1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSummaryIndex.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/ManagedStatic.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <deque>
78 #include <map>
79 #include <memory>
80 #include <set>
81 #include <string>
82 #include <system_error>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 static cl::opt<bool> PrintSummaryGUIDs(
90     "print-summary-global-ids", cl::init(false), cl::Hidden,
91     cl::desc(
92         "Print the global id for each value when reading the module summary"));
93 
94 namespace {
95 
96 enum {
97   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
98 };
99 
100 } // end anonymous namespace
101 
102 static Error error(const Twine &Message) {
103   return make_error<StringError>(
104       Message, make_error_code(BitcodeError::CorruptedBitcode));
105 }
106 
107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
108   if (!Stream.canSkipToPos(4))
109     return createStringError(std::errc::illegal_byte_sequence,
110                              "file too small to contain bitcode header");
111   for (unsigned C : {'B', 'C'})
112     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
113       if (Res.get() != C)
114         return createStringError(std::errc::illegal_byte_sequence,
115                                  "file doesn't start with bitcode header");
116     } else
117       return Res.takeError();
118   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
119     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
120       if (Res.get() != C)
121         return createStringError(std::errc::illegal_byte_sequence,
122                                  "file doesn't start with bitcode header");
123     } else
124       return Res.takeError();
125   return Error::success();
126 }
127 
128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
129   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
130   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
131 
132   if (Buffer.getBufferSize() & 3)
133     return error("Invalid bitcode signature");
134 
135   // If we have a wrapper header, parse it and ignore the non-bc file contents.
136   // The magic number is 0x0B17C0DE stored in little endian.
137   if (isBitcodeWrapper(BufPtr, BufEnd))
138     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
139       return error("Invalid bitcode wrapper header");
140 
141   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
142   if (Error Err = hasInvalidBitcodeHeader(Stream))
143     return std::move(Err);
144 
145   return std::move(Stream);
146 }
147 
148 /// Convert a string from a record into an std::string, return true on failure.
149 template <typename StrTy>
150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151                             StrTy &Result) {
152   if (Idx > Record.size())
153     return true;
154 
155   Result.append(Record.begin() + Idx, Record.end());
156   return false;
157 }
158 
159 // Strip all the TBAA attachment for the module.
160 static void stripTBAA(Module *M) {
161   for (auto &F : *M) {
162     if (F.isMaterializable())
163       continue;
164     for (auto &I : instructions(F))
165       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
166   }
167 }
168 
169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
170 /// "epoch" encoded in the bitcode, and return the producer name if any.
171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
172   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
173     return std::move(Err);
174 
175   // Read all the records.
176   SmallVector<uint64_t, 64> Record;
177 
178   std::string ProducerIdentification;
179 
180   while (true) {
181     BitstreamEntry Entry;
182     if (Error E = Stream.advance().moveInto(Entry))
183       return std::move(E);
184 
185     switch (Entry.Kind) {
186     default:
187     case BitstreamEntry::Error:
188       return error("Malformed block");
189     case BitstreamEntry::EndBlock:
190       return ProducerIdentification;
191     case BitstreamEntry::Record:
192       // The interesting case.
193       break;
194     }
195 
196     // Read a record.
197     Record.clear();
198     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
199     if (!MaybeBitCode)
200       return MaybeBitCode.takeError();
201     switch (MaybeBitCode.get()) {
202     default: // Default behavior: reject
203       return error("Invalid value");
204     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
205       convertToString(Record, 0, ProducerIdentification);
206       break;
207     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
208       unsigned epoch = (unsigned)Record[0];
209       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
210         return error(
211           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
212           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
213       }
214     }
215     }
216   }
217 }
218 
219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
220   // We expect a number of well-defined blocks, though we don't necessarily
221   // need to understand them all.
222   while (true) {
223     if (Stream.AtEndOfStream())
224       return "";
225 
226     BitstreamEntry Entry;
227     if (Error E = Stream.advance().moveInto(Entry))
228       return std::move(E);
229 
230     switch (Entry.Kind) {
231     case BitstreamEntry::EndBlock:
232     case BitstreamEntry::Error:
233       return error("Malformed block");
234 
235     case BitstreamEntry::SubBlock:
236       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
237         return readIdentificationBlock(Stream);
238 
239       // Ignore other sub-blocks.
240       if (Error Err = Stream.SkipBlock())
241         return std::move(Err);
242       continue;
243     case BitstreamEntry::Record:
244       if (Error E = Stream.skipRecord(Entry.ID).takeError())
245         return std::move(E);
246       continue;
247     }
248   }
249 }
250 
251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
252   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
253     return std::move(Err);
254 
255   SmallVector<uint64_t, 64> Record;
256   // Read all the records for this module.
257 
258   while (true) {
259     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
260     if (!MaybeEntry)
261       return MaybeEntry.takeError();
262     BitstreamEntry Entry = MaybeEntry.get();
263 
264     switch (Entry.Kind) {
265     case BitstreamEntry::SubBlock: // Handled for us already.
266     case BitstreamEntry::Error:
267       return error("Malformed block");
268     case BitstreamEntry::EndBlock:
269       return false;
270     case BitstreamEntry::Record:
271       // The interesting case.
272       break;
273     }
274 
275     // Read a record.
276     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
277     if (!MaybeRecord)
278       return MaybeRecord.takeError();
279     switch (MaybeRecord.get()) {
280     default:
281       break; // Default behavior, ignore unknown content.
282     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
283       std::string S;
284       if (convertToString(Record, 0, S))
285         return error("Invalid record");
286       // Check for the i386 and other (x86_64, ARM) conventions
287       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
288           S.find("__OBJC,__category") != std::string::npos)
289         return true;
290       break;
291     }
292     }
293     Record.clear();
294   }
295   llvm_unreachable("Exit infinite loop");
296 }
297 
298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
299   // We expect a number of well-defined blocks, though we don't necessarily
300   // need to understand them all.
301   while (true) {
302     BitstreamEntry Entry;
303     if (Error E = Stream.advance().moveInto(Entry))
304       return std::move(E);
305 
306     switch (Entry.Kind) {
307     case BitstreamEntry::Error:
308       return error("Malformed block");
309     case BitstreamEntry::EndBlock:
310       return false;
311 
312     case BitstreamEntry::SubBlock:
313       if (Entry.ID == bitc::MODULE_BLOCK_ID)
314         return hasObjCCategoryInModule(Stream);
315 
316       // Ignore other sub-blocks.
317       if (Error Err = Stream.SkipBlock())
318         return std::move(Err);
319       continue;
320 
321     case BitstreamEntry::Record:
322       if (Error E = Stream.skipRecord(Entry.ID).takeError())
323         return std::move(E);
324       continue;
325     }
326   }
327 }
328 
329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
330   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
331     return std::move(Err);
332 
333   SmallVector<uint64_t, 64> Record;
334 
335   std::string Triple;
336 
337   // Read all the records for this module.
338   while (true) {
339     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
340     if (!MaybeEntry)
341       return MaybeEntry.takeError();
342     BitstreamEntry Entry = MaybeEntry.get();
343 
344     switch (Entry.Kind) {
345     case BitstreamEntry::SubBlock: // Handled for us already.
346     case BitstreamEntry::Error:
347       return error("Malformed block");
348     case BitstreamEntry::EndBlock:
349       return Triple;
350     case BitstreamEntry::Record:
351       // The interesting case.
352       break;
353     }
354 
355     // Read a record.
356     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
357     if (!MaybeRecord)
358       return MaybeRecord.takeError();
359     switch (MaybeRecord.get()) {
360     default: break;  // Default behavior, ignore unknown content.
361     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
362       std::string S;
363       if (convertToString(Record, 0, S))
364         return error("Invalid record");
365       Triple = S;
366       break;
367     }
368     }
369     Record.clear();
370   }
371   llvm_unreachable("Exit infinite loop");
372 }
373 
374 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
375   // We expect a number of well-defined blocks, though we don't necessarily
376   // need to understand them all.
377   while (true) {
378     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
379     if (!MaybeEntry)
380       return MaybeEntry.takeError();
381     BitstreamEntry Entry = MaybeEntry.get();
382 
383     switch (Entry.Kind) {
384     case BitstreamEntry::Error:
385       return error("Malformed block");
386     case BitstreamEntry::EndBlock:
387       return "";
388 
389     case BitstreamEntry::SubBlock:
390       if (Entry.ID == bitc::MODULE_BLOCK_ID)
391         return readModuleTriple(Stream);
392 
393       // Ignore other sub-blocks.
394       if (Error Err = Stream.SkipBlock())
395         return std::move(Err);
396       continue;
397 
398     case BitstreamEntry::Record:
399       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
400         continue;
401       else
402         return Skipped.takeError();
403     }
404   }
405 }
406 
407 namespace {
408 
409 class BitcodeReaderBase {
410 protected:
411   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
412       : Stream(std::move(Stream)), Strtab(Strtab) {
413     this->Stream.setBlockInfo(&BlockInfo);
414   }
415 
416   BitstreamBlockInfo BlockInfo;
417   BitstreamCursor Stream;
418   StringRef Strtab;
419 
420   /// In version 2 of the bitcode we store names of global values and comdats in
421   /// a string table rather than in the VST.
422   bool UseStrtab = false;
423 
424   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
425 
426   /// If this module uses a string table, pop the reference to the string table
427   /// and return the referenced string and the rest of the record. Otherwise
428   /// just return the record itself.
429   std::pair<StringRef, ArrayRef<uint64_t>>
430   readNameFromStrtab(ArrayRef<uint64_t> Record);
431 
432   bool readBlockInfo();
433 
434   // Contains an arbitrary and optional string identifying the bitcode producer
435   std::string ProducerIdentification;
436 
437   Error error(const Twine &Message);
438 };
439 
440 } // end anonymous namespace
441 
442 Error BitcodeReaderBase::error(const Twine &Message) {
443   std::string FullMsg = Message.str();
444   if (!ProducerIdentification.empty())
445     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
446                LLVM_VERSION_STRING "')";
447   return ::error(FullMsg);
448 }
449 
450 Expected<unsigned>
451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
452   if (Record.empty())
453     return error("Invalid record");
454   unsigned ModuleVersion = Record[0];
455   if (ModuleVersion > 2)
456     return error("Invalid value");
457   UseStrtab = ModuleVersion >= 2;
458   return ModuleVersion;
459 }
460 
461 std::pair<StringRef, ArrayRef<uint64_t>>
462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
463   if (!UseStrtab)
464     return {"", Record};
465   // Invalid reference. Let the caller complain about the record being empty.
466   if (Record[0] + Record[1] > Strtab.size())
467     return {"", {}};
468   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
469 }
470 
471 namespace {
472 
473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
474   LLVMContext &Context;
475   Module *TheModule = nullptr;
476   // Next offset to start scanning for lazy parsing of function bodies.
477   uint64_t NextUnreadBit = 0;
478   // Last function offset found in the VST.
479   uint64_t LastFunctionBlockBit = 0;
480   bool SeenValueSymbolTable = false;
481   uint64_t VSTOffset = 0;
482 
483   std::vector<std::string> SectionTable;
484   std::vector<std::string> GCTable;
485 
486   std::vector<Type*> TypeList;
487   DenseMap<Function *, FunctionType *> FunctionTypes;
488   BitcodeReaderValueList ValueList;
489   Optional<MetadataLoader> MDLoader;
490   std::vector<Comdat *> ComdatList;
491   DenseSet<GlobalObject *> ImplicitComdatObjects;
492   SmallVector<Instruction *, 64> InstructionList;
493 
494   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
495   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
496 
497   struct FunctionOperandInfo {
498     Function *F;
499     unsigned PersonalityFn;
500     unsigned Prefix;
501     unsigned Prologue;
502   };
503   std::vector<FunctionOperandInfo> FunctionOperands;
504 
505   /// The set of attributes by index.  Index zero in the file is for null, and
506   /// is thus not represented here.  As such all indices are off by one.
507   std::vector<AttributeList> MAttributes;
508 
509   /// The set of attribute groups.
510   std::map<unsigned, AttributeList> MAttributeGroups;
511 
512   /// While parsing a function body, this is a list of the basic blocks for the
513   /// function.
514   std::vector<BasicBlock*> FunctionBBs;
515 
516   // When reading the module header, this list is populated with functions that
517   // have bodies later in the file.
518   std::vector<Function*> FunctionsWithBodies;
519 
520   // When intrinsic functions are encountered which require upgrading they are
521   // stored here with their replacement function.
522   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
523   UpdatedIntrinsicMap UpgradedIntrinsics;
524   // Intrinsics which were remangled because of types rename
525   UpdatedIntrinsicMap RemangledIntrinsics;
526 
527   // Several operations happen after the module header has been read, but
528   // before function bodies are processed. This keeps track of whether
529   // we've done this yet.
530   bool SeenFirstFunctionBody = false;
531 
532   /// When function bodies are initially scanned, this map contains info about
533   /// where to find deferred function body in the stream.
534   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
535 
536   /// When Metadata block is initially scanned when parsing the module, we may
537   /// choose to defer parsing of the metadata. This vector contains info about
538   /// which Metadata blocks are deferred.
539   std::vector<uint64_t> DeferredMetadataInfo;
540 
541   /// These are basic blocks forward-referenced by block addresses.  They are
542   /// inserted lazily into functions when they're loaded.  The basic block ID is
543   /// its index into the vector.
544   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
545   std::deque<Function *> BasicBlockFwdRefQueue;
546 
547   /// Indicates that we are using a new encoding for instruction operands where
548   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
549   /// instruction number, for a more compact encoding.  Some instruction
550   /// operands are not relative to the instruction ID: basic block numbers, and
551   /// types. Once the old style function blocks have been phased out, we would
552   /// not need this flag.
553   bool UseRelativeIDs = false;
554 
555   /// True if all functions will be materialized, negating the need to process
556   /// (e.g.) blockaddress forward references.
557   bool WillMaterializeAllForwardRefs = false;
558 
559   bool StripDebugInfo = false;
560   TBAAVerifier TBAAVerifyHelper;
561 
562   std::vector<std::string> BundleTags;
563   SmallVector<SyncScope::ID, 8> SSIDs;
564 
565 public:
566   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
567                 StringRef ProducerIdentification, LLVMContext &Context);
568 
569   Error materializeForwardReferencedFunctions();
570 
571   Error materialize(GlobalValue *GV) override;
572   Error materializeModule() override;
573   std::vector<StructType *> getIdentifiedStructTypes() const override;
574 
575   /// Main interface to parsing a bitcode buffer.
576   /// \returns true if an error occurred.
577   Error parseBitcodeInto(
578       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
579       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
580 
581   static uint64_t decodeSignRotatedValue(uint64_t V);
582 
583   /// Materialize any deferred Metadata block.
584   Error materializeMetadata() override;
585 
586   void setStripDebugInfo() override;
587 
588 private:
589   std::vector<StructType *> IdentifiedStructTypes;
590   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
591   StructType *createIdentifiedStructType(LLVMContext &Context);
592 
593   Type *getTypeByID(unsigned ID);
594 
595   Value *getFnValueByID(unsigned ID, Type *Ty) {
596     if (Ty && Ty->isMetadataTy())
597       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
598     return ValueList.getValueFwdRef(ID, Ty);
599   }
600 
601   Metadata *getFnMetadataByID(unsigned ID) {
602     return MDLoader->getMetadataFwdRefOrLoad(ID);
603   }
604 
605   BasicBlock *getBasicBlock(unsigned ID) const {
606     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
607     return FunctionBBs[ID];
608   }
609 
610   AttributeList getAttributes(unsigned i) const {
611     if (i-1 < MAttributes.size())
612       return MAttributes[i-1];
613     return AttributeList();
614   }
615 
616   /// Read a value/type pair out of the specified record from slot 'Slot'.
617   /// Increment Slot past the number of slots used in the record. Return true on
618   /// failure.
619   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
620                         unsigned InstNum, Value *&ResVal) {
621     if (Slot == Record.size()) return true;
622     unsigned ValNo = (unsigned)Record[Slot++];
623     // Adjust the ValNo, if it was encoded relative to the InstNum.
624     if (UseRelativeIDs)
625       ValNo = InstNum - ValNo;
626     if (ValNo < InstNum) {
627       // If this is not a forward reference, just return the value we already
628       // have.
629       ResVal = getFnValueByID(ValNo, nullptr);
630       return ResVal == nullptr;
631     }
632     if (Slot == Record.size())
633       return true;
634 
635     unsigned TypeNo = (unsigned)Record[Slot++];
636     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
637     return ResVal == nullptr;
638   }
639 
640   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
641   /// past the number of slots used by the value in the record. Return true if
642   /// there is an error.
643   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
644                 unsigned InstNum, Type *Ty, Value *&ResVal) {
645     if (getValue(Record, Slot, InstNum, Ty, ResVal))
646       return true;
647     // All values currently take a single record slot.
648     ++Slot;
649     return false;
650   }
651 
652   /// Like popValue, but does not increment the Slot number.
653   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
654                 unsigned InstNum, Type *Ty, Value *&ResVal) {
655     ResVal = getValue(Record, Slot, InstNum, Ty);
656     return ResVal == nullptr;
657   }
658 
659   /// Version of getValue that returns ResVal directly, or 0 if there is an
660   /// error.
661   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
662                   unsigned InstNum, Type *Ty) {
663     if (Slot == Record.size()) return nullptr;
664     unsigned ValNo = (unsigned)Record[Slot];
665     // Adjust the ValNo, if it was encoded relative to the InstNum.
666     if (UseRelativeIDs)
667       ValNo = InstNum - ValNo;
668     return getFnValueByID(ValNo, Ty);
669   }
670 
671   /// Like getValue, but decodes signed VBRs.
672   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
673                         unsigned InstNum, Type *Ty) {
674     if (Slot == Record.size()) return nullptr;
675     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
676     // Adjust the ValNo, if it was encoded relative to the InstNum.
677     if (UseRelativeIDs)
678       ValNo = InstNum - ValNo;
679     return getFnValueByID(ValNo, Ty);
680   }
681 
682   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
683   /// corresponding argument's pointee type. Also upgrades intrinsics that now
684   /// require an elementtype attribute.
685   void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
686 
687   /// Converts alignment exponent (i.e. power of two (or zero)) to the
688   /// corresponding alignment to use. If alignment is too large, returns
689   /// a corresponding error code.
690   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
691   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
692   Error parseModule(
693       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
694       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
695 
696   Error parseComdatRecord(ArrayRef<uint64_t> Record);
697   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
698   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
699   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
700                                         ArrayRef<uint64_t> Record);
701 
702   Error parseAttributeBlock();
703   Error parseAttributeGroupBlock();
704   Error parseTypeTable();
705   Error parseTypeTableBody();
706   Error parseOperandBundleTags();
707   Error parseSyncScopeNames();
708 
709   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
710                                 unsigned NameIndex, Triple &TT);
711   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
712                                ArrayRef<uint64_t> Record);
713   Error parseValueSymbolTable(uint64_t Offset = 0);
714   Error parseGlobalValueSymbolTable();
715   Error parseConstants();
716   Error rememberAndSkipFunctionBodies();
717   Error rememberAndSkipFunctionBody();
718   /// Save the positions of the Metadata blocks and skip parsing the blocks.
719   Error rememberAndSkipMetadata();
720   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
721   Error parseFunctionBody(Function *F);
722   Error globalCleanup();
723   Error resolveGlobalAndIndirectSymbolInits();
724   Error parseUseLists();
725   Error findFunctionInStream(
726       Function *F,
727       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
728 
729   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
730 };
731 
732 /// Class to manage reading and parsing function summary index bitcode
733 /// files/sections.
734 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
735   /// The module index built during parsing.
736   ModuleSummaryIndex &TheIndex;
737 
738   /// Indicates whether we have encountered a global value summary section
739   /// yet during parsing.
740   bool SeenGlobalValSummary = false;
741 
742   /// Indicates whether we have already parsed the VST, used for error checking.
743   bool SeenValueSymbolTable = false;
744 
745   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
746   /// Used to enable on-demand parsing of the VST.
747   uint64_t VSTOffset = 0;
748 
749   // Map to save ValueId to ValueInfo association that was recorded in the
750   // ValueSymbolTable. It is used after the VST is parsed to convert
751   // call graph edges read from the function summary from referencing
752   // callees by their ValueId to using the ValueInfo instead, which is how
753   // they are recorded in the summary index being built.
754   // We save a GUID which refers to the same global as the ValueInfo, but
755   // ignoring the linkage, i.e. for values other than local linkage they are
756   // identical.
757   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
758       ValueIdToValueInfoMap;
759 
760   /// Map populated during module path string table parsing, from the
761   /// module ID to a string reference owned by the index's module
762   /// path string table, used to correlate with combined index
763   /// summary records.
764   DenseMap<uint64_t, StringRef> ModuleIdMap;
765 
766   /// Original source file name recorded in a bitcode record.
767   std::string SourceFileName;
768 
769   /// The string identifier given to this module by the client, normally the
770   /// path to the bitcode file.
771   StringRef ModulePath;
772 
773   /// For per-module summary indexes, the unique numerical identifier given to
774   /// this module by the client.
775   unsigned ModuleId;
776 
777 public:
778   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
779                                   ModuleSummaryIndex &TheIndex,
780                                   StringRef ModulePath, unsigned ModuleId);
781 
782   Error parseModule();
783 
784 private:
785   void setValueGUID(uint64_t ValueID, StringRef ValueName,
786                     GlobalValue::LinkageTypes Linkage,
787                     StringRef SourceFileName);
788   Error parseValueSymbolTable(
789       uint64_t Offset,
790       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
791   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
792   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
793                                                     bool IsOldProfileFormat,
794                                                     bool HasProfile,
795                                                     bool HasRelBF);
796   Error parseEntireSummary(unsigned ID);
797   Error parseModuleStringTable();
798   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
799   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
800                                        TypeIdCompatibleVtableInfo &TypeId);
801   std::vector<FunctionSummary::ParamAccess>
802   parseParamAccesses(ArrayRef<uint64_t> Record);
803 
804   std::pair<ValueInfo, GlobalValue::GUID>
805   getValueInfoFromValueId(unsigned ValueId);
806 
807   void addThisModule();
808   ModuleSummaryIndex::ModuleInfo *getThisModule();
809 };
810 
811 } // end anonymous namespace
812 
813 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
814                                                     Error Err) {
815   if (Err) {
816     std::error_code EC;
817     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
818       EC = EIB.convertToErrorCode();
819       Ctx.emitError(EIB.message());
820     });
821     return EC;
822   }
823   return std::error_code();
824 }
825 
826 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
827                              StringRef ProducerIdentification,
828                              LLVMContext &Context)
829     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
830       ValueList(Context, Stream.SizeInBytes()) {
831   this->ProducerIdentification = std::string(ProducerIdentification);
832 }
833 
834 Error BitcodeReader::materializeForwardReferencedFunctions() {
835   if (WillMaterializeAllForwardRefs)
836     return Error::success();
837 
838   // Prevent recursion.
839   WillMaterializeAllForwardRefs = true;
840 
841   while (!BasicBlockFwdRefQueue.empty()) {
842     Function *F = BasicBlockFwdRefQueue.front();
843     BasicBlockFwdRefQueue.pop_front();
844     assert(F && "Expected valid function");
845     if (!BasicBlockFwdRefs.count(F))
846       // Already materialized.
847       continue;
848 
849     // Check for a function that isn't materializable to prevent an infinite
850     // loop.  When parsing a blockaddress stored in a global variable, there
851     // isn't a trivial way to check if a function will have a body without a
852     // linear search through FunctionsWithBodies, so just check it here.
853     if (!F->isMaterializable())
854       return error("Never resolved function from blockaddress");
855 
856     // Try to materialize F.
857     if (Error Err = materialize(F))
858       return Err;
859   }
860   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
861 
862   // Reset state.
863   WillMaterializeAllForwardRefs = false;
864   return Error::success();
865 }
866 
867 //===----------------------------------------------------------------------===//
868 //  Helper functions to implement forward reference resolution, etc.
869 //===----------------------------------------------------------------------===//
870 
871 static bool hasImplicitComdat(size_t Val) {
872   switch (Val) {
873   default:
874     return false;
875   case 1:  // Old WeakAnyLinkage
876   case 4:  // Old LinkOnceAnyLinkage
877   case 10: // Old WeakODRLinkage
878   case 11: // Old LinkOnceODRLinkage
879     return true;
880   }
881 }
882 
883 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
884   switch (Val) {
885   default: // Map unknown/new linkages to external
886   case 0:
887     return GlobalValue::ExternalLinkage;
888   case 2:
889     return GlobalValue::AppendingLinkage;
890   case 3:
891     return GlobalValue::InternalLinkage;
892   case 5:
893     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
894   case 6:
895     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
896   case 7:
897     return GlobalValue::ExternalWeakLinkage;
898   case 8:
899     return GlobalValue::CommonLinkage;
900   case 9:
901     return GlobalValue::PrivateLinkage;
902   case 12:
903     return GlobalValue::AvailableExternallyLinkage;
904   case 13:
905     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
906   case 14:
907     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
908   case 15:
909     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
910   case 1: // Old value with implicit comdat.
911   case 16:
912     return GlobalValue::WeakAnyLinkage;
913   case 10: // Old value with implicit comdat.
914   case 17:
915     return GlobalValue::WeakODRLinkage;
916   case 4: // Old value with implicit comdat.
917   case 18:
918     return GlobalValue::LinkOnceAnyLinkage;
919   case 11: // Old value with implicit comdat.
920   case 19:
921     return GlobalValue::LinkOnceODRLinkage;
922   }
923 }
924 
925 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
926   FunctionSummary::FFlags Flags;
927   Flags.ReadNone = RawFlags & 0x1;
928   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
929   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
930   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
931   Flags.NoInline = (RawFlags >> 4) & 0x1;
932   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
933   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
934   Flags.MayThrow = (RawFlags >> 7) & 0x1;
935   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
936   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
937   return Flags;
938 }
939 
940 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
941 //
942 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
943 // visibility: [8, 10).
944 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
945                                                             uint64_t Version) {
946   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
947   // like getDecodedLinkage() above. Any future change to the linkage enum and
948   // to getDecodedLinkage() will need to be taken into account here as above.
949   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
950   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
951   RawFlags = RawFlags >> 4;
952   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
953   // The Live flag wasn't introduced until version 3. For dead stripping
954   // to work correctly on earlier versions, we must conservatively treat all
955   // values as live.
956   bool Live = (RawFlags & 0x2) || Version < 3;
957   bool Local = (RawFlags & 0x4);
958   bool AutoHide = (RawFlags & 0x8);
959 
960   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
961                                      Live, Local, AutoHide);
962 }
963 
964 // Decode the flags for GlobalVariable in the summary
965 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
966   return GlobalVarSummary::GVarFlags(
967       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
968       (RawFlags & 0x4) ? true : false,
969       (GlobalObject::VCallVisibility)(RawFlags >> 3));
970 }
971 
972 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
973   switch (Val) {
974   default: // Map unknown visibilities to default.
975   case 0: return GlobalValue::DefaultVisibility;
976   case 1: return GlobalValue::HiddenVisibility;
977   case 2: return GlobalValue::ProtectedVisibility;
978   }
979 }
980 
981 static GlobalValue::DLLStorageClassTypes
982 getDecodedDLLStorageClass(unsigned Val) {
983   switch (Val) {
984   default: // Map unknown values to default.
985   case 0: return GlobalValue::DefaultStorageClass;
986   case 1: return GlobalValue::DLLImportStorageClass;
987   case 2: return GlobalValue::DLLExportStorageClass;
988   }
989 }
990 
991 static bool getDecodedDSOLocal(unsigned Val) {
992   switch(Val) {
993   default: // Map unknown values to preemptable.
994   case 0:  return false;
995   case 1:  return true;
996   }
997 }
998 
999 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1000   switch (Val) {
1001     case 0: return GlobalVariable::NotThreadLocal;
1002     default: // Map unknown non-zero value to general dynamic.
1003     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1004     case 2: return GlobalVariable::LocalDynamicTLSModel;
1005     case 3: return GlobalVariable::InitialExecTLSModel;
1006     case 4: return GlobalVariable::LocalExecTLSModel;
1007   }
1008 }
1009 
1010 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1011   switch (Val) {
1012     default: // Map unknown to UnnamedAddr::None.
1013     case 0: return GlobalVariable::UnnamedAddr::None;
1014     case 1: return GlobalVariable::UnnamedAddr::Global;
1015     case 2: return GlobalVariable::UnnamedAddr::Local;
1016   }
1017 }
1018 
1019 static int getDecodedCastOpcode(unsigned Val) {
1020   switch (Val) {
1021   default: return -1;
1022   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1023   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1024   case bitc::CAST_SEXT    : return Instruction::SExt;
1025   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1026   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1027   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1028   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1029   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1030   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1031   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1032   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1033   case bitc::CAST_BITCAST : return Instruction::BitCast;
1034   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1035   }
1036 }
1037 
1038 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1039   bool IsFP = Ty->isFPOrFPVectorTy();
1040   // UnOps are only valid for int/fp or vector of int/fp types
1041   if (!IsFP && !Ty->isIntOrIntVectorTy())
1042     return -1;
1043 
1044   switch (Val) {
1045   default:
1046     return -1;
1047   case bitc::UNOP_FNEG:
1048     return IsFP ? Instruction::FNeg : -1;
1049   }
1050 }
1051 
1052 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1053   bool IsFP = Ty->isFPOrFPVectorTy();
1054   // BinOps are only valid for int/fp or vector of int/fp types
1055   if (!IsFP && !Ty->isIntOrIntVectorTy())
1056     return -1;
1057 
1058   switch (Val) {
1059   default:
1060     return -1;
1061   case bitc::BINOP_ADD:
1062     return IsFP ? Instruction::FAdd : Instruction::Add;
1063   case bitc::BINOP_SUB:
1064     return IsFP ? Instruction::FSub : Instruction::Sub;
1065   case bitc::BINOP_MUL:
1066     return IsFP ? Instruction::FMul : Instruction::Mul;
1067   case bitc::BINOP_UDIV:
1068     return IsFP ? -1 : Instruction::UDiv;
1069   case bitc::BINOP_SDIV:
1070     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1071   case bitc::BINOP_UREM:
1072     return IsFP ? -1 : Instruction::URem;
1073   case bitc::BINOP_SREM:
1074     return IsFP ? Instruction::FRem : Instruction::SRem;
1075   case bitc::BINOP_SHL:
1076     return IsFP ? -1 : Instruction::Shl;
1077   case bitc::BINOP_LSHR:
1078     return IsFP ? -1 : Instruction::LShr;
1079   case bitc::BINOP_ASHR:
1080     return IsFP ? -1 : Instruction::AShr;
1081   case bitc::BINOP_AND:
1082     return IsFP ? -1 : Instruction::And;
1083   case bitc::BINOP_OR:
1084     return IsFP ? -1 : Instruction::Or;
1085   case bitc::BINOP_XOR:
1086     return IsFP ? -1 : Instruction::Xor;
1087   }
1088 }
1089 
1090 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1091   switch (Val) {
1092   default: return AtomicRMWInst::BAD_BINOP;
1093   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1094   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1095   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1096   case bitc::RMW_AND: return AtomicRMWInst::And;
1097   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1098   case bitc::RMW_OR: return AtomicRMWInst::Or;
1099   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1100   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1101   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1102   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1103   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1104   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1105   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1106   }
1107 }
1108 
1109 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1110   switch (Val) {
1111   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1112   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1113   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1114   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1115   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1116   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1117   default: // Map unknown orderings to sequentially-consistent.
1118   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1119   }
1120 }
1121 
1122 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1123   switch (Val) {
1124   default: // Map unknown selection kinds to any.
1125   case bitc::COMDAT_SELECTION_KIND_ANY:
1126     return Comdat::Any;
1127   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1128     return Comdat::ExactMatch;
1129   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1130     return Comdat::Largest;
1131   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1132     return Comdat::NoDeduplicate;
1133   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1134     return Comdat::SameSize;
1135   }
1136 }
1137 
1138 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1139   FastMathFlags FMF;
1140   if (0 != (Val & bitc::UnsafeAlgebra))
1141     FMF.setFast();
1142   if (0 != (Val & bitc::AllowReassoc))
1143     FMF.setAllowReassoc();
1144   if (0 != (Val & bitc::NoNaNs))
1145     FMF.setNoNaNs();
1146   if (0 != (Val & bitc::NoInfs))
1147     FMF.setNoInfs();
1148   if (0 != (Val & bitc::NoSignedZeros))
1149     FMF.setNoSignedZeros();
1150   if (0 != (Val & bitc::AllowReciprocal))
1151     FMF.setAllowReciprocal();
1152   if (0 != (Val & bitc::AllowContract))
1153     FMF.setAllowContract(true);
1154   if (0 != (Val & bitc::ApproxFunc))
1155     FMF.setApproxFunc();
1156   return FMF;
1157 }
1158 
1159 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1160   switch (Val) {
1161   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1162   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1163   }
1164 }
1165 
1166 Type *BitcodeReader::getTypeByID(unsigned ID) {
1167   // The type table size is always specified correctly.
1168   if (ID >= TypeList.size())
1169     return nullptr;
1170 
1171   if (Type *Ty = TypeList[ID])
1172     return Ty;
1173 
1174   // If we have a forward reference, the only possible case is when it is to a
1175   // named struct.  Just create a placeholder for now.
1176   return TypeList[ID] = createIdentifiedStructType(Context);
1177 }
1178 
1179 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1180                                                       StringRef Name) {
1181   auto *Ret = StructType::create(Context, Name);
1182   IdentifiedStructTypes.push_back(Ret);
1183   return Ret;
1184 }
1185 
1186 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1187   auto *Ret = StructType::create(Context);
1188   IdentifiedStructTypes.push_back(Ret);
1189   return Ret;
1190 }
1191 
1192 //===----------------------------------------------------------------------===//
1193 //  Functions for parsing blocks from the bitcode file
1194 //===----------------------------------------------------------------------===//
1195 
1196 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1197   switch (Val) {
1198   case Attribute::EndAttrKinds:
1199   case Attribute::EmptyKey:
1200   case Attribute::TombstoneKey:
1201     llvm_unreachable("Synthetic enumerators which should never get here");
1202 
1203   case Attribute::None:            return 0;
1204   case Attribute::ZExt:            return 1 << 0;
1205   case Attribute::SExt:            return 1 << 1;
1206   case Attribute::NoReturn:        return 1 << 2;
1207   case Attribute::InReg:           return 1 << 3;
1208   case Attribute::StructRet:       return 1 << 4;
1209   case Attribute::NoUnwind:        return 1 << 5;
1210   case Attribute::NoAlias:         return 1 << 6;
1211   case Attribute::ByVal:           return 1 << 7;
1212   case Attribute::Nest:            return 1 << 8;
1213   case Attribute::ReadNone:        return 1 << 9;
1214   case Attribute::ReadOnly:        return 1 << 10;
1215   case Attribute::NoInline:        return 1 << 11;
1216   case Attribute::AlwaysInline:    return 1 << 12;
1217   case Attribute::OptimizeForSize: return 1 << 13;
1218   case Attribute::StackProtect:    return 1 << 14;
1219   case Attribute::StackProtectReq: return 1 << 15;
1220   case Attribute::Alignment:       return 31 << 16;
1221   case Attribute::NoCapture:       return 1 << 21;
1222   case Attribute::NoRedZone:       return 1 << 22;
1223   case Attribute::NoImplicitFloat: return 1 << 23;
1224   case Attribute::Naked:           return 1 << 24;
1225   case Attribute::InlineHint:      return 1 << 25;
1226   case Attribute::StackAlignment:  return 7 << 26;
1227   case Attribute::ReturnsTwice:    return 1 << 29;
1228   case Attribute::UWTable:         return 1 << 30;
1229   case Attribute::NonLazyBind:     return 1U << 31;
1230   case Attribute::SanitizeAddress: return 1ULL << 32;
1231   case Attribute::MinSize:         return 1ULL << 33;
1232   case Attribute::NoDuplicate:     return 1ULL << 34;
1233   case Attribute::StackProtectStrong: return 1ULL << 35;
1234   case Attribute::SanitizeThread:  return 1ULL << 36;
1235   case Attribute::SanitizeMemory:  return 1ULL << 37;
1236   case Attribute::NoBuiltin:       return 1ULL << 38;
1237   case Attribute::Returned:        return 1ULL << 39;
1238   case Attribute::Cold:            return 1ULL << 40;
1239   case Attribute::Builtin:         return 1ULL << 41;
1240   case Attribute::OptimizeNone:    return 1ULL << 42;
1241   case Attribute::InAlloca:        return 1ULL << 43;
1242   case Attribute::NonNull:         return 1ULL << 44;
1243   case Attribute::JumpTable:       return 1ULL << 45;
1244   case Attribute::Convergent:      return 1ULL << 46;
1245   case Attribute::SafeStack:       return 1ULL << 47;
1246   case Attribute::NoRecurse:       return 1ULL << 48;
1247   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1248   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1249   case Attribute::SwiftSelf:       return 1ULL << 51;
1250   case Attribute::SwiftError:      return 1ULL << 52;
1251   case Attribute::WriteOnly:       return 1ULL << 53;
1252   case Attribute::Speculatable:    return 1ULL << 54;
1253   case Attribute::StrictFP:        return 1ULL << 55;
1254   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1255   case Attribute::NoCfCheck:       return 1ULL << 57;
1256   case Attribute::OptForFuzzing:   return 1ULL << 58;
1257   case Attribute::ShadowCallStack: return 1ULL << 59;
1258   case Attribute::SpeculativeLoadHardening:
1259     return 1ULL << 60;
1260   case Attribute::ImmArg:
1261     return 1ULL << 61;
1262   case Attribute::WillReturn:
1263     return 1ULL << 62;
1264   case Attribute::NoFree:
1265     return 1ULL << 63;
1266   default:
1267     // Other attributes are not supported in the raw format,
1268     // as we ran out of space.
1269     return 0;
1270   }
1271   llvm_unreachable("Unsupported attribute type");
1272 }
1273 
1274 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1275   if (!Val) return;
1276 
1277   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1278        I = Attribute::AttrKind(I + 1)) {
1279     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1280       if (I == Attribute::Alignment)
1281         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1282       else if (I == Attribute::StackAlignment)
1283         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1284       else if (Attribute::isTypeAttrKind(I))
1285         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1286       else
1287         B.addAttribute(I);
1288     }
1289   }
1290 }
1291 
1292 /// This fills an AttrBuilder object with the LLVM attributes that have
1293 /// been decoded from the given integer. This function must stay in sync with
1294 /// 'encodeLLVMAttributesForBitcode'.
1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1296                                            uint64_t EncodedAttrs) {
1297   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1298   // the bits above 31 down by 11 bits.
1299   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1300   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1301          "Alignment must be a power of two.");
1302 
1303   if (Alignment)
1304     B.addAlignmentAttr(Alignment);
1305   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1306                           (EncodedAttrs & 0xffff));
1307 }
1308 
1309 Error BitcodeReader::parseAttributeBlock() {
1310   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1311     return Err;
1312 
1313   if (!MAttributes.empty())
1314     return error("Invalid multiple blocks");
1315 
1316   SmallVector<uint64_t, 64> Record;
1317 
1318   SmallVector<AttributeList, 8> Attrs;
1319 
1320   // Read all the records.
1321   while (true) {
1322     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1323     if (!MaybeEntry)
1324       return MaybeEntry.takeError();
1325     BitstreamEntry Entry = MaybeEntry.get();
1326 
1327     switch (Entry.Kind) {
1328     case BitstreamEntry::SubBlock: // Handled for us already.
1329     case BitstreamEntry::Error:
1330       return error("Malformed block");
1331     case BitstreamEntry::EndBlock:
1332       return Error::success();
1333     case BitstreamEntry::Record:
1334       // The interesting case.
1335       break;
1336     }
1337 
1338     // Read a record.
1339     Record.clear();
1340     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1341     if (!MaybeRecord)
1342       return MaybeRecord.takeError();
1343     switch (MaybeRecord.get()) {
1344     default:  // Default behavior: ignore.
1345       break;
1346     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1347       // Deprecated, but still needed to read old bitcode files.
1348       if (Record.size() & 1)
1349         return error("Invalid record");
1350 
1351       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1352         AttrBuilder B;
1353         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1354         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1355       }
1356 
1357       MAttributes.push_back(AttributeList::get(Context, Attrs));
1358       Attrs.clear();
1359       break;
1360     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1361       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1362         Attrs.push_back(MAttributeGroups[Record[i]]);
1363 
1364       MAttributes.push_back(AttributeList::get(Context, Attrs));
1365       Attrs.clear();
1366       break;
1367     }
1368   }
1369 }
1370 
1371 // Returns Attribute::None on unrecognized codes.
1372 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1373   switch (Code) {
1374   default:
1375     return Attribute::None;
1376   case bitc::ATTR_KIND_ALIGNMENT:
1377     return Attribute::Alignment;
1378   case bitc::ATTR_KIND_ALWAYS_INLINE:
1379     return Attribute::AlwaysInline;
1380   case bitc::ATTR_KIND_ARGMEMONLY:
1381     return Attribute::ArgMemOnly;
1382   case bitc::ATTR_KIND_BUILTIN:
1383     return Attribute::Builtin;
1384   case bitc::ATTR_KIND_BY_VAL:
1385     return Attribute::ByVal;
1386   case bitc::ATTR_KIND_IN_ALLOCA:
1387     return Attribute::InAlloca;
1388   case bitc::ATTR_KIND_COLD:
1389     return Attribute::Cold;
1390   case bitc::ATTR_KIND_CONVERGENT:
1391     return Attribute::Convergent;
1392   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1393     return Attribute::DisableSanitizerInstrumentation;
1394   case bitc::ATTR_KIND_ELEMENTTYPE:
1395     return Attribute::ElementType;
1396   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1397     return Attribute::InaccessibleMemOnly;
1398   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1399     return Attribute::InaccessibleMemOrArgMemOnly;
1400   case bitc::ATTR_KIND_INLINE_HINT:
1401     return Attribute::InlineHint;
1402   case bitc::ATTR_KIND_IN_REG:
1403     return Attribute::InReg;
1404   case bitc::ATTR_KIND_JUMP_TABLE:
1405     return Attribute::JumpTable;
1406   case bitc::ATTR_KIND_MIN_SIZE:
1407     return Attribute::MinSize;
1408   case bitc::ATTR_KIND_NAKED:
1409     return Attribute::Naked;
1410   case bitc::ATTR_KIND_NEST:
1411     return Attribute::Nest;
1412   case bitc::ATTR_KIND_NO_ALIAS:
1413     return Attribute::NoAlias;
1414   case bitc::ATTR_KIND_NO_BUILTIN:
1415     return Attribute::NoBuiltin;
1416   case bitc::ATTR_KIND_NO_CALLBACK:
1417     return Attribute::NoCallback;
1418   case bitc::ATTR_KIND_NO_CAPTURE:
1419     return Attribute::NoCapture;
1420   case bitc::ATTR_KIND_NO_DUPLICATE:
1421     return Attribute::NoDuplicate;
1422   case bitc::ATTR_KIND_NOFREE:
1423     return Attribute::NoFree;
1424   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1425     return Attribute::NoImplicitFloat;
1426   case bitc::ATTR_KIND_NO_INLINE:
1427     return Attribute::NoInline;
1428   case bitc::ATTR_KIND_NO_RECURSE:
1429     return Attribute::NoRecurse;
1430   case bitc::ATTR_KIND_NO_MERGE:
1431     return Attribute::NoMerge;
1432   case bitc::ATTR_KIND_NON_LAZY_BIND:
1433     return Attribute::NonLazyBind;
1434   case bitc::ATTR_KIND_NON_NULL:
1435     return Attribute::NonNull;
1436   case bitc::ATTR_KIND_DEREFERENCEABLE:
1437     return Attribute::Dereferenceable;
1438   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1439     return Attribute::DereferenceableOrNull;
1440   case bitc::ATTR_KIND_ALLOC_SIZE:
1441     return Attribute::AllocSize;
1442   case bitc::ATTR_KIND_NO_RED_ZONE:
1443     return Attribute::NoRedZone;
1444   case bitc::ATTR_KIND_NO_RETURN:
1445     return Attribute::NoReturn;
1446   case bitc::ATTR_KIND_NOSYNC:
1447     return Attribute::NoSync;
1448   case bitc::ATTR_KIND_NOCF_CHECK:
1449     return Attribute::NoCfCheck;
1450   case bitc::ATTR_KIND_NO_PROFILE:
1451     return Attribute::NoProfile;
1452   case bitc::ATTR_KIND_NO_UNWIND:
1453     return Attribute::NoUnwind;
1454   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1455     return Attribute::NoSanitizeCoverage;
1456   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1457     return Attribute::NullPointerIsValid;
1458   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1459     return Attribute::OptForFuzzing;
1460   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1461     return Attribute::OptimizeForSize;
1462   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1463     return Attribute::OptimizeNone;
1464   case bitc::ATTR_KIND_READ_NONE:
1465     return Attribute::ReadNone;
1466   case bitc::ATTR_KIND_READ_ONLY:
1467     return Attribute::ReadOnly;
1468   case bitc::ATTR_KIND_RETURNED:
1469     return Attribute::Returned;
1470   case bitc::ATTR_KIND_RETURNS_TWICE:
1471     return Attribute::ReturnsTwice;
1472   case bitc::ATTR_KIND_S_EXT:
1473     return Attribute::SExt;
1474   case bitc::ATTR_KIND_SPECULATABLE:
1475     return Attribute::Speculatable;
1476   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1477     return Attribute::StackAlignment;
1478   case bitc::ATTR_KIND_STACK_PROTECT:
1479     return Attribute::StackProtect;
1480   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1481     return Attribute::StackProtectReq;
1482   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1483     return Attribute::StackProtectStrong;
1484   case bitc::ATTR_KIND_SAFESTACK:
1485     return Attribute::SafeStack;
1486   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1487     return Attribute::ShadowCallStack;
1488   case bitc::ATTR_KIND_STRICT_FP:
1489     return Attribute::StrictFP;
1490   case bitc::ATTR_KIND_STRUCT_RET:
1491     return Attribute::StructRet;
1492   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1493     return Attribute::SanitizeAddress;
1494   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1495     return Attribute::SanitizeHWAddress;
1496   case bitc::ATTR_KIND_SANITIZE_THREAD:
1497     return Attribute::SanitizeThread;
1498   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1499     return Attribute::SanitizeMemory;
1500   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1501     return Attribute::SpeculativeLoadHardening;
1502   case bitc::ATTR_KIND_SWIFT_ERROR:
1503     return Attribute::SwiftError;
1504   case bitc::ATTR_KIND_SWIFT_SELF:
1505     return Attribute::SwiftSelf;
1506   case bitc::ATTR_KIND_SWIFT_ASYNC:
1507     return Attribute::SwiftAsync;
1508   case bitc::ATTR_KIND_UW_TABLE:
1509     return Attribute::UWTable;
1510   case bitc::ATTR_KIND_VSCALE_RANGE:
1511     return Attribute::VScaleRange;
1512   case bitc::ATTR_KIND_WILLRETURN:
1513     return Attribute::WillReturn;
1514   case bitc::ATTR_KIND_WRITEONLY:
1515     return Attribute::WriteOnly;
1516   case bitc::ATTR_KIND_Z_EXT:
1517     return Attribute::ZExt;
1518   case bitc::ATTR_KIND_IMMARG:
1519     return Attribute::ImmArg;
1520   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1521     return Attribute::SanitizeMemTag;
1522   case bitc::ATTR_KIND_PREALLOCATED:
1523     return Attribute::Preallocated;
1524   case bitc::ATTR_KIND_NOUNDEF:
1525     return Attribute::NoUndef;
1526   case bitc::ATTR_KIND_BYREF:
1527     return Attribute::ByRef;
1528   case bitc::ATTR_KIND_MUSTPROGRESS:
1529     return Attribute::MustProgress;
1530   case bitc::ATTR_KIND_HOT:
1531     return Attribute::Hot;
1532   }
1533 }
1534 
1535 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1536                                          MaybeAlign &Alignment) {
1537   // Note: Alignment in bitcode files is incremented by 1, so that zero
1538   // can be used for default alignment.
1539   if (Exponent > Value::MaxAlignmentExponent + 1)
1540     return error("Invalid alignment value");
1541   Alignment = decodeMaybeAlign(Exponent);
1542   return Error::success();
1543 }
1544 
1545 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1546   *Kind = getAttrFromCode(Code);
1547   if (*Kind == Attribute::None)
1548     return error("Unknown attribute kind (" + Twine(Code) + ")");
1549   return Error::success();
1550 }
1551 
1552 Error BitcodeReader::parseAttributeGroupBlock() {
1553   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1554     return Err;
1555 
1556   if (!MAttributeGroups.empty())
1557     return error("Invalid multiple blocks");
1558 
1559   SmallVector<uint64_t, 64> Record;
1560 
1561   // Read all the records.
1562   while (true) {
1563     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1564     if (!MaybeEntry)
1565       return MaybeEntry.takeError();
1566     BitstreamEntry Entry = MaybeEntry.get();
1567 
1568     switch (Entry.Kind) {
1569     case BitstreamEntry::SubBlock: // Handled for us already.
1570     case BitstreamEntry::Error:
1571       return error("Malformed block");
1572     case BitstreamEntry::EndBlock:
1573       return Error::success();
1574     case BitstreamEntry::Record:
1575       // The interesting case.
1576       break;
1577     }
1578 
1579     // Read a record.
1580     Record.clear();
1581     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1582     if (!MaybeRecord)
1583       return MaybeRecord.takeError();
1584     switch (MaybeRecord.get()) {
1585     default:  // Default behavior: ignore.
1586       break;
1587     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1588       if (Record.size() < 3)
1589         return error("Invalid record");
1590 
1591       uint64_t GrpID = Record[0];
1592       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1593 
1594       AttrBuilder B;
1595       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1596         if (Record[i] == 0) {        // Enum attribute
1597           Attribute::AttrKind Kind;
1598           if (Error Err = parseAttrKind(Record[++i], &Kind))
1599             return Err;
1600 
1601           // Upgrade old-style byval attribute to one with a type, even if it's
1602           // nullptr. We will have to insert the real type when we associate
1603           // this AttributeList with a function.
1604           if (Kind == Attribute::ByVal)
1605             B.addByValAttr(nullptr);
1606           else if (Kind == Attribute::StructRet)
1607             B.addStructRetAttr(nullptr);
1608           else if (Kind == Attribute::InAlloca)
1609             B.addInAllocaAttr(nullptr);
1610           else if (Attribute::isEnumAttrKind(Kind))
1611             B.addAttribute(Kind);
1612           else
1613             return error("Not an enum attribute");
1614         } else if (Record[i] == 1) { // Integer attribute
1615           Attribute::AttrKind Kind;
1616           if (Error Err = parseAttrKind(Record[++i], &Kind))
1617             return Err;
1618           if (!Attribute::isIntAttrKind(Kind))
1619             return error("Not an int attribute");
1620           if (Kind == Attribute::Alignment)
1621             B.addAlignmentAttr(Record[++i]);
1622           else if (Kind == Attribute::StackAlignment)
1623             B.addStackAlignmentAttr(Record[++i]);
1624           else if (Kind == Attribute::Dereferenceable)
1625             B.addDereferenceableAttr(Record[++i]);
1626           else if (Kind == Attribute::DereferenceableOrNull)
1627             B.addDereferenceableOrNullAttr(Record[++i]);
1628           else if (Kind == Attribute::AllocSize)
1629             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1630           else if (Kind == Attribute::VScaleRange)
1631             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1632         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1633           bool HasValue = (Record[i++] == 4);
1634           SmallString<64> KindStr;
1635           SmallString<64> ValStr;
1636 
1637           while (Record[i] != 0 && i != e)
1638             KindStr += Record[i++];
1639           assert(Record[i] == 0 && "Kind string not null terminated");
1640 
1641           if (HasValue) {
1642             // Has a value associated with it.
1643             ++i; // Skip the '0' that terminates the "kind" string.
1644             while (Record[i] != 0 && i != e)
1645               ValStr += Record[i++];
1646             assert(Record[i] == 0 && "Value string not null terminated");
1647           }
1648 
1649           B.addAttribute(KindStr.str(), ValStr.str());
1650         } else {
1651           assert((Record[i] == 5 || Record[i] == 6) &&
1652                  "Invalid attribute group entry");
1653           bool HasType = Record[i] == 6;
1654           Attribute::AttrKind Kind;
1655           if (Error Err = parseAttrKind(Record[++i], &Kind))
1656             return Err;
1657           if (!Attribute::isTypeAttrKind(Kind))
1658             return error("Not a type attribute");
1659 
1660           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1661         }
1662       }
1663 
1664       UpgradeAttributes(B);
1665       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1666       break;
1667     }
1668     }
1669   }
1670 }
1671 
1672 Error BitcodeReader::parseTypeTable() {
1673   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1674     return Err;
1675 
1676   return parseTypeTableBody();
1677 }
1678 
1679 Error BitcodeReader::parseTypeTableBody() {
1680   if (!TypeList.empty())
1681     return error("Invalid multiple blocks");
1682 
1683   SmallVector<uint64_t, 64> Record;
1684   unsigned NumRecords = 0;
1685 
1686   SmallString<64> TypeName;
1687 
1688   // Read all the records for this type table.
1689   while (true) {
1690     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1691     if (!MaybeEntry)
1692       return MaybeEntry.takeError();
1693     BitstreamEntry Entry = MaybeEntry.get();
1694 
1695     switch (Entry.Kind) {
1696     case BitstreamEntry::SubBlock: // Handled for us already.
1697     case BitstreamEntry::Error:
1698       return error("Malformed block");
1699     case BitstreamEntry::EndBlock:
1700       if (NumRecords != TypeList.size())
1701         return error("Malformed block");
1702       return Error::success();
1703     case BitstreamEntry::Record:
1704       // The interesting case.
1705       break;
1706     }
1707 
1708     // Read a record.
1709     Record.clear();
1710     Type *ResultTy = nullptr;
1711     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1712     if (!MaybeRecord)
1713       return MaybeRecord.takeError();
1714     switch (MaybeRecord.get()) {
1715     default:
1716       return error("Invalid value");
1717     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1718       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1719       // type list.  This allows us to reserve space.
1720       if (Record.empty())
1721         return error("Invalid record");
1722       TypeList.resize(Record[0]);
1723       continue;
1724     case bitc::TYPE_CODE_VOID:      // VOID
1725       ResultTy = Type::getVoidTy(Context);
1726       break;
1727     case bitc::TYPE_CODE_HALF:     // HALF
1728       ResultTy = Type::getHalfTy(Context);
1729       break;
1730     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1731       ResultTy = Type::getBFloatTy(Context);
1732       break;
1733     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1734       ResultTy = Type::getFloatTy(Context);
1735       break;
1736     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1737       ResultTy = Type::getDoubleTy(Context);
1738       break;
1739     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1740       ResultTy = Type::getX86_FP80Ty(Context);
1741       break;
1742     case bitc::TYPE_CODE_FP128:     // FP128
1743       ResultTy = Type::getFP128Ty(Context);
1744       break;
1745     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1746       ResultTy = Type::getPPC_FP128Ty(Context);
1747       break;
1748     case bitc::TYPE_CODE_LABEL:     // LABEL
1749       ResultTy = Type::getLabelTy(Context);
1750       break;
1751     case bitc::TYPE_CODE_METADATA:  // METADATA
1752       ResultTy = Type::getMetadataTy(Context);
1753       break;
1754     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1755       ResultTy = Type::getX86_MMXTy(Context);
1756       break;
1757     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1758       ResultTy = Type::getX86_AMXTy(Context);
1759       break;
1760     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1761       ResultTy = Type::getTokenTy(Context);
1762       break;
1763     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1764       if (Record.empty())
1765         return error("Invalid record");
1766 
1767       uint64_t NumBits = Record[0];
1768       if (NumBits < IntegerType::MIN_INT_BITS ||
1769           NumBits > IntegerType::MAX_INT_BITS)
1770         return error("Bitwidth for integer type out of range");
1771       ResultTy = IntegerType::get(Context, NumBits);
1772       break;
1773     }
1774     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1775                                     //          [pointee type, address space]
1776       if (Record.empty())
1777         return error("Invalid record");
1778       unsigned AddressSpace = 0;
1779       if (Record.size() == 2)
1780         AddressSpace = Record[1];
1781       ResultTy = getTypeByID(Record[0]);
1782       if (!ResultTy ||
1783           !PointerType::isValidElementType(ResultTy))
1784         return error("Invalid type");
1785       ResultTy = PointerType::get(ResultTy, AddressSpace);
1786       break;
1787     }
1788     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1789       if (Record.size() != 1)
1790         return error("Invalid record");
1791       if (Context.supportsTypedPointers())
1792         return error(
1793             "Opaque pointers are only supported in -opaque-pointers mode");
1794       unsigned AddressSpace = Record[0];
1795       ResultTy = PointerType::get(Context, AddressSpace);
1796       break;
1797     }
1798     case bitc::TYPE_CODE_FUNCTION_OLD: {
1799       // Deprecated, but still needed to read old bitcode files.
1800       // FUNCTION: [vararg, attrid, retty, paramty x N]
1801       if (Record.size() < 3)
1802         return error("Invalid record");
1803       SmallVector<Type*, 8> ArgTys;
1804       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1805         if (Type *T = getTypeByID(Record[i]))
1806           ArgTys.push_back(T);
1807         else
1808           break;
1809       }
1810 
1811       ResultTy = getTypeByID(Record[2]);
1812       if (!ResultTy || ArgTys.size() < Record.size()-3)
1813         return error("Invalid type");
1814 
1815       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1816       break;
1817     }
1818     case bitc::TYPE_CODE_FUNCTION: {
1819       // FUNCTION: [vararg, retty, paramty x N]
1820       if (Record.size() < 2)
1821         return error("Invalid record");
1822       SmallVector<Type*, 8> ArgTys;
1823       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1824         if (Type *T = getTypeByID(Record[i])) {
1825           if (!FunctionType::isValidArgumentType(T))
1826             return error("Invalid function argument type");
1827           ArgTys.push_back(T);
1828         }
1829         else
1830           break;
1831       }
1832 
1833       ResultTy = getTypeByID(Record[1]);
1834       if (!ResultTy || ArgTys.size() < Record.size()-2)
1835         return error("Invalid type");
1836 
1837       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1838       break;
1839     }
1840     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1841       if (Record.empty())
1842         return error("Invalid record");
1843       SmallVector<Type*, 8> EltTys;
1844       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1845         if (Type *T = getTypeByID(Record[i]))
1846           EltTys.push_back(T);
1847         else
1848           break;
1849       }
1850       if (EltTys.size() != Record.size()-1)
1851         return error("Invalid type");
1852       ResultTy = StructType::get(Context, EltTys, Record[0]);
1853       break;
1854     }
1855     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1856       if (convertToString(Record, 0, TypeName))
1857         return error("Invalid record");
1858       continue;
1859 
1860     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1861       if (Record.empty())
1862         return error("Invalid record");
1863 
1864       if (NumRecords >= TypeList.size())
1865         return error("Invalid TYPE table");
1866 
1867       // Check to see if this was forward referenced, if so fill in the temp.
1868       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1869       if (Res) {
1870         Res->setName(TypeName);
1871         TypeList[NumRecords] = nullptr;
1872       } else  // Otherwise, create a new struct.
1873         Res = createIdentifiedStructType(Context, TypeName);
1874       TypeName.clear();
1875 
1876       SmallVector<Type*, 8> EltTys;
1877       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1878         if (Type *T = getTypeByID(Record[i]))
1879           EltTys.push_back(T);
1880         else
1881           break;
1882       }
1883       if (EltTys.size() != Record.size()-1)
1884         return error("Invalid record");
1885       Res->setBody(EltTys, Record[0]);
1886       ResultTy = Res;
1887       break;
1888     }
1889     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1890       if (Record.size() != 1)
1891         return error("Invalid record");
1892 
1893       if (NumRecords >= TypeList.size())
1894         return error("Invalid TYPE table");
1895 
1896       // Check to see if this was forward referenced, if so fill in the temp.
1897       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1898       if (Res) {
1899         Res->setName(TypeName);
1900         TypeList[NumRecords] = nullptr;
1901       } else  // Otherwise, create a new struct with no body.
1902         Res = createIdentifiedStructType(Context, TypeName);
1903       TypeName.clear();
1904       ResultTy = Res;
1905       break;
1906     }
1907     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1908       if (Record.size() < 2)
1909         return error("Invalid record");
1910       ResultTy = getTypeByID(Record[1]);
1911       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1912         return error("Invalid type");
1913       ResultTy = ArrayType::get(ResultTy, Record[0]);
1914       break;
1915     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1916                                     //         [numelts, eltty, scalable]
1917       if (Record.size() < 2)
1918         return error("Invalid record");
1919       if (Record[0] == 0)
1920         return error("Invalid vector length");
1921       ResultTy = getTypeByID(Record[1]);
1922       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
1923         return error("Invalid type");
1924       bool Scalable = Record.size() > 2 ? Record[2] : false;
1925       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1926       break;
1927     }
1928 
1929     if (NumRecords >= TypeList.size())
1930       return error("Invalid TYPE table");
1931     if (TypeList[NumRecords])
1932       return error(
1933           "Invalid TYPE table: Only named structs can be forward referenced");
1934     assert(ResultTy && "Didn't read a type?");
1935     TypeList[NumRecords++] = ResultTy;
1936   }
1937 }
1938 
1939 Error BitcodeReader::parseOperandBundleTags() {
1940   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1941     return Err;
1942 
1943   if (!BundleTags.empty())
1944     return error("Invalid multiple blocks");
1945 
1946   SmallVector<uint64_t, 64> Record;
1947 
1948   while (true) {
1949     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1950     if (!MaybeEntry)
1951       return MaybeEntry.takeError();
1952     BitstreamEntry Entry = MaybeEntry.get();
1953 
1954     switch (Entry.Kind) {
1955     case BitstreamEntry::SubBlock: // Handled for us already.
1956     case BitstreamEntry::Error:
1957       return error("Malformed block");
1958     case BitstreamEntry::EndBlock:
1959       return Error::success();
1960     case BitstreamEntry::Record:
1961       // The interesting case.
1962       break;
1963     }
1964 
1965     // Tags are implicitly mapped to integers by their order.
1966 
1967     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1968     if (!MaybeRecord)
1969       return MaybeRecord.takeError();
1970     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1971       return error("Invalid record");
1972 
1973     // OPERAND_BUNDLE_TAG: [strchr x N]
1974     BundleTags.emplace_back();
1975     if (convertToString(Record, 0, BundleTags.back()))
1976       return error("Invalid record");
1977     Record.clear();
1978   }
1979 }
1980 
1981 Error BitcodeReader::parseSyncScopeNames() {
1982   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1983     return Err;
1984 
1985   if (!SSIDs.empty())
1986     return error("Invalid multiple synchronization scope names blocks");
1987 
1988   SmallVector<uint64_t, 64> Record;
1989   while (true) {
1990     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1991     if (!MaybeEntry)
1992       return MaybeEntry.takeError();
1993     BitstreamEntry Entry = MaybeEntry.get();
1994 
1995     switch (Entry.Kind) {
1996     case BitstreamEntry::SubBlock: // Handled for us already.
1997     case BitstreamEntry::Error:
1998       return error("Malformed block");
1999     case BitstreamEntry::EndBlock:
2000       if (SSIDs.empty())
2001         return error("Invalid empty synchronization scope names block");
2002       return Error::success();
2003     case BitstreamEntry::Record:
2004       // The interesting case.
2005       break;
2006     }
2007 
2008     // Synchronization scope names are implicitly mapped to synchronization
2009     // scope IDs by their order.
2010 
2011     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2012     if (!MaybeRecord)
2013       return MaybeRecord.takeError();
2014     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2015       return error("Invalid record");
2016 
2017     SmallString<16> SSN;
2018     if (convertToString(Record, 0, SSN))
2019       return error("Invalid record");
2020 
2021     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2022     Record.clear();
2023   }
2024 }
2025 
2026 /// Associate a value with its name from the given index in the provided record.
2027 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2028                                              unsigned NameIndex, Triple &TT) {
2029   SmallString<128> ValueName;
2030   if (convertToString(Record, NameIndex, ValueName))
2031     return error("Invalid record");
2032   unsigned ValueID = Record[0];
2033   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2034     return error("Invalid record");
2035   Value *V = ValueList[ValueID];
2036 
2037   StringRef NameStr(ValueName.data(), ValueName.size());
2038   if (NameStr.find_first_of(0) != StringRef::npos)
2039     return error("Invalid value name");
2040   V->setName(NameStr);
2041   auto *GO = dyn_cast<GlobalObject>(V);
2042   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2043     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2044   return V;
2045 }
2046 
2047 /// Helper to note and return the current location, and jump to the given
2048 /// offset.
2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2050                                                  BitstreamCursor &Stream) {
2051   // Save the current parsing location so we can jump back at the end
2052   // of the VST read.
2053   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2054   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2055     return std::move(JumpFailed);
2056   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2057   if (!MaybeEntry)
2058     return MaybeEntry.takeError();
2059   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2060   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2061   return CurrentBit;
2062 }
2063 
2064 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2065                                             Function *F,
2066                                             ArrayRef<uint64_t> Record) {
2067   // Note that we subtract 1 here because the offset is relative to one word
2068   // before the start of the identification or module block, which was
2069   // historically always the start of the regular bitcode header.
2070   uint64_t FuncWordOffset = Record[1] - 1;
2071   uint64_t FuncBitOffset = FuncWordOffset * 32;
2072   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2073   // Set the LastFunctionBlockBit to point to the last function block.
2074   // Later when parsing is resumed after function materialization,
2075   // we can simply skip that last function block.
2076   if (FuncBitOffset > LastFunctionBlockBit)
2077     LastFunctionBlockBit = FuncBitOffset;
2078 }
2079 
2080 /// Read a new-style GlobalValue symbol table.
2081 Error BitcodeReader::parseGlobalValueSymbolTable() {
2082   unsigned FuncBitcodeOffsetDelta =
2083       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2084 
2085   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2086     return Err;
2087 
2088   SmallVector<uint64_t, 64> Record;
2089   while (true) {
2090     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2091     if (!MaybeEntry)
2092       return MaybeEntry.takeError();
2093     BitstreamEntry Entry = MaybeEntry.get();
2094 
2095     switch (Entry.Kind) {
2096     case BitstreamEntry::SubBlock:
2097     case BitstreamEntry::Error:
2098       return error("Malformed block");
2099     case BitstreamEntry::EndBlock:
2100       return Error::success();
2101     case BitstreamEntry::Record:
2102       break;
2103     }
2104 
2105     Record.clear();
2106     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2107     if (!MaybeRecord)
2108       return MaybeRecord.takeError();
2109     switch (MaybeRecord.get()) {
2110     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2111       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2112                               cast<Function>(ValueList[Record[0]]), Record);
2113       break;
2114     }
2115   }
2116 }
2117 
2118 /// Parse the value symbol table at either the current parsing location or
2119 /// at the given bit offset if provided.
2120 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2121   uint64_t CurrentBit;
2122   // Pass in the Offset to distinguish between calling for the module-level
2123   // VST (where we want to jump to the VST offset) and the function-level
2124   // VST (where we don't).
2125   if (Offset > 0) {
2126     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2127     if (!MaybeCurrentBit)
2128       return MaybeCurrentBit.takeError();
2129     CurrentBit = MaybeCurrentBit.get();
2130     // If this module uses a string table, read this as a module-level VST.
2131     if (UseStrtab) {
2132       if (Error Err = parseGlobalValueSymbolTable())
2133         return Err;
2134       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2135         return JumpFailed;
2136       return Error::success();
2137     }
2138     // Otherwise, the VST will be in a similar format to a function-level VST,
2139     // and will contain symbol names.
2140   }
2141 
2142   // Compute the delta between the bitcode indices in the VST (the word offset
2143   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2144   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2145   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2146   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2147   // just before entering the VST subblock because: 1) the EnterSubBlock
2148   // changes the AbbrevID width; 2) the VST block is nested within the same
2149   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2150   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2151   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2152   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2153   unsigned FuncBitcodeOffsetDelta =
2154       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2155 
2156   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2157     return Err;
2158 
2159   SmallVector<uint64_t, 64> Record;
2160 
2161   Triple TT(TheModule->getTargetTriple());
2162 
2163   // Read all the records for this value table.
2164   SmallString<128> ValueName;
2165 
2166   while (true) {
2167     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2168     if (!MaybeEntry)
2169       return MaybeEntry.takeError();
2170     BitstreamEntry Entry = MaybeEntry.get();
2171 
2172     switch (Entry.Kind) {
2173     case BitstreamEntry::SubBlock: // Handled for us already.
2174     case BitstreamEntry::Error:
2175       return error("Malformed block");
2176     case BitstreamEntry::EndBlock:
2177       if (Offset > 0)
2178         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2179           return JumpFailed;
2180       return Error::success();
2181     case BitstreamEntry::Record:
2182       // The interesting case.
2183       break;
2184     }
2185 
2186     // Read a record.
2187     Record.clear();
2188     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2189     if (!MaybeRecord)
2190       return MaybeRecord.takeError();
2191     switch (MaybeRecord.get()) {
2192     default:  // Default behavior: unknown type.
2193       break;
2194     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2195       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2196       if (Error Err = ValOrErr.takeError())
2197         return Err;
2198       ValOrErr.get();
2199       break;
2200     }
2201     case bitc::VST_CODE_FNENTRY: {
2202       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2203       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2204       if (Error Err = ValOrErr.takeError())
2205         return Err;
2206       Value *V = ValOrErr.get();
2207 
2208       // Ignore function offsets emitted for aliases of functions in older
2209       // versions of LLVM.
2210       if (auto *F = dyn_cast<Function>(V))
2211         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2212       break;
2213     }
2214     case bitc::VST_CODE_BBENTRY: {
2215       if (convertToString(Record, 1, ValueName))
2216         return error("Invalid record");
2217       BasicBlock *BB = getBasicBlock(Record[0]);
2218       if (!BB)
2219         return error("Invalid record");
2220 
2221       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2222       ValueName.clear();
2223       break;
2224     }
2225     }
2226   }
2227 }
2228 
2229 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2230 /// encoding.
2231 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2232   if ((V & 1) == 0)
2233     return V >> 1;
2234   if (V != 1)
2235     return -(V >> 1);
2236   // There is no such thing as -0 with integers.  "-0" really means MININT.
2237   return 1ULL << 63;
2238 }
2239 
2240 /// Resolve all of the initializers for global values and aliases that we can.
2241 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2242   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2243   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2244   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2245 
2246   GlobalInitWorklist.swap(GlobalInits);
2247   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2248   FunctionOperandWorklist.swap(FunctionOperands);
2249 
2250   while (!GlobalInitWorklist.empty()) {
2251     unsigned ValID = GlobalInitWorklist.back().second;
2252     if (ValID >= ValueList.size()) {
2253       // Not ready to resolve this yet, it requires something later in the file.
2254       GlobalInits.push_back(GlobalInitWorklist.back());
2255     } else {
2256       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2257         GlobalInitWorklist.back().first->setInitializer(C);
2258       else
2259         return error("Expected a constant");
2260     }
2261     GlobalInitWorklist.pop_back();
2262   }
2263 
2264   while (!IndirectSymbolInitWorklist.empty()) {
2265     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2266     if (ValID >= ValueList.size()) {
2267       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2268     } else {
2269       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2270       if (!C)
2271         return error("Expected a constant");
2272       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2273       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2274         if (C->getType() != GV->getType())
2275           return error("Alias and aliasee types don't match");
2276         GA->setAliasee(C);
2277       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2278         Type *ResolverFTy =
2279             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2280         // Transparently fix up the type for compatiblity with older bitcode
2281         GI->setResolver(
2282             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2283       } else {
2284         return error("Expected an alias or an ifunc");
2285       }
2286     }
2287     IndirectSymbolInitWorklist.pop_back();
2288   }
2289 
2290   while (!FunctionOperandWorklist.empty()) {
2291     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2292     if (Info.PersonalityFn) {
2293       unsigned ValID = Info.PersonalityFn - 1;
2294       if (ValID < ValueList.size()) {
2295         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2296           Info.F->setPersonalityFn(C);
2297         else
2298           return error("Expected a constant");
2299         Info.PersonalityFn = 0;
2300       }
2301     }
2302     if (Info.Prefix) {
2303       unsigned ValID = Info.Prefix - 1;
2304       if (ValID < ValueList.size()) {
2305         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2306           Info.F->setPrefixData(C);
2307         else
2308           return error("Expected a constant");
2309         Info.Prefix = 0;
2310       }
2311     }
2312     if (Info.Prologue) {
2313       unsigned ValID = Info.Prologue - 1;
2314       if (ValID < ValueList.size()) {
2315         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2316           Info.F->setPrologueData(C);
2317         else
2318           return error("Expected a constant");
2319         Info.Prologue = 0;
2320       }
2321     }
2322     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2323       FunctionOperands.push_back(Info);
2324     FunctionOperandWorklist.pop_back();
2325   }
2326 
2327   return Error::success();
2328 }
2329 
2330 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2331   SmallVector<uint64_t, 8> Words(Vals.size());
2332   transform(Vals, Words.begin(),
2333                  BitcodeReader::decodeSignRotatedValue);
2334 
2335   return APInt(TypeBits, Words);
2336 }
2337 
2338 Error BitcodeReader::parseConstants() {
2339   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2340     return Err;
2341 
2342   SmallVector<uint64_t, 64> Record;
2343 
2344   // Read all the records for this value table.
2345   Type *CurTy = Type::getInt32Ty(Context);
2346   unsigned NextCstNo = ValueList.size();
2347 
2348   struct DelayedShufTy {
2349     VectorType *OpTy;
2350     VectorType *RTy;
2351     uint64_t Op0Idx;
2352     uint64_t Op1Idx;
2353     uint64_t Op2Idx;
2354     unsigned CstNo;
2355   };
2356   std::vector<DelayedShufTy> DelayedShuffles;
2357   struct DelayedSelTy {
2358     Type *OpTy;
2359     uint64_t Op0Idx;
2360     uint64_t Op1Idx;
2361     uint64_t Op2Idx;
2362     unsigned CstNo;
2363   };
2364   std::vector<DelayedSelTy> DelayedSelectors;
2365 
2366   while (true) {
2367     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2368     if (!MaybeEntry)
2369       return MaybeEntry.takeError();
2370     BitstreamEntry Entry = MaybeEntry.get();
2371 
2372     switch (Entry.Kind) {
2373     case BitstreamEntry::SubBlock: // Handled for us already.
2374     case BitstreamEntry::Error:
2375       return error("Malformed block");
2376     case BitstreamEntry::EndBlock:
2377       // Once all the constants have been read, go through and resolve forward
2378       // references.
2379       //
2380       // We have to treat shuffles specially because they don't have three
2381       // operands anymore.  We need to convert the shuffle mask into an array,
2382       // and we can't convert a forward reference.
2383       for (auto &DelayedShuffle : DelayedShuffles) {
2384         VectorType *OpTy = DelayedShuffle.OpTy;
2385         VectorType *RTy = DelayedShuffle.RTy;
2386         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2387         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2388         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2389         uint64_t CstNo = DelayedShuffle.CstNo;
2390         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2391         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2392         Type *ShufTy =
2393             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2394         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2395         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2396           return error("Invalid shufflevector operands");
2397         SmallVector<int, 16> Mask;
2398         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2399         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2400         ValueList.assignValue(V, CstNo);
2401       }
2402       for (auto &DelayedSelector : DelayedSelectors) {
2403         Type *OpTy = DelayedSelector.OpTy;
2404         Type *SelectorTy = Type::getInt1Ty(Context);
2405         uint64_t Op0Idx = DelayedSelector.Op0Idx;
2406         uint64_t Op1Idx = DelayedSelector.Op1Idx;
2407         uint64_t Op2Idx = DelayedSelector.Op2Idx;
2408         uint64_t CstNo = DelayedSelector.CstNo;
2409         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2410         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy);
2411         // The selector might be an i1 or an <n x i1>
2412         // Get the type from the ValueList before getting a forward ref.
2413         if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2414           Value *V = ValueList[Op0Idx];
2415           assert(V);
2416           if (SelectorTy != V->getType())
2417             SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2418         }
2419         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy);
2420         Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2421         ValueList.assignValue(V, CstNo);
2422       }
2423 
2424       if (NextCstNo != ValueList.size())
2425         return error("Invalid constant reference");
2426 
2427       ValueList.resolveConstantForwardRefs();
2428       return Error::success();
2429     case BitstreamEntry::Record:
2430       // The interesting case.
2431       break;
2432     }
2433 
2434     // Read a record.
2435     Record.clear();
2436     Type *VoidType = Type::getVoidTy(Context);
2437     Value *V = nullptr;
2438     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2439     if (!MaybeBitCode)
2440       return MaybeBitCode.takeError();
2441     switch (unsigned BitCode = MaybeBitCode.get()) {
2442     default:  // Default behavior: unknown constant
2443     case bitc::CST_CODE_UNDEF:     // UNDEF
2444       V = UndefValue::get(CurTy);
2445       break;
2446     case bitc::CST_CODE_POISON:    // POISON
2447       V = PoisonValue::get(CurTy);
2448       break;
2449     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2450       if (Record.empty())
2451         return error("Invalid record");
2452       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2453         return error("Invalid record");
2454       if (TypeList[Record[0]] == VoidType)
2455         return error("Invalid constant type");
2456       CurTy = TypeList[Record[0]];
2457       continue;  // Skip the ValueList manipulation.
2458     case bitc::CST_CODE_NULL:      // NULL
2459       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2460         return error("Invalid type for a constant null value");
2461       V = Constant::getNullValue(CurTy);
2462       break;
2463     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2464       if (!CurTy->isIntegerTy() || Record.empty())
2465         return error("Invalid record");
2466       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2467       break;
2468     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2469       if (!CurTy->isIntegerTy() || Record.empty())
2470         return error("Invalid record");
2471 
2472       APInt VInt =
2473           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2474       V = ConstantInt::get(Context, VInt);
2475 
2476       break;
2477     }
2478     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2479       if (Record.empty())
2480         return error("Invalid record");
2481       if (CurTy->isHalfTy())
2482         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2483                                              APInt(16, (uint16_t)Record[0])));
2484       else if (CurTy->isBFloatTy())
2485         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2486                                              APInt(16, (uint32_t)Record[0])));
2487       else if (CurTy->isFloatTy())
2488         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2489                                              APInt(32, (uint32_t)Record[0])));
2490       else if (CurTy->isDoubleTy())
2491         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2492                                              APInt(64, Record[0])));
2493       else if (CurTy->isX86_FP80Ty()) {
2494         // Bits are not stored the same way as a normal i80 APInt, compensate.
2495         uint64_t Rearrange[2];
2496         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2497         Rearrange[1] = Record[0] >> 48;
2498         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2499                                              APInt(80, Rearrange)));
2500       } else if (CurTy->isFP128Ty())
2501         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2502                                              APInt(128, Record)));
2503       else if (CurTy->isPPC_FP128Ty())
2504         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2505                                              APInt(128, Record)));
2506       else
2507         V = UndefValue::get(CurTy);
2508       break;
2509     }
2510 
2511     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2512       if (Record.empty())
2513         return error("Invalid record");
2514 
2515       unsigned Size = Record.size();
2516       SmallVector<Constant*, 16> Elts;
2517 
2518       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2519         for (unsigned i = 0; i != Size; ++i)
2520           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2521                                                      STy->getElementType(i)));
2522         V = ConstantStruct::get(STy, Elts);
2523       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2524         Type *EltTy = ATy->getElementType();
2525         for (unsigned i = 0; i != Size; ++i)
2526           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2527         V = ConstantArray::get(ATy, Elts);
2528       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2529         Type *EltTy = VTy->getElementType();
2530         for (unsigned i = 0; i != Size; ++i)
2531           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2532         V = ConstantVector::get(Elts);
2533       } else {
2534         V = UndefValue::get(CurTy);
2535       }
2536       break;
2537     }
2538     case bitc::CST_CODE_STRING:    // STRING: [values]
2539     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2540       if (Record.empty())
2541         return error("Invalid record");
2542 
2543       SmallString<16> Elts(Record.begin(), Record.end());
2544       V = ConstantDataArray::getString(Context, Elts,
2545                                        BitCode == bitc::CST_CODE_CSTRING);
2546       break;
2547     }
2548     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2549       if (Record.empty())
2550         return error("Invalid record");
2551 
2552       Type *EltTy;
2553       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2554         EltTy = Array->getElementType();
2555       else
2556         EltTy = cast<VectorType>(CurTy)->getElementType();
2557       if (EltTy->isIntegerTy(8)) {
2558         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2559         if (isa<VectorType>(CurTy))
2560           V = ConstantDataVector::get(Context, Elts);
2561         else
2562           V = ConstantDataArray::get(Context, Elts);
2563       } else if (EltTy->isIntegerTy(16)) {
2564         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2565         if (isa<VectorType>(CurTy))
2566           V = ConstantDataVector::get(Context, Elts);
2567         else
2568           V = ConstantDataArray::get(Context, Elts);
2569       } else if (EltTy->isIntegerTy(32)) {
2570         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2571         if (isa<VectorType>(CurTy))
2572           V = ConstantDataVector::get(Context, Elts);
2573         else
2574           V = ConstantDataArray::get(Context, Elts);
2575       } else if (EltTy->isIntegerTy(64)) {
2576         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2577         if (isa<VectorType>(CurTy))
2578           V = ConstantDataVector::get(Context, Elts);
2579         else
2580           V = ConstantDataArray::get(Context, Elts);
2581       } else if (EltTy->isHalfTy()) {
2582         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2583         if (isa<VectorType>(CurTy))
2584           V = ConstantDataVector::getFP(EltTy, Elts);
2585         else
2586           V = ConstantDataArray::getFP(EltTy, Elts);
2587       } else if (EltTy->isBFloatTy()) {
2588         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2589         if (isa<VectorType>(CurTy))
2590           V = ConstantDataVector::getFP(EltTy, Elts);
2591         else
2592           V = ConstantDataArray::getFP(EltTy, Elts);
2593       } else if (EltTy->isFloatTy()) {
2594         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2595         if (isa<VectorType>(CurTy))
2596           V = ConstantDataVector::getFP(EltTy, Elts);
2597         else
2598           V = ConstantDataArray::getFP(EltTy, Elts);
2599       } else if (EltTy->isDoubleTy()) {
2600         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2601         if (isa<VectorType>(CurTy))
2602           V = ConstantDataVector::getFP(EltTy, Elts);
2603         else
2604           V = ConstantDataArray::getFP(EltTy, Elts);
2605       } else {
2606         return error("Invalid type for value");
2607       }
2608       break;
2609     }
2610     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2611       if (Record.size() < 2)
2612         return error("Invalid record");
2613       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2614       if (Opc < 0) {
2615         V = UndefValue::get(CurTy);  // Unknown unop.
2616       } else {
2617         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2618         unsigned Flags = 0;
2619         V = ConstantExpr::get(Opc, LHS, Flags);
2620       }
2621       break;
2622     }
2623     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2624       if (Record.size() < 3)
2625         return error("Invalid record");
2626       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2627       if (Opc < 0) {
2628         V = UndefValue::get(CurTy);  // Unknown binop.
2629       } else {
2630         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2631         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2632         unsigned Flags = 0;
2633         if (Record.size() >= 4) {
2634           if (Opc == Instruction::Add ||
2635               Opc == Instruction::Sub ||
2636               Opc == Instruction::Mul ||
2637               Opc == Instruction::Shl) {
2638             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2639               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2640             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2641               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2642           } else if (Opc == Instruction::SDiv ||
2643                      Opc == Instruction::UDiv ||
2644                      Opc == Instruction::LShr ||
2645                      Opc == Instruction::AShr) {
2646             if (Record[3] & (1 << bitc::PEO_EXACT))
2647               Flags |= SDivOperator::IsExact;
2648           }
2649         }
2650         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2651       }
2652       break;
2653     }
2654     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2655       if (Record.size() < 3)
2656         return error("Invalid record");
2657       int Opc = getDecodedCastOpcode(Record[0]);
2658       if (Opc < 0) {
2659         V = UndefValue::get(CurTy);  // Unknown cast.
2660       } else {
2661         Type *OpTy = getTypeByID(Record[1]);
2662         if (!OpTy)
2663           return error("Invalid record");
2664         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2665         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2666         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2667       }
2668       break;
2669     }
2670     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2671     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2672     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2673                                                      // operands]
2674       unsigned OpNum = 0;
2675       Type *PointeeType = nullptr;
2676       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2677           Record.size() % 2)
2678         PointeeType = getTypeByID(Record[OpNum++]);
2679 
2680       bool InBounds = false;
2681       Optional<unsigned> InRangeIndex;
2682       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2683         uint64_t Op = Record[OpNum++];
2684         InBounds = Op & 1;
2685         InRangeIndex = Op >> 1;
2686       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2687         InBounds = true;
2688 
2689       SmallVector<Constant*, 16> Elts;
2690       Type *Elt0FullTy = nullptr;
2691       while (OpNum != Record.size()) {
2692         if (!Elt0FullTy)
2693           Elt0FullTy = getTypeByID(Record[OpNum]);
2694         Type *ElTy = getTypeByID(Record[OpNum++]);
2695         if (!ElTy)
2696           return error("Invalid record");
2697         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2698       }
2699 
2700       if (Elts.size() < 1)
2701         return error("Invalid gep with no operands");
2702 
2703       PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
2704       if (!PointeeType)
2705         PointeeType = OrigPtrTy->getElementType();
2706       else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2707         return error("Explicit gep operator type does not match pointee type "
2708                      "of pointer operand");
2709 
2710       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2711       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2712                                          InBounds, InRangeIndex);
2713       break;
2714     }
2715     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2716       if (Record.size() < 3)
2717         return error("Invalid record");
2718 
2719       DelayedSelectors.push_back(
2720           {CurTy, Record[0], Record[1], Record[2], NextCstNo});
2721       (void)ValueList.getConstantFwdRef(NextCstNo, CurTy);
2722       ++NextCstNo;
2723       continue;
2724     }
2725     case bitc::CST_CODE_CE_EXTRACTELT
2726         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2727       if (Record.size() < 3)
2728         return error("Invalid record");
2729       VectorType *OpTy =
2730         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2731       if (!OpTy)
2732         return error("Invalid record");
2733       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2734       Constant *Op1 = nullptr;
2735       if (Record.size() == 4) {
2736         Type *IdxTy = getTypeByID(Record[2]);
2737         if (!IdxTy)
2738           return error("Invalid record");
2739         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2740       } else {
2741         // Deprecated, but still needed to read old bitcode files.
2742         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2743       }
2744       if (!Op1)
2745         return error("Invalid record");
2746       V = ConstantExpr::getExtractElement(Op0, Op1);
2747       break;
2748     }
2749     case bitc::CST_CODE_CE_INSERTELT
2750         : { // CE_INSERTELT: [opval, opval, opty, opval]
2751       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2752       if (Record.size() < 3 || !OpTy)
2753         return error("Invalid record");
2754       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2755       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2756                                                   OpTy->getElementType());
2757       Constant *Op2 = nullptr;
2758       if (Record.size() == 4) {
2759         Type *IdxTy = getTypeByID(Record[2]);
2760         if (!IdxTy)
2761           return error("Invalid record");
2762         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2763       } else {
2764         // Deprecated, but still needed to read old bitcode files.
2765         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2766       }
2767       if (!Op2)
2768         return error("Invalid record");
2769       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2770       break;
2771     }
2772     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2773       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2774       if (Record.size() < 3 || !OpTy)
2775         return error("Invalid record");
2776       DelayedShuffles.push_back(
2777           {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2778       ++NextCstNo;
2779       continue;
2780     }
2781     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2782       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2783       VectorType *OpTy =
2784         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2785       if (Record.size() < 4 || !RTy || !OpTy)
2786         return error("Invalid record");
2787       DelayedShuffles.push_back(
2788           {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2789       ++NextCstNo;
2790       continue;
2791     }
2792     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2793       if (Record.size() < 4)
2794         return error("Invalid record");
2795       Type *OpTy = getTypeByID(Record[0]);
2796       if (!OpTy)
2797         return error("Invalid record");
2798       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2799       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2800 
2801       if (OpTy->isFPOrFPVectorTy())
2802         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2803       else
2804         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2805       break;
2806     }
2807     // This maintains backward compatibility, pre-asm dialect keywords.
2808     // Deprecated, but still needed to read old bitcode files.
2809     case bitc::CST_CODE_INLINEASM_OLD: {
2810       if (Record.size() < 2)
2811         return error("Invalid record");
2812       std::string AsmStr, ConstrStr;
2813       bool HasSideEffects = Record[0] & 1;
2814       bool IsAlignStack = Record[0] >> 1;
2815       unsigned AsmStrSize = Record[1];
2816       if (2+AsmStrSize >= Record.size())
2817         return error("Invalid record");
2818       unsigned ConstStrSize = Record[2+AsmStrSize];
2819       if (3+AsmStrSize+ConstStrSize > Record.size())
2820         return error("Invalid record");
2821 
2822       for (unsigned i = 0; i != AsmStrSize; ++i)
2823         AsmStr += (char)Record[2+i];
2824       for (unsigned i = 0; i != ConstStrSize; ++i)
2825         ConstrStr += (char)Record[3+AsmStrSize+i];
2826       UpgradeInlineAsmString(&AsmStr);
2827       V = InlineAsm::get(
2828           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2829           AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2830       break;
2831     }
2832     // This version adds support for the asm dialect keywords (e.g.,
2833     // inteldialect).
2834     case bitc::CST_CODE_INLINEASM_OLD2: {
2835       if (Record.size() < 2)
2836         return error("Invalid record");
2837       std::string AsmStr, ConstrStr;
2838       bool HasSideEffects = Record[0] & 1;
2839       bool IsAlignStack = (Record[0] >> 1) & 1;
2840       unsigned AsmDialect = Record[0] >> 2;
2841       unsigned AsmStrSize = Record[1];
2842       if (2+AsmStrSize >= Record.size())
2843         return error("Invalid record");
2844       unsigned ConstStrSize = Record[2+AsmStrSize];
2845       if (3+AsmStrSize+ConstStrSize > Record.size())
2846         return error("Invalid record");
2847 
2848       for (unsigned i = 0; i != AsmStrSize; ++i)
2849         AsmStr += (char)Record[2+i];
2850       for (unsigned i = 0; i != ConstStrSize; ++i)
2851         ConstrStr += (char)Record[3+AsmStrSize+i];
2852       UpgradeInlineAsmString(&AsmStr);
2853       V = InlineAsm::get(
2854           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2855           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2856           InlineAsm::AsmDialect(AsmDialect));
2857       break;
2858     }
2859     // This version adds support for the unwind keyword.
2860     case bitc::CST_CODE_INLINEASM: {
2861       if (Record.size() < 2)
2862         return error("Invalid record");
2863       std::string AsmStr, ConstrStr;
2864       bool HasSideEffects = Record[0] & 1;
2865       bool IsAlignStack = (Record[0] >> 1) & 1;
2866       unsigned AsmDialect = (Record[0] >> 2) & 1;
2867       bool CanThrow = (Record[0] >> 3) & 1;
2868       unsigned AsmStrSize = Record[1];
2869       if (2 + AsmStrSize >= Record.size())
2870         return error("Invalid record");
2871       unsigned ConstStrSize = Record[2 + AsmStrSize];
2872       if (3 + AsmStrSize + ConstStrSize > Record.size())
2873         return error("Invalid record");
2874 
2875       for (unsigned i = 0; i != AsmStrSize; ++i)
2876         AsmStr += (char)Record[2 + i];
2877       for (unsigned i = 0; i != ConstStrSize; ++i)
2878         ConstrStr += (char)Record[3 + AsmStrSize + i];
2879       UpgradeInlineAsmString(&AsmStr);
2880       V = InlineAsm::get(
2881           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2882           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2883           InlineAsm::AsmDialect(AsmDialect), CanThrow);
2884       break;
2885     }
2886     case bitc::CST_CODE_BLOCKADDRESS:{
2887       if (Record.size() < 3)
2888         return error("Invalid record");
2889       Type *FnTy = getTypeByID(Record[0]);
2890       if (!FnTy)
2891         return error("Invalid record");
2892       Function *Fn =
2893         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2894       if (!Fn)
2895         return error("Invalid record");
2896 
2897       // If the function is already parsed we can insert the block address right
2898       // away.
2899       BasicBlock *BB;
2900       unsigned BBID = Record[2];
2901       if (!BBID)
2902         // Invalid reference to entry block.
2903         return error("Invalid ID");
2904       if (!Fn->empty()) {
2905         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2906         for (size_t I = 0, E = BBID; I != E; ++I) {
2907           if (BBI == BBE)
2908             return error("Invalid ID");
2909           ++BBI;
2910         }
2911         BB = &*BBI;
2912       } else {
2913         // Otherwise insert a placeholder and remember it so it can be inserted
2914         // when the function is parsed.
2915         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2916         if (FwdBBs.empty())
2917           BasicBlockFwdRefQueue.push_back(Fn);
2918         if (FwdBBs.size() < BBID + 1)
2919           FwdBBs.resize(BBID + 1);
2920         if (!FwdBBs[BBID])
2921           FwdBBs[BBID] = BasicBlock::Create(Context);
2922         BB = FwdBBs[BBID];
2923       }
2924       V = BlockAddress::get(Fn, BB);
2925       break;
2926     }
2927     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2928       if (Record.size() < 2)
2929         return error("Invalid record");
2930       Type *GVTy = getTypeByID(Record[0]);
2931       if (!GVTy)
2932         return error("Invalid record");
2933       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2934           ValueList.getConstantFwdRef(Record[1], GVTy));
2935       if (!GV)
2936         return error("Invalid record");
2937 
2938       V = DSOLocalEquivalent::get(GV);
2939       break;
2940     }
2941     case bitc::CST_CODE_NO_CFI_VALUE: {
2942       if (Record.size() < 2)
2943         return error("Invalid record");
2944       Type *GVTy = getTypeByID(Record[0]);
2945       if (!GVTy)
2946         return error("Invalid record");
2947       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2948           ValueList.getConstantFwdRef(Record[1], GVTy));
2949       if (!GV)
2950         return error("Invalid record");
2951       V = NoCFIValue::get(GV);
2952       break;
2953     }
2954     }
2955 
2956     ValueList.assignValue(V, NextCstNo);
2957     ++NextCstNo;
2958   }
2959 }
2960 
2961 Error BitcodeReader::parseUseLists() {
2962   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2963     return Err;
2964 
2965   // Read all the records.
2966   SmallVector<uint64_t, 64> Record;
2967 
2968   while (true) {
2969     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2970     if (!MaybeEntry)
2971       return MaybeEntry.takeError();
2972     BitstreamEntry Entry = MaybeEntry.get();
2973 
2974     switch (Entry.Kind) {
2975     case BitstreamEntry::SubBlock: // Handled for us already.
2976     case BitstreamEntry::Error:
2977       return error("Malformed block");
2978     case BitstreamEntry::EndBlock:
2979       return Error::success();
2980     case BitstreamEntry::Record:
2981       // The interesting case.
2982       break;
2983     }
2984 
2985     // Read a use list record.
2986     Record.clear();
2987     bool IsBB = false;
2988     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2989     if (!MaybeRecord)
2990       return MaybeRecord.takeError();
2991     switch (MaybeRecord.get()) {
2992     default:  // Default behavior: unknown type.
2993       break;
2994     case bitc::USELIST_CODE_BB:
2995       IsBB = true;
2996       LLVM_FALLTHROUGH;
2997     case bitc::USELIST_CODE_DEFAULT: {
2998       unsigned RecordLength = Record.size();
2999       if (RecordLength < 3)
3000         // Records should have at least an ID and two indexes.
3001         return error("Invalid record");
3002       unsigned ID = Record.pop_back_val();
3003 
3004       Value *V;
3005       if (IsBB) {
3006         assert(ID < FunctionBBs.size() && "Basic block not found");
3007         V = FunctionBBs[ID];
3008       } else
3009         V = ValueList[ID];
3010       unsigned NumUses = 0;
3011       SmallDenseMap<const Use *, unsigned, 16> Order;
3012       for (const Use &U : V->materialized_uses()) {
3013         if (++NumUses > Record.size())
3014           break;
3015         Order[&U] = Record[NumUses - 1];
3016       }
3017       if (Order.size() != Record.size() || NumUses > Record.size())
3018         // Mismatches can happen if the functions are being materialized lazily
3019         // (out-of-order), or a value has been upgraded.
3020         break;
3021 
3022       V->sortUseList([&](const Use &L, const Use &R) {
3023         return Order.lookup(&L) < Order.lookup(&R);
3024       });
3025       break;
3026     }
3027     }
3028   }
3029 }
3030 
3031 /// When we see the block for metadata, remember where it is and then skip it.
3032 /// This lets us lazily deserialize the metadata.
3033 Error BitcodeReader::rememberAndSkipMetadata() {
3034   // Save the current stream state.
3035   uint64_t CurBit = Stream.GetCurrentBitNo();
3036   DeferredMetadataInfo.push_back(CurBit);
3037 
3038   // Skip over the block for now.
3039   if (Error Err = Stream.SkipBlock())
3040     return Err;
3041   return Error::success();
3042 }
3043 
3044 Error BitcodeReader::materializeMetadata() {
3045   for (uint64_t BitPos : DeferredMetadataInfo) {
3046     // Move the bit stream to the saved position.
3047     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3048       return JumpFailed;
3049     if (Error Err = MDLoader->parseModuleMetadata())
3050       return Err;
3051   }
3052 
3053   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3054   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3055   // multiple times.
3056   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3057     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3058       NamedMDNode *LinkerOpts =
3059           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3060       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3061         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3062     }
3063   }
3064 
3065   DeferredMetadataInfo.clear();
3066   return Error::success();
3067 }
3068 
3069 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3070 
3071 /// When we see the block for a function body, remember where it is and then
3072 /// skip it.  This lets us lazily deserialize the functions.
3073 Error BitcodeReader::rememberAndSkipFunctionBody() {
3074   // Get the function we are talking about.
3075   if (FunctionsWithBodies.empty())
3076     return error("Insufficient function protos");
3077 
3078   Function *Fn = FunctionsWithBodies.back();
3079   FunctionsWithBodies.pop_back();
3080 
3081   // Save the current stream state.
3082   uint64_t CurBit = Stream.GetCurrentBitNo();
3083   assert(
3084       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3085       "Mismatch between VST and scanned function offsets");
3086   DeferredFunctionInfo[Fn] = CurBit;
3087 
3088   // Skip over the function block for now.
3089   if (Error Err = Stream.SkipBlock())
3090     return Err;
3091   return Error::success();
3092 }
3093 
3094 Error BitcodeReader::globalCleanup() {
3095   // Patch the initializers for globals and aliases up.
3096   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3097     return Err;
3098   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3099     return error("Malformed global initializer set");
3100 
3101   // Look for intrinsic functions which need to be upgraded at some point
3102   // and functions that need to have their function attributes upgraded.
3103   for (Function &F : *TheModule) {
3104     MDLoader->upgradeDebugIntrinsics(F);
3105     Function *NewFn;
3106     if (UpgradeIntrinsicFunction(&F, NewFn))
3107       UpgradedIntrinsics[&F] = NewFn;
3108     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3109       // Some types could be renamed during loading if several modules are
3110       // loaded in the same LLVMContext (LTO scenario). In this case we should
3111       // remangle intrinsics names as well.
3112       RemangledIntrinsics[&F] = Remangled.getValue();
3113     // Look for functions that rely on old function attribute behavior.
3114     UpgradeFunctionAttributes(F);
3115   }
3116 
3117   // Look for global variables which need to be renamed.
3118   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3119   for (GlobalVariable &GV : TheModule->globals())
3120     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3121       UpgradedVariables.emplace_back(&GV, Upgraded);
3122   for (auto &Pair : UpgradedVariables) {
3123     Pair.first->eraseFromParent();
3124     TheModule->getGlobalList().push_back(Pair.second);
3125   }
3126 
3127   // Force deallocation of memory for these vectors to favor the client that
3128   // want lazy deserialization.
3129   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3130   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3131   return Error::success();
3132 }
3133 
3134 /// Support for lazy parsing of function bodies. This is required if we
3135 /// either have an old bitcode file without a VST forward declaration record,
3136 /// or if we have an anonymous function being materialized, since anonymous
3137 /// functions do not have a name and are therefore not in the VST.
3138 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3139   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3140     return JumpFailed;
3141 
3142   if (Stream.AtEndOfStream())
3143     return error("Could not find function in stream");
3144 
3145   if (!SeenFirstFunctionBody)
3146     return error("Trying to materialize functions before seeing function blocks");
3147 
3148   // An old bitcode file with the symbol table at the end would have
3149   // finished the parse greedily.
3150   assert(SeenValueSymbolTable);
3151 
3152   SmallVector<uint64_t, 64> Record;
3153 
3154   while (true) {
3155     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3156     if (!MaybeEntry)
3157       return MaybeEntry.takeError();
3158     llvm::BitstreamEntry Entry = MaybeEntry.get();
3159 
3160     switch (Entry.Kind) {
3161     default:
3162       return error("Expect SubBlock");
3163     case BitstreamEntry::SubBlock:
3164       switch (Entry.ID) {
3165       default:
3166         return error("Expect function block");
3167       case bitc::FUNCTION_BLOCK_ID:
3168         if (Error Err = rememberAndSkipFunctionBody())
3169           return Err;
3170         NextUnreadBit = Stream.GetCurrentBitNo();
3171         return Error::success();
3172       }
3173     }
3174   }
3175 }
3176 
3177 bool BitcodeReaderBase::readBlockInfo() {
3178   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3179       Stream.ReadBlockInfoBlock();
3180   if (!MaybeNewBlockInfo)
3181     return true; // FIXME Handle the error.
3182   Optional<BitstreamBlockInfo> NewBlockInfo =
3183       std::move(MaybeNewBlockInfo.get());
3184   if (!NewBlockInfo)
3185     return true;
3186   BlockInfo = std::move(*NewBlockInfo);
3187   return false;
3188 }
3189 
3190 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3191   // v1: [selection_kind, name]
3192   // v2: [strtab_offset, strtab_size, selection_kind]
3193   StringRef Name;
3194   std::tie(Name, Record) = readNameFromStrtab(Record);
3195 
3196   if (Record.empty())
3197     return error("Invalid record");
3198   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3199   std::string OldFormatName;
3200   if (!UseStrtab) {
3201     if (Record.size() < 2)
3202       return error("Invalid record");
3203     unsigned ComdatNameSize = Record[1];
3204     OldFormatName.reserve(ComdatNameSize);
3205     for (unsigned i = 0; i != ComdatNameSize; ++i)
3206       OldFormatName += (char)Record[2 + i];
3207     Name = OldFormatName;
3208   }
3209   Comdat *C = TheModule->getOrInsertComdat(Name);
3210   C->setSelectionKind(SK);
3211   ComdatList.push_back(C);
3212   return Error::success();
3213 }
3214 
3215 static void inferDSOLocal(GlobalValue *GV) {
3216   // infer dso_local from linkage and visibility if it is not encoded.
3217   if (GV->hasLocalLinkage() ||
3218       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3219     GV->setDSOLocal(true);
3220 }
3221 
3222 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3223   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3224   // visibility, threadlocal, unnamed_addr, externally_initialized,
3225   // dllstorageclass, comdat, attributes, preemption specifier,
3226   // partition strtab offset, partition strtab size] (name in VST)
3227   // v2: [strtab_offset, strtab_size, v1]
3228   StringRef Name;
3229   std::tie(Name, Record) = readNameFromStrtab(Record);
3230 
3231   if (Record.size() < 6)
3232     return error("Invalid record");
3233   Type *Ty = getTypeByID(Record[0]);
3234   if (!Ty)
3235     return error("Invalid record");
3236   bool isConstant = Record[1] & 1;
3237   bool explicitType = Record[1] & 2;
3238   unsigned AddressSpace;
3239   if (explicitType) {
3240     AddressSpace = Record[1] >> 2;
3241   } else {
3242     if (!Ty->isPointerTy())
3243       return error("Invalid type for value");
3244     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3245     Ty = cast<PointerType>(Ty)->getElementType();
3246   }
3247 
3248   uint64_t RawLinkage = Record[3];
3249   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3250   MaybeAlign Alignment;
3251   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3252     return Err;
3253   std::string Section;
3254   if (Record[5]) {
3255     if (Record[5] - 1 >= SectionTable.size())
3256       return error("Invalid ID");
3257     Section = SectionTable[Record[5] - 1];
3258   }
3259   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3260   // Local linkage must have default visibility.
3261   // auto-upgrade `hidden` and `protected` for old bitcode.
3262   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3263     Visibility = getDecodedVisibility(Record[6]);
3264 
3265   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3266   if (Record.size() > 7)
3267     TLM = getDecodedThreadLocalMode(Record[7]);
3268 
3269   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3270   if (Record.size() > 8)
3271     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3272 
3273   bool ExternallyInitialized = false;
3274   if (Record.size() > 9)
3275     ExternallyInitialized = Record[9];
3276 
3277   GlobalVariable *NewGV =
3278       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3279                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3280   NewGV->setAlignment(Alignment);
3281   if (!Section.empty())
3282     NewGV->setSection(Section);
3283   NewGV->setVisibility(Visibility);
3284   NewGV->setUnnamedAddr(UnnamedAddr);
3285 
3286   if (Record.size() > 10)
3287     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3288   else
3289     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3290 
3291   ValueList.push_back(NewGV);
3292 
3293   // Remember which value to use for the global initializer.
3294   if (unsigned InitID = Record[2])
3295     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3296 
3297   if (Record.size() > 11) {
3298     if (unsigned ComdatID = Record[11]) {
3299       if (ComdatID > ComdatList.size())
3300         return error("Invalid global variable comdat ID");
3301       NewGV->setComdat(ComdatList[ComdatID - 1]);
3302     }
3303   } else if (hasImplicitComdat(RawLinkage)) {
3304     ImplicitComdatObjects.insert(NewGV);
3305   }
3306 
3307   if (Record.size() > 12) {
3308     auto AS = getAttributes(Record[12]).getFnAttrs();
3309     NewGV->setAttributes(AS);
3310   }
3311 
3312   if (Record.size() > 13) {
3313     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3314   }
3315   inferDSOLocal(NewGV);
3316 
3317   // Check whether we have enough values to read a partition name.
3318   if (Record.size() > 15)
3319     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3320 
3321   return Error::success();
3322 }
3323 
3324 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3325   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3326   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3327   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3328   // v2: [strtab_offset, strtab_size, v1]
3329   StringRef Name;
3330   std::tie(Name, Record) = readNameFromStrtab(Record);
3331 
3332   if (Record.size() < 8)
3333     return error("Invalid record");
3334   Type *FTy = getTypeByID(Record[0]);
3335   if (!FTy)
3336     return error("Invalid record");
3337   if (auto *PTy = dyn_cast<PointerType>(FTy))
3338     FTy = PTy->getElementType();
3339 
3340   if (!isa<FunctionType>(FTy))
3341     return error("Invalid type for value");
3342   auto CC = static_cast<CallingConv::ID>(Record[1]);
3343   if (CC & ~CallingConv::MaxID)
3344     return error("Invalid calling convention ID");
3345 
3346   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3347   if (Record.size() > 16)
3348     AddrSpace = Record[16];
3349 
3350   Function *Func =
3351       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3352                        AddrSpace, Name, TheModule);
3353 
3354   assert(Func->getFunctionType() == FTy &&
3355          "Incorrect fully specified type provided for function");
3356   FunctionTypes[Func] = cast<FunctionType>(FTy);
3357 
3358   Func->setCallingConv(CC);
3359   bool isProto = Record[2];
3360   uint64_t RawLinkage = Record[3];
3361   Func->setLinkage(getDecodedLinkage(RawLinkage));
3362   Func->setAttributes(getAttributes(Record[4]));
3363 
3364   // Upgrade any old-style byval or sret without a type by propagating the
3365   // argument's pointee type. There should be no opaque pointers where the byval
3366   // type is implicit.
3367   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3368     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3369                                      Attribute::InAlloca}) {
3370       if (!Func->hasParamAttribute(i, Kind))
3371         continue;
3372 
3373       if (Func->getParamAttribute(i, Kind).getValueAsType())
3374         continue;
3375 
3376       Func->removeParamAttr(i, Kind);
3377 
3378       Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3379       Type *PtrEltTy = cast<PointerType>(PTy)->getElementType();
3380       Attribute NewAttr;
3381       switch (Kind) {
3382       case Attribute::ByVal:
3383         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3384         break;
3385       case Attribute::StructRet:
3386         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3387         break;
3388       case Attribute::InAlloca:
3389         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3390         break;
3391       default:
3392         llvm_unreachable("not an upgraded type attribute");
3393       }
3394 
3395       Func->addParamAttr(i, NewAttr);
3396     }
3397   }
3398 
3399   MaybeAlign Alignment;
3400   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3401     return Err;
3402   Func->setAlignment(Alignment);
3403   if (Record[6]) {
3404     if (Record[6] - 1 >= SectionTable.size())
3405       return error("Invalid ID");
3406     Func->setSection(SectionTable[Record[6] - 1]);
3407   }
3408   // Local linkage must have default visibility.
3409   // auto-upgrade `hidden` and `protected` for old bitcode.
3410   if (!Func->hasLocalLinkage())
3411     Func->setVisibility(getDecodedVisibility(Record[7]));
3412   if (Record.size() > 8 && Record[8]) {
3413     if (Record[8] - 1 >= GCTable.size())
3414       return error("Invalid ID");
3415     Func->setGC(GCTable[Record[8] - 1]);
3416   }
3417   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3418   if (Record.size() > 9)
3419     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3420   Func->setUnnamedAddr(UnnamedAddr);
3421 
3422   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3423   if (Record.size() > 10)
3424     OperandInfo.Prologue = Record[10];
3425 
3426   if (Record.size() > 11)
3427     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3428   else
3429     upgradeDLLImportExportLinkage(Func, RawLinkage);
3430 
3431   if (Record.size() > 12) {
3432     if (unsigned ComdatID = Record[12]) {
3433       if (ComdatID > ComdatList.size())
3434         return error("Invalid function comdat ID");
3435       Func->setComdat(ComdatList[ComdatID - 1]);
3436     }
3437   } else if (hasImplicitComdat(RawLinkage)) {
3438     ImplicitComdatObjects.insert(Func);
3439   }
3440 
3441   if (Record.size() > 13)
3442     OperandInfo.Prefix = Record[13];
3443 
3444   if (Record.size() > 14)
3445     OperandInfo.PersonalityFn = Record[14];
3446 
3447   if (Record.size() > 15) {
3448     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3449   }
3450   inferDSOLocal(Func);
3451 
3452   // Record[16] is the address space number.
3453 
3454   // Check whether we have enough values to read a partition name. Also make
3455   // sure Strtab has enough values.
3456   if (Record.size() > 18 && Strtab.data() &&
3457       Record[17] + Record[18] <= Strtab.size()) {
3458     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3459   }
3460 
3461   ValueList.push_back(Func);
3462 
3463   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3464     FunctionOperands.push_back(OperandInfo);
3465 
3466   // If this is a function with a body, remember the prototype we are
3467   // creating now, so that we can match up the body with them later.
3468   if (!isProto) {
3469     Func->setIsMaterializable(true);
3470     FunctionsWithBodies.push_back(Func);
3471     DeferredFunctionInfo[Func] = 0;
3472   }
3473   return Error::success();
3474 }
3475 
3476 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3477     unsigned BitCode, ArrayRef<uint64_t> Record) {
3478   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3479   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3480   // dllstorageclass, threadlocal, unnamed_addr,
3481   // preemption specifier] (name in VST)
3482   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3483   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3484   // preemption specifier] (name in VST)
3485   // v2: [strtab_offset, strtab_size, v1]
3486   StringRef Name;
3487   std::tie(Name, Record) = readNameFromStrtab(Record);
3488 
3489   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3490   if (Record.size() < (3 + (unsigned)NewRecord))
3491     return error("Invalid record");
3492   unsigned OpNum = 0;
3493   Type *Ty = getTypeByID(Record[OpNum++]);
3494   if (!Ty)
3495     return error("Invalid record");
3496 
3497   unsigned AddrSpace;
3498   if (!NewRecord) {
3499     auto *PTy = dyn_cast<PointerType>(Ty);
3500     if (!PTy)
3501       return error("Invalid type for value");
3502     Ty = PTy->getElementType();
3503     AddrSpace = PTy->getAddressSpace();
3504   } else {
3505     AddrSpace = Record[OpNum++];
3506   }
3507 
3508   auto Val = Record[OpNum++];
3509   auto Linkage = Record[OpNum++];
3510   GlobalValue *NewGA;
3511   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3512       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3513     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3514                                 TheModule);
3515   else
3516     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3517                                 nullptr, TheModule);
3518 
3519   // Local linkage must have default visibility.
3520   // auto-upgrade `hidden` and `protected` for old bitcode.
3521   if (OpNum != Record.size()) {
3522     auto VisInd = OpNum++;
3523     if (!NewGA->hasLocalLinkage())
3524       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3525   }
3526   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3527       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3528     if (OpNum != Record.size())
3529       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3530     else
3531       upgradeDLLImportExportLinkage(NewGA, Linkage);
3532     if (OpNum != Record.size())
3533       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3534     if (OpNum != Record.size())
3535       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3536   }
3537   if (OpNum != Record.size())
3538     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3539   inferDSOLocal(NewGA);
3540 
3541   // Check whether we have enough values to read a partition name.
3542   if (OpNum + 1 < Record.size()) {
3543     NewGA->setPartition(
3544         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3545     OpNum += 2;
3546   }
3547 
3548   ValueList.push_back(NewGA);
3549   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3550   return Error::success();
3551 }
3552 
3553 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3554                                  bool ShouldLazyLoadMetadata,
3555                                  DataLayoutCallbackTy DataLayoutCallback) {
3556   if (ResumeBit) {
3557     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3558       return JumpFailed;
3559   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3560     return Err;
3561 
3562   SmallVector<uint64_t, 64> Record;
3563 
3564   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3565   // finalize the datalayout before we run any of that code.
3566   bool ResolvedDataLayout = false;
3567   auto ResolveDataLayout = [&] {
3568     if (ResolvedDataLayout)
3569       return;
3570 
3571     // datalayout and triple can't be parsed after this point.
3572     ResolvedDataLayout = true;
3573 
3574     // Upgrade data layout string.
3575     std::string DL = llvm::UpgradeDataLayoutString(
3576         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3577     TheModule->setDataLayout(DL);
3578 
3579     if (auto LayoutOverride =
3580             DataLayoutCallback(TheModule->getTargetTriple()))
3581       TheModule->setDataLayout(*LayoutOverride);
3582   };
3583 
3584   // Read all the records for this module.
3585   while (true) {
3586     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3587     if (!MaybeEntry)
3588       return MaybeEntry.takeError();
3589     llvm::BitstreamEntry Entry = MaybeEntry.get();
3590 
3591     switch (Entry.Kind) {
3592     case BitstreamEntry::Error:
3593       return error("Malformed block");
3594     case BitstreamEntry::EndBlock:
3595       ResolveDataLayout();
3596       return globalCleanup();
3597 
3598     case BitstreamEntry::SubBlock:
3599       switch (Entry.ID) {
3600       default:  // Skip unknown content.
3601         if (Error Err = Stream.SkipBlock())
3602           return Err;
3603         break;
3604       case bitc::BLOCKINFO_BLOCK_ID:
3605         if (readBlockInfo())
3606           return error("Malformed block");
3607         break;
3608       case bitc::PARAMATTR_BLOCK_ID:
3609         if (Error Err = parseAttributeBlock())
3610           return Err;
3611         break;
3612       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3613         if (Error Err = parseAttributeGroupBlock())
3614           return Err;
3615         break;
3616       case bitc::TYPE_BLOCK_ID_NEW:
3617         if (Error Err = parseTypeTable())
3618           return Err;
3619         break;
3620       case bitc::VALUE_SYMTAB_BLOCK_ID:
3621         if (!SeenValueSymbolTable) {
3622           // Either this is an old form VST without function index and an
3623           // associated VST forward declaration record (which would have caused
3624           // the VST to be jumped to and parsed before it was encountered
3625           // normally in the stream), or there were no function blocks to
3626           // trigger an earlier parsing of the VST.
3627           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3628           if (Error Err = parseValueSymbolTable())
3629             return Err;
3630           SeenValueSymbolTable = true;
3631         } else {
3632           // We must have had a VST forward declaration record, which caused
3633           // the parser to jump to and parse the VST earlier.
3634           assert(VSTOffset > 0);
3635           if (Error Err = Stream.SkipBlock())
3636             return Err;
3637         }
3638         break;
3639       case bitc::CONSTANTS_BLOCK_ID:
3640         if (Error Err = parseConstants())
3641           return Err;
3642         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3643           return Err;
3644         break;
3645       case bitc::METADATA_BLOCK_ID:
3646         if (ShouldLazyLoadMetadata) {
3647           if (Error Err = rememberAndSkipMetadata())
3648             return Err;
3649           break;
3650         }
3651         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3652         if (Error Err = MDLoader->parseModuleMetadata())
3653           return Err;
3654         break;
3655       case bitc::METADATA_KIND_BLOCK_ID:
3656         if (Error Err = MDLoader->parseMetadataKinds())
3657           return Err;
3658         break;
3659       case bitc::FUNCTION_BLOCK_ID:
3660         ResolveDataLayout();
3661 
3662         // If this is the first function body we've seen, reverse the
3663         // FunctionsWithBodies list.
3664         if (!SeenFirstFunctionBody) {
3665           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3666           if (Error Err = globalCleanup())
3667             return Err;
3668           SeenFirstFunctionBody = true;
3669         }
3670 
3671         if (VSTOffset > 0) {
3672           // If we have a VST forward declaration record, make sure we
3673           // parse the VST now if we haven't already. It is needed to
3674           // set up the DeferredFunctionInfo vector for lazy reading.
3675           if (!SeenValueSymbolTable) {
3676             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3677               return Err;
3678             SeenValueSymbolTable = true;
3679             // Fall through so that we record the NextUnreadBit below.
3680             // This is necessary in case we have an anonymous function that
3681             // is later materialized. Since it will not have a VST entry we
3682             // need to fall back to the lazy parse to find its offset.
3683           } else {
3684             // If we have a VST forward declaration record, but have already
3685             // parsed the VST (just above, when the first function body was
3686             // encountered here), then we are resuming the parse after
3687             // materializing functions. The ResumeBit points to the
3688             // start of the last function block recorded in the
3689             // DeferredFunctionInfo map. Skip it.
3690             if (Error Err = Stream.SkipBlock())
3691               return Err;
3692             continue;
3693           }
3694         }
3695 
3696         // Support older bitcode files that did not have the function
3697         // index in the VST, nor a VST forward declaration record, as
3698         // well as anonymous functions that do not have VST entries.
3699         // Build the DeferredFunctionInfo vector on the fly.
3700         if (Error Err = rememberAndSkipFunctionBody())
3701           return Err;
3702 
3703         // Suspend parsing when we reach the function bodies. Subsequent
3704         // materialization calls will resume it when necessary. If the bitcode
3705         // file is old, the symbol table will be at the end instead and will not
3706         // have been seen yet. In this case, just finish the parse now.
3707         if (SeenValueSymbolTable) {
3708           NextUnreadBit = Stream.GetCurrentBitNo();
3709           // After the VST has been parsed, we need to make sure intrinsic name
3710           // are auto-upgraded.
3711           return globalCleanup();
3712         }
3713         break;
3714       case bitc::USELIST_BLOCK_ID:
3715         if (Error Err = parseUseLists())
3716           return Err;
3717         break;
3718       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3719         if (Error Err = parseOperandBundleTags())
3720           return Err;
3721         break;
3722       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3723         if (Error Err = parseSyncScopeNames())
3724           return Err;
3725         break;
3726       }
3727       continue;
3728 
3729     case BitstreamEntry::Record:
3730       // The interesting case.
3731       break;
3732     }
3733 
3734     // Read a record.
3735     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3736     if (!MaybeBitCode)
3737       return MaybeBitCode.takeError();
3738     switch (unsigned BitCode = MaybeBitCode.get()) {
3739     default: break;  // Default behavior, ignore unknown content.
3740     case bitc::MODULE_CODE_VERSION: {
3741       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3742       if (!VersionOrErr)
3743         return VersionOrErr.takeError();
3744       UseRelativeIDs = *VersionOrErr >= 1;
3745       break;
3746     }
3747     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3748       if (ResolvedDataLayout)
3749         return error("target triple too late in module");
3750       std::string S;
3751       if (convertToString(Record, 0, S))
3752         return error("Invalid record");
3753       TheModule->setTargetTriple(S);
3754       break;
3755     }
3756     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3757       if (ResolvedDataLayout)
3758         return error("datalayout too late in module");
3759       std::string S;
3760       if (convertToString(Record, 0, S))
3761         return error("Invalid record");
3762       TheModule->setDataLayout(S);
3763       break;
3764     }
3765     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3766       std::string S;
3767       if (convertToString(Record, 0, S))
3768         return error("Invalid record");
3769       TheModule->setModuleInlineAsm(S);
3770       break;
3771     }
3772     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3773       // Deprecated, but still needed to read old bitcode files.
3774       std::string S;
3775       if (convertToString(Record, 0, S))
3776         return error("Invalid record");
3777       // Ignore value.
3778       break;
3779     }
3780     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3781       std::string S;
3782       if (convertToString(Record, 0, S))
3783         return error("Invalid record");
3784       SectionTable.push_back(S);
3785       break;
3786     }
3787     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3788       std::string S;
3789       if (convertToString(Record, 0, S))
3790         return error("Invalid record");
3791       GCTable.push_back(S);
3792       break;
3793     }
3794     case bitc::MODULE_CODE_COMDAT:
3795       if (Error Err = parseComdatRecord(Record))
3796         return Err;
3797       break;
3798     case bitc::MODULE_CODE_GLOBALVAR:
3799       if (Error Err = parseGlobalVarRecord(Record))
3800         return Err;
3801       break;
3802     case bitc::MODULE_CODE_FUNCTION:
3803       ResolveDataLayout();
3804       if (Error Err = parseFunctionRecord(Record))
3805         return Err;
3806       break;
3807     case bitc::MODULE_CODE_IFUNC:
3808     case bitc::MODULE_CODE_ALIAS:
3809     case bitc::MODULE_CODE_ALIAS_OLD:
3810       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3811         return Err;
3812       break;
3813     /// MODULE_CODE_VSTOFFSET: [offset]
3814     case bitc::MODULE_CODE_VSTOFFSET:
3815       if (Record.empty())
3816         return error("Invalid record");
3817       // Note that we subtract 1 here because the offset is relative to one word
3818       // before the start of the identification or module block, which was
3819       // historically always the start of the regular bitcode header.
3820       VSTOffset = Record[0] - 1;
3821       break;
3822     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3823     case bitc::MODULE_CODE_SOURCE_FILENAME:
3824       SmallString<128> ValueName;
3825       if (convertToString(Record, 0, ValueName))
3826         return error("Invalid record");
3827       TheModule->setSourceFileName(ValueName);
3828       break;
3829     }
3830     Record.clear();
3831   }
3832 }
3833 
3834 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3835                                       bool IsImporting,
3836                                       DataLayoutCallbackTy DataLayoutCallback) {
3837   TheModule = M;
3838   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3839                             [&](unsigned ID) { return getTypeByID(ID); });
3840   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3841 }
3842 
3843 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3844   if (!isa<PointerType>(PtrType))
3845     return error("Load/Store operand is not a pointer type");
3846 
3847   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3848     return error("Explicit load/store type does not match pointee "
3849                  "type of pointer operand");
3850   if (!PointerType::isLoadableOrStorableType(ValType))
3851     return error("Cannot load/store from pointer");
3852   return Error::success();
3853 }
3854 
3855 void BitcodeReader::propagateAttributeTypes(CallBase *CB,
3856                                             ArrayRef<Type *> ArgsTys) {
3857   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3858     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3859                                      Attribute::InAlloca}) {
3860       if (!CB->paramHasAttr(i, Kind))
3861         continue;
3862 
3863       CB->removeParamAttr(i, Kind);
3864 
3865       Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType();
3866       Attribute NewAttr;
3867       switch (Kind) {
3868       case Attribute::ByVal:
3869         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3870         break;
3871       case Attribute::StructRet:
3872         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3873         break;
3874       case Attribute::InAlloca:
3875         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3876         break;
3877       default:
3878         llvm_unreachable("not an upgraded type attribute");
3879       }
3880 
3881       CB->addParamAttr(i, NewAttr);
3882     }
3883   }
3884 
3885   switch (CB->getIntrinsicID()) {
3886   case Intrinsic::preserve_array_access_index:
3887   case Intrinsic::preserve_struct_access_index:
3888     if (!CB->getAttributes().getParamElementType(0)) {
3889       Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType();
3890       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
3891       CB->addParamAttr(0, NewAttr);
3892     }
3893     break;
3894   default:
3895     break;
3896   }
3897 }
3898 
3899 /// Lazily parse the specified function body block.
3900 Error BitcodeReader::parseFunctionBody(Function *F) {
3901   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3902     return Err;
3903 
3904   // Unexpected unresolved metadata when parsing function.
3905   if (MDLoader->hasFwdRefs())
3906     return error("Invalid function metadata: incoming forward references");
3907 
3908   InstructionList.clear();
3909   unsigned ModuleValueListSize = ValueList.size();
3910   unsigned ModuleMDLoaderSize = MDLoader->size();
3911 
3912   // Add all the function arguments to the value table.
3913 #ifndef NDEBUG
3914   unsigned ArgNo = 0;
3915   FunctionType *FTy = FunctionTypes[F];
3916 #endif
3917   for (Argument &I : F->args()) {
3918     assert(I.getType() == FTy->getParamType(ArgNo++) &&
3919            "Incorrect fully specified type for Function Argument");
3920     ValueList.push_back(&I);
3921   }
3922   unsigned NextValueNo = ValueList.size();
3923   BasicBlock *CurBB = nullptr;
3924   unsigned CurBBNo = 0;
3925 
3926   DebugLoc LastLoc;
3927   auto getLastInstruction = [&]() -> Instruction * {
3928     if (CurBB && !CurBB->empty())
3929       return &CurBB->back();
3930     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3931              !FunctionBBs[CurBBNo - 1]->empty())
3932       return &FunctionBBs[CurBBNo - 1]->back();
3933     return nullptr;
3934   };
3935 
3936   std::vector<OperandBundleDef> OperandBundles;
3937 
3938   // Read all the records.
3939   SmallVector<uint64_t, 64> Record;
3940 
3941   while (true) {
3942     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3943     if (!MaybeEntry)
3944       return MaybeEntry.takeError();
3945     llvm::BitstreamEntry Entry = MaybeEntry.get();
3946 
3947     switch (Entry.Kind) {
3948     case BitstreamEntry::Error:
3949       return error("Malformed block");
3950     case BitstreamEntry::EndBlock:
3951       goto OutOfRecordLoop;
3952 
3953     case BitstreamEntry::SubBlock:
3954       switch (Entry.ID) {
3955       default:  // Skip unknown content.
3956         if (Error Err = Stream.SkipBlock())
3957           return Err;
3958         break;
3959       case bitc::CONSTANTS_BLOCK_ID:
3960         if (Error Err = parseConstants())
3961           return Err;
3962         NextValueNo = ValueList.size();
3963         break;
3964       case bitc::VALUE_SYMTAB_BLOCK_ID:
3965         if (Error Err = parseValueSymbolTable())
3966           return Err;
3967         break;
3968       case bitc::METADATA_ATTACHMENT_ID:
3969         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3970           return Err;
3971         break;
3972       case bitc::METADATA_BLOCK_ID:
3973         assert(DeferredMetadataInfo.empty() &&
3974                "Must read all module-level metadata before function-level");
3975         if (Error Err = MDLoader->parseFunctionMetadata())
3976           return Err;
3977         break;
3978       case bitc::USELIST_BLOCK_ID:
3979         if (Error Err = parseUseLists())
3980           return Err;
3981         break;
3982       }
3983       continue;
3984 
3985     case BitstreamEntry::Record:
3986       // The interesting case.
3987       break;
3988     }
3989 
3990     // Read a record.
3991     Record.clear();
3992     Instruction *I = nullptr;
3993     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3994     if (!MaybeBitCode)
3995       return MaybeBitCode.takeError();
3996     switch (unsigned BitCode = MaybeBitCode.get()) {
3997     default: // Default behavior: reject
3998       return error("Invalid value");
3999     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4000       if (Record.empty() || Record[0] == 0)
4001         return error("Invalid record");
4002       // Create all the basic blocks for the function.
4003       FunctionBBs.resize(Record[0]);
4004 
4005       // See if anything took the address of blocks in this function.
4006       auto BBFRI = BasicBlockFwdRefs.find(F);
4007       if (BBFRI == BasicBlockFwdRefs.end()) {
4008         for (BasicBlock *&BB : FunctionBBs)
4009           BB = BasicBlock::Create(Context, "", F);
4010       } else {
4011         auto &BBRefs = BBFRI->second;
4012         // Check for invalid basic block references.
4013         if (BBRefs.size() > FunctionBBs.size())
4014           return error("Invalid ID");
4015         assert(!BBRefs.empty() && "Unexpected empty array");
4016         assert(!BBRefs.front() && "Invalid reference to entry block");
4017         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4018              ++I)
4019           if (I < RE && BBRefs[I]) {
4020             BBRefs[I]->insertInto(F);
4021             FunctionBBs[I] = BBRefs[I];
4022           } else {
4023             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4024           }
4025 
4026         // Erase from the table.
4027         BasicBlockFwdRefs.erase(BBFRI);
4028       }
4029 
4030       CurBB = FunctionBBs[0];
4031       continue;
4032     }
4033 
4034     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4035       // This record indicates that the last instruction is at the same
4036       // location as the previous instruction with a location.
4037       I = getLastInstruction();
4038 
4039       if (!I)
4040         return error("Invalid record");
4041       I->setDebugLoc(LastLoc);
4042       I = nullptr;
4043       continue;
4044 
4045     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4046       I = getLastInstruction();
4047       if (!I || Record.size() < 4)
4048         return error("Invalid record");
4049 
4050       unsigned Line = Record[0], Col = Record[1];
4051       unsigned ScopeID = Record[2], IAID = Record[3];
4052       bool isImplicitCode = Record.size() == 5 && Record[4];
4053 
4054       MDNode *Scope = nullptr, *IA = nullptr;
4055       if (ScopeID) {
4056         Scope = dyn_cast_or_null<MDNode>(
4057             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4058         if (!Scope)
4059           return error("Invalid record");
4060       }
4061       if (IAID) {
4062         IA = dyn_cast_or_null<MDNode>(
4063             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4064         if (!IA)
4065           return error("Invalid record");
4066       }
4067       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4068                                 isImplicitCode);
4069       I->setDebugLoc(LastLoc);
4070       I = nullptr;
4071       continue;
4072     }
4073     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4074       unsigned OpNum = 0;
4075       Value *LHS;
4076       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4077           OpNum+1 > Record.size())
4078         return error("Invalid record");
4079 
4080       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4081       if (Opc == -1)
4082         return error("Invalid record");
4083       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4084       InstructionList.push_back(I);
4085       if (OpNum < Record.size()) {
4086         if (isa<FPMathOperator>(I)) {
4087           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4088           if (FMF.any())
4089             I->setFastMathFlags(FMF);
4090         }
4091       }
4092       break;
4093     }
4094     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4095       unsigned OpNum = 0;
4096       Value *LHS, *RHS;
4097       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4098           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4099           OpNum+1 > Record.size())
4100         return error("Invalid record");
4101 
4102       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4103       if (Opc == -1)
4104         return error("Invalid record");
4105       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4106       InstructionList.push_back(I);
4107       if (OpNum < Record.size()) {
4108         if (Opc == Instruction::Add ||
4109             Opc == Instruction::Sub ||
4110             Opc == Instruction::Mul ||
4111             Opc == Instruction::Shl) {
4112           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4113             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4114           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4115             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4116         } else if (Opc == Instruction::SDiv ||
4117                    Opc == Instruction::UDiv ||
4118                    Opc == Instruction::LShr ||
4119                    Opc == Instruction::AShr) {
4120           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4121             cast<BinaryOperator>(I)->setIsExact(true);
4122         } else if (isa<FPMathOperator>(I)) {
4123           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4124           if (FMF.any())
4125             I->setFastMathFlags(FMF);
4126         }
4127 
4128       }
4129       break;
4130     }
4131     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4132       unsigned OpNum = 0;
4133       Value *Op;
4134       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4135           OpNum+2 != Record.size())
4136         return error("Invalid record");
4137 
4138       Type *ResTy = getTypeByID(Record[OpNum]);
4139       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4140       if (Opc == -1 || !ResTy)
4141         return error("Invalid record");
4142       Instruction *Temp = nullptr;
4143       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4144         if (Temp) {
4145           InstructionList.push_back(Temp);
4146           assert(CurBB && "No current BB?");
4147           CurBB->getInstList().push_back(Temp);
4148         }
4149       } else {
4150         auto CastOp = (Instruction::CastOps)Opc;
4151         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4152           return error("Invalid cast");
4153         I = CastInst::Create(CastOp, Op, ResTy);
4154       }
4155       InstructionList.push_back(I);
4156       break;
4157     }
4158     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4159     case bitc::FUNC_CODE_INST_GEP_OLD:
4160     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4161       unsigned OpNum = 0;
4162 
4163       Type *Ty;
4164       bool InBounds;
4165 
4166       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4167         InBounds = Record[OpNum++];
4168         Ty = getTypeByID(Record[OpNum++]);
4169       } else {
4170         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4171         Ty = nullptr;
4172       }
4173 
4174       Value *BasePtr;
4175       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4176         return error("Invalid record");
4177 
4178       if (!Ty) {
4179         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
4180                  ->getElementType();
4181       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4182                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4183         return error(
4184             "Explicit gep type does not match pointee type of pointer operand");
4185       }
4186 
4187       SmallVector<Value*, 16> GEPIdx;
4188       while (OpNum != Record.size()) {
4189         Value *Op;
4190         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4191           return error("Invalid record");
4192         GEPIdx.push_back(Op);
4193       }
4194 
4195       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4196 
4197       InstructionList.push_back(I);
4198       if (InBounds)
4199         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4200       break;
4201     }
4202 
4203     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4204                                        // EXTRACTVAL: [opty, opval, n x indices]
4205       unsigned OpNum = 0;
4206       Value *Agg;
4207       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4208         return error("Invalid record");
4209       Type *Ty = Agg->getType();
4210 
4211       unsigned RecSize = Record.size();
4212       if (OpNum == RecSize)
4213         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4214 
4215       SmallVector<unsigned, 4> EXTRACTVALIdx;
4216       for (; OpNum != RecSize; ++OpNum) {
4217         bool IsArray = Ty->isArrayTy();
4218         bool IsStruct = Ty->isStructTy();
4219         uint64_t Index = Record[OpNum];
4220 
4221         if (!IsStruct && !IsArray)
4222           return error("EXTRACTVAL: Invalid type");
4223         if ((unsigned)Index != Index)
4224           return error("Invalid value");
4225         if (IsStruct && Index >= Ty->getStructNumElements())
4226           return error("EXTRACTVAL: Invalid struct index");
4227         if (IsArray && Index >= Ty->getArrayNumElements())
4228           return error("EXTRACTVAL: Invalid array index");
4229         EXTRACTVALIdx.push_back((unsigned)Index);
4230 
4231         if (IsStruct)
4232           Ty = Ty->getStructElementType(Index);
4233         else
4234           Ty = Ty->getArrayElementType();
4235       }
4236 
4237       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4238       InstructionList.push_back(I);
4239       break;
4240     }
4241 
4242     case bitc::FUNC_CODE_INST_INSERTVAL: {
4243                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4244       unsigned OpNum = 0;
4245       Value *Agg;
4246       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4247         return error("Invalid record");
4248       Value *Val;
4249       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4250         return error("Invalid record");
4251 
4252       unsigned RecSize = Record.size();
4253       if (OpNum == RecSize)
4254         return error("INSERTVAL: Invalid instruction with 0 indices");
4255 
4256       SmallVector<unsigned, 4> INSERTVALIdx;
4257       Type *CurTy = Agg->getType();
4258       for (; OpNum != RecSize; ++OpNum) {
4259         bool IsArray = CurTy->isArrayTy();
4260         bool IsStruct = CurTy->isStructTy();
4261         uint64_t Index = Record[OpNum];
4262 
4263         if (!IsStruct && !IsArray)
4264           return error("INSERTVAL: Invalid type");
4265         if ((unsigned)Index != Index)
4266           return error("Invalid value");
4267         if (IsStruct && Index >= CurTy->getStructNumElements())
4268           return error("INSERTVAL: Invalid struct index");
4269         if (IsArray && Index >= CurTy->getArrayNumElements())
4270           return error("INSERTVAL: Invalid array index");
4271 
4272         INSERTVALIdx.push_back((unsigned)Index);
4273         if (IsStruct)
4274           CurTy = CurTy->getStructElementType(Index);
4275         else
4276           CurTy = CurTy->getArrayElementType();
4277       }
4278 
4279       if (CurTy != Val->getType())
4280         return error("Inserted value type doesn't match aggregate type");
4281 
4282       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4283       InstructionList.push_back(I);
4284       break;
4285     }
4286 
4287     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4288       // obsolete form of select
4289       // handles select i1 ... in old bitcode
4290       unsigned OpNum = 0;
4291       Value *TrueVal, *FalseVal, *Cond;
4292       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4293           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4294           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4295         return error("Invalid record");
4296 
4297       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4298       InstructionList.push_back(I);
4299       break;
4300     }
4301 
4302     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4303       // new form of select
4304       // handles select i1 or select [N x i1]
4305       unsigned OpNum = 0;
4306       Value *TrueVal, *FalseVal, *Cond;
4307       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4308           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4309           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4310         return error("Invalid record");
4311 
4312       // select condition can be either i1 or [N x i1]
4313       if (VectorType* vector_type =
4314           dyn_cast<VectorType>(Cond->getType())) {
4315         // expect <n x i1>
4316         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4317           return error("Invalid type for value");
4318       } else {
4319         // expect i1
4320         if (Cond->getType() != Type::getInt1Ty(Context))
4321           return error("Invalid type for value");
4322       }
4323 
4324       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4325       InstructionList.push_back(I);
4326       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4327         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4328         if (FMF.any())
4329           I->setFastMathFlags(FMF);
4330       }
4331       break;
4332     }
4333 
4334     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4335       unsigned OpNum = 0;
4336       Value *Vec, *Idx;
4337       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4338           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4339         return error("Invalid record");
4340       if (!Vec->getType()->isVectorTy())
4341         return error("Invalid type for value");
4342       I = ExtractElementInst::Create(Vec, Idx);
4343       InstructionList.push_back(I);
4344       break;
4345     }
4346 
4347     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4348       unsigned OpNum = 0;
4349       Value *Vec, *Elt, *Idx;
4350       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4351         return error("Invalid record");
4352       if (!Vec->getType()->isVectorTy())
4353         return error("Invalid type for value");
4354       if (popValue(Record, OpNum, NextValueNo,
4355                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4356           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4357         return error("Invalid record");
4358       I = InsertElementInst::Create(Vec, Elt, Idx);
4359       InstructionList.push_back(I);
4360       break;
4361     }
4362 
4363     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4364       unsigned OpNum = 0;
4365       Value *Vec1, *Vec2, *Mask;
4366       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4367           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4368         return error("Invalid record");
4369 
4370       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4371         return error("Invalid record");
4372       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4373         return error("Invalid type for value");
4374 
4375       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4376       InstructionList.push_back(I);
4377       break;
4378     }
4379 
4380     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4381       // Old form of ICmp/FCmp returning bool
4382       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4383       // both legal on vectors but had different behaviour.
4384     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4385       // FCmp/ICmp returning bool or vector of bool
4386 
4387       unsigned OpNum = 0;
4388       Value *LHS, *RHS;
4389       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4390           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4391         return error("Invalid record");
4392 
4393       if (OpNum >= Record.size())
4394         return error(
4395             "Invalid record: operand number exceeded available operands");
4396 
4397       unsigned PredVal = Record[OpNum];
4398       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4399       FastMathFlags FMF;
4400       if (IsFP && Record.size() > OpNum+1)
4401         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4402 
4403       if (OpNum+1 != Record.size())
4404         return error("Invalid record");
4405 
4406       if (LHS->getType()->isFPOrFPVectorTy())
4407         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4408       else
4409         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4410 
4411       if (FMF.any())
4412         I->setFastMathFlags(FMF);
4413       InstructionList.push_back(I);
4414       break;
4415     }
4416 
4417     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4418       {
4419         unsigned Size = Record.size();
4420         if (Size == 0) {
4421           I = ReturnInst::Create(Context);
4422           InstructionList.push_back(I);
4423           break;
4424         }
4425 
4426         unsigned OpNum = 0;
4427         Value *Op = nullptr;
4428         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4429           return error("Invalid record");
4430         if (OpNum != Record.size())
4431           return error("Invalid record");
4432 
4433         I = ReturnInst::Create(Context, Op);
4434         InstructionList.push_back(I);
4435         break;
4436       }
4437     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4438       if (Record.size() != 1 && Record.size() != 3)
4439         return error("Invalid record");
4440       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4441       if (!TrueDest)
4442         return error("Invalid record");
4443 
4444       if (Record.size() == 1) {
4445         I = BranchInst::Create(TrueDest);
4446         InstructionList.push_back(I);
4447       }
4448       else {
4449         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4450         Value *Cond = getValue(Record, 2, NextValueNo,
4451                                Type::getInt1Ty(Context));
4452         if (!FalseDest || !Cond)
4453           return error("Invalid record");
4454         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4455         InstructionList.push_back(I);
4456       }
4457       break;
4458     }
4459     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4460       if (Record.size() != 1 && Record.size() != 2)
4461         return error("Invalid record");
4462       unsigned Idx = 0;
4463       Value *CleanupPad =
4464           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4465       if (!CleanupPad)
4466         return error("Invalid record");
4467       BasicBlock *UnwindDest = nullptr;
4468       if (Record.size() == 2) {
4469         UnwindDest = getBasicBlock(Record[Idx++]);
4470         if (!UnwindDest)
4471           return error("Invalid record");
4472       }
4473 
4474       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4475       InstructionList.push_back(I);
4476       break;
4477     }
4478     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4479       if (Record.size() != 2)
4480         return error("Invalid record");
4481       unsigned Idx = 0;
4482       Value *CatchPad =
4483           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4484       if (!CatchPad)
4485         return error("Invalid record");
4486       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4487       if (!BB)
4488         return error("Invalid record");
4489 
4490       I = CatchReturnInst::Create(CatchPad, BB);
4491       InstructionList.push_back(I);
4492       break;
4493     }
4494     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4495       // We must have, at minimum, the outer scope and the number of arguments.
4496       if (Record.size() < 2)
4497         return error("Invalid record");
4498 
4499       unsigned Idx = 0;
4500 
4501       Value *ParentPad =
4502           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4503 
4504       unsigned NumHandlers = Record[Idx++];
4505 
4506       SmallVector<BasicBlock *, 2> Handlers;
4507       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4508         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4509         if (!BB)
4510           return error("Invalid record");
4511         Handlers.push_back(BB);
4512       }
4513 
4514       BasicBlock *UnwindDest = nullptr;
4515       if (Idx + 1 == Record.size()) {
4516         UnwindDest = getBasicBlock(Record[Idx++]);
4517         if (!UnwindDest)
4518           return error("Invalid record");
4519       }
4520 
4521       if (Record.size() != Idx)
4522         return error("Invalid record");
4523 
4524       auto *CatchSwitch =
4525           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4526       for (BasicBlock *Handler : Handlers)
4527         CatchSwitch->addHandler(Handler);
4528       I = CatchSwitch;
4529       InstructionList.push_back(I);
4530       break;
4531     }
4532     case bitc::FUNC_CODE_INST_CATCHPAD:
4533     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4534       // We must have, at minimum, the outer scope and the number of arguments.
4535       if (Record.size() < 2)
4536         return error("Invalid record");
4537 
4538       unsigned Idx = 0;
4539 
4540       Value *ParentPad =
4541           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4542 
4543       unsigned NumArgOperands = Record[Idx++];
4544 
4545       SmallVector<Value *, 2> Args;
4546       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4547         Value *Val;
4548         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4549           return error("Invalid record");
4550         Args.push_back(Val);
4551       }
4552 
4553       if (Record.size() != Idx)
4554         return error("Invalid record");
4555 
4556       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4557         I = CleanupPadInst::Create(ParentPad, Args);
4558       else
4559         I = CatchPadInst::Create(ParentPad, Args);
4560       InstructionList.push_back(I);
4561       break;
4562     }
4563     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4564       // Check magic
4565       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4566         // "New" SwitchInst format with case ranges. The changes to write this
4567         // format were reverted but we still recognize bitcode that uses it.
4568         // Hopefully someday we will have support for case ranges and can use
4569         // this format again.
4570 
4571         Type *OpTy = getTypeByID(Record[1]);
4572         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4573 
4574         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4575         BasicBlock *Default = getBasicBlock(Record[3]);
4576         if (!OpTy || !Cond || !Default)
4577           return error("Invalid record");
4578 
4579         unsigned NumCases = Record[4];
4580 
4581         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4582         InstructionList.push_back(SI);
4583 
4584         unsigned CurIdx = 5;
4585         for (unsigned i = 0; i != NumCases; ++i) {
4586           SmallVector<ConstantInt*, 1> CaseVals;
4587           unsigned NumItems = Record[CurIdx++];
4588           for (unsigned ci = 0; ci != NumItems; ++ci) {
4589             bool isSingleNumber = Record[CurIdx++];
4590 
4591             APInt Low;
4592             unsigned ActiveWords = 1;
4593             if (ValueBitWidth > 64)
4594               ActiveWords = Record[CurIdx++];
4595             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4596                                 ValueBitWidth);
4597             CurIdx += ActiveWords;
4598 
4599             if (!isSingleNumber) {
4600               ActiveWords = 1;
4601               if (ValueBitWidth > 64)
4602                 ActiveWords = Record[CurIdx++];
4603               APInt High = readWideAPInt(
4604                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4605               CurIdx += ActiveWords;
4606 
4607               // FIXME: It is not clear whether values in the range should be
4608               // compared as signed or unsigned values. The partially
4609               // implemented changes that used this format in the past used
4610               // unsigned comparisons.
4611               for ( ; Low.ule(High); ++Low)
4612                 CaseVals.push_back(ConstantInt::get(Context, Low));
4613             } else
4614               CaseVals.push_back(ConstantInt::get(Context, Low));
4615           }
4616           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4617           for (ConstantInt *Cst : CaseVals)
4618             SI->addCase(Cst, DestBB);
4619         }
4620         I = SI;
4621         break;
4622       }
4623 
4624       // Old SwitchInst format without case ranges.
4625 
4626       if (Record.size() < 3 || (Record.size() & 1) == 0)
4627         return error("Invalid record");
4628       Type *OpTy = getTypeByID(Record[0]);
4629       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4630       BasicBlock *Default = getBasicBlock(Record[2]);
4631       if (!OpTy || !Cond || !Default)
4632         return error("Invalid record");
4633       unsigned NumCases = (Record.size()-3)/2;
4634       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4635       InstructionList.push_back(SI);
4636       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4637         ConstantInt *CaseVal =
4638           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4639         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4640         if (!CaseVal || !DestBB) {
4641           delete SI;
4642           return error("Invalid record");
4643         }
4644         SI->addCase(CaseVal, DestBB);
4645       }
4646       I = SI;
4647       break;
4648     }
4649     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4650       if (Record.size() < 2)
4651         return error("Invalid record");
4652       Type *OpTy = getTypeByID(Record[0]);
4653       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4654       if (!OpTy || !Address)
4655         return error("Invalid record");
4656       unsigned NumDests = Record.size()-2;
4657       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4658       InstructionList.push_back(IBI);
4659       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4660         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4661           IBI->addDestination(DestBB);
4662         } else {
4663           delete IBI;
4664           return error("Invalid record");
4665         }
4666       }
4667       I = IBI;
4668       break;
4669     }
4670 
4671     case bitc::FUNC_CODE_INST_INVOKE: {
4672       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4673       if (Record.size() < 4)
4674         return error("Invalid record");
4675       unsigned OpNum = 0;
4676       AttributeList PAL = getAttributes(Record[OpNum++]);
4677       unsigned CCInfo = Record[OpNum++];
4678       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4679       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4680 
4681       FunctionType *FTy = nullptr;
4682       if ((CCInfo >> 13) & 1) {
4683         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4684         if (!FTy)
4685           return error("Explicit invoke type is not a function type");
4686       }
4687 
4688       Value *Callee;
4689       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4690         return error("Invalid record");
4691 
4692       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4693       if (!CalleeTy)
4694         return error("Callee is not a pointer");
4695       if (!FTy) {
4696         FTy = dyn_cast<FunctionType>(
4697             cast<PointerType>(Callee->getType())->getElementType());
4698         if (!FTy)
4699           return error("Callee is not of pointer to function type");
4700       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4701         return error("Explicit invoke type does not match pointee type of "
4702                      "callee operand");
4703       if (Record.size() < FTy->getNumParams() + OpNum)
4704         return error("Insufficient operands to call");
4705 
4706       SmallVector<Value*, 16> Ops;
4707       SmallVector<Type *, 16> ArgsTys;
4708       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4709         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4710                                FTy->getParamType(i)));
4711         ArgsTys.push_back(FTy->getParamType(i));
4712         if (!Ops.back())
4713           return error("Invalid record");
4714       }
4715 
4716       if (!FTy->isVarArg()) {
4717         if (Record.size() != OpNum)
4718           return error("Invalid record");
4719       } else {
4720         // Read type/value pairs for varargs params.
4721         while (OpNum != Record.size()) {
4722           Value *Op;
4723           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4724             return error("Invalid record");
4725           Ops.push_back(Op);
4726           ArgsTys.push_back(Op->getType());
4727         }
4728       }
4729 
4730       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4731                              OperandBundles);
4732       OperandBundles.clear();
4733       InstructionList.push_back(I);
4734       cast<InvokeInst>(I)->setCallingConv(
4735           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4736       cast<InvokeInst>(I)->setAttributes(PAL);
4737       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4738 
4739       break;
4740     }
4741     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4742       unsigned Idx = 0;
4743       Value *Val = nullptr;
4744       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4745         return error("Invalid record");
4746       I = ResumeInst::Create(Val);
4747       InstructionList.push_back(I);
4748       break;
4749     }
4750     case bitc::FUNC_CODE_INST_CALLBR: {
4751       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4752       unsigned OpNum = 0;
4753       AttributeList PAL = getAttributes(Record[OpNum++]);
4754       unsigned CCInfo = Record[OpNum++];
4755 
4756       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4757       unsigned NumIndirectDests = Record[OpNum++];
4758       SmallVector<BasicBlock *, 16> IndirectDests;
4759       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4760         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4761 
4762       FunctionType *FTy = nullptr;
4763       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4764         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4765         if (!FTy)
4766           return error("Explicit call type is not a function type");
4767       }
4768 
4769       Value *Callee;
4770       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4771         return error("Invalid record");
4772 
4773       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4774       if (!OpTy)
4775         return error("Callee is not a pointer type");
4776       if (!FTy) {
4777         FTy = dyn_cast<FunctionType>(
4778             cast<PointerType>(Callee->getType())->getElementType());
4779         if (!FTy)
4780           return error("Callee is not of pointer to function type");
4781       } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy)
4782         return error("Explicit call type does not match pointee type of "
4783                      "callee operand");
4784       if (Record.size() < FTy->getNumParams() + OpNum)
4785         return error("Insufficient operands to call");
4786 
4787       SmallVector<Value*, 16> Args;
4788       // Read the fixed params.
4789       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4790         if (FTy->getParamType(i)->isLabelTy())
4791           Args.push_back(getBasicBlock(Record[OpNum]));
4792         else
4793           Args.push_back(getValue(Record, OpNum, NextValueNo,
4794                                   FTy->getParamType(i)));
4795         if (!Args.back())
4796           return error("Invalid record");
4797       }
4798 
4799       // Read type/value pairs for varargs params.
4800       if (!FTy->isVarArg()) {
4801         if (OpNum != Record.size())
4802           return error("Invalid record");
4803       } else {
4804         while (OpNum != Record.size()) {
4805           Value *Op;
4806           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4807             return error("Invalid record");
4808           Args.push_back(Op);
4809         }
4810       }
4811 
4812       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4813                              OperandBundles);
4814       OperandBundles.clear();
4815       InstructionList.push_back(I);
4816       cast<CallBrInst>(I)->setCallingConv(
4817           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4818       cast<CallBrInst>(I)->setAttributes(PAL);
4819       break;
4820     }
4821     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4822       I = new UnreachableInst(Context);
4823       InstructionList.push_back(I);
4824       break;
4825     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4826       if (Record.empty())
4827         return error("Invalid record");
4828       // The first record specifies the type.
4829       Type *Ty = getTypeByID(Record[0]);
4830       if (!Ty)
4831         return error("Invalid record");
4832 
4833       // Phi arguments are pairs of records of [value, basic block].
4834       // There is an optional final record for fast-math-flags if this phi has a
4835       // floating-point type.
4836       size_t NumArgs = (Record.size() - 1) / 2;
4837       PHINode *PN = PHINode::Create(Ty, NumArgs);
4838       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4839         return error("Invalid record");
4840       InstructionList.push_back(PN);
4841 
4842       for (unsigned i = 0; i != NumArgs; i++) {
4843         Value *V;
4844         // With the new function encoding, it is possible that operands have
4845         // negative IDs (for forward references).  Use a signed VBR
4846         // representation to keep the encoding small.
4847         if (UseRelativeIDs)
4848           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4849         else
4850           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4851         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4852         if (!V || !BB)
4853           return error("Invalid record");
4854         PN->addIncoming(V, BB);
4855       }
4856       I = PN;
4857 
4858       // If there are an even number of records, the final record must be FMF.
4859       if (Record.size() % 2 == 0) {
4860         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4861         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4862         if (FMF.any())
4863           I->setFastMathFlags(FMF);
4864       }
4865 
4866       break;
4867     }
4868 
4869     case bitc::FUNC_CODE_INST_LANDINGPAD:
4870     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4871       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4872       unsigned Idx = 0;
4873       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4874         if (Record.size() < 3)
4875           return error("Invalid record");
4876       } else {
4877         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4878         if (Record.size() < 4)
4879           return error("Invalid record");
4880       }
4881       Type *Ty = getTypeByID(Record[Idx++]);
4882       if (!Ty)
4883         return error("Invalid record");
4884       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4885         Value *PersFn = nullptr;
4886         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4887           return error("Invalid record");
4888 
4889         if (!F->hasPersonalityFn())
4890           F->setPersonalityFn(cast<Constant>(PersFn));
4891         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4892           return error("Personality function mismatch");
4893       }
4894 
4895       bool IsCleanup = !!Record[Idx++];
4896       unsigned NumClauses = Record[Idx++];
4897       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4898       LP->setCleanup(IsCleanup);
4899       for (unsigned J = 0; J != NumClauses; ++J) {
4900         LandingPadInst::ClauseType CT =
4901           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4902         Value *Val;
4903 
4904         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4905           delete LP;
4906           return error("Invalid record");
4907         }
4908 
4909         assert((CT != LandingPadInst::Catch ||
4910                 !isa<ArrayType>(Val->getType())) &&
4911                "Catch clause has a invalid type!");
4912         assert((CT != LandingPadInst::Filter ||
4913                 isa<ArrayType>(Val->getType())) &&
4914                "Filter clause has invalid type!");
4915         LP->addClause(cast<Constant>(Val));
4916       }
4917 
4918       I = LP;
4919       InstructionList.push_back(I);
4920       break;
4921     }
4922 
4923     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4924       if (Record.size() != 4)
4925         return error("Invalid record");
4926       using APV = AllocaPackedValues;
4927       const uint64_t Rec = Record[3];
4928       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4929       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4930       Type *Ty = getTypeByID(Record[0]);
4931       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4932         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4933         if (!PTy)
4934           return error("Old-style alloca with a non-pointer type");
4935         Ty = PTy->getElementType();
4936       }
4937       Type *OpTy = getTypeByID(Record[1]);
4938       Value *Size = getFnValueByID(Record[2], OpTy);
4939       MaybeAlign Align;
4940       uint64_t AlignExp =
4941           Bitfield::get<APV::AlignLower>(Rec) |
4942           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
4943       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
4944         return Err;
4945       }
4946       if (!Ty || !Size)
4947         return error("Invalid record");
4948 
4949       // FIXME: Make this an optional field.
4950       const DataLayout &DL = TheModule->getDataLayout();
4951       unsigned AS = DL.getAllocaAddrSpace();
4952 
4953       SmallPtrSet<Type *, 4> Visited;
4954       if (!Align && !Ty->isSized(&Visited))
4955         return error("alloca of unsized type");
4956       if (!Align)
4957         Align = DL.getPrefTypeAlign(Ty);
4958 
4959       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4960       AI->setUsedWithInAlloca(InAlloca);
4961       AI->setSwiftError(SwiftError);
4962       I = AI;
4963       InstructionList.push_back(I);
4964       break;
4965     }
4966     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4967       unsigned OpNum = 0;
4968       Value *Op;
4969       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4970           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4971         return error("Invalid record");
4972 
4973       if (!isa<PointerType>(Op->getType()))
4974         return error("Load operand is not a pointer type");
4975 
4976       Type *Ty = nullptr;
4977       if (OpNum + 3 == Record.size()) {
4978         Ty = getTypeByID(Record[OpNum++]);
4979       } else {
4980         Ty = cast<PointerType>(Op->getType())->getElementType();
4981       }
4982 
4983       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4984         return Err;
4985 
4986       MaybeAlign Align;
4987       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4988         return Err;
4989       SmallPtrSet<Type *, 4> Visited;
4990       if (!Align && !Ty->isSized(&Visited))
4991         return error("load of unsized type");
4992       if (!Align)
4993         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4994       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4995       InstructionList.push_back(I);
4996       break;
4997     }
4998     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4999        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5000       unsigned OpNum = 0;
5001       Value *Op;
5002       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5003           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5004         return error("Invalid record");
5005 
5006       if (!isa<PointerType>(Op->getType()))
5007         return error("Load operand is not a pointer type");
5008 
5009       Type *Ty = nullptr;
5010       if (OpNum + 5 == Record.size()) {
5011         Ty = getTypeByID(Record[OpNum++]);
5012       } else {
5013         Ty = cast<PointerType>(Op->getType())->getElementType();
5014       }
5015 
5016       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5017         return Err;
5018 
5019       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5020       if (Ordering == AtomicOrdering::NotAtomic ||
5021           Ordering == AtomicOrdering::Release ||
5022           Ordering == AtomicOrdering::AcquireRelease)
5023         return error("Invalid record");
5024       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5025         return error("Invalid record");
5026       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5027 
5028       MaybeAlign Align;
5029       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5030         return Err;
5031       if (!Align)
5032         return error("Alignment missing from atomic load");
5033       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5034       InstructionList.push_back(I);
5035       break;
5036     }
5037     case bitc::FUNC_CODE_INST_STORE:
5038     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5039       unsigned OpNum = 0;
5040       Value *Val, *Ptr;
5041       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5042           (BitCode == bitc::FUNC_CODE_INST_STORE
5043                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5044                : popValue(Record, OpNum, NextValueNo,
5045                           cast<PointerType>(Ptr->getType())->getElementType(),
5046                           Val)) ||
5047           OpNum + 2 != Record.size())
5048         return error("Invalid record");
5049 
5050       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5051         return Err;
5052       MaybeAlign Align;
5053       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5054         return Err;
5055       SmallPtrSet<Type *, 4> Visited;
5056       if (!Align && !Val->getType()->isSized(&Visited))
5057         return error("store of unsized type");
5058       if (!Align)
5059         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5060       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5061       InstructionList.push_back(I);
5062       break;
5063     }
5064     case bitc::FUNC_CODE_INST_STOREATOMIC:
5065     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5066       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5067       unsigned OpNum = 0;
5068       Value *Val, *Ptr;
5069       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5070           !isa<PointerType>(Ptr->getType()) ||
5071           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5072                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5073                : popValue(Record, OpNum, NextValueNo,
5074                           cast<PointerType>(Ptr->getType())->getElementType(),
5075                           Val)) ||
5076           OpNum + 4 != Record.size())
5077         return error("Invalid record");
5078 
5079       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5080         return Err;
5081       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5082       if (Ordering == AtomicOrdering::NotAtomic ||
5083           Ordering == AtomicOrdering::Acquire ||
5084           Ordering == AtomicOrdering::AcquireRelease)
5085         return error("Invalid record");
5086       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5087       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5088         return error("Invalid record");
5089 
5090       MaybeAlign Align;
5091       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5092         return Err;
5093       if (!Align)
5094         return error("Alignment missing from atomic store");
5095       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5096       InstructionList.push_back(I);
5097       break;
5098     }
5099     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5100       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5101       // failure_ordering?, weak?]
5102       const size_t NumRecords = Record.size();
5103       unsigned OpNum = 0;
5104       Value *Ptr = nullptr;
5105       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5106         return error("Invalid record");
5107 
5108       if (!isa<PointerType>(Ptr->getType()))
5109         return error("Cmpxchg operand is not a pointer type");
5110 
5111       Value *Cmp = nullptr;
5112       if (popValue(Record, OpNum, NextValueNo,
5113                    cast<PointerType>(Ptr->getType())->getPointerElementType(),
5114                    Cmp))
5115         return error("Invalid record");
5116 
5117       Value *New = nullptr;
5118       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5119           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5120         return error("Invalid record");
5121 
5122       const AtomicOrdering SuccessOrdering =
5123           getDecodedOrdering(Record[OpNum + 1]);
5124       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5125           SuccessOrdering == AtomicOrdering::Unordered)
5126         return error("Invalid record");
5127 
5128       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5129 
5130       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5131         return Err;
5132 
5133       const AtomicOrdering FailureOrdering =
5134           NumRecords < 7
5135               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5136               : getDecodedOrdering(Record[OpNum + 3]);
5137 
5138       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5139           FailureOrdering == AtomicOrdering::Unordered)
5140         return error("Invalid record");
5141 
5142       const Align Alignment(
5143           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5144 
5145       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5146                                 FailureOrdering, SSID);
5147       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5148 
5149       if (NumRecords < 8) {
5150         // Before weak cmpxchgs existed, the instruction simply returned the
5151         // value loaded from memory, so bitcode files from that era will be
5152         // expecting the first component of a modern cmpxchg.
5153         CurBB->getInstList().push_back(I);
5154         I = ExtractValueInst::Create(I, 0);
5155       } else {
5156         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5157       }
5158 
5159       InstructionList.push_back(I);
5160       break;
5161     }
5162     case bitc::FUNC_CODE_INST_CMPXCHG: {
5163       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5164       // failure_ordering, weak, align?]
5165       const size_t NumRecords = Record.size();
5166       unsigned OpNum = 0;
5167       Value *Ptr = nullptr;
5168       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5169         return error("Invalid record");
5170 
5171       if (!isa<PointerType>(Ptr->getType()))
5172         return error("Cmpxchg operand is not a pointer type");
5173 
5174       Value *Cmp = nullptr;
5175       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5176         return error("Invalid record");
5177 
5178       Value *Val = nullptr;
5179       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5180         return error("Invalid record");
5181 
5182       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5183         return error("Invalid record");
5184 
5185       const bool IsVol = Record[OpNum];
5186 
5187       const AtomicOrdering SuccessOrdering =
5188           getDecodedOrdering(Record[OpNum + 1]);
5189       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5190         return error("Invalid cmpxchg success ordering");
5191 
5192       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5193 
5194       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5195         return Err;
5196 
5197       const AtomicOrdering FailureOrdering =
5198           getDecodedOrdering(Record[OpNum + 3]);
5199       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5200         return error("Invalid cmpxchg failure ordering");
5201 
5202       const bool IsWeak = Record[OpNum + 4];
5203 
5204       MaybeAlign Alignment;
5205 
5206       if (NumRecords == (OpNum + 6)) {
5207         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5208           return Err;
5209       }
5210       if (!Alignment)
5211         Alignment =
5212             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5213 
5214       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5215                                 FailureOrdering, SSID);
5216       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5217       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5218 
5219       InstructionList.push_back(I);
5220       break;
5221     }
5222     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5223     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5224       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5225       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5226       const size_t NumRecords = Record.size();
5227       unsigned OpNum = 0;
5228 
5229       Value *Ptr = nullptr;
5230       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5231         return error("Invalid record");
5232 
5233       if (!isa<PointerType>(Ptr->getType()))
5234         return error("Invalid record");
5235 
5236       Value *Val = nullptr;
5237       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5238         if (popValue(Record, OpNum, NextValueNo,
5239                      cast<PointerType>(Ptr->getType())->getPointerElementType(),
5240                      Val))
5241           return error("Invalid record");
5242       } else {
5243         if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5244           return error("Invalid record");
5245       }
5246 
5247       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5248         return error("Invalid record");
5249 
5250       const AtomicRMWInst::BinOp Operation =
5251           getDecodedRMWOperation(Record[OpNum]);
5252       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5253           Operation > AtomicRMWInst::LAST_BINOP)
5254         return error("Invalid record");
5255 
5256       const bool IsVol = Record[OpNum + 1];
5257 
5258       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5259       if (Ordering == AtomicOrdering::NotAtomic ||
5260           Ordering == AtomicOrdering::Unordered)
5261         return error("Invalid record");
5262 
5263       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5264 
5265       MaybeAlign Alignment;
5266 
5267       if (NumRecords == (OpNum + 5)) {
5268         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5269           return Err;
5270       }
5271 
5272       if (!Alignment)
5273         Alignment =
5274             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5275 
5276       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5277       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5278 
5279       InstructionList.push_back(I);
5280       break;
5281     }
5282     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5283       if (2 != Record.size())
5284         return error("Invalid record");
5285       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5286       if (Ordering == AtomicOrdering::NotAtomic ||
5287           Ordering == AtomicOrdering::Unordered ||
5288           Ordering == AtomicOrdering::Monotonic)
5289         return error("Invalid record");
5290       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5291       I = new FenceInst(Context, Ordering, SSID);
5292       InstructionList.push_back(I);
5293       break;
5294     }
5295     case bitc::FUNC_CODE_INST_CALL: {
5296       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5297       if (Record.size() < 3)
5298         return error("Invalid record");
5299 
5300       unsigned OpNum = 0;
5301       AttributeList PAL = getAttributes(Record[OpNum++]);
5302       unsigned CCInfo = Record[OpNum++];
5303 
5304       FastMathFlags FMF;
5305       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5306         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5307         if (!FMF.any())
5308           return error("Fast math flags indicator set for call with no FMF");
5309       }
5310 
5311       FunctionType *FTy = nullptr;
5312       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5313         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
5314         if (!FTy)
5315           return error("Explicit call type is not a function type");
5316       }
5317 
5318       Value *Callee;
5319       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5320         return error("Invalid record");
5321 
5322       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5323       if (!OpTy)
5324         return error("Callee is not a pointer type");
5325       if (!FTy) {
5326         FTy = dyn_cast<FunctionType>(
5327             cast<PointerType>(Callee->getType())->getElementType());
5328         if (!FTy)
5329           return error("Callee is not of pointer to function type");
5330       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5331         return error("Explicit call type does not match pointee type of "
5332                      "callee operand");
5333       if (Record.size() < FTy->getNumParams() + OpNum)
5334         return error("Insufficient operands to call");
5335 
5336       SmallVector<Value*, 16> Args;
5337       SmallVector<Type *, 16> ArgsTys;
5338       // Read the fixed params.
5339       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5340         if (FTy->getParamType(i)->isLabelTy())
5341           Args.push_back(getBasicBlock(Record[OpNum]));
5342         else
5343           Args.push_back(getValue(Record, OpNum, NextValueNo,
5344                                   FTy->getParamType(i)));
5345         ArgsTys.push_back(FTy->getParamType(i));
5346         if (!Args.back())
5347           return error("Invalid record");
5348       }
5349 
5350       // Read type/value pairs for varargs params.
5351       if (!FTy->isVarArg()) {
5352         if (OpNum != Record.size())
5353           return error("Invalid record");
5354       } else {
5355         while (OpNum != Record.size()) {
5356           Value *Op;
5357           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5358             return error("Invalid record");
5359           Args.push_back(Op);
5360           ArgsTys.push_back(Op->getType());
5361         }
5362       }
5363 
5364       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5365       OperandBundles.clear();
5366       InstructionList.push_back(I);
5367       cast<CallInst>(I)->setCallingConv(
5368           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5369       CallInst::TailCallKind TCK = CallInst::TCK_None;
5370       if (CCInfo & 1 << bitc::CALL_TAIL)
5371         TCK = CallInst::TCK_Tail;
5372       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5373         TCK = CallInst::TCK_MustTail;
5374       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5375         TCK = CallInst::TCK_NoTail;
5376       cast<CallInst>(I)->setTailCallKind(TCK);
5377       cast<CallInst>(I)->setAttributes(PAL);
5378       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
5379       if (FMF.any()) {
5380         if (!isa<FPMathOperator>(I))
5381           return error("Fast-math-flags specified for call without "
5382                        "floating-point scalar or vector return type");
5383         I->setFastMathFlags(FMF);
5384       }
5385       break;
5386     }
5387     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5388       if (Record.size() < 3)
5389         return error("Invalid record");
5390       Type *OpTy = getTypeByID(Record[0]);
5391       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5392       Type *ResTy = getTypeByID(Record[2]);
5393       if (!OpTy || !Op || !ResTy)
5394         return error("Invalid record");
5395       I = new VAArgInst(Op, ResTy);
5396       InstructionList.push_back(I);
5397       break;
5398     }
5399 
5400     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5401       // A call or an invoke can be optionally prefixed with some variable
5402       // number of operand bundle blocks.  These blocks are read into
5403       // OperandBundles and consumed at the next call or invoke instruction.
5404 
5405       if (Record.empty() || Record[0] >= BundleTags.size())
5406         return error("Invalid record");
5407 
5408       std::vector<Value *> Inputs;
5409 
5410       unsigned OpNum = 1;
5411       while (OpNum != Record.size()) {
5412         Value *Op;
5413         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5414           return error("Invalid record");
5415         Inputs.push_back(Op);
5416       }
5417 
5418       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5419       continue;
5420     }
5421 
5422     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5423       unsigned OpNum = 0;
5424       Value *Op = nullptr;
5425       if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5426         return error("Invalid record");
5427       if (OpNum != Record.size())
5428         return error("Invalid record");
5429 
5430       I = new FreezeInst(Op);
5431       InstructionList.push_back(I);
5432       break;
5433     }
5434     }
5435 
5436     // Add instruction to end of current BB.  If there is no current BB, reject
5437     // this file.
5438     if (!CurBB) {
5439       I->deleteValue();
5440       return error("Invalid instruction with no BB");
5441     }
5442     if (!OperandBundles.empty()) {
5443       I->deleteValue();
5444       return error("Operand bundles found with no consumer");
5445     }
5446     CurBB->getInstList().push_back(I);
5447 
5448     // If this was a terminator instruction, move to the next block.
5449     if (I->isTerminator()) {
5450       ++CurBBNo;
5451       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5452     }
5453 
5454     // Non-void values get registered in the value table for future use.
5455     if (!I->getType()->isVoidTy())
5456       ValueList.assignValue(I, NextValueNo++);
5457   }
5458 
5459 OutOfRecordLoop:
5460 
5461   if (!OperandBundles.empty())
5462     return error("Operand bundles found with no consumer");
5463 
5464   // Check the function list for unresolved values.
5465   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5466     if (!A->getParent()) {
5467       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5468       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5469         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5470           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5471           delete A;
5472         }
5473       }
5474       return error("Never resolved value found in function");
5475     }
5476   }
5477 
5478   // Unexpected unresolved metadata about to be dropped.
5479   if (MDLoader->hasFwdRefs())
5480     return error("Invalid function metadata: outgoing forward refs");
5481 
5482   // Trim the value list down to the size it was before we parsed this function.
5483   ValueList.shrinkTo(ModuleValueListSize);
5484   MDLoader->shrinkTo(ModuleMDLoaderSize);
5485   std::vector<BasicBlock*>().swap(FunctionBBs);
5486   return Error::success();
5487 }
5488 
5489 /// Find the function body in the bitcode stream
5490 Error BitcodeReader::findFunctionInStream(
5491     Function *F,
5492     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5493   while (DeferredFunctionInfoIterator->second == 0) {
5494     // This is the fallback handling for the old format bitcode that
5495     // didn't contain the function index in the VST, or when we have
5496     // an anonymous function which would not have a VST entry.
5497     // Assert that we have one of those two cases.
5498     assert(VSTOffset == 0 || !F->hasName());
5499     // Parse the next body in the stream and set its position in the
5500     // DeferredFunctionInfo map.
5501     if (Error Err = rememberAndSkipFunctionBodies())
5502       return Err;
5503   }
5504   return Error::success();
5505 }
5506 
5507 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5508   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5509     return SyncScope::ID(Val);
5510   if (Val >= SSIDs.size())
5511     return SyncScope::System; // Map unknown synchronization scopes to system.
5512   return SSIDs[Val];
5513 }
5514 
5515 //===----------------------------------------------------------------------===//
5516 // GVMaterializer implementation
5517 //===----------------------------------------------------------------------===//
5518 
5519 Error BitcodeReader::materialize(GlobalValue *GV) {
5520   Function *F = dyn_cast<Function>(GV);
5521   // If it's not a function or is already material, ignore the request.
5522   if (!F || !F->isMaterializable())
5523     return Error::success();
5524 
5525   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5526   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5527   // If its position is recorded as 0, its body is somewhere in the stream
5528   // but we haven't seen it yet.
5529   if (DFII->second == 0)
5530     if (Error Err = findFunctionInStream(F, DFII))
5531       return Err;
5532 
5533   // Materialize metadata before parsing any function bodies.
5534   if (Error Err = materializeMetadata())
5535     return Err;
5536 
5537   // Move the bit stream to the saved position of the deferred function body.
5538   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5539     return JumpFailed;
5540   if (Error Err = parseFunctionBody(F))
5541     return Err;
5542   F->setIsMaterializable(false);
5543 
5544   if (StripDebugInfo)
5545     stripDebugInfo(*F);
5546 
5547   // Upgrade any old intrinsic calls in the function.
5548   for (auto &I : UpgradedIntrinsics) {
5549     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5550       if (CallInst *CI = dyn_cast<CallInst>(U))
5551         UpgradeIntrinsicCall(CI, I.second);
5552   }
5553 
5554   // Update calls to the remangled intrinsics
5555   for (auto &I : RemangledIntrinsics)
5556     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5557       // Don't expect any other users than call sites
5558       cast<CallBase>(U)->setCalledFunction(I.second);
5559 
5560   // Finish fn->subprogram upgrade for materialized functions.
5561   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5562     F->setSubprogram(SP);
5563 
5564   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5565   if (!MDLoader->isStrippingTBAA()) {
5566     for (auto &I : instructions(F)) {
5567       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5568       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5569         continue;
5570       MDLoader->setStripTBAA(true);
5571       stripTBAA(F->getParent());
5572     }
5573   }
5574 
5575   for (auto &I : instructions(F)) {
5576     // "Upgrade" older incorrect branch weights by dropping them.
5577     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5578       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5579         MDString *MDS = cast<MDString>(MD->getOperand(0));
5580         StringRef ProfName = MDS->getString();
5581         // Check consistency of !prof branch_weights metadata.
5582         if (!ProfName.equals("branch_weights"))
5583           continue;
5584         unsigned ExpectedNumOperands = 0;
5585         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5586           ExpectedNumOperands = BI->getNumSuccessors();
5587         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5588           ExpectedNumOperands = SI->getNumSuccessors();
5589         else if (isa<CallInst>(&I))
5590           ExpectedNumOperands = 1;
5591         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5592           ExpectedNumOperands = IBI->getNumDestinations();
5593         else if (isa<SelectInst>(&I))
5594           ExpectedNumOperands = 2;
5595         else
5596           continue; // ignore and continue.
5597 
5598         // If branch weight doesn't match, just strip branch weight.
5599         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5600           I.setMetadata(LLVMContext::MD_prof, nullptr);
5601       }
5602     }
5603 
5604     // Remove incompatible attributes on function calls.
5605     if (auto *CI = dyn_cast<CallBase>(&I)) {
5606       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
5607           CI->getFunctionType()->getReturnType()));
5608 
5609       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5610         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5611                                         CI->getArgOperand(ArgNo)->getType()));
5612     }
5613   }
5614 
5615   // Look for functions that rely on old function attribute behavior.
5616   UpgradeFunctionAttributes(*F);
5617 
5618   // Bring in any functions that this function forward-referenced via
5619   // blockaddresses.
5620   return materializeForwardReferencedFunctions();
5621 }
5622 
5623 Error BitcodeReader::materializeModule() {
5624   if (Error Err = materializeMetadata())
5625     return Err;
5626 
5627   // Promise to materialize all forward references.
5628   WillMaterializeAllForwardRefs = true;
5629 
5630   // Iterate over the module, deserializing any functions that are still on
5631   // disk.
5632   for (Function &F : *TheModule) {
5633     if (Error Err = materialize(&F))
5634       return Err;
5635   }
5636   // At this point, if there are any function bodies, parse the rest of
5637   // the bits in the module past the last function block we have recorded
5638   // through either lazy scanning or the VST.
5639   if (LastFunctionBlockBit || NextUnreadBit)
5640     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5641                                     ? LastFunctionBlockBit
5642                                     : NextUnreadBit))
5643       return Err;
5644 
5645   // Check that all block address forward references got resolved (as we
5646   // promised above).
5647   if (!BasicBlockFwdRefs.empty())
5648     return error("Never resolved function from blockaddress");
5649 
5650   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5651   // delete the old functions to clean up. We can't do this unless the entire
5652   // module is materialized because there could always be another function body
5653   // with calls to the old function.
5654   for (auto &I : UpgradedIntrinsics) {
5655     for (auto *U : I.first->users()) {
5656       if (CallInst *CI = dyn_cast<CallInst>(U))
5657         UpgradeIntrinsicCall(CI, I.second);
5658     }
5659     if (!I.first->use_empty())
5660       I.first->replaceAllUsesWith(I.second);
5661     I.first->eraseFromParent();
5662   }
5663   UpgradedIntrinsics.clear();
5664   // Do the same for remangled intrinsics
5665   for (auto &I : RemangledIntrinsics) {
5666     I.first->replaceAllUsesWith(I.second);
5667     I.first->eraseFromParent();
5668   }
5669   RemangledIntrinsics.clear();
5670 
5671   UpgradeDebugInfo(*TheModule);
5672 
5673   UpgradeModuleFlags(*TheModule);
5674 
5675   UpgradeARCRuntime(*TheModule);
5676 
5677   return Error::success();
5678 }
5679 
5680 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5681   return IdentifiedStructTypes;
5682 }
5683 
5684 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5685     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5686     StringRef ModulePath, unsigned ModuleId)
5687     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5688       ModulePath(ModulePath), ModuleId(ModuleId) {}
5689 
5690 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5691   TheIndex.addModule(ModulePath, ModuleId);
5692 }
5693 
5694 ModuleSummaryIndex::ModuleInfo *
5695 ModuleSummaryIndexBitcodeReader::getThisModule() {
5696   return TheIndex.getModule(ModulePath);
5697 }
5698 
5699 std::pair<ValueInfo, GlobalValue::GUID>
5700 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5701   auto VGI = ValueIdToValueInfoMap[ValueId];
5702   assert(VGI.first);
5703   return VGI;
5704 }
5705 
5706 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5707     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5708     StringRef SourceFileName) {
5709   std::string GlobalId =
5710       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5711   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5712   auto OriginalNameID = ValueGUID;
5713   if (GlobalValue::isLocalLinkage(Linkage))
5714     OriginalNameID = GlobalValue::getGUID(ValueName);
5715   if (PrintSummaryGUIDs)
5716     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5717            << ValueName << "\n";
5718 
5719   // UseStrtab is false for legacy summary formats and value names are
5720   // created on stack. In that case we save the name in a string saver in
5721   // the index so that the value name can be recorded.
5722   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5723       TheIndex.getOrInsertValueInfo(
5724           ValueGUID,
5725           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5726       OriginalNameID);
5727 }
5728 
5729 // Specialized value symbol table parser used when reading module index
5730 // blocks where we don't actually create global values. The parsed information
5731 // is saved in the bitcode reader for use when later parsing summaries.
5732 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5733     uint64_t Offset,
5734     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5735   // With a strtab the VST is not required to parse the summary.
5736   if (UseStrtab)
5737     return Error::success();
5738 
5739   assert(Offset > 0 && "Expected non-zero VST offset");
5740   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5741   if (!MaybeCurrentBit)
5742     return MaybeCurrentBit.takeError();
5743   uint64_t CurrentBit = MaybeCurrentBit.get();
5744 
5745   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5746     return Err;
5747 
5748   SmallVector<uint64_t, 64> Record;
5749 
5750   // Read all the records for this value table.
5751   SmallString<128> ValueName;
5752 
5753   while (true) {
5754     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5755     if (!MaybeEntry)
5756       return MaybeEntry.takeError();
5757     BitstreamEntry Entry = MaybeEntry.get();
5758 
5759     switch (Entry.Kind) {
5760     case BitstreamEntry::SubBlock: // Handled for us already.
5761     case BitstreamEntry::Error:
5762       return error("Malformed block");
5763     case BitstreamEntry::EndBlock:
5764       // Done parsing VST, jump back to wherever we came from.
5765       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5766         return JumpFailed;
5767       return Error::success();
5768     case BitstreamEntry::Record:
5769       // The interesting case.
5770       break;
5771     }
5772 
5773     // Read a record.
5774     Record.clear();
5775     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5776     if (!MaybeRecord)
5777       return MaybeRecord.takeError();
5778     switch (MaybeRecord.get()) {
5779     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5780       break;
5781     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5782       if (convertToString(Record, 1, ValueName))
5783         return error("Invalid record");
5784       unsigned ValueID = Record[0];
5785       assert(!SourceFileName.empty());
5786       auto VLI = ValueIdToLinkageMap.find(ValueID);
5787       assert(VLI != ValueIdToLinkageMap.end() &&
5788              "No linkage found for VST entry?");
5789       auto Linkage = VLI->second;
5790       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5791       ValueName.clear();
5792       break;
5793     }
5794     case bitc::VST_CODE_FNENTRY: {
5795       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5796       if (convertToString(Record, 2, ValueName))
5797         return error("Invalid record");
5798       unsigned ValueID = Record[0];
5799       assert(!SourceFileName.empty());
5800       auto VLI = ValueIdToLinkageMap.find(ValueID);
5801       assert(VLI != ValueIdToLinkageMap.end() &&
5802              "No linkage found for VST entry?");
5803       auto Linkage = VLI->second;
5804       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5805       ValueName.clear();
5806       break;
5807     }
5808     case bitc::VST_CODE_COMBINED_ENTRY: {
5809       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5810       unsigned ValueID = Record[0];
5811       GlobalValue::GUID RefGUID = Record[1];
5812       // The "original name", which is the second value of the pair will be
5813       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5814       ValueIdToValueInfoMap[ValueID] =
5815           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5816       break;
5817     }
5818     }
5819   }
5820 }
5821 
5822 // Parse just the blocks needed for building the index out of the module.
5823 // At the end of this routine the module Index is populated with a map
5824 // from global value id to GlobalValueSummary objects.
5825 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5826   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5827     return Err;
5828 
5829   SmallVector<uint64_t, 64> Record;
5830   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5831   unsigned ValueId = 0;
5832 
5833   // Read the index for this module.
5834   while (true) {
5835     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5836     if (!MaybeEntry)
5837       return MaybeEntry.takeError();
5838     llvm::BitstreamEntry Entry = MaybeEntry.get();
5839 
5840     switch (Entry.Kind) {
5841     case BitstreamEntry::Error:
5842       return error("Malformed block");
5843     case BitstreamEntry::EndBlock:
5844       return Error::success();
5845 
5846     case BitstreamEntry::SubBlock:
5847       switch (Entry.ID) {
5848       default: // Skip unknown content.
5849         if (Error Err = Stream.SkipBlock())
5850           return Err;
5851         break;
5852       case bitc::BLOCKINFO_BLOCK_ID:
5853         // Need to parse these to get abbrev ids (e.g. for VST)
5854         if (readBlockInfo())
5855           return error("Malformed block");
5856         break;
5857       case bitc::VALUE_SYMTAB_BLOCK_ID:
5858         // Should have been parsed earlier via VSTOffset, unless there
5859         // is no summary section.
5860         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5861                 !SeenGlobalValSummary) &&
5862                "Expected early VST parse via VSTOffset record");
5863         if (Error Err = Stream.SkipBlock())
5864           return Err;
5865         break;
5866       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5867       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5868         // Add the module if it is a per-module index (has a source file name).
5869         if (!SourceFileName.empty())
5870           addThisModule();
5871         assert(!SeenValueSymbolTable &&
5872                "Already read VST when parsing summary block?");
5873         // We might not have a VST if there were no values in the
5874         // summary. An empty summary block generated when we are
5875         // performing ThinLTO compiles so we don't later invoke
5876         // the regular LTO process on them.
5877         if (VSTOffset > 0) {
5878           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5879             return Err;
5880           SeenValueSymbolTable = true;
5881         }
5882         SeenGlobalValSummary = true;
5883         if (Error Err = parseEntireSummary(Entry.ID))
5884           return Err;
5885         break;
5886       case bitc::MODULE_STRTAB_BLOCK_ID:
5887         if (Error Err = parseModuleStringTable())
5888           return Err;
5889         break;
5890       }
5891       continue;
5892 
5893     case BitstreamEntry::Record: {
5894         Record.clear();
5895         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5896         if (!MaybeBitCode)
5897           return MaybeBitCode.takeError();
5898         switch (MaybeBitCode.get()) {
5899         default:
5900           break; // Default behavior, ignore unknown content.
5901         case bitc::MODULE_CODE_VERSION: {
5902           if (Error Err = parseVersionRecord(Record).takeError())
5903             return Err;
5904           break;
5905         }
5906         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5907         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5908           SmallString<128> ValueName;
5909           if (convertToString(Record, 0, ValueName))
5910             return error("Invalid record");
5911           SourceFileName = ValueName.c_str();
5912           break;
5913         }
5914         /// MODULE_CODE_HASH: [5*i32]
5915         case bitc::MODULE_CODE_HASH: {
5916           if (Record.size() != 5)
5917             return error("Invalid hash length " + Twine(Record.size()).str());
5918           auto &Hash = getThisModule()->second.second;
5919           int Pos = 0;
5920           for (auto &Val : Record) {
5921             assert(!(Val >> 32) && "Unexpected high bits set");
5922             Hash[Pos++] = Val;
5923           }
5924           break;
5925         }
5926         /// MODULE_CODE_VSTOFFSET: [offset]
5927         case bitc::MODULE_CODE_VSTOFFSET:
5928           if (Record.empty())
5929             return error("Invalid record");
5930           // Note that we subtract 1 here because the offset is relative to one
5931           // word before the start of the identification or module block, which
5932           // was historically always the start of the regular bitcode header.
5933           VSTOffset = Record[0] - 1;
5934           break;
5935         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5936         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5937         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5938         // v2: [strtab offset, strtab size, v1]
5939         case bitc::MODULE_CODE_GLOBALVAR:
5940         case bitc::MODULE_CODE_FUNCTION:
5941         case bitc::MODULE_CODE_ALIAS: {
5942           StringRef Name;
5943           ArrayRef<uint64_t> GVRecord;
5944           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5945           if (GVRecord.size() <= 3)
5946             return error("Invalid record");
5947           uint64_t RawLinkage = GVRecord[3];
5948           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5949           if (!UseStrtab) {
5950             ValueIdToLinkageMap[ValueId++] = Linkage;
5951             break;
5952           }
5953 
5954           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5955           break;
5956         }
5957         }
5958       }
5959       continue;
5960     }
5961   }
5962 }
5963 
5964 std::vector<ValueInfo>
5965 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5966   std::vector<ValueInfo> Ret;
5967   Ret.reserve(Record.size());
5968   for (uint64_t RefValueId : Record)
5969     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5970   return Ret;
5971 }
5972 
5973 std::vector<FunctionSummary::EdgeTy>
5974 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5975                                               bool IsOldProfileFormat,
5976                                               bool HasProfile, bool HasRelBF) {
5977   std::vector<FunctionSummary::EdgeTy> Ret;
5978   Ret.reserve(Record.size());
5979   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5980     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5981     uint64_t RelBF = 0;
5982     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5983     if (IsOldProfileFormat) {
5984       I += 1; // Skip old callsitecount field
5985       if (HasProfile)
5986         I += 1; // Skip old profilecount field
5987     } else if (HasProfile)
5988       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5989     else if (HasRelBF)
5990       RelBF = Record[++I];
5991     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5992   }
5993   return Ret;
5994 }
5995 
5996 static void
5997 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5998                                        WholeProgramDevirtResolution &Wpd) {
5999   uint64_t ArgNum = Record[Slot++];
6000   WholeProgramDevirtResolution::ByArg &B =
6001       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6002   Slot += ArgNum;
6003 
6004   B.TheKind =
6005       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6006   B.Info = Record[Slot++];
6007   B.Byte = Record[Slot++];
6008   B.Bit = Record[Slot++];
6009 }
6010 
6011 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6012                                               StringRef Strtab, size_t &Slot,
6013                                               TypeIdSummary &TypeId) {
6014   uint64_t Id = Record[Slot++];
6015   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6016 
6017   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6018   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6019                         static_cast<size_t>(Record[Slot + 1])};
6020   Slot += 2;
6021 
6022   uint64_t ResByArgNum = Record[Slot++];
6023   for (uint64_t I = 0; I != ResByArgNum; ++I)
6024     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6025 }
6026 
6027 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6028                                      StringRef Strtab,
6029                                      ModuleSummaryIndex &TheIndex) {
6030   size_t Slot = 0;
6031   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6032       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6033   Slot += 2;
6034 
6035   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6036   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6037   TypeId.TTRes.AlignLog2 = Record[Slot++];
6038   TypeId.TTRes.SizeM1 = Record[Slot++];
6039   TypeId.TTRes.BitMask = Record[Slot++];
6040   TypeId.TTRes.InlineBits = Record[Slot++];
6041 
6042   while (Slot < Record.size())
6043     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6044 }
6045 
6046 std::vector<FunctionSummary::ParamAccess>
6047 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6048   auto ReadRange = [&]() {
6049     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6050                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6051     Record = Record.drop_front();
6052     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6053                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6054     Record = Record.drop_front();
6055     ConstantRange Range{Lower, Upper};
6056     assert(!Range.isFullSet());
6057     assert(!Range.isUpperSignWrapped());
6058     return Range;
6059   };
6060 
6061   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6062   while (!Record.empty()) {
6063     PendingParamAccesses.emplace_back();
6064     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6065     ParamAccess.ParamNo = Record.front();
6066     Record = Record.drop_front();
6067     ParamAccess.Use = ReadRange();
6068     ParamAccess.Calls.resize(Record.front());
6069     Record = Record.drop_front();
6070     for (auto &Call : ParamAccess.Calls) {
6071       Call.ParamNo = Record.front();
6072       Record = Record.drop_front();
6073       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6074       Record = Record.drop_front();
6075       Call.Offsets = ReadRange();
6076     }
6077   }
6078   return PendingParamAccesses;
6079 }
6080 
6081 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6082     ArrayRef<uint64_t> Record, size_t &Slot,
6083     TypeIdCompatibleVtableInfo &TypeId) {
6084   uint64_t Offset = Record[Slot++];
6085   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6086   TypeId.push_back({Offset, Callee});
6087 }
6088 
6089 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6090     ArrayRef<uint64_t> Record) {
6091   size_t Slot = 0;
6092   TypeIdCompatibleVtableInfo &TypeId =
6093       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6094           {Strtab.data() + Record[Slot],
6095            static_cast<size_t>(Record[Slot + 1])});
6096   Slot += 2;
6097 
6098   while (Slot < Record.size())
6099     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6100 }
6101 
6102 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6103                            unsigned WOCnt) {
6104   // Readonly and writeonly refs are in the end of the refs list.
6105   assert(ROCnt + WOCnt <= Refs.size());
6106   unsigned FirstWORef = Refs.size() - WOCnt;
6107   unsigned RefNo = FirstWORef - ROCnt;
6108   for (; RefNo < FirstWORef; ++RefNo)
6109     Refs[RefNo].setReadOnly();
6110   for (; RefNo < Refs.size(); ++RefNo)
6111     Refs[RefNo].setWriteOnly();
6112 }
6113 
6114 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6115 // objects in the index.
6116 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6117   if (Error Err = Stream.EnterSubBlock(ID))
6118     return Err;
6119   SmallVector<uint64_t, 64> Record;
6120 
6121   // Parse version
6122   {
6123     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6124     if (!MaybeEntry)
6125       return MaybeEntry.takeError();
6126     BitstreamEntry Entry = MaybeEntry.get();
6127 
6128     if (Entry.Kind != BitstreamEntry::Record)
6129       return error("Invalid Summary Block: record for version expected");
6130     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6131     if (!MaybeRecord)
6132       return MaybeRecord.takeError();
6133     if (MaybeRecord.get() != bitc::FS_VERSION)
6134       return error("Invalid Summary Block: version expected");
6135   }
6136   const uint64_t Version = Record[0];
6137   const bool IsOldProfileFormat = Version == 1;
6138   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6139     return error("Invalid summary version " + Twine(Version) +
6140                  ". Version should be in the range [1-" +
6141                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6142                  "].");
6143   Record.clear();
6144 
6145   // Keep around the last seen summary to be used when we see an optional
6146   // "OriginalName" attachement.
6147   GlobalValueSummary *LastSeenSummary = nullptr;
6148   GlobalValue::GUID LastSeenGUID = 0;
6149 
6150   // We can expect to see any number of type ID information records before
6151   // each function summary records; these variables store the information
6152   // collected so far so that it can be used to create the summary object.
6153   std::vector<GlobalValue::GUID> PendingTypeTests;
6154   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6155       PendingTypeCheckedLoadVCalls;
6156   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6157       PendingTypeCheckedLoadConstVCalls;
6158   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6159 
6160   while (true) {
6161     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6162     if (!MaybeEntry)
6163       return MaybeEntry.takeError();
6164     BitstreamEntry Entry = MaybeEntry.get();
6165 
6166     switch (Entry.Kind) {
6167     case BitstreamEntry::SubBlock: // Handled for us already.
6168     case BitstreamEntry::Error:
6169       return error("Malformed block");
6170     case BitstreamEntry::EndBlock:
6171       return Error::success();
6172     case BitstreamEntry::Record:
6173       // The interesting case.
6174       break;
6175     }
6176 
6177     // Read a record. The record format depends on whether this
6178     // is a per-module index or a combined index file. In the per-module
6179     // case the records contain the associated value's ID for correlation
6180     // with VST entries. In the combined index the correlation is done
6181     // via the bitcode offset of the summary records (which were saved
6182     // in the combined index VST entries). The records also contain
6183     // information used for ThinLTO renaming and importing.
6184     Record.clear();
6185     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6186     if (!MaybeBitCode)
6187       return MaybeBitCode.takeError();
6188     switch (unsigned BitCode = MaybeBitCode.get()) {
6189     default: // Default behavior: ignore.
6190       break;
6191     case bitc::FS_FLAGS: {  // [flags]
6192       TheIndex.setFlags(Record[0]);
6193       break;
6194     }
6195     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6196       uint64_t ValueID = Record[0];
6197       GlobalValue::GUID RefGUID = Record[1];
6198       ValueIdToValueInfoMap[ValueID] =
6199           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6200       break;
6201     }
6202     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6203     //                numrefs x valueid, n x (valueid)]
6204     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6205     //                        numrefs x valueid,
6206     //                        n x (valueid, hotness)]
6207     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6208     //                      numrefs x valueid,
6209     //                      n x (valueid, relblockfreq)]
6210     case bitc::FS_PERMODULE:
6211     case bitc::FS_PERMODULE_RELBF:
6212     case bitc::FS_PERMODULE_PROFILE: {
6213       unsigned ValueID = Record[0];
6214       uint64_t RawFlags = Record[1];
6215       unsigned InstCount = Record[2];
6216       uint64_t RawFunFlags = 0;
6217       unsigned NumRefs = Record[3];
6218       unsigned NumRORefs = 0, NumWORefs = 0;
6219       int RefListStartIndex = 4;
6220       if (Version >= 4) {
6221         RawFunFlags = Record[3];
6222         NumRefs = Record[4];
6223         RefListStartIndex = 5;
6224         if (Version >= 5) {
6225           NumRORefs = Record[5];
6226           RefListStartIndex = 6;
6227           if (Version >= 7) {
6228             NumWORefs = Record[6];
6229             RefListStartIndex = 7;
6230           }
6231         }
6232       }
6233 
6234       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6235       // The module path string ref set in the summary must be owned by the
6236       // index's module string table. Since we don't have a module path
6237       // string table section in the per-module index, we create a single
6238       // module path string table entry with an empty (0) ID to take
6239       // ownership.
6240       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6241       assert(Record.size() >= RefListStartIndex + NumRefs &&
6242              "Record size inconsistent with number of references");
6243       std::vector<ValueInfo> Refs = makeRefList(
6244           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6245       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6246       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6247       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6248           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6249           IsOldProfileFormat, HasProfile, HasRelBF);
6250       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6251       auto FS = std::make_unique<FunctionSummary>(
6252           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6253           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6254           std::move(PendingTypeTestAssumeVCalls),
6255           std::move(PendingTypeCheckedLoadVCalls),
6256           std::move(PendingTypeTestAssumeConstVCalls),
6257           std::move(PendingTypeCheckedLoadConstVCalls),
6258           std::move(PendingParamAccesses));
6259       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6260       FS->setModulePath(getThisModule()->first());
6261       FS->setOriginalName(VIAndOriginalGUID.second);
6262       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6263       break;
6264     }
6265     // FS_ALIAS: [valueid, flags, valueid]
6266     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6267     // they expect all aliasee summaries to be available.
6268     case bitc::FS_ALIAS: {
6269       unsigned ValueID = Record[0];
6270       uint64_t RawFlags = Record[1];
6271       unsigned AliaseeID = Record[2];
6272       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6273       auto AS = std::make_unique<AliasSummary>(Flags);
6274       // The module path string ref set in the summary must be owned by the
6275       // index's module string table. Since we don't have a module path
6276       // string table section in the per-module index, we create a single
6277       // module path string table entry with an empty (0) ID to take
6278       // ownership.
6279       AS->setModulePath(getThisModule()->first());
6280 
6281       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6282       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6283       if (!AliaseeInModule)
6284         return error("Alias expects aliasee summary to be parsed");
6285       AS->setAliasee(AliaseeVI, AliaseeInModule);
6286 
6287       auto GUID = getValueInfoFromValueId(ValueID);
6288       AS->setOriginalName(GUID.second);
6289       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6290       break;
6291     }
6292     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6293     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6294       unsigned ValueID = Record[0];
6295       uint64_t RawFlags = Record[1];
6296       unsigned RefArrayStart = 2;
6297       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6298                                       /* WriteOnly */ false,
6299                                       /* Constant */ false,
6300                                       GlobalObject::VCallVisibilityPublic);
6301       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6302       if (Version >= 5) {
6303         GVF = getDecodedGVarFlags(Record[2]);
6304         RefArrayStart = 3;
6305       }
6306       std::vector<ValueInfo> Refs =
6307           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6308       auto FS =
6309           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6310       FS->setModulePath(getThisModule()->first());
6311       auto GUID = getValueInfoFromValueId(ValueID);
6312       FS->setOriginalName(GUID.second);
6313       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6314       break;
6315     }
6316     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6317     //                        numrefs, numrefs x valueid,
6318     //                        n x (valueid, offset)]
6319     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6320       unsigned ValueID = Record[0];
6321       uint64_t RawFlags = Record[1];
6322       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6323       unsigned NumRefs = Record[3];
6324       unsigned RefListStartIndex = 4;
6325       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6326       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6327       std::vector<ValueInfo> Refs = makeRefList(
6328           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6329       VTableFuncList VTableFuncs;
6330       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6331         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6332         uint64_t Offset = Record[++I];
6333         VTableFuncs.push_back({Callee, Offset});
6334       }
6335       auto VS =
6336           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6337       VS->setModulePath(getThisModule()->first());
6338       VS->setVTableFuncs(VTableFuncs);
6339       auto GUID = getValueInfoFromValueId(ValueID);
6340       VS->setOriginalName(GUID.second);
6341       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6342       break;
6343     }
6344     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6345     //               numrefs x valueid, n x (valueid)]
6346     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6347     //                       numrefs x valueid, n x (valueid, hotness)]
6348     case bitc::FS_COMBINED:
6349     case bitc::FS_COMBINED_PROFILE: {
6350       unsigned ValueID = Record[0];
6351       uint64_t ModuleId = Record[1];
6352       uint64_t RawFlags = Record[2];
6353       unsigned InstCount = Record[3];
6354       uint64_t RawFunFlags = 0;
6355       uint64_t EntryCount = 0;
6356       unsigned NumRefs = Record[4];
6357       unsigned NumRORefs = 0, NumWORefs = 0;
6358       int RefListStartIndex = 5;
6359 
6360       if (Version >= 4) {
6361         RawFunFlags = Record[4];
6362         RefListStartIndex = 6;
6363         size_t NumRefsIndex = 5;
6364         if (Version >= 5) {
6365           unsigned NumRORefsOffset = 1;
6366           RefListStartIndex = 7;
6367           if (Version >= 6) {
6368             NumRefsIndex = 6;
6369             EntryCount = Record[5];
6370             RefListStartIndex = 8;
6371             if (Version >= 7) {
6372               RefListStartIndex = 9;
6373               NumWORefs = Record[8];
6374               NumRORefsOffset = 2;
6375             }
6376           }
6377           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6378         }
6379         NumRefs = Record[NumRefsIndex];
6380       }
6381 
6382       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6383       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6384       assert(Record.size() >= RefListStartIndex + NumRefs &&
6385              "Record size inconsistent with number of references");
6386       std::vector<ValueInfo> Refs = makeRefList(
6387           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6388       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6389       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6390           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6391           IsOldProfileFormat, HasProfile, false);
6392       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6393       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6394       auto FS = std::make_unique<FunctionSummary>(
6395           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6396           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6397           std::move(PendingTypeTestAssumeVCalls),
6398           std::move(PendingTypeCheckedLoadVCalls),
6399           std::move(PendingTypeTestAssumeConstVCalls),
6400           std::move(PendingTypeCheckedLoadConstVCalls),
6401           std::move(PendingParamAccesses));
6402       LastSeenSummary = FS.get();
6403       LastSeenGUID = VI.getGUID();
6404       FS->setModulePath(ModuleIdMap[ModuleId]);
6405       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6406       break;
6407     }
6408     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6409     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6410     // they expect all aliasee summaries to be available.
6411     case bitc::FS_COMBINED_ALIAS: {
6412       unsigned ValueID = Record[0];
6413       uint64_t ModuleId = Record[1];
6414       uint64_t RawFlags = Record[2];
6415       unsigned AliaseeValueId = Record[3];
6416       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6417       auto AS = std::make_unique<AliasSummary>(Flags);
6418       LastSeenSummary = AS.get();
6419       AS->setModulePath(ModuleIdMap[ModuleId]);
6420 
6421       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6422       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6423       AS->setAliasee(AliaseeVI, AliaseeInModule);
6424 
6425       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6426       LastSeenGUID = VI.getGUID();
6427       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6428       break;
6429     }
6430     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6431     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6432       unsigned ValueID = Record[0];
6433       uint64_t ModuleId = Record[1];
6434       uint64_t RawFlags = Record[2];
6435       unsigned RefArrayStart = 3;
6436       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6437                                       /* WriteOnly */ false,
6438                                       /* Constant */ false,
6439                                       GlobalObject::VCallVisibilityPublic);
6440       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6441       if (Version >= 5) {
6442         GVF = getDecodedGVarFlags(Record[3]);
6443         RefArrayStart = 4;
6444       }
6445       std::vector<ValueInfo> Refs =
6446           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6447       auto FS =
6448           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6449       LastSeenSummary = FS.get();
6450       FS->setModulePath(ModuleIdMap[ModuleId]);
6451       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6452       LastSeenGUID = VI.getGUID();
6453       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6454       break;
6455     }
6456     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6457     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6458       uint64_t OriginalName = Record[0];
6459       if (!LastSeenSummary)
6460         return error("Name attachment that does not follow a combined record");
6461       LastSeenSummary->setOriginalName(OriginalName);
6462       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6463       // Reset the LastSeenSummary
6464       LastSeenSummary = nullptr;
6465       LastSeenGUID = 0;
6466       break;
6467     }
6468     case bitc::FS_TYPE_TESTS:
6469       assert(PendingTypeTests.empty());
6470       llvm::append_range(PendingTypeTests, Record);
6471       break;
6472 
6473     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6474       assert(PendingTypeTestAssumeVCalls.empty());
6475       for (unsigned I = 0; I != Record.size(); I += 2)
6476         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6477       break;
6478 
6479     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6480       assert(PendingTypeCheckedLoadVCalls.empty());
6481       for (unsigned I = 0; I != Record.size(); I += 2)
6482         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6483       break;
6484 
6485     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6486       PendingTypeTestAssumeConstVCalls.push_back(
6487           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6488       break;
6489 
6490     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6491       PendingTypeCheckedLoadConstVCalls.push_back(
6492           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6493       break;
6494 
6495     case bitc::FS_CFI_FUNCTION_DEFS: {
6496       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6497       for (unsigned I = 0; I != Record.size(); I += 2)
6498         CfiFunctionDefs.insert(
6499             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6500       break;
6501     }
6502 
6503     case bitc::FS_CFI_FUNCTION_DECLS: {
6504       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6505       for (unsigned I = 0; I != Record.size(); I += 2)
6506         CfiFunctionDecls.insert(
6507             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6508       break;
6509     }
6510 
6511     case bitc::FS_TYPE_ID:
6512       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6513       break;
6514 
6515     case bitc::FS_TYPE_ID_METADATA:
6516       parseTypeIdCompatibleVtableSummaryRecord(Record);
6517       break;
6518 
6519     case bitc::FS_BLOCK_COUNT:
6520       TheIndex.addBlockCount(Record[0]);
6521       break;
6522 
6523     case bitc::FS_PARAM_ACCESS: {
6524       PendingParamAccesses = parseParamAccesses(Record);
6525       break;
6526     }
6527     }
6528   }
6529   llvm_unreachable("Exit infinite loop");
6530 }
6531 
6532 // Parse the  module string table block into the Index.
6533 // This populates the ModulePathStringTable map in the index.
6534 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6535   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6536     return Err;
6537 
6538   SmallVector<uint64_t, 64> Record;
6539 
6540   SmallString<128> ModulePath;
6541   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6542 
6543   while (true) {
6544     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6545     if (!MaybeEntry)
6546       return MaybeEntry.takeError();
6547     BitstreamEntry Entry = MaybeEntry.get();
6548 
6549     switch (Entry.Kind) {
6550     case BitstreamEntry::SubBlock: // Handled for us already.
6551     case BitstreamEntry::Error:
6552       return error("Malformed block");
6553     case BitstreamEntry::EndBlock:
6554       return Error::success();
6555     case BitstreamEntry::Record:
6556       // The interesting case.
6557       break;
6558     }
6559 
6560     Record.clear();
6561     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6562     if (!MaybeRecord)
6563       return MaybeRecord.takeError();
6564     switch (MaybeRecord.get()) {
6565     default: // Default behavior: ignore.
6566       break;
6567     case bitc::MST_CODE_ENTRY: {
6568       // MST_ENTRY: [modid, namechar x N]
6569       uint64_t ModuleId = Record[0];
6570 
6571       if (convertToString(Record, 1, ModulePath))
6572         return error("Invalid record");
6573 
6574       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6575       ModuleIdMap[ModuleId] = LastSeenModule->first();
6576 
6577       ModulePath.clear();
6578       break;
6579     }
6580     /// MST_CODE_HASH: [5*i32]
6581     case bitc::MST_CODE_HASH: {
6582       if (Record.size() != 5)
6583         return error("Invalid hash length " + Twine(Record.size()).str());
6584       if (!LastSeenModule)
6585         return error("Invalid hash that does not follow a module path");
6586       int Pos = 0;
6587       for (auto &Val : Record) {
6588         assert(!(Val >> 32) && "Unexpected high bits set");
6589         LastSeenModule->second.second[Pos++] = Val;
6590       }
6591       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6592       LastSeenModule = nullptr;
6593       break;
6594     }
6595     }
6596   }
6597   llvm_unreachable("Exit infinite loop");
6598 }
6599 
6600 namespace {
6601 
6602 // FIXME: This class is only here to support the transition to llvm::Error. It
6603 // will be removed once this transition is complete. Clients should prefer to
6604 // deal with the Error value directly, rather than converting to error_code.
6605 class BitcodeErrorCategoryType : public std::error_category {
6606   const char *name() const noexcept override {
6607     return "llvm.bitcode";
6608   }
6609 
6610   std::string message(int IE) const override {
6611     BitcodeError E = static_cast<BitcodeError>(IE);
6612     switch (E) {
6613     case BitcodeError::CorruptedBitcode:
6614       return "Corrupted bitcode";
6615     }
6616     llvm_unreachable("Unknown error type!");
6617   }
6618 };
6619 
6620 } // end anonymous namespace
6621 
6622 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6623 
6624 const std::error_category &llvm::BitcodeErrorCategory() {
6625   return *ErrorCategory;
6626 }
6627 
6628 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6629                                             unsigned Block, unsigned RecordID) {
6630   if (Error Err = Stream.EnterSubBlock(Block))
6631     return std::move(Err);
6632 
6633   StringRef Strtab;
6634   while (true) {
6635     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6636     if (!MaybeEntry)
6637       return MaybeEntry.takeError();
6638     llvm::BitstreamEntry Entry = MaybeEntry.get();
6639 
6640     switch (Entry.Kind) {
6641     case BitstreamEntry::EndBlock:
6642       return Strtab;
6643 
6644     case BitstreamEntry::Error:
6645       return error("Malformed block");
6646 
6647     case BitstreamEntry::SubBlock:
6648       if (Error Err = Stream.SkipBlock())
6649         return std::move(Err);
6650       break;
6651 
6652     case BitstreamEntry::Record:
6653       StringRef Blob;
6654       SmallVector<uint64_t, 1> Record;
6655       Expected<unsigned> MaybeRecord =
6656           Stream.readRecord(Entry.ID, Record, &Blob);
6657       if (!MaybeRecord)
6658         return MaybeRecord.takeError();
6659       if (MaybeRecord.get() == RecordID)
6660         Strtab = Blob;
6661       break;
6662     }
6663   }
6664 }
6665 
6666 //===----------------------------------------------------------------------===//
6667 // External interface
6668 //===----------------------------------------------------------------------===//
6669 
6670 Expected<std::vector<BitcodeModule>>
6671 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6672   auto FOrErr = getBitcodeFileContents(Buffer);
6673   if (!FOrErr)
6674     return FOrErr.takeError();
6675   return std::move(FOrErr->Mods);
6676 }
6677 
6678 Expected<BitcodeFileContents>
6679 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6680   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6681   if (!StreamOrErr)
6682     return StreamOrErr.takeError();
6683   BitstreamCursor &Stream = *StreamOrErr;
6684 
6685   BitcodeFileContents F;
6686   while (true) {
6687     uint64_t BCBegin = Stream.getCurrentByteNo();
6688 
6689     // We may be consuming bitcode from a client that leaves garbage at the end
6690     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6691     // the end that there cannot possibly be another module, stop looking.
6692     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6693       return F;
6694 
6695     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6696     if (!MaybeEntry)
6697       return MaybeEntry.takeError();
6698     llvm::BitstreamEntry Entry = MaybeEntry.get();
6699 
6700     switch (Entry.Kind) {
6701     case BitstreamEntry::EndBlock:
6702     case BitstreamEntry::Error:
6703       return error("Malformed block");
6704 
6705     case BitstreamEntry::SubBlock: {
6706       uint64_t IdentificationBit = -1ull;
6707       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6708         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6709         if (Error Err = Stream.SkipBlock())
6710           return std::move(Err);
6711 
6712         {
6713           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6714           if (!MaybeEntry)
6715             return MaybeEntry.takeError();
6716           Entry = MaybeEntry.get();
6717         }
6718 
6719         if (Entry.Kind != BitstreamEntry::SubBlock ||
6720             Entry.ID != bitc::MODULE_BLOCK_ID)
6721           return error("Malformed block");
6722       }
6723 
6724       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6725         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6726         if (Error Err = Stream.SkipBlock())
6727           return std::move(Err);
6728 
6729         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6730                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6731                           Buffer.getBufferIdentifier(), IdentificationBit,
6732                           ModuleBit});
6733         continue;
6734       }
6735 
6736       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6737         Expected<StringRef> Strtab =
6738             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6739         if (!Strtab)
6740           return Strtab.takeError();
6741         // This string table is used by every preceding bitcode module that does
6742         // not have its own string table. A bitcode file may have multiple
6743         // string tables if it was created by binary concatenation, for example
6744         // with "llvm-cat -b".
6745         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
6746           if (!I.Strtab.empty())
6747             break;
6748           I.Strtab = *Strtab;
6749         }
6750         // Similarly, the string table is used by every preceding symbol table;
6751         // normally there will be just one unless the bitcode file was created
6752         // by binary concatenation.
6753         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6754           F.StrtabForSymtab = *Strtab;
6755         continue;
6756       }
6757 
6758       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6759         Expected<StringRef> SymtabOrErr =
6760             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6761         if (!SymtabOrErr)
6762           return SymtabOrErr.takeError();
6763 
6764         // We can expect the bitcode file to have multiple symbol tables if it
6765         // was created by binary concatenation. In that case we silently
6766         // ignore any subsequent symbol tables, which is fine because this is a
6767         // low level function. The client is expected to notice that the number
6768         // of modules in the symbol table does not match the number of modules
6769         // in the input file and regenerate the symbol table.
6770         if (F.Symtab.empty())
6771           F.Symtab = *SymtabOrErr;
6772         continue;
6773       }
6774 
6775       if (Error Err = Stream.SkipBlock())
6776         return std::move(Err);
6777       continue;
6778     }
6779     case BitstreamEntry::Record:
6780       if (Error E = Stream.skipRecord(Entry.ID).takeError())
6781         return std::move(E);
6782       continue;
6783     }
6784   }
6785 }
6786 
6787 /// Get a lazy one-at-time loading module from bitcode.
6788 ///
6789 /// This isn't always used in a lazy context.  In particular, it's also used by
6790 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6791 /// in forward-referenced functions from block address references.
6792 ///
6793 /// \param[in] MaterializeAll Set to \c true if we should materialize
6794 /// everything.
6795 Expected<std::unique_ptr<Module>>
6796 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6797                              bool ShouldLazyLoadMetadata, bool IsImporting,
6798                              DataLayoutCallbackTy DataLayoutCallback) {
6799   BitstreamCursor Stream(Buffer);
6800 
6801   std::string ProducerIdentification;
6802   if (IdentificationBit != -1ull) {
6803     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6804       return std::move(JumpFailed);
6805     if (Error E =
6806             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
6807       return std::move(E);
6808   }
6809 
6810   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6811     return std::move(JumpFailed);
6812   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6813                               Context);
6814 
6815   std::unique_ptr<Module> M =
6816       std::make_unique<Module>(ModuleIdentifier, Context);
6817   M->setMaterializer(R);
6818 
6819   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6820   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6821                                       IsImporting, DataLayoutCallback))
6822     return std::move(Err);
6823 
6824   if (MaterializeAll) {
6825     // Read in the entire module, and destroy the BitcodeReader.
6826     if (Error Err = M->materializeAll())
6827       return std::move(Err);
6828   } else {
6829     // Resolve forward references from blockaddresses.
6830     if (Error Err = R->materializeForwardReferencedFunctions())
6831       return std::move(Err);
6832   }
6833   return std::move(M);
6834 }
6835 
6836 Expected<std::unique_ptr<Module>>
6837 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6838                              bool IsImporting) {
6839   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6840                        [](StringRef) { return None; });
6841 }
6842 
6843 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6844 // We don't use ModuleIdentifier here because the client may need to control the
6845 // module path used in the combined summary (e.g. when reading summaries for
6846 // regular LTO modules).
6847 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6848                                  StringRef ModulePath, uint64_t ModuleId) {
6849   BitstreamCursor Stream(Buffer);
6850   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6851     return JumpFailed;
6852 
6853   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6854                                     ModulePath, ModuleId);
6855   return R.parseModule();
6856 }
6857 
6858 // Parse the specified bitcode buffer, returning the function info index.
6859 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6860   BitstreamCursor Stream(Buffer);
6861   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6862     return std::move(JumpFailed);
6863 
6864   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6865   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6866                                     ModuleIdentifier, 0);
6867 
6868   if (Error Err = R.parseModule())
6869     return std::move(Err);
6870 
6871   return std::move(Index);
6872 }
6873 
6874 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6875                                                 unsigned ID) {
6876   if (Error Err = Stream.EnterSubBlock(ID))
6877     return std::move(Err);
6878   SmallVector<uint64_t, 64> Record;
6879 
6880   while (true) {
6881     BitstreamEntry Entry;
6882     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
6883       return std::move(E);
6884 
6885     switch (Entry.Kind) {
6886     case BitstreamEntry::SubBlock: // Handled for us already.
6887     case BitstreamEntry::Error:
6888       return error("Malformed block");
6889     case BitstreamEntry::EndBlock:
6890       // If no flags record found, conservatively return true to mimic
6891       // behavior before this flag was added.
6892       return true;
6893     case BitstreamEntry::Record:
6894       // The interesting case.
6895       break;
6896     }
6897 
6898     // Look for the FS_FLAGS record.
6899     Record.clear();
6900     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6901     if (!MaybeBitCode)
6902       return MaybeBitCode.takeError();
6903     switch (MaybeBitCode.get()) {
6904     default: // Default behavior: ignore.
6905       break;
6906     case bitc::FS_FLAGS: { // [flags]
6907       uint64_t Flags = Record[0];
6908       // Scan flags.
6909       assert(Flags <= 0x7f && "Unexpected bits in flag");
6910 
6911       return Flags & 0x8;
6912     }
6913     }
6914   }
6915   llvm_unreachable("Exit infinite loop");
6916 }
6917 
6918 // Check if the given bitcode buffer contains a global value summary block.
6919 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6920   BitstreamCursor Stream(Buffer);
6921   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6922     return std::move(JumpFailed);
6923 
6924   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6925     return std::move(Err);
6926 
6927   while (true) {
6928     llvm::BitstreamEntry Entry;
6929     if (Error E = Stream.advance().moveInto(Entry))
6930       return std::move(E);
6931 
6932     switch (Entry.Kind) {
6933     case BitstreamEntry::Error:
6934       return error("Malformed block");
6935     case BitstreamEntry::EndBlock:
6936       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6937                             /*EnableSplitLTOUnit=*/false};
6938 
6939     case BitstreamEntry::SubBlock:
6940       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6941         Expected<bool> EnableSplitLTOUnit =
6942             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6943         if (!EnableSplitLTOUnit)
6944           return EnableSplitLTOUnit.takeError();
6945         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6946                               *EnableSplitLTOUnit};
6947       }
6948 
6949       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6950         Expected<bool> EnableSplitLTOUnit =
6951             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6952         if (!EnableSplitLTOUnit)
6953           return EnableSplitLTOUnit.takeError();
6954         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6955                               *EnableSplitLTOUnit};
6956       }
6957 
6958       // Ignore other sub-blocks.
6959       if (Error Err = Stream.SkipBlock())
6960         return std::move(Err);
6961       continue;
6962 
6963     case BitstreamEntry::Record:
6964       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6965         continue;
6966       else
6967         return StreamFailed.takeError();
6968     }
6969   }
6970 }
6971 
6972 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6973   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6974   if (!MsOrErr)
6975     return MsOrErr.takeError();
6976 
6977   if (MsOrErr->size() != 1)
6978     return error("Expected a single module");
6979 
6980   return (*MsOrErr)[0];
6981 }
6982 
6983 Expected<std::unique_ptr<Module>>
6984 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6985                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6986   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6987   if (!BM)
6988     return BM.takeError();
6989 
6990   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6991 }
6992 
6993 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6994     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6995     bool ShouldLazyLoadMetadata, bool IsImporting) {
6996   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6997                                      IsImporting);
6998   if (MOrErr)
6999     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7000   return MOrErr;
7001 }
7002 
7003 Expected<std::unique_ptr<Module>>
7004 BitcodeModule::parseModule(LLVMContext &Context,
7005                            DataLayoutCallbackTy DataLayoutCallback) {
7006   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7007   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7008   // written.  We must defer until the Module has been fully materialized.
7009 }
7010 
7011 Expected<std::unique_ptr<Module>>
7012 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7013                        DataLayoutCallbackTy DataLayoutCallback) {
7014   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7015   if (!BM)
7016     return BM.takeError();
7017 
7018   return BM->parseModule(Context, DataLayoutCallback);
7019 }
7020 
7021 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7022   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7023   if (!StreamOrErr)
7024     return StreamOrErr.takeError();
7025 
7026   return readTriple(*StreamOrErr);
7027 }
7028 
7029 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7030   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7031   if (!StreamOrErr)
7032     return StreamOrErr.takeError();
7033 
7034   return hasObjCCategory(*StreamOrErr);
7035 }
7036 
7037 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7038   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7039   if (!StreamOrErr)
7040     return StreamOrErr.takeError();
7041 
7042   return readIdentificationCode(*StreamOrErr);
7043 }
7044 
7045 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7046                                    ModuleSummaryIndex &CombinedIndex,
7047                                    uint64_t ModuleId) {
7048   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7049   if (!BM)
7050     return BM.takeError();
7051 
7052   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7053 }
7054 
7055 Expected<std::unique_ptr<ModuleSummaryIndex>>
7056 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7057   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7058   if (!BM)
7059     return BM.takeError();
7060 
7061   return BM->getSummary();
7062 }
7063 
7064 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7065   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7066   if (!BM)
7067     return BM.takeError();
7068 
7069   return BM->getLTOInfo();
7070 }
7071 
7072 Expected<std::unique_ptr<ModuleSummaryIndex>>
7073 llvm::getModuleSummaryIndexForFile(StringRef Path,
7074                                    bool IgnoreEmptyThinLTOIndexFile) {
7075   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7076       MemoryBuffer::getFileOrSTDIN(Path);
7077   if (!FileOrErr)
7078     return errorCodeToError(FileOrErr.getError());
7079   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7080     return nullptr;
7081   return getModuleSummaryIndex(**FileOrErr);
7082 }
7083