1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 #include <utility> 41 42 using namespace llvm; 43 44 static cl::opt<bool> PrintSummaryGUIDs( 45 "print-summary-global-ids", cl::init(false), cl::Hidden, 46 cl::desc( 47 "Print the global id for each value when reading the module summary")); 48 49 namespace { 50 enum { 51 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 52 }; 53 54 class BitcodeReaderValueList { 55 std::vector<WeakVH> ValuePtrs; 56 57 /// As we resolve forward-referenced constants, we add information about them 58 /// to this vector. This allows us to resolve them in bulk instead of 59 /// resolving each reference at a time. See the code in 60 /// ResolveConstantForwardRefs for more information about this. 61 /// 62 /// The key of this vector is the placeholder constant, the value is the slot 63 /// number that holds the resolved value. 64 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 65 ResolveConstantsTy ResolveConstants; 66 LLVMContext &Context; 67 public: 68 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 69 ~BitcodeReaderValueList() { 70 assert(ResolveConstants.empty() && "Constants not resolved?"); 71 } 72 73 // vector compatibility methods 74 unsigned size() const { return ValuePtrs.size(); } 75 void resize(unsigned N) { ValuePtrs.resize(N); } 76 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 77 78 void clear() { 79 assert(ResolveConstants.empty() && "Constants not resolved?"); 80 ValuePtrs.clear(); 81 } 82 83 Value *operator[](unsigned i) const { 84 assert(i < ValuePtrs.size()); 85 return ValuePtrs[i]; 86 } 87 88 Value *back() const { return ValuePtrs.back(); } 89 void pop_back() { ValuePtrs.pop_back(); } 90 bool empty() const { return ValuePtrs.empty(); } 91 void shrinkTo(unsigned N) { 92 assert(N <= size() && "Invalid shrinkTo request!"); 93 ValuePtrs.resize(N); 94 } 95 96 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 97 Value *getValueFwdRef(unsigned Idx, Type *Ty); 98 99 void assignValue(Value *V, unsigned Idx); 100 101 /// Once all constants are read, this method bulk resolves any forward 102 /// references. 103 void resolveConstantForwardRefs(); 104 }; 105 106 class BitcodeReaderMetadataList { 107 unsigned NumFwdRefs; 108 bool AnyFwdRefs; 109 unsigned MinFwdRef; 110 unsigned MaxFwdRef; 111 112 /// Array of metadata references. 113 /// 114 /// Don't use std::vector here. Some versions of libc++ copy (instead of 115 /// move) on resize, and TrackingMDRef is very expensive to copy. 116 SmallVector<TrackingMDRef, 1> MetadataPtrs; 117 118 /// Structures for resolving old type refs. 119 struct { 120 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 121 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 122 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 123 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 124 } OldTypeRefs; 125 126 LLVMContext &Context; 127 public: 128 BitcodeReaderMetadataList(LLVMContext &C) 129 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 130 131 // vector compatibility methods 132 unsigned size() const { return MetadataPtrs.size(); } 133 void resize(unsigned N) { MetadataPtrs.resize(N); } 134 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 135 void clear() { MetadataPtrs.clear(); } 136 Metadata *back() const { return MetadataPtrs.back(); } 137 void pop_back() { MetadataPtrs.pop_back(); } 138 bool empty() const { return MetadataPtrs.empty(); } 139 140 Metadata *operator[](unsigned i) const { 141 assert(i < MetadataPtrs.size()); 142 return MetadataPtrs[i]; 143 } 144 145 Metadata *lookup(unsigned I) const { 146 if (I < MetadataPtrs.size()) 147 return MetadataPtrs[I]; 148 return nullptr; 149 } 150 151 void shrinkTo(unsigned N) { 152 assert(N <= size() && "Invalid shrinkTo request!"); 153 assert(!AnyFwdRefs && "Unexpected forward refs"); 154 MetadataPtrs.resize(N); 155 } 156 157 /// Return the given metadata, creating a replaceable forward reference if 158 /// necessary. 159 Metadata *getMetadataFwdRef(unsigned Idx); 160 161 /// Return the the given metadata only if it is fully resolved. 162 /// 163 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 164 /// would give \c false. 165 Metadata *getMetadataIfResolved(unsigned Idx); 166 167 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 168 void assignValue(Metadata *MD, unsigned Idx); 169 void tryToResolveCycles(); 170 bool hasFwdRefs() const { return AnyFwdRefs; } 171 172 /// Upgrade a type that had an MDString reference. 173 void addTypeRef(MDString &UUID, DICompositeType &CT); 174 175 /// Upgrade a type that had an MDString reference. 176 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 177 178 /// Upgrade a type ref array that may have MDString references. 179 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 180 181 private: 182 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 183 }; 184 185 class BitcodeReader : public GVMaterializer { 186 LLVMContext &Context; 187 Module *TheModule = nullptr; 188 std::unique_ptr<MemoryBuffer> Buffer; 189 std::unique_ptr<BitstreamReader> StreamFile; 190 BitstreamCursor Stream; 191 // Next offset to start scanning for lazy parsing of function bodies. 192 uint64_t NextUnreadBit = 0; 193 // Last function offset found in the VST. 194 uint64_t LastFunctionBlockBit = 0; 195 bool SeenValueSymbolTable = false; 196 uint64_t VSTOffset = 0; 197 // Contains an arbitrary and optional string identifying the bitcode producer 198 std::string ProducerIdentification; 199 200 std::vector<Type*> TypeList; 201 BitcodeReaderValueList ValueList; 202 BitcodeReaderMetadataList MetadataList; 203 std::vector<Comdat *> ComdatList; 204 SmallVector<Instruction *, 64> InstructionList; 205 206 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 207 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 208 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 209 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 210 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 211 212 SmallVector<Instruction*, 64> InstsWithTBAATag; 213 214 bool HasSeenOldLoopTags = false; 215 216 /// The set of attributes by index. Index zero in the file is for null, and 217 /// is thus not represented here. As such all indices are off by one. 218 std::vector<AttributeSet> MAttributes; 219 220 /// The set of attribute groups. 221 std::map<unsigned, AttributeSet> MAttributeGroups; 222 223 /// While parsing a function body, this is a list of the basic blocks for the 224 /// function. 225 std::vector<BasicBlock*> FunctionBBs; 226 227 // When reading the module header, this list is populated with functions that 228 // have bodies later in the file. 229 std::vector<Function*> FunctionsWithBodies; 230 231 // When intrinsic functions are encountered which require upgrading they are 232 // stored here with their replacement function. 233 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 234 UpgradedIntrinsicMap UpgradedIntrinsics; 235 236 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 237 DenseMap<unsigned, unsigned> MDKindMap; 238 239 // Several operations happen after the module header has been read, but 240 // before function bodies are processed. This keeps track of whether 241 // we've done this yet. 242 bool SeenFirstFunctionBody = false; 243 244 /// When function bodies are initially scanned, this map contains info about 245 /// where to find deferred function body in the stream. 246 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 247 248 /// When Metadata block is initially scanned when parsing the module, we may 249 /// choose to defer parsing of the metadata. This vector contains info about 250 /// which Metadata blocks are deferred. 251 std::vector<uint64_t> DeferredMetadataInfo; 252 253 /// These are basic blocks forward-referenced by block addresses. They are 254 /// inserted lazily into functions when they're loaded. The basic block ID is 255 /// its index into the vector. 256 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 257 std::deque<Function *> BasicBlockFwdRefQueue; 258 259 /// Indicates that we are using a new encoding for instruction operands where 260 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 261 /// instruction number, for a more compact encoding. Some instruction 262 /// operands are not relative to the instruction ID: basic block numbers, and 263 /// types. Once the old style function blocks have been phased out, we would 264 /// not need this flag. 265 bool UseRelativeIDs = false; 266 267 /// True if all functions will be materialized, negating the need to process 268 /// (e.g.) blockaddress forward references. 269 bool WillMaterializeAllForwardRefs = false; 270 271 /// True if any Metadata block has been materialized. 272 bool IsMetadataMaterialized = false; 273 274 bool StripDebugInfo = false; 275 276 /// Functions that need to be matched with subprograms when upgrading old 277 /// metadata. 278 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 279 280 std::vector<std::string> BundleTags; 281 282 public: 283 std::error_code error(BitcodeError E, const Twine &Message); 284 std::error_code error(BitcodeError E); 285 std::error_code error(const Twine &Message); 286 287 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 288 BitcodeReader(LLVMContext &Context); 289 ~BitcodeReader() override { freeState(); } 290 291 std::error_code materializeForwardReferencedFunctions(); 292 293 void freeState(); 294 295 void releaseBuffer(); 296 297 std::error_code materialize(GlobalValue *GV) override; 298 std::error_code materializeModule() override; 299 std::vector<StructType *> getIdentifiedStructTypes() const override; 300 301 /// \brief Main interface to parsing a bitcode buffer. 302 /// \returns true if an error occurred. 303 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 304 Module *M, 305 bool ShouldLazyLoadMetadata = false); 306 307 /// \brief Cheap mechanism to just extract module triple 308 /// \returns true if an error occurred. 309 ErrorOr<std::string> parseTriple(); 310 311 /// Cheap mechanism to just extract the identification block out of bitcode. 312 ErrorOr<std::string> parseIdentificationBlock(); 313 314 static uint64_t decodeSignRotatedValue(uint64_t V); 315 316 /// Materialize any deferred Metadata block. 317 std::error_code materializeMetadata() override; 318 319 void setStripDebugInfo() override; 320 321 private: 322 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 323 // ProducerIdentification data member, and do some basic enforcement on the 324 // "epoch" encoded in the bitcode. 325 std::error_code parseBitcodeVersion(); 326 327 std::vector<StructType *> IdentifiedStructTypes; 328 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 329 StructType *createIdentifiedStructType(LLVMContext &Context); 330 331 Type *getTypeByID(unsigned ID); 332 Value *getFnValueByID(unsigned ID, Type *Ty) { 333 if (Ty && Ty->isMetadataTy()) 334 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 335 return ValueList.getValueFwdRef(ID, Ty); 336 } 337 Metadata *getFnMetadataByID(unsigned ID) { 338 return MetadataList.getMetadataFwdRef(ID); 339 } 340 BasicBlock *getBasicBlock(unsigned ID) const { 341 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 342 return FunctionBBs[ID]; 343 } 344 AttributeSet getAttributes(unsigned i) const { 345 if (i-1 < MAttributes.size()) 346 return MAttributes[i-1]; 347 return AttributeSet(); 348 } 349 350 /// Read a value/type pair out of the specified record from slot 'Slot'. 351 /// Increment Slot past the number of slots used in the record. Return true on 352 /// failure. 353 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 354 unsigned InstNum, Value *&ResVal) { 355 if (Slot == Record.size()) return true; 356 unsigned ValNo = (unsigned)Record[Slot++]; 357 // Adjust the ValNo, if it was encoded relative to the InstNum. 358 if (UseRelativeIDs) 359 ValNo = InstNum - ValNo; 360 if (ValNo < InstNum) { 361 // If this is not a forward reference, just return the value we already 362 // have. 363 ResVal = getFnValueByID(ValNo, nullptr); 364 return ResVal == nullptr; 365 } 366 if (Slot == Record.size()) 367 return true; 368 369 unsigned TypeNo = (unsigned)Record[Slot++]; 370 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 371 return ResVal == nullptr; 372 } 373 374 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 375 /// past the number of slots used by the value in the record. Return true if 376 /// there is an error. 377 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 378 unsigned InstNum, Type *Ty, Value *&ResVal) { 379 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 380 return true; 381 // All values currently take a single record slot. 382 ++Slot; 383 return false; 384 } 385 386 /// Like popValue, but does not increment the Slot number. 387 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 388 unsigned InstNum, Type *Ty, Value *&ResVal) { 389 ResVal = getValue(Record, Slot, InstNum, Ty); 390 return ResVal == nullptr; 391 } 392 393 /// Version of getValue that returns ResVal directly, or 0 if there is an 394 /// error. 395 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 396 unsigned InstNum, Type *Ty) { 397 if (Slot == Record.size()) return nullptr; 398 unsigned ValNo = (unsigned)Record[Slot]; 399 // Adjust the ValNo, if it was encoded relative to the InstNum. 400 if (UseRelativeIDs) 401 ValNo = InstNum - ValNo; 402 return getFnValueByID(ValNo, Ty); 403 } 404 405 /// Like getValue, but decodes signed VBRs. 406 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 407 unsigned InstNum, Type *Ty) { 408 if (Slot == Record.size()) return nullptr; 409 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 410 // Adjust the ValNo, if it was encoded relative to the InstNum. 411 if (UseRelativeIDs) 412 ValNo = InstNum - ValNo; 413 return getFnValueByID(ValNo, Ty); 414 } 415 416 /// Converts alignment exponent (i.e. power of two (or zero)) to the 417 /// corresponding alignment to use. If alignment is too large, returns 418 /// a corresponding error code. 419 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 420 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 421 std::error_code parseModule(uint64_t ResumeBit, 422 bool ShouldLazyLoadMetadata = false); 423 std::error_code parseAttributeBlock(); 424 std::error_code parseAttributeGroupBlock(); 425 std::error_code parseTypeTable(); 426 std::error_code parseTypeTableBody(); 427 std::error_code parseOperandBundleTags(); 428 429 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 430 unsigned NameIndex, Triple &TT); 431 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 432 std::error_code parseConstants(); 433 std::error_code rememberAndSkipFunctionBodies(); 434 std::error_code rememberAndSkipFunctionBody(); 435 /// Save the positions of the Metadata blocks and skip parsing the blocks. 436 std::error_code rememberAndSkipMetadata(); 437 std::error_code parseFunctionBody(Function *F); 438 std::error_code globalCleanup(); 439 std::error_code resolveGlobalAndIndirectSymbolInits(); 440 std::error_code parseMetadata(bool ModuleLevel = false); 441 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 442 StringRef Blob, 443 unsigned &NextMetadataNo); 444 std::error_code parseMetadataKinds(); 445 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 446 std::error_code 447 parseGlobalObjectAttachment(GlobalObject &GO, 448 ArrayRef<uint64_t> Record); 449 std::error_code parseMetadataAttachment(Function &F); 450 ErrorOr<std::string> parseModuleTriple(); 451 std::error_code parseUseLists(); 452 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 453 std::error_code initStreamFromBuffer(); 454 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 455 std::error_code findFunctionInStream( 456 Function *F, 457 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 458 }; 459 460 /// Class to manage reading and parsing function summary index bitcode 461 /// files/sections. 462 class ModuleSummaryIndexBitcodeReader { 463 DiagnosticHandlerFunction DiagnosticHandler; 464 465 /// Eventually points to the module index built during parsing. 466 ModuleSummaryIndex *TheIndex = nullptr; 467 468 std::unique_ptr<MemoryBuffer> Buffer; 469 std::unique_ptr<BitstreamReader> StreamFile; 470 BitstreamCursor Stream; 471 472 /// Used to indicate whether caller only wants to check for the presence 473 /// of the global value summary bitcode section. All blocks are skipped, 474 /// but the SeenGlobalValSummary boolean is set. 475 bool CheckGlobalValSummaryPresenceOnly = false; 476 477 /// Indicates whether we have encountered a global value summary section 478 /// yet during parsing, used when checking if file contains global value 479 /// summary section. 480 bool SeenGlobalValSummary = false; 481 482 /// Indicates whether we have already parsed the VST, used for error checking. 483 bool SeenValueSymbolTable = false; 484 485 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 486 /// Used to enable on-demand parsing of the VST. 487 uint64_t VSTOffset = 0; 488 489 // Map to save ValueId to GUID association that was recorded in the 490 // ValueSymbolTable. It is used after the VST is parsed to convert 491 // call graph edges read from the function summary from referencing 492 // callees by their ValueId to using the GUID instead, which is how 493 // they are recorded in the summary index being built. 494 // We save a second GUID which is the same as the first one, but ignoring the 495 // linkage, i.e. for value other than local linkage they are identical. 496 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 497 ValueIdToCallGraphGUIDMap; 498 499 /// Map populated during module path string table parsing, from the 500 /// module ID to a string reference owned by the index's module 501 /// path string table, used to correlate with combined index 502 /// summary records. 503 DenseMap<uint64_t, StringRef> ModuleIdMap; 504 505 /// Original source file name recorded in a bitcode record. 506 std::string SourceFileName; 507 508 public: 509 std::error_code error(BitcodeError E, const Twine &Message); 510 std::error_code error(BitcodeError E); 511 std::error_code error(const Twine &Message); 512 513 ModuleSummaryIndexBitcodeReader( 514 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 515 bool CheckGlobalValSummaryPresenceOnly = false); 516 ModuleSummaryIndexBitcodeReader( 517 DiagnosticHandlerFunction DiagnosticHandler, 518 bool CheckGlobalValSummaryPresenceOnly = false); 519 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 520 521 void freeState(); 522 523 void releaseBuffer(); 524 525 /// Check if the parser has encountered a summary section. 526 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 527 528 /// \brief Main interface to parsing a bitcode buffer. 529 /// \returns true if an error occurred. 530 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 531 ModuleSummaryIndex *I); 532 533 private: 534 std::error_code parseModule(); 535 std::error_code parseValueSymbolTable( 536 uint64_t Offset, 537 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 538 std::error_code parseEntireSummary(); 539 std::error_code parseModuleStringTable(); 540 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 541 std::error_code initStreamFromBuffer(); 542 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 543 std::pair<GlobalValue::GUID, GlobalValue::GUID> 544 getGUIDFromValueId(unsigned ValueId); 545 }; 546 } // end anonymous namespace 547 548 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 549 DiagnosticSeverity Severity, 550 const Twine &Msg) 551 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 552 553 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 554 555 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 556 std::error_code EC, const Twine &Message) { 557 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 558 DiagnosticHandler(DI); 559 return EC; 560 } 561 562 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 563 std::error_code EC) { 564 return error(DiagnosticHandler, EC, EC.message()); 565 } 566 567 static std::error_code error(LLVMContext &Context, std::error_code EC, 568 const Twine &Message) { 569 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 570 Message); 571 } 572 573 static std::error_code error(LLVMContext &Context, std::error_code EC) { 574 return error(Context, EC, EC.message()); 575 } 576 577 static std::error_code error(LLVMContext &Context, const Twine &Message) { 578 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 579 Message); 580 } 581 582 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 583 if (!ProducerIdentification.empty()) { 584 return ::error(Context, make_error_code(E), 585 Message + " (Producer: '" + ProducerIdentification + 586 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 587 } 588 return ::error(Context, make_error_code(E), Message); 589 } 590 591 std::error_code BitcodeReader::error(const Twine &Message) { 592 if (!ProducerIdentification.empty()) { 593 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 594 Message + " (Producer: '" + ProducerIdentification + 595 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 596 } 597 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 598 Message); 599 } 600 601 std::error_code BitcodeReader::error(BitcodeError E) { 602 return ::error(Context, make_error_code(E)); 603 } 604 605 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 606 : Context(Context), Buffer(Buffer), ValueList(Context), 607 MetadataList(Context) {} 608 609 BitcodeReader::BitcodeReader(LLVMContext &Context) 610 : Context(Context), Buffer(nullptr), ValueList(Context), 611 MetadataList(Context) {} 612 613 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 614 if (WillMaterializeAllForwardRefs) 615 return std::error_code(); 616 617 // Prevent recursion. 618 WillMaterializeAllForwardRefs = true; 619 620 while (!BasicBlockFwdRefQueue.empty()) { 621 Function *F = BasicBlockFwdRefQueue.front(); 622 BasicBlockFwdRefQueue.pop_front(); 623 assert(F && "Expected valid function"); 624 if (!BasicBlockFwdRefs.count(F)) 625 // Already materialized. 626 continue; 627 628 // Check for a function that isn't materializable to prevent an infinite 629 // loop. When parsing a blockaddress stored in a global variable, there 630 // isn't a trivial way to check if a function will have a body without a 631 // linear search through FunctionsWithBodies, so just check it here. 632 if (!F->isMaterializable()) 633 return error("Never resolved function from blockaddress"); 634 635 // Try to materialize F. 636 if (std::error_code EC = materialize(F)) 637 return EC; 638 } 639 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 640 641 // Reset state. 642 WillMaterializeAllForwardRefs = false; 643 return std::error_code(); 644 } 645 646 void BitcodeReader::freeState() { 647 Buffer = nullptr; 648 std::vector<Type*>().swap(TypeList); 649 ValueList.clear(); 650 MetadataList.clear(); 651 std::vector<Comdat *>().swap(ComdatList); 652 653 std::vector<AttributeSet>().swap(MAttributes); 654 std::vector<BasicBlock*>().swap(FunctionBBs); 655 std::vector<Function*>().swap(FunctionsWithBodies); 656 DeferredFunctionInfo.clear(); 657 DeferredMetadataInfo.clear(); 658 MDKindMap.clear(); 659 660 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 661 BasicBlockFwdRefQueue.clear(); 662 } 663 664 //===----------------------------------------------------------------------===// 665 // Helper functions to implement forward reference resolution, etc. 666 //===----------------------------------------------------------------------===// 667 668 /// Convert a string from a record into an std::string, return true on failure. 669 template <typename StrTy> 670 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 671 StrTy &Result) { 672 if (Idx > Record.size()) 673 return true; 674 675 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 676 Result += (char)Record[i]; 677 return false; 678 } 679 680 static bool hasImplicitComdat(size_t Val) { 681 switch (Val) { 682 default: 683 return false; 684 case 1: // Old WeakAnyLinkage 685 case 4: // Old LinkOnceAnyLinkage 686 case 10: // Old WeakODRLinkage 687 case 11: // Old LinkOnceODRLinkage 688 return true; 689 } 690 } 691 692 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 693 switch (Val) { 694 default: // Map unknown/new linkages to external 695 case 0: 696 return GlobalValue::ExternalLinkage; 697 case 2: 698 return GlobalValue::AppendingLinkage; 699 case 3: 700 return GlobalValue::InternalLinkage; 701 case 5: 702 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 703 case 6: 704 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 705 case 7: 706 return GlobalValue::ExternalWeakLinkage; 707 case 8: 708 return GlobalValue::CommonLinkage; 709 case 9: 710 return GlobalValue::PrivateLinkage; 711 case 12: 712 return GlobalValue::AvailableExternallyLinkage; 713 case 13: 714 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 715 case 14: 716 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 717 case 15: 718 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 719 case 1: // Old value with implicit comdat. 720 case 16: 721 return GlobalValue::WeakAnyLinkage; 722 case 10: // Old value with implicit comdat. 723 case 17: 724 return GlobalValue::WeakODRLinkage; 725 case 4: // Old value with implicit comdat. 726 case 18: 727 return GlobalValue::LinkOnceAnyLinkage; 728 case 11: // Old value with implicit comdat. 729 case 19: 730 return GlobalValue::LinkOnceODRLinkage; 731 } 732 } 733 734 // Decode the flags for GlobalValue in the summary 735 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 736 uint64_t Version) { 737 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 738 // like getDecodedLinkage() above. Any future change to the linkage enum and 739 // to getDecodedLinkage() will need to be taken into account here as above. 740 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 741 RawFlags = RawFlags >> 4; 742 auto HasSection = RawFlags & 0x1; // bool 743 return GlobalValueSummary::GVFlags(Linkage, HasSection); 744 } 745 746 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 747 switch (Val) { 748 default: // Map unknown visibilities to default. 749 case 0: return GlobalValue::DefaultVisibility; 750 case 1: return GlobalValue::HiddenVisibility; 751 case 2: return GlobalValue::ProtectedVisibility; 752 } 753 } 754 755 static GlobalValue::DLLStorageClassTypes 756 getDecodedDLLStorageClass(unsigned Val) { 757 switch (Val) { 758 default: // Map unknown values to default. 759 case 0: return GlobalValue::DefaultStorageClass; 760 case 1: return GlobalValue::DLLImportStorageClass; 761 case 2: return GlobalValue::DLLExportStorageClass; 762 } 763 } 764 765 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 766 switch (Val) { 767 case 0: return GlobalVariable::NotThreadLocal; 768 default: // Map unknown non-zero value to general dynamic. 769 case 1: return GlobalVariable::GeneralDynamicTLSModel; 770 case 2: return GlobalVariable::LocalDynamicTLSModel; 771 case 3: return GlobalVariable::InitialExecTLSModel; 772 case 4: return GlobalVariable::LocalExecTLSModel; 773 } 774 } 775 776 static int getDecodedCastOpcode(unsigned Val) { 777 switch (Val) { 778 default: return -1; 779 case bitc::CAST_TRUNC : return Instruction::Trunc; 780 case bitc::CAST_ZEXT : return Instruction::ZExt; 781 case bitc::CAST_SEXT : return Instruction::SExt; 782 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 783 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 784 case bitc::CAST_UITOFP : return Instruction::UIToFP; 785 case bitc::CAST_SITOFP : return Instruction::SIToFP; 786 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 787 case bitc::CAST_FPEXT : return Instruction::FPExt; 788 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 789 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 790 case bitc::CAST_BITCAST : return Instruction::BitCast; 791 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 792 } 793 } 794 795 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 796 bool IsFP = Ty->isFPOrFPVectorTy(); 797 // BinOps are only valid for int/fp or vector of int/fp types 798 if (!IsFP && !Ty->isIntOrIntVectorTy()) 799 return -1; 800 801 switch (Val) { 802 default: 803 return -1; 804 case bitc::BINOP_ADD: 805 return IsFP ? Instruction::FAdd : Instruction::Add; 806 case bitc::BINOP_SUB: 807 return IsFP ? Instruction::FSub : Instruction::Sub; 808 case bitc::BINOP_MUL: 809 return IsFP ? Instruction::FMul : Instruction::Mul; 810 case bitc::BINOP_UDIV: 811 return IsFP ? -1 : Instruction::UDiv; 812 case bitc::BINOP_SDIV: 813 return IsFP ? Instruction::FDiv : Instruction::SDiv; 814 case bitc::BINOP_UREM: 815 return IsFP ? -1 : Instruction::URem; 816 case bitc::BINOP_SREM: 817 return IsFP ? Instruction::FRem : Instruction::SRem; 818 case bitc::BINOP_SHL: 819 return IsFP ? -1 : Instruction::Shl; 820 case bitc::BINOP_LSHR: 821 return IsFP ? -1 : Instruction::LShr; 822 case bitc::BINOP_ASHR: 823 return IsFP ? -1 : Instruction::AShr; 824 case bitc::BINOP_AND: 825 return IsFP ? -1 : Instruction::And; 826 case bitc::BINOP_OR: 827 return IsFP ? -1 : Instruction::Or; 828 case bitc::BINOP_XOR: 829 return IsFP ? -1 : Instruction::Xor; 830 } 831 } 832 833 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 834 switch (Val) { 835 default: return AtomicRMWInst::BAD_BINOP; 836 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 837 case bitc::RMW_ADD: return AtomicRMWInst::Add; 838 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 839 case bitc::RMW_AND: return AtomicRMWInst::And; 840 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 841 case bitc::RMW_OR: return AtomicRMWInst::Or; 842 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 843 case bitc::RMW_MAX: return AtomicRMWInst::Max; 844 case bitc::RMW_MIN: return AtomicRMWInst::Min; 845 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 846 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 847 } 848 } 849 850 static AtomicOrdering getDecodedOrdering(unsigned Val) { 851 switch (Val) { 852 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 853 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 854 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 855 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 856 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 857 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 858 default: // Map unknown orderings to sequentially-consistent. 859 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 860 } 861 } 862 863 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 864 switch (Val) { 865 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 866 default: // Map unknown scopes to cross-thread. 867 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 868 } 869 } 870 871 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 872 switch (Val) { 873 default: // Map unknown selection kinds to any. 874 case bitc::COMDAT_SELECTION_KIND_ANY: 875 return Comdat::Any; 876 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 877 return Comdat::ExactMatch; 878 case bitc::COMDAT_SELECTION_KIND_LARGEST: 879 return Comdat::Largest; 880 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 881 return Comdat::NoDuplicates; 882 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 883 return Comdat::SameSize; 884 } 885 } 886 887 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 888 FastMathFlags FMF; 889 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 890 FMF.setUnsafeAlgebra(); 891 if (0 != (Val & FastMathFlags::NoNaNs)) 892 FMF.setNoNaNs(); 893 if (0 != (Val & FastMathFlags::NoInfs)) 894 FMF.setNoInfs(); 895 if (0 != (Val & FastMathFlags::NoSignedZeros)) 896 FMF.setNoSignedZeros(); 897 if (0 != (Val & FastMathFlags::AllowReciprocal)) 898 FMF.setAllowReciprocal(); 899 return FMF; 900 } 901 902 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 903 switch (Val) { 904 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 905 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 906 } 907 } 908 909 namespace llvm { 910 namespace { 911 /// \brief A class for maintaining the slot number definition 912 /// as a placeholder for the actual definition for forward constants defs. 913 class ConstantPlaceHolder : public ConstantExpr { 914 void operator=(const ConstantPlaceHolder &) = delete; 915 916 public: 917 // allocate space for exactly one operand 918 void *operator new(size_t s) { return User::operator new(s, 1); } 919 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 920 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 921 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 922 } 923 924 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 925 static bool classof(const Value *V) { 926 return isa<ConstantExpr>(V) && 927 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 928 } 929 930 /// Provide fast operand accessors 931 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 932 }; 933 } // end anonymous namespace 934 935 // FIXME: can we inherit this from ConstantExpr? 936 template <> 937 struct OperandTraits<ConstantPlaceHolder> : 938 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 939 }; 940 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 941 } // end namespace llvm 942 943 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 944 if (Idx == size()) { 945 push_back(V); 946 return; 947 } 948 949 if (Idx >= size()) 950 resize(Idx+1); 951 952 WeakVH &OldV = ValuePtrs[Idx]; 953 if (!OldV) { 954 OldV = V; 955 return; 956 } 957 958 // Handle constants and non-constants (e.g. instrs) differently for 959 // efficiency. 960 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 961 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 962 OldV = V; 963 } else { 964 // If there was a forward reference to this value, replace it. 965 Value *PrevVal = OldV; 966 OldV->replaceAllUsesWith(V); 967 delete PrevVal; 968 } 969 } 970 971 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 972 Type *Ty) { 973 if (Idx >= size()) 974 resize(Idx + 1); 975 976 if (Value *V = ValuePtrs[Idx]) { 977 if (Ty != V->getType()) 978 report_fatal_error("Type mismatch in constant table!"); 979 return cast<Constant>(V); 980 } 981 982 // Create and return a placeholder, which will later be RAUW'd. 983 Constant *C = new ConstantPlaceHolder(Ty, Context); 984 ValuePtrs[Idx] = C; 985 return C; 986 } 987 988 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 989 // Bail out for a clearly invalid value. This would make us call resize(0) 990 if (Idx == UINT_MAX) 991 return nullptr; 992 993 if (Idx >= size()) 994 resize(Idx + 1); 995 996 if (Value *V = ValuePtrs[Idx]) { 997 // If the types don't match, it's invalid. 998 if (Ty && Ty != V->getType()) 999 return nullptr; 1000 return V; 1001 } 1002 1003 // No type specified, must be invalid reference. 1004 if (!Ty) return nullptr; 1005 1006 // Create and return a placeholder, which will later be RAUW'd. 1007 Value *V = new Argument(Ty); 1008 ValuePtrs[Idx] = V; 1009 return V; 1010 } 1011 1012 /// Once all constants are read, this method bulk resolves any forward 1013 /// references. The idea behind this is that we sometimes get constants (such 1014 /// as large arrays) which reference *many* forward ref constants. Replacing 1015 /// each of these causes a lot of thrashing when building/reuniquing the 1016 /// constant. Instead of doing this, we look at all the uses and rewrite all 1017 /// the place holders at once for any constant that uses a placeholder. 1018 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1019 // Sort the values by-pointer so that they are efficient to look up with a 1020 // binary search. 1021 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1022 1023 SmallVector<Constant*, 64> NewOps; 1024 1025 while (!ResolveConstants.empty()) { 1026 Value *RealVal = operator[](ResolveConstants.back().second); 1027 Constant *Placeholder = ResolveConstants.back().first; 1028 ResolveConstants.pop_back(); 1029 1030 // Loop over all users of the placeholder, updating them to reference the 1031 // new value. If they reference more than one placeholder, update them all 1032 // at once. 1033 while (!Placeholder->use_empty()) { 1034 auto UI = Placeholder->user_begin(); 1035 User *U = *UI; 1036 1037 // If the using object isn't uniqued, just update the operands. This 1038 // handles instructions and initializers for global variables. 1039 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1040 UI.getUse().set(RealVal); 1041 continue; 1042 } 1043 1044 // Otherwise, we have a constant that uses the placeholder. Replace that 1045 // constant with a new constant that has *all* placeholder uses updated. 1046 Constant *UserC = cast<Constant>(U); 1047 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1048 I != E; ++I) { 1049 Value *NewOp; 1050 if (!isa<ConstantPlaceHolder>(*I)) { 1051 // Not a placeholder reference. 1052 NewOp = *I; 1053 } else if (*I == Placeholder) { 1054 // Common case is that it just references this one placeholder. 1055 NewOp = RealVal; 1056 } else { 1057 // Otherwise, look up the placeholder in ResolveConstants. 1058 ResolveConstantsTy::iterator It = 1059 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1060 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1061 0)); 1062 assert(It != ResolveConstants.end() && It->first == *I); 1063 NewOp = operator[](It->second); 1064 } 1065 1066 NewOps.push_back(cast<Constant>(NewOp)); 1067 } 1068 1069 // Make the new constant. 1070 Constant *NewC; 1071 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1072 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1073 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1074 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1075 } else if (isa<ConstantVector>(UserC)) { 1076 NewC = ConstantVector::get(NewOps); 1077 } else { 1078 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1079 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1080 } 1081 1082 UserC->replaceAllUsesWith(NewC); 1083 UserC->destroyConstant(); 1084 NewOps.clear(); 1085 } 1086 1087 // Update all ValueHandles, they should be the only users at this point. 1088 Placeholder->replaceAllUsesWith(RealVal); 1089 delete Placeholder; 1090 } 1091 } 1092 1093 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1094 if (Idx == size()) { 1095 push_back(MD); 1096 return; 1097 } 1098 1099 if (Idx >= size()) 1100 resize(Idx+1); 1101 1102 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1103 if (!OldMD) { 1104 OldMD.reset(MD); 1105 return; 1106 } 1107 1108 // If there was a forward reference to this value, replace it. 1109 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1110 PrevMD->replaceAllUsesWith(MD); 1111 --NumFwdRefs; 1112 } 1113 1114 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1115 if (Idx >= size()) 1116 resize(Idx + 1); 1117 1118 if (Metadata *MD = MetadataPtrs[Idx]) 1119 return MD; 1120 1121 // Track forward refs to be resolved later. 1122 if (AnyFwdRefs) { 1123 MinFwdRef = std::min(MinFwdRef, Idx); 1124 MaxFwdRef = std::max(MaxFwdRef, Idx); 1125 } else { 1126 AnyFwdRefs = true; 1127 MinFwdRef = MaxFwdRef = Idx; 1128 } 1129 ++NumFwdRefs; 1130 1131 // Create and return a placeholder, which will later be RAUW'd. 1132 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1133 MetadataPtrs[Idx].reset(MD); 1134 return MD; 1135 } 1136 1137 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1138 Metadata *MD = lookup(Idx); 1139 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1140 if (!N->isResolved()) 1141 return nullptr; 1142 return MD; 1143 } 1144 1145 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1146 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1147 } 1148 1149 void BitcodeReaderMetadataList::tryToResolveCycles() { 1150 if (NumFwdRefs) 1151 // Still forward references... can't resolve cycles. 1152 return; 1153 1154 bool DidReplaceTypeRefs = false; 1155 1156 // Give up on finding a full definition for any forward decls that remain. 1157 for (const auto &Ref : OldTypeRefs.FwdDecls) 1158 OldTypeRefs.Final.insert(Ref); 1159 OldTypeRefs.FwdDecls.clear(); 1160 1161 // Upgrade from old type ref arrays. In strange cases, this could add to 1162 // OldTypeRefs.Unknown. 1163 for (const auto &Array : OldTypeRefs.Arrays) { 1164 DidReplaceTypeRefs = true; 1165 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1166 } 1167 OldTypeRefs.Arrays.clear(); 1168 1169 // Replace old string-based type refs with the resolved node, if possible. 1170 // If we haven't seen the node, leave it to the verifier to complain about 1171 // the invalid string reference. 1172 for (const auto &Ref : OldTypeRefs.Unknown) { 1173 DidReplaceTypeRefs = true; 1174 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1175 Ref.second->replaceAllUsesWith(CT); 1176 else 1177 Ref.second->replaceAllUsesWith(Ref.first); 1178 } 1179 OldTypeRefs.Unknown.clear(); 1180 1181 // Make sure all the upgraded types are resolved. 1182 if (DidReplaceTypeRefs) { 1183 AnyFwdRefs = true; 1184 MinFwdRef = 0; 1185 MaxFwdRef = MetadataPtrs.size() - 1; 1186 } 1187 1188 if (!AnyFwdRefs) 1189 // Nothing to do. 1190 return; 1191 1192 // Resolve any cycles. 1193 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1194 auto &MD = MetadataPtrs[I]; 1195 auto *N = dyn_cast_or_null<MDNode>(MD); 1196 if (!N) 1197 continue; 1198 1199 assert(!N->isTemporary() && "Unexpected forward reference"); 1200 N->resolveCycles(); 1201 } 1202 1203 // Make sure we return early again until there's another forward ref. 1204 AnyFwdRefs = false; 1205 } 1206 1207 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1208 DICompositeType &CT) { 1209 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1210 if (CT.isForwardDecl()) 1211 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1212 else 1213 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1214 } 1215 1216 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1217 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1218 if (LLVM_LIKELY(!UUID)) 1219 return MaybeUUID; 1220 1221 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1222 return CT; 1223 1224 auto &Ref = OldTypeRefs.Unknown[UUID]; 1225 if (!Ref) 1226 Ref = MDNode::getTemporary(Context, None); 1227 return Ref.get(); 1228 } 1229 1230 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1231 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1232 if (!Tuple || Tuple->isDistinct()) 1233 return MaybeTuple; 1234 1235 // Look through the array immediately if possible. 1236 if (!Tuple->isTemporary()) 1237 return resolveTypeRefArray(Tuple); 1238 1239 // Create and return a placeholder to use for now. Eventually 1240 // resolveTypeRefArrays() will be resolve this forward reference. 1241 OldTypeRefs.Arrays.emplace_back(); 1242 OldTypeRefs.Arrays.back().first.reset(Tuple); 1243 OldTypeRefs.Arrays.back().second = MDTuple::getTemporary(Context, None); 1244 return OldTypeRefs.Arrays.back().second.get(); 1245 } 1246 1247 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1248 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1249 if (!Tuple || Tuple->isDistinct()) 1250 return MaybeTuple; 1251 1252 // Look through the DITypeRefArray, upgrading each DITypeRef. 1253 SmallVector<Metadata *, 32> Ops; 1254 Ops.reserve(Tuple->getNumOperands()); 1255 for (Metadata *MD : Tuple->operands()) 1256 Ops.push_back(upgradeTypeRef(MD)); 1257 1258 return MDTuple::get(Context, Ops); 1259 } 1260 1261 Type *BitcodeReader::getTypeByID(unsigned ID) { 1262 // The type table size is always specified correctly. 1263 if (ID >= TypeList.size()) 1264 return nullptr; 1265 1266 if (Type *Ty = TypeList[ID]) 1267 return Ty; 1268 1269 // If we have a forward reference, the only possible case is when it is to a 1270 // named struct. Just create a placeholder for now. 1271 return TypeList[ID] = createIdentifiedStructType(Context); 1272 } 1273 1274 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1275 StringRef Name) { 1276 auto *Ret = StructType::create(Context, Name); 1277 IdentifiedStructTypes.push_back(Ret); 1278 return Ret; 1279 } 1280 1281 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1282 auto *Ret = StructType::create(Context); 1283 IdentifiedStructTypes.push_back(Ret); 1284 return Ret; 1285 } 1286 1287 //===----------------------------------------------------------------------===// 1288 // Functions for parsing blocks from the bitcode file 1289 //===----------------------------------------------------------------------===// 1290 1291 1292 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1293 /// been decoded from the given integer. This function must stay in sync with 1294 /// 'encodeLLVMAttributesForBitcode'. 1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1296 uint64_t EncodedAttrs) { 1297 // FIXME: Remove in 4.0. 1298 1299 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1300 // the bits above 31 down by 11 bits. 1301 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1302 assert((!Alignment || isPowerOf2_32(Alignment)) && 1303 "Alignment must be a power of two."); 1304 1305 if (Alignment) 1306 B.addAlignmentAttr(Alignment); 1307 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1308 (EncodedAttrs & 0xffff)); 1309 } 1310 1311 std::error_code BitcodeReader::parseAttributeBlock() { 1312 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1313 return error("Invalid record"); 1314 1315 if (!MAttributes.empty()) 1316 return error("Invalid multiple blocks"); 1317 1318 SmallVector<uint64_t, 64> Record; 1319 1320 SmallVector<AttributeSet, 8> Attrs; 1321 1322 // Read all the records. 1323 while (1) { 1324 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1325 1326 switch (Entry.Kind) { 1327 case BitstreamEntry::SubBlock: // Handled for us already. 1328 case BitstreamEntry::Error: 1329 return error("Malformed block"); 1330 case BitstreamEntry::EndBlock: 1331 return std::error_code(); 1332 case BitstreamEntry::Record: 1333 // The interesting case. 1334 break; 1335 } 1336 1337 // Read a record. 1338 Record.clear(); 1339 switch (Stream.readRecord(Entry.ID, Record)) { 1340 default: // Default behavior: ignore. 1341 break; 1342 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1343 // FIXME: Remove in 4.0. 1344 if (Record.size() & 1) 1345 return error("Invalid record"); 1346 1347 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1348 AttrBuilder B; 1349 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1350 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1351 } 1352 1353 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1354 Attrs.clear(); 1355 break; 1356 } 1357 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1358 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1359 Attrs.push_back(MAttributeGroups[Record[i]]); 1360 1361 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1362 Attrs.clear(); 1363 break; 1364 } 1365 } 1366 } 1367 } 1368 1369 // Returns Attribute::None on unrecognized codes. 1370 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1371 switch (Code) { 1372 default: 1373 return Attribute::None; 1374 case bitc::ATTR_KIND_ALIGNMENT: 1375 return Attribute::Alignment; 1376 case bitc::ATTR_KIND_ALWAYS_INLINE: 1377 return Attribute::AlwaysInline; 1378 case bitc::ATTR_KIND_ARGMEMONLY: 1379 return Attribute::ArgMemOnly; 1380 case bitc::ATTR_KIND_BUILTIN: 1381 return Attribute::Builtin; 1382 case bitc::ATTR_KIND_BY_VAL: 1383 return Attribute::ByVal; 1384 case bitc::ATTR_KIND_IN_ALLOCA: 1385 return Attribute::InAlloca; 1386 case bitc::ATTR_KIND_COLD: 1387 return Attribute::Cold; 1388 case bitc::ATTR_KIND_CONVERGENT: 1389 return Attribute::Convergent; 1390 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1391 return Attribute::InaccessibleMemOnly; 1392 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1393 return Attribute::InaccessibleMemOrArgMemOnly; 1394 case bitc::ATTR_KIND_INLINE_HINT: 1395 return Attribute::InlineHint; 1396 case bitc::ATTR_KIND_IN_REG: 1397 return Attribute::InReg; 1398 case bitc::ATTR_KIND_JUMP_TABLE: 1399 return Attribute::JumpTable; 1400 case bitc::ATTR_KIND_MIN_SIZE: 1401 return Attribute::MinSize; 1402 case bitc::ATTR_KIND_NAKED: 1403 return Attribute::Naked; 1404 case bitc::ATTR_KIND_NEST: 1405 return Attribute::Nest; 1406 case bitc::ATTR_KIND_NO_ALIAS: 1407 return Attribute::NoAlias; 1408 case bitc::ATTR_KIND_NO_BUILTIN: 1409 return Attribute::NoBuiltin; 1410 case bitc::ATTR_KIND_NO_CAPTURE: 1411 return Attribute::NoCapture; 1412 case bitc::ATTR_KIND_NO_DUPLICATE: 1413 return Attribute::NoDuplicate; 1414 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1415 return Attribute::NoImplicitFloat; 1416 case bitc::ATTR_KIND_NO_INLINE: 1417 return Attribute::NoInline; 1418 case bitc::ATTR_KIND_NO_RECURSE: 1419 return Attribute::NoRecurse; 1420 case bitc::ATTR_KIND_NON_LAZY_BIND: 1421 return Attribute::NonLazyBind; 1422 case bitc::ATTR_KIND_NON_NULL: 1423 return Attribute::NonNull; 1424 case bitc::ATTR_KIND_DEREFERENCEABLE: 1425 return Attribute::Dereferenceable; 1426 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1427 return Attribute::DereferenceableOrNull; 1428 case bitc::ATTR_KIND_ALLOC_SIZE: 1429 return Attribute::AllocSize; 1430 case bitc::ATTR_KIND_NO_RED_ZONE: 1431 return Attribute::NoRedZone; 1432 case bitc::ATTR_KIND_NO_RETURN: 1433 return Attribute::NoReturn; 1434 case bitc::ATTR_KIND_NO_UNWIND: 1435 return Attribute::NoUnwind; 1436 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1437 return Attribute::OptimizeForSize; 1438 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1439 return Attribute::OptimizeNone; 1440 case bitc::ATTR_KIND_READ_NONE: 1441 return Attribute::ReadNone; 1442 case bitc::ATTR_KIND_READ_ONLY: 1443 return Attribute::ReadOnly; 1444 case bitc::ATTR_KIND_RETURNED: 1445 return Attribute::Returned; 1446 case bitc::ATTR_KIND_RETURNS_TWICE: 1447 return Attribute::ReturnsTwice; 1448 case bitc::ATTR_KIND_S_EXT: 1449 return Attribute::SExt; 1450 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1451 return Attribute::StackAlignment; 1452 case bitc::ATTR_KIND_STACK_PROTECT: 1453 return Attribute::StackProtect; 1454 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1455 return Attribute::StackProtectReq; 1456 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1457 return Attribute::StackProtectStrong; 1458 case bitc::ATTR_KIND_SAFESTACK: 1459 return Attribute::SafeStack; 1460 case bitc::ATTR_KIND_STRUCT_RET: 1461 return Attribute::StructRet; 1462 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1463 return Attribute::SanitizeAddress; 1464 case bitc::ATTR_KIND_SANITIZE_THREAD: 1465 return Attribute::SanitizeThread; 1466 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1467 return Attribute::SanitizeMemory; 1468 case bitc::ATTR_KIND_SWIFT_ERROR: 1469 return Attribute::SwiftError; 1470 case bitc::ATTR_KIND_SWIFT_SELF: 1471 return Attribute::SwiftSelf; 1472 case bitc::ATTR_KIND_UW_TABLE: 1473 return Attribute::UWTable; 1474 case bitc::ATTR_KIND_Z_EXT: 1475 return Attribute::ZExt; 1476 } 1477 } 1478 1479 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1480 unsigned &Alignment) { 1481 // Note: Alignment in bitcode files is incremented by 1, so that zero 1482 // can be used for default alignment. 1483 if (Exponent > Value::MaxAlignmentExponent + 1) 1484 return error("Invalid alignment value"); 1485 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1486 return std::error_code(); 1487 } 1488 1489 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1490 Attribute::AttrKind *Kind) { 1491 *Kind = getAttrFromCode(Code); 1492 if (*Kind == Attribute::None) 1493 return error(BitcodeError::CorruptedBitcode, 1494 "Unknown attribute kind (" + Twine(Code) + ")"); 1495 return std::error_code(); 1496 } 1497 1498 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1499 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1500 return error("Invalid record"); 1501 1502 if (!MAttributeGroups.empty()) 1503 return error("Invalid multiple blocks"); 1504 1505 SmallVector<uint64_t, 64> Record; 1506 1507 // Read all the records. 1508 while (1) { 1509 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1510 1511 switch (Entry.Kind) { 1512 case BitstreamEntry::SubBlock: // Handled for us already. 1513 case BitstreamEntry::Error: 1514 return error("Malformed block"); 1515 case BitstreamEntry::EndBlock: 1516 return std::error_code(); 1517 case BitstreamEntry::Record: 1518 // The interesting case. 1519 break; 1520 } 1521 1522 // Read a record. 1523 Record.clear(); 1524 switch (Stream.readRecord(Entry.ID, Record)) { 1525 default: // Default behavior: ignore. 1526 break; 1527 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1528 if (Record.size() < 3) 1529 return error("Invalid record"); 1530 1531 uint64_t GrpID = Record[0]; 1532 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1533 1534 AttrBuilder B; 1535 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1536 if (Record[i] == 0) { // Enum attribute 1537 Attribute::AttrKind Kind; 1538 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1539 return EC; 1540 1541 B.addAttribute(Kind); 1542 } else if (Record[i] == 1) { // Integer attribute 1543 Attribute::AttrKind Kind; 1544 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1545 return EC; 1546 if (Kind == Attribute::Alignment) 1547 B.addAlignmentAttr(Record[++i]); 1548 else if (Kind == Attribute::StackAlignment) 1549 B.addStackAlignmentAttr(Record[++i]); 1550 else if (Kind == Attribute::Dereferenceable) 1551 B.addDereferenceableAttr(Record[++i]); 1552 else if (Kind == Attribute::DereferenceableOrNull) 1553 B.addDereferenceableOrNullAttr(Record[++i]); 1554 else if (Kind == Attribute::AllocSize) 1555 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1556 } else { // String attribute 1557 assert((Record[i] == 3 || Record[i] == 4) && 1558 "Invalid attribute group entry"); 1559 bool HasValue = (Record[i++] == 4); 1560 SmallString<64> KindStr; 1561 SmallString<64> ValStr; 1562 1563 while (Record[i] != 0 && i != e) 1564 KindStr += Record[i++]; 1565 assert(Record[i] == 0 && "Kind string not null terminated"); 1566 1567 if (HasValue) { 1568 // Has a value associated with it. 1569 ++i; // Skip the '0' that terminates the "kind" string. 1570 while (Record[i] != 0 && i != e) 1571 ValStr += Record[i++]; 1572 assert(Record[i] == 0 && "Value string not null terminated"); 1573 } 1574 1575 B.addAttribute(KindStr.str(), ValStr.str()); 1576 } 1577 } 1578 1579 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1580 break; 1581 } 1582 } 1583 } 1584 } 1585 1586 std::error_code BitcodeReader::parseTypeTable() { 1587 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1588 return error("Invalid record"); 1589 1590 return parseTypeTableBody(); 1591 } 1592 1593 std::error_code BitcodeReader::parseTypeTableBody() { 1594 if (!TypeList.empty()) 1595 return error("Invalid multiple blocks"); 1596 1597 SmallVector<uint64_t, 64> Record; 1598 unsigned NumRecords = 0; 1599 1600 SmallString<64> TypeName; 1601 1602 // Read all the records for this type table. 1603 while (1) { 1604 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1605 1606 switch (Entry.Kind) { 1607 case BitstreamEntry::SubBlock: // Handled for us already. 1608 case BitstreamEntry::Error: 1609 return error("Malformed block"); 1610 case BitstreamEntry::EndBlock: 1611 if (NumRecords != TypeList.size()) 1612 return error("Malformed block"); 1613 return std::error_code(); 1614 case BitstreamEntry::Record: 1615 // The interesting case. 1616 break; 1617 } 1618 1619 // Read a record. 1620 Record.clear(); 1621 Type *ResultTy = nullptr; 1622 switch (Stream.readRecord(Entry.ID, Record)) { 1623 default: 1624 return error("Invalid value"); 1625 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1626 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1627 // type list. This allows us to reserve space. 1628 if (Record.size() < 1) 1629 return error("Invalid record"); 1630 TypeList.resize(Record[0]); 1631 continue; 1632 case bitc::TYPE_CODE_VOID: // VOID 1633 ResultTy = Type::getVoidTy(Context); 1634 break; 1635 case bitc::TYPE_CODE_HALF: // HALF 1636 ResultTy = Type::getHalfTy(Context); 1637 break; 1638 case bitc::TYPE_CODE_FLOAT: // FLOAT 1639 ResultTy = Type::getFloatTy(Context); 1640 break; 1641 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1642 ResultTy = Type::getDoubleTy(Context); 1643 break; 1644 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1645 ResultTy = Type::getX86_FP80Ty(Context); 1646 break; 1647 case bitc::TYPE_CODE_FP128: // FP128 1648 ResultTy = Type::getFP128Ty(Context); 1649 break; 1650 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1651 ResultTy = Type::getPPC_FP128Ty(Context); 1652 break; 1653 case bitc::TYPE_CODE_LABEL: // LABEL 1654 ResultTy = Type::getLabelTy(Context); 1655 break; 1656 case bitc::TYPE_CODE_METADATA: // METADATA 1657 ResultTy = Type::getMetadataTy(Context); 1658 break; 1659 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1660 ResultTy = Type::getX86_MMXTy(Context); 1661 break; 1662 case bitc::TYPE_CODE_TOKEN: // TOKEN 1663 ResultTy = Type::getTokenTy(Context); 1664 break; 1665 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1666 if (Record.size() < 1) 1667 return error("Invalid record"); 1668 1669 uint64_t NumBits = Record[0]; 1670 if (NumBits < IntegerType::MIN_INT_BITS || 1671 NumBits > IntegerType::MAX_INT_BITS) 1672 return error("Bitwidth for integer type out of range"); 1673 ResultTy = IntegerType::get(Context, NumBits); 1674 break; 1675 } 1676 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1677 // [pointee type, address space] 1678 if (Record.size() < 1) 1679 return error("Invalid record"); 1680 unsigned AddressSpace = 0; 1681 if (Record.size() == 2) 1682 AddressSpace = Record[1]; 1683 ResultTy = getTypeByID(Record[0]); 1684 if (!ResultTy || 1685 !PointerType::isValidElementType(ResultTy)) 1686 return error("Invalid type"); 1687 ResultTy = PointerType::get(ResultTy, AddressSpace); 1688 break; 1689 } 1690 case bitc::TYPE_CODE_FUNCTION_OLD: { 1691 // FIXME: attrid is dead, remove it in LLVM 4.0 1692 // FUNCTION: [vararg, attrid, retty, paramty x N] 1693 if (Record.size() < 3) 1694 return error("Invalid record"); 1695 SmallVector<Type*, 8> ArgTys; 1696 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1697 if (Type *T = getTypeByID(Record[i])) 1698 ArgTys.push_back(T); 1699 else 1700 break; 1701 } 1702 1703 ResultTy = getTypeByID(Record[2]); 1704 if (!ResultTy || ArgTys.size() < Record.size()-3) 1705 return error("Invalid type"); 1706 1707 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1708 break; 1709 } 1710 case bitc::TYPE_CODE_FUNCTION: { 1711 // FUNCTION: [vararg, retty, paramty x N] 1712 if (Record.size() < 2) 1713 return error("Invalid record"); 1714 SmallVector<Type*, 8> ArgTys; 1715 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1716 if (Type *T = getTypeByID(Record[i])) { 1717 if (!FunctionType::isValidArgumentType(T)) 1718 return error("Invalid function argument type"); 1719 ArgTys.push_back(T); 1720 } 1721 else 1722 break; 1723 } 1724 1725 ResultTy = getTypeByID(Record[1]); 1726 if (!ResultTy || ArgTys.size() < Record.size()-2) 1727 return error("Invalid type"); 1728 1729 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1730 break; 1731 } 1732 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1733 if (Record.size() < 1) 1734 return error("Invalid record"); 1735 SmallVector<Type*, 8> EltTys; 1736 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1737 if (Type *T = getTypeByID(Record[i])) 1738 EltTys.push_back(T); 1739 else 1740 break; 1741 } 1742 if (EltTys.size() != Record.size()-1) 1743 return error("Invalid type"); 1744 ResultTy = StructType::get(Context, EltTys, Record[0]); 1745 break; 1746 } 1747 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1748 if (convertToString(Record, 0, TypeName)) 1749 return error("Invalid record"); 1750 continue; 1751 1752 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1753 if (Record.size() < 1) 1754 return error("Invalid record"); 1755 1756 if (NumRecords >= TypeList.size()) 1757 return error("Invalid TYPE table"); 1758 1759 // Check to see if this was forward referenced, if so fill in the temp. 1760 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1761 if (Res) { 1762 Res->setName(TypeName); 1763 TypeList[NumRecords] = nullptr; 1764 } else // Otherwise, create a new struct. 1765 Res = createIdentifiedStructType(Context, TypeName); 1766 TypeName.clear(); 1767 1768 SmallVector<Type*, 8> EltTys; 1769 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1770 if (Type *T = getTypeByID(Record[i])) 1771 EltTys.push_back(T); 1772 else 1773 break; 1774 } 1775 if (EltTys.size() != Record.size()-1) 1776 return error("Invalid record"); 1777 Res->setBody(EltTys, Record[0]); 1778 ResultTy = Res; 1779 break; 1780 } 1781 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1782 if (Record.size() != 1) 1783 return error("Invalid record"); 1784 1785 if (NumRecords >= TypeList.size()) 1786 return error("Invalid TYPE table"); 1787 1788 // Check to see if this was forward referenced, if so fill in the temp. 1789 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1790 if (Res) { 1791 Res->setName(TypeName); 1792 TypeList[NumRecords] = nullptr; 1793 } else // Otherwise, create a new struct with no body. 1794 Res = createIdentifiedStructType(Context, TypeName); 1795 TypeName.clear(); 1796 ResultTy = Res; 1797 break; 1798 } 1799 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1800 if (Record.size() < 2) 1801 return error("Invalid record"); 1802 ResultTy = getTypeByID(Record[1]); 1803 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1804 return error("Invalid type"); 1805 ResultTy = ArrayType::get(ResultTy, Record[0]); 1806 break; 1807 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1808 if (Record.size() < 2) 1809 return error("Invalid record"); 1810 if (Record[0] == 0) 1811 return error("Invalid vector length"); 1812 ResultTy = getTypeByID(Record[1]); 1813 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1814 return error("Invalid type"); 1815 ResultTy = VectorType::get(ResultTy, Record[0]); 1816 break; 1817 } 1818 1819 if (NumRecords >= TypeList.size()) 1820 return error("Invalid TYPE table"); 1821 if (TypeList[NumRecords]) 1822 return error( 1823 "Invalid TYPE table: Only named structs can be forward referenced"); 1824 assert(ResultTy && "Didn't read a type?"); 1825 TypeList[NumRecords++] = ResultTy; 1826 } 1827 } 1828 1829 std::error_code BitcodeReader::parseOperandBundleTags() { 1830 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1831 return error("Invalid record"); 1832 1833 if (!BundleTags.empty()) 1834 return error("Invalid multiple blocks"); 1835 1836 SmallVector<uint64_t, 64> Record; 1837 1838 while (1) { 1839 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1840 1841 switch (Entry.Kind) { 1842 case BitstreamEntry::SubBlock: // Handled for us already. 1843 case BitstreamEntry::Error: 1844 return error("Malformed block"); 1845 case BitstreamEntry::EndBlock: 1846 return std::error_code(); 1847 case BitstreamEntry::Record: 1848 // The interesting case. 1849 break; 1850 } 1851 1852 // Tags are implicitly mapped to integers by their order. 1853 1854 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1855 return error("Invalid record"); 1856 1857 // OPERAND_BUNDLE_TAG: [strchr x N] 1858 BundleTags.emplace_back(); 1859 if (convertToString(Record, 0, BundleTags.back())) 1860 return error("Invalid record"); 1861 Record.clear(); 1862 } 1863 } 1864 1865 /// Associate a value with its name from the given index in the provided record. 1866 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1867 unsigned NameIndex, Triple &TT) { 1868 SmallString<128> ValueName; 1869 if (convertToString(Record, NameIndex, ValueName)) 1870 return error("Invalid record"); 1871 unsigned ValueID = Record[0]; 1872 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1873 return error("Invalid record"); 1874 Value *V = ValueList[ValueID]; 1875 1876 StringRef NameStr(ValueName.data(), ValueName.size()); 1877 if (NameStr.find_first_of(0) != StringRef::npos) 1878 return error("Invalid value name"); 1879 V->setName(NameStr); 1880 auto *GO = dyn_cast<GlobalObject>(V); 1881 if (GO) { 1882 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1883 if (TT.isOSBinFormatMachO()) 1884 GO->setComdat(nullptr); 1885 else 1886 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1887 } 1888 } 1889 return V; 1890 } 1891 1892 /// Helper to note and return the current location, and jump to the given 1893 /// offset. 1894 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1895 BitstreamCursor &Stream) { 1896 // Save the current parsing location so we can jump back at the end 1897 // of the VST read. 1898 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1899 Stream.JumpToBit(Offset * 32); 1900 #ifndef NDEBUG 1901 // Do some checking if we are in debug mode. 1902 BitstreamEntry Entry = Stream.advance(); 1903 assert(Entry.Kind == BitstreamEntry::SubBlock); 1904 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1905 #else 1906 // In NDEBUG mode ignore the output so we don't get an unused variable 1907 // warning. 1908 Stream.advance(); 1909 #endif 1910 return CurrentBit; 1911 } 1912 1913 /// Parse the value symbol table at either the current parsing location or 1914 /// at the given bit offset if provided. 1915 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1916 uint64_t CurrentBit; 1917 // Pass in the Offset to distinguish between calling for the module-level 1918 // VST (where we want to jump to the VST offset) and the function-level 1919 // VST (where we don't). 1920 if (Offset > 0) 1921 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1922 1923 // Compute the delta between the bitcode indices in the VST (the word offset 1924 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1925 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1926 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1927 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1928 // just before entering the VST subblock because: 1) the EnterSubBlock 1929 // changes the AbbrevID width; 2) the VST block is nested within the same 1930 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1931 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1932 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1933 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1934 unsigned FuncBitcodeOffsetDelta = 1935 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1936 1937 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1938 return error("Invalid record"); 1939 1940 SmallVector<uint64_t, 64> Record; 1941 1942 Triple TT(TheModule->getTargetTriple()); 1943 1944 // Read all the records for this value table. 1945 SmallString<128> ValueName; 1946 while (1) { 1947 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1948 1949 switch (Entry.Kind) { 1950 case BitstreamEntry::SubBlock: // Handled for us already. 1951 case BitstreamEntry::Error: 1952 return error("Malformed block"); 1953 case BitstreamEntry::EndBlock: 1954 if (Offset > 0) 1955 Stream.JumpToBit(CurrentBit); 1956 return std::error_code(); 1957 case BitstreamEntry::Record: 1958 // The interesting case. 1959 break; 1960 } 1961 1962 // Read a record. 1963 Record.clear(); 1964 switch (Stream.readRecord(Entry.ID, Record)) { 1965 default: // Default behavior: unknown type. 1966 break; 1967 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1968 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1969 if (std::error_code EC = ValOrErr.getError()) 1970 return EC; 1971 ValOrErr.get(); 1972 break; 1973 } 1974 case bitc::VST_CODE_FNENTRY: { 1975 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1976 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1977 if (std::error_code EC = ValOrErr.getError()) 1978 return EC; 1979 Value *V = ValOrErr.get(); 1980 1981 auto *GO = dyn_cast<GlobalObject>(V); 1982 if (!GO) { 1983 // If this is an alias, need to get the actual Function object 1984 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1985 auto *GA = dyn_cast<GlobalAlias>(V); 1986 if (GA) 1987 GO = GA->getBaseObject(); 1988 assert(GO); 1989 } 1990 1991 uint64_t FuncWordOffset = Record[1]; 1992 Function *F = dyn_cast<Function>(GO); 1993 assert(F); 1994 uint64_t FuncBitOffset = FuncWordOffset * 32; 1995 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1996 // Set the LastFunctionBlockBit to point to the last function block. 1997 // Later when parsing is resumed after function materialization, 1998 // we can simply skip that last function block. 1999 if (FuncBitOffset > LastFunctionBlockBit) 2000 LastFunctionBlockBit = FuncBitOffset; 2001 break; 2002 } 2003 case bitc::VST_CODE_BBENTRY: { 2004 if (convertToString(Record, 1, ValueName)) 2005 return error("Invalid record"); 2006 BasicBlock *BB = getBasicBlock(Record[0]); 2007 if (!BB) 2008 return error("Invalid record"); 2009 2010 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2011 ValueName.clear(); 2012 break; 2013 } 2014 } 2015 } 2016 } 2017 2018 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2019 std::error_code 2020 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2021 if (Record.size() < 2) 2022 return error("Invalid record"); 2023 2024 unsigned Kind = Record[0]; 2025 SmallString<8> Name(Record.begin() + 1, Record.end()); 2026 2027 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2028 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2029 return error("Conflicting METADATA_KIND records"); 2030 return std::error_code(); 2031 } 2032 2033 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2034 2035 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2036 StringRef Blob, 2037 unsigned &NextMetadataNo) { 2038 // All the MDStrings in the block are emitted together in a single 2039 // record. The strings are concatenated and stored in a blob along with 2040 // their sizes. 2041 if (Record.size() != 2) 2042 return error("Invalid record: metadata strings layout"); 2043 2044 unsigned NumStrings = Record[0]; 2045 unsigned StringsOffset = Record[1]; 2046 if (!NumStrings) 2047 return error("Invalid record: metadata strings with no strings"); 2048 if (StringsOffset > Blob.size()) 2049 return error("Invalid record: metadata strings corrupt offset"); 2050 2051 StringRef Lengths = Blob.slice(0, StringsOffset); 2052 SimpleBitstreamCursor R(*StreamFile); 2053 R.jumpToPointer(Lengths.begin()); 2054 2055 // Ensure that Blob doesn't get invalidated, even if this is reading from 2056 // a StreamingMemoryObject with corrupt data. 2057 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2058 2059 StringRef Strings = Blob.drop_front(StringsOffset); 2060 do { 2061 if (R.AtEndOfStream()) 2062 return error("Invalid record: metadata strings bad length"); 2063 2064 unsigned Size = R.ReadVBR(6); 2065 if (Strings.size() < Size) 2066 return error("Invalid record: metadata strings truncated chars"); 2067 2068 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2069 NextMetadataNo++); 2070 Strings = Strings.drop_front(Size); 2071 } while (--NumStrings); 2072 2073 return std::error_code(); 2074 } 2075 2076 namespace { 2077 class PlaceholderQueue { 2078 // Placeholders would thrash around when moved, so store in a std::deque 2079 // instead of some sort of vector. 2080 std::deque<DistinctMDOperandPlaceholder> PHs; 2081 2082 public: 2083 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2084 void flush(BitcodeReaderMetadataList &MetadataList); 2085 }; 2086 } // end namespace 2087 2088 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2089 PHs.emplace_back(ID); 2090 return PHs.back(); 2091 } 2092 2093 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2094 while (!PHs.empty()) { 2095 PHs.front().replaceUseWith( 2096 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2097 PHs.pop_front(); 2098 } 2099 } 2100 2101 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2102 /// module level metadata. 2103 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2104 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2105 "Must read all module-level metadata before function-level"); 2106 2107 IsMetadataMaterialized = true; 2108 unsigned NextMetadataNo = MetadataList.size(); 2109 2110 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2111 return error("Invalid metadata: fwd refs into function blocks"); 2112 2113 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2114 return error("Invalid record"); 2115 2116 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2117 SmallVector<uint64_t, 64> Record; 2118 2119 PlaceholderQueue Placeholders; 2120 bool IsDistinct; 2121 auto getMD = [&](unsigned ID) -> Metadata * { 2122 if (!IsDistinct) 2123 return MetadataList.getMetadataFwdRef(ID); 2124 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2125 return MD; 2126 return &Placeholders.getPlaceholderOp(ID); 2127 }; 2128 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2129 if (ID) 2130 return getMD(ID - 1); 2131 return nullptr; 2132 }; 2133 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2134 if (ID) 2135 return MetadataList.getMetadataFwdRef(ID - 1); 2136 return nullptr; 2137 }; 2138 auto getMDString = [&](unsigned ID) -> MDString *{ 2139 // This requires that the ID is not really a forward reference. In 2140 // particular, the MDString must already have been resolved. 2141 return cast_or_null<MDString>(getMDOrNull(ID)); 2142 }; 2143 2144 // Support for old type refs. 2145 auto getDITypeRefOrNull = [&](unsigned ID) { 2146 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2147 }; 2148 2149 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2150 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2151 2152 // Read all the records. 2153 while (1) { 2154 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2155 2156 switch (Entry.Kind) { 2157 case BitstreamEntry::SubBlock: // Handled for us already. 2158 case BitstreamEntry::Error: 2159 return error("Malformed block"); 2160 case BitstreamEntry::EndBlock: 2161 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2162 for (auto CU_SP : CUSubprograms) 2163 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2164 for (auto &Op : SPs->operands()) 2165 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2166 SP->replaceOperandWith(7, CU_SP.first); 2167 2168 MetadataList.tryToResolveCycles(); 2169 Placeholders.flush(MetadataList); 2170 return std::error_code(); 2171 case BitstreamEntry::Record: 2172 // The interesting case. 2173 break; 2174 } 2175 2176 // Read a record. 2177 Record.clear(); 2178 StringRef Blob; 2179 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2180 IsDistinct = false; 2181 switch (Code) { 2182 default: // Default behavior: ignore. 2183 break; 2184 case bitc::METADATA_NAME: { 2185 // Read name of the named metadata. 2186 SmallString<8> Name(Record.begin(), Record.end()); 2187 Record.clear(); 2188 Code = Stream.ReadCode(); 2189 2190 unsigned NextBitCode = Stream.readRecord(Code, Record); 2191 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2192 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2193 2194 // Read named metadata elements. 2195 unsigned Size = Record.size(); 2196 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2197 for (unsigned i = 0; i != Size; ++i) { 2198 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2199 if (!MD) 2200 return error("Invalid record"); 2201 NMD->addOperand(MD); 2202 } 2203 break; 2204 } 2205 case bitc::METADATA_OLD_FN_NODE: { 2206 // FIXME: Remove in 4.0. 2207 // This is a LocalAsMetadata record, the only type of function-local 2208 // metadata. 2209 if (Record.size() % 2 == 1) 2210 return error("Invalid record"); 2211 2212 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2213 // to be legal, but there's no upgrade path. 2214 auto dropRecord = [&] { 2215 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2216 }; 2217 if (Record.size() != 2) { 2218 dropRecord(); 2219 break; 2220 } 2221 2222 Type *Ty = getTypeByID(Record[0]); 2223 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2224 dropRecord(); 2225 break; 2226 } 2227 2228 MetadataList.assignValue( 2229 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2230 NextMetadataNo++); 2231 break; 2232 } 2233 case bitc::METADATA_OLD_NODE: { 2234 // FIXME: Remove in 4.0. 2235 if (Record.size() % 2 == 1) 2236 return error("Invalid record"); 2237 2238 unsigned Size = Record.size(); 2239 SmallVector<Metadata *, 8> Elts; 2240 for (unsigned i = 0; i != Size; i += 2) { 2241 Type *Ty = getTypeByID(Record[i]); 2242 if (!Ty) 2243 return error("Invalid record"); 2244 if (Ty->isMetadataTy()) 2245 Elts.push_back(getMD(Record[i + 1])); 2246 else if (!Ty->isVoidTy()) { 2247 auto *MD = 2248 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2249 assert(isa<ConstantAsMetadata>(MD) && 2250 "Expected non-function-local metadata"); 2251 Elts.push_back(MD); 2252 } else 2253 Elts.push_back(nullptr); 2254 } 2255 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2256 break; 2257 } 2258 case bitc::METADATA_VALUE: { 2259 if (Record.size() != 2) 2260 return error("Invalid record"); 2261 2262 Type *Ty = getTypeByID(Record[0]); 2263 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2264 return error("Invalid record"); 2265 2266 MetadataList.assignValue( 2267 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2268 NextMetadataNo++); 2269 break; 2270 } 2271 case bitc::METADATA_DISTINCT_NODE: 2272 IsDistinct = true; 2273 // fallthrough... 2274 case bitc::METADATA_NODE: { 2275 SmallVector<Metadata *, 8> Elts; 2276 Elts.reserve(Record.size()); 2277 for (unsigned ID : Record) 2278 Elts.push_back(getMDOrNull(ID)); 2279 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2280 : MDNode::get(Context, Elts), 2281 NextMetadataNo++); 2282 break; 2283 } 2284 case bitc::METADATA_LOCATION: { 2285 if (Record.size() != 5) 2286 return error("Invalid record"); 2287 2288 IsDistinct = Record[0]; 2289 unsigned Line = Record[1]; 2290 unsigned Column = Record[2]; 2291 Metadata *Scope = getMD(Record[3]); 2292 Metadata *InlinedAt = getMDOrNull(Record[4]); 2293 MetadataList.assignValue( 2294 GET_OR_DISTINCT(DILocation, 2295 (Context, Line, Column, Scope, InlinedAt)), 2296 NextMetadataNo++); 2297 break; 2298 } 2299 case bitc::METADATA_GENERIC_DEBUG: { 2300 if (Record.size() < 4) 2301 return error("Invalid record"); 2302 2303 IsDistinct = Record[0]; 2304 unsigned Tag = Record[1]; 2305 unsigned Version = Record[2]; 2306 2307 if (Tag >= 1u << 16 || Version != 0) 2308 return error("Invalid record"); 2309 2310 auto *Header = getMDString(Record[3]); 2311 SmallVector<Metadata *, 8> DwarfOps; 2312 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2313 DwarfOps.push_back(getMDOrNull(Record[I])); 2314 MetadataList.assignValue( 2315 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2316 NextMetadataNo++); 2317 break; 2318 } 2319 case bitc::METADATA_SUBRANGE: { 2320 if (Record.size() != 3) 2321 return error("Invalid record"); 2322 2323 IsDistinct = Record[0]; 2324 MetadataList.assignValue( 2325 GET_OR_DISTINCT(DISubrange, 2326 (Context, Record[1], unrotateSign(Record[2]))), 2327 NextMetadataNo++); 2328 break; 2329 } 2330 case bitc::METADATA_ENUMERATOR: { 2331 if (Record.size() != 3) 2332 return error("Invalid record"); 2333 2334 IsDistinct = Record[0]; 2335 MetadataList.assignValue( 2336 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2337 getMDString(Record[2]))), 2338 NextMetadataNo++); 2339 break; 2340 } 2341 case bitc::METADATA_BASIC_TYPE: { 2342 if (Record.size() != 6) 2343 return error("Invalid record"); 2344 2345 IsDistinct = Record[0]; 2346 MetadataList.assignValue( 2347 GET_OR_DISTINCT(DIBasicType, 2348 (Context, Record[1], getMDString(Record[2]), 2349 Record[3], Record[4], Record[5])), 2350 NextMetadataNo++); 2351 break; 2352 } 2353 case bitc::METADATA_DERIVED_TYPE: { 2354 if (Record.size() != 12) 2355 return error("Invalid record"); 2356 2357 IsDistinct = Record[0]; 2358 MetadataList.assignValue( 2359 GET_OR_DISTINCT( 2360 DIDerivedType, 2361 (Context, Record[1], getMDString(Record[2]), 2362 getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]), 2363 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9], 2364 Record[10], getDITypeRefOrNull(Record[11]))), 2365 NextMetadataNo++); 2366 break; 2367 } 2368 case bitc::METADATA_COMPOSITE_TYPE: { 2369 if (Record.size() != 16) 2370 return error("Invalid record"); 2371 2372 // If we have a UUID and this is not a forward declaration, lookup the 2373 // mapping. 2374 IsDistinct = Record[0] & 0x1; 2375 bool IsNotUsedInTypeRef = Record[0] >= 2; 2376 unsigned Tag = Record[1]; 2377 MDString *Name = getMDString(Record[2]); 2378 Metadata *File = getMDOrNull(Record[3]); 2379 unsigned Line = Record[4]; 2380 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2381 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2382 uint64_t SizeInBits = Record[7]; 2383 uint64_t AlignInBits = Record[8]; 2384 uint64_t OffsetInBits = Record[9]; 2385 unsigned Flags = Record[10]; 2386 Metadata *Elements = getMDOrNull(Record[11]); 2387 unsigned RuntimeLang = Record[12]; 2388 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2389 Metadata *TemplateParams = getMDOrNull(Record[14]); 2390 auto *Identifier = getMDString(Record[15]); 2391 DICompositeType *CT = nullptr; 2392 if (Identifier) 2393 CT = DICompositeType::buildODRType( 2394 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2395 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2396 VTableHolder, TemplateParams); 2397 2398 // Create a node if we didn't get a lazy ODR type. 2399 if (!CT) 2400 CT = GET_OR_DISTINCT(DICompositeType, 2401 (Context, Tag, Name, File, Line, Scope, BaseType, 2402 SizeInBits, AlignInBits, OffsetInBits, Flags, 2403 Elements, RuntimeLang, VTableHolder, 2404 TemplateParams, Identifier)); 2405 if (!IsNotUsedInTypeRef && Identifier) 2406 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2407 2408 MetadataList.assignValue(CT, NextMetadataNo++); 2409 break; 2410 } 2411 case bitc::METADATA_SUBROUTINE_TYPE: { 2412 if (Record.size() != 3) 2413 return error("Invalid record"); 2414 2415 IsDistinct = Record[0] & 0x1; 2416 bool IsOldTypeRefArray = Record[0] < 2; 2417 Metadata *Types = getMDOrNull(Record[2]); 2418 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2419 Types = MetadataList.upgradeTypeRefArray(Types); 2420 2421 MetadataList.assignValue( 2422 GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], Types)), 2423 NextMetadataNo++); 2424 break; 2425 } 2426 2427 case bitc::METADATA_MODULE: { 2428 if (Record.size() != 6) 2429 return error("Invalid record"); 2430 2431 IsDistinct = Record[0]; 2432 MetadataList.assignValue( 2433 GET_OR_DISTINCT(DIModule, 2434 (Context, getMDOrNull(Record[1]), 2435 getMDString(Record[2]), getMDString(Record[3]), 2436 getMDString(Record[4]), getMDString(Record[5]))), 2437 NextMetadataNo++); 2438 break; 2439 } 2440 2441 case bitc::METADATA_FILE: { 2442 if (Record.size() != 3) 2443 return error("Invalid record"); 2444 2445 IsDistinct = Record[0]; 2446 MetadataList.assignValue( 2447 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2448 getMDString(Record[2]))), 2449 NextMetadataNo++); 2450 break; 2451 } 2452 case bitc::METADATA_COMPILE_UNIT: { 2453 if (Record.size() < 14 || Record.size() > 16) 2454 return error("Invalid record"); 2455 2456 // Ignore Record[0], which indicates whether this compile unit is 2457 // distinct. It's always distinct. 2458 IsDistinct = true; 2459 auto *CU = DICompileUnit::getDistinct( 2460 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2461 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2462 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2463 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2464 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2465 Record.size() <= 14 ? 0 : Record[14]); 2466 2467 MetadataList.assignValue(CU, NextMetadataNo++); 2468 2469 // Move the Upgrade the list of subprograms. 2470 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2471 CUSubprograms.push_back({CU, SPs}); 2472 break; 2473 } 2474 case bitc::METADATA_SUBPROGRAM: { 2475 if (Record.size() != 18 && Record.size() != 19) 2476 return error("Invalid record"); 2477 2478 IsDistinct = 2479 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2480 // Version 1 has a Function as Record[15]. 2481 // Version 2 has removed Record[15]. 2482 // Version 3 has the Unit as Record[15]. 2483 bool HasUnit = Record[0] >= 2; 2484 if (HasUnit && Record.size() != 19) 2485 return error("Invalid record"); 2486 Metadata *CUorFn = getMDOrNull(Record[15]); 2487 unsigned Offset = Record.size() == 19 ? 1 : 0; 2488 bool HasFn = Offset && !HasUnit; 2489 DISubprogram *SP = GET_OR_DISTINCT( 2490 DISubprogram, 2491 (Context, getDITypeRefOrNull(Record[1]), getMDString(Record[2]), 2492 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2493 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2494 getDITypeRefOrNull(Record[10]), Record[11], Record[12], Record[13], 2495 Record[14], HasUnit ? CUorFn : nullptr, 2496 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2497 getMDOrNull(Record[17 + Offset]))); 2498 MetadataList.assignValue(SP, NextMetadataNo++); 2499 2500 // Upgrade sp->function mapping to function->sp mapping. 2501 if (HasFn) { 2502 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2503 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2504 if (F->isMaterializable()) 2505 // Defer until materialized; unmaterialized functions may not have 2506 // metadata. 2507 FunctionsWithSPs[F] = SP; 2508 else if (!F->empty()) 2509 F->setSubprogram(SP); 2510 } 2511 } 2512 break; 2513 } 2514 case bitc::METADATA_LEXICAL_BLOCK: { 2515 if (Record.size() != 5) 2516 return error("Invalid record"); 2517 2518 IsDistinct = Record[0]; 2519 MetadataList.assignValue( 2520 GET_OR_DISTINCT(DILexicalBlock, 2521 (Context, getMDOrNull(Record[1]), 2522 getMDOrNull(Record[2]), Record[3], Record[4])), 2523 NextMetadataNo++); 2524 break; 2525 } 2526 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2527 if (Record.size() != 4) 2528 return error("Invalid record"); 2529 2530 IsDistinct = Record[0]; 2531 MetadataList.assignValue( 2532 GET_OR_DISTINCT(DILexicalBlockFile, 2533 (Context, getMDOrNull(Record[1]), 2534 getMDOrNull(Record[2]), Record[3])), 2535 NextMetadataNo++); 2536 break; 2537 } 2538 case bitc::METADATA_NAMESPACE: { 2539 if (Record.size() != 5) 2540 return error("Invalid record"); 2541 2542 IsDistinct = Record[0]; 2543 MetadataList.assignValue( 2544 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2545 getMDOrNull(Record[2]), 2546 getMDString(Record[3]), Record[4])), 2547 NextMetadataNo++); 2548 break; 2549 } 2550 case bitc::METADATA_MACRO: { 2551 if (Record.size() != 5) 2552 return error("Invalid record"); 2553 2554 IsDistinct = Record[0]; 2555 MetadataList.assignValue( 2556 GET_OR_DISTINCT(DIMacro, 2557 (Context, Record[1], Record[2], 2558 getMDString(Record[3]), getMDString(Record[4]))), 2559 NextMetadataNo++); 2560 break; 2561 } 2562 case bitc::METADATA_MACRO_FILE: { 2563 if (Record.size() != 5) 2564 return error("Invalid record"); 2565 2566 IsDistinct = Record[0]; 2567 MetadataList.assignValue( 2568 GET_OR_DISTINCT(DIMacroFile, 2569 (Context, Record[1], Record[2], 2570 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2571 NextMetadataNo++); 2572 break; 2573 } 2574 case bitc::METADATA_TEMPLATE_TYPE: { 2575 if (Record.size() != 3) 2576 return error("Invalid record"); 2577 2578 IsDistinct = Record[0]; 2579 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2580 (Context, getMDString(Record[1]), 2581 getDITypeRefOrNull(Record[2]))), 2582 NextMetadataNo++); 2583 break; 2584 } 2585 case bitc::METADATA_TEMPLATE_VALUE: { 2586 if (Record.size() != 5) 2587 return error("Invalid record"); 2588 2589 IsDistinct = Record[0]; 2590 MetadataList.assignValue( 2591 GET_OR_DISTINCT(DITemplateValueParameter, 2592 (Context, Record[1], getMDString(Record[2]), 2593 getDITypeRefOrNull(Record[3]), 2594 getMDOrNull(Record[4]))), 2595 NextMetadataNo++); 2596 break; 2597 } 2598 case bitc::METADATA_GLOBAL_VAR: { 2599 if (Record.size() != 11) 2600 return error("Invalid record"); 2601 2602 IsDistinct = Record[0]; 2603 MetadataList.assignValue( 2604 GET_OR_DISTINCT(DIGlobalVariable, 2605 (Context, getMDOrNull(Record[1]), 2606 getMDString(Record[2]), getMDString(Record[3]), 2607 getMDOrNull(Record[4]), Record[5], 2608 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2609 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2610 NextMetadataNo++); 2611 break; 2612 } 2613 case bitc::METADATA_LOCAL_VAR: { 2614 // 10th field is for the obseleted 'inlinedAt:' field. 2615 if (Record.size() < 8 || Record.size() > 10) 2616 return error("Invalid record"); 2617 2618 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2619 // DW_TAG_arg_variable. 2620 IsDistinct = Record[0]; 2621 bool HasTag = Record.size() > 8; 2622 MetadataList.assignValue( 2623 GET_OR_DISTINCT(DILocalVariable, 2624 (Context, getMDOrNull(Record[1 + HasTag]), 2625 getMDString(Record[2 + HasTag]), 2626 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2627 getDITypeRefOrNull(Record[5 + HasTag]), 2628 Record[6 + HasTag], Record[7 + HasTag])), 2629 NextMetadataNo++); 2630 break; 2631 } 2632 case bitc::METADATA_EXPRESSION: { 2633 if (Record.size() < 1) 2634 return error("Invalid record"); 2635 2636 IsDistinct = Record[0]; 2637 MetadataList.assignValue( 2638 GET_OR_DISTINCT(DIExpression, 2639 (Context, makeArrayRef(Record).slice(1))), 2640 NextMetadataNo++); 2641 break; 2642 } 2643 case bitc::METADATA_OBJC_PROPERTY: { 2644 if (Record.size() != 8) 2645 return error("Invalid record"); 2646 2647 IsDistinct = Record[0]; 2648 MetadataList.assignValue( 2649 GET_OR_DISTINCT(DIObjCProperty, 2650 (Context, getMDString(Record[1]), 2651 getMDOrNull(Record[2]), Record[3], 2652 getMDString(Record[4]), getMDString(Record[5]), 2653 Record[6], getDITypeRefOrNull(Record[7]))), 2654 NextMetadataNo++); 2655 break; 2656 } 2657 case bitc::METADATA_IMPORTED_ENTITY: { 2658 if (Record.size() != 6) 2659 return error("Invalid record"); 2660 2661 IsDistinct = Record[0]; 2662 MetadataList.assignValue( 2663 GET_OR_DISTINCT(DIImportedEntity, 2664 (Context, Record[1], getMDOrNull(Record[2]), 2665 getDITypeRefOrNull(Record[3]), Record[4], 2666 getMDString(Record[5]))), 2667 NextMetadataNo++); 2668 break; 2669 } 2670 case bitc::METADATA_STRING_OLD: { 2671 std::string String(Record.begin(), Record.end()); 2672 2673 // Test for upgrading !llvm.loop. 2674 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2675 2676 Metadata *MD = MDString::get(Context, String); 2677 MetadataList.assignValue(MD, NextMetadataNo++); 2678 break; 2679 } 2680 case bitc::METADATA_STRINGS: 2681 if (std::error_code EC = 2682 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2683 return EC; 2684 break; 2685 case bitc::METADATA_KIND: { 2686 // Support older bitcode files that had METADATA_KIND records in a 2687 // block with METADATA_BLOCK_ID. 2688 if (std::error_code EC = parseMetadataKindRecord(Record)) 2689 return EC; 2690 break; 2691 } 2692 } 2693 } 2694 #undef GET_OR_DISTINCT 2695 } 2696 2697 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2698 std::error_code BitcodeReader::parseMetadataKinds() { 2699 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2700 return error("Invalid record"); 2701 2702 SmallVector<uint64_t, 64> Record; 2703 2704 // Read all the records. 2705 while (1) { 2706 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2707 2708 switch (Entry.Kind) { 2709 case BitstreamEntry::SubBlock: // Handled for us already. 2710 case BitstreamEntry::Error: 2711 return error("Malformed block"); 2712 case BitstreamEntry::EndBlock: 2713 return std::error_code(); 2714 case BitstreamEntry::Record: 2715 // The interesting case. 2716 break; 2717 } 2718 2719 // Read a record. 2720 Record.clear(); 2721 unsigned Code = Stream.readRecord(Entry.ID, Record); 2722 switch (Code) { 2723 default: // Default behavior: ignore. 2724 break; 2725 case bitc::METADATA_KIND: { 2726 if (std::error_code EC = parseMetadataKindRecord(Record)) 2727 return EC; 2728 break; 2729 } 2730 } 2731 } 2732 } 2733 2734 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2735 /// encoding. 2736 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2737 if ((V & 1) == 0) 2738 return V >> 1; 2739 if (V != 1) 2740 return -(V >> 1); 2741 // There is no such thing as -0 with integers. "-0" really means MININT. 2742 return 1ULL << 63; 2743 } 2744 2745 /// Resolve all of the initializers for global values and aliases that we can. 2746 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2747 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2748 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2749 IndirectSymbolInitWorklist; 2750 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2751 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2752 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2753 2754 GlobalInitWorklist.swap(GlobalInits); 2755 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2756 FunctionPrefixWorklist.swap(FunctionPrefixes); 2757 FunctionPrologueWorklist.swap(FunctionPrologues); 2758 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2759 2760 while (!GlobalInitWorklist.empty()) { 2761 unsigned ValID = GlobalInitWorklist.back().second; 2762 if (ValID >= ValueList.size()) { 2763 // Not ready to resolve this yet, it requires something later in the file. 2764 GlobalInits.push_back(GlobalInitWorklist.back()); 2765 } else { 2766 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2767 GlobalInitWorklist.back().first->setInitializer(C); 2768 else 2769 return error("Expected a constant"); 2770 } 2771 GlobalInitWorklist.pop_back(); 2772 } 2773 2774 while (!IndirectSymbolInitWorklist.empty()) { 2775 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2776 if (ValID >= ValueList.size()) { 2777 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2778 } else { 2779 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2780 if (!C) 2781 return error("Expected a constant"); 2782 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2783 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2784 return error("Alias and aliasee types don't match"); 2785 GIS->setIndirectSymbol(C); 2786 } 2787 IndirectSymbolInitWorklist.pop_back(); 2788 } 2789 2790 while (!FunctionPrefixWorklist.empty()) { 2791 unsigned ValID = FunctionPrefixWorklist.back().second; 2792 if (ValID >= ValueList.size()) { 2793 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2794 } else { 2795 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2796 FunctionPrefixWorklist.back().first->setPrefixData(C); 2797 else 2798 return error("Expected a constant"); 2799 } 2800 FunctionPrefixWorklist.pop_back(); 2801 } 2802 2803 while (!FunctionPrologueWorklist.empty()) { 2804 unsigned ValID = FunctionPrologueWorklist.back().second; 2805 if (ValID >= ValueList.size()) { 2806 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2807 } else { 2808 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2809 FunctionPrologueWorklist.back().first->setPrologueData(C); 2810 else 2811 return error("Expected a constant"); 2812 } 2813 FunctionPrologueWorklist.pop_back(); 2814 } 2815 2816 while (!FunctionPersonalityFnWorklist.empty()) { 2817 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2818 if (ValID >= ValueList.size()) { 2819 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2820 } else { 2821 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2822 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2823 else 2824 return error("Expected a constant"); 2825 } 2826 FunctionPersonalityFnWorklist.pop_back(); 2827 } 2828 2829 return std::error_code(); 2830 } 2831 2832 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2833 SmallVector<uint64_t, 8> Words(Vals.size()); 2834 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2835 BitcodeReader::decodeSignRotatedValue); 2836 2837 return APInt(TypeBits, Words); 2838 } 2839 2840 std::error_code BitcodeReader::parseConstants() { 2841 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2842 return error("Invalid record"); 2843 2844 SmallVector<uint64_t, 64> Record; 2845 2846 // Read all the records for this value table. 2847 Type *CurTy = Type::getInt32Ty(Context); 2848 unsigned NextCstNo = ValueList.size(); 2849 while (1) { 2850 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2851 2852 switch (Entry.Kind) { 2853 case BitstreamEntry::SubBlock: // Handled for us already. 2854 case BitstreamEntry::Error: 2855 return error("Malformed block"); 2856 case BitstreamEntry::EndBlock: 2857 if (NextCstNo != ValueList.size()) 2858 return error("Invalid constant reference"); 2859 2860 // Once all the constants have been read, go through and resolve forward 2861 // references. 2862 ValueList.resolveConstantForwardRefs(); 2863 return std::error_code(); 2864 case BitstreamEntry::Record: 2865 // The interesting case. 2866 break; 2867 } 2868 2869 // Read a record. 2870 Record.clear(); 2871 Value *V = nullptr; 2872 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2873 switch (BitCode) { 2874 default: // Default behavior: unknown constant 2875 case bitc::CST_CODE_UNDEF: // UNDEF 2876 V = UndefValue::get(CurTy); 2877 break; 2878 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2879 if (Record.empty()) 2880 return error("Invalid record"); 2881 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2882 return error("Invalid record"); 2883 CurTy = TypeList[Record[0]]; 2884 continue; // Skip the ValueList manipulation. 2885 case bitc::CST_CODE_NULL: // NULL 2886 V = Constant::getNullValue(CurTy); 2887 break; 2888 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2889 if (!CurTy->isIntegerTy() || Record.empty()) 2890 return error("Invalid record"); 2891 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2892 break; 2893 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2894 if (!CurTy->isIntegerTy() || Record.empty()) 2895 return error("Invalid record"); 2896 2897 APInt VInt = 2898 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2899 V = ConstantInt::get(Context, VInt); 2900 2901 break; 2902 } 2903 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2904 if (Record.empty()) 2905 return error("Invalid record"); 2906 if (CurTy->isHalfTy()) 2907 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2908 APInt(16, (uint16_t)Record[0]))); 2909 else if (CurTy->isFloatTy()) 2910 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2911 APInt(32, (uint32_t)Record[0]))); 2912 else if (CurTy->isDoubleTy()) 2913 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2914 APInt(64, Record[0]))); 2915 else if (CurTy->isX86_FP80Ty()) { 2916 // Bits are not stored the same way as a normal i80 APInt, compensate. 2917 uint64_t Rearrange[2]; 2918 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2919 Rearrange[1] = Record[0] >> 48; 2920 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2921 APInt(80, Rearrange))); 2922 } else if (CurTy->isFP128Ty()) 2923 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2924 APInt(128, Record))); 2925 else if (CurTy->isPPC_FP128Ty()) 2926 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2927 APInt(128, Record))); 2928 else 2929 V = UndefValue::get(CurTy); 2930 break; 2931 } 2932 2933 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2934 if (Record.empty()) 2935 return error("Invalid record"); 2936 2937 unsigned Size = Record.size(); 2938 SmallVector<Constant*, 16> Elts; 2939 2940 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2941 for (unsigned i = 0; i != Size; ++i) 2942 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2943 STy->getElementType(i))); 2944 V = ConstantStruct::get(STy, Elts); 2945 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2946 Type *EltTy = ATy->getElementType(); 2947 for (unsigned i = 0; i != Size; ++i) 2948 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2949 V = ConstantArray::get(ATy, Elts); 2950 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2951 Type *EltTy = VTy->getElementType(); 2952 for (unsigned i = 0; i != Size; ++i) 2953 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2954 V = ConstantVector::get(Elts); 2955 } else { 2956 V = UndefValue::get(CurTy); 2957 } 2958 break; 2959 } 2960 case bitc::CST_CODE_STRING: // STRING: [values] 2961 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2962 if (Record.empty()) 2963 return error("Invalid record"); 2964 2965 SmallString<16> Elts(Record.begin(), Record.end()); 2966 V = ConstantDataArray::getString(Context, Elts, 2967 BitCode == bitc::CST_CODE_CSTRING); 2968 break; 2969 } 2970 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2971 if (Record.empty()) 2972 return error("Invalid record"); 2973 2974 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2975 if (EltTy->isIntegerTy(8)) { 2976 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2977 if (isa<VectorType>(CurTy)) 2978 V = ConstantDataVector::get(Context, Elts); 2979 else 2980 V = ConstantDataArray::get(Context, Elts); 2981 } else if (EltTy->isIntegerTy(16)) { 2982 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2983 if (isa<VectorType>(CurTy)) 2984 V = ConstantDataVector::get(Context, Elts); 2985 else 2986 V = ConstantDataArray::get(Context, Elts); 2987 } else if (EltTy->isIntegerTy(32)) { 2988 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2989 if (isa<VectorType>(CurTy)) 2990 V = ConstantDataVector::get(Context, Elts); 2991 else 2992 V = ConstantDataArray::get(Context, Elts); 2993 } else if (EltTy->isIntegerTy(64)) { 2994 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2995 if (isa<VectorType>(CurTy)) 2996 V = ConstantDataVector::get(Context, Elts); 2997 else 2998 V = ConstantDataArray::get(Context, Elts); 2999 } else if (EltTy->isHalfTy()) { 3000 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3001 if (isa<VectorType>(CurTy)) 3002 V = ConstantDataVector::getFP(Context, Elts); 3003 else 3004 V = ConstantDataArray::getFP(Context, Elts); 3005 } else if (EltTy->isFloatTy()) { 3006 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3007 if (isa<VectorType>(CurTy)) 3008 V = ConstantDataVector::getFP(Context, Elts); 3009 else 3010 V = ConstantDataArray::getFP(Context, Elts); 3011 } else if (EltTy->isDoubleTy()) { 3012 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3013 if (isa<VectorType>(CurTy)) 3014 V = ConstantDataVector::getFP(Context, Elts); 3015 else 3016 V = ConstantDataArray::getFP(Context, Elts); 3017 } else { 3018 return error("Invalid type for value"); 3019 } 3020 break; 3021 } 3022 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3023 if (Record.size() < 3) 3024 return error("Invalid record"); 3025 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3026 if (Opc < 0) { 3027 V = UndefValue::get(CurTy); // Unknown binop. 3028 } else { 3029 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3030 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3031 unsigned Flags = 0; 3032 if (Record.size() >= 4) { 3033 if (Opc == Instruction::Add || 3034 Opc == Instruction::Sub || 3035 Opc == Instruction::Mul || 3036 Opc == Instruction::Shl) { 3037 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3038 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3039 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3040 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3041 } else if (Opc == Instruction::SDiv || 3042 Opc == Instruction::UDiv || 3043 Opc == Instruction::LShr || 3044 Opc == Instruction::AShr) { 3045 if (Record[3] & (1 << bitc::PEO_EXACT)) 3046 Flags |= SDivOperator::IsExact; 3047 } 3048 } 3049 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3050 } 3051 break; 3052 } 3053 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3054 if (Record.size() < 3) 3055 return error("Invalid record"); 3056 int Opc = getDecodedCastOpcode(Record[0]); 3057 if (Opc < 0) { 3058 V = UndefValue::get(CurTy); // Unknown cast. 3059 } else { 3060 Type *OpTy = getTypeByID(Record[1]); 3061 if (!OpTy) 3062 return error("Invalid record"); 3063 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3064 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3065 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3066 } 3067 break; 3068 } 3069 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3070 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3071 unsigned OpNum = 0; 3072 Type *PointeeType = nullptr; 3073 if (Record.size() % 2) 3074 PointeeType = getTypeByID(Record[OpNum++]); 3075 SmallVector<Constant*, 16> Elts; 3076 while (OpNum != Record.size()) { 3077 Type *ElTy = getTypeByID(Record[OpNum++]); 3078 if (!ElTy) 3079 return error("Invalid record"); 3080 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3081 } 3082 3083 if (PointeeType && 3084 PointeeType != 3085 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3086 ->getElementType()) 3087 return error("Explicit gep operator type does not match pointee type " 3088 "of pointer operand"); 3089 3090 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3091 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3092 BitCode == 3093 bitc::CST_CODE_CE_INBOUNDS_GEP); 3094 break; 3095 } 3096 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3097 if (Record.size() < 3) 3098 return error("Invalid record"); 3099 3100 Type *SelectorTy = Type::getInt1Ty(Context); 3101 3102 // The selector might be an i1 or an <n x i1> 3103 // Get the type from the ValueList before getting a forward ref. 3104 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3105 if (Value *V = ValueList[Record[0]]) 3106 if (SelectorTy != V->getType()) 3107 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3108 3109 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3110 SelectorTy), 3111 ValueList.getConstantFwdRef(Record[1],CurTy), 3112 ValueList.getConstantFwdRef(Record[2],CurTy)); 3113 break; 3114 } 3115 case bitc::CST_CODE_CE_EXTRACTELT 3116 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3117 if (Record.size() < 3) 3118 return error("Invalid record"); 3119 VectorType *OpTy = 3120 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3121 if (!OpTy) 3122 return error("Invalid record"); 3123 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3124 Constant *Op1 = nullptr; 3125 if (Record.size() == 4) { 3126 Type *IdxTy = getTypeByID(Record[2]); 3127 if (!IdxTy) 3128 return error("Invalid record"); 3129 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3130 } else // TODO: Remove with llvm 4.0 3131 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3132 if (!Op1) 3133 return error("Invalid record"); 3134 V = ConstantExpr::getExtractElement(Op0, Op1); 3135 break; 3136 } 3137 case bitc::CST_CODE_CE_INSERTELT 3138 : { // CE_INSERTELT: [opval, opval, opty, opval] 3139 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3140 if (Record.size() < 3 || !OpTy) 3141 return error("Invalid record"); 3142 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3143 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3144 OpTy->getElementType()); 3145 Constant *Op2 = nullptr; 3146 if (Record.size() == 4) { 3147 Type *IdxTy = getTypeByID(Record[2]); 3148 if (!IdxTy) 3149 return error("Invalid record"); 3150 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3151 } else // TODO: Remove with llvm 4.0 3152 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3153 if (!Op2) 3154 return error("Invalid record"); 3155 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3156 break; 3157 } 3158 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3159 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3160 if (Record.size() < 3 || !OpTy) 3161 return error("Invalid record"); 3162 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3163 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3164 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3165 OpTy->getNumElements()); 3166 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3167 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3168 break; 3169 } 3170 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3171 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3172 VectorType *OpTy = 3173 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3174 if (Record.size() < 4 || !RTy || !OpTy) 3175 return error("Invalid record"); 3176 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3177 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3178 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3179 RTy->getNumElements()); 3180 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3181 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3182 break; 3183 } 3184 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3185 if (Record.size() < 4) 3186 return error("Invalid record"); 3187 Type *OpTy = getTypeByID(Record[0]); 3188 if (!OpTy) 3189 return error("Invalid record"); 3190 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3191 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3192 3193 if (OpTy->isFPOrFPVectorTy()) 3194 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3195 else 3196 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3197 break; 3198 } 3199 // This maintains backward compatibility, pre-asm dialect keywords. 3200 // FIXME: Remove with the 4.0 release. 3201 case bitc::CST_CODE_INLINEASM_OLD: { 3202 if (Record.size() < 2) 3203 return error("Invalid record"); 3204 std::string AsmStr, ConstrStr; 3205 bool HasSideEffects = Record[0] & 1; 3206 bool IsAlignStack = Record[0] >> 1; 3207 unsigned AsmStrSize = Record[1]; 3208 if (2+AsmStrSize >= Record.size()) 3209 return error("Invalid record"); 3210 unsigned ConstStrSize = Record[2+AsmStrSize]; 3211 if (3+AsmStrSize+ConstStrSize > Record.size()) 3212 return error("Invalid record"); 3213 3214 for (unsigned i = 0; i != AsmStrSize; ++i) 3215 AsmStr += (char)Record[2+i]; 3216 for (unsigned i = 0; i != ConstStrSize; ++i) 3217 ConstrStr += (char)Record[3+AsmStrSize+i]; 3218 PointerType *PTy = cast<PointerType>(CurTy); 3219 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3220 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3221 break; 3222 } 3223 // This version adds support for the asm dialect keywords (e.g., 3224 // inteldialect). 3225 case bitc::CST_CODE_INLINEASM: { 3226 if (Record.size() < 2) 3227 return error("Invalid record"); 3228 std::string AsmStr, ConstrStr; 3229 bool HasSideEffects = Record[0] & 1; 3230 bool IsAlignStack = (Record[0] >> 1) & 1; 3231 unsigned AsmDialect = Record[0] >> 2; 3232 unsigned AsmStrSize = Record[1]; 3233 if (2+AsmStrSize >= Record.size()) 3234 return error("Invalid record"); 3235 unsigned ConstStrSize = Record[2+AsmStrSize]; 3236 if (3+AsmStrSize+ConstStrSize > Record.size()) 3237 return error("Invalid record"); 3238 3239 for (unsigned i = 0; i != AsmStrSize; ++i) 3240 AsmStr += (char)Record[2+i]; 3241 for (unsigned i = 0; i != ConstStrSize; ++i) 3242 ConstrStr += (char)Record[3+AsmStrSize+i]; 3243 PointerType *PTy = cast<PointerType>(CurTy); 3244 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3245 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3246 InlineAsm::AsmDialect(AsmDialect)); 3247 break; 3248 } 3249 case bitc::CST_CODE_BLOCKADDRESS:{ 3250 if (Record.size() < 3) 3251 return error("Invalid record"); 3252 Type *FnTy = getTypeByID(Record[0]); 3253 if (!FnTy) 3254 return error("Invalid record"); 3255 Function *Fn = 3256 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3257 if (!Fn) 3258 return error("Invalid record"); 3259 3260 // If the function is already parsed we can insert the block address right 3261 // away. 3262 BasicBlock *BB; 3263 unsigned BBID = Record[2]; 3264 if (!BBID) 3265 // Invalid reference to entry block. 3266 return error("Invalid ID"); 3267 if (!Fn->empty()) { 3268 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3269 for (size_t I = 0, E = BBID; I != E; ++I) { 3270 if (BBI == BBE) 3271 return error("Invalid ID"); 3272 ++BBI; 3273 } 3274 BB = &*BBI; 3275 } else { 3276 // Otherwise insert a placeholder and remember it so it can be inserted 3277 // when the function is parsed. 3278 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3279 if (FwdBBs.empty()) 3280 BasicBlockFwdRefQueue.push_back(Fn); 3281 if (FwdBBs.size() < BBID + 1) 3282 FwdBBs.resize(BBID + 1); 3283 if (!FwdBBs[BBID]) 3284 FwdBBs[BBID] = BasicBlock::Create(Context); 3285 BB = FwdBBs[BBID]; 3286 } 3287 V = BlockAddress::get(Fn, BB); 3288 break; 3289 } 3290 } 3291 3292 ValueList.assignValue(V, NextCstNo); 3293 ++NextCstNo; 3294 } 3295 } 3296 3297 std::error_code BitcodeReader::parseUseLists() { 3298 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3299 return error("Invalid record"); 3300 3301 // Read all the records. 3302 SmallVector<uint64_t, 64> Record; 3303 while (1) { 3304 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3305 3306 switch (Entry.Kind) { 3307 case BitstreamEntry::SubBlock: // Handled for us already. 3308 case BitstreamEntry::Error: 3309 return error("Malformed block"); 3310 case BitstreamEntry::EndBlock: 3311 return std::error_code(); 3312 case BitstreamEntry::Record: 3313 // The interesting case. 3314 break; 3315 } 3316 3317 // Read a use list record. 3318 Record.clear(); 3319 bool IsBB = false; 3320 switch (Stream.readRecord(Entry.ID, Record)) { 3321 default: // Default behavior: unknown type. 3322 break; 3323 case bitc::USELIST_CODE_BB: 3324 IsBB = true; 3325 // fallthrough 3326 case bitc::USELIST_CODE_DEFAULT: { 3327 unsigned RecordLength = Record.size(); 3328 if (RecordLength < 3) 3329 // Records should have at least an ID and two indexes. 3330 return error("Invalid record"); 3331 unsigned ID = Record.back(); 3332 Record.pop_back(); 3333 3334 Value *V; 3335 if (IsBB) { 3336 assert(ID < FunctionBBs.size() && "Basic block not found"); 3337 V = FunctionBBs[ID]; 3338 } else 3339 V = ValueList[ID]; 3340 unsigned NumUses = 0; 3341 SmallDenseMap<const Use *, unsigned, 16> Order; 3342 for (const Use &U : V->materialized_uses()) { 3343 if (++NumUses > Record.size()) 3344 break; 3345 Order[&U] = Record[NumUses - 1]; 3346 } 3347 if (Order.size() != Record.size() || NumUses > Record.size()) 3348 // Mismatches can happen if the functions are being materialized lazily 3349 // (out-of-order), or a value has been upgraded. 3350 break; 3351 3352 V->sortUseList([&](const Use &L, const Use &R) { 3353 return Order.lookup(&L) < Order.lookup(&R); 3354 }); 3355 break; 3356 } 3357 } 3358 } 3359 } 3360 3361 /// When we see the block for metadata, remember where it is and then skip it. 3362 /// This lets us lazily deserialize the metadata. 3363 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3364 // Save the current stream state. 3365 uint64_t CurBit = Stream.GetCurrentBitNo(); 3366 DeferredMetadataInfo.push_back(CurBit); 3367 3368 // Skip over the block for now. 3369 if (Stream.SkipBlock()) 3370 return error("Invalid record"); 3371 return std::error_code(); 3372 } 3373 3374 std::error_code BitcodeReader::materializeMetadata() { 3375 for (uint64_t BitPos : DeferredMetadataInfo) { 3376 // Move the bit stream to the saved position. 3377 Stream.JumpToBit(BitPos); 3378 if (std::error_code EC = parseMetadata(true)) 3379 return EC; 3380 } 3381 DeferredMetadataInfo.clear(); 3382 return std::error_code(); 3383 } 3384 3385 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3386 3387 /// When we see the block for a function body, remember where it is and then 3388 /// skip it. This lets us lazily deserialize the functions. 3389 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3390 // Get the function we are talking about. 3391 if (FunctionsWithBodies.empty()) 3392 return error("Insufficient function protos"); 3393 3394 Function *Fn = FunctionsWithBodies.back(); 3395 FunctionsWithBodies.pop_back(); 3396 3397 // Save the current stream state. 3398 uint64_t CurBit = Stream.GetCurrentBitNo(); 3399 assert( 3400 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3401 "Mismatch between VST and scanned function offsets"); 3402 DeferredFunctionInfo[Fn] = CurBit; 3403 3404 // Skip over the function block for now. 3405 if (Stream.SkipBlock()) 3406 return error("Invalid record"); 3407 return std::error_code(); 3408 } 3409 3410 std::error_code BitcodeReader::globalCleanup() { 3411 // Patch the initializers for globals and aliases up. 3412 resolveGlobalAndIndirectSymbolInits(); 3413 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3414 return error("Malformed global initializer set"); 3415 3416 // Look for intrinsic functions which need to be upgraded at some point 3417 for (Function &F : *TheModule) { 3418 Function *NewFn; 3419 if (UpgradeIntrinsicFunction(&F, NewFn)) 3420 UpgradedIntrinsics[&F] = NewFn; 3421 } 3422 3423 // Look for global variables which need to be renamed. 3424 for (GlobalVariable &GV : TheModule->globals()) 3425 UpgradeGlobalVariable(&GV); 3426 3427 // Force deallocation of memory for these vectors to favor the client that 3428 // want lazy deserialization. 3429 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3430 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3431 IndirectSymbolInits); 3432 return std::error_code(); 3433 } 3434 3435 /// Support for lazy parsing of function bodies. This is required if we 3436 /// either have an old bitcode file without a VST forward declaration record, 3437 /// or if we have an anonymous function being materialized, since anonymous 3438 /// functions do not have a name and are therefore not in the VST. 3439 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3440 Stream.JumpToBit(NextUnreadBit); 3441 3442 if (Stream.AtEndOfStream()) 3443 return error("Could not find function in stream"); 3444 3445 if (!SeenFirstFunctionBody) 3446 return error("Trying to materialize functions before seeing function blocks"); 3447 3448 // An old bitcode file with the symbol table at the end would have 3449 // finished the parse greedily. 3450 assert(SeenValueSymbolTable); 3451 3452 SmallVector<uint64_t, 64> Record; 3453 3454 while (1) { 3455 BitstreamEntry Entry = Stream.advance(); 3456 switch (Entry.Kind) { 3457 default: 3458 return error("Expect SubBlock"); 3459 case BitstreamEntry::SubBlock: 3460 switch (Entry.ID) { 3461 default: 3462 return error("Expect function block"); 3463 case bitc::FUNCTION_BLOCK_ID: 3464 if (std::error_code EC = rememberAndSkipFunctionBody()) 3465 return EC; 3466 NextUnreadBit = Stream.GetCurrentBitNo(); 3467 return std::error_code(); 3468 } 3469 } 3470 } 3471 } 3472 3473 std::error_code BitcodeReader::parseBitcodeVersion() { 3474 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3475 return error("Invalid record"); 3476 3477 // Read all the records. 3478 SmallVector<uint64_t, 64> Record; 3479 while (1) { 3480 BitstreamEntry Entry = Stream.advance(); 3481 3482 switch (Entry.Kind) { 3483 default: 3484 case BitstreamEntry::Error: 3485 return error("Malformed block"); 3486 case BitstreamEntry::EndBlock: 3487 return std::error_code(); 3488 case BitstreamEntry::Record: 3489 // The interesting case. 3490 break; 3491 } 3492 3493 // Read a record. 3494 Record.clear(); 3495 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3496 switch (BitCode) { 3497 default: // Default behavior: reject 3498 return error("Invalid value"); 3499 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3500 // N] 3501 convertToString(Record, 0, ProducerIdentification); 3502 break; 3503 } 3504 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3505 unsigned epoch = (unsigned)Record[0]; 3506 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3507 return error( 3508 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3509 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3510 } 3511 } 3512 } 3513 } 3514 } 3515 3516 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3517 bool ShouldLazyLoadMetadata) { 3518 if (ResumeBit) 3519 Stream.JumpToBit(ResumeBit); 3520 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3521 return error("Invalid record"); 3522 3523 SmallVector<uint64_t, 64> Record; 3524 std::vector<std::string> SectionTable; 3525 std::vector<std::string> GCTable; 3526 3527 // Read all the records for this module. 3528 while (1) { 3529 BitstreamEntry Entry = Stream.advance(); 3530 3531 switch (Entry.Kind) { 3532 case BitstreamEntry::Error: 3533 return error("Malformed block"); 3534 case BitstreamEntry::EndBlock: 3535 return globalCleanup(); 3536 3537 case BitstreamEntry::SubBlock: 3538 switch (Entry.ID) { 3539 default: // Skip unknown content. 3540 if (Stream.SkipBlock()) 3541 return error("Invalid record"); 3542 break; 3543 case bitc::BLOCKINFO_BLOCK_ID: 3544 if (Stream.ReadBlockInfoBlock()) 3545 return error("Malformed block"); 3546 break; 3547 case bitc::PARAMATTR_BLOCK_ID: 3548 if (std::error_code EC = parseAttributeBlock()) 3549 return EC; 3550 break; 3551 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3552 if (std::error_code EC = parseAttributeGroupBlock()) 3553 return EC; 3554 break; 3555 case bitc::TYPE_BLOCK_ID_NEW: 3556 if (std::error_code EC = parseTypeTable()) 3557 return EC; 3558 break; 3559 case bitc::VALUE_SYMTAB_BLOCK_ID: 3560 if (!SeenValueSymbolTable) { 3561 // Either this is an old form VST without function index and an 3562 // associated VST forward declaration record (which would have caused 3563 // the VST to be jumped to and parsed before it was encountered 3564 // normally in the stream), or there were no function blocks to 3565 // trigger an earlier parsing of the VST. 3566 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3567 if (std::error_code EC = parseValueSymbolTable()) 3568 return EC; 3569 SeenValueSymbolTable = true; 3570 } else { 3571 // We must have had a VST forward declaration record, which caused 3572 // the parser to jump to and parse the VST earlier. 3573 assert(VSTOffset > 0); 3574 if (Stream.SkipBlock()) 3575 return error("Invalid record"); 3576 } 3577 break; 3578 case bitc::CONSTANTS_BLOCK_ID: 3579 if (std::error_code EC = parseConstants()) 3580 return EC; 3581 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3582 return EC; 3583 break; 3584 case bitc::METADATA_BLOCK_ID: 3585 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3586 if (std::error_code EC = rememberAndSkipMetadata()) 3587 return EC; 3588 break; 3589 } 3590 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3591 if (std::error_code EC = parseMetadata(true)) 3592 return EC; 3593 break; 3594 case bitc::METADATA_KIND_BLOCK_ID: 3595 if (std::error_code EC = parseMetadataKinds()) 3596 return EC; 3597 break; 3598 case bitc::FUNCTION_BLOCK_ID: 3599 // If this is the first function body we've seen, reverse the 3600 // FunctionsWithBodies list. 3601 if (!SeenFirstFunctionBody) { 3602 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3603 if (std::error_code EC = globalCleanup()) 3604 return EC; 3605 SeenFirstFunctionBody = true; 3606 } 3607 3608 if (VSTOffset > 0) { 3609 // If we have a VST forward declaration record, make sure we 3610 // parse the VST now if we haven't already. It is needed to 3611 // set up the DeferredFunctionInfo vector for lazy reading. 3612 if (!SeenValueSymbolTable) { 3613 if (std::error_code EC = 3614 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3615 return EC; 3616 SeenValueSymbolTable = true; 3617 // Fall through so that we record the NextUnreadBit below. 3618 // This is necessary in case we have an anonymous function that 3619 // is later materialized. Since it will not have a VST entry we 3620 // need to fall back to the lazy parse to find its offset. 3621 } else { 3622 // If we have a VST forward declaration record, but have already 3623 // parsed the VST (just above, when the first function body was 3624 // encountered here), then we are resuming the parse after 3625 // materializing functions. The ResumeBit points to the 3626 // start of the last function block recorded in the 3627 // DeferredFunctionInfo map. Skip it. 3628 if (Stream.SkipBlock()) 3629 return error("Invalid record"); 3630 continue; 3631 } 3632 } 3633 3634 // Support older bitcode files that did not have the function 3635 // index in the VST, nor a VST forward declaration record, as 3636 // well as anonymous functions that do not have VST entries. 3637 // Build the DeferredFunctionInfo vector on the fly. 3638 if (std::error_code EC = rememberAndSkipFunctionBody()) 3639 return EC; 3640 3641 // Suspend parsing when we reach the function bodies. Subsequent 3642 // materialization calls will resume it when necessary. If the bitcode 3643 // file is old, the symbol table will be at the end instead and will not 3644 // have been seen yet. In this case, just finish the parse now. 3645 if (SeenValueSymbolTable) { 3646 NextUnreadBit = Stream.GetCurrentBitNo(); 3647 return std::error_code(); 3648 } 3649 break; 3650 case bitc::USELIST_BLOCK_ID: 3651 if (std::error_code EC = parseUseLists()) 3652 return EC; 3653 break; 3654 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3655 if (std::error_code EC = parseOperandBundleTags()) 3656 return EC; 3657 break; 3658 } 3659 continue; 3660 3661 case BitstreamEntry::Record: 3662 // The interesting case. 3663 break; 3664 } 3665 3666 // Read a record. 3667 auto BitCode = Stream.readRecord(Entry.ID, Record); 3668 switch (BitCode) { 3669 default: break; // Default behavior, ignore unknown content. 3670 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3671 if (Record.size() < 1) 3672 return error("Invalid record"); 3673 // Only version #0 and #1 are supported so far. 3674 unsigned module_version = Record[0]; 3675 switch (module_version) { 3676 default: 3677 return error("Invalid value"); 3678 case 0: 3679 UseRelativeIDs = false; 3680 break; 3681 case 1: 3682 UseRelativeIDs = true; 3683 break; 3684 } 3685 break; 3686 } 3687 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3688 std::string S; 3689 if (convertToString(Record, 0, S)) 3690 return error("Invalid record"); 3691 TheModule->setTargetTriple(S); 3692 break; 3693 } 3694 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3695 std::string S; 3696 if (convertToString(Record, 0, S)) 3697 return error("Invalid record"); 3698 TheModule->setDataLayout(S); 3699 break; 3700 } 3701 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3702 std::string S; 3703 if (convertToString(Record, 0, S)) 3704 return error("Invalid record"); 3705 TheModule->setModuleInlineAsm(S); 3706 break; 3707 } 3708 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3709 // FIXME: Remove in 4.0. 3710 std::string S; 3711 if (convertToString(Record, 0, S)) 3712 return error("Invalid record"); 3713 // Ignore value. 3714 break; 3715 } 3716 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3717 std::string S; 3718 if (convertToString(Record, 0, S)) 3719 return error("Invalid record"); 3720 SectionTable.push_back(S); 3721 break; 3722 } 3723 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3724 std::string S; 3725 if (convertToString(Record, 0, S)) 3726 return error("Invalid record"); 3727 GCTable.push_back(S); 3728 break; 3729 } 3730 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3731 if (Record.size() < 2) 3732 return error("Invalid record"); 3733 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3734 unsigned ComdatNameSize = Record[1]; 3735 std::string ComdatName; 3736 ComdatName.reserve(ComdatNameSize); 3737 for (unsigned i = 0; i != ComdatNameSize; ++i) 3738 ComdatName += (char)Record[2 + i]; 3739 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3740 C->setSelectionKind(SK); 3741 ComdatList.push_back(C); 3742 break; 3743 } 3744 // GLOBALVAR: [pointer type, isconst, initid, 3745 // linkage, alignment, section, visibility, threadlocal, 3746 // unnamed_addr, externally_initialized, dllstorageclass, 3747 // comdat] 3748 case bitc::MODULE_CODE_GLOBALVAR: { 3749 if (Record.size() < 6) 3750 return error("Invalid record"); 3751 Type *Ty = getTypeByID(Record[0]); 3752 if (!Ty) 3753 return error("Invalid record"); 3754 bool isConstant = Record[1] & 1; 3755 bool explicitType = Record[1] & 2; 3756 unsigned AddressSpace; 3757 if (explicitType) { 3758 AddressSpace = Record[1] >> 2; 3759 } else { 3760 if (!Ty->isPointerTy()) 3761 return error("Invalid type for value"); 3762 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3763 Ty = cast<PointerType>(Ty)->getElementType(); 3764 } 3765 3766 uint64_t RawLinkage = Record[3]; 3767 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3768 unsigned Alignment; 3769 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3770 return EC; 3771 std::string Section; 3772 if (Record[5]) { 3773 if (Record[5]-1 >= SectionTable.size()) 3774 return error("Invalid ID"); 3775 Section = SectionTable[Record[5]-1]; 3776 } 3777 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3778 // Local linkage must have default visibility. 3779 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3780 // FIXME: Change to an error if non-default in 4.0. 3781 Visibility = getDecodedVisibility(Record[6]); 3782 3783 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3784 if (Record.size() > 7) 3785 TLM = getDecodedThreadLocalMode(Record[7]); 3786 3787 bool UnnamedAddr = false; 3788 if (Record.size() > 8) 3789 UnnamedAddr = Record[8]; 3790 3791 bool ExternallyInitialized = false; 3792 if (Record.size() > 9) 3793 ExternallyInitialized = Record[9]; 3794 3795 GlobalVariable *NewGV = 3796 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3797 TLM, AddressSpace, ExternallyInitialized); 3798 NewGV->setAlignment(Alignment); 3799 if (!Section.empty()) 3800 NewGV->setSection(Section); 3801 NewGV->setVisibility(Visibility); 3802 NewGV->setUnnamedAddr(UnnamedAddr); 3803 3804 if (Record.size() > 10) 3805 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3806 else 3807 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3808 3809 ValueList.push_back(NewGV); 3810 3811 // Remember which value to use for the global initializer. 3812 if (unsigned InitID = Record[2]) 3813 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3814 3815 if (Record.size() > 11) { 3816 if (unsigned ComdatID = Record[11]) { 3817 if (ComdatID > ComdatList.size()) 3818 return error("Invalid global variable comdat ID"); 3819 NewGV->setComdat(ComdatList[ComdatID - 1]); 3820 } 3821 } else if (hasImplicitComdat(RawLinkage)) { 3822 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3823 } 3824 break; 3825 } 3826 case bitc::MODULE_CODE_GLOBALVAR_ATTACHMENT: { 3827 if (Record.size() % 2 == 0) 3828 return error("Invalid record"); 3829 unsigned ValueID = Record[0]; 3830 if (ValueID >= ValueList.size()) 3831 return error("Invalid record"); 3832 if (auto *GV = dyn_cast<GlobalVariable>(ValueList[ValueID])) 3833 parseGlobalObjectAttachment(*GV, ArrayRef<uint64_t>(Record).slice(1)); 3834 break; 3835 } 3836 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3837 // alignment, section, visibility, gc, unnamed_addr, 3838 // prologuedata, dllstorageclass, comdat, prefixdata] 3839 case bitc::MODULE_CODE_FUNCTION: { 3840 if (Record.size() < 8) 3841 return error("Invalid record"); 3842 Type *Ty = getTypeByID(Record[0]); 3843 if (!Ty) 3844 return error("Invalid record"); 3845 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3846 Ty = PTy->getElementType(); 3847 auto *FTy = dyn_cast<FunctionType>(Ty); 3848 if (!FTy) 3849 return error("Invalid type for value"); 3850 auto CC = static_cast<CallingConv::ID>(Record[1]); 3851 if (CC & ~CallingConv::MaxID) 3852 return error("Invalid calling convention ID"); 3853 3854 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3855 "", TheModule); 3856 3857 Func->setCallingConv(CC); 3858 bool isProto = Record[2]; 3859 uint64_t RawLinkage = Record[3]; 3860 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3861 Func->setAttributes(getAttributes(Record[4])); 3862 3863 unsigned Alignment; 3864 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3865 return EC; 3866 Func->setAlignment(Alignment); 3867 if (Record[6]) { 3868 if (Record[6]-1 >= SectionTable.size()) 3869 return error("Invalid ID"); 3870 Func->setSection(SectionTable[Record[6]-1]); 3871 } 3872 // Local linkage must have default visibility. 3873 if (!Func->hasLocalLinkage()) 3874 // FIXME: Change to an error if non-default in 4.0. 3875 Func->setVisibility(getDecodedVisibility(Record[7])); 3876 if (Record.size() > 8 && Record[8]) { 3877 if (Record[8]-1 >= GCTable.size()) 3878 return error("Invalid ID"); 3879 Func->setGC(GCTable[Record[8] - 1]); 3880 } 3881 bool UnnamedAddr = false; 3882 if (Record.size() > 9) 3883 UnnamedAddr = Record[9]; 3884 Func->setUnnamedAddr(UnnamedAddr); 3885 if (Record.size() > 10 && Record[10] != 0) 3886 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3887 3888 if (Record.size() > 11) 3889 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3890 else 3891 upgradeDLLImportExportLinkage(Func, RawLinkage); 3892 3893 if (Record.size() > 12) { 3894 if (unsigned ComdatID = Record[12]) { 3895 if (ComdatID > ComdatList.size()) 3896 return error("Invalid function comdat ID"); 3897 Func->setComdat(ComdatList[ComdatID - 1]); 3898 } 3899 } else if (hasImplicitComdat(RawLinkage)) { 3900 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3901 } 3902 3903 if (Record.size() > 13 && Record[13] != 0) 3904 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3905 3906 if (Record.size() > 14 && Record[14] != 0) 3907 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3908 3909 ValueList.push_back(Func); 3910 3911 // If this is a function with a body, remember the prototype we are 3912 // creating now, so that we can match up the body with them later. 3913 if (!isProto) { 3914 Func->setIsMaterializable(true); 3915 FunctionsWithBodies.push_back(Func); 3916 DeferredFunctionInfo[Func] = 0; 3917 } 3918 break; 3919 } 3920 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3921 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3922 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3923 case bitc::MODULE_CODE_IFUNC: 3924 case bitc::MODULE_CODE_ALIAS: 3925 case bitc::MODULE_CODE_ALIAS_OLD: { 3926 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3927 if (Record.size() < (3 + (unsigned)NewRecord)) 3928 return error("Invalid record"); 3929 unsigned OpNum = 0; 3930 Type *Ty = getTypeByID(Record[OpNum++]); 3931 if (!Ty) 3932 return error("Invalid record"); 3933 3934 unsigned AddrSpace; 3935 if (!NewRecord) { 3936 auto *PTy = dyn_cast<PointerType>(Ty); 3937 if (!PTy) 3938 return error("Invalid type for value"); 3939 Ty = PTy->getElementType(); 3940 AddrSpace = PTy->getAddressSpace(); 3941 } else { 3942 AddrSpace = Record[OpNum++]; 3943 } 3944 3945 auto Val = Record[OpNum++]; 3946 auto Linkage = Record[OpNum++]; 3947 GlobalIndirectSymbol *NewGA; 3948 if (BitCode == bitc::MODULE_CODE_ALIAS || 3949 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3950 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3951 "", TheModule); 3952 else 3953 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3954 "", nullptr, TheModule); 3955 // Old bitcode files didn't have visibility field. 3956 // Local linkage must have default visibility. 3957 if (OpNum != Record.size()) { 3958 auto VisInd = OpNum++; 3959 if (!NewGA->hasLocalLinkage()) 3960 // FIXME: Change to an error if non-default in 4.0. 3961 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3962 } 3963 if (OpNum != Record.size()) 3964 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3965 else 3966 upgradeDLLImportExportLinkage(NewGA, Linkage); 3967 if (OpNum != Record.size()) 3968 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3969 if (OpNum != Record.size()) 3970 NewGA->setUnnamedAddr(Record[OpNum++]); 3971 ValueList.push_back(NewGA); 3972 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3973 break; 3974 } 3975 /// MODULE_CODE_PURGEVALS: [numvals] 3976 case bitc::MODULE_CODE_PURGEVALS: 3977 // Trim down the value list to the specified size. 3978 if (Record.size() < 1 || Record[0] > ValueList.size()) 3979 return error("Invalid record"); 3980 ValueList.shrinkTo(Record[0]); 3981 break; 3982 /// MODULE_CODE_VSTOFFSET: [offset] 3983 case bitc::MODULE_CODE_VSTOFFSET: 3984 if (Record.size() < 1) 3985 return error("Invalid record"); 3986 VSTOffset = Record[0]; 3987 break; 3988 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3989 case bitc::MODULE_CODE_SOURCE_FILENAME: 3990 SmallString<128> ValueName; 3991 if (convertToString(Record, 0, ValueName)) 3992 return error("Invalid record"); 3993 TheModule->setSourceFileName(ValueName); 3994 break; 3995 } 3996 Record.clear(); 3997 } 3998 } 3999 4000 /// Helper to read the header common to all bitcode files. 4001 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 4002 // Sniff for the signature. 4003 if (Stream.Read(8) != 'B' || 4004 Stream.Read(8) != 'C' || 4005 Stream.Read(4) != 0x0 || 4006 Stream.Read(4) != 0xC || 4007 Stream.Read(4) != 0xE || 4008 Stream.Read(4) != 0xD) 4009 return false; 4010 return true; 4011 } 4012 4013 std::error_code 4014 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 4015 Module *M, bool ShouldLazyLoadMetadata) { 4016 TheModule = M; 4017 4018 if (std::error_code EC = initStream(std::move(Streamer))) 4019 return EC; 4020 4021 // Sniff for the signature. 4022 if (!hasValidBitcodeHeader(Stream)) 4023 return error("Invalid bitcode signature"); 4024 4025 // We expect a number of well-defined blocks, though we don't necessarily 4026 // need to understand them all. 4027 while (1) { 4028 if (Stream.AtEndOfStream()) { 4029 // We didn't really read a proper Module. 4030 return error("Malformed IR file"); 4031 } 4032 4033 BitstreamEntry Entry = 4034 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4035 4036 if (Entry.Kind != BitstreamEntry::SubBlock) 4037 return error("Malformed block"); 4038 4039 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4040 parseBitcodeVersion(); 4041 continue; 4042 } 4043 4044 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4045 return parseModule(0, ShouldLazyLoadMetadata); 4046 4047 if (Stream.SkipBlock()) 4048 return error("Invalid record"); 4049 } 4050 } 4051 4052 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4053 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4054 return error("Invalid record"); 4055 4056 SmallVector<uint64_t, 64> Record; 4057 4058 std::string Triple; 4059 // Read all the records for this module. 4060 while (1) { 4061 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4062 4063 switch (Entry.Kind) { 4064 case BitstreamEntry::SubBlock: // Handled for us already. 4065 case BitstreamEntry::Error: 4066 return error("Malformed block"); 4067 case BitstreamEntry::EndBlock: 4068 return Triple; 4069 case BitstreamEntry::Record: 4070 // The interesting case. 4071 break; 4072 } 4073 4074 // Read a record. 4075 switch (Stream.readRecord(Entry.ID, Record)) { 4076 default: break; // Default behavior, ignore unknown content. 4077 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4078 std::string S; 4079 if (convertToString(Record, 0, S)) 4080 return error("Invalid record"); 4081 Triple = S; 4082 break; 4083 } 4084 } 4085 Record.clear(); 4086 } 4087 llvm_unreachable("Exit infinite loop"); 4088 } 4089 4090 ErrorOr<std::string> BitcodeReader::parseTriple() { 4091 if (std::error_code EC = initStream(nullptr)) 4092 return EC; 4093 4094 // Sniff for the signature. 4095 if (!hasValidBitcodeHeader(Stream)) 4096 return error("Invalid bitcode signature"); 4097 4098 // We expect a number of well-defined blocks, though we don't necessarily 4099 // need to understand them all. 4100 while (1) { 4101 BitstreamEntry Entry = Stream.advance(); 4102 4103 switch (Entry.Kind) { 4104 case BitstreamEntry::Error: 4105 return error("Malformed block"); 4106 case BitstreamEntry::EndBlock: 4107 return std::error_code(); 4108 4109 case BitstreamEntry::SubBlock: 4110 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4111 return parseModuleTriple(); 4112 4113 // Ignore other sub-blocks. 4114 if (Stream.SkipBlock()) 4115 return error("Malformed block"); 4116 continue; 4117 4118 case BitstreamEntry::Record: 4119 Stream.skipRecord(Entry.ID); 4120 continue; 4121 } 4122 } 4123 } 4124 4125 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4126 if (std::error_code EC = initStream(nullptr)) 4127 return EC; 4128 4129 // Sniff for the signature. 4130 if (!hasValidBitcodeHeader(Stream)) 4131 return error("Invalid bitcode signature"); 4132 4133 // We expect a number of well-defined blocks, though we don't necessarily 4134 // need to understand them all. 4135 while (1) { 4136 BitstreamEntry Entry = Stream.advance(); 4137 switch (Entry.Kind) { 4138 case BitstreamEntry::Error: 4139 return error("Malformed block"); 4140 case BitstreamEntry::EndBlock: 4141 return std::error_code(); 4142 4143 case BitstreamEntry::SubBlock: 4144 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4145 if (std::error_code EC = parseBitcodeVersion()) 4146 return EC; 4147 return ProducerIdentification; 4148 } 4149 // Ignore other sub-blocks. 4150 if (Stream.SkipBlock()) 4151 return error("Malformed block"); 4152 continue; 4153 case BitstreamEntry::Record: 4154 Stream.skipRecord(Entry.ID); 4155 continue; 4156 } 4157 } 4158 } 4159 4160 std::error_code BitcodeReader::parseGlobalObjectAttachment( 4161 GlobalObject &GO, ArrayRef<uint64_t> Record) { 4162 assert(Record.size() % 2 == 0); 4163 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4164 auto K = MDKindMap.find(Record[I]); 4165 if (K == MDKindMap.end()) 4166 return error("Invalid ID"); 4167 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4168 if (!MD) 4169 return error("Invalid metadata attachment"); 4170 GO.addMetadata(K->second, *MD); 4171 } 4172 return std::error_code(); 4173 } 4174 4175 /// Parse metadata attachments. 4176 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4177 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4178 return error("Invalid record"); 4179 4180 SmallVector<uint64_t, 64> Record; 4181 while (1) { 4182 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4183 4184 switch (Entry.Kind) { 4185 case BitstreamEntry::SubBlock: // Handled for us already. 4186 case BitstreamEntry::Error: 4187 return error("Malformed block"); 4188 case BitstreamEntry::EndBlock: 4189 return std::error_code(); 4190 case BitstreamEntry::Record: 4191 // The interesting case. 4192 break; 4193 } 4194 4195 // Read a metadata attachment record. 4196 Record.clear(); 4197 switch (Stream.readRecord(Entry.ID, Record)) { 4198 default: // Default behavior: ignore. 4199 break; 4200 case bitc::METADATA_ATTACHMENT: { 4201 unsigned RecordLength = Record.size(); 4202 if (Record.empty()) 4203 return error("Invalid record"); 4204 if (RecordLength % 2 == 0) { 4205 // A function attachment. 4206 if (std::error_code EC = parseGlobalObjectAttachment(F, Record)) 4207 return EC; 4208 continue; 4209 } 4210 4211 // An instruction attachment. 4212 Instruction *Inst = InstructionList[Record[0]]; 4213 for (unsigned i = 1; i != RecordLength; i = i+2) { 4214 unsigned Kind = Record[i]; 4215 DenseMap<unsigned, unsigned>::iterator I = 4216 MDKindMap.find(Kind); 4217 if (I == MDKindMap.end()) 4218 return error("Invalid ID"); 4219 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4220 if (isa<LocalAsMetadata>(Node)) 4221 // Drop the attachment. This used to be legal, but there's no 4222 // upgrade path. 4223 break; 4224 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4225 if (!MD) 4226 return error("Invalid metadata attachment"); 4227 4228 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4229 MD = upgradeInstructionLoopAttachment(*MD); 4230 4231 Inst->setMetadata(I->second, MD); 4232 if (I->second == LLVMContext::MD_tbaa) { 4233 InstsWithTBAATag.push_back(Inst); 4234 continue; 4235 } 4236 } 4237 break; 4238 } 4239 } 4240 } 4241 } 4242 4243 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4244 LLVMContext &Context = PtrType->getContext(); 4245 if (!isa<PointerType>(PtrType)) 4246 return error(Context, "Load/Store operand is not a pointer type"); 4247 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4248 4249 if (ValType && ValType != ElemType) 4250 return error(Context, "Explicit load/store type does not match pointee " 4251 "type of pointer operand"); 4252 if (!PointerType::isLoadableOrStorableType(ElemType)) 4253 return error(Context, "Cannot load/store from pointer"); 4254 return std::error_code(); 4255 } 4256 4257 /// Lazily parse the specified function body block. 4258 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4259 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4260 return error("Invalid record"); 4261 4262 // Unexpected unresolved metadata when parsing function. 4263 if (MetadataList.hasFwdRefs()) 4264 return error("Invalid function metadata: incoming forward references"); 4265 4266 InstructionList.clear(); 4267 unsigned ModuleValueListSize = ValueList.size(); 4268 unsigned ModuleMetadataListSize = MetadataList.size(); 4269 4270 // Add all the function arguments to the value table. 4271 for (Argument &I : F->args()) 4272 ValueList.push_back(&I); 4273 4274 unsigned NextValueNo = ValueList.size(); 4275 BasicBlock *CurBB = nullptr; 4276 unsigned CurBBNo = 0; 4277 4278 DebugLoc LastLoc; 4279 auto getLastInstruction = [&]() -> Instruction * { 4280 if (CurBB && !CurBB->empty()) 4281 return &CurBB->back(); 4282 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4283 !FunctionBBs[CurBBNo - 1]->empty()) 4284 return &FunctionBBs[CurBBNo - 1]->back(); 4285 return nullptr; 4286 }; 4287 4288 std::vector<OperandBundleDef> OperandBundles; 4289 4290 // Read all the records. 4291 SmallVector<uint64_t, 64> Record; 4292 while (1) { 4293 BitstreamEntry Entry = Stream.advance(); 4294 4295 switch (Entry.Kind) { 4296 case BitstreamEntry::Error: 4297 return error("Malformed block"); 4298 case BitstreamEntry::EndBlock: 4299 goto OutOfRecordLoop; 4300 4301 case BitstreamEntry::SubBlock: 4302 switch (Entry.ID) { 4303 default: // Skip unknown content. 4304 if (Stream.SkipBlock()) 4305 return error("Invalid record"); 4306 break; 4307 case bitc::CONSTANTS_BLOCK_ID: 4308 if (std::error_code EC = parseConstants()) 4309 return EC; 4310 NextValueNo = ValueList.size(); 4311 break; 4312 case bitc::VALUE_SYMTAB_BLOCK_ID: 4313 if (std::error_code EC = parseValueSymbolTable()) 4314 return EC; 4315 break; 4316 case bitc::METADATA_ATTACHMENT_ID: 4317 if (std::error_code EC = parseMetadataAttachment(*F)) 4318 return EC; 4319 break; 4320 case bitc::METADATA_BLOCK_ID: 4321 if (std::error_code EC = parseMetadata()) 4322 return EC; 4323 break; 4324 case bitc::USELIST_BLOCK_ID: 4325 if (std::error_code EC = parseUseLists()) 4326 return EC; 4327 break; 4328 } 4329 continue; 4330 4331 case BitstreamEntry::Record: 4332 // The interesting case. 4333 break; 4334 } 4335 4336 // Read a record. 4337 Record.clear(); 4338 Instruction *I = nullptr; 4339 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4340 switch (BitCode) { 4341 default: // Default behavior: reject 4342 return error("Invalid value"); 4343 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4344 if (Record.size() < 1 || Record[0] == 0) 4345 return error("Invalid record"); 4346 // Create all the basic blocks for the function. 4347 FunctionBBs.resize(Record[0]); 4348 4349 // See if anything took the address of blocks in this function. 4350 auto BBFRI = BasicBlockFwdRefs.find(F); 4351 if (BBFRI == BasicBlockFwdRefs.end()) { 4352 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4353 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4354 } else { 4355 auto &BBRefs = BBFRI->second; 4356 // Check for invalid basic block references. 4357 if (BBRefs.size() > FunctionBBs.size()) 4358 return error("Invalid ID"); 4359 assert(!BBRefs.empty() && "Unexpected empty array"); 4360 assert(!BBRefs.front() && "Invalid reference to entry block"); 4361 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4362 ++I) 4363 if (I < RE && BBRefs[I]) { 4364 BBRefs[I]->insertInto(F); 4365 FunctionBBs[I] = BBRefs[I]; 4366 } else { 4367 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4368 } 4369 4370 // Erase from the table. 4371 BasicBlockFwdRefs.erase(BBFRI); 4372 } 4373 4374 CurBB = FunctionBBs[0]; 4375 continue; 4376 } 4377 4378 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4379 // This record indicates that the last instruction is at the same 4380 // location as the previous instruction with a location. 4381 I = getLastInstruction(); 4382 4383 if (!I) 4384 return error("Invalid record"); 4385 I->setDebugLoc(LastLoc); 4386 I = nullptr; 4387 continue; 4388 4389 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4390 I = getLastInstruction(); 4391 if (!I || Record.size() < 4) 4392 return error("Invalid record"); 4393 4394 unsigned Line = Record[0], Col = Record[1]; 4395 unsigned ScopeID = Record[2], IAID = Record[3]; 4396 4397 MDNode *Scope = nullptr, *IA = nullptr; 4398 if (ScopeID) { 4399 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4400 if (!Scope) 4401 return error("Invalid record"); 4402 } 4403 if (IAID) { 4404 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4405 if (!IA) 4406 return error("Invalid record"); 4407 } 4408 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4409 I->setDebugLoc(LastLoc); 4410 I = nullptr; 4411 continue; 4412 } 4413 4414 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4415 unsigned OpNum = 0; 4416 Value *LHS, *RHS; 4417 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4418 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4419 OpNum+1 > Record.size()) 4420 return error("Invalid record"); 4421 4422 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4423 if (Opc == -1) 4424 return error("Invalid record"); 4425 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4426 InstructionList.push_back(I); 4427 if (OpNum < Record.size()) { 4428 if (Opc == Instruction::Add || 4429 Opc == Instruction::Sub || 4430 Opc == Instruction::Mul || 4431 Opc == Instruction::Shl) { 4432 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4433 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4434 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4435 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4436 } else if (Opc == Instruction::SDiv || 4437 Opc == Instruction::UDiv || 4438 Opc == Instruction::LShr || 4439 Opc == Instruction::AShr) { 4440 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4441 cast<BinaryOperator>(I)->setIsExact(true); 4442 } else if (isa<FPMathOperator>(I)) { 4443 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4444 if (FMF.any()) 4445 I->setFastMathFlags(FMF); 4446 } 4447 4448 } 4449 break; 4450 } 4451 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4452 unsigned OpNum = 0; 4453 Value *Op; 4454 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4455 OpNum+2 != Record.size()) 4456 return error("Invalid record"); 4457 4458 Type *ResTy = getTypeByID(Record[OpNum]); 4459 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4460 if (Opc == -1 || !ResTy) 4461 return error("Invalid record"); 4462 Instruction *Temp = nullptr; 4463 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4464 if (Temp) { 4465 InstructionList.push_back(Temp); 4466 CurBB->getInstList().push_back(Temp); 4467 } 4468 } else { 4469 auto CastOp = (Instruction::CastOps)Opc; 4470 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4471 return error("Invalid cast"); 4472 I = CastInst::Create(CastOp, Op, ResTy); 4473 } 4474 InstructionList.push_back(I); 4475 break; 4476 } 4477 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4478 case bitc::FUNC_CODE_INST_GEP_OLD: 4479 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4480 unsigned OpNum = 0; 4481 4482 Type *Ty; 4483 bool InBounds; 4484 4485 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4486 InBounds = Record[OpNum++]; 4487 Ty = getTypeByID(Record[OpNum++]); 4488 } else { 4489 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4490 Ty = nullptr; 4491 } 4492 4493 Value *BasePtr; 4494 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4495 return error("Invalid record"); 4496 4497 if (!Ty) 4498 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4499 ->getElementType(); 4500 else if (Ty != 4501 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4502 ->getElementType()) 4503 return error( 4504 "Explicit gep type does not match pointee type of pointer operand"); 4505 4506 SmallVector<Value*, 16> GEPIdx; 4507 while (OpNum != Record.size()) { 4508 Value *Op; 4509 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4510 return error("Invalid record"); 4511 GEPIdx.push_back(Op); 4512 } 4513 4514 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4515 4516 InstructionList.push_back(I); 4517 if (InBounds) 4518 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4519 break; 4520 } 4521 4522 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4523 // EXTRACTVAL: [opty, opval, n x indices] 4524 unsigned OpNum = 0; 4525 Value *Agg; 4526 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4527 return error("Invalid record"); 4528 4529 unsigned RecSize = Record.size(); 4530 if (OpNum == RecSize) 4531 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4532 4533 SmallVector<unsigned, 4> EXTRACTVALIdx; 4534 Type *CurTy = Agg->getType(); 4535 for (; OpNum != RecSize; ++OpNum) { 4536 bool IsArray = CurTy->isArrayTy(); 4537 bool IsStruct = CurTy->isStructTy(); 4538 uint64_t Index = Record[OpNum]; 4539 4540 if (!IsStruct && !IsArray) 4541 return error("EXTRACTVAL: Invalid type"); 4542 if ((unsigned)Index != Index) 4543 return error("Invalid value"); 4544 if (IsStruct && Index >= CurTy->subtypes().size()) 4545 return error("EXTRACTVAL: Invalid struct index"); 4546 if (IsArray && Index >= CurTy->getArrayNumElements()) 4547 return error("EXTRACTVAL: Invalid array index"); 4548 EXTRACTVALIdx.push_back((unsigned)Index); 4549 4550 if (IsStruct) 4551 CurTy = CurTy->subtypes()[Index]; 4552 else 4553 CurTy = CurTy->subtypes()[0]; 4554 } 4555 4556 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4557 InstructionList.push_back(I); 4558 break; 4559 } 4560 4561 case bitc::FUNC_CODE_INST_INSERTVAL: { 4562 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4563 unsigned OpNum = 0; 4564 Value *Agg; 4565 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4566 return error("Invalid record"); 4567 Value *Val; 4568 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4569 return error("Invalid record"); 4570 4571 unsigned RecSize = Record.size(); 4572 if (OpNum == RecSize) 4573 return error("INSERTVAL: Invalid instruction with 0 indices"); 4574 4575 SmallVector<unsigned, 4> INSERTVALIdx; 4576 Type *CurTy = Agg->getType(); 4577 for (; OpNum != RecSize; ++OpNum) { 4578 bool IsArray = CurTy->isArrayTy(); 4579 bool IsStruct = CurTy->isStructTy(); 4580 uint64_t Index = Record[OpNum]; 4581 4582 if (!IsStruct && !IsArray) 4583 return error("INSERTVAL: Invalid type"); 4584 if ((unsigned)Index != Index) 4585 return error("Invalid value"); 4586 if (IsStruct && Index >= CurTy->subtypes().size()) 4587 return error("INSERTVAL: Invalid struct index"); 4588 if (IsArray && Index >= CurTy->getArrayNumElements()) 4589 return error("INSERTVAL: Invalid array index"); 4590 4591 INSERTVALIdx.push_back((unsigned)Index); 4592 if (IsStruct) 4593 CurTy = CurTy->subtypes()[Index]; 4594 else 4595 CurTy = CurTy->subtypes()[0]; 4596 } 4597 4598 if (CurTy != Val->getType()) 4599 return error("Inserted value type doesn't match aggregate type"); 4600 4601 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4602 InstructionList.push_back(I); 4603 break; 4604 } 4605 4606 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4607 // obsolete form of select 4608 // handles select i1 ... in old bitcode 4609 unsigned OpNum = 0; 4610 Value *TrueVal, *FalseVal, *Cond; 4611 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4612 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4613 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4614 return error("Invalid record"); 4615 4616 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4617 InstructionList.push_back(I); 4618 break; 4619 } 4620 4621 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4622 // new form of select 4623 // handles select i1 or select [N x i1] 4624 unsigned OpNum = 0; 4625 Value *TrueVal, *FalseVal, *Cond; 4626 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4627 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4628 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4629 return error("Invalid record"); 4630 4631 // select condition can be either i1 or [N x i1] 4632 if (VectorType* vector_type = 4633 dyn_cast<VectorType>(Cond->getType())) { 4634 // expect <n x i1> 4635 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4636 return error("Invalid type for value"); 4637 } else { 4638 // expect i1 4639 if (Cond->getType() != Type::getInt1Ty(Context)) 4640 return error("Invalid type for value"); 4641 } 4642 4643 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4644 InstructionList.push_back(I); 4645 break; 4646 } 4647 4648 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4649 unsigned OpNum = 0; 4650 Value *Vec, *Idx; 4651 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4652 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4653 return error("Invalid record"); 4654 if (!Vec->getType()->isVectorTy()) 4655 return error("Invalid type for value"); 4656 I = ExtractElementInst::Create(Vec, Idx); 4657 InstructionList.push_back(I); 4658 break; 4659 } 4660 4661 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4662 unsigned OpNum = 0; 4663 Value *Vec, *Elt, *Idx; 4664 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4665 return error("Invalid record"); 4666 if (!Vec->getType()->isVectorTy()) 4667 return error("Invalid type for value"); 4668 if (popValue(Record, OpNum, NextValueNo, 4669 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4670 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4671 return error("Invalid record"); 4672 I = InsertElementInst::Create(Vec, Elt, Idx); 4673 InstructionList.push_back(I); 4674 break; 4675 } 4676 4677 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4678 unsigned OpNum = 0; 4679 Value *Vec1, *Vec2, *Mask; 4680 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4681 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4682 return error("Invalid record"); 4683 4684 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4685 return error("Invalid record"); 4686 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4687 return error("Invalid type for value"); 4688 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4689 InstructionList.push_back(I); 4690 break; 4691 } 4692 4693 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4694 // Old form of ICmp/FCmp returning bool 4695 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4696 // both legal on vectors but had different behaviour. 4697 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4698 // FCmp/ICmp returning bool or vector of bool 4699 4700 unsigned OpNum = 0; 4701 Value *LHS, *RHS; 4702 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4703 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4704 return error("Invalid record"); 4705 4706 unsigned PredVal = Record[OpNum]; 4707 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4708 FastMathFlags FMF; 4709 if (IsFP && Record.size() > OpNum+1) 4710 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4711 4712 if (OpNum+1 != Record.size()) 4713 return error("Invalid record"); 4714 4715 if (LHS->getType()->isFPOrFPVectorTy()) 4716 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4717 else 4718 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4719 4720 if (FMF.any()) 4721 I->setFastMathFlags(FMF); 4722 InstructionList.push_back(I); 4723 break; 4724 } 4725 4726 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4727 { 4728 unsigned Size = Record.size(); 4729 if (Size == 0) { 4730 I = ReturnInst::Create(Context); 4731 InstructionList.push_back(I); 4732 break; 4733 } 4734 4735 unsigned OpNum = 0; 4736 Value *Op = nullptr; 4737 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4738 return error("Invalid record"); 4739 if (OpNum != Record.size()) 4740 return error("Invalid record"); 4741 4742 I = ReturnInst::Create(Context, Op); 4743 InstructionList.push_back(I); 4744 break; 4745 } 4746 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4747 if (Record.size() != 1 && Record.size() != 3) 4748 return error("Invalid record"); 4749 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4750 if (!TrueDest) 4751 return error("Invalid record"); 4752 4753 if (Record.size() == 1) { 4754 I = BranchInst::Create(TrueDest); 4755 InstructionList.push_back(I); 4756 } 4757 else { 4758 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4759 Value *Cond = getValue(Record, 2, NextValueNo, 4760 Type::getInt1Ty(Context)); 4761 if (!FalseDest || !Cond) 4762 return error("Invalid record"); 4763 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4764 InstructionList.push_back(I); 4765 } 4766 break; 4767 } 4768 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4769 if (Record.size() != 1 && Record.size() != 2) 4770 return error("Invalid record"); 4771 unsigned Idx = 0; 4772 Value *CleanupPad = 4773 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4774 if (!CleanupPad) 4775 return error("Invalid record"); 4776 BasicBlock *UnwindDest = nullptr; 4777 if (Record.size() == 2) { 4778 UnwindDest = getBasicBlock(Record[Idx++]); 4779 if (!UnwindDest) 4780 return error("Invalid record"); 4781 } 4782 4783 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4784 InstructionList.push_back(I); 4785 break; 4786 } 4787 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4788 if (Record.size() != 2) 4789 return error("Invalid record"); 4790 unsigned Idx = 0; 4791 Value *CatchPad = 4792 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4793 if (!CatchPad) 4794 return error("Invalid record"); 4795 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4796 if (!BB) 4797 return error("Invalid record"); 4798 4799 I = CatchReturnInst::Create(CatchPad, BB); 4800 InstructionList.push_back(I); 4801 break; 4802 } 4803 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4804 // We must have, at minimum, the outer scope and the number of arguments. 4805 if (Record.size() < 2) 4806 return error("Invalid record"); 4807 4808 unsigned Idx = 0; 4809 4810 Value *ParentPad = 4811 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4812 4813 unsigned NumHandlers = Record[Idx++]; 4814 4815 SmallVector<BasicBlock *, 2> Handlers; 4816 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4817 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4818 if (!BB) 4819 return error("Invalid record"); 4820 Handlers.push_back(BB); 4821 } 4822 4823 BasicBlock *UnwindDest = nullptr; 4824 if (Idx + 1 == Record.size()) { 4825 UnwindDest = getBasicBlock(Record[Idx++]); 4826 if (!UnwindDest) 4827 return error("Invalid record"); 4828 } 4829 4830 if (Record.size() != Idx) 4831 return error("Invalid record"); 4832 4833 auto *CatchSwitch = 4834 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4835 for (BasicBlock *Handler : Handlers) 4836 CatchSwitch->addHandler(Handler); 4837 I = CatchSwitch; 4838 InstructionList.push_back(I); 4839 break; 4840 } 4841 case bitc::FUNC_CODE_INST_CATCHPAD: 4842 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4843 // We must have, at minimum, the outer scope and the number of arguments. 4844 if (Record.size() < 2) 4845 return error("Invalid record"); 4846 4847 unsigned Idx = 0; 4848 4849 Value *ParentPad = 4850 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4851 4852 unsigned NumArgOperands = Record[Idx++]; 4853 4854 SmallVector<Value *, 2> Args; 4855 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4856 Value *Val; 4857 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4858 return error("Invalid record"); 4859 Args.push_back(Val); 4860 } 4861 4862 if (Record.size() != Idx) 4863 return error("Invalid record"); 4864 4865 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4866 I = CleanupPadInst::Create(ParentPad, Args); 4867 else 4868 I = CatchPadInst::Create(ParentPad, Args); 4869 InstructionList.push_back(I); 4870 break; 4871 } 4872 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4873 // Check magic 4874 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4875 // "New" SwitchInst format with case ranges. The changes to write this 4876 // format were reverted but we still recognize bitcode that uses it. 4877 // Hopefully someday we will have support for case ranges and can use 4878 // this format again. 4879 4880 Type *OpTy = getTypeByID(Record[1]); 4881 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4882 4883 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4884 BasicBlock *Default = getBasicBlock(Record[3]); 4885 if (!OpTy || !Cond || !Default) 4886 return error("Invalid record"); 4887 4888 unsigned NumCases = Record[4]; 4889 4890 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4891 InstructionList.push_back(SI); 4892 4893 unsigned CurIdx = 5; 4894 for (unsigned i = 0; i != NumCases; ++i) { 4895 SmallVector<ConstantInt*, 1> CaseVals; 4896 unsigned NumItems = Record[CurIdx++]; 4897 for (unsigned ci = 0; ci != NumItems; ++ci) { 4898 bool isSingleNumber = Record[CurIdx++]; 4899 4900 APInt Low; 4901 unsigned ActiveWords = 1; 4902 if (ValueBitWidth > 64) 4903 ActiveWords = Record[CurIdx++]; 4904 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4905 ValueBitWidth); 4906 CurIdx += ActiveWords; 4907 4908 if (!isSingleNumber) { 4909 ActiveWords = 1; 4910 if (ValueBitWidth > 64) 4911 ActiveWords = Record[CurIdx++]; 4912 APInt High = readWideAPInt( 4913 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4914 CurIdx += ActiveWords; 4915 4916 // FIXME: It is not clear whether values in the range should be 4917 // compared as signed or unsigned values. The partially 4918 // implemented changes that used this format in the past used 4919 // unsigned comparisons. 4920 for ( ; Low.ule(High); ++Low) 4921 CaseVals.push_back(ConstantInt::get(Context, Low)); 4922 } else 4923 CaseVals.push_back(ConstantInt::get(Context, Low)); 4924 } 4925 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4926 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4927 cve = CaseVals.end(); cvi != cve; ++cvi) 4928 SI->addCase(*cvi, DestBB); 4929 } 4930 I = SI; 4931 break; 4932 } 4933 4934 // Old SwitchInst format without case ranges. 4935 4936 if (Record.size() < 3 || (Record.size() & 1) == 0) 4937 return error("Invalid record"); 4938 Type *OpTy = getTypeByID(Record[0]); 4939 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4940 BasicBlock *Default = getBasicBlock(Record[2]); 4941 if (!OpTy || !Cond || !Default) 4942 return error("Invalid record"); 4943 unsigned NumCases = (Record.size()-3)/2; 4944 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4945 InstructionList.push_back(SI); 4946 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4947 ConstantInt *CaseVal = 4948 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4949 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4950 if (!CaseVal || !DestBB) { 4951 delete SI; 4952 return error("Invalid record"); 4953 } 4954 SI->addCase(CaseVal, DestBB); 4955 } 4956 I = SI; 4957 break; 4958 } 4959 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4960 if (Record.size() < 2) 4961 return error("Invalid record"); 4962 Type *OpTy = getTypeByID(Record[0]); 4963 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4964 if (!OpTy || !Address) 4965 return error("Invalid record"); 4966 unsigned NumDests = Record.size()-2; 4967 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4968 InstructionList.push_back(IBI); 4969 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4970 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4971 IBI->addDestination(DestBB); 4972 } else { 4973 delete IBI; 4974 return error("Invalid record"); 4975 } 4976 } 4977 I = IBI; 4978 break; 4979 } 4980 4981 case bitc::FUNC_CODE_INST_INVOKE: { 4982 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4983 if (Record.size() < 4) 4984 return error("Invalid record"); 4985 unsigned OpNum = 0; 4986 AttributeSet PAL = getAttributes(Record[OpNum++]); 4987 unsigned CCInfo = Record[OpNum++]; 4988 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4989 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4990 4991 FunctionType *FTy = nullptr; 4992 if (CCInfo >> 13 & 1 && 4993 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4994 return error("Explicit invoke type is not a function type"); 4995 4996 Value *Callee; 4997 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4998 return error("Invalid record"); 4999 5000 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5001 if (!CalleeTy) 5002 return error("Callee is not a pointer"); 5003 if (!FTy) { 5004 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5005 if (!FTy) 5006 return error("Callee is not of pointer to function type"); 5007 } else if (CalleeTy->getElementType() != FTy) 5008 return error("Explicit invoke type does not match pointee type of " 5009 "callee operand"); 5010 if (Record.size() < FTy->getNumParams() + OpNum) 5011 return error("Insufficient operands to call"); 5012 5013 SmallVector<Value*, 16> Ops; 5014 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5015 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5016 FTy->getParamType(i))); 5017 if (!Ops.back()) 5018 return error("Invalid record"); 5019 } 5020 5021 if (!FTy->isVarArg()) { 5022 if (Record.size() != OpNum) 5023 return error("Invalid record"); 5024 } else { 5025 // Read type/value pairs for varargs params. 5026 while (OpNum != Record.size()) { 5027 Value *Op; 5028 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5029 return error("Invalid record"); 5030 Ops.push_back(Op); 5031 } 5032 } 5033 5034 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5035 OperandBundles.clear(); 5036 InstructionList.push_back(I); 5037 cast<InvokeInst>(I)->setCallingConv( 5038 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5039 cast<InvokeInst>(I)->setAttributes(PAL); 5040 break; 5041 } 5042 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5043 unsigned Idx = 0; 5044 Value *Val = nullptr; 5045 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5046 return error("Invalid record"); 5047 I = ResumeInst::Create(Val); 5048 InstructionList.push_back(I); 5049 break; 5050 } 5051 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5052 I = new UnreachableInst(Context); 5053 InstructionList.push_back(I); 5054 break; 5055 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5056 if (Record.size() < 1 || ((Record.size()-1)&1)) 5057 return error("Invalid record"); 5058 Type *Ty = getTypeByID(Record[0]); 5059 if (!Ty) 5060 return error("Invalid record"); 5061 5062 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5063 InstructionList.push_back(PN); 5064 5065 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5066 Value *V; 5067 // With the new function encoding, it is possible that operands have 5068 // negative IDs (for forward references). Use a signed VBR 5069 // representation to keep the encoding small. 5070 if (UseRelativeIDs) 5071 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5072 else 5073 V = getValue(Record, 1+i, NextValueNo, Ty); 5074 BasicBlock *BB = getBasicBlock(Record[2+i]); 5075 if (!V || !BB) 5076 return error("Invalid record"); 5077 PN->addIncoming(V, BB); 5078 } 5079 I = PN; 5080 break; 5081 } 5082 5083 case bitc::FUNC_CODE_INST_LANDINGPAD: 5084 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5085 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5086 unsigned Idx = 0; 5087 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5088 if (Record.size() < 3) 5089 return error("Invalid record"); 5090 } else { 5091 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5092 if (Record.size() < 4) 5093 return error("Invalid record"); 5094 } 5095 Type *Ty = getTypeByID(Record[Idx++]); 5096 if (!Ty) 5097 return error("Invalid record"); 5098 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5099 Value *PersFn = nullptr; 5100 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5101 return error("Invalid record"); 5102 5103 if (!F->hasPersonalityFn()) 5104 F->setPersonalityFn(cast<Constant>(PersFn)); 5105 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5106 return error("Personality function mismatch"); 5107 } 5108 5109 bool IsCleanup = !!Record[Idx++]; 5110 unsigned NumClauses = Record[Idx++]; 5111 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5112 LP->setCleanup(IsCleanup); 5113 for (unsigned J = 0; J != NumClauses; ++J) { 5114 LandingPadInst::ClauseType CT = 5115 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5116 Value *Val; 5117 5118 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5119 delete LP; 5120 return error("Invalid record"); 5121 } 5122 5123 assert((CT != LandingPadInst::Catch || 5124 !isa<ArrayType>(Val->getType())) && 5125 "Catch clause has a invalid type!"); 5126 assert((CT != LandingPadInst::Filter || 5127 isa<ArrayType>(Val->getType())) && 5128 "Filter clause has invalid type!"); 5129 LP->addClause(cast<Constant>(Val)); 5130 } 5131 5132 I = LP; 5133 InstructionList.push_back(I); 5134 break; 5135 } 5136 5137 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5138 if (Record.size() != 4) 5139 return error("Invalid record"); 5140 uint64_t AlignRecord = Record[3]; 5141 const uint64_t InAllocaMask = uint64_t(1) << 5; 5142 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5143 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5144 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5145 SwiftErrorMask; 5146 bool InAlloca = AlignRecord & InAllocaMask; 5147 bool SwiftError = AlignRecord & SwiftErrorMask; 5148 Type *Ty = getTypeByID(Record[0]); 5149 if ((AlignRecord & ExplicitTypeMask) == 0) { 5150 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5151 if (!PTy) 5152 return error("Old-style alloca with a non-pointer type"); 5153 Ty = PTy->getElementType(); 5154 } 5155 Type *OpTy = getTypeByID(Record[1]); 5156 Value *Size = getFnValueByID(Record[2], OpTy); 5157 unsigned Align; 5158 if (std::error_code EC = 5159 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5160 return EC; 5161 } 5162 if (!Ty || !Size) 5163 return error("Invalid record"); 5164 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5165 AI->setUsedWithInAlloca(InAlloca); 5166 AI->setSwiftError(SwiftError); 5167 I = AI; 5168 InstructionList.push_back(I); 5169 break; 5170 } 5171 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5172 unsigned OpNum = 0; 5173 Value *Op; 5174 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5175 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5176 return error("Invalid record"); 5177 5178 Type *Ty = nullptr; 5179 if (OpNum + 3 == Record.size()) 5180 Ty = getTypeByID(Record[OpNum++]); 5181 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5182 return EC; 5183 if (!Ty) 5184 Ty = cast<PointerType>(Op->getType())->getElementType(); 5185 5186 unsigned Align; 5187 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5188 return EC; 5189 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5190 5191 InstructionList.push_back(I); 5192 break; 5193 } 5194 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5195 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5196 unsigned OpNum = 0; 5197 Value *Op; 5198 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5199 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5200 return error("Invalid record"); 5201 5202 Type *Ty = nullptr; 5203 if (OpNum + 5 == Record.size()) 5204 Ty = getTypeByID(Record[OpNum++]); 5205 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5206 return EC; 5207 if (!Ty) 5208 Ty = cast<PointerType>(Op->getType())->getElementType(); 5209 5210 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5211 if (Ordering == AtomicOrdering::NotAtomic || 5212 Ordering == AtomicOrdering::Release || 5213 Ordering == AtomicOrdering::AcquireRelease) 5214 return error("Invalid record"); 5215 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5216 return error("Invalid record"); 5217 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5218 5219 unsigned Align; 5220 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5221 return EC; 5222 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5223 5224 InstructionList.push_back(I); 5225 break; 5226 } 5227 case bitc::FUNC_CODE_INST_STORE: 5228 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5229 unsigned OpNum = 0; 5230 Value *Val, *Ptr; 5231 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5232 (BitCode == bitc::FUNC_CODE_INST_STORE 5233 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5234 : popValue(Record, OpNum, NextValueNo, 5235 cast<PointerType>(Ptr->getType())->getElementType(), 5236 Val)) || 5237 OpNum + 2 != Record.size()) 5238 return error("Invalid record"); 5239 5240 if (std::error_code EC = 5241 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5242 return EC; 5243 unsigned Align; 5244 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5245 return EC; 5246 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5247 InstructionList.push_back(I); 5248 break; 5249 } 5250 case bitc::FUNC_CODE_INST_STOREATOMIC: 5251 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5252 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5253 unsigned OpNum = 0; 5254 Value *Val, *Ptr; 5255 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5256 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5257 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5258 : popValue(Record, OpNum, NextValueNo, 5259 cast<PointerType>(Ptr->getType())->getElementType(), 5260 Val)) || 5261 OpNum + 4 != Record.size()) 5262 return error("Invalid record"); 5263 5264 if (std::error_code EC = 5265 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5266 return EC; 5267 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5268 if (Ordering == AtomicOrdering::NotAtomic || 5269 Ordering == AtomicOrdering::Acquire || 5270 Ordering == AtomicOrdering::AcquireRelease) 5271 return error("Invalid record"); 5272 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5273 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5274 return error("Invalid record"); 5275 5276 unsigned Align; 5277 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5278 return EC; 5279 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5280 InstructionList.push_back(I); 5281 break; 5282 } 5283 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5284 case bitc::FUNC_CODE_INST_CMPXCHG: { 5285 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5286 // failureordering?, isweak?] 5287 unsigned OpNum = 0; 5288 Value *Ptr, *Cmp, *New; 5289 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5290 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5291 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5292 : popValue(Record, OpNum, NextValueNo, 5293 cast<PointerType>(Ptr->getType())->getElementType(), 5294 Cmp)) || 5295 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5296 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5297 return error("Invalid record"); 5298 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5299 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5300 SuccessOrdering == AtomicOrdering::Unordered) 5301 return error("Invalid record"); 5302 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5303 5304 if (std::error_code EC = 5305 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5306 return EC; 5307 AtomicOrdering FailureOrdering; 5308 if (Record.size() < 7) 5309 FailureOrdering = 5310 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5311 else 5312 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5313 5314 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5315 SynchScope); 5316 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5317 5318 if (Record.size() < 8) { 5319 // Before weak cmpxchgs existed, the instruction simply returned the 5320 // value loaded from memory, so bitcode files from that era will be 5321 // expecting the first component of a modern cmpxchg. 5322 CurBB->getInstList().push_back(I); 5323 I = ExtractValueInst::Create(I, 0); 5324 } else { 5325 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5326 } 5327 5328 InstructionList.push_back(I); 5329 break; 5330 } 5331 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5332 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5333 unsigned OpNum = 0; 5334 Value *Ptr, *Val; 5335 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5336 popValue(Record, OpNum, NextValueNo, 5337 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5338 OpNum+4 != Record.size()) 5339 return error("Invalid record"); 5340 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5341 if (Operation < AtomicRMWInst::FIRST_BINOP || 5342 Operation > AtomicRMWInst::LAST_BINOP) 5343 return error("Invalid record"); 5344 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5345 if (Ordering == AtomicOrdering::NotAtomic || 5346 Ordering == AtomicOrdering::Unordered) 5347 return error("Invalid record"); 5348 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5349 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5350 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5351 InstructionList.push_back(I); 5352 break; 5353 } 5354 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5355 if (2 != Record.size()) 5356 return error("Invalid record"); 5357 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5358 if (Ordering == AtomicOrdering::NotAtomic || 5359 Ordering == AtomicOrdering::Unordered || 5360 Ordering == AtomicOrdering::Monotonic) 5361 return error("Invalid record"); 5362 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5363 I = new FenceInst(Context, Ordering, SynchScope); 5364 InstructionList.push_back(I); 5365 break; 5366 } 5367 case bitc::FUNC_CODE_INST_CALL: { 5368 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5369 if (Record.size() < 3) 5370 return error("Invalid record"); 5371 5372 unsigned OpNum = 0; 5373 AttributeSet PAL = getAttributes(Record[OpNum++]); 5374 unsigned CCInfo = Record[OpNum++]; 5375 5376 FastMathFlags FMF; 5377 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5378 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5379 if (!FMF.any()) 5380 return error("Fast math flags indicator set for call with no FMF"); 5381 } 5382 5383 FunctionType *FTy = nullptr; 5384 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5385 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5386 return error("Explicit call type is not a function type"); 5387 5388 Value *Callee; 5389 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5390 return error("Invalid record"); 5391 5392 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5393 if (!OpTy) 5394 return error("Callee is not a pointer type"); 5395 if (!FTy) { 5396 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5397 if (!FTy) 5398 return error("Callee is not of pointer to function type"); 5399 } else if (OpTy->getElementType() != FTy) 5400 return error("Explicit call type does not match pointee type of " 5401 "callee operand"); 5402 if (Record.size() < FTy->getNumParams() + OpNum) 5403 return error("Insufficient operands to call"); 5404 5405 SmallVector<Value*, 16> Args; 5406 // Read the fixed params. 5407 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5408 if (FTy->getParamType(i)->isLabelTy()) 5409 Args.push_back(getBasicBlock(Record[OpNum])); 5410 else 5411 Args.push_back(getValue(Record, OpNum, NextValueNo, 5412 FTy->getParamType(i))); 5413 if (!Args.back()) 5414 return error("Invalid record"); 5415 } 5416 5417 // Read type/value pairs for varargs params. 5418 if (!FTy->isVarArg()) { 5419 if (OpNum != Record.size()) 5420 return error("Invalid record"); 5421 } else { 5422 while (OpNum != Record.size()) { 5423 Value *Op; 5424 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5425 return error("Invalid record"); 5426 Args.push_back(Op); 5427 } 5428 } 5429 5430 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5431 OperandBundles.clear(); 5432 InstructionList.push_back(I); 5433 cast<CallInst>(I)->setCallingConv( 5434 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5435 CallInst::TailCallKind TCK = CallInst::TCK_None; 5436 if (CCInfo & 1 << bitc::CALL_TAIL) 5437 TCK = CallInst::TCK_Tail; 5438 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5439 TCK = CallInst::TCK_MustTail; 5440 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5441 TCK = CallInst::TCK_NoTail; 5442 cast<CallInst>(I)->setTailCallKind(TCK); 5443 cast<CallInst>(I)->setAttributes(PAL); 5444 if (FMF.any()) { 5445 if (!isa<FPMathOperator>(I)) 5446 return error("Fast-math-flags specified for call without " 5447 "floating-point scalar or vector return type"); 5448 I->setFastMathFlags(FMF); 5449 } 5450 break; 5451 } 5452 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5453 if (Record.size() < 3) 5454 return error("Invalid record"); 5455 Type *OpTy = getTypeByID(Record[0]); 5456 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5457 Type *ResTy = getTypeByID(Record[2]); 5458 if (!OpTy || !Op || !ResTy) 5459 return error("Invalid record"); 5460 I = new VAArgInst(Op, ResTy); 5461 InstructionList.push_back(I); 5462 break; 5463 } 5464 5465 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5466 // A call or an invoke can be optionally prefixed with some variable 5467 // number of operand bundle blocks. These blocks are read into 5468 // OperandBundles and consumed at the next call or invoke instruction. 5469 5470 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5471 return error("Invalid record"); 5472 5473 std::vector<Value *> Inputs; 5474 5475 unsigned OpNum = 1; 5476 while (OpNum != Record.size()) { 5477 Value *Op; 5478 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5479 return error("Invalid record"); 5480 Inputs.push_back(Op); 5481 } 5482 5483 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5484 continue; 5485 } 5486 } 5487 5488 // Add instruction to end of current BB. If there is no current BB, reject 5489 // this file. 5490 if (!CurBB) { 5491 delete I; 5492 return error("Invalid instruction with no BB"); 5493 } 5494 if (!OperandBundles.empty()) { 5495 delete I; 5496 return error("Operand bundles found with no consumer"); 5497 } 5498 CurBB->getInstList().push_back(I); 5499 5500 // If this was a terminator instruction, move to the next block. 5501 if (isa<TerminatorInst>(I)) { 5502 ++CurBBNo; 5503 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5504 } 5505 5506 // Non-void values get registered in the value table for future use. 5507 if (I && !I->getType()->isVoidTy()) 5508 ValueList.assignValue(I, NextValueNo++); 5509 } 5510 5511 OutOfRecordLoop: 5512 5513 if (!OperandBundles.empty()) 5514 return error("Operand bundles found with no consumer"); 5515 5516 // Check the function list for unresolved values. 5517 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5518 if (!A->getParent()) { 5519 // We found at least one unresolved value. Nuke them all to avoid leaks. 5520 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5521 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5522 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5523 delete A; 5524 } 5525 } 5526 return error("Never resolved value found in function"); 5527 } 5528 } 5529 5530 // Unexpected unresolved metadata about to be dropped. 5531 if (MetadataList.hasFwdRefs()) 5532 return error("Invalid function metadata: outgoing forward refs"); 5533 5534 // Trim the value list down to the size it was before we parsed this function. 5535 ValueList.shrinkTo(ModuleValueListSize); 5536 MetadataList.shrinkTo(ModuleMetadataListSize); 5537 std::vector<BasicBlock*>().swap(FunctionBBs); 5538 return std::error_code(); 5539 } 5540 5541 /// Find the function body in the bitcode stream 5542 std::error_code BitcodeReader::findFunctionInStream( 5543 Function *F, 5544 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5545 while (DeferredFunctionInfoIterator->second == 0) { 5546 // This is the fallback handling for the old format bitcode that 5547 // didn't contain the function index in the VST, or when we have 5548 // an anonymous function which would not have a VST entry. 5549 // Assert that we have one of those two cases. 5550 assert(VSTOffset == 0 || !F->hasName()); 5551 // Parse the next body in the stream and set its position in the 5552 // DeferredFunctionInfo map. 5553 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5554 return EC; 5555 } 5556 return std::error_code(); 5557 } 5558 5559 //===----------------------------------------------------------------------===// 5560 // GVMaterializer implementation 5561 //===----------------------------------------------------------------------===// 5562 5563 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5564 5565 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5566 Function *F = dyn_cast<Function>(GV); 5567 // If it's not a function or is already material, ignore the request. 5568 if (!F || !F->isMaterializable()) 5569 return std::error_code(); 5570 5571 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5572 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5573 // If its position is recorded as 0, its body is somewhere in the stream 5574 // but we haven't seen it yet. 5575 if (DFII->second == 0) 5576 if (std::error_code EC = findFunctionInStream(F, DFII)) 5577 return EC; 5578 5579 // Materialize metadata before parsing any function bodies. 5580 if (std::error_code EC = materializeMetadata()) 5581 return EC; 5582 5583 // Move the bit stream to the saved position of the deferred function body. 5584 Stream.JumpToBit(DFII->second); 5585 5586 if (std::error_code EC = parseFunctionBody(F)) 5587 return EC; 5588 F->setIsMaterializable(false); 5589 5590 if (StripDebugInfo) 5591 stripDebugInfo(*F); 5592 5593 // Upgrade any old intrinsic calls in the function. 5594 for (auto &I : UpgradedIntrinsics) { 5595 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5596 UI != UE;) { 5597 User *U = *UI; 5598 ++UI; 5599 if (CallInst *CI = dyn_cast<CallInst>(U)) 5600 UpgradeIntrinsicCall(CI, I.second); 5601 } 5602 } 5603 5604 // Finish fn->subprogram upgrade for materialized functions. 5605 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5606 F->setSubprogram(SP); 5607 5608 // Bring in any functions that this function forward-referenced via 5609 // blockaddresses. 5610 return materializeForwardReferencedFunctions(); 5611 } 5612 5613 std::error_code BitcodeReader::materializeModule() { 5614 if (std::error_code EC = materializeMetadata()) 5615 return EC; 5616 5617 // Promise to materialize all forward references. 5618 WillMaterializeAllForwardRefs = true; 5619 5620 // Iterate over the module, deserializing any functions that are still on 5621 // disk. 5622 for (Function &F : *TheModule) { 5623 if (std::error_code EC = materialize(&F)) 5624 return EC; 5625 } 5626 // At this point, if there are any function bodies, parse the rest of 5627 // the bits in the module past the last function block we have recorded 5628 // through either lazy scanning or the VST. 5629 if (LastFunctionBlockBit || NextUnreadBit) 5630 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5631 : NextUnreadBit); 5632 5633 // Check that all block address forward references got resolved (as we 5634 // promised above). 5635 if (!BasicBlockFwdRefs.empty()) 5636 return error("Never resolved function from blockaddress"); 5637 5638 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5639 // to prevent this instructions with TBAA tags should be upgraded first. 5640 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5641 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5642 5643 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5644 // delete the old functions to clean up. We can't do this unless the entire 5645 // module is materialized because there could always be another function body 5646 // with calls to the old function. 5647 for (auto &I : UpgradedIntrinsics) { 5648 for (auto *U : I.first->users()) { 5649 if (CallInst *CI = dyn_cast<CallInst>(U)) 5650 UpgradeIntrinsicCall(CI, I.second); 5651 } 5652 if (!I.first->use_empty()) 5653 I.first->replaceAllUsesWith(I.second); 5654 I.first->eraseFromParent(); 5655 } 5656 UpgradedIntrinsics.clear(); 5657 5658 UpgradeDebugInfo(*TheModule); 5659 5660 UpgradeModuleFlags(*TheModule); 5661 return std::error_code(); 5662 } 5663 5664 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5665 return IdentifiedStructTypes; 5666 } 5667 5668 std::error_code 5669 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5670 if (Streamer) 5671 return initLazyStream(std::move(Streamer)); 5672 return initStreamFromBuffer(); 5673 } 5674 5675 std::error_code BitcodeReader::initStreamFromBuffer() { 5676 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5677 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5678 5679 if (Buffer->getBufferSize() & 3) 5680 return error("Invalid bitcode signature"); 5681 5682 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5683 // The magic number is 0x0B17C0DE stored in little endian. 5684 if (isBitcodeWrapper(BufPtr, BufEnd)) 5685 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5686 return error("Invalid bitcode wrapper header"); 5687 5688 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5689 Stream.init(&*StreamFile); 5690 5691 return std::error_code(); 5692 } 5693 5694 std::error_code 5695 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5696 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5697 // see it. 5698 auto OwnedBytes = 5699 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5700 StreamingMemoryObject &Bytes = *OwnedBytes; 5701 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5702 Stream.init(&*StreamFile); 5703 5704 unsigned char buf[16]; 5705 if (Bytes.readBytes(buf, 16, 0) != 16) 5706 return error("Invalid bitcode signature"); 5707 5708 if (!isBitcode(buf, buf + 16)) 5709 return error("Invalid bitcode signature"); 5710 5711 if (isBitcodeWrapper(buf, buf + 4)) { 5712 const unsigned char *bitcodeStart = buf; 5713 const unsigned char *bitcodeEnd = buf + 16; 5714 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5715 Bytes.dropLeadingBytes(bitcodeStart - buf); 5716 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5717 } 5718 return std::error_code(); 5719 } 5720 5721 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5722 const Twine &Message) { 5723 return ::error(DiagnosticHandler, make_error_code(E), Message); 5724 } 5725 5726 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5727 return ::error(DiagnosticHandler, 5728 make_error_code(BitcodeError::CorruptedBitcode), Message); 5729 } 5730 5731 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5732 return ::error(DiagnosticHandler, make_error_code(E)); 5733 } 5734 5735 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5736 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5737 bool CheckGlobalValSummaryPresenceOnly) 5738 : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(Buffer), 5739 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5740 5741 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5742 DiagnosticHandlerFunction DiagnosticHandler, 5743 bool CheckGlobalValSummaryPresenceOnly) 5744 : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(nullptr), 5745 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5746 5747 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5748 5749 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5750 5751 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5752 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5753 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5754 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5755 return VGI->second; 5756 } 5757 5758 // Specialized value symbol table parser used when reading module index 5759 // blocks where we don't actually create global values. The parsed information 5760 // is saved in the bitcode reader for use when later parsing summaries. 5761 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5762 uint64_t Offset, 5763 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5764 assert(Offset > 0 && "Expected non-zero VST offset"); 5765 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5766 5767 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5768 return error("Invalid record"); 5769 5770 SmallVector<uint64_t, 64> Record; 5771 5772 // Read all the records for this value table. 5773 SmallString<128> ValueName; 5774 while (1) { 5775 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5776 5777 switch (Entry.Kind) { 5778 case BitstreamEntry::SubBlock: // Handled for us already. 5779 case BitstreamEntry::Error: 5780 return error("Malformed block"); 5781 case BitstreamEntry::EndBlock: 5782 // Done parsing VST, jump back to wherever we came from. 5783 Stream.JumpToBit(CurrentBit); 5784 return std::error_code(); 5785 case BitstreamEntry::Record: 5786 // The interesting case. 5787 break; 5788 } 5789 5790 // Read a record. 5791 Record.clear(); 5792 switch (Stream.readRecord(Entry.ID, Record)) { 5793 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5794 break; 5795 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5796 if (convertToString(Record, 1, ValueName)) 5797 return error("Invalid record"); 5798 unsigned ValueID = Record[0]; 5799 assert(!SourceFileName.empty()); 5800 auto VLI = ValueIdToLinkageMap.find(ValueID); 5801 assert(VLI != ValueIdToLinkageMap.end() && 5802 "No linkage found for VST entry?"); 5803 auto Linkage = VLI->second; 5804 std::string GlobalId = 5805 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5806 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5807 auto OriginalNameID = ValueGUID; 5808 if (GlobalValue::isLocalLinkage(Linkage)) 5809 OriginalNameID = GlobalValue::getGUID(ValueName); 5810 if (PrintSummaryGUIDs) 5811 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5812 << ValueName << "\n"; 5813 ValueIdToCallGraphGUIDMap[ValueID] = 5814 std::make_pair(ValueGUID, OriginalNameID); 5815 ValueName.clear(); 5816 break; 5817 } 5818 case bitc::VST_CODE_FNENTRY: { 5819 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5820 if (convertToString(Record, 2, ValueName)) 5821 return error("Invalid record"); 5822 unsigned ValueID = Record[0]; 5823 assert(!SourceFileName.empty()); 5824 auto VLI = ValueIdToLinkageMap.find(ValueID); 5825 assert(VLI != ValueIdToLinkageMap.end() && 5826 "No linkage found for VST entry?"); 5827 auto Linkage = VLI->second; 5828 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5829 ValueName, VLI->second, SourceFileName); 5830 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5831 auto OriginalNameID = FunctionGUID; 5832 if (GlobalValue::isLocalLinkage(Linkage)) 5833 OriginalNameID = GlobalValue::getGUID(ValueName); 5834 if (PrintSummaryGUIDs) 5835 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 5836 << ValueName << "\n"; 5837 ValueIdToCallGraphGUIDMap[ValueID] = 5838 std::make_pair(FunctionGUID, OriginalNameID); 5839 5840 ValueName.clear(); 5841 break; 5842 } 5843 case bitc::VST_CODE_COMBINED_ENTRY: { 5844 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5845 unsigned ValueID = Record[0]; 5846 GlobalValue::GUID RefGUID = Record[1]; 5847 // The "original name", which is the second value of the pair will be 5848 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5849 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5850 break; 5851 } 5852 } 5853 } 5854 } 5855 5856 // Parse just the blocks needed for building the index out of the module. 5857 // At the end of this routine the module Index is populated with a map 5858 // from global value id to GlobalValueSummary objects. 5859 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5860 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5861 return error("Invalid record"); 5862 5863 SmallVector<uint64_t, 64> Record; 5864 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5865 unsigned ValueId = 0; 5866 5867 // Read the index for this module. 5868 while (1) { 5869 BitstreamEntry Entry = Stream.advance(); 5870 5871 switch (Entry.Kind) { 5872 case BitstreamEntry::Error: 5873 return error("Malformed block"); 5874 case BitstreamEntry::EndBlock: 5875 return std::error_code(); 5876 5877 case BitstreamEntry::SubBlock: 5878 if (CheckGlobalValSummaryPresenceOnly) { 5879 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5880 SeenGlobalValSummary = true; 5881 // No need to parse the rest since we found the summary. 5882 return std::error_code(); 5883 } 5884 if (Stream.SkipBlock()) 5885 return error("Invalid record"); 5886 continue; 5887 } 5888 switch (Entry.ID) { 5889 default: // Skip unknown content. 5890 if (Stream.SkipBlock()) 5891 return error("Invalid record"); 5892 break; 5893 case bitc::BLOCKINFO_BLOCK_ID: 5894 // Need to parse these to get abbrev ids (e.g. for VST) 5895 if (Stream.ReadBlockInfoBlock()) 5896 return error("Malformed block"); 5897 break; 5898 case bitc::VALUE_SYMTAB_BLOCK_ID: 5899 // Should have been parsed earlier via VSTOffset, unless there 5900 // is no summary section. 5901 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5902 !SeenGlobalValSummary) && 5903 "Expected early VST parse via VSTOffset record"); 5904 if (Stream.SkipBlock()) 5905 return error("Invalid record"); 5906 break; 5907 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5908 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5909 assert(!SeenValueSymbolTable && 5910 "Already read VST when parsing summary block?"); 5911 if (std::error_code EC = 5912 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5913 return EC; 5914 SeenValueSymbolTable = true; 5915 SeenGlobalValSummary = true; 5916 if (std::error_code EC = parseEntireSummary()) 5917 return EC; 5918 break; 5919 case bitc::MODULE_STRTAB_BLOCK_ID: 5920 if (std::error_code EC = parseModuleStringTable()) 5921 return EC; 5922 break; 5923 } 5924 continue; 5925 5926 case BitstreamEntry::Record: { 5927 Record.clear(); 5928 auto BitCode = Stream.readRecord(Entry.ID, Record); 5929 switch (BitCode) { 5930 default: 5931 break; // Default behavior, ignore unknown content. 5932 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5933 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5934 SmallString<128> ValueName; 5935 if (convertToString(Record, 0, ValueName)) 5936 return error("Invalid record"); 5937 SourceFileName = ValueName.c_str(); 5938 break; 5939 } 5940 /// MODULE_CODE_HASH: [5*i32] 5941 case bitc::MODULE_CODE_HASH: { 5942 if (Record.size() != 5) 5943 return error("Invalid hash length " + Twine(Record.size()).str()); 5944 if (!TheIndex) 5945 break; 5946 if (TheIndex->modulePaths().empty()) 5947 // Does not have any summary emitted. 5948 break; 5949 if (TheIndex->modulePaths().size() != 1) 5950 return error("Don't expect multiple modules defined?"); 5951 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5952 int Pos = 0; 5953 for (auto &Val : Record) { 5954 assert(!(Val >> 32) && "Unexpected high bits set"); 5955 Hash[Pos++] = Val; 5956 } 5957 break; 5958 } 5959 /// MODULE_CODE_VSTOFFSET: [offset] 5960 case bitc::MODULE_CODE_VSTOFFSET: 5961 if (Record.size() < 1) 5962 return error("Invalid record"); 5963 VSTOffset = Record[0]; 5964 break; 5965 // GLOBALVAR: [pointer type, isconst, initid, 5966 // linkage, alignment, section, visibility, threadlocal, 5967 // unnamed_addr, externally_initialized, dllstorageclass, 5968 // comdat] 5969 case bitc::MODULE_CODE_GLOBALVAR: { 5970 if (Record.size() < 6) 5971 return error("Invalid record"); 5972 uint64_t RawLinkage = Record[3]; 5973 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5974 ValueIdToLinkageMap[ValueId++] = Linkage; 5975 break; 5976 } 5977 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5978 // alignment, section, visibility, gc, unnamed_addr, 5979 // prologuedata, dllstorageclass, comdat, prefixdata] 5980 case bitc::MODULE_CODE_FUNCTION: { 5981 if (Record.size() < 8) 5982 return error("Invalid record"); 5983 uint64_t RawLinkage = Record[3]; 5984 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5985 ValueIdToLinkageMap[ValueId++] = Linkage; 5986 break; 5987 } 5988 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5989 // dllstorageclass] 5990 case bitc::MODULE_CODE_ALIAS: { 5991 if (Record.size() < 6) 5992 return error("Invalid record"); 5993 uint64_t RawLinkage = Record[3]; 5994 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5995 ValueIdToLinkageMap[ValueId++] = Linkage; 5996 break; 5997 } 5998 } 5999 } 6000 continue; 6001 } 6002 } 6003 } 6004 6005 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6006 // objects in the index. 6007 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 6008 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6009 return error("Invalid record"); 6010 SmallVector<uint64_t, 64> Record; 6011 6012 // Parse version 6013 { 6014 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6015 if (Entry.Kind != BitstreamEntry::Record) 6016 return error("Invalid Summary Block: record for version expected"); 6017 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6018 return error("Invalid Summary Block: version expected"); 6019 } 6020 const uint64_t Version = Record[0]; 6021 if (Version != 1) 6022 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 6023 Record.clear(); 6024 6025 // Keep around the last seen summary to be used when we see an optional 6026 // "OriginalName" attachement. 6027 GlobalValueSummary *LastSeenSummary = nullptr; 6028 bool Combined = false; 6029 while (1) { 6030 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6031 6032 switch (Entry.Kind) { 6033 case BitstreamEntry::SubBlock: // Handled for us already. 6034 case BitstreamEntry::Error: 6035 return error("Malformed block"); 6036 case BitstreamEntry::EndBlock: 6037 // For a per-module index, remove any entries that still have empty 6038 // summaries. The VST parsing creates entries eagerly for all symbols, 6039 // but not all have associated summaries (e.g. it doesn't know how to 6040 // distinguish between VST_CODE_ENTRY for function declarations vs global 6041 // variables with initializers that end up with a summary). Remove those 6042 // entries now so that we don't need to rely on the combined index merger 6043 // to clean them up (especially since that may not run for the first 6044 // module's index if we merge into that). 6045 if (!Combined) 6046 TheIndex->removeEmptySummaryEntries(); 6047 return std::error_code(); 6048 case BitstreamEntry::Record: 6049 // The interesting case. 6050 break; 6051 } 6052 6053 // Read a record. The record format depends on whether this 6054 // is a per-module index or a combined index file. In the per-module 6055 // case the records contain the associated value's ID for correlation 6056 // with VST entries. In the combined index the correlation is done 6057 // via the bitcode offset of the summary records (which were saved 6058 // in the combined index VST entries). The records also contain 6059 // information used for ThinLTO renaming and importing. 6060 Record.clear(); 6061 auto BitCode = Stream.readRecord(Entry.ID, Record); 6062 switch (BitCode) { 6063 default: // Default behavior: ignore. 6064 break; 6065 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6066 // n x (valueid, callsitecount)] 6067 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6068 // numrefs x valueid, 6069 // n x (valueid, callsitecount, profilecount)] 6070 case bitc::FS_PERMODULE: 6071 case bitc::FS_PERMODULE_PROFILE: { 6072 unsigned ValueID = Record[0]; 6073 uint64_t RawFlags = Record[1]; 6074 unsigned InstCount = Record[2]; 6075 unsigned NumRefs = Record[3]; 6076 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6077 std::unique_ptr<FunctionSummary> FS = 6078 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6079 // The module path string ref set in the summary must be owned by the 6080 // index's module string table. Since we don't have a module path 6081 // string table section in the per-module index, we create a single 6082 // module path string table entry with an empty (0) ID to take 6083 // ownership. 6084 FS->setModulePath( 6085 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6086 static int RefListStartIndex = 4; 6087 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6088 assert(Record.size() >= RefListStartIndex + NumRefs && 6089 "Record size inconsistent with number of references"); 6090 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6091 unsigned RefValueId = Record[I]; 6092 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6093 FS->addRefEdge(RefGUID); 6094 } 6095 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6096 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6097 ++I) { 6098 unsigned CalleeValueId = Record[I]; 6099 unsigned CallsiteCount = Record[++I]; 6100 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6101 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6102 FS->addCallGraphEdge(CalleeGUID, 6103 CalleeInfo(CallsiteCount, ProfileCount)); 6104 } 6105 auto GUID = getGUIDFromValueId(ValueID); 6106 FS->setOriginalName(GUID.second); 6107 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6108 break; 6109 } 6110 // FS_ALIAS: [valueid, flags, valueid] 6111 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6112 // they expect all aliasee summaries to be available. 6113 case bitc::FS_ALIAS: { 6114 unsigned ValueID = Record[0]; 6115 uint64_t RawFlags = Record[1]; 6116 unsigned AliaseeID = Record[2]; 6117 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6118 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6119 // The module path string ref set in the summary must be owned by the 6120 // index's module string table. Since we don't have a module path 6121 // string table section in the per-module index, we create a single 6122 // module path string table entry with an empty (0) ID to take 6123 // ownership. 6124 AS->setModulePath( 6125 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6126 6127 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6128 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6129 if (!AliaseeSummary) 6130 return error("Alias expects aliasee summary to be parsed"); 6131 AS->setAliasee(AliaseeSummary); 6132 6133 auto GUID = getGUIDFromValueId(ValueID); 6134 AS->setOriginalName(GUID.second); 6135 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6136 break; 6137 } 6138 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6139 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6140 unsigned ValueID = Record[0]; 6141 uint64_t RawFlags = Record[1]; 6142 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6143 std::unique_ptr<GlobalVarSummary> FS = 6144 llvm::make_unique<GlobalVarSummary>(Flags); 6145 FS->setModulePath( 6146 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6147 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6148 unsigned RefValueId = Record[I]; 6149 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6150 FS->addRefEdge(RefGUID); 6151 } 6152 auto GUID = getGUIDFromValueId(ValueID); 6153 FS->setOriginalName(GUID.second); 6154 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6155 break; 6156 } 6157 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6158 // numrefs x valueid, n x (valueid, callsitecount)] 6159 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6160 // numrefs x valueid, 6161 // n x (valueid, callsitecount, profilecount)] 6162 case bitc::FS_COMBINED: 6163 case bitc::FS_COMBINED_PROFILE: { 6164 unsigned ValueID = Record[0]; 6165 uint64_t ModuleId = Record[1]; 6166 uint64_t RawFlags = Record[2]; 6167 unsigned InstCount = Record[3]; 6168 unsigned NumRefs = Record[4]; 6169 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6170 std::unique_ptr<FunctionSummary> FS = 6171 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6172 LastSeenSummary = FS.get(); 6173 FS->setModulePath(ModuleIdMap[ModuleId]); 6174 static int RefListStartIndex = 5; 6175 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6176 assert(Record.size() >= RefListStartIndex + NumRefs && 6177 "Record size inconsistent with number of references"); 6178 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6179 ++I) { 6180 unsigned RefValueId = Record[I]; 6181 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6182 FS->addRefEdge(RefGUID); 6183 } 6184 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6185 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6186 ++I) { 6187 unsigned CalleeValueId = Record[I]; 6188 unsigned CallsiteCount = Record[++I]; 6189 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6190 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6191 FS->addCallGraphEdge(CalleeGUID, 6192 CalleeInfo(CallsiteCount, ProfileCount)); 6193 } 6194 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6195 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6196 Combined = true; 6197 break; 6198 } 6199 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6200 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6201 // they expect all aliasee summaries to be available. 6202 case bitc::FS_COMBINED_ALIAS: { 6203 unsigned ValueID = Record[0]; 6204 uint64_t ModuleId = Record[1]; 6205 uint64_t RawFlags = Record[2]; 6206 unsigned AliaseeValueId = Record[3]; 6207 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6208 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6209 LastSeenSummary = AS.get(); 6210 AS->setModulePath(ModuleIdMap[ModuleId]); 6211 6212 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6213 auto AliaseeInModule = 6214 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6215 if (!AliaseeInModule) 6216 return error("Alias expects aliasee summary to be parsed"); 6217 AS->setAliasee(AliaseeInModule); 6218 6219 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6220 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6221 Combined = true; 6222 break; 6223 } 6224 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6225 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6226 unsigned ValueID = Record[0]; 6227 uint64_t ModuleId = Record[1]; 6228 uint64_t RawFlags = Record[2]; 6229 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6230 std::unique_ptr<GlobalVarSummary> FS = 6231 llvm::make_unique<GlobalVarSummary>(Flags); 6232 LastSeenSummary = FS.get(); 6233 FS->setModulePath(ModuleIdMap[ModuleId]); 6234 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6235 unsigned RefValueId = Record[I]; 6236 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6237 FS->addRefEdge(RefGUID); 6238 } 6239 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6240 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6241 Combined = true; 6242 break; 6243 } 6244 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6245 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6246 uint64_t OriginalName = Record[0]; 6247 if (!LastSeenSummary) 6248 return error("Name attachment that does not follow a combined record"); 6249 LastSeenSummary->setOriginalName(OriginalName); 6250 // Reset the LastSeenSummary 6251 LastSeenSummary = nullptr; 6252 } 6253 } 6254 } 6255 llvm_unreachable("Exit infinite loop"); 6256 } 6257 6258 // Parse the module string table block into the Index. 6259 // This populates the ModulePathStringTable map in the index. 6260 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6261 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6262 return error("Invalid record"); 6263 6264 SmallVector<uint64_t, 64> Record; 6265 6266 SmallString<128> ModulePath; 6267 ModulePathStringTableTy::iterator LastSeenModulePath; 6268 while (1) { 6269 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6270 6271 switch (Entry.Kind) { 6272 case BitstreamEntry::SubBlock: // Handled for us already. 6273 case BitstreamEntry::Error: 6274 return error("Malformed block"); 6275 case BitstreamEntry::EndBlock: 6276 return std::error_code(); 6277 case BitstreamEntry::Record: 6278 // The interesting case. 6279 break; 6280 } 6281 6282 Record.clear(); 6283 switch (Stream.readRecord(Entry.ID, Record)) { 6284 default: // Default behavior: ignore. 6285 break; 6286 case bitc::MST_CODE_ENTRY: { 6287 // MST_ENTRY: [modid, namechar x N] 6288 uint64_t ModuleId = Record[0]; 6289 6290 if (convertToString(Record, 1, ModulePath)) 6291 return error("Invalid record"); 6292 6293 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6294 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6295 6296 ModulePath.clear(); 6297 break; 6298 } 6299 /// MST_CODE_HASH: [5*i32] 6300 case bitc::MST_CODE_HASH: { 6301 if (Record.size() != 5) 6302 return error("Invalid hash length " + Twine(Record.size()).str()); 6303 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6304 return error("Invalid hash that does not follow a module path"); 6305 int Pos = 0; 6306 for (auto &Val : Record) { 6307 assert(!(Val >> 32) && "Unexpected high bits set"); 6308 LastSeenModulePath->second.second[Pos++] = Val; 6309 } 6310 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6311 LastSeenModulePath = TheIndex->modulePaths().end(); 6312 break; 6313 } 6314 } 6315 } 6316 llvm_unreachable("Exit infinite loop"); 6317 } 6318 6319 // Parse the function info index from the bitcode streamer into the given index. 6320 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6321 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6322 TheIndex = I; 6323 6324 if (std::error_code EC = initStream(std::move(Streamer))) 6325 return EC; 6326 6327 // Sniff for the signature. 6328 if (!hasValidBitcodeHeader(Stream)) 6329 return error("Invalid bitcode signature"); 6330 6331 // We expect a number of well-defined blocks, though we don't necessarily 6332 // need to understand them all. 6333 while (1) { 6334 if (Stream.AtEndOfStream()) { 6335 // We didn't really read a proper Module block. 6336 return error("Malformed block"); 6337 } 6338 6339 BitstreamEntry Entry = 6340 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6341 6342 if (Entry.Kind != BitstreamEntry::SubBlock) 6343 return error("Malformed block"); 6344 6345 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6346 // building the function summary index. 6347 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6348 return parseModule(); 6349 6350 if (Stream.SkipBlock()) 6351 return error("Invalid record"); 6352 } 6353 } 6354 6355 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6356 std::unique_ptr<DataStreamer> Streamer) { 6357 if (Streamer) 6358 return initLazyStream(std::move(Streamer)); 6359 return initStreamFromBuffer(); 6360 } 6361 6362 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6363 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6364 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6365 6366 if (Buffer->getBufferSize() & 3) 6367 return error("Invalid bitcode signature"); 6368 6369 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6370 // The magic number is 0x0B17C0DE stored in little endian. 6371 if (isBitcodeWrapper(BufPtr, BufEnd)) 6372 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6373 return error("Invalid bitcode wrapper header"); 6374 6375 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6376 Stream.init(&*StreamFile); 6377 6378 return std::error_code(); 6379 } 6380 6381 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6382 std::unique_ptr<DataStreamer> Streamer) { 6383 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6384 // see it. 6385 auto OwnedBytes = 6386 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6387 StreamingMemoryObject &Bytes = *OwnedBytes; 6388 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6389 Stream.init(&*StreamFile); 6390 6391 unsigned char buf[16]; 6392 if (Bytes.readBytes(buf, 16, 0) != 16) 6393 return error("Invalid bitcode signature"); 6394 6395 if (!isBitcode(buf, buf + 16)) 6396 return error("Invalid bitcode signature"); 6397 6398 if (isBitcodeWrapper(buf, buf + 4)) { 6399 const unsigned char *bitcodeStart = buf; 6400 const unsigned char *bitcodeEnd = buf + 16; 6401 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6402 Bytes.dropLeadingBytes(bitcodeStart - buf); 6403 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6404 } 6405 return std::error_code(); 6406 } 6407 6408 namespace { 6409 // FIXME: This class is only here to support the transition to llvm::Error. It 6410 // will be removed once this transition is complete. Clients should prefer to 6411 // deal with the Error value directly, rather than converting to error_code. 6412 class BitcodeErrorCategoryType : public std::error_category { 6413 const char *name() const LLVM_NOEXCEPT override { 6414 return "llvm.bitcode"; 6415 } 6416 std::string message(int IE) const override { 6417 BitcodeError E = static_cast<BitcodeError>(IE); 6418 switch (E) { 6419 case BitcodeError::InvalidBitcodeSignature: 6420 return "Invalid bitcode signature"; 6421 case BitcodeError::CorruptedBitcode: 6422 return "Corrupted bitcode"; 6423 } 6424 llvm_unreachable("Unknown error type!"); 6425 } 6426 }; 6427 } // end anonymous namespace 6428 6429 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6430 6431 const std::error_category &llvm::BitcodeErrorCategory() { 6432 return *ErrorCategory; 6433 } 6434 6435 //===----------------------------------------------------------------------===// 6436 // External interface 6437 //===----------------------------------------------------------------------===// 6438 6439 static ErrorOr<std::unique_ptr<Module>> 6440 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6441 BitcodeReader *R, LLVMContext &Context, 6442 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6443 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6444 M->setMaterializer(R); 6445 6446 auto cleanupOnError = [&](std::error_code EC) { 6447 R->releaseBuffer(); // Never take ownership on error. 6448 return EC; 6449 }; 6450 6451 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6452 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6453 ShouldLazyLoadMetadata)) 6454 return cleanupOnError(EC); 6455 6456 if (MaterializeAll) { 6457 // Read in the entire module, and destroy the BitcodeReader. 6458 if (std::error_code EC = M->materializeAll()) 6459 return cleanupOnError(EC); 6460 } else { 6461 // Resolve forward references from blockaddresses. 6462 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6463 return cleanupOnError(EC); 6464 } 6465 return std::move(M); 6466 } 6467 6468 /// \brief Get a lazy one-at-time loading module from bitcode. 6469 /// 6470 /// This isn't always used in a lazy context. In particular, it's also used by 6471 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6472 /// in forward-referenced functions from block address references. 6473 /// 6474 /// \param[in] MaterializeAll Set to \c true if we should materialize 6475 /// everything. 6476 static ErrorOr<std::unique_ptr<Module>> 6477 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6478 LLVMContext &Context, bool MaterializeAll, 6479 bool ShouldLazyLoadMetadata = false) { 6480 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6481 6482 ErrorOr<std::unique_ptr<Module>> Ret = 6483 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6484 MaterializeAll, ShouldLazyLoadMetadata); 6485 if (!Ret) 6486 return Ret; 6487 6488 Buffer.release(); // The BitcodeReader owns it now. 6489 return Ret; 6490 } 6491 6492 ErrorOr<std::unique_ptr<Module>> 6493 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6494 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6495 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6496 ShouldLazyLoadMetadata); 6497 } 6498 6499 ErrorOr<std::unique_ptr<Module>> 6500 llvm::getStreamedBitcodeModule(StringRef Name, 6501 std::unique_ptr<DataStreamer> Streamer, 6502 LLVMContext &Context) { 6503 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6504 BitcodeReader *R = new BitcodeReader(Context); 6505 6506 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6507 false); 6508 } 6509 6510 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6511 LLVMContext &Context) { 6512 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6513 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6514 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6515 // written. We must defer until the Module has been fully materialized. 6516 } 6517 6518 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6519 LLVMContext &Context) { 6520 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6521 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6522 ErrorOr<std::string> Triple = R->parseTriple(); 6523 if (Triple.getError()) 6524 return ""; 6525 return Triple.get(); 6526 } 6527 6528 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6529 LLVMContext &Context) { 6530 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6531 BitcodeReader R(Buf.release(), Context); 6532 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6533 if (ProducerString.getError()) 6534 return ""; 6535 return ProducerString.get(); 6536 } 6537 6538 // Parse the specified bitcode buffer, returning the function info index. 6539 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6540 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6541 DiagnosticHandlerFunction DiagnosticHandler) { 6542 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6543 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6544 6545 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6546 6547 auto cleanupOnError = [&](std::error_code EC) { 6548 R.releaseBuffer(); // Never take ownership on error. 6549 return EC; 6550 }; 6551 6552 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6553 return cleanupOnError(EC); 6554 6555 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6556 return std::move(Index); 6557 } 6558 6559 // Check if the given bitcode buffer contains a global value summary block. 6560 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6561 DiagnosticHandlerFunction DiagnosticHandler) { 6562 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6563 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6564 6565 auto cleanupOnError = [&](std::error_code EC) { 6566 R.releaseBuffer(); // Never take ownership on error. 6567 return false; 6568 }; 6569 6570 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6571 return cleanupOnError(EC); 6572 6573 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6574 return R.foundGlobalValSummary(); 6575 } 6576