1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// As we resolve forward-referenced constants, we add information about them 48 /// to this vector. This allows us to resolve them in bulk instead of 49 /// resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 67 68 void clear() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 ValuePtrs.clear(); 71 } 72 73 Value *operator[](unsigned i) const { 74 assert(i < ValuePtrs.size()); 75 return ValuePtrs[i]; 76 } 77 78 Value *back() const { return ValuePtrs.back(); } 79 void pop_back() { ValuePtrs.pop_back(); } 80 bool empty() const { return ValuePtrs.empty(); } 81 void shrinkTo(unsigned N) { 82 assert(N <= size() && "Invalid shrinkTo request!"); 83 ValuePtrs.resize(N); 84 } 85 86 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 87 Value *getValueFwdRef(unsigned Idx, Type *Ty); 88 89 void assignValue(Value *V, unsigned Idx); 90 91 /// Once all constants are read, this method bulk resolves any forward 92 /// references. 93 void resolveConstantForwardRefs(); 94 }; 95 96 class BitcodeReaderMDValueList { 97 unsigned NumFwdRefs; 98 bool AnyFwdRefs; 99 unsigned MinFwdRef; 100 unsigned MaxFwdRef; 101 std::vector<TrackingMDRef> MDValuePtrs; 102 103 LLVMContext &Context; 104 public: 105 BitcodeReaderMDValueList(LLVMContext &C) 106 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 107 108 // vector compatibility methods 109 unsigned size() const { return MDValuePtrs.size(); } 110 void resize(unsigned N) { MDValuePtrs.resize(N); } 111 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 112 void clear() { MDValuePtrs.clear(); } 113 Metadata *back() const { return MDValuePtrs.back(); } 114 void pop_back() { MDValuePtrs.pop_back(); } 115 bool empty() const { return MDValuePtrs.empty(); } 116 117 Metadata *operator[](unsigned i) const { 118 assert(i < MDValuePtrs.size()); 119 return MDValuePtrs[i]; 120 } 121 122 void shrinkTo(unsigned N) { 123 assert(N <= size() && "Invalid shrinkTo request!"); 124 MDValuePtrs.resize(N); 125 } 126 127 Metadata *getValueFwdRef(unsigned Idx); 128 void assignValue(Metadata *MD, unsigned Idx); 129 void tryToResolveCycles(); 130 }; 131 132 class BitcodeReader : public GVMaterializer { 133 LLVMContext &Context; 134 DiagnosticHandlerFunction DiagnosticHandler; 135 Module *TheModule = nullptr; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 uint64_t NextUnreadBit = 0; 140 bool SeenValueSymbolTable = false; 141 142 std::vector<Type*> TypeList; 143 BitcodeReaderValueList ValueList; 144 BitcodeReaderMDValueList MDValueList; 145 std::vector<Comdat *> ComdatList; 146 SmallVector<Instruction *, 64> InstructionList; 147 148 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 149 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 150 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 151 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 152 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 153 154 SmallVector<Instruction*, 64> InstsWithTBAATag; 155 156 /// The set of attributes by index. Index zero in the file is for null, and 157 /// is thus not represented here. As such all indices are off by one. 158 std::vector<AttributeSet> MAttributes; 159 160 /// \brief The set of attribute groups. 161 std::map<unsigned, AttributeSet> MAttributeGroups; 162 163 /// While parsing a function body, this is a list of the basic blocks for the 164 /// function. 165 std::vector<BasicBlock*> FunctionBBs; 166 167 // When reading the module header, this list is populated with functions that 168 // have bodies later in the file. 169 std::vector<Function*> FunctionsWithBodies; 170 171 // When intrinsic functions are encountered which require upgrading they are 172 // stored here with their replacement function. 173 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 174 UpgradedIntrinsicMap UpgradedIntrinsics; 175 176 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 177 DenseMap<unsigned, unsigned> MDKindMap; 178 179 // Several operations happen after the module header has been read, but 180 // before function bodies are processed. This keeps track of whether 181 // we've done this yet. 182 bool SeenFirstFunctionBody = false; 183 184 /// When function bodies are initially scanned, this map contains info about 185 /// where to find deferred function body in the stream. 186 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 187 188 /// When Metadata block is initially scanned when parsing the module, we may 189 /// choose to defer parsing of the metadata. This vector contains info about 190 /// which Metadata blocks are deferred. 191 std::vector<uint64_t> DeferredMetadataInfo; 192 193 /// These are basic blocks forward-referenced by block addresses. They are 194 /// inserted lazily into functions when they're loaded. The basic block ID is 195 /// its index into the vector. 196 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 197 std::deque<Function *> BasicBlockFwdRefQueue; 198 199 /// Indicates that we are using a new encoding for instruction operands where 200 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 201 /// instruction number, for a more compact encoding. Some instruction 202 /// operands are not relative to the instruction ID: basic block numbers, and 203 /// types. Once the old style function blocks have been phased out, we would 204 /// not need this flag. 205 bool UseRelativeIDs = false; 206 207 /// True if all functions will be materialized, negating the need to process 208 /// (e.g.) blockaddress forward references. 209 bool WillMaterializeAllForwardRefs = false; 210 211 /// Functions that have block addresses taken. This is usually empty. 212 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 213 214 /// True if any Metadata block has been materialized. 215 bool IsMetadataMaterialized = false; 216 217 bool StripDebugInfo = false; 218 219 public: 220 std::error_code error(BitcodeError E, const Twine &Message); 221 std::error_code error(BitcodeError E); 222 std::error_code error(const Twine &Message); 223 224 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 225 DiagnosticHandlerFunction DiagnosticHandler); 226 BitcodeReader(LLVMContext &Context, 227 DiagnosticHandlerFunction DiagnosticHandler); 228 ~BitcodeReader() override { freeState(); } 229 230 std::error_code materializeForwardReferencedFunctions(); 231 232 void freeState(); 233 234 void releaseBuffer(); 235 236 bool isDematerializable(const GlobalValue *GV) const override; 237 std::error_code materialize(GlobalValue *GV) override; 238 std::error_code materializeModule(Module *M) override; 239 std::vector<StructType *> getIdentifiedStructTypes() const override; 240 void dematerialize(GlobalValue *GV) override; 241 242 /// \brief Main interface to parsing a bitcode buffer. 243 /// \returns true if an error occurred. 244 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 245 Module *M, 246 bool ShouldLazyLoadMetadata = false); 247 248 /// \brief Cheap mechanism to just extract module triple 249 /// \returns true if an error occurred. 250 ErrorOr<std::string> parseTriple(); 251 252 static uint64_t decodeSignRotatedValue(uint64_t V); 253 254 /// Materialize any deferred Metadata block. 255 std::error_code materializeMetadata() override; 256 257 void setStripDebugInfo() override; 258 259 private: 260 std::vector<StructType *> IdentifiedStructTypes; 261 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 262 StructType *createIdentifiedStructType(LLVMContext &Context); 263 264 Type *getTypeByID(unsigned ID); 265 Value *getFnValueByID(unsigned ID, Type *Ty) { 266 if (Ty && Ty->isMetadataTy()) 267 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 268 return ValueList.getValueFwdRef(ID, Ty); 269 } 270 Metadata *getFnMetadataByID(unsigned ID) { 271 return MDValueList.getValueFwdRef(ID); 272 } 273 BasicBlock *getBasicBlock(unsigned ID) const { 274 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 275 return FunctionBBs[ID]; 276 } 277 AttributeSet getAttributes(unsigned i) const { 278 if (i-1 < MAttributes.size()) 279 return MAttributes[i-1]; 280 return AttributeSet(); 281 } 282 283 /// Read a value/type pair out of the specified record from slot 'Slot'. 284 /// Increment Slot past the number of slots used in the record. Return true on 285 /// failure. 286 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 287 unsigned InstNum, Value *&ResVal) { 288 if (Slot == Record.size()) return true; 289 unsigned ValNo = (unsigned)Record[Slot++]; 290 // Adjust the ValNo, if it was encoded relative to the InstNum. 291 if (UseRelativeIDs) 292 ValNo = InstNum - ValNo; 293 if (ValNo < InstNum) { 294 // If this is not a forward reference, just return the value we already 295 // have. 296 ResVal = getFnValueByID(ValNo, nullptr); 297 return ResVal == nullptr; 298 } 299 if (Slot == Record.size()) 300 return true; 301 302 unsigned TypeNo = (unsigned)Record[Slot++]; 303 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 304 return ResVal == nullptr; 305 } 306 307 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 308 /// past the number of slots used by the value in the record. Return true if 309 /// there is an error. 310 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 311 unsigned InstNum, Type *Ty, Value *&ResVal) { 312 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 313 return true; 314 // All values currently take a single record slot. 315 ++Slot; 316 return false; 317 } 318 319 /// Like popValue, but does not increment the Slot number. 320 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 321 unsigned InstNum, Type *Ty, Value *&ResVal) { 322 ResVal = getValue(Record, Slot, InstNum, Ty); 323 return ResVal == nullptr; 324 } 325 326 /// Version of getValue that returns ResVal directly, or 0 if there is an 327 /// error. 328 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 329 unsigned InstNum, Type *Ty) { 330 if (Slot == Record.size()) return nullptr; 331 unsigned ValNo = (unsigned)Record[Slot]; 332 // Adjust the ValNo, if it was encoded relative to the InstNum. 333 if (UseRelativeIDs) 334 ValNo = InstNum - ValNo; 335 return getFnValueByID(ValNo, Ty); 336 } 337 338 /// Like getValue, but decodes signed VBRs. 339 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 340 unsigned InstNum, Type *Ty) { 341 if (Slot == Record.size()) return nullptr; 342 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 343 // Adjust the ValNo, if it was encoded relative to the InstNum. 344 if (UseRelativeIDs) 345 ValNo = InstNum - ValNo; 346 return getFnValueByID(ValNo, Ty); 347 } 348 349 /// Converts alignment exponent (i.e. power of two (or zero)) to the 350 /// corresponding alignment to use. If alignment is too large, returns 351 /// a corresponding error code. 352 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 353 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 354 std::error_code parseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 355 std::error_code parseAttributeBlock(); 356 std::error_code parseAttributeGroupBlock(); 357 std::error_code parseTypeTable(); 358 std::error_code parseTypeTableBody(); 359 360 std::error_code parseValueSymbolTable(); 361 std::error_code parseConstants(); 362 std::error_code rememberAndSkipFunctionBody(); 363 /// Save the positions of the Metadata blocks and skip parsing the blocks. 364 std::error_code rememberAndSkipMetadata(); 365 std::error_code parseFunctionBody(Function *F); 366 std::error_code globalCleanup(); 367 std::error_code resolveGlobalAndAliasInits(); 368 std::error_code parseMetadata(); 369 std::error_code parseMetadataAttachment(Function &F); 370 ErrorOr<std::string> parseModuleTriple(); 371 std::error_code parseUseLists(); 372 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 373 std::error_code initStreamFromBuffer(); 374 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 375 std::error_code findFunctionInStream( 376 Function *F, 377 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 378 }; 379 } // namespace 380 381 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 382 DiagnosticSeverity Severity, 383 const Twine &Msg) 384 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 385 386 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 387 388 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 389 std::error_code EC, const Twine &Message) { 390 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 391 DiagnosticHandler(DI); 392 return EC; 393 } 394 395 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 396 std::error_code EC) { 397 return error(DiagnosticHandler, EC, EC.message()); 398 } 399 400 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 401 const Twine &Message) { 402 return error(DiagnosticHandler, 403 make_error_code(BitcodeError::CorruptedBitcode), Message); 404 } 405 406 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 407 return ::error(DiagnosticHandler, make_error_code(E), Message); 408 } 409 410 std::error_code BitcodeReader::error(const Twine &Message) { 411 return ::error(DiagnosticHandler, 412 make_error_code(BitcodeError::CorruptedBitcode), Message); 413 } 414 415 std::error_code BitcodeReader::error(BitcodeError E) { 416 return ::error(DiagnosticHandler, make_error_code(E)); 417 } 418 419 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 420 LLVMContext &C) { 421 if (F) 422 return F; 423 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 424 } 425 426 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 427 DiagnosticHandlerFunction DiagnosticHandler) 428 : Context(Context), 429 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 430 Buffer(Buffer), ValueList(Context), MDValueList(Context) {} 431 432 BitcodeReader::BitcodeReader(LLVMContext &Context, 433 DiagnosticHandlerFunction DiagnosticHandler) 434 : Context(Context), 435 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 436 Buffer(nullptr), ValueList(Context), MDValueList(Context) {} 437 438 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 439 if (WillMaterializeAllForwardRefs) 440 return std::error_code(); 441 442 // Prevent recursion. 443 WillMaterializeAllForwardRefs = true; 444 445 while (!BasicBlockFwdRefQueue.empty()) { 446 Function *F = BasicBlockFwdRefQueue.front(); 447 BasicBlockFwdRefQueue.pop_front(); 448 assert(F && "Expected valid function"); 449 if (!BasicBlockFwdRefs.count(F)) 450 // Already materialized. 451 continue; 452 453 // Check for a function that isn't materializable to prevent an infinite 454 // loop. When parsing a blockaddress stored in a global variable, there 455 // isn't a trivial way to check if a function will have a body without a 456 // linear search through FunctionsWithBodies, so just check it here. 457 if (!F->isMaterializable()) 458 return error("Never resolved function from blockaddress"); 459 460 // Try to materialize F. 461 if (std::error_code EC = materialize(F)) 462 return EC; 463 } 464 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 465 466 // Reset state. 467 WillMaterializeAllForwardRefs = false; 468 return std::error_code(); 469 } 470 471 void BitcodeReader::freeState() { 472 Buffer = nullptr; 473 std::vector<Type*>().swap(TypeList); 474 ValueList.clear(); 475 MDValueList.clear(); 476 std::vector<Comdat *>().swap(ComdatList); 477 478 std::vector<AttributeSet>().swap(MAttributes); 479 std::vector<BasicBlock*>().swap(FunctionBBs); 480 std::vector<Function*>().swap(FunctionsWithBodies); 481 DeferredFunctionInfo.clear(); 482 DeferredMetadataInfo.clear(); 483 MDKindMap.clear(); 484 485 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 486 BasicBlockFwdRefQueue.clear(); 487 } 488 489 //===----------------------------------------------------------------------===// 490 // Helper functions to implement forward reference resolution, etc. 491 //===----------------------------------------------------------------------===// 492 493 /// Convert a string from a record into an std::string, return true on failure. 494 template <typename StrTy> 495 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 496 StrTy &Result) { 497 if (Idx > Record.size()) 498 return true; 499 500 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 501 Result += (char)Record[i]; 502 return false; 503 } 504 505 static bool hasImplicitComdat(size_t Val) { 506 switch (Val) { 507 default: 508 return false; 509 case 1: // Old WeakAnyLinkage 510 case 4: // Old LinkOnceAnyLinkage 511 case 10: // Old WeakODRLinkage 512 case 11: // Old LinkOnceODRLinkage 513 return true; 514 } 515 } 516 517 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 518 switch (Val) { 519 default: // Map unknown/new linkages to external 520 case 0: 521 return GlobalValue::ExternalLinkage; 522 case 2: 523 return GlobalValue::AppendingLinkage; 524 case 3: 525 return GlobalValue::InternalLinkage; 526 case 5: 527 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 528 case 6: 529 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 530 case 7: 531 return GlobalValue::ExternalWeakLinkage; 532 case 8: 533 return GlobalValue::CommonLinkage; 534 case 9: 535 return GlobalValue::PrivateLinkage; 536 case 12: 537 return GlobalValue::AvailableExternallyLinkage; 538 case 13: 539 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 540 case 14: 541 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 542 case 15: 543 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 544 case 1: // Old value with implicit comdat. 545 case 16: 546 return GlobalValue::WeakAnyLinkage; 547 case 10: // Old value with implicit comdat. 548 case 17: 549 return GlobalValue::WeakODRLinkage; 550 case 4: // Old value with implicit comdat. 551 case 18: 552 return GlobalValue::LinkOnceAnyLinkage; 553 case 11: // Old value with implicit comdat. 554 case 19: 555 return GlobalValue::LinkOnceODRLinkage; 556 } 557 } 558 559 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 560 switch (Val) { 561 default: // Map unknown visibilities to default. 562 case 0: return GlobalValue::DefaultVisibility; 563 case 1: return GlobalValue::HiddenVisibility; 564 case 2: return GlobalValue::ProtectedVisibility; 565 } 566 } 567 568 static GlobalValue::DLLStorageClassTypes 569 getDecodedDLLStorageClass(unsigned Val) { 570 switch (Val) { 571 default: // Map unknown values to default. 572 case 0: return GlobalValue::DefaultStorageClass; 573 case 1: return GlobalValue::DLLImportStorageClass; 574 case 2: return GlobalValue::DLLExportStorageClass; 575 } 576 } 577 578 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 579 switch (Val) { 580 case 0: return GlobalVariable::NotThreadLocal; 581 default: // Map unknown non-zero value to general dynamic. 582 case 1: return GlobalVariable::GeneralDynamicTLSModel; 583 case 2: return GlobalVariable::LocalDynamicTLSModel; 584 case 3: return GlobalVariable::InitialExecTLSModel; 585 case 4: return GlobalVariable::LocalExecTLSModel; 586 } 587 } 588 589 static int getDecodedCastOpcode(unsigned Val) { 590 switch (Val) { 591 default: return -1; 592 case bitc::CAST_TRUNC : return Instruction::Trunc; 593 case bitc::CAST_ZEXT : return Instruction::ZExt; 594 case bitc::CAST_SEXT : return Instruction::SExt; 595 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 596 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 597 case bitc::CAST_UITOFP : return Instruction::UIToFP; 598 case bitc::CAST_SITOFP : return Instruction::SIToFP; 599 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 600 case bitc::CAST_FPEXT : return Instruction::FPExt; 601 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 602 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 603 case bitc::CAST_BITCAST : return Instruction::BitCast; 604 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 605 } 606 } 607 608 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 609 bool IsFP = Ty->isFPOrFPVectorTy(); 610 // BinOps are only valid for int/fp or vector of int/fp types 611 if (!IsFP && !Ty->isIntOrIntVectorTy()) 612 return -1; 613 614 switch (Val) { 615 default: 616 return -1; 617 case bitc::BINOP_ADD: 618 return IsFP ? Instruction::FAdd : Instruction::Add; 619 case bitc::BINOP_SUB: 620 return IsFP ? Instruction::FSub : Instruction::Sub; 621 case bitc::BINOP_MUL: 622 return IsFP ? Instruction::FMul : Instruction::Mul; 623 case bitc::BINOP_UDIV: 624 return IsFP ? -1 : Instruction::UDiv; 625 case bitc::BINOP_SDIV: 626 return IsFP ? Instruction::FDiv : Instruction::SDiv; 627 case bitc::BINOP_UREM: 628 return IsFP ? -1 : Instruction::URem; 629 case bitc::BINOP_SREM: 630 return IsFP ? Instruction::FRem : Instruction::SRem; 631 case bitc::BINOP_SHL: 632 return IsFP ? -1 : Instruction::Shl; 633 case bitc::BINOP_LSHR: 634 return IsFP ? -1 : Instruction::LShr; 635 case bitc::BINOP_ASHR: 636 return IsFP ? -1 : Instruction::AShr; 637 case bitc::BINOP_AND: 638 return IsFP ? -1 : Instruction::And; 639 case bitc::BINOP_OR: 640 return IsFP ? -1 : Instruction::Or; 641 case bitc::BINOP_XOR: 642 return IsFP ? -1 : Instruction::Xor; 643 } 644 } 645 646 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 647 switch (Val) { 648 default: return AtomicRMWInst::BAD_BINOP; 649 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 650 case bitc::RMW_ADD: return AtomicRMWInst::Add; 651 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 652 case bitc::RMW_AND: return AtomicRMWInst::And; 653 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 654 case bitc::RMW_OR: return AtomicRMWInst::Or; 655 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 656 case bitc::RMW_MAX: return AtomicRMWInst::Max; 657 case bitc::RMW_MIN: return AtomicRMWInst::Min; 658 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 659 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 660 } 661 } 662 663 static AtomicOrdering getDecodedOrdering(unsigned Val) { 664 switch (Val) { 665 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 666 case bitc::ORDERING_UNORDERED: return Unordered; 667 case bitc::ORDERING_MONOTONIC: return Monotonic; 668 case bitc::ORDERING_ACQUIRE: return Acquire; 669 case bitc::ORDERING_RELEASE: return Release; 670 case bitc::ORDERING_ACQREL: return AcquireRelease; 671 default: // Map unknown orderings to sequentially-consistent. 672 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 673 } 674 } 675 676 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 677 switch (Val) { 678 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 679 default: // Map unknown scopes to cross-thread. 680 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 681 } 682 } 683 684 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 685 switch (Val) { 686 default: // Map unknown selection kinds to any. 687 case bitc::COMDAT_SELECTION_KIND_ANY: 688 return Comdat::Any; 689 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 690 return Comdat::ExactMatch; 691 case bitc::COMDAT_SELECTION_KIND_LARGEST: 692 return Comdat::Largest; 693 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 694 return Comdat::NoDuplicates; 695 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 696 return Comdat::SameSize; 697 } 698 } 699 700 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 701 FastMathFlags FMF; 702 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 703 FMF.setUnsafeAlgebra(); 704 if (0 != (Val & FastMathFlags::NoNaNs)) 705 FMF.setNoNaNs(); 706 if (0 != (Val & FastMathFlags::NoInfs)) 707 FMF.setNoInfs(); 708 if (0 != (Val & FastMathFlags::NoSignedZeros)) 709 FMF.setNoSignedZeros(); 710 if (0 != (Val & FastMathFlags::AllowReciprocal)) 711 FMF.setAllowReciprocal(); 712 return FMF; 713 } 714 715 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 716 switch (Val) { 717 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 718 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 719 } 720 } 721 722 namespace llvm { 723 namespace { 724 /// \brief A class for maintaining the slot number definition 725 /// as a placeholder for the actual definition for forward constants defs. 726 class ConstantPlaceHolder : public ConstantExpr { 727 void operator=(const ConstantPlaceHolder &) = delete; 728 729 public: 730 // allocate space for exactly one operand 731 void *operator new(size_t s) { return User::operator new(s, 1); } 732 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 733 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 734 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 735 } 736 737 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 738 static bool classof(const Value *V) { 739 return isa<ConstantExpr>(V) && 740 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 741 } 742 743 /// Provide fast operand accessors 744 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 745 }; 746 } 747 748 // FIXME: can we inherit this from ConstantExpr? 749 template <> 750 struct OperandTraits<ConstantPlaceHolder> : 751 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 752 }; 753 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 754 } 755 756 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 757 if (Idx == size()) { 758 push_back(V); 759 return; 760 } 761 762 if (Idx >= size()) 763 resize(Idx+1); 764 765 WeakVH &OldV = ValuePtrs[Idx]; 766 if (!OldV) { 767 OldV = V; 768 return; 769 } 770 771 // Handle constants and non-constants (e.g. instrs) differently for 772 // efficiency. 773 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 774 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 775 OldV = V; 776 } else { 777 // If there was a forward reference to this value, replace it. 778 Value *PrevVal = OldV; 779 OldV->replaceAllUsesWith(V); 780 delete PrevVal; 781 } 782 } 783 784 785 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 786 Type *Ty) { 787 if (Idx >= size()) 788 resize(Idx + 1); 789 790 if (Value *V = ValuePtrs[Idx]) { 791 if (Ty != V->getType()) 792 report_fatal_error("Type mismatch in constant table!"); 793 return cast<Constant>(V); 794 } 795 796 // Create and return a placeholder, which will later be RAUW'd. 797 Constant *C = new ConstantPlaceHolder(Ty, Context); 798 ValuePtrs[Idx] = C; 799 return C; 800 } 801 802 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 803 // Bail out for a clearly invalid value. This would make us call resize(0) 804 if (Idx == UINT_MAX) 805 return nullptr; 806 807 if (Idx >= size()) 808 resize(Idx + 1); 809 810 if (Value *V = ValuePtrs[Idx]) { 811 // If the types don't match, it's invalid. 812 if (Ty && Ty != V->getType()) 813 return nullptr; 814 return V; 815 } 816 817 // No type specified, must be invalid reference. 818 if (!Ty) return nullptr; 819 820 // Create and return a placeholder, which will later be RAUW'd. 821 Value *V = new Argument(Ty); 822 ValuePtrs[Idx] = V; 823 return V; 824 } 825 826 /// Once all constants are read, this method bulk resolves any forward 827 /// references. The idea behind this is that we sometimes get constants (such 828 /// as large arrays) which reference *many* forward ref constants. Replacing 829 /// each of these causes a lot of thrashing when building/reuniquing the 830 /// constant. Instead of doing this, we look at all the uses and rewrite all 831 /// the place holders at once for any constant that uses a placeholder. 832 void BitcodeReaderValueList::resolveConstantForwardRefs() { 833 // Sort the values by-pointer so that they are efficient to look up with a 834 // binary search. 835 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 836 837 SmallVector<Constant*, 64> NewOps; 838 839 while (!ResolveConstants.empty()) { 840 Value *RealVal = operator[](ResolveConstants.back().second); 841 Constant *Placeholder = ResolveConstants.back().first; 842 ResolveConstants.pop_back(); 843 844 // Loop over all users of the placeholder, updating them to reference the 845 // new value. If they reference more than one placeholder, update them all 846 // at once. 847 while (!Placeholder->use_empty()) { 848 auto UI = Placeholder->user_begin(); 849 User *U = *UI; 850 851 // If the using object isn't uniqued, just update the operands. This 852 // handles instructions and initializers for global variables. 853 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 854 UI.getUse().set(RealVal); 855 continue; 856 } 857 858 // Otherwise, we have a constant that uses the placeholder. Replace that 859 // constant with a new constant that has *all* placeholder uses updated. 860 Constant *UserC = cast<Constant>(U); 861 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 862 I != E; ++I) { 863 Value *NewOp; 864 if (!isa<ConstantPlaceHolder>(*I)) { 865 // Not a placeholder reference. 866 NewOp = *I; 867 } else if (*I == Placeholder) { 868 // Common case is that it just references this one placeholder. 869 NewOp = RealVal; 870 } else { 871 // Otherwise, look up the placeholder in ResolveConstants. 872 ResolveConstantsTy::iterator It = 873 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 874 std::pair<Constant*, unsigned>(cast<Constant>(*I), 875 0)); 876 assert(It != ResolveConstants.end() && It->first == *I); 877 NewOp = operator[](It->second); 878 } 879 880 NewOps.push_back(cast<Constant>(NewOp)); 881 } 882 883 // Make the new constant. 884 Constant *NewC; 885 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 886 NewC = ConstantArray::get(UserCA->getType(), NewOps); 887 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 888 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 889 } else if (isa<ConstantVector>(UserC)) { 890 NewC = ConstantVector::get(NewOps); 891 } else { 892 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 893 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 894 } 895 896 UserC->replaceAllUsesWith(NewC); 897 UserC->destroyConstant(); 898 NewOps.clear(); 899 } 900 901 // Update all ValueHandles, they should be the only users at this point. 902 Placeholder->replaceAllUsesWith(RealVal); 903 delete Placeholder; 904 } 905 } 906 907 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 908 if (Idx == size()) { 909 push_back(MD); 910 return; 911 } 912 913 if (Idx >= size()) 914 resize(Idx+1); 915 916 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 917 if (!OldMD) { 918 OldMD.reset(MD); 919 return; 920 } 921 922 // If there was a forward reference to this value, replace it. 923 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 924 PrevMD->replaceAllUsesWith(MD); 925 --NumFwdRefs; 926 } 927 928 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 929 if (Idx >= size()) 930 resize(Idx + 1); 931 932 if (Metadata *MD = MDValuePtrs[Idx]) 933 return MD; 934 935 // Track forward refs to be resolved later. 936 if (AnyFwdRefs) { 937 MinFwdRef = std::min(MinFwdRef, Idx); 938 MaxFwdRef = std::max(MaxFwdRef, Idx); 939 } else { 940 AnyFwdRefs = true; 941 MinFwdRef = MaxFwdRef = Idx; 942 } 943 ++NumFwdRefs; 944 945 // Create and return a placeholder, which will later be RAUW'd. 946 Metadata *MD = MDNode::getTemporary(Context, None).release(); 947 MDValuePtrs[Idx].reset(MD); 948 return MD; 949 } 950 951 void BitcodeReaderMDValueList::tryToResolveCycles() { 952 if (!AnyFwdRefs) 953 // Nothing to do. 954 return; 955 956 if (NumFwdRefs) 957 // Still forward references... can't resolve cycles. 958 return; 959 960 // Resolve any cycles. 961 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 962 auto &MD = MDValuePtrs[I]; 963 auto *N = dyn_cast_or_null<MDNode>(MD); 964 if (!N) 965 continue; 966 967 assert(!N->isTemporary() && "Unexpected forward reference"); 968 N->resolveCycles(); 969 } 970 971 // Make sure we return early again until there's another forward ref. 972 AnyFwdRefs = false; 973 } 974 975 Type *BitcodeReader::getTypeByID(unsigned ID) { 976 // The type table size is always specified correctly. 977 if (ID >= TypeList.size()) 978 return nullptr; 979 980 if (Type *Ty = TypeList[ID]) 981 return Ty; 982 983 // If we have a forward reference, the only possible case is when it is to a 984 // named struct. Just create a placeholder for now. 985 return TypeList[ID] = createIdentifiedStructType(Context); 986 } 987 988 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 989 StringRef Name) { 990 auto *Ret = StructType::create(Context, Name); 991 IdentifiedStructTypes.push_back(Ret); 992 return Ret; 993 } 994 995 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 996 auto *Ret = StructType::create(Context); 997 IdentifiedStructTypes.push_back(Ret); 998 return Ret; 999 } 1000 1001 1002 //===----------------------------------------------------------------------===// 1003 // Functions for parsing blocks from the bitcode file 1004 //===----------------------------------------------------------------------===// 1005 1006 1007 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1008 /// been decoded from the given integer. This function must stay in sync with 1009 /// 'encodeLLVMAttributesForBitcode'. 1010 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1011 uint64_t EncodedAttrs) { 1012 // FIXME: Remove in 4.0. 1013 1014 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1015 // the bits above 31 down by 11 bits. 1016 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1017 assert((!Alignment || isPowerOf2_32(Alignment)) && 1018 "Alignment must be a power of two."); 1019 1020 if (Alignment) 1021 B.addAlignmentAttr(Alignment); 1022 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1023 (EncodedAttrs & 0xffff)); 1024 } 1025 1026 std::error_code BitcodeReader::parseAttributeBlock() { 1027 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1028 return error("Invalid record"); 1029 1030 if (!MAttributes.empty()) 1031 return error("Invalid multiple blocks"); 1032 1033 SmallVector<uint64_t, 64> Record; 1034 1035 SmallVector<AttributeSet, 8> Attrs; 1036 1037 // Read all the records. 1038 while (1) { 1039 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1040 1041 switch (Entry.Kind) { 1042 case BitstreamEntry::SubBlock: // Handled for us already. 1043 case BitstreamEntry::Error: 1044 return error("Malformed block"); 1045 case BitstreamEntry::EndBlock: 1046 return std::error_code(); 1047 case BitstreamEntry::Record: 1048 // The interesting case. 1049 break; 1050 } 1051 1052 // Read a record. 1053 Record.clear(); 1054 switch (Stream.readRecord(Entry.ID, Record)) { 1055 default: // Default behavior: ignore. 1056 break; 1057 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1058 // FIXME: Remove in 4.0. 1059 if (Record.size() & 1) 1060 return error("Invalid record"); 1061 1062 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1063 AttrBuilder B; 1064 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1065 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1066 } 1067 1068 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1069 Attrs.clear(); 1070 break; 1071 } 1072 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1073 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1074 Attrs.push_back(MAttributeGroups[Record[i]]); 1075 1076 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1077 Attrs.clear(); 1078 break; 1079 } 1080 } 1081 } 1082 } 1083 1084 // Returns Attribute::None on unrecognized codes. 1085 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1086 switch (Code) { 1087 default: 1088 return Attribute::None; 1089 case bitc::ATTR_KIND_ALIGNMENT: 1090 return Attribute::Alignment; 1091 case bitc::ATTR_KIND_ALWAYS_INLINE: 1092 return Attribute::AlwaysInline; 1093 case bitc::ATTR_KIND_ARGMEMONLY: 1094 return Attribute::ArgMemOnly; 1095 case bitc::ATTR_KIND_BUILTIN: 1096 return Attribute::Builtin; 1097 case bitc::ATTR_KIND_BY_VAL: 1098 return Attribute::ByVal; 1099 case bitc::ATTR_KIND_IN_ALLOCA: 1100 return Attribute::InAlloca; 1101 case bitc::ATTR_KIND_COLD: 1102 return Attribute::Cold; 1103 case bitc::ATTR_KIND_CONVERGENT: 1104 return Attribute::Convergent; 1105 case bitc::ATTR_KIND_INLINE_HINT: 1106 return Attribute::InlineHint; 1107 case bitc::ATTR_KIND_IN_REG: 1108 return Attribute::InReg; 1109 case bitc::ATTR_KIND_JUMP_TABLE: 1110 return Attribute::JumpTable; 1111 case bitc::ATTR_KIND_MIN_SIZE: 1112 return Attribute::MinSize; 1113 case bitc::ATTR_KIND_NAKED: 1114 return Attribute::Naked; 1115 case bitc::ATTR_KIND_NEST: 1116 return Attribute::Nest; 1117 case bitc::ATTR_KIND_NO_ALIAS: 1118 return Attribute::NoAlias; 1119 case bitc::ATTR_KIND_NO_BUILTIN: 1120 return Attribute::NoBuiltin; 1121 case bitc::ATTR_KIND_NO_CAPTURE: 1122 return Attribute::NoCapture; 1123 case bitc::ATTR_KIND_NO_DUPLICATE: 1124 return Attribute::NoDuplicate; 1125 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1126 return Attribute::NoImplicitFloat; 1127 case bitc::ATTR_KIND_NO_INLINE: 1128 return Attribute::NoInline; 1129 case bitc::ATTR_KIND_NON_LAZY_BIND: 1130 return Attribute::NonLazyBind; 1131 case bitc::ATTR_KIND_NON_NULL: 1132 return Attribute::NonNull; 1133 case bitc::ATTR_KIND_DEREFERENCEABLE: 1134 return Attribute::Dereferenceable; 1135 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1136 return Attribute::DereferenceableOrNull; 1137 case bitc::ATTR_KIND_NO_RED_ZONE: 1138 return Attribute::NoRedZone; 1139 case bitc::ATTR_KIND_NO_RETURN: 1140 return Attribute::NoReturn; 1141 case bitc::ATTR_KIND_NO_UNWIND: 1142 return Attribute::NoUnwind; 1143 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1144 return Attribute::OptimizeForSize; 1145 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1146 return Attribute::OptimizeNone; 1147 case bitc::ATTR_KIND_READ_NONE: 1148 return Attribute::ReadNone; 1149 case bitc::ATTR_KIND_READ_ONLY: 1150 return Attribute::ReadOnly; 1151 case bitc::ATTR_KIND_RETURNED: 1152 return Attribute::Returned; 1153 case bitc::ATTR_KIND_RETURNS_TWICE: 1154 return Attribute::ReturnsTwice; 1155 case bitc::ATTR_KIND_S_EXT: 1156 return Attribute::SExt; 1157 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1158 return Attribute::StackAlignment; 1159 case bitc::ATTR_KIND_STACK_PROTECT: 1160 return Attribute::StackProtect; 1161 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1162 return Attribute::StackProtectReq; 1163 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1164 return Attribute::StackProtectStrong; 1165 case bitc::ATTR_KIND_SAFESTACK: 1166 return Attribute::SafeStack; 1167 case bitc::ATTR_KIND_STRUCT_RET: 1168 return Attribute::StructRet; 1169 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1170 return Attribute::SanitizeAddress; 1171 case bitc::ATTR_KIND_SANITIZE_THREAD: 1172 return Attribute::SanitizeThread; 1173 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1174 return Attribute::SanitizeMemory; 1175 case bitc::ATTR_KIND_UW_TABLE: 1176 return Attribute::UWTable; 1177 case bitc::ATTR_KIND_Z_EXT: 1178 return Attribute::ZExt; 1179 } 1180 } 1181 1182 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1183 unsigned &Alignment) { 1184 // Note: Alignment in bitcode files is incremented by 1, so that zero 1185 // can be used for default alignment. 1186 if (Exponent > Value::MaxAlignmentExponent + 1) 1187 return error("Invalid alignment value"); 1188 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1189 return std::error_code(); 1190 } 1191 1192 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1193 Attribute::AttrKind *Kind) { 1194 *Kind = getAttrFromCode(Code); 1195 if (*Kind == Attribute::None) 1196 return error(BitcodeError::CorruptedBitcode, 1197 "Unknown attribute kind (" + Twine(Code) + ")"); 1198 return std::error_code(); 1199 } 1200 1201 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1202 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1203 return error("Invalid record"); 1204 1205 if (!MAttributeGroups.empty()) 1206 return error("Invalid multiple blocks"); 1207 1208 SmallVector<uint64_t, 64> Record; 1209 1210 // Read all the records. 1211 while (1) { 1212 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1213 1214 switch (Entry.Kind) { 1215 case BitstreamEntry::SubBlock: // Handled for us already. 1216 case BitstreamEntry::Error: 1217 return error("Malformed block"); 1218 case BitstreamEntry::EndBlock: 1219 return std::error_code(); 1220 case BitstreamEntry::Record: 1221 // The interesting case. 1222 break; 1223 } 1224 1225 // Read a record. 1226 Record.clear(); 1227 switch (Stream.readRecord(Entry.ID, Record)) { 1228 default: // Default behavior: ignore. 1229 break; 1230 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1231 if (Record.size() < 3) 1232 return error("Invalid record"); 1233 1234 uint64_t GrpID = Record[0]; 1235 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1236 1237 AttrBuilder B; 1238 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1239 if (Record[i] == 0) { // Enum attribute 1240 Attribute::AttrKind Kind; 1241 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1242 return EC; 1243 1244 B.addAttribute(Kind); 1245 } else if (Record[i] == 1) { // Integer attribute 1246 Attribute::AttrKind Kind; 1247 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1248 return EC; 1249 if (Kind == Attribute::Alignment) 1250 B.addAlignmentAttr(Record[++i]); 1251 else if (Kind == Attribute::StackAlignment) 1252 B.addStackAlignmentAttr(Record[++i]); 1253 else if (Kind == Attribute::Dereferenceable) 1254 B.addDereferenceableAttr(Record[++i]); 1255 else if (Kind == Attribute::DereferenceableOrNull) 1256 B.addDereferenceableOrNullAttr(Record[++i]); 1257 } else { // String attribute 1258 assert((Record[i] == 3 || Record[i] == 4) && 1259 "Invalid attribute group entry"); 1260 bool HasValue = (Record[i++] == 4); 1261 SmallString<64> KindStr; 1262 SmallString<64> ValStr; 1263 1264 while (Record[i] != 0 && i != e) 1265 KindStr += Record[i++]; 1266 assert(Record[i] == 0 && "Kind string not null terminated"); 1267 1268 if (HasValue) { 1269 // Has a value associated with it. 1270 ++i; // Skip the '0' that terminates the "kind" string. 1271 while (Record[i] != 0 && i != e) 1272 ValStr += Record[i++]; 1273 assert(Record[i] == 0 && "Value string not null terminated"); 1274 } 1275 1276 B.addAttribute(KindStr.str(), ValStr.str()); 1277 } 1278 } 1279 1280 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1281 break; 1282 } 1283 } 1284 } 1285 } 1286 1287 std::error_code BitcodeReader::parseTypeTable() { 1288 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1289 return error("Invalid record"); 1290 1291 return parseTypeTableBody(); 1292 } 1293 1294 std::error_code BitcodeReader::parseTypeTableBody() { 1295 if (!TypeList.empty()) 1296 return error("Invalid multiple blocks"); 1297 1298 SmallVector<uint64_t, 64> Record; 1299 unsigned NumRecords = 0; 1300 1301 SmallString<64> TypeName; 1302 1303 // Read all the records for this type table. 1304 while (1) { 1305 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1306 1307 switch (Entry.Kind) { 1308 case BitstreamEntry::SubBlock: // Handled for us already. 1309 case BitstreamEntry::Error: 1310 return error("Malformed block"); 1311 case BitstreamEntry::EndBlock: 1312 if (NumRecords != TypeList.size()) 1313 return error("Malformed block"); 1314 return std::error_code(); 1315 case BitstreamEntry::Record: 1316 // The interesting case. 1317 break; 1318 } 1319 1320 // Read a record. 1321 Record.clear(); 1322 Type *ResultTy = nullptr; 1323 switch (Stream.readRecord(Entry.ID, Record)) { 1324 default: 1325 return error("Invalid value"); 1326 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1327 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1328 // type list. This allows us to reserve space. 1329 if (Record.size() < 1) 1330 return error("Invalid record"); 1331 TypeList.resize(Record[0]); 1332 continue; 1333 case bitc::TYPE_CODE_VOID: // VOID 1334 ResultTy = Type::getVoidTy(Context); 1335 break; 1336 case bitc::TYPE_CODE_HALF: // HALF 1337 ResultTy = Type::getHalfTy(Context); 1338 break; 1339 case bitc::TYPE_CODE_FLOAT: // FLOAT 1340 ResultTy = Type::getFloatTy(Context); 1341 break; 1342 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1343 ResultTy = Type::getDoubleTy(Context); 1344 break; 1345 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1346 ResultTy = Type::getX86_FP80Ty(Context); 1347 break; 1348 case bitc::TYPE_CODE_FP128: // FP128 1349 ResultTy = Type::getFP128Ty(Context); 1350 break; 1351 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1352 ResultTy = Type::getPPC_FP128Ty(Context); 1353 break; 1354 case bitc::TYPE_CODE_LABEL: // LABEL 1355 ResultTy = Type::getLabelTy(Context); 1356 break; 1357 case bitc::TYPE_CODE_METADATA: // METADATA 1358 ResultTy = Type::getMetadataTy(Context); 1359 break; 1360 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1361 ResultTy = Type::getX86_MMXTy(Context); 1362 break; 1363 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1364 if (Record.size() < 1) 1365 return error("Invalid record"); 1366 1367 uint64_t NumBits = Record[0]; 1368 if (NumBits < IntegerType::MIN_INT_BITS || 1369 NumBits > IntegerType::MAX_INT_BITS) 1370 return error("Bitwidth for integer type out of range"); 1371 ResultTy = IntegerType::get(Context, NumBits); 1372 break; 1373 } 1374 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1375 // [pointee type, address space] 1376 if (Record.size() < 1) 1377 return error("Invalid record"); 1378 unsigned AddressSpace = 0; 1379 if (Record.size() == 2) 1380 AddressSpace = Record[1]; 1381 ResultTy = getTypeByID(Record[0]); 1382 if (!ResultTy || 1383 !PointerType::isValidElementType(ResultTy)) 1384 return error("Invalid type"); 1385 ResultTy = PointerType::get(ResultTy, AddressSpace); 1386 break; 1387 } 1388 case bitc::TYPE_CODE_FUNCTION_OLD: { 1389 // FIXME: attrid is dead, remove it in LLVM 4.0 1390 // FUNCTION: [vararg, attrid, retty, paramty x N] 1391 if (Record.size() < 3) 1392 return error("Invalid record"); 1393 SmallVector<Type*, 8> ArgTys; 1394 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1395 if (Type *T = getTypeByID(Record[i])) 1396 ArgTys.push_back(T); 1397 else 1398 break; 1399 } 1400 1401 ResultTy = getTypeByID(Record[2]); 1402 if (!ResultTy || ArgTys.size() < Record.size()-3) 1403 return error("Invalid type"); 1404 1405 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1406 break; 1407 } 1408 case bitc::TYPE_CODE_FUNCTION: { 1409 // FUNCTION: [vararg, retty, paramty x N] 1410 if (Record.size() < 2) 1411 return error("Invalid record"); 1412 SmallVector<Type*, 8> ArgTys; 1413 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1414 if (Type *T = getTypeByID(Record[i])) { 1415 if (!FunctionType::isValidArgumentType(T)) 1416 return error("Invalid function argument type"); 1417 ArgTys.push_back(T); 1418 } 1419 else 1420 break; 1421 } 1422 1423 ResultTy = getTypeByID(Record[1]); 1424 if (!ResultTy || ArgTys.size() < Record.size()-2) 1425 return error("Invalid type"); 1426 1427 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1428 break; 1429 } 1430 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1431 if (Record.size() < 1) 1432 return error("Invalid record"); 1433 SmallVector<Type*, 8> EltTys; 1434 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1435 if (Type *T = getTypeByID(Record[i])) 1436 EltTys.push_back(T); 1437 else 1438 break; 1439 } 1440 if (EltTys.size() != Record.size()-1) 1441 return error("Invalid type"); 1442 ResultTy = StructType::get(Context, EltTys, Record[0]); 1443 break; 1444 } 1445 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1446 if (convertToString(Record, 0, TypeName)) 1447 return error("Invalid record"); 1448 continue; 1449 1450 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1451 if (Record.size() < 1) 1452 return error("Invalid record"); 1453 1454 if (NumRecords >= TypeList.size()) 1455 return error("Invalid TYPE table"); 1456 1457 // Check to see if this was forward referenced, if so fill in the temp. 1458 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1459 if (Res) { 1460 Res->setName(TypeName); 1461 TypeList[NumRecords] = nullptr; 1462 } else // Otherwise, create a new struct. 1463 Res = createIdentifiedStructType(Context, TypeName); 1464 TypeName.clear(); 1465 1466 SmallVector<Type*, 8> EltTys; 1467 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1468 if (Type *T = getTypeByID(Record[i])) 1469 EltTys.push_back(T); 1470 else 1471 break; 1472 } 1473 if (EltTys.size() != Record.size()-1) 1474 return error("Invalid record"); 1475 Res->setBody(EltTys, Record[0]); 1476 ResultTy = Res; 1477 break; 1478 } 1479 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1480 if (Record.size() != 1) 1481 return error("Invalid record"); 1482 1483 if (NumRecords >= TypeList.size()) 1484 return error("Invalid TYPE table"); 1485 1486 // Check to see if this was forward referenced, if so fill in the temp. 1487 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1488 if (Res) { 1489 Res->setName(TypeName); 1490 TypeList[NumRecords] = nullptr; 1491 } else // Otherwise, create a new struct with no body. 1492 Res = createIdentifiedStructType(Context, TypeName); 1493 TypeName.clear(); 1494 ResultTy = Res; 1495 break; 1496 } 1497 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1498 if (Record.size() < 2) 1499 return error("Invalid record"); 1500 ResultTy = getTypeByID(Record[1]); 1501 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1502 return error("Invalid type"); 1503 ResultTy = ArrayType::get(ResultTy, Record[0]); 1504 break; 1505 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1506 if (Record.size() < 2) 1507 return error("Invalid record"); 1508 if (Record[0] == 0) 1509 return error("Invalid vector length"); 1510 ResultTy = getTypeByID(Record[1]); 1511 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1512 return error("Invalid type"); 1513 ResultTy = VectorType::get(ResultTy, Record[0]); 1514 break; 1515 } 1516 1517 if (NumRecords >= TypeList.size()) 1518 return error("Invalid TYPE table"); 1519 if (TypeList[NumRecords]) 1520 return error( 1521 "Invalid TYPE table: Only named structs can be forward referenced"); 1522 assert(ResultTy && "Didn't read a type?"); 1523 TypeList[NumRecords++] = ResultTy; 1524 } 1525 } 1526 1527 std::error_code BitcodeReader::parseValueSymbolTable() { 1528 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1529 return error("Invalid record"); 1530 1531 SmallVector<uint64_t, 64> Record; 1532 1533 Triple TT(TheModule->getTargetTriple()); 1534 1535 // Read all the records for this value table. 1536 SmallString<128> ValueName; 1537 while (1) { 1538 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1539 1540 switch (Entry.Kind) { 1541 case BitstreamEntry::SubBlock: // Handled for us already. 1542 case BitstreamEntry::Error: 1543 return error("Malformed block"); 1544 case BitstreamEntry::EndBlock: 1545 return std::error_code(); 1546 case BitstreamEntry::Record: 1547 // The interesting case. 1548 break; 1549 } 1550 1551 // Read a record. 1552 Record.clear(); 1553 switch (Stream.readRecord(Entry.ID, Record)) { 1554 default: // Default behavior: unknown type. 1555 break; 1556 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1557 if (convertToString(Record, 1, ValueName)) 1558 return error("Invalid record"); 1559 unsigned ValueID = Record[0]; 1560 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1561 return error("Invalid record"); 1562 Value *V = ValueList[ValueID]; 1563 1564 V->setName(StringRef(ValueName.data(), ValueName.size())); 1565 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1566 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1567 if (TT.isOSBinFormatMachO()) 1568 GO->setComdat(nullptr); 1569 else 1570 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1571 } 1572 } 1573 ValueName.clear(); 1574 break; 1575 } 1576 case bitc::VST_CODE_BBENTRY: { 1577 if (convertToString(Record, 1, ValueName)) 1578 return error("Invalid record"); 1579 BasicBlock *BB = getBasicBlock(Record[0]); 1580 if (!BB) 1581 return error("Invalid record"); 1582 1583 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1584 ValueName.clear(); 1585 break; 1586 } 1587 } 1588 } 1589 } 1590 1591 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1592 1593 std::error_code BitcodeReader::parseMetadata() { 1594 IsMetadataMaterialized = true; 1595 unsigned NextMDValueNo = MDValueList.size(); 1596 1597 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1598 return error("Invalid record"); 1599 1600 SmallVector<uint64_t, 64> Record; 1601 1602 auto getMD = 1603 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1604 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1605 if (ID) 1606 return getMD(ID - 1); 1607 return nullptr; 1608 }; 1609 auto getMDString = [&](unsigned ID) -> MDString *{ 1610 // This requires that the ID is not really a forward reference. In 1611 // particular, the MDString must already have been resolved. 1612 return cast_or_null<MDString>(getMDOrNull(ID)); 1613 }; 1614 1615 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1616 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1617 1618 // Read all the records. 1619 while (1) { 1620 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1621 1622 switch (Entry.Kind) { 1623 case BitstreamEntry::SubBlock: // Handled for us already. 1624 case BitstreamEntry::Error: 1625 return error("Malformed block"); 1626 case BitstreamEntry::EndBlock: 1627 MDValueList.tryToResolveCycles(); 1628 return std::error_code(); 1629 case BitstreamEntry::Record: 1630 // The interesting case. 1631 break; 1632 } 1633 1634 // Read a record. 1635 Record.clear(); 1636 unsigned Code = Stream.readRecord(Entry.ID, Record); 1637 bool IsDistinct = false; 1638 switch (Code) { 1639 default: // Default behavior: ignore. 1640 break; 1641 case bitc::METADATA_NAME: { 1642 // Read name of the named metadata. 1643 SmallString<8> Name(Record.begin(), Record.end()); 1644 Record.clear(); 1645 Code = Stream.ReadCode(); 1646 1647 unsigned NextBitCode = Stream.readRecord(Code, Record); 1648 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1649 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1650 1651 // Read named metadata elements. 1652 unsigned Size = Record.size(); 1653 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1654 for (unsigned i = 0; i != Size; ++i) { 1655 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1656 if (!MD) 1657 return error("Invalid record"); 1658 NMD->addOperand(MD); 1659 } 1660 break; 1661 } 1662 case bitc::METADATA_OLD_FN_NODE: { 1663 // FIXME: Remove in 4.0. 1664 // This is a LocalAsMetadata record, the only type of function-local 1665 // metadata. 1666 if (Record.size() % 2 == 1) 1667 return error("Invalid record"); 1668 1669 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1670 // to be legal, but there's no upgrade path. 1671 auto dropRecord = [&] { 1672 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1673 }; 1674 if (Record.size() != 2) { 1675 dropRecord(); 1676 break; 1677 } 1678 1679 Type *Ty = getTypeByID(Record[0]); 1680 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1681 dropRecord(); 1682 break; 1683 } 1684 1685 MDValueList.assignValue( 1686 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1687 NextMDValueNo++); 1688 break; 1689 } 1690 case bitc::METADATA_OLD_NODE: { 1691 // FIXME: Remove in 4.0. 1692 if (Record.size() % 2 == 1) 1693 return error("Invalid record"); 1694 1695 unsigned Size = Record.size(); 1696 SmallVector<Metadata *, 8> Elts; 1697 for (unsigned i = 0; i != Size; i += 2) { 1698 Type *Ty = getTypeByID(Record[i]); 1699 if (!Ty) 1700 return error("Invalid record"); 1701 if (Ty->isMetadataTy()) 1702 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1703 else if (!Ty->isVoidTy()) { 1704 auto *MD = 1705 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1706 assert(isa<ConstantAsMetadata>(MD) && 1707 "Expected non-function-local metadata"); 1708 Elts.push_back(MD); 1709 } else 1710 Elts.push_back(nullptr); 1711 } 1712 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1713 break; 1714 } 1715 case bitc::METADATA_VALUE: { 1716 if (Record.size() != 2) 1717 return error("Invalid record"); 1718 1719 Type *Ty = getTypeByID(Record[0]); 1720 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1721 return error("Invalid record"); 1722 1723 MDValueList.assignValue( 1724 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1725 NextMDValueNo++); 1726 break; 1727 } 1728 case bitc::METADATA_DISTINCT_NODE: 1729 IsDistinct = true; 1730 // fallthrough... 1731 case bitc::METADATA_NODE: { 1732 SmallVector<Metadata *, 8> Elts; 1733 Elts.reserve(Record.size()); 1734 for (unsigned ID : Record) 1735 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1736 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1737 : MDNode::get(Context, Elts), 1738 NextMDValueNo++); 1739 break; 1740 } 1741 case bitc::METADATA_LOCATION: { 1742 if (Record.size() != 5) 1743 return error("Invalid record"); 1744 1745 unsigned Line = Record[1]; 1746 unsigned Column = Record[2]; 1747 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1748 Metadata *InlinedAt = 1749 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1750 MDValueList.assignValue( 1751 GET_OR_DISTINCT(DILocation, Record[0], 1752 (Context, Line, Column, Scope, InlinedAt)), 1753 NextMDValueNo++); 1754 break; 1755 } 1756 case bitc::METADATA_GENERIC_DEBUG: { 1757 if (Record.size() < 4) 1758 return error("Invalid record"); 1759 1760 unsigned Tag = Record[1]; 1761 unsigned Version = Record[2]; 1762 1763 if (Tag >= 1u << 16 || Version != 0) 1764 return error("Invalid record"); 1765 1766 auto *Header = getMDString(Record[3]); 1767 SmallVector<Metadata *, 8> DwarfOps; 1768 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1769 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1770 : nullptr); 1771 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1772 (Context, Tag, Header, DwarfOps)), 1773 NextMDValueNo++); 1774 break; 1775 } 1776 case bitc::METADATA_SUBRANGE: { 1777 if (Record.size() != 3) 1778 return error("Invalid record"); 1779 1780 MDValueList.assignValue( 1781 GET_OR_DISTINCT(DISubrange, Record[0], 1782 (Context, Record[1], unrotateSign(Record[2]))), 1783 NextMDValueNo++); 1784 break; 1785 } 1786 case bitc::METADATA_ENUMERATOR: { 1787 if (Record.size() != 3) 1788 return error("Invalid record"); 1789 1790 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1791 (Context, unrotateSign(Record[1]), 1792 getMDString(Record[2]))), 1793 NextMDValueNo++); 1794 break; 1795 } 1796 case bitc::METADATA_BASIC_TYPE: { 1797 if (Record.size() != 6) 1798 return error("Invalid record"); 1799 1800 MDValueList.assignValue( 1801 GET_OR_DISTINCT(DIBasicType, Record[0], 1802 (Context, Record[1], getMDString(Record[2]), 1803 Record[3], Record[4], Record[5])), 1804 NextMDValueNo++); 1805 break; 1806 } 1807 case bitc::METADATA_DERIVED_TYPE: { 1808 if (Record.size() != 12) 1809 return error("Invalid record"); 1810 1811 MDValueList.assignValue( 1812 GET_OR_DISTINCT(DIDerivedType, Record[0], 1813 (Context, Record[1], getMDString(Record[2]), 1814 getMDOrNull(Record[3]), Record[4], 1815 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1816 Record[7], Record[8], Record[9], Record[10], 1817 getMDOrNull(Record[11]))), 1818 NextMDValueNo++); 1819 break; 1820 } 1821 case bitc::METADATA_COMPOSITE_TYPE: { 1822 if (Record.size() != 16) 1823 return error("Invalid record"); 1824 1825 MDValueList.assignValue( 1826 GET_OR_DISTINCT(DICompositeType, Record[0], 1827 (Context, Record[1], getMDString(Record[2]), 1828 getMDOrNull(Record[3]), Record[4], 1829 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1830 Record[7], Record[8], Record[9], Record[10], 1831 getMDOrNull(Record[11]), Record[12], 1832 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1833 getMDString(Record[15]))), 1834 NextMDValueNo++); 1835 break; 1836 } 1837 case bitc::METADATA_SUBROUTINE_TYPE: { 1838 if (Record.size() != 3) 1839 return error("Invalid record"); 1840 1841 MDValueList.assignValue( 1842 GET_OR_DISTINCT(DISubroutineType, Record[0], 1843 (Context, Record[1], getMDOrNull(Record[2]))), 1844 NextMDValueNo++); 1845 break; 1846 } 1847 1848 case bitc::METADATA_MODULE: { 1849 if (Record.size() != 6) 1850 return error("Invalid record"); 1851 1852 MDValueList.assignValue( 1853 GET_OR_DISTINCT(DIModule, Record[0], 1854 (Context, getMDOrNull(Record[1]), 1855 getMDString(Record[2]), getMDString(Record[3]), 1856 getMDString(Record[4]), getMDString(Record[5]))), 1857 NextMDValueNo++); 1858 break; 1859 } 1860 1861 case bitc::METADATA_FILE: { 1862 if (Record.size() != 3) 1863 return error("Invalid record"); 1864 1865 MDValueList.assignValue( 1866 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1867 getMDString(Record[2]))), 1868 NextMDValueNo++); 1869 break; 1870 } 1871 case bitc::METADATA_COMPILE_UNIT: { 1872 if (Record.size() < 14 || Record.size() > 15) 1873 return error("Invalid record"); 1874 1875 // Ignore Record[1], which indicates whether this compile unit is 1876 // distinct. It's always distinct. 1877 MDValueList.assignValue( 1878 DICompileUnit::getDistinct( 1879 Context, Record[1], getMDOrNull(Record[2]), 1880 getMDString(Record[3]), Record[4], getMDString(Record[5]), 1881 Record[6], getMDString(Record[7]), Record[8], 1882 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1883 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1884 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14]), 1885 NextMDValueNo++); 1886 break; 1887 } 1888 case bitc::METADATA_SUBPROGRAM: { 1889 if (Record.size() != 19) 1890 return error("Invalid record"); 1891 1892 MDValueList.assignValue( 1893 GET_OR_DISTINCT( 1894 DISubprogram, Record[0], 1895 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1896 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1897 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1898 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1899 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1900 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1901 NextMDValueNo++); 1902 break; 1903 } 1904 case bitc::METADATA_LEXICAL_BLOCK: { 1905 if (Record.size() != 5) 1906 return error("Invalid record"); 1907 1908 MDValueList.assignValue( 1909 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1910 (Context, getMDOrNull(Record[1]), 1911 getMDOrNull(Record[2]), Record[3], Record[4])), 1912 NextMDValueNo++); 1913 break; 1914 } 1915 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1916 if (Record.size() != 4) 1917 return error("Invalid record"); 1918 1919 MDValueList.assignValue( 1920 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1921 (Context, getMDOrNull(Record[1]), 1922 getMDOrNull(Record[2]), Record[3])), 1923 NextMDValueNo++); 1924 break; 1925 } 1926 case bitc::METADATA_NAMESPACE: { 1927 if (Record.size() != 5) 1928 return error("Invalid record"); 1929 1930 MDValueList.assignValue( 1931 GET_OR_DISTINCT(DINamespace, Record[0], 1932 (Context, getMDOrNull(Record[1]), 1933 getMDOrNull(Record[2]), getMDString(Record[3]), 1934 Record[4])), 1935 NextMDValueNo++); 1936 break; 1937 } 1938 case bitc::METADATA_TEMPLATE_TYPE: { 1939 if (Record.size() != 3) 1940 return error("Invalid record"); 1941 1942 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1943 Record[0], 1944 (Context, getMDString(Record[1]), 1945 getMDOrNull(Record[2]))), 1946 NextMDValueNo++); 1947 break; 1948 } 1949 case bitc::METADATA_TEMPLATE_VALUE: { 1950 if (Record.size() != 5) 1951 return error("Invalid record"); 1952 1953 MDValueList.assignValue( 1954 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1955 (Context, Record[1], getMDString(Record[2]), 1956 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1957 NextMDValueNo++); 1958 break; 1959 } 1960 case bitc::METADATA_GLOBAL_VAR: { 1961 if (Record.size() != 11) 1962 return error("Invalid record"); 1963 1964 MDValueList.assignValue( 1965 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1966 (Context, getMDOrNull(Record[1]), 1967 getMDString(Record[2]), getMDString(Record[3]), 1968 getMDOrNull(Record[4]), Record[5], 1969 getMDOrNull(Record[6]), Record[7], Record[8], 1970 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1971 NextMDValueNo++); 1972 break; 1973 } 1974 case bitc::METADATA_LOCAL_VAR: { 1975 // 10th field is for the obseleted 'inlinedAt:' field. 1976 if (Record.size() < 8 || Record.size() > 10) 1977 return error("Invalid record"); 1978 1979 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 1980 // DW_TAG_arg_variable. 1981 bool HasTag = Record.size() > 8; 1982 MDValueList.assignValue( 1983 GET_OR_DISTINCT(DILocalVariable, Record[0], 1984 (Context, getMDOrNull(Record[1 + HasTag]), 1985 getMDString(Record[2 + HasTag]), 1986 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 1987 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 1988 Record[7 + HasTag])), 1989 NextMDValueNo++); 1990 break; 1991 } 1992 case bitc::METADATA_EXPRESSION: { 1993 if (Record.size() < 1) 1994 return error("Invalid record"); 1995 1996 MDValueList.assignValue( 1997 GET_OR_DISTINCT(DIExpression, Record[0], 1998 (Context, makeArrayRef(Record).slice(1))), 1999 NextMDValueNo++); 2000 break; 2001 } 2002 case bitc::METADATA_OBJC_PROPERTY: { 2003 if (Record.size() != 8) 2004 return error("Invalid record"); 2005 2006 MDValueList.assignValue( 2007 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2008 (Context, getMDString(Record[1]), 2009 getMDOrNull(Record[2]), Record[3], 2010 getMDString(Record[4]), getMDString(Record[5]), 2011 Record[6], getMDOrNull(Record[7]))), 2012 NextMDValueNo++); 2013 break; 2014 } 2015 case bitc::METADATA_IMPORTED_ENTITY: { 2016 if (Record.size() != 6) 2017 return error("Invalid record"); 2018 2019 MDValueList.assignValue( 2020 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2021 (Context, Record[1], getMDOrNull(Record[2]), 2022 getMDOrNull(Record[3]), Record[4], 2023 getMDString(Record[5]))), 2024 NextMDValueNo++); 2025 break; 2026 } 2027 case bitc::METADATA_STRING: { 2028 std::string String(Record.begin(), Record.end()); 2029 llvm::UpgradeMDStringConstant(String); 2030 Metadata *MD = MDString::get(Context, String); 2031 MDValueList.assignValue(MD, NextMDValueNo++); 2032 break; 2033 } 2034 case bitc::METADATA_KIND: { 2035 if (Record.size() < 2) 2036 return error("Invalid record"); 2037 2038 unsigned Kind = Record[0]; 2039 SmallString<8> Name(Record.begin()+1, Record.end()); 2040 2041 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2042 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2043 return error("Conflicting METADATA_KIND records"); 2044 break; 2045 } 2046 } 2047 } 2048 #undef GET_OR_DISTINCT 2049 } 2050 2051 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2052 /// encoding. 2053 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2054 if ((V & 1) == 0) 2055 return V >> 1; 2056 if (V != 1) 2057 return -(V >> 1); 2058 // There is no such thing as -0 with integers. "-0" really means MININT. 2059 return 1ULL << 63; 2060 } 2061 2062 /// Resolve all of the initializers for global values and aliases that we can. 2063 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2064 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2065 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2066 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2067 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2068 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2069 2070 GlobalInitWorklist.swap(GlobalInits); 2071 AliasInitWorklist.swap(AliasInits); 2072 FunctionPrefixWorklist.swap(FunctionPrefixes); 2073 FunctionPrologueWorklist.swap(FunctionPrologues); 2074 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2075 2076 while (!GlobalInitWorklist.empty()) { 2077 unsigned ValID = GlobalInitWorklist.back().second; 2078 if (ValID >= ValueList.size()) { 2079 // Not ready to resolve this yet, it requires something later in the file. 2080 GlobalInits.push_back(GlobalInitWorklist.back()); 2081 } else { 2082 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2083 GlobalInitWorklist.back().first->setInitializer(C); 2084 else 2085 return error("Expected a constant"); 2086 } 2087 GlobalInitWorklist.pop_back(); 2088 } 2089 2090 while (!AliasInitWorklist.empty()) { 2091 unsigned ValID = AliasInitWorklist.back().second; 2092 if (ValID >= ValueList.size()) { 2093 AliasInits.push_back(AliasInitWorklist.back()); 2094 } else { 2095 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2096 if (!C) 2097 return error("Expected a constant"); 2098 GlobalAlias *Alias = AliasInitWorklist.back().first; 2099 if (C->getType() != Alias->getType()) 2100 return error("Alias and aliasee types don't match"); 2101 Alias->setAliasee(C); 2102 } 2103 AliasInitWorklist.pop_back(); 2104 } 2105 2106 while (!FunctionPrefixWorklist.empty()) { 2107 unsigned ValID = FunctionPrefixWorklist.back().second; 2108 if (ValID >= ValueList.size()) { 2109 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2110 } else { 2111 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2112 FunctionPrefixWorklist.back().first->setPrefixData(C); 2113 else 2114 return error("Expected a constant"); 2115 } 2116 FunctionPrefixWorklist.pop_back(); 2117 } 2118 2119 while (!FunctionPrologueWorklist.empty()) { 2120 unsigned ValID = FunctionPrologueWorklist.back().second; 2121 if (ValID >= ValueList.size()) { 2122 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2123 } else { 2124 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2125 FunctionPrologueWorklist.back().first->setPrologueData(C); 2126 else 2127 return error("Expected a constant"); 2128 } 2129 FunctionPrologueWorklist.pop_back(); 2130 } 2131 2132 while (!FunctionPersonalityFnWorklist.empty()) { 2133 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2134 if (ValID >= ValueList.size()) { 2135 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2136 } else { 2137 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2138 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2139 else 2140 return error("Expected a constant"); 2141 } 2142 FunctionPersonalityFnWorklist.pop_back(); 2143 } 2144 2145 return std::error_code(); 2146 } 2147 2148 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2149 SmallVector<uint64_t, 8> Words(Vals.size()); 2150 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2151 BitcodeReader::decodeSignRotatedValue); 2152 2153 return APInt(TypeBits, Words); 2154 } 2155 2156 std::error_code BitcodeReader::parseConstants() { 2157 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2158 return error("Invalid record"); 2159 2160 SmallVector<uint64_t, 64> Record; 2161 2162 // Read all the records for this value table. 2163 Type *CurTy = Type::getInt32Ty(Context); 2164 unsigned NextCstNo = ValueList.size(); 2165 while (1) { 2166 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2167 2168 switch (Entry.Kind) { 2169 case BitstreamEntry::SubBlock: // Handled for us already. 2170 case BitstreamEntry::Error: 2171 return error("Malformed block"); 2172 case BitstreamEntry::EndBlock: 2173 if (NextCstNo != ValueList.size()) 2174 return error("Invalid ronstant reference"); 2175 2176 // Once all the constants have been read, go through and resolve forward 2177 // references. 2178 ValueList.resolveConstantForwardRefs(); 2179 return std::error_code(); 2180 case BitstreamEntry::Record: 2181 // The interesting case. 2182 break; 2183 } 2184 2185 // Read a record. 2186 Record.clear(); 2187 Value *V = nullptr; 2188 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2189 switch (BitCode) { 2190 default: // Default behavior: unknown constant 2191 case bitc::CST_CODE_UNDEF: // UNDEF 2192 V = UndefValue::get(CurTy); 2193 break; 2194 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2195 if (Record.empty()) 2196 return error("Invalid record"); 2197 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2198 return error("Invalid record"); 2199 CurTy = TypeList[Record[0]]; 2200 continue; // Skip the ValueList manipulation. 2201 case bitc::CST_CODE_NULL: // NULL 2202 V = Constant::getNullValue(CurTy); 2203 break; 2204 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2205 if (!CurTy->isIntegerTy() || Record.empty()) 2206 return error("Invalid record"); 2207 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2208 break; 2209 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2210 if (!CurTy->isIntegerTy() || Record.empty()) 2211 return error("Invalid record"); 2212 2213 APInt VInt = 2214 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2215 V = ConstantInt::get(Context, VInt); 2216 2217 break; 2218 } 2219 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2220 if (Record.empty()) 2221 return error("Invalid record"); 2222 if (CurTy->isHalfTy()) 2223 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2224 APInt(16, (uint16_t)Record[0]))); 2225 else if (CurTy->isFloatTy()) 2226 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2227 APInt(32, (uint32_t)Record[0]))); 2228 else if (CurTy->isDoubleTy()) 2229 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2230 APInt(64, Record[0]))); 2231 else if (CurTy->isX86_FP80Ty()) { 2232 // Bits are not stored the same way as a normal i80 APInt, compensate. 2233 uint64_t Rearrange[2]; 2234 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2235 Rearrange[1] = Record[0] >> 48; 2236 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2237 APInt(80, Rearrange))); 2238 } else if (CurTy->isFP128Ty()) 2239 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2240 APInt(128, Record))); 2241 else if (CurTy->isPPC_FP128Ty()) 2242 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2243 APInt(128, Record))); 2244 else 2245 V = UndefValue::get(CurTy); 2246 break; 2247 } 2248 2249 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2250 if (Record.empty()) 2251 return error("Invalid record"); 2252 2253 unsigned Size = Record.size(); 2254 SmallVector<Constant*, 16> Elts; 2255 2256 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2257 for (unsigned i = 0; i != Size; ++i) 2258 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2259 STy->getElementType(i))); 2260 V = ConstantStruct::get(STy, Elts); 2261 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2262 Type *EltTy = ATy->getElementType(); 2263 for (unsigned i = 0; i != Size; ++i) 2264 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2265 V = ConstantArray::get(ATy, Elts); 2266 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2267 Type *EltTy = VTy->getElementType(); 2268 for (unsigned i = 0; i != Size; ++i) 2269 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2270 V = ConstantVector::get(Elts); 2271 } else { 2272 V = UndefValue::get(CurTy); 2273 } 2274 break; 2275 } 2276 case bitc::CST_CODE_STRING: // STRING: [values] 2277 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2278 if (Record.empty()) 2279 return error("Invalid record"); 2280 2281 SmallString<16> Elts(Record.begin(), Record.end()); 2282 V = ConstantDataArray::getString(Context, Elts, 2283 BitCode == bitc::CST_CODE_CSTRING); 2284 break; 2285 } 2286 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2287 if (Record.empty()) 2288 return error("Invalid record"); 2289 2290 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2291 unsigned Size = Record.size(); 2292 2293 if (EltTy->isIntegerTy(8)) { 2294 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2295 if (isa<VectorType>(CurTy)) 2296 V = ConstantDataVector::get(Context, Elts); 2297 else 2298 V = ConstantDataArray::get(Context, Elts); 2299 } else if (EltTy->isIntegerTy(16)) { 2300 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2301 if (isa<VectorType>(CurTy)) 2302 V = ConstantDataVector::get(Context, Elts); 2303 else 2304 V = ConstantDataArray::get(Context, Elts); 2305 } else if (EltTy->isIntegerTy(32)) { 2306 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2307 if (isa<VectorType>(CurTy)) 2308 V = ConstantDataVector::get(Context, Elts); 2309 else 2310 V = ConstantDataArray::get(Context, Elts); 2311 } else if (EltTy->isIntegerTy(64)) { 2312 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2313 if (isa<VectorType>(CurTy)) 2314 V = ConstantDataVector::get(Context, Elts); 2315 else 2316 V = ConstantDataArray::get(Context, Elts); 2317 } else if (EltTy->isFloatTy()) { 2318 SmallVector<float, 16> Elts(Size); 2319 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2320 if (isa<VectorType>(CurTy)) 2321 V = ConstantDataVector::get(Context, Elts); 2322 else 2323 V = ConstantDataArray::get(Context, Elts); 2324 } else if (EltTy->isDoubleTy()) { 2325 SmallVector<double, 16> Elts(Size); 2326 std::transform(Record.begin(), Record.end(), Elts.begin(), 2327 BitsToDouble); 2328 if (isa<VectorType>(CurTy)) 2329 V = ConstantDataVector::get(Context, Elts); 2330 else 2331 V = ConstantDataArray::get(Context, Elts); 2332 } else { 2333 return error("Invalid type for value"); 2334 } 2335 break; 2336 } 2337 2338 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2339 if (Record.size() < 3) 2340 return error("Invalid record"); 2341 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2342 if (Opc < 0) { 2343 V = UndefValue::get(CurTy); // Unknown binop. 2344 } else { 2345 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2346 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2347 unsigned Flags = 0; 2348 if (Record.size() >= 4) { 2349 if (Opc == Instruction::Add || 2350 Opc == Instruction::Sub || 2351 Opc == Instruction::Mul || 2352 Opc == Instruction::Shl) { 2353 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2354 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2355 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2356 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2357 } else if (Opc == Instruction::SDiv || 2358 Opc == Instruction::UDiv || 2359 Opc == Instruction::LShr || 2360 Opc == Instruction::AShr) { 2361 if (Record[3] & (1 << bitc::PEO_EXACT)) 2362 Flags |= SDivOperator::IsExact; 2363 } 2364 } 2365 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2366 } 2367 break; 2368 } 2369 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2370 if (Record.size() < 3) 2371 return error("Invalid record"); 2372 int Opc = getDecodedCastOpcode(Record[0]); 2373 if (Opc < 0) { 2374 V = UndefValue::get(CurTy); // Unknown cast. 2375 } else { 2376 Type *OpTy = getTypeByID(Record[1]); 2377 if (!OpTy) 2378 return error("Invalid record"); 2379 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2380 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2381 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2382 } 2383 break; 2384 } 2385 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2386 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2387 unsigned OpNum = 0; 2388 Type *PointeeType = nullptr; 2389 if (Record.size() % 2) 2390 PointeeType = getTypeByID(Record[OpNum++]); 2391 SmallVector<Constant*, 16> Elts; 2392 while (OpNum != Record.size()) { 2393 Type *ElTy = getTypeByID(Record[OpNum++]); 2394 if (!ElTy) 2395 return error("Invalid record"); 2396 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2397 } 2398 2399 if (PointeeType && 2400 PointeeType != 2401 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2402 ->getElementType()) 2403 return error("Explicit gep operator type does not match pointee type " 2404 "of pointer operand"); 2405 2406 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2407 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2408 BitCode == 2409 bitc::CST_CODE_CE_INBOUNDS_GEP); 2410 break; 2411 } 2412 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2413 if (Record.size() < 3) 2414 return error("Invalid record"); 2415 2416 Type *SelectorTy = Type::getInt1Ty(Context); 2417 2418 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2419 // vector. Otherwise, it must be a single bit. 2420 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2421 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2422 VTy->getNumElements()); 2423 2424 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2425 SelectorTy), 2426 ValueList.getConstantFwdRef(Record[1],CurTy), 2427 ValueList.getConstantFwdRef(Record[2],CurTy)); 2428 break; 2429 } 2430 case bitc::CST_CODE_CE_EXTRACTELT 2431 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2432 if (Record.size() < 3) 2433 return error("Invalid record"); 2434 VectorType *OpTy = 2435 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2436 if (!OpTy) 2437 return error("Invalid record"); 2438 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2439 Constant *Op1 = nullptr; 2440 if (Record.size() == 4) { 2441 Type *IdxTy = getTypeByID(Record[2]); 2442 if (!IdxTy) 2443 return error("Invalid record"); 2444 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2445 } else // TODO: Remove with llvm 4.0 2446 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2447 if (!Op1) 2448 return error("Invalid record"); 2449 V = ConstantExpr::getExtractElement(Op0, Op1); 2450 break; 2451 } 2452 case bitc::CST_CODE_CE_INSERTELT 2453 : { // CE_INSERTELT: [opval, opval, opty, opval] 2454 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2455 if (Record.size() < 3 || !OpTy) 2456 return error("Invalid record"); 2457 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2458 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2459 OpTy->getElementType()); 2460 Constant *Op2 = nullptr; 2461 if (Record.size() == 4) { 2462 Type *IdxTy = getTypeByID(Record[2]); 2463 if (!IdxTy) 2464 return error("Invalid record"); 2465 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2466 } else // TODO: Remove with llvm 4.0 2467 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2468 if (!Op2) 2469 return error("Invalid record"); 2470 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2471 break; 2472 } 2473 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2474 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2475 if (Record.size() < 3 || !OpTy) 2476 return error("Invalid record"); 2477 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2478 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2479 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2480 OpTy->getNumElements()); 2481 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2482 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2483 break; 2484 } 2485 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2486 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2487 VectorType *OpTy = 2488 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2489 if (Record.size() < 4 || !RTy || !OpTy) 2490 return error("Invalid record"); 2491 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2492 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2493 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2494 RTy->getNumElements()); 2495 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2496 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2497 break; 2498 } 2499 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2500 if (Record.size() < 4) 2501 return error("Invalid record"); 2502 Type *OpTy = getTypeByID(Record[0]); 2503 if (!OpTy) 2504 return error("Invalid record"); 2505 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2506 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2507 2508 if (OpTy->isFPOrFPVectorTy()) 2509 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2510 else 2511 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2512 break; 2513 } 2514 // This maintains backward compatibility, pre-asm dialect keywords. 2515 // FIXME: Remove with the 4.0 release. 2516 case bitc::CST_CODE_INLINEASM_OLD: { 2517 if (Record.size() < 2) 2518 return error("Invalid record"); 2519 std::string AsmStr, ConstrStr; 2520 bool HasSideEffects = Record[0] & 1; 2521 bool IsAlignStack = Record[0] >> 1; 2522 unsigned AsmStrSize = Record[1]; 2523 if (2+AsmStrSize >= Record.size()) 2524 return error("Invalid record"); 2525 unsigned ConstStrSize = Record[2+AsmStrSize]; 2526 if (3+AsmStrSize+ConstStrSize > Record.size()) 2527 return error("Invalid record"); 2528 2529 for (unsigned i = 0; i != AsmStrSize; ++i) 2530 AsmStr += (char)Record[2+i]; 2531 for (unsigned i = 0; i != ConstStrSize; ++i) 2532 ConstrStr += (char)Record[3+AsmStrSize+i]; 2533 PointerType *PTy = cast<PointerType>(CurTy); 2534 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2535 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2536 break; 2537 } 2538 // This version adds support for the asm dialect keywords (e.g., 2539 // inteldialect). 2540 case bitc::CST_CODE_INLINEASM: { 2541 if (Record.size() < 2) 2542 return error("Invalid record"); 2543 std::string AsmStr, ConstrStr; 2544 bool HasSideEffects = Record[0] & 1; 2545 bool IsAlignStack = (Record[0] >> 1) & 1; 2546 unsigned AsmDialect = Record[0] >> 2; 2547 unsigned AsmStrSize = Record[1]; 2548 if (2+AsmStrSize >= Record.size()) 2549 return error("Invalid record"); 2550 unsigned ConstStrSize = Record[2+AsmStrSize]; 2551 if (3+AsmStrSize+ConstStrSize > Record.size()) 2552 return error("Invalid record"); 2553 2554 for (unsigned i = 0; i != AsmStrSize; ++i) 2555 AsmStr += (char)Record[2+i]; 2556 for (unsigned i = 0; i != ConstStrSize; ++i) 2557 ConstrStr += (char)Record[3+AsmStrSize+i]; 2558 PointerType *PTy = cast<PointerType>(CurTy); 2559 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2560 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2561 InlineAsm::AsmDialect(AsmDialect)); 2562 break; 2563 } 2564 case bitc::CST_CODE_BLOCKADDRESS:{ 2565 if (Record.size() < 3) 2566 return error("Invalid record"); 2567 Type *FnTy = getTypeByID(Record[0]); 2568 if (!FnTy) 2569 return error("Invalid record"); 2570 Function *Fn = 2571 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2572 if (!Fn) 2573 return error("Invalid record"); 2574 2575 // Don't let Fn get dematerialized. 2576 BlockAddressesTaken.insert(Fn); 2577 2578 // If the function is already parsed we can insert the block address right 2579 // away. 2580 BasicBlock *BB; 2581 unsigned BBID = Record[2]; 2582 if (!BBID) 2583 // Invalid reference to entry block. 2584 return error("Invalid ID"); 2585 if (!Fn->empty()) { 2586 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2587 for (size_t I = 0, E = BBID; I != E; ++I) { 2588 if (BBI == BBE) 2589 return error("Invalid ID"); 2590 ++BBI; 2591 } 2592 BB = BBI; 2593 } else { 2594 // Otherwise insert a placeholder and remember it so it can be inserted 2595 // when the function is parsed. 2596 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2597 if (FwdBBs.empty()) 2598 BasicBlockFwdRefQueue.push_back(Fn); 2599 if (FwdBBs.size() < BBID + 1) 2600 FwdBBs.resize(BBID + 1); 2601 if (!FwdBBs[BBID]) 2602 FwdBBs[BBID] = BasicBlock::Create(Context); 2603 BB = FwdBBs[BBID]; 2604 } 2605 V = BlockAddress::get(Fn, BB); 2606 break; 2607 } 2608 } 2609 2610 ValueList.assignValue(V, NextCstNo); 2611 ++NextCstNo; 2612 } 2613 } 2614 2615 std::error_code BitcodeReader::parseUseLists() { 2616 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2617 return error("Invalid record"); 2618 2619 // Read all the records. 2620 SmallVector<uint64_t, 64> Record; 2621 while (1) { 2622 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2623 2624 switch (Entry.Kind) { 2625 case BitstreamEntry::SubBlock: // Handled for us already. 2626 case BitstreamEntry::Error: 2627 return error("Malformed block"); 2628 case BitstreamEntry::EndBlock: 2629 return std::error_code(); 2630 case BitstreamEntry::Record: 2631 // The interesting case. 2632 break; 2633 } 2634 2635 // Read a use list record. 2636 Record.clear(); 2637 bool IsBB = false; 2638 switch (Stream.readRecord(Entry.ID, Record)) { 2639 default: // Default behavior: unknown type. 2640 break; 2641 case bitc::USELIST_CODE_BB: 2642 IsBB = true; 2643 // fallthrough 2644 case bitc::USELIST_CODE_DEFAULT: { 2645 unsigned RecordLength = Record.size(); 2646 if (RecordLength < 3) 2647 // Records should have at least an ID and two indexes. 2648 return error("Invalid record"); 2649 unsigned ID = Record.back(); 2650 Record.pop_back(); 2651 2652 Value *V; 2653 if (IsBB) { 2654 assert(ID < FunctionBBs.size() && "Basic block not found"); 2655 V = FunctionBBs[ID]; 2656 } else 2657 V = ValueList[ID]; 2658 unsigned NumUses = 0; 2659 SmallDenseMap<const Use *, unsigned, 16> Order; 2660 for (const Use &U : V->uses()) { 2661 if (++NumUses > Record.size()) 2662 break; 2663 Order[&U] = Record[NumUses - 1]; 2664 } 2665 if (Order.size() != Record.size() || NumUses > Record.size()) 2666 // Mismatches can happen if the functions are being materialized lazily 2667 // (out-of-order), or a value has been upgraded. 2668 break; 2669 2670 V->sortUseList([&](const Use &L, const Use &R) { 2671 return Order.lookup(&L) < Order.lookup(&R); 2672 }); 2673 break; 2674 } 2675 } 2676 } 2677 } 2678 2679 /// When we see the block for metadata, remember where it is and then skip it. 2680 /// This lets us lazily deserialize the metadata. 2681 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2682 // Save the current stream state. 2683 uint64_t CurBit = Stream.GetCurrentBitNo(); 2684 DeferredMetadataInfo.push_back(CurBit); 2685 2686 // Skip over the block for now. 2687 if (Stream.SkipBlock()) 2688 return error("Invalid record"); 2689 return std::error_code(); 2690 } 2691 2692 std::error_code BitcodeReader::materializeMetadata() { 2693 for (uint64_t BitPos : DeferredMetadataInfo) { 2694 // Move the bit stream to the saved position. 2695 Stream.JumpToBit(BitPos); 2696 if (std::error_code EC = parseMetadata()) 2697 return EC; 2698 } 2699 DeferredMetadataInfo.clear(); 2700 return std::error_code(); 2701 } 2702 2703 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2704 2705 /// When we see the block for a function body, remember where it is and then 2706 /// skip it. This lets us lazily deserialize the functions. 2707 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 2708 // Get the function we are talking about. 2709 if (FunctionsWithBodies.empty()) 2710 return error("Insufficient function protos"); 2711 2712 Function *Fn = FunctionsWithBodies.back(); 2713 FunctionsWithBodies.pop_back(); 2714 2715 // Save the current stream state. 2716 uint64_t CurBit = Stream.GetCurrentBitNo(); 2717 DeferredFunctionInfo[Fn] = CurBit; 2718 2719 // Skip over the function block for now. 2720 if (Stream.SkipBlock()) 2721 return error("Invalid record"); 2722 return std::error_code(); 2723 } 2724 2725 std::error_code BitcodeReader::globalCleanup() { 2726 // Patch the initializers for globals and aliases up. 2727 resolveGlobalAndAliasInits(); 2728 if (!GlobalInits.empty() || !AliasInits.empty()) 2729 return error("Malformed global initializer set"); 2730 2731 // Look for intrinsic functions which need to be upgraded at some point 2732 for (Function &F : *TheModule) { 2733 Function *NewFn; 2734 if (UpgradeIntrinsicFunction(&F, NewFn)) 2735 UpgradedIntrinsics[&F] = NewFn; 2736 } 2737 2738 // Look for global variables which need to be renamed. 2739 for (GlobalVariable &GV : TheModule->globals()) 2740 UpgradeGlobalVariable(&GV); 2741 2742 // Force deallocation of memory for these vectors to favor the client that 2743 // want lazy deserialization. 2744 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2745 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2746 return std::error_code(); 2747 } 2748 2749 std::error_code BitcodeReader::parseModule(bool Resume, 2750 bool ShouldLazyLoadMetadata) { 2751 if (Resume) 2752 Stream.JumpToBit(NextUnreadBit); 2753 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2754 return error("Invalid record"); 2755 2756 SmallVector<uint64_t, 64> Record; 2757 std::vector<std::string> SectionTable; 2758 std::vector<std::string> GCTable; 2759 2760 // Read all the records for this module. 2761 while (1) { 2762 BitstreamEntry Entry = Stream.advance(); 2763 2764 switch (Entry.Kind) { 2765 case BitstreamEntry::Error: 2766 return error("Malformed block"); 2767 case BitstreamEntry::EndBlock: 2768 return globalCleanup(); 2769 2770 case BitstreamEntry::SubBlock: 2771 switch (Entry.ID) { 2772 default: // Skip unknown content. 2773 if (Stream.SkipBlock()) 2774 return error("Invalid record"); 2775 break; 2776 case bitc::BLOCKINFO_BLOCK_ID: 2777 if (Stream.ReadBlockInfoBlock()) 2778 return error("Malformed block"); 2779 break; 2780 case bitc::PARAMATTR_BLOCK_ID: 2781 if (std::error_code EC = parseAttributeBlock()) 2782 return EC; 2783 break; 2784 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2785 if (std::error_code EC = parseAttributeGroupBlock()) 2786 return EC; 2787 break; 2788 case bitc::TYPE_BLOCK_ID_NEW: 2789 if (std::error_code EC = parseTypeTable()) 2790 return EC; 2791 break; 2792 case bitc::VALUE_SYMTAB_BLOCK_ID: 2793 if (std::error_code EC = parseValueSymbolTable()) 2794 return EC; 2795 SeenValueSymbolTable = true; 2796 break; 2797 case bitc::CONSTANTS_BLOCK_ID: 2798 if (std::error_code EC = parseConstants()) 2799 return EC; 2800 if (std::error_code EC = resolveGlobalAndAliasInits()) 2801 return EC; 2802 break; 2803 case bitc::METADATA_BLOCK_ID: 2804 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2805 if (std::error_code EC = rememberAndSkipMetadata()) 2806 return EC; 2807 break; 2808 } 2809 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2810 if (std::error_code EC = parseMetadata()) 2811 return EC; 2812 break; 2813 case bitc::FUNCTION_BLOCK_ID: 2814 // If this is the first function body we've seen, reverse the 2815 // FunctionsWithBodies list. 2816 if (!SeenFirstFunctionBody) { 2817 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2818 if (std::error_code EC = globalCleanup()) 2819 return EC; 2820 SeenFirstFunctionBody = true; 2821 } 2822 2823 if (std::error_code EC = rememberAndSkipFunctionBody()) 2824 return EC; 2825 // Suspend parsing when we reach the function bodies. Subsequent 2826 // materialization calls will resume it when necessary. If the bitcode 2827 // file is old, the symbol table will be at the end instead and will not 2828 // have been seen yet. In this case, just finish the parse now. 2829 if (SeenValueSymbolTable) { 2830 NextUnreadBit = Stream.GetCurrentBitNo(); 2831 return std::error_code(); 2832 } 2833 break; 2834 case bitc::USELIST_BLOCK_ID: 2835 if (std::error_code EC = parseUseLists()) 2836 return EC; 2837 break; 2838 } 2839 continue; 2840 2841 case BitstreamEntry::Record: 2842 // The interesting case. 2843 break; 2844 } 2845 2846 2847 // Read a record. 2848 switch (Stream.readRecord(Entry.ID, Record)) { 2849 default: break; // Default behavior, ignore unknown content. 2850 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2851 if (Record.size() < 1) 2852 return error("Invalid record"); 2853 // Only version #0 and #1 are supported so far. 2854 unsigned module_version = Record[0]; 2855 switch (module_version) { 2856 default: 2857 return error("Invalid value"); 2858 case 0: 2859 UseRelativeIDs = false; 2860 break; 2861 case 1: 2862 UseRelativeIDs = true; 2863 break; 2864 } 2865 break; 2866 } 2867 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2868 std::string S; 2869 if (convertToString(Record, 0, S)) 2870 return error("Invalid record"); 2871 TheModule->setTargetTriple(S); 2872 break; 2873 } 2874 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2875 std::string S; 2876 if (convertToString(Record, 0, S)) 2877 return error("Invalid record"); 2878 TheModule->setDataLayout(S); 2879 break; 2880 } 2881 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2882 std::string S; 2883 if (convertToString(Record, 0, S)) 2884 return error("Invalid record"); 2885 TheModule->setModuleInlineAsm(S); 2886 break; 2887 } 2888 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2889 // FIXME: Remove in 4.0. 2890 std::string S; 2891 if (convertToString(Record, 0, S)) 2892 return error("Invalid record"); 2893 // Ignore value. 2894 break; 2895 } 2896 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2897 std::string S; 2898 if (convertToString(Record, 0, S)) 2899 return error("Invalid record"); 2900 SectionTable.push_back(S); 2901 break; 2902 } 2903 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2904 std::string S; 2905 if (convertToString(Record, 0, S)) 2906 return error("Invalid record"); 2907 GCTable.push_back(S); 2908 break; 2909 } 2910 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2911 if (Record.size() < 2) 2912 return error("Invalid record"); 2913 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2914 unsigned ComdatNameSize = Record[1]; 2915 std::string ComdatName; 2916 ComdatName.reserve(ComdatNameSize); 2917 for (unsigned i = 0; i != ComdatNameSize; ++i) 2918 ComdatName += (char)Record[2 + i]; 2919 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2920 C->setSelectionKind(SK); 2921 ComdatList.push_back(C); 2922 break; 2923 } 2924 // GLOBALVAR: [pointer type, isconst, initid, 2925 // linkage, alignment, section, visibility, threadlocal, 2926 // unnamed_addr, externally_initialized, dllstorageclass, 2927 // comdat] 2928 case bitc::MODULE_CODE_GLOBALVAR: { 2929 if (Record.size() < 6) 2930 return error("Invalid record"); 2931 Type *Ty = getTypeByID(Record[0]); 2932 if (!Ty) 2933 return error("Invalid record"); 2934 bool isConstant = Record[1] & 1; 2935 bool explicitType = Record[1] & 2; 2936 unsigned AddressSpace; 2937 if (explicitType) { 2938 AddressSpace = Record[1] >> 2; 2939 } else { 2940 if (!Ty->isPointerTy()) 2941 return error("Invalid type for value"); 2942 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2943 Ty = cast<PointerType>(Ty)->getElementType(); 2944 } 2945 2946 uint64_t RawLinkage = Record[3]; 2947 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2948 unsigned Alignment; 2949 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2950 return EC; 2951 std::string Section; 2952 if (Record[5]) { 2953 if (Record[5]-1 >= SectionTable.size()) 2954 return error("Invalid ID"); 2955 Section = SectionTable[Record[5]-1]; 2956 } 2957 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2958 // Local linkage must have default visibility. 2959 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2960 // FIXME: Change to an error if non-default in 4.0. 2961 Visibility = getDecodedVisibility(Record[6]); 2962 2963 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2964 if (Record.size() > 7) 2965 TLM = getDecodedThreadLocalMode(Record[7]); 2966 2967 bool UnnamedAddr = false; 2968 if (Record.size() > 8) 2969 UnnamedAddr = Record[8]; 2970 2971 bool ExternallyInitialized = false; 2972 if (Record.size() > 9) 2973 ExternallyInitialized = Record[9]; 2974 2975 GlobalVariable *NewGV = 2976 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2977 TLM, AddressSpace, ExternallyInitialized); 2978 NewGV->setAlignment(Alignment); 2979 if (!Section.empty()) 2980 NewGV->setSection(Section); 2981 NewGV->setVisibility(Visibility); 2982 NewGV->setUnnamedAddr(UnnamedAddr); 2983 2984 if (Record.size() > 10) 2985 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2986 else 2987 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2988 2989 ValueList.push_back(NewGV); 2990 2991 // Remember which value to use for the global initializer. 2992 if (unsigned InitID = Record[2]) 2993 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2994 2995 if (Record.size() > 11) { 2996 if (unsigned ComdatID = Record[11]) { 2997 if (ComdatID > ComdatList.size()) 2998 return error("Invalid global variable comdat ID"); 2999 NewGV->setComdat(ComdatList[ComdatID - 1]); 3000 } 3001 } else if (hasImplicitComdat(RawLinkage)) { 3002 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3003 } 3004 break; 3005 } 3006 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3007 // alignment, section, visibility, gc, unnamed_addr, 3008 // prologuedata, dllstorageclass, comdat, prefixdata] 3009 case bitc::MODULE_CODE_FUNCTION: { 3010 if (Record.size() < 8) 3011 return error("Invalid record"); 3012 Type *Ty = getTypeByID(Record[0]); 3013 if (!Ty) 3014 return error("Invalid record"); 3015 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3016 Ty = PTy->getElementType(); 3017 auto *FTy = dyn_cast<FunctionType>(Ty); 3018 if (!FTy) 3019 return error("Invalid type for value"); 3020 3021 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3022 "", TheModule); 3023 3024 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 3025 bool isProto = Record[2]; 3026 uint64_t RawLinkage = Record[3]; 3027 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3028 Func->setAttributes(getAttributes(Record[4])); 3029 3030 unsigned Alignment; 3031 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3032 return EC; 3033 Func->setAlignment(Alignment); 3034 if (Record[6]) { 3035 if (Record[6]-1 >= SectionTable.size()) 3036 return error("Invalid ID"); 3037 Func->setSection(SectionTable[Record[6]-1]); 3038 } 3039 // Local linkage must have default visibility. 3040 if (!Func->hasLocalLinkage()) 3041 // FIXME: Change to an error if non-default in 4.0. 3042 Func->setVisibility(getDecodedVisibility(Record[7])); 3043 if (Record.size() > 8 && Record[8]) { 3044 if (Record[8]-1 >= GCTable.size()) 3045 return error("Invalid ID"); 3046 Func->setGC(GCTable[Record[8]-1].c_str()); 3047 } 3048 bool UnnamedAddr = false; 3049 if (Record.size() > 9) 3050 UnnamedAddr = Record[9]; 3051 Func->setUnnamedAddr(UnnamedAddr); 3052 if (Record.size() > 10 && Record[10] != 0) 3053 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3054 3055 if (Record.size() > 11) 3056 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3057 else 3058 upgradeDLLImportExportLinkage(Func, RawLinkage); 3059 3060 if (Record.size() > 12) { 3061 if (unsigned ComdatID = Record[12]) { 3062 if (ComdatID > ComdatList.size()) 3063 return error("Invalid function comdat ID"); 3064 Func->setComdat(ComdatList[ComdatID - 1]); 3065 } 3066 } else if (hasImplicitComdat(RawLinkage)) { 3067 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3068 } 3069 3070 if (Record.size() > 13 && Record[13] != 0) 3071 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3072 3073 if (Record.size() > 14 && Record[14] != 0) 3074 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3075 3076 ValueList.push_back(Func); 3077 3078 // If this is a function with a body, remember the prototype we are 3079 // creating now, so that we can match up the body with them later. 3080 if (!isProto) { 3081 Func->setIsMaterializable(true); 3082 FunctionsWithBodies.push_back(Func); 3083 DeferredFunctionInfo[Func] = 0; 3084 } 3085 break; 3086 } 3087 // ALIAS: [alias type, aliasee val#, linkage] 3088 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3089 case bitc::MODULE_CODE_ALIAS: { 3090 if (Record.size() < 3) 3091 return error("Invalid record"); 3092 Type *Ty = getTypeByID(Record[0]); 3093 if (!Ty) 3094 return error("Invalid record"); 3095 auto *PTy = dyn_cast<PointerType>(Ty); 3096 if (!PTy) 3097 return error("Invalid type for value"); 3098 3099 auto *NewGA = 3100 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3101 // Old bitcode files didn't have visibility field. 3102 // Local linkage must have default visibility. 3103 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3104 // FIXME: Change to an error if non-default in 4.0. 3105 NewGA->setVisibility(getDecodedVisibility(Record[3])); 3106 if (Record.size() > 4) 3107 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[4])); 3108 else 3109 upgradeDLLImportExportLinkage(NewGA, Record[2]); 3110 if (Record.size() > 5) 3111 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[5])); 3112 if (Record.size() > 6) 3113 NewGA->setUnnamedAddr(Record[6]); 3114 ValueList.push_back(NewGA); 3115 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3116 break; 3117 } 3118 /// MODULE_CODE_PURGEVALS: [numvals] 3119 case bitc::MODULE_CODE_PURGEVALS: 3120 // Trim down the value list to the specified size. 3121 if (Record.size() < 1 || Record[0] > ValueList.size()) 3122 return error("Invalid record"); 3123 ValueList.shrinkTo(Record[0]); 3124 break; 3125 } 3126 Record.clear(); 3127 } 3128 } 3129 3130 std::error_code 3131 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3132 Module *M, bool ShouldLazyLoadMetadata) { 3133 TheModule = M; 3134 3135 if (std::error_code EC = initStream(std::move(Streamer))) 3136 return EC; 3137 3138 // Sniff for the signature. 3139 if (Stream.Read(8) != 'B' || 3140 Stream.Read(8) != 'C' || 3141 Stream.Read(4) != 0x0 || 3142 Stream.Read(4) != 0xC || 3143 Stream.Read(4) != 0xE || 3144 Stream.Read(4) != 0xD) 3145 return error("Invalid bitcode signature"); 3146 3147 // We expect a number of well-defined blocks, though we don't necessarily 3148 // need to understand them all. 3149 while (1) { 3150 if (Stream.AtEndOfStream()) { 3151 // We didn't really read a proper Module. 3152 return error("Malformed IR file"); 3153 } 3154 3155 BitstreamEntry Entry = 3156 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3157 3158 if (Entry.Kind != BitstreamEntry::SubBlock) 3159 return error("Malformed block"); 3160 3161 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3162 return parseModule(false, ShouldLazyLoadMetadata); 3163 3164 if (Stream.SkipBlock()) 3165 return error("Invalid record"); 3166 } 3167 } 3168 3169 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3170 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3171 return error("Invalid record"); 3172 3173 SmallVector<uint64_t, 64> Record; 3174 3175 std::string Triple; 3176 // Read all the records for this module. 3177 while (1) { 3178 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3179 3180 switch (Entry.Kind) { 3181 case BitstreamEntry::SubBlock: // Handled for us already. 3182 case BitstreamEntry::Error: 3183 return error("Malformed block"); 3184 case BitstreamEntry::EndBlock: 3185 return Triple; 3186 case BitstreamEntry::Record: 3187 // The interesting case. 3188 break; 3189 } 3190 3191 // Read a record. 3192 switch (Stream.readRecord(Entry.ID, Record)) { 3193 default: break; // Default behavior, ignore unknown content. 3194 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3195 std::string S; 3196 if (convertToString(Record, 0, S)) 3197 return error("Invalid record"); 3198 Triple = S; 3199 break; 3200 } 3201 } 3202 Record.clear(); 3203 } 3204 llvm_unreachable("Exit infinite loop"); 3205 } 3206 3207 ErrorOr<std::string> BitcodeReader::parseTriple() { 3208 if (std::error_code EC = initStream(nullptr)) 3209 return EC; 3210 3211 // Sniff for the signature. 3212 if (Stream.Read(8) != 'B' || 3213 Stream.Read(8) != 'C' || 3214 Stream.Read(4) != 0x0 || 3215 Stream.Read(4) != 0xC || 3216 Stream.Read(4) != 0xE || 3217 Stream.Read(4) != 0xD) 3218 return error("Invalid bitcode signature"); 3219 3220 // We expect a number of well-defined blocks, though we don't necessarily 3221 // need to understand them all. 3222 while (1) { 3223 BitstreamEntry Entry = Stream.advance(); 3224 3225 switch (Entry.Kind) { 3226 case BitstreamEntry::Error: 3227 return error("Malformed block"); 3228 case BitstreamEntry::EndBlock: 3229 return std::error_code(); 3230 3231 case BitstreamEntry::SubBlock: 3232 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3233 return parseModuleTriple(); 3234 3235 // Ignore other sub-blocks. 3236 if (Stream.SkipBlock()) 3237 return error("Malformed block"); 3238 continue; 3239 3240 case BitstreamEntry::Record: 3241 Stream.skipRecord(Entry.ID); 3242 continue; 3243 } 3244 } 3245 } 3246 3247 /// Parse metadata attachments. 3248 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3249 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3250 return error("Invalid record"); 3251 3252 SmallVector<uint64_t, 64> Record; 3253 while (1) { 3254 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3255 3256 switch (Entry.Kind) { 3257 case BitstreamEntry::SubBlock: // Handled for us already. 3258 case BitstreamEntry::Error: 3259 return error("Malformed block"); 3260 case BitstreamEntry::EndBlock: 3261 return std::error_code(); 3262 case BitstreamEntry::Record: 3263 // The interesting case. 3264 break; 3265 } 3266 3267 // Read a metadata attachment record. 3268 Record.clear(); 3269 switch (Stream.readRecord(Entry.ID, Record)) { 3270 default: // Default behavior: ignore. 3271 break; 3272 case bitc::METADATA_ATTACHMENT: { 3273 unsigned RecordLength = Record.size(); 3274 if (Record.empty()) 3275 return error("Invalid record"); 3276 if (RecordLength % 2 == 0) { 3277 // A function attachment. 3278 for (unsigned I = 0; I != RecordLength; I += 2) { 3279 auto K = MDKindMap.find(Record[I]); 3280 if (K == MDKindMap.end()) 3281 return error("Invalid ID"); 3282 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3283 F.setMetadata(K->second, cast<MDNode>(MD)); 3284 } 3285 continue; 3286 } 3287 3288 // An instruction attachment. 3289 Instruction *Inst = InstructionList[Record[0]]; 3290 for (unsigned i = 1; i != RecordLength; i = i+2) { 3291 unsigned Kind = Record[i]; 3292 DenseMap<unsigned, unsigned>::iterator I = 3293 MDKindMap.find(Kind); 3294 if (I == MDKindMap.end()) 3295 return error("Invalid ID"); 3296 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3297 if (isa<LocalAsMetadata>(Node)) 3298 // Drop the attachment. This used to be legal, but there's no 3299 // upgrade path. 3300 break; 3301 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3302 if (I->second == LLVMContext::MD_tbaa) 3303 InstsWithTBAATag.push_back(Inst); 3304 } 3305 break; 3306 } 3307 } 3308 } 3309 } 3310 3311 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3312 Type *ValType, Type *PtrType) { 3313 if (!isa<PointerType>(PtrType)) 3314 return error(DH, "Load/Store operand is not a pointer type"); 3315 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3316 3317 if (ValType && ValType != ElemType) 3318 return error(DH, "Explicit load/store type does not match pointee type of " 3319 "pointer operand"); 3320 if (!PointerType::isLoadableOrStorableType(ElemType)) 3321 return error(DH, "Cannot load/store from pointer"); 3322 return std::error_code(); 3323 } 3324 3325 /// Lazily parse the specified function body block. 3326 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3327 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3328 return error("Invalid record"); 3329 3330 InstructionList.clear(); 3331 unsigned ModuleValueListSize = ValueList.size(); 3332 unsigned ModuleMDValueListSize = MDValueList.size(); 3333 3334 // Add all the function arguments to the value table. 3335 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3336 ValueList.push_back(I); 3337 3338 unsigned NextValueNo = ValueList.size(); 3339 BasicBlock *CurBB = nullptr; 3340 unsigned CurBBNo = 0; 3341 3342 DebugLoc LastLoc; 3343 auto getLastInstruction = [&]() -> Instruction * { 3344 if (CurBB && !CurBB->empty()) 3345 return &CurBB->back(); 3346 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3347 !FunctionBBs[CurBBNo - 1]->empty()) 3348 return &FunctionBBs[CurBBNo - 1]->back(); 3349 return nullptr; 3350 }; 3351 3352 // Read all the records. 3353 SmallVector<uint64_t, 64> Record; 3354 while (1) { 3355 BitstreamEntry Entry = Stream.advance(); 3356 3357 switch (Entry.Kind) { 3358 case BitstreamEntry::Error: 3359 return error("Malformed block"); 3360 case BitstreamEntry::EndBlock: 3361 goto OutOfRecordLoop; 3362 3363 case BitstreamEntry::SubBlock: 3364 switch (Entry.ID) { 3365 default: // Skip unknown content. 3366 if (Stream.SkipBlock()) 3367 return error("Invalid record"); 3368 break; 3369 case bitc::CONSTANTS_BLOCK_ID: 3370 if (std::error_code EC = parseConstants()) 3371 return EC; 3372 NextValueNo = ValueList.size(); 3373 break; 3374 case bitc::VALUE_SYMTAB_BLOCK_ID: 3375 if (std::error_code EC = parseValueSymbolTable()) 3376 return EC; 3377 break; 3378 case bitc::METADATA_ATTACHMENT_ID: 3379 if (std::error_code EC = parseMetadataAttachment(*F)) 3380 return EC; 3381 break; 3382 case bitc::METADATA_BLOCK_ID: 3383 if (std::error_code EC = parseMetadata()) 3384 return EC; 3385 break; 3386 case bitc::USELIST_BLOCK_ID: 3387 if (std::error_code EC = parseUseLists()) 3388 return EC; 3389 break; 3390 } 3391 continue; 3392 3393 case BitstreamEntry::Record: 3394 // The interesting case. 3395 break; 3396 } 3397 3398 // Read a record. 3399 Record.clear(); 3400 Instruction *I = nullptr; 3401 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3402 switch (BitCode) { 3403 default: // Default behavior: reject 3404 return error("Invalid value"); 3405 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3406 if (Record.size() < 1 || Record[0] == 0) 3407 return error("Invalid record"); 3408 // Create all the basic blocks for the function. 3409 FunctionBBs.resize(Record[0]); 3410 3411 // See if anything took the address of blocks in this function. 3412 auto BBFRI = BasicBlockFwdRefs.find(F); 3413 if (BBFRI == BasicBlockFwdRefs.end()) { 3414 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3415 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3416 } else { 3417 auto &BBRefs = BBFRI->second; 3418 // Check for invalid basic block references. 3419 if (BBRefs.size() > FunctionBBs.size()) 3420 return error("Invalid ID"); 3421 assert(!BBRefs.empty() && "Unexpected empty array"); 3422 assert(!BBRefs.front() && "Invalid reference to entry block"); 3423 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3424 ++I) 3425 if (I < RE && BBRefs[I]) { 3426 BBRefs[I]->insertInto(F); 3427 FunctionBBs[I] = BBRefs[I]; 3428 } else { 3429 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3430 } 3431 3432 // Erase from the table. 3433 BasicBlockFwdRefs.erase(BBFRI); 3434 } 3435 3436 CurBB = FunctionBBs[0]; 3437 continue; 3438 } 3439 3440 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3441 // This record indicates that the last instruction is at the same 3442 // location as the previous instruction with a location. 3443 I = getLastInstruction(); 3444 3445 if (!I) 3446 return error("Invalid record"); 3447 I->setDebugLoc(LastLoc); 3448 I = nullptr; 3449 continue; 3450 3451 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3452 I = getLastInstruction(); 3453 if (!I || Record.size() < 4) 3454 return error("Invalid record"); 3455 3456 unsigned Line = Record[0], Col = Record[1]; 3457 unsigned ScopeID = Record[2], IAID = Record[3]; 3458 3459 MDNode *Scope = nullptr, *IA = nullptr; 3460 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3461 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3462 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3463 I->setDebugLoc(LastLoc); 3464 I = nullptr; 3465 continue; 3466 } 3467 3468 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3469 unsigned OpNum = 0; 3470 Value *LHS, *RHS; 3471 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3472 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3473 OpNum+1 > Record.size()) 3474 return error("Invalid record"); 3475 3476 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3477 if (Opc == -1) 3478 return error("Invalid record"); 3479 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3480 InstructionList.push_back(I); 3481 if (OpNum < Record.size()) { 3482 if (Opc == Instruction::Add || 3483 Opc == Instruction::Sub || 3484 Opc == Instruction::Mul || 3485 Opc == Instruction::Shl) { 3486 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3487 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3488 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3489 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3490 } else if (Opc == Instruction::SDiv || 3491 Opc == Instruction::UDiv || 3492 Opc == Instruction::LShr || 3493 Opc == Instruction::AShr) { 3494 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3495 cast<BinaryOperator>(I)->setIsExact(true); 3496 } else if (isa<FPMathOperator>(I)) { 3497 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3498 if (FMF.any()) 3499 I->setFastMathFlags(FMF); 3500 } 3501 3502 } 3503 break; 3504 } 3505 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3506 unsigned OpNum = 0; 3507 Value *Op; 3508 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3509 OpNum+2 != Record.size()) 3510 return error("Invalid record"); 3511 3512 Type *ResTy = getTypeByID(Record[OpNum]); 3513 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3514 if (Opc == -1 || !ResTy) 3515 return error("Invalid record"); 3516 Instruction *Temp = nullptr; 3517 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3518 if (Temp) { 3519 InstructionList.push_back(Temp); 3520 CurBB->getInstList().push_back(Temp); 3521 } 3522 } else { 3523 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3524 } 3525 InstructionList.push_back(I); 3526 break; 3527 } 3528 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3529 case bitc::FUNC_CODE_INST_GEP_OLD: 3530 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3531 unsigned OpNum = 0; 3532 3533 Type *Ty; 3534 bool InBounds; 3535 3536 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3537 InBounds = Record[OpNum++]; 3538 Ty = getTypeByID(Record[OpNum++]); 3539 } else { 3540 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3541 Ty = nullptr; 3542 } 3543 3544 Value *BasePtr; 3545 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3546 return error("Invalid record"); 3547 3548 if (!Ty) 3549 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3550 ->getElementType(); 3551 else if (Ty != 3552 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3553 ->getElementType()) 3554 return error( 3555 "Explicit gep type does not match pointee type of pointer operand"); 3556 3557 SmallVector<Value*, 16> GEPIdx; 3558 while (OpNum != Record.size()) { 3559 Value *Op; 3560 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3561 return error("Invalid record"); 3562 GEPIdx.push_back(Op); 3563 } 3564 3565 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3566 3567 InstructionList.push_back(I); 3568 if (InBounds) 3569 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3570 break; 3571 } 3572 3573 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3574 // EXTRACTVAL: [opty, opval, n x indices] 3575 unsigned OpNum = 0; 3576 Value *Agg; 3577 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3578 return error("Invalid record"); 3579 3580 unsigned RecSize = Record.size(); 3581 if (OpNum == RecSize) 3582 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3583 3584 SmallVector<unsigned, 4> EXTRACTVALIdx; 3585 Type *CurTy = Agg->getType(); 3586 for (; OpNum != RecSize; ++OpNum) { 3587 bool IsArray = CurTy->isArrayTy(); 3588 bool IsStruct = CurTy->isStructTy(); 3589 uint64_t Index = Record[OpNum]; 3590 3591 if (!IsStruct && !IsArray) 3592 return error("EXTRACTVAL: Invalid type"); 3593 if ((unsigned)Index != Index) 3594 return error("Invalid value"); 3595 if (IsStruct && Index >= CurTy->subtypes().size()) 3596 return error("EXTRACTVAL: Invalid struct index"); 3597 if (IsArray && Index >= CurTy->getArrayNumElements()) 3598 return error("EXTRACTVAL: Invalid array index"); 3599 EXTRACTVALIdx.push_back((unsigned)Index); 3600 3601 if (IsStruct) 3602 CurTy = CurTy->subtypes()[Index]; 3603 else 3604 CurTy = CurTy->subtypes()[0]; 3605 } 3606 3607 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3608 InstructionList.push_back(I); 3609 break; 3610 } 3611 3612 case bitc::FUNC_CODE_INST_INSERTVAL: { 3613 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3614 unsigned OpNum = 0; 3615 Value *Agg; 3616 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3617 return error("Invalid record"); 3618 Value *Val; 3619 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3620 return error("Invalid record"); 3621 3622 unsigned RecSize = Record.size(); 3623 if (OpNum == RecSize) 3624 return error("INSERTVAL: Invalid instruction with 0 indices"); 3625 3626 SmallVector<unsigned, 4> INSERTVALIdx; 3627 Type *CurTy = Agg->getType(); 3628 for (; OpNum != RecSize; ++OpNum) { 3629 bool IsArray = CurTy->isArrayTy(); 3630 bool IsStruct = CurTy->isStructTy(); 3631 uint64_t Index = Record[OpNum]; 3632 3633 if (!IsStruct && !IsArray) 3634 return error("INSERTVAL: Invalid type"); 3635 if ((unsigned)Index != Index) 3636 return error("Invalid value"); 3637 if (IsStruct && Index >= CurTy->subtypes().size()) 3638 return error("INSERTVAL: Invalid struct index"); 3639 if (IsArray && Index >= CurTy->getArrayNumElements()) 3640 return error("INSERTVAL: Invalid array index"); 3641 3642 INSERTVALIdx.push_back((unsigned)Index); 3643 if (IsStruct) 3644 CurTy = CurTy->subtypes()[Index]; 3645 else 3646 CurTy = CurTy->subtypes()[0]; 3647 } 3648 3649 if (CurTy != Val->getType()) 3650 return error("Inserted value type doesn't match aggregate type"); 3651 3652 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3653 InstructionList.push_back(I); 3654 break; 3655 } 3656 3657 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3658 // obsolete form of select 3659 // handles select i1 ... in old bitcode 3660 unsigned OpNum = 0; 3661 Value *TrueVal, *FalseVal, *Cond; 3662 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3663 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3664 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3665 return error("Invalid record"); 3666 3667 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3668 InstructionList.push_back(I); 3669 break; 3670 } 3671 3672 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3673 // new form of select 3674 // handles select i1 or select [N x i1] 3675 unsigned OpNum = 0; 3676 Value *TrueVal, *FalseVal, *Cond; 3677 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3678 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3679 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3680 return error("Invalid record"); 3681 3682 // select condition can be either i1 or [N x i1] 3683 if (VectorType* vector_type = 3684 dyn_cast<VectorType>(Cond->getType())) { 3685 // expect <n x i1> 3686 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3687 return error("Invalid type for value"); 3688 } else { 3689 // expect i1 3690 if (Cond->getType() != Type::getInt1Ty(Context)) 3691 return error("Invalid type for value"); 3692 } 3693 3694 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3695 InstructionList.push_back(I); 3696 break; 3697 } 3698 3699 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3700 unsigned OpNum = 0; 3701 Value *Vec, *Idx; 3702 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3703 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3704 return error("Invalid record"); 3705 if (!Vec->getType()->isVectorTy()) 3706 return error("Invalid type for value"); 3707 I = ExtractElementInst::Create(Vec, Idx); 3708 InstructionList.push_back(I); 3709 break; 3710 } 3711 3712 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3713 unsigned OpNum = 0; 3714 Value *Vec, *Elt, *Idx; 3715 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3716 return error("Invalid record"); 3717 if (!Vec->getType()->isVectorTy()) 3718 return error("Invalid type for value"); 3719 if (popValue(Record, OpNum, NextValueNo, 3720 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3721 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3722 return error("Invalid record"); 3723 I = InsertElementInst::Create(Vec, Elt, Idx); 3724 InstructionList.push_back(I); 3725 break; 3726 } 3727 3728 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3729 unsigned OpNum = 0; 3730 Value *Vec1, *Vec2, *Mask; 3731 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3732 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3733 return error("Invalid record"); 3734 3735 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3736 return error("Invalid record"); 3737 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3738 return error("Invalid type for value"); 3739 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3740 InstructionList.push_back(I); 3741 break; 3742 } 3743 3744 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3745 // Old form of ICmp/FCmp returning bool 3746 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3747 // both legal on vectors but had different behaviour. 3748 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3749 // FCmp/ICmp returning bool or vector of bool 3750 3751 unsigned OpNum = 0; 3752 Value *LHS, *RHS; 3753 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3754 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3755 return error("Invalid record"); 3756 3757 unsigned PredVal = Record[OpNum]; 3758 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3759 FastMathFlags FMF; 3760 if (IsFP && Record.size() > OpNum+1) 3761 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3762 3763 if (OpNum+1 != Record.size()) 3764 return error("Invalid record"); 3765 3766 if (LHS->getType()->isFPOrFPVectorTy()) 3767 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3768 else 3769 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3770 3771 if (FMF.any()) 3772 I->setFastMathFlags(FMF); 3773 InstructionList.push_back(I); 3774 break; 3775 } 3776 3777 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3778 { 3779 unsigned Size = Record.size(); 3780 if (Size == 0) { 3781 I = ReturnInst::Create(Context); 3782 InstructionList.push_back(I); 3783 break; 3784 } 3785 3786 unsigned OpNum = 0; 3787 Value *Op = nullptr; 3788 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3789 return error("Invalid record"); 3790 if (OpNum != Record.size()) 3791 return error("Invalid record"); 3792 3793 I = ReturnInst::Create(Context, Op); 3794 InstructionList.push_back(I); 3795 break; 3796 } 3797 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3798 if (Record.size() != 1 && Record.size() != 3) 3799 return error("Invalid record"); 3800 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3801 if (!TrueDest) 3802 return error("Invalid record"); 3803 3804 if (Record.size() == 1) { 3805 I = BranchInst::Create(TrueDest); 3806 InstructionList.push_back(I); 3807 } 3808 else { 3809 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3810 Value *Cond = getValue(Record, 2, NextValueNo, 3811 Type::getInt1Ty(Context)); 3812 if (!FalseDest || !Cond) 3813 return error("Invalid record"); 3814 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3815 InstructionList.push_back(I); 3816 } 3817 break; 3818 } 3819 // CLEANUPRET: [] or [ty,val] or [bb#] or [ty,val,bb#] 3820 case bitc::FUNC_CODE_INST_CLEANUPRET: { 3821 if (Record.size() < 2) 3822 return error("Invalid record"); 3823 unsigned Idx = 0; 3824 bool HasReturnValue = !!Record[Idx++]; 3825 bool HasUnwindDest = !!Record[Idx++]; 3826 Value *RetVal = nullptr; 3827 BasicBlock *UnwindDest = nullptr; 3828 3829 if (HasReturnValue && getValueTypePair(Record, Idx, NextValueNo, RetVal)) 3830 return error("Invalid record"); 3831 if (HasUnwindDest) { 3832 if (Idx == Record.size()) 3833 return error("Invalid record"); 3834 UnwindDest = getBasicBlock(Record[Idx++]); 3835 if (!UnwindDest) 3836 return error("Invalid record"); 3837 } 3838 3839 if (Record.size() != Idx) 3840 return error("Invalid record"); 3841 3842 I = CleanupReturnInst::Create(Context, RetVal, UnwindDest); 3843 InstructionList.push_back(I); 3844 break; 3845 } 3846 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [bb#] 3847 if (Record.size() != 1) 3848 return error("Invalid record"); 3849 BasicBlock *BB = getBasicBlock(Record[0]); 3850 if (!BB) 3851 return error("Invalid record"); 3852 I = CatchReturnInst::Create(BB); 3853 InstructionList.push_back(I); 3854 break; 3855 } 3856 case bitc::FUNC_CODE_INST_CATCHPAD: { // CATCHPAD: [ty,bb#,bb#,num,(ty,val)*] 3857 if (Record.size() < 4) 3858 return error("Invalid record"); 3859 unsigned Idx = 0; 3860 Type *Ty = getTypeByID(Record[Idx++]); 3861 if (!Ty) 3862 return error("Invalid record"); 3863 BasicBlock *NormalBB = getBasicBlock(Record[Idx++]); 3864 if (!NormalBB) 3865 return error("Invalid record"); 3866 BasicBlock *UnwindBB = getBasicBlock(Record[Idx++]); 3867 if (!UnwindBB) 3868 return error("Invalid record"); 3869 unsigned NumArgOperands = Record[Idx++]; 3870 SmallVector<Value *, 2> Args; 3871 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3872 Value *Val; 3873 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3874 return error("Invalid record"); 3875 Args.push_back(Val); 3876 } 3877 if (Record.size() != Idx) 3878 return error("Invalid record"); 3879 3880 I = CatchPadInst::Create(Ty, NormalBB, UnwindBB, Args); 3881 InstructionList.push_back(I); 3882 break; 3883 } 3884 case bitc::FUNC_CODE_INST_TERMINATEPAD: { // TERMINATEPAD: [bb#,num,(ty,val)*] 3885 if (Record.size() < 1) 3886 return error("Invalid record"); 3887 unsigned Idx = 0; 3888 bool HasUnwindDest = !!Record[Idx++]; 3889 BasicBlock *UnwindDest = nullptr; 3890 if (HasUnwindDest) { 3891 if (Idx == Record.size()) 3892 return error("Invalid record"); 3893 UnwindDest = getBasicBlock(Record[Idx++]); 3894 if (!UnwindDest) 3895 return error("Invalid record"); 3896 } 3897 unsigned NumArgOperands = Record[Idx++]; 3898 SmallVector<Value *, 2> Args; 3899 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3900 Value *Val; 3901 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3902 return error("Invalid record"); 3903 Args.push_back(Val); 3904 } 3905 if (Record.size() != Idx) 3906 return error("Invalid record"); 3907 3908 I = TerminatePadInst::Create(Context, UnwindDest, Args); 3909 InstructionList.push_back(I); 3910 break; 3911 } 3912 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // CLEANUPPAD: [ty, num,(ty,val)*] 3913 if (Record.size() < 2) 3914 return error("Invalid record"); 3915 unsigned Idx = 0; 3916 Type *Ty = getTypeByID(Record[Idx++]); 3917 if (!Ty) 3918 return error("Invalid record"); 3919 unsigned NumArgOperands = Record[Idx++]; 3920 SmallVector<Value *, 2> Args; 3921 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3922 Value *Val; 3923 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3924 return error("Invalid record"); 3925 Args.push_back(Val); 3926 } 3927 if (Record.size() != Idx) 3928 return error("Invalid record"); 3929 3930 I = CleanupPadInst::Create(Ty, Args); 3931 InstructionList.push_back(I); 3932 break; 3933 } 3934 case bitc::FUNC_CODE_INST_CATCHENDPAD: { // CATCHENDPADINST: [bb#] or [] 3935 if (Record.size() > 1) 3936 return error("Invalid record"); 3937 BasicBlock *BB = nullptr; 3938 if (Record.size() == 1) { 3939 BB = getBasicBlock(Record[0]); 3940 if (!BB) 3941 return error("Invalid record"); 3942 } 3943 I = CatchEndPadInst::Create(Context, BB); 3944 InstructionList.push_back(I); 3945 break; 3946 } 3947 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3948 // Check magic 3949 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3950 // "New" SwitchInst format with case ranges. The changes to write this 3951 // format were reverted but we still recognize bitcode that uses it. 3952 // Hopefully someday we will have support for case ranges and can use 3953 // this format again. 3954 3955 Type *OpTy = getTypeByID(Record[1]); 3956 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3957 3958 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3959 BasicBlock *Default = getBasicBlock(Record[3]); 3960 if (!OpTy || !Cond || !Default) 3961 return error("Invalid record"); 3962 3963 unsigned NumCases = Record[4]; 3964 3965 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3966 InstructionList.push_back(SI); 3967 3968 unsigned CurIdx = 5; 3969 for (unsigned i = 0; i != NumCases; ++i) { 3970 SmallVector<ConstantInt*, 1> CaseVals; 3971 unsigned NumItems = Record[CurIdx++]; 3972 for (unsigned ci = 0; ci != NumItems; ++ci) { 3973 bool isSingleNumber = Record[CurIdx++]; 3974 3975 APInt Low; 3976 unsigned ActiveWords = 1; 3977 if (ValueBitWidth > 64) 3978 ActiveWords = Record[CurIdx++]; 3979 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3980 ValueBitWidth); 3981 CurIdx += ActiveWords; 3982 3983 if (!isSingleNumber) { 3984 ActiveWords = 1; 3985 if (ValueBitWidth > 64) 3986 ActiveWords = Record[CurIdx++]; 3987 APInt High = readWideAPInt( 3988 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3989 CurIdx += ActiveWords; 3990 3991 // FIXME: It is not clear whether values in the range should be 3992 // compared as signed or unsigned values. The partially 3993 // implemented changes that used this format in the past used 3994 // unsigned comparisons. 3995 for ( ; Low.ule(High); ++Low) 3996 CaseVals.push_back(ConstantInt::get(Context, Low)); 3997 } else 3998 CaseVals.push_back(ConstantInt::get(Context, Low)); 3999 } 4000 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4001 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4002 cve = CaseVals.end(); cvi != cve; ++cvi) 4003 SI->addCase(*cvi, DestBB); 4004 } 4005 I = SI; 4006 break; 4007 } 4008 4009 // Old SwitchInst format without case ranges. 4010 4011 if (Record.size() < 3 || (Record.size() & 1) == 0) 4012 return error("Invalid record"); 4013 Type *OpTy = getTypeByID(Record[0]); 4014 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4015 BasicBlock *Default = getBasicBlock(Record[2]); 4016 if (!OpTy || !Cond || !Default) 4017 return error("Invalid record"); 4018 unsigned NumCases = (Record.size()-3)/2; 4019 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4020 InstructionList.push_back(SI); 4021 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4022 ConstantInt *CaseVal = 4023 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4024 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4025 if (!CaseVal || !DestBB) { 4026 delete SI; 4027 return error("Invalid record"); 4028 } 4029 SI->addCase(CaseVal, DestBB); 4030 } 4031 I = SI; 4032 break; 4033 } 4034 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4035 if (Record.size() < 2) 4036 return error("Invalid record"); 4037 Type *OpTy = getTypeByID(Record[0]); 4038 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4039 if (!OpTy || !Address) 4040 return error("Invalid record"); 4041 unsigned NumDests = Record.size()-2; 4042 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4043 InstructionList.push_back(IBI); 4044 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4045 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4046 IBI->addDestination(DestBB); 4047 } else { 4048 delete IBI; 4049 return error("Invalid record"); 4050 } 4051 } 4052 I = IBI; 4053 break; 4054 } 4055 4056 case bitc::FUNC_CODE_INST_INVOKE: { 4057 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4058 if (Record.size() < 4) 4059 return error("Invalid record"); 4060 unsigned OpNum = 0; 4061 AttributeSet PAL = getAttributes(Record[OpNum++]); 4062 unsigned CCInfo = Record[OpNum++]; 4063 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4064 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4065 4066 FunctionType *FTy = nullptr; 4067 if (CCInfo >> 13 & 1 && 4068 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4069 return error("Explicit invoke type is not a function type"); 4070 4071 Value *Callee; 4072 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4073 return error("Invalid record"); 4074 4075 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4076 if (!CalleeTy) 4077 return error("Callee is not a pointer"); 4078 if (!FTy) { 4079 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4080 if (!FTy) 4081 return error("Callee is not of pointer to function type"); 4082 } else if (CalleeTy->getElementType() != FTy) 4083 return error("Explicit invoke type does not match pointee type of " 4084 "callee operand"); 4085 if (Record.size() < FTy->getNumParams() + OpNum) 4086 return error("Insufficient operands to call"); 4087 4088 SmallVector<Value*, 16> Ops; 4089 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4090 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4091 FTy->getParamType(i))); 4092 if (!Ops.back()) 4093 return error("Invalid record"); 4094 } 4095 4096 if (!FTy->isVarArg()) { 4097 if (Record.size() != OpNum) 4098 return error("Invalid record"); 4099 } else { 4100 // Read type/value pairs for varargs params. 4101 while (OpNum != Record.size()) { 4102 Value *Op; 4103 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4104 return error("Invalid record"); 4105 Ops.push_back(Op); 4106 } 4107 } 4108 4109 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 4110 InstructionList.push_back(I); 4111 cast<InvokeInst>(I) 4112 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 4113 cast<InvokeInst>(I)->setAttributes(PAL); 4114 break; 4115 } 4116 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4117 unsigned Idx = 0; 4118 Value *Val = nullptr; 4119 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4120 return error("Invalid record"); 4121 I = ResumeInst::Create(Val); 4122 InstructionList.push_back(I); 4123 break; 4124 } 4125 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4126 I = new UnreachableInst(Context); 4127 InstructionList.push_back(I); 4128 break; 4129 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4130 if (Record.size() < 1 || ((Record.size()-1)&1)) 4131 return error("Invalid record"); 4132 Type *Ty = getTypeByID(Record[0]); 4133 if (!Ty) 4134 return error("Invalid record"); 4135 4136 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4137 InstructionList.push_back(PN); 4138 4139 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4140 Value *V; 4141 // With the new function encoding, it is possible that operands have 4142 // negative IDs (for forward references). Use a signed VBR 4143 // representation to keep the encoding small. 4144 if (UseRelativeIDs) 4145 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4146 else 4147 V = getValue(Record, 1+i, NextValueNo, Ty); 4148 BasicBlock *BB = getBasicBlock(Record[2+i]); 4149 if (!V || !BB) 4150 return error("Invalid record"); 4151 PN->addIncoming(V, BB); 4152 } 4153 I = PN; 4154 break; 4155 } 4156 4157 case bitc::FUNC_CODE_INST_LANDINGPAD: 4158 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4159 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4160 unsigned Idx = 0; 4161 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4162 if (Record.size() < 3) 4163 return error("Invalid record"); 4164 } else { 4165 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4166 if (Record.size() < 4) 4167 return error("Invalid record"); 4168 } 4169 Type *Ty = getTypeByID(Record[Idx++]); 4170 if (!Ty) 4171 return error("Invalid record"); 4172 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4173 Value *PersFn = nullptr; 4174 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4175 return error("Invalid record"); 4176 4177 if (!F->hasPersonalityFn()) 4178 F->setPersonalityFn(cast<Constant>(PersFn)); 4179 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4180 return error("Personality function mismatch"); 4181 } 4182 4183 bool IsCleanup = !!Record[Idx++]; 4184 unsigned NumClauses = Record[Idx++]; 4185 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4186 LP->setCleanup(IsCleanup); 4187 for (unsigned J = 0; J != NumClauses; ++J) { 4188 LandingPadInst::ClauseType CT = 4189 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4190 Value *Val; 4191 4192 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4193 delete LP; 4194 return error("Invalid record"); 4195 } 4196 4197 assert((CT != LandingPadInst::Catch || 4198 !isa<ArrayType>(Val->getType())) && 4199 "Catch clause has a invalid type!"); 4200 assert((CT != LandingPadInst::Filter || 4201 isa<ArrayType>(Val->getType())) && 4202 "Filter clause has invalid type!"); 4203 LP->addClause(cast<Constant>(Val)); 4204 } 4205 4206 I = LP; 4207 InstructionList.push_back(I); 4208 break; 4209 } 4210 4211 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4212 if (Record.size() != 4) 4213 return error("Invalid record"); 4214 uint64_t AlignRecord = Record[3]; 4215 const uint64_t InAllocaMask = uint64_t(1) << 5; 4216 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4217 // Reserve bit 7 for SwiftError flag. 4218 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4219 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4220 bool InAlloca = AlignRecord & InAllocaMask; 4221 Type *Ty = getTypeByID(Record[0]); 4222 if ((AlignRecord & ExplicitTypeMask) == 0) { 4223 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4224 if (!PTy) 4225 return error("Old-style alloca with a non-pointer type"); 4226 Ty = PTy->getElementType(); 4227 } 4228 Type *OpTy = getTypeByID(Record[1]); 4229 Value *Size = getFnValueByID(Record[2], OpTy); 4230 unsigned Align; 4231 if (std::error_code EC = 4232 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4233 return EC; 4234 } 4235 if (!Ty || !Size) 4236 return error("Invalid record"); 4237 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4238 AI->setUsedWithInAlloca(InAlloca); 4239 I = AI; 4240 InstructionList.push_back(I); 4241 break; 4242 } 4243 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4244 unsigned OpNum = 0; 4245 Value *Op; 4246 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4247 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4248 return error("Invalid record"); 4249 4250 Type *Ty = nullptr; 4251 if (OpNum + 3 == Record.size()) 4252 Ty = getTypeByID(Record[OpNum++]); 4253 if (std::error_code EC = 4254 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4255 return EC; 4256 if (!Ty) 4257 Ty = cast<PointerType>(Op->getType())->getElementType(); 4258 4259 unsigned Align; 4260 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4261 return EC; 4262 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4263 4264 InstructionList.push_back(I); 4265 break; 4266 } 4267 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4268 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4269 unsigned OpNum = 0; 4270 Value *Op; 4271 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4272 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4273 return error("Invalid record"); 4274 4275 Type *Ty = nullptr; 4276 if (OpNum + 5 == Record.size()) 4277 Ty = getTypeByID(Record[OpNum++]); 4278 if (std::error_code EC = 4279 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4280 return EC; 4281 if (!Ty) 4282 Ty = cast<PointerType>(Op->getType())->getElementType(); 4283 4284 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4285 if (Ordering == NotAtomic || Ordering == Release || 4286 Ordering == AcquireRelease) 4287 return error("Invalid record"); 4288 if (Ordering != NotAtomic && Record[OpNum] == 0) 4289 return error("Invalid record"); 4290 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4291 4292 unsigned Align; 4293 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4294 return EC; 4295 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4296 4297 InstructionList.push_back(I); 4298 break; 4299 } 4300 case bitc::FUNC_CODE_INST_STORE: 4301 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4302 unsigned OpNum = 0; 4303 Value *Val, *Ptr; 4304 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4305 (BitCode == bitc::FUNC_CODE_INST_STORE 4306 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4307 : popValue(Record, OpNum, NextValueNo, 4308 cast<PointerType>(Ptr->getType())->getElementType(), 4309 Val)) || 4310 OpNum + 2 != Record.size()) 4311 return error("Invalid record"); 4312 4313 if (std::error_code EC = typeCheckLoadStoreInst( 4314 DiagnosticHandler, Val->getType(), Ptr->getType())) 4315 return EC; 4316 unsigned Align; 4317 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4318 return EC; 4319 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4320 InstructionList.push_back(I); 4321 break; 4322 } 4323 case bitc::FUNC_CODE_INST_STOREATOMIC: 4324 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4325 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4326 unsigned OpNum = 0; 4327 Value *Val, *Ptr; 4328 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4329 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4330 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4331 : popValue(Record, OpNum, NextValueNo, 4332 cast<PointerType>(Ptr->getType())->getElementType(), 4333 Val)) || 4334 OpNum + 4 != Record.size()) 4335 return error("Invalid record"); 4336 4337 if (std::error_code EC = typeCheckLoadStoreInst( 4338 DiagnosticHandler, Val->getType(), Ptr->getType())) 4339 return EC; 4340 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4341 if (Ordering == NotAtomic || Ordering == Acquire || 4342 Ordering == AcquireRelease) 4343 return error("Invalid record"); 4344 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4345 if (Ordering != NotAtomic && Record[OpNum] == 0) 4346 return error("Invalid record"); 4347 4348 unsigned Align; 4349 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4350 return EC; 4351 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4352 InstructionList.push_back(I); 4353 break; 4354 } 4355 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4356 case bitc::FUNC_CODE_INST_CMPXCHG: { 4357 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4358 // failureordering?, isweak?] 4359 unsigned OpNum = 0; 4360 Value *Ptr, *Cmp, *New; 4361 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4362 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4363 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4364 : popValue(Record, OpNum, NextValueNo, 4365 cast<PointerType>(Ptr->getType())->getElementType(), 4366 Cmp)) || 4367 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4368 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4369 return error("Invalid record"); 4370 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4371 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4372 return error("Invalid record"); 4373 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4374 4375 if (std::error_code EC = typeCheckLoadStoreInst( 4376 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4377 return EC; 4378 AtomicOrdering FailureOrdering; 4379 if (Record.size() < 7) 4380 FailureOrdering = 4381 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4382 else 4383 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4384 4385 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4386 SynchScope); 4387 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4388 4389 if (Record.size() < 8) { 4390 // Before weak cmpxchgs existed, the instruction simply returned the 4391 // value loaded from memory, so bitcode files from that era will be 4392 // expecting the first component of a modern cmpxchg. 4393 CurBB->getInstList().push_back(I); 4394 I = ExtractValueInst::Create(I, 0); 4395 } else { 4396 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4397 } 4398 4399 InstructionList.push_back(I); 4400 break; 4401 } 4402 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4403 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4404 unsigned OpNum = 0; 4405 Value *Ptr, *Val; 4406 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4407 popValue(Record, OpNum, NextValueNo, 4408 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4409 OpNum+4 != Record.size()) 4410 return error("Invalid record"); 4411 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4412 if (Operation < AtomicRMWInst::FIRST_BINOP || 4413 Operation > AtomicRMWInst::LAST_BINOP) 4414 return error("Invalid record"); 4415 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4416 if (Ordering == NotAtomic || Ordering == Unordered) 4417 return error("Invalid record"); 4418 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4419 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4420 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4421 InstructionList.push_back(I); 4422 break; 4423 } 4424 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4425 if (2 != Record.size()) 4426 return error("Invalid record"); 4427 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4428 if (Ordering == NotAtomic || Ordering == Unordered || 4429 Ordering == Monotonic) 4430 return error("Invalid record"); 4431 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4432 I = new FenceInst(Context, Ordering, SynchScope); 4433 InstructionList.push_back(I); 4434 break; 4435 } 4436 case bitc::FUNC_CODE_INST_CALL: { 4437 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4438 if (Record.size() < 3) 4439 return error("Invalid record"); 4440 4441 unsigned OpNum = 0; 4442 AttributeSet PAL = getAttributes(Record[OpNum++]); 4443 unsigned CCInfo = Record[OpNum++]; 4444 4445 FunctionType *FTy = nullptr; 4446 if (CCInfo >> 15 & 1 && 4447 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4448 return error("Explicit call type is not a function type"); 4449 4450 Value *Callee; 4451 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4452 return error("Invalid record"); 4453 4454 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4455 if (!OpTy) 4456 return error("Callee is not a pointer type"); 4457 if (!FTy) { 4458 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4459 if (!FTy) 4460 return error("Callee is not of pointer to function type"); 4461 } else if (OpTy->getElementType() != FTy) 4462 return error("Explicit call type does not match pointee type of " 4463 "callee operand"); 4464 if (Record.size() < FTy->getNumParams() + OpNum) 4465 return error("Insufficient operands to call"); 4466 4467 SmallVector<Value*, 16> Args; 4468 // Read the fixed params. 4469 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4470 if (FTy->getParamType(i)->isLabelTy()) 4471 Args.push_back(getBasicBlock(Record[OpNum])); 4472 else 4473 Args.push_back(getValue(Record, OpNum, NextValueNo, 4474 FTy->getParamType(i))); 4475 if (!Args.back()) 4476 return error("Invalid record"); 4477 } 4478 4479 // Read type/value pairs for varargs params. 4480 if (!FTy->isVarArg()) { 4481 if (OpNum != Record.size()) 4482 return error("Invalid record"); 4483 } else { 4484 while (OpNum != Record.size()) { 4485 Value *Op; 4486 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4487 return error("Invalid record"); 4488 Args.push_back(Op); 4489 } 4490 } 4491 4492 I = CallInst::Create(FTy, Callee, Args); 4493 InstructionList.push_back(I); 4494 cast<CallInst>(I)->setCallingConv( 4495 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4496 CallInst::TailCallKind TCK = CallInst::TCK_None; 4497 if (CCInfo & 1) 4498 TCK = CallInst::TCK_Tail; 4499 if (CCInfo & (1 << 14)) 4500 TCK = CallInst::TCK_MustTail; 4501 cast<CallInst>(I)->setTailCallKind(TCK); 4502 cast<CallInst>(I)->setAttributes(PAL); 4503 break; 4504 } 4505 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4506 if (Record.size() < 3) 4507 return error("Invalid record"); 4508 Type *OpTy = getTypeByID(Record[0]); 4509 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4510 Type *ResTy = getTypeByID(Record[2]); 4511 if (!OpTy || !Op || !ResTy) 4512 return error("Invalid record"); 4513 I = new VAArgInst(Op, ResTy); 4514 InstructionList.push_back(I); 4515 break; 4516 } 4517 } 4518 4519 // Add instruction to end of current BB. If there is no current BB, reject 4520 // this file. 4521 if (!CurBB) { 4522 delete I; 4523 return error("Invalid instruction with no BB"); 4524 } 4525 CurBB->getInstList().push_back(I); 4526 4527 // If this was a terminator instruction, move to the next block. 4528 if (isa<TerminatorInst>(I)) { 4529 ++CurBBNo; 4530 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4531 } 4532 4533 // Non-void values get registered in the value table for future use. 4534 if (I && !I->getType()->isVoidTy()) 4535 ValueList.assignValue(I, NextValueNo++); 4536 } 4537 4538 OutOfRecordLoop: 4539 4540 // Check the function list for unresolved values. 4541 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4542 if (!A->getParent()) { 4543 // We found at least one unresolved value. Nuke them all to avoid leaks. 4544 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4545 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4546 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4547 delete A; 4548 } 4549 } 4550 return error("Never resolved value found in function"); 4551 } 4552 } 4553 4554 // FIXME: Check for unresolved forward-declared metadata references 4555 // and clean up leaks. 4556 4557 // Trim the value list down to the size it was before we parsed this function. 4558 ValueList.shrinkTo(ModuleValueListSize); 4559 MDValueList.shrinkTo(ModuleMDValueListSize); 4560 std::vector<BasicBlock*>().swap(FunctionBBs); 4561 return std::error_code(); 4562 } 4563 4564 /// Find the function body in the bitcode stream 4565 std::error_code BitcodeReader::findFunctionInStream( 4566 Function *F, 4567 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4568 while (DeferredFunctionInfoIterator->second == 0) { 4569 if (Stream.AtEndOfStream()) 4570 return error("Could not find function in stream"); 4571 // ParseModule will parse the next body in the stream and set its 4572 // position in the DeferredFunctionInfo map. 4573 if (std::error_code EC = parseModule(true)) 4574 return EC; 4575 } 4576 return std::error_code(); 4577 } 4578 4579 //===----------------------------------------------------------------------===// 4580 // GVMaterializer implementation 4581 //===----------------------------------------------------------------------===// 4582 4583 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4584 4585 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4586 if (std::error_code EC = materializeMetadata()) 4587 return EC; 4588 4589 Function *F = dyn_cast<Function>(GV); 4590 // If it's not a function or is already material, ignore the request. 4591 if (!F || !F->isMaterializable()) 4592 return std::error_code(); 4593 4594 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4595 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4596 // If its position is recorded as 0, its body is somewhere in the stream 4597 // but we haven't seen it yet. 4598 if (DFII->second == 0) 4599 if (std::error_code EC = findFunctionInStream(F, DFII)) 4600 return EC; 4601 4602 // Move the bit stream to the saved position of the deferred function body. 4603 Stream.JumpToBit(DFII->second); 4604 4605 if (std::error_code EC = parseFunctionBody(F)) 4606 return EC; 4607 F->setIsMaterializable(false); 4608 4609 if (StripDebugInfo) 4610 stripDebugInfo(*F); 4611 4612 // Upgrade any old intrinsic calls in the function. 4613 for (auto &I : UpgradedIntrinsics) { 4614 for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) { 4615 User *U = *UI; 4616 ++UI; 4617 if (CallInst *CI = dyn_cast<CallInst>(U)) 4618 UpgradeIntrinsicCall(CI, I.second); 4619 } 4620 } 4621 4622 // Bring in any functions that this function forward-referenced via 4623 // blockaddresses. 4624 return materializeForwardReferencedFunctions(); 4625 } 4626 4627 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4628 const Function *F = dyn_cast<Function>(GV); 4629 if (!F || F->isDeclaration()) 4630 return false; 4631 4632 // Dematerializing F would leave dangling references that wouldn't be 4633 // reconnected on re-materialization. 4634 if (BlockAddressesTaken.count(F)) 4635 return false; 4636 4637 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4638 } 4639 4640 void BitcodeReader::dematerialize(GlobalValue *GV) { 4641 Function *F = dyn_cast<Function>(GV); 4642 // If this function isn't dematerializable, this is a noop. 4643 if (!F || !isDematerializable(F)) 4644 return; 4645 4646 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4647 4648 // Just forget the function body, we can remat it later. 4649 F->dropAllReferences(); 4650 F->setIsMaterializable(true); 4651 } 4652 4653 std::error_code BitcodeReader::materializeModule(Module *M) { 4654 assert(M == TheModule && 4655 "Can only Materialize the Module this BitcodeReader is attached to."); 4656 4657 if (std::error_code EC = materializeMetadata()) 4658 return EC; 4659 4660 // Promise to materialize all forward references. 4661 WillMaterializeAllForwardRefs = true; 4662 4663 // Iterate over the module, deserializing any functions that are still on 4664 // disk. 4665 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4666 F != E; ++F) { 4667 if (std::error_code EC = materialize(F)) 4668 return EC; 4669 } 4670 // At this point, if there are any function bodies, the current bit is 4671 // pointing to the END_BLOCK record after them. Now make sure the rest 4672 // of the bits in the module have been read. 4673 if (NextUnreadBit) 4674 parseModule(true); 4675 4676 // Check that all block address forward references got resolved (as we 4677 // promised above). 4678 if (!BasicBlockFwdRefs.empty()) 4679 return error("Never resolved function from blockaddress"); 4680 4681 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4682 // delete the old functions to clean up. We can't do this unless the entire 4683 // module is materialized because there could always be another function body 4684 // with calls to the old function. 4685 for (auto &I : UpgradedIntrinsics) { 4686 for (auto *U : I.first->users()) { 4687 if (CallInst *CI = dyn_cast<CallInst>(U)) 4688 UpgradeIntrinsicCall(CI, I.second); 4689 } 4690 if (!I.first->use_empty()) 4691 I.first->replaceAllUsesWith(I.second); 4692 I.first->eraseFromParent(); 4693 } 4694 UpgradedIntrinsics.clear(); 4695 4696 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4697 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4698 4699 UpgradeDebugInfo(*M); 4700 return std::error_code(); 4701 } 4702 4703 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4704 return IdentifiedStructTypes; 4705 } 4706 4707 std::error_code 4708 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 4709 if (Streamer) 4710 return initLazyStream(std::move(Streamer)); 4711 return initStreamFromBuffer(); 4712 } 4713 4714 std::error_code BitcodeReader::initStreamFromBuffer() { 4715 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4716 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4717 4718 if (Buffer->getBufferSize() & 3) 4719 return error("Invalid bitcode signature"); 4720 4721 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4722 // The magic number is 0x0B17C0DE stored in little endian. 4723 if (isBitcodeWrapper(BufPtr, BufEnd)) 4724 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4725 return error("Invalid bitcode wrapper header"); 4726 4727 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4728 Stream.init(&*StreamFile); 4729 4730 return std::error_code(); 4731 } 4732 4733 std::error_code 4734 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 4735 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4736 // see it. 4737 auto OwnedBytes = 4738 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 4739 StreamingMemoryObject &Bytes = *OwnedBytes; 4740 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4741 Stream.init(&*StreamFile); 4742 4743 unsigned char buf[16]; 4744 if (Bytes.readBytes(buf, 16, 0) != 16) 4745 return error("Invalid bitcode signature"); 4746 4747 if (!isBitcode(buf, buf + 16)) 4748 return error("Invalid bitcode signature"); 4749 4750 if (isBitcodeWrapper(buf, buf + 4)) { 4751 const unsigned char *bitcodeStart = buf; 4752 const unsigned char *bitcodeEnd = buf + 16; 4753 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4754 Bytes.dropLeadingBytes(bitcodeStart - buf); 4755 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4756 } 4757 return std::error_code(); 4758 } 4759 4760 namespace { 4761 class BitcodeErrorCategoryType : public std::error_category { 4762 const char *name() const LLVM_NOEXCEPT override { 4763 return "llvm.bitcode"; 4764 } 4765 std::string message(int IE) const override { 4766 BitcodeError E = static_cast<BitcodeError>(IE); 4767 switch (E) { 4768 case BitcodeError::InvalidBitcodeSignature: 4769 return "Invalid bitcode signature"; 4770 case BitcodeError::CorruptedBitcode: 4771 return "Corrupted bitcode"; 4772 } 4773 llvm_unreachable("Unknown error type!"); 4774 } 4775 }; 4776 } 4777 4778 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4779 4780 const std::error_category &llvm::BitcodeErrorCategory() { 4781 return *ErrorCategory; 4782 } 4783 4784 //===----------------------------------------------------------------------===// 4785 // External interface 4786 //===----------------------------------------------------------------------===// 4787 4788 static ErrorOr<std::unique_ptr<Module>> 4789 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 4790 BitcodeReader *R, LLVMContext &Context, 4791 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 4792 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4793 M->setMaterializer(R); 4794 4795 auto cleanupOnError = [&](std::error_code EC) { 4796 R->releaseBuffer(); // Never take ownership on error. 4797 return EC; 4798 }; 4799 4800 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4801 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 4802 ShouldLazyLoadMetadata)) 4803 return cleanupOnError(EC); 4804 4805 if (MaterializeAll) { 4806 // Read in the entire module, and destroy the BitcodeReader. 4807 if (std::error_code EC = M->materializeAllPermanently()) 4808 return cleanupOnError(EC); 4809 } else { 4810 // Resolve forward references from blockaddresses. 4811 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4812 return cleanupOnError(EC); 4813 } 4814 return std::move(M); 4815 } 4816 4817 /// \brief Get a lazy one-at-time loading module from bitcode. 4818 /// 4819 /// This isn't always used in a lazy context. In particular, it's also used by 4820 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4821 /// in forward-referenced functions from block address references. 4822 /// 4823 /// \param[in] MaterializeAll Set to \c true if we should materialize 4824 /// everything. 4825 static ErrorOr<std::unique_ptr<Module>> 4826 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4827 LLVMContext &Context, bool MaterializeAll, 4828 DiagnosticHandlerFunction DiagnosticHandler, 4829 bool ShouldLazyLoadMetadata = false) { 4830 BitcodeReader *R = 4831 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4832 4833 ErrorOr<std::unique_ptr<Module>> Ret = 4834 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 4835 MaterializeAll, ShouldLazyLoadMetadata); 4836 if (!Ret) 4837 return Ret; 4838 4839 Buffer.release(); // The BitcodeReader owns it now. 4840 return Ret; 4841 } 4842 4843 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 4844 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 4845 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 4846 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4847 DiagnosticHandler, ShouldLazyLoadMetadata); 4848 } 4849 4850 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 4851 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 4852 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 4853 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4854 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 4855 4856 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 4857 false); 4858 } 4859 4860 ErrorOr<std::unique_ptr<Module>> 4861 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4862 DiagnosticHandlerFunction DiagnosticHandler) { 4863 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4864 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 4865 DiagnosticHandler); 4866 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4867 // written. We must defer until the Module has been fully materialized. 4868 } 4869 4870 std::string 4871 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4872 DiagnosticHandlerFunction DiagnosticHandler) { 4873 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4874 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4875 DiagnosticHandler); 4876 ErrorOr<std::string> Triple = R->parseTriple(); 4877 if (Triple.getError()) 4878 return ""; 4879 return Triple.get(); 4880 } 4881