
3185     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3186   }
3187   inferDSOLocal(NewGV);
3188 
3189   // Check whether we have enough values to read a partition name.
3190   if (Record.size() > 15)
3191     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3192 
3193   return Error::success();
3194 }
3195 
3196 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3197   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3198   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3199   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3200   // v2: [strtab_offset, strtab_size, v1]
3201   StringRef Name;
3202   std::tie(Name, Record) = readNameFromStrtab(Record);
3203 
3204   if (Record.size() < 8)
3205     return error("Invalid record");
3206   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3207   Type *FTy = flattenPointerTypes(FullFTy);
3208   if (!FTy)
3209     return error("Invalid record");
3210   if (isa<PointerType>(FTy))
3211     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3212 
3213   if (!isa<FunctionType>(FTy))
3214     return error("Invalid type for value");
3215   auto CC = static_cast<CallingConv::ID>(Record[1]);
3216   if (CC & ~CallingConv::MaxID)
3217     return error("Invalid calling convention ID");
3218 
3219   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3220   if (Record.size() > 16)
3221     AddrSpace = Record[16];
3222 
3223   Function *Func =
3224       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3225                        AddrSpace, Name, TheModule);
3226 
3227   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3228          "Incorrect fully specified type provided for function");
3229   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3230 
3231   Func->setCallingConv(CC);
3232   bool isProto = Record[2];
3233   uint64_t RawLinkage = Record[3];
3234   Func->setLinkage(getDecodedLinkage(RawLinkage));
3235   Func->setAttributes(getAttributes(Record[4]));
3236 
3237   // Upgrade any old-style byval without a type by propagating the argument's
3238   // pointee type. There should be no opaque pointers where the byval type is
3239   // implicit.
3240   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3241     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3242       continue;
3243 
3244     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3245     Func->removeParamAttr(i, Attribute::ByVal);
3246     Func->addParamAttr(i, Attribute::getWithByValType(
3247                               Context, getPointerElementFlatType(PTy)));
3248   }
3249 
3250   MaybeAlign Alignment;
3251   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3252     return Err;
3253   Func->setAlignment(Alignment);
3254   if (Record[6]) {
3255     if (Record[6] - 1 >= SectionTable.size())
3256       return error("Invalid ID");
3257     Func->setSection(SectionTable[Record[6] - 1]);
3258   }
3259   // Local linkage must have default visibility.
3260   if (!Func->hasLocalLinkage())
3261     // FIXME: Change to an error if non-default in 4.0.
3262     Func->setVisibility(getDecodedVisibility(Record[7]));
3263   if (Record.size() > 8 && Record[8]) {
3264     if (Record[8] - 1 >= GCTable.size())
3265       return error("Invalid ID");
3266     Func->setGC(GCTable[Record[8] - 1]);
3267   }
3268   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3269   if (Record.size() > 9)
3270     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3271   Func->setUnnamedAddr(UnnamedAddr);
3272   if (Record.size() > 10 && Record[10] != 0)
3273     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3274 
3275   if (Record.size() > 11)
3276     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3277   else
3278     upgradeDLLImportExportLinkage(Func, RawLinkage);
3279 
3280   if (Record.size() > 12) {
3281     if (unsigned ComdatID = Record[12]) {
3282       if (ComdatID > ComdatList.size())
3283         return error("Invalid function comdat ID");
3284       Func->setComdat(ComdatList[ComdatID - 1]);
3285     }
3286   } else if (hasImplicitComdat(RawLinkage)) {
3287     Func->setComdat(reinterpret_cast<Comdat *>(1));
3288   }
3289 
3290   if (Record.size() > 13 && Record[13] != 0)
3291     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3292 
3293   if (Record.size() > 14 && Record[14] != 0)
3294     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3295 
3296   if (Record.size() > 15) {
3297     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3298   }
3299   inferDSOLocal(Func);
3300 
3301   // Record[16] is the address space number.
3302 
3303   // Check whether we have enough values to read a partition name.
3304   if (Record.size() > 18)
3305     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3306 
3307   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3308   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3309          "Incorrect fully specified type provided for Function");
3310   ValueList.push_back(Func, FullTy);
3311 
3312   // If this is a function with a body, remember the prototype we are
3313   // creating now, so that we can match up the body with them later.
3314   if (!isProto) {
3315     Func->setIsMaterializable(true);
3316     FunctionsWithBodies.push_back(Func);
3317     DeferredFunctionInfo[Func] = 0;
3318   }
3319   return Error::success();
3320 }
3321 
3322 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3323     unsigned BitCode, ArrayRef<uint64_t> Record) {
3324   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3325   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3326   // dllstorageclass, threadlocal, unnamed_addr,
3327   // preemption specifier] (name in VST)
3328   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3329   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3330   // preemption specifier] (name in VST)
3331   // v2: [strtab_offset, strtab_size, v1]
3332   StringRef Name;
3333   std::tie(Name, Record) = readNameFromStrtab(Record);
3334 
3335   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3336   if (Record.size() < (3 + (unsigned)NewRecord))
3337     return error("Invalid record");
3338   unsigned OpNum = 0;
3339   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3340   Type *Ty = flattenPointerTypes(FullTy);
3341   if (!Ty)
3342     return error("Invalid record");
3343 
3344   unsigned AddrSpace;
3345   if (!NewRecord) {
3346     auto *PTy = dyn_cast<PointerType>(Ty);
3347     if (!PTy)
3348       return error("Invalid type for value");
3349     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3350     AddrSpace = PTy->getAddressSpace();
3351   } else {
3352     AddrSpace = Record[OpNum++];
3353   }
3354 
3355   auto Val = Record[OpNum++];
3356   auto Linkage = Record[OpNum++];
3357   GlobalIndirectSymbol *NewGA;
3358   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3359       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3360     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3361                                 TheModule);
3362   else
3363     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3364                                 nullptr, TheModule);
3365 
3366   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3367          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3368   // Old bitcode files didn't have visibility field.
3369   // Local linkage must have default visibility.
3370   if (OpNum != Record.size()) {
3371     auto VisInd = OpNum++;
3372     if (!NewGA->hasLocalLinkage())
3373       // FIXME: Change to an error if non-default in 4.0.
3374       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3375   }
3376   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3377       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3378     if (OpNum != Record.size())
3379       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3380     else
3381       upgradeDLLImportExportLinkage(NewGA, Linkage);
3382     if (OpNum != Record.size())
3383       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3384     if (OpNum != Record.size())
3385       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3386   }
3387   if (OpNum != Record.size())
3388     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3389   inferDSOLocal(NewGA);
3390 
3391   // Check whether we have enough values to read a partition name.
3392   if (OpNum + 1 < Record.size()) {
3393     NewGA->setPartition(
3394         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3395     OpNum += 2;
3396   }
3397 
3398   FullTy = PointerType::get(FullTy, AddrSpace);
3399   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3400          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3401   ValueList.push_back(NewGA, FullTy);
3402   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3403   return Error::success();
3404 }
3405 
3406 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3407                                  bool ShouldLazyLoadMetadata) {
3408   if (ResumeBit) {
3409     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3410       return JumpFailed;
3411   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3412     return Err;
3413 
3414   SmallVector<uint64_t, 64> Record;
3415 
3416   // Read all the records for this module.
3417   while (true) {
3418     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3419     if (!MaybeEntry)
3420       return MaybeEntry.takeError();
3421     llvm::BitstreamEntry Entry = MaybeEntry.get();
3422 
3423     switch (Entry.Kind) {
3424     case BitstreamEntry::Error:
3425       return error("Malformed block");
3426     case BitstreamEntry::EndBlock:
3427       return globalCleanup();
3428 
3429     case BitstreamEntry::SubBlock:
3430       switch (Entry.ID) {
3431       default:  // Skip unknown content.
3432         if (Error Err = Stream.SkipBlock())
3433           return Err;
3434         break;
3435       case bitc::BLOCKINFO_BLOCK_ID:
3436         if (readBlockInfo())
3437           return error("Malformed block");
3438         break;
3439       case bitc::PARAMATTR_BLOCK_ID:
3440         if (Error Err = parseAttributeBlock())
3441           return Err;
3442         break;
3443       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3444         if (Error Err = parseAttributeGroupBlock())
3445           return Err;
3446         break;
3447       case bitc::TYPE_BLOCK_ID_NEW:
3448         if (Error Err = parseTypeTable())
3449           return Err;
3450         break;
3451       case bitc::VALUE_SYMTAB_BLOCK_ID:
3452         if (!SeenValueSymbolTable) {
3453           // Either this is an old form VST without function index and an
3454           // associated VST forward declaration record (which would have caused
3455           // the VST to be jumped to and parsed before it was encountered
3456           // normally in the stream), or there were no function blocks to
3457           // trigger an earlier parsing of the VST.
3458           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3459           if (Error Err = parseValueSymbolTable())
3460             return Err;
3461           SeenValueSymbolTable = true;
3462         } else {
3463           // We must have had a VST forward declaration record, which caused
3464           // the parser to jump to and parse the VST earlier.
3465           assert(VSTOffset > 0);
3466           if (Error Err = Stream.SkipBlock())
3467             return Err;
3468         }
3469         break;
3470       case bitc::CONSTANTS_BLOCK_ID:
3471         if (Error Err = parseConstants())
3472           return Err;
3473         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3474           return Err;
3475         break;
3476       case bitc::METADATA_BLOCK_ID:
3477         if (ShouldLazyLoadMetadata) {
3478           if (Error Err = rememberAndSkipMetadata())
3479             return Err;
3480           break;
3481         }
3482         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3483         if (Error Err = MDLoader->parseModuleMetadata())
3484           return Err;
3485         break;
3486       case bitc::METADATA_KIND_BLOCK_ID:
3487         if (Error Err = MDLoader->parseMetadataKinds())
3488           return Err;
3489         break;
3490       case bitc::FUNCTION_BLOCK_ID:
3491         // If this is the first function body we've seen, reverse the
3492         // FunctionsWithBodies list.
3493         if (!SeenFirstFunctionBody) {
3494           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3495           if (Error Err = globalCleanup())
3496             return Err;
3497           SeenFirstFunctionBody = true;
3498         }
3499 
3500         if (VSTOffset > 0) {
3501           // If we have a VST forward declaration record, make sure we
3502           // parse the VST now if we haven't already. It is needed to
3503           // set up the DeferredFunctionInfo vector for lazy reading.
3504           if (!SeenValueSymbolTable) {
3505             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3506               return Err;
3507             SeenValueSymbolTable = true;
3508             // Fall through so that we record the NextUnreadBit below.
3509             // This is necessary in case we have an anonymous function that
3510             // is later materialized. Since it will not have a VST entry we
3511             // need to fall back to the lazy parse to find its offset.
3512           } else {
3513             // If we have a VST forward declaration record, but have already
3514             // parsed the VST (just above, when the first function body was
3515             // encountered here), then we are resuming the parse after
3516             // materializing functions. The ResumeBit points to the
3517             // start of the last function block recorded in the
3518             // DeferredFunctionInfo map. Skip it.
3519             if (Error Err = Stream.SkipBlock())
3520               return Err;
3521             continue;
3522           }
3523         }
3524 
3525         // Support older bitcode files that did not have the function
3526         // index in the VST, nor a VST forward declaration record, as
3527         // well as anonymous functions that do not have VST entries.
3528         // Build the DeferredFunctionInfo vector on the fly.
3529         if (Error Err = rememberAndSkipFunctionBody())
3530           return Err;
3531 
3532         // Suspend parsing when we reach the function bodies. Subsequent
3533         // materialization calls will resume it when necessary. If the bitcode
3534         // file is old, the symbol table will be at the end instead and will not
3535         // have been seen yet. In this case, just finish the parse now.
3536         if (SeenValueSymbolTable) {
3537           NextUnreadBit = Stream.GetCurrentBitNo();
3538           // After the VST has been parsed, we need to make sure intrinsic name
3539           // are auto-upgraded.
3540           return globalCleanup();
3541         }
3542         break;
3543       case bitc::USELIST_BLOCK_ID:
3544         if (Error Err = parseUseLists())
3545           return Err;
3546         break;
3547       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3548         if (Error Err = parseOperandBundleTags())
3549           return Err;
3550         break;
3551       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3552         if (Error Err = parseSyncScopeNames())
3553           return Err;
3554         break;
3555       }
3556       continue;
3557 
3558     case BitstreamEntry::Record:
3559       // The interesting case.
3560       break;
3561     }
3562 
3563     // Read a record.
3564     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3565     if (!MaybeBitCode)
3566       return MaybeBitCode.takeError();
3567     switch (unsigned BitCode = MaybeBitCode.get()) {
3568     default: break;  // Default behavior, ignore unknown content.
3569     case bitc::MODULE_CODE_VERSION: {
3570       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3571       if (!VersionOrErr)
3572         return VersionOrErr.takeError();
3573       UseRelativeIDs = *VersionOrErr >= 1;
3574       break;
3575     }
3576     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3577       std::string S;
3578       if (convertToString(Record, 0, S))
3579         return error("Invalid record");
3580       TheModule->setTargetTriple(S);
3581       break;
3582     }
3583     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3584       std::string S;
3585       if (convertToString(Record, 0, S))
3586         return error("Invalid record");
3587       TheModule->setDataLayout(S);
3588       break;
3589     }
3590     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3591       std::string S;
3592       if (convertToString(Record, 0, S))
3593         return error("Invalid record");
3594       TheModule->setModuleInlineAsm(S);
3595       break;
3596     }
3597     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3598       // FIXME: Remove in 4.0.
3599       std::string S;
3600       if (convertToString(Record, 0, S))
3601         return error("Invalid record");
3602       // Ignore value.
3603       break;
3604     }
3605     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3606       std::string S;
3607       if (convertToString(Record, 0, S))
3608         return error("Invalid record");
3609       SectionTable.push_back(S);
3610       break;
3611     }
3612     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3613       std::string S;
3614       if (convertToString(Record, 0, S))
3615         return error("Invalid record");
3616       GCTable.push_back(S);
3617       break;
3618     }
3619     case bitc::MODULE_CODE_COMDAT:
3620       if (Error Err = parseComdatRecord(Record))
3621         return Err;
3622       break;
3623     case bitc::MODULE_CODE_GLOBALVAR:
3624       if (Error Err = parseGlobalVarRecord(Record))
3625         return Err;
3626       break;
3627     case bitc::MODULE_CODE_FUNCTION:
3628       if (Error Err = parseFunctionRecord(Record))
3629         return Err;
3630       break;
3631     case bitc::MODULE_CODE_IFUNC:
3632     case bitc::MODULE_CODE_ALIAS:
3633     case bitc::MODULE_CODE_ALIAS_OLD:
3634       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3635         return Err;
3636       break;
3637     /// MODULE_CODE_VSTOFFSET: [offset]
3638     case bitc::MODULE_CODE_VSTOFFSET:
3639       if (Record.size() < 1)
3640         return error("Invalid record");
3641       // Note that we subtract 1 here because the offset is relative to one word
3642       // before the start of the identification or module block, which was
3643       // historically always the start of the regular bitcode header.
3644       VSTOffset = Record[0] - 1;
3645       break;
3646     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3647     case bitc::MODULE_CODE_SOURCE_FILENAME:
3648       SmallString<128> ValueName;
3649       if (convertToString(Record, 0, ValueName))
3650         return error("Invalid record");
3651       TheModule->setSourceFileName(ValueName);
3652       break;
3653     }
3654     Record.clear();
3655 
3656     // Upgrade data layout string.
3657     std::string DL = llvm::UpgradeDataLayoutString(
3658         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3659     TheModule->setDataLayout(DL);
3660   }
3661 }
3662 
3663 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3664                                       bool IsImporting) {
3665   TheModule = M;
3666   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3667                             [&](unsigned ID) { return getTypeByID(ID); });
3668   return parseModule(0, ShouldLazyLoadMetadata);
3669 }
3670 
3671 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3672   if (!isa<PointerType>(PtrType))
3673     return error("Load/Store operand is not a pointer type");
3674   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3675 
3676   if (ValType && ValType != ElemType)
3677     return error("Explicit load/store type does not match pointee "
3678                  "type of pointer operand");
3679   if (!PointerType::isLoadableOrStorableType(ElemType))
3680     return error("Cannot load/store from pointer");
3681   return Error::success();
3682 }
3683 
3684 void BitcodeReader::propagateByValTypes(CallBase *CB,
3685                                         ArrayRef<Type *> ArgsFullTys) {
3686   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3687     if (!CB->paramHasAttr(i, Attribute::ByVal))
3688       continue;
3689 
3690     CB->removeParamAttr(i, Attribute::ByVal);
3691     CB->addParamAttr(
3692         i, Attribute::getWithByValType(
3693                Context, getPointerElementFlatType(ArgsFullTys[i])));
3694   }
3695 }
3696 
3697 /// Lazily parse the specified function body block.
3698 Error BitcodeReader::parseFunctionBody(Function *F) {
3699   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3700     return Err;
3701 
3702   // Unexpected unresolved metadata when parsing function.
3703   if (MDLoader->hasFwdRefs())
3704     return error("Invalid function metadata: incoming forward references");
3705 
3706   InstructionList.clear();
3707   unsigned ModuleValueListSize = ValueList.size();
3708   unsigned ModuleMDLoaderSize = MDLoader->size();
3709 
3710   // Add all the function arguments to the value table.
3711   unsigned ArgNo = 0;
3712   FunctionType *FullFTy = FunctionTypes[F];
3713   for (Argument &I : F->args()) {
3714     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3715            "Incorrect fully specified type for Function Argument");
3716     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3717   }
3718   unsigned NextValueNo = ValueList.size();
3719   BasicBlock *CurBB = nullptr;
3720   unsigned CurBBNo = 0;
3721 
3722   DebugLoc LastLoc;
3723   auto getLastInstruction = [&]() -> Instruction * {
3724     if (CurBB && !CurBB->empty())
3725       return &CurBB->back();
3726     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3727              !FunctionBBs[CurBBNo - 1]->empty())
3728       return &FunctionBBs[CurBBNo - 1]->back();
3729     return nullptr;
3730   };
3731 
3732   std::vector<OperandBundleDef> OperandBundles;
3733 
3734   // Read all the records.
3735   SmallVector<uint64_t, 64> Record;
3736 
3737   while (true) {
3738     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3739     if (!MaybeEntry)
3740       return MaybeEntry.takeError();
3741     llvm::BitstreamEntry Entry = MaybeEntry.get();
3742 
3743     switch (Entry.Kind) {
3744     case BitstreamEntry::Error:
3745       return error("Malformed block");
3746     case BitstreamEntry::EndBlock:
3747       goto OutOfRecordLoop;
3748 
3749     case BitstreamEntry::SubBlock:
3750       switch (Entry.ID) {
3751       default:  // Skip unknown content.
3752         if (Error Err = Stream.SkipBlock())
3753           return Err;
3754         break;
3755       case bitc::CONSTANTS_BLOCK_ID:
3756         if (Error Err = parseConstants())
3757           return Err;
3758         NextValueNo = ValueList.size();
3759         break;
3760       case bitc::VALUE_SYMTAB_BLOCK_ID:
3761         if (Error Err = parseValueSymbolTable())
3762           return Err;
3763         break;
3764       case bitc::METADATA_ATTACHMENT_ID:
3765         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3766           return Err;
3767         break;
3768       case bitc::METADATA_BLOCK_ID:
3769         assert(DeferredMetadataInfo.empty() &&
3770                "Must read all module-level metadata before function-level");
3771         if (Error Err = MDLoader->parseFunctionMetadata())
3772           return Err;
3773         break;
3774       case bitc::USELIST_BLOCK_ID:
3775         if (Error Err = parseUseLists())
3776           return Err;
3777         break;
3778       }
3779       continue;
3780 
3781     case BitstreamEntry::Record:
3782       // The interesting case.
3783       break;
3784     }
3785 
3786     // Read a record.
3787     Record.clear();
3788     Instruction *I = nullptr;
3789     Type *FullTy = nullptr;
3790     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3791     if (!MaybeBitCode)
3792       return MaybeBitCode.takeError();
3793     switch (unsigned BitCode = MaybeBitCode.get()) {
3794     default: // Default behavior: reject
3795       return error("Invalid value");
3796     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3797       if (Record.size() < 1 || Record[0] == 0)
3798         return error("Invalid record");
3799       // Create all the basic blocks for the function.
3800       FunctionBBs.resize(Record[0]);
3801 
3802       // See if anything took the address of blocks in this function.
3803       auto BBFRI = BasicBlockFwdRefs.find(F);
3804       if (BBFRI == BasicBlockFwdRefs.end()) {
3805         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3806           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3807       } else {
3808         auto &BBRefs = BBFRI->second;
3809         // Check for invalid basic block references.
3810         if (BBRefs.size() > FunctionBBs.size())
3811           return error("Invalid ID");
3812         assert(!BBRefs.empty() && "Unexpected empty array");
3813         assert(!BBRefs.front() && "Invalid reference to entry block");
3814         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3815              ++I)
3816           if (I < RE && BBRefs[I]) {
3817             BBRefs[I]->insertInto(F);
3818             FunctionBBs[I] = BBRefs[I];
3819           } else {
3820             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3821           }
3822 
3823         // Erase from the table.
3824         BasicBlockFwdRefs.erase(BBFRI);
3825       }
3826 
3827       CurBB = FunctionBBs[0];
3828       continue;
3829     }
3830 
3831     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3832       // This record indicates that the last instruction is at the same
3833       // location as the previous instruction with a location.
3834       I = getLastInstruction();
3835 
3836       if (!I)
3837         return error("Invalid record");
3838       I->setDebugLoc(LastLoc);
3839       I = nullptr;
3840       continue;
3841 
3842     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3843       I = getLastInstruction();
3844       if (!I || Record.size() < 4)
3845         return error("Invalid record");
3846 
3847       unsigned Line = Record[0], Col = Record[1];
3848       unsigned ScopeID = Record[2], IAID = Record[3];
3849       bool isImplicitCode = Record.size() == 5 && Record[4];
3850 
3851       MDNode *Scope = nullptr, *IA = nullptr;
3852       if (ScopeID) {
3853         Scope = dyn_cast_or_null<MDNode>(
3854             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3855         if (!Scope)
3856           return error("Invalid record");
3857       }
3858       if (IAID) {
3859         IA = dyn_cast_or_null<MDNode>(
3860             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3861         if (!IA)
3862           return error("Invalid record");
3863       }
3864       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3865       I->setDebugLoc(LastLoc);
3866       I = nullptr;
3867       continue;
3868     }
3869     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3870       unsigned OpNum = 0;
3871       Value *LHS;
3872       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3873           OpNum+1 > Record.size())
3874         return error("Invalid record");
3875 
3876       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3877       if (Opc == -1)
3878         return error("Invalid record");
3879       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3880       InstructionList.push_back(I);
3881       if (OpNum < Record.size()) {
3882         if (isa<FPMathOperator>(I)) {
3883           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3884           if (FMF.any())
3885             I->setFastMathFlags(FMF);
3886         }
3887       }
3888       break;
3889     }
3890     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3891       unsigned OpNum = 0;
3892       Value *LHS, *RHS;
3893       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3894           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3895           OpNum+1 > Record.size())
3896         return error("Invalid record");
3897 
3898       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3899       if (Opc == -1)
3900         return error("Invalid record");
3901       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3902       InstructionList.push_back(I);
3903       if (OpNum < Record.size()) {
3904         if (Opc == Instruction::Add ||
3905             Opc == Instruction::Sub ||
3906             Opc == Instruction::Mul ||
3907             Opc == Instruction::Shl) {
3908           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3909             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3910           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3911             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3912         } else if (Opc == Instruction::SDiv ||
3913                    Opc == Instruction::UDiv ||
3914                    Opc == Instruction::LShr ||
3915                    Opc == Instruction::AShr) {
3916           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3917             cast<BinaryOperator>(I)->setIsExact(true);
3918         } else if (isa<FPMathOperator>(I)) {
3919           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3920           if (FMF.any())
3921             I->setFastMathFlags(FMF);
3922         }
3923 
3924       }
3925       break;
3926     }
3927     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3928       unsigned OpNum = 0;
3929       Value *Op;
3930       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3931           OpNum+2 != Record.size())
3932         return error("Invalid record");
3933 
3934       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
3935       Type *ResTy = flattenPointerTypes(FullTy);
3936       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3937       if (Opc == -1 || !ResTy)
3938         return error("Invalid record");
3939       Instruction *Temp = nullptr;
3940       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3941         if (Temp) {
3942           InstructionList.push_back(Temp);
3943           assert(CurBB && "No current BB?");
3944           CurBB->getInstList().push_back(Temp);
3945         }
3946       } else {
3947         auto CastOp = (Instruction::CastOps)Opc;
3948         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3949           return error("Invalid cast");
3950         I = CastInst::Create(CastOp, Op, ResTy);
3951       }
3952       InstructionList.push_back(I);
3953       break;
3954     }
3955     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3956     case bitc::FUNC_CODE_INST_GEP_OLD:
3957     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3958       unsigned OpNum = 0;
3959 
3960       Type *Ty;
3961       bool InBounds;
3962 
3963       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3964         InBounds = Record[OpNum++];
3965         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3966         Ty = flattenPointerTypes(FullTy);
3967       } else {
3968         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3969         Ty = nullptr;
3970       }
3971 
3972       Value *BasePtr;
3973       Type *FullBaseTy = nullptr;
3974       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
3975         return error("Invalid record");
3976 
3977       if (!Ty) {
3978         std::tie(FullTy, Ty) =
3979             getPointerElementTypes(FullBaseTy->getScalarType());
3980       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
3981         return error(
3982             "Explicit gep type does not match pointee type of pointer operand");
3983 
3984       SmallVector<Value*, 16> GEPIdx;
3985       while (OpNum != Record.size()) {
3986         Value *Op;
3987         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3988           return error("Invalid record");
3989         GEPIdx.push_back(Op);
3990       }
3991 
3992       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3993       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
3994 
3995       InstructionList.push_back(I);
3996       if (InBounds)
3997         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3998       break;
3999     }
4000 
4001     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4002                                        // EXTRACTVAL: [opty, opval, n x indices]
4003       unsigned OpNum = 0;
4004       Value *Agg;
4005       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4006         return error("Invalid record");
4007 
4008       unsigned RecSize = Record.size();
4009       if (OpNum == RecSize)
4010         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4011 
4012       SmallVector<unsigned, 4> EXTRACTVALIdx;
4013       for (; OpNum != RecSize; ++OpNum) {
4014         bool IsArray = FullTy->isArrayTy();
4015         bool IsStruct = FullTy->isStructTy();
4016         uint64_t Index = Record[OpNum];
4017 
4018         if (!IsStruct && !IsArray)
4019           return error("EXTRACTVAL: Invalid type");
4020         if ((unsigned)Index != Index)
4021           return error("Invalid value");
4022         if (IsStruct && Index >= FullTy->getStructNumElements())
4023           return error("EXTRACTVAL: Invalid struct index");
4024         if (IsArray && Index >= FullTy->getArrayNumElements())
4025           return error("EXTRACTVAL: Invalid array index");
4026         EXTRACTVALIdx.push_back((unsigned)Index);
4027 
4028         if (IsStruct)
4029           FullTy = FullTy->getStructElementType(Index);
4030         else
4031           FullTy = FullTy->getArrayElementType();
4032       }
4033 
4034       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4035       InstructionList.push_back(I);
4036       break;
4037     }
4038 
4039     case bitc::FUNC_CODE_INST_INSERTVAL: {
4040                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4041       unsigned OpNum = 0;
4042       Value *Agg;
4043       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4044         return error("Invalid record");
4045       Value *Val;
4046       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4047         return error("Invalid record");
4048 
4049       unsigned RecSize = Record.size();
4050       if (OpNum == RecSize)
4051         return error("INSERTVAL: Invalid instruction with 0 indices");
4052 
4053       SmallVector<unsigned, 4> INSERTVALIdx;
4054       Type *CurTy = Agg->getType();
4055       for (; OpNum != RecSize; ++OpNum) {
4056         bool IsArray = CurTy->isArrayTy();
4057         bool IsStruct = CurTy->isStructTy();
4058         uint64_t Index = Record[OpNum];
4059 
4060         if (!IsStruct && !IsArray)
4061           return error("INSERTVAL: Invalid type");
4062         if ((unsigned)Index != Index)
4063           return error("Invalid value");
4064         if (IsStruct && Index >= CurTy->getStructNumElements())
4065           return error("INSERTVAL: Invalid struct index");
4066         if (IsArray && Index >= CurTy->getArrayNumElements())
4067           return error("INSERTVAL: Invalid array index");
4068 
4069         INSERTVALIdx.push_back((unsigned)Index);
4070         if (IsStruct)
4071           CurTy = CurTy->getStructElementType(Index);
4072         else
4073           CurTy = CurTy->getArrayElementType();
4074       }
4075 
4076       if (CurTy != Val->getType())
4077         return error("Inserted value type doesn't match aggregate type");
4078 
4079       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4080       InstructionList.push_back(I);
4081       break;
4082     }
4083 
4084     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4085       // obsolete form of select
4086       // handles select i1 ... in old bitcode
4087       unsigned OpNum = 0;
4088       Value *TrueVal, *FalseVal, *Cond;
4089       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4090           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4091           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4092         return error("Invalid record");
4093 
4094       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4095       InstructionList.push_back(I);
4096       break;
4097     }
4098 
4099     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4100       // new form of select
4101       // handles select i1 or select [N x i1]
4102       unsigned OpNum = 0;
4103       Value *TrueVal, *FalseVal, *Cond;
4104       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4105           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4106           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4107         return error("Invalid record");
4108 
4109       // select condition can be either i1 or [N x i1]
4110       if (VectorType* vector_type =
4111           dyn_cast<VectorType>(Cond->getType())) {
4112         // expect <n x i1>
4113         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4114           return error("Invalid type for value");
4115       } else {
4116         // expect i1
4117         if (Cond->getType() != Type::getInt1Ty(Context))
4118           return error("Invalid type for value");
4119       }
4120 
4121       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4122       InstructionList.push_back(I);
4123       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4124         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4125         if (FMF.any())
4126           I->setFastMathFlags(FMF);
4127       }
4128       break;
4129     }
4130 
4131     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4132       unsigned OpNum = 0;
4133       Value *Vec, *Idx;
4134       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4135           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4136         return error("Invalid record");
4137       if (!Vec->getType()->isVectorTy())
4138         return error("Invalid type for value");
4139       I = ExtractElementInst::Create(Vec, Idx);
4140       FullTy = FullTy->getVectorElementType();
4141       InstructionList.push_back(I);
4142       break;
4143     }
4144 
4145     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4146       unsigned OpNum = 0;
4147       Value *Vec, *Elt, *Idx;
4148       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4149         return error("Invalid record");
4150       if (!Vec->getType()->isVectorTy())
4151         return error("Invalid type for value");
4152       if (popValue(Record, OpNum, NextValueNo,
4153                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4154           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4155         return error("Invalid record");
4156       I = InsertElementInst::Create(Vec, Elt, Idx);
4157       InstructionList.push_back(I);
4158       break;
4159     }
4160 
4161     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4162       unsigned OpNum = 0;
4163       Value *Vec1, *Vec2, *Mask;
4164       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4165           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4166         return error("Invalid record");
4167 
4168       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4169         return error("Invalid record");
4170       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4171         return error("Invalid type for value");
4172 
4173       ElementCount EC1 = cast<VectorType>(Vec1->getType())->getElementCount();
4174 
4175       if (EC1 != cast<VectorType>(Vec2->getType())->getElementCount())
4176         return error("Mismatch between argument types");
4177 
4178       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4179       FullTy = VectorType::get(FullTy->getVectorElementType(),
4180                                EC1);
4181       InstructionList.push_back(I);
4182       break;
4183     }
4184 
4185     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4186       // Old form of ICmp/FCmp returning bool
4187       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4188       // both legal on vectors but had different behaviour.
4189     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4190       // FCmp/ICmp returning bool or vector of bool
4191 
4192       unsigned OpNum = 0;
4193       Value *LHS, *RHS;
4194       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4195           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4196         return error("Invalid record");
4197 
4198       if (OpNum >= Record.size())
4199         return error(
4200             "Invalid record: operand number exceeded available operands");
4201 
4202       unsigned PredVal = Record[OpNum];
4203       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4204       FastMathFlags FMF;
4205       if (IsFP && Record.size() > OpNum+1)
4206         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4207 
4208       if (OpNum+1 != Record.size())
4209         return error("Invalid record");
4210 
4211       if (LHS->getType()->isFPOrFPVectorTy())
4212         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4213       else
4214         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4215 
4216       if (FMF.any())
4217         I->setFastMathFlags(FMF);
4218       InstructionList.push_back(I);
4219       break;
4220     }
4221 
4222     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4223       {
4224         unsigned Size = Record.size();
4225         if (Size == 0) {
4226           I = ReturnInst::Create(Context);
4227           InstructionList.push_back(I);
4228           break;
4229         }
4230 
4231         unsigned OpNum = 0;
4232         Value *Op = nullptr;
4233         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4234           return error("Invalid record");
4235         if (OpNum != Record.size())
4236           return error("Invalid record");
4237 
4238         I = ReturnInst::Create(Context, Op);
4239         InstructionList.push_back(I);
4240         break;
4241       }
4242     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4243       if (Record.size() != 1 && Record.size() != 3)
4244         return error("Invalid record");
4245       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4246       if (!TrueDest)
4247         return error("Invalid record");
4248 
4249       if (Record.size() == 1) {
4250         I = BranchInst::Create(TrueDest);
4251         InstructionList.push_back(I);
4252       }
4253       else {
4254         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4255         Value *Cond = getValue(Record, 2, NextValueNo,
4256                                Type::getInt1Ty(Context));
4257         if (!FalseDest || !Cond)
4258           return error("Invalid record");
4259         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4260         InstructionList.push_back(I);
4261       }
4262       break;
4263     }
4264     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4265       if (Record.size() != 1 && Record.size() != 2)
4266         return error("Invalid record");
4267       unsigned Idx = 0;
4268       Value *CleanupPad =
4269           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4270       if (!CleanupPad)
4271         return error("Invalid record");
4272       BasicBlock *UnwindDest = nullptr;
4273       if (Record.size() == 2) {
4274         UnwindDest = getBasicBlock(Record[Idx++]);
4275         if (!UnwindDest)
4276           return error("Invalid record");
4277       }
4278 
4279       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4280       InstructionList.push_back(I);
4281       break;
4282     }
4283     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4284       if (Record.size() != 2)
4285         return error("Invalid record");
4286       unsigned Idx = 0;
4287       Value *CatchPad =
4288           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4289       if (!CatchPad)
4290         return error("Invalid record");
4291       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4292       if (!BB)
4293         return error("Invalid record");
4294 
4295       I = CatchReturnInst::Create(CatchPad, BB);
4296       InstructionList.push_back(I);
4297       break;
4298     }
4299     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4300       // We must have, at minimum, the outer scope and the number of arguments.
4301       if (Record.size() < 2)
4302         return error("Invalid record");
4303 
4304       unsigned Idx = 0;
4305 
4306       Value *ParentPad =
4307           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4308 
4309       unsigned NumHandlers = Record[Idx++];
4310 
4311       SmallVector<BasicBlock *, 2> Handlers;
4312       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4313         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4314         if (!BB)
4315           return error("Invalid record");
4316         Handlers.push_back(BB);
4317       }
4318 
4319       BasicBlock *UnwindDest = nullptr;
4320       if (Idx + 1 == Record.size()) {
4321         UnwindDest = getBasicBlock(Record[Idx++]);
4322         if (!UnwindDest)
4323           return error("Invalid record");
4324       }
4325 
4326       if (Record.size() != Idx)
4327         return error("Invalid record");
4328 
4329       auto *CatchSwitch =
4330           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4331       for (BasicBlock *Handler : Handlers)
4332         CatchSwitch->addHandler(Handler);
4333       I = CatchSwitch;
4334       InstructionList.push_back(I);
4335       break;
4336     }
4337     case bitc::FUNC_CODE_INST_CATCHPAD:
4338     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4339       // We must have, at minimum, the outer scope and the number of arguments.
4340       if (Record.size() < 2)
4341         return error("Invalid record");
4342 
4343       unsigned Idx = 0;
4344 
4345       Value *ParentPad =
4346           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4347 
4348       unsigned NumArgOperands = Record[Idx++];
4349 
4350       SmallVector<Value *, 2> Args;
4351       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4352         Value *Val;
4353         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4354           return error("Invalid record");
4355         Args.push_back(Val);
4356       }
4357 
4358       if (Record.size() != Idx)
4359         return error("Invalid record");
4360 
4361       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4362         I = CleanupPadInst::Create(ParentPad, Args);
4363       else
4364         I = CatchPadInst::Create(ParentPad, Args);
4365       InstructionList.push_back(I);
4366       break;
4367     }
4368     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4369       // Check magic
4370       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4371         // "New" SwitchInst format with case ranges. The changes to write this
4372         // format were reverted but we still recognize bitcode that uses it.
4373         // Hopefully someday we will have support for case ranges and can use
4374         // this format again.
4375 
4376         Type *OpTy = getTypeByID(Record[1]);
4377         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4378 
4379         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4380         BasicBlock *Default = getBasicBlock(Record[3]);
4381         if (!OpTy || !Cond || !Default)
4382           return error("Invalid record");
4383 
4384         unsigned NumCases = Record[4];
4385 
4386         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4387         InstructionList.push_back(SI);
4388 
4389         unsigned CurIdx = 5;
4390         for (unsigned i = 0; i != NumCases; ++i) {
4391           SmallVector<ConstantInt*, 1> CaseVals;
4392           unsigned NumItems = Record[CurIdx++];
4393           for (unsigned ci = 0; ci != NumItems; ++ci) {
4394             bool isSingleNumber = Record[CurIdx++];
4395 
4396             APInt Low;
4397             unsigned ActiveWords = 1;
4398             if (ValueBitWidth > 64)
4399               ActiveWords = Record[CurIdx++];
4400             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4401                                 ValueBitWidth);
4402             CurIdx += ActiveWords;
4403 
4404             if (!isSingleNumber) {
4405               ActiveWords = 1;
4406               if (ValueBitWidth > 64)
4407                 ActiveWords = Record[CurIdx++];
4408               APInt High = readWideAPInt(
4409                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4410               CurIdx += ActiveWords;
4411 
4412               // FIXME: It is not clear whether values in the range should be
4413               // compared as signed or unsigned values. The partially
4414               // implemented changes that used this format in the past used
4415               // unsigned comparisons.
4416               for ( ; Low.ule(High); ++Low)
4417                 CaseVals.push_back(ConstantInt::get(Context, Low));
4418             } else
4419               CaseVals.push_back(ConstantInt::get(Context, Low));
4420           }
4421           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4422           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4423                  cve = CaseVals.end(); cvi != cve; ++cvi)
4424             SI->addCase(*cvi, DestBB);
4425         }
4426         I = SI;
4427         break;
4428       }
4429 
4430       // Old SwitchInst format without case ranges.
4431 
4432       if (Record.size() < 3 || (Record.size() & 1) == 0)
4433         return error("Invalid record");
4434       Type *OpTy = getTypeByID(Record[0]);
4435       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4436       BasicBlock *Default = getBasicBlock(Record[2]);
4437       if (!OpTy || !Cond || !Default)
4438         return error("Invalid record");
4439       unsigned NumCases = (Record.size()-3)/2;
4440       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4441       InstructionList.push_back(SI);
4442       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4443         ConstantInt *CaseVal =
4444           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4445         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4446         if (!CaseVal || !DestBB) {
4447           delete SI;
4448           return error("Invalid record");
4449         }
4450         SI->addCase(CaseVal, DestBB);
4451       }
4452       I = SI;
4453       break;
4454     }
4455     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4456       if (Record.size() < 2)
4457         return error("Invalid record");
4458       Type *OpTy = getTypeByID(Record[0]);
4459       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4460       if (!OpTy || !Address)
4461         return error("Invalid record");
4462       unsigned NumDests = Record.size()-2;
4463       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4464       InstructionList.push_back(IBI);
4465       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4466         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4467           IBI->addDestination(DestBB);
4468         } else {
4469           delete IBI;
4470           return error("Invalid record");
4471         }
4472       }
4473       I = IBI;
4474       break;
4475     }
4476 
4477     case bitc::FUNC_CODE_INST_INVOKE: {
4478       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4479       if (Record.size() < 4)
4480         return error("Invalid record");
4481       unsigned OpNum = 0;
4482       AttributeList PAL = getAttributes(Record[OpNum++]);
4483       unsigned CCInfo = Record[OpNum++];
4484       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4485       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4486 
4487       FunctionType *FTy = nullptr;
4488       FunctionType *FullFTy = nullptr;
4489       if ((CCInfo >> 13) & 1) {
4490         FullFTy =
4491             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4492         if (!FullFTy)
4493           return error("Explicit invoke type is not a function type");
4494         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4495       }
4496 
4497       Value *Callee;
4498       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4499         return error("Invalid record");
4500 
4501       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4502       if (!CalleeTy)
4503         return error("Callee is not a pointer");
4504       if (!FTy) {
4505         FullFTy =
4506             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4507         if (!FullFTy)
4508           return error("Callee is not of pointer to function type");
4509         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4510       } else if (getPointerElementFlatType(FullTy) != FTy)
4511         return error("Explicit invoke type does not match pointee type of "
4512                      "callee operand");
4513       if (Record.size() < FTy->getNumParams() + OpNum)
4514         return error("Insufficient operands to call");
4515 
4516       SmallVector<Value*, 16> Ops;
4517       SmallVector<Type *, 16> ArgsFullTys;
4518       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4519         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4520                                FTy->getParamType(i)));
4521         ArgsFullTys.push_back(FullFTy->getParamType(i));
4522         if (!Ops.back())
4523           return error("Invalid record");
4524       }
4525 
4526       if (!FTy->isVarArg()) {
4527         if (Record.size() != OpNum)
4528           return error("Invalid record");
4529       } else {
4530         // Read type/value pairs for varargs params.
4531         while (OpNum != Record.size()) {
4532           Value *Op;
4533           Type *FullTy;
4534           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4535             return error("Invalid record");
4536           Ops.push_back(Op);
4537           ArgsFullTys.push_back(FullTy);
4538         }
4539       }
4540 
4541       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4542                              OperandBundles);
4543       FullTy = FullFTy->getReturnType();
4544       OperandBundles.clear();
4545       InstructionList.push_back(I);
4546       cast<InvokeInst>(I)->setCallingConv(
4547           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4548       cast<InvokeInst>(I)->setAttributes(PAL);
4549       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4550 
4551       break;
4552     }
4553     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4554       unsigned Idx = 0;
4555       Value *Val = nullptr;
4556       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4557         return error("Invalid record");
4558       I = ResumeInst::Create(Val);
4559       InstructionList.push_back(I);
4560       break;
4561     }
4562     case bitc::FUNC_CODE_INST_CALLBR: {
4563       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4564       unsigned OpNum = 0;
4565       AttributeList PAL = getAttributes(Record[OpNum++]);
4566       unsigned CCInfo = Record[OpNum++];
4567 
4568       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4569       unsigned NumIndirectDests = Record[OpNum++];
4570       SmallVector<BasicBlock *, 16> IndirectDests;
4571       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4572         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4573 
4574       FunctionType *FTy = nullptr;
4575       FunctionType *FullFTy = nullptr;
4576       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4577         FullFTy =
4578             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4579         if (!FullFTy)
4580           return error("Explicit call type is not a function type");
4581         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4582       }
4583 
4584       Value *Callee;
4585       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4586         return error("Invalid record");
4587 
4588       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4589       if (!OpTy)
4590         return error("Callee is not a pointer type");
4591       if (!FTy) {
4592         FullFTy =
4593             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4594         if (!FullFTy)
4595           return error("Callee is not of pointer to function type");
4596         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4597       } else if (getPointerElementFlatType(FullTy) != FTy)
4598         return error("Explicit call type does not match pointee type of "
4599                      "callee operand");
4600       if (Record.size() < FTy->getNumParams() + OpNum)
4601         return error("Insufficient operands to call");
4602 
4603       SmallVector<Value*, 16> Args;
4604       // Read the fixed params.
4605       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4606         if (FTy->getParamType(i)->isLabelTy())
4607           Args.push_back(getBasicBlock(Record[OpNum]));
4608         else
4609           Args.push_back(getValue(Record, OpNum, NextValueNo,
4610                                   FTy->getParamType(i)));
4611         if (!Args.back())
4612           return error("Invalid record");
4613       }
4614 
4615       // Read type/value pairs for varargs params.
4616       if (!FTy->isVarArg()) {
4617         if (OpNum != Record.size())
4618           return error("Invalid record");
4619       } else {
4620         while (OpNum != Record.size()) {
4621           Value *Op;
4622           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4623             return error("Invalid record");
4624           Args.push_back(Op);
4625         }
4626       }
4627 
4628       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4629                              OperandBundles);
4630       FullTy = FullFTy->getReturnType();
4631       OperandBundles.clear();
4632       InstructionList.push_back(I);
4633       cast<CallBrInst>(I)->setCallingConv(
4634           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4635       cast<CallBrInst>(I)->setAttributes(PAL);
4636       break;
4637     }
4638     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4639       I = new UnreachableInst(Context);
4640       InstructionList.push_back(I);
4641       break;
4642     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4643       if (Record.size() < 1)
4644         return error("Invalid record");
4645       // The first record specifies the type.
4646       FullTy = getFullyStructuredTypeByID(Record[0]);
4647       Type *Ty = flattenPointerTypes(FullTy);
4648       if (!Ty)
4649         return error("Invalid record");
4650 
4651       // Phi arguments are pairs of records of [value, basic block].
4652       // There is an optional final record for fast-math-flags if this phi has a
4653       // floating-point type.
4654       size_t NumArgs = (Record.size() - 1) / 2;
4655       PHINode *PN = PHINode::Create(Ty, NumArgs);
4656       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4657         return error("Invalid record");
4658       InstructionList.push_back(PN);
4659 
4660       for (unsigned i = 0; i != NumArgs; i++) {
4661         Value *V;
4662         // With the new function encoding, it is possible that operands have
4663         // negative IDs (for forward references).  Use a signed VBR
4664         // representation to keep the encoding small.
4665         if (UseRelativeIDs)
4666           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4667         else
4668           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4669         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4670         if (!V || !BB)
4671           return error("Invalid record");
4672         PN->addIncoming(V, BB);
4673       }
4674       I = PN;
4675 
4676       // If there are an even number of records, the final record must be FMF.
4677       if (Record.size() % 2 == 0) {
4678         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4679         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4680         if (FMF.any())
4681           I->setFastMathFlags(FMF);
4682       }
4683 
4684       break;
4685     }
4686 
4687     case bitc::FUNC_CODE_INST_LANDINGPAD:
4688     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4689       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4690       unsigned Idx = 0;
4691       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4692         if (Record.size() < 3)
4693           return error("Invalid record");
4694       } else {
4695         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4696         if (Record.size() < 4)
4697           return error("Invalid record");
4698       }
4699       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4700       Type *Ty = flattenPointerTypes(FullTy);
4701       if (!Ty)
4702         return error("Invalid record");
4703       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4704         Value *PersFn = nullptr;
4705         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4706           return error("Invalid record");
4707 
4708         if (!F->hasPersonalityFn())
4709           F->setPersonalityFn(cast<Constant>(PersFn));
4710         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4711           return error("Personality function mismatch");
4712       }
4713 
4714       bool IsCleanup = !!Record[Idx++];
4715       unsigned NumClauses = Record[Idx++];
4716       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4717       LP->setCleanup(IsCleanup);
4718       for (unsigned J = 0; J != NumClauses; ++J) {
4719         LandingPadInst::ClauseType CT =
4720           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4721         Value *Val;
4722 
4723         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4724           delete LP;
4725           return error("Invalid record");
4726         }
4727 
4728         assert((CT != LandingPadInst::Catch ||
4729                 !isa<ArrayType>(Val->getType())) &&
4730                "Catch clause has a invalid type!");
4731         assert((CT != LandingPadInst::Filter ||
4732                 isa<ArrayType>(Val->getType())) &&
4733                "Filter clause has invalid type!");
4734         LP->addClause(cast<Constant>(Val));
4735       }
4736 
4737       I = LP;
4738       InstructionList.push_back(I);
4739       break;
4740     }
4741 
4742     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4743       if (Record.size() != 4)
4744         return error("Invalid record");
4745       uint64_t AlignRecord = Record[3];
4746       const uint64_t InAllocaMask = uint64_t(1) << 5;
4747       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4748       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4749       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4750                                 SwiftErrorMask;
4751       bool InAlloca = AlignRecord & InAllocaMask;
4752       bool SwiftError = AlignRecord & SwiftErrorMask;
4753       FullTy = getFullyStructuredTypeByID(Record[0]);
4754       Type *Ty = flattenPointerTypes(FullTy);
4755       if ((AlignRecord & ExplicitTypeMask) == 0) {
4756         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4757         if (!PTy)
4758           return error("Old-style alloca with a non-pointer type");
4759         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4760       }
4761       Type *OpTy = getTypeByID(Record[1]);
4762       Value *Size = getFnValueByID(Record[2], OpTy);
4763       MaybeAlign Align;
4764       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4765         return Err;
4766       }
4767       if (!Ty || !Size)
4768         return error("Invalid record");
4769 
4770       // FIXME: Make this an optional field.
4771       const DataLayout &DL = TheModule->getDataLayout();
4772       unsigned AS = DL.getAllocaAddrSpace();
4773 
4774       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4775       AI->setUsedWithInAlloca(InAlloca);
4776       AI->setSwiftError(SwiftError);
4777       I = AI;
4778       FullTy = PointerType::get(FullTy, AS);
4779       InstructionList.push_back(I);
4780       break;
4781     }
4782     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4783       unsigned OpNum = 0;
4784       Value *Op;
4785       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4786           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4787         return error("Invalid record");
4788 
4789       if (!isa<PointerType>(Op->getType()))
4790         return error("Load operand is not a pointer type");
4791 
4792       Type *Ty = nullptr;
4793       if (OpNum + 3 == Record.size()) {
4794         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4795         Ty = flattenPointerTypes(FullTy);
4796       } else
4797         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4798 
4799       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4800         return Err;
4801 
4802       MaybeAlign Align;
4803       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4804         return Err;
4805       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4806       InstructionList.push_back(I);
4807       break;
4808     }
4809     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4810        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4811       unsigned OpNum = 0;
4812       Value *Op;
4813       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4814           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4815         return error("Invalid record");
4816 
4817       if (!isa<PointerType>(Op->getType()))
4818         return error("Load operand is not a pointer type");
4819 
4820       Type *Ty = nullptr;
4821       if (OpNum + 5 == Record.size()) {
4822         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4823         Ty = flattenPointerTypes(FullTy);
4824       } else
4825         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4826 
4827       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4828         return Err;
4829 
4830       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4831       if (Ordering == AtomicOrdering::NotAtomic ||
4832           Ordering == AtomicOrdering::Release ||
4833           Ordering == AtomicOrdering::AcquireRelease)
4834         return error("Invalid record");
4835       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4836         return error("Invalid record");
4837       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4838 
4839       MaybeAlign Align;
4840       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4841         return Err;
4842       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4843       InstructionList.push_back(I);
4844       break;
4845     }
4846     case bitc::FUNC_CODE_INST_STORE:
4847     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4848       unsigned OpNum = 0;
4849       Value *Val, *Ptr;
4850       Type *FullTy;
4851       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4852           (BitCode == bitc::FUNC_CODE_INST_STORE
4853                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4854                : popValue(Record, OpNum, NextValueNo,
4855                           getPointerElementFlatType(FullTy), Val)) ||
4856           OpNum + 2 != Record.size())
4857         return error("Invalid record");
4858 
4859       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4860         return Err;
4861       MaybeAlign Align;
4862       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4863         return Err;
4864       I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align);
4865       InstructionList.push_back(I);
4866       break;
4867     }
4868     case bitc::FUNC_CODE_INST_STOREATOMIC:
4869     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4870       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4871       unsigned OpNum = 0;
4872       Value *Val, *Ptr;
4873       Type *FullTy;
4874       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4875           !isa<PointerType>(Ptr->getType()) ||
4876           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4877                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4878                : popValue(Record, OpNum, NextValueNo,
4879                           getPointerElementFlatType(FullTy), Val)) ||
4880           OpNum + 4 != Record.size())
4881         return error("Invalid record");
4882 
4883       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4884         return Err;
4885       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4886       if (Ordering == AtomicOrdering::NotAtomic ||
4887           Ordering == AtomicOrdering::Acquire ||
4888           Ordering == AtomicOrdering::AcquireRelease)
4889         return error("Invalid record");
4890       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4891       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4892         return error("Invalid record");
4893 
4894       MaybeAlign Align;
4895       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4896         return Err;
4897       I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID);
4898       InstructionList.push_back(I);
4899       break;
4900     }
4901     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4902     case bitc::FUNC_CODE_INST_CMPXCHG: {
4903       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4904       //          failureordering?, isweak?]
4905       unsigned OpNum = 0;
4906       Value *Ptr, *Cmp, *New;
4907       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4908         return error("Invalid record");
4909 
4910       if (!isa<PointerType>(Ptr->getType()))
4911         return error("Cmpxchg operand is not a pointer type");
4912 
4913       if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4914         if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4915           return error("Invalid record");
4916       } else if (popValue(Record, OpNum, NextValueNo,
4917                           getPointerElementFlatType(FullTy), Cmp))
4918         return error("Invalid record");
4919       else
4920         FullTy = cast<PointerType>(FullTy)->getElementType();
4921 
4922       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4923           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4924         return error("Invalid record");
4925 
4926       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4927       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4928           SuccessOrdering == AtomicOrdering::Unordered)
4929         return error("Invalid record");
4930       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4931 
4932       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4933         return Err;
4934       AtomicOrdering FailureOrdering;
4935       if (Record.size() < 7)
4936         FailureOrdering =
4937             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4938       else
4939         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4940 
4941       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4942                                 SSID);
4943       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
4944       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4945 
4946       if (Record.size() < 8) {
4947         // Before weak cmpxchgs existed, the instruction simply returned the
4948         // value loaded from memory, so bitcode files from that era will be
4949         // expecting the first component of a modern cmpxchg.
4950         CurBB->getInstList().push_back(I);
4951         I = ExtractValueInst::Create(I, 0);
4952         FullTy = cast<StructType>(FullTy)->getElementType(0);
4953       } else {
4954         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4955       }
4956 
4957       InstructionList.push_back(I);
4958       break;
4959     }
4960     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4961       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4962       unsigned OpNum = 0;
4963       Value *Ptr, *Val;
4964       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4965           !isa<PointerType>(Ptr->getType()) ||
4966           popValue(Record, OpNum, NextValueNo,
4967                    getPointerElementFlatType(FullTy), Val) ||
4968           OpNum + 4 != Record.size())
4969         return error("Invalid record");
4970       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4971       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4972           Operation > AtomicRMWInst::LAST_BINOP)
4973         return error("Invalid record");
4974       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4975       if (Ordering == AtomicOrdering::NotAtomic ||
4976           Ordering == AtomicOrdering::Unordered)
4977         return error("Invalid record");
4978       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4979       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4980       FullTy = getPointerElementFlatType(FullTy);
4981       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4982       InstructionList.push_back(I);
4983       break;
4984     }
4985     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4986       if (2 != Record.size())
4987         return error("Invalid record");
4988       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4989       if (Ordering == AtomicOrdering::NotAtomic ||
4990           Ordering == AtomicOrdering::Unordered ||
4991           Ordering == AtomicOrdering::Monotonic)
4992         return error("Invalid record");
4993       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4994       I = new FenceInst(Context, Ordering, SSID);
4995       InstructionList.push_back(I);
4996       break;
4997     }
4998     case bitc::FUNC_CODE_INST_CALL: {
4999       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5000       if (Record.size() < 3)
5001         return error("Invalid record");
5002 
5003       unsigned OpNum = 0;
5004       AttributeList PAL = getAttributes(Record[OpNum++]);
5005       unsigned CCInfo = Record[OpNum++];
5006 
5007       FastMathFlags FMF;
5008       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5009         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5010         if (!FMF.any())
5011           return error("Fast math flags indicator set for call with no FMF");
5012       }
5013 
5014       FunctionType *FTy = nullptr;
5015       FunctionType *FullFTy = nullptr;
5016       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5017         FullFTy =
5018             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5019         if (!FullFTy)
5020           return error("Explicit call type is not a function type");
5021         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5022       }
5023 
5024       Value *Callee;
5025       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5026         return error("Invalid record");
5027 
5028       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5029       if (!OpTy)
5030         return error("Callee is not a pointer type");
5031       if (!FTy) {
5032         FullFTy =
5033             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5034         if (!FullFTy)
5035           return error("Callee is not of pointer to function type");
5036         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5037       } else if (getPointerElementFlatType(FullTy) != FTy)
5038         return error("Explicit call type does not match pointee type of "
5039                      "callee operand");
5040       if (Record.size() < FTy->getNumParams() + OpNum)
5041         return error("Insufficient operands to call");
5042 
5043       SmallVector<Value*, 16> Args;
5044       SmallVector<Type*, 16> ArgsFullTys;
5045       // Read the fixed params.
5046       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5047         if (FTy->getParamType(i)->isLabelTy())
5048           Args.push_back(getBasicBlock(Record[OpNum]));
5049         else
5050           Args.push_back(getValue(Record, OpNum, NextValueNo,
5051                                   FTy->getParamType(i)));
5052         ArgsFullTys.push_back(FullFTy->getParamType(i));
5053         if (!Args.back())
5054           return error("Invalid record");
5055       }
5056 
5057       // Read type/value pairs for varargs params.
5058       if (!FTy->isVarArg()) {
5059         if (OpNum != Record.size())
5060           return error("Invalid record");
5061       } else {
5062         while (OpNum != Record.size()) {
5063           Value *Op;
5064           Type *FullTy;
5065           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5066             return error("Invalid record");
5067           Args.push_back(Op);
5068           ArgsFullTys.push_back(FullTy);
5069         }
5070       }
5071 
5072       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5073       FullTy = FullFTy->getReturnType();
5074       OperandBundles.clear();
5075       InstructionList.push_back(I);
5076       cast<CallInst>(I)->setCallingConv(
5077           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5078       CallInst::TailCallKind TCK = CallInst::TCK_None;
5079       if (CCInfo & 1 << bitc::CALL_TAIL)
5080         TCK = CallInst::TCK_Tail;
5081       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5082         TCK = CallInst::TCK_MustTail;
5083       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5084         TCK = CallInst::TCK_NoTail;
5085       cast<CallInst>(I)->setTailCallKind(TCK);
5086       cast<CallInst>(I)->setAttributes(PAL);
5087       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5088       if (FMF.any()) {
5089         if (!isa<FPMathOperator>(I))
5090           return error("Fast-math-flags specified for call without "
5091                        "floating-point scalar or vector return type");
5092         I->setFastMathFlags(FMF);
5093       }
5094       break;
5095     }
5096     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5097       if (Record.size() < 3)
5098         return error("Invalid record");
5099       Type *OpTy = getTypeByID(Record[0]);
5100       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5101       FullTy = getFullyStructuredTypeByID(Record[2]);
5102       Type *ResTy = flattenPointerTypes(FullTy);
5103       if (!OpTy || !Op || !ResTy)
5104         return error("Invalid record");
5105       I = new VAArgInst(Op, ResTy);
5106       InstructionList.push_back(I);
5107       break;
5108     }
5109 
5110     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5111       // A call or an invoke can be optionally prefixed with some variable
5112       // number of operand bundle blocks.  These blocks are read into
5113       // OperandBundles and consumed at the next call or invoke instruction.
5114 
5115       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5116         return error("Invalid record");
5117 
5118       std::vector<Value *> Inputs;
5119 
5120       unsigned OpNum = 1;
5121       while (OpNum != Record.size()) {
5122         Value *Op;
5123         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5124           return error("Invalid record");
5125         Inputs.push_back(Op);
5126       }
5127 
5128       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5129       continue;
5130     }
5131 
5132     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5133       unsigned OpNum = 0;
5134       Value *Op = nullptr;
5135       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5136         return error("Invalid record");
5137       if (OpNum != Record.size())
5138         return error("Invalid record");
5139 
5140       I = new FreezeInst(Op);
5141       InstructionList.push_back(I);
5142       break;
5143     }
5144     }
5145 
5146     // Add instruction to end of current BB.  If there is no current BB, reject
5147     // this file.
5148     if (!CurBB) {
5149       I->deleteValue();
5150       return error("Invalid instruction with no BB");
5151     }
5152     if (!OperandBundles.empty()) {
5153       I->deleteValue();
5154       return error("Operand bundles found with no consumer");
5155     }
5156     CurBB->getInstList().push_back(I);
5157 
5158     // If this was a terminator instruction, move to the next block.
5159     if (I->isTerminator()) {
5160       ++CurBBNo;
5161       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5162     }
5163 
5164     // Non-void values get registered in the value table for future use.
5165     if (!I->getType()->isVoidTy()) {
5166       if (!FullTy) {
5167         FullTy = I->getType();
5168         assert(
5169             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5170             !isa<ArrayType>(FullTy) &&
5171             (!isa<VectorType>(FullTy) ||
5172              FullTy->getVectorElementType()->isFloatingPointTy() ||
5173              FullTy->getVectorElementType()->isIntegerTy()) &&
5174             "Structured types must be assigned with corresponding non-opaque "
5175             "pointer type");
5176       }
5177 
5178       assert(I->getType() == flattenPointerTypes(FullTy) &&
5179              "Incorrect fully structured type provided for Instruction");
5180       ValueList.assignValue(I, NextValueNo++, FullTy);
5181     }
5182   }
5183 
5184 OutOfRecordLoop:
5185 
5186   if (!OperandBundles.empty())
5187     return error("Operand bundles found with no consumer");
5188 
5189   // Check the function list for unresolved values.
5190   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5191     if (!A->getParent()) {
5192       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5193       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5194         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5195           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5196           delete A;
5197         }
5198       }
5199       return error("Never resolved value found in function");
5200     }
5201   }
5202 
5203   // Unexpected unresolved metadata about to be dropped.
5204   if (MDLoader->hasFwdRefs())
5205     return error("Invalid function metadata: outgoing forward refs");
5206 
5207   // Trim the value list down to the size it was before we parsed this function.
5208   ValueList.shrinkTo(ModuleValueListSize);
5209   MDLoader->shrinkTo(ModuleMDLoaderSize);
5210   std::vector<BasicBlock*>().swap(FunctionBBs);
5211   return Error::success();
5212 }
5213 
5214 /// Find the function body in the bitcode stream
5215 Error BitcodeReader::findFunctionInStream(
5216     Function *F,
5217     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5218   while (DeferredFunctionInfoIterator->second == 0) {
5219     // This is the fallback handling for the old format bitcode that
5220     // didn't contain the function index in the VST, or when we have
5221     // an anonymous function which would not have a VST entry.
5222     // Assert that we have one of those two cases.
5223     assert(VSTOffset == 0 || !F->hasName());
5224     // Parse the next body in the stream and set its position in the
5225     // DeferredFunctionInfo map.
5226     if (Error Err = rememberAndSkipFunctionBodies())
5227       return Err;
5228   }
5229   return Error::success();
5230 }
5231 
5232 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5233   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5234     return SyncScope::ID(Val);
5235   if (Val >= SSIDs.size())
5236     return SyncScope::System; // Map unknown synchronization scopes to system.
5237   return SSIDs[Val];
5238 }
5239 
5240 //===----------------------------------------------------------------------===//
5241 // GVMaterializer implementation
5242 //===----------------------------------------------------------------------===//
5243 
5244 Error BitcodeReader::materialize(GlobalValue *GV) {
5245   Function *F = dyn_cast<Function>(GV);
5246   // If it's not a function or is already material, ignore the request.
5247   if (!F || !F->isMaterializable())
5248     return Error::success();
5249 
5250   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5251   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5252   // If its position is recorded as 0, its body is somewhere in the stream
5253   // but we haven't seen it yet.
5254   if (DFII->second == 0)
5255     if (Error Err = findFunctionInStream(F, DFII))
5256       return Err;
5257 
5258   // Materialize metadata before parsing any function bodies.
5259   if (Error Err = materializeMetadata())
5260     return Err;
5261 
5262   // Move the bit stream to the saved position of the deferred function body.
5263   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5264     return JumpFailed;
5265   if (Error Err = parseFunctionBody(F))
5266     return Err;
5267   F->setIsMaterializable(false);
5268 
5269   if (StripDebugInfo)
5270     stripDebugInfo(*F);
5271 
5272   // Upgrade any old intrinsic calls in the function.
5273   for (auto &I : UpgradedIntrinsics) {
5274     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5275          UI != UE;) {
5276       User *U = *UI;
5277       ++UI;
5278       if (CallInst *CI = dyn_cast<CallInst>(U))
5279         UpgradeIntrinsicCall(CI, I.second);
5280     }
5281   }
5282 
5283   // Update calls to the remangled intrinsics
5284   for (auto &I : RemangledIntrinsics)
5285     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5286          UI != UE;)
5287       // Don't expect any other users than call sites
5288       CallSite(*UI++).setCalledFunction(I.second);
5289 
5290   // Finish fn->subprogram upgrade for materialized functions.
5291   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5292     F->setSubprogram(SP);
5293 
5294   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5295   if (!MDLoader->isStrippingTBAA()) {
5296     for (auto &I : instructions(F)) {
5297       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5298       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5299         continue;
5300       MDLoader->setStripTBAA(true);
5301       stripTBAA(F->getParent());
5302     }
5303   }
5304 
5305   // Bring in any functions that this function forward-referenced via
5306   // blockaddresses.
5307   return materializeForwardReferencedFunctions();
5308 }
5309 
5310 Error BitcodeReader::materializeModule() {
5311   if (Error Err = materializeMetadata())
5312     return Err;
5313 
5314   // Promise to materialize all forward references.
5315   WillMaterializeAllForwardRefs = true;
5316 
5317   // Iterate over the module, deserializing any functions that are still on
5318   // disk.
5319   for (Function &F : *TheModule) {
5320     if (Error Err = materialize(&F))
5321       return Err;
5322   }
5323   // At this point, if there are any function bodies, parse the rest of
5324   // the bits in the module past the last function block we have recorded
5325   // through either lazy scanning or the VST.
5326   if (LastFunctionBlockBit || NextUnreadBit)
5327     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5328                                     ? LastFunctionBlockBit
5329                                     : NextUnreadBit))
5330       return Err;
5331 
5332   // Check that all block address forward references got resolved (as we
5333   // promised above).
5334   if (!BasicBlockFwdRefs.empty())
5335     return error("Never resolved function from blockaddress");
5336 
5337   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5338   // delete the old functions to clean up. We can't do this unless the entire
5339   // module is materialized because there could always be another function body
5340   // with calls to the old function.
5341   for (auto &I : UpgradedIntrinsics) {
5342     for (auto *U : I.first->users()) {
5343       if (CallInst *CI = dyn_cast<CallInst>(U))
5344         UpgradeIntrinsicCall(CI, I.second);
5345     }
5346     if (!I.first->use_empty())
5347       I.first->replaceAllUsesWith(I.second);
5348     I.first->eraseFromParent();
5349   }
5350   UpgradedIntrinsics.clear();
5351   // Do the same for remangled intrinsics
5352   for (auto &I : RemangledIntrinsics) {
5353     I.first->replaceAllUsesWith(I.second);
5354     I.first->eraseFromParent();
5355   }
5356   RemangledIntrinsics.clear();
5357 
5358   UpgradeDebugInfo(*TheModule);
5359 
5360   UpgradeModuleFlags(*TheModule);
5361 
5362   UpgradeARCRuntime(*TheModule);
5363 
5364   return Error::success();
5365 }
5366 
5367 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5368   return IdentifiedStructTypes;
5369 }
5370 
5371 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5372     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5373     StringRef ModulePath, unsigned ModuleId)
5374     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5375       ModulePath(ModulePath), ModuleId(ModuleId) {}
5376 
5377 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5378   TheIndex.addModule(ModulePath, ModuleId);
5379 }
5380 
5381 ModuleSummaryIndex::ModuleInfo *
5382 ModuleSummaryIndexBitcodeReader::getThisModule() {
5383   return TheIndex.getModule(ModulePath);
5384 }
5385 
5386 std::pair<ValueInfo, GlobalValue::GUID>
5387 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5388   auto VGI = ValueIdToValueInfoMap[ValueId];
5389   assert(VGI.first);
5390   return VGI;
5391 }
5392 
5393 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5394     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5395     StringRef SourceFileName) {
5396   std::string GlobalId =
5397       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5398   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5399   auto OriginalNameID = ValueGUID;
5400   if (GlobalValue::isLocalLinkage(Linkage))
5401     OriginalNameID = GlobalValue::getGUID(ValueName);
5402   if (PrintSummaryGUIDs)
5403     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5404            << ValueName << "\n";
5405 
5406   // UseStrtab is false for legacy summary formats and value names are
5407   // created on stack. In that case we save the name in a string saver in
5408   // the index so that the value name can be recorded.
5409   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5410       TheIndex.getOrInsertValueInfo(
5411           ValueGUID,
5412           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5413       OriginalNameID);
5414 }
5415 
5416 // Specialized value symbol table parser used when reading module index
5417 // blocks where we don't actually create global values. The parsed information
5418 // is saved in the bitcode reader for use when later parsing summaries.
5419 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5420     uint64_t Offset,
5421     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5422   // With a strtab the VST is not required to parse the summary.
5423   if (UseStrtab)
5424     return Error::success();
5425 
5426   assert(Offset > 0 && "Expected non-zero VST offset");
5427   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5428   if (!MaybeCurrentBit)
5429     return MaybeCurrentBit.takeError();
5430   uint64_t CurrentBit = MaybeCurrentBit.get();
5431 
5432   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5433     return Err;
5434 
5435   SmallVector<uint64_t, 64> Record;
5436 
5437   // Read all the records for this value table.
5438   SmallString<128> ValueName;
5439 
5440   while (true) {
5441     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5442     if (!MaybeEntry)
5443       return MaybeEntry.takeError();
5444     BitstreamEntry Entry = MaybeEntry.get();
5445 
5446     switch (Entry.Kind) {
5447     case BitstreamEntry::SubBlock: // Handled for us already.
5448     case BitstreamEntry::Error:
5449       return error("Malformed block");
5450     case BitstreamEntry::EndBlock:
5451       // Done parsing VST, jump back to wherever we came from.
5452       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5453         return JumpFailed;
5454       return Error::success();
5455     case BitstreamEntry::Record:
5456       // The interesting case.
5457       break;
5458     }
5459 
5460     // Read a record.
5461     Record.clear();
5462     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5463     if (!MaybeRecord)
5464       return MaybeRecord.takeError();
5465     switch (MaybeRecord.get()) {
5466     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5467       break;
5468     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5469       if (convertToString(Record, 1, ValueName))
5470         return error("Invalid record");
5471       unsigned ValueID = Record[0];
5472       assert(!SourceFileName.empty());
5473       auto VLI = ValueIdToLinkageMap.find(ValueID);
5474       assert(VLI != ValueIdToLinkageMap.end() &&
5475              "No linkage found for VST entry?");
5476       auto Linkage = VLI->second;
5477       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5478       ValueName.clear();
5479       break;
5480     }
5481     case bitc::VST_CODE_FNENTRY: {
5482       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5483       if (convertToString(Record, 2, ValueName))
5484         return error("Invalid record");
5485       unsigned ValueID = Record[0];
5486       assert(!SourceFileName.empty());
5487       auto VLI = ValueIdToLinkageMap.find(ValueID);
5488       assert(VLI != ValueIdToLinkageMap.end() &&
5489              "No linkage found for VST entry?");
5490       auto Linkage = VLI->second;
5491       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5492       ValueName.clear();
5493       break;
5494     }
5495     case bitc::VST_CODE_COMBINED_ENTRY: {
5496       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5497       unsigned ValueID = Record[0];
5498       GlobalValue::GUID RefGUID = Record[1];
5499       // The "original name", which is the second value of the pair will be
5500       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5501       ValueIdToValueInfoMap[ValueID] =
5502           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5503       break;
5504     }
5505     }
5506   }
5507 }
5508 
5509 // Parse just the blocks needed for building the index out of the module.
5510 // At the end of this routine the module Index is populated with a map
5511 // from global value id to GlobalValueSummary objects.
5512 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5513   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5514     return Err;
5515 
5516   SmallVector<uint64_t, 64> Record;
5517   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5518   unsigned ValueId = 0;
5519 
5520   // Read the index for this module.
5521   while (true) {
5522     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5523     if (!MaybeEntry)
5524       return MaybeEntry.takeError();
5525     llvm::BitstreamEntry Entry = MaybeEntry.get();
5526 
5527     switch (Entry.Kind) {
5528     case BitstreamEntry::Error:
5529       return error("Malformed block");
5530     case BitstreamEntry::EndBlock:
5531       return Error::success();
5532 
5533     case BitstreamEntry::SubBlock:
5534       switch (Entry.ID) {
5535       default: // Skip unknown content.
5536         if (Error Err = Stream.SkipBlock())
5537           return Err;
5538         break;
5539       case bitc::BLOCKINFO_BLOCK_ID:
5540         // Need to parse these to get abbrev ids (e.g. for VST)
5541         if (readBlockInfo())
5542           return error("Malformed block");
5543         break;
5544       case bitc::VALUE_SYMTAB_BLOCK_ID:
5545         // Should have been parsed earlier via VSTOffset, unless there
5546         // is no summary section.
5547         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5548                 !SeenGlobalValSummary) &&
5549                "Expected early VST parse via VSTOffset record");
5550         if (Error Err = Stream.SkipBlock())
5551           return Err;
5552         break;
5553       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5554       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5555         // Add the module if it is a per-module index (has a source file name).
5556         if (!SourceFileName.empty())
5557           addThisModule();
5558         assert(!SeenValueSymbolTable &&
5559                "Already read VST when parsing summary block?");
5560         // We might not have a VST if there were no values in the
5561         // summary. An empty summary block generated when we are
5562         // performing ThinLTO compiles so we don't later invoke
5563         // the regular LTO process on them.
5564         if (VSTOffset > 0) {
5565           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5566             return Err;
5567           SeenValueSymbolTable = true;
5568         }
5569         SeenGlobalValSummary = true;
5570         if (Error Err = parseEntireSummary(Entry.ID))
5571           return Err;
5572         break;
5573       case bitc::MODULE_STRTAB_BLOCK_ID:
5574         if (Error Err = parseModuleStringTable())
5575           return Err;
5576         break;
5577       }
5578       continue;
5579 
5580     case BitstreamEntry::Record: {
5581         Record.clear();
5582         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5583         if (!MaybeBitCode)
5584           return MaybeBitCode.takeError();
5585         switch (MaybeBitCode.get()) {
5586         default:
5587           break; // Default behavior, ignore unknown content.
5588         case bitc::MODULE_CODE_VERSION: {
5589           if (Error Err = parseVersionRecord(Record).takeError())
5590             return Err;
5591           break;
5592         }
5593         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5594         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5595           SmallString<128> ValueName;
5596           if (convertToString(Record, 0, ValueName))
5597             return error("Invalid record");
5598           SourceFileName = ValueName.c_str();
5599           break;
5600         }
5601         /// MODULE_CODE_HASH: [5*i32]
5602         case bitc::MODULE_CODE_HASH: {
5603           if (Record.size() != 5)
5604             return error("Invalid hash length " + Twine(Record.size()).str());
5605           auto &Hash = getThisModule()->second.second;
5606           int Pos = 0;
5607           for (auto &Val : Record) {
5608             assert(!(Val >> 32) && "Unexpected high bits set");
5609             Hash[Pos++] = Val;
5610           }
5611           break;
5612         }
5613         /// MODULE_CODE_VSTOFFSET: [offset]
5614         case bitc::MODULE_CODE_VSTOFFSET:
5615           if (Record.size() < 1)
5616             return error("Invalid record");
5617           // Note that we subtract 1 here because the offset is relative to one
5618           // word before the start of the identification or module block, which
5619           // was historically always the start of the regular bitcode header.
5620           VSTOffset = Record[0] - 1;
5621           break;
5622         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5623         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5624         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5625         // v2: [strtab offset, strtab size, v1]
5626         case bitc::MODULE_CODE_GLOBALVAR:
5627         case bitc::MODULE_CODE_FUNCTION:
5628         case bitc::MODULE_CODE_ALIAS: {
5629           StringRef Name;
5630           ArrayRef<uint64_t> GVRecord;
5631           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5632           if (GVRecord.size() <= 3)
5633             return error("Invalid record");
5634           uint64_t RawLinkage = GVRecord[3];
5635           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5636           if (!UseStrtab) {
5637             ValueIdToLinkageMap[ValueId++] = Linkage;
5638             break;
5639           }
5640 
5641           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5642           break;
5643         }
5644         }
5645       }
5646       continue;
5647     }
5648   }
5649 }
5650 
5651 std::vector<ValueInfo>
5652 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5653   std::vector<ValueInfo> Ret;
5654   Ret.reserve(Record.size());
5655   for (uint64_t RefValueId : Record)
5656     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5657   return Ret;
5658 }
5659 
5660 std::vector<FunctionSummary::EdgeTy>
5661 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5662                                               bool IsOldProfileFormat,
5663                                               bool HasProfile, bool HasRelBF) {
5664   std::vector<FunctionSummary::EdgeTy> Ret;
5665   Ret.reserve(Record.size());
5666   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5667     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5668     uint64_t RelBF = 0;
5669     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5670     if (IsOldProfileFormat) {
5671       I += 1; // Skip old callsitecount field
5672       if (HasProfile)
5673         I += 1; // Skip old profilecount field
5674     } else if (HasProfile)
5675       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5676     else if (HasRelBF)
5677       RelBF = Record[++I];
5678     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5679   }
5680   return Ret;
5681 }
5682 
5683 static void
5684 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5685                                        WholeProgramDevirtResolution &Wpd) {
5686   uint64_t ArgNum = Record[Slot++];
5687   WholeProgramDevirtResolution::ByArg &B =
5688       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5689   Slot += ArgNum;
5690 
5691   B.TheKind =
5692       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5693   B.Info = Record[Slot++];
5694   B.Byte = Record[Slot++];
5695   B.Bit = Record[Slot++];
5696 }
5697 
5698 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5699                                               StringRef Strtab, size_t &Slot,
5700                                               TypeIdSummary &TypeId) {
5701   uint64_t Id = Record[Slot++];
5702   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5703 
5704   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5705   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5706                         static_cast<size_t>(Record[Slot + 1])};
5707   Slot += 2;
5708 
5709   uint64_t ResByArgNum = Record[Slot++];
5710   for (uint64_t I = 0; I != ResByArgNum; ++I)
5711     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5712 }
5713 
5714 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5715                                      StringRef Strtab,
5716                                      ModuleSummaryIndex &TheIndex) {
5717   size_t Slot = 0;
5718   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5719       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5720   Slot += 2;
5721 
5722   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5723   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5724   TypeId.TTRes.AlignLog2 = Record[Slot++];
5725   TypeId.TTRes.SizeM1 = Record[Slot++];
5726   TypeId.TTRes.BitMask = Record[Slot++];
5727   TypeId.TTRes.InlineBits = Record[Slot++];
5728 
5729   while (Slot < Record.size())
5730     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5731 }
5732 
5733 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5734     ArrayRef<uint64_t> Record, size_t &Slot,
5735     TypeIdCompatibleVtableInfo &TypeId) {
5736   uint64_t Offset = Record[Slot++];
5737   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5738   TypeId.push_back({Offset, Callee});
5739 }
5740 
5741 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5742     ArrayRef<uint64_t> Record) {
5743   size_t Slot = 0;
5744   TypeIdCompatibleVtableInfo &TypeId =
5745       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5746           {Strtab.data() + Record[Slot],
5747            static_cast<size_t>(Record[Slot + 1])});
5748   Slot += 2;
5749 
5750   while (Slot < Record.size())
5751     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5752 }
5753 
5754 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5755                            unsigned WOCnt) {
5756   // Readonly and writeonly refs are in the end of the refs list.
5757   assert(ROCnt + WOCnt <= Refs.size());
5758   unsigned FirstWORef = Refs.size() - WOCnt;
5759   unsigned RefNo = FirstWORef - ROCnt;
5760   for (; RefNo < FirstWORef; ++RefNo)
5761     Refs[RefNo].setReadOnly();
5762   for (; RefNo < Refs.size(); ++RefNo)
5763     Refs[RefNo].setWriteOnly();
5764 }
5765 
5766 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5767 // objects in the index.
5768 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5769   if (Error Err = Stream.EnterSubBlock(ID))
5770     return Err;
5771   SmallVector<uint64_t, 64> Record;
5772 
5773   // Parse version
5774   {
5775     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5776     if (!MaybeEntry)
5777       return MaybeEntry.takeError();
5778     BitstreamEntry Entry = MaybeEntry.get();
5779 
5780     if (Entry.Kind != BitstreamEntry::Record)
5781       return error("Invalid Summary Block: record for version expected");
5782     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5783     if (!MaybeRecord)
5784       return MaybeRecord.takeError();
5785     if (MaybeRecord.get() != bitc::FS_VERSION)
5786       return error("Invalid Summary Block: version expected");
5787   }
5788   const uint64_t Version = Record[0];
5789   const bool IsOldProfileFormat = Version == 1;
5790   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
5791     return error("Invalid summary version " + Twine(Version) +
5792                  ". Version should be in the range [1-" +
5793                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
5794                  "].");
5795   Record.clear();
5796 
5797   // Keep around the last seen summary to be used when we see an optional
5798   // "OriginalName" attachement.
5799   GlobalValueSummary *LastSeenSummary = nullptr;
5800   GlobalValue::GUID LastSeenGUID = 0;
5801 
5802   // We can expect to see any number of type ID information records before
5803   // each function summary records; these variables store the information
5804   // collected so far so that it can be used to create the summary object.
5805   std::vector<GlobalValue::GUID> PendingTypeTests;
5806   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5807       PendingTypeCheckedLoadVCalls;
5808   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5809       PendingTypeCheckedLoadConstVCalls;
5810 
5811   while (true) {
5812     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5813     if (!MaybeEntry)
5814       return MaybeEntry.takeError();
5815     BitstreamEntry Entry = MaybeEntry.get();
5816 
5817     switch (Entry.Kind) {
5818     case BitstreamEntry::SubBlock: // Handled for us already.
5819     case BitstreamEntry::Error:
5820       return error("Malformed block");
5821     case BitstreamEntry::EndBlock:
5822       return Error::success();
5823     case BitstreamEntry::Record:
5824       // The interesting case.
5825       break;
5826     }
5827 
5828     // Read a record. The record format depends on whether this
5829     // is a per-module index or a combined index file. In the per-module
5830     // case the records contain the associated value's ID for correlation
5831     // with VST entries. In the combined index the correlation is done
5832     // via the bitcode offset of the summary records (which were saved
5833     // in the combined index VST entries). The records also contain
5834     // information used for ThinLTO renaming and importing.
5835     Record.clear();
5836     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5837     if (!MaybeBitCode)
5838       return MaybeBitCode.takeError();
5839     switch (unsigned BitCode = MaybeBitCode.get()) {
5840     default: // Default behavior: ignore.
5841       break;
5842     case bitc::FS_FLAGS: {  // [flags]
5843       uint64_t Flags = Record[0];
5844       // Scan flags.
5845       assert(Flags <= 0x3f && "Unexpected bits in flag");
5846 
5847       // 1 bit: WithGlobalValueDeadStripping flag.
5848       // Set on combined index only.
5849       if (Flags & 0x1)
5850         TheIndex.setWithGlobalValueDeadStripping();
5851       // 1 bit: SkipModuleByDistributedBackend flag.
5852       // Set on combined index only.
5853       if (Flags & 0x2)
5854         TheIndex.setSkipModuleByDistributedBackend();
5855       // 1 bit: HasSyntheticEntryCounts flag.
5856       // Set on combined index only.
5857       if (Flags & 0x4)
5858         TheIndex.setHasSyntheticEntryCounts();
5859       // 1 bit: DisableSplitLTOUnit flag.
5860       // Set on per module indexes. It is up to the client to validate
5861       // the consistency of this flag across modules being linked.
5862       if (Flags & 0x8)
5863         TheIndex.setEnableSplitLTOUnit();
5864       // 1 bit: PartiallySplitLTOUnits flag.
5865       // Set on combined index only.
5866       if (Flags & 0x10)
5867         TheIndex.setPartiallySplitLTOUnits();
5868       // 1 bit: WithAttributePropagation flag.
5869       // Set on combined index only.
5870       if (Flags & 0x20)
5871         TheIndex.setWithAttributePropagation();
5872       break;
5873     }
5874     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5875       uint64_t ValueID = Record[0];
5876       GlobalValue::GUID RefGUID = Record[1];
5877       ValueIdToValueInfoMap[ValueID] =
5878           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5879       break;
5880     }
5881     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5882     //                numrefs x valueid, n x (valueid)]
5883     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5884     //                        numrefs x valueid,
5885     //                        n x (valueid, hotness)]
5886     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5887     //                      numrefs x valueid,
5888     //                      n x (valueid, relblockfreq)]
5889     case bitc::FS_PERMODULE:
5890     case bitc::FS_PERMODULE_RELBF:
5891     case bitc::FS_PERMODULE_PROFILE: {
5892       unsigned ValueID = Record[0];
5893       uint64_t RawFlags = Record[1];
5894       unsigned InstCount = Record[2];
5895       uint64_t RawFunFlags = 0;
5896       unsigned NumRefs = Record[3];
5897       unsigned NumRORefs = 0, NumWORefs = 0;
5898       int RefListStartIndex = 4;
5899       if (Version >= 4) {
5900         RawFunFlags = Record[3];
5901         NumRefs = Record[4];
5902         RefListStartIndex = 5;
5903         if (Version >= 5) {
5904           NumRORefs = Record[5];
5905           RefListStartIndex = 6;
5906           if (Version >= 7) {
5907             NumWORefs = Record[6];
5908             RefListStartIndex = 7;
5909           }
5910         }
5911       }
5912 
5913       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5914       // The module path string ref set in the summary must be owned by the
5915       // index's module string table. Since we don't have a module path
5916       // string table section in the per-module index, we create a single
5917       // module path string table entry with an empty (0) ID to take
5918       // ownership.
5919       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5920       assert(Record.size() >= RefListStartIndex + NumRefs &&
5921              "Record size inconsistent with number of references");
5922       std::vector<ValueInfo> Refs = makeRefList(
5923           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5924       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5925       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5926       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5927           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5928           IsOldProfileFormat, HasProfile, HasRelBF);
5929       setSpecialRefs(Refs, NumRORefs, NumWORefs);
5930       auto FS = std::make_unique<FunctionSummary>(
5931           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5932           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5933           std::move(PendingTypeTestAssumeVCalls),
5934           std::move(PendingTypeCheckedLoadVCalls),
5935           std::move(PendingTypeTestAssumeConstVCalls),
5936           std::move(PendingTypeCheckedLoadConstVCalls));
5937       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5938       FS->setModulePath(getThisModule()->first());
5939       FS->setOriginalName(VIAndOriginalGUID.second);
5940       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5941       break;
5942     }
5943     // FS_ALIAS: [valueid, flags, valueid]
5944     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5945     // they expect all aliasee summaries to be available.
5946     case bitc::FS_ALIAS: {
5947       unsigned ValueID = Record[0];
5948       uint64_t RawFlags = Record[1];
5949       unsigned AliaseeID = Record[2];
5950       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5951       auto AS = std::make_unique<AliasSummary>(Flags);
5952       // The module path string ref set in the summary must be owned by the
5953       // index's module string table. Since we don't have a module path
5954       // string table section in the per-module index, we create a single
5955       // module path string table entry with an empty (0) ID to take
5956       // ownership.
5957       AS->setModulePath(getThisModule()->first());
5958 
5959       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5960       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5961       if (!AliaseeInModule)
5962         return error("Alias expects aliasee summary to be parsed");
5963       AS->setAliasee(AliaseeVI, AliaseeInModule);
5964 
5965       auto GUID = getValueInfoFromValueId(ValueID);
5966       AS->setOriginalName(GUID.second);
5967       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5968       break;
5969     }
5970     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5971     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5972       unsigned ValueID = Record[0];
5973       uint64_t RawFlags = Record[1];
5974       unsigned RefArrayStart = 2;
5975       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
5976                                       /* WriteOnly */ false,
5977                                       /* Constant */ false);
5978       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5979       if (Version >= 5) {
5980         GVF = getDecodedGVarFlags(Record[2]);
5981         RefArrayStart = 3;
5982       }
5983       std::vector<ValueInfo> Refs =
5984           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5985       auto FS =
5986           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5987       FS->setModulePath(getThisModule()->first());
5988       auto GUID = getValueInfoFromValueId(ValueID);
5989       FS->setOriginalName(GUID.second);
5990       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5991       break;
5992     }
5993     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
5994     //                        numrefs, numrefs x valueid,
5995     //                        n x (valueid, offset)]
5996     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
5997       unsigned ValueID = Record[0];
5998       uint64_t RawFlags = Record[1];
5999       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6000       unsigned NumRefs = Record[3];
6001       unsigned RefListStartIndex = 4;
6002       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6003       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6004       std::vector<ValueInfo> Refs = makeRefList(
6005           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6006       VTableFuncList VTableFuncs;
6007       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6008         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6009         uint64_t Offset = Record[++I];
6010         VTableFuncs.push_back({Callee, Offset});
6011       }
6012       auto VS =
6013           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6014       VS->setModulePath(getThisModule()->first());
6015       VS->setVTableFuncs(VTableFuncs);
6016       auto GUID = getValueInfoFromValueId(ValueID);
6017       VS->setOriginalName(GUID.second);
6018       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6019       break;
6020     }
6021     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6022     //               numrefs x valueid, n x (valueid)]
6023     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6024     //                       numrefs x valueid, n x (valueid, hotness)]
6025     case bitc::FS_COMBINED:
6026     case bitc::FS_COMBINED_PROFILE: {
6027       unsigned ValueID = Record[0];
6028       uint64_t ModuleId = Record[1];
6029       uint64_t RawFlags = Record[2];
6030       unsigned InstCount = Record[3];
6031       uint64_t RawFunFlags = 0;
6032       uint64_t EntryCount = 0;
6033       unsigned NumRefs = Record[4];
6034       unsigned NumRORefs = 0, NumWORefs = 0;
6035       int RefListStartIndex = 5;
6036 
6037       if (Version >= 4) {
6038         RawFunFlags = Record[4];
6039         RefListStartIndex = 6;
6040         size_t NumRefsIndex = 5;
6041         if (Version >= 5) {
6042           unsigned NumRORefsOffset = 1;
6043           RefListStartIndex = 7;
6044           if (Version >= 6) {
6045             NumRefsIndex = 6;
6046             EntryCount = Record[5];
6047             RefListStartIndex = 8;
6048             if (Version >= 7) {
6049               RefListStartIndex = 9;
6050               NumWORefs = Record[8];
6051               NumRORefsOffset = 2;
6052             }
6053           }
6054           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6055         }
6056         NumRefs = Record[NumRefsIndex];
6057       }
6058 
6059       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6060       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6061       assert(Record.size() >= RefListStartIndex + NumRefs &&
6062              "Record size inconsistent with number of references");
6063       std::vector<ValueInfo> Refs = makeRefList(
6064           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6065       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6066       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6067           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6068           IsOldProfileFormat, HasProfile, false);
6069       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6070       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6071       auto FS = std::make_unique<FunctionSummary>(
6072           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6073           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6074           std::move(PendingTypeTestAssumeVCalls),
6075           std::move(PendingTypeCheckedLoadVCalls),
6076           std::move(PendingTypeTestAssumeConstVCalls),
6077           std::move(PendingTypeCheckedLoadConstVCalls));
6078       LastSeenSummary = FS.get();
6079       LastSeenGUID = VI.getGUID();
6080       FS->setModulePath(ModuleIdMap[ModuleId]);
6081       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6082       break;
6083     }
6084     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6085     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6086     // they expect all aliasee summaries to be available.
6087     case bitc::FS_COMBINED_ALIAS: {
6088       unsigned ValueID = Record[0];
6089       uint64_t ModuleId = Record[1];
6090       uint64_t RawFlags = Record[2];
6091       unsigned AliaseeValueId = Record[3];
6092       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6093       auto AS = std::make_unique<AliasSummary>(Flags);
6094       LastSeenSummary = AS.get();
6095       AS->setModulePath(ModuleIdMap[ModuleId]);
6096 
6097       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6098       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6099       AS->setAliasee(AliaseeVI, AliaseeInModule);
6100 
6101       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6102       LastSeenGUID = VI.getGUID();
6103       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6104       break;
6105     }
6106     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6107     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6108       unsigned ValueID = Record[0];
6109       uint64_t ModuleId = Record[1];
6110       uint64_t RawFlags = Record[2];
6111       unsigned RefArrayStart = 3;
6112       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6113                                       /* WriteOnly */ false,
6114                                       /* Constant */ false);
6115       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6116       if (Version >= 5) {
6117         GVF = getDecodedGVarFlags(Record[3]);
6118         RefArrayStart = 4;
6119       }
6120       std::vector<ValueInfo> Refs =
6121           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6122       auto FS =
6123           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6124       LastSeenSummary = FS.get();
6125       FS->setModulePath(ModuleIdMap[ModuleId]);
6126       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6127       LastSeenGUID = VI.getGUID();
6128       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6129       break;
6130     }
6131     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6132     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6133       uint64_t OriginalName = Record[0];
6134       if (!LastSeenSummary)
6135         return error("Name attachment that does not follow a combined record");
6136       LastSeenSummary->setOriginalName(OriginalName);
6137       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6138       // Reset the LastSeenSummary
6139       LastSeenSummary = nullptr;
6140       LastSeenGUID = 0;
6141       break;
6142     }
6143     case bitc::FS_TYPE_TESTS:
6144       assert(PendingTypeTests.empty());
6145       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6146                               Record.end());
6147       break;
6148 
6149     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6150       assert(PendingTypeTestAssumeVCalls.empty());
6151       for (unsigned I = 0; I != Record.size(); I += 2)
6152         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6153       break;
6154 
6155     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6156       assert(PendingTypeCheckedLoadVCalls.empty());
6157       for (unsigned I = 0; I != Record.size(); I += 2)
6158         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6159       break;
6160 
6161     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6162       PendingTypeTestAssumeConstVCalls.push_back(
6163           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6164       break;
6165 
6166     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6167       PendingTypeCheckedLoadConstVCalls.push_back(
6168           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6169       break;
6170 
6171     case bitc::FS_CFI_FUNCTION_DEFS: {
6172       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6173       for (unsigned I = 0; I != Record.size(); I += 2)
6174         CfiFunctionDefs.insert(
6175             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6176       break;
6177     }
6178 
6179     case bitc::FS_CFI_FUNCTION_DECLS: {
6180       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6181       for (unsigned I = 0; I != Record.size(); I += 2)
6182         CfiFunctionDecls.insert(
6183             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6184       break;
6185     }
6186 
6187     case bitc::FS_TYPE_ID:
6188       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6189       break;
6190 
6191     case bitc::FS_TYPE_ID_METADATA:
6192       parseTypeIdCompatibleVtableSummaryRecord(Record);
6193       break;
6194     }
6195   }
6196   llvm_unreachable("Exit infinite loop");
6197 }
6198 
6199 // Parse the  module string table block into the Index.
6200 // This populates the ModulePathStringTable map in the index.
6201 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6202   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6203     return Err;
6204 
6205   SmallVector<uint64_t, 64> Record;
6206 
6207   SmallString<128> ModulePath;
6208   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6209 
6210   while (true) {
6211     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6212     if (!MaybeEntry)
6213       return MaybeEntry.takeError();
6214     BitstreamEntry Entry = MaybeEntry.get();
6215 
6216     switch (Entry.Kind) {
6217     case BitstreamEntry::SubBlock: // Handled for us already.
6218     case BitstreamEntry::Error:
6219       return error("Malformed block");
6220     case BitstreamEntry::EndBlock:
6221       return Error::success();
6222     case BitstreamEntry::Record:
6223       // The interesting case.
6224       break;
6225     }
6226 
6227     Record.clear();
6228     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6229     if (!MaybeRecord)
6230       return MaybeRecord.takeError();
6231     switch (MaybeRecord.get()) {
6232     default: // Default behavior: ignore.
6233       break;
6234     case bitc::MST_CODE_ENTRY: {
6235       // MST_ENTRY: [modid, namechar x N]
6236       uint64_t ModuleId = Record[0];
6237 
6238       if (convertToString(Record, 1, ModulePath))
6239         return error("Invalid record");
6240 
6241       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6242       ModuleIdMap[ModuleId] = LastSeenModule->first();
6243 
6244       ModulePath.clear();
6245       break;
6246     }
6247     /// MST_CODE_HASH: [5*i32]
6248     case bitc::MST_CODE_HASH: {
6249       if (Record.size() != 5)
6250         return error("Invalid hash length " + Twine(Record.size()).str());
6251       if (!LastSeenModule)
6252         return error("Invalid hash that does not follow a module path");
6253       int Pos = 0;
6254       for (auto &Val : Record) {
6255         assert(!(Val >> 32) && "Unexpected high bits set");
6256         LastSeenModule->second.second[Pos++] = Val;
6257       }
6258       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6259       LastSeenModule = nullptr;
6260       break;
6261     }
6262     }
6263   }
6264   llvm_unreachable("Exit infinite loop");
6265 }
6266 
6267 namespace {
6268 
6269 // FIXME: This class is only here to support the transition to llvm::Error. It
6270 // will be removed once this transition is complete. Clients should prefer to
6271 // deal with the Error value directly, rather than converting to error_code.
6272 class BitcodeErrorCategoryType : public std::error_category {
6273   const char *name() const noexcept override {
6274     return "llvm.bitcode";
6275   }
6276 
6277   std::string message(int IE) const override {
6278     BitcodeError E = static_cast<BitcodeError>(IE);
6279     switch (E) {
6280     case BitcodeError::CorruptedBitcode:
6281       return "Corrupted bitcode";
6282     }
6283     llvm_unreachable("Unknown error type!");
6284   }
6285 };
6286 
6287 } // end anonymous namespace
6288 
6289 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6290 
6291 const std::error_category &llvm::BitcodeErrorCategory() {
6292   return *ErrorCategory;
6293 }
6294 
6295 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6296                                             unsigned Block, unsigned RecordID) {
6297   if (Error Err = Stream.EnterSubBlock(Block))
6298     return std::move(Err);
6299 
6300   StringRef Strtab;
6301   while (true) {
6302     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6303     if (!MaybeEntry)
6304       return MaybeEntry.takeError();
6305     llvm::BitstreamEntry Entry = MaybeEntry.get();
6306 
6307     switch (Entry.Kind) {
6308     case BitstreamEntry::EndBlock:
6309       return Strtab;
6310 
6311     case BitstreamEntry::Error:
6312       return error("Malformed block");
6313 
6314     case BitstreamEntry::SubBlock:
6315       if (Error Err = Stream.SkipBlock())
6316         return std::move(Err);
6317       break;
6318 
6319     case BitstreamEntry::Record:
6320       StringRef Blob;
6321       SmallVector<uint64_t, 1> Record;
6322       Expected<unsigned> MaybeRecord =
6323           Stream.readRecord(Entry.ID, Record, &Blob);
6324       if (!MaybeRecord)
6325         return MaybeRecord.takeError();
6326       if (MaybeRecord.get() == RecordID)
6327         Strtab = Blob;
6328       break;
6329     }
6330   }
6331 }
6332 
6333 //===----------------------------------------------------------------------===//
6334 // External interface
6335 //===----------------------------------------------------------------------===//
6336 
6337 Expected<std::vector<BitcodeModule>>
6338 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6339   auto FOrErr = getBitcodeFileContents(Buffer);
6340   if (!FOrErr)
6341     return FOrErr.takeError();
6342   return std::move(FOrErr->Mods);
6343 }
6344 
6345 Expected<BitcodeFileContents>
6346 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6347   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6348   if (!StreamOrErr)
6349     return StreamOrErr.takeError();
6350   BitstreamCursor &Stream = *StreamOrErr;
6351 
6352   BitcodeFileContents F;
6353   while (true) {
6354     uint64_t BCBegin = Stream.getCurrentByteNo();
6355 
6356     // We may be consuming bitcode from a client that leaves garbage at the end
6357     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6358     // the end that there cannot possibly be another module, stop looking.
6359     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6360       return F;
6361 
6362     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6363     if (!MaybeEntry)
6364       return MaybeEntry.takeError();
6365     llvm::BitstreamEntry Entry = MaybeEntry.get();
6366 
6367     switch (Entry.Kind) {
6368     case BitstreamEntry::EndBlock:
6369     case BitstreamEntry::Error:
6370       return error("Malformed block");
6371 
6372     case BitstreamEntry::SubBlock: {
6373       uint64_t IdentificationBit = -1ull;
6374       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6375         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6376         if (Error Err = Stream.SkipBlock())
6377           return std::move(Err);
6378 
6379         {
6380           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6381           if (!MaybeEntry)
6382             return MaybeEntry.takeError();
6383           Entry = MaybeEntry.get();
6384         }
6385 
6386         if (Entry.Kind != BitstreamEntry::SubBlock ||
6387             Entry.ID != bitc::MODULE_BLOCK_ID)
6388           return error("Malformed block");
6389       }
6390 
6391       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6392         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6393         if (Error Err = Stream.SkipBlock())
6394           return std::move(Err);
6395 
6396         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6397                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6398                           Buffer.getBufferIdentifier(), IdentificationBit,
6399                           ModuleBit});
6400         continue;
6401       }
6402 
6403       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6404         Expected<StringRef> Strtab =
6405             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6406         if (!Strtab)
6407           return Strtab.takeError();
6408         // This string table is used by every preceding bitcode module that does
6409         // not have its own string table. A bitcode file may have multiple
6410         // string tables if it was created by binary concatenation, for example
6411         // with "llvm-cat -b".
6412         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6413           if (!I->Strtab.empty())
6414             break;
6415           I->Strtab = *Strtab;
6416         }
6417         // Similarly, the string table is used by every preceding symbol table;
6418         // normally there will be just one unless the bitcode file was created
6419         // by binary concatenation.
6420         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6421           F.StrtabForSymtab = *Strtab;
6422         continue;
6423       }
6424 
6425       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6426         Expected<StringRef> SymtabOrErr =
6427             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6428         if (!SymtabOrErr)
6429           return SymtabOrErr.takeError();
6430 
6431         // We can expect the bitcode file to have multiple symbol tables if it
6432         // was created by binary concatenation. In that case we silently
6433         // ignore any subsequent symbol tables, which is fine because this is a
6434         // low level function. The client is expected to notice that the number
6435         // of modules in the symbol table does not match the number of modules
6436         // in the input file and regenerate the symbol table.
6437         if (F.Symtab.empty())
6438           F.Symtab = *SymtabOrErr;
6439         continue;
6440       }
6441 
6442       if (Error Err = Stream.SkipBlock())
6443         return std::move(Err);
6444       continue;
6445     }
6446     case BitstreamEntry::Record:
6447       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6448         continue;
6449       else
6450         return StreamFailed.takeError();
6451     }
6452   }
6453 }
6454 
6455 /// Get a lazy one-at-time loading module from bitcode.
6456 ///
6457 /// This isn't always used in a lazy context.  In particular, it's also used by
6458 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6459 /// in forward-referenced functions from block address references.
6460 ///
6461 /// \param[in] MaterializeAll Set to \c true if we should materialize
6462 /// everything.
6463 Expected<std::unique_ptr<Module>>
6464 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6465                              bool ShouldLazyLoadMetadata, bool IsImporting) {
6466   BitstreamCursor Stream(Buffer);
6467 
6468   std::string ProducerIdentification;
6469   if (IdentificationBit != -1ull) {
6470     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6471       return std::move(JumpFailed);
6472     Expected<std::string> ProducerIdentificationOrErr =
6473         readIdentificationBlock(Stream);
6474     if (!ProducerIdentificationOrErr)
6475       return ProducerIdentificationOrErr.takeError();
6476 
6477     ProducerIdentification = *ProducerIdentificationOrErr;
6478   }
6479 
6480   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6481     return std::move(JumpFailed);
6482   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6483                               Context);
6484 
6485   std::unique_ptr<Module> M =
6486       std::make_unique<Module>(ModuleIdentifier, Context);
6487   M->setMaterializer(R);
6488 
6489   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6490   if (Error Err =
6491           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6492     return std::move(Err);
6493 
6494   if (MaterializeAll) {
6495     // Read in the entire module, and destroy the BitcodeReader.
6496     if (Error Err = M->materializeAll())
6497       return std::move(Err);
6498   } else {
6499     // Resolve forward references from blockaddresses.
6500     if (Error Err = R->materializeForwardReferencedFunctions())
6501       return std::move(Err);
6502   }
6503   return std::move(M);
6504 }
6505 
6506 Expected<std::unique_ptr<Module>>
6507 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6508                              bool IsImporting) {
6509   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6510 }
6511 
6512 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6513 // We don't use ModuleIdentifier here because the client may need to control the
6514 // module path used in the combined summary (e.g. when reading summaries for
6515 // regular LTO modules).
6516 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6517                                  StringRef ModulePath, uint64_t ModuleId) {
6518   BitstreamCursor Stream(Buffer);
6519   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6520     return JumpFailed;
6521 
6522   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6523                                     ModulePath, ModuleId);
6524   return R.parseModule();
6525 }
6526 
6527 // Parse the specified bitcode buffer, returning the function info index.
6528 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6529   BitstreamCursor Stream(Buffer);
6530   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6531     return std::move(JumpFailed);
6532 
6533   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6534   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6535                                     ModuleIdentifier, 0);
6536 
6537   if (Error Err = R.parseModule())
6538     return std::move(Err);
6539 
6540   return std::move(Index);
6541 }
6542 
6543 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6544                                                 unsigned ID) {
6545   if (Error Err = Stream.EnterSubBlock(ID))
6546     return std::move(Err);
6547   SmallVector<uint64_t, 64> Record;
6548 
6549   while (true) {
6550     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6551     if (!MaybeEntry)
6552       return MaybeEntry.takeError();
6553     BitstreamEntry Entry = MaybeEntry.get();
6554 
6555     switch (Entry.Kind) {
6556     case BitstreamEntry::SubBlock: // Handled for us already.
6557     case BitstreamEntry::Error:
6558       return error("Malformed block");
6559     case BitstreamEntry::EndBlock:
6560       // If no flags record found, conservatively return true to mimic
6561       // behavior before this flag was added.
6562       return true;
6563     case BitstreamEntry::Record:
6564       // The interesting case.
6565       break;
6566     }
6567 
6568     // Look for the FS_FLAGS record.
6569     Record.clear();
6570     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6571     if (!MaybeBitCode)
6572       return MaybeBitCode.takeError();
6573     switch (MaybeBitCode.get()) {
6574     default: // Default behavior: ignore.
6575       break;
6576     case bitc::FS_FLAGS: { // [flags]
6577       uint64_t Flags = Record[0];
6578       // Scan flags.
6579       assert(Flags <= 0x3f && "Unexpected bits in flag");
6580 
6581       return Flags & 0x8;
6582     }
6583     }
6584   }
6585   llvm_unreachable("Exit infinite loop");
6586 }
6587 
6588 // Check if the given bitcode buffer contains a global value summary block.
6589 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6590   BitstreamCursor Stream(Buffer);
6591   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6592     return std::move(JumpFailed);
6593 
6594   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6595     return std::move(Err);
6596 
6597   while (true) {
6598     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6599     if (!MaybeEntry)
6600       return MaybeEntry.takeError();
6601     llvm::BitstreamEntry Entry = MaybeEntry.get();
6602 
6603     switch (Entry.Kind) {
6604     case BitstreamEntry::Error:
6605       return error("Malformed block");
6606     case BitstreamEntry::EndBlock:
6607       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6608                             /*EnableSplitLTOUnit=*/false};
6609 
6610     case BitstreamEntry::SubBlock:
6611       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6612         Expected<bool> EnableSplitLTOUnit =
6613             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6614         if (!EnableSplitLTOUnit)
6615           return EnableSplitLTOUnit.takeError();
6616         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6617                               *EnableSplitLTOUnit};
6618       }
6619 
6620       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6621         Expected<bool> EnableSplitLTOUnit =
6622             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6623         if (!EnableSplitLTOUnit)
6624           return EnableSplitLTOUnit.takeError();
6625         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6626                               *EnableSplitLTOUnit};
6627       }
6628 
6629       // Ignore other sub-blocks.
6630       if (Error Err = Stream.SkipBlock())
6631         return std::move(Err);
6632       continue;
6633 
6634     case BitstreamEntry::Record:
6635       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6636         continue;
6637       else
6638         return StreamFailed.takeError();
6639     }
6640   }
6641 }
6642 
6643 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6644   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6645   if (!MsOrErr)
6646     return MsOrErr.takeError();
6647 
6648   if (MsOrErr->size() != 1)
6649     return error("Expected a single module");
6650 
6651   return (*MsOrErr)[0];
6652 }
6653 
6654 Expected<std::unique_ptr<Module>>
6655 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6656                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6657   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6658   if (!BM)
6659     return BM.takeError();
6660 
6661   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6662 }
6663 
6664 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6665     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6666     bool ShouldLazyLoadMetadata, bool IsImporting) {
6667   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6668                                      IsImporting);
6669   if (MOrErr)
6670     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6671   return MOrErr;
6672 }
6673 
6674 Expected<std::unique_ptr<Module>>
6675 BitcodeModule::parseModule(LLVMContext &Context) {
6676   return getModuleImpl(Context, true, false, false);
6677   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6678   // written.  We must defer until the Module has been fully materialized.
6679 }
6680 
6681 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6682                                                          LLVMContext &Context) {
6683   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6684   if (!BM)
6685     return BM.takeError();
6686 
6687   return BM->parseModule(Context);
6688 }
6689 
6690 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6691   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6692   if (!StreamOrErr)
6693     return StreamOrErr.takeError();
6694 
6695   return readTriple(*StreamOrErr);
6696 }
6697 
6698 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6699   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6700   if (!StreamOrErr)
6701     return StreamOrErr.takeError();
6702 
6703   return hasObjCCategory(*StreamOrErr);
6704 }
6705 
6706 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6707   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6708   if (!StreamOrErr)
6709     return StreamOrErr.takeError();
6710 
6711   return readIdentificationCode(*StreamOrErr);
6712 }
6713 
6714 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6715                                    ModuleSummaryIndex &CombinedIndex,
6716                                    uint64_t ModuleId) {
6717   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6718   if (!BM)
6719     return BM.takeError();
6720 
6721   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6722 }
6723 
6724 Expected<std::unique_ptr<ModuleSummaryIndex>>
6725 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6726   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6727   if (!BM)
6728     return BM.takeError();
6729 
6730   return BM->getSummary();
6731 }
6732 
6733 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6734   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6735   if (!BM)
6736     return BM.takeError();
6737 
6738   return BM->getLTOInfo();
6739 }
6740 
6741 Expected<std::unique_ptr<ModuleSummaryIndex>>
6742 llvm::getModuleSummaryIndexForFile(StringRef Path,
6743                                    bool IgnoreEmptyThinLTOIndexFile) {
6744   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6745       MemoryBuffer::getFileOrSTDIN(Path);
6746   if (!FileOrErr)
6747     return errorCodeToError(FileOrErr.getError());
6748   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6749     return nullptr;
6750   return getModuleSummaryIndex(**FileOrErr);
6751 }
6752