1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "llvm/ADT/APFloat.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/Bitcode/BitstreamReader.h" 23 #include "llvm/Bitcode/LLVMBitCodes.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/Comdat.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/IR/DiagnosticPrinter.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalIFunc.h" 42 #include "llvm/IR/GlobalIndirectSymbol.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/GVMaterializer.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/OperandTraits.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/TrackingMDRef.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/ValueHandle.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/ManagedStatic.h" 68 #include "llvm/Support/MemoryBuffer.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <deque> 75 #include <limits> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <system_error> 80 #include <tuple> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<bool> PrintSummaryGUIDs( 87 "print-summary-global-ids", cl::init(false), cl::Hidden, 88 cl::desc( 89 "Print the global id for each value when reading the module summary")); 90 91 namespace { 92 93 enum { 94 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 95 }; 96 97 class BitcodeReaderValueList { 98 std::vector<WeakVH> ValuePtrs; 99 100 /// As we resolve forward-referenced constants, we add information about them 101 /// to this vector. This allows us to resolve them in bulk instead of 102 /// resolving each reference at a time. See the code in 103 /// ResolveConstantForwardRefs for more information about this. 104 /// 105 /// The key of this vector is the placeholder constant, the value is the slot 106 /// number that holds the resolved value. 107 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 108 ResolveConstantsTy ResolveConstants; 109 LLVMContext &Context; 110 111 public: 112 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 113 ~BitcodeReaderValueList() { 114 assert(ResolveConstants.empty() && "Constants not resolved?"); 115 } 116 117 // vector compatibility methods 118 unsigned size() const { return ValuePtrs.size(); } 119 void resize(unsigned N) { ValuePtrs.resize(N); } 120 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 121 122 void clear() { 123 assert(ResolveConstants.empty() && "Constants not resolved?"); 124 ValuePtrs.clear(); 125 } 126 127 Value *operator[](unsigned i) const { 128 assert(i < ValuePtrs.size()); 129 return ValuePtrs[i]; 130 } 131 132 Value *back() const { return ValuePtrs.back(); } 133 void pop_back() { ValuePtrs.pop_back(); } 134 bool empty() const { return ValuePtrs.empty(); } 135 136 void shrinkTo(unsigned N) { 137 assert(N <= size() && "Invalid shrinkTo request!"); 138 ValuePtrs.resize(N); 139 } 140 141 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 142 Value *getValueFwdRef(unsigned Idx, Type *Ty); 143 144 void assignValue(Value *V, unsigned Idx); 145 146 /// Once all constants are read, this method bulk resolves any forward 147 /// references. 148 void resolveConstantForwardRefs(); 149 }; 150 151 class BitcodeReaderMetadataList { 152 unsigned NumFwdRefs; 153 bool AnyFwdRefs; 154 unsigned MinFwdRef; 155 unsigned MaxFwdRef; 156 157 /// Array of metadata references. 158 /// 159 /// Don't use std::vector here. Some versions of libc++ copy (instead of 160 /// move) on resize, and TrackingMDRef is very expensive to copy. 161 SmallVector<TrackingMDRef, 1> MetadataPtrs; 162 163 /// Structures for resolving old type refs. 164 struct { 165 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 166 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 167 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 168 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 169 } OldTypeRefs; 170 171 LLVMContext &Context; 172 173 public: 174 BitcodeReaderMetadataList(LLVMContext &C) 175 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 176 177 // vector compatibility methods 178 unsigned size() const { return MetadataPtrs.size(); } 179 void resize(unsigned N) { MetadataPtrs.resize(N); } 180 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 181 void clear() { MetadataPtrs.clear(); } 182 Metadata *back() const { return MetadataPtrs.back(); } 183 void pop_back() { MetadataPtrs.pop_back(); } 184 bool empty() const { return MetadataPtrs.empty(); } 185 186 Metadata *operator[](unsigned i) const { 187 assert(i < MetadataPtrs.size()); 188 return MetadataPtrs[i]; 189 } 190 191 Metadata *lookup(unsigned I) const { 192 if (I < MetadataPtrs.size()) 193 return MetadataPtrs[I]; 194 return nullptr; 195 } 196 197 void shrinkTo(unsigned N) { 198 assert(N <= size() && "Invalid shrinkTo request!"); 199 assert(!AnyFwdRefs && "Unexpected forward refs"); 200 MetadataPtrs.resize(N); 201 } 202 203 /// Return the given metadata, creating a replaceable forward reference if 204 /// necessary. 205 Metadata *getMetadataFwdRef(unsigned Idx); 206 207 /// Return the the given metadata only if it is fully resolved. 208 /// 209 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 210 /// would give \c false. 211 Metadata *getMetadataIfResolved(unsigned Idx); 212 213 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 214 void assignValue(Metadata *MD, unsigned Idx); 215 void tryToResolveCycles(); 216 bool hasFwdRefs() const { return AnyFwdRefs; } 217 218 /// Upgrade a type that had an MDString reference. 219 void addTypeRef(MDString &UUID, DICompositeType &CT); 220 221 /// Upgrade a type that had an MDString reference. 222 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 223 224 /// Upgrade a type ref array that may have MDString references. 225 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 226 227 private: 228 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 229 }; 230 231 Error error(const Twine &Message) { 232 return make_error<StringError>( 233 Message, make_error_code(BitcodeError::CorruptedBitcode)); 234 } 235 236 /// Helper to read the header common to all bitcode files. 237 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 238 // Sniff for the signature. 239 if (!Stream.canSkipToPos(4) || 240 Stream.Read(8) != 'B' || 241 Stream.Read(8) != 'C' || 242 Stream.Read(4) != 0x0 || 243 Stream.Read(4) != 0xC || 244 Stream.Read(4) != 0xE || 245 Stream.Read(4) != 0xD) 246 return false; 247 return true; 248 } 249 250 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 251 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 252 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 253 254 if (Buffer.getBufferSize() & 3) 255 return error("Invalid bitcode signature"); 256 257 // If we have a wrapper header, parse it and ignore the non-bc file contents. 258 // The magic number is 0x0B17C0DE stored in little endian. 259 if (isBitcodeWrapper(BufPtr, BufEnd)) 260 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 261 return error("Invalid bitcode wrapper header"); 262 263 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 264 if (!hasValidBitcodeHeader(Stream)) 265 return error("Invalid bitcode signature"); 266 267 return std::move(Stream); 268 } 269 270 /// Convert a string from a record into an std::string, return true on failure. 271 template <typename StrTy> 272 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 273 StrTy &Result) { 274 if (Idx > Record.size()) 275 return true; 276 277 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 278 Result += (char)Record[i]; 279 return false; 280 } 281 282 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 283 /// "epoch" encoded in the bitcode, and return the producer name if any. 284 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 285 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 286 return error("Invalid record"); 287 288 // Read all the records. 289 SmallVector<uint64_t, 64> Record; 290 291 std::string ProducerIdentification; 292 293 while (true) { 294 BitstreamEntry Entry = Stream.advance(); 295 296 switch (Entry.Kind) { 297 default: 298 case BitstreamEntry::Error: 299 return error("Malformed block"); 300 case BitstreamEntry::EndBlock: 301 return ProducerIdentification; 302 case BitstreamEntry::Record: 303 // The interesting case. 304 break; 305 } 306 307 // Read a record. 308 Record.clear(); 309 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 310 switch (BitCode) { 311 default: // Default behavior: reject 312 return error("Invalid value"); 313 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 314 convertToString(Record, 0, ProducerIdentification); 315 break; 316 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 317 unsigned epoch = (unsigned)Record[0]; 318 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 319 return error( 320 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 321 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 322 } 323 } 324 } 325 } 326 } 327 328 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 329 // We expect a number of well-defined blocks, though we don't necessarily 330 // need to understand them all. 331 while (true) { 332 if (Stream.AtEndOfStream()) 333 return ""; 334 335 BitstreamEntry Entry = Stream.advance(); 336 switch (Entry.Kind) { 337 case BitstreamEntry::EndBlock: 338 case BitstreamEntry::Error: 339 return error("Malformed block"); 340 341 case BitstreamEntry::SubBlock: 342 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 343 return readIdentificationBlock(Stream); 344 345 // Ignore other sub-blocks. 346 if (Stream.SkipBlock()) 347 return error("Malformed block"); 348 continue; 349 case BitstreamEntry::Record: 350 Stream.skipRecord(Entry.ID); 351 continue; 352 } 353 } 354 } 355 356 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 357 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 358 return error("Invalid record"); 359 360 SmallVector<uint64_t, 64> Record; 361 // Read all the records for this module. 362 363 while (true) { 364 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 365 366 switch (Entry.Kind) { 367 case BitstreamEntry::SubBlock: // Handled for us already. 368 case BitstreamEntry::Error: 369 return error("Malformed block"); 370 case BitstreamEntry::EndBlock: 371 return false; 372 case BitstreamEntry::Record: 373 // The interesting case. 374 break; 375 } 376 377 // Read a record. 378 switch (Stream.readRecord(Entry.ID, Record)) { 379 default: 380 break; // Default behavior, ignore unknown content. 381 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 382 std::string S; 383 if (convertToString(Record, 0, S)) 384 return error("Invalid record"); 385 // Check for the i386 and other (x86_64, ARM) conventions 386 if (S.find("__DATA, __objc_catlist") != std::string::npos || 387 S.find("__OBJC,__category") != std::string::npos) 388 return true; 389 break; 390 } 391 } 392 Record.clear(); 393 } 394 llvm_unreachable("Exit infinite loop"); 395 } 396 397 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 398 // We expect a number of well-defined blocks, though we don't necessarily 399 // need to understand them all. 400 while (true) { 401 BitstreamEntry Entry = Stream.advance(); 402 403 switch (Entry.Kind) { 404 case BitstreamEntry::Error: 405 return error("Malformed block"); 406 case BitstreamEntry::EndBlock: 407 return false; 408 409 case BitstreamEntry::SubBlock: 410 if (Entry.ID == bitc::MODULE_BLOCK_ID) 411 return hasObjCCategoryInModule(Stream); 412 413 // Ignore other sub-blocks. 414 if (Stream.SkipBlock()) 415 return error("Malformed block"); 416 continue; 417 418 case BitstreamEntry::Record: 419 Stream.skipRecord(Entry.ID); 420 continue; 421 } 422 } 423 } 424 425 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 426 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 427 return error("Invalid record"); 428 429 SmallVector<uint64_t, 64> Record; 430 431 std::string Triple; 432 433 // Read all the records for this module. 434 while (true) { 435 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 436 437 switch (Entry.Kind) { 438 case BitstreamEntry::SubBlock: // Handled for us already. 439 case BitstreamEntry::Error: 440 return error("Malformed block"); 441 case BitstreamEntry::EndBlock: 442 return Triple; 443 case BitstreamEntry::Record: 444 // The interesting case. 445 break; 446 } 447 448 // Read a record. 449 switch (Stream.readRecord(Entry.ID, Record)) { 450 default: break; // Default behavior, ignore unknown content. 451 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 452 std::string S; 453 if (convertToString(Record, 0, S)) 454 return error("Invalid record"); 455 Triple = S; 456 break; 457 } 458 } 459 Record.clear(); 460 } 461 llvm_unreachable("Exit infinite loop"); 462 } 463 464 Expected<std::string> readTriple(BitstreamCursor &Stream) { 465 // We expect a number of well-defined blocks, though we don't necessarily 466 // need to understand them all. 467 while (true) { 468 BitstreamEntry Entry = Stream.advance(); 469 470 switch (Entry.Kind) { 471 case BitstreamEntry::Error: 472 return error("Malformed block"); 473 case BitstreamEntry::EndBlock: 474 return ""; 475 476 case BitstreamEntry::SubBlock: 477 if (Entry.ID == bitc::MODULE_BLOCK_ID) 478 return readModuleTriple(Stream); 479 480 // Ignore other sub-blocks. 481 if (Stream.SkipBlock()) 482 return error("Malformed block"); 483 continue; 484 485 case BitstreamEntry::Record: 486 Stream.skipRecord(Entry.ID); 487 continue; 488 } 489 } 490 } 491 492 class BitcodeReaderBase { 493 protected: 494 BitcodeReaderBase(BitstreamCursor Stream) : Stream(std::move(Stream)) { 495 this->Stream.setBlockInfo(&BlockInfo); 496 } 497 498 BitstreamBlockInfo BlockInfo; 499 BitstreamCursor Stream; 500 501 bool readBlockInfo(); 502 503 // Contains an arbitrary and optional string identifying the bitcode producer 504 std::string ProducerIdentification; 505 506 Error error(const Twine &Message); 507 }; 508 509 Error BitcodeReaderBase::error(const Twine &Message) { 510 std::string FullMsg = Message.str(); 511 if (!ProducerIdentification.empty()) 512 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 513 LLVM_VERSION_STRING "')"; 514 return ::error(FullMsg); 515 } 516 517 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 518 LLVMContext &Context; 519 Module *TheModule = nullptr; 520 // Next offset to start scanning for lazy parsing of function bodies. 521 uint64_t NextUnreadBit = 0; 522 // Last function offset found in the VST. 523 uint64_t LastFunctionBlockBit = 0; 524 bool SeenValueSymbolTable = false; 525 uint64_t VSTOffset = 0; 526 527 std::vector<Type*> TypeList; 528 BitcodeReaderValueList ValueList; 529 BitcodeReaderMetadataList MetadataList; 530 std::vector<Comdat *> ComdatList; 531 SmallVector<Instruction *, 64> InstructionList; 532 533 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 534 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 535 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 536 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 537 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 538 539 bool HasSeenOldLoopTags = false; 540 541 /// The set of attributes by index. Index zero in the file is for null, and 542 /// is thus not represented here. As such all indices are off by one. 543 std::vector<AttributeSet> MAttributes; 544 545 /// The set of attribute groups. 546 std::map<unsigned, AttributeSet> MAttributeGroups; 547 548 /// While parsing a function body, this is a list of the basic blocks for the 549 /// function. 550 std::vector<BasicBlock*> FunctionBBs; 551 552 // When reading the module header, this list is populated with functions that 553 // have bodies later in the file. 554 std::vector<Function*> FunctionsWithBodies; 555 556 // When intrinsic functions are encountered which require upgrading they are 557 // stored here with their replacement function. 558 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 559 UpdatedIntrinsicMap UpgradedIntrinsics; 560 // Intrinsics which were remangled because of types rename 561 UpdatedIntrinsicMap RemangledIntrinsics; 562 563 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 564 DenseMap<unsigned, unsigned> MDKindMap; 565 566 // Several operations happen after the module header has been read, but 567 // before function bodies are processed. This keeps track of whether 568 // we've done this yet. 569 bool SeenFirstFunctionBody = false; 570 571 /// When function bodies are initially scanned, this map contains info about 572 /// where to find deferred function body in the stream. 573 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 574 575 /// When Metadata block is initially scanned when parsing the module, we may 576 /// choose to defer parsing of the metadata. This vector contains info about 577 /// which Metadata blocks are deferred. 578 std::vector<uint64_t> DeferredMetadataInfo; 579 580 /// These are basic blocks forward-referenced by block addresses. They are 581 /// inserted lazily into functions when they're loaded. The basic block ID is 582 /// its index into the vector. 583 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 584 std::deque<Function *> BasicBlockFwdRefQueue; 585 586 /// Indicates that we are using a new encoding for instruction operands where 587 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 588 /// instruction number, for a more compact encoding. Some instruction 589 /// operands are not relative to the instruction ID: basic block numbers, and 590 /// types. Once the old style function blocks have been phased out, we would 591 /// not need this flag. 592 bool UseRelativeIDs = false; 593 594 /// True if all functions will be materialized, negating the need to process 595 /// (e.g.) blockaddress forward references. 596 bool WillMaterializeAllForwardRefs = false; 597 598 /// True if any Metadata block has been materialized. 599 bool IsMetadataMaterialized = false; 600 601 bool StripDebugInfo = false; 602 603 /// Functions that need to be matched with subprograms when upgrading old 604 /// metadata. 605 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 606 607 std::vector<std::string> BundleTags; 608 609 public: 610 BitcodeReader(BitstreamCursor Stream, StringRef ProducerIdentification, 611 LLVMContext &Context); 612 613 Error materializeForwardReferencedFunctions(); 614 615 Error materialize(GlobalValue *GV) override; 616 Error materializeModule() override; 617 std::vector<StructType *> getIdentifiedStructTypes() const override; 618 619 /// \brief Main interface to parsing a bitcode buffer. 620 /// \returns true if an error occurred. 621 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false); 622 623 static uint64_t decodeSignRotatedValue(uint64_t V); 624 625 /// Materialize any deferred Metadata block. 626 Error materializeMetadata() override; 627 628 void setStripDebugInfo() override; 629 630 private: 631 std::vector<StructType *> IdentifiedStructTypes; 632 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 633 StructType *createIdentifiedStructType(LLVMContext &Context); 634 635 Type *getTypeByID(unsigned ID); 636 637 Value *getFnValueByID(unsigned ID, Type *Ty) { 638 if (Ty && Ty->isMetadataTy()) 639 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 640 return ValueList.getValueFwdRef(ID, Ty); 641 } 642 643 Metadata *getFnMetadataByID(unsigned ID) { 644 return MetadataList.getMetadataFwdRef(ID); 645 } 646 647 BasicBlock *getBasicBlock(unsigned ID) const { 648 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 649 return FunctionBBs[ID]; 650 } 651 652 AttributeSet getAttributes(unsigned i) const { 653 if (i-1 < MAttributes.size()) 654 return MAttributes[i-1]; 655 return AttributeSet(); 656 } 657 658 /// Read a value/type pair out of the specified record from slot 'Slot'. 659 /// Increment Slot past the number of slots used in the record. Return true on 660 /// failure. 661 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 662 unsigned InstNum, Value *&ResVal) { 663 if (Slot == Record.size()) return true; 664 unsigned ValNo = (unsigned)Record[Slot++]; 665 // Adjust the ValNo, if it was encoded relative to the InstNum. 666 if (UseRelativeIDs) 667 ValNo = InstNum - ValNo; 668 if (ValNo < InstNum) { 669 // If this is not a forward reference, just return the value we already 670 // have. 671 ResVal = getFnValueByID(ValNo, nullptr); 672 return ResVal == nullptr; 673 } 674 if (Slot == Record.size()) 675 return true; 676 677 unsigned TypeNo = (unsigned)Record[Slot++]; 678 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 679 return ResVal == nullptr; 680 } 681 682 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 683 /// past the number of slots used by the value in the record. Return true if 684 /// there is an error. 685 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 686 unsigned InstNum, Type *Ty, Value *&ResVal) { 687 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 688 return true; 689 // All values currently take a single record slot. 690 ++Slot; 691 return false; 692 } 693 694 /// Like popValue, but does not increment the Slot number. 695 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 696 unsigned InstNum, Type *Ty, Value *&ResVal) { 697 ResVal = getValue(Record, Slot, InstNum, Ty); 698 return ResVal == nullptr; 699 } 700 701 /// Version of getValue that returns ResVal directly, or 0 if there is an 702 /// error. 703 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 704 unsigned InstNum, Type *Ty) { 705 if (Slot == Record.size()) return nullptr; 706 unsigned ValNo = (unsigned)Record[Slot]; 707 // Adjust the ValNo, if it was encoded relative to the InstNum. 708 if (UseRelativeIDs) 709 ValNo = InstNum - ValNo; 710 return getFnValueByID(ValNo, Ty); 711 } 712 713 /// Like getValue, but decodes signed VBRs. 714 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 715 unsigned InstNum, Type *Ty) { 716 if (Slot == Record.size()) return nullptr; 717 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 718 // Adjust the ValNo, if it was encoded relative to the InstNum. 719 if (UseRelativeIDs) 720 ValNo = InstNum - ValNo; 721 return getFnValueByID(ValNo, Ty); 722 } 723 724 /// Converts alignment exponent (i.e. power of two (or zero)) to the 725 /// corresponding alignment to use. If alignment is too large, returns 726 /// a corresponding error code. 727 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 728 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 729 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 730 Error parseAttributeBlock(); 731 Error parseAttributeGroupBlock(); 732 Error parseTypeTable(); 733 Error parseTypeTableBody(); 734 Error parseOperandBundleTags(); 735 736 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 737 unsigned NameIndex, Triple &TT); 738 Error parseValueSymbolTable(uint64_t Offset = 0); 739 Error parseConstants(); 740 Error rememberAndSkipFunctionBodies(); 741 Error rememberAndSkipFunctionBody(); 742 /// Save the positions of the Metadata blocks and skip parsing the blocks. 743 Error rememberAndSkipMetadata(); 744 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 745 Error parseFunctionBody(Function *F); 746 Error globalCleanup(); 747 Error resolveGlobalAndIndirectSymbolInits(); 748 Error parseMetadata(bool ModuleLevel = false); 749 Error parseMetadataStrings(ArrayRef<uint64_t> Record, StringRef Blob, 750 unsigned &NextMetadataNo); 751 Error parseMetadataKinds(); 752 Error parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 753 Error parseGlobalObjectAttachment(GlobalObject &GO, 754 ArrayRef<uint64_t> Record); 755 Error parseMetadataAttachment(Function &F); 756 Error parseUseLists(); 757 Error findFunctionInStream( 758 Function *F, 759 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 760 }; 761 762 /// Class to manage reading and parsing function summary index bitcode 763 /// files/sections. 764 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 765 /// The module index built during parsing. 766 ModuleSummaryIndex &TheIndex; 767 768 /// Indicates whether we have encountered a global value summary section 769 /// yet during parsing. 770 bool SeenGlobalValSummary = false; 771 772 /// Indicates whether we have already parsed the VST, used for error checking. 773 bool SeenValueSymbolTable = false; 774 775 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 776 /// Used to enable on-demand parsing of the VST. 777 uint64_t VSTOffset = 0; 778 779 // Map to save ValueId to GUID association that was recorded in the 780 // ValueSymbolTable. It is used after the VST is parsed to convert 781 // call graph edges read from the function summary from referencing 782 // callees by their ValueId to using the GUID instead, which is how 783 // they are recorded in the summary index being built. 784 // We save a second GUID which is the same as the first one, but ignoring the 785 // linkage, i.e. for value other than local linkage they are identical. 786 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 787 ValueIdToCallGraphGUIDMap; 788 789 /// Map populated during module path string table parsing, from the 790 /// module ID to a string reference owned by the index's module 791 /// path string table, used to correlate with combined index 792 /// summary records. 793 DenseMap<uint64_t, StringRef> ModuleIdMap; 794 795 /// Original source file name recorded in a bitcode record. 796 std::string SourceFileName; 797 798 public: 799 ModuleSummaryIndexBitcodeReader( 800 BitstreamCursor Stream, ModuleSummaryIndex &TheIndex); 801 802 Error parseModule(StringRef ModulePath); 803 804 private: 805 Error parseValueSymbolTable( 806 uint64_t Offset, 807 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 808 Error parseEntireSummary(StringRef ModulePath); 809 Error parseModuleStringTable(); 810 std::pair<GlobalValue::GUID, GlobalValue::GUID> 811 812 getGUIDFromValueId(unsigned ValueId); 813 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 814 readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I, 815 bool IsOldProfileFormat, bool HasProfile); 816 }; 817 818 } // end anonymous namespace 819 820 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 821 Error Err) { 822 if (Err) { 823 std::error_code EC; 824 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 825 EC = EIB.convertToErrorCode(); 826 Ctx.emitError(EIB.message()); 827 }); 828 return EC; 829 } 830 return std::error_code(); 831 } 832 833 BitcodeReader::BitcodeReader(BitstreamCursor Stream, 834 StringRef ProducerIdentification, 835 LLVMContext &Context) 836 : BitcodeReaderBase(std::move(Stream)), Context(Context), 837 ValueList(Context), MetadataList(Context) { 838 this->ProducerIdentification = ProducerIdentification; 839 } 840 841 Error BitcodeReader::materializeForwardReferencedFunctions() { 842 if (WillMaterializeAllForwardRefs) 843 return Error::success(); 844 845 // Prevent recursion. 846 WillMaterializeAllForwardRefs = true; 847 848 while (!BasicBlockFwdRefQueue.empty()) { 849 Function *F = BasicBlockFwdRefQueue.front(); 850 BasicBlockFwdRefQueue.pop_front(); 851 assert(F && "Expected valid function"); 852 if (!BasicBlockFwdRefs.count(F)) 853 // Already materialized. 854 continue; 855 856 // Check for a function that isn't materializable to prevent an infinite 857 // loop. When parsing a blockaddress stored in a global variable, there 858 // isn't a trivial way to check if a function will have a body without a 859 // linear search through FunctionsWithBodies, so just check it here. 860 if (!F->isMaterializable()) 861 return error("Never resolved function from blockaddress"); 862 863 // Try to materialize F. 864 if (Error Err = materialize(F)) 865 return Err; 866 } 867 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 868 869 // Reset state. 870 WillMaterializeAllForwardRefs = false; 871 return Error::success(); 872 } 873 874 //===----------------------------------------------------------------------===// 875 // Helper functions to implement forward reference resolution, etc. 876 //===----------------------------------------------------------------------===// 877 878 static bool hasImplicitComdat(size_t Val) { 879 switch (Val) { 880 default: 881 return false; 882 case 1: // Old WeakAnyLinkage 883 case 4: // Old LinkOnceAnyLinkage 884 case 10: // Old WeakODRLinkage 885 case 11: // Old LinkOnceODRLinkage 886 return true; 887 } 888 } 889 890 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 891 switch (Val) { 892 default: // Map unknown/new linkages to external 893 case 0: 894 return GlobalValue::ExternalLinkage; 895 case 2: 896 return GlobalValue::AppendingLinkage; 897 case 3: 898 return GlobalValue::InternalLinkage; 899 case 5: 900 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 901 case 6: 902 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 903 case 7: 904 return GlobalValue::ExternalWeakLinkage; 905 case 8: 906 return GlobalValue::CommonLinkage; 907 case 9: 908 return GlobalValue::PrivateLinkage; 909 case 12: 910 return GlobalValue::AvailableExternallyLinkage; 911 case 13: 912 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 913 case 14: 914 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 915 case 15: 916 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 917 case 1: // Old value with implicit comdat. 918 case 16: 919 return GlobalValue::WeakAnyLinkage; 920 case 10: // Old value with implicit comdat. 921 case 17: 922 return GlobalValue::WeakODRLinkage; 923 case 4: // Old value with implicit comdat. 924 case 18: 925 return GlobalValue::LinkOnceAnyLinkage; 926 case 11: // Old value with implicit comdat. 927 case 19: 928 return GlobalValue::LinkOnceODRLinkage; 929 } 930 } 931 932 /// Decode the flags for GlobalValue in the summary. 933 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 934 uint64_t Version) { 935 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 936 // like getDecodedLinkage() above. Any future change to the linkage enum and 937 // to getDecodedLinkage() will need to be taken into account here as above. 938 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 939 RawFlags = RawFlags >> 4; 940 bool NoRename = RawFlags & 0x1; 941 bool IsNotViableToInline = RawFlags & 0x2; 942 bool HasInlineAsmMaybeReferencingInternal = RawFlags & 0x4; 943 return GlobalValueSummary::GVFlags(Linkage, NoRename, 944 HasInlineAsmMaybeReferencingInternal, 945 IsNotViableToInline); 946 } 947 948 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 949 switch (Val) { 950 default: // Map unknown visibilities to default. 951 case 0: return GlobalValue::DefaultVisibility; 952 case 1: return GlobalValue::HiddenVisibility; 953 case 2: return GlobalValue::ProtectedVisibility; 954 } 955 } 956 957 static GlobalValue::DLLStorageClassTypes 958 getDecodedDLLStorageClass(unsigned Val) { 959 switch (Val) { 960 default: // Map unknown values to default. 961 case 0: return GlobalValue::DefaultStorageClass; 962 case 1: return GlobalValue::DLLImportStorageClass; 963 case 2: return GlobalValue::DLLExportStorageClass; 964 } 965 } 966 967 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 968 switch (Val) { 969 case 0: return GlobalVariable::NotThreadLocal; 970 default: // Map unknown non-zero value to general dynamic. 971 case 1: return GlobalVariable::GeneralDynamicTLSModel; 972 case 2: return GlobalVariable::LocalDynamicTLSModel; 973 case 3: return GlobalVariable::InitialExecTLSModel; 974 case 4: return GlobalVariable::LocalExecTLSModel; 975 } 976 } 977 978 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 979 switch (Val) { 980 default: // Map unknown to UnnamedAddr::None. 981 case 0: return GlobalVariable::UnnamedAddr::None; 982 case 1: return GlobalVariable::UnnamedAddr::Global; 983 case 2: return GlobalVariable::UnnamedAddr::Local; 984 } 985 } 986 987 static int getDecodedCastOpcode(unsigned Val) { 988 switch (Val) { 989 default: return -1; 990 case bitc::CAST_TRUNC : return Instruction::Trunc; 991 case bitc::CAST_ZEXT : return Instruction::ZExt; 992 case bitc::CAST_SEXT : return Instruction::SExt; 993 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 994 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 995 case bitc::CAST_UITOFP : return Instruction::UIToFP; 996 case bitc::CAST_SITOFP : return Instruction::SIToFP; 997 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 998 case bitc::CAST_FPEXT : return Instruction::FPExt; 999 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1000 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1001 case bitc::CAST_BITCAST : return Instruction::BitCast; 1002 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1003 } 1004 } 1005 1006 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1007 bool IsFP = Ty->isFPOrFPVectorTy(); 1008 // BinOps are only valid for int/fp or vector of int/fp types 1009 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1010 return -1; 1011 1012 switch (Val) { 1013 default: 1014 return -1; 1015 case bitc::BINOP_ADD: 1016 return IsFP ? Instruction::FAdd : Instruction::Add; 1017 case bitc::BINOP_SUB: 1018 return IsFP ? Instruction::FSub : Instruction::Sub; 1019 case bitc::BINOP_MUL: 1020 return IsFP ? Instruction::FMul : Instruction::Mul; 1021 case bitc::BINOP_UDIV: 1022 return IsFP ? -1 : Instruction::UDiv; 1023 case bitc::BINOP_SDIV: 1024 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1025 case bitc::BINOP_UREM: 1026 return IsFP ? -1 : Instruction::URem; 1027 case bitc::BINOP_SREM: 1028 return IsFP ? Instruction::FRem : Instruction::SRem; 1029 case bitc::BINOP_SHL: 1030 return IsFP ? -1 : Instruction::Shl; 1031 case bitc::BINOP_LSHR: 1032 return IsFP ? -1 : Instruction::LShr; 1033 case bitc::BINOP_ASHR: 1034 return IsFP ? -1 : Instruction::AShr; 1035 case bitc::BINOP_AND: 1036 return IsFP ? -1 : Instruction::And; 1037 case bitc::BINOP_OR: 1038 return IsFP ? -1 : Instruction::Or; 1039 case bitc::BINOP_XOR: 1040 return IsFP ? -1 : Instruction::Xor; 1041 } 1042 } 1043 1044 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1045 switch (Val) { 1046 default: return AtomicRMWInst::BAD_BINOP; 1047 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1048 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1049 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1050 case bitc::RMW_AND: return AtomicRMWInst::And; 1051 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1052 case bitc::RMW_OR: return AtomicRMWInst::Or; 1053 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1054 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1055 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1056 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1057 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1058 } 1059 } 1060 1061 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1062 switch (Val) { 1063 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1064 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1065 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1066 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1067 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1068 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1069 default: // Map unknown orderings to sequentially-consistent. 1070 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1071 } 1072 } 1073 1074 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 1075 switch (Val) { 1076 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 1077 default: // Map unknown scopes to cross-thread. 1078 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 1079 } 1080 } 1081 1082 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1083 switch (Val) { 1084 default: // Map unknown selection kinds to any. 1085 case bitc::COMDAT_SELECTION_KIND_ANY: 1086 return Comdat::Any; 1087 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1088 return Comdat::ExactMatch; 1089 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1090 return Comdat::Largest; 1091 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1092 return Comdat::NoDuplicates; 1093 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1094 return Comdat::SameSize; 1095 } 1096 } 1097 1098 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1099 FastMathFlags FMF; 1100 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 1101 FMF.setUnsafeAlgebra(); 1102 if (0 != (Val & FastMathFlags::NoNaNs)) 1103 FMF.setNoNaNs(); 1104 if (0 != (Val & FastMathFlags::NoInfs)) 1105 FMF.setNoInfs(); 1106 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1107 FMF.setNoSignedZeros(); 1108 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1109 FMF.setAllowReciprocal(); 1110 return FMF; 1111 } 1112 1113 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1114 switch (Val) { 1115 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1116 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1117 } 1118 } 1119 1120 namespace llvm { 1121 namespace { 1122 1123 /// \brief A class for maintaining the slot number definition 1124 /// as a placeholder for the actual definition for forward constants defs. 1125 class ConstantPlaceHolder : public ConstantExpr { 1126 void operator=(const ConstantPlaceHolder &) = delete; 1127 1128 public: 1129 // allocate space for exactly one operand 1130 void *operator new(size_t s) { return User::operator new(s, 1); } 1131 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 1132 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 1133 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 1134 } 1135 1136 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 1137 static bool classof(const Value *V) { 1138 return isa<ConstantExpr>(V) && 1139 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 1140 } 1141 1142 /// Provide fast operand accessors 1143 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 1144 }; 1145 1146 } // end anonymous namespace 1147 1148 // FIXME: can we inherit this from ConstantExpr? 1149 template <> 1150 struct OperandTraits<ConstantPlaceHolder> : 1151 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 1152 }; 1153 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 1154 1155 } // end namespace llvm 1156 1157 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 1158 if (Idx == size()) { 1159 push_back(V); 1160 return; 1161 } 1162 1163 if (Idx >= size()) 1164 resize(Idx+1); 1165 1166 WeakVH &OldV = ValuePtrs[Idx]; 1167 if (!OldV) { 1168 OldV = V; 1169 return; 1170 } 1171 1172 // Handle constants and non-constants (e.g. instrs) differently for 1173 // efficiency. 1174 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 1175 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 1176 OldV = V; 1177 } else { 1178 // If there was a forward reference to this value, replace it. 1179 Value *PrevVal = OldV; 1180 OldV->replaceAllUsesWith(V); 1181 delete PrevVal; 1182 } 1183 } 1184 1185 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 1186 Type *Ty) { 1187 if (Idx >= size()) 1188 resize(Idx + 1); 1189 1190 if (Value *V = ValuePtrs[Idx]) { 1191 if (Ty != V->getType()) 1192 report_fatal_error("Type mismatch in constant table!"); 1193 return cast<Constant>(V); 1194 } 1195 1196 // Create and return a placeholder, which will later be RAUW'd. 1197 Constant *C = new ConstantPlaceHolder(Ty, Context); 1198 ValuePtrs[Idx] = C; 1199 return C; 1200 } 1201 1202 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 1203 // Bail out for a clearly invalid value. This would make us call resize(0) 1204 if (Idx == std::numeric_limits<unsigned>::max()) 1205 return nullptr; 1206 1207 if (Idx >= size()) 1208 resize(Idx + 1); 1209 1210 if (Value *V = ValuePtrs[Idx]) { 1211 // If the types don't match, it's invalid. 1212 if (Ty && Ty != V->getType()) 1213 return nullptr; 1214 return V; 1215 } 1216 1217 // No type specified, must be invalid reference. 1218 if (!Ty) return nullptr; 1219 1220 // Create and return a placeholder, which will later be RAUW'd. 1221 Value *V = new Argument(Ty); 1222 ValuePtrs[Idx] = V; 1223 return V; 1224 } 1225 1226 /// Once all constants are read, this method bulk resolves any forward 1227 /// references. The idea behind this is that we sometimes get constants (such 1228 /// as large arrays) which reference *many* forward ref constants. Replacing 1229 /// each of these causes a lot of thrashing when building/reuniquing the 1230 /// constant. Instead of doing this, we look at all the uses and rewrite all 1231 /// the place holders at once for any constant that uses a placeholder. 1232 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1233 // Sort the values by-pointer so that they are efficient to look up with a 1234 // binary search. 1235 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1236 1237 SmallVector<Constant*, 64> NewOps; 1238 1239 while (!ResolveConstants.empty()) { 1240 Value *RealVal = operator[](ResolveConstants.back().second); 1241 Constant *Placeholder = ResolveConstants.back().first; 1242 ResolveConstants.pop_back(); 1243 1244 // Loop over all users of the placeholder, updating them to reference the 1245 // new value. If they reference more than one placeholder, update them all 1246 // at once. 1247 while (!Placeholder->use_empty()) { 1248 auto UI = Placeholder->user_begin(); 1249 User *U = *UI; 1250 1251 // If the using object isn't uniqued, just update the operands. This 1252 // handles instructions and initializers for global variables. 1253 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1254 UI.getUse().set(RealVal); 1255 continue; 1256 } 1257 1258 // Otherwise, we have a constant that uses the placeholder. Replace that 1259 // constant with a new constant that has *all* placeholder uses updated. 1260 Constant *UserC = cast<Constant>(U); 1261 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1262 I != E; ++I) { 1263 Value *NewOp; 1264 if (!isa<ConstantPlaceHolder>(*I)) { 1265 // Not a placeholder reference. 1266 NewOp = *I; 1267 } else if (*I == Placeholder) { 1268 // Common case is that it just references this one placeholder. 1269 NewOp = RealVal; 1270 } else { 1271 // Otherwise, look up the placeholder in ResolveConstants. 1272 ResolveConstantsTy::iterator It = 1273 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1274 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1275 0)); 1276 assert(It != ResolveConstants.end() && It->first == *I); 1277 NewOp = operator[](It->second); 1278 } 1279 1280 NewOps.push_back(cast<Constant>(NewOp)); 1281 } 1282 1283 // Make the new constant. 1284 Constant *NewC; 1285 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1286 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1287 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1288 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1289 } else if (isa<ConstantVector>(UserC)) { 1290 NewC = ConstantVector::get(NewOps); 1291 } else { 1292 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1293 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1294 } 1295 1296 UserC->replaceAllUsesWith(NewC); 1297 UserC->destroyConstant(); 1298 NewOps.clear(); 1299 } 1300 1301 // Update all ValueHandles, they should be the only users at this point. 1302 Placeholder->replaceAllUsesWith(RealVal); 1303 delete Placeholder; 1304 } 1305 } 1306 1307 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1308 if (Idx == size()) { 1309 push_back(MD); 1310 return; 1311 } 1312 1313 if (Idx >= size()) 1314 resize(Idx+1); 1315 1316 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1317 if (!OldMD) { 1318 OldMD.reset(MD); 1319 return; 1320 } 1321 1322 // If there was a forward reference to this value, replace it. 1323 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1324 PrevMD->replaceAllUsesWith(MD); 1325 --NumFwdRefs; 1326 } 1327 1328 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1329 if (Idx >= size()) 1330 resize(Idx + 1); 1331 1332 if (Metadata *MD = MetadataPtrs[Idx]) 1333 return MD; 1334 1335 // Track forward refs to be resolved later. 1336 if (AnyFwdRefs) { 1337 MinFwdRef = std::min(MinFwdRef, Idx); 1338 MaxFwdRef = std::max(MaxFwdRef, Idx); 1339 } else { 1340 AnyFwdRefs = true; 1341 MinFwdRef = MaxFwdRef = Idx; 1342 } 1343 ++NumFwdRefs; 1344 1345 // Create and return a placeholder, which will later be RAUW'd. 1346 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1347 MetadataPtrs[Idx].reset(MD); 1348 return MD; 1349 } 1350 1351 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1352 Metadata *MD = lookup(Idx); 1353 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1354 if (!N->isResolved()) 1355 return nullptr; 1356 return MD; 1357 } 1358 1359 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1360 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1361 } 1362 1363 void BitcodeReaderMetadataList::tryToResolveCycles() { 1364 if (NumFwdRefs) 1365 // Still forward references... can't resolve cycles. 1366 return; 1367 1368 bool DidReplaceTypeRefs = false; 1369 1370 // Give up on finding a full definition for any forward decls that remain. 1371 for (const auto &Ref : OldTypeRefs.FwdDecls) 1372 OldTypeRefs.Final.insert(Ref); 1373 OldTypeRefs.FwdDecls.clear(); 1374 1375 // Upgrade from old type ref arrays. In strange cases, this could add to 1376 // OldTypeRefs.Unknown. 1377 for (const auto &Array : OldTypeRefs.Arrays) { 1378 DidReplaceTypeRefs = true; 1379 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1380 } 1381 OldTypeRefs.Arrays.clear(); 1382 1383 // Replace old string-based type refs with the resolved node, if possible. 1384 // If we haven't seen the node, leave it to the verifier to complain about 1385 // the invalid string reference. 1386 for (const auto &Ref : OldTypeRefs.Unknown) { 1387 DidReplaceTypeRefs = true; 1388 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1389 Ref.second->replaceAllUsesWith(CT); 1390 else 1391 Ref.second->replaceAllUsesWith(Ref.first); 1392 } 1393 OldTypeRefs.Unknown.clear(); 1394 1395 // Make sure all the upgraded types are resolved. 1396 if (DidReplaceTypeRefs) { 1397 AnyFwdRefs = true; 1398 MinFwdRef = 0; 1399 MaxFwdRef = MetadataPtrs.size() - 1; 1400 } 1401 1402 if (!AnyFwdRefs) 1403 // Nothing to do. 1404 return; 1405 1406 // Resolve any cycles. 1407 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1408 auto &MD = MetadataPtrs[I]; 1409 auto *N = dyn_cast_or_null<MDNode>(MD); 1410 if (!N) 1411 continue; 1412 1413 assert(!N->isTemporary() && "Unexpected forward reference"); 1414 N->resolveCycles(); 1415 } 1416 1417 // Make sure we return early again until there's another forward ref. 1418 AnyFwdRefs = false; 1419 } 1420 1421 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1422 DICompositeType &CT) { 1423 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1424 if (CT.isForwardDecl()) 1425 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1426 else 1427 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1428 } 1429 1430 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1431 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1432 if (LLVM_LIKELY(!UUID)) 1433 return MaybeUUID; 1434 1435 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1436 return CT; 1437 1438 auto &Ref = OldTypeRefs.Unknown[UUID]; 1439 if (!Ref) 1440 Ref = MDNode::getTemporary(Context, None); 1441 return Ref.get(); 1442 } 1443 1444 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1445 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1446 if (!Tuple || Tuple->isDistinct()) 1447 return MaybeTuple; 1448 1449 // Look through the array immediately if possible. 1450 if (!Tuple->isTemporary()) 1451 return resolveTypeRefArray(Tuple); 1452 1453 // Create and return a placeholder to use for now. Eventually 1454 // resolveTypeRefArrays() will be resolve this forward reference. 1455 OldTypeRefs.Arrays.emplace_back( 1456 std::piecewise_construct, std::forward_as_tuple(Tuple), 1457 std::forward_as_tuple(MDTuple::getTemporary(Context, None))); 1458 return OldTypeRefs.Arrays.back().second.get(); 1459 } 1460 1461 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1462 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1463 if (!Tuple || Tuple->isDistinct()) 1464 return MaybeTuple; 1465 1466 // Look through the DITypeRefArray, upgrading each DITypeRef. 1467 SmallVector<Metadata *, 32> Ops; 1468 Ops.reserve(Tuple->getNumOperands()); 1469 for (Metadata *MD : Tuple->operands()) 1470 Ops.push_back(upgradeTypeRef(MD)); 1471 1472 return MDTuple::get(Context, Ops); 1473 } 1474 1475 Type *BitcodeReader::getTypeByID(unsigned ID) { 1476 // The type table size is always specified correctly. 1477 if (ID >= TypeList.size()) 1478 return nullptr; 1479 1480 if (Type *Ty = TypeList[ID]) 1481 return Ty; 1482 1483 // If we have a forward reference, the only possible case is when it is to a 1484 // named struct. Just create a placeholder for now. 1485 return TypeList[ID] = createIdentifiedStructType(Context); 1486 } 1487 1488 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1489 StringRef Name) { 1490 auto *Ret = StructType::create(Context, Name); 1491 IdentifiedStructTypes.push_back(Ret); 1492 return Ret; 1493 } 1494 1495 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1496 auto *Ret = StructType::create(Context); 1497 IdentifiedStructTypes.push_back(Ret); 1498 return Ret; 1499 } 1500 1501 //===----------------------------------------------------------------------===// 1502 // Functions for parsing blocks from the bitcode file 1503 //===----------------------------------------------------------------------===// 1504 1505 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1506 switch (Val) { 1507 case Attribute::EndAttrKinds: 1508 llvm_unreachable("Synthetic enumerators which should never get here"); 1509 1510 case Attribute::None: return 0; 1511 case Attribute::ZExt: return 1 << 0; 1512 case Attribute::SExt: return 1 << 1; 1513 case Attribute::NoReturn: return 1 << 2; 1514 case Attribute::InReg: return 1 << 3; 1515 case Attribute::StructRet: return 1 << 4; 1516 case Attribute::NoUnwind: return 1 << 5; 1517 case Attribute::NoAlias: return 1 << 6; 1518 case Attribute::ByVal: return 1 << 7; 1519 case Attribute::Nest: return 1 << 8; 1520 case Attribute::ReadNone: return 1 << 9; 1521 case Attribute::ReadOnly: return 1 << 10; 1522 case Attribute::NoInline: return 1 << 11; 1523 case Attribute::AlwaysInline: return 1 << 12; 1524 case Attribute::OptimizeForSize: return 1 << 13; 1525 case Attribute::StackProtect: return 1 << 14; 1526 case Attribute::StackProtectReq: return 1 << 15; 1527 case Attribute::Alignment: return 31 << 16; 1528 case Attribute::NoCapture: return 1 << 21; 1529 case Attribute::NoRedZone: return 1 << 22; 1530 case Attribute::NoImplicitFloat: return 1 << 23; 1531 case Attribute::Naked: return 1 << 24; 1532 case Attribute::InlineHint: return 1 << 25; 1533 case Attribute::StackAlignment: return 7 << 26; 1534 case Attribute::ReturnsTwice: return 1 << 29; 1535 case Attribute::UWTable: return 1 << 30; 1536 case Attribute::NonLazyBind: return 1U << 31; 1537 case Attribute::SanitizeAddress: return 1ULL << 32; 1538 case Attribute::MinSize: return 1ULL << 33; 1539 case Attribute::NoDuplicate: return 1ULL << 34; 1540 case Attribute::StackProtectStrong: return 1ULL << 35; 1541 case Attribute::SanitizeThread: return 1ULL << 36; 1542 case Attribute::SanitizeMemory: return 1ULL << 37; 1543 case Attribute::NoBuiltin: return 1ULL << 38; 1544 case Attribute::Returned: return 1ULL << 39; 1545 case Attribute::Cold: return 1ULL << 40; 1546 case Attribute::Builtin: return 1ULL << 41; 1547 case Attribute::OptimizeNone: return 1ULL << 42; 1548 case Attribute::InAlloca: return 1ULL << 43; 1549 case Attribute::NonNull: return 1ULL << 44; 1550 case Attribute::JumpTable: return 1ULL << 45; 1551 case Attribute::Convergent: return 1ULL << 46; 1552 case Attribute::SafeStack: return 1ULL << 47; 1553 case Attribute::NoRecurse: return 1ULL << 48; 1554 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1555 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1556 case Attribute::SwiftSelf: return 1ULL << 51; 1557 case Attribute::SwiftError: return 1ULL << 52; 1558 case Attribute::WriteOnly: return 1ULL << 53; 1559 case Attribute::Dereferenceable: 1560 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1561 break; 1562 case Attribute::DereferenceableOrNull: 1563 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1564 "format"); 1565 break; 1566 case Attribute::ArgMemOnly: 1567 llvm_unreachable("argmemonly attribute not supported in raw format"); 1568 break; 1569 case Attribute::AllocSize: 1570 llvm_unreachable("allocsize not supported in raw format"); 1571 break; 1572 } 1573 llvm_unreachable("Unsupported attribute type"); 1574 } 1575 1576 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1577 if (!Val) return; 1578 1579 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1580 I = Attribute::AttrKind(I + 1)) { 1581 if (I == Attribute::Dereferenceable || 1582 I == Attribute::DereferenceableOrNull || 1583 I == Attribute::ArgMemOnly || 1584 I == Attribute::AllocSize) 1585 continue; 1586 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1587 if (I == Attribute::Alignment) 1588 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1589 else if (I == Attribute::StackAlignment) 1590 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1591 else 1592 B.addAttribute(I); 1593 } 1594 } 1595 } 1596 1597 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1598 /// been decoded from the given integer. This function must stay in sync with 1599 /// 'encodeLLVMAttributesForBitcode'. 1600 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1601 uint64_t EncodedAttrs) { 1602 // FIXME: Remove in 4.0. 1603 1604 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1605 // the bits above 31 down by 11 bits. 1606 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1607 assert((!Alignment || isPowerOf2_32(Alignment)) && 1608 "Alignment must be a power of two."); 1609 1610 if (Alignment) 1611 B.addAlignmentAttr(Alignment); 1612 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1613 (EncodedAttrs & 0xffff)); 1614 } 1615 1616 Error BitcodeReader::parseAttributeBlock() { 1617 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1618 return error("Invalid record"); 1619 1620 if (!MAttributes.empty()) 1621 return error("Invalid multiple blocks"); 1622 1623 SmallVector<uint64_t, 64> Record; 1624 1625 SmallVector<AttributeSet, 8> Attrs; 1626 1627 // Read all the records. 1628 while (true) { 1629 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1630 1631 switch (Entry.Kind) { 1632 case BitstreamEntry::SubBlock: // Handled for us already. 1633 case BitstreamEntry::Error: 1634 return error("Malformed block"); 1635 case BitstreamEntry::EndBlock: 1636 return Error::success(); 1637 case BitstreamEntry::Record: 1638 // The interesting case. 1639 break; 1640 } 1641 1642 // Read a record. 1643 Record.clear(); 1644 switch (Stream.readRecord(Entry.ID, Record)) { 1645 default: // Default behavior: ignore. 1646 break; 1647 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1648 // FIXME: Remove in 4.0. 1649 if (Record.size() & 1) 1650 return error("Invalid record"); 1651 1652 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1653 AttrBuilder B; 1654 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1655 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1656 } 1657 1658 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1659 Attrs.clear(); 1660 break; 1661 } 1662 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1663 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1664 Attrs.push_back(MAttributeGroups[Record[i]]); 1665 1666 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1667 Attrs.clear(); 1668 break; 1669 } 1670 } 1671 } 1672 } 1673 1674 // Returns Attribute::None on unrecognized codes. 1675 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1676 switch (Code) { 1677 default: 1678 return Attribute::None; 1679 case bitc::ATTR_KIND_ALIGNMENT: 1680 return Attribute::Alignment; 1681 case bitc::ATTR_KIND_ALWAYS_INLINE: 1682 return Attribute::AlwaysInline; 1683 case bitc::ATTR_KIND_ARGMEMONLY: 1684 return Attribute::ArgMemOnly; 1685 case bitc::ATTR_KIND_BUILTIN: 1686 return Attribute::Builtin; 1687 case bitc::ATTR_KIND_BY_VAL: 1688 return Attribute::ByVal; 1689 case bitc::ATTR_KIND_IN_ALLOCA: 1690 return Attribute::InAlloca; 1691 case bitc::ATTR_KIND_COLD: 1692 return Attribute::Cold; 1693 case bitc::ATTR_KIND_CONVERGENT: 1694 return Attribute::Convergent; 1695 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1696 return Attribute::InaccessibleMemOnly; 1697 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1698 return Attribute::InaccessibleMemOrArgMemOnly; 1699 case bitc::ATTR_KIND_INLINE_HINT: 1700 return Attribute::InlineHint; 1701 case bitc::ATTR_KIND_IN_REG: 1702 return Attribute::InReg; 1703 case bitc::ATTR_KIND_JUMP_TABLE: 1704 return Attribute::JumpTable; 1705 case bitc::ATTR_KIND_MIN_SIZE: 1706 return Attribute::MinSize; 1707 case bitc::ATTR_KIND_NAKED: 1708 return Attribute::Naked; 1709 case bitc::ATTR_KIND_NEST: 1710 return Attribute::Nest; 1711 case bitc::ATTR_KIND_NO_ALIAS: 1712 return Attribute::NoAlias; 1713 case bitc::ATTR_KIND_NO_BUILTIN: 1714 return Attribute::NoBuiltin; 1715 case bitc::ATTR_KIND_NO_CAPTURE: 1716 return Attribute::NoCapture; 1717 case bitc::ATTR_KIND_NO_DUPLICATE: 1718 return Attribute::NoDuplicate; 1719 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1720 return Attribute::NoImplicitFloat; 1721 case bitc::ATTR_KIND_NO_INLINE: 1722 return Attribute::NoInline; 1723 case bitc::ATTR_KIND_NO_RECURSE: 1724 return Attribute::NoRecurse; 1725 case bitc::ATTR_KIND_NON_LAZY_BIND: 1726 return Attribute::NonLazyBind; 1727 case bitc::ATTR_KIND_NON_NULL: 1728 return Attribute::NonNull; 1729 case bitc::ATTR_KIND_DEREFERENCEABLE: 1730 return Attribute::Dereferenceable; 1731 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1732 return Attribute::DereferenceableOrNull; 1733 case bitc::ATTR_KIND_ALLOC_SIZE: 1734 return Attribute::AllocSize; 1735 case bitc::ATTR_KIND_NO_RED_ZONE: 1736 return Attribute::NoRedZone; 1737 case bitc::ATTR_KIND_NO_RETURN: 1738 return Attribute::NoReturn; 1739 case bitc::ATTR_KIND_NO_UNWIND: 1740 return Attribute::NoUnwind; 1741 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1742 return Attribute::OptimizeForSize; 1743 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1744 return Attribute::OptimizeNone; 1745 case bitc::ATTR_KIND_READ_NONE: 1746 return Attribute::ReadNone; 1747 case bitc::ATTR_KIND_READ_ONLY: 1748 return Attribute::ReadOnly; 1749 case bitc::ATTR_KIND_RETURNED: 1750 return Attribute::Returned; 1751 case bitc::ATTR_KIND_RETURNS_TWICE: 1752 return Attribute::ReturnsTwice; 1753 case bitc::ATTR_KIND_S_EXT: 1754 return Attribute::SExt; 1755 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1756 return Attribute::StackAlignment; 1757 case bitc::ATTR_KIND_STACK_PROTECT: 1758 return Attribute::StackProtect; 1759 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1760 return Attribute::StackProtectReq; 1761 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1762 return Attribute::StackProtectStrong; 1763 case bitc::ATTR_KIND_SAFESTACK: 1764 return Attribute::SafeStack; 1765 case bitc::ATTR_KIND_STRUCT_RET: 1766 return Attribute::StructRet; 1767 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1768 return Attribute::SanitizeAddress; 1769 case bitc::ATTR_KIND_SANITIZE_THREAD: 1770 return Attribute::SanitizeThread; 1771 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1772 return Attribute::SanitizeMemory; 1773 case bitc::ATTR_KIND_SWIFT_ERROR: 1774 return Attribute::SwiftError; 1775 case bitc::ATTR_KIND_SWIFT_SELF: 1776 return Attribute::SwiftSelf; 1777 case bitc::ATTR_KIND_UW_TABLE: 1778 return Attribute::UWTable; 1779 case bitc::ATTR_KIND_WRITEONLY: 1780 return Attribute::WriteOnly; 1781 case bitc::ATTR_KIND_Z_EXT: 1782 return Attribute::ZExt; 1783 } 1784 } 1785 1786 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1787 unsigned &Alignment) { 1788 // Note: Alignment in bitcode files is incremented by 1, so that zero 1789 // can be used for default alignment. 1790 if (Exponent > Value::MaxAlignmentExponent + 1) 1791 return error("Invalid alignment value"); 1792 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1793 return Error::success(); 1794 } 1795 1796 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1797 *Kind = getAttrFromCode(Code); 1798 if (*Kind == Attribute::None) 1799 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1800 return Error::success(); 1801 } 1802 1803 Error BitcodeReader::parseAttributeGroupBlock() { 1804 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1805 return error("Invalid record"); 1806 1807 if (!MAttributeGroups.empty()) 1808 return error("Invalid multiple blocks"); 1809 1810 SmallVector<uint64_t, 64> Record; 1811 1812 // Read all the records. 1813 while (true) { 1814 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1815 1816 switch (Entry.Kind) { 1817 case BitstreamEntry::SubBlock: // Handled for us already. 1818 case BitstreamEntry::Error: 1819 return error("Malformed block"); 1820 case BitstreamEntry::EndBlock: 1821 return Error::success(); 1822 case BitstreamEntry::Record: 1823 // The interesting case. 1824 break; 1825 } 1826 1827 // Read a record. 1828 Record.clear(); 1829 switch (Stream.readRecord(Entry.ID, Record)) { 1830 default: // Default behavior: ignore. 1831 break; 1832 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1833 if (Record.size() < 3) 1834 return error("Invalid record"); 1835 1836 uint64_t GrpID = Record[0]; 1837 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1838 1839 AttrBuilder B; 1840 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1841 if (Record[i] == 0) { // Enum attribute 1842 Attribute::AttrKind Kind; 1843 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1844 return Err; 1845 1846 B.addAttribute(Kind); 1847 } else if (Record[i] == 1) { // Integer attribute 1848 Attribute::AttrKind Kind; 1849 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1850 return Err; 1851 if (Kind == Attribute::Alignment) 1852 B.addAlignmentAttr(Record[++i]); 1853 else if (Kind == Attribute::StackAlignment) 1854 B.addStackAlignmentAttr(Record[++i]); 1855 else if (Kind == Attribute::Dereferenceable) 1856 B.addDereferenceableAttr(Record[++i]); 1857 else if (Kind == Attribute::DereferenceableOrNull) 1858 B.addDereferenceableOrNullAttr(Record[++i]); 1859 else if (Kind == Attribute::AllocSize) 1860 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1861 } else { // String attribute 1862 assert((Record[i] == 3 || Record[i] == 4) && 1863 "Invalid attribute group entry"); 1864 bool HasValue = (Record[i++] == 4); 1865 SmallString<64> KindStr; 1866 SmallString<64> ValStr; 1867 1868 while (Record[i] != 0 && i != e) 1869 KindStr += Record[i++]; 1870 assert(Record[i] == 0 && "Kind string not null terminated"); 1871 1872 if (HasValue) { 1873 // Has a value associated with it. 1874 ++i; // Skip the '0' that terminates the "kind" string. 1875 while (Record[i] != 0 && i != e) 1876 ValStr += Record[i++]; 1877 assert(Record[i] == 0 && "Value string not null terminated"); 1878 } 1879 1880 B.addAttribute(KindStr.str(), ValStr.str()); 1881 } 1882 } 1883 1884 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1885 break; 1886 } 1887 } 1888 } 1889 } 1890 1891 Error BitcodeReader::parseTypeTable() { 1892 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1893 return error("Invalid record"); 1894 1895 return parseTypeTableBody(); 1896 } 1897 1898 Error BitcodeReader::parseTypeTableBody() { 1899 if (!TypeList.empty()) 1900 return error("Invalid multiple blocks"); 1901 1902 SmallVector<uint64_t, 64> Record; 1903 unsigned NumRecords = 0; 1904 1905 SmallString<64> TypeName; 1906 1907 // Read all the records for this type table. 1908 while (true) { 1909 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1910 1911 switch (Entry.Kind) { 1912 case BitstreamEntry::SubBlock: // Handled for us already. 1913 case BitstreamEntry::Error: 1914 return error("Malformed block"); 1915 case BitstreamEntry::EndBlock: 1916 if (NumRecords != TypeList.size()) 1917 return error("Malformed block"); 1918 return Error::success(); 1919 case BitstreamEntry::Record: 1920 // The interesting case. 1921 break; 1922 } 1923 1924 // Read a record. 1925 Record.clear(); 1926 Type *ResultTy = nullptr; 1927 switch (Stream.readRecord(Entry.ID, Record)) { 1928 default: 1929 return error("Invalid value"); 1930 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1931 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1932 // type list. This allows us to reserve space. 1933 if (Record.size() < 1) 1934 return error("Invalid record"); 1935 TypeList.resize(Record[0]); 1936 continue; 1937 case bitc::TYPE_CODE_VOID: // VOID 1938 ResultTy = Type::getVoidTy(Context); 1939 break; 1940 case bitc::TYPE_CODE_HALF: // HALF 1941 ResultTy = Type::getHalfTy(Context); 1942 break; 1943 case bitc::TYPE_CODE_FLOAT: // FLOAT 1944 ResultTy = Type::getFloatTy(Context); 1945 break; 1946 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1947 ResultTy = Type::getDoubleTy(Context); 1948 break; 1949 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1950 ResultTy = Type::getX86_FP80Ty(Context); 1951 break; 1952 case bitc::TYPE_CODE_FP128: // FP128 1953 ResultTy = Type::getFP128Ty(Context); 1954 break; 1955 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1956 ResultTy = Type::getPPC_FP128Ty(Context); 1957 break; 1958 case bitc::TYPE_CODE_LABEL: // LABEL 1959 ResultTy = Type::getLabelTy(Context); 1960 break; 1961 case bitc::TYPE_CODE_METADATA: // METADATA 1962 ResultTy = Type::getMetadataTy(Context); 1963 break; 1964 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1965 ResultTy = Type::getX86_MMXTy(Context); 1966 break; 1967 case bitc::TYPE_CODE_TOKEN: // TOKEN 1968 ResultTy = Type::getTokenTy(Context); 1969 break; 1970 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1971 if (Record.size() < 1) 1972 return error("Invalid record"); 1973 1974 uint64_t NumBits = Record[0]; 1975 if (NumBits < IntegerType::MIN_INT_BITS || 1976 NumBits > IntegerType::MAX_INT_BITS) 1977 return error("Bitwidth for integer type out of range"); 1978 ResultTy = IntegerType::get(Context, NumBits); 1979 break; 1980 } 1981 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1982 // [pointee type, address space] 1983 if (Record.size() < 1) 1984 return error("Invalid record"); 1985 unsigned AddressSpace = 0; 1986 if (Record.size() == 2) 1987 AddressSpace = Record[1]; 1988 ResultTy = getTypeByID(Record[0]); 1989 if (!ResultTy || 1990 !PointerType::isValidElementType(ResultTy)) 1991 return error("Invalid type"); 1992 ResultTy = PointerType::get(ResultTy, AddressSpace); 1993 break; 1994 } 1995 case bitc::TYPE_CODE_FUNCTION_OLD: { 1996 // FIXME: attrid is dead, remove it in LLVM 4.0 1997 // FUNCTION: [vararg, attrid, retty, paramty x N] 1998 if (Record.size() < 3) 1999 return error("Invalid record"); 2000 SmallVector<Type*, 8> ArgTys; 2001 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2002 if (Type *T = getTypeByID(Record[i])) 2003 ArgTys.push_back(T); 2004 else 2005 break; 2006 } 2007 2008 ResultTy = getTypeByID(Record[2]); 2009 if (!ResultTy || ArgTys.size() < Record.size()-3) 2010 return error("Invalid type"); 2011 2012 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2013 break; 2014 } 2015 case bitc::TYPE_CODE_FUNCTION: { 2016 // FUNCTION: [vararg, retty, paramty x N] 2017 if (Record.size() < 2) 2018 return error("Invalid record"); 2019 SmallVector<Type*, 8> ArgTys; 2020 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2021 if (Type *T = getTypeByID(Record[i])) { 2022 if (!FunctionType::isValidArgumentType(T)) 2023 return error("Invalid function argument type"); 2024 ArgTys.push_back(T); 2025 } 2026 else 2027 break; 2028 } 2029 2030 ResultTy = getTypeByID(Record[1]); 2031 if (!ResultTy || ArgTys.size() < Record.size()-2) 2032 return error("Invalid type"); 2033 2034 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2035 break; 2036 } 2037 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2038 if (Record.size() < 1) 2039 return error("Invalid record"); 2040 SmallVector<Type*, 8> EltTys; 2041 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2042 if (Type *T = getTypeByID(Record[i])) 2043 EltTys.push_back(T); 2044 else 2045 break; 2046 } 2047 if (EltTys.size() != Record.size()-1) 2048 return error("Invalid type"); 2049 ResultTy = StructType::get(Context, EltTys, Record[0]); 2050 break; 2051 } 2052 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2053 if (convertToString(Record, 0, TypeName)) 2054 return error("Invalid record"); 2055 continue; 2056 2057 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2058 if (Record.size() < 1) 2059 return error("Invalid record"); 2060 2061 if (NumRecords >= TypeList.size()) 2062 return error("Invalid TYPE table"); 2063 2064 // Check to see if this was forward referenced, if so fill in the temp. 2065 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2066 if (Res) { 2067 Res->setName(TypeName); 2068 TypeList[NumRecords] = nullptr; 2069 } else // Otherwise, create a new struct. 2070 Res = createIdentifiedStructType(Context, TypeName); 2071 TypeName.clear(); 2072 2073 SmallVector<Type*, 8> EltTys; 2074 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2075 if (Type *T = getTypeByID(Record[i])) 2076 EltTys.push_back(T); 2077 else 2078 break; 2079 } 2080 if (EltTys.size() != Record.size()-1) 2081 return error("Invalid record"); 2082 Res->setBody(EltTys, Record[0]); 2083 ResultTy = Res; 2084 break; 2085 } 2086 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2087 if (Record.size() != 1) 2088 return error("Invalid record"); 2089 2090 if (NumRecords >= TypeList.size()) 2091 return error("Invalid TYPE table"); 2092 2093 // Check to see if this was forward referenced, if so fill in the temp. 2094 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2095 if (Res) { 2096 Res->setName(TypeName); 2097 TypeList[NumRecords] = nullptr; 2098 } else // Otherwise, create a new struct with no body. 2099 Res = createIdentifiedStructType(Context, TypeName); 2100 TypeName.clear(); 2101 ResultTy = Res; 2102 break; 2103 } 2104 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2105 if (Record.size() < 2) 2106 return error("Invalid record"); 2107 ResultTy = getTypeByID(Record[1]); 2108 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2109 return error("Invalid type"); 2110 ResultTy = ArrayType::get(ResultTy, Record[0]); 2111 break; 2112 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 2113 if (Record.size() < 2) 2114 return error("Invalid record"); 2115 if (Record[0] == 0) 2116 return error("Invalid vector length"); 2117 ResultTy = getTypeByID(Record[1]); 2118 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 2119 return error("Invalid type"); 2120 ResultTy = VectorType::get(ResultTy, Record[0]); 2121 break; 2122 } 2123 2124 if (NumRecords >= TypeList.size()) 2125 return error("Invalid TYPE table"); 2126 if (TypeList[NumRecords]) 2127 return error( 2128 "Invalid TYPE table: Only named structs can be forward referenced"); 2129 assert(ResultTy && "Didn't read a type?"); 2130 TypeList[NumRecords++] = ResultTy; 2131 } 2132 } 2133 2134 Error BitcodeReader::parseOperandBundleTags() { 2135 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2136 return error("Invalid record"); 2137 2138 if (!BundleTags.empty()) 2139 return error("Invalid multiple blocks"); 2140 2141 SmallVector<uint64_t, 64> Record; 2142 2143 while (true) { 2144 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2145 2146 switch (Entry.Kind) { 2147 case BitstreamEntry::SubBlock: // Handled for us already. 2148 case BitstreamEntry::Error: 2149 return error("Malformed block"); 2150 case BitstreamEntry::EndBlock: 2151 return Error::success(); 2152 case BitstreamEntry::Record: 2153 // The interesting case. 2154 break; 2155 } 2156 2157 // Tags are implicitly mapped to integers by their order. 2158 2159 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 2160 return error("Invalid record"); 2161 2162 // OPERAND_BUNDLE_TAG: [strchr x N] 2163 BundleTags.emplace_back(); 2164 if (convertToString(Record, 0, BundleTags.back())) 2165 return error("Invalid record"); 2166 Record.clear(); 2167 } 2168 } 2169 2170 /// Associate a value with its name from the given index in the provided record. 2171 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2172 unsigned NameIndex, Triple &TT) { 2173 SmallString<128> ValueName; 2174 if (convertToString(Record, NameIndex, ValueName)) 2175 return error("Invalid record"); 2176 unsigned ValueID = Record[0]; 2177 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2178 return error("Invalid record"); 2179 Value *V = ValueList[ValueID]; 2180 2181 StringRef NameStr(ValueName.data(), ValueName.size()); 2182 if (NameStr.find_first_of(0) != StringRef::npos) 2183 return error("Invalid value name"); 2184 V->setName(NameStr); 2185 auto *GO = dyn_cast<GlobalObject>(V); 2186 if (GO) { 2187 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2188 if (TT.isOSBinFormatMachO()) 2189 GO->setComdat(nullptr); 2190 else 2191 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2192 } 2193 } 2194 return V; 2195 } 2196 2197 /// Helper to note and return the current location, and jump to the given 2198 /// offset. 2199 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 2200 BitstreamCursor &Stream) { 2201 // Save the current parsing location so we can jump back at the end 2202 // of the VST read. 2203 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2204 Stream.JumpToBit(Offset * 32); 2205 #ifndef NDEBUG 2206 // Do some checking if we are in debug mode. 2207 BitstreamEntry Entry = Stream.advance(); 2208 assert(Entry.Kind == BitstreamEntry::SubBlock); 2209 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2210 #else 2211 // In NDEBUG mode ignore the output so we don't get an unused variable 2212 // warning. 2213 Stream.advance(); 2214 #endif 2215 return CurrentBit; 2216 } 2217 2218 /// Parse the value symbol table at either the current parsing location or 2219 /// at the given bit offset if provided. 2220 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2221 uint64_t CurrentBit; 2222 // Pass in the Offset to distinguish between calling for the module-level 2223 // VST (where we want to jump to the VST offset) and the function-level 2224 // VST (where we don't). 2225 if (Offset > 0) 2226 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 2227 2228 // Compute the delta between the bitcode indices in the VST (the word offset 2229 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2230 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2231 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2232 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2233 // just before entering the VST subblock because: 1) the EnterSubBlock 2234 // changes the AbbrevID width; 2) the VST block is nested within the same 2235 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2236 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2237 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2238 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2239 unsigned FuncBitcodeOffsetDelta = 2240 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2241 2242 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2243 return error("Invalid record"); 2244 2245 SmallVector<uint64_t, 64> Record; 2246 2247 Triple TT(TheModule->getTargetTriple()); 2248 2249 // Read all the records for this value table. 2250 SmallString<128> ValueName; 2251 2252 while (true) { 2253 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2254 2255 switch (Entry.Kind) { 2256 case BitstreamEntry::SubBlock: // Handled for us already. 2257 case BitstreamEntry::Error: 2258 return error("Malformed block"); 2259 case BitstreamEntry::EndBlock: 2260 if (Offset > 0) 2261 Stream.JumpToBit(CurrentBit); 2262 return Error::success(); 2263 case BitstreamEntry::Record: 2264 // The interesting case. 2265 break; 2266 } 2267 2268 // Read a record. 2269 Record.clear(); 2270 switch (Stream.readRecord(Entry.ID, Record)) { 2271 default: // Default behavior: unknown type. 2272 break; 2273 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2274 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2275 if (Error Err = ValOrErr.takeError()) 2276 return Err; 2277 ValOrErr.get(); 2278 break; 2279 } 2280 case bitc::VST_CODE_FNENTRY: { 2281 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2282 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2283 if (Error Err = ValOrErr.takeError()) 2284 return Err; 2285 Value *V = ValOrErr.get(); 2286 2287 auto *GO = dyn_cast<GlobalObject>(V); 2288 if (!GO) { 2289 // If this is an alias, need to get the actual Function object 2290 // it aliases, in order to set up the DeferredFunctionInfo entry below. 2291 auto *GA = dyn_cast<GlobalAlias>(V); 2292 if (GA) 2293 GO = GA->getBaseObject(); 2294 assert(GO); 2295 } 2296 2297 // Note that we subtract 1 here because the offset is relative to one word 2298 // before the start of the identification or module block, which was 2299 // historically always the start of the regular bitcode header. 2300 uint64_t FuncWordOffset = Record[1] - 1; 2301 Function *F = dyn_cast<Function>(GO); 2302 assert(F); 2303 uint64_t FuncBitOffset = FuncWordOffset * 32; 2304 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2305 // Set the LastFunctionBlockBit to point to the last function block. 2306 // Later when parsing is resumed after function materialization, 2307 // we can simply skip that last function block. 2308 if (FuncBitOffset > LastFunctionBlockBit) 2309 LastFunctionBlockBit = FuncBitOffset; 2310 break; 2311 } 2312 case bitc::VST_CODE_BBENTRY: { 2313 if (convertToString(Record, 1, ValueName)) 2314 return error("Invalid record"); 2315 BasicBlock *BB = getBasicBlock(Record[0]); 2316 if (!BB) 2317 return error("Invalid record"); 2318 2319 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2320 ValueName.clear(); 2321 break; 2322 } 2323 } 2324 } 2325 } 2326 2327 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2328 Error BitcodeReader::parseMetadataKindRecord( 2329 SmallVectorImpl<uint64_t> &Record) { 2330 if (Record.size() < 2) 2331 return error("Invalid record"); 2332 2333 unsigned Kind = Record[0]; 2334 SmallString<8> Name(Record.begin() + 1, Record.end()); 2335 2336 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2337 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2338 return error("Conflicting METADATA_KIND records"); 2339 return Error::success(); 2340 } 2341 2342 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2343 2344 Error BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2345 StringRef Blob, 2346 unsigned &NextMetadataNo) { 2347 // All the MDStrings in the block are emitted together in a single 2348 // record. The strings are concatenated and stored in a blob along with 2349 // their sizes. 2350 if (Record.size() != 2) 2351 return error("Invalid record: metadata strings layout"); 2352 2353 unsigned NumStrings = Record[0]; 2354 unsigned StringsOffset = Record[1]; 2355 if (!NumStrings) 2356 return error("Invalid record: metadata strings with no strings"); 2357 if (StringsOffset > Blob.size()) 2358 return error("Invalid record: metadata strings corrupt offset"); 2359 2360 StringRef Lengths = Blob.slice(0, StringsOffset); 2361 SimpleBitstreamCursor R(Lengths); 2362 2363 StringRef Strings = Blob.drop_front(StringsOffset); 2364 do { 2365 if (R.AtEndOfStream()) 2366 return error("Invalid record: metadata strings bad length"); 2367 2368 unsigned Size = R.ReadVBR(6); 2369 if (Strings.size() < Size) 2370 return error("Invalid record: metadata strings truncated chars"); 2371 2372 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2373 NextMetadataNo++); 2374 Strings = Strings.drop_front(Size); 2375 } while (--NumStrings); 2376 2377 return Error::success(); 2378 } 2379 2380 namespace { 2381 2382 class PlaceholderQueue { 2383 // Placeholders would thrash around when moved, so store in a std::deque 2384 // instead of some sort of vector. 2385 std::deque<DistinctMDOperandPlaceholder> PHs; 2386 2387 public: 2388 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2389 void flush(BitcodeReaderMetadataList &MetadataList); 2390 }; 2391 2392 } // end anonymous namespace 2393 2394 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2395 PHs.emplace_back(ID); 2396 return PHs.back(); 2397 } 2398 2399 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2400 while (!PHs.empty()) { 2401 PHs.front().replaceUseWith( 2402 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2403 PHs.pop_front(); 2404 } 2405 } 2406 2407 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2408 /// module level metadata. 2409 Error BitcodeReader::parseMetadata(bool ModuleLevel) { 2410 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2411 "Must read all module-level metadata before function-level"); 2412 2413 IsMetadataMaterialized = true; 2414 unsigned NextMetadataNo = MetadataList.size(); 2415 2416 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2417 return error("Invalid metadata: fwd refs into function blocks"); 2418 2419 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2420 return error("Invalid record"); 2421 2422 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2423 SmallVector<uint64_t, 64> Record; 2424 2425 PlaceholderQueue Placeholders; 2426 bool IsDistinct; 2427 auto getMD = [&](unsigned ID) -> Metadata * { 2428 if (!IsDistinct) 2429 return MetadataList.getMetadataFwdRef(ID); 2430 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2431 return MD; 2432 return &Placeholders.getPlaceholderOp(ID); 2433 }; 2434 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2435 if (ID) 2436 return getMD(ID - 1); 2437 return nullptr; 2438 }; 2439 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2440 if (ID) 2441 return MetadataList.getMetadataFwdRef(ID - 1); 2442 return nullptr; 2443 }; 2444 auto getMDString = [&](unsigned ID) -> MDString *{ 2445 // This requires that the ID is not really a forward reference. In 2446 // particular, the MDString must already have been resolved. 2447 return cast_or_null<MDString>(getMDOrNull(ID)); 2448 }; 2449 2450 // Support for old type refs. 2451 auto getDITypeRefOrNull = [&](unsigned ID) { 2452 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2453 }; 2454 2455 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2456 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2457 2458 // Read all the records. 2459 while (true) { 2460 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2461 2462 switch (Entry.Kind) { 2463 case BitstreamEntry::SubBlock: // Handled for us already. 2464 case BitstreamEntry::Error: 2465 return error("Malformed block"); 2466 case BitstreamEntry::EndBlock: 2467 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2468 for (auto CU_SP : CUSubprograms) 2469 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2470 for (auto &Op : SPs->operands()) 2471 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2472 SP->replaceOperandWith(7, CU_SP.first); 2473 2474 MetadataList.tryToResolveCycles(); 2475 Placeholders.flush(MetadataList); 2476 return Error::success(); 2477 case BitstreamEntry::Record: 2478 // The interesting case. 2479 break; 2480 } 2481 2482 // Read a record. 2483 Record.clear(); 2484 StringRef Blob; 2485 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2486 IsDistinct = false; 2487 switch (Code) { 2488 default: // Default behavior: ignore. 2489 break; 2490 case bitc::METADATA_NAME: { 2491 // Read name of the named metadata. 2492 SmallString<8> Name(Record.begin(), Record.end()); 2493 Record.clear(); 2494 Code = Stream.ReadCode(); 2495 2496 unsigned NextBitCode = Stream.readRecord(Code, Record); 2497 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2498 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2499 2500 // Read named metadata elements. 2501 unsigned Size = Record.size(); 2502 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2503 for (unsigned i = 0; i != Size; ++i) { 2504 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2505 if (!MD) 2506 return error("Invalid record"); 2507 NMD->addOperand(MD); 2508 } 2509 break; 2510 } 2511 case bitc::METADATA_OLD_FN_NODE: { 2512 // FIXME: Remove in 4.0. 2513 // This is a LocalAsMetadata record, the only type of function-local 2514 // metadata. 2515 if (Record.size() % 2 == 1) 2516 return error("Invalid record"); 2517 2518 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2519 // to be legal, but there's no upgrade path. 2520 auto dropRecord = [&] { 2521 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2522 }; 2523 if (Record.size() != 2) { 2524 dropRecord(); 2525 break; 2526 } 2527 2528 Type *Ty = getTypeByID(Record[0]); 2529 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2530 dropRecord(); 2531 break; 2532 } 2533 2534 MetadataList.assignValue( 2535 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2536 NextMetadataNo++); 2537 break; 2538 } 2539 case bitc::METADATA_OLD_NODE: { 2540 // FIXME: Remove in 4.0. 2541 if (Record.size() % 2 == 1) 2542 return error("Invalid record"); 2543 2544 unsigned Size = Record.size(); 2545 SmallVector<Metadata *, 8> Elts; 2546 for (unsigned i = 0; i != Size; i += 2) { 2547 Type *Ty = getTypeByID(Record[i]); 2548 if (!Ty) 2549 return error("Invalid record"); 2550 if (Ty->isMetadataTy()) 2551 Elts.push_back(getMD(Record[i + 1])); 2552 else if (!Ty->isVoidTy()) { 2553 auto *MD = 2554 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2555 assert(isa<ConstantAsMetadata>(MD) && 2556 "Expected non-function-local metadata"); 2557 Elts.push_back(MD); 2558 } else 2559 Elts.push_back(nullptr); 2560 } 2561 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2562 break; 2563 } 2564 case bitc::METADATA_VALUE: { 2565 if (Record.size() != 2) 2566 return error("Invalid record"); 2567 2568 Type *Ty = getTypeByID(Record[0]); 2569 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2570 return error("Invalid record"); 2571 2572 MetadataList.assignValue( 2573 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2574 NextMetadataNo++); 2575 break; 2576 } 2577 case bitc::METADATA_DISTINCT_NODE: 2578 IsDistinct = true; 2579 LLVM_FALLTHROUGH; 2580 case bitc::METADATA_NODE: { 2581 SmallVector<Metadata *, 8> Elts; 2582 Elts.reserve(Record.size()); 2583 for (unsigned ID : Record) 2584 Elts.push_back(getMDOrNull(ID)); 2585 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2586 : MDNode::get(Context, Elts), 2587 NextMetadataNo++); 2588 break; 2589 } 2590 case bitc::METADATA_LOCATION: { 2591 if (Record.size() != 5) 2592 return error("Invalid record"); 2593 2594 IsDistinct = Record[0]; 2595 unsigned Line = Record[1]; 2596 unsigned Column = Record[2]; 2597 Metadata *Scope = getMD(Record[3]); 2598 Metadata *InlinedAt = getMDOrNull(Record[4]); 2599 MetadataList.assignValue( 2600 GET_OR_DISTINCT(DILocation, 2601 (Context, Line, Column, Scope, InlinedAt)), 2602 NextMetadataNo++); 2603 break; 2604 } 2605 case bitc::METADATA_GENERIC_DEBUG: { 2606 if (Record.size() < 4) 2607 return error("Invalid record"); 2608 2609 IsDistinct = Record[0]; 2610 unsigned Tag = Record[1]; 2611 unsigned Version = Record[2]; 2612 2613 if (Tag >= 1u << 16 || Version != 0) 2614 return error("Invalid record"); 2615 2616 auto *Header = getMDString(Record[3]); 2617 SmallVector<Metadata *, 8> DwarfOps; 2618 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2619 DwarfOps.push_back(getMDOrNull(Record[I])); 2620 MetadataList.assignValue( 2621 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2622 NextMetadataNo++); 2623 break; 2624 } 2625 case bitc::METADATA_SUBRANGE: { 2626 if (Record.size() != 3) 2627 return error("Invalid record"); 2628 2629 IsDistinct = Record[0]; 2630 MetadataList.assignValue( 2631 GET_OR_DISTINCT(DISubrange, 2632 (Context, Record[1], unrotateSign(Record[2]))), 2633 NextMetadataNo++); 2634 break; 2635 } 2636 case bitc::METADATA_ENUMERATOR: { 2637 if (Record.size() != 3) 2638 return error("Invalid record"); 2639 2640 IsDistinct = Record[0]; 2641 MetadataList.assignValue( 2642 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2643 getMDString(Record[2]))), 2644 NextMetadataNo++); 2645 break; 2646 } 2647 case bitc::METADATA_BASIC_TYPE: { 2648 if (Record.size() != 6) 2649 return error("Invalid record"); 2650 2651 IsDistinct = Record[0]; 2652 MetadataList.assignValue( 2653 GET_OR_DISTINCT(DIBasicType, 2654 (Context, Record[1], getMDString(Record[2]), 2655 Record[3], Record[4], Record[5])), 2656 NextMetadataNo++); 2657 break; 2658 } 2659 case bitc::METADATA_DERIVED_TYPE: { 2660 if (Record.size() != 12) 2661 return error("Invalid record"); 2662 2663 IsDistinct = Record[0]; 2664 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2665 MetadataList.assignValue( 2666 GET_OR_DISTINCT(DIDerivedType, 2667 (Context, Record[1], getMDString(Record[2]), 2668 getMDOrNull(Record[3]), Record[4], 2669 getDITypeRefOrNull(Record[5]), 2670 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2671 Record[9], Flags, getDITypeRefOrNull(Record[11]))), 2672 NextMetadataNo++); 2673 break; 2674 } 2675 case bitc::METADATA_COMPOSITE_TYPE: { 2676 if (Record.size() != 16) 2677 return error("Invalid record"); 2678 2679 // If we have a UUID and this is not a forward declaration, lookup the 2680 // mapping. 2681 IsDistinct = Record[0] & 0x1; 2682 bool IsNotUsedInTypeRef = Record[0] >= 2; 2683 unsigned Tag = Record[1]; 2684 MDString *Name = getMDString(Record[2]); 2685 Metadata *File = getMDOrNull(Record[3]); 2686 unsigned Line = Record[4]; 2687 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2688 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2689 uint64_t SizeInBits = Record[7]; 2690 if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max()) 2691 return error("Alignment value is too large"); 2692 uint32_t AlignInBits = Record[8]; 2693 uint64_t OffsetInBits = Record[9]; 2694 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2695 Metadata *Elements = getMDOrNull(Record[11]); 2696 unsigned RuntimeLang = Record[12]; 2697 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2698 Metadata *TemplateParams = getMDOrNull(Record[14]); 2699 auto *Identifier = getMDString(Record[15]); 2700 DICompositeType *CT = nullptr; 2701 if (Identifier) 2702 CT = DICompositeType::buildODRType( 2703 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2704 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2705 VTableHolder, TemplateParams); 2706 2707 // Create a node if we didn't get a lazy ODR type. 2708 if (!CT) 2709 CT = GET_OR_DISTINCT(DICompositeType, 2710 (Context, Tag, Name, File, Line, Scope, BaseType, 2711 SizeInBits, AlignInBits, OffsetInBits, Flags, 2712 Elements, RuntimeLang, VTableHolder, 2713 TemplateParams, Identifier)); 2714 if (!IsNotUsedInTypeRef && Identifier) 2715 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2716 2717 MetadataList.assignValue(CT, NextMetadataNo++); 2718 break; 2719 } 2720 case bitc::METADATA_SUBROUTINE_TYPE: { 2721 if (Record.size() < 3 || Record.size() > 4) 2722 return error("Invalid record"); 2723 bool IsOldTypeRefArray = Record[0] < 2; 2724 unsigned CC = (Record.size() > 3) ? Record[3] : 0; 2725 2726 IsDistinct = Record[0] & 0x1; 2727 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]); 2728 Metadata *Types = getMDOrNull(Record[2]); 2729 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2730 Types = MetadataList.upgradeTypeRefArray(Types); 2731 2732 MetadataList.assignValue( 2733 GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)), 2734 NextMetadataNo++); 2735 break; 2736 } 2737 2738 case bitc::METADATA_MODULE: { 2739 if (Record.size() != 6) 2740 return error("Invalid record"); 2741 2742 IsDistinct = Record[0]; 2743 MetadataList.assignValue( 2744 GET_OR_DISTINCT(DIModule, 2745 (Context, getMDOrNull(Record[1]), 2746 getMDString(Record[2]), getMDString(Record[3]), 2747 getMDString(Record[4]), getMDString(Record[5]))), 2748 NextMetadataNo++); 2749 break; 2750 } 2751 2752 case bitc::METADATA_FILE: { 2753 if (Record.size() != 3) 2754 return error("Invalid record"); 2755 2756 IsDistinct = Record[0]; 2757 MetadataList.assignValue( 2758 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2759 getMDString(Record[2]))), 2760 NextMetadataNo++); 2761 break; 2762 } 2763 case bitc::METADATA_COMPILE_UNIT: { 2764 if (Record.size() < 14 || Record.size() > 17) 2765 return error("Invalid record"); 2766 2767 // Ignore Record[0], which indicates whether this compile unit is 2768 // distinct. It's always distinct. 2769 IsDistinct = true; 2770 auto *CU = DICompileUnit::getDistinct( 2771 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2772 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2773 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2774 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2775 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2776 Record.size() <= 14 ? 0 : Record[14], 2777 Record.size() <= 16 ? true : Record[16]); 2778 2779 MetadataList.assignValue(CU, NextMetadataNo++); 2780 2781 // Move the Upgrade the list of subprograms. 2782 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2783 CUSubprograms.push_back({CU, SPs}); 2784 break; 2785 } 2786 case bitc::METADATA_SUBPROGRAM: { 2787 if (Record.size() < 18 || Record.size() > 20) 2788 return error("Invalid record"); 2789 2790 IsDistinct = 2791 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2792 // Version 1 has a Function as Record[15]. 2793 // Version 2 has removed Record[15]. 2794 // Version 3 has the Unit as Record[15]. 2795 // Version 4 added thisAdjustment. 2796 bool HasUnit = Record[0] >= 2; 2797 if (HasUnit && Record.size() < 19) 2798 return error("Invalid record"); 2799 Metadata *CUorFn = getMDOrNull(Record[15]); 2800 unsigned Offset = Record.size() >= 19 ? 1 : 0; 2801 bool HasFn = Offset && !HasUnit; 2802 bool HasThisAdj = Record.size() >= 20; 2803 DISubprogram *SP = GET_OR_DISTINCT( 2804 DISubprogram, (Context, 2805 getDITypeRefOrNull(Record[1]), // scope 2806 getMDString(Record[2]), // name 2807 getMDString(Record[3]), // linkageName 2808 getMDOrNull(Record[4]), // file 2809 Record[5], // line 2810 getMDOrNull(Record[6]), // type 2811 Record[7], // isLocal 2812 Record[8], // isDefinition 2813 Record[9], // scopeLine 2814 getDITypeRefOrNull(Record[10]), // containingType 2815 Record[11], // virtuality 2816 Record[12], // virtualIndex 2817 HasThisAdj ? Record[19] : 0, // thisAdjustment 2818 static_cast<DINode::DIFlags>(Record[13] // flags 2819 ), 2820 Record[14], // isOptimized 2821 HasUnit ? CUorFn : nullptr, // unit 2822 getMDOrNull(Record[15 + Offset]), // templateParams 2823 getMDOrNull(Record[16 + Offset]), // declaration 2824 getMDOrNull(Record[17 + Offset]) // variables 2825 )); 2826 MetadataList.assignValue(SP, NextMetadataNo++); 2827 2828 // Upgrade sp->function mapping to function->sp mapping. 2829 if (HasFn) { 2830 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2831 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2832 if (F->isMaterializable()) 2833 // Defer until materialized; unmaterialized functions may not have 2834 // metadata. 2835 FunctionsWithSPs[F] = SP; 2836 else if (!F->empty()) 2837 F->setSubprogram(SP); 2838 } 2839 } 2840 break; 2841 } 2842 case bitc::METADATA_LEXICAL_BLOCK: { 2843 if (Record.size() != 5) 2844 return error("Invalid record"); 2845 2846 IsDistinct = Record[0]; 2847 MetadataList.assignValue( 2848 GET_OR_DISTINCT(DILexicalBlock, 2849 (Context, getMDOrNull(Record[1]), 2850 getMDOrNull(Record[2]), Record[3], Record[4])), 2851 NextMetadataNo++); 2852 break; 2853 } 2854 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2855 if (Record.size() != 4) 2856 return error("Invalid record"); 2857 2858 IsDistinct = Record[0]; 2859 MetadataList.assignValue( 2860 GET_OR_DISTINCT(DILexicalBlockFile, 2861 (Context, getMDOrNull(Record[1]), 2862 getMDOrNull(Record[2]), Record[3])), 2863 NextMetadataNo++); 2864 break; 2865 } 2866 case bitc::METADATA_NAMESPACE: { 2867 if (Record.size() != 5) 2868 return error("Invalid record"); 2869 2870 IsDistinct = Record[0] & 1; 2871 bool ExportSymbols = Record[0] & 2; 2872 MetadataList.assignValue( 2873 GET_OR_DISTINCT(DINamespace, 2874 (Context, getMDOrNull(Record[1]), 2875 getMDOrNull(Record[2]), getMDString(Record[3]), 2876 Record[4], ExportSymbols)), 2877 NextMetadataNo++); 2878 break; 2879 } 2880 case bitc::METADATA_MACRO: { 2881 if (Record.size() != 5) 2882 return error("Invalid record"); 2883 2884 IsDistinct = Record[0]; 2885 MetadataList.assignValue( 2886 GET_OR_DISTINCT(DIMacro, 2887 (Context, Record[1], Record[2], 2888 getMDString(Record[3]), getMDString(Record[4]))), 2889 NextMetadataNo++); 2890 break; 2891 } 2892 case bitc::METADATA_MACRO_FILE: { 2893 if (Record.size() != 5) 2894 return error("Invalid record"); 2895 2896 IsDistinct = Record[0]; 2897 MetadataList.assignValue( 2898 GET_OR_DISTINCT(DIMacroFile, 2899 (Context, Record[1], Record[2], 2900 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2901 NextMetadataNo++); 2902 break; 2903 } 2904 case bitc::METADATA_TEMPLATE_TYPE: { 2905 if (Record.size() != 3) 2906 return error("Invalid record"); 2907 2908 IsDistinct = Record[0]; 2909 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2910 (Context, getMDString(Record[1]), 2911 getDITypeRefOrNull(Record[2]))), 2912 NextMetadataNo++); 2913 break; 2914 } 2915 case bitc::METADATA_TEMPLATE_VALUE: { 2916 if (Record.size() != 5) 2917 return error("Invalid record"); 2918 2919 IsDistinct = Record[0]; 2920 MetadataList.assignValue( 2921 GET_OR_DISTINCT(DITemplateValueParameter, 2922 (Context, Record[1], getMDString(Record[2]), 2923 getDITypeRefOrNull(Record[3]), 2924 getMDOrNull(Record[4]))), 2925 NextMetadataNo++); 2926 break; 2927 } 2928 case bitc::METADATA_GLOBAL_VAR: { 2929 if (Record.size() < 11 || Record.size() > 12) 2930 return error("Invalid record"); 2931 2932 IsDistinct = Record[0]; 2933 2934 // Upgrade old metadata, which stored a global variable reference or a 2935 // ConstantInt here. 2936 Metadata *Expr = getMDOrNull(Record[9]); 2937 uint32_t AlignInBits = 0; 2938 if (Record.size() > 11) { 2939 if (Record[11] > (uint64_t)std::numeric_limits<uint32_t>::max()) 2940 return error("Alignment value is too large"); 2941 AlignInBits = Record[11]; 2942 } 2943 GlobalVariable *Attach = nullptr; 2944 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) { 2945 if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) { 2946 Attach = GV; 2947 Expr = nullptr; 2948 } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) { 2949 Expr = DIExpression::get(Context, 2950 {dwarf::DW_OP_constu, CI->getZExtValue(), 2951 dwarf::DW_OP_stack_value}); 2952 } else { 2953 Expr = nullptr; 2954 } 2955 } 2956 2957 DIGlobalVariable *DGV = GET_OR_DISTINCT( 2958 DIGlobalVariable, 2959 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2960 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2961 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr, 2962 getMDOrNull(Record[10]), AlignInBits)); 2963 MetadataList.assignValue(DGV, NextMetadataNo++); 2964 2965 if (Attach) 2966 Attach->addDebugInfo(DGV); 2967 2968 break; 2969 } 2970 case bitc::METADATA_LOCAL_VAR: { 2971 // 10th field is for the obseleted 'inlinedAt:' field. 2972 if (Record.size() < 8 || Record.size() > 10) 2973 return error("Invalid record"); 2974 2975 IsDistinct = Record[0] & 1; 2976 bool HasAlignment = Record[0] & 2; 2977 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2978 // DW_TAG_arg_variable, if we have alignment flag encoded it means, that 2979 // this is newer version of record which doesn't have artifical tag. 2980 bool HasTag = !HasAlignment && Record.size() > 8; 2981 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]); 2982 uint32_t AlignInBits = 0; 2983 if (HasAlignment) { 2984 if (Record[8 + HasTag] > 2985 (uint64_t)std::numeric_limits<uint32_t>::max()) 2986 return error("Alignment value is too large"); 2987 AlignInBits = Record[8 + HasTag]; 2988 } 2989 MetadataList.assignValue( 2990 GET_OR_DISTINCT(DILocalVariable, 2991 (Context, getMDOrNull(Record[1 + HasTag]), 2992 getMDString(Record[2 + HasTag]), 2993 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2994 getDITypeRefOrNull(Record[5 + HasTag]), 2995 Record[6 + HasTag], Flags, AlignInBits)), 2996 NextMetadataNo++); 2997 break; 2998 } 2999 case bitc::METADATA_EXPRESSION: { 3000 if (Record.size() < 1) 3001 return error("Invalid record"); 3002 3003 IsDistinct = Record[0]; 3004 MetadataList.assignValue( 3005 GET_OR_DISTINCT(DIExpression, 3006 (Context, makeArrayRef(Record).slice(1))), 3007 NextMetadataNo++); 3008 break; 3009 } 3010 case bitc::METADATA_OBJC_PROPERTY: { 3011 if (Record.size() != 8) 3012 return error("Invalid record"); 3013 3014 IsDistinct = Record[0]; 3015 MetadataList.assignValue( 3016 GET_OR_DISTINCT(DIObjCProperty, 3017 (Context, getMDString(Record[1]), 3018 getMDOrNull(Record[2]), Record[3], 3019 getMDString(Record[4]), getMDString(Record[5]), 3020 Record[6], getDITypeRefOrNull(Record[7]))), 3021 NextMetadataNo++); 3022 break; 3023 } 3024 case bitc::METADATA_IMPORTED_ENTITY: { 3025 if (Record.size() != 6) 3026 return error("Invalid record"); 3027 3028 IsDistinct = Record[0]; 3029 MetadataList.assignValue( 3030 GET_OR_DISTINCT(DIImportedEntity, 3031 (Context, Record[1], getMDOrNull(Record[2]), 3032 getDITypeRefOrNull(Record[3]), Record[4], 3033 getMDString(Record[5]))), 3034 NextMetadataNo++); 3035 break; 3036 } 3037 case bitc::METADATA_STRING_OLD: { 3038 std::string String(Record.begin(), Record.end()); 3039 3040 // Test for upgrading !llvm.loop. 3041 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 3042 3043 Metadata *MD = MDString::get(Context, String); 3044 MetadataList.assignValue(MD, NextMetadataNo++); 3045 break; 3046 } 3047 case bitc::METADATA_STRINGS: 3048 if (Error Err = parseMetadataStrings(Record, Blob, NextMetadataNo)) 3049 return Err; 3050 break; 3051 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { 3052 if (Record.size() % 2 == 0) 3053 return error("Invalid record"); 3054 unsigned ValueID = Record[0]; 3055 if (ValueID >= ValueList.size()) 3056 return error("Invalid record"); 3057 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID])) 3058 if (Error Err = parseGlobalObjectAttachment( 3059 *GO, ArrayRef<uint64_t>(Record).slice(1))) 3060 return Err; 3061 break; 3062 } 3063 case bitc::METADATA_KIND: { 3064 // Support older bitcode files that had METADATA_KIND records in a 3065 // block with METADATA_BLOCK_ID. 3066 if (Error Err = parseMetadataKindRecord(Record)) 3067 return Err; 3068 break; 3069 } 3070 } 3071 } 3072 3073 #undef GET_OR_DISTINCT 3074 } 3075 3076 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 3077 Error BitcodeReader::parseMetadataKinds() { 3078 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 3079 return error("Invalid record"); 3080 3081 SmallVector<uint64_t, 64> Record; 3082 3083 // Read all the records. 3084 while (true) { 3085 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3086 3087 switch (Entry.Kind) { 3088 case BitstreamEntry::SubBlock: // Handled for us already. 3089 case BitstreamEntry::Error: 3090 return error("Malformed block"); 3091 case BitstreamEntry::EndBlock: 3092 return Error::success(); 3093 case BitstreamEntry::Record: 3094 // The interesting case. 3095 break; 3096 } 3097 3098 // Read a record. 3099 Record.clear(); 3100 unsigned Code = Stream.readRecord(Entry.ID, Record); 3101 switch (Code) { 3102 default: // Default behavior: ignore. 3103 break; 3104 case bitc::METADATA_KIND: { 3105 if (Error Err = parseMetadataKindRecord(Record)) 3106 return Err; 3107 break; 3108 } 3109 } 3110 } 3111 } 3112 3113 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 3114 /// encoding. 3115 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 3116 if ((V & 1) == 0) 3117 return V >> 1; 3118 if (V != 1) 3119 return -(V >> 1); 3120 // There is no such thing as -0 with integers. "-0" really means MININT. 3121 return 1ULL << 63; 3122 } 3123 3124 /// Resolve all of the initializers for global values and aliases that we can. 3125 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 3126 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 3127 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 3128 IndirectSymbolInitWorklist; 3129 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 3130 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 3131 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 3132 3133 GlobalInitWorklist.swap(GlobalInits); 3134 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 3135 FunctionPrefixWorklist.swap(FunctionPrefixes); 3136 FunctionPrologueWorklist.swap(FunctionPrologues); 3137 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 3138 3139 while (!GlobalInitWorklist.empty()) { 3140 unsigned ValID = GlobalInitWorklist.back().second; 3141 if (ValID >= ValueList.size()) { 3142 // Not ready to resolve this yet, it requires something later in the file. 3143 GlobalInits.push_back(GlobalInitWorklist.back()); 3144 } else { 3145 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3146 GlobalInitWorklist.back().first->setInitializer(C); 3147 else 3148 return error("Expected a constant"); 3149 } 3150 GlobalInitWorklist.pop_back(); 3151 } 3152 3153 while (!IndirectSymbolInitWorklist.empty()) { 3154 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3155 if (ValID >= ValueList.size()) { 3156 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3157 } else { 3158 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 3159 if (!C) 3160 return error("Expected a constant"); 3161 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 3162 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 3163 return error("Alias and aliasee types don't match"); 3164 GIS->setIndirectSymbol(C); 3165 } 3166 IndirectSymbolInitWorklist.pop_back(); 3167 } 3168 3169 while (!FunctionPrefixWorklist.empty()) { 3170 unsigned ValID = FunctionPrefixWorklist.back().second; 3171 if (ValID >= ValueList.size()) { 3172 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 3173 } else { 3174 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3175 FunctionPrefixWorklist.back().first->setPrefixData(C); 3176 else 3177 return error("Expected a constant"); 3178 } 3179 FunctionPrefixWorklist.pop_back(); 3180 } 3181 3182 while (!FunctionPrologueWorklist.empty()) { 3183 unsigned ValID = FunctionPrologueWorklist.back().second; 3184 if (ValID >= ValueList.size()) { 3185 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 3186 } else { 3187 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3188 FunctionPrologueWorklist.back().first->setPrologueData(C); 3189 else 3190 return error("Expected a constant"); 3191 } 3192 FunctionPrologueWorklist.pop_back(); 3193 } 3194 3195 while (!FunctionPersonalityFnWorklist.empty()) { 3196 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 3197 if (ValID >= ValueList.size()) { 3198 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 3199 } else { 3200 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3201 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 3202 else 3203 return error("Expected a constant"); 3204 } 3205 FunctionPersonalityFnWorklist.pop_back(); 3206 } 3207 3208 return Error::success(); 3209 } 3210 3211 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3212 SmallVector<uint64_t, 8> Words(Vals.size()); 3213 transform(Vals, Words.begin(), 3214 BitcodeReader::decodeSignRotatedValue); 3215 3216 return APInt(TypeBits, Words); 3217 } 3218 3219 Error BitcodeReader::parseConstants() { 3220 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3221 return error("Invalid record"); 3222 3223 SmallVector<uint64_t, 64> Record; 3224 3225 // Read all the records for this value table. 3226 Type *CurTy = Type::getInt32Ty(Context); 3227 unsigned NextCstNo = ValueList.size(); 3228 3229 while (true) { 3230 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3231 3232 switch (Entry.Kind) { 3233 case BitstreamEntry::SubBlock: // Handled for us already. 3234 case BitstreamEntry::Error: 3235 return error("Malformed block"); 3236 case BitstreamEntry::EndBlock: 3237 if (NextCstNo != ValueList.size()) 3238 return error("Invalid constant reference"); 3239 3240 // Once all the constants have been read, go through and resolve forward 3241 // references. 3242 ValueList.resolveConstantForwardRefs(); 3243 return Error::success(); 3244 case BitstreamEntry::Record: 3245 // The interesting case. 3246 break; 3247 } 3248 3249 // Read a record. 3250 Record.clear(); 3251 Type *VoidType = Type::getVoidTy(Context); 3252 Value *V = nullptr; 3253 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3254 switch (BitCode) { 3255 default: // Default behavior: unknown constant 3256 case bitc::CST_CODE_UNDEF: // UNDEF 3257 V = UndefValue::get(CurTy); 3258 break; 3259 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3260 if (Record.empty()) 3261 return error("Invalid record"); 3262 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3263 return error("Invalid record"); 3264 if (TypeList[Record[0]] == VoidType) 3265 return error("Invalid constant type"); 3266 CurTy = TypeList[Record[0]]; 3267 continue; // Skip the ValueList manipulation. 3268 case bitc::CST_CODE_NULL: // NULL 3269 V = Constant::getNullValue(CurTy); 3270 break; 3271 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3272 if (!CurTy->isIntegerTy() || Record.empty()) 3273 return error("Invalid record"); 3274 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3275 break; 3276 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3277 if (!CurTy->isIntegerTy() || Record.empty()) 3278 return error("Invalid record"); 3279 3280 APInt VInt = 3281 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3282 V = ConstantInt::get(Context, VInt); 3283 3284 break; 3285 } 3286 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3287 if (Record.empty()) 3288 return error("Invalid record"); 3289 if (CurTy->isHalfTy()) 3290 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 3291 APInt(16, (uint16_t)Record[0]))); 3292 else if (CurTy->isFloatTy()) 3293 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 3294 APInt(32, (uint32_t)Record[0]))); 3295 else if (CurTy->isDoubleTy()) 3296 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 3297 APInt(64, Record[0]))); 3298 else if (CurTy->isX86_FP80Ty()) { 3299 // Bits are not stored the same way as a normal i80 APInt, compensate. 3300 uint64_t Rearrange[2]; 3301 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3302 Rearrange[1] = Record[0] >> 48; 3303 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 3304 APInt(80, Rearrange))); 3305 } else if (CurTy->isFP128Ty()) 3306 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 3307 APInt(128, Record))); 3308 else if (CurTy->isPPC_FP128Ty()) 3309 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 3310 APInt(128, Record))); 3311 else 3312 V = UndefValue::get(CurTy); 3313 break; 3314 } 3315 3316 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3317 if (Record.empty()) 3318 return error("Invalid record"); 3319 3320 unsigned Size = Record.size(); 3321 SmallVector<Constant*, 16> Elts; 3322 3323 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3324 for (unsigned i = 0; i != Size; ++i) 3325 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 3326 STy->getElementType(i))); 3327 V = ConstantStruct::get(STy, Elts); 3328 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 3329 Type *EltTy = ATy->getElementType(); 3330 for (unsigned i = 0; i != Size; ++i) 3331 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3332 V = ConstantArray::get(ATy, Elts); 3333 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 3334 Type *EltTy = VTy->getElementType(); 3335 for (unsigned i = 0; i != Size; ++i) 3336 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3337 V = ConstantVector::get(Elts); 3338 } else { 3339 V = UndefValue::get(CurTy); 3340 } 3341 break; 3342 } 3343 case bitc::CST_CODE_STRING: // STRING: [values] 3344 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3345 if (Record.empty()) 3346 return error("Invalid record"); 3347 3348 SmallString<16> Elts(Record.begin(), Record.end()); 3349 V = ConstantDataArray::getString(Context, Elts, 3350 BitCode == bitc::CST_CODE_CSTRING); 3351 break; 3352 } 3353 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3354 if (Record.empty()) 3355 return error("Invalid record"); 3356 3357 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 3358 if (EltTy->isIntegerTy(8)) { 3359 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3360 if (isa<VectorType>(CurTy)) 3361 V = ConstantDataVector::get(Context, Elts); 3362 else 3363 V = ConstantDataArray::get(Context, Elts); 3364 } else if (EltTy->isIntegerTy(16)) { 3365 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3366 if (isa<VectorType>(CurTy)) 3367 V = ConstantDataVector::get(Context, Elts); 3368 else 3369 V = ConstantDataArray::get(Context, Elts); 3370 } else if (EltTy->isIntegerTy(32)) { 3371 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3372 if (isa<VectorType>(CurTy)) 3373 V = ConstantDataVector::get(Context, Elts); 3374 else 3375 V = ConstantDataArray::get(Context, Elts); 3376 } else if (EltTy->isIntegerTy(64)) { 3377 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3378 if (isa<VectorType>(CurTy)) 3379 V = ConstantDataVector::get(Context, Elts); 3380 else 3381 V = ConstantDataArray::get(Context, Elts); 3382 } else if (EltTy->isHalfTy()) { 3383 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3384 if (isa<VectorType>(CurTy)) 3385 V = ConstantDataVector::getFP(Context, Elts); 3386 else 3387 V = ConstantDataArray::getFP(Context, Elts); 3388 } else if (EltTy->isFloatTy()) { 3389 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3390 if (isa<VectorType>(CurTy)) 3391 V = ConstantDataVector::getFP(Context, Elts); 3392 else 3393 V = ConstantDataArray::getFP(Context, Elts); 3394 } else if (EltTy->isDoubleTy()) { 3395 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3396 if (isa<VectorType>(CurTy)) 3397 V = ConstantDataVector::getFP(Context, Elts); 3398 else 3399 V = ConstantDataArray::getFP(Context, Elts); 3400 } else { 3401 return error("Invalid type for value"); 3402 } 3403 break; 3404 } 3405 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3406 if (Record.size() < 3) 3407 return error("Invalid record"); 3408 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3409 if (Opc < 0) { 3410 V = UndefValue::get(CurTy); // Unknown binop. 3411 } else { 3412 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3413 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3414 unsigned Flags = 0; 3415 if (Record.size() >= 4) { 3416 if (Opc == Instruction::Add || 3417 Opc == Instruction::Sub || 3418 Opc == Instruction::Mul || 3419 Opc == Instruction::Shl) { 3420 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3421 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3422 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3423 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3424 } else if (Opc == Instruction::SDiv || 3425 Opc == Instruction::UDiv || 3426 Opc == Instruction::LShr || 3427 Opc == Instruction::AShr) { 3428 if (Record[3] & (1 << bitc::PEO_EXACT)) 3429 Flags |= SDivOperator::IsExact; 3430 } 3431 } 3432 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3433 } 3434 break; 3435 } 3436 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3437 if (Record.size() < 3) 3438 return error("Invalid record"); 3439 int Opc = getDecodedCastOpcode(Record[0]); 3440 if (Opc < 0) { 3441 V = UndefValue::get(CurTy); // Unknown cast. 3442 } else { 3443 Type *OpTy = getTypeByID(Record[1]); 3444 if (!OpTy) 3445 return error("Invalid record"); 3446 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3447 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3448 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3449 } 3450 break; 3451 } 3452 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3453 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3454 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3455 // operands] 3456 unsigned OpNum = 0; 3457 Type *PointeeType = nullptr; 3458 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3459 Record.size() % 2) 3460 PointeeType = getTypeByID(Record[OpNum++]); 3461 3462 bool InBounds = false; 3463 Optional<unsigned> InRangeIndex; 3464 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3465 uint64_t Op = Record[OpNum++]; 3466 InBounds = Op & 1; 3467 InRangeIndex = Op >> 1; 3468 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3469 InBounds = true; 3470 3471 SmallVector<Constant*, 16> Elts; 3472 while (OpNum != Record.size()) { 3473 Type *ElTy = getTypeByID(Record[OpNum++]); 3474 if (!ElTy) 3475 return error("Invalid record"); 3476 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3477 } 3478 3479 if (PointeeType && 3480 PointeeType != 3481 cast<PointerType>(Elts[0]->getType()->getScalarType()) 3482 ->getElementType()) 3483 return error("Explicit gep operator type does not match pointee type " 3484 "of pointer operand"); 3485 3486 if (Elts.size() < 1) 3487 return error("Invalid gep with no operands"); 3488 3489 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3490 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3491 InBounds, InRangeIndex); 3492 break; 3493 } 3494 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3495 if (Record.size() < 3) 3496 return error("Invalid record"); 3497 3498 Type *SelectorTy = Type::getInt1Ty(Context); 3499 3500 // The selector might be an i1 or an <n x i1> 3501 // Get the type from the ValueList before getting a forward ref. 3502 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3503 if (Value *V = ValueList[Record[0]]) 3504 if (SelectorTy != V->getType()) 3505 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3506 3507 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3508 SelectorTy), 3509 ValueList.getConstantFwdRef(Record[1],CurTy), 3510 ValueList.getConstantFwdRef(Record[2],CurTy)); 3511 break; 3512 } 3513 case bitc::CST_CODE_CE_EXTRACTELT 3514 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3515 if (Record.size() < 3) 3516 return error("Invalid record"); 3517 VectorType *OpTy = 3518 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3519 if (!OpTy) 3520 return error("Invalid record"); 3521 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3522 Constant *Op1 = nullptr; 3523 if (Record.size() == 4) { 3524 Type *IdxTy = getTypeByID(Record[2]); 3525 if (!IdxTy) 3526 return error("Invalid record"); 3527 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3528 } else // TODO: Remove with llvm 4.0 3529 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3530 if (!Op1) 3531 return error("Invalid record"); 3532 V = ConstantExpr::getExtractElement(Op0, Op1); 3533 break; 3534 } 3535 case bitc::CST_CODE_CE_INSERTELT 3536 : { // CE_INSERTELT: [opval, opval, opty, opval] 3537 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3538 if (Record.size() < 3 || !OpTy) 3539 return error("Invalid record"); 3540 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3541 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3542 OpTy->getElementType()); 3543 Constant *Op2 = nullptr; 3544 if (Record.size() == 4) { 3545 Type *IdxTy = getTypeByID(Record[2]); 3546 if (!IdxTy) 3547 return error("Invalid record"); 3548 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3549 } else // TODO: Remove with llvm 4.0 3550 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3551 if (!Op2) 3552 return error("Invalid record"); 3553 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3554 break; 3555 } 3556 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3557 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3558 if (Record.size() < 3 || !OpTy) 3559 return error("Invalid record"); 3560 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3561 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3562 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3563 OpTy->getNumElements()); 3564 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3565 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3566 break; 3567 } 3568 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3569 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3570 VectorType *OpTy = 3571 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3572 if (Record.size() < 4 || !RTy || !OpTy) 3573 return error("Invalid record"); 3574 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3575 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3576 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3577 RTy->getNumElements()); 3578 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3579 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3580 break; 3581 } 3582 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3583 if (Record.size() < 4) 3584 return error("Invalid record"); 3585 Type *OpTy = getTypeByID(Record[0]); 3586 if (!OpTy) 3587 return error("Invalid record"); 3588 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3589 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3590 3591 if (OpTy->isFPOrFPVectorTy()) 3592 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3593 else 3594 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3595 break; 3596 } 3597 // This maintains backward compatibility, pre-asm dialect keywords. 3598 // FIXME: Remove with the 4.0 release. 3599 case bitc::CST_CODE_INLINEASM_OLD: { 3600 if (Record.size() < 2) 3601 return error("Invalid record"); 3602 std::string AsmStr, ConstrStr; 3603 bool HasSideEffects = Record[0] & 1; 3604 bool IsAlignStack = Record[0] >> 1; 3605 unsigned AsmStrSize = Record[1]; 3606 if (2+AsmStrSize >= Record.size()) 3607 return error("Invalid record"); 3608 unsigned ConstStrSize = Record[2+AsmStrSize]; 3609 if (3+AsmStrSize+ConstStrSize > Record.size()) 3610 return error("Invalid record"); 3611 3612 for (unsigned i = 0; i != AsmStrSize; ++i) 3613 AsmStr += (char)Record[2+i]; 3614 for (unsigned i = 0; i != ConstStrSize; ++i) 3615 ConstrStr += (char)Record[3+AsmStrSize+i]; 3616 PointerType *PTy = cast<PointerType>(CurTy); 3617 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3618 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3619 break; 3620 } 3621 // This version adds support for the asm dialect keywords (e.g., 3622 // inteldialect). 3623 case bitc::CST_CODE_INLINEASM: { 3624 if (Record.size() < 2) 3625 return error("Invalid record"); 3626 std::string AsmStr, ConstrStr; 3627 bool HasSideEffects = Record[0] & 1; 3628 bool IsAlignStack = (Record[0] >> 1) & 1; 3629 unsigned AsmDialect = Record[0] >> 2; 3630 unsigned AsmStrSize = Record[1]; 3631 if (2+AsmStrSize >= Record.size()) 3632 return error("Invalid record"); 3633 unsigned ConstStrSize = Record[2+AsmStrSize]; 3634 if (3+AsmStrSize+ConstStrSize > Record.size()) 3635 return error("Invalid record"); 3636 3637 for (unsigned i = 0; i != AsmStrSize; ++i) 3638 AsmStr += (char)Record[2+i]; 3639 for (unsigned i = 0; i != ConstStrSize; ++i) 3640 ConstrStr += (char)Record[3+AsmStrSize+i]; 3641 PointerType *PTy = cast<PointerType>(CurTy); 3642 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3643 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3644 InlineAsm::AsmDialect(AsmDialect)); 3645 break; 3646 } 3647 case bitc::CST_CODE_BLOCKADDRESS:{ 3648 if (Record.size() < 3) 3649 return error("Invalid record"); 3650 Type *FnTy = getTypeByID(Record[0]); 3651 if (!FnTy) 3652 return error("Invalid record"); 3653 Function *Fn = 3654 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3655 if (!Fn) 3656 return error("Invalid record"); 3657 3658 // If the function is already parsed we can insert the block address right 3659 // away. 3660 BasicBlock *BB; 3661 unsigned BBID = Record[2]; 3662 if (!BBID) 3663 // Invalid reference to entry block. 3664 return error("Invalid ID"); 3665 if (!Fn->empty()) { 3666 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3667 for (size_t I = 0, E = BBID; I != E; ++I) { 3668 if (BBI == BBE) 3669 return error("Invalid ID"); 3670 ++BBI; 3671 } 3672 BB = &*BBI; 3673 } else { 3674 // Otherwise insert a placeholder and remember it so it can be inserted 3675 // when the function is parsed. 3676 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3677 if (FwdBBs.empty()) 3678 BasicBlockFwdRefQueue.push_back(Fn); 3679 if (FwdBBs.size() < BBID + 1) 3680 FwdBBs.resize(BBID + 1); 3681 if (!FwdBBs[BBID]) 3682 FwdBBs[BBID] = BasicBlock::Create(Context); 3683 BB = FwdBBs[BBID]; 3684 } 3685 V = BlockAddress::get(Fn, BB); 3686 break; 3687 } 3688 } 3689 3690 ValueList.assignValue(V, NextCstNo); 3691 ++NextCstNo; 3692 } 3693 } 3694 3695 Error BitcodeReader::parseUseLists() { 3696 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3697 return error("Invalid record"); 3698 3699 // Read all the records. 3700 SmallVector<uint64_t, 64> Record; 3701 3702 while (true) { 3703 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3704 3705 switch (Entry.Kind) { 3706 case BitstreamEntry::SubBlock: // Handled for us already. 3707 case BitstreamEntry::Error: 3708 return error("Malformed block"); 3709 case BitstreamEntry::EndBlock: 3710 return Error::success(); 3711 case BitstreamEntry::Record: 3712 // The interesting case. 3713 break; 3714 } 3715 3716 // Read a use list record. 3717 Record.clear(); 3718 bool IsBB = false; 3719 switch (Stream.readRecord(Entry.ID, Record)) { 3720 default: // Default behavior: unknown type. 3721 break; 3722 case bitc::USELIST_CODE_BB: 3723 IsBB = true; 3724 LLVM_FALLTHROUGH; 3725 case bitc::USELIST_CODE_DEFAULT: { 3726 unsigned RecordLength = Record.size(); 3727 if (RecordLength < 3) 3728 // Records should have at least an ID and two indexes. 3729 return error("Invalid record"); 3730 unsigned ID = Record.back(); 3731 Record.pop_back(); 3732 3733 Value *V; 3734 if (IsBB) { 3735 assert(ID < FunctionBBs.size() && "Basic block not found"); 3736 V = FunctionBBs[ID]; 3737 } else 3738 V = ValueList[ID]; 3739 unsigned NumUses = 0; 3740 SmallDenseMap<const Use *, unsigned, 16> Order; 3741 for (const Use &U : V->materialized_uses()) { 3742 if (++NumUses > Record.size()) 3743 break; 3744 Order[&U] = Record[NumUses - 1]; 3745 } 3746 if (Order.size() != Record.size() || NumUses > Record.size()) 3747 // Mismatches can happen if the functions are being materialized lazily 3748 // (out-of-order), or a value has been upgraded. 3749 break; 3750 3751 V->sortUseList([&](const Use &L, const Use &R) { 3752 return Order.lookup(&L) < Order.lookup(&R); 3753 }); 3754 break; 3755 } 3756 } 3757 } 3758 } 3759 3760 /// When we see the block for metadata, remember where it is and then skip it. 3761 /// This lets us lazily deserialize the metadata. 3762 Error BitcodeReader::rememberAndSkipMetadata() { 3763 // Save the current stream state. 3764 uint64_t CurBit = Stream.GetCurrentBitNo(); 3765 DeferredMetadataInfo.push_back(CurBit); 3766 3767 // Skip over the block for now. 3768 if (Stream.SkipBlock()) 3769 return error("Invalid record"); 3770 return Error::success(); 3771 } 3772 3773 Error BitcodeReader::materializeMetadata() { 3774 for (uint64_t BitPos : DeferredMetadataInfo) { 3775 // Move the bit stream to the saved position. 3776 Stream.JumpToBit(BitPos); 3777 if (Error Err = parseMetadata(true)) 3778 return Err; 3779 } 3780 DeferredMetadataInfo.clear(); 3781 return Error::success(); 3782 } 3783 3784 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3785 3786 /// When we see the block for a function body, remember where it is and then 3787 /// skip it. This lets us lazily deserialize the functions. 3788 Error BitcodeReader::rememberAndSkipFunctionBody() { 3789 // Get the function we are talking about. 3790 if (FunctionsWithBodies.empty()) 3791 return error("Insufficient function protos"); 3792 3793 Function *Fn = FunctionsWithBodies.back(); 3794 FunctionsWithBodies.pop_back(); 3795 3796 // Save the current stream state. 3797 uint64_t CurBit = Stream.GetCurrentBitNo(); 3798 assert( 3799 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3800 "Mismatch between VST and scanned function offsets"); 3801 DeferredFunctionInfo[Fn] = CurBit; 3802 3803 // Skip over the function block for now. 3804 if (Stream.SkipBlock()) 3805 return error("Invalid record"); 3806 return Error::success(); 3807 } 3808 3809 Error BitcodeReader::globalCleanup() { 3810 // Patch the initializers for globals and aliases up. 3811 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3812 return Err; 3813 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3814 return error("Malformed global initializer set"); 3815 3816 // Look for intrinsic functions which need to be upgraded at some point 3817 for (Function &F : *TheModule) { 3818 Function *NewFn; 3819 if (UpgradeIntrinsicFunction(&F, NewFn)) 3820 UpgradedIntrinsics[&F] = NewFn; 3821 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3822 // Some types could be renamed during loading if several modules are 3823 // loaded in the same LLVMContext (LTO scenario). In this case we should 3824 // remangle intrinsics names as well. 3825 RemangledIntrinsics[&F] = Remangled.getValue(); 3826 } 3827 3828 // Look for global variables which need to be renamed. 3829 for (GlobalVariable &GV : TheModule->globals()) 3830 UpgradeGlobalVariable(&GV); 3831 3832 // Force deallocation of memory for these vectors to favor the client that 3833 // want lazy deserialization. 3834 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3835 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3836 IndirectSymbolInits); 3837 return Error::success(); 3838 } 3839 3840 /// Support for lazy parsing of function bodies. This is required if we 3841 /// either have an old bitcode file without a VST forward declaration record, 3842 /// or if we have an anonymous function being materialized, since anonymous 3843 /// functions do not have a name and are therefore not in the VST. 3844 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3845 Stream.JumpToBit(NextUnreadBit); 3846 3847 if (Stream.AtEndOfStream()) 3848 return error("Could not find function in stream"); 3849 3850 if (!SeenFirstFunctionBody) 3851 return error("Trying to materialize functions before seeing function blocks"); 3852 3853 // An old bitcode file with the symbol table at the end would have 3854 // finished the parse greedily. 3855 assert(SeenValueSymbolTable); 3856 3857 SmallVector<uint64_t, 64> Record; 3858 3859 while (true) { 3860 BitstreamEntry Entry = Stream.advance(); 3861 switch (Entry.Kind) { 3862 default: 3863 return error("Expect SubBlock"); 3864 case BitstreamEntry::SubBlock: 3865 switch (Entry.ID) { 3866 default: 3867 return error("Expect function block"); 3868 case bitc::FUNCTION_BLOCK_ID: 3869 if (Error Err = rememberAndSkipFunctionBody()) 3870 return Err; 3871 NextUnreadBit = Stream.GetCurrentBitNo(); 3872 return Error::success(); 3873 } 3874 } 3875 } 3876 } 3877 3878 bool BitcodeReaderBase::readBlockInfo() { 3879 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 3880 if (!NewBlockInfo) 3881 return true; 3882 BlockInfo = std::move(*NewBlockInfo); 3883 return false; 3884 } 3885 3886 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3887 bool ShouldLazyLoadMetadata) { 3888 if (ResumeBit) 3889 Stream.JumpToBit(ResumeBit); 3890 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3891 return error("Invalid record"); 3892 3893 SmallVector<uint64_t, 64> Record; 3894 std::vector<std::string> SectionTable; 3895 std::vector<std::string> GCTable; 3896 3897 // Read all the records for this module. 3898 while (true) { 3899 BitstreamEntry Entry = Stream.advance(); 3900 3901 switch (Entry.Kind) { 3902 case BitstreamEntry::Error: 3903 return error("Malformed block"); 3904 case BitstreamEntry::EndBlock: 3905 return globalCleanup(); 3906 3907 case BitstreamEntry::SubBlock: 3908 switch (Entry.ID) { 3909 default: // Skip unknown content. 3910 if (Stream.SkipBlock()) 3911 return error("Invalid record"); 3912 break; 3913 case bitc::BLOCKINFO_BLOCK_ID: 3914 if (readBlockInfo()) 3915 return error("Malformed block"); 3916 break; 3917 case bitc::PARAMATTR_BLOCK_ID: 3918 if (Error Err = parseAttributeBlock()) 3919 return Err; 3920 break; 3921 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3922 if (Error Err = parseAttributeGroupBlock()) 3923 return Err; 3924 break; 3925 case bitc::TYPE_BLOCK_ID_NEW: 3926 if (Error Err = parseTypeTable()) 3927 return Err; 3928 break; 3929 case bitc::VALUE_SYMTAB_BLOCK_ID: 3930 if (!SeenValueSymbolTable) { 3931 // Either this is an old form VST without function index and an 3932 // associated VST forward declaration record (which would have caused 3933 // the VST to be jumped to and parsed before it was encountered 3934 // normally in the stream), or there were no function blocks to 3935 // trigger an earlier parsing of the VST. 3936 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3937 if (Error Err = parseValueSymbolTable()) 3938 return Err; 3939 SeenValueSymbolTable = true; 3940 } else { 3941 // We must have had a VST forward declaration record, which caused 3942 // the parser to jump to and parse the VST earlier. 3943 assert(VSTOffset > 0); 3944 if (Stream.SkipBlock()) 3945 return error("Invalid record"); 3946 } 3947 break; 3948 case bitc::CONSTANTS_BLOCK_ID: 3949 if (Error Err = parseConstants()) 3950 return Err; 3951 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3952 return Err; 3953 break; 3954 case bitc::METADATA_BLOCK_ID: 3955 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3956 if (Error Err = rememberAndSkipMetadata()) 3957 return Err; 3958 break; 3959 } 3960 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3961 if (Error Err = parseMetadata(true)) 3962 return Err; 3963 break; 3964 case bitc::METADATA_KIND_BLOCK_ID: 3965 if (Error Err = parseMetadataKinds()) 3966 return Err; 3967 break; 3968 case bitc::FUNCTION_BLOCK_ID: 3969 // If this is the first function body we've seen, reverse the 3970 // FunctionsWithBodies list. 3971 if (!SeenFirstFunctionBody) { 3972 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3973 if (Error Err = globalCleanup()) 3974 return Err; 3975 SeenFirstFunctionBody = true; 3976 } 3977 3978 if (VSTOffset > 0) { 3979 // If we have a VST forward declaration record, make sure we 3980 // parse the VST now if we haven't already. It is needed to 3981 // set up the DeferredFunctionInfo vector for lazy reading. 3982 if (!SeenValueSymbolTable) { 3983 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3984 return Err; 3985 SeenValueSymbolTable = true; 3986 // Fall through so that we record the NextUnreadBit below. 3987 // This is necessary in case we have an anonymous function that 3988 // is later materialized. Since it will not have a VST entry we 3989 // need to fall back to the lazy parse to find its offset. 3990 } else { 3991 // If we have a VST forward declaration record, but have already 3992 // parsed the VST (just above, when the first function body was 3993 // encountered here), then we are resuming the parse after 3994 // materializing functions. The ResumeBit points to the 3995 // start of the last function block recorded in the 3996 // DeferredFunctionInfo map. Skip it. 3997 if (Stream.SkipBlock()) 3998 return error("Invalid record"); 3999 continue; 4000 } 4001 } 4002 4003 // Support older bitcode files that did not have the function 4004 // index in the VST, nor a VST forward declaration record, as 4005 // well as anonymous functions that do not have VST entries. 4006 // Build the DeferredFunctionInfo vector on the fly. 4007 if (Error Err = rememberAndSkipFunctionBody()) 4008 return Err; 4009 4010 // Suspend parsing when we reach the function bodies. Subsequent 4011 // materialization calls will resume it when necessary. If the bitcode 4012 // file is old, the symbol table will be at the end instead and will not 4013 // have been seen yet. In this case, just finish the parse now. 4014 if (SeenValueSymbolTable) { 4015 NextUnreadBit = Stream.GetCurrentBitNo(); 4016 // After the VST has been parsed, we need to make sure intrinsic name 4017 // are auto-upgraded. 4018 return globalCleanup(); 4019 } 4020 break; 4021 case bitc::USELIST_BLOCK_ID: 4022 if (Error Err = parseUseLists()) 4023 return Err; 4024 break; 4025 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4026 if (Error Err = parseOperandBundleTags()) 4027 return Err; 4028 break; 4029 } 4030 continue; 4031 4032 case BitstreamEntry::Record: 4033 // The interesting case. 4034 break; 4035 } 4036 4037 // Read a record. 4038 auto BitCode = Stream.readRecord(Entry.ID, Record); 4039 switch (BitCode) { 4040 default: break; // Default behavior, ignore unknown content. 4041 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 4042 if (Record.size() < 1) 4043 return error("Invalid record"); 4044 // Only version #0 and #1 are supported so far. 4045 unsigned module_version = Record[0]; 4046 switch (module_version) { 4047 default: 4048 return error("Invalid value"); 4049 case 0: 4050 UseRelativeIDs = false; 4051 break; 4052 case 1: 4053 UseRelativeIDs = true; 4054 break; 4055 } 4056 break; 4057 } 4058 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4059 std::string S; 4060 if (convertToString(Record, 0, S)) 4061 return error("Invalid record"); 4062 TheModule->setTargetTriple(S); 4063 break; 4064 } 4065 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4066 std::string S; 4067 if (convertToString(Record, 0, S)) 4068 return error("Invalid record"); 4069 TheModule->setDataLayout(S); 4070 break; 4071 } 4072 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4073 std::string S; 4074 if (convertToString(Record, 0, S)) 4075 return error("Invalid record"); 4076 TheModule->setModuleInlineAsm(S); 4077 break; 4078 } 4079 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4080 // FIXME: Remove in 4.0. 4081 std::string S; 4082 if (convertToString(Record, 0, S)) 4083 return error("Invalid record"); 4084 // Ignore value. 4085 break; 4086 } 4087 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4088 std::string S; 4089 if (convertToString(Record, 0, S)) 4090 return error("Invalid record"); 4091 SectionTable.push_back(S); 4092 break; 4093 } 4094 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4095 std::string S; 4096 if (convertToString(Record, 0, S)) 4097 return error("Invalid record"); 4098 GCTable.push_back(S); 4099 break; 4100 } 4101 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 4102 if (Record.size() < 2) 4103 return error("Invalid record"); 4104 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 4105 unsigned ComdatNameSize = Record[1]; 4106 std::string ComdatName; 4107 ComdatName.reserve(ComdatNameSize); 4108 for (unsigned i = 0; i != ComdatNameSize; ++i) 4109 ComdatName += (char)Record[2 + i]; 4110 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 4111 C->setSelectionKind(SK); 4112 ComdatList.push_back(C); 4113 break; 4114 } 4115 // GLOBALVAR: [pointer type, isconst, initid, 4116 // linkage, alignment, section, visibility, threadlocal, 4117 // unnamed_addr, externally_initialized, dllstorageclass, 4118 // comdat] 4119 case bitc::MODULE_CODE_GLOBALVAR: { 4120 if (Record.size() < 6) 4121 return error("Invalid record"); 4122 Type *Ty = getTypeByID(Record[0]); 4123 if (!Ty) 4124 return error("Invalid record"); 4125 bool isConstant = Record[1] & 1; 4126 bool explicitType = Record[1] & 2; 4127 unsigned AddressSpace; 4128 if (explicitType) { 4129 AddressSpace = Record[1] >> 2; 4130 } else { 4131 if (!Ty->isPointerTy()) 4132 return error("Invalid type for value"); 4133 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4134 Ty = cast<PointerType>(Ty)->getElementType(); 4135 } 4136 4137 uint64_t RawLinkage = Record[3]; 4138 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4139 unsigned Alignment; 4140 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4141 return Err; 4142 std::string Section; 4143 if (Record[5]) { 4144 if (Record[5]-1 >= SectionTable.size()) 4145 return error("Invalid ID"); 4146 Section = SectionTable[Record[5]-1]; 4147 } 4148 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4149 // Local linkage must have default visibility. 4150 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4151 // FIXME: Change to an error if non-default in 4.0. 4152 Visibility = getDecodedVisibility(Record[6]); 4153 4154 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4155 if (Record.size() > 7) 4156 TLM = getDecodedThreadLocalMode(Record[7]); 4157 4158 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4159 if (Record.size() > 8) 4160 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4161 4162 bool ExternallyInitialized = false; 4163 if (Record.size() > 9) 4164 ExternallyInitialized = Record[9]; 4165 4166 GlobalVariable *NewGV = 4167 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 4168 TLM, AddressSpace, ExternallyInitialized); 4169 NewGV->setAlignment(Alignment); 4170 if (!Section.empty()) 4171 NewGV->setSection(Section); 4172 NewGV->setVisibility(Visibility); 4173 NewGV->setUnnamedAddr(UnnamedAddr); 4174 4175 if (Record.size() > 10) 4176 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4177 else 4178 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4179 4180 ValueList.push_back(NewGV); 4181 4182 // Remember which value to use for the global initializer. 4183 if (unsigned InitID = Record[2]) 4184 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 4185 4186 if (Record.size() > 11) { 4187 if (unsigned ComdatID = Record[11]) { 4188 if (ComdatID > ComdatList.size()) 4189 return error("Invalid global variable comdat ID"); 4190 NewGV->setComdat(ComdatList[ComdatID - 1]); 4191 } 4192 } else if (hasImplicitComdat(RawLinkage)) { 4193 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 4194 } 4195 4196 break; 4197 } 4198 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 4199 // alignment, section, visibility, gc, unnamed_addr, 4200 // prologuedata, dllstorageclass, comdat, prefixdata] 4201 case bitc::MODULE_CODE_FUNCTION: { 4202 if (Record.size() < 8) 4203 return error("Invalid record"); 4204 Type *Ty = getTypeByID(Record[0]); 4205 if (!Ty) 4206 return error("Invalid record"); 4207 if (auto *PTy = dyn_cast<PointerType>(Ty)) 4208 Ty = PTy->getElementType(); 4209 auto *FTy = dyn_cast<FunctionType>(Ty); 4210 if (!FTy) 4211 return error("Invalid type for value"); 4212 auto CC = static_cast<CallingConv::ID>(Record[1]); 4213 if (CC & ~CallingConv::MaxID) 4214 return error("Invalid calling convention ID"); 4215 4216 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 4217 "", TheModule); 4218 4219 Func->setCallingConv(CC); 4220 bool isProto = Record[2]; 4221 uint64_t RawLinkage = Record[3]; 4222 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4223 Func->setAttributes(getAttributes(Record[4])); 4224 4225 unsigned Alignment; 4226 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4227 return Err; 4228 Func->setAlignment(Alignment); 4229 if (Record[6]) { 4230 if (Record[6]-1 >= SectionTable.size()) 4231 return error("Invalid ID"); 4232 Func->setSection(SectionTable[Record[6]-1]); 4233 } 4234 // Local linkage must have default visibility. 4235 if (!Func->hasLocalLinkage()) 4236 // FIXME: Change to an error if non-default in 4.0. 4237 Func->setVisibility(getDecodedVisibility(Record[7])); 4238 if (Record.size() > 8 && Record[8]) { 4239 if (Record[8]-1 >= GCTable.size()) 4240 return error("Invalid ID"); 4241 Func->setGC(GCTable[Record[8] - 1]); 4242 } 4243 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4244 if (Record.size() > 9) 4245 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4246 Func->setUnnamedAddr(UnnamedAddr); 4247 if (Record.size() > 10 && Record[10] != 0) 4248 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 4249 4250 if (Record.size() > 11) 4251 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4252 else 4253 upgradeDLLImportExportLinkage(Func, RawLinkage); 4254 4255 if (Record.size() > 12) { 4256 if (unsigned ComdatID = Record[12]) { 4257 if (ComdatID > ComdatList.size()) 4258 return error("Invalid function comdat ID"); 4259 Func->setComdat(ComdatList[ComdatID - 1]); 4260 } 4261 } else if (hasImplicitComdat(RawLinkage)) { 4262 Func->setComdat(reinterpret_cast<Comdat *>(1)); 4263 } 4264 4265 if (Record.size() > 13 && Record[13] != 0) 4266 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 4267 4268 if (Record.size() > 14 && Record[14] != 0) 4269 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 4270 4271 ValueList.push_back(Func); 4272 4273 // If this is a function with a body, remember the prototype we are 4274 // creating now, so that we can match up the body with them later. 4275 if (!isProto) { 4276 Func->setIsMaterializable(true); 4277 FunctionsWithBodies.push_back(Func); 4278 DeferredFunctionInfo[Func] = 0; 4279 } 4280 break; 4281 } 4282 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 4283 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4284 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4285 case bitc::MODULE_CODE_IFUNC: 4286 case bitc::MODULE_CODE_ALIAS: 4287 case bitc::MODULE_CODE_ALIAS_OLD: { 4288 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4289 if (Record.size() < (3 + (unsigned)NewRecord)) 4290 return error("Invalid record"); 4291 unsigned OpNum = 0; 4292 Type *Ty = getTypeByID(Record[OpNum++]); 4293 if (!Ty) 4294 return error("Invalid record"); 4295 4296 unsigned AddrSpace; 4297 if (!NewRecord) { 4298 auto *PTy = dyn_cast<PointerType>(Ty); 4299 if (!PTy) 4300 return error("Invalid type for value"); 4301 Ty = PTy->getElementType(); 4302 AddrSpace = PTy->getAddressSpace(); 4303 } else { 4304 AddrSpace = Record[OpNum++]; 4305 } 4306 4307 auto Val = Record[OpNum++]; 4308 auto Linkage = Record[OpNum++]; 4309 GlobalIndirectSymbol *NewGA; 4310 if (BitCode == bitc::MODULE_CODE_ALIAS || 4311 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4312 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4313 "", TheModule); 4314 else 4315 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4316 "", nullptr, TheModule); 4317 // Old bitcode files didn't have visibility field. 4318 // Local linkage must have default visibility. 4319 if (OpNum != Record.size()) { 4320 auto VisInd = OpNum++; 4321 if (!NewGA->hasLocalLinkage()) 4322 // FIXME: Change to an error if non-default in 4.0. 4323 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4324 } 4325 if (OpNum != Record.size()) 4326 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 4327 else 4328 upgradeDLLImportExportLinkage(NewGA, Linkage); 4329 if (OpNum != Record.size()) 4330 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4331 if (OpNum != Record.size()) 4332 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4333 ValueList.push_back(NewGA); 4334 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4335 break; 4336 } 4337 /// MODULE_CODE_PURGEVALS: [numvals] 4338 case bitc::MODULE_CODE_PURGEVALS: 4339 // Trim down the value list to the specified size. 4340 if (Record.size() < 1 || Record[0] > ValueList.size()) 4341 return error("Invalid record"); 4342 ValueList.shrinkTo(Record[0]); 4343 break; 4344 /// MODULE_CODE_VSTOFFSET: [offset] 4345 case bitc::MODULE_CODE_VSTOFFSET: 4346 if (Record.size() < 1) 4347 return error("Invalid record"); 4348 // Note that we subtract 1 here because the offset is relative to one word 4349 // before the start of the identification or module block, which was 4350 // historically always the start of the regular bitcode header. 4351 VSTOffset = Record[0] - 1; 4352 break; 4353 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4354 case bitc::MODULE_CODE_SOURCE_FILENAME: 4355 SmallString<128> ValueName; 4356 if (convertToString(Record, 0, ValueName)) 4357 return error("Invalid record"); 4358 TheModule->setSourceFileName(ValueName); 4359 break; 4360 } 4361 Record.clear(); 4362 } 4363 } 4364 4365 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata) { 4366 TheModule = M; 4367 return parseModule(0, ShouldLazyLoadMetadata); 4368 } 4369 4370 Error BitcodeReader::parseGlobalObjectAttachment(GlobalObject &GO, 4371 ArrayRef<uint64_t> Record) { 4372 assert(Record.size() % 2 == 0); 4373 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4374 auto K = MDKindMap.find(Record[I]); 4375 if (K == MDKindMap.end()) 4376 return error("Invalid ID"); 4377 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4378 if (!MD) 4379 return error("Invalid metadata attachment"); 4380 GO.addMetadata(K->second, *MD); 4381 } 4382 return Error::success(); 4383 } 4384 4385 /// Parse metadata attachments. 4386 Error BitcodeReader::parseMetadataAttachment(Function &F) { 4387 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4388 return error("Invalid record"); 4389 4390 SmallVector<uint64_t, 64> Record; 4391 4392 while (true) { 4393 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4394 4395 switch (Entry.Kind) { 4396 case BitstreamEntry::SubBlock: // Handled for us already. 4397 case BitstreamEntry::Error: 4398 return error("Malformed block"); 4399 case BitstreamEntry::EndBlock: 4400 return Error::success(); 4401 case BitstreamEntry::Record: 4402 // The interesting case. 4403 break; 4404 } 4405 4406 // Read a metadata attachment record. 4407 Record.clear(); 4408 switch (Stream.readRecord(Entry.ID, Record)) { 4409 default: // Default behavior: ignore. 4410 break; 4411 case bitc::METADATA_ATTACHMENT: { 4412 unsigned RecordLength = Record.size(); 4413 if (Record.empty()) 4414 return error("Invalid record"); 4415 if (RecordLength % 2 == 0) { 4416 // A function attachment. 4417 if (Error Err = parseGlobalObjectAttachment(F, Record)) 4418 return Err; 4419 continue; 4420 } 4421 4422 // An instruction attachment. 4423 Instruction *Inst = InstructionList[Record[0]]; 4424 for (unsigned i = 1; i != RecordLength; i = i+2) { 4425 unsigned Kind = Record[i]; 4426 DenseMap<unsigned, unsigned>::iterator I = 4427 MDKindMap.find(Kind); 4428 if (I == MDKindMap.end()) 4429 return error("Invalid ID"); 4430 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4431 if (isa<LocalAsMetadata>(Node)) 4432 // Drop the attachment. This used to be legal, but there's no 4433 // upgrade path. 4434 break; 4435 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4436 if (!MD) 4437 return error("Invalid metadata attachment"); 4438 4439 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4440 MD = upgradeInstructionLoopAttachment(*MD); 4441 4442 if (I->second == LLVMContext::MD_tbaa) { 4443 assert(!MD->isTemporary() && "should load MDs before attachments"); 4444 MD = UpgradeTBAANode(*MD); 4445 } 4446 Inst->setMetadata(I->second, MD); 4447 } 4448 break; 4449 } 4450 } 4451 } 4452 } 4453 4454 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4455 if (!isa<PointerType>(PtrType)) 4456 return error("Load/Store operand is not a pointer type"); 4457 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4458 4459 if (ValType && ValType != ElemType) 4460 return error("Explicit load/store type does not match pointee " 4461 "type of pointer operand"); 4462 if (!PointerType::isLoadableOrStorableType(ElemType)) 4463 return error("Cannot load/store from pointer"); 4464 return Error::success(); 4465 } 4466 4467 /// Lazily parse the specified function body block. 4468 Error BitcodeReader::parseFunctionBody(Function *F) { 4469 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4470 return error("Invalid record"); 4471 4472 // Unexpected unresolved metadata when parsing function. 4473 if (MetadataList.hasFwdRefs()) 4474 return error("Invalid function metadata: incoming forward references"); 4475 4476 InstructionList.clear(); 4477 unsigned ModuleValueListSize = ValueList.size(); 4478 unsigned ModuleMetadataListSize = MetadataList.size(); 4479 4480 // Add all the function arguments to the value table. 4481 for (Argument &I : F->args()) 4482 ValueList.push_back(&I); 4483 4484 unsigned NextValueNo = ValueList.size(); 4485 BasicBlock *CurBB = nullptr; 4486 unsigned CurBBNo = 0; 4487 4488 DebugLoc LastLoc; 4489 auto getLastInstruction = [&]() -> Instruction * { 4490 if (CurBB && !CurBB->empty()) 4491 return &CurBB->back(); 4492 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4493 !FunctionBBs[CurBBNo - 1]->empty()) 4494 return &FunctionBBs[CurBBNo - 1]->back(); 4495 return nullptr; 4496 }; 4497 4498 std::vector<OperandBundleDef> OperandBundles; 4499 4500 // Read all the records. 4501 SmallVector<uint64_t, 64> Record; 4502 4503 while (true) { 4504 BitstreamEntry Entry = Stream.advance(); 4505 4506 switch (Entry.Kind) { 4507 case BitstreamEntry::Error: 4508 return error("Malformed block"); 4509 case BitstreamEntry::EndBlock: 4510 goto OutOfRecordLoop; 4511 4512 case BitstreamEntry::SubBlock: 4513 switch (Entry.ID) { 4514 default: // Skip unknown content. 4515 if (Stream.SkipBlock()) 4516 return error("Invalid record"); 4517 break; 4518 case bitc::CONSTANTS_BLOCK_ID: 4519 if (Error Err = parseConstants()) 4520 return Err; 4521 NextValueNo = ValueList.size(); 4522 break; 4523 case bitc::VALUE_SYMTAB_BLOCK_ID: 4524 if (Error Err = parseValueSymbolTable()) 4525 return Err; 4526 break; 4527 case bitc::METADATA_ATTACHMENT_ID: 4528 if (Error Err = parseMetadataAttachment(*F)) 4529 return Err; 4530 break; 4531 case bitc::METADATA_BLOCK_ID: 4532 if (Error Err = parseMetadata()) 4533 return Err; 4534 break; 4535 case bitc::USELIST_BLOCK_ID: 4536 if (Error Err = parseUseLists()) 4537 return Err; 4538 break; 4539 } 4540 continue; 4541 4542 case BitstreamEntry::Record: 4543 // The interesting case. 4544 break; 4545 } 4546 4547 // Read a record. 4548 Record.clear(); 4549 Instruction *I = nullptr; 4550 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4551 switch (BitCode) { 4552 default: // Default behavior: reject 4553 return error("Invalid value"); 4554 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4555 if (Record.size() < 1 || Record[0] == 0) 4556 return error("Invalid record"); 4557 // Create all the basic blocks for the function. 4558 FunctionBBs.resize(Record[0]); 4559 4560 // See if anything took the address of blocks in this function. 4561 auto BBFRI = BasicBlockFwdRefs.find(F); 4562 if (BBFRI == BasicBlockFwdRefs.end()) { 4563 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4564 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4565 } else { 4566 auto &BBRefs = BBFRI->second; 4567 // Check for invalid basic block references. 4568 if (BBRefs.size() > FunctionBBs.size()) 4569 return error("Invalid ID"); 4570 assert(!BBRefs.empty() && "Unexpected empty array"); 4571 assert(!BBRefs.front() && "Invalid reference to entry block"); 4572 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4573 ++I) 4574 if (I < RE && BBRefs[I]) { 4575 BBRefs[I]->insertInto(F); 4576 FunctionBBs[I] = BBRefs[I]; 4577 } else { 4578 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4579 } 4580 4581 // Erase from the table. 4582 BasicBlockFwdRefs.erase(BBFRI); 4583 } 4584 4585 CurBB = FunctionBBs[0]; 4586 continue; 4587 } 4588 4589 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4590 // This record indicates that the last instruction is at the same 4591 // location as the previous instruction with a location. 4592 I = getLastInstruction(); 4593 4594 if (!I) 4595 return error("Invalid record"); 4596 I->setDebugLoc(LastLoc); 4597 I = nullptr; 4598 continue; 4599 4600 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4601 I = getLastInstruction(); 4602 if (!I || Record.size() < 4) 4603 return error("Invalid record"); 4604 4605 unsigned Line = Record[0], Col = Record[1]; 4606 unsigned ScopeID = Record[2], IAID = Record[3]; 4607 4608 MDNode *Scope = nullptr, *IA = nullptr; 4609 if (ScopeID) { 4610 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4611 if (!Scope) 4612 return error("Invalid record"); 4613 } 4614 if (IAID) { 4615 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4616 if (!IA) 4617 return error("Invalid record"); 4618 } 4619 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4620 I->setDebugLoc(LastLoc); 4621 I = nullptr; 4622 continue; 4623 } 4624 4625 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4626 unsigned OpNum = 0; 4627 Value *LHS, *RHS; 4628 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4629 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4630 OpNum+1 > Record.size()) 4631 return error("Invalid record"); 4632 4633 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4634 if (Opc == -1) 4635 return error("Invalid record"); 4636 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4637 InstructionList.push_back(I); 4638 if (OpNum < Record.size()) { 4639 if (Opc == Instruction::Add || 4640 Opc == Instruction::Sub || 4641 Opc == Instruction::Mul || 4642 Opc == Instruction::Shl) { 4643 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4644 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4645 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4646 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4647 } else if (Opc == Instruction::SDiv || 4648 Opc == Instruction::UDiv || 4649 Opc == Instruction::LShr || 4650 Opc == Instruction::AShr) { 4651 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4652 cast<BinaryOperator>(I)->setIsExact(true); 4653 } else if (isa<FPMathOperator>(I)) { 4654 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4655 if (FMF.any()) 4656 I->setFastMathFlags(FMF); 4657 } 4658 4659 } 4660 break; 4661 } 4662 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4663 unsigned OpNum = 0; 4664 Value *Op; 4665 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4666 OpNum+2 != Record.size()) 4667 return error("Invalid record"); 4668 4669 Type *ResTy = getTypeByID(Record[OpNum]); 4670 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4671 if (Opc == -1 || !ResTy) 4672 return error("Invalid record"); 4673 Instruction *Temp = nullptr; 4674 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4675 if (Temp) { 4676 InstructionList.push_back(Temp); 4677 CurBB->getInstList().push_back(Temp); 4678 } 4679 } else { 4680 auto CastOp = (Instruction::CastOps)Opc; 4681 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4682 return error("Invalid cast"); 4683 I = CastInst::Create(CastOp, Op, ResTy); 4684 } 4685 InstructionList.push_back(I); 4686 break; 4687 } 4688 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4689 case bitc::FUNC_CODE_INST_GEP_OLD: 4690 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4691 unsigned OpNum = 0; 4692 4693 Type *Ty; 4694 bool InBounds; 4695 4696 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4697 InBounds = Record[OpNum++]; 4698 Ty = getTypeByID(Record[OpNum++]); 4699 } else { 4700 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4701 Ty = nullptr; 4702 } 4703 4704 Value *BasePtr; 4705 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4706 return error("Invalid record"); 4707 4708 if (!Ty) 4709 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4710 ->getElementType(); 4711 else if (Ty != 4712 cast<PointerType>(BasePtr->getType()->getScalarType()) 4713 ->getElementType()) 4714 return error( 4715 "Explicit gep type does not match pointee type of pointer operand"); 4716 4717 SmallVector<Value*, 16> GEPIdx; 4718 while (OpNum != Record.size()) { 4719 Value *Op; 4720 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4721 return error("Invalid record"); 4722 GEPIdx.push_back(Op); 4723 } 4724 4725 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4726 4727 InstructionList.push_back(I); 4728 if (InBounds) 4729 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4730 break; 4731 } 4732 4733 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4734 // EXTRACTVAL: [opty, opval, n x indices] 4735 unsigned OpNum = 0; 4736 Value *Agg; 4737 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4738 return error("Invalid record"); 4739 4740 unsigned RecSize = Record.size(); 4741 if (OpNum == RecSize) 4742 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4743 4744 SmallVector<unsigned, 4> EXTRACTVALIdx; 4745 Type *CurTy = Agg->getType(); 4746 for (; OpNum != RecSize; ++OpNum) { 4747 bool IsArray = CurTy->isArrayTy(); 4748 bool IsStruct = CurTy->isStructTy(); 4749 uint64_t Index = Record[OpNum]; 4750 4751 if (!IsStruct && !IsArray) 4752 return error("EXTRACTVAL: Invalid type"); 4753 if ((unsigned)Index != Index) 4754 return error("Invalid value"); 4755 if (IsStruct && Index >= CurTy->subtypes().size()) 4756 return error("EXTRACTVAL: Invalid struct index"); 4757 if (IsArray && Index >= CurTy->getArrayNumElements()) 4758 return error("EXTRACTVAL: Invalid array index"); 4759 EXTRACTVALIdx.push_back((unsigned)Index); 4760 4761 if (IsStruct) 4762 CurTy = CurTy->subtypes()[Index]; 4763 else 4764 CurTy = CurTy->subtypes()[0]; 4765 } 4766 4767 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4768 InstructionList.push_back(I); 4769 break; 4770 } 4771 4772 case bitc::FUNC_CODE_INST_INSERTVAL: { 4773 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4774 unsigned OpNum = 0; 4775 Value *Agg; 4776 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4777 return error("Invalid record"); 4778 Value *Val; 4779 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4780 return error("Invalid record"); 4781 4782 unsigned RecSize = Record.size(); 4783 if (OpNum == RecSize) 4784 return error("INSERTVAL: Invalid instruction with 0 indices"); 4785 4786 SmallVector<unsigned, 4> INSERTVALIdx; 4787 Type *CurTy = Agg->getType(); 4788 for (; OpNum != RecSize; ++OpNum) { 4789 bool IsArray = CurTy->isArrayTy(); 4790 bool IsStruct = CurTy->isStructTy(); 4791 uint64_t Index = Record[OpNum]; 4792 4793 if (!IsStruct && !IsArray) 4794 return error("INSERTVAL: Invalid type"); 4795 if ((unsigned)Index != Index) 4796 return error("Invalid value"); 4797 if (IsStruct && Index >= CurTy->subtypes().size()) 4798 return error("INSERTVAL: Invalid struct index"); 4799 if (IsArray && Index >= CurTy->getArrayNumElements()) 4800 return error("INSERTVAL: Invalid array index"); 4801 4802 INSERTVALIdx.push_back((unsigned)Index); 4803 if (IsStruct) 4804 CurTy = CurTy->subtypes()[Index]; 4805 else 4806 CurTy = CurTy->subtypes()[0]; 4807 } 4808 4809 if (CurTy != Val->getType()) 4810 return error("Inserted value type doesn't match aggregate type"); 4811 4812 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4813 InstructionList.push_back(I); 4814 break; 4815 } 4816 4817 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4818 // obsolete form of select 4819 // handles select i1 ... in old bitcode 4820 unsigned OpNum = 0; 4821 Value *TrueVal, *FalseVal, *Cond; 4822 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4823 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4824 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4825 return error("Invalid record"); 4826 4827 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4828 InstructionList.push_back(I); 4829 break; 4830 } 4831 4832 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4833 // new form of select 4834 // handles select i1 or select [N x i1] 4835 unsigned OpNum = 0; 4836 Value *TrueVal, *FalseVal, *Cond; 4837 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4838 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4839 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4840 return error("Invalid record"); 4841 4842 // select condition can be either i1 or [N x i1] 4843 if (VectorType* vector_type = 4844 dyn_cast<VectorType>(Cond->getType())) { 4845 // expect <n x i1> 4846 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4847 return error("Invalid type for value"); 4848 } else { 4849 // expect i1 4850 if (Cond->getType() != Type::getInt1Ty(Context)) 4851 return error("Invalid type for value"); 4852 } 4853 4854 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4855 InstructionList.push_back(I); 4856 break; 4857 } 4858 4859 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4860 unsigned OpNum = 0; 4861 Value *Vec, *Idx; 4862 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4863 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4864 return error("Invalid record"); 4865 if (!Vec->getType()->isVectorTy()) 4866 return error("Invalid type for value"); 4867 I = ExtractElementInst::Create(Vec, Idx); 4868 InstructionList.push_back(I); 4869 break; 4870 } 4871 4872 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4873 unsigned OpNum = 0; 4874 Value *Vec, *Elt, *Idx; 4875 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4876 return error("Invalid record"); 4877 if (!Vec->getType()->isVectorTy()) 4878 return error("Invalid type for value"); 4879 if (popValue(Record, OpNum, NextValueNo, 4880 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4881 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4882 return error("Invalid record"); 4883 I = InsertElementInst::Create(Vec, Elt, Idx); 4884 InstructionList.push_back(I); 4885 break; 4886 } 4887 4888 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4889 unsigned OpNum = 0; 4890 Value *Vec1, *Vec2, *Mask; 4891 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4892 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4893 return error("Invalid record"); 4894 4895 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4896 return error("Invalid record"); 4897 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4898 return error("Invalid type for value"); 4899 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4900 InstructionList.push_back(I); 4901 break; 4902 } 4903 4904 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4905 // Old form of ICmp/FCmp returning bool 4906 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4907 // both legal on vectors but had different behaviour. 4908 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4909 // FCmp/ICmp returning bool or vector of bool 4910 4911 unsigned OpNum = 0; 4912 Value *LHS, *RHS; 4913 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4914 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4915 return error("Invalid record"); 4916 4917 unsigned PredVal = Record[OpNum]; 4918 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4919 FastMathFlags FMF; 4920 if (IsFP && Record.size() > OpNum+1) 4921 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4922 4923 if (OpNum+1 != Record.size()) 4924 return error("Invalid record"); 4925 4926 if (LHS->getType()->isFPOrFPVectorTy()) 4927 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4928 else 4929 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4930 4931 if (FMF.any()) 4932 I->setFastMathFlags(FMF); 4933 InstructionList.push_back(I); 4934 break; 4935 } 4936 4937 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4938 { 4939 unsigned Size = Record.size(); 4940 if (Size == 0) { 4941 I = ReturnInst::Create(Context); 4942 InstructionList.push_back(I); 4943 break; 4944 } 4945 4946 unsigned OpNum = 0; 4947 Value *Op = nullptr; 4948 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4949 return error("Invalid record"); 4950 if (OpNum != Record.size()) 4951 return error("Invalid record"); 4952 4953 I = ReturnInst::Create(Context, Op); 4954 InstructionList.push_back(I); 4955 break; 4956 } 4957 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4958 if (Record.size() != 1 && Record.size() != 3) 4959 return error("Invalid record"); 4960 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4961 if (!TrueDest) 4962 return error("Invalid record"); 4963 4964 if (Record.size() == 1) { 4965 I = BranchInst::Create(TrueDest); 4966 InstructionList.push_back(I); 4967 } 4968 else { 4969 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4970 Value *Cond = getValue(Record, 2, NextValueNo, 4971 Type::getInt1Ty(Context)); 4972 if (!FalseDest || !Cond) 4973 return error("Invalid record"); 4974 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4975 InstructionList.push_back(I); 4976 } 4977 break; 4978 } 4979 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4980 if (Record.size() != 1 && Record.size() != 2) 4981 return error("Invalid record"); 4982 unsigned Idx = 0; 4983 Value *CleanupPad = 4984 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4985 if (!CleanupPad) 4986 return error("Invalid record"); 4987 BasicBlock *UnwindDest = nullptr; 4988 if (Record.size() == 2) { 4989 UnwindDest = getBasicBlock(Record[Idx++]); 4990 if (!UnwindDest) 4991 return error("Invalid record"); 4992 } 4993 4994 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4995 InstructionList.push_back(I); 4996 break; 4997 } 4998 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4999 if (Record.size() != 2) 5000 return error("Invalid record"); 5001 unsigned Idx = 0; 5002 Value *CatchPad = 5003 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5004 if (!CatchPad) 5005 return error("Invalid record"); 5006 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5007 if (!BB) 5008 return error("Invalid record"); 5009 5010 I = CatchReturnInst::Create(CatchPad, BB); 5011 InstructionList.push_back(I); 5012 break; 5013 } 5014 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5015 // We must have, at minimum, the outer scope and the number of arguments. 5016 if (Record.size() < 2) 5017 return error("Invalid record"); 5018 5019 unsigned Idx = 0; 5020 5021 Value *ParentPad = 5022 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5023 5024 unsigned NumHandlers = Record[Idx++]; 5025 5026 SmallVector<BasicBlock *, 2> Handlers; 5027 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5028 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5029 if (!BB) 5030 return error("Invalid record"); 5031 Handlers.push_back(BB); 5032 } 5033 5034 BasicBlock *UnwindDest = nullptr; 5035 if (Idx + 1 == Record.size()) { 5036 UnwindDest = getBasicBlock(Record[Idx++]); 5037 if (!UnwindDest) 5038 return error("Invalid record"); 5039 } 5040 5041 if (Record.size() != Idx) 5042 return error("Invalid record"); 5043 5044 auto *CatchSwitch = 5045 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5046 for (BasicBlock *Handler : Handlers) 5047 CatchSwitch->addHandler(Handler); 5048 I = CatchSwitch; 5049 InstructionList.push_back(I); 5050 break; 5051 } 5052 case bitc::FUNC_CODE_INST_CATCHPAD: 5053 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5054 // We must have, at minimum, the outer scope and the number of arguments. 5055 if (Record.size() < 2) 5056 return error("Invalid record"); 5057 5058 unsigned Idx = 0; 5059 5060 Value *ParentPad = 5061 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5062 5063 unsigned NumArgOperands = Record[Idx++]; 5064 5065 SmallVector<Value *, 2> Args; 5066 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5067 Value *Val; 5068 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5069 return error("Invalid record"); 5070 Args.push_back(Val); 5071 } 5072 5073 if (Record.size() != Idx) 5074 return error("Invalid record"); 5075 5076 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5077 I = CleanupPadInst::Create(ParentPad, Args); 5078 else 5079 I = CatchPadInst::Create(ParentPad, Args); 5080 InstructionList.push_back(I); 5081 break; 5082 } 5083 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5084 // Check magic 5085 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5086 // "New" SwitchInst format with case ranges. The changes to write this 5087 // format were reverted but we still recognize bitcode that uses it. 5088 // Hopefully someday we will have support for case ranges and can use 5089 // this format again. 5090 5091 Type *OpTy = getTypeByID(Record[1]); 5092 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5093 5094 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 5095 BasicBlock *Default = getBasicBlock(Record[3]); 5096 if (!OpTy || !Cond || !Default) 5097 return error("Invalid record"); 5098 5099 unsigned NumCases = Record[4]; 5100 5101 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5102 InstructionList.push_back(SI); 5103 5104 unsigned CurIdx = 5; 5105 for (unsigned i = 0; i != NumCases; ++i) { 5106 SmallVector<ConstantInt*, 1> CaseVals; 5107 unsigned NumItems = Record[CurIdx++]; 5108 for (unsigned ci = 0; ci != NumItems; ++ci) { 5109 bool isSingleNumber = Record[CurIdx++]; 5110 5111 APInt Low; 5112 unsigned ActiveWords = 1; 5113 if (ValueBitWidth > 64) 5114 ActiveWords = Record[CurIdx++]; 5115 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5116 ValueBitWidth); 5117 CurIdx += ActiveWords; 5118 5119 if (!isSingleNumber) { 5120 ActiveWords = 1; 5121 if (ValueBitWidth > 64) 5122 ActiveWords = Record[CurIdx++]; 5123 APInt High = readWideAPInt( 5124 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5125 CurIdx += ActiveWords; 5126 5127 // FIXME: It is not clear whether values in the range should be 5128 // compared as signed or unsigned values. The partially 5129 // implemented changes that used this format in the past used 5130 // unsigned comparisons. 5131 for ( ; Low.ule(High); ++Low) 5132 CaseVals.push_back(ConstantInt::get(Context, Low)); 5133 } else 5134 CaseVals.push_back(ConstantInt::get(Context, Low)); 5135 } 5136 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5137 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 5138 cve = CaseVals.end(); cvi != cve; ++cvi) 5139 SI->addCase(*cvi, DestBB); 5140 } 5141 I = SI; 5142 break; 5143 } 5144 5145 // Old SwitchInst format without case ranges. 5146 5147 if (Record.size() < 3 || (Record.size() & 1) == 0) 5148 return error("Invalid record"); 5149 Type *OpTy = getTypeByID(Record[0]); 5150 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 5151 BasicBlock *Default = getBasicBlock(Record[2]); 5152 if (!OpTy || !Cond || !Default) 5153 return error("Invalid record"); 5154 unsigned NumCases = (Record.size()-3)/2; 5155 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5156 InstructionList.push_back(SI); 5157 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5158 ConstantInt *CaseVal = 5159 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 5160 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5161 if (!CaseVal || !DestBB) { 5162 delete SI; 5163 return error("Invalid record"); 5164 } 5165 SI->addCase(CaseVal, DestBB); 5166 } 5167 I = SI; 5168 break; 5169 } 5170 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5171 if (Record.size() < 2) 5172 return error("Invalid record"); 5173 Type *OpTy = getTypeByID(Record[0]); 5174 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 5175 if (!OpTy || !Address) 5176 return error("Invalid record"); 5177 unsigned NumDests = Record.size()-2; 5178 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5179 InstructionList.push_back(IBI); 5180 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5181 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5182 IBI->addDestination(DestBB); 5183 } else { 5184 delete IBI; 5185 return error("Invalid record"); 5186 } 5187 } 5188 I = IBI; 5189 break; 5190 } 5191 5192 case bitc::FUNC_CODE_INST_INVOKE: { 5193 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5194 if (Record.size() < 4) 5195 return error("Invalid record"); 5196 unsigned OpNum = 0; 5197 AttributeSet PAL = getAttributes(Record[OpNum++]); 5198 unsigned CCInfo = Record[OpNum++]; 5199 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5200 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5201 5202 FunctionType *FTy = nullptr; 5203 if (CCInfo >> 13 & 1 && 5204 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5205 return error("Explicit invoke type is not a function type"); 5206 5207 Value *Callee; 5208 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5209 return error("Invalid record"); 5210 5211 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5212 if (!CalleeTy) 5213 return error("Callee is not a pointer"); 5214 if (!FTy) { 5215 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5216 if (!FTy) 5217 return error("Callee is not of pointer to function type"); 5218 } else if (CalleeTy->getElementType() != FTy) 5219 return error("Explicit invoke type does not match pointee type of " 5220 "callee operand"); 5221 if (Record.size() < FTy->getNumParams() + OpNum) 5222 return error("Insufficient operands to call"); 5223 5224 SmallVector<Value*, 16> Ops; 5225 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5226 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5227 FTy->getParamType(i))); 5228 if (!Ops.back()) 5229 return error("Invalid record"); 5230 } 5231 5232 if (!FTy->isVarArg()) { 5233 if (Record.size() != OpNum) 5234 return error("Invalid record"); 5235 } else { 5236 // Read type/value pairs for varargs params. 5237 while (OpNum != Record.size()) { 5238 Value *Op; 5239 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5240 return error("Invalid record"); 5241 Ops.push_back(Op); 5242 } 5243 } 5244 5245 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5246 OperandBundles.clear(); 5247 InstructionList.push_back(I); 5248 cast<InvokeInst>(I)->setCallingConv( 5249 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5250 cast<InvokeInst>(I)->setAttributes(PAL); 5251 break; 5252 } 5253 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5254 unsigned Idx = 0; 5255 Value *Val = nullptr; 5256 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5257 return error("Invalid record"); 5258 I = ResumeInst::Create(Val); 5259 InstructionList.push_back(I); 5260 break; 5261 } 5262 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5263 I = new UnreachableInst(Context); 5264 InstructionList.push_back(I); 5265 break; 5266 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5267 if (Record.size() < 1 || ((Record.size()-1)&1)) 5268 return error("Invalid record"); 5269 Type *Ty = getTypeByID(Record[0]); 5270 if (!Ty) 5271 return error("Invalid record"); 5272 5273 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5274 InstructionList.push_back(PN); 5275 5276 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5277 Value *V; 5278 // With the new function encoding, it is possible that operands have 5279 // negative IDs (for forward references). Use a signed VBR 5280 // representation to keep the encoding small. 5281 if (UseRelativeIDs) 5282 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5283 else 5284 V = getValue(Record, 1+i, NextValueNo, Ty); 5285 BasicBlock *BB = getBasicBlock(Record[2+i]); 5286 if (!V || !BB) 5287 return error("Invalid record"); 5288 PN->addIncoming(V, BB); 5289 } 5290 I = PN; 5291 break; 5292 } 5293 5294 case bitc::FUNC_CODE_INST_LANDINGPAD: 5295 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5296 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5297 unsigned Idx = 0; 5298 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5299 if (Record.size() < 3) 5300 return error("Invalid record"); 5301 } else { 5302 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5303 if (Record.size() < 4) 5304 return error("Invalid record"); 5305 } 5306 Type *Ty = getTypeByID(Record[Idx++]); 5307 if (!Ty) 5308 return error("Invalid record"); 5309 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5310 Value *PersFn = nullptr; 5311 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5312 return error("Invalid record"); 5313 5314 if (!F->hasPersonalityFn()) 5315 F->setPersonalityFn(cast<Constant>(PersFn)); 5316 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5317 return error("Personality function mismatch"); 5318 } 5319 5320 bool IsCleanup = !!Record[Idx++]; 5321 unsigned NumClauses = Record[Idx++]; 5322 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5323 LP->setCleanup(IsCleanup); 5324 for (unsigned J = 0; J != NumClauses; ++J) { 5325 LandingPadInst::ClauseType CT = 5326 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5327 Value *Val; 5328 5329 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5330 delete LP; 5331 return error("Invalid record"); 5332 } 5333 5334 assert((CT != LandingPadInst::Catch || 5335 !isa<ArrayType>(Val->getType())) && 5336 "Catch clause has a invalid type!"); 5337 assert((CT != LandingPadInst::Filter || 5338 isa<ArrayType>(Val->getType())) && 5339 "Filter clause has invalid type!"); 5340 LP->addClause(cast<Constant>(Val)); 5341 } 5342 5343 I = LP; 5344 InstructionList.push_back(I); 5345 break; 5346 } 5347 5348 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5349 if (Record.size() != 4) 5350 return error("Invalid record"); 5351 uint64_t AlignRecord = Record[3]; 5352 const uint64_t InAllocaMask = uint64_t(1) << 5; 5353 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5354 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5355 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5356 SwiftErrorMask; 5357 bool InAlloca = AlignRecord & InAllocaMask; 5358 bool SwiftError = AlignRecord & SwiftErrorMask; 5359 Type *Ty = getTypeByID(Record[0]); 5360 if ((AlignRecord & ExplicitTypeMask) == 0) { 5361 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5362 if (!PTy) 5363 return error("Old-style alloca with a non-pointer type"); 5364 Ty = PTy->getElementType(); 5365 } 5366 Type *OpTy = getTypeByID(Record[1]); 5367 Value *Size = getFnValueByID(Record[2], OpTy); 5368 unsigned Align; 5369 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5370 return Err; 5371 } 5372 if (!Ty || !Size) 5373 return error("Invalid record"); 5374 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5375 AI->setUsedWithInAlloca(InAlloca); 5376 AI->setSwiftError(SwiftError); 5377 I = AI; 5378 InstructionList.push_back(I); 5379 break; 5380 } 5381 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5382 unsigned OpNum = 0; 5383 Value *Op; 5384 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5385 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5386 return error("Invalid record"); 5387 5388 Type *Ty = nullptr; 5389 if (OpNum + 3 == Record.size()) 5390 Ty = getTypeByID(Record[OpNum++]); 5391 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5392 return Err; 5393 if (!Ty) 5394 Ty = cast<PointerType>(Op->getType())->getElementType(); 5395 5396 unsigned Align; 5397 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5398 return Err; 5399 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5400 5401 InstructionList.push_back(I); 5402 break; 5403 } 5404 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5405 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5406 unsigned OpNum = 0; 5407 Value *Op; 5408 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5409 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5410 return error("Invalid record"); 5411 5412 Type *Ty = nullptr; 5413 if (OpNum + 5 == Record.size()) 5414 Ty = getTypeByID(Record[OpNum++]); 5415 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5416 return Err; 5417 if (!Ty) 5418 Ty = cast<PointerType>(Op->getType())->getElementType(); 5419 5420 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5421 if (Ordering == AtomicOrdering::NotAtomic || 5422 Ordering == AtomicOrdering::Release || 5423 Ordering == AtomicOrdering::AcquireRelease) 5424 return error("Invalid record"); 5425 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5426 return error("Invalid record"); 5427 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5428 5429 unsigned Align; 5430 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5431 return Err; 5432 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5433 5434 InstructionList.push_back(I); 5435 break; 5436 } 5437 case bitc::FUNC_CODE_INST_STORE: 5438 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5439 unsigned OpNum = 0; 5440 Value *Val, *Ptr; 5441 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5442 (BitCode == bitc::FUNC_CODE_INST_STORE 5443 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5444 : popValue(Record, OpNum, NextValueNo, 5445 cast<PointerType>(Ptr->getType())->getElementType(), 5446 Val)) || 5447 OpNum + 2 != Record.size()) 5448 return error("Invalid record"); 5449 5450 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5451 return Err; 5452 unsigned Align; 5453 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5454 return Err; 5455 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5456 InstructionList.push_back(I); 5457 break; 5458 } 5459 case bitc::FUNC_CODE_INST_STOREATOMIC: 5460 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5461 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5462 unsigned OpNum = 0; 5463 Value *Val, *Ptr; 5464 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5465 !isa<PointerType>(Ptr->getType()) || 5466 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5467 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5468 : popValue(Record, OpNum, NextValueNo, 5469 cast<PointerType>(Ptr->getType())->getElementType(), 5470 Val)) || 5471 OpNum + 4 != Record.size()) 5472 return error("Invalid record"); 5473 5474 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5475 return Err; 5476 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5477 if (Ordering == AtomicOrdering::NotAtomic || 5478 Ordering == AtomicOrdering::Acquire || 5479 Ordering == AtomicOrdering::AcquireRelease) 5480 return error("Invalid record"); 5481 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5482 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5483 return error("Invalid record"); 5484 5485 unsigned Align; 5486 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5487 return Err; 5488 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5489 InstructionList.push_back(I); 5490 break; 5491 } 5492 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5493 case bitc::FUNC_CODE_INST_CMPXCHG: { 5494 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5495 // failureordering?, isweak?] 5496 unsigned OpNum = 0; 5497 Value *Ptr, *Cmp, *New; 5498 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5499 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5500 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5501 : popValue(Record, OpNum, NextValueNo, 5502 cast<PointerType>(Ptr->getType())->getElementType(), 5503 Cmp)) || 5504 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5505 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5506 return error("Invalid record"); 5507 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5508 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5509 SuccessOrdering == AtomicOrdering::Unordered) 5510 return error("Invalid record"); 5511 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5512 5513 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5514 return Err; 5515 AtomicOrdering FailureOrdering; 5516 if (Record.size() < 7) 5517 FailureOrdering = 5518 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5519 else 5520 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5521 5522 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5523 SynchScope); 5524 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5525 5526 if (Record.size() < 8) { 5527 // Before weak cmpxchgs existed, the instruction simply returned the 5528 // value loaded from memory, so bitcode files from that era will be 5529 // expecting the first component of a modern cmpxchg. 5530 CurBB->getInstList().push_back(I); 5531 I = ExtractValueInst::Create(I, 0); 5532 } else { 5533 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5534 } 5535 5536 InstructionList.push_back(I); 5537 break; 5538 } 5539 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5540 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5541 unsigned OpNum = 0; 5542 Value *Ptr, *Val; 5543 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5544 !isa<PointerType>(Ptr->getType()) || 5545 popValue(Record, OpNum, NextValueNo, 5546 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5547 OpNum+4 != Record.size()) 5548 return error("Invalid record"); 5549 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5550 if (Operation < AtomicRMWInst::FIRST_BINOP || 5551 Operation > AtomicRMWInst::LAST_BINOP) 5552 return error("Invalid record"); 5553 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5554 if (Ordering == AtomicOrdering::NotAtomic || 5555 Ordering == AtomicOrdering::Unordered) 5556 return error("Invalid record"); 5557 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5558 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5559 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5560 InstructionList.push_back(I); 5561 break; 5562 } 5563 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5564 if (2 != Record.size()) 5565 return error("Invalid record"); 5566 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5567 if (Ordering == AtomicOrdering::NotAtomic || 5568 Ordering == AtomicOrdering::Unordered || 5569 Ordering == AtomicOrdering::Monotonic) 5570 return error("Invalid record"); 5571 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5572 I = new FenceInst(Context, Ordering, SynchScope); 5573 InstructionList.push_back(I); 5574 break; 5575 } 5576 case bitc::FUNC_CODE_INST_CALL: { 5577 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5578 if (Record.size() < 3) 5579 return error("Invalid record"); 5580 5581 unsigned OpNum = 0; 5582 AttributeSet PAL = getAttributes(Record[OpNum++]); 5583 unsigned CCInfo = Record[OpNum++]; 5584 5585 FastMathFlags FMF; 5586 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5587 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5588 if (!FMF.any()) 5589 return error("Fast math flags indicator set for call with no FMF"); 5590 } 5591 5592 FunctionType *FTy = nullptr; 5593 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5594 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5595 return error("Explicit call type is not a function type"); 5596 5597 Value *Callee; 5598 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5599 return error("Invalid record"); 5600 5601 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5602 if (!OpTy) 5603 return error("Callee is not a pointer type"); 5604 if (!FTy) { 5605 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5606 if (!FTy) 5607 return error("Callee is not of pointer to function type"); 5608 } else if (OpTy->getElementType() != FTy) 5609 return error("Explicit call type does not match pointee type of " 5610 "callee operand"); 5611 if (Record.size() < FTy->getNumParams() + OpNum) 5612 return error("Insufficient operands to call"); 5613 5614 SmallVector<Value*, 16> Args; 5615 // Read the fixed params. 5616 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5617 if (FTy->getParamType(i)->isLabelTy()) 5618 Args.push_back(getBasicBlock(Record[OpNum])); 5619 else 5620 Args.push_back(getValue(Record, OpNum, NextValueNo, 5621 FTy->getParamType(i))); 5622 if (!Args.back()) 5623 return error("Invalid record"); 5624 } 5625 5626 // Read type/value pairs for varargs params. 5627 if (!FTy->isVarArg()) { 5628 if (OpNum != Record.size()) 5629 return error("Invalid record"); 5630 } else { 5631 while (OpNum != Record.size()) { 5632 Value *Op; 5633 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5634 return error("Invalid record"); 5635 Args.push_back(Op); 5636 } 5637 } 5638 5639 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5640 OperandBundles.clear(); 5641 InstructionList.push_back(I); 5642 cast<CallInst>(I)->setCallingConv( 5643 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5644 CallInst::TailCallKind TCK = CallInst::TCK_None; 5645 if (CCInfo & 1 << bitc::CALL_TAIL) 5646 TCK = CallInst::TCK_Tail; 5647 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5648 TCK = CallInst::TCK_MustTail; 5649 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5650 TCK = CallInst::TCK_NoTail; 5651 cast<CallInst>(I)->setTailCallKind(TCK); 5652 cast<CallInst>(I)->setAttributes(PAL); 5653 if (FMF.any()) { 5654 if (!isa<FPMathOperator>(I)) 5655 return error("Fast-math-flags specified for call without " 5656 "floating-point scalar or vector return type"); 5657 I->setFastMathFlags(FMF); 5658 } 5659 break; 5660 } 5661 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5662 if (Record.size() < 3) 5663 return error("Invalid record"); 5664 Type *OpTy = getTypeByID(Record[0]); 5665 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5666 Type *ResTy = getTypeByID(Record[2]); 5667 if (!OpTy || !Op || !ResTy) 5668 return error("Invalid record"); 5669 I = new VAArgInst(Op, ResTy); 5670 InstructionList.push_back(I); 5671 break; 5672 } 5673 5674 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5675 // A call or an invoke can be optionally prefixed with some variable 5676 // number of operand bundle blocks. These blocks are read into 5677 // OperandBundles and consumed at the next call or invoke instruction. 5678 5679 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5680 return error("Invalid record"); 5681 5682 std::vector<Value *> Inputs; 5683 5684 unsigned OpNum = 1; 5685 while (OpNum != Record.size()) { 5686 Value *Op; 5687 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5688 return error("Invalid record"); 5689 Inputs.push_back(Op); 5690 } 5691 5692 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5693 continue; 5694 } 5695 } 5696 5697 // Add instruction to end of current BB. If there is no current BB, reject 5698 // this file. 5699 if (!CurBB) { 5700 delete I; 5701 return error("Invalid instruction with no BB"); 5702 } 5703 if (!OperandBundles.empty()) { 5704 delete I; 5705 return error("Operand bundles found with no consumer"); 5706 } 5707 CurBB->getInstList().push_back(I); 5708 5709 // If this was a terminator instruction, move to the next block. 5710 if (isa<TerminatorInst>(I)) { 5711 ++CurBBNo; 5712 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5713 } 5714 5715 // Non-void values get registered in the value table for future use. 5716 if (I && !I->getType()->isVoidTy()) 5717 ValueList.assignValue(I, NextValueNo++); 5718 } 5719 5720 OutOfRecordLoop: 5721 5722 if (!OperandBundles.empty()) 5723 return error("Operand bundles found with no consumer"); 5724 5725 // Check the function list for unresolved values. 5726 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5727 if (!A->getParent()) { 5728 // We found at least one unresolved value. Nuke them all to avoid leaks. 5729 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5730 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5731 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5732 delete A; 5733 } 5734 } 5735 return error("Never resolved value found in function"); 5736 } 5737 } 5738 5739 // Unexpected unresolved metadata about to be dropped. 5740 if (MetadataList.hasFwdRefs()) 5741 return error("Invalid function metadata: outgoing forward refs"); 5742 5743 // Trim the value list down to the size it was before we parsed this function. 5744 ValueList.shrinkTo(ModuleValueListSize); 5745 MetadataList.shrinkTo(ModuleMetadataListSize); 5746 std::vector<BasicBlock*>().swap(FunctionBBs); 5747 return Error::success(); 5748 } 5749 5750 /// Find the function body in the bitcode stream 5751 Error BitcodeReader::findFunctionInStream( 5752 Function *F, 5753 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5754 while (DeferredFunctionInfoIterator->second == 0) { 5755 // This is the fallback handling for the old format bitcode that 5756 // didn't contain the function index in the VST, or when we have 5757 // an anonymous function which would not have a VST entry. 5758 // Assert that we have one of those two cases. 5759 assert(VSTOffset == 0 || !F->hasName()); 5760 // Parse the next body in the stream and set its position in the 5761 // DeferredFunctionInfo map. 5762 if (Error Err = rememberAndSkipFunctionBodies()) 5763 return Err; 5764 } 5765 return Error::success(); 5766 } 5767 5768 //===----------------------------------------------------------------------===// 5769 // GVMaterializer implementation 5770 //===----------------------------------------------------------------------===// 5771 5772 Error BitcodeReader::materialize(GlobalValue *GV) { 5773 Function *F = dyn_cast<Function>(GV); 5774 // If it's not a function or is already material, ignore the request. 5775 if (!F || !F->isMaterializable()) 5776 return Error::success(); 5777 5778 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5779 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5780 // If its position is recorded as 0, its body is somewhere in the stream 5781 // but we haven't seen it yet. 5782 if (DFII->second == 0) 5783 if (Error Err = findFunctionInStream(F, DFII)) 5784 return Err; 5785 5786 // Materialize metadata before parsing any function bodies. 5787 if (Error Err = materializeMetadata()) 5788 return Err; 5789 5790 // Move the bit stream to the saved position of the deferred function body. 5791 Stream.JumpToBit(DFII->second); 5792 5793 if (Error Err = parseFunctionBody(F)) 5794 return Err; 5795 F->setIsMaterializable(false); 5796 5797 if (StripDebugInfo) 5798 stripDebugInfo(*F); 5799 5800 // Upgrade any old intrinsic calls in the function. 5801 for (auto &I : UpgradedIntrinsics) { 5802 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5803 UI != UE;) { 5804 User *U = *UI; 5805 ++UI; 5806 if (CallInst *CI = dyn_cast<CallInst>(U)) 5807 UpgradeIntrinsicCall(CI, I.second); 5808 } 5809 } 5810 5811 // Update calls to the remangled intrinsics 5812 for (auto &I : RemangledIntrinsics) 5813 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5814 UI != UE;) 5815 // Don't expect any other users than call sites 5816 CallSite(*UI++).setCalledFunction(I.second); 5817 5818 // Finish fn->subprogram upgrade for materialized functions. 5819 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5820 F->setSubprogram(SP); 5821 5822 // Bring in any functions that this function forward-referenced via 5823 // blockaddresses. 5824 return materializeForwardReferencedFunctions(); 5825 } 5826 5827 Error BitcodeReader::materializeModule() { 5828 if (Error Err = materializeMetadata()) 5829 return Err; 5830 5831 // Promise to materialize all forward references. 5832 WillMaterializeAllForwardRefs = true; 5833 5834 // Iterate over the module, deserializing any functions that are still on 5835 // disk. 5836 for (Function &F : *TheModule) { 5837 if (Error Err = materialize(&F)) 5838 return Err; 5839 } 5840 // At this point, if there are any function bodies, parse the rest of 5841 // the bits in the module past the last function block we have recorded 5842 // through either lazy scanning or the VST. 5843 if (LastFunctionBlockBit || NextUnreadBit) 5844 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5845 ? LastFunctionBlockBit 5846 : NextUnreadBit)) 5847 return Err; 5848 5849 // Check that all block address forward references got resolved (as we 5850 // promised above). 5851 if (!BasicBlockFwdRefs.empty()) 5852 return error("Never resolved function from blockaddress"); 5853 5854 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5855 // delete the old functions to clean up. We can't do this unless the entire 5856 // module is materialized because there could always be another function body 5857 // with calls to the old function. 5858 for (auto &I : UpgradedIntrinsics) { 5859 for (auto *U : I.first->users()) { 5860 if (CallInst *CI = dyn_cast<CallInst>(U)) 5861 UpgradeIntrinsicCall(CI, I.second); 5862 } 5863 if (!I.first->use_empty()) 5864 I.first->replaceAllUsesWith(I.second); 5865 I.first->eraseFromParent(); 5866 } 5867 UpgradedIntrinsics.clear(); 5868 // Do the same for remangled intrinsics 5869 for (auto &I : RemangledIntrinsics) { 5870 I.first->replaceAllUsesWith(I.second); 5871 I.first->eraseFromParent(); 5872 } 5873 RemangledIntrinsics.clear(); 5874 5875 UpgradeDebugInfo(*TheModule); 5876 5877 UpgradeModuleFlags(*TheModule); 5878 return Error::success(); 5879 } 5880 5881 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5882 return IdentifiedStructTypes; 5883 } 5884 5885 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5886 BitstreamCursor Cursor, ModuleSummaryIndex &TheIndex) 5887 : BitcodeReaderBase(std::move(Cursor)), TheIndex(TheIndex) {} 5888 5889 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5890 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5891 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5892 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5893 return VGI->second; 5894 } 5895 5896 // Specialized value symbol table parser used when reading module index 5897 // blocks where we don't actually create global values. The parsed information 5898 // is saved in the bitcode reader for use when later parsing summaries. 5899 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5900 uint64_t Offset, 5901 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5902 assert(Offset > 0 && "Expected non-zero VST offset"); 5903 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5904 5905 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5906 return error("Invalid record"); 5907 5908 SmallVector<uint64_t, 64> Record; 5909 5910 // Read all the records for this value table. 5911 SmallString<128> ValueName; 5912 5913 while (true) { 5914 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5915 5916 switch (Entry.Kind) { 5917 case BitstreamEntry::SubBlock: // Handled for us already. 5918 case BitstreamEntry::Error: 5919 return error("Malformed block"); 5920 case BitstreamEntry::EndBlock: 5921 // Done parsing VST, jump back to wherever we came from. 5922 Stream.JumpToBit(CurrentBit); 5923 return Error::success(); 5924 case BitstreamEntry::Record: 5925 // The interesting case. 5926 break; 5927 } 5928 5929 // Read a record. 5930 Record.clear(); 5931 switch (Stream.readRecord(Entry.ID, Record)) { 5932 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5933 break; 5934 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5935 if (convertToString(Record, 1, ValueName)) 5936 return error("Invalid record"); 5937 unsigned ValueID = Record[0]; 5938 assert(!SourceFileName.empty()); 5939 auto VLI = ValueIdToLinkageMap.find(ValueID); 5940 assert(VLI != ValueIdToLinkageMap.end() && 5941 "No linkage found for VST entry?"); 5942 auto Linkage = VLI->second; 5943 std::string GlobalId = 5944 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5945 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5946 auto OriginalNameID = ValueGUID; 5947 if (GlobalValue::isLocalLinkage(Linkage)) 5948 OriginalNameID = GlobalValue::getGUID(ValueName); 5949 if (PrintSummaryGUIDs) 5950 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5951 << ValueName << "\n"; 5952 ValueIdToCallGraphGUIDMap[ValueID] = 5953 std::make_pair(ValueGUID, OriginalNameID); 5954 ValueName.clear(); 5955 break; 5956 } 5957 case bitc::VST_CODE_FNENTRY: { 5958 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5959 if (convertToString(Record, 2, ValueName)) 5960 return error("Invalid record"); 5961 unsigned ValueID = Record[0]; 5962 assert(!SourceFileName.empty()); 5963 auto VLI = ValueIdToLinkageMap.find(ValueID); 5964 assert(VLI != ValueIdToLinkageMap.end() && 5965 "No linkage found for VST entry?"); 5966 auto Linkage = VLI->second; 5967 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5968 ValueName, VLI->second, SourceFileName); 5969 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5970 auto OriginalNameID = FunctionGUID; 5971 if (GlobalValue::isLocalLinkage(Linkage)) 5972 OriginalNameID = GlobalValue::getGUID(ValueName); 5973 if (PrintSummaryGUIDs) 5974 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 5975 << ValueName << "\n"; 5976 ValueIdToCallGraphGUIDMap[ValueID] = 5977 std::make_pair(FunctionGUID, OriginalNameID); 5978 5979 ValueName.clear(); 5980 break; 5981 } 5982 case bitc::VST_CODE_COMBINED_ENTRY: { 5983 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5984 unsigned ValueID = Record[0]; 5985 GlobalValue::GUID RefGUID = Record[1]; 5986 // The "original name", which is the second value of the pair will be 5987 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5988 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5989 break; 5990 } 5991 } 5992 } 5993 } 5994 5995 // Parse just the blocks needed for building the index out of the module. 5996 // At the end of this routine the module Index is populated with a map 5997 // from global value id to GlobalValueSummary objects. 5998 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) { 5999 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6000 return error("Invalid record"); 6001 6002 SmallVector<uint64_t, 64> Record; 6003 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6004 unsigned ValueId = 0; 6005 6006 // Read the index for this module. 6007 while (true) { 6008 BitstreamEntry Entry = Stream.advance(); 6009 6010 switch (Entry.Kind) { 6011 case BitstreamEntry::Error: 6012 return error("Malformed block"); 6013 case BitstreamEntry::EndBlock: 6014 return Error::success(); 6015 6016 case BitstreamEntry::SubBlock: 6017 switch (Entry.ID) { 6018 default: // Skip unknown content. 6019 if (Stream.SkipBlock()) 6020 return error("Invalid record"); 6021 break; 6022 case bitc::BLOCKINFO_BLOCK_ID: 6023 // Need to parse these to get abbrev ids (e.g. for VST) 6024 if (readBlockInfo()) 6025 return error("Malformed block"); 6026 break; 6027 case bitc::VALUE_SYMTAB_BLOCK_ID: 6028 // Should have been parsed earlier via VSTOffset, unless there 6029 // is no summary section. 6030 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6031 !SeenGlobalValSummary) && 6032 "Expected early VST parse via VSTOffset record"); 6033 if (Stream.SkipBlock()) 6034 return error("Invalid record"); 6035 break; 6036 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6037 assert(!SeenValueSymbolTable && 6038 "Already read VST when parsing summary block?"); 6039 // We might not have a VST if there were no values in the 6040 // summary. An empty summary block generated when we are 6041 // performing ThinLTO compiles so we don't later invoke 6042 // the regular LTO process on them. 6043 if (VSTOffset > 0) { 6044 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6045 return Err; 6046 SeenValueSymbolTable = true; 6047 } 6048 SeenGlobalValSummary = true; 6049 if (Error Err = parseEntireSummary(ModulePath)) 6050 return Err; 6051 break; 6052 case bitc::MODULE_STRTAB_BLOCK_ID: 6053 if (Error Err = parseModuleStringTable()) 6054 return Err; 6055 break; 6056 } 6057 continue; 6058 6059 case BitstreamEntry::Record: { 6060 Record.clear(); 6061 auto BitCode = Stream.readRecord(Entry.ID, Record); 6062 switch (BitCode) { 6063 default: 6064 break; // Default behavior, ignore unknown content. 6065 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6066 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6067 SmallString<128> ValueName; 6068 if (convertToString(Record, 0, ValueName)) 6069 return error("Invalid record"); 6070 SourceFileName = ValueName.c_str(); 6071 break; 6072 } 6073 /// MODULE_CODE_HASH: [5*i32] 6074 case bitc::MODULE_CODE_HASH: { 6075 if (Record.size() != 5) 6076 return error("Invalid hash length " + Twine(Record.size()).str()); 6077 if (TheIndex.modulePaths().empty()) 6078 // We always seed the index with the module. 6079 TheIndex.addModulePath(ModulePath, 0); 6080 if (TheIndex.modulePaths().size() != 1) 6081 return error("Don't expect multiple modules defined?"); 6082 auto &Hash = TheIndex.modulePaths().begin()->second.second; 6083 int Pos = 0; 6084 for (auto &Val : Record) { 6085 assert(!(Val >> 32) && "Unexpected high bits set"); 6086 Hash[Pos++] = Val; 6087 } 6088 break; 6089 } 6090 /// MODULE_CODE_VSTOFFSET: [offset] 6091 case bitc::MODULE_CODE_VSTOFFSET: 6092 if (Record.size() < 1) 6093 return error("Invalid record"); 6094 // Note that we subtract 1 here because the offset is relative to one 6095 // word before the start of the identification or module block, which 6096 // was historically always the start of the regular bitcode header. 6097 VSTOffset = Record[0] - 1; 6098 break; 6099 // GLOBALVAR: [pointer type, isconst, initid, 6100 // linkage, alignment, section, visibility, threadlocal, 6101 // unnamed_addr, externally_initialized, dllstorageclass, 6102 // comdat] 6103 case bitc::MODULE_CODE_GLOBALVAR: { 6104 if (Record.size() < 6) 6105 return error("Invalid record"); 6106 uint64_t RawLinkage = Record[3]; 6107 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6108 ValueIdToLinkageMap[ValueId++] = Linkage; 6109 break; 6110 } 6111 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 6112 // alignment, section, visibility, gc, unnamed_addr, 6113 // prologuedata, dllstorageclass, comdat, prefixdata] 6114 case bitc::MODULE_CODE_FUNCTION: { 6115 if (Record.size() < 8) 6116 return error("Invalid record"); 6117 uint64_t RawLinkage = Record[3]; 6118 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6119 ValueIdToLinkageMap[ValueId++] = Linkage; 6120 break; 6121 } 6122 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 6123 // dllstorageclass] 6124 case bitc::MODULE_CODE_ALIAS: { 6125 if (Record.size() < 6) 6126 return error("Invalid record"); 6127 uint64_t RawLinkage = Record[3]; 6128 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6129 ValueIdToLinkageMap[ValueId++] = Linkage; 6130 break; 6131 } 6132 } 6133 } 6134 continue; 6135 } 6136 } 6137 } 6138 6139 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6140 // objects in the index. 6141 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary( 6142 StringRef ModulePath) { 6143 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6144 return error("Invalid record"); 6145 SmallVector<uint64_t, 64> Record; 6146 6147 // Parse version 6148 { 6149 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6150 if (Entry.Kind != BitstreamEntry::Record) 6151 return error("Invalid Summary Block: record for version expected"); 6152 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6153 return error("Invalid Summary Block: version expected"); 6154 } 6155 const uint64_t Version = Record[0]; 6156 const bool IsOldProfileFormat = Version == 1; 6157 if (!IsOldProfileFormat && Version != 2) 6158 return error("Invalid summary version " + Twine(Version) + 6159 ", 1 or 2 expected"); 6160 Record.clear(); 6161 6162 // Keep around the last seen summary to be used when we see an optional 6163 // "OriginalName" attachement. 6164 GlobalValueSummary *LastSeenSummary = nullptr; 6165 bool Combined = false; 6166 6167 while (true) { 6168 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6169 6170 switch (Entry.Kind) { 6171 case BitstreamEntry::SubBlock: // Handled for us already. 6172 case BitstreamEntry::Error: 6173 return error("Malformed block"); 6174 case BitstreamEntry::EndBlock: 6175 // For a per-module index, remove any entries that still have empty 6176 // summaries. The VST parsing creates entries eagerly for all symbols, 6177 // but not all have associated summaries (e.g. it doesn't know how to 6178 // distinguish between VST_CODE_ENTRY for function declarations vs global 6179 // variables with initializers that end up with a summary). Remove those 6180 // entries now so that we don't need to rely on the combined index merger 6181 // to clean them up (especially since that may not run for the first 6182 // module's index if we merge into that). 6183 if (!Combined) 6184 TheIndex.removeEmptySummaryEntries(); 6185 return Error::success(); 6186 case BitstreamEntry::Record: 6187 // The interesting case. 6188 break; 6189 } 6190 6191 // Read a record. The record format depends on whether this 6192 // is a per-module index or a combined index file. In the per-module 6193 // case the records contain the associated value's ID for correlation 6194 // with VST entries. In the combined index the correlation is done 6195 // via the bitcode offset of the summary records (which were saved 6196 // in the combined index VST entries). The records also contain 6197 // information used for ThinLTO renaming and importing. 6198 Record.clear(); 6199 auto BitCode = Stream.readRecord(Entry.ID, Record); 6200 switch (BitCode) { 6201 default: // Default behavior: ignore. 6202 break; 6203 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6204 // n x (valueid)] 6205 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6206 // numrefs x valueid, 6207 // n x (valueid, hotness)] 6208 case bitc::FS_PERMODULE: 6209 case bitc::FS_PERMODULE_PROFILE: { 6210 unsigned ValueID = Record[0]; 6211 uint64_t RawFlags = Record[1]; 6212 unsigned InstCount = Record[2]; 6213 unsigned NumRefs = Record[3]; 6214 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6215 std::unique_ptr<FunctionSummary> FS = 6216 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6217 // The module path string ref set in the summary must be owned by the 6218 // index's module string table. Since we don't have a module path 6219 // string table section in the per-module index, we create a single 6220 // module path string table entry with an empty (0) ID to take 6221 // ownership. 6222 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 6223 static int RefListStartIndex = 4; 6224 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6225 assert(Record.size() >= RefListStartIndex + NumRefs && 6226 "Record size inconsistent with number of references"); 6227 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6228 unsigned RefValueId = Record[I]; 6229 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6230 FS->addRefEdge(RefGUID); 6231 } 6232 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6233 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6234 ++I) { 6235 CalleeInfo::HotnessType Hotness; 6236 GlobalValue::GUID CalleeGUID; 6237 std::tie(CalleeGUID, Hotness) = 6238 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 6239 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 6240 } 6241 auto GUID = getGUIDFromValueId(ValueID); 6242 FS->setOriginalName(GUID.second); 6243 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6244 break; 6245 } 6246 // FS_ALIAS: [valueid, flags, valueid] 6247 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6248 // they expect all aliasee summaries to be available. 6249 case bitc::FS_ALIAS: { 6250 unsigned ValueID = Record[0]; 6251 uint64_t RawFlags = Record[1]; 6252 unsigned AliaseeID = Record[2]; 6253 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6254 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6255 // The module path string ref set in the summary must be owned by the 6256 // index's module string table. Since we don't have a module path 6257 // string table section in the per-module index, we create a single 6258 // module path string table entry with an empty (0) ID to take 6259 // ownership. 6260 AS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 6261 6262 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6263 auto *AliaseeSummary = TheIndex.getGlobalValueSummary(AliaseeGUID); 6264 if (!AliaseeSummary) 6265 return error("Alias expects aliasee summary to be parsed"); 6266 AS->setAliasee(AliaseeSummary); 6267 6268 auto GUID = getGUIDFromValueId(ValueID); 6269 AS->setOriginalName(GUID.second); 6270 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6271 break; 6272 } 6273 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6274 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6275 unsigned ValueID = Record[0]; 6276 uint64_t RawFlags = Record[1]; 6277 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6278 std::unique_ptr<GlobalVarSummary> FS = 6279 llvm::make_unique<GlobalVarSummary>(Flags); 6280 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 6281 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6282 unsigned RefValueId = Record[I]; 6283 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6284 FS->addRefEdge(RefGUID); 6285 } 6286 auto GUID = getGUIDFromValueId(ValueID); 6287 FS->setOriginalName(GUID.second); 6288 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6289 break; 6290 } 6291 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6292 // numrefs x valueid, n x (valueid)] 6293 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6294 // numrefs x valueid, n x (valueid, hotness)] 6295 case bitc::FS_COMBINED: 6296 case bitc::FS_COMBINED_PROFILE: { 6297 unsigned ValueID = Record[0]; 6298 uint64_t ModuleId = Record[1]; 6299 uint64_t RawFlags = Record[2]; 6300 unsigned InstCount = Record[3]; 6301 unsigned NumRefs = Record[4]; 6302 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6303 std::unique_ptr<FunctionSummary> FS = 6304 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6305 LastSeenSummary = FS.get(); 6306 FS->setModulePath(ModuleIdMap[ModuleId]); 6307 static int RefListStartIndex = 5; 6308 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6309 assert(Record.size() >= RefListStartIndex + NumRefs && 6310 "Record size inconsistent with number of references"); 6311 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6312 ++I) { 6313 unsigned RefValueId = Record[I]; 6314 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6315 FS->addRefEdge(RefGUID); 6316 } 6317 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6318 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6319 ++I) { 6320 CalleeInfo::HotnessType Hotness; 6321 GlobalValue::GUID CalleeGUID; 6322 std::tie(CalleeGUID, Hotness) = 6323 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 6324 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 6325 } 6326 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6327 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 6328 Combined = true; 6329 break; 6330 } 6331 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6332 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6333 // they expect all aliasee summaries to be available. 6334 case bitc::FS_COMBINED_ALIAS: { 6335 unsigned ValueID = Record[0]; 6336 uint64_t ModuleId = Record[1]; 6337 uint64_t RawFlags = Record[2]; 6338 unsigned AliaseeValueId = Record[3]; 6339 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6340 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6341 LastSeenSummary = AS.get(); 6342 AS->setModulePath(ModuleIdMap[ModuleId]); 6343 6344 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6345 auto AliaseeInModule = 6346 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 6347 if (!AliaseeInModule) 6348 return error("Alias expects aliasee summary to be parsed"); 6349 AS->setAliasee(AliaseeInModule); 6350 6351 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6352 TheIndex.addGlobalValueSummary(GUID, std::move(AS)); 6353 Combined = true; 6354 break; 6355 } 6356 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6357 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6358 unsigned ValueID = Record[0]; 6359 uint64_t ModuleId = Record[1]; 6360 uint64_t RawFlags = Record[2]; 6361 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6362 std::unique_ptr<GlobalVarSummary> FS = 6363 llvm::make_unique<GlobalVarSummary>(Flags); 6364 LastSeenSummary = FS.get(); 6365 FS->setModulePath(ModuleIdMap[ModuleId]); 6366 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6367 unsigned RefValueId = Record[I]; 6368 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6369 FS->addRefEdge(RefGUID); 6370 } 6371 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6372 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 6373 Combined = true; 6374 break; 6375 } 6376 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6377 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6378 uint64_t OriginalName = Record[0]; 6379 if (!LastSeenSummary) 6380 return error("Name attachment that does not follow a combined record"); 6381 LastSeenSummary->setOriginalName(OriginalName); 6382 // Reset the LastSeenSummary 6383 LastSeenSummary = nullptr; 6384 } 6385 } 6386 } 6387 llvm_unreachable("Exit infinite loop"); 6388 } 6389 6390 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 6391 ModuleSummaryIndexBitcodeReader::readCallGraphEdge( 6392 const SmallVector<uint64_t, 64> &Record, unsigned int &I, 6393 const bool IsOldProfileFormat, const bool HasProfile) { 6394 6395 auto Hotness = CalleeInfo::HotnessType::Unknown; 6396 unsigned CalleeValueId = Record[I]; 6397 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6398 if (IsOldProfileFormat) { 6399 I += 1; // Skip old callsitecount field 6400 if (HasProfile) 6401 I += 1; // Skip old profilecount field 6402 } else if (HasProfile) 6403 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6404 return {CalleeGUID, Hotness}; 6405 } 6406 6407 // Parse the module string table block into the Index. 6408 // This populates the ModulePathStringTable map in the index. 6409 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6410 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6411 return error("Invalid record"); 6412 6413 SmallVector<uint64_t, 64> Record; 6414 6415 SmallString<128> ModulePath; 6416 ModulePathStringTableTy::iterator LastSeenModulePath; 6417 6418 while (true) { 6419 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6420 6421 switch (Entry.Kind) { 6422 case BitstreamEntry::SubBlock: // Handled for us already. 6423 case BitstreamEntry::Error: 6424 return error("Malformed block"); 6425 case BitstreamEntry::EndBlock: 6426 return Error::success(); 6427 case BitstreamEntry::Record: 6428 // The interesting case. 6429 break; 6430 } 6431 6432 Record.clear(); 6433 switch (Stream.readRecord(Entry.ID, Record)) { 6434 default: // Default behavior: ignore. 6435 break; 6436 case bitc::MST_CODE_ENTRY: { 6437 // MST_ENTRY: [modid, namechar x N] 6438 uint64_t ModuleId = Record[0]; 6439 6440 if (convertToString(Record, 1, ModulePath)) 6441 return error("Invalid record"); 6442 6443 LastSeenModulePath = TheIndex.addModulePath(ModulePath, ModuleId); 6444 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6445 6446 ModulePath.clear(); 6447 break; 6448 } 6449 /// MST_CODE_HASH: [5*i32] 6450 case bitc::MST_CODE_HASH: { 6451 if (Record.size() != 5) 6452 return error("Invalid hash length " + Twine(Record.size()).str()); 6453 if (LastSeenModulePath == TheIndex.modulePaths().end()) 6454 return error("Invalid hash that does not follow a module path"); 6455 int Pos = 0; 6456 for (auto &Val : Record) { 6457 assert(!(Val >> 32) && "Unexpected high bits set"); 6458 LastSeenModulePath->second.second[Pos++] = Val; 6459 } 6460 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6461 LastSeenModulePath = TheIndex.modulePaths().end(); 6462 break; 6463 } 6464 } 6465 } 6466 llvm_unreachable("Exit infinite loop"); 6467 } 6468 6469 namespace { 6470 6471 // FIXME: This class is only here to support the transition to llvm::Error. It 6472 // will be removed once this transition is complete. Clients should prefer to 6473 // deal with the Error value directly, rather than converting to error_code. 6474 class BitcodeErrorCategoryType : public std::error_category { 6475 const char *name() const noexcept override { 6476 return "llvm.bitcode"; 6477 } 6478 std::string message(int IE) const override { 6479 BitcodeError E = static_cast<BitcodeError>(IE); 6480 switch (E) { 6481 case BitcodeError::CorruptedBitcode: 6482 return "Corrupted bitcode"; 6483 } 6484 llvm_unreachable("Unknown error type!"); 6485 } 6486 }; 6487 6488 } // end anonymous namespace 6489 6490 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6491 6492 const std::error_category &llvm::BitcodeErrorCategory() { 6493 return *ErrorCategory; 6494 } 6495 6496 //===----------------------------------------------------------------------===// 6497 // External interface 6498 //===----------------------------------------------------------------------===// 6499 6500 Expected<std::vector<BitcodeModule>> 6501 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6502 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6503 if (!StreamOrErr) 6504 return StreamOrErr.takeError(); 6505 BitstreamCursor &Stream = *StreamOrErr; 6506 6507 std::vector<BitcodeModule> Modules; 6508 while (true) { 6509 uint64_t BCBegin = Stream.getCurrentByteNo(); 6510 6511 // We may be consuming bitcode from a client that leaves garbage at the end 6512 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6513 // the end that there cannot possibly be another module, stop looking. 6514 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6515 return Modules; 6516 6517 BitstreamEntry Entry = Stream.advance(); 6518 switch (Entry.Kind) { 6519 case BitstreamEntry::EndBlock: 6520 case BitstreamEntry::Error: 6521 return error("Malformed block"); 6522 6523 case BitstreamEntry::SubBlock: { 6524 uint64_t IdentificationBit = -1ull; 6525 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6526 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6527 if (Stream.SkipBlock()) 6528 return error("Malformed block"); 6529 6530 Entry = Stream.advance(); 6531 if (Entry.Kind != BitstreamEntry::SubBlock || 6532 Entry.ID != bitc::MODULE_BLOCK_ID) 6533 return error("Malformed block"); 6534 } 6535 6536 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6537 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6538 if (Stream.SkipBlock()) 6539 return error("Malformed block"); 6540 6541 Modules.push_back({Stream.getBitcodeBytes().slice( 6542 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6543 Buffer.getBufferIdentifier(), IdentificationBit, 6544 ModuleBit}); 6545 continue; 6546 } 6547 6548 if (Stream.SkipBlock()) 6549 return error("Malformed block"); 6550 continue; 6551 } 6552 case BitstreamEntry::Record: 6553 Stream.skipRecord(Entry.ID); 6554 continue; 6555 } 6556 } 6557 } 6558 6559 /// \brief Get a lazy one-at-time loading module from bitcode. 6560 /// 6561 /// This isn't always used in a lazy context. In particular, it's also used by 6562 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6563 /// in forward-referenced functions from block address references. 6564 /// 6565 /// \param[in] MaterializeAll Set to \c true if we should materialize 6566 /// everything. 6567 Expected<std::unique_ptr<Module>> 6568 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6569 bool ShouldLazyLoadMetadata) { 6570 BitstreamCursor Stream(Buffer); 6571 6572 std::string ProducerIdentification; 6573 if (IdentificationBit != -1ull) { 6574 Stream.JumpToBit(IdentificationBit); 6575 Expected<std::string> ProducerIdentificationOrErr = 6576 readIdentificationBlock(Stream); 6577 if (!ProducerIdentificationOrErr) 6578 return ProducerIdentificationOrErr.takeError(); 6579 6580 ProducerIdentification = *ProducerIdentificationOrErr; 6581 } 6582 6583 Stream.JumpToBit(ModuleBit); 6584 auto *R = 6585 new BitcodeReader(std::move(Stream), ProducerIdentification, Context); 6586 6587 std::unique_ptr<Module> M = 6588 llvm::make_unique<Module>(ModuleIdentifier, Context); 6589 M->setMaterializer(R); 6590 6591 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6592 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata)) 6593 return std::move(Err); 6594 6595 if (MaterializeAll) { 6596 // Read in the entire module, and destroy the BitcodeReader. 6597 if (Error Err = M->materializeAll()) 6598 return std::move(Err); 6599 } else { 6600 // Resolve forward references from blockaddresses. 6601 if (Error Err = R->materializeForwardReferencedFunctions()) 6602 return std::move(Err); 6603 } 6604 return std::move(M); 6605 } 6606 6607 Expected<std::unique_ptr<Module>> 6608 BitcodeModule::getLazyModule(LLVMContext &Context, 6609 bool ShouldLazyLoadMetadata) { 6610 return getModuleImpl(Context, false, ShouldLazyLoadMetadata); 6611 } 6612 6613 // Parse the specified bitcode buffer, returning the function info index. 6614 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6615 BitstreamCursor Stream(Buffer); 6616 Stream.JumpToBit(ModuleBit); 6617 6618 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6619 ModuleSummaryIndexBitcodeReader R(std::move(Stream), *Index); 6620 6621 if (Error Err = R.parseModule(ModuleIdentifier)) 6622 return std::move(Err); 6623 6624 return std::move(Index); 6625 } 6626 6627 // Check if the given bitcode buffer contains a global value summary block. 6628 Expected<bool> BitcodeModule::hasSummary() { 6629 BitstreamCursor Stream(Buffer); 6630 Stream.JumpToBit(ModuleBit); 6631 6632 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6633 return error("Invalid record"); 6634 6635 while (true) { 6636 BitstreamEntry Entry = Stream.advance(); 6637 6638 switch (Entry.Kind) { 6639 case BitstreamEntry::Error: 6640 return error("Malformed block"); 6641 case BitstreamEntry::EndBlock: 6642 return false; 6643 6644 case BitstreamEntry::SubBlock: 6645 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 6646 return true; 6647 6648 // Ignore other sub-blocks. 6649 if (Stream.SkipBlock()) 6650 return error("Malformed block"); 6651 continue; 6652 6653 case BitstreamEntry::Record: 6654 Stream.skipRecord(Entry.ID); 6655 continue; 6656 } 6657 } 6658 } 6659 6660 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6661 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6662 if (!MsOrErr) 6663 return MsOrErr.takeError(); 6664 6665 if (MsOrErr->size() != 1) 6666 return error("Expected a single module"); 6667 6668 return (*MsOrErr)[0]; 6669 } 6670 6671 Expected<std::unique_ptr<Module>> 6672 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, 6673 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6674 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6675 if (!BM) 6676 return BM.takeError(); 6677 6678 return BM->getLazyModule(Context, ShouldLazyLoadMetadata); 6679 } 6680 6681 Expected<std::unique_ptr<Module>> 6682 llvm::getOwningLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6683 LLVMContext &Context, 6684 bool ShouldLazyLoadMetadata) { 6685 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata); 6686 if (MOrErr) 6687 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6688 return MOrErr; 6689 } 6690 6691 Expected<std::unique_ptr<Module>> 6692 BitcodeModule::parseModule(LLVMContext &Context) { 6693 return getModuleImpl(Context, true, false); 6694 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6695 // written. We must defer until the Module has been fully materialized. 6696 } 6697 6698 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6699 LLVMContext &Context) { 6700 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6701 if (!BM) 6702 return BM.takeError(); 6703 6704 return BM->parseModule(Context); 6705 } 6706 6707 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6708 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6709 if (!StreamOrErr) 6710 return StreamOrErr.takeError(); 6711 6712 return readTriple(*StreamOrErr); 6713 } 6714 6715 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6716 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6717 if (!StreamOrErr) 6718 return StreamOrErr.takeError(); 6719 6720 return hasObjCCategory(*StreamOrErr); 6721 } 6722 6723 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6724 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6725 if (!StreamOrErr) 6726 return StreamOrErr.takeError(); 6727 6728 return readIdentificationCode(*StreamOrErr); 6729 } 6730 6731 Expected<std::unique_ptr<ModuleSummaryIndex>> 6732 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6733 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6734 if (!BM) 6735 return BM.takeError(); 6736 6737 return BM->getSummary(); 6738 } 6739 6740 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) { 6741 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6742 if (!BM) 6743 return BM.takeError(); 6744 6745 return BM->hasSummary(); 6746 } 6747