1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 // Strip all the TBAA attachment for the module. 162 static void stripTBAA(Module *M) { 163 for (auto &F : *M) { 164 if (F.isMaterializable()) 165 continue; 166 for (auto &I : instructions(F)) 167 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 168 } 169 } 170 171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 172 /// "epoch" encoded in the bitcode, and return the producer name if any. 173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 174 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 175 return std::move(Err); 176 177 // Read all the records. 178 SmallVector<uint64_t, 64> Record; 179 180 std::string ProducerIdentification; 181 182 while (true) { 183 BitstreamEntry Entry; 184 if (Expected<BitstreamEntry> Res = Stream.advance()) 185 Entry = Res.get(); 186 else 187 return Res.takeError(); 188 189 switch (Entry.Kind) { 190 default: 191 case BitstreamEntry::Error: 192 return error("Malformed block"); 193 case BitstreamEntry::EndBlock: 194 return ProducerIdentification; 195 case BitstreamEntry::Record: 196 // The interesting case. 197 break; 198 } 199 200 // Read a record. 201 Record.clear(); 202 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 203 if (!MaybeBitCode) 204 return MaybeBitCode.takeError(); 205 switch (MaybeBitCode.get()) { 206 default: // Default behavior: reject 207 return error("Invalid value"); 208 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 209 convertToString(Record, 0, ProducerIdentification); 210 break; 211 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 212 unsigned epoch = (unsigned)Record[0]; 213 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 214 return error( 215 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 216 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 217 } 218 } 219 } 220 } 221 } 222 223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 224 // We expect a number of well-defined blocks, though we don't necessarily 225 // need to understand them all. 226 while (true) { 227 if (Stream.AtEndOfStream()) 228 return ""; 229 230 BitstreamEntry Entry; 231 if (Expected<BitstreamEntry> Res = Stream.advance()) 232 Entry = std::move(Res.get()); 233 else 234 return Res.takeError(); 235 236 switch (Entry.Kind) { 237 case BitstreamEntry::EndBlock: 238 case BitstreamEntry::Error: 239 return error("Malformed block"); 240 241 case BitstreamEntry::SubBlock: 242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 243 return readIdentificationBlock(Stream); 244 245 // Ignore other sub-blocks. 246 if (Error Err = Stream.SkipBlock()) 247 return std::move(Err); 248 continue; 249 case BitstreamEntry::Record: 250 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 251 continue; 252 else 253 return Skipped.takeError(); 254 } 255 } 256 } 257 258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 260 return std::move(Err); 261 262 SmallVector<uint64_t, 64> Record; 263 // Read all the records for this module. 264 265 while (true) { 266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 267 if (!MaybeEntry) 268 return MaybeEntry.takeError(); 269 BitstreamEntry Entry = MaybeEntry.get(); 270 271 switch (Entry.Kind) { 272 case BitstreamEntry::SubBlock: // Handled for us already. 273 case BitstreamEntry::Error: 274 return error("Malformed block"); 275 case BitstreamEntry::EndBlock: 276 return false; 277 case BitstreamEntry::Record: 278 // The interesting case. 279 break; 280 } 281 282 // Read a record. 283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 284 if (!MaybeRecord) 285 return MaybeRecord.takeError(); 286 switch (MaybeRecord.get()) { 287 default: 288 break; // Default behavior, ignore unknown content. 289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 290 std::string S; 291 if (convertToString(Record, 0, S)) 292 return error("Invalid record"); 293 // Check for the i386 and other (x86_64, ARM) conventions 294 if (S.find("__DATA,__objc_catlist") != std::string::npos || 295 S.find("__OBJC,__category") != std::string::npos) 296 return true; 297 break; 298 } 299 } 300 Record.clear(); 301 } 302 llvm_unreachable("Exit infinite loop"); 303 } 304 305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 306 // We expect a number of well-defined blocks, though we don't necessarily 307 // need to understand them all. 308 while (true) { 309 BitstreamEntry Entry; 310 if (Expected<BitstreamEntry> Res = Stream.advance()) 311 Entry = std::move(Res.get()); 312 else 313 return Res.takeError(); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 332 continue; 333 else 334 return Skipped.takeError(); 335 } 336 } 337 } 338 339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 340 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 341 return std::move(Err); 342 343 SmallVector<uint64_t, 64> Record; 344 345 std::string Triple; 346 347 // Read all the records for this module. 348 while (true) { 349 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 350 if (!MaybeEntry) 351 return MaybeEntry.takeError(); 352 BitstreamEntry Entry = MaybeEntry.get(); 353 354 switch (Entry.Kind) { 355 case BitstreamEntry::SubBlock: // Handled for us already. 356 case BitstreamEntry::Error: 357 return error("Malformed block"); 358 case BitstreamEntry::EndBlock: 359 return Triple; 360 case BitstreamEntry::Record: 361 // The interesting case. 362 break; 363 } 364 365 // Read a record. 366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 367 if (!MaybeRecord) 368 return MaybeRecord.takeError(); 369 switch (MaybeRecord.get()) { 370 default: break; // Default behavior, ignore unknown content. 371 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 372 std::string S; 373 if (convertToString(Record, 0, S)) 374 return error("Invalid record"); 375 Triple = S; 376 break; 377 } 378 } 379 Record.clear(); 380 } 381 llvm_unreachable("Exit infinite loop"); 382 } 383 384 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 385 // We expect a number of well-defined blocks, though we don't necessarily 386 // need to understand them all. 387 while (true) { 388 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 389 if (!MaybeEntry) 390 return MaybeEntry.takeError(); 391 BitstreamEntry Entry = MaybeEntry.get(); 392 393 switch (Entry.Kind) { 394 case BitstreamEntry::Error: 395 return error("Malformed block"); 396 case BitstreamEntry::EndBlock: 397 return ""; 398 399 case BitstreamEntry::SubBlock: 400 if (Entry.ID == bitc::MODULE_BLOCK_ID) 401 return readModuleTriple(Stream); 402 403 // Ignore other sub-blocks. 404 if (Error Err = Stream.SkipBlock()) 405 return std::move(Err); 406 continue; 407 408 case BitstreamEntry::Record: 409 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 410 continue; 411 else 412 return Skipped.takeError(); 413 } 414 } 415 } 416 417 namespace { 418 419 class BitcodeReaderBase { 420 protected: 421 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 422 : Stream(std::move(Stream)), Strtab(Strtab) { 423 this->Stream.setBlockInfo(&BlockInfo); 424 } 425 426 BitstreamBlockInfo BlockInfo; 427 BitstreamCursor Stream; 428 StringRef Strtab; 429 430 /// In version 2 of the bitcode we store names of global values and comdats in 431 /// a string table rather than in the VST. 432 bool UseStrtab = false; 433 434 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 435 436 /// If this module uses a string table, pop the reference to the string table 437 /// and return the referenced string and the rest of the record. Otherwise 438 /// just return the record itself. 439 std::pair<StringRef, ArrayRef<uint64_t>> 440 readNameFromStrtab(ArrayRef<uint64_t> Record); 441 442 bool readBlockInfo(); 443 444 // Contains an arbitrary and optional string identifying the bitcode producer 445 std::string ProducerIdentification; 446 447 Error error(const Twine &Message); 448 }; 449 450 } // end anonymous namespace 451 452 Error BitcodeReaderBase::error(const Twine &Message) { 453 std::string FullMsg = Message.str(); 454 if (!ProducerIdentification.empty()) 455 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 456 LLVM_VERSION_STRING "')"; 457 return ::error(FullMsg); 458 } 459 460 Expected<unsigned> 461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 462 if (Record.empty()) 463 return error("Invalid record"); 464 unsigned ModuleVersion = Record[0]; 465 if (ModuleVersion > 2) 466 return error("Invalid value"); 467 UseStrtab = ModuleVersion >= 2; 468 return ModuleVersion; 469 } 470 471 std::pair<StringRef, ArrayRef<uint64_t>> 472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 473 if (!UseStrtab) 474 return {"", Record}; 475 // Invalid reference. Let the caller complain about the record being empty. 476 if (Record[0] + Record[1] > Strtab.size()) 477 return {"", {}}; 478 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 479 } 480 481 namespace { 482 483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 484 LLVMContext &Context; 485 Module *TheModule = nullptr; 486 // Next offset to start scanning for lazy parsing of function bodies. 487 uint64_t NextUnreadBit = 0; 488 // Last function offset found in the VST. 489 uint64_t LastFunctionBlockBit = 0; 490 bool SeenValueSymbolTable = false; 491 uint64_t VSTOffset = 0; 492 493 std::vector<std::string> SectionTable; 494 std::vector<std::string> GCTable; 495 496 std::vector<Type*> TypeList; 497 DenseMap<Function *, FunctionType *> FunctionTypes; 498 BitcodeReaderValueList ValueList; 499 Optional<MetadataLoader> MDLoader; 500 std::vector<Comdat *> ComdatList; 501 SmallVector<Instruction *, 64> InstructionList; 502 503 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 504 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 506 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 507 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 508 509 /// The set of attributes by index. Index zero in the file is for null, and 510 /// is thus not represented here. As such all indices are off by one. 511 std::vector<AttributeList> MAttributes; 512 513 /// The set of attribute groups. 514 std::map<unsigned, AttributeList> MAttributeGroups; 515 516 /// While parsing a function body, this is a list of the basic blocks for the 517 /// function. 518 std::vector<BasicBlock*> FunctionBBs; 519 520 // When reading the module header, this list is populated with functions that 521 // have bodies later in the file. 522 std::vector<Function*> FunctionsWithBodies; 523 524 // When intrinsic functions are encountered which require upgrading they are 525 // stored here with their replacement function. 526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 527 UpdatedIntrinsicMap UpgradedIntrinsics; 528 // Intrinsics which were remangled because of types rename 529 UpdatedIntrinsicMap RemangledIntrinsics; 530 531 // Several operations happen after the module header has been read, but 532 // before function bodies are processed. This keeps track of whether 533 // we've done this yet. 534 bool SeenFirstFunctionBody = false; 535 536 /// When function bodies are initially scanned, this map contains info about 537 /// where to find deferred function body in the stream. 538 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 539 540 /// When Metadata block is initially scanned when parsing the module, we may 541 /// choose to defer parsing of the metadata. This vector contains info about 542 /// which Metadata blocks are deferred. 543 std::vector<uint64_t> DeferredMetadataInfo; 544 545 /// These are basic blocks forward-referenced by block addresses. They are 546 /// inserted lazily into functions when they're loaded. The basic block ID is 547 /// its index into the vector. 548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 549 std::deque<Function *> BasicBlockFwdRefQueue; 550 551 /// Indicates that we are using a new encoding for instruction operands where 552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 553 /// instruction number, for a more compact encoding. Some instruction 554 /// operands are not relative to the instruction ID: basic block numbers, and 555 /// types. Once the old style function blocks have been phased out, we would 556 /// not need this flag. 557 bool UseRelativeIDs = false; 558 559 /// True if all functions will be materialized, negating the need to process 560 /// (e.g.) blockaddress forward references. 561 bool WillMaterializeAllForwardRefs = false; 562 563 bool StripDebugInfo = false; 564 TBAAVerifier TBAAVerifyHelper; 565 566 std::vector<std::string> BundleTags; 567 SmallVector<SyncScope::ID, 8> SSIDs; 568 569 public: 570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 571 StringRef ProducerIdentification, LLVMContext &Context); 572 573 Error materializeForwardReferencedFunctions(); 574 575 Error materialize(GlobalValue *GV) override; 576 Error materializeModule() override; 577 std::vector<StructType *> getIdentifiedStructTypes() const override; 578 579 /// Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 582 bool IsImporting = false); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval attributes by adding the corresponding 719 /// argument's pointee type. 720 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 728 729 Error parseComdatRecord(ArrayRef<uint64_t> Record); 730 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 731 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 733 ArrayRef<uint64_t> Record); 734 735 Error parseAttributeBlock(); 736 Error parseAttributeGroupBlock(); 737 Error parseTypeTable(); 738 Error parseTypeTableBody(); 739 Error parseOperandBundleTags(); 740 Error parseSyncScopeNames(); 741 742 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 743 unsigned NameIndex, Triple &TT); 744 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 745 ArrayRef<uint64_t> Record); 746 Error parseValueSymbolTable(uint64_t Offset = 0); 747 Error parseGlobalValueSymbolTable(); 748 Error parseConstants(); 749 Error rememberAndSkipFunctionBodies(); 750 Error rememberAndSkipFunctionBody(); 751 /// Save the positions of the Metadata blocks and skip parsing the blocks. 752 Error rememberAndSkipMetadata(); 753 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 754 Error parseFunctionBody(Function *F); 755 Error globalCleanup(); 756 Error resolveGlobalAndIndirectSymbolInits(); 757 Error parseUseLists(); 758 Error findFunctionInStream( 759 Function *F, 760 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 761 762 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 763 }; 764 765 /// Class to manage reading and parsing function summary index bitcode 766 /// files/sections. 767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 768 /// The module index built during parsing. 769 ModuleSummaryIndex &TheIndex; 770 771 /// Indicates whether we have encountered a global value summary section 772 /// yet during parsing. 773 bool SeenGlobalValSummary = false; 774 775 /// Indicates whether we have already parsed the VST, used for error checking. 776 bool SeenValueSymbolTable = false; 777 778 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 779 /// Used to enable on-demand parsing of the VST. 780 uint64_t VSTOffset = 0; 781 782 // Map to save ValueId to ValueInfo association that was recorded in the 783 // ValueSymbolTable. It is used after the VST is parsed to convert 784 // call graph edges read from the function summary from referencing 785 // callees by their ValueId to using the ValueInfo instead, which is how 786 // they are recorded in the summary index being built. 787 // We save a GUID which refers to the same global as the ValueInfo, but 788 // ignoring the linkage, i.e. for values other than local linkage they are 789 // identical. 790 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 791 ValueIdToValueInfoMap; 792 793 /// Map populated during module path string table parsing, from the 794 /// module ID to a string reference owned by the index's module 795 /// path string table, used to correlate with combined index 796 /// summary records. 797 DenseMap<uint64_t, StringRef> ModuleIdMap; 798 799 /// Original source file name recorded in a bitcode record. 800 std::string SourceFileName; 801 802 /// The string identifier given to this module by the client, normally the 803 /// path to the bitcode file. 804 StringRef ModulePath; 805 806 /// For per-module summary indexes, the unique numerical identifier given to 807 /// this module by the client. 808 unsigned ModuleId; 809 810 public: 811 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 812 ModuleSummaryIndex &TheIndex, 813 StringRef ModulePath, unsigned ModuleId); 814 815 Error parseModule(); 816 817 private: 818 void setValueGUID(uint64_t ValueID, StringRef ValueName, 819 GlobalValue::LinkageTypes Linkage, 820 StringRef SourceFileName); 821 Error parseValueSymbolTable( 822 uint64_t Offset, 823 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 824 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 825 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 826 bool IsOldProfileFormat, 827 bool HasProfile, 828 bool HasRelBF); 829 Error parseEntireSummary(unsigned ID); 830 Error parseModuleStringTable(); 831 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 832 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 833 TypeIdCompatibleVtableInfo &TypeId); 834 835 std::pair<ValueInfo, GlobalValue::GUID> 836 getValueInfoFromValueId(unsigned ValueId); 837 838 void addThisModule(); 839 ModuleSummaryIndex::ModuleInfo *getThisModule(); 840 }; 841 842 } // end anonymous namespace 843 844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 845 Error Err) { 846 if (Err) { 847 std::error_code EC; 848 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 849 EC = EIB.convertToErrorCode(); 850 Ctx.emitError(EIB.message()); 851 }); 852 return EC; 853 } 854 return std::error_code(); 855 } 856 857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 858 StringRef ProducerIdentification, 859 LLVMContext &Context) 860 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 861 ValueList(Context, Stream.SizeInBytes()) { 862 this->ProducerIdentification = ProducerIdentification; 863 } 864 865 Error BitcodeReader::materializeForwardReferencedFunctions() { 866 if (WillMaterializeAllForwardRefs) 867 return Error::success(); 868 869 // Prevent recursion. 870 WillMaterializeAllForwardRefs = true; 871 872 while (!BasicBlockFwdRefQueue.empty()) { 873 Function *F = BasicBlockFwdRefQueue.front(); 874 BasicBlockFwdRefQueue.pop_front(); 875 assert(F && "Expected valid function"); 876 if (!BasicBlockFwdRefs.count(F)) 877 // Already materialized. 878 continue; 879 880 // Check for a function that isn't materializable to prevent an infinite 881 // loop. When parsing a blockaddress stored in a global variable, there 882 // isn't a trivial way to check if a function will have a body without a 883 // linear search through FunctionsWithBodies, so just check it here. 884 if (!F->isMaterializable()) 885 return error("Never resolved function from blockaddress"); 886 887 // Try to materialize F. 888 if (Error Err = materialize(F)) 889 return Err; 890 } 891 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 892 893 // Reset state. 894 WillMaterializeAllForwardRefs = false; 895 return Error::success(); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // Helper functions to implement forward reference resolution, etc. 900 //===----------------------------------------------------------------------===// 901 902 static bool hasImplicitComdat(size_t Val) { 903 switch (Val) { 904 default: 905 return false; 906 case 1: // Old WeakAnyLinkage 907 case 4: // Old LinkOnceAnyLinkage 908 case 10: // Old WeakODRLinkage 909 case 11: // Old LinkOnceODRLinkage 910 return true; 911 } 912 } 913 914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 915 switch (Val) { 916 default: // Map unknown/new linkages to external 917 case 0: 918 return GlobalValue::ExternalLinkage; 919 case 2: 920 return GlobalValue::AppendingLinkage; 921 case 3: 922 return GlobalValue::InternalLinkage; 923 case 5: 924 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 925 case 6: 926 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 927 case 7: 928 return GlobalValue::ExternalWeakLinkage; 929 case 8: 930 return GlobalValue::CommonLinkage; 931 case 9: 932 return GlobalValue::PrivateLinkage; 933 case 12: 934 return GlobalValue::AvailableExternallyLinkage; 935 case 13: 936 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 937 case 14: 938 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 939 case 15: 940 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 941 case 1: // Old value with implicit comdat. 942 case 16: 943 return GlobalValue::WeakAnyLinkage; 944 case 10: // Old value with implicit comdat. 945 case 17: 946 return GlobalValue::WeakODRLinkage; 947 case 4: // Old value with implicit comdat. 948 case 18: 949 return GlobalValue::LinkOnceAnyLinkage; 950 case 11: // Old value with implicit comdat. 951 case 19: 952 return GlobalValue::LinkOnceODRLinkage; 953 } 954 } 955 956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 957 FunctionSummary::FFlags Flags; 958 Flags.ReadNone = RawFlags & 0x1; 959 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 960 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 961 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 962 Flags.NoInline = (RawFlags >> 4) & 0x1; 963 return Flags; 964 } 965 966 /// Decode the flags for GlobalValue in the summary. 967 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 968 uint64_t Version) { 969 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 970 // like getDecodedLinkage() above. Any future change to the linkage enum and 971 // to getDecodedLinkage() will need to be taken into account here as above. 972 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 973 RawFlags = RawFlags >> 4; 974 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 975 // The Live flag wasn't introduced until version 3. For dead stripping 976 // to work correctly on earlier versions, we must conservatively treat all 977 // values as live. 978 bool Live = (RawFlags & 0x2) || Version < 3; 979 bool Local = (RawFlags & 0x4); 980 bool AutoHide = (RawFlags & 0x8); 981 982 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 983 } 984 985 // Decode the flags for GlobalVariable in the summary 986 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 987 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false, 988 (RawFlags & 0x2) ? true : false); 989 } 990 991 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 992 switch (Val) { 993 default: // Map unknown visibilities to default. 994 case 0: return GlobalValue::DefaultVisibility; 995 case 1: return GlobalValue::HiddenVisibility; 996 case 2: return GlobalValue::ProtectedVisibility; 997 } 998 } 999 1000 static GlobalValue::DLLStorageClassTypes 1001 getDecodedDLLStorageClass(unsigned Val) { 1002 switch (Val) { 1003 default: // Map unknown values to default. 1004 case 0: return GlobalValue::DefaultStorageClass; 1005 case 1: return GlobalValue::DLLImportStorageClass; 1006 case 2: return GlobalValue::DLLExportStorageClass; 1007 } 1008 } 1009 1010 static bool getDecodedDSOLocal(unsigned Val) { 1011 switch(Val) { 1012 default: // Map unknown values to preemptable. 1013 case 0: return false; 1014 case 1: return true; 1015 } 1016 } 1017 1018 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1019 switch (Val) { 1020 case 0: return GlobalVariable::NotThreadLocal; 1021 default: // Map unknown non-zero value to general dynamic. 1022 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1023 case 2: return GlobalVariable::LocalDynamicTLSModel; 1024 case 3: return GlobalVariable::InitialExecTLSModel; 1025 case 4: return GlobalVariable::LocalExecTLSModel; 1026 } 1027 } 1028 1029 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1030 switch (Val) { 1031 default: // Map unknown to UnnamedAddr::None. 1032 case 0: return GlobalVariable::UnnamedAddr::None; 1033 case 1: return GlobalVariable::UnnamedAddr::Global; 1034 case 2: return GlobalVariable::UnnamedAddr::Local; 1035 } 1036 } 1037 1038 static int getDecodedCastOpcode(unsigned Val) { 1039 switch (Val) { 1040 default: return -1; 1041 case bitc::CAST_TRUNC : return Instruction::Trunc; 1042 case bitc::CAST_ZEXT : return Instruction::ZExt; 1043 case bitc::CAST_SEXT : return Instruction::SExt; 1044 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1045 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1046 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1047 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1048 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1049 case bitc::CAST_FPEXT : return Instruction::FPExt; 1050 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1051 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1052 case bitc::CAST_BITCAST : return Instruction::BitCast; 1053 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1054 } 1055 } 1056 1057 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1058 switch (Val) { 1059 default: 1060 return -1; 1061 case bitc::UNOP_FNEG: 1062 return Ty->isFPOrFPVectorTy() ? Instruction::FNeg : -1; 1063 case bitc::UNOP_FREEZE: 1064 return Instruction::Freeze; 1065 } 1066 } 1067 1068 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1069 bool IsFP = Ty->isFPOrFPVectorTy(); 1070 // BinOps are only valid for int/fp or vector of int/fp types 1071 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1072 return -1; 1073 1074 switch (Val) { 1075 default: 1076 return -1; 1077 case bitc::BINOP_ADD: 1078 return IsFP ? Instruction::FAdd : Instruction::Add; 1079 case bitc::BINOP_SUB: 1080 return IsFP ? Instruction::FSub : Instruction::Sub; 1081 case bitc::BINOP_MUL: 1082 return IsFP ? Instruction::FMul : Instruction::Mul; 1083 case bitc::BINOP_UDIV: 1084 return IsFP ? -1 : Instruction::UDiv; 1085 case bitc::BINOP_SDIV: 1086 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1087 case bitc::BINOP_UREM: 1088 return IsFP ? -1 : Instruction::URem; 1089 case bitc::BINOP_SREM: 1090 return IsFP ? Instruction::FRem : Instruction::SRem; 1091 case bitc::BINOP_SHL: 1092 return IsFP ? -1 : Instruction::Shl; 1093 case bitc::BINOP_LSHR: 1094 return IsFP ? -1 : Instruction::LShr; 1095 case bitc::BINOP_ASHR: 1096 return IsFP ? -1 : Instruction::AShr; 1097 case bitc::BINOP_AND: 1098 return IsFP ? -1 : Instruction::And; 1099 case bitc::BINOP_OR: 1100 return IsFP ? -1 : Instruction::Or; 1101 case bitc::BINOP_XOR: 1102 return IsFP ? -1 : Instruction::Xor; 1103 } 1104 } 1105 1106 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1107 switch (Val) { 1108 default: return AtomicRMWInst::BAD_BINOP; 1109 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1110 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1111 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1112 case bitc::RMW_AND: return AtomicRMWInst::And; 1113 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1114 case bitc::RMW_OR: return AtomicRMWInst::Or; 1115 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1116 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1117 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1118 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1119 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1120 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1121 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1122 } 1123 } 1124 1125 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1126 switch (Val) { 1127 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1128 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1129 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1130 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1131 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1132 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1133 default: // Map unknown orderings to sequentially-consistent. 1134 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1135 } 1136 } 1137 1138 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1139 switch (Val) { 1140 default: // Map unknown selection kinds to any. 1141 case bitc::COMDAT_SELECTION_KIND_ANY: 1142 return Comdat::Any; 1143 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1144 return Comdat::ExactMatch; 1145 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1146 return Comdat::Largest; 1147 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1148 return Comdat::NoDuplicates; 1149 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1150 return Comdat::SameSize; 1151 } 1152 } 1153 1154 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1155 FastMathFlags FMF; 1156 if (0 != (Val & bitc::UnsafeAlgebra)) 1157 FMF.setFast(); 1158 if (0 != (Val & bitc::AllowReassoc)) 1159 FMF.setAllowReassoc(); 1160 if (0 != (Val & bitc::NoNaNs)) 1161 FMF.setNoNaNs(); 1162 if (0 != (Val & bitc::NoInfs)) 1163 FMF.setNoInfs(); 1164 if (0 != (Val & bitc::NoSignedZeros)) 1165 FMF.setNoSignedZeros(); 1166 if (0 != (Val & bitc::AllowReciprocal)) 1167 FMF.setAllowReciprocal(); 1168 if (0 != (Val & bitc::AllowContract)) 1169 FMF.setAllowContract(true); 1170 if (0 != (Val & bitc::ApproxFunc)) 1171 FMF.setApproxFunc(); 1172 return FMF; 1173 } 1174 1175 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1176 switch (Val) { 1177 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1178 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1179 } 1180 } 1181 1182 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1183 // The type table size is always specified correctly. 1184 if (ID >= TypeList.size()) 1185 return nullptr; 1186 1187 if (Type *Ty = TypeList[ID]) 1188 return Ty; 1189 1190 // If we have a forward reference, the only possible case is when it is to a 1191 // named struct. Just create a placeholder for now. 1192 return TypeList[ID] = createIdentifiedStructType(Context); 1193 } 1194 1195 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1196 StringRef Name) { 1197 auto *Ret = StructType::create(Context, Name); 1198 IdentifiedStructTypes.push_back(Ret); 1199 return Ret; 1200 } 1201 1202 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1203 auto *Ret = StructType::create(Context); 1204 IdentifiedStructTypes.push_back(Ret); 1205 return Ret; 1206 } 1207 1208 //===----------------------------------------------------------------------===// 1209 // Functions for parsing blocks from the bitcode file 1210 //===----------------------------------------------------------------------===// 1211 1212 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1213 switch (Val) { 1214 case Attribute::EndAttrKinds: 1215 llvm_unreachable("Synthetic enumerators which should never get here"); 1216 1217 case Attribute::None: return 0; 1218 case Attribute::ZExt: return 1 << 0; 1219 case Attribute::SExt: return 1 << 1; 1220 case Attribute::NoReturn: return 1 << 2; 1221 case Attribute::InReg: return 1 << 3; 1222 case Attribute::StructRet: return 1 << 4; 1223 case Attribute::NoUnwind: return 1 << 5; 1224 case Attribute::NoAlias: return 1 << 6; 1225 case Attribute::ByVal: return 1 << 7; 1226 case Attribute::Nest: return 1 << 8; 1227 case Attribute::ReadNone: return 1 << 9; 1228 case Attribute::ReadOnly: return 1 << 10; 1229 case Attribute::NoInline: return 1 << 11; 1230 case Attribute::AlwaysInline: return 1 << 12; 1231 case Attribute::OptimizeForSize: return 1 << 13; 1232 case Attribute::StackProtect: return 1 << 14; 1233 case Attribute::StackProtectReq: return 1 << 15; 1234 case Attribute::Alignment: return 31 << 16; 1235 case Attribute::NoCapture: return 1 << 21; 1236 case Attribute::NoRedZone: return 1 << 22; 1237 case Attribute::NoImplicitFloat: return 1 << 23; 1238 case Attribute::Naked: return 1 << 24; 1239 case Attribute::InlineHint: return 1 << 25; 1240 case Attribute::StackAlignment: return 7 << 26; 1241 case Attribute::ReturnsTwice: return 1 << 29; 1242 case Attribute::UWTable: return 1 << 30; 1243 case Attribute::NonLazyBind: return 1U << 31; 1244 case Attribute::SanitizeAddress: return 1ULL << 32; 1245 case Attribute::MinSize: return 1ULL << 33; 1246 case Attribute::NoDuplicate: return 1ULL << 34; 1247 case Attribute::StackProtectStrong: return 1ULL << 35; 1248 case Attribute::SanitizeThread: return 1ULL << 36; 1249 case Attribute::SanitizeMemory: return 1ULL << 37; 1250 case Attribute::NoBuiltin: return 1ULL << 38; 1251 case Attribute::Returned: return 1ULL << 39; 1252 case Attribute::Cold: return 1ULL << 40; 1253 case Attribute::Builtin: return 1ULL << 41; 1254 case Attribute::OptimizeNone: return 1ULL << 42; 1255 case Attribute::InAlloca: return 1ULL << 43; 1256 case Attribute::NonNull: return 1ULL << 44; 1257 case Attribute::JumpTable: return 1ULL << 45; 1258 case Attribute::Convergent: return 1ULL << 46; 1259 case Attribute::SafeStack: return 1ULL << 47; 1260 case Attribute::NoRecurse: return 1ULL << 48; 1261 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1262 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1263 case Attribute::SwiftSelf: return 1ULL << 51; 1264 case Attribute::SwiftError: return 1ULL << 52; 1265 case Attribute::WriteOnly: return 1ULL << 53; 1266 case Attribute::Speculatable: return 1ULL << 54; 1267 case Attribute::StrictFP: return 1ULL << 55; 1268 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1269 case Attribute::NoCfCheck: return 1ULL << 57; 1270 case Attribute::OptForFuzzing: return 1ULL << 58; 1271 case Attribute::ShadowCallStack: return 1ULL << 59; 1272 case Attribute::SpeculativeLoadHardening: 1273 return 1ULL << 60; 1274 case Attribute::ImmArg: 1275 return 1ULL << 61; 1276 case Attribute::WillReturn: 1277 return 1ULL << 62; 1278 case Attribute::NoFree: 1279 return 1ULL << 63; 1280 case Attribute::NoSync: 1281 llvm_unreachable("nosync attribute not supported in raw format"); 1282 break; 1283 case Attribute::Dereferenceable: 1284 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1285 break; 1286 case Attribute::DereferenceableOrNull: 1287 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1288 "format"); 1289 break; 1290 case Attribute::ArgMemOnly: 1291 llvm_unreachable("argmemonly attribute not supported in raw format"); 1292 break; 1293 case Attribute::AllocSize: 1294 llvm_unreachable("allocsize not supported in raw format"); 1295 break; 1296 case Attribute::SanitizeMemTag: 1297 llvm_unreachable("sanitize_memtag attribute not supported in raw format"); 1298 break; 1299 } 1300 llvm_unreachable("Unsupported attribute type"); 1301 } 1302 1303 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1304 if (!Val) return; 1305 1306 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1307 I = Attribute::AttrKind(I + 1)) { 1308 if (I == Attribute::SanitizeMemTag || 1309 I == Attribute::Dereferenceable || 1310 I == Attribute::DereferenceableOrNull || 1311 I == Attribute::ArgMemOnly || 1312 I == Attribute::AllocSize || 1313 I == Attribute::NoSync) 1314 continue; 1315 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1316 if (I == Attribute::Alignment) 1317 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1318 else if (I == Attribute::StackAlignment) 1319 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1320 else 1321 B.addAttribute(I); 1322 } 1323 } 1324 } 1325 1326 /// This fills an AttrBuilder object with the LLVM attributes that have 1327 /// been decoded from the given integer. This function must stay in sync with 1328 /// 'encodeLLVMAttributesForBitcode'. 1329 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1330 uint64_t EncodedAttrs) { 1331 // FIXME: Remove in 4.0. 1332 1333 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1334 // the bits above 31 down by 11 bits. 1335 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1336 assert((!Alignment || isPowerOf2_32(Alignment)) && 1337 "Alignment must be a power of two."); 1338 1339 if (Alignment) 1340 B.addAlignmentAttr(Alignment); 1341 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1342 (EncodedAttrs & 0xffff)); 1343 } 1344 1345 Error BitcodeReader::parseAttributeBlock() { 1346 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1347 return Err; 1348 1349 if (!MAttributes.empty()) 1350 return error("Invalid multiple blocks"); 1351 1352 SmallVector<uint64_t, 64> Record; 1353 1354 SmallVector<AttributeList, 8> Attrs; 1355 1356 // Read all the records. 1357 while (true) { 1358 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1359 if (!MaybeEntry) 1360 return MaybeEntry.takeError(); 1361 BitstreamEntry Entry = MaybeEntry.get(); 1362 1363 switch (Entry.Kind) { 1364 case BitstreamEntry::SubBlock: // Handled for us already. 1365 case BitstreamEntry::Error: 1366 return error("Malformed block"); 1367 case BitstreamEntry::EndBlock: 1368 return Error::success(); 1369 case BitstreamEntry::Record: 1370 // The interesting case. 1371 break; 1372 } 1373 1374 // Read a record. 1375 Record.clear(); 1376 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1377 if (!MaybeRecord) 1378 return MaybeRecord.takeError(); 1379 switch (MaybeRecord.get()) { 1380 default: // Default behavior: ignore. 1381 break; 1382 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1383 // FIXME: Remove in 4.0. 1384 if (Record.size() & 1) 1385 return error("Invalid record"); 1386 1387 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1388 AttrBuilder B; 1389 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1390 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1391 } 1392 1393 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1394 Attrs.clear(); 1395 break; 1396 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1397 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1398 Attrs.push_back(MAttributeGroups[Record[i]]); 1399 1400 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1401 Attrs.clear(); 1402 break; 1403 } 1404 } 1405 } 1406 1407 // Returns Attribute::None on unrecognized codes. 1408 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1409 switch (Code) { 1410 default: 1411 return Attribute::None; 1412 case bitc::ATTR_KIND_ALIGNMENT: 1413 return Attribute::Alignment; 1414 case bitc::ATTR_KIND_ALWAYS_INLINE: 1415 return Attribute::AlwaysInline; 1416 case bitc::ATTR_KIND_ARGMEMONLY: 1417 return Attribute::ArgMemOnly; 1418 case bitc::ATTR_KIND_BUILTIN: 1419 return Attribute::Builtin; 1420 case bitc::ATTR_KIND_BY_VAL: 1421 return Attribute::ByVal; 1422 case bitc::ATTR_KIND_IN_ALLOCA: 1423 return Attribute::InAlloca; 1424 case bitc::ATTR_KIND_COLD: 1425 return Attribute::Cold; 1426 case bitc::ATTR_KIND_CONVERGENT: 1427 return Attribute::Convergent; 1428 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1429 return Attribute::InaccessibleMemOnly; 1430 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1431 return Attribute::InaccessibleMemOrArgMemOnly; 1432 case bitc::ATTR_KIND_INLINE_HINT: 1433 return Attribute::InlineHint; 1434 case bitc::ATTR_KIND_IN_REG: 1435 return Attribute::InReg; 1436 case bitc::ATTR_KIND_JUMP_TABLE: 1437 return Attribute::JumpTable; 1438 case bitc::ATTR_KIND_MIN_SIZE: 1439 return Attribute::MinSize; 1440 case bitc::ATTR_KIND_NAKED: 1441 return Attribute::Naked; 1442 case bitc::ATTR_KIND_NEST: 1443 return Attribute::Nest; 1444 case bitc::ATTR_KIND_NO_ALIAS: 1445 return Attribute::NoAlias; 1446 case bitc::ATTR_KIND_NO_BUILTIN: 1447 return Attribute::NoBuiltin; 1448 case bitc::ATTR_KIND_NO_CAPTURE: 1449 return Attribute::NoCapture; 1450 case bitc::ATTR_KIND_NO_DUPLICATE: 1451 return Attribute::NoDuplicate; 1452 case bitc::ATTR_KIND_NOFREE: 1453 return Attribute::NoFree; 1454 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1455 return Attribute::NoImplicitFloat; 1456 case bitc::ATTR_KIND_NO_INLINE: 1457 return Attribute::NoInline; 1458 case bitc::ATTR_KIND_NO_RECURSE: 1459 return Attribute::NoRecurse; 1460 case bitc::ATTR_KIND_NON_LAZY_BIND: 1461 return Attribute::NonLazyBind; 1462 case bitc::ATTR_KIND_NON_NULL: 1463 return Attribute::NonNull; 1464 case bitc::ATTR_KIND_DEREFERENCEABLE: 1465 return Attribute::Dereferenceable; 1466 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1467 return Attribute::DereferenceableOrNull; 1468 case bitc::ATTR_KIND_ALLOC_SIZE: 1469 return Attribute::AllocSize; 1470 case bitc::ATTR_KIND_NO_RED_ZONE: 1471 return Attribute::NoRedZone; 1472 case bitc::ATTR_KIND_NO_RETURN: 1473 return Attribute::NoReturn; 1474 case bitc::ATTR_KIND_NOSYNC: 1475 return Attribute::NoSync; 1476 case bitc::ATTR_KIND_NOCF_CHECK: 1477 return Attribute::NoCfCheck; 1478 case bitc::ATTR_KIND_NO_UNWIND: 1479 return Attribute::NoUnwind; 1480 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1481 return Attribute::OptForFuzzing; 1482 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1483 return Attribute::OptimizeForSize; 1484 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1485 return Attribute::OptimizeNone; 1486 case bitc::ATTR_KIND_READ_NONE: 1487 return Attribute::ReadNone; 1488 case bitc::ATTR_KIND_READ_ONLY: 1489 return Attribute::ReadOnly; 1490 case bitc::ATTR_KIND_RETURNED: 1491 return Attribute::Returned; 1492 case bitc::ATTR_KIND_RETURNS_TWICE: 1493 return Attribute::ReturnsTwice; 1494 case bitc::ATTR_KIND_S_EXT: 1495 return Attribute::SExt; 1496 case bitc::ATTR_KIND_SPECULATABLE: 1497 return Attribute::Speculatable; 1498 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1499 return Attribute::StackAlignment; 1500 case bitc::ATTR_KIND_STACK_PROTECT: 1501 return Attribute::StackProtect; 1502 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1503 return Attribute::StackProtectReq; 1504 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1505 return Attribute::StackProtectStrong; 1506 case bitc::ATTR_KIND_SAFESTACK: 1507 return Attribute::SafeStack; 1508 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1509 return Attribute::ShadowCallStack; 1510 case bitc::ATTR_KIND_STRICT_FP: 1511 return Attribute::StrictFP; 1512 case bitc::ATTR_KIND_STRUCT_RET: 1513 return Attribute::StructRet; 1514 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1515 return Attribute::SanitizeAddress; 1516 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1517 return Attribute::SanitizeHWAddress; 1518 case bitc::ATTR_KIND_SANITIZE_THREAD: 1519 return Attribute::SanitizeThread; 1520 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1521 return Attribute::SanitizeMemory; 1522 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1523 return Attribute::SpeculativeLoadHardening; 1524 case bitc::ATTR_KIND_SWIFT_ERROR: 1525 return Attribute::SwiftError; 1526 case bitc::ATTR_KIND_SWIFT_SELF: 1527 return Attribute::SwiftSelf; 1528 case bitc::ATTR_KIND_UW_TABLE: 1529 return Attribute::UWTable; 1530 case bitc::ATTR_KIND_WILLRETURN: 1531 return Attribute::WillReturn; 1532 case bitc::ATTR_KIND_WRITEONLY: 1533 return Attribute::WriteOnly; 1534 case bitc::ATTR_KIND_Z_EXT: 1535 return Attribute::ZExt; 1536 case bitc::ATTR_KIND_IMMARG: 1537 return Attribute::ImmArg; 1538 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1539 return Attribute::SanitizeMemTag; 1540 } 1541 } 1542 1543 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1544 MaybeAlign &Alignment) { 1545 // Note: Alignment in bitcode files is incremented by 1, so that zero 1546 // can be used for default alignment. 1547 if (Exponent > Value::MaxAlignmentExponent + 1) 1548 return error("Invalid alignment value"); 1549 Alignment = decodeMaybeAlign(Exponent); 1550 return Error::success(); 1551 } 1552 1553 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1554 *Kind = getAttrFromCode(Code); 1555 if (*Kind == Attribute::None) 1556 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1557 return Error::success(); 1558 } 1559 1560 Error BitcodeReader::parseAttributeGroupBlock() { 1561 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1562 return Err; 1563 1564 if (!MAttributeGroups.empty()) 1565 return error("Invalid multiple blocks"); 1566 1567 SmallVector<uint64_t, 64> Record; 1568 1569 // Read all the records. 1570 while (true) { 1571 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1572 if (!MaybeEntry) 1573 return MaybeEntry.takeError(); 1574 BitstreamEntry Entry = MaybeEntry.get(); 1575 1576 switch (Entry.Kind) { 1577 case BitstreamEntry::SubBlock: // Handled for us already. 1578 case BitstreamEntry::Error: 1579 return error("Malformed block"); 1580 case BitstreamEntry::EndBlock: 1581 return Error::success(); 1582 case BitstreamEntry::Record: 1583 // The interesting case. 1584 break; 1585 } 1586 1587 // Read a record. 1588 Record.clear(); 1589 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1590 if (!MaybeRecord) 1591 return MaybeRecord.takeError(); 1592 switch (MaybeRecord.get()) { 1593 default: // Default behavior: ignore. 1594 break; 1595 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1596 if (Record.size() < 3) 1597 return error("Invalid record"); 1598 1599 uint64_t GrpID = Record[0]; 1600 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1601 1602 AttrBuilder B; 1603 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1604 if (Record[i] == 0) { // Enum attribute 1605 Attribute::AttrKind Kind; 1606 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1607 return Err; 1608 1609 // Upgrade old-style byval attribute to one with a type, even if it's 1610 // nullptr. We will have to insert the real type when we associate 1611 // this AttributeList with a function. 1612 if (Kind == Attribute::ByVal) 1613 B.addByValAttr(nullptr); 1614 1615 B.addAttribute(Kind); 1616 } else if (Record[i] == 1) { // Integer attribute 1617 Attribute::AttrKind Kind; 1618 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1619 return Err; 1620 if (Kind == Attribute::Alignment) 1621 B.addAlignmentAttr(Record[++i]); 1622 else if (Kind == Attribute::StackAlignment) 1623 B.addStackAlignmentAttr(Record[++i]); 1624 else if (Kind == Attribute::Dereferenceable) 1625 B.addDereferenceableAttr(Record[++i]); 1626 else if (Kind == Attribute::DereferenceableOrNull) 1627 B.addDereferenceableOrNullAttr(Record[++i]); 1628 else if (Kind == Attribute::AllocSize) 1629 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1630 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1631 bool HasValue = (Record[i++] == 4); 1632 SmallString<64> KindStr; 1633 SmallString<64> ValStr; 1634 1635 while (Record[i] != 0 && i != e) 1636 KindStr += Record[i++]; 1637 assert(Record[i] == 0 && "Kind string not null terminated"); 1638 1639 if (HasValue) { 1640 // Has a value associated with it. 1641 ++i; // Skip the '0' that terminates the "kind" string. 1642 while (Record[i] != 0 && i != e) 1643 ValStr += Record[i++]; 1644 assert(Record[i] == 0 && "Value string not null terminated"); 1645 } 1646 1647 B.addAttribute(KindStr.str(), ValStr.str()); 1648 } else { 1649 assert((Record[i] == 5 || Record[i] == 6) && 1650 "Invalid attribute group entry"); 1651 bool HasType = Record[i] == 6; 1652 Attribute::AttrKind Kind; 1653 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1654 return Err; 1655 if (Kind == Attribute::ByVal) 1656 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1657 } 1658 } 1659 1660 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1661 break; 1662 } 1663 } 1664 } 1665 } 1666 1667 Error BitcodeReader::parseTypeTable() { 1668 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1669 return Err; 1670 1671 return parseTypeTableBody(); 1672 } 1673 1674 Error BitcodeReader::parseTypeTableBody() { 1675 if (!TypeList.empty()) 1676 return error("Invalid multiple blocks"); 1677 1678 SmallVector<uint64_t, 64> Record; 1679 unsigned NumRecords = 0; 1680 1681 SmallString<64> TypeName; 1682 1683 // Read all the records for this type table. 1684 while (true) { 1685 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1686 if (!MaybeEntry) 1687 return MaybeEntry.takeError(); 1688 BitstreamEntry Entry = MaybeEntry.get(); 1689 1690 switch (Entry.Kind) { 1691 case BitstreamEntry::SubBlock: // Handled for us already. 1692 case BitstreamEntry::Error: 1693 return error("Malformed block"); 1694 case BitstreamEntry::EndBlock: 1695 if (NumRecords != TypeList.size()) 1696 return error("Malformed block"); 1697 return Error::success(); 1698 case BitstreamEntry::Record: 1699 // The interesting case. 1700 break; 1701 } 1702 1703 // Read a record. 1704 Record.clear(); 1705 Type *ResultTy = nullptr; 1706 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1707 if (!MaybeRecord) 1708 return MaybeRecord.takeError(); 1709 switch (MaybeRecord.get()) { 1710 default: 1711 return error("Invalid value"); 1712 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1713 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1714 // type list. This allows us to reserve space. 1715 if (Record.size() < 1) 1716 return error("Invalid record"); 1717 TypeList.resize(Record[0]); 1718 continue; 1719 case bitc::TYPE_CODE_VOID: // VOID 1720 ResultTy = Type::getVoidTy(Context); 1721 break; 1722 case bitc::TYPE_CODE_HALF: // HALF 1723 ResultTy = Type::getHalfTy(Context); 1724 break; 1725 case bitc::TYPE_CODE_FLOAT: // FLOAT 1726 ResultTy = Type::getFloatTy(Context); 1727 break; 1728 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1729 ResultTy = Type::getDoubleTy(Context); 1730 break; 1731 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1732 ResultTy = Type::getX86_FP80Ty(Context); 1733 break; 1734 case bitc::TYPE_CODE_FP128: // FP128 1735 ResultTy = Type::getFP128Ty(Context); 1736 break; 1737 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1738 ResultTy = Type::getPPC_FP128Ty(Context); 1739 break; 1740 case bitc::TYPE_CODE_LABEL: // LABEL 1741 ResultTy = Type::getLabelTy(Context); 1742 break; 1743 case bitc::TYPE_CODE_METADATA: // METADATA 1744 ResultTy = Type::getMetadataTy(Context); 1745 break; 1746 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1747 ResultTy = Type::getX86_MMXTy(Context); 1748 break; 1749 case bitc::TYPE_CODE_TOKEN: // TOKEN 1750 ResultTy = Type::getTokenTy(Context); 1751 break; 1752 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1753 if (Record.size() < 1) 1754 return error("Invalid record"); 1755 1756 uint64_t NumBits = Record[0]; 1757 if (NumBits < IntegerType::MIN_INT_BITS || 1758 NumBits > IntegerType::MAX_INT_BITS) 1759 return error("Bitwidth for integer type out of range"); 1760 ResultTy = IntegerType::get(Context, NumBits); 1761 break; 1762 } 1763 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1764 // [pointee type, address space] 1765 if (Record.size() < 1) 1766 return error("Invalid record"); 1767 unsigned AddressSpace = 0; 1768 if (Record.size() == 2) 1769 AddressSpace = Record[1]; 1770 ResultTy = getTypeByID(Record[0]); 1771 if (!ResultTy || 1772 !PointerType::isValidElementType(ResultTy)) 1773 return error("Invalid type"); 1774 ResultTy = PointerType::get(ResultTy, AddressSpace); 1775 break; 1776 } 1777 case bitc::TYPE_CODE_FUNCTION_OLD: { 1778 // FIXME: attrid is dead, remove it in LLVM 4.0 1779 // FUNCTION: [vararg, attrid, retty, paramty x N] 1780 if (Record.size() < 3) 1781 return error("Invalid record"); 1782 SmallVector<Type*, 8> ArgTys; 1783 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1784 if (Type *T = getTypeByID(Record[i])) 1785 ArgTys.push_back(T); 1786 else 1787 break; 1788 } 1789 1790 ResultTy = getTypeByID(Record[2]); 1791 if (!ResultTy || ArgTys.size() < Record.size()-3) 1792 return error("Invalid type"); 1793 1794 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1795 break; 1796 } 1797 case bitc::TYPE_CODE_FUNCTION: { 1798 // FUNCTION: [vararg, retty, paramty x N] 1799 if (Record.size() < 2) 1800 return error("Invalid record"); 1801 SmallVector<Type*, 8> ArgTys; 1802 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1803 if (Type *T = getTypeByID(Record[i])) { 1804 if (!FunctionType::isValidArgumentType(T)) 1805 return error("Invalid function argument type"); 1806 ArgTys.push_back(T); 1807 } 1808 else 1809 break; 1810 } 1811 1812 ResultTy = getTypeByID(Record[1]); 1813 if (!ResultTy || ArgTys.size() < Record.size()-2) 1814 return error("Invalid type"); 1815 1816 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1817 break; 1818 } 1819 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1820 if (Record.size() < 1) 1821 return error("Invalid record"); 1822 SmallVector<Type*, 8> EltTys; 1823 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1824 if (Type *T = getTypeByID(Record[i])) 1825 EltTys.push_back(T); 1826 else 1827 break; 1828 } 1829 if (EltTys.size() != Record.size()-1) 1830 return error("Invalid type"); 1831 ResultTy = StructType::get(Context, EltTys, Record[0]); 1832 break; 1833 } 1834 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1835 if (convertToString(Record, 0, TypeName)) 1836 return error("Invalid record"); 1837 continue; 1838 1839 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1840 if (Record.size() < 1) 1841 return error("Invalid record"); 1842 1843 if (NumRecords >= TypeList.size()) 1844 return error("Invalid TYPE table"); 1845 1846 // Check to see if this was forward referenced, if so fill in the temp. 1847 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1848 if (Res) { 1849 Res->setName(TypeName); 1850 TypeList[NumRecords] = nullptr; 1851 } else // Otherwise, create a new struct. 1852 Res = createIdentifiedStructType(Context, TypeName); 1853 TypeName.clear(); 1854 1855 SmallVector<Type*, 8> EltTys; 1856 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1857 if (Type *T = getTypeByID(Record[i])) 1858 EltTys.push_back(T); 1859 else 1860 break; 1861 } 1862 if (EltTys.size() != Record.size()-1) 1863 return error("Invalid record"); 1864 Res->setBody(EltTys, Record[0]); 1865 ResultTy = Res; 1866 break; 1867 } 1868 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1869 if (Record.size() != 1) 1870 return error("Invalid record"); 1871 1872 if (NumRecords >= TypeList.size()) 1873 return error("Invalid TYPE table"); 1874 1875 // Check to see if this was forward referenced, if so fill in the temp. 1876 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1877 if (Res) { 1878 Res->setName(TypeName); 1879 TypeList[NumRecords] = nullptr; 1880 } else // Otherwise, create a new struct with no body. 1881 Res = createIdentifiedStructType(Context, TypeName); 1882 TypeName.clear(); 1883 ResultTy = Res; 1884 break; 1885 } 1886 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1887 if (Record.size() < 2) 1888 return error("Invalid record"); 1889 ResultTy = getTypeByID(Record[1]); 1890 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1891 return error("Invalid type"); 1892 ResultTy = ArrayType::get(ResultTy, Record[0]); 1893 break; 1894 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1895 // [numelts, eltty, scalable] 1896 if (Record.size() < 2) 1897 return error("Invalid record"); 1898 if (Record[0] == 0) 1899 return error("Invalid vector length"); 1900 ResultTy = getTypeByID(Record[1]); 1901 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1902 return error("Invalid type"); 1903 bool Scalable = Record.size() > 2 ? Record[2] : false; 1904 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1905 break; 1906 } 1907 1908 if (NumRecords >= TypeList.size()) 1909 return error("Invalid TYPE table"); 1910 if (TypeList[NumRecords]) 1911 return error( 1912 "Invalid TYPE table: Only named structs can be forward referenced"); 1913 assert(ResultTy && "Didn't read a type?"); 1914 TypeList[NumRecords++] = ResultTy; 1915 } 1916 } 1917 1918 Error BitcodeReader::parseOperandBundleTags() { 1919 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1920 return Err; 1921 1922 if (!BundleTags.empty()) 1923 return error("Invalid multiple blocks"); 1924 1925 SmallVector<uint64_t, 64> Record; 1926 1927 while (true) { 1928 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1929 if (!MaybeEntry) 1930 return MaybeEntry.takeError(); 1931 BitstreamEntry Entry = MaybeEntry.get(); 1932 1933 switch (Entry.Kind) { 1934 case BitstreamEntry::SubBlock: // Handled for us already. 1935 case BitstreamEntry::Error: 1936 return error("Malformed block"); 1937 case BitstreamEntry::EndBlock: 1938 return Error::success(); 1939 case BitstreamEntry::Record: 1940 // The interesting case. 1941 break; 1942 } 1943 1944 // Tags are implicitly mapped to integers by their order. 1945 1946 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1947 if (!MaybeRecord) 1948 return MaybeRecord.takeError(); 1949 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1950 return error("Invalid record"); 1951 1952 // OPERAND_BUNDLE_TAG: [strchr x N] 1953 BundleTags.emplace_back(); 1954 if (convertToString(Record, 0, BundleTags.back())) 1955 return error("Invalid record"); 1956 Record.clear(); 1957 } 1958 } 1959 1960 Error BitcodeReader::parseSyncScopeNames() { 1961 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1962 return Err; 1963 1964 if (!SSIDs.empty()) 1965 return error("Invalid multiple synchronization scope names blocks"); 1966 1967 SmallVector<uint64_t, 64> Record; 1968 while (true) { 1969 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1970 if (!MaybeEntry) 1971 return MaybeEntry.takeError(); 1972 BitstreamEntry Entry = MaybeEntry.get(); 1973 1974 switch (Entry.Kind) { 1975 case BitstreamEntry::SubBlock: // Handled for us already. 1976 case BitstreamEntry::Error: 1977 return error("Malformed block"); 1978 case BitstreamEntry::EndBlock: 1979 if (SSIDs.empty()) 1980 return error("Invalid empty synchronization scope names block"); 1981 return Error::success(); 1982 case BitstreamEntry::Record: 1983 // The interesting case. 1984 break; 1985 } 1986 1987 // Synchronization scope names are implicitly mapped to synchronization 1988 // scope IDs by their order. 1989 1990 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1991 if (!MaybeRecord) 1992 return MaybeRecord.takeError(); 1993 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1994 return error("Invalid record"); 1995 1996 SmallString<16> SSN; 1997 if (convertToString(Record, 0, SSN)) 1998 return error("Invalid record"); 1999 2000 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2001 Record.clear(); 2002 } 2003 } 2004 2005 /// Associate a value with its name from the given index in the provided record. 2006 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2007 unsigned NameIndex, Triple &TT) { 2008 SmallString<128> ValueName; 2009 if (convertToString(Record, NameIndex, ValueName)) 2010 return error("Invalid record"); 2011 unsigned ValueID = Record[0]; 2012 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2013 return error("Invalid record"); 2014 Value *V = ValueList[ValueID]; 2015 2016 StringRef NameStr(ValueName.data(), ValueName.size()); 2017 if (NameStr.find_first_of(0) != StringRef::npos) 2018 return error("Invalid value name"); 2019 V->setName(NameStr); 2020 auto *GO = dyn_cast<GlobalObject>(V); 2021 if (GO) { 2022 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2023 if (TT.supportsCOMDAT()) 2024 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2025 else 2026 GO->setComdat(nullptr); 2027 } 2028 } 2029 return V; 2030 } 2031 2032 /// Helper to note and return the current location, and jump to the given 2033 /// offset. 2034 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2035 BitstreamCursor &Stream) { 2036 // Save the current parsing location so we can jump back at the end 2037 // of the VST read. 2038 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2039 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2040 return std::move(JumpFailed); 2041 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2042 if (!MaybeEntry) 2043 return MaybeEntry.takeError(); 2044 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2045 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2046 return CurrentBit; 2047 } 2048 2049 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2050 Function *F, 2051 ArrayRef<uint64_t> Record) { 2052 // Note that we subtract 1 here because the offset is relative to one word 2053 // before the start of the identification or module block, which was 2054 // historically always the start of the regular bitcode header. 2055 uint64_t FuncWordOffset = Record[1] - 1; 2056 uint64_t FuncBitOffset = FuncWordOffset * 32; 2057 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2058 // Set the LastFunctionBlockBit to point to the last function block. 2059 // Later when parsing is resumed after function materialization, 2060 // we can simply skip that last function block. 2061 if (FuncBitOffset > LastFunctionBlockBit) 2062 LastFunctionBlockBit = FuncBitOffset; 2063 } 2064 2065 /// Read a new-style GlobalValue symbol table. 2066 Error BitcodeReader::parseGlobalValueSymbolTable() { 2067 unsigned FuncBitcodeOffsetDelta = 2068 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2069 2070 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2071 return Err; 2072 2073 SmallVector<uint64_t, 64> Record; 2074 while (true) { 2075 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2076 if (!MaybeEntry) 2077 return MaybeEntry.takeError(); 2078 BitstreamEntry Entry = MaybeEntry.get(); 2079 2080 switch (Entry.Kind) { 2081 case BitstreamEntry::SubBlock: 2082 case BitstreamEntry::Error: 2083 return error("Malformed block"); 2084 case BitstreamEntry::EndBlock: 2085 return Error::success(); 2086 case BitstreamEntry::Record: 2087 break; 2088 } 2089 2090 Record.clear(); 2091 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2092 if (!MaybeRecord) 2093 return MaybeRecord.takeError(); 2094 switch (MaybeRecord.get()) { 2095 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2096 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2097 cast<Function>(ValueList[Record[0]]), Record); 2098 break; 2099 } 2100 } 2101 } 2102 2103 /// Parse the value symbol table at either the current parsing location or 2104 /// at the given bit offset if provided. 2105 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2106 uint64_t CurrentBit; 2107 // Pass in the Offset to distinguish between calling for the module-level 2108 // VST (where we want to jump to the VST offset) and the function-level 2109 // VST (where we don't). 2110 if (Offset > 0) { 2111 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2112 if (!MaybeCurrentBit) 2113 return MaybeCurrentBit.takeError(); 2114 CurrentBit = MaybeCurrentBit.get(); 2115 // If this module uses a string table, read this as a module-level VST. 2116 if (UseStrtab) { 2117 if (Error Err = parseGlobalValueSymbolTable()) 2118 return Err; 2119 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2120 return JumpFailed; 2121 return Error::success(); 2122 } 2123 // Otherwise, the VST will be in a similar format to a function-level VST, 2124 // and will contain symbol names. 2125 } 2126 2127 // Compute the delta between the bitcode indices in the VST (the word offset 2128 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2129 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2130 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2131 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2132 // just before entering the VST subblock because: 1) the EnterSubBlock 2133 // changes the AbbrevID width; 2) the VST block is nested within the same 2134 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2135 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2136 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2137 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2138 unsigned FuncBitcodeOffsetDelta = 2139 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2140 2141 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2142 return Err; 2143 2144 SmallVector<uint64_t, 64> Record; 2145 2146 Triple TT(TheModule->getTargetTriple()); 2147 2148 // Read all the records for this value table. 2149 SmallString<128> ValueName; 2150 2151 while (true) { 2152 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2153 if (!MaybeEntry) 2154 return MaybeEntry.takeError(); 2155 BitstreamEntry Entry = MaybeEntry.get(); 2156 2157 switch (Entry.Kind) { 2158 case BitstreamEntry::SubBlock: // Handled for us already. 2159 case BitstreamEntry::Error: 2160 return error("Malformed block"); 2161 case BitstreamEntry::EndBlock: 2162 if (Offset > 0) 2163 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2164 return JumpFailed; 2165 return Error::success(); 2166 case BitstreamEntry::Record: 2167 // The interesting case. 2168 break; 2169 } 2170 2171 // Read a record. 2172 Record.clear(); 2173 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2174 if (!MaybeRecord) 2175 return MaybeRecord.takeError(); 2176 switch (MaybeRecord.get()) { 2177 default: // Default behavior: unknown type. 2178 break; 2179 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2180 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2181 if (Error Err = ValOrErr.takeError()) 2182 return Err; 2183 ValOrErr.get(); 2184 break; 2185 } 2186 case bitc::VST_CODE_FNENTRY: { 2187 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2188 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2189 if (Error Err = ValOrErr.takeError()) 2190 return Err; 2191 Value *V = ValOrErr.get(); 2192 2193 // Ignore function offsets emitted for aliases of functions in older 2194 // versions of LLVM. 2195 if (auto *F = dyn_cast<Function>(V)) 2196 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2197 break; 2198 } 2199 case bitc::VST_CODE_BBENTRY: { 2200 if (convertToString(Record, 1, ValueName)) 2201 return error("Invalid record"); 2202 BasicBlock *BB = getBasicBlock(Record[0]); 2203 if (!BB) 2204 return error("Invalid record"); 2205 2206 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2207 ValueName.clear(); 2208 break; 2209 } 2210 } 2211 } 2212 } 2213 2214 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2215 /// encoding. 2216 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2217 if ((V & 1) == 0) 2218 return V >> 1; 2219 if (V != 1) 2220 return -(V >> 1); 2221 // There is no such thing as -0 with integers. "-0" really means MININT. 2222 return 1ULL << 63; 2223 } 2224 2225 /// Resolve all of the initializers for global values and aliases that we can. 2226 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2227 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2228 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2229 IndirectSymbolInitWorklist; 2230 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2231 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2232 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2233 2234 GlobalInitWorklist.swap(GlobalInits); 2235 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2236 FunctionPrefixWorklist.swap(FunctionPrefixes); 2237 FunctionPrologueWorklist.swap(FunctionPrologues); 2238 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2239 2240 while (!GlobalInitWorklist.empty()) { 2241 unsigned ValID = GlobalInitWorklist.back().second; 2242 if (ValID >= ValueList.size()) { 2243 // Not ready to resolve this yet, it requires something later in the file. 2244 GlobalInits.push_back(GlobalInitWorklist.back()); 2245 } else { 2246 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2247 GlobalInitWorklist.back().first->setInitializer(C); 2248 else 2249 return error("Expected a constant"); 2250 } 2251 GlobalInitWorklist.pop_back(); 2252 } 2253 2254 while (!IndirectSymbolInitWorklist.empty()) { 2255 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2256 if (ValID >= ValueList.size()) { 2257 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2258 } else { 2259 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2260 if (!C) 2261 return error("Expected a constant"); 2262 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2263 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2264 return error("Alias and aliasee types don't match"); 2265 GIS->setIndirectSymbol(C); 2266 } 2267 IndirectSymbolInitWorklist.pop_back(); 2268 } 2269 2270 while (!FunctionPrefixWorklist.empty()) { 2271 unsigned ValID = FunctionPrefixWorklist.back().second; 2272 if (ValID >= ValueList.size()) { 2273 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2274 } else { 2275 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2276 FunctionPrefixWorklist.back().first->setPrefixData(C); 2277 else 2278 return error("Expected a constant"); 2279 } 2280 FunctionPrefixWorklist.pop_back(); 2281 } 2282 2283 while (!FunctionPrologueWorklist.empty()) { 2284 unsigned ValID = FunctionPrologueWorklist.back().second; 2285 if (ValID >= ValueList.size()) { 2286 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2287 } else { 2288 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2289 FunctionPrologueWorklist.back().first->setPrologueData(C); 2290 else 2291 return error("Expected a constant"); 2292 } 2293 FunctionPrologueWorklist.pop_back(); 2294 } 2295 2296 while (!FunctionPersonalityFnWorklist.empty()) { 2297 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2298 if (ValID >= ValueList.size()) { 2299 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2300 } else { 2301 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2302 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2303 else 2304 return error("Expected a constant"); 2305 } 2306 FunctionPersonalityFnWorklist.pop_back(); 2307 } 2308 2309 return Error::success(); 2310 } 2311 2312 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2313 SmallVector<uint64_t, 8> Words(Vals.size()); 2314 transform(Vals, Words.begin(), 2315 BitcodeReader::decodeSignRotatedValue); 2316 2317 return APInt(TypeBits, Words); 2318 } 2319 2320 Error BitcodeReader::parseConstants() { 2321 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2322 return Err; 2323 2324 SmallVector<uint64_t, 64> Record; 2325 2326 // Read all the records for this value table. 2327 Type *CurTy = Type::getInt32Ty(Context); 2328 Type *CurFullTy = Type::getInt32Ty(Context); 2329 unsigned NextCstNo = ValueList.size(); 2330 2331 while (true) { 2332 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2333 if (!MaybeEntry) 2334 return MaybeEntry.takeError(); 2335 BitstreamEntry Entry = MaybeEntry.get(); 2336 2337 switch (Entry.Kind) { 2338 case BitstreamEntry::SubBlock: // Handled for us already. 2339 case BitstreamEntry::Error: 2340 return error("Malformed block"); 2341 case BitstreamEntry::EndBlock: 2342 if (NextCstNo != ValueList.size()) 2343 return error("Invalid constant reference"); 2344 2345 // Once all the constants have been read, go through and resolve forward 2346 // references. 2347 ValueList.resolveConstantForwardRefs(); 2348 return Error::success(); 2349 case BitstreamEntry::Record: 2350 // The interesting case. 2351 break; 2352 } 2353 2354 // Read a record. 2355 Record.clear(); 2356 Type *VoidType = Type::getVoidTy(Context); 2357 Value *V = nullptr; 2358 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2359 if (!MaybeBitCode) 2360 return MaybeBitCode.takeError(); 2361 switch (unsigned BitCode = MaybeBitCode.get()) { 2362 default: // Default behavior: unknown constant 2363 case bitc::CST_CODE_UNDEF: // UNDEF 2364 V = UndefValue::get(CurTy); 2365 break; 2366 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2367 if (Record.empty()) 2368 return error("Invalid record"); 2369 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2370 return error("Invalid record"); 2371 if (TypeList[Record[0]] == VoidType) 2372 return error("Invalid constant type"); 2373 CurFullTy = TypeList[Record[0]]; 2374 CurTy = flattenPointerTypes(CurFullTy); 2375 continue; // Skip the ValueList manipulation. 2376 case bitc::CST_CODE_NULL: // NULL 2377 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2378 return error("Invalid type for a constant null value"); 2379 V = Constant::getNullValue(CurTy); 2380 break; 2381 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2382 if (!CurTy->isIntegerTy() || Record.empty()) 2383 return error("Invalid record"); 2384 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2385 break; 2386 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2387 if (!CurTy->isIntegerTy() || Record.empty()) 2388 return error("Invalid record"); 2389 2390 APInt VInt = 2391 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2392 V = ConstantInt::get(Context, VInt); 2393 2394 break; 2395 } 2396 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2397 if (Record.empty()) 2398 return error("Invalid record"); 2399 if (CurTy->isHalfTy()) 2400 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2401 APInt(16, (uint16_t)Record[0]))); 2402 else if (CurTy->isFloatTy()) 2403 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2404 APInt(32, (uint32_t)Record[0]))); 2405 else if (CurTy->isDoubleTy()) 2406 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2407 APInt(64, Record[0]))); 2408 else if (CurTy->isX86_FP80Ty()) { 2409 // Bits are not stored the same way as a normal i80 APInt, compensate. 2410 uint64_t Rearrange[2]; 2411 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2412 Rearrange[1] = Record[0] >> 48; 2413 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2414 APInt(80, Rearrange))); 2415 } else if (CurTy->isFP128Ty()) 2416 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2417 APInt(128, Record))); 2418 else if (CurTy->isPPC_FP128Ty()) 2419 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2420 APInt(128, Record))); 2421 else 2422 V = UndefValue::get(CurTy); 2423 break; 2424 } 2425 2426 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2427 if (Record.empty()) 2428 return error("Invalid record"); 2429 2430 unsigned Size = Record.size(); 2431 SmallVector<Constant*, 16> Elts; 2432 2433 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2434 for (unsigned i = 0; i != Size; ++i) 2435 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2436 STy->getElementType(i))); 2437 V = ConstantStruct::get(STy, Elts); 2438 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2439 Type *EltTy = ATy->getElementType(); 2440 for (unsigned i = 0; i != Size; ++i) 2441 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2442 V = ConstantArray::get(ATy, Elts); 2443 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2444 Type *EltTy = VTy->getElementType(); 2445 for (unsigned i = 0; i != Size; ++i) 2446 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2447 V = ConstantVector::get(Elts); 2448 } else { 2449 V = UndefValue::get(CurTy); 2450 } 2451 break; 2452 } 2453 case bitc::CST_CODE_STRING: // STRING: [values] 2454 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2455 if (Record.empty()) 2456 return error("Invalid record"); 2457 2458 SmallString<16> Elts(Record.begin(), Record.end()); 2459 V = ConstantDataArray::getString(Context, Elts, 2460 BitCode == bitc::CST_CODE_CSTRING); 2461 break; 2462 } 2463 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2464 if (Record.empty()) 2465 return error("Invalid record"); 2466 2467 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2468 if (EltTy->isIntegerTy(8)) { 2469 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2470 if (isa<VectorType>(CurTy)) 2471 V = ConstantDataVector::get(Context, Elts); 2472 else 2473 V = ConstantDataArray::get(Context, Elts); 2474 } else if (EltTy->isIntegerTy(16)) { 2475 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2476 if (isa<VectorType>(CurTy)) 2477 V = ConstantDataVector::get(Context, Elts); 2478 else 2479 V = ConstantDataArray::get(Context, Elts); 2480 } else if (EltTy->isIntegerTy(32)) { 2481 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2482 if (isa<VectorType>(CurTy)) 2483 V = ConstantDataVector::get(Context, Elts); 2484 else 2485 V = ConstantDataArray::get(Context, Elts); 2486 } else if (EltTy->isIntegerTy(64)) { 2487 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2488 if (isa<VectorType>(CurTy)) 2489 V = ConstantDataVector::get(Context, Elts); 2490 else 2491 V = ConstantDataArray::get(Context, Elts); 2492 } else if (EltTy->isHalfTy()) { 2493 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2494 if (isa<VectorType>(CurTy)) 2495 V = ConstantDataVector::getFP(Context, Elts); 2496 else 2497 V = ConstantDataArray::getFP(Context, Elts); 2498 } else if (EltTy->isFloatTy()) { 2499 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2500 if (isa<VectorType>(CurTy)) 2501 V = ConstantDataVector::getFP(Context, Elts); 2502 else 2503 V = ConstantDataArray::getFP(Context, Elts); 2504 } else if (EltTy->isDoubleTy()) { 2505 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2506 if (isa<VectorType>(CurTy)) 2507 V = ConstantDataVector::getFP(Context, Elts); 2508 else 2509 V = ConstantDataArray::getFP(Context, Elts); 2510 } else { 2511 return error("Invalid type for value"); 2512 } 2513 break; 2514 } 2515 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2516 if (Record.size() < 2) 2517 return error("Invalid record"); 2518 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2519 if (Opc < 0) { 2520 V = UndefValue::get(CurTy); // Unknown unop. 2521 } else { 2522 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2523 unsigned Flags = 0; 2524 V = ConstantExpr::get(Opc, LHS, Flags); 2525 } 2526 break; 2527 } 2528 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2529 if (Record.size() < 3) 2530 return error("Invalid record"); 2531 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2532 if (Opc < 0) { 2533 V = UndefValue::get(CurTy); // Unknown binop. 2534 } else { 2535 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2536 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2537 unsigned Flags = 0; 2538 if (Record.size() >= 4) { 2539 if (Opc == Instruction::Add || 2540 Opc == Instruction::Sub || 2541 Opc == Instruction::Mul || 2542 Opc == Instruction::Shl) { 2543 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2544 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2545 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2546 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2547 } else if (Opc == Instruction::SDiv || 2548 Opc == Instruction::UDiv || 2549 Opc == Instruction::LShr || 2550 Opc == Instruction::AShr) { 2551 if (Record[3] & (1 << bitc::PEO_EXACT)) 2552 Flags |= SDivOperator::IsExact; 2553 } 2554 } 2555 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2556 } 2557 break; 2558 } 2559 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2560 if (Record.size() < 3) 2561 return error("Invalid record"); 2562 int Opc = getDecodedCastOpcode(Record[0]); 2563 if (Opc < 0) { 2564 V = UndefValue::get(CurTy); // Unknown cast. 2565 } else { 2566 Type *OpTy = getTypeByID(Record[1]); 2567 if (!OpTy) 2568 return error("Invalid record"); 2569 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2570 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2571 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2572 } 2573 break; 2574 } 2575 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2576 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2577 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2578 // operands] 2579 unsigned OpNum = 0; 2580 Type *PointeeType = nullptr; 2581 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2582 Record.size() % 2) 2583 PointeeType = getTypeByID(Record[OpNum++]); 2584 2585 bool InBounds = false; 2586 Optional<unsigned> InRangeIndex; 2587 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2588 uint64_t Op = Record[OpNum++]; 2589 InBounds = Op & 1; 2590 InRangeIndex = Op >> 1; 2591 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2592 InBounds = true; 2593 2594 SmallVector<Constant*, 16> Elts; 2595 Type *Elt0FullTy = nullptr; 2596 while (OpNum != Record.size()) { 2597 if (!Elt0FullTy) 2598 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2599 Type *ElTy = getTypeByID(Record[OpNum++]); 2600 if (!ElTy) 2601 return error("Invalid record"); 2602 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2603 } 2604 2605 if (Elts.size() < 1) 2606 return error("Invalid gep with no operands"); 2607 2608 Type *ImplicitPointeeType = 2609 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2610 if (!PointeeType) 2611 PointeeType = ImplicitPointeeType; 2612 else if (PointeeType != ImplicitPointeeType) 2613 return error("Explicit gep operator type does not match pointee type " 2614 "of pointer operand"); 2615 2616 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2617 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2618 InBounds, InRangeIndex); 2619 break; 2620 } 2621 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2622 if (Record.size() < 3) 2623 return error("Invalid record"); 2624 2625 Type *SelectorTy = Type::getInt1Ty(Context); 2626 2627 // The selector might be an i1 or an <n x i1> 2628 // Get the type from the ValueList before getting a forward ref. 2629 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2630 if (Value *V = ValueList[Record[0]]) 2631 if (SelectorTy != V->getType()) 2632 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2633 2634 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2635 SelectorTy), 2636 ValueList.getConstantFwdRef(Record[1],CurTy), 2637 ValueList.getConstantFwdRef(Record[2],CurTy)); 2638 break; 2639 } 2640 case bitc::CST_CODE_CE_EXTRACTELT 2641 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2642 if (Record.size() < 3) 2643 return error("Invalid record"); 2644 VectorType *OpTy = 2645 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2646 if (!OpTy) 2647 return error("Invalid record"); 2648 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2649 Constant *Op1 = nullptr; 2650 if (Record.size() == 4) { 2651 Type *IdxTy = getTypeByID(Record[2]); 2652 if (!IdxTy) 2653 return error("Invalid record"); 2654 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2655 } else // TODO: Remove with llvm 4.0 2656 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2657 if (!Op1) 2658 return error("Invalid record"); 2659 V = ConstantExpr::getExtractElement(Op0, Op1); 2660 break; 2661 } 2662 case bitc::CST_CODE_CE_INSERTELT 2663 : { // CE_INSERTELT: [opval, opval, opty, opval] 2664 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2665 if (Record.size() < 3 || !OpTy) 2666 return error("Invalid record"); 2667 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2668 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2669 OpTy->getElementType()); 2670 Constant *Op2 = nullptr; 2671 if (Record.size() == 4) { 2672 Type *IdxTy = getTypeByID(Record[2]); 2673 if (!IdxTy) 2674 return error("Invalid record"); 2675 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2676 } else // TODO: Remove with llvm 4.0 2677 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2678 if (!Op2) 2679 return error("Invalid record"); 2680 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2681 break; 2682 } 2683 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2684 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2685 if (Record.size() < 3 || !OpTy) 2686 return error("Invalid record"); 2687 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2688 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2689 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2690 OpTy->getNumElements()); 2691 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2692 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2693 break; 2694 } 2695 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2696 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2697 VectorType *OpTy = 2698 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2699 if (Record.size() < 4 || !RTy || !OpTy) 2700 return error("Invalid record"); 2701 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2702 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2703 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2704 RTy->getNumElements()); 2705 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2706 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2707 break; 2708 } 2709 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2710 if (Record.size() < 4) 2711 return error("Invalid record"); 2712 Type *OpTy = getTypeByID(Record[0]); 2713 if (!OpTy) 2714 return error("Invalid record"); 2715 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2716 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2717 2718 if (OpTy->isFPOrFPVectorTy()) 2719 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2720 else 2721 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2722 break; 2723 } 2724 // This maintains backward compatibility, pre-asm dialect keywords. 2725 // FIXME: Remove with the 4.0 release. 2726 case bitc::CST_CODE_INLINEASM_OLD: { 2727 if (Record.size() < 2) 2728 return error("Invalid record"); 2729 std::string AsmStr, ConstrStr; 2730 bool HasSideEffects = Record[0] & 1; 2731 bool IsAlignStack = Record[0] >> 1; 2732 unsigned AsmStrSize = Record[1]; 2733 if (2+AsmStrSize >= Record.size()) 2734 return error("Invalid record"); 2735 unsigned ConstStrSize = Record[2+AsmStrSize]; 2736 if (3+AsmStrSize+ConstStrSize > Record.size()) 2737 return error("Invalid record"); 2738 2739 for (unsigned i = 0; i != AsmStrSize; ++i) 2740 AsmStr += (char)Record[2+i]; 2741 for (unsigned i = 0; i != ConstStrSize; ++i) 2742 ConstrStr += (char)Record[3+AsmStrSize+i]; 2743 UpgradeInlineAsmString(&AsmStr); 2744 V = InlineAsm::get( 2745 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2746 ConstrStr, HasSideEffects, IsAlignStack); 2747 break; 2748 } 2749 // This version adds support for the asm dialect keywords (e.g., 2750 // inteldialect). 2751 case bitc::CST_CODE_INLINEASM: { 2752 if (Record.size() < 2) 2753 return error("Invalid record"); 2754 std::string AsmStr, ConstrStr; 2755 bool HasSideEffects = Record[0] & 1; 2756 bool IsAlignStack = (Record[0] >> 1) & 1; 2757 unsigned AsmDialect = Record[0] >> 2; 2758 unsigned AsmStrSize = Record[1]; 2759 if (2+AsmStrSize >= Record.size()) 2760 return error("Invalid record"); 2761 unsigned ConstStrSize = Record[2+AsmStrSize]; 2762 if (3+AsmStrSize+ConstStrSize > Record.size()) 2763 return error("Invalid record"); 2764 2765 for (unsigned i = 0; i != AsmStrSize; ++i) 2766 AsmStr += (char)Record[2+i]; 2767 for (unsigned i = 0; i != ConstStrSize; ++i) 2768 ConstrStr += (char)Record[3+AsmStrSize+i]; 2769 UpgradeInlineAsmString(&AsmStr); 2770 V = InlineAsm::get( 2771 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2772 ConstrStr, HasSideEffects, IsAlignStack, 2773 InlineAsm::AsmDialect(AsmDialect)); 2774 break; 2775 } 2776 case bitc::CST_CODE_BLOCKADDRESS:{ 2777 if (Record.size() < 3) 2778 return error("Invalid record"); 2779 Type *FnTy = getTypeByID(Record[0]); 2780 if (!FnTy) 2781 return error("Invalid record"); 2782 Function *Fn = 2783 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2784 if (!Fn) 2785 return error("Invalid record"); 2786 2787 // If the function is already parsed we can insert the block address right 2788 // away. 2789 BasicBlock *BB; 2790 unsigned BBID = Record[2]; 2791 if (!BBID) 2792 // Invalid reference to entry block. 2793 return error("Invalid ID"); 2794 if (!Fn->empty()) { 2795 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2796 for (size_t I = 0, E = BBID; I != E; ++I) { 2797 if (BBI == BBE) 2798 return error("Invalid ID"); 2799 ++BBI; 2800 } 2801 BB = &*BBI; 2802 } else { 2803 // Otherwise insert a placeholder and remember it so it can be inserted 2804 // when the function is parsed. 2805 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2806 if (FwdBBs.empty()) 2807 BasicBlockFwdRefQueue.push_back(Fn); 2808 if (FwdBBs.size() < BBID + 1) 2809 FwdBBs.resize(BBID + 1); 2810 if (!FwdBBs[BBID]) 2811 FwdBBs[BBID] = BasicBlock::Create(Context); 2812 BB = FwdBBs[BBID]; 2813 } 2814 V = BlockAddress::get(Fn, BB); 2815 break; 2816 } 2817 } 2818 2819 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2820 "Incorrect fully structured type provided for Constant"); 2821 ValueList.assignValue(V, NextCstNo, CurFullTy); 2822 ++NextCstNo; 2823 } 2824 } 2825 2826 Error BitcodeReader::parseUseLists() { 2827 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2828 return Err; 2829 2830 // Read all the records. 2831 SmallVector<uint64_t, 64> Record; 2832 2833 while (true) { 2834 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2835 if (!MaybeEntry) 2836 return MaybeEntry.takeError(); 2837 BitstreamEntry Entry = MaybeEntry.get(); 2838 2839 switch (Entry.Kind) { 2840 case BitstreamEntry::SubBlock: // Handled for us already. 2841 case BitstreamEntry::Error: 2842 return error("Malformed block"); 2843 case BitstreamEntry::EndBlock: 2844 return Error::success(); 2845 case BitstreamEntry::Record: 2846 // The interesting case. 2847 break; 2848 } 2849 2850 // Read a use list record. 2851 Record.clear(); 2852 bool IsBB = false; 2853 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2854 if (!MaybeRecord) 2855 return MaybeRecord.takeError(); 2856 switch (MaybeRecord.get()) { 2857 default: // Default behavior: unknown type. 2858 break; 2859 case bitc::USELIST_CODE_BB: 2860 IsBB = true; 2861 LLVM_FALLTHROUGH; 2862 case bitc::USELIST_CODE_DEFAULT: { 2863 unsigned RecordLength = Record.size(); 2864 if (RecordLength < 3) 2865 // Records should have at least an ID and two indexes. 2866 return error("Invalid record"); 2867 unsigned ID = Record.back(); 2868 Record.pop_back(); 2869 2870 Value *V; 2871 if (IsBB) { 2872 assert(ID < FunctionBBs.size() && "Basic block not found"); 2873 V = FunctionBBs[ID]; 2874 } else 2875 V = ValueList[ID]; 2876 unsigned NumUses = 0; 2877 SmallDenseMap<const Use *, unsigned, 16> Order; 2878 for (const Use &U : V->materialized_uses()) { 2879 if (++NumUses > Record.size()) 2880 break; 2881 Order[&U] = Record[NumUses - 1]; 2882 } 2883 if (Order.size() != Record.size() || NumUses > Record.size()) 2884 // Mismatches can happen if the functions are being materialized lazily 2885 // (out-of-order), or a value has been upgraded. 2886 break; 2887 2888 V->sortUseList([&](const Use &L, const Use &R) { 2889 return Order.lookup(&L) < Order.lookup(&R); 2890 }); 2891 break; 2892 } 2893 } 2894 } 2895 } 2896 2897 /// When we see the block for metadata, remember where it is and then skip it. 2898 /// This lets us lazily deserialize the metadata. 2899 Error BitcodeReader::rememberAndSkipMetadata() { 2900 // Save the current stream state. 2901 uint64_t CurBit = Stream.GetCurrentBitNo(); 2902 DeferredMetadataInfo.push_back(CurBit); 2903 2904 // Skip over the block for now. 2905 if (Error Err = Stream.SkipBlock()) 2906 return Err; 2907 return Error::success(); 2908 } 2909 2910 Error BitcodeReader::materializeMetadata() { 2911 for (uint64_t BitPos : DeferredMetadataInfo) { 2912 // Move the bit stream to the saved position. 2913 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2914 return JumpFailed; 2915 if (Error Err = MDLoader->parseModuleMetadata()) 2916 return Err; 2917 } 2918 2919 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2920 // metadata. 2921 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2922 NamedMDNode *LinkerOpts = 2923 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2924 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2925 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2926 } 2927 2928 DeferredMetadataInfo.clear(); 2929 return Error::success(); 2930 } 2931 2932 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2933 2934 /// When we see the block for a function body, remember where it is and then 2935 /// skip it. This lets us lazily deserialize the functions. 2936 Error BitcodeReader::rememberAndSkipFunctionBody() { 2937 // Get the function we are talking about. 2938 if (FunctionsWithBodies.empty()) 2939 return error("Insufficient function protos"); 2940 2941 Function *Fn = FunctionsWithBodies.back(); 2942 FunctionsWithBodies.pop_back(); 2943 2944 // Save the current stream state. 2945 uint64_t CurBit = Stream.GetCurrentBitNo(); 2946 assert( 2947 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2948 "Mismatch between VST and scanned function offsets"); 2949 DeferredFunctionInfo[Fn] = CurBit; 2950 2951 // Skip over the function block for now. 2952 if (Error Err = Stream.SkipBlock()) 2953 return Err; 2954 return Error::success(); 2955 } 2956 2957 Error BitcodeReader::globalCleanup() { 2958 // Patch the initializers for globals and aliases up. 2959 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2960 return Err; 2961 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2962 return error("Malformed global initializer set"); 2963 2964 // Look for intrinsic functions which need to be upgraded at some point 2965 for (Function &F : *TheModule) { 2966 MDLoader->upgradeDebugIntrinsics(F); 2967 Function *NewFn; 2968 if (UpgradeIntrinsicFunction(&F, NewFn)) 2969 UpgradedIntrinsics[&F] = NewFn; 2970 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2971 // Some types could be renamed during loading if several modules are 2972 // loaded in the same LLVMContext (LTO scenario). In this case we should 2973 // remangle intrinsics names as well. 2974 RemangledIntrinsics[&F] = Remangled.getValue(); 2975 } 2976 2977 // Look for global variables which need to be renamed. 2978 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2979 for (GlobalVariable &GV : TheModule->globals()) 2980 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2981 UpgradedVariables.emplace_back(&GV, Upgraded); 2982 for (auto &Pair : UpgradedVariables) { 2983 Pair.first->eraseFromParent(); 2984 TheModule->getGlobalList().push_back(Pair.second); 2985 } 2986 2987 // Force deallocation of memory for these vectors to favor the client that 2988 // want lazy deserialization. 2989 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2990 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2991 IndirectSymbolInits); 2992 return Error::success(); 2993 } 2994 2995 /// Support for lazy parsing of function bodies. This is required if we 2996 /// either have an old bitcode file without a VST forward declaration record, 2997 /// or if we have an anonymous function being materialized, since anonymous 2998 /// functions do not have a name and are therefore not in the VST. 2999 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3000 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3001 return JumpFailed; 3002 3003 if (Stream.AtEndOfStream()) 3004 return error("Could not find function in stream"); 3005 3006 if (!SeenFirstFunctionBody) 3007 return error("Trying to materialize functions before seeing function blocks"); 3008 3009 // An old bitcode file with the symbol table at the end would have 3010 // finished the parse greedily. 3011 assert(SeenValueSymbolTable); 3012 3013 SmallVector<uint64_t, 64> Record; 3014 3015 while (true) { 3016 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3017 if (!MaybeEntry) 3018 return MaybeEntry.takeError(); 3019 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3020 3021 switch (Entry.Kind) { 3022 default: 3023 return error("Expect SubBlock"); 3024 case BitstreamEntry::SubBlock: 3025 switch (Entry.ID) { 3026 default: 3027 return error("Expect function block"); 3028 case bitc::FUNCTION_BLOCK_ID: 3029 if (Error Err = rememberAndSkipFunctionBody()) 3030 return Err; 3031 NextUnreadBit = Stream.GetCurrentBitNo(); 3032 return Error::success(); 3033 } 3034 } 3035 } 3036 } 3037 3038 bool BitcodeReaderBase::readBlockInfo() { 3039 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3040 Stream.ReadBlockInfoBlock(); 3041 if (!MaybeNewBlockInfo) 3042 return true; // FIXME Handle the error. 3043 Optional<BitstreamBlockInfo> NewBlockInfo = 3044 std::move(MaybeNewBlockInfo.get()); 3045 if (!NewBlockInfo) 3046 return true; 3047 BlockInfo = std::move(*NewBlockInfo); 3048 return false; 3049 } 3050 3051 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3052 // v1: [selection_kind, name] 3053 // v2: [strtab_offset, strtab_size, selection_kind] 3054 StringRef Name; 3055 std::tie(Name, Record) = readNameFromStrtab(Record); 3056 3057 if (Record.empty()) 3058 return error("Invalid record"); 3059 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3060 std::string OldFormatName; 3061 if (!UseStrtab) { 3062 if (Record.size() < 2) 3063 return error("Invalid record"); 3064 unsigned ComdatNameSize = Record[1]; 3065 OldFormatName.reserve(ComdatNameSize); 3066 for (unsigned i = 0; i != ComdatNameSize; ++i) 3067 OldFormatName += (char)Record[2 + i]; 3068 Name = OldFormatName; 3069 } 3070 Comdat *C = TheModule->getOrInsertComdat(Name); 3071 C->setSelectionKind(SK); 3072 ComdatList.push_back(C); 3073 return Error::success(); 3074 } 3075 3076 static void inferDSOLocal(GlobalValue *GV) { 3077 // infer dso_local from linkage and visibility if it is not encoded. 3078 if (GV->hasLocalLinkage() || 3079 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3080 GV->setDSOLocal(true); 3081 } 3082 3083 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3084 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3085 // visibility, threadlocal, unnamed_addr, externally_initialized, 3086 // dllstorageclass, comdat, attributes, preemption specifier, 3087 // partition strtab offset, partition strtab size] (name in VST) 3088 // v2: [strtab_offset, strtab_size, v1] 3089 StringRef Name; 3090 std::tie(Name, Record) = readNameFromStrtab(Record); 3091 3092 if (Record.size() < 6) 3093 return error("Invalid record"); 3094 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3095 Type *Ty = flattenPointerTypes(FullTy); 3096 if (!Ty) 3097 return error("Invalid record"); 3098 bool isConstant = Record[1] & 1; 3099 bool explicitType = Record[1] & 2; 3100 unsigned AddressSpace; 3101 if (explicitType) { 3102 AddressSpace = Record[1] >> 2; 3103 } else { 3104 if (!Ty->isPointerTy()) 3105 return error("Invalid type for value"); 3106 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3107 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3108 } 3109 3110 uint64_t RawLinkage = Record[3]; 3111 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3112 MaybeAlign Alignment; 3113 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3114 return Err; 3115 std::string Section; 3116 if (Record[5]) { 3117 if (Record[5] - 1 >= SectionTable.size()) 3118 return error("Invalid ID"); 3119 Section = SectionTable[Record[5] - 1]; 3120 } 3121 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3122 // Local linkage must have default visibility. 3123 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3124 // FIXME: Change to an error if non-default in 4.0. 3125 Visibility = getDecodedVisibility(Record[6]); 3126 3127 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3128 if (Record.size() > 7) 3129 TLM = getDecodedThreadLocalMode(Record[7]); 3130 3131 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3132 if (Record.size() > 8) 3133 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3134 3135 bool ExternallyInitialized = false; 3136 if (Record.size() > 9) 3137 ExternallyInitialized = Record[9]; 3138 3139 GlobalVariable *NewGV = 3140 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3141 nullptr, TLM, AddressSpace, ExternallyInitialized); 3142 NewGV->setAlignment(Alignment); 3143 if (!Section.empty()) 3144 NewGV->setSection(Section); 3145 NewGV->setVisibility(Visibility); 3146 NewGV->setUnnamedAddr(UnnamedAddr); 3147 3148 if (Record.size() > 10) 3149 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3150 else 3151 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3152 3153 FullTy = PointerType::get(FullTy, AddressSpace); 3154 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3155 "Incorrect fully specified type for GlobalVariable"); 3156 ValueList.push_back(NewGV, FullTy); 3157 3158 // Remember which value to use for the global initializer. 3159 if (unsigned InitID = Record[2]) 3160 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3161 3162 if (Record.size() > 11) { 3163 if (unsigned ComdatID = Record[11]) { 3164 if (ComdatID > ComdatList.size()) 3165 return error("Invalid global variable comdat ID"); 3166 NewGV->setComdat(ComdatList[ComdatID - 1]); 3167 } 3168 } else if (hasImplicitComdat(RawLinkage)) { 3169 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3170 } 3171 3172 if (Record.size() > 12) { 3173 auto AS = getAttributes(Record[12]).getFnAttributes(); 3174 NewGV->setAttributes(AS); 3175 } 3176 3177 if (Record.size() > 13) { 3178 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3179 } 3180 inferDSOLocal(NewGV); 3181 3182 // Check whether we have enough values to read a partition name. 3183 if (Record.size() > 15) 3184 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3185 3186 return Error::success(); 3187 } 3188 3189 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3190 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3191 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3192 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3193 // v2: [strtab_offset, strtab_size, v1] 3194 StringRef Name; 3195 std::tie(Name, Record) = readNameFromStrtab(Record); 3196 3197 if (Record.size() < 8) 3198 return error("Invalid record"); 3199 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3200 Type *FTy = flattenPointerTypes(FullFTy); 3201 if (!FTy) 3202 return error("Invalid record"); 3203 if (isa<PointerType>(FTy)) 3204 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3205 3206 if (!isa<FunctionType>(FTy)) 3207 return error("Invalid type for value"); 3208 auto CC = static_cast<CallingConv::ID>(Record[1]); 3209 if (CC & ~CallingConv::MaxID) 3210 return error("Invalid calling convention ID"); 3211 3212 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3213 if (Record.size() > 16) 3214 AddrSpace = Record[16]; 3215 3216 Function *Func = 3217 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3218 AddrSpace, Name, TheModule); 3219 3220 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3221 "Incorrect fully specified type provided for function"); 3222 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3223 3224 Func->setCallingConv(CC); 3225 bool isProto = Record[2]; 3226 uint64_t RawLinkage = Record[3]; 3227 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3228 Func->setAttributes(getAttributes(Record[4])); 3229 3230 // Upgrade any old-style byval without a type by propagating the argument's 3231 // pointee type. There should be no opaque pointers where the byval type is 3232 // implicit. 3233 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3234 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3235 continue; 3236 3237 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3238 Func->removeParamAttr(i, Attribute::ByVal); 3239 Func->addParamAttr(i, Attribute::getWithByValType( 3240 Context, getPointerElementFlatType(PTy))); 3241 } 3242 3243 MaybeAlign Alignment; 3244 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3245 return Err; 3246 Func->setAlignment(Alignment); 3247 if (Record[6]) { 3248 if (Record[6] - 1 >= SectionTable.size()) 3249 return error("Invalid ID"); 3250 Func->setSection(SectionTable[Record[6] - 1]); 3251 } 3252 // Local linkage must have default visibility. 3253 if (!Func->hasLocalLinkage()) 3254 // FIXME: Change to an error if non-default in 4.0. 3255 Func->setVisibility(getDecodedVisibility(Record[7])); 3256 if (Record.size() > 8 && Record[8]) { 3257 if (Record[8] - 1 >= GCTable.size()) 3258 return error("Invalid ID"); 3259 Func->setGC(GCTable[Record[8] - 1]); 3260 } 3261 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3262 if (Record.size() > 9) 3263 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3264 Func->setUnnamedAddr(UnnamedAddr); 3265 if (Record.size() > 10 && Record[10] != 0) 3266 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3267 3268 if (Record.size() > 11) 3269 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3270 else 3271 upgradeDLLImportExportLinkage(Func, RawLinkage); 3272 3273 if (Record.size() > 12) { 3274 if (unsigned ComdatID = Record[12]) { 3275 if (ComdatID > ComdatList.size()) 3276 return error("Invalid function comdat ID"); 3277 Func->setComdat(ComdatList[ComdatID - 1]); 3278 } 3279 } else if (hasImplicitComdat(RawLinkage)) { 3280 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3281 } 3282 3283 if (Record.size() > 13 && Record[13] != 0) 3284 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3285 3286 if (Record.size() > 14 && Record[14] != 0) 3287 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3288 3289 if (Record.size() > 15) { 3290 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3291 } 3292 inferDSOLocal(Func); 3293 3294 // Record[16] is the address space number. 3295 3296 // Check whether we have enough values to read a partition name. 3297 if (Record.size() > 18) 3298 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3299 3300 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3301 assert(Func->getType() == flattenPointerTypes(FullTy) && 3302 "Incorrect fully specified type provided for Function"); 3303 ValueList.push_back(Func, FullTy); 3304 3305 // If this is a function with a body, remember the prototype we are 3306 // creating now, so that we can match up the body with them later. 3307 if (!isProto) { 3308 Func->setIsMaterializable(true); 3309 FunctionsWithBodies.push_back(Func); 3310 DeferredFunctionInfo[Func] = 0; 3311 } 3312 return Error::success(); 3313 } 3314 3315 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3316 unsigned BitCode, ArrayRef<uint64_t> Record) { 3317 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3318 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3319 // dllstorageclass, threadlocal, unnamed_addr, 3320 // preemption specifier] (name in VST) 3321 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3322 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3323 // preemption specifier] (name in VST) 3324 // v2: [strtab_offset, strtab_size, v1] 3325 StringRef Name; 3326 std::tie(Name, Record) = readNameFromStrtab(Record); 3327 3328 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3329 if (Record.size() < (3 + (unsigned)NewRecord)) 3330 return error("Invalid record"); 3331 unsigned OpNum = 0; 3332 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3333 Type *Ty = flattenPointerTypes(FullTy); 3334 if (!Ty) 3335 return error("Invalid record"); 3336 3337 unsigned AddrSpace; 3338 if (!NewRecord) { 3339 auto *PTy = dyn_cast<PointerType>(Ty); 3340 if (!PTy) 3341 return error("Invalid type for value"); 3342 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3343 AddrSpace = PTy->getAddressSpace(); 3344 } else { 3345 AddrSpace = Record[OpNum++]; 3346 } 3347 3348 auto Val = Record[OpNum++]; 3349 auto Linkage = Record[OpNum++]; 3350 GlobalIndirectSymbol *NewGA; 3351 if (BitCode == bitc::MODULE_CODE_ALIAS || 3352 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3353 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3354 TheModule); 3355 else 3356 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3357 nullptr, TheModule); 3358 3359 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3360 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3361 // Old bitcode files didn't have visibility field. 3362 // Local linkage must have default visibility. 3363 if (OpNum != Record.size()) { 3364 auto VisInd = OpNum++; 3365 if (!NewGA->hasLocalLinkage()) 3366 // FIXME: Change to an error if non-default in 4.0. 3367 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3368 } 3369 if (BitCode == bitc::MODULE_CODE_ALIAS || 3370 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3371 if (OpNum != Record.size()) 3372 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3373 else 3374 upgradeDLLImportExportLinkage(NewGA, Linkage); 3375 if (OpNum != Record.size()) 3376 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3377 if (OpNum != Record.size()) 3378 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3379 } 3380 if (OpNum != Record.size()) 3381 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3382 inferDSOLocal(NewGA); 3383 3384 // Check whether we have enough values to read a partition name. 3385 if (OpNum + 1 < Record.size()) { 3386 NewGA->setPartition( 3387 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3388 OpNum += 2; 3389 } 3390 3391 FullTy = PointerType::get(FullTy, AddrSpace); 3392 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3393 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3394 ValueList.push_back(NewGA, FullTy); 3395 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3396 return Error::success(); 3397 } 3398 3399 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3400 bool ShouldLazyLoadMetadata) { 3401 if (ResumeBit) { 3402 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3403 return JumpFailed; 3404 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3405 return Err; 3406 3407 SmallVector<uint64_t, 64> Record; 3408 3409 // Read all the records for this module. 3410 while (true) { 3411 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3412 if (!MaybeEntry) 3413 return MaybeEntry.takeError(); 3414 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3415 3416 switch (Entry.Kind) { 3417 case BitstreamEntry::Error: 3418 return error("Malformed block"); 3419 case BitstreamEntry::EndBlock: 3420 return globalCleanup(); 3421 3422 case BitstreamEntry::SubBlock: 3423 switch (Entry.ID) { 3424 default: // Skip unknown content. 3425 if (Error Err = Stream.SkipBlock()) 3426 return Err; 3427 break; 3428 case bitc::BLOCKINFO_BLOCK_ID: 3429 if (readBlockInfo()) 3430 return error("Malformed block"); 3431 break; 3432 case bitc::PARAMATTR_BLOCK_ID: 3433 if (Error Err = parseAttributeBlock()) 3434 return Err; 3435 break; 3436 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3437 if (Error Err = parseAttributeGroupBlock()) 3438 return Err; 3439 break; 3440 case bitc::TYPE_BLOCK_ID_NEW: 3441 if (Error Err = parseTypeTable()) 3442 return Err; 3443 break; 3444 case bitc::VALUE_SYMTAB_BLOCK_ID: 3445 if (!SeenValueSymbolTable) { 3446 // Either this is an old form VST without function index and an 3447 // associated VST forward declaration record (which would have caused 3448 // the VST to be jumped to and parsed before it was encountered 3449 // normally in the stream), or there were no function blocks to 3450 // trigger an earlier parsing of the VST. 3451 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3452 if (Error Err = parseValueSymbolTable()) 3453 return Err; 3454 SeenValueSymbolTable = true; 3455 } else { 3456 // We must have had a VST forward declaration record, which caused 3457 // the parser to jump to and parse the VST earlier. 3458 assert(VSTOffset > 0); 3459 if (Error Err = Stream.SkipBlock()) 3460 return Err; 3461 } 3462 break; 3463 case bitc::CONSTANTS_BLOCK_ID: 3464 if (Error Err = parseConstants()) 3465 return Err; 3466 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3467 return Err; 3468 break; 3469 case bitc::METADATA_BLOCK_ID: 3470 if (ShouldLazyLoadMetadata) { 3471 if (Error Err = rememberAndSkipMetadata()) 3472 return Err; 3473 break; 3474 } 3475 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3476 if (Error Err = MDLoader->parseModuleMetadata()) 3477 return Err; 3478 break; 3479 case bitc::METADATA_KIND_BLOCK_ID: 3480 if (Error Err = MDLoader->parseMetadataKinds()) 3481 return Err; 3482 break; 3483 case bitc::FUNCTION_BLOCK_ID: 3484 // If this is the first function body we've seen, reverse the 3485 // FunctionsWithBodies list. 3486 if (!SeenFirstFunctionBody) { 3487 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3488 if (Error Err = globalCleanup()) 3489 return Err; 3490 SeenFirstFunctionBody = true; 3491 } 3492 3493 if (VSTOffset > 0) { 3494 // If we have a VST forward declaration record, make sure we 3495 // parse the VST now if we haven't already. It is needed to 3496 // set up the DeferredFunctionInfo vector for lazy reading. 3497 if (!SeenValueSymbolTable) { 3498 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3499 return Err; 3500 SeenValueSymbolTable = true; 3501 // Fall through so that we record the NextUnreadBit below. 3502 // This is necessary in case we have an anonymous function that 3503 // is later materialized. Since it will not have a VST entry we 3504 // need to fall back to the lazy parse to find its offset. 3505 } else { 3506 // If we have a VST forward declaration record, but have already 3507 // parsed the VST (just above, when the first function body was 3508 // encountered here), then we are resuming the parse after 3509 // materializing functions. The ResumeBit points to the 3510 // start of the last function block recorded in the 3511 // DeferredFunctionInfo map. Skip it. 3512 if (Error Err = Stream.SkipBlock()) 3513 return Err; 3514 continue; 3515 } 3516 } 3517 3518 // Support older bitcode files that did not have the function 3519 // index in the VST, nor a VST forward declaration record, as 3520 // well as anonymous functions that do not have VST entries. 3521 // Build the DeferredFunctionInfo vector on the fly. 3522 if (Error Err = rememberAndSkipFunctionBody()) 3523 return Err; 3524 3525 // Suspend parsing when we reach the function bodies. Subsequent 3526 // materialization calls will resume it when necessary. If the bitcode 3527 // file is old, the symbol table will be at the end instead and will not 3528 // have been seen yet. In this case, just finish the parse now. 3529 if (SeenValueSymbolTable) { 3530 NextUnreadBit = Stream.GetCurrentBitNo(); 3531 // After the VST has been parsed, we need to make sure intrinsic name 3532 // are auto-upgraded. 3533 return globalCleanup(); 3534 } 3535 break; 3536 case bitc::USELIST_BLOCK_ID: 3537 if (Error Err = parseUseLists()) 3538 return Err; 3539 break; 3540 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3541 if (Error Err = parseOperandBundleTags()) 3542 return Err; 3543 break; 3544 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3545 if (Error Err = parseSyncScopeNames()) 3546 return Err; 3547 break; 3548 } 3549 continue; 3550 3551 case BitstreamEntry::Record: 3552 // The interesting case. 3553 break; 3554 } 3555 3556 // Read a record. 3557 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3558 if (!MaybeBitCode) 3559 return MaybeBitCode.takeError(); 3560 switch (unsigned BitCode = MaybeBitCode.get()) { 3561 default: break; // Default behavior, ignore unknown content. 3562 case bitc::MODULE_CODE_VERSION: { 3563 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3564 if (!VersionOrErr) 3565 return VersionOrErr.takeError(); 3566 UseRelativeIDs = *VersionOrErr >= 1; 3567 break; 3568 } 3569 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3570 std::string S; 3571 if (convertToString(Record, 0, S)) 3572 return error("Invalid record"); 3573 TheModule->setTargetTriple(S); 3574 break; 3575 } 3576 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3577 std::string S; 3578 if (convertToString(Record, 0, S)) 3579 return error("Invalid record"); 3580 TheModule->setDataLayout(S); 3581 break; 3582 } 3583 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3584 std::string S; 3585 if (convertToString(Record, 0, S)) 3586 return error("Invalid record"); 3587 TheModule->setModuleInlineAsm(S); 3588 break; 3589 } 3590 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3591 // FIXME: Remove in 4.0. 3592 std::string S; 3593 if (convertToString(Record, 0, S)) 3594 return error("Invalid record"); 3595 // Ignore value. 3596 break; 3597 } 3598 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3599 std::string S; 3600 if (convertToString(Record, 0, S)) 3601 return error("Invalid record"); 3602 SectionTable.push_back(S); 3603 break; 3604 } 3605 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3606 std::string S; 3607 if (convertToString(Record, 0, S)) 3608 return error("Invalid record"); 3609 GCTable.push_back(S); 3610 break; 3611 } 3612 case bitc::MODULE_CODE_COMDAT: 3613 if (Error Err = parseComdatRecord(Record)) 3614 return Err; 3615 break; 3616 case bitc::MODULE_CODE_GLOBALVAR: 3617 if (Error Err = parseGlobalVarRecord(Record)) 3618 return Err; 3619 break; 3620 case bitc::MODULE_CODE_FUNCTION: 3621 if (Error Err = parseFunctionRecord(Record)) 3622 return Err; 3623 break; 3624 case bitc::MODULE_CODE_IFUNC: 3625 case bitc::MODULE_CODE_ALIAS: 3626 case bitc::MODULE_CODE_ALIAS_OLD: 3627 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3628 return Err; 3629 break; 3630 /// MODULE_CODE_VSTOFFSET: [offset] 3631 case bitc::MODULE_CODE_VSTOFFSET: 3632 if (Record.size() < 1) 3633 return error("Invalid record"); 3634 // Note that we subtract 1 here because the offset is relative to one word 3635 // before the start of the identification or module block, which was 3636 // historically always the start of the regular bitcode header. 3637 VSTOffset = Record[0] - 1; 3638 break; 3639 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3640 case bitc::MODULE_CODE_SOURCE_FILENAME: 3641 SmallString<128> ValueName; 3642 if (convertToString(Record, 0, ValueName)) 3643 return error("Invalid record"); 3644 TheModule->setSourceFileName(ValueName); 3645 break; 3646 } 3647 Record.clear(); 3648 3649 // Upgrade data layout string. 3650 std::string DL = llvm::UpgradeDataLayoutString( 3651 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3652 TheModule->setDataLayout(DL); 3653 } 3654 } 3655 3656 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3657 bool IsImporting) { 3658 TheModule = M; 3659 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3660 [&](unsigned ID) { return getTypeByID(ID); }); 3661 return parseModule(0, ShouldLazyLoadMetadata); 3662 } 3663 3664 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3665 if (!isa<PointerType>(PtrType)) 3666 return error("Load/Store operand is not a pointer type"); 3667 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3668 3669 if (ValType && ValType != ElemType) 3670 return error("Explicit load/store type does not match pointee " 3671 "type of pointer operand"); 3672 if (!PointerType::isLoadableOrStorableType(ElemType)) 3673 return error("Cannot load/store from pointer"); 3674 return Error::success(); 3675 } 3676 3677 void BitcodeReader::propagateByValTypes(CallBase *CB, 3678 ArrayRef<Type *> ArgsFullTys) { 3679 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3680 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3681 continue; 3682 3683 CB->removeParamAttr(i, Attribute::ByVal); 3684 CB->addParamAttr( 3685 i, Attribute::getWithByValType( 3686 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3687 } 3688 } 3689 3690 /// Lazily parse the specified function body block. 3691 Error BitcodeReader::parseFunctionBody(Function *F) { 3692 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3693 return Err; 3694 3695 // Unexpected unresolved metadata when parsing function. 3696 if (MDLoader->hasFwdRefs()) 3697 return error("Invalid function metadata: incoming forward references"); 3698 3699 InstructionList.clear(); 3700 unsigned ModuleValueListSize = ValueList.size(); 3701 unsigned ModuleMDLoaderSize = MDLoader->size(); 3702 3703 // Add all the function arguments to the value table. 3704 unsigned ArgNo = 0; 3705 FunctionType *FullFTy = FunctionTypes[F]; 3706 for (Argument &I : F->args()) { 3707 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3708 "Incorrect fully specified type for Function Argument"); 3709 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3710 } 3711 unsigned NextValueNo = ValueList.size(); 3712 BasicBlock *CurBB = nullptr; 3713 unsigned CurBBNo = 0; 3714 3715 DebugLoc LastLoc; 3716 auto getLastInstruction = [&]() -> Instruction * { 3717 if (CurBB && !CurBB->empty()) 3718 return &CurBB->back(); 3719 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3720 !FunctionBBs[CurBBNo - 1]->empty()) 3721 return &FunctionBBs[CurBBNo - 1]->back(); 3722 return nullptr; 3723 }; 3724 3725 std::vector<OperandBundleDef> OperandBundles; 3726 3727 // Read all the records. 3728 SmallVector<uint64_t, 64> Record; 3729 3730 while (true) { 3731 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3732 if (!MaybeEntry) 3733 return MaybeEntry.takeError(); 3734 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3735 3736 switch (Entry.Kind) { 3737 case BitstreamEntry::Error: 3738 return error("Malformed block"); 3739 case BitstreamEntry::EndBlock: 3740 goto OutOfRecordLoop; 3741 3742 case BitstreamEntry::SubBlock: 3743 switch (Entry.ID) { 3744 default: // Skip unknown content. 3745 if (Error Err = Stream.SkipBlock()) 3746 return Err; 3747 break; 3748 case bitc::CONSTANTS_BLOCK_ID: 3749 if (Error Err = parseConstants()) 3750 return Err; 3751 NextValueNo = ValueList.size(); 3752 break; 3753 case bitc::VALUE_SYMTAB_BLOCK_ID: 3754 if (Error Err = parseValueSymbolTable()) 3755 return Err; 3756 break; 3757 case bitc::METADATA_ATTACHMENT_ID: 3758 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3759 return Err; 3760 break; 3761 case bitc::METADATA_BLOCK_ID: 3762 assert(DeferredMetadataInfo.empty() && 3763 "Must read all module-level metadata before function-level"); 3764 if (Error Err = MDLoader->parseFunctionMetadata()) 3765 return Err; 3766 break; 3767 case bitc::USELIST_BLOCK_ID: 3768 if (Error Err = parseUseLists()) 3769 return Err; 3770 break; 3771 } 3772 continue; 3773 3774 case BitstreamEntry::Record: 3775 // The interesting case. 3776 break; 3777 } 3778 3779 // Read a record. 3780 Record.clear(); 3781 Instruction *I = nullptr; 3782 Type *FullTy = nullptr; 3783 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3784 if (!MaybeBitCode) 3785 return MaybeBitCode.takeError(); 3786 switch (unsigned BitCode = MaybeBitCode.get()) { 3787 default: // Default behavior: reject 3788 return error("Invalid value"); 3789 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3790 if (Record.size() < 1 || Record[0] == 0) 3791 return error("Invalid record"); 3792 // Create all the basic blocks for the function. 3793 FunctionBBs.resize(Record[0]); 3794 3795 // See if anything took the address of blocks in this function. 3796 auto BBFRI = BasicBlockFwdRefs.find(F); 3797 if (BBFRI == BasicBlockFwdRefs.end()) { 3798 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3799 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3800 } else { 3801 auto &BBRefs = BBFRI->second; 3802 // Check for invalid basic block references. 3803 if (BBRefs.size() > FunctionBBs.size()) 3804 return error("Invalid ID"); 3805 assert(!BBRefs.empty() && "Unexpected empty array"); 3806 assert(!BBRefs.front() && "Invalid reference to entry block"); 3807 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3808 ++I) 3809 if (I < RE && BBRefs[I]) { 3810 BBRefs[I]->insertInto(F); 3811 FunctionBBs[I] = BBRefs[I]; 3812 } else { 3813 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3814 } 3815 3816 // Erase from the table. 3817 BasicBlockFwdRefs.erase(BBFRI); 3818 } 3819 3820 CurBB = FunctionBBs[0]; 3821 continue; 3822 } 3823 3824 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3825 // This record indicates that the last instruction is at the same 3826 // location as the previous instruction with a location. 3827 I = getLastInstruction(); 3828 3829 if (!I) 3830 return error("Invalid record"); 3831 I->setDebugLoc(LastLoc); 3832 I = nullptr; 3833 continue; 3834 3835 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3836 I = getLastInstruction(); 3837 if (!I || Record.size() < 4) 3838 return error("Invalid record"); 3839 3840 unsigned Line = Record[0], Col = Record[1]; 3841 unsigned ScopeID = Record[2], IAID = Record[3]; 3842 bool isImplicitCode = Record.size() == 5 && Record[4]; 3843 3844 MDNode *Scope = nullptr, *IA = nullptr; 3845 if (ScopeID) { 3846 Scope = dyn_cast_or_null<MDNode>( 3847 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3848 if (!Scope) 3849 return error("Invalid record"); 3850 } 3851 if (IAID) { 3852 IA = dyn_cast_or_null<MDNode>( 3853 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3854 if (!IA) 3855 return error("Invalid record"); 3856 } 3857 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3858 I->setDebugLoc(LastLoc); 3859 I = nullptr; 3860 continue; 3861 } 3862 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3863 unsigned OpNum = 0; 3864 Value *LHS; 3865 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, &FullTy) || 3866 OpNum+1 > Record.size()) 3867 return error("Invalid record"); 3868 3869 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3870 if (Opc == -1) 3871 return error("Invalid record"); 3872 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3873 InstructionList.push_back(I); 3874 if (OpNum < Record.size()) { 3875 if (isa<FPMathOperator>(I)) { 3876 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3877 if (FMF.any()) 3878 I->setFastMathFlags(FMF); 3879 } 3880 } 3881 break; 3882 } 3883 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3884 unsigned OpNum = 0; 3885 Value *LHS, *RHS; 3886 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3887 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3888 OpNum+1 > Record.size()) 3889 return error("Invalid record"); 3890 3891 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3892 if (Opc == -1) 3893 return error("Invalid record"); 3894 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3895 InstructionList.push_back(I); 3896 if (OpNum < Record.size()) { 3897 if (Opc == Instruction::Add || 3898 Opc == Instruction::Sub || 3899 Opc == Instruction::Mul || 3900 Opc == Instruction::Shl) { 3901 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3902 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3903 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3904 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3905 } else if (Opc == Instruction::SDiv || 3906 Opc == Instruction::UDiv || 3907 Opc == Instruction::LShr || 3908 Opc == Instruction::AShr) { 3909 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3910 cast<BinaryOperator>(I)->setIsExact(true); 3911 } else if (isa<FPMathOperator>(I)) { 3912 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3913 if (FMF.any()) 3914 I->setFastMathFlags(FMF); 3915 } 3916 3917 } 3918 break; 3919 } 3920 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3921 unsigned OpNum = 0; 3922 Value *Op; 3923 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3924 OpNum+2 != Record.size()) 3925 return error("Invalid record"); 3926 3927 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3928 Type *ResTy = flattenPointerTypes(FullTy); 3929 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3930 if (Opc == -1 || !ResTy) 3931 return error("Invalid record"); 3932 Instruction *Temp = nullptr; 3933 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3934 if (Temp) { 3935 InstructionList.push_back(Temp); 3936 assert(CurBB && "No current BB?"); 3937 CurBB->getInstList().push_back(Temp); 3938 } 3939 } else { 3940 auto CastOp = (Instruction::CastOps)Opc; 3941 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3942 return error("Invalid cast"); 3943 I = CastInst::Create(CastOp, Op, ResTy); 3944 } 3945 InstructionList.push_back(I); 3946 break; 3947 } 3948 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3949 case bitc::FUNC_CODE_INST_GEP_OLD: 3950 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3951 unsigned OpNum = 0; 3952 3953 Type *Ty; 3954 bool InBounds; 3955 3956 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3957 InBounds = Record[OpNum++]; 3958 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3959 Ty = flattenPointerTypes(FullTy); 3960 } else { 3961 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3962 Ty = nullptr; 3963 } 3964 3965 Value *BasePtr; 3966 Type *FullBaseTy = nullptr; 3967 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 3968 return error("Invalid record"); 3969 3970 if (!Ty) { 3971 std::tie(FullTy, Ty) = 3972 getPointerElementTypes(FullBaseTy->getScalarType()); 3973 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 3974 return error( 3975 "Explicit gep type does not match pointee type of pointer operand"); 3976 3977 SmallVector<Value*, 16> GEPIdx; 3978 while (OpNum != Record.size()) { 3979 Value *Op; 3980 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3981 return error("Invalid record"); 3982 GEPIdx.push_back(Op); 3983 } 3984 3985 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3986 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 3987 3988 InstructionList.push_back(I); 3989 if (InBounds) 3990 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3991 break; 3992 } 3993 3994 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3995 // EXTRACTVAL: [opty, opval, n x indices] 3996 unsigned OpNum = 0; 3997 Value *Agg; 3998 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 3999 return error("Invalid record"); 4000 4001 unsigned RecSize = Record.size(); 4002 if (OpNum == RecSize) 4003 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4004 4005 SmallVector<unsigned, 4> EXTRACTVALIdx; 4006 for (; OpNum != RecSize; ++OpNum) { 4007 bool IsArray = FullTy->isArrayTy(); 4008 bool IsStruct = FullTy->isStructTy(); 4009 uint64_t Index = Record[OpNum]; 4010 4011 if (!IsStruct && !IsArray) 4012 return error("EXTRACTVAL: Invalid type"); 4013 if ((unsigned)Index != Index) 4014 return error("Invalid value"); 4015 if (IsStruct && Index >= FullTy->getStructNumElements()) 4016 return error("EXTRACTVAL: Invalid struct index"); 4017 if (IsArray && Index >= FullTy->getArrayNumElements()) 4018 return error("EXTRACTVAL: Invalid array index"); 4019 EXTRACTVALIdx.push_back((unsigned)Index); 4020 4021 if (IsStruct) 4022 FullTy = FullTy->getStructElementType(Index); 4023 else 4024 FullTy = FullTy->getArrayElementType(); 4025 } 4026 4027 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4028 InstructionList.push_back(I); 4029 break; 4030 } 4031 4032 case bitc::FUNC_CODE_INST_INSERTVAL: { 4033 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4034 unsigned OpNum = 0; 4035 Value *Agg; 4036 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4037 return error("Invalid record"); 4038 Value *Val; 4039 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4040 return error("Invalid record"); 4041 4042 unsigned RecSize = Record.size(); 4043 if (OpNum == RecSize) 4044 return error("INSERTVAL: Invalid instruction with 0 indices"); 4045 4046 SmallVector<unsigned, 4> INSERTVALIdx; 4047 Type *CurTy = Agg->getType(); 4048 for (; OpNum != RecSize; ++OpNum) { 4049 bool IsArray = CurTy->isArrayTy(); 4050 bool IsStruct = CurTy->isStructTy(); 4051 uint64_t Index = Record[OpNum]; 4052 4053 if (!IsStruct && !IsArray) 4054 return error("INSERTVAL: Invalid type"); 4055 if ((unsigned)Index != Index) 4056 return error("Invalid value"); 4057 if (IsStruct && Index >= CurTy->getStructNumElements()) 4058 return error("INSERTVAL: Invalid struct index"); 4059 if (IsArray && Index >= CurTy->getArrayNumElements()) 4060 return error("INSERTVAL: Invalid array index"); 4061 4062 INSERTVALIdx.push_back((unsigned)Index); 4063 if (IsStruct) 4064 CurTy = CurTy->getStructElementType(Index); 4065 else 4066 CurTy = CurTy->getArrayElementType(); 4067 } 4068 4069 if (CurTy != Val->getType()) 4070 return error("Inserted value type doesn't match aggregate type"); 4071 4072 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4073 InstructionList.push_back(I); 4074 break; 4075 } 4076 4077 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4078 // obsolete form of select 4079 // handles select i1 ... in old bitcode 4080 unsigned OpNum = 0; 4081 Value *TrueVal, *FalseVal, *Cond; 4082 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4083 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4084 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4085 return error("Invalid record"); 4086 4087 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4088 InstructionList.push_back(I); 4089 break; 4090 } 4091 4092 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4093 // new form of select 4094 // handles select i1 or select [N x i1] 4095 unsigned OpNum = 0; 4096 Value *TrueVal, *FalseVal, *Cond; 4097 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4098 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4099 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4100 return error("Invalid record"); 4101 4102 // select condition can be either i1 or [N x i1] 4103 if (VectorType* vector_type = 4104 dyn_cast<VectorType>(Cond->getType())) { 4105 // expect <n x i1> 4106 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4107 return error("Invalid type for value"); 4108 } else { 4109 // expect i1 4110 if (Cond->getType() != Type::getInt1Ty(Context)) 4111 return error("Invalid type for value"); 4112 } 4113 4114 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4115 InstructionList.push_back(I); 4116 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4117 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4118 if (FMF.any()) 4119 I->setFastMathFlags(FMF); 4120 } 4121 break; 4122 } 4123 4124 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4125 unsigned OpNum = 0; 4126 Value *Vec, *Idx; 4127 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4128 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4129 return error("Invalid record"); 4130 if (!Vec->getType()->isVectorTy()) 4131 return error("Invalid type for value"); 4132 I = ExtractElementInst::Create(Vec, Idx); 4133 FullTy = FullTy->getVectorElementType(); 4134 InstructionList.push_back(I); 4135 break; 4136 } 4137 4138 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4139 unsigned OpNum = 0; 4140 Value *Vec, *Elt, *Idx; 4141 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4142 return error("Invalid record"); 4143 if (!Vec->getType()->isVectorTy()) 4144 return error("Invalid type for value"); 4145 if (popValue(Record, OpNum, NextValueNo, 4146 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4147 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4148 return error("Invalid record"); 4149 I = InsertElementInst::Create(Vec, Elt, Idx); 4150 InstructionList.push_back(I); 4151 break; 4152 } 4153 4154 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4155 unsigned OpNum = 0; 4156 Value *Vec1, *Vec2, *Mask; 4157 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4158 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4159 return error("Invalid record"); 4160 4161 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4162 return error("Invalid record"); 4163 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4164 return error("Invalid type for value"); 4165 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4166 FullTy = VectorType::get(FullTy->getVectorElementType(), 4167 Mask->getType()->getVectorNumElements()); 4168 InstructionList.push_back(I); 4169 break; 4170 } 4171 4172 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4173 // Old form of ICmp/FCmp returning bool 4174 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4175 // both legal on vectors but had different behaviour. 4176 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4177 // FCmp/ICmp returning bool or vector of bool 4178 4179 unsigned OpNum = 0; 4180 Value *LHS, *RHS; 4181 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4182 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4183 return error("Invalid record"); 4184 4185 if (OpNum >= Record.size()) 4186 return error( 4187 "Invalid record: operand number exceeded available operands"); 4188 4189 unsigned PredVal = Record[OpNum]; 4190 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4191 FastMathFlags FMF; 4192 if (IsFP && Record.size() > OpNum+1) 4193 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4194 4195 if (OpNum+1 != Record.size()) 4196 return error("Invalid record"); 4197 4198 if (LHS->getType()->isFPOrFPVectorTy()) 4199 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4200 else 4201 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4202 4203 if (FMF.any()) 4204 I->setFastMathFlags(FMF); 4205 InstructionList.push_back(I); 4206 break; 4207 } 4208 4209 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4210 { 4211 unsigned Size = Record.size(); 4212 if (Size == 0) { 4213 I = ReturnInst::Create(Context); 4214 InstructionList.push_back(I); 4215 break; 4216 } 4217 4218 unsigned OpNum = 0; 4219 Value *Op = nullptr; 4220 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4221 return error("Invalid record"); 4222 if (OpNum != Record.size()) 4223 return error("Invalid record"); 4224 4225 I = ReturnInst::Create(Context, Op); 4226 InstructionList.push_back(I); 4227 break; 4228 } 4229 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4230 if (Record.size() != 1 && Record.size() != 3) 4231 return error("Invalid record"); 4232 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4233 if (!TrueDest) 4234 return error("Invalid record"); 4235 4236 if (Record.size() == 1) { 4237 I = BranchInst::Create(TrueDest); 4238 InstructionList.push_back(I); 4239 } 4240 else { 4241 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4242 Value *Cond = getValue(Record, 2, NextValueNo, 4243 Type::getInt1Ty(Context)); 4244 if (!FalseDest || !Cond) 4245 return error("Invalid record"); 4246 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4247 InstructionList.push_back(I); 4248 } 4249 break; 4250 } 4251 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4252 if (Record.size() != 1 && Record.size() != 2) 4253 return error("Invalid record"); 4254 unsigned Idx = 0; 4255 Value *CleanupPad = 4256 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4257 if (!CleanupPad) 4258 return error("Invalid record"); 4259 BasicBlock *UnwindDest = nullptr; 4260 if (Record.size() == 2) { 4261 UnwindDest = getBasicBlock(Record[Idx++]); 4262 if (!UnwindDest) 4263 return error("Invalid record"); 4264 } 4265 4266 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4267 InstructionList.push_back(I); 4268 break; 4269 } 4270 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4271 if (Record.size() != 2) 4272 return error("Invalid record"); 4273 unsigned Idx = 0; 4274 Value *CatchPad = 4275 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4276 if (!CatchPad) 4277 return error("Invalid record"); 4278 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4279 if (!BB) 4280 return error("Invalid record"); 4281 4282 I = CatchReturnInst::Create(CatchPad, BB); 4283 InstructionList.push_back(I); 4284 break; 4285 } 4286 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4287 // We must have, at minimum, the outer scope and the number of arguments. 4288 if (Record.size() < 2) 4289 return error("Invalid record"); 4290 4291 unsigned Idx = 0; 4292 4293 Value *ParentPad = 4294 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4295 4296 unsigned NumHandlers = Record[Idx++]; 4297 4298 SmallVector<BasicBlock *, 2> Handlers; 4299 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4300 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4301 if (!BB) 4302 return error("Invalid record"); 4303 Handlers.push_back(BB); 4304 } 4305 4306 BasicBlock *UnwindDest = nullptr; 4307 if (Idx + 1 == Record.size()) { 4308 UnwindDest = getBasicBlock(Record[Idx++]); 4309 if (!UnwindDest) 4310 return error("Invalid record"); 4311 } 4312 4313 if (Record.size() != Idx) 4314 return error("Invalid record"); 4315 4316 auto *CatchSwitch = 4317 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4318 for (BasicBlock *Handler : Handlers) 4319 CatchSwitch->addHandler(Handler); 4320 I = CatchSwitch; 4321 InstructionList.push_back(I); 4322 break; 4323 } 4324 case bitc::FUNC_CODE_INST_CATCHPAD: 4325 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4326 // We must have, at minimum, the outer scope and the number of arguments. 4327 if (Record.size() < 2) 4328 return error("Invalid record"); 4329 4330 unsigned Idx = 0; 4331 4332 Value *ParentPad = 4333 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4334 4335 unsigned NumArgOperands = Record[Idx++]; 4336 4337 SmallVector<Value *, 2> Args; 4338 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4339 Value *Val; 4340 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4341 return error("Invalid record"); 4342 Args.push_back(Val); 4343 } 4344 4345 if (Record.size() != Idx) 4346 return error("Invalid record"); 4347 4348 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4349 I = CleanupPadInst::Create(ParentPad, Args); 4350 else 4351 I = CatchPadInst::Create(ParentPad, Args); 4352 InstructionList.push_back(I); 4353 break; 4354 } 4355 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4356 // Check magic 4357 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4358 // "New" SwitchInst format with case ranges. The changes to write this 4359 // format were reverted but we still recognize bitcode that uses it. 4360 // Hopefully someday we will have support for case ranges and can use 4361 // this format again. 4362 4363 Type *OpTy = getTypeByID(Record[1]); 4364 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4365 4366 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4367 BasicBlock *Default = getBasicBlock(Record[3]); 4368 if (!OpTy || !Cond || !Default) 4369 return error("Invalid record"); 4370 4371 unsigned NumCases = Record[4]; 4372 4373 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4374 InstructionList.push_back(SI); 4375 4376 unsigned CurIdx = 5; 4377 for (unsigned i = 0; i != NumCases; ++i) { 4378 SmallVector<ConstantInt*, 1> CaseVals; 4379 unsigned NumItems = Record[CurIdx++]; 4380 for (unsigned ci = 0; ci != NumItems; ++ci) { 4381 bool isSingleNumber = Record[CurIdx++]; 4382 4383 APInt Low; 4384 unsigned ActiveWords = 1; 4385 if (ValueBitWidth > 64) 4386 ActiveWords = Record[CurIdx++]; 4387 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4388 ValueBitWidth); 4389 CurIdx += ActiveWords; 4390 4391 if (!isSingleNumber) { 4392 ActiveWords = 1; 4393 if (ValueBitWidth > 64) 4394 ActiveWords = Record[CurIdx++]; 4395 APInt High = readWideAPInt( 4396 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4397 CurIdx += ActiveWords; 4398 4399 // FIXME: It is not clear whether values in the range should be 4400 // compared as signed or unsigned values. The partially 4401 // implemented changes that used this format in the past used 4402 // unsigned comparisons. 4403 for ( ; Low.ule(High); ++Low) 4404 CaseVals.push_back(ConstantInt::get(Context, Low)); 4405 } else 4406 CaseVals.push_back(ConstantInt::get(Context, Low)); 4407 } 4408 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4409 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4410 cve = CaseVals.end(); cvi != cve; ++cvi) 4411 SI->addCase(*cvi, DestBB); 4412 } 4413 I = SI; 4414 break; 4415 } 4416 4417 // Old SwitchInst format without case ranges. 4418 4419 if (Record.size() < 3 || (Record.size() & 1) == 0) 4420 return error("Invalid record"); 4421 Type *OpTy = getTypeByID(Record[0]); 4422 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4423 BasicBlock *Default = getBasicBlock(Record[2]); 4424 if (!OpTy || !Cond || !Default) 4425 return error("Invalid record"); 4426 unsigned NumCases = (Record.size()-3)/2; 4427 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4428 InstructionList.push_back(SI); 4429 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4430 ConstantInt *CaseVal = 4431 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4432 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4433 if (!CaseVal || !DestBB) { 4434 delete SI; 4435 return error("Invalid record"); 4436 } 4437 SI->addCase(CaseVal, DestBB); 4438 } 4439 I = SI; 4440 break; 4441 } 4442 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4443 if (Record.size() < 2) 4444 return error("Invalid record"); 4445 Type *OpTy = getTypeByID(Record[0]); 4446 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4447 if (!OpTy || !Address) 4448 return error("Invalid record"); 4449 unsigned NumDests = Record.size()-2; 4450 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4451 InstructionList.push_back(IBI); 4452 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4453 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4454 IBI->addDestination(DestBB); 4455 } else { 4456 delete IBI; 4457 return error("Invalid record"); 4458 } 4459 } 4460 I = IBI; 4461 break; 4462 } 4463 4464 case bitc::FUNC_CODE_INST_INVOKE: { 4465 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4466 if (Record.size() < 4) 4467 return error("Invalid record"); 4468 unsigned OpNum = 0; 4469 AttributeList PAL = getAttributes(Record[OpNum++]); 4470 unsigned CCInfo = Record[OpNum++]; 4471 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4472 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4473 4474 FunctionType *FTy = nullptr; 4475 FunctionType *FullFTy = nullptr; 4476 if ((CCInfo >> 13) & 1) { 4477 FullFTy = 4478 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4479 if (!FullFTy) 4480 return error("Explicit invoke type is not a function type"); 4481 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4482 } 4483 4484 Value *Callee; 4485 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4486 return error("Invalid record"); 4487 4488 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4489 if (!CalleeTy) 4490 return error("Callee is not a pointer"); 4491 if (!FTy) { 4492 FullFTy = 4493 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4494 if (!FullFTy) 4495 return error("Callee is not of pointer to function type"); 4496 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4497 } else if (getPointerElementFlatType(FullTy) != FTy) 4498 return error("Explicit invoke type does not match pointee type of " 4499 "callee operand"); 4500 if (Record.size() < FTy->getNumParams() + OpNum) 4501 return error("Insufficient operands to call"); 4502 4503 SmallVector<Value*, 16> Ops; 4504 SmallVector<Type *, 16> ArgsFullTys; 4505 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4506 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4507 FTy->getParamType(i))); 4508 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4509 if (!Ops.back()) 4510 return error("Invalid record"); 4511 } 4512 4513 if (!FTy->isVarArg()) { 4514 if (Record.size() != OpNum) 4515 return error("Invalid record"); 4516 } else { 4517 // Read type/value pairs for varargs params. 4518 while (OpNum != Record.size()) { 4519 Value *Op; 4520 Type *FullTy; 4521 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4522 return error("Invalid record"); 4523 Ops.push_back(Op); 4524 ArgsFullTys.push_back(FullTy); 4525 } 4526 } 4527 4528 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4529 OperandBundles); 4530 FullTy = FullFTy->getReturnType(); 4531 OperandBundles.clear(); 4532 InstructionList.push_back(I); 4533 cast<InvokeInst>(I)->setCallingConv( 4534 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4535 cast<InvokeInst>(I)->setAttributes(PAL); 4536 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4537 4538 break; 4539 } 4540 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4541 unsigned Idx = 0; 4542 Value *Val = nullptr; 4543 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4544 return error("Invalid record"); 4545 I = ResumeInst::Create(Val); 4546 InstructionList.push_back(I); 4547 break; 4548 } 4549 case bitc::FUNC_CODE_INST_CALLBR: { 4550 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4551 unsigned OpNum = 0; 4552 AttributeList PAL = getAttributes(Record[OpNum++]); 4553 unsigned CCInfo = Record[OpNum++]; 4554 4555 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4556 unsigned NumIndirectDests = Record[OpNum++]; 4557 SmallVector<BasicBlock *, 16> IndirectDests; 4558 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4559 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4560 4561 FunctionType *FTy = nullptr; 4562 FunctionType *FullFTy = nullptr; 4563 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4564 FullFTy = 4565 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4566 if (!FullFTy) 4567 return error("Explicit call type is not a function type"); 4568 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4569 } 4570 4571 Value *Callee; 4572 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4573 return error("Invalid record"); 4574 4575 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4576 if (!OpTy) 4577 return error("Callee is not a pointer type"); 4578 if (!FTy) { 4579 FullFTy = 4580 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4581 if (!FullFTy) 4582 return error("Callee is not of pointer to function type"); 4583 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4584 } else if (getPointerElementFlatType(FullTy) != FTy) 4585 return error("Explicit call type does not match pointee type of " 4586 "callee operand"); 4587 if (Record.size() < FTy->getNumParams() + OpNum) 4588 return error("Insufficient operands to call"); 4589 4590 SmallVector<Value*, 16> Args; 4591 // Read the fixed params. 4592 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4593 if (FTy->getParamType(i)->isLabelTy()) 4594 Args.push_back(getBasicBlock(Record[OpNum])); 4595 else 4596 Args.push_back(getValue(Record, OpNum, NextValueNo, 4597 FTy->getParamType(i))); 4598 if (!Args.back()) 4599 return error("Invalid record"); 4600 } 4601 4602 // Read type/value pairs for varargs params. 4603 if (!FTy->isVarArg()) { 4604 if (OpNum != Record.size()) 4605 return error("Invalid record"); 4606 } else { 4607 while (OpNum != Record.size()) { 4608 Value *Op; 4609 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4610 return error("Invalid record"); 4611 Args.push_back(Op); 4612 } 4613 } 4614 4615 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4616 OperandBundles); 4617 FullTy = FullFTy->getReturnType(); 4618 OperandBundles.clear(); 4619 InstructionList.push_back(I); 4620 cast<CallBrInst>(I)->setCallingConv( 4621 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4622 cast<CallBrInst>(I)->setAttributes(PAL); 4623 break; 4624 } 4625 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4626 I = new UnreachableInst(Context); 4627 InstructionList.push_back(I); 4628 break; 4629 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4630 if (Record.size() < 1) 4631 return error("Invalid record"); 4632 // The first record specifies the type. 4633 FullTy = getFullyStructuredTypeByID(Record[0]); 4634 Type *Ty = flattenPointerTypes(FullTy); 4635 if (!Ty) 4636 return error("Invalid record"); 4637 4638 // Phi arguments are pairs of records of [value, basic block]. 4639 // There is an optional final record for fast-math-flags if this phi has a 4640 // floating-point type. 4641 size_t NumArgs = (Record.size() - 1) / 2; 4642 PHINode *PN = PHINode::Create(Ty, NumArgs); 4643 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4644 return error("Invalid record"); 4645 InstructionList.push_back(PN); 4646 4647 for (unsigned i = 0; i != NumArgs; i++) { 4648 Value *V; 4649 // With the new function encoding, it is possible that operands have 4650 // negative IDs (for forward references). Use a signed VBR 4651 // representation to keep the encoding small. 4652 if (UseRelativeIDs) 4653 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4654 else 4655 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4656 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4657 if (!V || !BB) 4658 return error("Invalid record"); 4659 PN->addIncoming(V, BB); 4660 } 4661 I = PN; 4662 4663 // If there are an even number of records, the final record must be FMF. 4664 if (Record.size() % 2 == 0) { 4665 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4666 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4667 if (FMF.any()) 4668 I->setFastMathFlags(FMF); 4669 } 4670 4671 break; 4672 } 4673 4674 case bitc::FUNC_CODE_INST_LANDINGPAD: 4675 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4676 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4677 unsigned Idx = 0; 4678 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4679 if (Record.size() < 3) 4680 return error("Invalid record"); 4681 } else { 4682 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4683 if (Record.size() < 4) 4684 return error("Invalid record"); 4685 } 4686 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4687 Type *Ty = flattenPointerTypes(FullTy); 4688 if (!Ty) 4689 return error("Invalid record"); 4690 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4691 Value *PersFn = nullptr; 4692 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4693 return error("Invalid record"); 4694 4695 if (!F->hasPersonalityFn()) 4696 F->setPersonalityFn(cast<Constant>(PersFn)); 4697 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4698 return error("Personality function mismatch"); 4699 } 4700 4701 bool IsCleanup = !!Record[Idx++]; 4702 unsigned NumClauses = Record[Idx++]; 4703 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4704 LP->setCleanup(IsCleanup); 4705 for (unsigned J = 0; J != NumClauses; ++J) { 4706 LandingPadInst::ClauseType CT = 4707 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4708 Value *Val; 4709 4710 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4711 delete LP; 4712 return error("Invalid record"); 4713 } 4714 4715 assert((CT != LandingPadInst::Catch || 4716 !isa<ArrayType>(Val->getType())) && 4717 "Catch clause has a invalid type!"); 4718 assert((CT != LandingPadInst::Filter || 4719 isa<ArrayType>(Val->getType())) && 4720 "Filter clause has invalid type!"); 4721 LP->addClause(cast<Constant>(Val)); 4722 } 4723 4724 I = LP; 4725 InstructionList.push_back(I); 4726 break; 4727 } 4728 4729 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4730 if (Record.size() != 4) 4731 return error("Invalid record"); 4732 uint64_t AlignRecord = Record[3]; 4733 const uint64_t InAllocaMask = uint64_t(1) << 5; 4734 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4735 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4736 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4737 SwiftErrorMask; 4738 bool InAlloca = AlignRecord & InAllocaMask; 4739 bool SwiftError = AlignRecord & SwiftErrorMask; 4740 FullTy = getFullyStructuredTypeByID(Record[0]); 4741 Type *Ty = flattenPointerTypes(FullTy); 4742 if ((AlignRecord & ExplicitTypeMask) == 0) { 4743 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4744 if (!PTy) 4745 return error("Old-style alloca with a non-pointer type"); 4746 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4747 } 4748 Type *OpTy = getTypeByID(Record[1]); 4749 Value *Size = getFnValueByID(Record[2], OpTy); 4750 MaybeAlign Align; 4751 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4752 return Err; 4753 } 4754 if (!Ty || !Size) 4755 return error("Invalid record"); 4756 4757 // FIXME: Make this an optional field. 4758 const DataLayout &DL = TheModule->getDataLayout(); 4759 unsigned AS = DL.getAllocaAddrSpace(); 4760 4761 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4762 AI->setUsedWithInAlloca(InAlloca); 4763 AI->setSwiftError(SwiftError); 4764 I = AI; 4765 FullTy = PointerType::get(FullTy, AS); 4766 InstructionList.push_back(I); 4767 break; 4768 } 4769 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4770 unsigned OpNum = 0; 4771 Value *Op; 4772 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4773 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4774 return error("Invalid record"); 4775 4776 if (!isa<PointerType>(Op->getType())) 4777 return error("Load operand is not a pointer type"); 4778 4779 Type *Ty = nullptr; 4780 if (OpNum + 3 == Record.size()) { 4781 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4782 Ty = flattenPointerTypes(FullTy); 4783 } else 4784 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4785 4786 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4787 return Err; 4788 4789 MaybeAlign Align; 4790 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4791 return Err; 4792 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4793 InstructionList.push_back(I); 4794 break; 4795 } 4796 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4797 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4798 unsigned OpNum = 0; 4799 Value *Op; 4800 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4801 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4802 return error("Invalid record"); 4803 4804 if (!isa<PointerType>(Op->getType())) 4805 return error("Load operand is not a pointer type"); 4806 4807 Type *Ty = nullptr; 4808 if (OpNum + 5 == Record.size()) { 4809 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4810 Ty = flattenPointerTypes(FullTy); 4811 } else 4812 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4813 4814 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4815 return Err; 4816 4817 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4818 if (Ordering == AtomicOrdering::NotAtomic || 4819 Ordering == AtomicOrdering::Release || 4820 Ordering == AtomicOrdering::AcquireRelease) 4821 return error("Invalid record"); 4822 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4823 return error("Invalid record"); 4824 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4825 4826 MaybeAlign Align; 4827 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4828 return Err; 4829 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4830 InstructionList.push_back(I); 4831 break; 4832 } 4833 case bitc::FUNC_CODE_INST_STORE: 4834 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4835 unsigned OpNum = 0; 4836 Value *Val, *Ptr; 4837 Type *FullTy; 4838 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4839 (BitCode == bitc::FUNC_CODE_INST_STORE 4840 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4841 : popValue(Record, OpNum, NextValueNo, 4842 getPointerElementFlatType(FullTy), Val)) || 4843 OpNum + 2 != Record.size()) 4844 return error("Invalid record"); 4845 4846 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4847 return Err; 4848 MaybeAlign Align; 4849 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4850 return Err; 4851 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align); 4852 InstructionList.push_back(I); 4853 break; 4854 } 4855 case bitc::FUNC_CODE_INST_STOREATOMIC: 4856 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4857 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4858 unsigned OpNum = 0; 4859 Value *Val, *Ptr; 4860 Type *FullTy; 4861 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4862 !isa<PointerType>(Ptr->getType()) || 4863 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4864 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4865 : popValue(Record, OpNum, NextValueNo, 4866 getPointerElementFlatType(FullTy), Val)) || 4867 OpNum + 4 != Record.size()) 4868 return error("Invalid record"); 4869 4870 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4871 return Err; 4872 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4873 if (Ordering == AtomicOrdering::NotAtomic || 4874 Ordering == AtomicOrdering::Acquire || 4875 Ordering == AtomicOrdering::AcquireRelease) 4876 return error("Invalid record"); 4877 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4878 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4879 return error("Invalid record"); 4880 4881 MaybeAlign Align; 4882 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4883 return Err; 4884 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID); 4885 InstructionList.push_back(I); 4886 break; 4887 } 4888 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4889 case bitc::FUNC_CODE_INST_CMPXCHG: { 4890 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4891 // failureordering?, isweak?] 4892 unsigned OpNum = 0; 4893 Value *Ptr, *Cmp, *New; 4894 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4895 return error("Invalid record"); 4896 4897 if (!isa<PointerType>(Ptr->getType())) 4898 return error("Cmpxchg operand is not a pointer type"); 4899 4900 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4901 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4902 return error("Invalid record"); 4903 } else if (popValue(Record, OpNum, NextValueNo, 4904 getPointerElementFlatType(FullTy), Cmp)) 4905 return error("Invalid record"); 4906 else 4907 FullTy = cast<PointerType>(FullTy)->getElementType(); 4908 4909 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4910 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4911 return error("Invalid record"); 4912 4913 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4914 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4915 SuccessOrdering == AtomicOrdering::Unordered) 4916 return error("Invalid record"); 4917 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4918 4919 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4920 return Err; 4921 AtomicOrdering FailureOrdering; 4922 if (Record.size() < 7) 4923 FailureOrdering = 4924 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4925 else 4926 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4927 4928 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4929 SSID); 4930 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 4931 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4932 4933 if (Record.size() < 8) { 4934 // Before weak cmpxchgs existed, the instruction simply returned the 4935 // value loaded from memory, so bitcode files from that era will be 4936 // expecting the first component of a modern cmpxchg. 4937 CurBB->getInstList().push_back(I); 4938 I = ExtractValueInst::Create(I, 0); 4939 FullTy = cast<StructType>(FullTy)->getElementType(0); 4940 } else { 4941 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4942 } 4943 4944 InstructionList.push_back(I); 4945 break; 4946 } 4947 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4948 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4949 unsigned OpNum = 0; 4950 Value *Ptr, *Val; 4951 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4952 !isa<PointerType>(Ptr->getType()) || 4953 popValue(Record, OpNum, NextValueNo, 4954 getPointerElementFlatType(FullTy), Val) || 4955 OpNum + 4 != Record.size()) 4956 return error("Invalid record"); 4957 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4958 if (Operation < AtomicRMWInst::FIRST_BINOP || 4959 Operation > AtomicRMWInst::LAST_BINOP) 4960 return error("Invalid record"); 4961 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4962 if (Ordering == AtomicOrdering::NotAtomic || 4963 Ordering == AtomicOrdering::Unordered) 4964 return error("Invalid record"); 4965 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4966 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4967 FullTy = getPointerElementFlatType(FullTy); 4968 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4969 InstructionList.push_back(I); 4970 break; 4971 } 4972 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4973 if (2 != Record.size()) 4974 return error("Invalid record"); 4975 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4976 if (Ordering == AtomicOrdering::NotAtomic || 4977 Ordering == AtomicOrdering::Unordered || 4978 Ordering == AtomicOrdering::Monotonic) 4979 return error("Invalid record"); 4980 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4981 I = new FenceInst(Context, Ordering, SSID); 4982 InstructionList.push_back(I); 4983 break; 4984 } 4985 case bitc::FUNC_CODE_INST_CALL: { 4986 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4987 if (Record.size() < 3) 4988 return error("Invalid record"); 4989 4990 unsigned OpNum = 0; 4991 AttributeList PAL = getAttributes(Record[OpNum++]); 4992 unsigned CCInfo = Record[OpNum++]; 4993 4994 FastMathFlags FMF; 4995 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4996 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4997 if (!FMF.any()) 4998 return error("Fast math flags indicator set for call with no FMF"); 4999 } 5000 5001 FunctionType *FTy = nullptr; 5002 FunctionType *FullFTy = nullptr; 5003 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5004 FullFTy = 5005 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5006 if (!FullFTy) 5007 return error("Explicit call type is not a function type"); 5008 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5009 } 5010 5011 Value *Callee; 5012 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5013 return error("Invalid record"); 5014 5015 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5016 if (!OpTy) 5017 return error("Callee is not a pointer type"); 5018 if (!FTy) { 5019 FullFTy = 5020 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5021 if (!FullFTy) 5022 return error("Callee is not of pointer to function type"); 5023 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5024 } else if (getPointerElementFlatType(FullTy) != FTy) 5025 return error("Explicit call type does not match pointee type of " 5026 "callee operand"); 5027 if (Record.size() < FTy->getNumParams() + OpNum) 5028 return error("Insufficient operands to call"); 5029 5030 SmallVector<Value*, 16> Args; 5031 SmallVector<Type*, 16> ArgsFullTys; 5032 // Read the fixed params. 5033 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5034 if (FTy->getParamType(i)->isLabelTy()) 5035 Args.push_back(getBasicBlock(Record[OpNum])); 5036 else 5037 Args.push_back(getValue(Record, OpNum, NextValueNo, 5038 FTy->getParamType(i))); 5039 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5040 if (!Args.back()) 5041 return error("Invalid record"); 5042 } 5043 5044 // Read type/value pairs for varargs params. 5045 if (!FTy->isVarArg()) { 5046 if (OpNum != Record.size()) 5047 return error("Invalid record"); 5048 } else { 5049 while (OpNum != Record.size()) { 5050 Value *Op; 5051 Type *FullTy; 5052 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5053 return error("Invalid record"); 5054 Args.push_back(Op); 5055 ArgsFullTys.push_back(FullTy); 5056 } 5057 } 5058 5059 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5060 FullTy = FullFTy->getReturnType(); 5061 OperandBundles.clear(); 5062 InstructionList.push_back(I); 5063 cast<CallInst>(I)->setCallingConv( 5064 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5065 CallInst::TailCallKind TCK = CallInst::TCK_None; 5066 if (CCInfo & 1 << bitc::CALL_TAIL) 5067 TCK = CallInst::TCK_Tail; 5068 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5069 TCK = CallInst::TCK_MustTail; 5070 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5071 TCK = CallInst::TCK_NoTail; 5072 cast<CallInst>(I)->setTailCallKind(TCK); 5073 cast<CallInst>(I)->setAttributes(PAL); 5074 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5075 if (FMF.any()) { 5076 if (!isa<FPMathOperator>(I)) 5077 return error("Fast-math-flags specified for call without " 5078 "floating-point scalar or vector return type"); 5079 I->setFastMathFlags(FMF); 5080 } 5081 break; 5082 } 5083 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5084 if (Record.size() < 3) 5085 return error("Invalid record"); 5086 Type *OpTy = getTypeByID(Record[0]); 5087 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5088 FullTy = getFullyStructuredTypeByID(Record[2]); 5089 Type *ResTy = flattenPointerTypes(FullTy); 5090 if (!OpTy || !Op || !ResTy) 5091 return error("Invalid record"); 5092 I = new VAArgInst(Op, ResTy); 5093 InstructionList.push_back(I); 5094 break; 5095 } 5096 5097 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5098 // A call or an invoke can be optionally prefixed with some variable 5099 // number of operand bundle blocks. These blocks are read into 5100 // OperandBundles and consumed at the next call or invoke instruction. 5101 5102 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5103 return error("Invalid record"); 5104 5105 std::vector<Value *> Inputs; 5106 5107 unsigned OpNum = 1; 5108 while (OpNum != Record.size()) { 5109 Value *Op; 5110 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5111 return error("Invalid record"); 5112 Inputs.push_back(Op); 5113 } 5114 5115 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5116 continue; 5117 } 5118 } 5119 5120 // Add instruction to end of current BB. If there is no current BB, reject 5121 // this file. 5122 if (!CurBB) { 5123 I->deleteValue(); 5124 return error("Invalid instruction with no BB"); 5125 } 5126 if (!OperandBundles.empty()) { 5127 I->deleteValue(); 5128 return error("Operand bundles found with no consumer"); 5129 } 5130 CurBB->getInstList().push_back(I); 5131 5132 // If this was a terminator instruction, move to the next block. 5133 if (I->isTerminator()) { 5134 ++CurBBNo; 5135 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5136 } 5137 5138 // Non-void values get registered in the value table for future use. 5139 if (!I->getType()->isVoidTy()) { 5140 if (!FullTy) { 5141 FullTy = I->getType(); 5142 assert( 5143 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5144 !isa<ArrayType>(FullTy) && 5145 (!isa<VectorType>(FullTy) || 5146 FullTy->getVectorElementType()->isFloatingPointTy() || 5147 FullTy->getVectorElementType()->isIntegerTy()) && 5148 "Structured types must be assigned with corresponding non-opaque " 5149 "pointer type"); 5150 } 5151 5152 assert(I->getType() == flattenPointerTypes(FullTy) && 5153 "Incorrect fully structured type provided for Instruction"); 5154 ValueList.assignValue(I, NextValueNo++, FullTy); 5155 } 5156 } 5157 5158 OutOfRecordLoop: 5159 5160 if (!OperandBundles.empty()) 5161 return error("Operand bundles found with no consumer"); 5162 5163 // Check the function list for unresolved values. 5164 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5165 if (!A->getParent()) { 5166 // We found at least one unresolved value. Nuke them all to avoid leaks. 5167 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5168 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5169 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5170 delete A; 5171 } 5172 } 5173 return error("Never resolved value found in function"); 5174 } 5175 } 5176 5177 // Unexpected unresolved metadata about to be dropped. 5178 if (MDLoader->hasFwdRefs()) 5179 return error("Invalid function metadata: outgoing forward refs"); 5180 5181 // Trim the value list down to the size it was before we parsed this function. 5182 ValueList.shrinkTo(ModuleValueListSize); 5183 MDLoader->shrinkTo(ModuleMDLoaderSize); 5184 std::vector<BasicBlock*>().swap(FunctionBBs); 5185 return Error::success(); 5186 } 5187 5188 /// Find the function body in the bitcode stream 5189 Error BitcodeReader::findFunctionInStream( 5190 Function *F, 5191 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5192 while (DeferredFunctionInfoIterator->second == 0) { 5193 // This is the fallback handling for the old format bitcode that 5194 // didn't contain the function index in the VST, or when we have 5195 // an anonymous function which would not have a VST entry. 5196 // Assert that we have one of those two cases. 5197 assert(VSTOffset == 0 || !F->hasName()); 5198 // Parse the next body in the stream and set its position in the 5199 // DeferredFunctionInfo map. 5200 if (Error Err = rememberAndSkipFunctionBodies()) 5201 return Err; 5202 } 5203 return Error::success(); 5204 } 5205 5206 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5207 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5208 return SyncScope::ID(Val); 5209 if (Val >= SSIDs.size()) 5210 return SyncScope::System; // Map unknown synchronization scopes to system. 5211 return SSIDs[Val]; 5212 } 5213 5214 //===----------------------------------------------------------------------===// 5215 // GVMaterializer implementation 5216 //===----------------------------------------------------------------------===// 5217 5218 Error BitcodeReader::materialize(GlobalValue *GV) { 5219 Function *F = dyn_cast<Function>(GV); 5220 // If it's not a function or is already material, ignore the request. 5221 if (!F || !F->isMaterializable()) 5222 return Error::success(); 5223 5224 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5225 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5226 // If its position is recorded as 0, its body is somewhere in the stream 5227 // but we haven't seen it yet. 5228 if (DFII->second == 0) 5229 if (Error Err = findFunctionInStream(F, DFII)) 5230 return Err; 5231 5232 // Materialize metadata before parsing any function bodies. 5233 if (Error Err = materializeMetadata()) 5234 return Err; 5235 5236 // Move the bit stream to the saved position of the deferred function body. 5237 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5238 return JumpFailed; 5239 if (Error Err = parseFunctionBody(F)) 5240 return Err; 5241 F->setIsMaterializable(false); 5242 5243 if (StripDebugInfo) 5244 stripDebugInfo(*F); 5245 5246 // Upgrade any old intrinsic calls in the function. 5247 for (auto &I : UpgradedIntrinsics) { 5248 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5249 UI != UE;) { 5250 User *U = *UI; 5251 ++UI; 5252 if (CallInst *CI = dyn_cast<CallInst>(U)) 5253 UpgradeIntrinsicCall(CI, I.second); 5254 } 5255 } 5256 5257 // Update calls to the remangled intrinsics 5258 for (auto &I : RemangledIntrinsics) 5259 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5260 UI != UE;) 5261 // Don't expect any other users than call sites 5262 CallSite(*UI++).setCalledFunction(I.second); 5263 5264 // Finish fn->subprogram upgrade for materialized functions. 5265 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5266 F->setSubprogram(SP); 5267 5268 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5269 if (!MDLoader->isStrippingTBAA()) { 5270 for (auto &I : instructions(F)) { 5271 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5272 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5273 continue; 5274 MDLoader->setStripTBAA(true); 5275 stripTBAA(F->getParent()); 5276 } 5277 } 5278 5279 // Bring in any functions that this function forward-referenced via 5280 // blockaddresses. 5281 return materializeForwardReferencedFunctions(); 5282 } 5283 5284 Error BitcodeReader::materializeModule() { 5285 if (Error Err = materializeMetadata()) 5286 return Err; 5287 5288 // Promise to materialize all forward references. 5289 WillMaterializeAllForwardRefs = true; 5290 5291 // Iterate over the module, deserializing any functions that are still on 5292 // disk. 5293 for (Function &F : *TheModule) { 5294 if (Error Err = materialize(&F)) 5295 return Err; 5296 } 5297 // At this point, if there are any function bodies, parse the rest of 5298 // the bits in the module past the last function block we have recorded 5299 // through either lazy scanning or the VST. 5300 if (LastFunctionBlockBit || NextUnreadBit) 5301 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5302 ? LastFunctionBlockBit 5303 : NextUnreadBit)) 5304 return Err; 5305 5306 // Check that all block address forward references got resolved (as we 5307 // promised above). 5308 if (!BasicBlockFwdRefs.empty()) 5309 return error("Never resolved function from blockaddress"); 5310 5311 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5312 // delete the old functions to clean up. We can't do this unless the entire 5313 // module is materialized because there could always be another function body 5314 // with calls to the old function. 5315 for (auto &I : UpgradedIntrinsics) { 5316 for (auto *U : I.first->users()) { 5317 if (CallInst *CI = dyn_cast<CallInst>(U)) 5318 UpgradeIntrinsicCall(CI, I.second); 5319 } 5320 if (!I.first->use_empty()) 5321 I.first->replaceAllUsesWith(I.second); 5322 I.first->eraseFromParent(); 5323 } 5324 UpgradedIntrinsics.clear(); 5325 // Do the same for remangled intrinsics 5326 for (auto &I : RemangledIntrinsics) { 5327 I.first->replaceAllUsesWith(I.second); 5328 I.first->eraseFromParent(); 5329 } 5330 RemangledIntrinsics.clear(); 5331 5332 UpgradeDebugInfo(*TheModule); 5333 5334 UpgradeModuleFlags(*TheModule); 5335 5336 UpgradeARCRuntime(*TheModule); 5337 5338 return Error::success(); 5339 } 5340 5341 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5342 return IdentifiedStructTypes; 5343 } 5344 5345 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5346 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5347 StringRef ModulePath, unsigned ModuleId) 5348 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5349 ModulePath(ModulePath), ModuleId(ModuleId) {} 5350 5351 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5352 TheIndex.addModule(ModulePath, ModuleId); 5353 } 5354 5355 ModuleSummaryIndex::ModuleInfo * 5356 ModuleSummaryIndexBitcodeReader::getThisModule() { 5357 return TheIndex.getModule(ModulePath); 5358 } 5359 5360 std::pair<ValueInfo, GlobalValue::GUID> 5361 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5362 auto VGI = ValueIdToValueInfoMap[ValueId]; 5363 assert(VGI.first); 5364 return VGI; 5365 } 5366 5367 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5368 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5369 StringRef SourceFileName) { 5370 std::string GlobalId = 5371 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5372 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5373 auto OriginalNameID = ValueGUID; 5374 if (GlobalValue::isLocalLinkage(Linkage)) 5375 OriginalNameID = GlobalValue::getGUID(ValueName); 5376 if (PrintSummaryGUIDs) 5377 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5378 << ValueName << "\n"; 5379 5380 // UseStrtab is false for legacy summary formats and value names are 5381 // created on stack. In that case we save the name in a string saver in 5382 // the index so that the value name can be recorded. 5383 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5384 TheIndex.getOrInsertValueInfo( 5385 ValueGUID, 5386 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5387 OriginalNameID); 5388 } 5389 5390 // Specialized value symbol table parser used when reading module index 5391 // blocks where we don't actually create global values. The parsed information 5392 // is saved in the bitcode reader for use when later parsing summaries. 5393 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5394 uint64_t Offset, 5395 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5396 // With a strtab the VST is not required to parse the summary. 5397 if (UseStrtab) 5398 return Error::success(); 5399 5400 assert(Offset > 0 && "Expected non-zero VST offset"); 5401 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5402 if (!MaybeCurrentBit) 5403 return MaybeCurrentBit.takeError(); 5404 uint64_t CurrentBit = MaybeCurrentBit.get(); 5405 5406 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5407 return Err; 5408 5409 SmallVector<uint64_t, 64> Record; 5410 5411 // Read all the records for this value table. 5412 SmallString<128> ValueName; 5413 5414 while (true) { 5415 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5416 if (!MaybeEntry) 5417 return MaybeEntry.takeError(); 5418 BitstreamEntry Entry = MaybeEntry.get(); 5419 5420 switch (Entry.Kind) { 5421 case BitstreamEntry::SubBlock: // Handled for us already. 5422 case BitstreamEntry::Error: 5423 return error("Malformed block"); 5424 case BitstreamEntry::EndBlock: 5425 // Done parsing VST, jump back to wherever we came from. 5426 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5427 return JumpFailed; 5428 return Error::success(); 5429 case BitstreamEntry::Record: 5430 // The interesting case. 5431 break; 5432 } 5433 5434 // Read a record. 5435 Record.clear(); 5436 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5437 if (!MaybeRecord) 5438 return MaybeRecord.takeError(); 5439 switch (MaybeRecord.get()) { 5440 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5441 break; 5442 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5443 if (convertToString(Record, 1, ValueName)) 5444 return error("Invalid record"); 5445 unsigned ValueID = Record[0]; 5446 assert(!SourceFileName.empty()); 5447 auto VLI = ValueIdToLinkageMap.find(ValueID); 5448 assert(VLI != ValueIdToLinkageMap.end() && 5449 "No linkage found for VST entry?"); 5450 auto Linkage = VLI->second; 5451 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5452 ValueName.clear(); 5453 break; 5454 } 5455 case bitc::VST_CODE_FNENTRY: { 5456 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5457 if (convertToString(Record, 2, ValueName)) 5458 return error("Invalid record"); 5459 unsigned ValueID = Record[0]; 5460 assert(!SourceFileName.empty()); 5461 auto VLI = ValueIdToLinkageMap.find(ValueID); 5462 assert(VLI != ValueIdToLinkageMap.end() && 5463 "No linkage found for VST entry?"); 5464 auto Linkage = VLI->second; 5465 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5466 ValueName.clear(); 5467 break; 5468 } 5469 case bitc::VST_CODE_COMBINED_ENTRY: { 5470 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5471 unsigned ValueID = Record[0]; 5472 GlobalValue::GUID RefGUID = Record[1]; 5473 // The "original name", which is the second value of the pair will be 5474 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5475 ValueIdToValueInfoMap[ValueID] = 5476 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5477 break; 5478 } 5479 } 5480 } 5481 } 5482 5483 // Parse just the blocks needed for building the index out of the module. 5484 // At the end of this routine the module Index is populated with a map 5485 // from global value id to GlobalValueSummary objects. 5486 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5487 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5488 return Err; 5489 5490 SmallVector<uint64_t, 64> Record; 5491 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5492 unsigned ValueId = 0; 5493 5494 // Read the index for this module. 5495 while (true) { 5496 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5497 if (!MaybeEntry) 5498 return MaybeEntry.takeError(); 5499 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5500 5501 switch (Entry.Kind) { 5502 case BitstreamEntry::Error: 5503 return error("Malformed block"); 5504 case BitstreamEntry::EndBlock: 5505 return Error::success(); 5506 5507 case BitstreamEntry::SubBlock: 5508 switch (Entry.ID) { 5509 default: // Skip unknown content. 5510 if (Error Err = Stream.SkipBlock()) 5511 return Err; 5512 break; 5513 case bitc::BLOCKINFO_BLOCK_ID: 5514 // Need to parse these to get abbrev ids (e.g. for VST) 5515 if (readBlockInfo()) 5516 return error("Malformed block"); 5517 break; 5518 case bitc::VALUE_SYMTAB_BLOCK_ID: 5519 // Should have been parsed earlier via VSTOffset, unless there 5520 // is no summary section. 5521 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5522 !SeenGlobalValSummary) && 5523 "Expected early VST parse via VSTOffset record"); 5524 if (Error Err = Stream.SkipBlock()) 5525 return Err; 5526 break; 5527 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5528 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5529 // Add the module if it is a per-module index (has a source file name). 5530 if (!SourceFileName.empty()) 5531 addThisModule(); 5532 assert(!SeenValueSymbolTable && 5533 "Already read VST when parsing summary block?"); 5534 // We might not have a VST if there were no values in the 5535 // summary. An empty summary block generated when we are 5536 // performing ThinLTO compiles so we don't later invoke 5537 // the regular LTO process on them. 5538 if (VSTOffset > 0) { 5539 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5540 return Err; 5541 SeenValueSymbolTable = true; 5542 } 5543 SeenGlobalValSummary = true; 5544 if (Error Err = parseEntireSummary(Entry.ID)) 5545 return Err; 5546 break; 5547 case bitc::MODULE_STRTAB_BLOCK_ID: 5548 if (Error Err = parseModuleStringTable()) 5549 return Err; 5550 break; 5551 } 5552 continue; 5553 5554 case BitstreamEntry::Record: { 5555 Record.clear(); 5556 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5557 if (!MaybeBitCode) 5558 return MaybeBitCode.takeError(); 5559 switch (MaybeBitCode.get()) { 5560 default: 5561 break; // Default behavior, ignore unknown content. 5562 case bitc::MODULE_CODE_VERSION: { 5563 if (Error Err = parseVersionRecord(Record).takeError()) 5564 return Err; 5565 break; 5566 } 5567 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5568 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5569 SmallString<128> ValueName; 5570 if (convertToString(Record, 0, ValueName)) 5571 return error("Invalid record"); 5572 SourceFileName = ValueName.c_str(); 5573 break; 5574 } 5575 /// MODULE_CODE_HASH: [5*i32] 5576 case bitc::MODULE_CODE_HASH: { 5577 if (Record.size() != 5) 5578 return error("Invalid hash length " + Twine(Record.size()).str()); 5579 auto &Hash = getThisModule()->second.second; 5580 int Pos = 0; 5581 for (auto &Val : Record) { 5582 assert(!(Val >> 32) && "Unexpected high bits set"); 5583 Hash[Pos++] = Val; 5584 } 5585 break; 5586 } 5587 /// MODULE_CODE_VSTOFFSET: [offset] 5588 case bitc::MODULE_CODE_VSTOFFSET: 5589 if (Record.size() < 1) 5590 return error("Invalid record"); 5591 // Note that we subtract 1 here because the offset is relative to one 5592 // word before the start of the identification or module block, which 5593 // was historically always the start of the regular bitcode header. 5594 VSTOffset = Record[0] - 1; 5595 break; 5596 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5597 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5598 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5599 // v2: [strtab offset, strtab size, v1] 5600 case bitc::MODULE_CODE_GLOBALVAR: 5601 case bitc::MODULE_CODE_FUNCTION: 5602 case bitc::MODULE_CODE_ALIAS: { 5603 StringRef Name; 5604 ArrayRef<uint64_t> GVRecord; 5605 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5606 if (GVRecord.size() <= 3) 5607 return error("Invalid record"); 5608 uint64_t RawLinkage = GVRecord[3]; 5609 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5610 if (!UseStrtab) { 5611 ValueIdToLinkageMap[ValueId++] = Linkage; 5612 break; 5613 } 5614 5615 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5616 break; 5617 } 5618 } 5619 } 5620 continue; 5621 } 5622 } 5623 } 5624 5625 std::vector<ValueInfo> 5626 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5627 std::vector<ValueInfo> Ret; 5628 Ret.reserve(Record.size()); 5629 for (uint64_t RefValueId : Record) 5630 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5631 return Ret; 5632 } 5633 5634 std::vector<FunctionSummary::EdgeTy> 5635 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5636 bool IsOldProfileFormat, 5637 bool HasProfile, bool HasRelBF) { 5638 std::vector<FunctionSummary::EdgeTy> Ret; 5639 Ret.reserve(Record.size()); 5640 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5641 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5642 uint64_t RelBF = 0; 5643 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5644 if (IsOldProfileFormat) { 5645 I += 1; // Skip old callsitecount field 5646 if (HasProfile) 5647 I += 1; // Skip old profilecount field 5648 } else if (HasProfile) 5649 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5650 else if (HasRelBF) 5651 RelBF = Record[++I]; 5652 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5653 } 5654 return Ret; 5655 } 5656 5657 static void 5658 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5659 WholeProgramDevirtResolution &Wpd) { 5660 uint64_t ArgNum = Record[Slot++]; 5661 WholeProgramDevirtResolution::ByArg &B = 5662 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5663 Slot += ArgNum; 5664 5665 B.TheKind = 5666 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5667 B.Info = Record[Slot++]; 5668 B.Byte = Record[Slot++]; 5669 B.Bit = Record[Slot++]; 5670 } 5671 5672 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5673 StringRef Strtab, size_t &Slot, 5674 TypeIdSummary &TypeId) { 5675 uint64_t Id = Record[Slot++]; 5676 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5677 5678 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5679 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5680 static_cast<size_t>(Record[Slot + 1])}; 5681 Slot += 2; 5682 5683 uint64_t ResByArgNum = Record[Slot++]; 5684 for (uint64_t I = 0; I != ResByArgNum; ++I) 5685 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5686 } 5687 5688 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5689 StringRef Strtab, 5690 ModuleSummaryIndex &TheIndex) { 5691 size_t Slot = 0; 5692 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5693 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5694 Slot += 2; 5695 5696 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5697 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5698 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5699 TypeId.TTRes.SizeM1 = Record[Slot++]; 5700 TypeId.TTRes.BitMask = Record[Slot++]; 5701 TypeId.TTRes.InlineBits = Record[Slot++]; 5702 5703 while (Slot < Record.size()) 5704 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5705 } 5706 5707 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5708 ArrayRef<uint64_t> Record, size_t &Slot, 5709 TypeIdCompatibleVtableInfo &TypeId) { 5710 uint64_t Offset = Record[Slot++]; 5711 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5712 TypeId.push_back({Offset, Callee}); 5713 } 5714 5715 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5716 ArrayRef<uint64_t> Record) { 5717 size_t Slot = 0; 5718 TypeIdCompatibleVtableInfo &TypeId = 5719 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5720 {Strtab.data() + Record[Slot], 5721 static_cast<size_t>(Record[Slot + 1])}); 5722 Slot += 2; 5723 5724 while (Slot < Record.size()) 5725 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5726 } 5727 5728 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5729 unsigned WOCnt) { 5730 // Readonly and writeonly refs are in the end of the refs list. 5731 assert(ROCnt + WOCnt <= Refs.size()); 5732 unsigned FirstWORef = Refs.size() - WOCnt; 5733 unsigned RefNo = FirstWORef - ROCnt; 5734 for (; RefNo < FirstWORef; ++RefNo) 5735 Refs[RefNo].setReadOnly(); 5736 for (; RefNo < Refs.size(); ++RefNo) 5737 Refs[RefNo].setWriteOnly(); 5738 } 5739 5740 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5741 // objects in the index. 5742 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5743 if (Error Err = Stream.EnterSubBlock(ID)) 5744 return Err; 5745 SmallVector<uint64_t, 64> Record; 5746 5747 // Parse version 5748 { 5749 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5750 if (!MaybeEntry) 5751 return MaybeEntry.takeError(); 5752 BitstreamEntry Entry = MaybeEntry.get(); 5753 5754 if (Entry.Kind != BitstreamEntry::Record) 5755 return error("Invalid Summary Block: record for version expected"); 5756 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5757 if (!MaybeRecord) 5758 return MaybeRecord.takeError(); 5759 if (MaybeRecord.get() != bitc::FS_VERSION) 5760 return error("Invalid Summary Block: version expected"); 5761 } 5762 const uint64_t Version = Record[0]; 5763 const bool IsOldProfileFormat = Version == 1; 5764 if (Version < 1 || Version > 7) 5765 return error("Invalid summary version " + Twine(Version) + 5766 ". Version should be in the range [1-7]."); 5767 Record.clear(); 5768 5769 // Keep around the last seen summary to be used when we see an optional 5770 // "OriginalName" attachement. 5771 GlobalValueSummary *LastSeenSummary = nullptr; 5772 GlobalValue::GUID LastSeenGUID = 0; 5773 5774 // We can expect to see any number of type ID information records before 5775 // each function summary records; these variables store the information 5776 // collected so far so that it can be used to create the summary object. 5777 std::vector<GlobalValue::GUID> PendingTypeTests; 5778 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5779 PendingTypeCheckedLoadVCalls; 5780 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5781 PendingTypeCheckedLoadConstVCalls; 5782 5783 while (true) { 5784 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5785 if (!MaybeEntry) 5786 return MaybeEntry.takeError(); 5787 BitstreamEntry Entry = MaybeEntry.get(); 5788 5789 switch (Entry.Kind) { 5790 case BitstreamEntry::SubBlock: // Handled for us already. 5791 case BitstreamEntry::Error: 5792 return error("Malformed block"); 5793 case BitstreamEntry::EndBlock: 5794 return Error::success(); 5795 case BitstreamEntry::Record: 5796 // The interesting case. 5797 break; 5798 } 5799 5800 // Read a record. The record format depends on whether this 5801 // is a per-module index or a combined index file. In the per-module 5802 // case the records contain the associated value's ID for correlation 5803 // with VST entries. In the combined index the correlation is done 5804 // via the bitcode offset of the summary records (which were saved 5805 // in the combined index VST entries). The records also contain 5806 // information used for ThinLTO renaming and importing. 5807 Record.clear(); 5808 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5809 if (!MaybeBitCode) 5810 return MaybeBitCode.takeError(); 5811 switch (unsigned BitCode = MaybeBitCode.get()) { 5812 default: // Default behavior: ignore. 5813 break; 5814 case bitc::FS_FLAGS: { // [flags] 5815 uint64_t Flags = Record[0]; 5816 // Scan flags. 5817 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5818 5819 // 1 bit: WithGlobalValueDeadStripping flag. 5820 // Set on combined index only. 5821 if (Flags & 0x1) 5822 TheIndex.setWithGlobalValueDeadStripping(); 5823 // 1 bit: SkipModuleByDistributedBackend flag. 5824 // Set on combined index only. 5825 if (Flags & 0x2) 5826 TheIndex.setSkipModuleByDistributedBackend(); 5827 // 1 bit: HasSyntheticEntryCounts flag. 5828 // Set on combined index only. 5829 if (Flags & 0x4) 5830 TheIndex.setHasSyntheticEntryCounts(); 5831 // 1 bit: DisableSplitLTOUnit flag. 5832 // Set on per module indexes. It is up to the client to validate 5833 // the consistency of this flag across modules being linked. 5834 if (Flags & 0x8) 5835 TheIndex.setEnableSplitLTOUnit(); 5836 // 1 bit: PartiallySplitLTOUnits flag. 5837 // Set on combined index only. 5838 if (Flags & 0x10) 5839 TheIndex.setPartiallySplitLTOUnits(); 5840 break; 5841 } 5842 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5843 uint64_t ValueID = Record[0]; 5844 GlobalValue::GUID RefGUID = Record[1]; 5845 ValueIdToValueInfoMap[ValueID] = 5846 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5847 break; 5848 } 5849 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5850 // numrefs x valueid, n x (valueid)] 5851 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5852 // numrefs x valueid, 5853 // n x (valueid, hotness)] 5854 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5855 // numrefs x valueid, 5856 // n x (valueid, relblockfreq)] 5857 case bitc::FS_PERMODULE: 5858 case bitc::FS_PERMODULE_RELBF: 5859 case bitc::FS_PERMODULE_PROFILE: { 5860 unsigned ValueID = Record[0]; 5861 uint64_t RawFlags = Record[1]; 5862 unsigned InstCount = Record[2]; 5863 uint64_t RawFunFlags = 0; 5864 unsigned NumRefs = Record[3]; 5865 unsigned NumRORefs = 0, NumWORefs = 0; 5866 int RefListStartIndex = 4; 5867 if (Version >= 4) { 5868 RawFunFlags = Record[3]; 5869 NumRefs = Record[4]; 5870 RefListStartIndex = 5; 5871 if (Version >= 5) { 5872 NumRORefs = Record[5]; 5873 RefListStartIndex = 6; 5874 if (Version >= 7) { 5875 NumWORefs = Record[6]; 5876 RefListStartIndex = 7; 5877 } 5878 } 5879 } 5880 5881 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5882 // The module path string ref set in the summary must be owned by the 5883 // index's module string table. Since we don't have a module path 5884 // string table section in the per-module index, we create a single 5885 // module path string table entry with an empty (0) ID to take 5886 // ownership. 5887 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5888 assert(Record.size() >= RefListStartIndex + NumRefs && 5889 "Record size inconsistent with number of references"); 5890 std::vector<ValueInfo> Refs = makeRefList( 5891 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5892 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5893 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5894 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5895 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5896 IsOldProfileFormat, HasProfile, HasRelBF); 5897 setSpecialRefs(Refs, NumRORefs, NumWORefs); 5898 auto FS = std::make_unique<FunctionSummary>( 5899 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5900 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5901 std::move(PendingTypeTestAssumeVCalls), 5902 std::move(PendingTypeCheckedLoadVCalls), 5903 std::move(PendingTypeTestAssumeConstVCalls), 5904 std::move(PendingTypeCheckedLoadConstVCalls)); 5905 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5906 FS->setModulePath(getThisModule()->first()); 5907 FS->setOriginalName(VIAndOriginalGUID.second); 5908 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5909 break; 5910 } 5911 // FS_ALIAS: [valueid, flags, valueid] 5912 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5913 // they expect all aliasee summaries to be available. 5914 case bitc::FS_ALIAS: { 5915 unsigned ValueID = Record[0]; 5916 uint64_t RawFlags = Record[1]; 5917 unsigned AliaseeID = Record[2]; 5918 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5919 auto AS = std::make_unique<AliasSummary>(Flags); 5920 // The module path string ref set in the summary must be owned by the 5921 // index's module string table. Since we don't have a module path 5922 // string table section in the per-module index, we create a single 5923 // module path string table entry with an empty (0) ID to take 5924 // ownership. 5925 AS->setModulePath(getThisModule()->first()); 5926 5927 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5928 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5929 if (!AliaseeInModule) 5930 return error("Alias expects aliasee summary to be parsed"); 5931 AS->setAliasee(AliaseeVI, AliaseeInModule); 5932 5933 auto GUID = getValueInfoFromValueId(ValueID); 5934 AS->setOriginalName(GUID.second); 5935 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5936 break; 5937 } 5938 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5939 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5940 unsigned ValueID = Record[0]; 5941 uint64_t RawFlags = Record[1]; 5942 unsigned RefArrayStart = 2; 5943 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 5944 /* WriteOnly */ false); 5945 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5946 if (Version >= 5) { 5947 GVF = getDecodedGVarFlags(Record[2]); 5948 RefArrayStart = 3; 5949 } 5950 std::vector<ValueInfo> Refs = 5951 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5952 auto FS = 5953 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5954 FS->setModulePath(getThisModule()->first()); 5955 auto GUID = getValueInfoFromValueId(ValueID); 5956 FS->setOriginalName(GUID.second); 5957 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5958 break; 5959 } 5960 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 5961 // numrefs, numrefs x valueid, 5962 // n x (valueid, offset)] 5963 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 5964 unsigned ValueID = Record[0]; 5965 uint64_t RawFlags = Record[1]; 5966 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 5967 unsigned NumRefs = Record[3]; 5968 unsigned RefListStartIndex = 4; 5969 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 5970 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5971 std::vector<ValueInfo> Refs = makeRefList( 5972 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5973 VTableFuncList VTableFuncs; 5974 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 5975 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5976 uint64_t Offset = Record[++I]; 5977 VTableFuncs.push_back({Callee, Offset}); 5978 } 5979 auto VS = 5980 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5981 VS->setModulePath(getThisModule()->first()); 5982 VS->setVTableFuncs(VTableFuncs); 5983 auto GUID = getValueInfoFromValueId(ValueID); 5984 VS->setOriginalName(GUID.second); 5985 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 5986 break; 5987 } 5988 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5989 // numrefs x valueid, n x (valueid)] 5990 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5991 // numrefs x valueid, n x (valueid, hotness)] 5992 case bitc::FS_COMBINED: 5993 case bitc::FS_COMBINED_PROFILE: { 5994 unsigned ValueID = Record[0]; 5995 uint64_t ModuleId = Record[1]; 5996 uint64_t RawFlags = Record[2]; 5997 unsigned InstCount = Record[3]; 5998 uint64_t RawFunFlags = 0; 5999 uint64_t EntryCount = 0; 6000 unsigned NumRefs = Record[4]; 6001 unsigned NumRORefs = 0, NumWORefs = 0; 6002 int RefListStartIndex = 5; 6003 6004 if (Version >= 4) { 6005 RawFunFlags = Record[4]; 6006 RefListStartIndex = 6; 6007 size_t NumRefsIndex = 5; 6008 if (Version >= 5) { 6009 unsigned NumRORefsOffset = 1; 6010 RefListStartIndex = 7; 6011 if (Version >= 6) { 6012 NumRefsIndex = 6; 6013 EntryCount = Record[5]; 6014 RefListStartIndex = 8; 6015 if (Version >= 7) { 6016 RefListStartIndex = 9; 6017 NumWORefs = Record[8]; 6018 NumRORefsOffset = 2; 6019 } 6020 } 6021 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6022 } 6023 NumRefs = Record[NumRefsIndex]; 6024 } 6025 6026 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6027 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6028 assert(Record.size() >= RefListStartIndex + NumRefs && 6029 "Record size inconsistent with number of references"); 6030 std::vector<ValueInfo> Refs = makeRefList( 6031 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6032 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6033 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6034 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6035 IsOldProfileFormat, HasProfile, false); 6036 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6037 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6038 auto FS = std::make_unique<FunctionSummary>( 6039 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6040 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6041 std::move(PendingTypeTestAssumeVCalls), 6042 std::move(PendingTypeCheckedLoadVCalls), 6043 std::move(PendingTypeTestAssumeConstVCalls), 6044 std::move(PendingTypeCheckedLoadConstVCalls)); 6045 LastSeenSummary = FS.get(); 6046 LastSeenGUID = VI.getGUID(); 6047 FS->setModulePath(ModuleIdMap[ModuleId]); 6048 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6049 break; 6050 } 6051 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6052 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6053 // they expect all aliasee summaries to be available. 6054 case bitc::FS_COMBINED_ALIAS: { 6055 unsigned ValueID = Record[0]; 6056 uint64_t ModuleId = Record[1]; 6057 uint64_t RawFlags = Record[2]; 6058 unsigned AliaseeValueId = Record[3]; 6059 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6060 auto AS = std::make_unique<AliasSummary>(Flags); 6061 LastSeenSummary = AS.get(); 6062 AS->setModulePath(ModuleIdMap[ModuleId]); 6063 6064 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6065 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6066 AS->setAliasee(AliaseeVI, AliaseeInModule); 6067 6068 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6069 LastSeenGUID = VI.getGUID(); 6070 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6071 break; 6072 } 6073 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6074 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6075 unsigned ValueID = Record[0]; 6076 uint64_t ModuleId = Record[1]; 6077 uint64_t RawFlags = Record[2]; 6078 unsigned RefArrayStart = 3; 6079 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6080 /* WriteOnly */ false); 6081 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6082 if (Version >= 5) { 6083 GVF = getDecodedGVarFlags(Record[3]); 6084 RefArrayStart = 4; 6085 } 6086 std::vector<ValueInfo> Refs = 6087 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6088 auto FS = 6089 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6090 LastSeenSummary = FS.get(); 6091 FS->setModulePath(ModuleIdMap[ModuleId]); 6092 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6093 LastSeenGUID = VI.getGUID(); 6094 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6095 break; 6096 } 6097 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6098 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6099 uint64_t OriginalName = Record[0]; 6100 if (!LastSeenSummary) 6101 return error("Name attachment that does not follow a combined record"); 6102 LastSeenSummary->setOriginalName(OriginalName); 6103 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6104 // Reset the LastSeenSummary 6105 LastSeenSummary = nullptr; 6106 LastSeenGUID = 0; 6107 break; 6108 } 6109 case bitc::FS_TYPE_TESTS: 6110 assert(PendingTypeTests.empty()); 6111 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6112 Record.end()); 6113 break; 6114 6115 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6116 assert(PendingTypeTestAssumeVCalls.empty()); 6117 for (unsigned I = 0; I != Record.size(); I += 2) 6118 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6119 break; 6120 6121 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6122 assert(PendingTypeCheckedLoadVCalls.empty()); 6123 for (unsigned I = 0; I != Record.size(); I += 2) 6124 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6125 break; 6126 6127 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6128 PendingTypeTestAssumeConstVCalls.push_back( 6129 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6130 break; 6131 6132 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6133 PendingTypeCheckedLoadConstVCalls.push_back( 6134 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6135 break; 6136 6137 case bitc::FS_CFI_FUNCTION_DEFS: { 6138 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6139 for (unsigned I = 0; I != Record.size(); I += 2) 6140 CfiFunctionDefs.insert( 6141 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6142 break; 6143 } 6144 6145 case bitc::FS_CFI_FUNCTION_DECLS: { 6146 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6147 for (unsigned I = 0; I != Record.size(); I += 2) 6148 CfiFunctionDecls.insert( 6149 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6150 break; 6151 } 6152 6153 case bitc::FS_TYPE_ID: 6154 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6155 break; 6156 6157 case bitc::FS_TYPE_ID_METADATA: 6158 parseTypeIdCompatibleVtableSummaryRecord(Record); 6159 break; 6160 } 6161 } 6162 llvm_unreachable("Exit infinite loop"); 6163 } 6164 6165 // Parse the module string table block into the Index. 6166 // This populates the ModulePathStringTable map in the index. 6167 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6168 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6169 return Err; 6170 6171 SmallVector<uint64_t, 64> Record; 6172 6173 SmallString<128> ModulePath; 6174 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6175 6176 while (true) { 6177 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6178 if (!MaybeEntry) 6179 return MaybeEntry.takeError(); 6180 BitstreamEntry Entry = MaybeEntry.get(); 6181 6182 switch (Entry.Kind) { 6183 case BitstreamEntry::SubBlock: // Handled for us already. 6184 case BitstreamEntry::Error: 6185 return error("Malformed block"); 6186 case BitstreamEntry::EndBlock: 6187 return Error::success(); 6188 case BitstreamEntry::Record: 6189 // The interesting case. 6190 break; 6191 } 6192 6193 Record.clear(); 6194 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6195 if (!MaybeRecord) 6196 return MaybeRecord.takeError(); 6197 switch (MaybeRecord.get()) { 6198 default: // Default behavior: ignore. 6199 break; 6200 case bitc::MST_CODE_ENTRY: { 6201 // MST_ENTRY: [modid, namechar x N] 6202 uint64_t ModuleId = Record[0]; 6203 6204 if (convertToString(Record, 1, ModulePath)) 6205 return error("Invalid record"); 6206 6207 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6208 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6209 6210 ModulePath.clear(); 6211 break; 6212 } 6213 /// MST_CODE_HASH: [5*i32] 6214 case bitc::MST_CODE_HASH: { 6215 if (Record.size() != 5) 6216 return error("Invalid hash length " + Twine(Record.size()).str()); 6217 if (!LastSeenModule) 6218 return error("Invalid hash that does not follow a module path"); 6219 int Pos = 0; 6220 for (auto &Val : Record) { 6221 assert(!(Val >> 32) && "Unexpected high bits set"); 6222 LastSeenModule->second.second[Pos++] = Val; 6223 } 6224 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6225 LastSeenModule = nullptr; 6226 break; 6227 } 6228 } 6229 } 6230 llvm_unreachable("Exit infinite loop"); 6231 } 6232 6233 namespace { 6234 6235 // FIXME: This class is only here to support the transition to llvm::Error. It 6236 // will be removed once this transition is complete. Clients should prefer to 6237 // deal with the Error value directly, rather than converting to error_code. 6238 class BitcodeErrorCategoryType : public std::error_category { 6239 const char *name() const noexcept override { 6240 return "llvm.bitcode"; 6241 } 6242 6243 std::string message(int IE) const override { 6244 BitcodeError E = static_cast<BitcodeError>(IE); 6245 switch (E) { 6246 case BitcodeError::CorruptedBitcode: 6247 return "Corrupted bitcode"; 6248 } 6249 llvm_unreachable("Unknown error type!"); 6250 } 6251 }; 6252 6253 } // end anonymous namespace 6254 6255 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6256 6257 const std::error_category &llvm::BitcodeErrorCategory() { 6258 return *ErrorCategory; 6259 } 6260 6261 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6262 unsigned Block, unsigned RecordID) { 6263 if (Error Err = Stream.EnterSubBlock(Block)) 6264 return std::move(Err); 6265 6266 StringRef Strtab; 6267 while (true) { 6268 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6269 if (!MaybeEntry) 6270 return MaybeEntry.takeError(); 6271 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6272 6273 switch (Entry.Kind) { 6274 case BitstreamEntry::EndBlock: 6275 return Strtab; 6276 6277 case BitstreamEntry::Error: 6278 return error("Malformed block"); 6279 6280 case BitstreamEntry::SubBlock: 6281 if (Error Err = Stream.SkipBlock()) 6282 return std::move(Err); 6283 break; 6284 6285 case BitstreamEntry::Record: 6286 StringRef Blob; 6287 SmallVector<uint64_t, 1> Record; 6288 Expected<unsigned> MaybeRecord = 6289 Stream.readRecord(Entry.ID, Record, &Blob); 6290 if (!MaybeRecord) 6291 return MaybeRecord.takeError(); 6292 if (MaybeRecord.get() == RecordID) 6293 Strtab = Blob; 6294 break; 6295 } 6296 } 6297 } 6298 6299 //===----------------------------------------------------------------------===// 6300 // External interface 6301 //===----------------------------------------------------------------------===// 6302 6303 Expected<std::vector<BitcodeModule>> 6304 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6305 auto FOrErr = getBitcodeFileContents(Buffer); 6306 if (!FOrErr) 6307 return FOrErr.takeError(); 6308 return std::move(FOrErr->Mods); 6309 } 6310 6311 Expected<BitcodeFileContents> 6312 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6313 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6314 if (!StreamOrErr) 6315 return StreamOrErr.takeError(); 6316 BitstreamCursor &Stream = *StreamOrErr; 6317 6318 BitcodeFileContents F; 6319 while (true) { 6320 uint64_t BCBegin = Stream.getCurrentByteNo(); 6321 6322 // We may be consuming bitcode from a client that leaves garbage at the end 6323 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6324 // the end that there cannot possibly be another module, stop looking. 6325 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6326 return F; 6327 6328 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6329 if (!MaybeEntry) 6330 return MaybeEntry.takeError(); 6331 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6332 6333 switch (Entry.Kind) { 6334 case BitstreamEntry::EndBlock: 6335 case BitstreamEntry::Error: 6336 return error("Malformed block"); 6337 6338 case BitstreamEntry::SubBlock: { 6339 uint64_t IdentificationBit = -1ull; 6340 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6341 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6342 if (Error Err = Stream.SkipBlock()) 6343 return std::move(Err); 6344 6345 { 6346 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6347 if (!MaybeEntry) 6348 return MaybeEntry.takeError(); 6349 Entry = MaybeEntry.get(); 6350 } 6351 6352 if (Entry.Kind != BitstreamEntry::SubBlock || 6353 Entry.ID != bitc::MODULE_BLOCK_ID) 6354 return error("Malformed block"); 6355 } 6356 6357 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6358 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6359 if (Error Err = Stream.SkipBlock()) 6360 return std::move(Err); 6361 6362 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6363 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6364 Buffer.getBufferIdentifier(), IdentificationBit, 6365 ModuleBit}); 6366 continue; 6367 } 6368 6369 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6370 Expected<StringRef> Strtab = 6371 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6372 if (!Strtab) 6373 return Strtab.takeError(); 6374 // This string table is used by every preceding bitcode module that does 6375 // not have its own string table. A bitcode file may have multiple 6376 // string tables if it was created by binary concatenation, for example 6377 // with "llvm-cat -b". 6378 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6379 if (!I->Strtab.empty()) 6380 break; 6381 I->Strtab = *Strtab; 6382 } 6383 // Similarly, the string table is used by every preceding symbol table; 6384 // normally there will be just one unless the bitcode file was created 6385 // by binary concatenation. 6386 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6387 F.StrtabForSymtab = *Strtab; 6388 continue; 6389 } 6390 6391 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6392 Expected<StringRef> SymtabOrErr = 6393 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6394 if (!SymtabOrErr) 6395 return SymtabOrErr.takeError(); 6396 6397 // We can expect the bitcode file to have multiple symbol tables if it 6398 // was created by binary concatenation. In that case we silently 6399 // ignore any subsequent symbol tables, which is fine because this is a 6400 // low level function. The client is expected to notice that the number 6401 // of modules in the symbol table does not match the number of modules 6402 // in the input file and regenerate the symbol table. 6403 if (F.Symtab.empty()) 6404 F.Symtab = *SymtabOrErr; 6405 continue; 6406 } 6407 6408 if (Error Err = Stream.SkipBlock()) 6409 return std::move(Err); 6410 continue; 6411 } 6412 case BitstreamEntry::Record: 6413 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6414 continue; 6415 else 6416 return StreamFailed.takeError(); 6417 } 6418 } 6419 } 6420 6421 /// Get a lazy one-at-time loading module from bitcode. 6422 /// 6423 /// This isn't always used in a lazy context. In particular, it's also used by 6424 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6425 /// in forward-referenced functions from block address references. 6426 /// 6427 /// \param[in] MaterializeAll Set to \c true if we should materialize 6428 /// everything. 6429 Expected<std::unique_ptr<Module>> 6430 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6431 bool ShouldLazyLoadMetadata, bool IsImporting) { 6432 BitstreamCursor Stream(Buffer); 6433 6434 std::string ProducerIdentification; 6435 if (IdentificationBit != -1ull) { 6436 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6437 return std::move(JumpFailed); 6438 Expected<std::string> ProducerIdentificationOrErr = 6439 readIdentificationBlock(Stream); 6440 if (!ProducerIdentificationOrErr) 6441 return ProducerIdentificationOrErr.takeError(); 6442 6443 ProducerIdentification = *ProducerIdentificationOrErr; 6444 } 6445 6446 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6447 return std::move(JumpFailed); 6448 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6449 Context); 6450 6451 std::unique_ptr<Module> M = 6452 std::make_unique<Module>(ModuleIdentifier, Context); 6453 M->setMaterializer(R); 6454 6455 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6456 if (Error Err = 6457 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6458 return std::move(Err); 6459 6460 if (MaterializeAll) { 6461 // Read in the entire module, and destroy the BitcodeReader. 6462 if (Error Err = M->materializeAll()) 6463 return std::move(Err); 6464 } else { 6465 // Resolve forward references from blockaddresses. 6466 if (Error Err = R->materializeForwardReferencedFunctions()) 6467 return std::move(Err); 6468 } 6469 return std::move(M); 6470 } 6471 6472 Expected<std::unique_ptr<Module>> 6473 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6474 bool IsImporting) { 6475 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6476 } 6477 6478 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6479 // We don't use ModuleIdentifier here because the client may need to control the 6480 // module path used in the combined summary (e.g. when reading summaries for 6481 // regular LTO modules). 6482 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6483 StringRef ModulePath, uint64_t ModuleId) { 6484 BitstreamCursor Stream(Buffer); 6485 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6486 return JumpFailed; 6487 6488 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6489 ModulePath, ModuleId); 6490 return R.parseModule(); 6491 } 6492 6493 // Parse the specified bitcode buffer, returning the function info index. 6494 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6495 BitstreamCursor Stream(Buffer); 6496 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6497 return std::move(JumpFailed); 6498 6499 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6500 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6501 ModuleIdentifier, 0); 6502 6503 if (Error Err = R.parseModule()) 6504 return std::move(Err); 6505 6506 return std::move(Index); 6507 } 6508 6509 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6510 unsigned ID) { 6511 if (Error Err = Stream.EnterSubBlock(ID)) 6512 return std::move(Err); 6513 SmallVector<uint64_t, 64> Record; 6514 6515 while (true) { 6516 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6517 if (!MaybeEntry) 6518 return MaybeEntry.takeError(); 6519 BitstreamEntry Entry = MaybeEntry.get(); 6520 6521 switch (Entry.Kind) { 6522 case BitstreamEntry::SubBlock: // Handled for us already. 6523 case BitstreamEntry::Error: 6524 return error("Malformed block"); 6525 case BitstreamEntry::EndBlock: 6526 // If no flags record found, conservatively return true to mimic 6527 // behavior before this flag was added. 6528 return true; 6529 case BitstreamEntry::Record: 6530 // The interesting case. 6531 break; 6532 } 6533 6534 // Look for the FS_FLAGS record. 6535 Record.clear(); 6536 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6537 if (!MaybeBitCode) 6538 return MaybeBitCode.takeError(); 6539 switch (MaybeBitCode.get()) { 6540 default: // Default behavior: ignore. 6541 break; 6542 case bitc::FS_FLAGS: { // [flags] 6543 uint64_t Flags = Record[0]; 6544 // Scan flags. 6545 assert(Flags <= 0x1f && "Unexpected bits in flag"); 6546 6547 return Flags & 0x8; 6548 } 6549 } 6550 } 6551 llvm_unreachable("Exit infinite loop"); 6552 } 6553 6554 // Check if the given bitcode buffer contains a global value summary block. 6555 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6556 BitstreamCursor Stream(Buffer); 6557 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6558 return std::move(JumpFailed); 6559 6560 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6561 return std::move(Err); 6562 6563 while (true) { 6564 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6565 if (!MaybeEntry) 6566 return MaybeEntry.takeError(); 6567 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6568 6569 switch (Entry.Kind) { 6570 case BitstreamEntry::Error: 6571 return error("Malformed block"); 6572 case BitstreamEntry::EndBlock: 6573 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6574 /*EnableSplitLTOUnit=*/false}; 6575 6576 case BitstreamEntry::SubBlock: 6577 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6578 Expected<bool> EnableSplitLTOUnit = 6579 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6580 if (!EnableSplitLTOUnit) 6581 return EnableSplitLTOUnit.takeError(); 6582 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6583 *EnableSplitLTOUnit}; 6584 } 6585 6586 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6587 Expected<bool> EnableSplitLTOUnit = 6588 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6589 if (!EnableSplitLTOUnit) 6590 return EnableSplitLTOUnit.takeError(); 6591 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6592 *EnableSplitLTOUnit}; 6593 } 6594 6595 // Ignore other sub-blocks. 6596 if (Error Err = Stream.SkipBlock()) 6597 return std::move(Err); 6598 continue; 6599 6600 case BitstreamEntry::Record: 6601 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6602 continue; 6603 else 6604 return StreamFailed.takeError(); 6605 } 6606 } 6607 } 6608 6609 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6610 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6611 if (!MsOrErr) 6612 return MsOrErr.takeError(); 6613 6614 if (MsOrErr->size() != 1) 6615 return error("Expected a single module"); 6616 6617 return (*MsOrErr)[0]; 6618 } 6619 6620 Expected<std::unique_ptr<Module>> 6621 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6622 bool ShouldLazyLoadMetadata, bool IsImporting) { 6623 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6624 if (!BM) 6625 return BM.takeError(); 6626 6627 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6628 } 6629 6630 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6631 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6632 bool ShouldLazyLoadMetadata, bool IsImporting) { 6633 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6634 IsImporting); 6635 if (MOrErr) 6636 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6637 return MOrErr; 6638 } 6639 6640 Expected<std::unique_ptr<Module>> 6641 BitcodeModule::parseModule(LLVMContext &Context) { 6642 return getModuleImpl(Context, true, false, false); 6643 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6644 // written. We must defer until the Module has been fully materialized. 6645 } 6646 6647 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6648 LLVMContext &Context) { 6649 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6650 if (!BM) 6651 return BM.takeError(); 6652 6653 return BM->parseModule(Context); 6654 } 6655 6656 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6657 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6658 if (!StreamOrErr) 6659 return StreamOrErr.takeError(); 6660 6661 return readTriple(*StreamOrErr); 6662 } 6663 6664 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6665 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6666 if (!StreamOrErr) 6667 return StreamOrErr.takeError(); 6668 6669 return hasObjCCategory(*StreamOrErr); 6670 } 6671 6672 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6673 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6674 if (!StreamOrErr) 6675 return StreamOrErr.takeError(); 6676 6677 return readIdentificationCode(*StreamOrErr); 6678 } 6679 6680 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6681 ModuleSummaryIndex &CombinedIndex, 6682 uint64_t ModuleId) { 6683 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6684 if (!BM) 6685 return BM.takeError(); 6686 6687 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6688 } 6689 6690 Expected<std::unique_ptr<ModuleSummaryIndex>> 6691 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6692 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6693 if (!BM) 6694 return BM.takeError(); 6695 6696 return BM->getSummary(); 6697 } 6698 6699 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6700 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6701 if (!BM) 6702 return BM.takeError(); 6703 6704 return BM->getLTOInfo(); 6705 } 6706 6707 Expected<std::unique_ptr<ModuleSummaryIndex>> 6708 llvm::getModuleSummaryIndexForFile(StringRef Path, 6709 bool IgnoreEmptyThinLTOIndexFile) { 6710 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6711 MemoryBuffer::getFileOrSTDIN(Path); 6712 if (!FileOrErr) 6713 return errorCodeToError(FileOrErr.getError()); 6714 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6715 return nullptr; 6716 return getModuleSummaryIndex(**FileOrErr); 6717 } 6718