1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/OperandTraits.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/Support/DataStream.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 30 using namespace llvm; 31 32 enum { 33 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 34 }; 35 36 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 37 if (WillMaterializeAllForwardRefs) 38 return std::error_code(); 39 40 // Prevent recursion. 41 WillMaterializeAllForwardRefs = true; 42 43 while (!BasicBlockFwdRefQueue.empty()) { 44 Function *F = BasicBlockFwdRefQueue.front(); 45 BasicBlockFwdRefQueue.pop_front(); 46 assert(F && "Expected valid function"); 47 if (!BasicBlockFwdRefs.count(F)) 48 // Already materialized. 49 continue; 50 51 // Check for a function that isn't materializable to prevent an infinite 52 // loop. When parsing a blockaddress stored in a global variable, there 53 // isn't a trivial way to check if a function will have a body without a 54 // linear search through FunctionsWithBodies, so just check it here. 55 if (!F->isMaterializable()) 56 return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress); 57 58 // Try to materialize F. 59 if (std::error_code EC = materialize(F)) 60 return EC; 61 } 62 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 63 64 // Reset state. 65 WillMaterializeAllForwardRefs = false; 66 return std::error_code(); 67 } 68 69 void BitcodeReader::FreeState() { 70 Buffer = nullptr; 71 std::vector<Type*>().swap(TypeList); 72 ValueList.clear(); 73 MDValueList.clear(); 74 std::vector<Comdat *>().swap(ComdatList); 75 76 std::vector<AttributeSet>().swap(MAttributes); 77 std::vector<BasicBlock*>().swap(FunctionBBs); 78 std::vector<Function*>().swap(FunctionsWithBodies); 79 DeferredFunctionInfo.clear(); 80 MDKindMap.clear(); 81 82 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 83 BasicBlockFwdRefQueue.clear(); 84 } 85 86 //===----------------------------------------------------------------------===// 87 // Helper functions to implement forward reference resolution, etc. 88 //===----------------------------------------------------------------------===// 89 90 /// ConvertToString - Convert a string from a record into an std::string, return 91 /// true on failure. 92 template<typename StrTy> 93 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 94 StrTy &Result) { 95 if (Idx > Record.size()) 96 return true; 97 98 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 99 Result += (char)Record[i]; 100 return false; 101 } 102 103 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 104 switch (Val) { 105 default: // Map unknown/new linkages to external 106 case 0: return GlobalValue::ExternalLinkage; 107 case 1: return GlobalValue::WeakAnyLinkage; 108 case 2: return GlobalValue::AppendingLinkage; 109 case 3: return GlobalValue::InternalLinkage; 110 case 4: return GlobalValue::LinkOnceAnyLinkage; 111 case 5: return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 112 case 6: return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 113 case 7: return GlobalValue::ExternalWeakLinkage; 114 case 8: return GlobalValue::CommonLinkage; 115 case 9: return GlobalValue::PrivateLinkage; 116 case 10: return GlobalValue::WeakODRLinkage; 117 case 11: return GlobalValue::LinkOnceODRLinkage; 118 case 12: return GlobalValue::AvailableExternallyLinkage; 119 case 13: 120 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 121 case 14: 122 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 123 } 124 } 125 126 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 127 switch (Val) { 128 default: // Map unknown visibilities to default. 129 case 0: return GlobalValue::DefaultVisibility; 130 case 1: return GlobalValue::HiddenVisibility; 131 case 2: return GlobalValue::ProtectedVisibility; 132 } 133 } 134 135 static GlobalValue::DLLStorageClassTypes 136 GetDecodedDLLStorageClass(unsigned Val) { 137 switch (Val) { 138 default: // Map unknown values to default. 139 case 0: return GlobalValue::DefaultStorageClass; 140 case 1: return GlobalValue::DLLImportStorageClass; 141 case 2: return GlobalValue::DLLExportStorageClass; 142 } 143 } 144 145 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 146 switch (Val) { 147 case 0: return GlobalVariable::NotThreadLocal; 148 default: // Map unknown non-zero value to general dynamic. 149 case 1: return GlobalVariable::GeneralDynamicTLSModel; 150 case 2: return GlobalVariable::LocalDynamicTLSModel; 151 case 3: return GlobalVariable::InitialExecTLSModel; 152 case 4: return GlobalVariable::LocalExecTLSModel; 153 } 154 } 155 156 static int GetDecodedCastOpcode(unsigned Val) { 157 switch (Val) { 158 default: return -1; 159 case bitc::CAST_TRUNC : return Instruction::Trunc; 160 case bitc::CAST_ZEXT : return Instruction::ZExt; 161 case bitc::CAST_SEXT : return Instruction::SExt; 162 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 163 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 164 case bitc::CAST_UITOFP : return Instruction::UIToFP; 165 case bitc::CAST_SITOFP : return Instruction::SIToFP; 166 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 167 case bitc::CAST_FPEXT : return Instruction::FPExt; 168 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 169 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 170 case bitc::CAST_BITCAST : return Instruction::BitCast; 171 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 172 } 173 } 174 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 175 switch (Val) { 176 default: return -1; 177 case bitc::BINOP_ADD: 178 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 179 case bitc::BINOP_SUB: 180 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 181 case bitc::BINOP_MUL: 182 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 183 case bitc::BINOP_UDIV: return Instruction::UDiv; 184 case bitc::BINOP_SDIV: 185 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 186 case bitc::BINOP_UREM: return Instruction::URem; 187 case bitc::BINOP_SREM: 188 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 189 case bitc::BINOP_SHL: return Instruction::Shl; 190 case bitc::BINOP_LSHR: return Instruction::LShr; 191 case bitc::BINOP_ASHR: return Instruction::AShr; 192 case bitc::BINOP_AND: return Instruction::And; 193 case bitc::BINOP_OR: return Instruction::Or; 194 case bitc::BINOP_XOR: return Instruction::Xor; 195 } 196 } 197 198 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 199 switch (Val) { 200 default: return AtomicRMWInst::BAD_BINOP; 201 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 202 case bitc::RMW_ADD: return AtomicRMWInst::Add; 203 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 204 case bitc::RMW_AND: return AtomicRMWInst::And; 205 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 206 case bitc::RMW_OR: return AtomicRMWInst::Or; 207 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 208 case bitc::RMW_MAX: return AtomicRMWInst::Max; 209 case bitc::RMW_MIN: return AtomicRMWInst::Min; 210 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 211 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 212 } 213 } 214 215 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 216 switch (Val) { 217 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 218 case bitc::ORDERING_UNORDERED: return Unordered; 219 case bitc::ORDERING_MONOTONIC: return Monotonic; 220 case bitc::ORDERING_ACQUIRE: return Acquire; 221 case bitc::ORDERING_RELEASE: return Release; 222 case bitc::ORDERING_ACQREL: return AcquireRelease; 223 default: // Map unknown orderings to sequentially-consistent. 224 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 225 } 226 } 227 228 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 229 switch (Val) { 230 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 231 default: // Map unknown scopes to cross-thread. 232 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 233 } 234 } 235 236 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 237 switch (Val) { 238 default: // Map unknown selection kinds to any. 239 case bitc::COMDAT_SELECTION_KIND_ANY: 240 return Comdat::Any; 241 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 242 return Comdat::ExactMatch; 243 case bitc::COMDAT_SELECTION_KIND_LARGEST: 244 return Comdat::Largest; 245 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 246 return Comdat::NoDuplicates; 247 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 248 return Comdat::SameSize; 249 } 250 } 251 252 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 253 switch (Val) { 254 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 255 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 256 } 257 } 258 259 namespace llvm { 260 namespace { 261 /// @brief A class for maintaining the slot number definition 262 /// as a placeholder for the actual definition for forward constants defs. 263 class ConstantPlaceHolder : public ConstantExpr { 264 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 265 public: 266 // allocate space for exactly one operand 267 void *operator new(size_t s) { 268 return User::operator new(s, 1); 269 } 270 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 271 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 272 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 273 } 274 275 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 276 static bool classof(const Value *V) { 277 return isa<ConstantExpr>(V) && 278 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 279 } 280 281 282 /// Provide fast operand accessors 283 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 284 }; 285 } 286 287 // FIXME: can we inherit this from ConstantExpr? 288 template <> 289 struct OperandTraits<ConstantPlaceHolder> : 290 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 291 }; 292 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 293 } 294 295 296 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 297 if (Idx == size()) { 298 push_back(V); 299 return; 300 } 301 302 if (Idx >= size()) 303 resize(Idx+1); 304 305 WeakVH &OldV = ValuePtrs[Idx]; 306 if (!OldV) { 307 OldV = V; 308 return; 309 } 310 311 // Handle constants and non-constants (e.g. instrs) differently for 312 // efficiency. 313 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 314 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 315 OldV = V; 316 } else { 317 // If there was a forward reference to this value, replace it. 318 Value *PrevVal = OldV; 319 OldV->replaceAllUsesWith(V); 320 delete PrevVal; 321 } 322 } 323 324 325 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 326 Type *Ty) { 327 if (Idx >= size()) 328 resize(Idx + 1); 329 330 if (Value *V = ValuePtrs[Idx]) { 331 assert(Ty == V->getType() && "Type mismatch in constant table!"); 332 return cast<Constant>(V); 333 } 334 335 // Create and return a placeholder, which will later be RAUW'd. 336 Constant *C = new ConstantPlaceHolder(Ty, Context); 337 ValuePtrs[Idx] = C; 338 return C; 339 } 340 341 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 342 if (Idx >= size()) 343 resize(Idx + 1); 344 345 if (Value *V = ValuePtrs[Idx]) { 346 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 347 return V; 348 } 349 350 // No type specified, must be invalid reference. 351 if (!Ty) return nullptr; 352 353 // Create and return a placeholder, which will later be RAUW'd. 354 Value *V = new Argument(Ty); 355 ValuePtrs[Idx] = V; 356 return V; 357 } 358 359 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 360 /// resolves any forward references. The idea behind this is that we sometimes 361 /// get constants (such as large arrays) which reference *many* forward ref 362 /// constants. Replacing each of these causes a lot of thrashing when 363 /// building/reuniquing the constant. Instead of doing this, we look at all the 364 /// uses and rewrite all the place holders at once for any constant that uses 365 /// a placeholder. 366 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 367 // Sort the values by-pointer so that they are efficient to look up with a 368 // binary search. 369 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 370 371 SmallVector<Constant*, 64> NewOps; 372 373 while (!ResolveConstants.empty()) { 374 Value *RealVal = operator[](ResolveConstants.back().second); 375 Constant *Placeholder = ResolveConstants.back().first; 376 ResolveConstants.pop_back(); 377 378 // Loop over all users of the placeholder, updating them to reference the 379 // new value. If they reference more than one placeholder, update them all 380 // at once. 381 while (!Placeholder->use_empty()) { 382 auto UI = Placeholder->user_begin(); 383 User *U = *UI; 384 385 // If the using object isn't uniqued, just update the operands. This 386 // handles instructions and initializers for global variables. 387 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 388 UI.getUse().set(RealVal); 389 continue; 390 } 391 392 // Otherwise, we have a constant that uses the placeholder. Replace that 393 // constant with a new constant that has *all* placeholder uses updated. 394 Constant *UserC = cast<Constant>(U); 395 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 396 I != E; ++I) { 397 Value *NewOp; 398 if (!isa<ConstantPlaceHolder>(*I)) { 399 // Not a placeholder reference. 400 NewOp = *I; 401 } else if (*I == Placeholder) { 402 // Common case is that it just references this one placeholder. 403 NewOp = RealVal; 404 } else { 405 // Otherwise, look up the placeholder in ResolveConstants. 406 ResolveConstantsTy::iterator It = 407 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 408 std::pair<Constant*, unsigned>(cast<Constant>(*I), 409 0)); 410 assert(It != ResolveConstants.end() && It->first == *I); 411 NewOp = operator[](It->second); 412 } 413 414 NewOps.push_back(cast<Constant>(NewOp)); 415 } 416 417 // Make the new constant. 418 Constant *NewC; 419 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 420 NewC = ConstantArray::get(UserCA->getType(), NewOps); 421 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 422 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 423 } else if (isa<ConstantVector>(UserC)) { 424 NewC = ConstantVector::get(NewOps); 425 } else { 426 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 427 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 428 } 429 430 UserC->replaceAllUsesWith(NewC); 431 UserC->destroyConstant(); 432 NewOps.clear(); 433 } 434 435 // Update all ValueHandles, they should be the only users at this point. 436 Placeholder->replaceAllUsesWith(RealVal); 437 delete Placeholder; 438 } 439 } 440 441 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 442 if (Idx == size()) { 443 push_back(MD); 444 return; 445 } 446 447 if (Idx >= size()) 448 resize(Idx+1); 449 450 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 451 if (!OldMD) { 452 OldMD.reset(MD); 453 return; 454 } 455 456 // If there was a forward reference to this value, replace it. 457 MDNodeFwdDecl *PrevMD = cast<MDNodeFwdDecl>(OldMD.get()); 458 PrevMD->replaceAllUsesWith(MD); 459 MDNode::deleteTemporary(PrevMD); 460 --NumFwdRefs; 461 } 462 463 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 464 if (Idx >= size()) 465 resize(Idx + 1); 466 467 if (Metadata *MD = MDValuePtrs[Idx]) 468 return MD; 469 470 // Create and return a placeholder, which will later be RAUW'd. 471 AnyFwdRefs = true; 472 ++NumFwdRefs; 473 Metadata *MD = MDNode::getTemporary(Context, None); 474 MDValuePtrs[Idx].reset(MD); 475 return MD; 476 } 477 478 void BitcodeReaderMDValueList::tryToResolveCycles() { 479 if (!AnyFwdRefs) 480 // Nothing to do. 481 return; 482 483 if (NumFwdRefs) 484 // Still forward references... can't resolve cycles. 485 return; 486 487 // Resolve any cycles. 488 for (auto &MD : MDValuePtrs) { 489 assert(!(MD && isa<MDNodeFwdDecl>(MD)) && "Unexpected forward reference"); 490 if (auto *G = dyn_cast_or_null<GenericMDNode>(MD)) 491 G->resolveCycles(); 492 } 493 } 494 495 Type *BitcodeReader::getTypeByID(unsigned ID) { 496 // The type table size is always specified correctly. 497 if (ID >= TypeList.size()) 498 return nullptr; 499 500 if (Type *Ty = TypeList[ID]) 501 return Ty; 502 503 // If we have a forward reference, the only possible case is when it is to a 504 // named struct. Just create a placeholder for now. 505 return TypeList[ID] = createIdentifiedStructType(Context); 506 } 507 508 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 509 StringRef Name) { 510 auto *Ret = StructType::create(Context, Name); 511 IdentifiedStructTypes.push_back(Ret); 512 return Ret; 513 } 514 515 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 516 auto *Ret = StructType::create(Context); 517 IdentifiedStructTypes.push_back(Ret); 518 return Ret; 519 } 520 521 522 //===----------------------------------------------------------------------===// 523 // Functions for parsing blocks from the bitcode file 524 //===----------------------------------------------------------------------===// 525 526 527 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 528 /// been decoded from the given integer. This function must stay in sync with 529 /// 'encodeLLVMAttributesForBitcode'. 530 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 531 uint64_t EncodedAttrs) { 532 // FIXME: Remove in 4.0. 533 534 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 535 // the bits above 31 down by 11 bits. 536 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 537 assert((!Alignment || isPowerOf2_32(Alignment)) && 538 "Alignment must be a power of two."); 539 540 if (Alignment) 541 B.addAlignmentAttr(Alignment); 542 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 543 (EncodedAttrs & 0xffff)); 544 } 545 546 std::error_code BitcodeReader::ParseAttributeBlock() { 547 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 548 return Error(BitcodeError::InvalidRecord); 549 550 if (!MAttributes.empty()) 551 return Error(BitcodeError::InvalidMultipleBlocks); 552 553 SmallVector<uint64_t, 64> Record; 554 555 SmallVector<AttributeSet, 8> Attrs; 556 557 // Read all the records. 558 while (1) { 559 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 560 561 switch (Entry.Kind) { 562 case BitstreamEntry::SubBlock: // Handled for us already. 563 case BitstreamEntry::Error: 564 return Error(BitcodeError::MalformedBlock); 565 case BitstreamEntry::EndBlock: 566 return std::error_code(); 567 case BitstreamEntry::Record: 568 // The interesting case. 569 break; 570 } 571 572 // Read a record. 573 Record.clear(); 574 switch (Stream.readRecord(Entry.ID, Record)) { 575 default: // Default behavior: ignore. 576 break; 577 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 578 // FIXME: Remove in 4.0. 579 if (Record.size() & 1) 580 return Error(BitcodeError::InvalidRecord); 581 582 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 583 AttrBuilder B; 584 decodeLLVMAttributesForBitcode(B, Record[i+1]); 585 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 586 } 587 588 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 589 Attrs.clear(); 590 break; 591 } 592 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 593 for (unsigned i = 0, e = Record.size(); i != e; ++i) 594 Attrs.push_back(MAttributeGroups[Record[i]]); 595 596 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 597 Attrs.clear(); 598 break; 599 } 600 } 601 } 602 } 603 604 // Returns Attribute::None on unrecognized codes. 605 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 606 switch (Code) { 607 default: 608 return Attribute::None; 609 case bitc::ATTR_KIND_ALIGNMENT: 610 return Attribute::Alignment; 611 case bitc::ATTR_KIND_ALWAYS_INLINE: 612 return Attribute::AlwaysInline; 613 case bitc::ATTR_KIND_BUILTIN: 614 return Attribute::Builtin; 615 case bitc::ATTR_KIND_BY_VAL: 616 return Attribute::ByVal; 617 case bitc::ATTR_KIND_IN_ALLOCA: 618 return Attribute::InAlloca; 619 case bitc::ATTR_KIND_COLD: 620 return Attribute::Cold; 621 case bitc::ATTR_KIND_INLINE_HINT: 622 return Attribute::InlineHint; 623 case bitc::ATTR_KIND_IN_REG: 624 return Attribute::InReg; 625 case bitc::ATTR_KIND_JUMP_TABLE: 626 return Attribute::JumpTable; 627 case bitc::ATTR_KIND_MIN_SIZE: 628 return Attribute::MinSize; 629 case bitc::ATTR_KIND_NAKED: 630 return Attribute::Naked; 631 case bitc::ATTR_KIND_NEST: 632 return Attribute::Nest; 633 case bitc::ATTR_KIND_NO_ALIAS: 634 return Attribute::NoAlias; 635 case bitc::ATTR_KIND_NO_BUILTIN: 636 return Attribute::NoBuiltin; 637 case bitc::ATTR_KIND_NO_CAPTURE: 638 return Attribute::NoCapture; 639 case bitc::ATTR_KIND_NO_DUPLICATE: 640 return Attribute::NoDuplicate; 641 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 642 return Attribute::NoImplicitFloat; 643 case bitc::ATTR_KIND_NO_INLINE: 644 return Attribute::NoInline; 645 case bitc::ATTR_KIND_NON_LAZY_BIND: 646 return Attribute::NonLazyBind; 647 case bitc::ATTR_KIND_NON_NULL: 648 return Attribute::NonNull; 649 case bitc::ATTR_KIND_DEREFERENCEABLE: 650 return Attribute::Dereferenceable; 651 case bitc::ATTR_KIND_NO_RED_ZONE: 652 return Attribute::NoRedZone; 653 case bitc::ATTR_KIND_NO_RETURN: 654 return Attribute::NoReturn; 655 case bitc::ATTR_KIND_NO_UNWIND: 656 return Attribute::NoUnwind; 657 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 658 return Attribute::OptimizeForSize; 659 case bitc::ATTR_KIND_OPTIMIZE_NONE: 660 return Attribute::OptimizeNone; 661 case bitc::ATTR_KIND_READ_NONE: 662 return Attribute::ReadNone; 663 case bitc::ATTR_KIND_READ_ONLY: 664 return Attribute::ReadOnly; 665 case bitc::ATTR_KIND_RETURNED: 666 return Attribute::Returned; 667 case bitc::ATTR_KIND_RETURNS_TWICE: 668 return Attribute::ReturnsTwice; 669 case bitc::ATTR_KIND_S_EXT: 670 return Attribute::SExt; 671 case bitc::ATTR_KIND_STACK_ALIGNMENT: 672 return Attribute::StackAlignment; 673 case bitc::ATTR_KIND_STACK_PROTECT: 674 return Attribute::StackProtect; 675 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 676 return Attribute::StackProtectReq; 677 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 678 return Attribute::StackProtectStrong; 679 case bitc::ATTR_KIND_STRUCT_RET: 680 return Attribute::StructRet; 681 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 682 return Attribute::SanitizeAddress; 683 case bitc::ATTR_KIND_SANITIZE_THREAD: 684 return Attribute::SanitizeThread; 685 case bitc::ATTR_KIND_SANITIZE_MEMORY: 686 return Attribute::SanitizeMemory; 687 case bitc::ATTR_KIND_UW_TABLE: 688 return Attribute::UWTable; 689 case bitc::ATTR_KIND_Z_EXT: 690 return Attribute::ZExt; 691 } 692 } 693 694 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 695 Attribute::AttrKind *Kind) { 696 *Kind = GetAttrFromCode(Code); 697 if (*Kind == Attribute::None) 698 return Error(BitcodeError::InvalidValue); 699 return std::error_code(); 700 } 701 702 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 703 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 704 return Error(BitcodeError::InvalidRecord); 705 706 if (!MAttributeGroups.empty()) 707 return Error(BitcodeError::InvalidMultipleBlocks); 708 709 SmallVector<uint64_t, 64> Record; 710 711 // Read all the records. 712 while (1) { 713 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 714 715 switch (Entry.Kind) { 716 case BitstreamEntry::SubBlock: // Handled for us already. 717 case BitstreamEntry::Error: 718 return Error(BitcodeError::MalformedBlock); 719 case BitstreamEntry::EndBlock: 720 return std::error_code(); 721 case BitstreamEntry::Record: 722 // The interesting case. 723 break; 724 } 725 726 // Read a record. 727 Record.clear(); 728 switch (Stream.readRecord(Entry.ID, Record)) { 729 default: // Default behavior: ignore. 730 break; 731 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 732 if (Record.size() < 3) 733 return Error(BitcodeError::InvalidRecord); 734 735 uint64_t GrpID = Record[0]; 736 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 737 738 AttrBuilder B; 739 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 740 if (Record[i] == 0) { // Enum attribute 741 Attribute::AttrKind Kind; 742 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 743 return EC; 744 745 B.addAttribute(Kind); 746 } else if (Record[i] == 1) { // Integer attribute 747 Attribute::AttrKind Kind; 748 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 749 return EC; 750 if (Kind == Attribute::Alignment) 751 B.addAlignmentAttr(Record[++i]); 752 else if (Kind == Attribute::StackAlignment) 753 B.addStackAlignmentAttr(Record[++i]); 754 else if (Kind == Attribute::Dereferenceable) 755 B.addDereferenceableAttr(Record[++i]); 756 } else { // String attribute 757 assert((Record[i] == 3 || Record[i] == 4) && 758 "Invalid attribute group entry"); 759 bool HasValue = (Record[i++] == 4); 760 SmallString<64> KindStr; 761 SmallString<64> ValStr; 762 763 while (Record[i] != 0 && i != e) 764 KindStr += Record[i++]; 765 assert(Record[i] == 0 && "Kind string not null terminated"); 766 767 if (HasValue) { 768 // Has a value associated with it. 769 ++i; // Skip the '0' that terminates the "kind" string. 770 while (Record[i] != 0 && i != e) 771 ValStr += Record[i++]; 772 assert(Record[i] == 0 && "Value string not null terminated"); 773 } 774 775 B.addAttribute(KindStr.str(), ValStr.str()); 776 } 777 } 778 779 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 780 break; 781 } 782 } 783 } 784 } 785 786 std::error_code BitcodeReader::ParseTypeTable() { 787 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 788 return Error(BitcodeError::InvalidRecord); 789 790 return ParseTypeTableBody(); 791 } 792 793 std::error_code BitcodeReader::ParseTypeTableBody() { 794 if (!TypeList.empty()) 795 return Error(BitcodeError::InvalidMultipleBlocks); 796 797 SmallVector<uint64_t, 64> Record; 798 unsigned NumRecords = 0; 799 800 SmallString<64> TypeName; 801 802 // Read all the records for this type table. 803 while (1) { 804 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 805 806 switch (Entry.Kind) { 807 case BitstreamEntry::SubBlock: // Handled for us already. 808 case BitstreamEntry::Error: 809 return Error(BitcodeError::MalformedBlock); 810 case BitstreamEntry::EndBlock: 811 if (NumRecords != TypeList.size()) 812 return Error(BitcodeError::MalformedBlock); 813 return std::error_code(); 814 case BitstreamEntry::Record: 815 // The interesting case. 816 break; 817 } 818 819 // Read a record. 820 Record.clear(); 821 Type *ResultTy = nullptr; 822 switch (Stream.readRecord(Entry.ID, Record)) { 823 default: 824 return Error(BitcodeError::InvalidValue); 825 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 826 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 827 // type list. This allows us to reserve space. 828 if (Record.size() < 1) 829 return Error(BitcodeError::InvalidRecord); 830 TypeList.resize(Record[0]); 831 continue; 832 case bitc::TYPE_CODE_VOID: // VOID 833 ResultTy = Type::getVoidTy(Context); 834 break; 835 case bitc::TYPE_CODE_HALF: // HALF 836 ResultTy = Type::getHalfTy(Context); 837 break; 838 case bitc::TYPE_CODE_FLOAT: // FLOAT 839 ResultTy = Type::getFloatTy(Context); 840 break; 841 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 842 ResultTy = Type::getDoubleTy(Context); 843 break; 844 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 845 ResultTy = Type::getX86_FP80Ty(Context); 846 break; 847 case bitc::TYPE_CODE_FP128: // FP128 848 ResultTy = Type::getFP128Ty(Context); 849 break; 850 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 851 ResultTy = Type::getPPC_FP128Ty(Context); 852 break; 853 case bitc::TYPE_CODE_LABEL: // LABEL 854 ResultTy = Type::getLabelTy(Context); 855 break; 856 case bitc::TYPE_CODE_METADATA: // METADATA 857 ResultTy = Type::getMetadataTy(Context); 858 break; 859 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 860 ResultTy = Type::getX86_MMXTy(Context); 861 break; 862 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 863 if (Record.size() < 1) 864 return Error(BitcodeError::InvalidRecord); 865 866 ResultTy = IntegerType::get(Context, Record[0]); 867 break; 868 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 869 // [pointee type, address space] 870 if (Record.size() < 1) 871 return Error(BitcodeError::InvalidRecord); 872 unsigned AddressSpace = 0; 873 if (Record.size() == 2) 874 AddressSpace = Record[1]; 875 ResultTy = getTypeByID(Record[0]); 876 if (!ResultTy) 877 return Error(BitcodeError::InvalidType); 878 ResultTy = PointerType::get(ResultTy, AddressSpace); 879 break; 880 } 881 case bitc::TYPE_CODE_FUNCTION_OLD: { 882 // FIXME: attrid is dead, remove it in LLVM 4.0 883 // FUNCTION: [vararg, attrid, retty, paramty x N] 884 if (Record.size() < 3) 885 return Error(BitcodeError::InvalidRecord); 886 SmallVector<Type*, 8> ArgTys; 887 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 888 if (Type *T = getTypeByID(Record[i])) 889 ArgTys.push_back(T); 890 else 891 break; 892 } 893 894 ResultTy = getTypeByID(Record[2]); 895 if (!ResultTy || ArgTys.size() < Record.size()-3) 896 return Error(BitcodeError::InvalidType); 897 898 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 899 break; 900 } 901 case bitc::TYPE_CODE_FUNCTION: { 902 // FUNCTION: [vararg, retty, paramty x N] 903 if (Record.size() < 2) 904 return Error(BitcodeError::InvalidRecord); 905 SmallVector<Type*, 8> ArgTys; 906 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 907 if (Type *T = getTypeByID(Record[i])) 908 ArgTys.push_back(T); 909 else 910 break; 911 } 912 913 ResultTy = getTypeByID(Record[1]); 914 if (!ResultTy || ArgTys.size() < Record.size()-2) 915 return Error(BitcodeError::InvalidType); 916 917 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 918 break; 919 } 920 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 921 if (Record.size() < 1) 922 return Error(BitcodeError::InvalidRecord); 923 SmallVector<Type*, 8> EltTys; 924 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 925 if (Type *T = getTypeByID(Record[i])) 926 EltTys.push_back(T); 927 else 928 break; 929 } 930 if (EltTys.size() != Record.size()-1) 931 return Error(BitcodeError::InvalidType); 932 ResultTy = StructType::get(Context, EltTys, Record[0]); 933 break; 934 } 935 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 936 if (ConvertToString(Record, 0, TypeName)) 937 return Error(BitcodeError::InvalidRecord); 938 continue; 939 940 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 941 if (Record.size() < 1) 942 return Error(BitcodeError::InvalidRecord); 943 944 if (NumRecords >= TypeList.size()) 945 return Error(BitcodeError::InvalidTYPETable); 946 947 // Check to see if this was forward referenced, if so fill in the temp. 948 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 949 if (Res) { 950 Res->setName(TypeName); 951 TypeList[NumRecords] = nullptr; 952 } else // Otherwise, create a new struct. 953 Res = createIdentifiedStructType(Context, TypeName); 954 TypeName.clear(); 955 956 SmallVector<Type*, 8> EltTys; 957 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 958 if (Type *T = getTypeByID(Record[i])) 959 EltTys.push_back(T); 960 else 961 break; 962 } 963 if (EltTys.size() != Record.size()-1) 964 return Error(BitcodeError::InvalidRecord); 965 Res->setBody(EltTys, Record[0]); 966 ResultTy = Res; 967 break; 968 } 969 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 970 if (Record.size() != 1) 971 return Error(BitcodeError::InvalidRecord); 972 973 if (NumRecords >= TypeList.size()) 974 return Error(BitcodeError::InvalidTYPETable); 975 976 // Check to see if this was forward referenced, if so fill in the temp. 977 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 978 if (Res) { 979 Res->setName(TypeName); 980 TypeList[NumRecords] = nullptr; 981 } else // Otherwise, create a new struct with no body. 982 Res = createIdentifiedStructType(Context, TypeName); 983 TypeName.clear(); 984 ResultTy = Res; 985 break; 986 } 987 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 988 if (Record.size() < 2) 989 return Error(BitcodeError::InvalidRecord); 990 if ((ResultTy = getTypeByID(Record[1]))) 991 ResultTy = ArrayType::get(ResultTy, Record[0]); 992 else 993 return Error(BitcodeError::InvalidType); 994 break; 995 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 996 if (Record.size() < 2) 997 return Error(BitcodeError::InvalidRecord); 998 if ((ResultTy = getTypeByID(Record[1]))) 999 ResultTy = VectorType::get(ResultTy, Record[0]); 1000 else 1001 return Error(BitcodeError::InvalidType); 1002 break; 1003 } 1004 1005 if (NumRecords >= TypeList.size()) 1006 return Error(BitcodeError::InvalidTYPETable); 1007 assert(ResultTy && "Didn't read a type?"); 1008 assert(!TypeList[NumRecords] && "Already read type?"); 1009 TypeList[NumRecords++] = ResultTy; 1010 } 1011 } 1012 1013 std::error_code BitcodeReader::ParseValueSymbolTable() { 1014 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1015 return Error(BitcodeError::InvalidRecord); 1016 1017 SmallVector<uint64_t, 64> Record; 1018 1019 // Read all the records for this value table. 1020 SmallString<128> ValueName; 1021 while (1) { 1022 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1023 1024 switch (Entry.Kind) { 1025 case BitstreamEntry::SubBlock: // Handled for us already. 1026 case BitstreamEntry::Error: 1027 return Error(BitcodeError::MalformedBlock); 1028 case BitstreamEntry::EndBlock: 1029 return std::error_code(); 1030 case BitstreamEntry::Record: 1031 // The interesting case. 1032 break; 1033 } 1034 1035 // Read a record. 1036 Record.clear(); 1037 switch (Stream.readRecord(Entry.ID, Record)) { 1038 default: // Default behavior: unknown type. 1039 break; 1040 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1041 if (ConvertToString(Record, 1, ValueName)) 1042 return Error(BitcodeError::InvalidRecord); 1043 unsigned ValueID = Record[0]; 1044 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1045 return Error(BitcodeError::InvalidRecord); 1046 Value *V = ValueList[ValueID]; 1047 1048 V->setName(StringRef(ValueName.data(), ValueName.size())); 1049 ValueName.clear(); 1050 break; 1051 } 1052 case bitc::VST_CODE_BBENTRY: { 1053 if (ConvertToString(Record, 1, ValueName)) 1054 return Error(BitcodeError::InvalidRecord); 1055 BasicBlock *BB = getBasicBlock(Record[0]); 1056 if (!BB) 1057 return Error(BitcodeError::InvalidRecord); 1058 1059 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1060 ValueName.clear(); 1061 break; 1062 } 1063 } 1064 } 1065 } 1066 1067 std::error_code BitcodeReader::ParseMetadata() { 1068 unsigned NextMDValueNo = MDValueList.size(); 1069 1070 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1071 return Error(BitcodeError::InvalidRecord); 1072 1073 SmallVector<uint64_t, 64> Record; 1074 1075 // Read all the records. 1076 while (1) { 1077 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1078 1079 switch (Entry.Kind) { 1080 case BitstreamEntry::SubBlock: // Handled for us already. 1081 case BitstreamEntry::Error: 1082 return Error(BitcodeError::MalformedBlock); 1083 case BitstreamEntry::EndBlock: 1084 MDValueList.tryToResolveCycles(); 1085 return std::error_code(); 1086 case BitstreamEntry::Record: 1087 // The interesting case. 1088 break; 1089 } 1090 1091 // Read a record. 1092 Record.clear(); 1093 unsigned Code = Stream.readRecord(Entry.ID, Record); 1094 switch (Code) { 1095 default: // Default behavior: ignore. 1096 break; 1097 case bitc::METADATA_NAME: { 1098 // Read name of the named metadata. 1099 SmallString<8> Name(Record.begin(), Record.end()); 1100 Record.clear(); 1101 Code = Stream.ReadCode(); 1102 1103 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1104 unsigned NextBitCode = Stream.readRecord(Code, Record); 1105 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1106 1107 // Read named metadata elements. 1108 unsigned Size = Record.size(); 1109 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1110 for (unsigned i = 0; i != Size; ++i) { 1111 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1112 if (!MD) 1113 return Error(BitcodeError::InvalidRecord); 1114 NMD->addOperand(MD); 1115 } 1116 break; 1117 } 1118 case bitc::METADATA_OLD_FN_NODE: { 1119 // This is a LocalAsMetadata record, the only type of function-local 1120 // metadata. 1121 if (Record.size() % 2 == 1) 1122 return Error(BitcodeError::InvalidRecord); 1123 1124 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1125 // to be legal, but there's no upgrade path. 1126 auto dropRecord = [&] { 1127 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1128 }; 1129 if (Record.size() != 2) { 1130 dropRecord(); 1131 break; 1132 } 1133 1134 Type *Ty = getTypeByID(Record[0]); 1135 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1136 dropRecord(); 1137 break; 1138 } 1139 1140 MDValueList.AssignValue( 1141 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1142 NextMDValueNo++); 1143 break; 1144 } 1145 case bitc::METADATA_OLD_NODE: { 1146 if (Record.size() % 2 == 1) 1147 return Error(BitcodeError::InvalidRecord); 1148 1149 unsigned Size = Record.size(); 1150 SmallVector<Metadata *, 8> Elts; 1151 for (unsigned i = 0; i != Size; i += 2) { 1152 Type *Ty = getTypeByID(Record[i]); 1153 if (!Ty) 1154 return Error(BitcodeError::InvalidRecord); 1155 if (Ty->isMetadataTy()) 1156 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1157 else if (!Ty->isVoidTy()) { 1158 auto *MD = 1159 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1160 assert(isa<ConstantAsMetadata>(MD) && 1161 "Expected non-function-local metadata"); 1162 Elts.push_back(MD); 1163 } else 1164 Elts.push_back(nullptr); 1165 } 1166 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1167 break; 1168 } 1169 case bitc::METADATA_VALUE: { 1170 if (Record.size() != 2) 1171 return Error(BitcodeError::InvalidRecord); 1172 1173 Type *Ty = getTypeByID(Record[0]); 1174 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1175 return Error(BitcodeError::InvalidRecord); 1176 1177 MDValueList.AssignValue( 1178 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1179 NextMDValueNo++); 1180 break; 1181 } 1182 case bitc::METADATA_NODE: { 1183 SmallVector<Metadata *, 8> Elts; 1184 Elts.reserve(Record.size()); 1185 for (unsigned ID : Record) 1186 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1187 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1188 break; 1189 } 1190 case bitc::METADATA_STRING: { 1191 std::string String(Record.begin(), Record.end()); 1192 llvm::UpgradeMDStringConstant(String); 1193 Metadata *MD = MDString::get(Context, String); 1194 MDValueList.AssignValue(MD, NextMDValueNo++); 1195 break; 1196 } 1197 case bitc::METADATA_KIND: { 1198 if (Record.size() < 2) 1199 return Error(BitcodeError::InvalidRecord); 1200 1201 unsigned Kind = Record[0]; 1202 SmallString<8> Name(Record.begin()+1, Record.end()); 1203 1204 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1205 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1206 return Error(BitcodeError::ConflictingMETADATA_KINDRecords); 1207 break; 1208 } 1209 } 1210 } 1211 } 1212 1213 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1214 /// the LSB for dense VBR encoding. 1215 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1216 if ((V & 1) == 0) 1217 return V >> 1; 1218 if (V != 1) 1219 return -(V >> 1); 1220 // There is no such thing as -0 with integers. "-0" really means MININT. 1221 return 1ULL << 63; 1222 } 1223 1224 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1225 /// values and aliases that we can. 1226 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1227 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1228 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1229 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1230 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1231 1232 GlobalInitWorklist.swap(GlobalInits); 1233 AliasInitWorklist.swap(AliasInits); 1234 FunctionPrefixWorklist.swap(FunctionPrefixes); 1235 FunctionPrologueWorklist.swap(FunctionPrologues); 1236 1237 while (!GlobalInitWorklist.empty()) { 1238 unsigned ValID = GlobalInitWorklist.back().second; 1239 if (ValID >= ValueList.size()) { 1240 // Not ready to resolve this yet, it requires something later in the file. 1241 GlobalInits.push_back(GlobalInitWorklist.back()); 1242 } else { 1243 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1244 GlobalInitWorklist.back().first->setInitializer(C); 1245 else 1246 return Error(BitcodeError::ExpectedConstant); 1247 } 1248 GlobalInitWorklist.pop_back(); 1249 } 1250 1251 while (!AliasInitWorklist.empty()) { 1252 unsigned ValID = AliasInitWorklist.back().second; 1253 if (ValID >= ValueList.size()) { 1254 AliasInits.push_back(AliasInitWorklist.back()); 1255 } else { 1256 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1257 AliasInitWorklist.back().first->setAliasee(C); 1258 else 1259 return Error(BitcodeError::ExpectedConstant); 1260 } 1261 AliasInitWorklist.pop_back(); 1262 } 1263 1264 while (!FunctionPrefixWorklist.empty()) { 1265 unsigned ValID = FunctionPrefixWorklist.back().second; 1266 if (ValID >= ValueList.size()) { 1267 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1268 } else { 1269 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1270 FunctionPrefixWorklist.back().first->setPrefixData(C); 1271 else 1272 return Error(BitcodeError::ExpectedConstant); 1273 } 1274 FunctionPrefixWorklist.pop_back(); 1275 } 1276 1277 while (!FunctionPrologueWorklist.empty()) { 1278 unsigned ValID = FunctionPrologueWorklist.back().second; 1279 if (ValID >= ValueList.size()) { 1280 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1281 } else { 1282 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1283 FunctionPrologueWorklist.back().first->setPrologueData(C); 1284 else 1285 return Error(BitcodeError::ExpectedConstant); 1286 } 1287 FunctionPrologueWorklist.pop_back(); 1288 } 1289 1290 return std::error_code(); 1291 } 1292 1293 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1294 SmallVector<uint64_t, 8> Words(Vals.size()); 1295 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1296 BitcodeReader::decodeSignRotatedValue); 1297 1298 return APInt(TypeBits, Words); 1299 } 1300 1301 std::error_code BitcodeReader::ParseConstants() { 1302 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1303 return Error(BitcodeError::InvalidRecord); 1304 1305 SmallVector<uint64_t, 64> Record; 1306 1307 // Read all the records for this value table. 1308 Type *CurTy = Type::getInt32Ty(Context); 1309 unsigned NextCstNo = ValueList.size(); 1310 while (1) { 1311 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1312 1313 switch (Entry.Kind) { 1314 case BitstreamEntry::SubBlock: // Handled for us already. 1315 case BitstreamEntry::Error: 1316 return Error(BitcodeError::MalformedBlock); 1317 case BitstreamEntry::EndBlock: 1318 if (NextCstNo != ValueList.size()) 1319 return Error(BitcodeError::InvalidConstantReference); 1320 1321 // Once all the constants have been read, go through and resolve forward 1322 // references. 1323 ValueList.ResolveConstantForwardRefs(); 1324 return std::error_code(); 1325 case BitstreamEntry::Record: 1326 // The interesting case. 1327 break; 1328 } 1329 1330 // Read a record. 1331 Record.clear(); 1332 Value *V = nullptr; 1333 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1334 switch (BitCode) { 1335 default: // Default behavior: unknown constant 1336 case bitc::CST_CODE_UNDEF: // UNDEF 1337 V = UndefValue::get(CurTy); 1338 break; 1339 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1340 if (Record.empty()) 1341 return Error(BitcodeError::InvalidRecord); 1342 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1343 return Error(BitcodeError::InvalidRecord); 1344 CurTy = TypeList[Record[0]]; 1345 continue; // Skip the ValueList manipulation. 1346 case bitc::CST_CODE_NULL: // NULL 1347 V = Constant::getNullValue(CurTy); 1348 break; 1349 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1350 if (!CurTy->isIntegerTy() || Record.empty()) 1351 return Error(BitcodeError::InvalidRecord); 1352 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1353 break; 1354 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1355 if (!CurTy->isIntegerTy() || Record.empty()) 1356 return Error(BitcodeError::InvalidRecord); 1357 1358 APInt VInt = ReadWideAPInt(Record, 1359 cast<IntegerType>(CurTy)->getBitWidth()); 1360 V = ConstantInt::get(Context, VInt); 1361 1362 break; 1363 } 1364 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1365 if (Record.empty()) 1366 return Error(BitcodeError::InvalidRecord); 1367 if (CurTy->isHalfTy()) 1368 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1369 APInt(16, (uint16_t)Record[0]))); 1370 else if (CurTy->isFloatTy()) 1371 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1372 APInt(32, (uint32_t)Record[0]))); 1373 else if (CurTy->isDoubleTy()) 1374 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1375 APInt(64, Record[0]))); 1376 else if (CurTy->isX86_FP80Ty()) { 1377 // Bits are not stored the same way as a normal i80 APInt, compensate. 1378 uint64_t Rearrange[2]; 1379 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1380 Rearrange[1] = Record[0] >> 48; 1381 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1382 APInt(80, Rearrange))); 1383 } else if (CurTy->isFP128Ty()) 1384 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1385 APInt(128, Record))); 1386 else if (CurTy->isPPC_FP128Ty()) 1387 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1388 APInt(128, Record))); 1389 else 1390 V = UndefValue::get(CurTy); 1391 break; 1392 } 1393 1394 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1395 if (Record.empty()) 1396 return Error(BitcodeError::InvalidRecord); 1397 1398 unsigned Size = Record.size(); 1399 SmallVector<Constant*, 16> Elts; 1400 1401 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1402 for (unsigned i = 0; i != Size; ++i) 1403 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1404 STy->getElementType(i))); 1405 V = ConstantStruct::get(STy, Elts); 1406 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1407 Type *EltTy = ATy->getElementType(); 1408 for (unsigned i = 0; i != Size; ++i) 1409 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1410 V = ConstantArray::get(ATy, Elts); 1411 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1412 Type *EltTy = VTy->getElementType(); 1413 for (unsigned i = 0; i != Size; ++i) 1414 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1415 V = ConstantVector::get(Elts); 1416 } else { 1417 V = UndefValue::get(CurTy); 1418 } 1419 break; 1420 } 1421 case bitc::CST_CODE_STRING: // STRING: [values] 1422 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1423 if (Record.empty()) 1424 return Error(BitcodeError::InvalidRecord); 1425 1426 SmallString<16> Elts(Record.begin(), Record.end()); 1427 V = ConstantDataArray::getString(Context, Elts, 1428 BitCode == bitc::CST_CODE_CSTRING); 1429 break; 1430 } 1431 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1432 if (Record.empty()) 1433 return Error(BitcodeError::InvalidRecord); 1434 1435 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1436 unsigned Size = Record.size(); 1437 1438 if (EltTy->isIntegerTy(8)) { 1439 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1440 if (isa<VectorType>(CurTy)) 1441 V = ConstantDataVector::get(Context, Elts); 1442 else 1443 V = ConstantDataArray::get(Context, Elts); 1444 } else if (EltTy->isIntegerTy(16)) { 1445 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1446 if (isa<VectorType>(CurTy)) 1447 V = ConstantDataVector::get(Context, Elts); 1448 else 1449 V = ConstantDataArray::get(Context, Elts); 1450 } else if (EltTy->isIntegerTy(32)) { 1451 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1452 if (isa<VectorType>(CurTy)) 1453 V = ConstantDataVector::get(Context, Elts); 1454 else 1455 V = ConstantDataArray::get(Context, Elts); 1456 } else if (EltTy->isIntegerTy(64)) { 1457 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1458 if (isa<VectorType>(CurTy)) 1459 V = ConstantDataVector::get(Context, Elts); 1460 else 1461 V = ConstantDataArray::get(Context, Elts); 1462 } else if (EltTy->isFloatTy()) { 1463 SmallVector<float, 16> Elts(Size); 1464 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1465 if (isa<VectorType>(CurTy)) 1466 V = ConstantDataVector::get(Context, Elts); 1467 else 1468 V = ConstantDataArray::get(Context, Elts); 1469 } else if (EltTy->isDoubleTy()) { 1470 SmallVector<double, 16> Elts(Size); 1471 std::transform(Record.begin(), Record.end(), Elts.begin(), 1472 BitsToDouble); 1473 if (isa<VectorType>(CurTy)) 1474 V = ConstantDataVector::get(Context, Elts); 1475 else 1476 V = ConstantDataArray::get(Context, Elts); 1477 } else { 1478 return Error(BitcodeError::InvalidTypeForValue); 1479 } 1480 break; 1481 } 1482 1483 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1484 if (Record.size() < 3) 1485 return Error(BitcodeError::InvalidRecord); 1486 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1487 if (Opc < 0) { 1488 V = UndefValue::get(CurTy); // Unknown binop. 1489 } else { 1490 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1491 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1492 unsigned Flags = 0; 1493 if (Record.size() >= 4) { 1494 if (Opc == Instruction::Add || 1495 Opc == Instruction::Sub || 1496 Opc == Instruction::Mul || 1497 Opc == Instruction::Shl) { 1498 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1499 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1500 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1501 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1502 } else if (Opc == Instruction::SDiv || 1503 Opc == Instruction::UDiv || 1504 Opc == Instruction::LShr || 1505 Opc == Instruction::AShr) { 1506 if (Record[3] & (1 << bitc::PEO_EXACT)) 1507 Flags |= SDivOperator::IsExact; 1508 } 1509 } 1510 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1511 } 1512 break; 1513 } 1514 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1515 if (Record.size() < 3) 1516 return Error(BitcodeError::InvalidRecord); 1517 int Opc = GetDecodedCastOpcode(Record[0]); 1518 if (Opc < 0) { 1519 V = UndefValue::get(CurTy); // Unknown cast. 1520 } else { 1521 Type *OpTy = getTypeByID(Record[1]); 1522 if (!OpTy) 1523 return Error(BitcodeError::InvalidRecord); 1524 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1525 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1526 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1527 } 1528 break; 1529 } 1530 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1531 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1532 if (Record.size() & 1) 1533 return Error(BitcodeError::InvalidRecord); 1534 SmallVector<Constant*, 16> Elts; 1535 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1536 Type *ElTy = getTypeByID(Record[i]); 1537 if (!ElTy) 1538 return Error(BitcodeError::InvalidRecord); 1539 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1540 } 1541 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1542 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1543 BitCode == 1544 bitc::CST_CODE_CE_INBOUNDS_GEP); 1545 break; 1546 } 1547 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1548 if (Record.size() < 3) 1549 return Error(BitcodeError::InvalidRecord); 1550 1551 Type *SelectorTy = Type::getInt1Ty(Context); 1552 1553 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1554 // vector. Otherwise, it must be a single bit. 1555 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1556 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1557 VTy->getNumElements()); 1558 1559 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1560 SelectorTy), 1561 ValueList.getConstantFwdRef(Record[1],CurTy), 1562 ValueList.getConstantFwdRef(Record[2],CurTy)); 1563 break; 1564 } 1565 case bitc::CST_CODE_CE_EXTRACTELT 1566 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1567 if (Record.size() < 3) 1568 return Error(BitcodeError::InvalidRecord); 1569 VectorType *OpTy = 1570 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1571 if (!OpTy) 1572 return Error(BitcodeError::InvalidRecord); 1573 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1574 Constant *Op1 = nullptr; 1575 if (Record.size() == 4) { 1576 Type *IdxTy = getTypeByID(Record[2]); 1577 if (!IdxTy) 1578 return Error(BitcodeError::InvalidRecord); 1579 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1580 } else // TODO: Remove with llvm 4.0 1581 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1582 if (!Op1) 1583 return Error(BitcodeError::InvalidRecord); 1584 V = ConstantExpr::getExtractElement(Op0, Op1); 1585 break; 1586 } 1587 case bitc::CST_CODE_CE_INSERTELT 1588 : { // CE_INSERTELT: [opval, opval, opty, opval] 1589 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1590 if (Record.size() < 3 || !OpTy) 1591 return Error(BitcodeError::InvalidRecord); 1592 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1593 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1594 OpTy->getElementType()); 1595 Constant *Op2 = nullptr; 1596 if (Record.size() == 4) { 1597 Type *IdxTy = getTypeByID(Record[2]); 1598 if (!IdxTy) 1599 return Error(BitcodeError::InvalidRecord); 1600 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1601 } else // TODO: Remove with llvm 4.0 1602 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1603 if (!Op2) 1604 return Error(BitcodeError::InvalidRecord); 1605 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1606 break; 1607 } 1608 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1609 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1610 if (Record.size() < 3 || !OpTy) 1611 return Error(BitcodeError::InvalidRecord); 1612 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1613 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1614 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1615 OpTy->getNumElements()); 1616 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1617 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1618 break; 1619 } 1620 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1621 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1622 VectorType *OpTy = 1623 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1624 if (Record.size() < 4 || !RTy || !OpTy) 1625 return Error(BitcodeError::InvalidRecord); 1626 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1627 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1628 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1629 RTy->getNumElements()); 1630 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1631 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1632 break; 1633 } 1634 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1635 if (Record.size() < 4) 1636 return Error(BitcodeError::InvalidRecord); 1637 Type *OpTy = getTypeByID(Record[0]); 1638 if (!OpTy) 1639 return Error(BitcodeError::InvalidRecord); 1640 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1641 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1642 1643 if (OpTy->isFPOrFPVectorTy()) 1644 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1645 else 1646 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1647 break; 1648 } 1649 // This maintains backward compatibility, pre-asm dialect keywords. 1650 // FIXME: Remove with the 4.0 release. 1651 case bitc::CST_CODE_INLINEASM_OLD: { 1652 if (Record.size() < 2) 1653 return Error(BitcodeError::InvalidRecord); 1654 std::string AsmStr, ConstrStr; 1655 bool HasSideEffects = Record[0] & 1; 1656 bool IsAlignStack = Record[0] >> 1; 1657 unsigned AsmStrSize = Record[1]; 1658 if (2+AsmStrSize >= Record.size()) 1659 return Error(BitcodeError::InvalidRecord); 1660 unsigned ConstStrSize = Record[2+AsmStrSize]; 1661 if (3+AsmStrSize+ConstStrSize > Record.size()) 1662 return Error(BitcodeError::InvalidRecord); 1663 1664 for (unsigned i = 0; i != AsmStrSize; ++i) 1665 AsmStr += (char)Record[2+i]; 1666 for (unsigned i = 0; i != ConstStrSize; ++i) 1667 ConstrStr += (char)Record[3+AsmStrSize+i]; 1668 PointerType *PTy = cast<PointerType>(CurTy); 1669 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1670 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1671 break; 1672 } 1673 // This version adds support for the asm dialect keywords (e.g., 1674 // inteldialect). 1675 case bitc::CST_CODE_INLINEASM: { 1676 if (Record.size() < 2) 1677 return Error(BitcodeError::InvalidRecord); 1678 std::string AsmStr, ConstrStr; 1679 bool HasSideEffects = Record[0] & 1; 1680 bool IsAlignStack = (Record[0] >> 1) & 1; 1681 unsigned AsmDialect = Record[0] >> 2; 1682 unsigned AsmStrSize = Record[1]; 1683 if (2+AsmStrSize >= Record.size()) 1684 return Error(BitcodeError::InvalidRecord); 1685 unsigned ConstStrSize = Record[2+AsmStrSize]; 1686 if (3+AsmStrSize+ConstStrSize > Record.size()) 1687 return Error(BitcodeError::InvalidRecord); 1688 1689 for (unsigned i = 0; i != AsmStrSize; ++i) 1690 AsmStr += (char)Record[2+i]; 1691 for (unsigned i = 0; i != ConstStrSize; ++i) 1692 ConstrStr += (char)Record[3+AsmStrSize+i]; 1693 PointerType *PTy = cast<PointerType>(CurTy); 1694 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1695 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1696 InlineAsm::AsmDialect(AsmDialect)); 1697 break; 1698 } 1699 case bitc::CST_CODE_BLOCKADDRESS:{ 1700 if (Record.size() < 3) 1701 return Error(BitcodeError::InvalidRecord); 1702 Type *FnTy = getTypeByID(Record[0]); 1703 if (!FnTy) 1704 return Error(BitcodeError::InvalidRecord); 1705 Function *Fn = 1706 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1707 if (!Fn) 1708 return Error(BitcodeError::InvalidRecord); 1709 1710 // Don't let Fn get dematerialized. 1711 BlockAddressesTaken.insert(Fn); 1712 1713 // If the function is already parsed we can insert the block address right 1714 // away. 1715 BasicBlock *BB; 1716 unsigned BBID = Record[2]; 1717 if (!BBID) 1718 // Invalid reference to entry block. 1719 return Error(BitcodeError::InvalidID); 1720 if (!Fn->empty()) { 1721 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1722 for (size_t I = 0, E = BBID; I != E; ++I) { 1723 if (BBI == BBE) 1724 return Error(BitcodeError::InvalidID); 1725 ++BBI; 1726 } 1727 BB = BBI; 1728 } else { 1729 // Otherwise insert a placeholder and remember it so it can be inserted 1730 // when the function is parsed. 1731 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1732 if (FwdBBs.empty()) 1733 BasicBlockFwdRefQueue.push_back(Fn); 1734 if (FwdBBs.size() < BBID + 1) 1735 FwdBBs.resize(BBID + 1); 1736 if (!FwdBBs[BBID]) 1737 FwdBBs[BBID] = BasicBlock::Create(Context); 1738 BB = FwdBBs[BBID]; 1739 } 1740 V = BlockAddress::get(Fn, BB); 1741 break; 1742 } 1743 } 1744 1745 ValueList.AssignValue(V, NextCstNo); 1746 ++NextCstNo; 1747 } 1748 } 1749 1750 std::error_code BitcodeReader::ParseUseLists() { 1751 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1752 return Error(BitcodeError::InvalidRecord); 1753 1754 // Read all the records. 1755 SmallVector<uint64_t, 64> Record; 1756 while (1) { 1757 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1758 1759 switch (Entry.Kind) { 1760 case BitstreamEntry::SubBlock: // Handled for us already. 1761 case BitstreamEntry::Error: 1762 return Error(BitcodeError::MalformedBlock); 1763 case BitstreamEntry::EndBlock: 1764 return std::error_code(); 1765 case BitstreamEntry::Record: 1766 // The interesting case. 1767 break; 1768 } 1769 1770 // Read a use list record. 1771 Record.clear(); 1772 bool IsBB = false; 1773 switch (Stream.readRecord(Entry.ID, Record)) { 1774 default: // Default behavior: unknown type. 1775 break; 1776 case bitc::USELIST_CODE_BB: 1777 IsBB = true; 1778 // fallthrough 1779 case bitc::USELIST_CODE_DEFAULT: { 1780 unsigned RecordLength = Record.size(); 1781 if (RecordLength < 3) 1782 // Records should have at least an ID and two indexes. 1783 return Error(BitcodeError::InvalidRecord); 1784 unsigned ID = Record.back(); 1785 Record.pop_back(); 1786 1787 Value *V; 1788 if (IsBB) { 1789 assert(ID < FunctionBBs.size() && "Basic block not found"); 1790 V = FunctionBBs[ID]; 1791 } else 1792 V = ValueList[ID]; 1793 unsigned NumUses = 0; 1794 SmallDenseMap<const Use *, unsigned, 16> Order; 1795 for (const Use &U : V->uses()) { 1796 if (++NumUses > Record.size()) 1797 break; 1798 Order[&U] = Record[NumUses - 1]; 1799 } 1800 if (Order.size() != Record.size() || NumUses > Record.size()) 1801 // Mismatches can happen if the functions are being materialized lazily 1802 // (out-of-order), or a value has been upgraded. 1803 break; 1804 1805 V->sortUseList([&](const Use &L, const Use &R) { 1806 return Order.lookup(&L) < Order.lookup(&R); 1807 }); 1808 break; 1809 } 1810 } 1811 } 1812 } 1813 1814 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1815 /// remember where it is and then skip it. This lets us lazily deserialize the 1816 /// functions. 1817 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1818 // Get the function we are talking about. 1819 if (FunctionsWithBodies.empty()) 1820 return Error(BitcodeError::InsufficientFunctionProtos); 1821 1822 Function *Fn = FunctionsWithBodies.back(); 1823 FunctionsWithBodies.pop_back(); 1824 1825 // Save the current stream state. 1826 uint64_t CurBit = Stream.GetCurrentBitNo(); 1827 DeferredFunctionInfo[Fn] = CurBit; 1828 1829 // Skip over the function block for now. 1830 if (Stream.SkipBlock()) 1831 return Error(BitcodeError::InvalidRecord); 1832 return std::error_code(); 1833 } 1834 1835 std::error_code BitcodeReader::GlobalCleanup() { 1836 // Patch the initializers for globals and aliases up. 1837 ResolveGlobalAndAliasInits(); 1838 if (!GlobalInits.empty() || !AliasInits.empty()) 1839 return Error(BitcodeError::MalformedGlobalInitializerSet); 1840 1841 // Look for intrinsic functions which need to be upgraded at some point 1842 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1843 FI != FE; ++FI) { 1844 Function *NewFn; 1845 if (UpgradeIntrinsicFunction(FI, NewFn)) 1846 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1847 } 1848 1849 // Look for global variables which need to be renamed. 1850 for (Module::global_iterator 1851 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1852 GI != GE;) { 1853 GlobalVariable *GV = GI++; 1854 UpgradeGlobalVariable(GV); 1855 } 1856 1857 // Force deallocation of memory for these vectors to favor the client that 1858 // want lazy deserialization. 1859 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1860 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1861 return std::error_code(); 1862 } 1863 1864 std::error_code BitcodeReader::ParseModule(bool Resume) { 1865 if (Resume) 1866 Stream.JumpToBit(NextUnreadBit); 1867 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1868 return Error(BitcodeError::InvalidRecord); 1869 1870 SmallVector<uint64_t, 64> Record; 1871 std::vector<std::string> SectionTable; 1872 std::vector<std::string> GCTable; 1873 1874 // Read all the records for this module. 1875 while (1) { 1876 BitstreamEntry Entry = Stream.advance(); 1877 1878 switch (Entry.Kind) { 1879 case BitstreamEntry::Error: 1880 return Error(BitcodeError::MalformedBlock); 1881 case BitstreamEntry::EndBlock: 1882 return GlobalCleanup(); 1883 1884 case BitstreamEntry::SubBlock: 1885 switch (Entry.ID) { 1886 default: // Skip unknown content. 1887 if (Stream.SkipBlock()) 1888 return Error(BitcodeError::InvalidRecord); 1889 break; 1890 case bitc::BLOCKINFO_BLOCK_ID: 1891 if (Stream.ReadBlockInfoBlock()) 1892 return Error(BitcodeError::MalformedBlock); 1893 break; 1894 case bitc::PARAMATTR_BLOCK_ID: 1895 if (std::error_code EC = ParseAttributeBlock()) 1896 return EC; 1897 break; 1898 case bitc::PARAMATTR_GROUP_BLOCK_ID: 1899 if (std::error_code EC = ParseAttributeGroupBlock()) 1900 return EC; 1901 break; 1902 case bitc::TYPE_BLOCK_ID_NEW: 1903 if (std::error_code EC = ParseTypeTable()) 1904 return EC; 1905 break; 1906 case bitc::VALUE_SYMTAB_BLOCK_ID: 1907 if (std::error_code EC = ParseValueSymbolTable()) 1908 return EC; 1909 SeenValueSymbolTable = true; 1910 break; 1911 case bitc::CONSTANTS_BLOCK_ID: 1912 if (std::error_code EC = ParseConstants()) 1913 return EC; 1914 if (std::error_code EC = ResolveGlobalAndAliasInits()) 1915 return EC; 1916 break; 1917 case bitc::METADATA_BLOCK_ID: 1918 if (std::error_code EC = ParseMetadata()) 1919 return EC; 1920 break; 1921 case bitc::FUNCTION_BLOCK_ID: 1922 // If this is the first function body we've seen, reverse the 1923 // FunctionsWithBodies list. 1924 if (!SeenFirstFunctionBody) { 1925 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1926 if (std::error_code EC = GlobalCleanup()) 1927 return EC; 1928 SeenFirstFunctionBody = true; 1929 } 1930 1931 if (std::error_code EC = RememberAndSkipFunctionBody()) 1932 return EC; 1933 // For streaming bitcode, suspend parsing when we reach the function 1934 // bodies. Subsequent materialization calls will resume it when 1935 // necessary. For streaming, the function bodies must be at the end of 1936 // the bitcode. If the bitcode file is old, the symbol table will be 1937 // at the end instead and will not have been seen yet. In this case, 1938 // just finish the parse now. 1939 if (LazyStreamer && SeenValueSymbolTable) { 1940 NextUnreadBit = Stream.GetCurrentBitNo(); 1941 return std::error_code(); 1942 } 1943 break; 1944 case bitc::USELIST_BLOCK_ID: 1945 if (std::error_code EC = ParseUseLists()) 1946 return EC; 1947 break; 1948 } 1949 continue; 1950 1951 case BitstreamEntry::Record: 1952 // The interesting case. 1953 break; 1954 } 1955 1956 1957 // Read a record. 1958 switch (Stream.readRecord(Entry.ID, Record)) { 1959 default: break; // Default behavior, ignore unknown content. 1960 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 1961 if (Record.size() < 1) 1962 return Error(BitcodeError::InvalidRecord); 1963 // Only version #0 and #1 are supported so far. 1964 unsigned module_version = Record[0]; 1965 switch (module_version) { 1966 default: 1967 return Error(BitcodeError::InvalidValue); 1968 case 0: 1969 UseRelativeIDs = false; 1970 break; 1971 case 1: 1972 UseRelativeIDs = true; 1973 break; 1974 } 1975 break; 1976 } 1977 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1978 std::string S; 1979 if (ConvertToString(Record, 0, S)) 1980 return Error(BitcodeError::InvalidRecord); 1981 TheModule->setTargetTriple(S); 1982 break; 1983 } 1984 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1985 std::string S; 1986 if (ConvertToString(Record, 0, S)) 1987 return Error(BitcodeError::InvalidRecord); 1988 TheModule->setDataLayout(S); 1989 break; 1990 } 1991 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1992 std::string S; 1993 if (ConvertToString(Record, 0, S)) 1994 return Error(BitcodeError::InvalidRecord); 1995 TheModule->setModuleInlineAsm(S); 1996 break; 1997 } 1998 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1999 // FIXME: Remove in 4.0. 2000 std::string S; 2001 if (ConvertToString(Record, 0, S)) 2002 return Error(BitcodeError::InvalidRecord); 2003 // Ignore value. 2004 break; 2005 } 2006 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2007 std::string S; 2008 if (ConvertToString(Record, 0, S)) 2009 return Error(BitcodeError::InvalidRecord); 2010 SectionTable.push_back(S); 2011 break; 2012 } 2013 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2014 std::string S; 2015 if (ConvertToString(Record, 0, S)) 2016 return Error(BitcodeError::InvalidRecord); 2017 GCTable.push_back(S); 2018 break; 2019 } 2020 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2021 if (Record.size() < 2) 2022 return Error(BitcodeError::InvalidRecord); 2023 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2024 unsigned ComdatNameSize = Record[1]; 2025 std::string ComdatName; 2026 ComdatName.reserve(ComdatNameSize); 2027 for (unsigned i = 0; i != ComdatNameSize; ++i) 2028 ComdatName += (char)Record[2 + i]; 2029 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2030 C->setSelectionKind(SK); 2031 ComdatList.push_back(C); 2032 break; 2033 } 2034 // GLOBALVAR: [pointer type, isconst, initid, 2035 // linkage, alignment, section, visibility, threadlocal, 2036 // unnamed_addr, dllstorageclass] 2037 case bitc::MODULE_CODE_GLOBALVAR: { 2038 if (Record.size() < 6) 2039 return Error(BitcodeError::InvalidRecord); 2040 Type *Ty = getTypeByID(Record[0]); 2041 if (!Ty) 2042 return Error(BitcodeError::InvalidRecord); 2043 if (!Ty->isPointerTy()) 2044 return Error(BitcodeError::InvalidTypeForValue); 2045 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2046 Ty = cast<PointerType>(Ty)->getElementType(); 2047 2048 bool isConstant = Record[1]; 2049 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 2050 unsigned Alignment = (1 << Record[4]) >> 1; 2051 std::string Section; 2052 if (Record[5]) { 2053 if (Record[5]-1 >= SectionTable.size()) 2054 return Error(BitcodeError::InvalidID); 2055 Section = SectionTable[Record[5]-1]; 2056 } 2057 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2058 // Local linkage must have default visibility. 2059 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2060 // FIXME: Change to an error if non-default in 4.0. 2061 Visibility = GetDecodedVisibility(Record[6]); 2062 2063 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2064 if (Record.size() > 7) 2065 TLM = GetDecodedThreadLocalMode(Record[7]); 2066 2067 bool UnnamedAddr = false; 2068 if (Record.size() > 8) 2069 UnnamedAddr = Record[8]; 2070 2071 bool ExternallyInitialized = false; 2072 if (Record.size() > 9) 2073 ExternallyInitialized = Record[9]; 2074 2075 GlobalVariable *NewGV = 2076 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2077 TLM, AddressSpace, ExternallyInitialized); 2078 NewGV->setAlignment(Alignment); 2079 if (!Section.empty()) 2080 NewGV->setSection(Section); 2081 NewGV->setVisibility(Visibility); 2082 NewGV->setUnnamedAddr(UnnamedAddr); 2083 2084 if (Record.size() > 10) 2085 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2086 else 2087 UpgradeDLLImportExportLinkage(NewGV, Record[3]); 2088 2089 ValueList.push_back(NewGV); 2090 2091 // Remember which value to use for the global initializer. 2092 if (unsigned InitID = Record[2]) 2093 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2094 2095 if (Record.size() > 11) 2096 if (unsigned ComdatID = Record[11]) { 2097 assert(ComdatID <= ComdatList.size()); 2098 NewGV->setComdat(ComdatList[ComdatID - 1]); 2099 } 2100 break; 2101 } 2102 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2103 // alignment, section, visibility, gc, unnamed_addr, 2104 // prologuedata, dllstorageclass, comdat, prefixdata] 2105 case bitc::MODULE_CODE_FUNCTION: { 2106 if (Record.size() < 8) 2107 return Error(BitcodeError::InvalidRecord); 2108 Type *Ty = getTypeByID(Record[0]); 2109 if (!Ty) 2110 return Error(BitcodeError::InvalidRecord); 2111 if (!Ty->isPointerTy()) 2112 return Error(BitcodeError::InvalidTypeForValue); 2113 FunctionType *FTy = 2114 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2115 if (!FTy) 2116 return Error(BitcodeError::InvalidTypeForValue); 2117 2118 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2119 "", TheModule); 2120 2121 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2122 bool isProto = Record[2]; 2123 Func->setLinkage(GetDecodedLinkage(Record[3])); 2124 Func->setAttributes(getAttributes(Record[4])); 2125 2126 Func->setAlignment((1 << Record[5]) >> 1); 2127 if (Record[6]) { 2128 if (Record[6]-1 >= SectionTable.size()) 2129 return Error(BitcodeError::InvalidID); 2130 Func->setSection(SectionTable[Record[6]-1]); 2131 } 2132 // Local linkage must have default visibility. 2133 if (!Func->hasLocalLinkage()) 2134 // FIXME: Change to an error if non-default in 4.0. 2135 Func->setVisibility(GetDecodedVisibility(Record[7])); 2136 if (Record.size() > 8 && Record[8]) { 2137 if (Record[8]-1 > GCTable.size()) 2138 return Error(BitcodeError::InvalidID); 2139 Func->setGC(GCTable[Record[8]-1].c_str()); 2140 } 2141 bool UnnamedAddr = false; 2142 if (Record.size() > 9) 2143 UnnamedAddr = Record[9]; 2144 Func->setUnnamedAddr(UnnamedAddr); 2145 if (Record.size() > 10 && Record[10] != 0) 2146 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2147 2148 if (Record.size() > 11) 2149 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2150 else 2151 UpgradeDLLImportExportLinkage(Func, Record[3]); 2152 2153 if (Record.size() > 12) 2154 if (unsigned ComdatID = Record[12]) { 2155 assert(ComdatID <= ComdatList.size()); 2156 Func->setComdat(ComdatList[ComdatID - 1]); 2157 } 2158 2159 if (Record.size() > 13 && Record[13] != 0) 2160 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2161 2162 ValueList.push_back(Func); 2163 2164 // If this is a function with a body, remember the prototype we are 2165 // creating now, so that we can match up the body with them later. 2166 if (!isProto) { 2167 Func->setIsMaterializable(true); 2168 FunctionsWithBodies.push_back(Func); 2169 if (LazyStreamer) 2170 DeferredFunctionInfo[Func] = 0; 2171 } 2172 break; 2173 } 2174 // ALIAS: [alias type, aliasee val#, linkage] 2175 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2176 case bitc::MODULE_CODE_ALIAS: { 2177 if (Record.size() < 3) 2178 return Error(BitcodeError::InvalidRecord); 2179 Type *Ty = getTypeByID(Record[0]); 2180 if (!Ty) 2181 return Error(BitcodeError::InvalidRecord); 2182 auto *PTy = dyn_cast<PointerType>(Ty); 2183 if (!PTy) 2184 return Error(BitcodeError::InvalidTypeForValue); 2185 2186 auto *NewGA = 2187 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2188 GetDecodedLinkage(Record[2]), "", TheModule); 2189 // Old bitcode files didn't have visibility field. 2190 // Local linkage must have default visibility. 2191 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2192 // FIXME: Change to an error if non-default in 4.0. 2193 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2194 if (Record.size() > 4) 2195 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2196 else 2197 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2198 if (Record.size() > 5) 2199 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2200 if (Record.size() > 6) 2201 NewGA->setUnnamedAddr(Record[6]); 2202 ValueList.push_back(NewGA); 2203 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2204 break; 2205 } 2206 /// MODULE_CODE_PURGEVALS: [numvals] 2207 case bitc::MODULE_CODE_PURGEVALS: 2208 // Trim down the value list to the specified size. 2209 if (Record.size() < 1 || Record[0] > ValueList.size()) 2210 return Error(BitcodeError::InvalidRecord); 2211 ValueList.shrinkTo(Record[0]); 2212 break; 2213 } 2214 Record.clear(); 2215 } 2216 } 2217 2218 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2219 TheModule = nullptr; 2220 2221 if (std::error_code EC = InitStream()) 2222 return EC; 2223 2224 // Sniff for the signature. 2225 if (Stream.Read(8) != 'B' || 2226 Stream.Read(8) != 'C' || 2227 Stream.Read(4) != 0x0 || 2228 Stream.Read(4) != 0xC || 2229 Stream.Read(4) != 0xE || 2230 Stream.Read(4) != 0xD) 2231 return Error(BitcodeError::InvalidBitcodeSignature); 2232 2233 // We expect a number of well-defined blocks, though we don't necessarily 2234 // need to understand them all. 2235 while (1) { 2236 if (Stream.AtEndOfStream()) 2237 return std::error_code(); 2238 2239 BitstreamEntry Entry = 2240 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2241 2242 switch (Entry.Kind) { 2243 case BitstreamEntry::Error: 2244 return Error(BitcodeError::MalformedBlock); 2245 case BitstreamEntry::EndBlock: 2246 return std::error_code(); 2247 2248 case BitstreamEntry::SubBlock: 2249 switch (Entry.ID) { 2250 case bitc::BLOCKINFO_BLOCK_ID: 2251 if (Stream.ReadBlockInfoBlock()) 2252 return Error(BitcodeError::MalformedBlock); 2253 break; 2254 case bitc::MODULE_BLOCK_ID: 2255 // Reject multiple MODULE_BLOCK's in a single bitstream. 2256 if (TheModule) 2257 return Error(BitcodeError::InvalidMultipleBlocks); 2258 TheModule = M; 2259 if (std::error_code EC = ParseModule(false)) 2260 return EC; 2261 if (LazyStreamer) 2262 return std::error_code(); 2263 break; 2264 default: 2265 if (Stream.SkipBlock()) 2266 return Error(BitcodeError::InvalidRecord); 2267 break; 2268 } 2269 continue; 2270 case BitstreamEntry::Record: 2271 // There should be no records in the top-level of blocks. 2272 2273 // The ranlib in Xcode 4 will align archive members by appending newlines 2274 // to the end of them. If this file size is a multiple of 4 but not 8, we 2275 // have to read and ignore these final 4 bytes :-( 2276 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2277 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2278 Stream.AtEndOfStream()) 2279 return std::error_code(); 2280 2281 return Error(BitcodeError::InvalidRecord); 2282 } 2283 } 2284 } 2285 2286 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2287 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2288 return Error(BitcodeError::InvalidRecord); 2289 2290 SmallVector<uint64_t, 64> Record; 2291 2292 std::string Triple; 2293 // Read all the records for this module. 2294 while (1) { 2295 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2296 2297 switch (Entry.Kind) { 2298 case BitstreamEntry::SubBlock: // Handled for us already. 2299 case BitstreamEntry::Error: 2300 return Error(BitcodeError::MalformedBlock); 2301 case BitstreamEntry::EndBlock: 2302 return Triple; 2303 case BitstreamEntry::Record: 2304 // The interesting case. 2305 break; 2306 } 2307 2308 // Read a record. 2309 switch (Stream.readRecord(Entry.ID, Record)) { 2310 default: break; // Default behavior, ignore unknown content. 2311 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2312 std::string S; 2313 if (ConvertToString(Record, 0, S)) 2314 return Error(BitcodeError::InvalidRecord); 2315 Triple = S; 2316 break; 2317 } 2318 } 2319 Record.clear(); 2320 } 2321 llvm_unreachable("Exit infinite loop"); 2322 } 2323 2324 ErrorOr<std::string> BitcodeReader::parseTriple() { 2325 if (std::error_code EC = InitStream()) 2326 return EC; 2327 2328 // Sniff for the signature. 2329 if (Stream.Read(8) != 'B' || 2330 Stream.Read(8) != 'C' || 2331 Stream.Read(4) != 0x0 || 2332 Stream.Read(4) != 0xC || 2333 Stream.Read(4) != 0xE || 2334 Stream.Read(4) != 0xD) 2335 return Error(BitcodeError::InvalidBitcodeSignature); 2336 2337 // We expect a number of well-defined blocks, though we don't necessarily 2338 // need to understand them all. 2339 while (1) { 2340 BitstreamEntry Entry = Stream.advance(); 2341 2342 switch (Entry.Kind) { 2343 case BitstreamEntry::Error: 2344 return Error(BitcodeError::MalformedBlock); 2345 case BitstreamEntry::EndBlock: 2346 return std::error_code(); 2347 2348 case BitstreamEntry::SubBlock: 2349 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2350 return parseModuleTriple(); 2351 2352 // Ignore other sub-blocks. 2353 if (Stream.SkipBlock()) 2354 return Error(BitcodeError::MalformedBlock); 2355 continue; 2356 2357 case BitstreamEntry::Record: 2358 Stream.skipRecord(Entry.ID); 2359 continue; 2360 } 2361 } 2362 } 2363 2364 /// ParseMetadataAttachment - Parse metadata attachments. 2365 std::error_code BitcodeReader::ParseMetadataAttachment() { 2366 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2367 return Error(BitcodeError::InvalidRecord); 2368 2369 SmallVector<uint64_t, 64> Record; 2370 while (1) { 2371 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2372 2373 switch (Entry.Kind) { 2374 case BitstreamEntry::SubBlock: // Handled for us already. 2375 case BitstreamEntry::Error: 2376 return Error(BitcodeError::MalformedBlock); 2377 case BitstreamEntry::EndBlock: 2378 return std::error_code(); 2379 case BitstreamEntry::Record: 2380 // The interesting case. 2381 break; 2382 } 2383 2384 // Read a metadata attachment record. 2385 Record.clear(); 2386 switch (Stream.readRecord(Entry.ID, Record)) { 2387 default: // Default behavior: ignore. 2388 break; 2389 case bitc::METADATA_ATTACHMENT: { 2390 unsigned RecordLength = Record.size(); 2391 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2392 return Error(BitcodeError::InvalidRecord); 2393 Instruction *Inst = InstructionList[Record[0]]; 2394 for (unsigned i = 1; i != RecordLength; i = i+2) { 2395 unsigned Kind = Record[i]; 2396 DenseMap<unsigned, unsigned>::iterator I = 2397 MDKindMap.find(Kind); 2398 if (I == MDKindMap.end()) 2399 return Error(BitcodeError::InvalidID); 2400 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2401 if (isa<LocalAsMetadata>(Node)) 2402 // Drop the attachment. This used to be legal, but there's no 2403 // upgrade path. 2404 break; 2405 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2406 if (I->second == LLVMContext::MD_tbaa) 2407 InstsWithTBAATag.push_back(Inst); 2408 } 2409 break; 2410 } 2411 } 2412 } 2413 } 2414 2415 /// ParseFunctionBody - Lazily parse the specified function body block. 2416 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2417 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2418 return Error(BitcodeError::InvalidRecord); 2419 2420 InstructionList.clear(); 2421 unsigned ModuleValueListSize = ValueList.size(); 2422 unsigned ModuleMDValueListSize = MDValueList.size(); 2423 2424 // Add all the function arguments to the value table. 2425 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2426 ValueList.push_back(I); 2427 2428 unsigned NextValueNo = ValueList.size(); 2429 BasicBlock *CurBB = nullptr; 2430 unsigned CurBBNo = 0; 2431 2432 DebugLoc LastLoc; 2433 2434 // Read all the records. 2435 SmallVector<uint64_t, 64> Record; 2436 while (1) { 2437 BitstreamEntry Entry = Stream.advance(); 2438 2439 switch (Entry.Kind) { 2440 case BitstreamEntry::Error: 2441 return Error(BitcodeError::MalformedBlock); 2442 case BitstreamEntry::EndBlock: 2443 goto OutOfRecordLoop; 2444 2445 case BitstreamEntry::SubBlock: 2446 switch (Entry.ID) { 2447 default: // Skip unknown content. 2448 if (Stream.SkipBlock()) 2449 return Error(BitcodeError::InvalidRecord); 2450 break; 2451 case bitc::CONSTANTS_BLOCK_ID: 2452 if (std::error_code EC = ParseConstants()) 2453 return EC; 2454 NextValueNo = ValueList.size(); 2455 break; 2456 case bitc::VALUE_SYMTAB_BLOCK_ID: 2457 if (std::error_code EC = ParseValueSymbolTable()) 2458 return EC; 2459 break; 2460 case bitc::METADATA_ATTACHMENT_ID: 2461 if (std::error_code EC = ParseMetadataAttachment()) 2462 return EC; 2463 break; 2464 case bitc::METADATA_BLOCK_ID: 2465 if (std::error_code EC = ParseMetadata()) 2466 return EC; 2467 break; 2468 case bitc::USELIST_BLOCK_ID: 2469 if (std::error_code EC = ParseUseLists()) 2470 return EC; 2471 break; 2472 } 2473 continue; 2474 2475 case BitstreamEntry::Record: 2476 // The interesting case. 2477 break; 2478 } 2479 2480 // Read a record. 2481 Record.clear(); 2482 Instruction *I = nullptr; 2483 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2484 switch (BitCode) { 2485 default: // Default behavior: reject 2486 return Error(BitcodeError::InvalidValue); 2487 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2488 if (Record.size() < 1 || Record[0] == 0) 2489 return Error(BitcodeError::InvalidRecord); 2490 // Create all the basic blocks for the function. 2491 FunctionBBs.resize(Record[0]); 2492 2493 // See if anything took the address of blocks in this function. 2494 auto BBFRI = BasicBlockFwdRefs.find(F); 2495 if (BBFRI == BasicBlockFwdRefs.end()) { 2496 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2497 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2498 } else { 2499 auto &BBRefs = BBFRI->second; 2500 // Check for invalid basic block references. 2501 if (BBRefs.size() > FunctionBBs.size()) 2502 return Error(BitcodeError::InvalidID); 2503 assert(!BBRefs.empty() && "Unexpected empty array"); 2504 assert(!BBRefs.front() && "Invalid reference to entry block"); 2505 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2506 ++I) 2507 if (I < RE && BBRefs[I]) { 2508 BBRefs[I]->insertInto(F); 2509 FunctionBBs[I] = BBRefs[I]; 2510 } else { 2511 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2512 } 2513 2514 // Erase from the table. 2515 BasicBlockFwdRefs.erase(BBFRI); 2516 } 2517 2518 CurBB = FunctionBBs[0]; 2519 continue; 2520 } 2521 2522 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2523 // This record indicates that the last instruction is at the same 2524 // location as the previous instruction with a location. 2525 I = nullptr; 2526 2527 // Get the last instruction emitted. 2528 if (CurBB && !CurBB->empty()) 2529 I = &CurBB->back(); 2530 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2531 !FunctionBBs[CurBBNo-1]->empty()) 2532 I = &FunctionBBs[CurBBNo-1]->back(); 2533 2534 if (!I) 2535 return Error(BitcodeError::InvalidRecord); 2536 I->setDebugLoc(LastLoc); 2537 I = nullptr; 2538 continue; 2539 2540 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2541 I = nullptr; // Get the last instruction emitted. 2542 if (CurBB && !CurBB->empty()) 2543 I = &CurBB->back(); 2544 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2545 !FunctionBBs[CurBBNo-1]->empty()) 2546 I = &FunctionBBs[CurBBNo-1]->back(); 2547 if (!I || Record.size() < 4) 2548 return Error(BitcodeError::InvalidRecord); 2549 2550 unsigned Line = Record[0], Col = Record[1]; 2551 unsigned ScopeID = Record[2], IAID = Record[3]; 2552 2553 MDNode *Scope = nullptr, *IA = nullptr; 2554 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2555 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2556 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2557 I->setDebugLoc(LastLoc); 2558 I = nullptr; 2559 continue; 2560 } 2561 2562 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2563 unsigned OpNum = 0; 2564 Value *LHS, *RHS; 2565 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2566 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2567 OpNum+1 > Record.size()) 2568 return Error(BitcodeError::InvalidRecord); 2569 2570 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2571 if (Opc == -1) 2572 return Error(BitcodeError::InvalidRecord); 2573 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2574 InstructionList.push_back(I); 2575 if (OpNum < Record.size()) { 2576 if (Opc == Instruction::Add || 2577 Opc == Instruction::Sub || 2578 Opc == Instruction::Mul || 2579 Opc == Instruction::Shl) { 2580 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2581 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2582 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2583 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2584 } else if (Opc == Instruction::SDiv || 2585 Opc == Instruction::UDiv || 2586 Opc == Instruction::LShr || 2587 Opc == Instruction::AShr) { 2588 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2589 cast<BinaryOperator>(I)->setIsExact(true); 2590 } else if (isa<FPMathOperator>(I)) { 2591 FastMathFlags FMF; 2592 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2593 FMF.setUnsafeAlgebra(); 2594 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2595 FMF.setNoNaNs(); 2596 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2597 FMF.setNoInfs(); 2598 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2599 FMF.setNoSignedZeros(); 2600 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2601 FMF.setAllowReciprocal(); 2602 if (FMF.any()) 2603 I->setFastMathFlags(FMF); 2604 } 2605 2606 } 2607 break; 2608 } 2609 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2610 unsigned OpNum = 0; 2611 Value *Op; 2612 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2613 OpNum+2 != Record.size()) 2614 return Error(BitcodeError::InvalidRecord); 2615 2616 Type *ResTy = getTypeByID(Record[OpNum]); 2617 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2618 if (Opc == -1 || !ResTy) 2619 return Error(BitcodeError::InvalidRecord); 2620 Instruction *Temp = nullptr; 2621 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2622 if (Temp) { 2623 InstructionList.push_back(Temp); 2624 CurBB->getInstList().push_back(Temp); 2625 } 2626 } else { 2627 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2628 } 2629 InstructionList.push_back(I); 2630 break; 2631 } 2632 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2633 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2634 unsigned OpNum = 0; 2635 Value *BasePtr; 2636 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2637 return Error(BitcodeError::InvalidRecord); 2638 2639 SmallVector<Value*, 16> GEPIdx; 2640 while (OpNum != Record.size()) { 2641 Value *Op; 2642 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2643 return Error(BitcodeError::InvalidRecord); 2644 GEPIdx.push_back(Op); 2645 } 2646 2647 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2648 InstructionList.push_back(I); 2649 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2650 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2651 break; 2652 } 2653 2654 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2655 // EXTRACTVAL: [opty, opval, n x indices] 2656 unsigned OpNum = 0; 2657 Value *Agg; 2658 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2659 return Error(BitcodeError::InvalidRecord); 2660 2661 SmallVector<unsigned, 4> EXTRACTVALIdx; 2662 for (unsigned RecSize = Record.size(); 2663 OpNum != RecSize; ++OpNum) { 2664 uint64_t Index = Record[OpNum]; 2665 if ((unsigned)Index != Index) 2666 return Error(BitcodeError::InvalidValue); 2667 EXTRACTVALIdx.push_back((unsigned)Index); 2668 } 2669 2670 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2671 InstructionList.push_back(I); 2672 break; 2673 } 2674 2675 case bitc::FUNC_CODE_INST_INSERTVAL: { 2676 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2677 unsigned OpNum = 0; 2678 Value *Agg; 2679 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2680 return Error(BitcodeError::InvalidRecord); 2681 Value *Val; 2682 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2683 return Error(BitcodeError::InvalidRecord); 2684 2685 SmallVector<unsigned, 4> INSERTVALIdx; 2686 for (unsigned RecSize = Record.size(); 2687 OpNum != RecSize; ++OpNum) { 2688 uint64_t Index = Record[OpNum]; 2689 if ((unsigned)Index != Index) 2690 return Error(BitcodeError::InvalidValue); 2691 INSERTVALIdx.push_back((unsigned)Index); 2692 } 2693 2694 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2695 InstructionList.push_back(I); 2696 break; 2697 } 2698 2699 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2700 // obsolete form of select 2701 // handles select i1 ... in old bitcode 2702 unsigned OpNum = 0; 2703 Value *TrueVal, *FalseVal, *Cond; 2704 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2705 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2706 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2707 return Error(BitcodeError::InvalidRecord); 2708 2709 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2710 InstructionList.push_back(I); 2711 break; 2712 } 2713 2714 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2715 // new form of select 2716 // handles select i1 or select [N x i1] 2717 unsigned OpNum = 0; 2718 Value *TrueVal, *FalseVal, *Cond; 2719 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2720 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2721 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2722 return Error(BitcodeError::InvalidRecord); 2723 2724 // select condition can be either i1 or [N x i1] 2725 if (VectorType* vector_type = 2726 dyn_cast<VectorType>(Cond->getType())) { 2727 // expect <n x i1> 2728 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2729 return Error(BitcodeError::InvalidTypeForValue); 2730 } else { 2731 // expect i1 2732 if (Cond->getType() != Type::getInt1Ty(Context)) 2733 return Error(BitcodeError::InvalidTypeForValue); 2734 } 2735 2736 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2737 InstructionList.push_back(I); 2738 break; 2739 } 2740 2741 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2742 unsigned OpNum = 0; 2743 Value *Vec, *Idx; 2744 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2745 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2746 return Error(BitcodeError::InvalidRecord); 2747 I = ExtractElementInst::Create(Vec, Idx); 2748 InstructionList.push_back(I); 2749 break; 2750 } 2751 2752 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2753 unsigned OpNum = 0; 2754 Value *Vec, *Elt, *Idx; 2755 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2756 popValue(Record, OpNum, NextValueNo, 2757 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2758 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2759 return Error(BitcodeError::InvalidRecord); 2760 I = InsertElementInst::Create(Vec, Elt, Idx); 2761 InstructionList.push_back(I); 2762 break; 2763 } 2764 2765 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2766 unsigned OpNum = 0; 2767 Value *Vec1, *Vec2, *Mask; 2768 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2769 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2770 return Error(BitcodeError::InvalidRecord); 2771 2772 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2773 return Error(BitcodeError::InvalidRecord); 2774 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2775 InstructionList.push_back(I); 2776 break; 2777 } 2778 2779 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2780 // Old form of ICmp/FCmp returning bool 2781 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2782 // both legal on vectors but had different behaviour. 2783 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2784 // FCmp/ICmp returning bool or vector of bool 2785 2786 unsigned OpNum = 0; 2787 Value *LHS, *RHS; 2788 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2789 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2790 OpNum+1 != Record.size()) 2791 return Error(BitcodeError::InvalidRecord); 2792 2793 if (LHS->getType()->isFPOrFPVectorTy()) 2794 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2795 else 2796 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2797 InstructionList.push_back(I); 2798 break; 2799 } 2800 2801 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2802 { 2803 unsigned Size = Record.size(); 2804 if (Size == 0) { 2805 I = ReturnInst::Create(Context); 2806 InstructionList.push_back(I); 2807 break; 2808 } 2809 2810 unsigned OpNum = 0; 2811 Value *Op = nullptr; 2812 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2813 return Error(BitcodeError::InvalidRecord); 2814 if (OpNum != Record.size()) 2815 return Error(BitcodeError::InvalidRecord); 2816 2817 I = ReturnInst::Create(Context, Op); 2818 InstructionList.push_back(I); 2819 break; 2820 } 2821 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2822 if (Record.size() != 1 && Record.size() != 3) 2823 return Error(BitcodeError::InvalidRecord); 2824 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2825 if (!TrueDest) 2826 return Error(BitcodeError::InvalidRecord); 2827 2828 if (Record.size() == 1) { 2829 I = BranchInst::Create(TrueDest); 2830 InstructionList.push_back(I); 2831 } 2832 else { 2833 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2834 Value *Cond = getValue(Record, 2, NextValueNo, 2835 Type::getInt1Ty(Context)); 2836 if (!FalseDest || !Cond) 2837 return Error(BitcodeError::InvalidRecord); 2838 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2839 InstructionList.push_back(I); 2840 } 2841 break; 2842 } 2843 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2844 // Check magic 2845 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2846 // "New" SwitchInst format with case ranges. The changes to write this 2847 // format were reverted but we still recognize bitcode that uses it. 2848 // Hopefully someday we will have support for case ranges and can use 2849 // this format again. 2850 2851 Type *OpTy = getTypeByID(Record[1]); 2852 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2853 2854 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2855 BasicBlock *Default = getBasicBlock(Record[3]); 2856 if (!OpTy || !Cond || !Default) 2857 return Error(BitcodeError::InvalidRecord); 2858 2859 unsigned NumCases = Record[4]; 2860 2861 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2862 InstructionList.push_back(SI); 2863 2864 unsigned CurIdx = 5; 2865 for (unsigned i = 0; i != NumCases; ++i) { 2866 SmallVector<ConstantInt*, 1> CaseVals; 2867 unsigned NumItems = Record[CurIdx++]; 2868 for (unsigned ci = 0; ci != NumItems; ++ci) { 2869 bool isSingleNumber = Record[CurIdx++]; 2870 2871 APInt Low; 2872 unsigned ActiveWords = 1; 2873 if (ValueBitWidth > 64) 2874 ActiveWords = Record[CurIdx++]; 2875 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2876 ValueBitWidth); 2877 CurIdx += ActiveWords; 2878 2879 if (!isSingleNumber) { 2880 ActiveWords = 1; 2881 if (ValueBitWidth > 64) 2882 ActiveWords = Record[CurIdx++]; 2883 APInt High = 2884 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2885 ValueBitWidth); 2886 CurIdx += ActiveWords; 2887 2888 // FIXME: It is not clear whether values in the range should be 2889 // compared as signed or unsigned values. The partially 2890 // implemented changes that used this format in the past used 2891 // unsigned comparisons. 2892 for ( ; Low.ule(High); ++Low) 2893 CaseVals.push_back(ConstantInt::get(Context, Low)); 2894 } else 2895 CaseVals.push_back(ConstantInt::get(Context, Low)); 2896 } 2897 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2898 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 2899 cve = CaseVals.end(); cvi != cve; ++cvi) 2900 SI->addCase(*cvi, DestBB); 2901 } 2902 I = SI; 2903 break; 2904 } 2905 2906 // Old SwitchInst format without case ranges. 2907 2908 if (Record.size() < 3 || (Record.size() & 1) == 0) 2909 return Error(BitcodeError::InvalidRecord); 2910 Type *OpTy = getTypeByID(Record[0]); 2911 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 2912 BasicBlock *Default = getBasicBlock(Record[2]); 2913 if (!OpTy || !Cond || !Default) 2914 return Error(BitcodeError::InvalidRecord); 2915 unsigned NumCases = (Record.size()-3)/2; 2916 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2917 InstructionList.push_back(SI); 2918 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2919 ConstantInt *CaseVal = 2920 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2921 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2922 if (!CaseVal || !DestBB) { 2923 delete SI; 2924 return Error(BitcodeError::InvalidRecord); 2925 } 2926 SI->addCase(CaseVal, DestBB); 2927 } 2928 I = SI; 2929 break; 2930 } 2931 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2932 if (Record.size() < 2) 2933 return Error(BitcodeError::InvalidRecord); 2934 Type *OpTy = getTypeByID(Record[0]); 2935 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 2936 if (!OpTy || !Address) 2937 return Error(BitcodeError::InvalidRecord); 2938 unsigned NumDests = Record.size()-2; 2939 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2940 InstructionList.push_back(IBI); 2941 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2942 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2943 IBI->addDestination(DestBB); 2944 } else { 2945 delete IBI; 2946 return Error(BitcodeError::InvalidRecord); 2947 } 2948 } 2949 I = IBI; 2950 break; 2951 } 2952 2953 case bitc::FUNC_CODE_INST_INVOKE: { 2954 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2955 if (Record.size() < 4) 2956 return Error(BitcodeError::InvalidRecord); 2957 AttributeSet PAL = getAttributes(Record[0]); 2958 unsigned CCInfo = Record[1]; 2959 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2960 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2961 2962 unsigned OpNum = 4; 2963 Value *Callee; 2964 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2965 return Error(BitcodeError::InvalidRecord); 2966 2967 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2968 FunctionType *FTy = !CalleeTy ? nullptr : 2969 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2970 2971 // Check that the right number of fixed parameters are here. 2972 if (!FTy || !NormalBB || !UnwindBB || 2973 Record.size() < OpNum+FTy->getNumParams()) 2974 return Error(BitcodeError::InvalidRecord); 2975 2976 SmallVector<Value*, 16> Ops; 2977 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2978 Ops.push_back(getValue(Record, OpNum, NextValueNo, 2979 FTy->getParamType(i))); 2980 if (!Ops.back()) 2981 return Error(BitcodeError::InvalidRecord); 2982 } 2983 2984 if (!FTy->isVarArg()) { 2985 if (Record.size() != OpNum) 2986 return Error(BitcodeError::InvalidRecord); 2987 } else { 2988 // Read type/value pairs for varargs params. 2989 while (OpNum != Record.size()) { 2990 Value *Op; 2991 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2992 return Error(BitcodeError::InvalidRecord); 2993 Ops.push_back(Op); 2994 } 2995 } 2996 2997 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 2998 InstructionList.push_back(I); 2999 cast<InvokeInst>(I)->setCallingConv( 3000 static_cast<CallingConv::ID>(CCInfo)); 3001 cast<InvokeInst>(I)->setAttributes(PAL); 3002 break; 3003 } 3004 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3005 unsigned Idx = 0; 3006 Value *Val = nullptr; 3007 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3008 return Error(BitcodeError::InvalidRecord); 3009 I = ResumeInst::Create(Val); 3010 InstructionList.push_back(I); 3011 break; 3012 } 3013 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3014 I = new UnreachableInst(Context); 3015 InstructionList.push_back(I); 3016 break; 3017 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3018 if (Record.size() < 1 || ((Record.size()-1)&1)) 3019 return Error(BitcodeError::InvalidRecord); 3020 Type *Ty = getTypeByID(Record[0]); 3021 if (!Ty) 3022 return Error(BitcodeError::InvalidRecord); 3023 3024 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3025 InstructionList.push_back(PN); 3026 3027 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3028 Value *V; 3029 // With the new function encoding, it is possible that operands have 3030 // negative IDs (for forward references). Use a signed VBR 3031 // representation to keep the encoding small. 3032 if (UseRelativeIDs) 3033 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3034 else 3035 V = getValue(Record, 1+i, NextValueNo, Ty); 3036 BasicBlock *BB = getBasicBlock(Record[2+i]); 3037 if (!V || !BB) 3038 return Error(BitcodeError::InvalidRecord); 3039 PN->addIncoming(V, BB); 3040 } 3041 I = PN; 3042 break; 3043 } 3044 3045 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3046 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3047 unsigned Idx = 0; 3048 if (Record.size() < 4) 3049 return Error(BitcodeError::InvalidRecord); 3050 Type *Ty = getTypeByID(Record[Idx++]); 3051 if (!Ty) 3052 return Error(BitcodeError::InvalidRecord); 3053 Value *PersFn = nullptr; 3054 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3055 return Error(BitcodeError::InvalidRecord); 3056 3057 bool IsCleanup = !!Record[Idx++]; 3058 unsigned NumClauses = Record[Idx++]; 3059 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3060 LP->setCleanup(IsCleanup); 3061 for (unsigned J = 0; J != NumClauses; ++J) { 3062 LandingPadInst::ClauseType CT = 3063 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3064 Value *Val; 3065 3066 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3067 delete LP; 3068 return Error(BitcodeError::InvalidRecord); 3069 } 3070 3071 assert((CT != LandingPadInst::Catch || 3072 !isa<ArrayType>(Val->getType())) && 3073 "Catch clause has a invalid type!"); 3074 assert((CT != LandingPadInst::Filter || 3075 isa<ArrayType>(Val->getType())) && 3076 "Filter clause has invalid type!"); 3077 LP->addClause(cast<Constant>(Val)); 3078 } 3079 3080 I = LP; 3081 InstructionList.push_back(I); 3082 break; 3083 } 3084 3085 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3086 if (Record.size() != 4) 3087 return Error(BitcodeError::InvalidRecord); 3088 PointerType *Ty = 3089 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3090 Type *OpTy = getTypeByID(Record[1]); 3091 Value *Size = getFnValueByID(Record[2], OpTy); 3092 unsigned AlignRecord = Record[3]; 3093 bool InAlloca = AlignRecord & (1 << 5); 3094 unsigned Align = AlignRecord & ((1 << 5) - 1); 3095 if (!Ty || !Size) 3096 return Error(BitcodeError::InvalidRecord); 3097 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3098 AI->setUsedWithInAlloca(InAlloca); 3099 I = AI; 3100 InstructionList.push_back(I); 3101 break; 3102 } 3103 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3104 unsigned OpNum = 0; 3105 Value *Op; 3106 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3107 OpNum+2 != Record.size()) 3108 return Error(BitcodeError::InvalidRecord); 3109 3110 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3111 InstructionList.push_back(I); 3112 break; 3113 } 3114 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3115 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3116 unsigned OpNum = 0; 3117 Value *Op; 3118 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3119 OpNum+4 != Record.size()) 3120 return Error(BitcodeError::InvalidRecord); 3121 3122 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3123 if (Ordering == NotAtomic || Ordering == Release || 3124 Ordering == AcquireRelease) 3125 return Error(BitcodeError::InvalidRecord); 3126 if (Ordering != NotAtomic && Record[OpNum] == 0) 3127 return Error(BitcodeError::InvalidRecord); 3128 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3129 3130 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3131 Ordering, SynchScope); 3132 InstructionList.push_back(I); 3133 break; 3134 } 3135 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3136 unsigned OpNum = 0; 3137 Value *Val, *Ptr; 3138 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3139 popValue(Record, OpNum, NextValueNo, 3140 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3141 OpNum+2 != Record.size()) 3142 return Error(BitcodeError::InvalidRecord); 3143 3144 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3145 InstructionList.push_back(I); 3146 break; 3147 } 3148 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3149 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3150 unsigned OpNum = 0; 3151 Value *Val, *Ptr; 3152 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3153 popValue(Record, OpNum, NextValueNo, 3154 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3155 OpNum+4 != Record.size()) 3156 return Error(BitcodeError::InvalidRecord); 3157 3158 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3159 if (Ordering == NotAtomic || Ordering == Acquire || 3160 Ordering == AcquireRelease) 3161 return Error(BitcodeError::InvalidRecord); 3162 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3163 if (Ordering != NotAtomic && Record[OpNum] == 0) 3164 return Error(BitcodeError::InvalidRecord); 3165 3166 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3167 Ordering, SynchScope); 3168 InstructionList.push_back(I); 3169 break; 3170 } 3171 case bitc::FUNC_CODE_INST_CMPXCHG: { 3172 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3173 // failureordering?, isweak?] 3174 unsigned OpNum = 0; 3175 Value *Ptr, *Cmp, *New; 3176 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3177 popValue(Record, OpNum, NextValueNo, 3178 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3179 popValue(Record, OpNum, NextValueNo, 3180 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3181 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3182 return Error(BitcodeError::InvalidRecord); 3183 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3184 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3185 return Error(BitcodeError::InvalidRecord); 3186 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3187 3188 AtomicOrdering FailureOrdering; 3189 if (Record.size() < 7) 3190 FailureOrdering = 3191 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3192 else 3193 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3194 3195 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3196 SynchScope); 3197 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3198 3199 if (Record.size() < 8) { 3200 // Before weak cmpxchgs existed, the instruction simply returned the 3201 // value loaded from memory, so bitcode files from that era will be 3202 // expecting the first component of a modern cmpxchg. 3203 CurBB->getInstList().push_back(I); 3204 I = ExtractValueInst::Create(I, 0); 3205 } else { 3206 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3207 } 3208 3209 InstructionList.push_back(I); 3210 break; 3211 } 3212 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3213 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3214 unsigned OpNum = 0; 3215 Value *Ptr, *Val; 3216 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3217 popValue(Record, OpNum, NextValueNo, 3218 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3219 OpNum+4 != Record.size()) 3220 return Error(BitcodeError::InvalidRecord); 3221 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3222 if (Operation < AtomicRMWInst::FIRST_BINOP || 3223 Operation > AtomicRMWInst::LAST_BINOP) 3224 return Error(BitcodeError::InvalidRecord); 3225 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3226 if (Ordering == NotAtomic || Ordering == Unordered) 3227 return Error(BitcodeError::InvalidRecord); 3228 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3229 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3230 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3231 InstructionList.push_back(I); 3232 break; 3233 } 3234 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3235 if (2 != Record.size()) 3236 return Error(BitcodeError::InvalidRecord); 3237 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3238 if (Ordering == NotAtomic || Ordering == Unordered || 3239 Ordering == Monotonic) 3240 return Error(BitcodeError::InvalidRecord); 3241 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3242 I = new FenceInst(Context, Ordering, SynchScope); 3243 InstructionList.push_back(I); 3244 break; 3245 } 3246 case bitc::FUNC_CODE_INST_CALL: { 3247 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3248 if (Record.size() < 3) 3249 return Error(BitcodeError::InvalidRecord); 3250 3251 AttributeSet PAL = getAttributes(Record[0]); 3252 unsigned CCInfo = Record[1]; 3253 3254 unsigned OpNum = 2; 3255 Value *Callee; 3256 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3257 return Error(BitcodeError::InvalidRecord); 3258 3259 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3260 FunctionType *FTy = nullptr; 3261 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3262 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3263 return Error(BitcodeError::InvalidRecord); 3264 3265 SmallVector<Value*, 16> Args; 3266 // Read the fixed params. 3267 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3268 if (FTy->getParamType(i)->isLabelTy()) 3269 Args.push_back(getBasicBlock(Record[OpNum])); 3270 else 3271 Args.push_back(getValue(Record, OpNum, NextValueNo, 3272 FTy->getParamType(i))); 3273 if (!Args.back()) 3274 return Error(BitcodeError::InvalidRecord); 3275 } 3276 3277 // Read type/value pairs for varargs params. 3278 if (!FTy->isVarArg()) { 3279 if (OpNum != Record.size()) 3280 return Error(BitcodeError::InvalidRecord); 3281 } else { 3282 while (OpNum != Record.size()) { 3283 Value *Op; 3284 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3285 return Error(BitcodeError::InvalidRecord); 3286 Args.push_back(Op); 3287 } 3288 } 3289 3290 I = CallInst::Create(Callee, Args); 3291 InstructionList.push_back(I); 3292 cast<CallInst>(I)->setCallingConv( 3293 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3294 CallInst::TailCallKind TCK = CallInst::TCK_None; 3295 if (CCInfo & 1) 3296 TCK = CallInst::TCK_Tail; 3297 if (CCInfo & (1 << 14)) 3298 TCK = CallInst::TCK_MustTail; 3299 cast<CallInst>(I)->setTailCallKind(TCK); 3300 cast<CallInst>(I)->setAttributes(PAL); 3301 break; 3302 } 3303 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3304 if (Record.size() < 3) 3305 return Error(BitcodeError::InvalidRecord); 3306 Type *OpTy = getTypeByID(Record[0]); 3307 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3308 Type *ResTy = getTypeByID(Record[2]); 3309 if (!OpTy || !Op || !ResTy) 3310 return Error(BitcodeError::InvalidRecord); 3311 I = new VAArgInst(Op, ResTy); 3312 InstructionList.push_back(I); 3313 break; 3314 } 3315 } 3316 3317 // Add instruction to end of current BB. If there is no current BB, reject 3318 // this file. 3319 if (!CurBB) { 3320 delete I; 3321 return Error(BitcodeError::InvalidInstructionWithNoBB); 3322 } 3323 CurBB->getInstList().push_back(I); 3324 3325 // If this was a terminator instruction, move to the next block. 3326 if (isa<TerminatorInst>(I)) { 3327 ++CurBBNo; 3328 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3329 } 3330 3331 // Non-void values get registered in the value table for future use. 3332 if (I && !I->getType()->isVoidTy()) 3333 ValueList.AssignValue(I, NextValueNo++); 3334 } 3335 3336 OutOfRecordLoop: 3337 3338 // Check the function list for unresolved values. 3339 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3340 if (!A->getParent()) { 3341 // We found at least one unresolved value. Nuke them all to avoid leaks. 3342 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3343 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3344 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3345 delete A; 3346 } 3347 } 3348 return Error(BitcodeError::NeverResolvedValueFoundInFunction); 3349 } 3350 } 3351 3352 // FIXME: Check for unresolved forward-declared metadata references 3353 // and clean up leaks. 3354 3355 // Trim the value list down to the size it was before we parsed this function. 3356 ValueList.shrinkTo(ModuleValueListSize); 3357 MDValueList.shrinkTo(ModuleMDValueListSize); 3358 std::vector<BasicBlock*>().swap(FunctionBBs); 3359 return std::error_code(); 3360 } 3361 3362 /// Find the function body in the bitcode stream 3363 std::error_code BitcodeReader::FindFunctionInStream( 3364 Function *F, 3365 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3366 while (DeferredFunctionInfoIterator->second == 0) { 3367 if (Stream.AtEndOfStream()) 3368 return Error(BitcodeError::CouldNotFindFunctionInStream); 3369 // ParseModule will parse the next body in the stream and set its 3370 // position in the DeferredFunctionInfo map. 3371 if (std::error_code EC = ParseModule(true)) 3372 return EC; 3373 } 3374 return std::error_code(); 3375 } 3376 3377 //===----------------------------------------------------------------------===// 3378 // GVMaterializer implementation 3379 //===----------------------------------------------------------------------===// 3380 3381 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3382 3383 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3384 Function *F = dyn_cast<Function>(GV); 3385 // If it's not a function or is already material, ignore the request. 3386 if (!F || !F->isMaterializable()) 3387 return std::error_code(); 3388 3389 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3390 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3391 // If its position is recorded as 0, its body is somewhere in the stream 3392 // but we haven't seen it yet. 3393 if (DFII->second == 0 && LazyStreamer) 3394 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3395 return EC; 3396 3397 // Move the bit stream to the saved position of the deferred function body. 3398 Stream.JumpToBit(DFII->second); 3399 3400 if (std::error_code EC = ParseFunctionBody(F)) 3401 return EC; 3402 F->setIsMaterializable(false); 3403 3404 // Upgrade any old intrinsic calls in the function. 3405 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3406 E = UpgradedIntrinsics.end(); I != E; ++I) { 3407 if (I->first != I->second) { 3408 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3409 UI != UE;) { 3410 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3411 UpgradeIntrinsicCall(CI, I->second); 3412 } 3413 } 3414 } 3415 3416 // Bring in any functions that this function forward-referenced via 3417 // blockaddresses. 3418 return materializeForwardReferencedFunctions(); 3419 } 3420 3421 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3422 const Function *F = dyn_cast<Function>(GV); 3423 if (!F || F->isDeclaration()) 3424 return false; 3425 3426 // Dematerializing F would leave dangling references that wouldn't be 3427 // reconnected on re-materialization. 3428 if (BlockAddressesTaken.count(F)) 3429 return false; 3430 3431 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3432 } 3433 3434 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3435 Function *F = dyn_cast<Function>(GV); 3436 // If this function isn't dematerializable, this is a noop. 3437 if (!F || !isDematerializable(F)) 3438 return; 3439 3440 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3441 3442 // Just forget the function body, we can remat it later. 3443 F->dropAllReferences(); 3444 F->setIsMaterializable(true); 3445 } 3446 3447 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3448 assert(M == TheModule && 3449 "Can only Materialize the Module this BitcodeReader is attached to."); 3450 3451 // Promise to materialize all forward references. 3452 WillMaterializeAllForwardRefs = true; 3453 3454 // Iterate over the module, deserializing any functions that are still on 3455 // disk. 3456 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3457 F != E; ++F) { 3458 if (std::error_code EC = materialize(F)) 3459 return EC; 3460 } 3461 // At this point, if there are any function bodies, the current bit is 3462 // pointing to the END_BLOCK record after them. Now make sure the rest 3463 // of the bits in the module have been read. 3464 if (NextUnreadBit) 3465 ParseModule(true); 3466 3467 // Check that all block address forward references got resolved (as we 3468 // promised above). 3469 if (!BasicBlockFwdRefs.empty()) 3470 return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress); 3471 3472 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3473 // delete the old functions to clean up. We can't do this unless the entire 3474 // module is materialized because there could always be another function body 3475 // with calls to the old function. 3476 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3477 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3478 if (I->first != I->second) { 3479 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3480 UI != UE;) { 3481 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3482 UpgradeIntrinsicCall(CI, I->second); 3483 } 3484 if (!I->first->use_empty()) 3485 I->first->replaceAllUsesWith(I->second); 3486 I->first->eraseFromParent(); 3487 } 3488 } 3489 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3490 3491 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3492 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3493 3494 UpgradeDebugInfo(*M); 3495 return std::error_code(); 3496 } 3497 3498 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3499 return IdentifiedStructTypes; 3500 } 3501 3502 std::error_code BitcodeReader::InitStream() { 3503 if (LazyStreamer) 3504 return InitLazyStream(); 3505 return InitStreamFromBuffer(); 3506 } 3507 3508 std::error_code BitcodeReader::InitStreamFromBuffer() { 3509 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3510 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3511 3512 if (Buffer->getBufferSize() & 3) 3513 return Error(BitcodeError::InvalidBitcodeSignature); 3514 3515 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3516 // The magic number is 0x0B17C0DE stored in little endian. 3517 if (isBitcodeWrapper(BufPtr, BufEnd)) 3518 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3519 return Error(BitcodeError::InvalidBitcodeWrapperHeader); 3520 3521 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3522 Stream.init(&*StreamFile); 3523 3524 return std::error_code(); 3525 } 3526 3527 std::error_code BitcodeReader::InitLazyStream() { 3528 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3529 // see it. 3530 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); 3531 StreamFile.reset(new BitstreamReader(Bytes)); 3532 Stream.init(&*StreamFile); 3533 3534 unsigned char buf[16]; 3535 if (Bytes->readBytes(buf, 16, 0) != 16) 3536 return Error(BitcodeError::InvalidBitcodeSignature); 3537 3538 if (!isBitcode(buf, buf + 16)) 3539 return Error(BitcodeError::InvalidBitcodeSignature); 3540 3541 if (isBitcodeWrapper(buf, buf + 4)) { 3542 const unsigned char *bitcodeStart = buf; 3543 const unsigned char *bitcodeEnd = buf + 16; 3544 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3545 Bytes->dropLeadingBytes(bitcodeStart - buf); 3546 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); 3547 } 3548 return std::error_code(); 3549 } 3550 3551 namespace { 3552 class BitcodeErrorCategoryType : public std::error_category { 3553 const char *name() const LLVM_NOEXCEPT override { 3554 return "llvm.bitcode"; 3555 } 3556 std::string message(int IE) const override { 3557 BitcodeError E = static_cast<BitcodeError>(IE); 3558 switch (E) { 3559 case BitcodeError::ConflictingMETADATA_KINDRecords: 3560 return "Conflicting METADATA_KIND records"; 3561 case BitcodeError::CouldNotFindFunctionInStream: 3562 return "Could not find function in stream"; 3563 case BitcodeError::ExpectedConstant: 3564 return "Expected a constant"; 3565 case BitcodeError::InsufficientFunctionProtos: 3566 return "Insufficient function protos"; 3567 case BitcodeError::InvalidBitcodeSignature: 3568 return "Invalid bitcode signature"; 3569 case BitcodeError::InvalidBitcodeWrapperHeader: 3570 return "Invalid bitcode wrapper header"; 3571 case BitcodeError::InvalidConstantReference: 3572 return "Invalid ronstant reference"; 3573 case BitcodeError::InvalidID: 3574 return "Invalid ID"; 3575 case BitcodeError::InvalidInstructionWithNoBB: 3576 return "Invalid instruction with no BB"; 3577 case BitcodeError::InvalidRecord: 3578 return "Invalid record"; 3579 case BitcodeError::InvalidTypeForValue: 3580 return "Invalid type for value"; 3581 case BitcodeError::InvalidTYPETable: 3582 return "Invalid TYPE table"; 3583 case BitcodeError::InvalidType: 3584 return "Invalid type"; 3585 case BitcodeError::MalformedBlock: 3586 return "Malformed block"; 3587 case BitcodeError::MalformedGlobalInitializerSet: 3588 return "Malformed global initializer set"; 3589 case BitcodeError::InvalidMultipleBlocks: 3590 return "Invalid multiple blocks"; 3591 case BitcodeError::NeverResolvedValueFoundInFunction: 3592 return "Never resolved value found in function"; 3593 case BitcodeError::NeverResolvedFunctionFromBlockAddress: 3594 return "Never resolved function from blockaddress"; 3595 case BitcodeError::InvalidValue: 3596 return "Invalid value"; 3597 } 3598 llvm_unreachable("Unknown error type!"); 3599 } 3600 }; 3601 } 3602 3603 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3604 3605 const std::error_category &llvm::BitcodeErrorCategory() { 3606 return *ErrorCategory; 3607 } 3608 3609 //===----------------------------------------------------------------------===// 3610 // External interface 3611 //===----------------------------------------------------------------------===// 3612 3613 /// \brief Get a lazy one-at-time loading module from bitcode. 3614 /// 3615 /// This isn't always used in a lazy context. In particular, it's also used by 3616 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3617 /// in forward-referenced functions from block address references. 3618 /// 3619 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3620 /// materialize everything -- in particular, if this isn't truly lazy. 3621 static ErrorOr<Module *> 3622 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3623 LLVMContext &Context, bool WillMaterializeAll) { 3624 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3625 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 3626 M->setMaterializer(R); 3627 3628 auto cleanupOnError = [&](std::error_code EC) { 3629 R->releaseBuffer(); // Never take ownership on error. 3630 delete M; // Also deletes R. 3631 return EC; 3632 }; 3633 3634 if (std::error_code EC = R->ParseBitcodeInto(M)) 3635 return cleanupOnError(EC); 3636 3637 if (!WillMaterializeAll) 3638 // Resolve forward references from blockaddresses. 3639 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3640 return cleanupOnError(EC); 3641 3642 Buffer.release(); // The BitcodeReader owns it now. 3643 return M; 3644 } 3645 3646 ErrorOr<Module *> 3647 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3648 LLVMContext &Context) { 3649 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false); 3650 } 3651 3652 Module *llvm::getStreamedBitcodeModule(const std::string &name, 3653 DataStreamer *streamer, 3654 LLVMContext &Context, 3655 std::string *ErrMsg) { 3656 Module *M = new Module(name, Context); 3657 BitcodeReader *R = new BitcodeReader(streamer, Context); 3658 M->setMaterializer(R); 3659 if (std::error_code EC = R->ParseBitcodeInto(M)) { 3660 if (ErrMsg) 3661 *ErrMsg = EC.message(); 3662 delete M; // Also deletes R. 3663 return nullptr; 3664 } 3665 return M; 3666 } 3667 3668 ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 3669 LLVMContext &Context) { 3670 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3671 ErrorOr<Module *> ModuleOrErr = 3672 getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 3673 if (!ModuleOrErr) 3674 return ModuleOrErr; 3675 Module *M = ModuleOrErr.get(); 3676 // Read in the entire module, and destroy the BitcodeReader. 3677 if (std::error_code EC = M->materializeAllPermanently()) { 3678 delete M; 3679 return EC; 3680 } 3681 3682 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3683 // written. We must defer until the Module has been fully materialized. 3684 3685 return M; 3686 } 3687 3688 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 3689 LLVMContext &Context) { 3690 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3691 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 3692 ErrorOr<std::string> Triple = R->parseTriple(); 3693 if (Triple.getError()) 3694 return ""; 3695 return Triple.get(); 3696 } 3697