1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 /// Helper to read the header common to all bitcode files.
109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
110   // Sniff for the signature.
111   if (!Stream.canSkipToPos(4) ||
112       Stream.Read(8) != 'B' ||
113       Stream.Read(8) != 'C' ||
114       Stream.Read(4) != 0x0 ||
115       Stream.Read(4) != 0xC ||
116       Stream.Read(4) != 0xE ||
117       Stream.Read(4) != 0xD)
118     return false;
119   return true;
120 }
121 
122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
123   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
124   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
125 
126   if (Buffer.getBufferSize() & 3)
127     return error("Invalid bitcode signature");
128 
129   // If we have a wrapper header, parse it and ignore the non-bc file contents.
130   // The magic number is 0x0B17C0DE stored in little endian.
131   if (isBitcodeWrapper(BufPtr, BufEnd))
132     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
133       return error("Invalid bitcode wrapper header");
134 
135   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
136   if (!hasValidBitcodeHeader(Stream))
137     return error("Invalid bitcode signature");
138 
139   return std::move(Stream);
140 }
141 
142 /// Convert a string from a record into an std::string, return true on failure.
143 template <typename StrTy>
144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
145                             StrTy &Result) {
146   if (Idx > Record.size())
147     return true;
148 
149   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
150     Result += (char)Record[i];
151   return false;
152 }
153 
154 // Strip all the TBAA attachment for the module.
155 static void stripTBAA(Module *M) {
156   for (auto &F : *M) {
157     if (F.isMaterializable())
158       continue;
159     for (auto &I : instructions(F))
160       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
161   }
162 }
163 
164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
165 /// "epoch" encoded in the bitcode, and return the producer name if any.
166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
167   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
168     return error("Invalid record");
169 
170   // Read all the records.
171   SmallVector<uint64_t, 64> Record;
172 
173   std::string ProducerIdentification;
174 
175   while (true) {
176     BitstreamEntry Entry = Stream.advance();
177 
178     switch (Entry.Kind) {
179     default:
180     case BitstreamEntry::Error:
181       return error("Malformed block");
182     case BitstreamEntry::EndBlock:
183       return ProducerIdentification;
184     case BitstreamEntry::Record:
185       // The interesting case.
186       break;
187     }
188 
189     // Read a record.
190     Record.clear();
191     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
192     switch (BitCode) {
193     default: // Default behavior: reject
194       return error("Invalid value");
195     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
196       convertToString(Record, 0, ProducerIdentification);
197       break;
198     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
199       unsigned epoch = (unsigned)Record[0];
200       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
201         return error(
202           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
203           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
204       }
205     }
206     }
207   }
208 }
209 
210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
211   // We expect a number of well-defined blocks, though we don't necessarily
212   // need to understand them all.
213   while (true) {
214     if (Stream.AtEndOfStream())
215       return "";
216 
217     BitstreamEntry Entry = Stream.advance();
218     switch (Entry.Kind) {
219     case BitstreamEntry::EndBlock:
220     case BitstreamEntry::Error:
221       return error("Malformed block");
222 
223     case BitstreamEntry::SubBlock:
224       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
225         return readIdentificationBlock(Stream);
226 
227       // Ignore other sub-blocks.
228       if (Stream.SkipBlock())
229         return error("Malformed block");
230       continue;
231     case BitstreamEntry::Record:
232       Stream.skipRecord(Entry.ID);
233       continue;
234     }
235   }
236 }
237 
238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
239   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
240     return error("Invalid record");
241 
242   SmallVector<uint64_t, 64> Record;
243   // Read all the records for this module.
244 
245   while (true) {
246     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
247 
248     switch (Entry.Kind) {
249     case BitstreamEntry::SubBlock: // Handled for us already.
250     case BitstreamEntry::Error:
251       return error("Malformed block");
252     case BitstreamEntry::EndBlock:
253       return false;
254     case BitstreamEntry::Record:
255       // The interesting case.
256       break;
257     }
258 
259     // Read a record.
260     switch (Stream.readRecord(Entry.ID, Record)) {
261     default:
262       break; // Default behavior, ignore unknown content.
263     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
264       std::string S;
265       if (convertToString(Record, 0, S))
266         return error("Invalid record");
267       // Check for the i386 and other (x86_64, ARM) conventions
268       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
269           S.find("__OBJC,__category") != std::string::npos)
270         return true;
271       break;
272     }
273     }
274     Record.clear();
275   }
276   llvm_unreachable("Exit infinite loop");
277 }
278 
279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
280   // We expect a number of well-defined blocks, though we don't necessarily
281   // need to understand them all.
282   while (true) {
283     BitstreamEntry Entry = Stream.advance();
284 
285     switch (Entry.Kind) {
286     case BitstreamEntry::Error:
287       return error("Malformed block");
288     case BitstreamEntry::EndBlock:
289       return false;
290 
291     case BitstreamEntry::SubBlock:
292       if (Entry.ID == bitc::MODULE_BLOCK_ID)
293         return hasObjCCategoryInModule(Stream);
294 
295       // Ignore other sub-blocks.
296       if (Stream.SkipBlock())
297         return error("Malformed block");
298       continue;
299 
300     case BitstreamEntry::Record:
301       Stream.skipRecord(Entry.ID);
302       continue;
303     }
304   }
305 }
306 
307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
308   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
309     return error("Invalid record");
310 
311   SmallVector<uint64_t, 64> Record;
312 
313   std::string Triple;
314 
315   // Read all the records for this module.
316   while (true) {
317     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
318 
319     switch (Entry.Kind) {
320     case BitstreamEntry::SubBlock: // Handled for us already.
321     case BitstreamEntry::Error:
322       return error("Malformed block");
323     case BitstreamEntry::EndBlock:
324       return Triple;
325     case BitstreamEntry::Record:
326       // The interesting case.
327       break;
328     }
329 
330     // Read a record.
331     switch (Stream.readRecord(Entry.ID, Record)) {
332     default: break;  // Default behavior, ignore unknown content.
333     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
334       std::string S;
335       if (convertToString(Record, 0, S))
336         return error("Invalid record");
337       Triple = S;
338       break;
339     }
340     }
341     Record.clear();
342   }
343   llvm_unreachable("Exit infinite loop");
344 }
345 
346 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
347   // We expect a number of well-defined blocks, though we don't necessarily
348   // need to understand them all.
349   while (true) {
350     BitstreamEntry Entry = Stream.advance();
351 
352     switch (Entry.Kind) {
353     case BitstreamEntry::Error:
354       return error("Malformed block");
355     case BitstreamEntry::EndBlock:
356       return "";
357 
358     case BitstreamEntry::SubBlock:
359       if (Entry.ID == bitc::MODULE_BLOCK_ID)
360         return readModuleTriple(Stream);
361 
362       // Ignore other sub-blocks.
363       if (Stream.SkipBlock())
364         return error("Malformed block");
365       continue;
366 
367     case BitstreamEntry::Record:
368       Stream.skipRecord(Entry.ID);
369       continue;
370     }
371   }
372 }
373 
374 namespace {
375 
376 class BitcodeReaderBase {
377 protected:
378   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
379       : Stream(std::move(Stream)), Strtab(Strtab) {
380     this->Stream.setBlockInfo(&BlockInfo);
381   }
382 
383   BitstreamBlockInfo BlockInfo;
384   BitstreamCursor Stream;
385   StringRef Strtab;
386 
387   /// In version 2 of the bitcode we store names of global values and comdats in
388   /// a string table rather than in the VST.
389   bool UseStrtab = false;
390 
391   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
392 
393   /// If this module uses a string table, pop the reference to the string table
394   /// and return the referenced string and the rest of the record. Otherwise
395   /// just return the record itself.
396   std::pair<StringRef, ArrayRef<uint64_t>>
397   readNameFromStrtab(ArrayRef<uint64_t> Record);
398 
399   bool readBlockInfo();
400 
401   // Contains an arbitrary and optional string identifying the bitcode producer
402   std::string ProducerIdentification;
403 
404   Error error(const Twine &Message);
405 };
406 
407 } // end anonymous namespace
408 
409 Error BitcodeReaderBase::error(const Twine &Message) {
410   std::string FullMsg = Message.str();
411   if (!ProducerIdentification.empty())
412     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
413                LLVM_VERSION_STRING "')";
414   return ::error(FullMsg);
415 }
416 
417 Expected<unsigned>
418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
419   if (Record.empty())
420     return error("Invalid record");
421   unsigned ModuleVersion = Record[0];
422   if (ModuleVersion > 2)
423     return error("Invalid value");
424   UseStrtab = ModuleVersion >= 2;
425   return ModuleVersion;
426 }
427 
428 std::pair<StringRef, ArrayRef<uint64_t>>
429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
430   if (!UseStrtab)
431     return {"", Record};
432   // Invalid reference. Let the caller complain about the record being empty.
433   if (Record[0] + Record[1] > Strtab.size())
434     return {"", {}};
435   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
436 }
437 
438 namespace {
439 
440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
441   LLVMContext &Context;
442   Module *TheModule = nullptr;
443   // Next offset to start scanning for lazy parsing of function bodies.
444   uint64_t NextUnreadBit = 0;
445   // Last function offset found in the VST.
446   uint64_t LastFunctionBlockBit = 0;
447   bool SeenValueSymbolTable = false;
448   uint64_t VSTOffset = 0;
449 
450   std::vector<std::string> SectionTable;
451   std::vector<std::string> GCTable;
452 
453   std::vector<Type*> TypeList;
454   BitcodeReaderValueList ValueList;
455   Optional<MetadataLoader> MDLoader;
456   std::vector<Comdat *> ComdatList;
457   SmallVector<Instruction *, 64> InstructionList;
458 
459   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
460   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
461   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
462   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
463   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
464 
465   /// The set of attributes by index.  Index zero in the file is for null, and
466   /// is thus not represented here.  As such all indices are off by one.
467   std::vector<AttributeList> MAttributes;
468 
469   /// The set of attribute groups.
470   std::map<unsigned, AttributeList> MAttributeGroups;
471 
472   /// While parsing a function body, this is a list of the basic blocks for the
473   /// function.
474   std::vector<BasicBlock*> FunctionBBs;
475 
476   // When reading the module header, this list is populated with functions that
477   // have bodies later in the file.
478   std::vector<Function*> FunctionsWithBodies;
479 
480   // When intrinsic functions are encountered which require upgrading they are
481   // stored here with their replacement function.
482   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
483   UpdatedIntrinsicMap UpgradedIntrinsics;
484   // Intrinsics which were remangled because of types rename
485   UpdatedIntrinsicMap RemangledIntrinsics;
486 
487   // Several operations happen after the module header has been read, but
488   // before function bodies are processed. This keeps track of whether
489   // we've done this yet.
490   bool SeenFirstFunctionBody = false;
491 
492   /// When function bodies are initially scanned, this map contains info about
493   /// where to find deferred function body in the stream.
494   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
495 
496   /// When Metadata block is initially scanned when parsing the module, we may
497   /// choose to defer parsing of the metadata. This vector contains info about
498   /// which Metadata blocks are deferred.
499   std::vector<uint64_t> DeferredMetadataInfo;
500 
501   /// These are basic blocks forward-referenced by block addresses.  They are
502   /// inserted lazily into functions when they're loaded.  The basic block ID is
503   /// its index into the vector.
504   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
505   std::deque<Function *> BasicBlockFwdRefQueue;
506 
507   /// Indicates that we are using a new encoding for instruction operands where
508   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
509   /// instruction number, for a more compact encoding.  Some instruction
510   /// operands are not relative to the instruction ID: basic block numbers, and
511   /// types. Once the old style function blocks have been phased out, we would
512   /// not need this flag.
513   bool UseRelativeIDs = false;
514 
515   /// True if all functions will be materialized, negating the need to process
516   /// (e.g.) blockaddress forward references.
517   bool WillMaterializeAllForwardRefs = false;
518 
519   bool StripDebugInfo = false;
520   TBAAVerifier TBAAVerifyHelper;
521 
522   std::vector<std::string> BundleTags;
523   SmallVector<SyncScope::ID, 8> SSIDs;
524 
525 public:
526   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
527                 StringRef ProducerIdentification, LLVMContext &Context);
528 
529   Error materializeForwardReferencedFunctions();
530 
531   Error materialize(GlobalValue *GV) override;
532   Error materializeModule() override;
533   std::vector<StructType *> getIdentifiedStructTypes() const override;
534 
535   /// Main interface to parsing a bitcode buffer.
536   /// \returns true if an error occurred.
537   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
538                          bool IsImporting = false);
539 
540   static uint64_t decodeSignRotatedValue(uint64_t V);
541 
542   /// Materialize any deferred Metadata block.
543   Error materializeMetadata() override;
544 
545   void setStripDebugInfo() override;
546 
547 private:
548   std::vector<StructType *> IdentifiedStructTypes;
549   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
550   StructType *createIdentifiedStructType(LLVMContext &Context);
551 
552   Type *getTypeByID(unsigned ID);
553 
554   Value *getFnValueByID(unsigned ID, Type *Ty) {
555     if (Ty && Ty->isMetadataTy())
556       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
557     return ValueList.getValueFwdRef(ID, Ty);
558   }
559 
560   Metadata *getFnMetadataByID(unsigned ID) {
561     return MDLoader->getMetadataFwdRefOrLoad(ID);
562   }
563 
564   BasicBlock *getBasicBlock(unsigned ID) const {
565     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
566     return FunctionBBs[ID];
567   }
568 
569   AttributeList getAttributes(unsigned i) const {
570     if (i-1 < MAttributes.size())
571       return MAttributes[i-1];
572     return AttributeList();
573   }
574 
575   /// Read a value/type pair out of the specified record from slot 'Slot'.
576   /// Increment Slot past the number of slots used in the record. Return true on
577   /// failure.
578   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
579                         unsigned InstNum, Value *&ResVal) {
580     if (Slot == Record.size()) return true;
581     unsigned ValNo = (unsigned)Record[Slot++];
582     // Adjust the ValNo, if it was encoded relative to the InstNum.
583     if (UseRelativeIDs)
584       ValNo = InstNum - ValNo;
585     if (ValNo < InstNum) {
586       // If this is not a forward reference, just return the value we already
587       // have.
588       ResVal = getFnValueByID(ValNo, nullptr);
589       return ResVal == nullptr;
590     }
591     if (Slot == Record.size())
592       return true;
593 
594     unsigned TypeNo = (unsigned)Record[Slot++];
595     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
596     return ResVal == nullptr;
597   }
598 
599   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
600   /// past the number of slots used by the value in the record. Return true if
601   /// there is an error.
602   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
603                 unsigned InstNum, Type *Ty, Value *&ResVal) {
604     if (getValue(Record, Slot, InstNum, Ty, ResVal))
605       return true;
606     // All values currently take a single record slot.
607     ++Slot;
608     return false;
609   }
610 
611   /// Like popValue, but does not increment the Slot number.
612   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
613                 unsigned InstNum, Type *Ty, Value *&ResVal) {
614     ResVal = getValue(Record, Slot, InstNum, Ty);
615     return ResVal == nullptr;
616   }
617 
618   /// Version of getValue that returns ResVal directly, or 0 if there is an
619   /// error.
620   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
621                   unsigned InstNum, Type *Ty) {
622     if (Slot == Record.size()) return nullptr;
623     unsigned ValNo = (unsigned)Record[Slot];
624     // Adjust the ValNo, if it was encoded relative to the InstNum.
625     if (UseRelativeIDs)
626       ValNo = InstNum - ValNo;
627     return getFnValueByID(ValNo, Ty);
628   }
629 
630   /// Like getValue, but decodes signed VBRs.
631   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
632                         unsigned InstNum, Type *Ty) {
633     if (Slot == Record.size()) return nullptr;
634     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
635     // Adjust the ValNo, if it was encoded relative to the InstNum.
636     if (UseRelativeIDs)
637       ValNo = InstNum - ValNo;
638     return getFnValueByID(ValNo, Ty);
639   }
640 
641   /// Converts alignment exponent (i.e. power of two (or zero)) to the
642   /// corresponding alignment to use. If alignment is too large, returns
643   /// a corresponding error code.
644   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
645   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
646   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
647 
648   Error parseComdatRecord(ArrayRef<uint64_t> Record);
649   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
650   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
651   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
652                                         ArrayRef<uint64_t> Record);
653 
654   Error parseAttributeBlock();
655   Error parseAttributeGroupBlock();
656   Error parseTypeTable();
657   Error parseTypeTableBody();
658   Error parseOperandBundleTags();
659   Error parseSyncScopeNames();
660 
661   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
662                                 unsigned NameIndex, Triple &TT);
663   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
664                                ArrayRef<uint64_t> Record);
665   Error parseValueSymbolTable(uint64_t Offset = 0);
666   Error parseGlobalValueSymbolTable();
667   Error parseConstants();
668   Error rememberAndSkipFunctionBodies();
669   Error rememberAndSkipFunctionBody();
670   /// Save the positions of the Metadata blocks and skip parsing the blocks.
671   Error rememberAndSkipMetadata();
672   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
673   Error parseFunctionBody(Function *F);
674   Error globalCleanup();
675   Error resolveGlobalAndIndirectSymbolInits();
676   Error parseUseLists();
677   Error findFunctionInStream(
678       Function *F,
679       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
680 
681   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
682 };
683 
684 /// Class to manage reading and parsing function summary index bitcode
685 /// files/sections.
686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
687   /// The module index built during parsing.
688   ModuleSummaryIndex &TheIndex;
689 
690   /// Indicates whether we have encountered a global value summary section
691   /// yet during parsing.
692   bool SeenGlobalValSummary = false;
693 
694   /// Indicates whether we have already parsed the VST, used for error checking.
695   bool SeenValueSymbolTable = false;
696 
697   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
698   /// Used to enable on-demand parsing of the VST.
699   uint64_t VSTOffset = 0;
700 
701   // Map to save ValueId to ValueInfo association that was recorded in the
702   // ValueSymbolTable. It is used after the VST is parsed to convert
703   // call graph edges read from the function summary from referencing
704   // callees by their ValueId to using the ValueInfo instead, which is how
705   // they are recorded in the summary index being built.
706   // We save a GUID which refers to the same global as the ValueInfo, but
707   // ignoring the linkage, i.e. for values other than local linkage they are
708   // identical.
709   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
710       ValueIdToValueInfoMap;
711 
712   /// Map populated during module path string table parsing, from the
713   /// module ID to a string reference owned by the index's module
714   /// path string table, used to correlate with combined index
715   /// summary records.
716   DenseMap<uint64_t, StringRef> ModuleIdMap;
717 
718   /// Original source file name recorded in a bitcode record.
719   std::string SourceFileName;
720 
721   /// The string identifier given to this module by the client, normally the
722   /// path to the bitcode file.
723   StringRef ModulePath;
724 
725   /// For per-module summary indexes, the unique numerical identifier given to
726   /// this module by the client.
727   unsigned ModuleId;
728 
729 public:
730   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
731                                   ModuleSummaryIndex &TheIndex,
732                                   StringRef ModulePath, unsigned ModuleId);
733 
734   Error parseModule();
735 
736 private:
737   void setValueGUID(uint64_t ValueID, StringRef ValueName,
738                     GlobalValue::LinkageTypes Linkage,
739                     StringRef SourceFileName);
740   Error parseValueSymbolTable(
741       uint64_t Offset,
742       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
743   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
744   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
745                                                     bool IsOldProfileFormat,
746                                                     bool HasProfile,
747                                                     bool HasRelBF);
748   Error parseEntireSummary(unsigned ID);
749   Error parseModuleStringTable();
750 
751   std::pair<ValueInfo, GlobalValue::GUID>
752   getValueInfoFromValueId(unsigned ValueId);
753 
754   void addThisModule();
755   ModuleSummaryIndex::ModuleInfo *getThisModule();
756 };
757 
758 } // end anonymous namespace
759 
760 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
761                                                     Error Err) {
762   if (Err) {
763     std::error_code EC;
764     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
765       EC = EIB.convertToErrorCode();
766       Ctx.emitError(EIB.message());
767     });
768     return EC;
769   }
770   return std::error_code();
771 }
772 
773 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
774                              StringRef ProducerIdentification,
775                              LLVMContext &Context)
776     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
777       ValueList(Context) {
778   this->ProducerIdentification = ProducerIdentification;
779 }
780 
781 Error BitcodeReader::materializeForwardReferencedFunctions() {
782   if (WillMaterializeAllForwardRefs)
783     return Error::success();
784 
785   // Prevent recursion.
786   WillMaterializeAllForwardRefs = true;
787 
788   while (!BasicBlockFwdRefQueue.empty()) {
789     Function *F = BasicBlockFwdRefQueue.front();
790     BasicBlockFwdRefQueue.pop_front();
791     assert(F && "Expected valid function");
792     if (!BasicBlockFwdRefs.count(F))
793       // Already materialized.
794       continue;
795 
796     // Check for a function that isn't materializable to prevent an infinite
797     // loop.  When parsing a blockaddress stored in a global variable, there
798     // isn't a trivial way to check if a function will have a body without a
799     // linear search through FunctionsWithBodies, so just check it here.
800     if (!F->isMaterializable())
801       return error("Never resolved function from blockaddress");
802 
803     // Try to materialize F.
804     if (Error Err = materialize(F))
805       return Err;
806   }
807   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
808 
809   // Reset state.
810   WillMaterializeAllForwardRefs = false;
811   return Error::success();
812 }
813 
814 //===----------------------------------------------------------------------===//
815 //  Helper functions to implement forward reference resolution, etc.
816 //===----------------------------------------------------------------------===//
817 
818 static bool hasImplicitComdat(size_t Val) {
819   switch (Val) {
820   default:
821     return false;
822   case 1:  // Old WeakAnyLinkage
823   case 4:  // Old LinkOnceAnyLinkage
824   case 10: // Old WeakODRLinkage
825   case 11: // Old LinkOnceODRLinkage
826     return true;
827   }
828 }
829 
830 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
831   switch (Val) {
832   default: // Map unknown/new linkages to external
833   case 0:
834     return GlobalValue::ExternalLinkage;
835   case 2:
836     return GlobalValue::AppendingLinkage;
837   case 3:
838     return GlobalValue::InternalLinkage;
839   case 5:
840     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
841   case 6:
842     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
843   case 7:
844     return GlobalValue::ExternalWeakLinkage;
845   case 8:
846     return GlobalValue::CommonLinkage;
847   case 9:
848     return GlobalValue::PrivateLinkage;
849   case 12:
850     return GlobalValue::AvailableExternallyLinkage;
851   case 13:
852     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
853   case 14:
854     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
855   case 15:
856     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
857   case 1: // Old value with implicit comdat.
858   case 16:
859     return GlobalValue::WeakAnyLinkage;
860   case 10: // Old value with implicit comdat.
861   case 17:
862     return GlobalValue::WeakODRLinkage;
863   case 4: // Old value with implicit comdat.
864   case 18:
865     return GlobalValue::LinkOnceAnyLinkage;
866   case 11: // Old value with implicit comdat.
867   case 19:
868     return GlobalValue::LinkOnceODRLinkage;
869   }
870 }
871 
872 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
873   FunctionSummary::FFlags Flags;
874   Flags.ReadNone = RawFlags & 0x1;
875   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
876   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
877   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
878   Flags.NoInline = (RawFlags >> 4) & 0x1;
879   return Flags;
880 }
881 
882 /// Decode the flags for GlobalValue in the summary.
883 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
884                                                             uint64_t Version) {
885   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
886   // like getDecodedLinkage() above. Any future change to the linkage enum and
887   // to getDecodedLinkage() will need to be taken into account here as above.
888   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
889   RawFlags = RawFlags >> 4;
890   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
891   // The Live flag wasn't introduced until version 3. For dead stripping
892   // to work correctly on earlier versions, we must conservatively treat all
893   // values as live.
894   bool Live = (RawFlags & 0x2) || Version < 3;
895   bool Local = (RawFlags & 0x4);
896 
897   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local);
898 }
899 
900 // Decode the flags for GlobalVariable in the summary
901 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
902   return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false);
903 }
904 
905 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
906   switch (Val) {
907   default: // Map unknown visibilities to default.
908   case 0: return GlobalValue::DefaultVisibility;
909   case 1: return GlobalValue::HiddenVisibility;
910   case 2: return GlobalValue::ProtectedVisibility;
911   }
912 }
913 
914 static GlobalValue::DLLStorageClassTypes
915 getDecodedDLLStorageClass(unsigned Val) {
916   switch (Val) {
917   default: // Map unknown values to default.
918   case 0: return GlobalValue::DefaultStorageClass;
919   case 1: return GlobalValue::DLLImportStorageClass;
920   case 2: return GlobalValue::DLLExportStorageClass;
921   }
922 }
923 
924 static bool getDecodedDSOLocal(unsigned Val) {
925   switch(Val) {
926   default: // Map unknown values to preemptable.
927   case 0:  return false;
928   case 1:  return true;
929   }
930 }
931 
932 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
933   switch (Val) {
934     case 0: return GlobalVariable::NotThreadLocal;
935     default: // Map unknown non-zero value to general dynamic.
936     case 1: return GlobalVariable::GeneralDynamicTLSModel;
937     case 2: return GlobalVariable::LocalDynamicTLSModel;
938     case 3: return GlobalVariable::InitialExecTLSModel;
939     case 4: return GlobalVariable::LocalExecTLSModel;
940   }
941 }
942 
943 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
944   switch (Val) {
945     default: // Map unknown to UnnamedAddr::None.
946     case 0: return GlobalVariable::UnnamedAddr::None;
947     case 1: return GlobalVariable::UnnamedAddr::Global;
948     case 2: return GlobalVariable::UnnamedAddr::Local;
949   }
950 }
951 
952 static int getDecodedCastOpcode(unsigned Val) {
953   switch (Val) {
954   default: return -1;
955   case bitc::CAST_TRUNC   : return Instruction::Trunc;
956   case bitc::CAST_ZEXT    : return Instruction::ZExt;
957   case bitc::CAST_SEXT    : return Instruction::SExt;
958   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
959   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
960   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
961   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
962   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
963   case bitc::CAST_FPEXT   : return Instruction::FPExt;
964   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
965   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
966   case bitc::CAST_BITCAST : return Instruction::BitCast;
967   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
968   }
969 }
970 
971 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
972   bool IsFP = Ty->isFPOrFPVectorTy();
973   // UnOps are only valid for int/fp or vector of int/fp types
974   if (!IsFP && !Ty->isIntOrIntVectorTy())
975     return -1;
976 
977   switch (Val) {
978   default:
979     return -1;
980   case bitc::UNOP_NEG:
981     return IsFP ? Instruction::FNeg : -1;
982   }
983 }
984 
985 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
986   bool IsFP = Ty->isFPOrFPVectorTy();
987   // BinOps are only valid for int/fp or vector of int/fp types
988   if (!IsFP && !Ty->isIntOrIntVectorTy())
989     return -1;
990 
991   switch (Val) {
992   default:
993     return -1;
994   case bitc::BINOP_ADD:
995     return IsFP ? Instruction::FAdd : Instruction::Add;
996   case bitc::BINOP_SUB:
997     return IsFP ? Instruction::FSub : Instruction::Sub;
998   case bitc::BINOP_MUL:
999     return IsFP ? Instruction::FMul : Instruction::Mul;
1000   case bitc::BINOP_UDIV:
1001     return IsFP ? -1 : Instruction::UDiv;
1002   case bitc::BINOP_SDIV:
1003     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1004   case bitc::BINOP_UREM:
1005     return IsFP ? -1 : Instruction::URem;
1006   case bitc::BINOP_SREM:
1007     return IsFP ? Instruction::FRem : Instruction::SRem;
1008   case bitc::BINOP_SHL:
1009     return IsFP ? -1 : Instruction::Shl;
1010   case bitc::BINOP_LSHR:
1011     return IsFP ? -1 : Instruction::LShr;
1012   case bitc::BINOP_ASHR:
1013     return IsFP ? -1 : Instruction::AShr;
1014   case bitc::BINOP_AND:
1015     return IsFP ? -1 : Instruction::And;
1016   case bitc::BINOP_OR:
1017     return IsFP ? -1 : Instruction::Or;
1018   case bitc::BINOP_XOR:
1019     return IsFP ? -1 : Instruction::Xor;
1020   }
1021 }
1022 
1023 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1024   switch (Val) {
1025   default: return AtomicRMWInst::BAD_BINOP;
1026   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1027   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1028   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1029   case bitc::RMW_AND: return AtomicRMWInst::And;
1030   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1031   case bitc::RMW_OR: return AtomicRMWInst::Or;
1032   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1033   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1034   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1035   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1036   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1037   }
1038 }
1039 
1040 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1041   switch (Val) {
1042   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1043   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1044   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1045   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1046   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1047   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1048   default: // Map unknown orderings to sequentially-consistent.
1049   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1050   }
1051 }
1052 
1053 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1054   switch (Val) {
1055   default: // Map unknown selection kinds to any.
1056   case bitc::COMDAT_SELECTION_KIND_ANY:
1057     return Comdat::Any;
1058   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1059     return Comdat::ExactMatch;
1060   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1061     return Comdat::Largest;
1062   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1063     return Comdat::NoDuplicates;
1064   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1065     return Comdat::SameSize;
1066   }
1067 }
1068 
1069 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1070   FastMathFlags FMF;
1071   if (0 != (Val & bitc::UnsafeAlgebra))
1072     FMF.setFast();
1073   if (0 != (Val & bitc::AllowReassoc))
1074     FMF.setAllowReassoc();
1075   if (0 != (Val & bitc::NoNaNs))
1076     FMF.setNoNaNs();
1077   if (0 != (Val & bitc::NoInfs))
1078     FMF.setNoInfs();
1079   if (0 != (Val & bitc::NoSignedZeros))
1080     FMF.setNoSignedZeros();
1081   if (0 != (Val & bitc::AllowReciprocal))
1082     FMF.setAllowReciprocal();
1083   if (0 != (Val & bitc::AllowContract))
1084     FMF.setAllowContract(true);
1085   if (0 != (Val & bitc::ApproxFunc))
1086     FMF.setApproxFunc();
1087   return FMF;
1088 }
1089 
1090 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1091   switch (Val) {
1092   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1093   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1094   }
1095 }
1096 
1097 Type *BitcodeReader::getTypeByID(unsigned ID) {
1098   // The type table size is always specified correctly.
1099   if (ID >= TypeList.size())
1100     return nullptr;
1101 
1102   if (Type *Ty = TypeList[ID])
1103     return Ty;
1104 
1105   // If we have a forward reference, the only possible case is when it is to a
1106   // named struct.  Just create a placeholder for now.
1107   return TypeList[ID] = createIdentifiedStructType(Context);
1108 }
1109 
1110 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1111                                                       StringRef Name) {
1112   auto *Ret = StructType::create(Context, Name);
1113   IdentifiedStructTypes.push_back(Ret);
1114   return Ret;
1115 }
1116 
1117 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1118   auto *Ret = StructType::create(Context);
1119   IdentifiedStructTypes.push_back(Ret);
1120   return Ret;
1121 }
1122 
1123 //===----------------------------------------------------------------------===//
1124 //  Functions for parsing blocks from the bitcode file
1125 //===----------------------------------------------------------------------===//
1126 
1127 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1128   switch (Val) {
1129   case Attribute::EndAttrKinds:
1130     llvm_unreachable("Synthetic enumerators which should never get here");
1131 
1132   case Attribute::None:            return 0;
1133   case Attribute::ZExt:            return 1 << 0;
1134   case Attribute::SExt:            return 1 << 1;
1135   case Attribute::NoReturn:        return 1 << 2;
1136   case Attribute::InReg:           return 1 << 3;
1137   case Attribute::StructRet:       return 1 << 4;
1138   case Attribute::NoUnwind:        return 1 << 5;
1139   case Attribute::NoAlias:         return 1 << 6;
1140   case Attribute::ByVal:           return 1 << 7;
1141   case Attribute::Nest:            return 1 << 8;
1142   case Attribute::ReadNone:        return 1 << 9;
1143   case Attribute::ReadOnly:        return 1 << 10;
1144   case Attribute::NoInline:        return 1 << 11;
1145   case Attribute::AlwaysInline:    return 1 << 12;
1146   case Attribute::OptimizeForSize: return 1 << 13;
1147   case Attribute::StackProtect:    return 1 << 14;
1148   case Attribute::StackProtectReq: return 1 << 15;
1149   case Attribute::Alignment:       return 31 << 16;
1150   case Attribute::NoCapture:       return 1 << 21;
1151   case Attribute::NoRedZone:       return 1 << 22;
1152   case Attribute::NoImplicitFloat: return 1 << 23;
1153   case Attribute::Naked:           return 1 << 24;
1154   case Attribute::InlineHint:      return 1 << 25;
1155   case Attribute::StackAlignment:  return 7 << 26;
1156   case Attribute::ReturnsTwice:    return 1 << 29;
1157   case Attribute::UWTable:         return 1 << 30;
1158   case Attribute::NonLazyBind:     return 1U << 31;
1159   case Attribute::SanitizeAddress: return 1ULL << 32;
1160   case Attribute::MinSize:         return 1ULL << 33;
1161   case Attribute::NoDuplicate:     return 1ULL << 34;
1162   case Attribute::StackProtectStrong: return 1ULL << 35;
1163   case Attribute::SanitizeThread:  return 1ULL << 36;
1164   case Attribute::SanitizeMemory:  return 1ULL << 37;
1165   case Attribute::NoBuiltin:       return 1ULL << 38;
1166   case Attribute::Returned:        return 1ULL << 39;
1167   case Attribute::Cold:            return 1ULL << 40;
1168   case Attribute::Builtin:         return 1ULL << 41;
1169   case Attribute::OptimizeNone:    return 1ULL << 42;
1170   case Attribute::InAlloca:        return 1ULL << 43;
1171   case Attribute::NonNull:         return 1ULL << 44;
1172   case Attribute::JumpTable:       return 1ULL << 45;
1173   case Attribute::Convergent:      return 1ULL << 46;
1174   case Attribute::SafeStack:       return 1ULL << 47;
1175   case Attribute::NoRecurse:       return 1ULL << 48;
1176   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1177   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1178   case Attribute::SwiftSelf:       return 1ULL << 51;
1179   case Attribute::SwiftError:      return 1ULL << 52;
1180   case Attribute::WriteOnly:       return 1ULL << 53;
1181   case Attribute::Speculatable:    return 1ULL << 54;
1182   case Attribute::StrictFP:        return 1ULL << 55;
1183   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1184   case Attribute::NoCfCheck:       return 1ULL << 57;
1185   case Attribute::OptForFuzzing:   return 1ULL << 58;
1186   case Attribute::ShadowCallStack: return 1ULL << 59;
1187   case Attribute::SpeculativeLoadHardening:
1188     return 1ULL << 60;
1189   case Attribute::Dereferenceable:
1190     llvm_unreachable("dereferenceable attribute not supported in raw format");
1191     break;
1192   case Attribute::DereferenceableOrNull:
1193     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1194                      "format");
1195     break;
1196   case Attribute::ArgMemOnly:
1197     llvm_unreachable("argmemonly attribute not supported in raw format");
1198     break;
1199   case Attribute::AllocSize:
1200     llvm_unreachable("allocsize not supported in raw format");
1201     break;
1202   }
1203   llvm_unreachable("Unsupported attribute type");
1204 }
1205 
1206 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1207   if (!Val) return;
1208 
1209   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1210        I = Attribute::AttrKind(I + 1)) {
1211     if (I == Attribute::Dereferenceable ||
1212         I == Attribute::DereferenceableOrNull ||
1213         I == Attribute::ArgMemOnly ||
1214         I == Attribute::AllocSize)
1215       continue;
1216     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1217       if (I == Attribute::Alignment)
1218         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1219       else if (I == Attribute::StackAlignment)
1220         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1221       else
1222         B.addAttribute(I);
1223     }
1224   }
1225 }
1226 
1227 /// This fills an AttrBuilder object with the LLVM attributes that have
1228 /// been decoded from the given integer. This function must stay in sync with
1229 /// 'encodeLLVMAttributesForBitcode'.
1230 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1231                                            uint64_t EncodedAttrs) {
1232   // FIXME: Remove in 4.0.
1233 
1234   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1235   // the bits above 31 down by 11 bits.
1236   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1237   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1238          "Alignment must be a power of two.");
1239 
1240   if (Alignment)
1241     B.addAlignmentAttr(Alignment);
1242   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1243                           (EncodedAttrs & 0xffff));
1244 }
1245 
1246 Error BitcodeReader::parseAttributeBlock() {
1247   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1248     return error("Invalid record");
1249 
1250   if (!MAttributes.empty())
1251     return error("Invalid multiple blocks");
1252 
1253   SmallVector<uint64_t, 64> Record;
1254 
1255   SmallVector<AttributeList, 8> Attrs;
1256 
1257   // Read all the records.
1258   while (true) {
1259     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1260 
1261     switch (Entry.Kind) {
1262     case BitstreamEntry::SubBlock: // Handled for us already.
1263     case BitstreamEntry::Error:
1264       return error("Malformed block");
1265     case BitstreamEntry::EndBlock:
1266       return Error::success();
1267     case BitstreamEntry::Record:
1268       // The interesting case.
1269       break;
1270     }
1271 
1272     // Read a record.
1273     Record.clear();
1274     switch (Stream.readRecord(Entry.ID, Record)) {
1275     default:  // Default behavior: ignore.
1276       break;
1277     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1278       // FIXME: Remove in 4.0.
1279       if (Record.size() & 1)
1280         return error("Invalid record");
1281 
1282       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1283         AttrBuilder B;
1284         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1285         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1286       }
1287 
1288       MAttributes.push_back(AttributeList::get(Context, Attrs));
1289       Attrs.clear();
1290       break;
1291     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1292       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1293         Attrs.push_back(MAttributeGroups[Record[i]]);
1294 
1295       MAttributes.push_back(AttributeList::get(Context, Attrs));
1296       Attrs.clear();
1297       break;
1298     }
1299   }
1300 }
1301 
1302 // Returns Attribute::None on unrecognized codes.
1303 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1304   switch (Code) {
1305   default:
1306     return Attribute::None;
1307   case bitc::ATTR_KIND_ALIGNMENT:
1308     return Attribute::Alignment;
1309   case bitc::ATTR_KIND_ALWAYS_INLINE:
1310     return Attribute::AlwaysInline;
1311   case bitc::ATTR_KIND_ARGMEMONLY:
1312     return Attribute::ArgMemOnly;
1313   case bitc::ATTR_KIND_BUILTIN:
1314     return Attribute::Builtin;
1315   case bitc::ATTR_KIND_BY_VAL:
1316     return Attribute::ByVal;
1317   case bitc::ATTR_KIND_IN_ALLOCA:
1318     return Attribute::InAlloca;
1319   case bitc::ATTR_KIND_COLD:
1320     return Attribute::Cold;
1321   case bitc::ATTR_KIND_CONVERGENT:
1322     return Attribute::Convergent;
1323   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1324     return Attribute::InaccessibleMemOnly;
1325   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1326     return Attribute::InaccessibleMemOrArgMemOnly;
1327   case bitc::ATTR_KIND_INLINE_HINT:
1328     return Attribute::InlineHint;
1329   case bitc::ATTR_KIND_IN_REG:
1330     return Attribute::InReg;
1331   case bitc::ATTR_KIND_JUMP_TABLE:
1332     return Attribute::JumpTable;
1333   case bitc::ATTR_KIND_MIN_SIZE:
1334     return Attribute::MinSize;
1335   case bitc::ATTR_KIND_NAKED:
1336     return Attribute::Naked;
1337   case bitc::ATTR_KIND_NEST:
1338     return Attribute::Nest;
1339   case bitc::ATTR_KIND_NO_ALIAS:
1340     return Attribute::NoAlias;
1341   case bitc::ATTR_KIND_NO_BUILTIN:
1342     return Attribute::NoBuiltin;
1343   case bitc::ATTR_KIND_NO_CAPTURE:
1344     return Attribute::NoCapture;
1345   case bitc::ATTR_KIND_NO_DUPLICATE:
1346     return Attribute::NoDuplicate;
1347   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1348     return Attribute::NoImplicitFloat;
1349   case bitc::ATTR_KIND_NO_INLINE:
1350     return Attribute::NoInline;
1351   case bitc::ATTR_KIND_NO_RECURSE:
1352     return Attribute::NoRecurse;
1353   case bitc::ATTR_KIND_NON_LAZY_BIND:
1354     return Attribute::NonLazyBind;
1355   case bitc::ATTR_KIND_NON_NULL:
1356     return Attribute::NonNull;
1357   case bitc::ATTR_KIND_DEREFERENCEABLE:
1358     return Attribute::Dereferenceable;
1359   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1360     return Attribute::DereferenceableOrNull;
1361   case bitc::ATTR_KIND_ALLOC_SIZE:
1362     return Attribute::AllocSize;
1363   case bitc::ATTR_KIND_NO_RED_ZONE:
1364     return Attribute::NoRedZone;
1365   case bitc::ATTR_KIND_NO_RETURN:
1366     return Attribute::NoReturn;
1367   case bitc::ATTR_KIND_NOCF_CHECK:
1368     return Attribute::NoCfCheck;
1369   case bitc::ATTR_KIND_NO_UNWIND:
1370     return Attribute::NoUnwind;
1371   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1372     return Attribute::OptForFuzzing;
1373   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1374     return Attribute::OptimizeForSize;
1375   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1376     return Attribute::OptimizeNone;
1377   case bitc::ATTR_KIND_READ_NONE:
1378     return Attribute::ReadNone;
1379   case bitc::ATTR_KIND_READ_ONLY:
1380     return Attribute::ReadOnly;
1381   case bitc::ATTR_KIND_RETURNED:
1382     return Attribute::Returned;
1383   case bitc::ATTR_KIND_RETURNS_TWICE:
1384     return Attribute::ReturnsTwice;
1385   case bitc::ATTR_KIND_S_EXT:
1386     return Attribute::SExt;
1387   case bitc::ATTR_KIND_SPECULATABLE:
1388     return Attribute::Speculatable;
1389   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1390     return Attribute::StackAlignment;
1391   case bitc::ATTR_KIND_STACK_PROTECT:
1392     return Attribute::StackProtect;
1393   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1394     return Attribute::StackProtectReq;
1395   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1396     return Attribute::StackProtectStrong;
1397   case bitc::ATTR_KIND_SAFESTACK:
1398     return Attribute::SafeStack;
1399   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1400     return Attribute::ShadowCallStack;
1401   case bitc::ATTR_KIND_STRICT_FP:
1402     return Attribute::StrictFP;
1403   case bitc::ATTR_KIND_STRUCT_RET:
1404     return Attribute::StructRet;
1405   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1406     return Attribute::SanitizeAddress;
1407   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1408     return Attribute::SanitizeHWAddress;
1409   case bitc::ATTR_KIND_SANITIZE_THREAD:
1410     return Attribute::SanitizeThread;
1411   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1412     return Attribute::SanitizeMemory;
1413   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1414     return Attribute::SpeculativeLoadHardening;
1415   case bitc::ATTR_KIND_SWIFT_ERROR:
1416     return Attribute::SwiftError;
1417   case bitc::ATTR_KIND_SWIFT_SELF:
1418     return Attribute::SwiftSelf;
1419   case bitc::ATTR_KIND_UW_TABLE:
1420     return Attribute::UWTable;
1421   case bitc::ATTR_KIND_WRITEONLY:
1422     return Attribute::WriteOnly;
1423   case bitc::ATTR_KIND_Z_EXT:
1424     return Attribute::ZExt;
1425   }
1426 }
1427 
1428 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1429                                          unsigned &Alignment) {
1430   // Note: Alignment in bitcode files is incremented by 1, so that zero
1431   // can be used for default alignment.
1432   if (Exponent > Value::MaxAlignmentExponent + 1)
1433     return error("Invalid alignment value");
1434   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1435   return Error::success();
1436 }
1437 
1438 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1439   *Kind = getAttrFromCode(Code);
1440   if (*Kind == Attribute::None)
1441     return error("Unknown attribute kind (" + Twine(Code) + ")");
1442   return Error::success();
1443 }
1444 
1445 Error BitcodeReader::parseAttributeGroupBlock() {
1446   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1447     return error("Invalid record");
1448 
1449   if (!MAttributeGroups.empty())
1450     return error("Invalid multiple blocks");
1451 
1452   SmallVector<uint64_t, 64> Record;
1453 
1454   // Read all the records.
1455   while (true) {
1456     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1457 
1458     switch (Entry.Kind) {
1459     case BitstreamEntry::SubBlock: // Handled for us already.
1460     case BitstreamEntry::Error:
1461       return error("Malformed block");
1462     case BitstreamEntry::EndBlock:
1463       return Error::success();
1464     case BitstreamEntry::Record:
1465       // The interesting case.
1466       break;
1467     }
1468 
1469     // Read a record.
1470     Record.clear();
1471     switch (Stream.readRecord(Entry.ID, Record)) {
1472     default:  // Default behavior: ignore.
1473       break;
1474     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1475       if (Record.size() < 3)
1476         return error("Invalid record");
1477 
1478       uint64_t GrpID = Record[0];
1479       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1480 
1481       AttrBuilder B;
1482       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1483         if (Record[i] == 0) {        // Enum attribute
1484           Attribute::AttrKind Kind;
1485           if (Error Err = parseAttrKind(Record[++i], &Kind))
1486             return Err;
1487 
1488           B.addAttribute(Kind);
1489         } else if (Record[i] == 1) { // Integer attribute
1490           Attribute::AttrKind Kind;
1491           if (Error Err = parseAttrKind(Record[++i], &Kind))
1492             return Err;
1493           if (Kind == Attribute::Alignment)
1494             B.addAlignmentAttr(Record[++i]);
1495           else if (Kind == Attribute::StackAlignment)
1496             B.addStackAlignmentAttr(Record[++i]);
1497           else if (Kind == Attribute::Dereferenceable)
1498             B.addDereferenceableAttr(Record[++i]);
1499           else if (Kind == Attribute::DereferenceableOrNull)
1500             B.addDereferenceableOrNullAttr(Record[++i]);
1501           else if (Kind == Attribute::AllocSize)
1502             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1503         } else {                     // String attribute
1504           assert((Record[i] == 3 || Record[i] == 4) &&
1505                  "Invalid attribute group entry");
1506           bool HasValue = (Record[i++] == 4);
1507           SmallString<64> KindStr;
1508           SmallString<64> ValStr;
1509 
1510           while (Record[i] != 0 && i != e)
1511             KindStr += Record[i++];
1512           assert(Record[i] == 0 && "Kind string not null terminated");
1513 
1514           if (HasValue) {
1515             // Has a value associated with it.
1516             ++i; // Skip the '0' that terminates the "kind" string.
1517             while (Record[i] != 0 && i != e)
1518               ValStr += Record[i++];
1519             assert(Record[i] == 0 && "Value string not null terminated");
1520           }
1521 
1522           B.addAttribute(KindStr.str(), ValStr.str());
1523         }
1524       }
1525 
1526       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1527       break;
1528     }
1529     }
1530   }
1531 }
1532 
1533 Error BitcodeReader::parseTypeTable() {
1534   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1535     return error("Invalid record");
1536 
1537   return parseTypeTableBody();
1538 }
1539 
1540 Error BitcodeReader::parseTypeTableBody() {
1541   if (!TypeList.empty())
1542     return error("Invalid multiple blocks");
1543 
1544   SmallVector<uint64_t, 64> Record;
1545   unsigned NumRecords = 0;
1546 
1547   SmallString<64> TypeName;
1548 
1549   // Read all the records for this type table.
1550   while (true) {
1551     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1552 
1553     switch (Entry.Kind) {
1554     case BitstreamEntry::SubBlock: // Handled for us already.
1555     case BitstreamEntry::Error:
1556       return error("Malformed block");
1557     case BitstreamEntry::EndBlock:
1558       if (NumRecords != TypeList.size())
1559         return error("Malformed block");
1560       return Error::success();
1561     case BitstreamEntry::Record:
1562       // The interesting case.
1563       break;
1564     }
1565 
1566     // Read a record.
1567     Record.clear();
1568     Type *ResultTy = nullptr;
1569     switch (Stream.readRecord(Entry.ID, Record)) {
1570     default:
1571       return error("Invalid value");
1572     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1573       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1574       // type list.  This allows us to reserve space.
1575       if (Record.size() < 1)
1576         return error("Invalid record");
1577       TypeList.resize(Record[0]);
1578       continue;
1579     case bitc::TYPE_CODE_VOID:      // VOID
1580       ResultTy = Type::getVoidTy(Context);
1581       break;
1582     case bitc::TYPE_CODE_HALF:     // HALF
1583       ResultTy = Type::getHalfTy(Context);
1584       break;
1585     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1586       ResultTy = Type::getFloatTy(Context);
1587       break;
1588     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1589       ResultTy = Type::getDoubleTy(Context);
1590       break;
1591     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1592       ResultTy = Type::getX86_FP80Ty(Context);
1593       break;
1594     case bitc::TYPE_CODE_FP128:     // FP128
1595       ResultTy = Type::getFP128Ty(Context);
1596       break;
1597     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1598       ResultTy = Type::getPPC_FP128Ty(Context);
1599       break;
1600     case bitc::TYPE_CODE_LABEL:     // LABEL
1601       ResultTy = Type::getLabelTy(Context);
1602       break;
1603     case bitc::TYPE_CODE_METADATA:  // METADATA
1604       ResultTy = Type::getMetadataTy(Context);
1605       break;
1606     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1607       ResultTy = Type::getX86_MMXTy(Context);
1608       break;
1609     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1610       ResultTy = Type::getTokenTy(Context);
1611       break;
1612     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1613       if (Record.size() < 1)
1614         return error("Invalid record");
1615 
1616       uint64_t NumBits = Record[0];
1617       if (NumBits < IntegerType::MIN_INT_BITS ||
1618           NumBits > IntegerType::MAX_INT_BITS)
1619         return error("Bitwidth for integer type out of range");
1620       ResultTy = IntegerType::get(Context, NumBits);
1621       break;
1622     }
1623     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1624                                     //          [pointee type, address space]
1625       if (Record.size() < 1)
1626         return error("Invalid record");
1627       unsigned AddressSpace = 0;
1628       if (Record.size() == 2)
1629         AddressSpace = Record[1];
1630       ResultTy = getTypeByID(Record[0]);
1631       if (!ResultTy ||
1632           !PointerType::isValidElementType(ResultTy))
1633         return error("Invalid type");
1634       ResultTy = PointerType::get(ResultTy, AddressSpace);
1635       break;
1636     }
1637     case bitc::TYPE_CODE_FUNCTION_OLD: {
1638       // FIXME: attrid is dead, remove it in LLVM 4.0
1639       // FUNCTION: [vararg, attrid, retty, paramty x N]
1640       if (Record.size() < 3)
1641         return error("Invalid record");
1642       SmallVector<Type*, 8> ArgTys;
1643       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1644         if (Type *T = getTypeByID(Record[i]))
1645           ArgTys.push_back(T);
1646         else
1647           break;
1648       }
1649 
1650       ResultTy = getTypeByID(Record[2]);
1651       if (!ResultTy || ArgTys.size() < Record.size()-3)
1652         return error("Invalid type");
1653 
1654       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1655       break;
1656     }
1657     case bitc::TYPE_CODE_FUNCTION: {
1658       // FUNCTION: [vararg, retty, paramty x N]
1659       if (Record.size() < 2)
1660         return error("Invalid record");
1661       SmallVector<Type*, 8> ArgTys;
1662       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1663         if (Type *T = getTypeByID(Record[i])) {
1664           if (!FunctionType::isValidArgumentType(T))
1665             return error("Invalid function argument type");
1666           ArgTys.push_back(T);
1667         }
1668         else
1669           break;
1670       }
1671 
1672       ResultTy = getTypeByID(Record[1]);
1673       if (!ResultTy || ArgTys.size() < Record.size()-2)
1674         return error("Invalid type");
1675 
1676       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1677       break;
1678     }
1679     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1680       if (Record.size() < 1)
1681         return error("Invalid record");
1682       SmallVector<Type*, 8> EltTys;
1683       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1684         if (Type *T = getTypeByID(Record[i]))
1685           EltTys.push_back(T);
1686         else
1687           break;
1688       }
1689       if (EltTys.size() != Record.size()-1)
1690         return error("Invalid type");
1691       ResultTy = StructType::get(Context, EltTys, Record[0]);
1692       break;
1693     }
1694     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1695       if (convertToString(Record, 0, TypeName))
1696         return error("Invalid record");
1697       continue;
1698 
1699     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1700       if (Record.size() < 1)
1701         return error("Invalid record");
1702 
1703       if (NumRecords >= TypeList.size())
1704         return error("Invalid TYPE table");
1705 
1706       // Check to see if this was forward referenced, if so fill in the temp.
1707       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1708       if (Res) {
1709         Res->setName(TypeName);
1710         TypeList[NumRecords] = nullptr;
1711       } else  // Otherwise, create a new struct.
1712         Res = createIdentifiedStructType(Context, TypeName);
1713       TypeName.clear();
1714 
1715       SmallVector<Type*, 8> EltTys;
1716       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1717         if (Type *T = getTypeByID(Record[i]))
1718           EltTys.push_back(T);
1719         else
1720           break;
1721       }
1722       if (EltTys.size() != Record.size()-1)
1723         return error("Invalid record");
1724       Res->setBody(EltTys, Record[0]);
1725       ResultTy = Res;
1726       break;
1727     }
1728     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1729       if (Record.size() != 1)
1730         return error("Invalid record");
1731 
1732       if (NumRecords >= TypeList.size())
1733         return error("Invalid TYPE table");
1734 
1735       // Check to see if this was forward referenced, if so fill in the temp.
1736       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1737       if (Res) {
1738         Res->setName(TypeName);
1739         TypeList[NumRecords] = nullptr;
1740       } else  // Otherwise, create a new struct with no body.
1741         Res = createIdentifiedStructType(Context, TypeName);
1742       TypeName.clear();
1743       ResultTy = Res;
1744       break;
1745     }
1746     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1747       if (Record.size() < 2)
1748         return error("Invalid record");
1749       ResultTy = getTypeByID(Record[1]);
1750       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1751         return error("Invalid type");
1752       ResultTy = ArrayType::get(ResultTy, Record[0]);
1753       break;
1754     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1755       if (Record.size() < 2)
1756         return error("Invalid record");
1757       if (Record[0] == 0)
1758         return error("Invalid vector length");
1759       ResultTy = getTypeByID(Record[1]);
1760       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1761         return error("Invalid type");
1762       ResultTy = VectorType::get(ResultTy, Record[0]);
1763       break;
1764     }
1765 
1766     if (NumRecords >= TypeList.size())
1767       return error("Invalid TYPE table");
1768     if (TypeList[NumRecords])
1769       return error(
1770           "Invalid TYPE table: Only named structs can be forward referenced");
1771     assert(ResultTy && "Didn't read a type?");
1772     TypeList[NumRecords++] = ResultTy;
1773   }
1774 }
1775 
1776 Error BitcodeReader::parseOperandBundleTags() {
1777   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1778     return error("Invalid record");
1779 
1780   if (!BundleTags.empty())
1781     return error("Invalid multiple blocks");
1782 
1783   SmallVector<uint64_t, 64> Record;
1784 
1785   while (true) {
1786     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1787 
1788     switch (Entry.Kind) {
1789     case BitstreamEntry::SubBlock: // Handled for us already.
1790     case BitstreamEntry::Error:
1791       return error("Malformed block");
1792     case BitstreamEntry::EndBlock:
1793       return Error::success();
1794     case BitstreamEntry::Record:
1795       // The interesting case.
1796       break;
1797     }
1798 
1799     // Tags are implicitly mapped to integers by their order.
1800 
1801     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1802       return error("Invalid record");
1803 
1804     // OPERAND_BUNDLE_TAG: [strchr x N]
1805     BundleTags.emplace_back();
1806     if (convertToString(Record, 0, BundleTags.back()))
1807       return error("Invalid record");
1808     Record.clear();
1809   }
1810 }
1811 
1812 Error BitcodeReader::parseSyncScopeNames() {
1813   if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1814     return error("Invalid record");
1815 
1816   if (!SSIDs.empty())
1817     return error("Invalid multiple synchronization scope names blocks");
1818 
1819   SmallVector<uint64_t, 64> Record;
1820   while (true) {
1821     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1822     switch (Entry.Kind) {
1823     case BitstreamEntry::SubBlock: // Handled for us already.
1824     case BitstreamEntry::Error:
1825       return error("Malformed block");
1826     case BitstreamEntry::EndBlock:
1827       if (SSIDs.empty())
1828         return error("Invalid empty synchronization scope names block");
1829       return Error::success();
1830     case BitstreamEntry::Record:
1831       // The interesting case.
1832       break;
1833     }
1834 
1835     // Synchronization scope names are implicitly mapped to synchronization
1836     // scope IDs by their order.
1837 
1838     if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1839       return error("Invalid record");
1840 
1841     SmallString<16> SSN;
1842     if (convertToString(Record, 0, SSN))
1843       return error("Invalid record");
1844 
1845     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1846     Record.clear();
1847   }
1848 }
1849 
1850 /// Associate a value with its name from the given index in the provided record.
1851 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1852                                              unsigned NameIndex, Triple &TT) {
1853   SmallString<128> ValueName;
1854   if (convertToString(Record, NameIndex, ValueName))
1855     return error("Invalid record");
1856   unsigned ValueID = Record[0];
1857   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1858     return error("Invalid record");
1859   Value *V = ValueList[ValueID];
1860 
1861   StringRef NameStr(ValueName.data(), ValueName.size());
1862   if (NameStr.find_first_of(0) != StringRef::npos)
1863     return error("Invalid value name");
1864   V->setName(NameStr);
1865   auto *GO = dyn_cast<GlobalObject>(V);
1866   if (GO) {
1867     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1868       if (TT.supportsCOMDAT())
1869         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1870       else
1871         GO->setComdat(nullptr);
1872     }
1873   }
1874   return V;
1875 }
1876 
1877 /// Helper to note and return the current location, and jump to the given
1878 /// offset.
1879 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1880                                        BitstreamCursor &Stream) {
1881   // Save the current parsing location so we can jump back at the end
1882   // of the VST read.
1883   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1884   Stream.JumpToBit(Offset * 32);
1885 #ifndef NDEBUG
1886   // Do some checking if we are in debug mode.
1887   BitstreamEntry Entry = Stream.advance();
1888   assert(Entry.Kind == BitstreamEntry::SubBlock);
1889   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1890 #else
1891   // In NDEBUG mode ignore the output so we don't get an unused variable
1892   // warning.
1893   Stream.advance();
1894 #endif
1895   return CurrentBit;
1896 }
1897 
1898 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1899                                             Function *F,
1900                                             ArrayRef<uint64_t> Record) {
1901   // Note that we subtract 1 here because the offset is relative to one word
1902   // before the start of the identification or module block, which was
1903   // historically always the start of the regular bitcode header.
1904   uint64_t FuncWordOffset = Record[1] - 1;
1905   uint64_t FuncBitOffset = FuncWordOffset * 32;
1906   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1907   // Set the LastFunctionBlockBit to point to the last function block.
1908   // Later when parsing is resumed after function materialization,
1909   // we can simply skip that last function block.
1910   if (FuncBitOffset > LastFunctionBlockBit)
1911     LastFunctionBlockBit = FuncBitOffset;
1912 }
1913 
1914 /// Read a new-style GlobalValue symbol table.
1915 Error BitcodeReader::parseGlobalValueSymbolTable() {
1916   unsigned FuncBitcodeOffsetDelta =
1917       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1918 
1919   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1920     return error("Invalid record");
1921 
1922   SmallVector<uint64_t, 64> Record;
1923   while (true) {
1924     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1925 
1926     switch (Entry.Kind) {
1927     case BitstreamEntry::SubBlock:
1928     case BitstreamEntry::Error:
1929       return error("Malformed block");
1930     case BitstreamEntry::EndBlock:
1931       return Error::success();
1932     case BitstreamEntry::Record:
1933       break;
1934     }
1935 
1936     Record.clear();
1937     switch (Stream.readRecord(Entry.ID, Record)) {
1938     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1939       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1940                               cast<Function>(ValueList[Record[0]]), Record);
1941       break;
1942     }
1943   }
1944 }
1945 
1946 /// Parse the value symbol table at either the current parsing location or
1947 /// at the given bit offset if provided.
1948 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1949   uint64_t CurrentBit;
1950   // Pass in the Offset to distinguish between calling for the module-level
1951   // VST (where we want to jump to the VST offset) and the function-level
1952   // VST (where we don't).
1953   if (Offset > 0) {
1954     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1955     // If this module uses a string table, read this as a module-level VST.
1956     if (UseStrtab) {
1957       if (Error Err = parseGlobalValueSymbolTable())
1958         return Err;
1959       Stream.JumpToBit(CurrentBit);
1960       return Error::success();
1961     }
1962     // Otherwise, the VST will be in a similar format to a function-level VST,
1963     // and will contain symbol names.
1964   }
1965 
1966   // Compute the delta between the bitcode indices in the VST (the word offset
1967   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1968   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1969   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1970   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1971   // just before entering the VST subblock because: 1) the EnterSubBlock
1972   // changes the AbbrevID width; 2) the VST block is nested within the same
1973   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1974   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1975   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1976   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1977   unsigned FuncBitcodeOffsetDelta =
1978       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1979 
1980   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1981     return error("Invalid record");
1982 
1983   SmallVector<uint64_t, 64> Record;
1984 
1985   Triple TT(TheModule->getTargetTriple());
1986 
1987   // Read all the records for this value table.
1988   SmallString<128> ValueName;
1989 
1990   while (true) {
1991     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1992 
1993     switch (Entry.Kind) {
1994     case BitstreamEntry::SubBlock: // Handled for us already.
1995     case BitstreamEntry::Error:
1996       return error("Malformed block");
1997     case BitstreamEntry::EndBlock:
1998       if (Offset > 0)
1999         Stream.JumpToBit(CurrentBit);
2000       return Error::success();
2001     case BitstreamEntry::Record:
2002       // The interesting case.
2003       break;
2004     }
2005 
2006     // Read a record.
2007     Record.clear();
2008     switch (Stream.readRecord(Entry.ID, Record)) {
2009     default:  // Default behavior: unknown type.
2010       break;
2011     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2012       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2013       if (Error Err = ValOrErr.takeError())
2014         return Err;
2015       ValOrErr.get();
2016       break;
2017     }
2018     case bitc::VST_CODE_FNENTRY: {
2019       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2020       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2021       if (Error Err = ValOrErr.takeError())
2022         return Err;
2023       Value *V = ValOrErr.get();
2024 
2025       // Ignore function offsets emitted for aliases of functions in older
2026       // versions of LLVM.
2027       if (auto *F = dyn_cast<Function>(V))
2028         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2029       break;
2030     }
2031     case bitc::VST_CODE_BBENTRY: {
2032       if (convertToString(Record, 1, ValueName))
2033         return error("Invalid record");
2034       BasicBlock *BB = getBasicBlock(Record[0]);
2035       if (!BB)
2036         return error("Invalid record");
2037 
2038       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2039       ValueName.clear();
2040       break;
2041     }
2042     }
2043   }
2044 }
2045 
2046 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2047 /// encoding.
2048 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2049   if ((V & 1) == 0)
2050     return V >> 1;
2051   if (V != 1)
2052     return -(V >> 1);
2053   // There is no such thing as -0 with integers.  "-0" really means MININT.
2054   return 1ULL << 63;
2055 }
2056 
2057 /// Resolve all of the initializers for global values and aliases that we can.
2058 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2059   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2060   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2061       IndirectSymbolInitWorklist;
2062   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2063   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2064   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2065 
2066   GlobalInitWorklist.swap(GlobalInits);
2067   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2068   FunctionPrefixWorklist.swap(FunctionPrefixes);
2069   FunctionPrologueWorklist.swap(FunctionPrologues);
2070   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2071 
2072   while (!GlobalInitWorklist.empty()) {
2073     unsigned ValID = GlobalInitWorklist.back().second;
2074     if (ValID >= ValueList.size()) {
2075       // Not ready to resolve this yet, it requires something later in the file.
2076       GlobalInits.push_back(GlobalInitWorklist.back());
2077     } else {
2078       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2079         GlobalInitWorklist.back().first->setInitializer(C);
2080       else
2081         return error("Expected a constant");
2082     }
2083     GlobalInitWorklist.pop_back();
2084   }
2085 
2086   while (!IndirectSymbolInitWorklist.empty()) {
2087     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2088     if (ValID >= ValueList.size()) {
2089       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2090     } else {
2091       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2092       if (!C)
2093         return error("Expected a constant");
2094       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2095       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2096         return error("Alias and aliasee types don't match");
2097       GIS->setIndirectSymbol(C);
2098     }
2099     IndirectSymbolInitWorklist.pop_back();
2100   }
2101 
2102   while (!FunctionPrefixWorklist.empty()) {
2103     unsigned ValID = FunctionPrefixWorklist.back().second;
2104     if (ValID >= ValueList.size()) {
2105       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2106     } else {
2107       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2108         FunctionPrefixWorklist.back().first->setPrefixData(C);
2109       else
2110         return error("Expected a constant");
2111     }
2112     FunctionPrefixWorklist.pop_back();
2113   }
2114 
2115   while (!FunctionPrologueWorklist.empty()) {
2116     unsigned ValID = FunctionPrologueWorklist.back().second;
2117     if (ValID >= ValueList.size()) {
2118       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2119     } else {
2120       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2121         FunctionPrologueWorklist.back().first->setPrologueData(C);
2122       else
2123         return error("Expected a constant");
2124     }
2125     FunctionPrologueWorklist.pop_back();
2126   }
2127 
2128   while (!FunctionPersonalityFnWorklist.empty()) {
2129     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2130     if (ValID >= ValueList.size()) {
2131       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2132     } else {
2133       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2134         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2135       else
2136         return error("Expected a constant");
2137     }
2138     FunctionPersonalityFnWorklist.pop_back();
2139   }
2140 
2141   return Error::success();
2142 }
2143 
2144 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2145   SmallVector<uint64_t, 8> Words(Vals.size());
2146   transform(Vals, Words.begin(),
2147                  BitcodeReader::decodeSignRotatedValue);
2148 
2149   return APInt(TypeBits, Words);
2150 }
2151 
2152 Error BitcodeReader::parseConstants() {
2153   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2154     return error("Invalid record");
2155 
2156   SmallVector<uint64_t, 64> Record;
2157 
2158   // Read all the records for this value table.
2159   Type *CurTy = Type::getInt32Ty(Context);
2160   unsigned NextCstNo = ValueList.size();
2161 
2162   while (true) {
2163     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2164 
2165     switch (Entry.Kind) {
2166     case BitstreamEntry::SubBlock: // Handled for us already.
2167     case BitstreamEntry::Error:
2168       return error("Malformed block");
2169     case BitstreamEntry::EndBlock:
2170       if (NextCstNo != ValueList.size())
2171         return error("Invalid constant reference");
2172 
2173       // Once all the constants have been read, go through and resolve forward
2174       // references.
2175       ValueList.resolveConstantForwardRefs();
2176       return Error::success();
2177     case BitstreamEntry::Record:
2178       // The interesting case.
2179       break;
2180     }
2181 
2182     // Read a record.
2183     Record.clear();
2184     Type *VoidType = Type::getVoidTy(Context);
2185     Value *V = nullptr;
2186     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2187     switch (BitCode) {
2188     default:  // Default behavior: unknown constant
2189     case bitc::CST_CODE_UNDEF:     // UNDEF
2190       V = UndefValue::get(CurTy);
2191       break;
2192     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2193       if (Record.empty())
2194         return error("Invalid record");
2195       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2196         return error("Invalid record");
2197       if (TypeList[Record[0]] == VoidType)
2198         return error("Invalid constant type");
2199       CurTy = TypeList[Record[0]];
2200       continue;  // Skip the ValueList manipulation.
2201     case bitc::CST_CODE_NULL:      // NULL
2202       V = Constant::getNullValue(CurTy);
2203       break;
2204     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2205       if (!CurTy->isIntegerTy() || Record.empty())
2206         return error("Invalid record");
2207       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2208       break;
2209     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2210       if (!CurTy->isIntegerTy() || Record.empty())
2211         return error("Invalid record");
2212 
2213       APInt VInt =
2214           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2215       V = ConstantInt::get(Context, VInt);
2216 
2217       break;
2218     }
2219     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2220       if (Record.empty())
2221         return error("Invalid record");
2222       if (CurTy->isHalfTy())
2223         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2224                                              APInt(16, (uint16_t)Record[0])));
2225       else if (CurTy->isFloatTy())
2226         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2227                                              APInt(32, (uint32_t)Record[0])));
2228       else if (CurTy->isDoubleTy())
2229         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2230                                              APInt(64, Record[0])));
2231       else if (CurTy->isX86_FP80Ty()) {
2232         // Bits are not stored the same way as a normal i80 APInt, compensate.
2233         uint64_t Rearrange[2];
2234         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2235         Rearrange[1] = Record[0] >> 48;
2236         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2237                                              APInt(80, Rearrange)));
2238       } else if (CurTy->isFP128Ty())
2239         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2240                                              APInt(128, Record)));
2241       else if (CurTy->isPPC_FP128Ty())
2242         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2243                                              APInt(128, Record)));
2244       else
2245         V = UndefValue::get(CurTy);
2246       break;
2247     }
2248 
2249     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2250       if (Record.empty())
2251         return error("Invalid record");
2252 
2253       unsigned Size = Record.size();
2254       SmallVector<Constant*, 16> Elts;
2255 
2256       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2257         for (unsigned i = 0; i != Size; ++i)
2258           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2259                                                      STy->getElementType(i)));
2260         V = ConstantStruct::get(STy, Elts);
2261       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2262         Type *EltTy = ATy->getElementType();
2263         for (unsigned i = 0; i != Size; ++i)
2264           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2265         V = ConstantArray::get(ATy, Elts);
2266       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2267         Type *EltTy = VTy->getElementType();
2268         for (unsigned i = 0; i != Size; ++i)
2269           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2270         V = ConstantVector::get(Elts);
2271       } else {
2272         V = UndefValue::get(CurTy);
2273       }
2274       break;
2275     }
2276     case bitc::CST_CODE_STRING:    // STRING: [values]
2277     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2278       if (Record.empty())
2279         return error("Invalid record");
2280 
2281       SmallString<16> Elts(Record.begin(), Record.end());
2282       V = ConstantDataArray::getString(Context, Elts,
2283                                        BitCode == bitc::CST_CODE_CSTRING);
2284       break;
2285     }
2286     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2287       if (Record.empty())
2288         return error("Invalid record");
2289 
2290       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2291       if (EltTy->isIntegerTy(8)) {
2292         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2293         if (isa<VectorType>(CurTy))
2294           V = ConstantDataVector::get(Context, Elts);
2295         else
2296           V = ConstantDataArray::get(Context, Elts);
2297       } else if (EltTy->isIntegerTy(16)) {
2298         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2299         if (isa<VectorType>(CurTy))
2300           V = ConstantDataVector::get(Context, Elts);
2301         else
2302           V = ConstantDataArray::get(Context, Elts);
2303       } else if (EltTy->isIntegerTy(32)) {
2304         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2305         if (isa<VectorType>(CurTy))
2306           V = ConstantDataVector::get(Context, Elts);
2307         else
2308           V = ConstantDataArray::get(Context, Elts);
2309       } else if (EltTy->isIntegerTy(64)) {
2310         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2311         if (isa<VectorType>(CurTy))
2312           V = ConstantDataVector::get(Context, Elts);
2313         else
2314           V = ConstantDataArray::get(Context, Elts);
2315       } else if (EltTy->isHalfTy()) {
2316         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2317         if (isa<VectorType>(CurTy))
2318           V = ConstantDataVector::getFP(Context, Elts);
2319         else
2320           V = ConstantDataArray::getFP(Context, Elts);
2321       } else if (EltTy->isFloatTy()) {
2322         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2323         if (isa<VectorType>(CurTy))
2324           V = ConstantDataVector::getFP(Context, Elts);
2325         else
2326           V = ConstantDataArray::getFP(Context, Elts);
2327       } else if (EltTy->isDoubleTy()) {
2328         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2329         if (isa<VectorType>(CurTy))
2330           V = ConstantDataVector::getFP(Context, Elts);
2331         else
2332           V = ConstantDataArray::getFP(Context, Elts);
2333       } else {
2334         return error("Invalid type for value");
2335       }
2336       break;
2337     }
2338     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2339       if (Record.size() < 2)
2340         return error("Invalid record");
2341       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2342       if (Opc < 0) {
2343         V = UndefValue::get(CurTy);  // Unknown unop.
2344       } else {
2345         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2346         unsigned Flags = 0;
2347         V = ConstantExpr::get(Opc, LHS, Flags);
2348       }
2349       break;
2350     }
2351     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2352       if (Record.size() < 3)
2353         return error("Invalid record");
2354       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2355       if (Opc < 0) {
2356         V = UndefValue::get(CurTy);  // Unknown binop.
2357       } else {
2358         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2359         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2360         unsigned Flags = 0;
2361         if (Record.size() >= 4) {
2362           if (Opc == Instruction::Add ||
2363               Opc == Instruction::Sub ||
2364               Opc == Instruction::Mul ||
2365               Opc == Instruction::Shl) {
2366             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2367               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2368             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2369               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2370           } else if (Opc == Instruction::SDiv ||
2371                      Opc == Instruction::UDiv ||
2372                      Opc == Instruction::LShr ||
2373                      Opc == Instruction::AShr) {
2374             if (Record[3] & (1 << bitc::PEO_EXACT))
2375               Flags |= SDivOperator::IsExact;
2376           }
2377         }
2378         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2379       }
2380       break;
2381     }
2382     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2383       if (Record.size() < 3)
2384         return error("Invalid record");
2385       int Opc = getDecodedCastOpcode(Record[0]);
2386       if (Opc < 0) {
2387         V = UndefValue::get(CurTy);  // Unknown cast.
2388       } else {
2389         Type *OpTy = getTypeByID(Record[1]);
2390         if (!OpTy)
2391           return error("Invalid record");
2392         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2393         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2394         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2395       }
2396       break;
2397     }
2398     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2399     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2400     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2401                                                      // operands]
2402       unsigned OpNum = 0;
2403       Type *PointeeType = nullptr;
2404       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2405           Record.size() % 2)
2406         PointeeType = getTypeByID(Record[OpNum++]);
2407 
2408       bool InBounds = false;
2409       Optional<unsigned> InRangeIndex;
2410       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2411         uint64_t Op = Record[OpNum++];
2412         InBounds = Op & 1;
2413         InRangeIndex = Op >> 1;
2414       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2415         InBounds = true;
2416 
2417       SmallVector<Constant*, 16> Elts;
2418       while (OpNum != Record.size()) {
2419         Type *ElTy = getTypeByID(Record[OpNum++]);
2420         if (!ElTy)
2421           return error("Invalid record");
2422         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2423       }
2424 
2425       if (PointeeType &&
2426           PointeeType !=
2427               cast<PointerType>(Elts[0]->getType()->getScalarType())
2428                   ->getElementType())
2429         return error("Explicit gep operator type does not match pointee type "
2430                      "of pointer operand");
2431 
2432       if (Elts.size() < 1)
2433         return error("Invalid gep with no operands");
2434 
2435       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2436       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2437                                          InBounds, InRangeIndex);
2438       break;
2439     }
2440     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2441       if (Record.size() < 3)
2442         return error("Invalid record");
2443 
2444       Type *SelectorTy = Type::getInt1Ty(Context);
2445 
2446       // The selector might be an i1 or an <n x i1>
2447       // Get the type from the ValueList before getting a forward ref.
2448       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2449         if (Value *V = ValueList[Record[0]])
2450           if (SelectorTy != V->getType())
2451             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2452 
2453       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2454                                                               SelectorTy),
2455                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2456                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2457       break;
2458     }
2459     case bitc::CST_CODE_CE_EXTRACTELT
2460         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2461       if (Record.size() < 3)
2462         return error("Invalid record");
2463       VectorType *OpTy =
2464         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2465       if (!OpTy)
2466         return error("Invalid record");
2467       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2468       Constant *Op1 = nullptr;
2469       if (Record.size() == 4) {
2470         Type *IdxTy = getTypeByID(Record[2]);
2471         if (!IdxTy)
2472           return error("Invalid record");
2473         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2474       } else // TODO: Remove with llvm 4.0
2475         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2476       if (!Op1)
2477         return error("Invalid record");
2478       V = ConstantExpr::getExtractElement(Op0, Op1);
2479       break;
2480     }
2481     case bitc::CST_CODE_CE_INSERTELT
2482         : { // CE_INSERTELT: [opval, opval, opty, opval]
2483       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2484       if (Record.size() < 3 || !OpTy)
2485         return error("Invalid record");
2486       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2487       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2488                                                   OpTy->getElementType());
2489       Constant *Op2 = nullptr;
2490       if (Record.size() == 4) {
2491         Type *IdxTy = getTypeByID(Record[2]);
2492         if (!IdxTy)
2493           return error("Invalid record");
2494         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2495       } else // TODO: Remove with llvm 4.0
2496         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2497       if (!Op2)
2498         return error("Invalid record");
2499       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2500       break;
2501     }
2502     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2503       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2504       if (Record.size() < 3 || !OpTy)
2505         return error("Invalid record");
2506       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2507       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2508       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2509                                                  OpTy->getNumElements());
2510       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2511       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2512       break;
2513     }
2514     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2515       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2516       VectorType *OpTy =
2517         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2518       if (Record.size() < 4 || !RTy || !OpTy)
2519         return error("Invalid record");
2520       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2521       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2522       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2523                                                  RTy->getNumElements());
2524       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2525       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2526       break;
2527     }
2528     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2529       if (Record.size() < 4)
2530         return error("Invalid record");
2531       Type *OpTy = getTypeByID(Record[0]);
2532       if (!OpTy)
2533         return error("Invalid record");
2534       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2535       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2536 
2537       if (OpTy->isFPOrFPVectorTy())
2538         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2539       else
2540         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2541       break;
2542     }
2543     // This maintains backward compatibility, pre-asm dialect keywords.
2544     // FIXME: Remove with the 4.0 release.
2545     case bitc::CST_CODE_INLINEASM_OLD: {
2546       if (Record.size() < 2)
2547         return error("Invalid record");
2548       std::string AsmStr, ConstrStr;
2549       bool HasSideEffects = Record[0] & 1;
2550       bool IsAlignStack = Record[0] >> 1;
2551       unsigned AsmStrSize = Record[1];
2552       if (2+AsmStrSize >= Record.size())
2553         return error("Invalid record");
2554       unsigned ConstStrSize = Record[2+AsmStrSize];
2555       if (3+AsmStrSize+ConstStrSize > Record.size())
2556         return error("Invalid record");
2557 
2558       for (unsigned i = 0; i != AsmStrSize; ++i)
2559         AsmStr += (char)Record[2+i];
2560       for (unsigned i = 0; i != ConstStrSize; ++i)
2561         ConstrStr += (char)Record[3+AsmStrSize+i];
2562       PointerType *PTy = cast<PointerType>(CurTy);
2563       UpgradeInlineAsmString(&AsmStr);
2564       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2565                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2566       break;
2567     }
2568     // This version adds support for the asm dialect keywords (e.g.,
2569     // inteldialect).
2570     case bitc::CST_CODE_INLINEASM: {
2571       if (Record.size() < 2)
2572         return error("Invalid record");
2573       std::string AsmStr, ConstrStr;
2574       bool HasSideEffects = Record[0] & 1;
2575       bool IsAlignStack = (Record[0] >> 1) & 1;
2576       unsigned AsmDialect = Record[0] >> 2;
2577       unsigned AsmStrSize = Record[1];
2578       if (2+AsmStrSize >= Record.size())
2579         return error("Invalid record");
2580       unsigned ConstStrSize = Record[2+AsmStrSize];
2581       if (3+AsmStrSize+ConstStrSize > Record.size())
2582         return error("Invalid record");
2583 
2584       for (unsigned i = 0; i != AsmStrSize; ++i)
2585         AsmStr += (char)Record[2+i];
2586       for (unsigned i = 0; i != ConstStrSize; ++i)
2587         ConstrStr += (char)Record[3+AsmStrSize+i];
2588       PointerType *PTy = cast<PointerType>(CurTy);
2589       UpgradeInlineAsmString(&AsmStr);
2590       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2591                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2592                          InlineAsm::AsmDialect(AsmDialect));
2593       break;
2594     }
2595     case bitc::CST_CODE_BLOCKADDRESS:{
2596       if (Record.size() < 3)
2597         return error("Invalid record");
2598       Type *FnTy = getTypeByID(Record[0]);
2599       if (!FnTy)
2600         return error("Invalid record");
2601       Function *Fn =
2602         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2603       if (!Fn)
2604         return error("Invalid record");
2605 
2606       // If the function is already parsed we can insert the block address right
2607       // away.
2608       BasicBlock *BB;
2609       unsigned BBID = Record[2];
2610       if (!BBID)
2611         // Invalid reference to entry block.
2612         return error("Invalid ID");
2613       if (!Fn->empty()) {
2614         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2615         for (size_t I = 0, E = BBID; I != E; ++I) {
2616           if (BBI == BBE)
2617             return error("Invalid ID");
2618           ++BBI;
2619         }
2620         BB = &*BBI;
2621       } else {
2622         // Otherwise insert a placeholder and remember it so it can be inserted
2623         // when the function is parsed.
2624         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2625         if (FwdBBs.empty())
2626           BasicBlockFwdRefQueue.push_back(Fn);
2627         if (FwdBBs.size() < BBID + 1)
2628           FwdBBs.resize(BBID + 1);
2629         if (!FwdBBs[BBID])
2630           FwdBBs[BBID] = BasicBlock::Create(Context);
2631         BB = FwdBBs[BBID];
2632       }
2633       V = BlockAddress::get(Fn, BB);
2634       break;
2635     }
2636     }
2637 
2638     ValueList.assignValue(V, NextCstNo);
2639     ++NextCstNo;
2640   }
2641 }
2642 
2643 Error BitcodeReader::parseUseLists() {
2644   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2645     return error("Invalid record");
2646 
2647   // Read all the records.
2648   SmallVector<uint64_t, 64> Record;
2649 
2650   while (true) {
2651     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2652 
2653     switch (Entry.Kind) {
2654     case BitstreamEntry::SubBlock: // Handled for us already.
2655     case BitstreamEntry::Error:
2656       return error("Malformed block");
2657     case BitstreamEntry::EndBlock:
2658       return Error::success();
2659     case BitstreamEntry::Record:
2660       // The interesting case.
2661       break;
2662     }
2663 
2664     // Read a use list record.
2665     Record.clear();
2666     bool IsBB = false;
2667     switch (Stream.readRecord(Entry.ID, Record)) {
2668     default:  // Default behavior: unknown type.
2669       break;
2670     case bitc::USELIST_CODE_BB:
2671       IsBB = true;
2672       LLVM_FALLTHROUGH;
2673     case bitc::USELIST_CODE_DEFAULT: {
2674       unsigned RecordLength = Record.size();
2675       if (RecordLength < 3)
2676         // Records should have at least an ID and two indexes.
2677         return error("Invalid record");
2678       unsigned ID = Record.back();
2679       Record.pop_back();
2680 
2681       Value *V;
2682       if (IsBB) {
2683         assert(ID < FunctionBBs.size() && "Basic block not found");
2684         V = FunctionBBs[ID];
2685       } else
2686         V = ValueList[ID];
2687       unsigned NumUses = 0;
2688       SmallDenseMap<const Use *, unsigned, 16> Order;
2689       for (const Use &U : V->materialized_uses()) {
2690         if (++NumUses > Record.size())
2691           break;
2692         Order[&U] = Record[NumUses - 1];
2693       }
2694       if (Order.size() != Record.size() || NumUses > Record.size())
2695         // Mismatches can happen if the functions are being materialized lazily
2696         // (out-of-order), or a value has been upgraded.
2697         break;
2698 
2699       V->sortUseList([&](const Use &L, const Use &R) {
2700         return Order.lookup(&L) < Order.lookup(&R);
2701       });
2702       break;
2703     }
2704     }
2705   }
2706 }
2707 
2708 /// When we see the block for metadata, remember where it is and then skip it.
2709 /// This lets us lazily deserialize the metadata.
2710 Error BitcodeReader::rememberAndSkipMetadata() {
2711   // Save the current stream state.
2712   uint64_t CurBit = Stream.GetCurrentBitNo();
2713   DeferredMetadataInfo.push_back(CurBit);
2714 
2715   // Skip over the block for now.
2716   if (Stream.SkipBlock())
2717     return error("Invalid record");
2718   return Error::success();
2719 }
2720 
2721 Error BitcodeReader::materializeMetadata() {
2722   for (uint64_t BitPos : DeferredMetadataInfo) {
2723     // Move the bit stream to the saved position.
2724     Stream.JumpToBit(BitPos);
2725     if (Error Err = MDLoader->parseModuleMetadata())
2726       return Err;
2727   }
2728 
2729   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2730   // metadata.
2731   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2732     NamedMDNode *LinkerOpts =
2733         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2734     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2735       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2736   }
2737 
2738   DeferredMetadataInfo.clear();
2739   return Error::success();
2740 }
2741 
2742 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2743 
2744 /// When we see the block for a function body, remember where it is and then
2745 /// skip it.  This lets us lazily deserialize the functions.
2746 Error BitcodeReader::rememberAndSkipFunctionBody() {
2747   // Get the function we are talking about.
2748   if (FunctionsWithBodies.empty())
2749     return error("Insufficient function protos");
2750 
2751   Function *Fn = FunctionsWithBodies.back();
2752   FunctionsWithBodies.pop_back();
2753 
2754   // Save the current stream state.
2755   uint64_t CurBit = Stream.GetCurrentBitNo();
2756   assert(
2757       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2758       "Mismatch between VST and scanned function offsets");
2759   DeferredFunctionInfo[Fn] = CurBit;
2760 
2761   // Skip over the function block for now.
2762   if (Stream.SkipBlock())
2763     return error("Invalid record");
2764   return Error::success();
2765 }
2766 
2767 Error BitcodeReader::globalCleanup() {
2768   // Patch the initializers for globals and aliases up.
2769   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2770     return Err;
2771   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2772     return error("Malformed global initializer set");
2773 
2774   // Look for intrinsic functions which need to be upgraded at some point
2775   for (Function &F : *TheModule) {
2776     MDLoader->upgradeDebugIntrinsics(F);
2777     Function *NewFn;
2778     if (UpgradeIntrinsicFunction(&F, NewFn))
2779       UpgradedIntrinsics[&F] = NewFn;
2780     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2781       // Some types could be renamed during loading if several modules are
2782       // loaded in the same LLVMContext (LTO scenario). In this case we should
2783       // remangle intrinsics names as well.
2784       RemangledIntrinsics[&F] = Remangled.getValue();
2785   }
2786 
2787   // Look for global variables which need to be renamed.
2788   for (GlobalVariable &GV : TheModule->globals())
2789     UpgradeGlobalVariable(&GV);
2790 
2791   // Force deallocation of memory for these vectors to favor the client that
2792   // want lazy deserialization.
2793   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2794   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2795       IndirectSymbolInits);
2796   return Error::success();
2797 }
2798 
2799 /// Support for lazy parsing of function bodies. This is required if we
2800 /// either have an old bitcode file without a VST forward declaration record,
2801 /// or if we have an anonymous function being materialized, since anonymous
2802 /// functions do not have a name and are therefore not in the VST.
2803 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2804   Stream.JumpToBit(NextUnreadBit);
2805 
2806   if (Stream.AtEndOfStream())
2807     return error("Could not find function in stream");
2808 
2809   if (!SeenFirstFunctionBody)
2810     return error("Trying to materialize functions before seeing function blocks");
2811 
2812   // An old bitcode file with the symbol table at the end would have
2813   // finished the parse greedily.
2814   assert(SeenValueSymbolTable);
2815 
2816   SmallVector<uint64_t, 64> Record;
2817 
2818   while (true) {
2819     BitstreamEntry Entry = Stream.advance();
2820     switch (Entry.Kind) {
2821     default:
2822       return error("Expect SubBlock");
2823     case BitstreamEntry::SubBlock:
2824       switch (Entry.ID) {
2825       default:
2826         return error("Expect function block");
2827       case bitc::FUNCTION_BLOCK_ID:
2828         if (Error Err = rememberAndSkipFunctionBody())
2829           return Err;
2830         NextUnreadBit = Stream.GetCurrentBitNo();
2831         return Error::success();
2832       }
2833     }
2834   }
2835 }
2836 
2837 bool BitcodeReaderBase::readBlockInfo() {
2838   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2839   if (!NewBlockInfo)
2840     return true;
2841   BlockInfo = std::move(*NewBlockInfo);
2842   return false;
2843 }
2844 
2845 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2846   // v1: [selection_kind, name]
2847   // v2: [strtab_offset, strtab_size, selection_kind]
2848   StringRef Name;
2849   std::tie(Name, Record) = readNameFromStrtab(Record);
2850 
2851   if (Record.empty())
2852     return error("Invalid record");
2853   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2854   std::string OldFormatName;
2855   if (!UseStrtab) {
2856     if (Record.size() < 2)
2857       return error("Invalid record");
2858     unsigned ComdatNameSize = Record[1];
2859     OldFormatName.reserve(ComdatNameSize);
2860     for (unsigned i = 0; i != ComdatNameSize; ++i)
2861       OldFormatName += (char)Record[2 + i];
2862     Name = OldFormatName;
2863   }
2864   Comdat *C = TheModule->getOrInsertComdat(Name);
2865   C->setSelectionKind(SK);
2866   ComdatList.push_back(C);
2867   return Error::success();
2868 }
2869 
2870 static void inferDSOLocal(GlobalValue *GV) {
2871   // infer dso_local from linkage and visibility if it is not encoded.
2872   if (GV->hasLocalLinkage() ||
2873       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
2874     GV->setDSOLocal(true);
2875 }
2876 
2877 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2878   // v1: [pointer type, isconst, initid, linkage, alignment, section,
2879   // visibility, threadlocal, unnamed_addr, externally_initialized,
2880   // dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
2881   // v2: [strtab_offset, strtab_size, v1]
2882   StringRef Name;
2883   std::tie(Name, Record) = readNameFromStrtab(Record);
2884 
2885   if (Record.size() < 6)
2886     return error("Invalid record");
2887   Type *Ty = getTypeByID(Record[0]);
2888   if (!Ty)
2889     return error("Invalid record");
2890   bool isConstant = Record[1] & 1;
2891   bool explicitType = Record[1] & 2;
2892   unsigned AddressSpace;
2893   if (explicitType) {
2894     AddressSpace = Record[1] >> 2;
2895   } else {
2896     if (!Ty->isPointerTy())
2897       return error("Invalid type for value");
2898     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2899     Ty = cast<PointerType>(Ty)->getElementType();
2900   }
2901 
2902   uint64_t RawLinkage = Record[3];
2903   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2904   unsigned Alignment;
2905   if (Error Err = parseAlignmentValue(Record[4], Alignment))
2906     return Err;
2907   std::string Section;
2908   if (Record[5]) {
2909     if (Record[5] - 1 >= SectionTable.size())
2910       return error("Invalid ID");
2911     Section = SectionTable[Record[5] - 1];
2912   }
2913   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2914   // Local linkage must have default visibility.
2915   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2916     // FIXME: Change to an error if non-default in 4.0.
2917     Visibility = getDecodedVisibility(Record[6]);
2918 
2919   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2920   if (Record.size() > 7)
2921     TLM = getDecodedThreadLocalMode(Record[7]);
2922 
2923   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2924   if (Record.size() > 8)
2925     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2926 
2927   bool ExternallyInitialized = false;
2928   if (Record.size() > 9)
2929     ExternallyInitialized = Record[9];
2930 
2931   GlobalVariable *NewGV =
2932       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2933                          nullptr, TLM, AddressSpace, ExternallyInitialized);
2934   NewGV->setAlignment(Alignment);
2935   if (!Section.empty())
2936     NewGV->setSection(Section);
2937   NewGV->setVisibility(Visibility);
2938   NewGV->setUnnamedAddr(UnnamedAddr);
2939 
2940   if (Record.size() > 10)
2941     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2942   else
2943     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2944 
2945   ValueList.push_back(NewGV);
2946 
2947   // Remember which value to use for the global initializer.
2948   if (unsigned InitID = Record[2])
2949     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2950 
2951   if (Record.size() > 11) {
2952     if (unsigned ComdatID = Record[11]) {
2953       if (ComdatID > ComdatList.size())
2954         return error("Invalid global variable comdat ID");
2955       NewGV->setComdat(ComdatList[ComdatID - 1]);
2956     }
2957   } else if (hasImplicitComdat(RawLinkage)) {
2958     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2959   }
2960 
2961   if (Record.size() > 12) {
2962     auto AS = getAttributes(Record[12]).getFnAttributes();
2963     NewGV->setAttributes(AS);
2964   }
2965 
2966   if (Record.size() > 13) {
2967     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
2968   }
2969   inferDSOLocal(NewGV);
2970 
2971   return Error::success();
2972 }
2973 
2974 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2975   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2976   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2977   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
2978   // v2: [strtab_offset, strtab_size, v1]
2979   StringRef Name;
2980   std::tie(Name, Record) = readNameFromStrtab(Record);
2981 
2982   if (Record.size() < 8)
2983     return error("Invalid record");
2984   Type *Ty = getTypeByID(Record[0]);
2985   if (!Ty)
2986     return error("Invalid record");
2987   if (auto *PTy = dyn_cast<PointerType>(Ty))
2988     Ty = PTy->getElementType();
2989   auto *FTy = dyn_cast<FunctionType>(Ty);
2990   if (!FTy)
2991     return error("Invalid type for value");
2992   auto CC = static_cast<CallingConv::ID>(Record[1]);
2993   if (CC & ~CallingConv::MaxID)
2994     return error("Invalid calling convention ID");
2995 
2996   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
2997   if (Record.size() > 16)
2998     AddrSpace = Record[16];
2999 
3000   Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3001                                     AddrSpace, Name, TheModule);
3002 
3003   Func->setCallingConv(CC);
3004   bool isProto = Record[2];
3005   uint64_t RawLinkage = Record[3];
3006   Func->setLinkage(getDecodedLinkage(RawLinkage));
3007   Func->setAttributes(getAttributes(Record[4]));
3008 
3009   unsigned Alignment;
3010   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3011     return Err;
3012   Func->setAlignment(Alignment);
3013   if (Record[6]) {
3014     if (Record[6] - 1 >= SectionTable.size())
3015       return error("Invalid ID");
3016     Func->setSection(SectionTable[Record[6] - 1]);
3017   }
3018   // Local linkage must have default visibility.
3019   if (!Func->hasLocalLinkage())
3020     // FIXME: Change to an error if non-default in 4.0.
3021     Func->setVisibility(getDecodedVisibility(Record[7]));
3022   if (Record.size() > 8 && Record[8]) {
3023     if (Record[8] - 1 >= GCTable.size())
3024       return error("Invalid ID");
3025     Func->setGC(GCTable[Record[8] - 1]);
3026   }
3027   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3028   if (Record.size() > 9)
3029     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3030   Func->setUnnamedAddr(UnnamedAddr);
3031   if (Record.size() > 10 && Record[10] != 0)
3032     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3033 
3034   if (Record.size() > 11)
3035     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3036   else
3037     upgradeDLLImportExportLinkage(Func, RawLinkage);
3038 
3039   if (Record.size() > 12) {
3040     if (unsigned ComdatID = Record[12]) {
3041       if (ComdatID > ComdatList.size())
3042         return error("Invalid function comdat ID");
3043       Func->setComdat(ComdatList[ComdatID - 1]);
3044     }
3045   } else if (hasImplicitComdat(RawLinkage)) {
3046     Func->setComdat(reinterpret_cast<Comdat *>(1));
3047   }
3048 
3049   if (Record.size() > 13 && Record[13] != 0)
3050     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3051 
3052   if (Record.size() > 14 && Record[14] != 0)
3053     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3054 
3055   if (Record.size() > 15) {
3056     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3057   }
3058   inferDSOLocal(Func);
3059 
3060   ValueList.push_back(Func);
3061 
3062   // If this is a function with a body, remember the prototype we are
3063   // creating now, so that we can match up the body with them later.
3064   if (!isProto) {
3065     Func->setIsMaterializable(true);
3066     FunctionsWithBodies.push_back(Func);
3067     DeferredFunctionInfo[Func] = 0;
3068   }
3069   return Error::success();
3070 }
3071 
3072 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3073     unsigned BitCode, ArrayRef<uint64_t> Record) {
3074   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3075   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3076   // dllstorageclass, threadlocal, unnamed_addr,
3077   // preemption specifier] (name in VST)
3078   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3079   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3080   // preemption specifier] (name in VST)
3081   // v2: [strtab_offset, strtab_size, v1]
3082   StringRef Name;
3083   std::tie(Name, Record) = readNameFromStrtab(Record);
3084 
3085   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3086   if (Record.size() < (3 + (unsigned)NewRecord))
3087     return error("Invalid record");
3088   unsigned OpNum = 0;
3089   Type *Ty = getTypeByID(Record[OpNum++]);
3090   if (!Ty)
3091     return error("Invalid record");
3092 
3093   unsigned AddrSpace;
3094   if (!NewRecord) {
3095     auto *PTy = dyn_cast<PointerType>(Ty);
3096     if (!PTy)
3097       return error("Invalid type for value");
3098     Ty = PTy->getElementType();
3099     AddrSpace = PTy->getAddressSpace();
3100   } else {
3101     AddrSpace = Record[OpNum++];
3102   }
3103 
3104   auto Val = Record[OpNum++];
3105   auto Linkage = Record[OpNum++];
3106   GlobalIndirectSymbol *NewGA;
3107   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3108       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3109     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3110                                 TheModule);
3111   else
3112     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3113                                 nullptr, TheModule);
3114   // Old bitcode files didn't have visibility field.
3115   // Local linkage must have default visibility.
3116   if (OpNum != Record.size()) {
3117     auto VisInd = OpNum++;
3118     if (!NewGA->hasLocalLinkage())
3119       // FIXME: Change to an error if non-default in 4.0.
3120       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3121   }
3122   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3123       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3124     if (OpNum != Record.size())
3125       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3126     else
3127       upgradeDLLImportExportLinkage(NewGA, Linkage);
3128     if (OpNum != Record.size())
3129       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3130     if (OpNum != Record.size())
3131       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3132   }
3133   if (OpNum != Record.size())
3134     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3135   inferDSOLocal(NewGA);
3136 
3137   ValueList.push_back(NewGA);
3138   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3139   return Error::success();
3140 }
3141 
3142 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3143                                  bool ShouldLazyLoadMetadata) {
3144   if (ResumeBit)
3145     Stream.JumpToBit(ResumeBit);
3146   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3147     return error("Invalid record");
3148 
3149   SmallVector<uint64_t, 64> Record;
3150 
3151   // Read all the records for this module.
3152   while (true) {
3153     BitstreamEntry Entry = Stream.advance();
3154 
3155     switch (Entry.Kind) {
3156     case BitstreamEntry::Error:
3157       return error("Malformed block");
3158     case BitstreamEntry::EndBlock:
3159       return globalCleanup();
3160 
3161     case BitstreamEntry::SubBlock:
3162       switch (Entry.ID) {
3163       default:  // Skip unknown content.
3164         if (Stream.SkipBlock())
3165           return error("Invalid record");
3166         break;
3167       case bitc::BLOCKINFO_BLOCK_ID:
3168         if (readBlockInfo())
3169           return error("Malformed block");
3170         break;
3171       case bitc::PARAMATTR_BLOCK_ID:
3172         if (Error Err = parseAttributeBlock())
3173           return Err;
3174         break;
3175       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3176         if (Error Err = parseAttributeGroupBlock())
3177           return Err;
3178         break;
3179       case bitc::TYPE_BLOCK_ID_NEW:
3180         if (Error Err = parseTypeTable())
3181           return Err;
3182         break;
3183       case bitc::VALUE_SYMTAB_BLOCK_ID:
3184         if (!SeenValueSymbolTable) {
3185           // Either this is an old form VST without function index and an
3186           // associated VST forward declaration record (which would have caused
3187           // the VST to be jumped to and parsed before it was encountered
3188           // normally in the stream), or there were no function blocks to
3189           // trigger an earlier parsing of the VST.
3190           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3191           if (Error Err = parseValueSymbolTable())
3192             return Err;
3193           SeenValueSymbolTable = true;
3194         } else {
3195           // We must have had a VST forward declaration record, which caused
3196           // the parser to jump to and parse the VST earlier.
3197           assert(VSTOffset > 0);
3198           if (Stream.SkipBlock())
3199             return error("Invalid record");
3200         }
3201         break;
3202       case bitc::CONSTANTS_BLOCK_ID:
3203         if (Error Err = parseConstants())
3204           return Err;
3205         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3206           return Err;
3207         break;
3208       case bitc::METADATA_BLOCK_ID:
3209         if (ShouldLazyLoadMetadata) {
3210           if (Error Err = rememberAndSkipMetadata())
3211             return Err;
3212           break;
3213         }
3214         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3215         if (Error Err = MDLoader->parseModuleMetadata())
3216           return Err;
3217         break;
3218       case bitc::METADATA_KIND_BLOCK_ID:
3219         if (Error Err = MDLoader->parseMetadataKinds())
3220           return Err;
3221         break;
3222       case bitc::FUNCTION_BLOCK_ID:
3223         // If this is the first function body we've seen, reverse the
3224         // FunctionsWithBodies list.
3225         if (!SeenFirstFunctionBody) {
3226           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3227           if (Error Err = globalCleanup())
3228             return Err;
3229           SeenFirstFunctionBody = true;
3230         }
3231 
3232         if (VSTOffset > 0) {
3233           // If we have a VST forward declaration record, make sure we
3234           // parse the VST now if we haven't already. It is needed to
3235           // set up the DeferredFunctionInfo vector for lazy reading.
3236           if (!SeenValueSymbolTable) {
3237             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3238               return Err;
3239             SeenValueSymbolTable = true;
3240             // Fall through so that we record the NextUnreadBit below.
3241             // This is necessary in case we have an anonymous function that
3242             // is later materialized. Since it will not have a VST entry we
3243             // need to fall back to the lazy parse to find its offset.
3244           } else {
3245             // If we have a VST forward declaration record, but have already
3246             // parsed the VST (just above, when the first function body was
3247             // encountered here), then we are resuming the parse after
3248             // materializing functions. The ResumeBit points to the
3249             // start of the last function block recorded in the
3250             // DeferredFunctionInfo map. Skip it.
3251             if (Stream.SkipBlock())
3252               return error("Invalid record");
3253             continue;
3254           }
3255         }
3256 
3257         // Support older bitcode files that did not have the function
3258         // index in the VST, nor a VST forward declaration record, as
3259         // well as anonymous functions that do not have VST entries.
3260         // Build the DeferredFunctionInfo vector on the fly.
3261         if (Error Err = rememberAndSkipFunctionBody())
3262           return Err;
3263 
3264         // Suspend parsing when we reach the function bodies. Subsequent
3265         // materialization calls will resume it when necessary. If the bitcode
3266         // file is old, the symbol table will be at the end instead and will not
3267         // have been seen yet. In this case, just finish the parse now.
3268         if (SeenValueSymbolTable) {
3269           NextUnreadBit = Stream.GetCurrentBitNo();
3270           // After the VST has been parsed, we need to make sure intrinsic name
3271           // are auto-upgraded.
3272           return globalCleanup();
3273         }
3274         break;
3275       case bitc::USELIST_BLOCK_ID:
3276         if (Error Err = parseUseLists())
3277           return Err;
3278         break;
3279       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3280         if (Error Err = parseOperandBundleTags())
3281           return Err;
3282         break;
3283       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3284         if (Error Err = parseSyncScopeNames())
3285           return Err;
3286         break;
3287       }
3288       continue;
3289 
3290     case BitstreamEntry::Record:
3291       // The interesting case.
3292       break;
3293     }
3294 
3295     // Read a record.
3296     auto BitCode = Stream.readRecord(Entry.ID, Record);
3297     switch (BitCode) {
3298     default: break;  // Default behavior, ignore unknown content.
3299     case bitc::MODULE_CODE_VERSION: {
3300       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3301       if (!VersionOrErr)
3302         return VersionOrErr.takeError();
3303       UseRelativeIDs = *VersionOrErr >= 1;
3304       break;
3305     }
3306     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3307       std::string S;
3308       if (convertToString(Record, 0, S))
3309         return error("Invalid record");
3310       TheModule->setTargetTriple(S);
3311       break;
3312     }
3313     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3314       std::string S;
3315       if (convertToString(Record, 0, S))
3316         return error("Invalid record");
3317       TheModule->setDataLayout(S);
3318       break;
3319     }
3320     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3321       std::string S;
3322       if (convertToString(Record, 0, S))
3323         return error("Invalid record");
3324       TheModule->setModuleInlineAsm(S);
3325       break;
3326     }
3327     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3328       // FIXME: Remove in 4.0.
3329       std::string S;
3330       if (convertToString(Record, 0, S))
3331         return error("Invalid record");
3332       // Ignore value.
3333       break;
3334     }
3335     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3336       std::string S;
3337       if (convertToString(Record, 0, S))
3338         return error("Invalid record");
3339       SectionTable.push_back(S);
3340       break;
3341     }
3342     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3343       std::string S;
3344       if (convertToString(Record, 0, S))
3345         return error("Invalid record");
3346       GCTable.push_back(S);
3347       break;
3348     }
3349     case bitc::MODULE_CODE_COMDAT:
3350       if (Error Err = parseComdatRecord(Record))
3351         return Err;
3352       break;
3353     case bitc::MODULE_CODE_GLOBALVAR:
3354       if (Error Err = parseGlobalVarRecord(Record))
3355         return Err;
3356       break;
3357     case bitc::MODULE_CODE_FUNCTION:
3358       if (Error Err = parseFunctionRecord(Record))
3359         return Err;
3360       break;
3361     case bitc::MODULE_CODE_IFUNC:
3362     case bitc::MODULE_CODE_ALIAS:
3363     case bitc::MODULE_CODE_ALIAS_OLD:
3364       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3365         return Err;
3366       break;
3367     /// MODULE_CODE_VSTOFFSET: [offset]
3368     case bitc::MODULE_CODE_VSTOFFSET:
3369       if (Record.size() < 1)
3370         return error("Invalid record");
3371       // Note that we subtract 1 here because the offset is relative to one word
3372       // before the start of the identification or module block, which was
3373       // historically always the start of the regular bitcode header.
3374       VSTOffset = Record[0] - 1;
3375       break;
3376     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3377     case bitc::MODULE_CODE_SOURCE_FILENAME:
3378       SmallString<128> ValueName;
3379       if (convertToString(Record, 0, ValueName))
3380         return error("Invalid record");
3381       TheModule->setSourceFileName(ValueName);
3382       break;
3383     }
3384     Record.clear();
3385   }
3386 }
3387 
3388 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3389                                       bool IsImporting) {
3390   TheModule = M;
3391   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3392                             [&](unsigned ID) { return getTypeByID(ID); });
3393   return parseModule(0, ShouldLazyLoadMetadata);
3394 }
3395 
3396 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3397   if (!isa<PointerType>(PtrType))
3398     return error("Load/Store operand is not a pointer type");
3399   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3400 
3401   if (ValType && ValType != ElemType)
3402     return error("Explicit load/store type does not match pointee "
3403                  "type of pointer operand");
3404   if (!PointerType::isLoadableOrStorableType(ElemType))
3405     return error("Cannot load/store from pointer");
3406   return Error::success();
3407 }
3408 
3409 /// Lazily parse the specified function body block.
3410 Error BitcodeReader::parseFunctionBody(Function *F) {
3411   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3412     return error("Invalid record");
3413 
3414   // Unexpected unresolved metadata when parsing function.
3415   if (MDLoader->hasFwdRefs())
3416     return error("Invalid function metadata: incoming forward references");
3417 
3418   InstructionList.clear();
3419   unsigned ModuleValueListSize = ValueList.size();
3420   unsigned ModuleMDLoaderSize = MDLoader->size();
3421 
3422   // Add all the function arguments to the value table.
3423   for (Argument &I : F->args())
3424     ValueList.push_back(&I);
3425 
3426   unsigned NextValueNo = ValueList.size();
3427   BasicBlock *CurBB = nullptr;
3428   unsigned CurBBNo = 0;
3429 
3430   DebugLoc LastLoc;
3431   auto getLastInstruction = [&]() -> Instruction * {
3432     if (CurBB && !CurBB->empty())
3433       return &CurBB->back();
3434     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3435              !FunctionBBs[CurBBNo - 1]->empty())
3436       return &FunctionBBs[CurBBNo - 1]->back();
3437     return nullptr;
3438   };
3439 
3440   std::vector<OperandBundleDef> OperandBundles;
3441 
3442   // Read all the records.
3443   SmallVector<uint64_t, 64> Record;
3444 
3445   while (true) {
3446     BitstreamEntry Entry = Stream.advance();
3447 
3448     switch (Entry.Kind) {
3449     case BitstreamEntry::Error:
3450       return error("Malformed block");
3451     case BitstreamEntry::EndBlock:
3452       goto OutOfRecordLoop;
3453 
3454     case BitstreamEntry::SubBlock:
3455       switch (Entry.ID) {
3456       default:  // Skip unknown content.
3457         if (Stream.SkipBlock())
3458           return error("Invalid record");
3459         break;
3460       case bitc::CONSTANTS_BLOCK_ID:
3461         if (Error Err = parseConstants())
3462           return Err;
3463         NextValueNo = ValueList.size();
3464         break;
3465       case bitc::VALUE_SYMTAB_BLOCK_ID:
3466         if (Error Err = parseValueSymbolTable())
3467           return Err;
3468         break;
3469       case bitc::METADATA_ATTACHMENT_ID:
3470         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3471           return Err;
3472         break;
3473       case bitc::METADATA_BLOCK_ID:
3474         assert(DeferredMetadataInfo.empty() &&
3475                "Must read all module-level metadata before function-level");
3476         if (Error Err = MDLoader->parseFunctionMetadata())
3477           return Err;
3478         break;
3479       case bitc::USELIST_BLOCK_ID:
3480         if (Error Err = parseUseLists())
3481           return Err;
3482         break;
3483       }
3484       continue;
3485 
3486     case BitstreamEntry::Record:
3487       // The interesting case.
3488       break;
3489     }
3490 
3491     // Read a record.
3492     Record.clear();
3493     Instruction *I = nullptr;
3494     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3495     switch (BitCode) {
3496     default: // Default behavior: reject
3497       return error("Invalid value");
3498     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3499       if (Record.size() < 1 || Record[0] == 0)
3500         return error("Invalid record");
3501       // Create all the basic blocks for the function.
3502       FunctionBBs.resize(Record[0]);
3503 
3504       // See if anything took the address of blocks in this function.
3505       auto BBFRI = BasicBlockFwdRefs.find(F);
3506       if (BBFRI == BasicBlockFwdRefs.end()) {
3507         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3508           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3509       } else {
3510         auto &BBRefs = BBFRI->second;
3511         // Check for invalid basic block references.
3512         if (BBRefs.size() > FunctionBBs.size())
3513           return error("Invalid ID");
3514         assert(!BBRefs.empty() && "Unexpected empty array");
3515         assert(!BBRefs.front() && "Invalid reference to entry block");
3516         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3517              ++I)
3518           if (I < RE && BBRefs[I]) {
3519             BBRefs[I]->insertInto(F);
3520             FunctionBBs[I] = BBRefs[I];
3521           } else {
3522             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3523           }
3524 
3525         // Erase from the table.
3526         BasicBlockFwdRefs.erase(BBFRI);
3527       }
3528 
3529       CurBB = FunctionBBs[0];
3530       continue;
3531     }
3532 
3533     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3534       // This record indicates that the last instruction is at the same
3535       // location as the previous instruction with a location.
3536       I = getLastInstruction();
3537 
3538       if (!I)
3539         return error("Invalid record");
3540       I->setDebugLoc(LastLoc);
3541       I = nullptr;
3542       continue;
3543 
3544     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3545       I = getLastInstruction();
3546       if (!I || Record.size() < 4)
3547         return error("Invalid record");
3548 
3549       unsigned Line = Record[0], Col = Record[1];
3550       unsigned ScopeID = Record[2], IAID = Record[3];
3551       bool isImplicitCode = Record.size() == 5 && Record[4];
3552 
3553       MDNode *Scope = nullptr, *IA = nullptr;
3554       if (ScopeID) {
3555         Scope = dyn_cast_or_null<MDNode>(
3556             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3557         if (!Scope)
3558           return error("Invalid record");
3559       }
3560       if (IAID) {
3561         IA = dyn_cast_or_null<MDNode>(
3562             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3563         if (!IA)
3564           return error("Invalid record");
3565       }
3566       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3567       I->setDebugLoc(LastLoc);
3568       I = nullptr;
3569       continue;
3570     }
3571     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3572       unsigned OpNum = 0;
3573       Value *LHS;
3574       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3575           OpNum+1 > Record.size())
3576         return error("Invalid record");
3577 
3578       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3579       if (Opc == -1)
3580         return error("Invalid record");
3581       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3582       InstructionList.push_back(I);
3583       if (OpNum < Record.size()) {
3584         if (isa<FPMathOperator>(I)) {
3585           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3586           if (FMF.any())
3587             I->setFastMathFlags(FMF);
3588         }
3589       }
3590       break;
3591     }
3592     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3593       unsigned OpNum = 0;
3594       Value *LHS, *RHS;
3595       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3596           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3597           OpNum+1 > Record.size())
3598         return error("Invalid record");
3599 
3600       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3601       if (Opc == -1)
3602         return error("Invalid record");
3603       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3604       InstructionList.push_back(I);
3605       if (OpNum < Record.size()) {
3606         if (Opc == Instruction::Add ||
3607             Opc == Instruction::Sub ||
3608             Opc == Instruction::Mul ||
3609             Opc == Instruction::Shl) {
3610           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3611             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3612           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3613             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3614         } else if (Opc == Instruction::SDiv ||
3615                    Opc == Instruction::UDiv ||
3616                    Opc == Instruction::LShr ||
3617                    Opc == Instruction::AShr) {
3618           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3619             cast<BinaryOperator>(I)->setIsExact(true);
3620         } else if (isa<FPMathOperator>(I)) {
3621           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3622           if (FMF.any())
3623             I->setFastMathFlags(FMF);
3624         }
3625 
3626       }
3627       break;
3628     }
3629     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3630       unsigned OpNum = 0;
3631       Value *Op;
3632       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3633           OpNum+2 != Record.size())
3634         return error("Invalid record");
3635 
3636       Type *ResTy = getTypeByID(Record[OpNum]);
3637       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3638       if (Opc == -1 || !ResTy)
3639         return error("Invalid record");
3640       Instruction *Temp = nullptr;
3641       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3642         if (Temp) {
3643           InstructionList.push_back(Temp);
3644           CurBB->getInstList().push_back(Temp);
3645         }
3646       } else {
3647         auto CastOp = (Instruction::CastOps)Opc;
3648         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3649           return error("Invalid cast");
3650         I = CastInst::Create(CastOp, Op, ResTy);
3651       }
3652       InstructionList.push_back(I);
3653       break;
3654     }
3655     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3656     case bitc::FUNC_CODE_INST_GEP_OLD:
3657     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3658       unsigned OpNum = 0;
3659 
3660       Type *Ty;
3661       bool InBounds;
3662 
3663       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3664         InBounds = Record[OpNum++];
3665         Ty = getTypeByID(Record[OpNum++]);
3666       } else {
3667         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3668         Ty = nullptr;
3669       }
3670 
3671       Value *BasePtr;
3672       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3673         return error("Invalid record");
3674 
3675       if (!Ty)
3676         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3677                  ->getElementType();
3678       else if (Ty !=
3679                cast<PointerType>(BasePtr->getType()->getScalarType())
3680                    ->getElementType())
3681         return error(
3682             "Explicit gep type does not match pointee type of pointer operand");
3683 
3684       SmallVector<Value*, 16> GEPIdx;
3685       while (OpNum != Record.size()) {
3686         Value *Op;
3687         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3688           return error("Invalid record");
3689         GEPIdx.push_back(Op);
3690       }
3691 
3692       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3693 
3694       InstructionList.push_back(I);
3695       if (InBounds)
3696         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3697       break;
3698     }
3699 
3700     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3701                                        // EXTRACTVAL: [opty, opval, n x indices]
3702       unsigned OpNum = 0;
3703       Value *Agg;
3704       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3705         return error("Invalid record");
3706 
3707       unsigned RecSize = Record.size();
3708       if (OpNum == RecSize)
3709         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3710 
3711       SmallVector<unsigned, 4> EXTRACTVALIdx;
3712       Type *CurTy = Agg->getType();
3713       for (; OpNum != RecSize; ++OpNum) {
3714         bool IsArray = CurTy->isArrayTy();
3715         bool IsStruct = CurTy->isStructTy();
3716         uint64_t Index = Record[OpNum];
3717 
3718         if (!IsStruct && !IsArray)
3719           return error("EXTRACTVAL: Invalid type");
3720         if ((unsigned)Index != Index)
3721           return error("Invalid value");
3722         if (IsStruct && Index >= CurTy->getStructNumElements())
3723           return error("EXTRACTVAL: Invalid struct index");
3724         if (IsArray && Index >= CurTy->getArrayNumElements())
3725           return error("EXTRACTVAL: Invalid array index");
3726         EXTRACTVALIdx.push_back((unsigned)Index);
3727 
3728         if (IsStruct)
3729           CurTy = CurTy->getStructElementType(Index);
3730         else
3731           CurTy = CurTy->getArrayElementType();
3732       }
3733 
3734       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3735       InstructionList.push_back(I);
3736       break;
3737     }
3738 
3739     case bitc::FUNC_CODE_INST_INSERTVAL: {
3740                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3741       unsigned OpNum = 0;
3742       Value *Agg;
3743       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3744         return error("Invalid record");
3745       Value *Val;
3746       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3747         return error("Invalid record");
3748 
3749       unsigned RecSize = Record.size();
3750       if (OpNum == RecSize)
3751         return error("INSERTVAL: Invalid instruction with 0 indices");
3752 
3753       SmallVector<unsigned, 4> INSERTVALIdx;
3754       Type *CurTy = Agg->getType();
3755       for (; OpNum != RecSize; ++OpNum) {
3756         bool IsArray = CurTy->isArrayTy();
3757         bool IsStruct = CurTy->isStructTy();
3758         uint64_t Index = Record[OpNum];
3759 
3760         if (!IsStruct && !IsArray)
3761           return error("INSERTVAL: Invalid type");
3762         if ((unsigned)Index != Index)
3763           return error("Invalid value");
3764         if (IsStruct && Index >= CurTy->getStructNumElements())
3765           return error("INSERTVAL: Invalid struct index");
3766         if (IsArray && Index >= CurTy->getArrayNumElements())
3767           return error("INSERTVAL: Invalid array index");
3768 
3769         INSERTVALIdx.push_back((unsigned)Index);
3770         if (IsStruct)
3771           CurTy = CurTy->getStructElementType(Index);
3772         else
3773           CurTy = CurTy->getArrayElementType();
3774       }
3775 
3776       if (CurTy != Val->getType())
3777         return error("Inserted value type doesn't match aggregate type");
3778 
3779       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3780       InstructionList.push_back(I);
3781       break;
3782     }
3783 
3784     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3785       // obsolete form of select
3786       // handles select i1 ... in old bitcode
3787       unsigned OpNum = 0;
3788       Value *TrueVal, *FalseVal, *Cond;
3789       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3790           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3791           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3792         return error("Invalid record");
3793 
3794       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3795       InstructionList.push_back(I);
3796       break;
3797     }
3798 
3799     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3800       // new form of select
3801       // handles select i1 or select [N x i1]
3802       unsigned OpNum = 0;
3803       Value *TrueVal, *FalseVal, *Cond;
3804       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3805           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3806           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3807         return error("Invalid record");
3808 
3809       // select condition can be either i1 or [N x i1]
3810       if (VectorType* vector_type =
3811           dyn_cast<VectorType>(Cond->getType())) {
3812         // expect <n x i1>
3813         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3814           return error("Invalid type for value");
3815       } else {
3816         // expect i1
3817         if (Cond->getType() != Type::getInt1Ty(Context))
3818           return error("Invalid type for value");
3819       }
3820 
3821       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3822       InstructionList.push_back(I);
3823       break;
3824     }
3825 
3826     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3827       unsigned OpNum = 0;
3828       Value *Vec, *Idx;
3829       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3830           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3831         return error("Invalid record");
3832       if (!Vec->getType()->isVectorTy())
3833         return error("Invalid type for value");
3834       I = ExtractElementInst::Create(Vec, Idx);
3835       InstructionList.push_back(I);
3836       break;
3837     }
3838 
3839     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3840       unsigned OpNum = 0;
3841       Value *Vec, *Elt, *Idx;
3842       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3843         return error("Invalid record");
3844       if (!Vec->getType()->isVectorTy())
3845         return error("Invalid type for value");
3846       if (popValue(Record, OpNum, NextValueNo,
3847                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3848           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3849         return error("Invalid record");
3850       I = InsertElementInst::Create(Vec, Elt, Idx);
3851       InstructionList.push_back(I);
3852       break;
3853     }
3854 
3855     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3856       unsigned OpNum = 0;
3857       Value *Vec1, *Vec2, *Mask;
3858       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3859           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3860         return error("Invalid record");
3861 
3862       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3863         return error("Invalid record");
3864       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3865         return error("Invalid type for value");
3866       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3867       InstructionList.push_back(I);
3868       break;
3869     }
3870 
3871     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3872       // Old form of ICmp/FCmp returning bool
3873       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3874       // both legal on vectors but had different behaviour.
3875     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3876       // FCmp/ICmp returning bool or vector of bool
3877 
3878       unsigned OpNum = 0;
3879       Value *LHS, *RHS;
3880       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3881           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3882         return error("Invalid record");
3883 
3884       unsigned PredVal = Record[OpNum];
3885       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3886       FastMathFlags FMF;
3887       if (IsFP && Record.size() > OpNum+1)
3888         FMF = getDecodedFastMathFlags(Record[++OpNum]);
3889 
3890       if (OpNum+1 != Record.size())
3891         return error("Invalid record");
3892 
3893       if (LHS->getType()->isFPOrFPVectorTy())
3894         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3895       else
3896         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3897 
3898       if (FMF.any())
3899         I->setFastMathFlags(FMF);
3900       InstructionList.push_back(I);
3901       break;
3902     }
3903 
3904     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3905       {
3906         unsigned Size = Record.size();
3907         if (Size == 0) {
3908           I = ReturnInst::Create(Context);
3909           InstructionList.push_back(I);
3910           break;
3911         }
3912 
3913         unsigned OpNum = 0;
3914         Value *Op = nullptr;
3915         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3916           return error("Invalid record");
3917         if (OpNum != Record.size())
3918           return error("Invalid record");
3919 
3920         I = ReturnInst::Create(Context, Op);
3921         InstructionList.push_back(I);
3922         break;
3923       }
3924     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3925       if (Record.size() != 1 && Record.size() != 3)
3926         return error("Invalid record");
3927       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3928       if (!TrueDest)
3929         return error("Invalid record");
3930 
3931       if (Record.size() == 1) {
3932         I = BranchInst::Create(TrueDest);
3933         InstructionList.push_back(I);
3934       }
3935       else {
3936         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3937         Value *Cond = getValue(Record, 2, NextValueNo,
3938                                Type::getInt1Ty(Context));
3939         if (!FalseDest || !Cond)
3940           return error("Invalid record");
3941         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3942         InstructionList.push_back(I);
3943       }
3944       break;
3945     }
3946     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3947       if (Record.size() != 1 && Record.size() != 2)
3948         return error("Invalid record");
3949       unsigned Idx = 0;
3950       Value *CleanupPad =
3951           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3952       if (!CleanupPad)
3953         return error("Invalid record");
3954       BasicBlock *UnwindDest = nullptr;
3955       if (Record.size() == 2) {
3956         UnwindDest = getBasicBlock(Record[Idx++]);
3957         if (!UnwindDest)
3958           return error("Invalid record");
3959       }
3960 
3961       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3962       InstructionList.push_back(I);
3963       break;
3964     }
3965     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3966       if (Record.size() != 2)
3967         return error("Invalid record");
3968       unsigned Idx = 0;
3969       Value *CatchPad =
3970           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3971       if (!CatchPad)
3972         return error("Invalid record");
3973       BasicBlock *BB = getBasicBlock(Record[Idx++]);
3974       if (!BB)
3975         return error("Invalid record");
3976 
3977       I = CatchReturnInst::Create(CatchPad, BB);
3978       InstructionList.push_back(I);
3979       break;
3980     }
3981     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3982       // We must have, at minimum, the outer scope and the number of arguments.
3983       if (Record.size() < 2)
3984         return error("Invalid record");
3985 
3986       unsigned Idx = 0;
3987 
3988       Value *ParentPad =
3989           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3990 
3991       unsigned NumHandlers = Record[Idx++];
3992 
3993       SmallVector<BasicBlock *, 2> Handlers;
3994       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3995         BasicBlock *BB = getBasicBlock(Record[Idx++]);
3996         if (!BB)
3997           return error("Invalid record");
3998         Handlers.push_back(BB);
3999       }
4000 
4001       BasicBlock *UnwindDest = nullptr;
4002       if (Idx + 1 == Record.size()) {
4003         UnwindDest = getBasicBlock(Record[Idx++]);
4004         if (!UnwindDest)
4005           return error("Invalid record");
4006       }
4007 
4008       if (Record.size() != Idx)
4009         return error("Invalid record");
4010 
4011       auto *CatchSwitch =
4012           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4013       for (BasicBlock *Handler : Handlers)
4014         CatchSwitch->addHandler(Handler);
4015       I = CatchSwitch;
4016       InstructionList.push_back(I);
4017       break;
4018     }
4019     case bitc::FUNC_CODE_INST_CATCHPAD:
4020     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4021       // We must have, at minimum, the outer scope and the number of arguments.
4022       if (Record.size() < 2)
4023         return error("Invalid record");
4024 
4025       unsigned Idx = 0;
4026 
4027       Value *ParentPad =
4028           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4029 
4030       unsigned NumArgOperands = Record[Idx++];
4031 
4032       SmallVector<Value *, 2> Args;
4033       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4034         Value *Val;
4035         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4036           return error("Invalid record");
4037         Args.push_back(Val);
4038       }
4039 
4040       if (Record.size() != Idx)
4041         return error("Invalid record");
4042 
4043       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4044         I = CleanupPadInst::Create(ParentPad, Args);
4045       else
4046         I = CatchPadInst::Create(ParentPad, Args);
4047       InstructionList.push_back(I);
4048       break;
4049     }
4050     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4051       // Check magic
4052       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4053         // "New" SwitchInst format with case ranges. The changes to write this
4054         // format were reverted but we still recognize bitcode that uses it.
4055         // Hopefully someday we will have support for case ranges and can use
4056         // this format again.
4057 
4058         Type *OpTy = getTypeByID(Record[1]);
4059         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4060 
4061         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4062         BasicBlock *Default = getBasicBlock(Record[3]);
4063         if (!OpTy || !Cond || !Default)
4064           return error("Invalid record");
4065 
4066         unsigned NumCases = Record[4];
4067 
4068         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4069         InstructionList.push_back(SI);
4070 
4071         unsigned CurIdx = 5;
4072         for (unsigned i = 0; i != NumCases; ++i) {
4073           SmallVector<ConstantInt*, 1> CaseVals;
4074           unsigned NumItems = Record[CurIdx++];
4075           for (unsigned ci = 0; ci != NumItems; ++ci) {
4076             bool isSingleNumber = Record[CurIdx++];
4077 
4078             APInt Low;
4079             unsigned ActiveWords = 1;
4080             if (ValueBitWidth > 64)
4081               ActiveWords = Record[CurIdx++];
4082             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4083                                 ValueBitWidth);
4084             CurIdx += ActiveWords;
4085 
4086             if (!isSingleNumber) {
4087               ActiveWords = 1;
4088               if (ValueBitWidth > 64)
4089                 ActiveWords = Record[CurIdx++];
4090               APInt High = readWideAPInt(
4091                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4092               CurIdx += ActiveWords;
4093 
4094               // FIXME: It is not clear whether values in the range should be
4095               // compared as signed or unsigned values. The partially
4096               // implemented changes that used this format in the past used
4097               // unsigned comparisons.
4098               for ( ; Low.ule(High); ++Low)
4099                 CaseVals.push_back(ConstantInt::get(Context, Low));
4100             } else
4101               CaseVals.push_back(ConstantInt::get(Context, Low));
4102           }
4103           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4104           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4105                  cve = CaseVals.end(); cvi != cve; ++cvi)
4106             SI->addCase(*cvi, DestBB);
4107         }
4108         I = SI;
4109         break;
4110       }
4111 
4112       // Old SwitchInst format without case ranges.
4113 
4114       if (Record.size() < 3 || (Record.size() & 1) == 0)
4115         return error("Invalid record");
4116       Type *OpTy = getTypeByID(Record[0]);
4117       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4118       BasicBlock *Default = getBasicBlock(Record[2]);
4119       if (!OpTy || !Cond || !Default)
4120         return error("Invalid record");
4121       unsigned NumCases = (Record.size()-3)/2;
4122       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4123       InstructionList.push_back(SI);
4124       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4125         ConstantInt *CaseVal =
4126           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4127         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4128         if (!CaseVal || !DestBB) {
4129           delete SI;
4130           return error("Invalid record");
4131         }
4132         SI->addCase(CaseVal, DestBB);
4133       }
4134       I = SI;
4135       break;
4136     }
4137     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4138       if (Record.size() < 2)
4139         return error("Invalid record");
4140       Type *OpTy = getTypeByID(Record[0]);
4141       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4142       if (!OpTy || !Address)
4143         return error("Invalid record");
4144       unsigned NumDests = Record.size()-2;
4145       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4146       InstructionList.push_back(IBI);
4147       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4148         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4149           IBI->addDestination(DestBB);
4150         } else {
4151           delete IBI;
4152           return error("Invalid record");
4153         }
4154       }
4155       I = IBI;
4156       break;
4157     }
4158 
4159     case bitc::FUNC_CODE_INST_INVOKE: {
4160       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4161       if (Record.size() < 4)
4162         return error("Invalid record");
4163       unsigned OpNum = 0;
4164       AttributeList PAL = getAttributes(Record[OpNum++]);
4165       unsigned CCInfo = Record[OpNum++];
4166       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4167       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4168 
4169       FunctionType *FTy = nullptr;
4170       if (CCInfo >> 13 & 1 &&
4171           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4172         return error("Explicit invoke type is not a function type");
4173 
4174       Value *Callee;
4175       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4176         return error("Invalid record");
4177 
4178       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4179       if (!CalleeTy)
4180         return error("Callee is not a pointer");
4181       if (!FTy) {
4182         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4183         if (!FTy)
4184           return error("Callee is not of pointer to function type");
4185       } else if (CalleeTy->getElementType() != FTy)
4186         return error("Explicit invoke type does not match pointee type of "
4187                      "callee operand");
4188       if (Record.size() < FTy->getNumParams() + OpNum)
4189         return error("Insufficient operands to call");
4190 
4191       SmallVector<Value*, 16> Ops;
4192       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4193         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4194                                FTy->getParamType(i)));
4195         if (!Ops.back())
4196           return error("Invalid record");
4197       }
4198 
4199       if (!FTy->isVarArg()) {
4200         if (Record.size() != OpNum)
4201           return error("Invalid record");
4202       } else {
4203         // Read type/value pairs for varargs params.
4204         while (OpNum != Record.size()) {
4205           Value *Op;
4206           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4207             return error("Invalid record");
4208           Ops.push_back(Op);
4209         }
4210       }
4211 
4212       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4213       OperandBundles.clear();
4214       InstructionList.push_back(I);
4215       cast<InvokeInst>(I)->setCallingConv(
4216           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4217       cast<InvokeInst>(I)->setAttributes(PAL);
4218       break;
4219     }
4220     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4221       unsigned Idx = 0;
4222       Value *Val = nullptr;
4223       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4224         return error("Invalid record");
4225       I = ResumeInst::Create(Val);
4226       InstructionList.push_back(I);
4227       break;
4228     }
4229     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4230       I = new UnreachableInst(Context);
4231       InstructionList.push_back(I);
4232       break;
4233     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4234       if (Record.size() < 1 || ((Record.size()-1)&1))
4235         return error("Invalid record");
4236       Type *Ty = getTypeByID(Record[0]);
4237       if (!Ty)
4238         return error("Invalid record");
4239 
4240       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4241       InstructionList.push_back(PN);
4242 
4243       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4244         Value *V;
4245         // With the new function encoding, it is possible that operands have
4246         // negative IDs (for forward references).  Use a signed VBR
4247         // representation to keep the encoding small.
4248         if (UseRelativeIDs)
4249           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4250         else
4251           V = getValue(Record, 1+i, NextValueNo, Ty);
4252         BasicBlock *BB = getBasicBlock(Record[2+i]);
4253         if (!V || !BB)
4254           return error("Invalid record");
4255         PN->addIncoming(V, BB);
4256       }
4257       I = PN;
4258       break;
4259     }
4260 
4261     case bitc::FUNC_CODE_INST_LANDINGPAD:
4262     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4263       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4264       unsigned Idx = 0;
4265       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4266         if (Record.size() < 3)
4267           return error("Invalid record");
4268       } else {
4269         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4270         if (Record.size() < 4)
4271           return error("Invalid record");
4272       }
4273       Type *Ty = getTypeByID(Record[Idx++]);
4274       if (!Ty)
4275         return error("Invalid record");
4276       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4277         Value *PersFn = nullptr;
4278         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4279           return error("Invalid record");
4280 
4281         if (!F->hasPersonalityFn())
4282           F->setPersonalityFn(cast<Constant>(PersFn));
4283         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4284           return error("Personality function mismatch");
4285       }
4286 
4287       bool IsCleanup = !!Record[Idx++];
4288       unsigned NumClauses = Record[Idx++];
4289       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4290       LP->setCleanup(IsCleanup);
4291       for (unsigned J = 0; J != NumClauses; ++J) {
4292         LandingPadInst::ClauseType CT =
4293           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4294         Value *Val;
4295 
4296         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4297           delete LP;
4298           return error("Invalid record");
4299         }
4300 
4301         assert((CT != LandingPadInst::Catch ||
4302                 !isa<ArrayType>(Val->getType())) &&
4303                "Catch clause has a invalid type!");
4304         assert((CT != LandingPadInst::Filter ||
4305                 isa<ArrayType>(Val->getType())) &&
4306                "Filter clause has invalid type!");
4307         LP->addClause(cast<Constant>(Val));
4308       }
4309 
4310       I = LP;
4311       InstructionList.push_back(I);
4312       break;
4313     }
4314 
4315     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4316       if (Record.size() != 4)
4317         return error("Invalid record");
4318       uint64_t AlignRecord = Record[3];
4319       const uint64_t InAllocaMask = uint64_t(1) << 5;
4320       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4321       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4322       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4323                                 SwiftErrorMask;
4324       bool InAlloca = AlignRecord & InAllocaMask;
4325       bool SwiftError = AlignRecord & SwiftErrorMask;
4326       Type *Ty = getTypeByID(Record[0]);
4327       if ((AlignRecord & ExplicitTypeMask) == 0) {
4328         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4329         if (!PTy)
4330           return error("Old-style alloca with a non-pointer type");
4331         Ty = PTy->getElementType();
4332       }
4333       Type *OpTy = getTypeByID(Record[1]);
4334       Value *Size = getFnValueByID(Record[2], OpTy);
4335       unsigned Align;
4336       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4337         return Err;
4338       }
4339       if (!Ty || !Size)
4340         return error("Invalid record");
4341 
4342       // FIXME: Make this an optional field.
4343       const DataLayout &DL = TheModule->getDataLayout();
4344       unsigned AS = DL.getAllocaAddrSpace();
4345 
4346       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4347       AI->setUsedWithInAlloca(InAlloca);
4348       AI->setSwiftError(SwiftError);
4349       I = AI;
4350       InstructionList.push_back(I);
4351       break;
4352     }
4353     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4354       unsigned OpNum = 0;
4355       Value *Op;
4356       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4357           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4358         return error("Invalid record");
4359 
4360       Type *Ty = nullptr;
4361       if (OpNum + 3 == Record.size())
4362         Ty = getTypeByID(Record[OpNum++]);
4363       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4364         return Err;
4365       if (!Ty)
4366         Ty = cast<PointerType>(Op->getType())->getElementType();
4367 
4368       unsigned Align;
4369       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4370         return Err;
4371       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4372 
4373       InstructionList.push_back(I);
4374       break;
4375     }
4376     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4377        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4378       unsigned OpNum = 0;
4379       Value *Op;
4380       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4381           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4382         return error("Invalid record");
4383 
4384       Type *Ty = nullptr;
4385       if (OpNum + 5 == Record.size())
4386         Ty = getTypeByID(Record[OpNum++]);
4387       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4388         return Err;
4389       if (!Ty)
4390         Ty = cast<PointerType>(Op->getType())->getElementType();
4391 
4392       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4393       if (Ordering == AtomicOrdering::NotAtomic ||
4394           Ordering == AtomicOrdering::Release ||
4395           Ordering == AtomicOrdering::AcquireRelease)
4396         return error("Invalid record");
4397       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4398         return error("Invalid record");
4399       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4400 
4401       unsigned Align;
4402       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4403         return Err;
4404       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID);
4405 
4406       InstructionList.push_back(I);
4407       break;
4408     }
4409     case bitc::FUNC_CODE_INST_STORE:
4410     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4411       unsigned OpNum = 0;
4412       Value *Val, *Ptr;
4413       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4414           (BitCode == bitc::FUNC_CODE_INST_STORE
4415                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4416                : popValue(Record, OpNum, NextValueNo,
4417                           cast<PointerType>(Ptr->getType())->getElementType(),
4418                           Val)) ||
4419           OpNum + 2 != Record.size())
4420         return error("Invalid record");
4421 
4422       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4423         return Err;
4424       unsigned Align;
4425       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4426         return Err;
4427       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4428       InstructionList.push_back(I);
4429       break;
4430     }
4431     case bitc::FUNC_CODE_INST_STOREATOMIC:
4432     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4433       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4434       unsigned OpNum = 0;
4435       Value *Val, *Ptr;
4436       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4437           !isa<PointerType>(Ptr->getType()) ||
4438           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4439                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4440                : popValue(Record, OpNum, NextValueNo,
4441                           cast<PointerType>(Ptr->getType())->getElementType(),
4442                           Val)) ||
4443           OpNum + 4 != Record.size())
4444         return error("Invalid record");
4445 
4446       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4447         return Err;
4448       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4449       if (Ordering == AtomicOrdering::NotAtomic ||
4450           Ordering == AtomicOrdering::Acquire ||
4451           Ordering == AtomicOrdering::AcquireRelease)
4452         return error("Invalid record");
4453       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4454       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4455         return error("Invalid record");
4456 
4457       unsigned Align;
4458       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4459         return Err;
4460       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4461       InstructionList.push_back(I);
4462       break;
4463     }
4464     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4465     case bitc::FUNC_CODE_INST_CMPXCHG: {
4466       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4467       //          failureordering?, isweak?]
4468       unsigned OpNum = 0;
4469       Value *Ptr, *Cmp, *New;
4470       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4471           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4472                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4473                : popValue(Record, OpNum, NextValueNo,
4474                           cast<PointerType>(Ptr->getType())->getElementType(),
4475                           Cmp)) ||
4476           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4477           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4478         return error("Invalid record");
4479       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4480       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4481           SuccessOrdering == AtomicOrdering::Unordered)
4482         return error("Invalid record");
4483       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4484 
4485       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4486         return Err;
4487       AtomicOrdering FailureOrdering;
4488       if (Record.size() < 7)
4489         FailureOrdering =
4490             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4491       else
4492         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4493 
4494       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4495                                 SSID);
4496       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4497 
4498       if (Record.size() < 8) {
4499         // Before weak cmpxchgs existed, the instruction simply returned the
4500         // value loaded from memory, so bitcode files from that era will be
4501         // expecting the first component of a modern cmpxchg.
4502         CurBB->getInstList().push_back(I);
4503         I = ExtractValueInst::Create(I, 0);
4504       } else {
4505         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4506       }
4507 
4508       InstructionList.push_back(I);
4509       break;
4510     }
4511     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4512       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4513       unsigned OpNum = 0;
4514       Value *Ptr, *Val;
4515       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4516           !isa<PointerType>(Ptr->getType()) ||
4517           popValue(Record, OpNum, NextValueNo,
4518                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4519           OpNum+4 != Record.size())
4520         return error("Invalid record");
4521       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4522       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4523           Operation > AtomicRMWInst::LAST_BINOP)
4524         return error("Invalid record");
4525       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4526       if (Ordering == AtomicOrdering::NotAtomic ||
4527           Ordering == AtomicOrdering::Unordered)
4528         return error("Invalid record");
4529       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4530       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4531       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4532       InstructionList.push_back(I);
4533       break;
4534     }
4535     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4536       if (2 != Record.size())
4537         return error("Invalid record");
4538       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4539       if (Ordering == AtomicOrdering::NotAtomic ||
4540           Ordering == AtomicOrdering::Unordered ||
4541           Ordering == AtomicOrdering::Monotonic)
4542         return error("Invalid record");
4543       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4544       I = new FenceInst(Context, Ordering, SSID);
4545       InstructionList.push_back(I);
4546       break;
4547     }
4548     case bitc::FUNC_CODE_INST_CALL: {
4549       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4550       if (Record.size() < 3)
4551         return error("Invalid record");
4552 
4553       unsigned OpNum = 0;
4554       AttributeList PAL = getAttributes(Record[OpNum++]);
4555       unsigned CCInfo = Record[OpNum++];
4556 
4557       FastMathFlags FMF;
4558       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4559         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4560         if (!FMF.any())
4561           return error("Fast math flags indicator set for call with no FMF");
4562       }
4563 
4564       FunctionType *FTy = nullptr;
4565       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4566           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4567         return error("Explicit call type is not a function type");
4568 
4569       Value *Callee;
4570       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4571         return error("Invalid record");
4572 
4573       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4574       if (!OpTy)
4575         return error("Callee is not a pointer type");
4576       if (!FTy) {
4577         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4578         if (!FTy)
4579           return error("Callee is not of pointer to function type");
4580       } else if (OpTy->getElementType() != FTy)
4581         return error("Explicit call type does not match pointee type of "
4582                      "callee operand");
4583       if (Record.size() < FTy->getNumParams() + OpNum)
4584         return error("Insufficient operands to call");
4585 
4586       SmallVector<Value*, 16> Args;
4587       // Read the fixed params.
4588       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4589         if (FTy->getParamType(i)->isLabelTy())
4590           Args.push_back(getBasicBlock(Record[OpNum]));
4591         else
4592           Args.push_back(getValue(Record, OpNum, NextValueNo,
4593                                   FTy->getParamType(i)));
4594         if (!Args.back())
4595           return error("Invalid record");
4596       }
4597 
4598       // Read type/value pairs for varargs params.
4599       if (!FTy->isVarArg()) {
4600         if (OpNum != Record.size())
4601           return error("Invalid record");
4602       } else {
4603         while (OpNum != Record.size()) {
4604           Value *Op;
4605           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4606             return error("Invalid record");
4607           Args.push_back(Op);
4608         }
4609       }
4610 
4611       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4612       OperandBundles.clear();
4613       InstructionList.push_back(I);
4614       cast<CallInst>(I)->setCallingConv(
4615           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4616       CallInst::TailCallKind TCK = CallInst::TCK_None;
4617       if (CCInfo & 1 << bitc::CALL_TAIL)
4618         TCK = CallInst::TCK_Tail;
4619       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4620         TCK = CallInst::TCK_MustTail;
4621       if (CCInfo & (1 << bitc::CALL_NOTAIL))
4622         TCK = CallInst::TCK_NoTail;
4623       cast<CallInst>(I)->setTailCallKind(TCK);
4624       cast<CallInst>(I)->setAttributes(PAL);
4625       if (FMF.any()) {
4626         if (!isa<FPMathOperator>(I))
4627           return error("Fast-math-flags specified for call without "
4628                        "floating-point scalar or vector return type");
4629         I->setFastMathFlags(FMF);
4630       }
4631       break;
4632     }
4633     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4634       if (Record.size() < 3)
4635         return error("Invalid record");
4636       Type *OpTy = getTypeByID(Record[0]);
4637       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4638       Type *ResTy = getTypeByID(Record[2]);
4639       if (!OpTy || !Op || !ResTy)
4640         return error("Invalid record");
4641       I = new VAArgInst(Op, ResTy);
4642       InstructionList.push_back(I);
4643       break;
4644     }
4645 
4646     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4647       // A call or an invoke can be optionally prefixed with some variable
4648       // number of operand bundle blocks.  These blocks are read into
4649       // OperandBundles and consumed at the next call or invoke instruction.
4650 
4651       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4652         return error("Invalid record");
4653 
4654       std::vector<Value *> Inputs;
4655 
4656       unsigned OpNum = 1;
4657       while (OpNum != Record.size()) {
4658         Value *Op;
4659         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4660           return error("Invalid record");
4661         Inputs.push_back(Op);
4662       }
4663 
4664       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4665       continue;
4666     }
4667     }
4668 
4669     // Add instruction to end of current BB.  If there is no current BB, reject
4670     // this file.
4671     if (!CurBB) {
4672       I->deleteValue();
4673       return error("Invalid instruction with no BB");
4674     }
4675     if (!OperandBundles.empty()) {
4676       I->deleteValue();
4677       return error("Operand bundles found with no consumer");
4678     }
4679     CurBB->getInstList().push_back(I);
4680 
4681     // If this was a terminator instruction, move to the next block.
4682     if (I->isTerminator()) {
4683       ++CurBBNo;
4684       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4685     }
4686 
4687     // Non-void values get registered in the value table for future use.
4688     if (I && !I->getType()->isVoidTy())
4689       ValueList.assignValue(I, NextValueNo++);
4690   }
4691 
4692 OutOfRecordLoop:
4693 
4694   if (!OperandBundles.empty())
4695     return error("Operand bundles found with no consumer");
4696 
4697   // Check the function list for unresolved values.
4698   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4699     if (!A->getParent()) {
4700       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4701       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4702         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4703           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4704           delete A;
4705         }
4706       }
4707       return error("Never resolved value found in function");
4708     }
4709   }
4710 
4711   // Unexpected unresolved metadata about to be dropped.
4712   if (MDLoader->hasFwdRefs())
4713     return error("Invalid function metadata: outgoing forward refs");
4714 
4715   // Trim the value list down to the size it was before we parsed this function.
4716   ValueList.shrinkTo(ModuleValueListSize);
4717   MDLoader->shrinkTo(ModuleMDLoaderSize);
4718   std::vector<BasicBlock*>().swap(FunctionBBs);
4719   return Error::success();
4720 }
4721 
4722 /// Find the function body in the bitcode stream
4723 Error BitcodeReader::findFunctionInStream(
4724     Function *F,
4725     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4726   while (DeferredFunctionInfoIterator->second == 0) {
4727     // This is the fallback handling for the old format bitcode that
4728     // didn't contain the function index in the VST, or when we have
4729     // an anonymous function which would not have a VST entry.
4730     // Assert that we have one of those two cases.
4731     assert(VSTOffset == 0 || !F->hasName());
4732     // Parse the next body in the stream and set its position in the
4733     // DeferredFunctionInfo map.
4734     if (Error Err = rememberAndSkipFunctionBodies())
4735       return Err;
4736   }
4737   return Error::success();
4738 }
4739 
4740 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4741   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4742     return SyncScope::ID(Val);
4743   if (Val >= SSIDs.size())
4744     return SyncScope::System; // Map unknown synchronization scopes to system.
4745   return SSIDs[Val];
4746 }
4747 
4748 //===----------------------------------------------------------------------===//
4749 // GVMaterializer implementation
4750 //===----------------------------------------------------------------------===//
4751 
4752 Error BitcodeReader::materialize(GlobalValue *GV) {
4753   Function *F = dyn_cast<Function>(GV);
4754   // If it's not a function or is already material, ignore the request.
4755   if (!F || !F->isMaterializable())
4756     return Error::success();
4757 
4758   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4759   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4760   // If its position is recorded as 0, its body is somewhere in the stream
4761   // but we haven't seen it yet.
4762   if (DFII->second == 0)
4763     if (Error Err = findFunctionInStream(F, DFII))
4764       return Err;
4765 
4766   // Materialize metadata before parsing any function bodies.
4767   if (Error Err = materializeMetadata())
4768     return Err;
4769 
4770   // Move the bit stream to the saved position of the deferred function body.
4771   Stream.JumpToBit(DFII->second);
4772 
4773   if (Error Err = parseFunctionBody(F))
4774     return Err;
4775   F->setIsMaterializable(false);
4776 
4777   if (StripDebugInfo)
4778     stripDebugInfo(*F);
4779 
4780   // Upgrade any old intrinsic calls in the function.
4781   for (auto &I : UpgradedIntrinsics) {
4782     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4783          UI != UE;) {
4784       User *U = *UI;
4785       ++UI;
4786       if (CallInst *CI = dyn_cast<CallInst>(U))
4787         UpgradeIntrinsicCall(CI, I.second);
4788     }
4789   }
4790 
4791   // Update calls to the remangled intrinsics
4792   for (auto &I : RemangledIntrinsics)
4793     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4794          UI != UE;)
4795       // Don't expect any other users than call sites
4796       CallSite(*UI++).setCalledFunction(I.second);
4797 
4798   // Finish fn->subprogram upgrade for materialized functions.
4799   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4800     F->setSubprogram(SP);
4801 
4802   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4803   if (!MDLoader->isStrippingTBAA()) {
4804     for (auto &I : instructions(F)) {
4805       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4806       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4807         continue;
4808       MDLoader->setStripTBAA(true);
4809       stripTBAA(F->getParent());
4810     }
4811   }
4812 
4813   // Bring in any functions that this function forward-referenced via
4814   // blockaddresses.
4815   return materializeForwardReferencedFunctions();
4816 }
4817 
4818 Error BitcodeReader::materializeModule() {
4819   if (Error Err = materializeMetadata())
4820     return Err;
4821 
4822   // Promise to materialize all forward references.
4823   WillMaterializeAllForwardRefs = true;
4824 
4825   // Iterate over the module, deserializing any functions that are still on
4826   // disk.
4827   for (Function &F : *TheModule) {
4828     if (Error Err = materialize(&F))
4829       return Err;
4830   }
4831   // At this point, if there are any function bodies, parse the rest of
4832   // the bits in the module past the last function block we have recorded
4833   // through either lazy scanning or the VST.
4834   if (LastFunctionBlockBit || NextUnreadBit)
4835     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4836                                     ? LastFunctionBlockBit
4837                                     : NextUnreadBit))
4838       return Err;
4839 
4840   // Check that all block address forward references got resolved (as we
4841   // promised above).
4842   if (!BasicBlockFwdRefs.empty())
4843     return error("Never resolved function from blockaddress");
4844 
4845   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4846   // delete the old functions to clean up. We can't do this unless the entire
4847   // module is materialized because there could always be another function body
4848   // with calls to the old function.
4849   for (auto &I : UpgradedIntrinsics) {
4850     for (auto *U : I.first->users()) {
4851       if (CallInst *CI = dyn_cast<CallInst>(U))
4852         UpgradeIntrinsicCall(CI, I.second);
4853     }
4854     if (!I.first->use_empty())
4855       I.first->replaceAllUsesWith(I.second);
4856     I.first->eraseFromParent();
4857   }
4858   UpgradedIntrinsics.clear();
4859   // Do the same for remangled intrinsics
4860   for (auto &I : RemangledIntrinsics) {
4861     I.first->replaceAllUsesWith(I.second);
4862     I.first->eraseFromParent();
4863   }
4864   RemangledIntrinsics.clear();
4865 
4866   UpgradeDebugInfo(*TheModule);
4867 
4868   UpgradeModuleFlags(*TheModule);
4869 
4870   UpgradeRetainReleaseMarker(*TheModule);
4871 
4872   return Error::success();
4873 }
4874 
4875 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4876   return IdentifiedStructTypes;
4877 }
4878 
4879 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4880     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4881     StringRef ModulePath, unsigned ModuleId)
4882     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4883       ModulePath(ModulePath), ModuleId(ModuleId) {}
4884 
4885 void ModuleSummaryIndexBitcodeReader::addThisModule() {
4886   TheIndex.addModule(ModulePath, ModuleId);
4887 }
4888 
4889 ModuleSummaryIndex::ModuleInfo *
4890 ModuleSummaryIndexBitcodeReader::getThisModule() {
4891   return TheIndex.getModule(ModulePath);
4892 }
4893 
4894 std::pair<ValueInfo, GlobalValue::GUID>
4895 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4896   auto VGI = ValueIdToValueInfoMap[ValueId];
4897   assert(VGI.first);
4898   return VGI;
4899 }
4900 
4901 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4902     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4903     StringRef SourceFileName) {
4904   std::string GlobalId =
4905       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4906   auto ValueGUID = GlobalValue::getGUID(GlobalId);
4907   auto OriginalNameID = ValueGUID;
4908   if (GlobalValue::isLocalLinkage(Linkage))
4909     OriginalNameID = GlobalValue::getGUID(ValueName);
4910   if (PrintSummaryGUIDs)
4911     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4912            << ValueName << "\n";
4913 
4914   // UseStrtab is false for legacy summary formats and value names are
4915   // created on stack. In that case we save the name in a string saver in
4916   // the index so that the value name can be recorded.
4917   ValueIdToValueInfoMap[ValueID] = std::make_pair(
4918       TheIndex.getOrInsertValueInfo(
4919           ValueGUID,
4920           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
4921       OriginalNameID);
4922 }
4923 
4924 // Specialized value symbol table parser used when reading module index
4925 // blocks where we don't actually create global values. The parsed information
4926 // is saved in the bitcode reader for use when later parsing summaries.
4927 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4928     uint64_t Offset,
4929     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4930   // With a strtab the VST is not required to parse the summary.
4931   if (UseStrtab)
4932     return Error::success();
4933 
4934   assert(Offset > 0 && "Expected non-zero VST offset");
4935   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4936 
4937   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
4938     return error("Invalid record");
4939 
4940   SmallVector<uint64_t, 64> Record;
4941 
4942   // Read all the records for this value table.
4943   SmallString<128> ValueName;
4944 
4945   while (true) {
4946     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4947 
4948     switch (Entry.Kind) {
4949     case BitstreamEntry::SubBlock: // Handled for us already.
4950     case BitstreamEntry::Error:
4951       return error("Malformed block");
4952     case BitstreamEntry::EndBlock:
4953       // Done parsing VST, jump back to wherever we came from.
4954       Stream.JumpToBit(CurrentBit);
4955       return Error::success();
4956     case BitstreamEntry::Record:
4957       // The interesting case.
4958       break;
4959     }
4960 
4961     // Read a record.
4962     Record.clear();
4963     switch (Stream.readRecord(Entry.ID, Record)) {
4964     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4965       break;
4966     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4967       if (convertToString(Record, 1, ValueName))
4968         return error("Invalid record");
4969       unsigned ValueID = Record[0];
4970       assert(!SourceFileName.empty());
4971       auto VLI = ValueIdToLinkageMap.find(ValueID);
4972       assert(VLI != ValueIdToLinkageMap.end() &&
4973              "No linkage found for VST entry?");
4974       auto Linkage = VLI->second;
4975       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4976       ValueName.clear();
4977       break;
4978     }
4979     case bitc::VST_CODE_FNENTRY: {
4980       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4981       if (convertToString(Record, 2, ValueName))
4982         return error("Invalid record");
4983       unsigned ValueID = Record[0];
4984       assert(!SourceFileName.empty());
4985       auto VLI = ValueIdToLinkageMap.find(ValueID);
4986       assert(VLI != ValueIdToLinkageMap.end() &&
4987              "No linkage found for VST entry?");
4988       auto Linkage = VLI->second;
4989       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4990       ValueName.clear();
4991       break;
4992     }
4993     case bitc::VST_CODE_COMBINED_ENTRY: {
4994       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
4995       unsigned ValueID = Record[0];
4996       GlobalValue::GUID RefGUID = Record[1];
4997       // The "original name", which is the second value of the pair will be
4998       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
4999       ValueIdToValueInfoMap[ValueID] =
5000           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5001       break;
5002     }
5003     }
5004   }
5005 }
5006 
5007 // Parse just the blocks needed for building the index out of the module.
5008 // At the end of this routine the module Index is populated with a map
5009 // from global value id to GlobalValueSummary objects.
5010 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5011   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5012     return error("Invalid record");
5013 
5014   SmallVector<uint64_t, 64> Record;
5015   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5016   unsigned ValueId = 0;
5017 
5018   // Read the index for this module.
5019   while (true) {
5020     BitstreamEntry Entry = Stream.advance();
5021 
5022     switch (Entry.Kind) {
5023     case BitstreamEntry::Error:
5024       return error("Malformed block");
5025     case BitstreamEntry::EndBlock:
5026       return Error::success();
5027 
5028     case BitstreamEntry::SubBlock:
5029       switch (Entry.ID) {
5030       default: // Skip unknown content.
5031         if (Stream.SkipBlock())
5032           return error("Invalid record");
5033         break;
5034       case bitc::BLOCKINFO_BLOCK_ID:
5035         // Need to parse these to get abbrev ids (e.g. for VST)
5036         if (readBlockInfo())
5037           return error("Malformed block");
5038         break;
5039       case bitc::VALUE_SYMTAB_BLOCK_ID:
5040         // Should have been parsed earlier via VSTOffset, unless there
5041         // is no summary section.
5042         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5043                 !SeenGlobalValSummary) &&
5044                "Expected early VST parse via VSTOffset record");
5045         if (Stream.SkipBlock())
5046           return error("Invalid record");
5047         break;
5048       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5049       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5050         // Add the module if it is a per-module index (has a source file name).
5051         if (!SourceFileName.empty())
5052           addThisModule();
5053         assert(!SeenValueSymbolTable &&
5054                "Already read VST when parsing summary block?");
5055         // We might not have a VST if there were no values in the
5056         // summary. An empty summary block generated when we are
5057         // performing ThinLTO compiles so we don't later invoke
5058         // the regular LTO process on them.
5059         if (VSTOffset > 0) {
5060           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5061             return Err;
5062           SeenValueSymbolTable = true;
5063         }
5064         SeenGlobalValSummary = true;
5065         if (Error Err = parseEntireSummary(Entry.ID))
5066           return Err;
5067         break;
5068       case bitc::MODULE_STRTAB_BLOCK_ID:
5069         if (Error Err = parseModuleStringTable())
5070           return Err;
5071         break;
5072       }
5073       continue;
5074 
5075     case BitstreamEntry::Record: {
5076         Record.clear();
5077         auto BitCode = Stream.readRecord(Entry.ID, Record);
5078         switch (BitCode) {
5079         default:
5080           break; // Default behavior, ignore unknown content.
5081         case bitc::MODULE_CODE_VERSION: {
5082           if (Error Err = parseVersionRecord(Record).takeError())
5083             return Err;
5084           break;
5085         }
5086         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5087         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5088           SmallString<128> ValueName;
5089           if (convertToString(Record, 0, ValueName))
5090             return error("Invalid record");
5091           SourceFileName = ValueName.c_str();
5092           break;
5093         }
5094         /// MODULE_CODE_HASH: [5*i32]
5095         case bitc::MODULE_CODE_HASH: {
5096           if (Record.size() != 5)
5097             return error("Invalid hash length " + Twine(Record.size()).str());
5098           auto &Hash = getThisModule()->second.second;
5099           int Pos = 0;
5100           for (auto &Val : Record) {
5101             assert(!(Val >> 32) && "Unexpected high bits set");
5102             Hash[Pos++] = Val;
5103           }
5104           break;
5105         }
5106         /// MODULE_CODE_VSTOFFSET: [offset]
5107         case bitc::MODULE_CODE_VSTOFFSET:
5108           if (Record.size() < 1)
5109             return error("Invalid record");
5110           // Note that we subtract 1 here because the offset is relative to one
5111           // word before the start of the identification or module block, which
5112           // was historically always the start of the regular bitcode header.
5113           VSTOffset = Record[0] - 1;
5114           break;
5115         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5116         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5117         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5118         // v2: [strtab offset, strtab size, v1]
5119         case bitc::MODULE_CODE_GLOBALVAR:
5120         case bitc::MODULE_CODE_FUNCTION:
5121         case bitc::MODULE_CODE_ALIAS: {
5122           StringRef Name;
5123           ArrayRef<uint64_t> GVRecord;
5124           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5125           if (GVRecord.size() <= 3)
5126             return error("Invalid record");
5127           uint64_t RawLinkage = GVRecord[3];
5128           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5129           if (!UseStrtab) {
5130             ValueIdToLinkageMap[ValueId++] = Linkage;
5131             break;
5132           }
5133 
5134           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5135           break;
5136         }
5137         }
5138       }
5139       continue;
5140     }
5141   }
5142 }
5143 
5144 std::vector<ValueInfo>
5145 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5146   std::vector<ValueInfo> Ret;
5147   Ret.reserve(Record.size());
5148   for (uint64_t RefValueId : Record)
5149     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5150   return Ret;
5151 }
5152 
5153 std::vector<FunctionSummary::EdgeTy>
5154 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5155                                               bool IsOldProfileFormat,
5156                                               bool HasProfile, bool HasRelBF) {
5157   std::vector<FunctionSummary::EdgeTy> Ret;
5158   Ret.reserve(Record.size());
5159   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5160     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5161     uint64_t RelBF = 0;
5162     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5163     if (IsOldProfileFormat) {
5164       I += 1; // Skip old callsitecount field
5165       if (HasProfile)
5166         I += 1; // Skip old profilecount field
5167     } else if (HasProfile)
5168       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5169     else if (HasRelBF)
5170       RelBF = Record[++I];
5171     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5172   }
5173   return Ret;
5174 }
5175 
5176 static void
5177 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5178                                        WholeProgramDevirtResolution &Wpd) {
5179   uint64_t ArgNum = Record[Slot++];
5180   WholeProgramDevirtResolution::ByArg &B =
5181       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5182   Slot += ArgNum;
5183 
5184   B.TheKind =
5185       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5186   B.Info = Record[Slot++];
5187   B.Byte = Record[Slot++];
5188   B.Bit = Record[Slot++];
5189 }
5190 
5191 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5192                                               StringRef Strtab, size_t &Slot,
5193                                               TypeIdSummary &TypeId) {
5194   uint64_t Id = Record[Slot++];
5195   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5196 
5197   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5198   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5199                         static_cast<size_t>(Record[Slot + 1])};
5200   Slot += 2;
5201 
5202   uint64_t ResByArgNum = Record[Slot++];
5203   for (uint64_t I = 0; I != ResByArgNum; ++I)
5204     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5205 }
5206 
5207 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5208                                      StringRef Strtab,
5209                                      ModuleSummaryIndex &TheIndex) {
5210   size_t Slot = 0;
5211   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5212       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5213   Slot += 2;
5214 
5215   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5216   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5217   TypeId.TTRes.AlignLog2 = Record[Slot++];
5218   TypeId.TTRes.SizeM1 = Record[Slot++];
5219   TypeId.TTRes.BitMask = Record[Slot++];
5220   TypeId.TTRes.InlineBits = Record[Slot++];
5221 
5222   while (Slot < Record.size())
5223     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5224 }
5225 
5226 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) {
5227   // Read-only refs are in the end of the refs list.
5228   for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo)
5229     Refs[RefNo].setReadOnly();
5230 }
5231 
5232 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5233 // objects in the index.
5234 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5235   if (Stream.EnterSubBlock(ID))
5236     return error("Invalid record");
5237   SmallVector<uint64_t, 64> Record;
5238 
5239   // Parse version
5240   {
5241     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5242     if (Entry.Kind != BitstreamEntry::Record)
5243       return error("Invalid Summary Block: record for version expected");
5244     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5245       return error("Invalid Summary Block: version expected");
5246   }
5247   const uint64_t Version = Record[0];
5248   const bool IsOldProfileFormat = Version == 1;
5249   if (Version < 1 || Version > 6)
5250     return error("Invalid summary version " + Twine(Version) +
5251                  ". Version should be in the range [1-6].");
5252   Record.clear();
5253 
5254   // Keep around the last seen summary to be used when we see an optional
5255   // "OriginalName" attachement.
5256   GlobalValueSummary *LastSeenSummary = nullptr;
5257   GlobalValue::GUID LastSeenGUID = 0;
5258 
5259   // We can expect to see any number of type ID information records before
5260   // each function summary records; these variables store the information
5261   // collected so far so that it can be used to create the summary object.
5262   std::vector<GlobalValue::GUID> PendingTypeTests;
5263   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5264       PendingTypeCheckedLoadVCalls;
5265   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5266       PendingTypeCheckedLoadConstVCalls;
5267 
5268   while (true) {
5269     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5270 
5271     switch (Entry.Kind) {
5272     case BitstreamEntry::SubBlock: // Handled for us already.
5273     case BitstreamEntry::Error:
5274       return error("Malformed block");
5275     case BitstreamEntry::EndBlock:
5276       return Error::success();
5277     case BitstreamEntry::Record:
5278       // The interesting case.
5279       break;
5280     }
5281 
5282     // Read a record. The record format depends on whether this
5283     // is a per-module index or a combined index file. In the per-module
5284     // case the records contain the associated value's ID for correlation
5285     // with VST entries. In the combined index the correlation is done
5286     // via the bitcode offset of the summary records (which were saved
5287     // in the combined index VST entries). The records also contain
5288     // information used for ThinLTO renaming and importing.
5289     Record.clear();
5290     auto BitCode = Stream.readRecord(Entry.ID, Record);
5291     switch (BitCode) {
5292     default: // Default behavior: ignore.
5293       break;
5294     case bitc::FS_FLAGS: {  // [flags]
5295       uint64_t Flags = Record[0];
5296       // Scan flags.
5297       assert(Flags <= 0x1f && "Unexpected bits in flag");
5298 
5299       // 1 bit: WithGlobalValueDeadStripping flag.
5300       // Set on combined index only.
5301       if (Flags & 0x1)
5302         TheIndex.setWithGlobalValueDeadStripping();
5303       // 1 bit: SkipModuleByDistributedBackend flag.
5304       // Set on combined index only.
5305       if (Flags & 0x2)
5306         TheIndex.setSkipModuleByDistributedBackend();
5307       // 1 bit: HasSyntheticEntryCounts flag.
5308       // Set on combined index only.
5309       if (Flags & 0x4)
5310         TheIndex.setHasSyntheticEntryCounts();
5311       // 1 bit: DisableSplitLTOUnit flag.
5312       // Set on per module indexes. It is up to the client to validate
5313       // the consistency of this flag across modules being linked.
5314       if (Flags & 0x8)
5315         TheIndex.setEnableSplitLTOUnit();
5316       // 1 bit: PartiallySplitLTOUnits flag.
5317       // Set on combined index only.
5318       if (Flags & 0x10)
5319         TheIndex.setPartiallySplitLTOUnits();
5320       break;
5321     }
5322     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5323       uint64_t ValueID = Record[0];
5324       GlobalValue::GUID RefGUID = Record[1];
5325       ValueIdToValueInfoMap[ValueID] =
5326           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5327       break;
5328     }
5329     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5330     //                numrefs x valueid, n x (valueid)]
5331     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5332     //                        numrefs x valueid,
5333     //                        n x (valueid, hotness)]
5334     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5335     //                      numrefs x valueid,
5336     //                      n x (valueid, relblockfreq)]
5337     case bitc::FS_PERMODULE:
5338     case bitc::FS_PERMODULE_RELBF:
5339     case bitc::FS_PERMODULE_PROFILE: {
5340       unsigned ValueID = Record[0];
5341       uint64_t RawFlags = Record[1];
5342       unsigned InstCount = Record[2];
5343       uint64_t RawFunFlags = 0;
5344       unsigned NumRefs = Record[3];
5345       unsigned NumImmutableRefs = 0;
5346       int RefListStartIndex = 4;
5347       if (Version >= 4) {
5348         RawFunFlags = Record[3];
5349         NumRefs = Record[4];
5350         RefListStartIndex = 5;
5351         if (Version >= 5) {
5352           NumImmutableRefs = Record[5];
5353           RefListStartIndex = 6;
5354         }
5355       }
5356 
5357       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5358       // The module path string ref set in the summary must be owned by the
5359       // index's module string table. Since we don't have a module path
5360       // string table section in the per-module index, we create a single
5361       // module path string table entry with an empty (0) ID to take
5362       // ownership.
5363       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5364       assert(Record.size() >= RefListStartIndex + NumRefs &&
5365              "Record size inconsistent with number of references");
5366       std::vector<ValueInfo> Refs = makeRefList(
5367           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5368       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5369       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5370       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5371           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5372           IsOldProfileFormat, HasProfile, HasRelBF);
5373       setImmutableRefs(Refs, NumImmutableRefs);
5374       auto FS = llvm::make_unique<FunctionSummary>(
5375           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5376           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5377           std::move(PendingTypeTestAssumeVCalls),
5378           std::move(PendingTypeCheckedLoadVCalls),
5379           std::move(PendingTypeTestAssumeConstVCalls),
5380           std::move(PendingTypeCheckedLoadConstVCalls));
5381       PendingTypeTests.clear();
5382       PendingTypeTestAssumeVCalls.clear();
5383       PendingTypeCheckedLoadVCalls.clear();
5384       PendingTypeTestAssumeConstVCalls.clear();
5385       PendingTypeCheckedLoadConstVCalls.clear();
5386       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5387       FS->setModulePath(getThisModule()->first());
5388       FS->setOriginalName(VIAndOriginalGUID.second);
5389       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5390       break;
5391     }
5392     // FS_ALIAS: [valueid, flags, valueid]
5393     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5394     // they expect all aliasee summaries to be available.
5395     case bitc::FS_ALIAS: {
5396       unsigned ValueID = Record[0];
5397       uint64_t RawFlags = Record[1];
5398       unsigned AliaseeID = Record[2];
5399       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5400       auto AS = llvm::make_unique<AliasSummary>(Flags);
5401       // The module path string ref set in the summary must be owned by the
5402       // index's module string table. Since we don't have a module path
5403       // string table section in the per-module index, we create a single
5404       // module path string table entry with an empty (0) ID to take
5405       // ownership.
5406       AS->setModulePath(getThisModule()->first());
5407 
5408       GlobalValue::GUID AliaseeGUID =
5409           getValueInfoFromValueId(AliaseeID).first.getGUID();
5410       auto AliaseeInModule =
5411           TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5412       if (!AliaseeInModule)
5413         return error("Alias expects aliasee summary to be parsed");
5414       AS->setAliasee(AliaseeInModule);
5415       AS->setAliaseeGUID(AliaseeGUID);
5416 
5417       auto GUID = getValueInfoFromValueId(ValueID);
5418       AS->setOriginalName(GUID.second);
5419       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5420       break;
5421     }
5422     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5423     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5424       unsigned ValueID = Record[0];
5425       uint64_t RawFlags = Record[1];
5426       unsigned RefArrayStart = 2;
5427       GlobalVarSummary::GVarFlags GVF;
5428       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5429       if (Version >= 5) {
5430         GVF = getDecodedGVarFlags(Record[2]);
5431         RefArrayStart = 3;
5432       }
5433       std::vector<ValueInfo> Refs =
5434           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5435       auto FS =
5436           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5437       FS->setModulePath(getThisModule()->first());
5438       auto GUID = getValueInfoFromValueId(ValueID);
5439       FS->setOriginalName(GUID.second);
5440       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5441       break;
5442     }
5443     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5444     //               numrefs x valueid, n x (valueid)]
5445     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5446     //                       numrefs x valueid, n x (valueid, hotness)]
5447     case bitc::FS_COMBINED:
5448     case bitc::FS_COMBINED_PROFILE: {
5449       unsigned ValueID = Record[0];
5450       uint64_t ModuleId = Record[1];
5451       uint64_t RawFlags = Record[2];
5452       unsigned InstCount = Record[3];
5453       uint64_t RawFunFlags = 0;
5454       uint64_t EntryCount = 0;
5455       unsigned NumRefs = Record[4];
5456       unsigned NumImmutableRefs = 0;
5457       int RefListStartIndex = 5;
5458 
5459       if (Version >= 4) {
5460         RawFunFlags = Record[4];
5461         RefListStartIndex = 6;
5462         size_t NumRefsIndex = 5;
5463         if (Version >= 5) {
5464           RefListStartIndex = 7;
5465           if (Version >= 6) {
5466             NumRefsIndex = 6;
5467             EntryCount = Record[5];
5468             RefListStartIndex = 8;
5469           }
5470           NumImmutableRefs = Record[RefListStartIndex - 1];
5471         }
5472         NumRefs = Record[NumRefsIndex];
5473       }
5474 
5475       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5476       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5477       assert(Record.size() >= RefListStartIndex + NumRefs &&
5478              "Record size inconsistent with number of references");
5479       std::vector<ValueInfo> Refs = makeRefList(
5480           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5481       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5482       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5483           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5484           IsOldProfileFormat, HasProfile, false);
5485       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5486       setImmutableRefs(Refs, NumImmutableRefs);
5487       auto FS = llvm::make_unique<FunctionSummary>(
5488           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
5489           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
5490           std::move(PendingTypeTestAssumeVCalls),
5491           std::move(PendingTypeCheckedLoadVCalls),
5492           std::move(PendingTypeTestAssumeConstVCalls),
5493           std::move(PendingTypeCheckedLoadConstVCalls));
5494       PendingTypeTests.clear();
5495       PendingTypeTestAssumeVCalls.clear();
5496       PendingTypeCheckedLoadVCalls.clear();
5497       PendingTypeTestAssumeConstVCalls.clear();
5498       PendingTypeCheckedLoadConstVCalls.clear();
5499       LastSeenSummary = FS.get();
5500       LastSeenGUID = VI.getGUID();
5501       FS->setModulePath(ModuleIdMap[ModuleId]);
5502       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5503       break;
5504     }
5505     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5506     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5507     // they expect all aliasee summaries to be available.
5508     case bitc::FS_COMBINED_ALIAS: {
5509       unsigned ValueID = Record[0];
5510       uint64_t ModuleId = Record[1];
5511       uint64_t RawFlags = Record[2];
5512       unsigned AliaseeValueId = Record[3];
5513       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5514       auto AS = llvm::make_unique<AliasSummary>(Flags);
5515       LastSeenSummary = AS.get();
5516       AS->setModulePath(ModuleIdMap[ModuleId]);
5517 
5518       auto AliaseeGUID =
5519           getValueInfoFromValueId(AliaseeValueId).first.getGUID();
5520       auto AliaseeInModule =
5521           TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
5522       AS->setAliasee(AliaseeInModule);
5523       AS->setAliaseeGUID(AliaseeGUID);
5524 
5525       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5526       LastSeenGUID = VI.getGUID();
5527       TheIndex.addGlobalValueSummary(VI, std::move(AS));
5528       break;
5529     }
5530     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5531     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5532       unsigned ValueID = Record[0];
5533       uint64_t ModuleId = Record[1];
5534       uint64_t RawFlags = Record[2];
5535       unsigned RefArrayStart = 3;
5536       GlobalVarSummary::GVarFlags GVF;
5537       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5538       if (Version >= 5) {
5539         GVF = getDecodedGVarFlags(Record[3]);
5540         RefArrayStart = 4;
5541       }
5542       std::vector<ValueInfo> Refs =
5543           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5544       auto FS =
5545           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5546       LastSeenSummary = FS.get();
5547       FS->setModulePath(ModuleIdMap[ModuleId]);
5548       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5549       LastSeenGUID = VI.getGUID();
5550       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5551       break;
5552     }
5553     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5554     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5555       uint64_t OriginalName = Record[0];
5556       if (!LastSeenSummary)
5557         return error("Name attachment that does not follow a combined record");
5558       LastSeenSummary->setOriginalName(OriginalName);
5559       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5560       // Reset the LastSeenSummary
5561       LastSeenSummary = nullptr;
5562       LastSeenGUID = 0;
5563       break;
5564     }
5565     case bitc::FS_TYPE_TESTS:
5566       assert(PendingTypeTests.empty());
5567       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5568                               Record.end());
5569       break;
5570 
5571     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
5572       assert(PendingTypeTestAssumeVCalls.empty());
5573       for (unsigned I = 0; I != Record.size(); I += 2)
5574         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5575       break;
5576 
5577     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
5578       assert(PendingTypeCheckedLoadVCalls.empty());
5579       for (unsigned I = 0; I != Record.size(); I += 2)
5580         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5581       break;
5582 
5583     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
5584       PendingTypeTestAssumeConstVCalls.push_back(
5585           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5586       break;
5587 
5588     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
5589       PendingTypeCheckedLoadConstVCalls.push_back(
5590           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5591       break;
5592 
5593     case bitc::FS_CFI_FUNCTION_DEFS: {
5594       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5595       for (unsigned I = 0; I != Record.size(); I += 2)
5596         CfiFunctionDefs.insert(
5597             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5598       break;
5599     }
5600 
5601     case bitc::FS_CFI_FUNCTION_DECLS: {
5602       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5603       for (unsigned I = 0; I != Record.size(); I += 2)
5604         CfiFunctionDecls.insert(
5605             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5606       break;
5607     }
5608 
5609     case bitc::FS_TYPE_ID:
5610       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
5611       break;
5612     }
5613   }
5614   llvm_unreachable("Exit infinite loop");
5615 }
5616 
5617 // Parse the  module string table block into the Index.
5618 // This populates the ModulePathStringTable map in the index.
5619 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5620   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5621     return error("Invalid record");
5622 
5623   SmallVector<uint64_t, 64> Record;
5624 
5625   SmallString<128> ModulePath;
5626   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5627 
5628   while (true) {
5629     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5630 
5631     switch (Entry.Kind) {
5632     case BitstreamEntry::SubBlock: // Handled for us already.
5633     case BitstreamEntry::Error:
5634       return error("Malformed block");
5635     case BitstreamEntry::EndBlock:
5636       return Error::success();
5637     case BitstreamEntry::Record:
5638       // The interesting case.
5639       break;
5640     }
5641 
5642     Record.clear();
5643     switch (Stream.readRecord(Entry.ID, Record)) {
5644     default: // Default behavior: ignore.
5645       break;
5646     case bitc::MST_CODE_ENTRY: {
5647       // MST_ENTRY: [modid, namechar x N]
5648       uint64_t ModuleId = Record[0];
5649 
5650       if (convertToString(Record, 1, ModulePath))
5651         return error("Invalid record");
5652 
5653       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5654       ModuleIdMap[ModuleId] = LastSeenModule->first();
5655 
5656       ModulePath.clear();
5657       break;
5658     }
5659     /// MST_CODE_HASH: [5*i32]
5660     case bitc::MST_CODE_HASH: {
5661       if (Record.size() != 5)
5662         return error("Invalid hash length " + Twine(Record.size()).str());
5663       if (!LastSeenModule)
5664         return error("Invalid hash that does not follow a module path");
5665       int Pos = 0;
5666       for (auto &Val : Record) {
5667         assert(!(Val >> 32) && "Unexpected high bits set");
5668         LastSeenModule->second.second[Pos++] = Val;
5669       }
5670       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5671       LastSeenModule = nullptr;
5672       break;
5673     }
5674     }
5675   }
5676   llvm_unreachable("Exit infinite loop");
5677 }
5678 
5679 namespace {
5680 
5681 // FIXME: This class is only here to support the transition to llvm::Error. It
5682 // will be removed once this transition is complete. Clients should prefer to
5683 // deal with the Error value directly, rather than converting to error_code.
5684 class BitcodeErrorCategoryType : public std::error_category {
5685   const char *name() const noexcept override {
5686     return "llvm.bitcode";
5687   }
5688 
5689   std::string message(int IE) const override {
5690     BitcodeError E = static_cast<BitcodeError>(IE);
5691     switch (E) {
5692     case BitcodeError::CorruptedBitcode:
5693       return "Corrupted bitcode";
5694     }
5695     llvm_unreachable("Unknown error type!");
5696   }
5697 };
5698 
5699 } // end anonymous namespace
5700 
5701 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5702 
5703 const std::error_category &llvm::BitcodeErrorCategory() {
5704   return *ErrorCategory;
5705 }
5706 
5707 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
5708                                             unsigned Block, unsigned RecordID) {
5709   if (Stream.EnterSubBlock(Block))
5710     return error("Invalid record");
5711 
5712   StringRef Strtab;
5713   while (true) {
5714     BitstreamEntry Entry = Stream.advance();
5715     switch (Entry.Kind) {
5716     case BitstreamEntry::EndBlock:
5717       return Strtab;
5718 
5719     case BitstreamEntry::Error:
5720       return error("Malformed block");
5721 
5722     case BitstreamEntry::SubBlock:
5723       if (Stream.SkipBlock())
5724         return error("Malformed block");
5725       break;
5726 
5727     case BitstreamEntry::Record:
5728       StringRef Blob;
5729       SmallVector<uint64_t, 1> Record;
5730       if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
5731         Strtab = Blob;
5732       break;
5733     }
5734   }
5735 }
5736 
5737 //===----------------------------------------------------------------------===//
5738 // External interface
5739 //===----------------------------------------------------------------------===//
5740 
5741 Expected<std::vector<BitcodeModule>>
5742 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5743   auto FOrErr = getBitcodeFileContents(Buffer);
5744   if (!FOrErr)
5745     return FOrErr.takeError();
5746   return std::move(FOrErr->Mods);
5747 }
5748 
5749 Expected<BitcodeFileContents>
5750 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
5751   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5752   if (!StreamOrErr)
5753     return StreamOrErr.takeError();
5754   BitstreamCursor &Stream = *StreamOrErr;
5755 
5756   BitcodeFileContents F;
5757   while (true) {
5758     uint64_t BCBegin = Stream.getCurrentByteNo();
5759 
5760     // We may be consuming bitcode from a client that leaves garbage at the end
5761     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5762     // the end that there cannot possibly be another module, stop looking.
5763     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5764       return F;
5765 
5766     BitstreamEntry Entry = Stream.advance();
5767     switch (Entry.Kind) {
5768     case BitstreamEntry::EndBlock:
5769     case BitstreamEntry::Error:
5770       return error("Malformed block");
5771 
5772     case BitstreamEntry::SubBlock: {
5773       uint64_t IdentificationBit = -1ull;
5774       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5775         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5776         if (Stream.SkipBlock())
5777           return error("Malformed block");
5778 
5779         Entry = Stream.advance();
5780         if (Entry.Kind != BitstreamEntry::SubBlock ||
5781             Entry.ID != bitc::MODULE_BLOCK_ID)
5782           return error("Malformed block");
5783       }
5784 
5785       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5786         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5787         if (Stream.SkipBlock())
5788           return error("Malformed block");
5789 
5790         F.Mods.push_back({Stream.getBitcodeBytes().slice(
5791                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
5792                           Buffer.getBufferIdentifier(), IdentificationBit,
5793                           ModuleBit});
5794         continue;
5795       }
5796 
5797       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
5798         Expected<StringRef> Strtab =
5799             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
5800         if (!Strtab)
5801           return Strtab.takeError();
5802         // This string table is used by every preceding bitcode module that does
5803         // not have its own string table. A bitcode file may have multiple
5804         // string tables if it was created by binary concatenation, for example
5805         // with "llvm-cat -b".
5806         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
5807           if (!I->Strtab.empty())
5808             break;
5809           I->Strtab = *Strtab;
5810         }
5811         // Similarly, the string table is used by every preceding symbol table;
5812         // normally there will be just one unless the bitcode file was created
5813         // by binary concatenation.
5814         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
5815           F.StrtabForSymtab = *Strtab;
5816         continue;
5817       }
5818 
5819       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
5820         Expected<StringRef> SymtabOrErr =
5821             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
5822         if (!SymtabOrErr)
5823           return SymtabOrErr.takeError();
5824 
5825         // We can expect the bitcode file to have multiple symbol tables if it
5826         // was created by binary concatenation. In that case we silently
5827         // ignore any subsequent symbol tables, which is fine because this is a
5828         // low level function. The client is expected to notice that the number
5829         // of modules in the symbol table does not match the number of modules
5830         // in the input file and regenerate the symbol table.
5831         if (F.Symtab.empty())
5832           F.Symtab = *SymtabOrErr;
5833         continue;
5834       }
5835 
5836       if (Stream.SkipBlock())
5837         return error("Malformed block");
5838       continue;
5839     }
5840     case BitstreamEntry::Record:
5841       Stream.skipRecord(Entry.ID);
5842       continue;
5843     }
5844   }
5845 }
5846 
5847 /// Get a lazy one-at-time loading module from bitcode.
5848 ///
5849 /// This isn't always used in a lazy context.  In particular, it's also used by
5850 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
5851 /// in forward-referenced functions from block address references.
5852 ///
5853 /// \param[in] MaterializeAll Set to \c true if we should materialize
5854 /// everything.
5855 Expected<std::unique_ptr<Module>>
5856 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
5857                              bool ShouldLazyLoadMetadata, bool IsImporting) {
5858   BitstreamCursor Stream(Buffer);
5859 
5860   std::string ProducerIdentification;
5861   if (IdentificationBit != -1ull) {
5862     Stream.JumpToBit(IdentificationBit);
5863     Expected<std::string> ProducerIdentificationOrErr =
5864         readIdentificationBlock(Stream);
5865     if (!ProducerIdentificationOrErr)
5866       return ProducerIdentificationOrErr.takeError();
5867 
5868     ProducerIdentification = *ProducerIdentificationOrErr;
5869   }
5870 
5871   Stream.JumpToBit(ModuleBit);
5872   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
5873                               Context);
5874 
5875   std::unique_ptr<Module> M =
5876       llvm::make_unique<Module>(ModuleIdentifier, Context);
5877   M->setMaterializer(R);
5878 
5879   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5880   if (Error Err =
5881           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
5882     return std::move(Err);
5883 
5884   if (MaterializeAll) {
5885     // Read in the entire module, and destroy the BitcodeReader.
5886     if (Error Err = M->materializeAll())
5887       return std::move(Err);
5888   } else {
5889     // Resolve forward references from blockaddresses.
5890     if (Error Err = R->materializeForwardReferencedFunctions())
5891       return std::move(Err);
5892   }
5893   return std::move(M);
5894 }
5895 
5896 Expected<std::unique_ptr<Module>>
5897 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
5898                              bool IsImporting) {
5899   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
5900 }
5901 
5902 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
5903 // We don't use ModuleIdentifier here because the client may need to control the
5904 // module path used in the combined summary (e.g. when reading summaries for
5905 // regular LTO modules).
5906 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
5907                                  StringRef ModulePath, uint64_t ModuleId) {
5908   BitstreamCursor Stream(Buffer);
5909   Stream.JumpToBit(ModuleBit);
5910 
5911   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
5912                                     ModulePath, ModuleId);
5913   return R.parseModule();
5914 }
5915 
5916 // Parse the specified bitcode buffer, returning the function info index.
5917 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
5918   BitstreamCursor Stream(Buffer);
5919   Stream.JumpToBit(ModuleBit);
5920 
5921   auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
5922   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
5923                                     ModuleIdentifier, 0);
5924 
5925   if (Error Err = R.parseModule())
5926     return std::move(Err);
5927 
5928   return std::move(Index);
5929 }
5930 
5931 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
5932                                                 unsigned ID) {
5933   if (Stream.EnterSubBlock(ID))
5934     return error("Invalid record");
5935   SmallVector<uint64_t, 64> Record;
5936 
5937   while (true) {
5938     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5939 
5940     switch (Entry.Kind) {
5941     case BitstreamEntry::SubBlock: // Handled for us already.
5942     case BitstreamEntry::Error:
5943       return error("Malformed block");
5944     case BitstreamEntry::EndBlock:
5945       // If no flags record found, conservatively return true to mimic
5946       // behavior before this flag was added.
5947       return true;
5948     case BitstreamEntry::Record:
5949       // The interesting case.
5950       break;
5951     }
5952 
5953     // Look for the FS_FLAGS record.
5954     Record.clear();
5955     auto BitCode = Stream.readRecord(Entry.ID, Record);
5956     switch (BitCode) {
5957     default: // Default behavior: ignore.
5958       break;
5959     case bitc::FS_FLAGS: { // [flags]
5960       uint64_t Flags = Record[0];
5961       // Scan flags.
5962       assert(Flags <= 0x1f && "Unexpected bits in flag");
5963 
5964       return Flags & 0x8;
5965     }
5966     }
5967   }
5968   llvm_unreachable("Exit infinite loop");
5969 }
5970 
5971 // Check if the given bitcode buffer contains a global value summary block.
5972 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
5973   BitstreamCursor Stream(Buffer);
5974   Stream.JumpToBit(ModuleBit);
5975 
5976   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5977     return error("Invalid record");
5978 
5979   while (true) {
5980     BitstreamEntry Entry = Stream.advance();
5981 
5982     switch (Entry.Kind) {
5983     case BitstreamEntry::Error:
5984       return error("Malformed block");
5985     case BitstreamEntry::EndBlock:
5986       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
5987                             /*EnableSplitLTOUnit=*/false};
5988 
5989     case BitstreamEntry::SubBlock:
5990       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5991         Expected<bool> EnableSplitLTOUnit =
5992             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
5993         if (!EnableSplitLTOUnit)
5994           return EnableSplitLTOUnit.takeError();
5995         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
5996                               *EnableSplitLTOUnit};
5997       }
5998 
5999       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6000         Expected<bool> EnableSplitLTOUnit =
6001             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6002         if (!EnableSplitLTOUnit)
6003           return EnableSplitLTOUnit.takeError();
6004         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6005                               *EnableSplitLTOUnit};
6006       }
6007 
6008       // Ignore other sub-blocks.
6009       if (Stream.SkipBlock())
6010         return error("Malformed block");
6011       continue;
6012 
6013     case BitstreamEntry::Record:
6014       Stream.skipRecord(Entry.ID);
6015       continue;
6016     }
6017   }
6018 }
6019 
6020 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6021   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6022   if (!MsOrErr)
6023     return MsOrErr.takeError();
6024 
6025   if (MsOrErr->size() != 1)
6026     return error("Expected a single module");
6027 
6028   return (*MsOrErr)[0];
6029 }
6030 
6031 Expected<std::unique_ptr<Module>>
6032 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6033                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6034   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6035   if (!BM)
6036     return BM.takeError();
6037 
6038   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6039 }
6040 
6041 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6042     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6043     bool ShouldLazyLoadMetadata, bool IsImporting) {
6044   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6045                                      IsImporting);
6046   if (MOrErr)
6047     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6048   return MOrErr;
6049 }
6050 
6051 Expected<std::unique_ptr<Module>>
6052 BitcodeModule::parseModule(LLVMContext &Context) {
6053   return getModuleImpl(Context, true, false, false);
6054   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6055   // written.  We must defer until the Module has been fully materialized.
6056 }
6057 
6058 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6059                                                          LLVMContext &Context) {
6060   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6061   if (!BM)
6062     return BM.takeError();
6063 
6064   return BM->parseModule(Context);
6065 }
6066 
6067 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6068   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6069   if (!StreamOrErr)
6070     return StreamOrErr.takeError();
6071 
6072   return readTriple(*StreamOrErr);
6073 }
6074 
6075 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6076   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6077   if (!StreamOrErr)
6078     return StreamOrErr.takeError();
6079 
6080   return hasObjCCategory(*StreamOrErr);
6081 }
6082 
6083 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6084   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6085   if (!StreamOrErr)
6086     return StreamOrErr.takeError();
6087 
6088   return readIdentificationCode(*StreamOrErr);
6089 }
6090 
6091 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6092                                    ModuleSummaryIndex &CombinedIndex,
6093                                    uint64_t ModuleId) {
6094   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6095   if (!BM)
6096     return BM.takeError();
6097 
6098   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6099 }
6100 
6101 Expected<std::unique_ptr<ModuleSummaryIndex>>
6102 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6103   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6104   if (!BM)
6105     return BM.takeError();
6106 
6107   return BM->getSummary();
6108 }
6109 
6110 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6111   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6112   if (!BM)
6113     return BM.takeError();
6114 
6115   return BM->getLTOInfo();
6116 }
6117 
6118 Expected<std::unique_ptr<ModuleSummaryIndex>>
6119 llvm::getModuleSummaryIndexForFile(StringRef Path,
6120                                    bool IgnoreEmptyThinLTOIndexFile) {
6121   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6122       MemoryBuffer::getFileOrSTDIN(Path);
6123   if (!FileOrErr)
6124     return errorCodeToError(FileOrErr.getError());
6125   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6126     return nullptr;
6127   return getModuleSummaryIndex(**FileOrErr);
6128 }
6129