1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/BitcodeReader.h"
11 #include "MetadataLoader.h"
12 #include "ValueList.h"
13 
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Bitcode/BitstreamReader.h"
26 #include "llvm/Bitcode/LLVMBitCodes.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/Comdat.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/DiagnosticPrinter.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalIndirectSymbol.h"
46 #include "llvm/IR/GlobalObject.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/GVMaterializer.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/InstIterator.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/OperandTraits.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/TrackingMDRef.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/ValueHandle.h"
64 #include "llvm/IR/Verifier.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Error.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/ManagedStatic.h"
73 #include "llvm/Support/MemoryBuffer.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <deque>
80 #include <limits>
81 #include <map>
82 #include <memory>
83 #include <string>
84 #include <system_error>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 static cl::opt<bool> PrintSummaryGUIDs(
92     "print-summary-global-ids", cl::init(false), cl::Hidden,
93     cl::desc(
94         "Print the global id for each value when reading the module summary"));
95 
96 namespace {
97 
98 enum {
99   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
100 };
101 
102 Error error(const Twine &Message) {
103   return make_error<StringError>(
104       Message, make_error_code(BitcodeError::CorruptedBitcode));
105 }
106 
107 /// Helper to read the header common to all bitcode files.
108 bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
109   // Sniff for the signature.
110   if (!Stream.canSkipToPos(4) ||
111       Stream.Read(8) != 'B' ||
112       Stream.Read(8) != 'C' ||
113       Stream.Read(4) != 0x0 ||
114       Stream.Read(4) != 0xC ||
115       Stream.Read(4) != 0xE ||
116       Stream.Read(4) != 0xD)
117     return false;
118   return true;
119 }
120 
121 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
122   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
123   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
124 
125   if (Buffer.getBufferSize() & 3)
126     return error("Invalid bitcode signature");
127 
128   // If we have a wrapper header, parse it and ignore the non-bc file contents.
129   // The magic number is 0x0B17C0DE stored in little endian.
130   if (isBitcodeWrapper(BufPtr, BufEnd))
131     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
132       return error("Invalid bitcode wrapper header");
133 
134   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
135   if (!hasValidBitcodeHeader(Stream))
136     return error("Invalid bitcode signature");
137 
138   return std::move(Stream);
139 }
140 
141 /// Convert a string from a record into an std::string, return true on failure.
142 template <typename StrTy>
143 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
144                             StrTy &Result) {
145   if (Idx > Record.size())
146     return true;
147 
148   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
149     Result += (char)Record[i];
150   return false;
151 }
152 
153 // Strip all the TBAA attachment for the module.
154 void stripTBAA(Module *M) {
155   for (auto &F : *M) {
156     if (F.isMaterializable())
157       continue;
158     for (auto &I : instructions(F))
159       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
160   }
161 }
162 
163 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
164 /// "epoch" encoded in the bitcode, and return the producer name if any.
165 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
166   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
167     return error("Invalid record");
168 
169   // Read all the records.
170   SmallVector<uint64_t, 64> Record;
171 
172   std::string ProducerIdentification;
173 
174   while (true) {
175     BitstreamEntry Entry = Stream.advance();
176 
177     switch (Entry.Kind) {
178     default:
179     case BitstreamEntry::Error:
180       return error("Malformed block");
181     case BitstreamEntry::EndBlock:
182       return ProducerIdentification;
183     case BitstreamEntry::Record:
184       // The interesting case.
185       break;
186     }
187 
188     // Read a record.
189     Record.clear();
190     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
191     switch (BitCode) {
192     default: // Default behavior: reject
193       return error("Invalid value");
194     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
195       convertToString(Record, 0, ProducerIdentification);
196       break;
197     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
198       unsigned epoch = (unsigned)Record[0];
199       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
200         return error(
201           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
202           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
203       }
204     }
205     }
206   }
207 }
208 
209 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
210   // We expect a number of well-defined blocks, though we don't necessarily
211   // need to understand them all.
212   while (true) {
213     if (Stream.AtEndOfStream())
214       return "";
215 
216     BitstreamEntry Entry = Stream.advance();
217     switch (Entry.Kind) {
218     case BitstreamEntry::EndBlock:
219     case BitstreamEntry::Error:
220       return error("Malformed block");
221 
222     case BitstreamEntry::SubBlock:
223       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
224         return readIdentificationBlock(Stream);
225 
226       // Ignore other sub-blocks.
227       if (Stream.SkipBlock())
228         return error("Malformed block");
229       continue;
230     case BitstreamEntry::Record:
231       Stream.skipRecord(Entry.ID);
232       continue;
233     }
234   }
235 }
236 
237 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
238   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
239     return error("Invalid record");
240 
241   SmallVector<uint64_t, 64> Record;
242   // Read all the records for this module.
243 
244   while (true) {
245     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
246 
247     switch (Entry.Kind) {
248     case BitstreamEntry::SubBlock: // Handled for us already.
249     case BitstreamEntry::Error:
250       return error("Malformed block");
251     case BitstreamEntry::EndBlock:
252       return false;
253     case BitstreamEntry::Record:
254       // The interesting case.
255       break;
256     }
257 
258     // Read a record.
259     switch (Stream.readRecord(Entry.ID, Record)) {
260     default:
261       break; // Default behavior, ignore unknown content.
262     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
263       std::string S;
264       if (convertToString(Record, 0, S))
265         return error("Invalid record");
266       // Check for the i386 and other (x86_64, ARM) conventions
267       if (S.find("__DATA, __objc_catlist") != std::string::npos ||
268           S.find("__OBJC,__category") != std::string::npos)
269         return true;
270       break;
271     }
272     }
273     Record.clear();
274   }
275   llvm_unreachable("Exit infinite loop");
276 }
277 
278 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
279   // We expect a number of well-defined blocks, though we don't necessarily
280   // need to understand them all.
281   while (true) {
282     BitstreamEntry Entry = Stream.advance();
283 
284     switch (Entry.Kind) {
285     case BitstreamEntry::Error:
286       return error("Malformed block");
287     case BitstreamEntry::EndBlock:
288       return false;
289 
290     case BitstreamEntry::SubBlock:
291       if (Entry.ID == bitc::MODULE_BLOCK_ID)
292         return hasObjCCategoryInModule(Stream);
293 
294       // Ignore other sub-blocks.
295       if (Stream.SkipBlock())
296         return error("Malformed block");
297       continue;
298 
299     case BitstreamEntry::Record:
300       Stream.skipRecord(Entry.ID);
301       continue;
302     }
303   }
304 }
305 
306 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
307   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
308     return error("Invalid record");
309 
310   SmallVector<uint64_t, 64> Record;
311 
312   std::string Triple;
313 
314   // Read all the records for this module.
315   while (true) {
316     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
317 
318     switch (Entry.Kind) {
319     case BitstreamEntry::SubBlock: // Handled for us already.
320     case BitstreamEntry::Error:
321       return error("Malformed block");
322     case BitstreamEntry::EndBlock:
323       return Triple;
324     case BitstreamEntry::Record:
325       // The interesting case.
326       break;
327     }
328 
329     // Read a record.
330     switch (Stream.readRecord(Entry.ID, Record)) {
331     default: break;  // Default behavior, ignore unknown content.
332     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
333       std::string S;
334       if (convertToString(Record, 0, S))
335         return error("Invalid record");
336       Triple = S;
337       break;
338     }
339     }
340     Record.clear();
341   }
342   llvm_unreachable("Exit infinite loop");
343 }
344 
345 Expected<std::string> readTriple(BitstreamCursor &Stream) {
346   // We expect a number of well-defined blocks, though we don't necessarily
347   // need to understand them all.
348   while (true) {
349     BitstreamEntry Entry = Stream.advance();
350 
351     switch (Entry.Kind) {
352     case BitstreamEntry::Error:
353       return error("Malformed block");
354     case BitstreamEntry::EndBlock:
355       return "";
356 
357     case BitstreamEntry::SubBlock:
358       if (Entry.ID == bitc::MODULE_BLOCK_ID)
359         return readModuleTriple(Stream);
360 
361       // Ignore other sub-blocks.
362       if (Stream.SkipBlock())
363         return error("Malformed block");
364       continue;
365 
366     case BitstreamEntry::Record:
367       Stream.skipRecord(Entry.ID);
368       continue;
369     }
370   }
371 }
372 
373 class BitcodeReaderBase {
374 protected:
375   BitcodeReaderBase(BitstreamCursor Stream) : Stream(std::move(Stream)) {
376     this->Stream.setBlockInfo(&BlockInfo);
377   }
378 
379   BitstreamBlockInfo BlockInfo;
380   BitstreamCursor Stream;
381 
382   bool readBlockInfo();
383 
384   // Contains an arbitrary and optional string identifying the bitcode producer
385   std::string ProducerIdentification;
386 
387   Error error(const Twine &Message);
388 };
389 
390 Error BitcodeReaderBase::error(const Twine &Message) {
391   std::string FullMsg = Message.str();
392   if (!ProducerIdentification.empty())
393     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
394                LLVM_VERSION_STRING "')";
395   return ::error(FullMsg);
396 }
397 
398 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
399   LLVMContext &Context;
400   Module *TheModule = nullptr;
401   // Next offset to start scanning for lazy parsing of function bodies.
402   uint64_t NextUnreadBit = 0;
403   // Last function offset found in the VST.
404   uint64_t LastFunctionBlockBit = 0;
405   bool SeenValueSymbolTable = false;
406   uint64_t VSTOffset = 0;
407 
408   std::vector<Type*> TypeList;
409   BitcodeReaderValueList ValueList;
410   Optional<MetadataLoader> MDLoader;
411   std::vector<Comdat *> ComdatList;
412   SmallVector<Instruction *, 64> InstructionList;
413 
414   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
415   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
416   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
417   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
418   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
419 
420   /// The set of attributes by index.  Index zero in the file is for null, and
421   /// is thus not represented here.  As such all indices are off by one.
422   std::vector<AttributeSet> MAttributes;
423 
424   /// The set of attribute groups.
425   std::map<unsigned, AttributeSet> MAttributeGroups;
426 
427   /// While parsing a function body, this is a list of the basic blocks for the
428   /// function.
429   std::vector<BasicBlock*> FunctionBBs;
430 
431   // When reading the module header, this list is populated with functions that
432   // have bodies later in the file.
433   std::vector<Function*> FunctionsWithBodies;
434 
435   // When intrinsic functions are encountered which require upgrading they are
436   // stored here with their replacement function.
437   typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap;
438   UpdatedIntrinsicMap UpgradedIntrinsics;
439   // Intrinsics which were remangled because of types rename
440   UpdatedIntrinsicMap RemangledIntrinsics;
441 
442   // Several operations happen after the module header has been read, but
443   // before function bodies are processed. This keeps track of whether
444   // we've done this yet.
445   bool SeenFirstFunctionBody = false;
446 
447   /// When function bodies are initially scanned, this map contains info about
448   /// where to find deferred function body in the stream.
449   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
450 
451   /// When Metadata block is initially scanned when parsing the module, we may
452   /// choose to defer parsing of the metadata. This vector contains info about
453   /// which Metadata blocks are deferred.
454   std::vector<uint64_t> DeferredMetadataInfo;
455 
456   /// These are basic blocks forward-referenced by block addresses.  They are
457   /// inserted lazily into functions when they're loaded.  The basic block ID is
458   /// its index into the vector.
459   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
460   std::deque<Function *> BasicBlockFwdRefQueue;
461 
462   /// Indicates that we are using a new encoding for instruction operands where
463   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
464   /// instruction number, for a more compact encoding.  Some instruction
465   /// operands are not relative to the instruction ID: basic block numbers, and
466   /// types. Once the old style function blocks have been phased out, we would
467   /// not need this flag.
468   bool UseRelativeIDs = false;
469 
470   /// True if all functions will be materialized, negating the need to process
471   /// (e.g.) blockaddress forward references.
472   bool WillMaterializeAllForwardRefs = false;
473 
474   bool StripDebugInfo = false;
475   TBAAVerifier TBAAVerifyHelper;
476 
477   std::vector<std::string> BundleTags;
478 
479 public:
480   BitcodeReader(BitstreamCursor Stream, StringRef ProducerIdentification,
481                 LLVMContext &Context);
482 
483   Error materializeForwardReferencedFunctions();
484 
485   Error materialize(GlobalValue *GV) override;
486   Error materializeModule() override;
487   std::vector<StructType *> getIdentifiedStructTypes() const override;
488 
489   /// \brief Main interface to parsing a bitcode buffer.
490   /// \returns true if an error occurred.
491   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
492                          bool IsImporting = false);
493 
494   static uint64_t decodeSignRotatedValue(uint64_t V);
495 
496   /// Materialize any deferred Metadata block.
497   Error materializeMetadata() override;
498 
499   void setStripDebugInfo() override;
500 
501 private:
502   std::vector<StructType *> IdentifiedStructTypes;
503   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
504   StructType *createIdentifiedStructType(LLVMContext &Context);
505 
506   Type *getTypeByID(unsigned ID);
507 
508   Value *getFnValueByID(unsigned ID, Type *Ty) {
509     if (Ty && Ty->isMetadataTy())
510       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
511     return ValueList.getValueFwdRef(ID, Ty);
512   }
513 
514   Metadata *getFnMetadataByID(unsigned ID) {
515     return MDLoader->getMetadataFwdRef(ID);
516   }
517 
518   BasicBlock *getBasicBlock(unsigned ID) const {
519     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
520     return FunctionBBs[ID];
521   }
522 
523   AttributeSet getAttributes(unsigned i) const {
524     if (i-1 < MAttributes.size())
525       return MAttributes[i-1];
526     return AttributeSet();
527   }
528 
529   /// Read a value/type pair out of the specified record from slot 'Slot'.
530   /// Increment Slot past the number of slots used in the record. Return true on
531   /// failure.
532   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
533                         unsigned InstNum, Value *&ResVal) {
534     if (Slot == Record.size()) return true;
535     unsigned ValNo = (unsigned)Record[Slot++];
536     // Adjust the ValNo, if it was encoded relative to the InstNum.
537     if (UseRelativeIDs)
538       ValNo = InstNum - ValNo;
539     if (ValNo < InstNum) {
540       // If this is not a forward reference, just return the value we already
541       // have.
542       ResVal = getFnValueByID(ValNo, nullptr);
543       return ResVal == nullptr;
544     }
545     if (Slot == Record.size())
546       return true;
547 
548     unsigned TypeNo = (unsigned)Record[Slot++];
549     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
550     return ResVal == nullptr;
551   }
552 
553   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
554   /// past the number of slots used by the value in the record. Return true if
555   /// there is an error.
556   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
557                 unsigned InstNum, Type *Ty, Value *&ResVal) {
558     if (getValue(Record, Slot, InstNum, Ty, ResVal))
559       return true;
560     // All values currently take a single record slot.
561     ++Slot;
562     return false;
563   }
564 
565   /// Like popValue, but does not increment the Slot number.
566   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
567                 unsigned InstNum, Type *Ty, Value *&ResVal) {
568     ResVal = getValue(Record, Slot, InstNum, Ty);
569     return ResVal == nullptr;
570   }
571 
572   /// Version of getValue that returns ResVal directly, or 0 if there is an
573   /// error.
574   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
575                   unsigned InstNum, Type *Ty) {
576     if (Slot == Record.size()) return nullptr;
577     unsigned ValNo = (unsigned)Record[Slot];
578     // Adjust the ValNo, if it was encoded relative to the InstNum.
579     if (UseRelativeIDs)
580       ValNo = InstNum - ValNo;
581     return getFnValueByID(ValNo, Ty);
582   }
583 
584   /// Like getValue, but decodes signed VBRs.
585   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
586                         unsigned InstNum, Type *Ty) {
587     if (Slot == Record.size()) return nullptr;
588     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
589     // Adjust the ValNo, if it was encoded relative to the InstNum.
590     if (UseRelativeIDs)
591       ValNo = InstNum - ValNo;
592     return getFnValueByID(ValNo, Ty);
593   }
594 
595   /// Converts alignment exponent (i.e. power of two (or zero)) to the
596   /// corresponding alignment to use. If alignment is too large, returns
597   /// a corresponding error code.
598   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
599   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
600   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
601   Error parseAttributeBlock();
602   Error parseAttributeGroupBlock();
603   Error parseTypeTable();
604   Error parseTypeTableBody();
605   Error parseOperandBundleTags();
606 
607   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
608                                 unsigned NameIndex, Triple &TT);
609   Error parseValueSymbolTable(uint64_t Offset = 0);
610   Error parseConstants();
611   Error rememberAndSkipFunctionBodies();
612   Error rememberAndSkipFunctionBody();
613   /// Save the positions of the Metadata blocks and skip parsing the blocks.
614   Error rememberAndSkipMetadata();
615   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
616   Error parseFunctionBody(Function *F);
617   Error globalCleanup();
618   Error resolveGlobalAndIndirectSymbolInits();
619   Error parseUseLists();
620   Error findFunctionInStream(
621       Function *F,
622       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
623 };
624 
625 /// Class to manage reading and parsing function summary index bitcode
626 /// files/sections.
627 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
628   /// The module index built during parsing.
629   ModuleSummaryIndex &TheIndex;
630 
631   /// Indicates whether we have encountered a global value summary section
632   /// yet during parsing.
633   bool SeenGlobalValSummary = false;
634 
635   /// Indicates whether we have already parsed the VST, used for error checking.
636   bool SeenValueSymbolTable = false;
637 
638   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
639   /// Used to enable on-demand parsing of the VST.
640   uint64_t VSTOffset = 0;
641 
642   // Map to save ValueId to GUID association that was recorded in the
643   // ValueSymbolTable. It is used after the VST is parsed to convert
644   // call graph edges read from the function summary from referencing
645   // callees by their ValueId to using the GUID instead, which is how
646   // they are recorded in the summary index being built.
647   // We save a second GUID which is the same as the first one, but ignoring the
648   // linkage, i.e. for value other than local linkage they are identical.
649   DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>>
650       ValueIdToCallGraphGUIDMap;
651 
652   /// Map populated during module path string table parsing, from the
653   /// module ID to a string reference owned by the index's module
654   /// path string table, used to correlate with combined index
655   /// summary records.
656   DenseMap<uint64_t, StringRef> ModuleIdMap;
657 
658   /// Original source file name recorded in a bitcode record.
659   std::string SourceFileName;
660 
661 public:
662   ModuleSummaryIndexBitcodeReader(
663       BitstreamCursor Stream, ModuleSummaryIndex &TheIndex);
664 
665   Error parseModule(StringRef ModulePath);
666 
667 private:
668   Error parseValueSymbolTable(
669       uint64_t Offset,
670       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
671   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
672   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
673                                                     bool IsOldProfileFormat,
674                                                     bool HasProfile);
675   Error parseEntireSummary(StringRef ModulePath);
676   Error parseModuleStringTable();
677 
678   std::pair<GlobalValue::GUID, GlobalValue::GUID>
679   getGUIDFromValueId(unsigned ValueId);
680 };
681 
682 } // end anonymous namespace
683 
684 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
685                                                     Error Err) {
686   if (Err) {
687     std::error_code EC;
688     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
689       EC = EIB.convertToErrorCode();
690       Ctx.emitError(EIB.message());
691     });
692     return EC;
693   }
694   return std::error_code();
695 }
696 
697 BitcodeReader::BitcodeReader(BitstreamCursor Stream,
698                              StringRef ProducerIdentification,
699                              LLVMContext &Context)
700     : BitcodeReaderBase(std::move(Stream)), Context(Context),
701       ValueList(Context) {
702   this->ProducerIdentification = ProducerIdentification;
703 }
704 
705 Error BitcodeReader::materializeForwardReferencedFunctions() {
706   if (WillMaterializeAllForwardRefs)
707     return Error::success();
708 
709   // Prevent recursion.
710   WillMaterializeAllForwardRefs = true;
711 
712   while (!BasicBlockFwdRefQueue.empty()) {
713     Function *F = BasicBlockFwdRefQueue.front();
714     BasicBlockFwdRefQueue.pop_front();
715     assert(F && "Expected valid function");
716     if (!BasicBlockFwdRefs.count(F))
717       // Already materialized.
718       continue;
719 
720     // Check for a function that isn't materializable to prevent an infinite
721     // loop.  When parsing a blockaddress stored in a global variable, there
722     // isn't a trivial way to check if a function will have a body without a
723     // linear search through FunctionsWithBodies, so just check it here.
724     if (!F->isMaterializable())
725       return error("Never resolved function from blockaddress");
726 
727     // Try to materialize F.
728     if (Error Err = materialize(F))
729       return Err;
730   }
731   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
732 
733   // Reset state.
734   WillMaterializeAllForwardRefs = false;
735   return Error::success();
736 }
737 
738 //===----------------------------------------------------------------------===//
739 //  Helper functions to implement forward reference resolution, etc.
740 //===----------------------------------------------------------------------===//
741 
742 static bool hasImplicitComdat(size_t Val) {
743   switch (Val) {
744   default:
745     return false;
746   case 1:  // Old WeakAnyLinkage
747   case 4:  // Old LinkOnceAnyLinkage
748   case 10: // Old WeakODRLinkage
749   case 11: // Old LinkOnceODRLinkage
750     return true;
751   }
752 }
753 
754 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
755   switch (Val) {
756   default: // Map unknown/new linkages to external
757   case 0:
758     return GlobalValue::ExternalLinkage;
759   case 2:
760     return GlobalValue::AppendingLinkage;
761   case 3:
762     return GlobalValue::InternalLinkage;
763   case 5:
764     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
765   case 6:
766     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
767   case 7:
768     return GlobalValue::ExternalWeakLinkage;
769   case 8:
770     return GlobalValue::CommonLinkage;
771   case 9:
772     return GlobalValue::PrivateLinkage;
773   case 12:
774     return GlobalValue::AvailableExternallyLinkage;
775   case 13:
776     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
777   case 14:
778     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
779   case 15:
780     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
781   case 1: // Old value with implicit comdat.
782   case 16:
783     return GlobalValue::WeakAnyLinkage;
784   case 10: // Old value with implicit comdat.
785   case 17:
786     return GlobalValue::WeakODRLinkage;
787   case 4: // Old value with implicit comdat.
788   case 18:
789     return GlobalValue::LinkOnceAnyLinkage;
790   case 11: // Old value with implicit comdat.
791   case 19:
792     return GlobalValue::LinkOnceODRLinkage;
793   }
794 }
795 
796 /// Decode the flags for GlobalValue in the summary.
797 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
798                                                             uint64_t Version) {
799   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
800   // like getDecodedLinkage() above. Any future change to the linkage enum and
801   // to getDecodedLinkage() will need to be taken into account here as above.
802   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
803   RawFlags = RawFlags >> 4;
804   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
805   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport);
806 }
807 
808 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
809   switch (Val) {
810   default: // Map unknown visibilities to default.
811   case 0: return GlobalValue::DefaultVisibility;
812   case 1: return GlobalValue::HiddenVisibility;
813   case 2: return GlobalValue::ProtectedVisibility;
814   }
815 }
816 
817 static GlobalValue::DLLStorageClassTypes
818 getDecodedDLLStorageClass(unsigned Val) {
819   switch (Val) {
820   default: // Map unknown values to default.
821   case 0: return GlobalValue::DefaultStorageClass;
822   case 1: return GlobalValue::DLLImportStorageClass;
823   case 2: return GlobalValue::DLLExportStorageClass;
824   }
825 }
826 
827 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
828   switch (Val) {
829     case 0: return GlobalVariable::NotThreadLocal;
830     default: // Map unknown non-zero value to general dynamic.
831     case 1: return GlobalVariable::GeneralDynamicTLSModel;
832     case 2: return GlobalVariable::LocalDynamicTLSModel;
833     case 3: return GlobalVariable::InitialExecTLSModel;
834     case 4: return GlobalVariable::LocalExecTLSModel;
835   }
836 }
837 
838 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
839   switch (Val) {
840     default: // Map unknown to UnnamedAddr::None.
841     case 0: return GlobalVariable::UnnamedAddr::None;
842     case 1: return GlobalVariable::UnnamedAddr::Global;
843     case 2: return GlobalVariable::UnnamedAddr::Local;
844   }
845 }
846 
847 static int getDecodedCastOpcode(unsigned Val) {
848   switch (Val) {
849   default: return -1;
850   case bitc::CAST_TRUNC   : return Instruction::Trunc;
851   case bitc::CAST_ZEXT    : return Instruction::ZExt;
852   case bitc::CAST_SEXT    : return Instruction::SExt;
853   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
854   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
855   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
856   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
857   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
858   case bitc::CAST_FPEXT   : return Instruction::FPExt;
859   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
860   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
861   case bitc::CAST_BITCAST : return Instruction::BitCast;
862   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
863   }
864 }
865 
866 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
867   bool IsFP = Ty->isFPOrFPVectorTy();
868   // BinOps are only valid for int/fp or vector of int/fp types
869   if (!IsFP && !Ty->isIntOrIntVectorTy())
870     return -1;
871 
872   switch (Val) {
873   default:
874     return -1;
875   case bitc::BINOP_ADD:
876     return IsFP ? Instruction::FAdd : Instruction::Add;
877   case bitc::BINOP_SUB:
878     return IsFP ? Instruction::FSub : Instruction::Sub;
879   case bitc::BINOP_MUL:
880     return IsFP ? Instruction::FMul : Instruction::Mul;
881   case bitc::BINOP_UDIV:
882     return IsFP ? -1 : Instruction::UDiv;
883   case bitc::BINOP_SDIV:
884     return IsFP ? Instruction::FDiv : Instruction::SDiv;
885   case bitc::BINOP_UREM:
886     return IsFP ? -1 : Instruction::URem;
887   case bitc::BINOP_SREM:
888     return IsFP ? Instruction::FRem : Instruction::SRem;
889   case bitc::BINOP_SHL:
890     return IsFP ? -1 : Instruction::Shl;
891   case bitc::BINOP_LSHR:
892     return IsFP ? -1 : Instruction::LShr;
893   case bitc::BINOP_ASHR:
894     return IsFP ? -1 : Instruction::AShr;
895   case bitc::BINOP_AND:
896     return IsFP ? -1 : Instruction::And;
897   case bitc::BINOP_OR:
898     return IsFP ? -1 : Instruction::Or;
899   case bitc::BINOP_XOR:
900     return IsFP ? -1 : Instruction::Xor;
901   }
902 }
903 
904 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
905   switch (Val) {
906   default: return AtomicRMWInst::BAD_BINOP;
907   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
908   case bitc::RMW_ADD: return AtomicRMWInst::Add;
909   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
910   case bitc::RMW_AND: return AtomicRMWInst::And;
911   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
912   case bitc::RMW_OR: return AtomicRMWInst::Or;
913   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
914   case bitc::RMW_MAX: return AtomicRMWInst::Max;
915   case bitc::RMW_MIN: return AtomicRMWInst::Min;
916   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
917   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
918   }
919 }
920 
921 static AtomicOrdering getDecodedOrdering(unsigned Val) {
922   switch (Val) {
923   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
924   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
925   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
926   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
927   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
928   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
929   default: // Map unknown orderings to sequentially-consistent.
930   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
931   }
932 }
933 
934 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
935   switch (Val) {
936   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
937   default: // Map unknown scopes to cross-thread.
938   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
939   }
940 }
941 
942 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
943   switch (Val) {
944   default: // Map unknown selection kinds to any.
945   case bitc::COMDAT_SELECTION_KIND_ANY:
946     return Comdat::Any;
947   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
948     return Comdat::ExactMatch;
949   case bitc::COMDAT_SELECTION_KIND_LARGEST:
950     return Comdat::Largest;
951   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
952     return Comdat::NoDuplicates;
953   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
954     return Comdat::SameSize;
955   }
956 }
957 
958 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
959   FastMathFlags FMF;
960   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
961     FMF.setUnsafeAlgebra();
962   if (0 != (Val & FastMathFlags::NoNaNs))
963     FMF.setNoNaNs();
964   if (0 != (Val & FastMathFlags::NoInfs))
965     FMF.setNoInfs();
966   if (0 != (Val & FastMathFlags::NoSignedZeros))
967     FMF.setNoSignedZeros();
968   if (0 != (Val & FastMathFlags::AllowReciprocal))
969     FMF.setAllowReciprocal();
970   return FMF;
971 }
972 
973 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
974   switch (Val) {
975   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
976   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
977   }
978 }
979 
980 
981 Type *BitcodeReader::getTypeByID(unsigned ID) {
982   // The type table size is always specified correctly.
983   if (ID >= TypeList.size())
984     return nullptr;
985 
986   if (Type *Ty = TypeList[ID])
987     return Ty;
988 
989   // If we have a forward reference, the only possible case is when it is to a
990   // named struct.  Just create a placeholder for now.
991   return TypeList[ID] = createIdentifiedStructType(Context);
992 }
993 
994 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
995                                                       StringRef Name) {
996   auto *Ret = StructType::create(Context, Name);
997   IdentifiedStructTypes.push_back(Ret);
998   return Ret;
999 }
1000 
1001 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1002   auto *Ret = StructType::create(Context);
1003   IdentifiedStructTypes.push_back(Ret);
1004   return Ret;
1005 }
1006 
1007 //===----------------------------------------------------------------------===//
1008 //  Functions for parsing blocks from the bitcode file
1009 //===----------------------------------------------------------------------===//
1010 
1011 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1012   switch (Val) {
1013   case Attribute::EndAttrKinds:
1014     llvm_unreachable("Synthetic enumerators which should never get here");
1015 
1016   case Attribute::None:            return 0;
1017   case Attribute::ZExt:            return 1 << 0;
1018   case Attribute::SExt:            return 1 << 1;
1019   case Attribute::NoReturn:        return 1 << 2;
1020   case Attribute::InReg:           return 1 << 3;
1021   case Attribute::StructRet:       return 1 << 4;
1022   case Attribute::NoUnwind:        return 1 << 5;
1023   case Attribute::NoAlias:         return 1 << 6;
1024   case Attribute::ByVal:           return 1 << 7;
1025   case Attribute::Nest:            return 1 << 8;
1026   case Attribute::ReadNone:        return 1 << 9;
1027   case Attribute::ReadOnly:        return 1 << 10;
1028   case Attribute::NoInline:        return 1 << 11;
1029   case Attribute::AlwaysInline:    return 1 << 12;
1030   case Attribute::OptimizeForSize: return 1 << 13;
1031   case Attribute::StackProtect:    return 1 << 14;
1032   case Attribute::StackProtectReq: return 1 << 15;
1033   case Attribute::Alignment:       return 31 << 16;
1034   case Attribute::NoCapture:       return 1 << 21;
1035   case Attribute::NoRedZone:       return 1 << 22;
1036   case Attribute::NoImplicitFloat: return 1 << 23;
1037   case Attribute::Naked:           return 1 << 24;
1038   case Attribute::InlineHint:      return 1 << 25;
1039   case Attribute::StackAlignment:  return 7 << 26;
1040   case Attribute::ReturnsTwice:    return 1 << 29;
1041   case Attribute::UWTable:         return 1 << 30;
1042   case Attribute::NonLazyBind:     return 1U << 31;
1043   case Attribute::SanitizeAddress: return 1ULL << 32;
1044   case Attribute::MinSize:         return 1ULL << 33;
1045   case Attribute::NoDuplicate:     return 1ULL << 34;
1046   case Attribute::StackProtectStrong: return 1ULL << 35;
1047   case Attribute::SanitizeThread:  return 1ULL << 36;
1048   case Attribute::SanitizeMemory:  return 1ULL << 37;
1049   case Attribute::NoBuiltin:       return 1ULL << 38;
1050   case Attribute::Returned:        return 1ULL << 39;
1051   case Attribute::Cold:            return 1ULL << 40;
1052   case Attribute::Builtin:         return 1ULL << 41;
1053   case Attribute::OptimizeNone:    return 1ULL << 42;
1054   case Attribute::InAlloca:        return 1ULL << 43;
1055   case Attribute::NonNull:         return 1ULL << 44;
1056   case Attribute::JumpTable:       return 1ULL << 45;
1057   case Attribute::Convergent:      return 1ULL << 46;
1058   case Attribute::SafeStack:       return 1ULL << 47;
1059   case Attribute::NoRecurse:       return 1ULL << 48;
1060   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1061   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1062   case Attribute::SwiftSelf:       return 1ULL << 51;
1063   case Attribute::SwiftError:      return 1ULL << 52;
1064   case Attribute::WriteOnly:       return 1ULL << 53;
1065   case Attribute::Dereferenceable:
1066     llvm_unreachable("dereferenceable attribute not supported in raw format");
1067     break;
1068   case Attribute::DereferenceableOrNull:
1069     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1070                      "format");
1071     break;
1072   case Attribute::ArgMemOnly:
1073     llvm_unreachable("argmemonly attribute not supported in raw format");
1074     break;
1075   case Attribute::AllocSize:
1076     llvm_unreachable("allocsize not supported in raw format");
1077     break;
1078   }
1079   llvm_unreachable("Unsupported attribute type");
1080 }
1081 
1082 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1083   if (!Val) return;
1084 
1085   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1086        I = Attribute::AttrKind(I + 1)) {
1087     if (I == Attribute::Dereferenceable ||
1088         I == Attribute::DereferenceableOrNull ||
1089         I == Attribute::ArgMemOnly ||
1090         I == Attribute::AllocSize)
1091       continue;
1092     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1093       if (I == Attribute::Alignment)
1094         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1095       else if (I == Attribute::StackAlignment)
1096         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1097       else
1098         B.addAttribute(I);
1099     }
1100   }
1101 }
1102 
1103 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1104 /// been decoded from the given integer. This function must stay in sync with
1105 /// 'encodeLLVMAttributesForBitcode'.
1106 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1107                                            uint64_t EncodedAttrs) {
1108   // FIXME: Remove in 4.0.
1109 
1110   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1111   // the bits above 31 down by 11 bits.
1112   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1113   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1114          "Alignment must be a power of two.");
1115 
1116   if (Alignment)
1117     B.addAlignmentAttr(Alignment);
1118   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1119                           (EncodedAttrs & 0xffff));
1120 }
1121 
1122 Error BitcodeReader::parseAttributeBlock() {
1123   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1124     return error("Invalid record");
1125 
1126   if (!MAttributes.empty())
1127     return error("Invalid multiple blocks");
1128 
1129   SmallVector<uint64_t, 64> Record;
1130 
1131   SmallVector<AttributeSet, 8> Attrs;
1132 
1133   // Read all the records.
1134   while (true) {
1135     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1136 
1137     switch (Entry.Kind) {
1138     case BitstreamEntry::SubBlock: // Handled for us already.
1139     case BitstreamEntry::Error:
1140       return error("Malformed block");
1141     case BitstreamEntry::EndBlock:
1142       return Error::success();
1143     case BitstreamEntry::Record:
1144       // The interesting case.
1145       break;
1146     }
1147 
1148     // Read a record.
1149     Record.clear();
1150     switch (Stream.readRecord(Entry.ID, Record)) {
1151     default:  // Default behavior: ignore.
1152       break;
1153     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1154       // FIXME: Remove in 4.0.
1155       if (Record.size() & 1)
1156         return error("Invalid record");
1157 
1158       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1159         AttrBuilder B;
1160         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1161         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1162       }
1163 
1164       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1165       Attrs.clear();
1166       break;
1167     }
1168     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1169       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1170         Attrs.push_back(MAttributeGroups[Record[i]]);
1171 
1172       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1173       Attrs.clear();
1174       break;
1175     }
1176     }
1177   }
1178 }
1179 
1180 // Returns Attribute::None on unrecognized codes.
1181 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1182   switch (Code) {
1183   default:
1184     return Attribute::None;
1185   case bitc::ATTR_KIND_ALIGNMENT:
1186     return Attribute::Alignment;
1187   case bitc::ATTR_KIND_ALWAYS_INLINE:
1188     return Attribute::AlwaysInline;
1189   case bitc::ATTR_KIND_ARGMEMONLY:
1190     return Attribute::ArgMemOnly;
1191   case bitc::ATTR_KIND_BUILTIN:
1192     return Attribute::Builtin;
1193   case bitc::ATTR_KIND_BY_VAL:
1194     return Attribute::ByVal;
1195   case bitc::ATTR_KIND_IN_ALLOCA:
1196     return Attribute::InAlloca;
1197   case bitc::ATTR_KIND_COLD:
1198     return Attribute::Cold;
1199   case bitc::ATTR_KIND_CONVERGENT:
1200     return Attribute::Convergent;
1201   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1202     return Attribute::InaccessibleMemOnly;
1203   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1204     return Attribute::InaccessibleMemOrArgMemOnly;
1205   case bitc::ATTR_KIND_INLINE_HINT:
1206     return Attribute::InlineHint;
1207   case bitc::ATTR_KIND_IN_REG:
1208     return Attribute::InReg;
1209   case bitc::ATTR_KIND_JUMP_TABLE:
1210     return Attribute::JumpTable;
1211   case bitc::ATTR_KIND_MIN_SIZE:
1212     return Attribute::MinSize;
1213   case bitc::ATTR_KIND_NAKED:
1214     return Attribute::Naked;
1215   case bitc::ATTR_KIND_NEST:
1216     return Attribute::Nest;
1217   case bitc::ATTR_KIND_NO_ALIAS:
1218     return Attribute::NoAlias;
1219   case bitc::ATTR_KIND_NO_BUILTIN:
1220     return Attribute::NoBuiltin;
1221   case bitc::ATTR_KIND_NO_CAPTURE:
1222     return Attribute::NoCapture;
1223   case bitc::ATTR_KIND_NO_DUPLICATE:
1224     return Attribute::NoDuplicate;
1225   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1226     return Attribute::NoImplicitFloat;
1227   case bitc::ATTR_KIND_NO_INLINE:
1228     return Attribute::NoInline;
1229   case bitc::ATTR_KIND_NO_RECURSE:
1230     return Attribute::NoRecurse;
1231   case bitc::ATTR_KIND_NON_LAZY_BIND:
1232     return Attribute::NonLazyBind;
1233   case bitc::ATTR_KIND_NON_NULL:
1234     return Attribute::NonNull;
1235   case bitc::ATTR_KIND_DEREFERENCEABLE:
1236     return Attribute::Dereferenceable;
1237   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1238     return Attribute::DereferenceableOrNull;
1239   case bitc::ATTR_KIND_ALLOC_SIZE:
1240     return Attribute::AllocSize;
1241   case bitc::ATTR_KIND_NO_RED_ZONE:
1242     return Attribute::NoRedZone;
1243   case bitc::ATTR_KIND_NO_RETURN:
1244     return Attribute::NoReturn;
1245   case bitc::ATTR_KIND_NO_UNWIND:
1246     return Attribute::NoUnwind;
1247   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1248     return Attribute::OptimizeForSize;
1249   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1250     return Attribute::OptimizeNone;
1251   case bitc::ATTR_KIND_READ_NONE:
1252     return Attribute::ReadNone;
1253   case bitc::ATTR_KIND_READ_ONLY:
1254     return Attribute::ReadOnly;
1255   case bitc::ATTR_KIND_RETURNED:
1256     return Attribute::Returned;
1257   case bitc::ATTR_KIND_RETURNS_TWICE:
1258     return Attribute::ReturnsTwice;
1259   case bitc::ATTR_KIND_S_EXT:
1260     return Attribute::SExt;
1261   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1262     return Attribute::StackAlignment;
1263   case bitc::ATTR_KIND_STACK_PROTECT:
1264     return Attribute::StackProtect;
1265   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1266     return Attribute::StackProtectReq;
1267   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1268     return Attribute::StackProtectStrong;
1269   case bitc::ATTR_KIND_SAFESTACK:
1270     return Attribute::SafeStack;
1271   case bitc::ATTR_KIND_STRUCT_RET:
1272     return Attribute::StructRet;
1273   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1274     return Attribute::SanitizeAddress;
1275   case bitc::ATTR_KIND_SANITIZE_THREAD:
1276     return Attribute::SanitizeThread;
1277   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1278     return Attribute::SanitizeMemory;
1279   case bitc::ATTR_KIND_SWIFT_ERROR:
1280     return Attribute::SwiftError;
1281   case bitc::ATTR_KIND_SWIFT_SELF:
1282     return Attribute::SwiftSelf;
1283   case bitc::ATTR_KIND_UW_TABLE:
1284     return Attribute::UWTable;
1285   case bitc::ATTR_KIND_WRITEONLY:
1286     return Attribute::WriteOnly;
1287   case bitc::ATTR_KIND_Z_EXT:
1288     return Attribute::ZExt;
1289   }
1290 }
1291 
1292 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1293                                          unsigned &Alignment) {
1294   // Note: Alignment in bitcode files is incremented by 1, so that zero
1295   // can be used for default alignment.
1296   if (Exponent > Value::MaxAlignmentExponent + 1)
1297     return error("Invalid alignment value");
1298   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1299   return Error::success();
1300 }
1301 
1302 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1303   *Kind = getAttrFromCode(Code);
1304   if (*Kind == Attribute::None)
1305     return error("Unknown attribute kind (" + Twine(Code) + ")");
1306   return Error::success();
1307 }
1308 
1309 Error BitcodeReader::parseAttributeGroupBlock() {
1310   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1311     return error("Invalid record");
1312 
1313   if (!MAttributeGroups.empty())
1314     return error("Invalid multiple blocks");
1315 
1316   SmallVector<uint64_t, 64> Record;
1317 
1318   // Read all the records.
1319   while (true) {
1320     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1321 
1322     switch (Entry.Kind) {
1323     case BitstreamEntry::SubBlock: // Handled for us already.
1324     case BitstreamEntry::Error:
1325       return error("Malformed block");
1326     case BitstreamEntry::EndBlock:
1327       return Error::success();
1328     case BitstreamEntry::Record:
1329       // The interesting case.
1330       break;
1331     }
1332 
1333     // Read a record.
1334     Record.clear();
1335     switch (Stream.readRecord(Entry.ID, Record)) {
1336     default:  // Default behavior: ignore.
1337       break;
1338     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1339       if (Record.size() < 3)
1340         return error("Invalid record");
1341 
1342       uint64_t GrpID = Record[0];
1343       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1344 
1345       AttrBuilder B;
1346       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1347         if (Record[i] == 0) {        // Enum attribute
1348           Attribute::AttrKind Kind;
1349           if (Error Err = parseAttrKind(Record[++i], &Kind))
1350             return Err;
1351 
1352           B.addAttribute(Kind);
1353         } else if (Record[i] == 1) { // Integer attribute
1354           Attribute::AttrKind Kind;
1355           if (Error Err = parseAttrKind(Record[++i], &Kind))
1356             return Err;
1357           if (Kind == Attribute::Alignment)
1358             B.addAlignmentAttr(Record[++i]);
1359           else if (Kind == Attribute::StackAlignment)
1360             B.addStackAlignmentAttr(Record[++i]);
1361           else if (Kind == Attribute::Dereferenceable)
1362             B.addDereferenceableAttr(Record[++i]);
1363           else if (Kind == Attribute::DereferenceableOrNull)
1364             B.addDereferenceableOrNullAttr(Record[++i]);
1365           else if (Kind == Attribute::AllocSize)
1366             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1367         } else {                     // String attribute
1368           assert((Record[i] == 3 || Record[i] == 4) &&
1369                  "Invalid attribute group entry");
1370           bool HasValue = (Record[i++] == 4);
1371           SmallString<64> KindStr;
1372           SmallString<64> ValStr;
1373 
1374           while (Record[i] != 0 && i != e)
1375             KindStr += Record[i++];
1376           assert(Record[i] == 0 && "Kind string not null terminated");
1377 
1378           if (HasValue) {
1379             // Has a value associated with it.
1380             ++i; // Skip the '0' that terminates the "kind" string.
1381             while (Record[i] != 0 && i != e)
1382               ValStr += Record[i++];
1383             assert(Record[i] == 0 && "Value string not null terminated");
1384           }
1385 
1386           B.addAttribute(KindStr.str(), ValStr.str());
1387         }
1388       }
1389 
1390       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1391       break;
1392     }
1393     }
1394   }
1395 }
1396 
1397 Error BitcodeReader::parseTypeTable() {
1398   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1399     return error("Invalid record");
1400 
1401   return parseTypeTableBody();
1402 }
1403 
1404 Error BitcodeReader::parseTypeTableBody() {
1405   if (!TypeList.empty())
1406     return error("Invalid multiple blocks");
1407 
1408   SmallVector<uint64_t, 64> Record;
1409   unsigned NumRecords = 0;
1410 
1411   SmallString<64> TypeName;
1412 
1413   // Read all the records for this type table.
1414   while (true) {
1415     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1416 
1417     switch (Entry.Kind) {
1418     case BitstreamEntry::SubBlock: // Handled for us already.
1419     case BitstreamEntry::Error:
1420       return error("Malformed block");
1421     case BitstreamEntry::EndBlock:
1422       if (NumRecords != TypeList.size())
1423         return error("Malformed block");
1424       return Error::success();
1425     case BitstreamEntry::Record:
1426       // The interesting case.
1427       break;
1428     }
1429 
1430     // Read a record.
1431     Record.clear();
1432     Type *ResultTy = nullptr;
1433     switch (Stream.readRecord(Entry.ID, Record)) {
1434     default:
1435       return error("Invalid value");
1436     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1437       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1438       // type list.  This allows us to reserve space.
1439       if (Record.size() < 1)
1440         return error("Invalid record");
1441       TypeList.resize(Record[0]);
1442       continue;
1443     case bitc::TYPE_CODE_VOID:      // VOID
1444       ResultTy = Type::getVoidTy(Context);
1445       break;
1446     case bitc::TYPE_CODE_HALF:     // HALF
1447       ResultTy = Type::getHalfTy(Context);
1448       break;
1449     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1450       ResultTy = Type::getFloatTy(Context);
1451       break;
1452     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1453       ResultTy = Type::getDoubleTy(Context);
1454       break;
1455     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1456       ResultTy = Type::getX86_FP80Ty(Context);
1457       break;
1458     case bitc::TYPE_CODE_FP128:     // FP128
1459       ResultTy = Type::getFP128Ty(Context);
1460       break;
1461     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1462       ResultTy = Type::getPPC_FP128Ty(Context);
1463       break;
1464     case bitc::TYPE_CODE_LABEL:     // LABEL
1465       ResultTy = Type::getLabelTy(Context);
1466       break;
1467     case bitc::TYPE_CODE_METADATA:  // METADATA
1468       ResultTy = Type::getMetadataTy(Context);
1469       break;
1470     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1471       ResultTy = Type::getX86_MMXTy(Context);
1472       break;
1473     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1474       ResultTy = Type::getTokenTy(Context);
1475       break;
1476     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1477       if (Record.size() < 1)
1478         return error("Invalid record");
1479 
1480       uint64_t NumBits = Record[0];
1481       if (NumBits < IntegerType::MIN_INT_BITS ||
1482           NumBits > IntegerType::MAX_INT_BITS)
1483         return error("Bitwidth for integer type out of range");
1484       ResultTy = IntegerType::get(Context, NumBits);
1485       break;
1486     }
1487     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1488                                     //          [pointee type, address space]
1489       if (Record.size() < 1)
1490         return error("Invalid record");
1491       unsigned AddressSpace = 0;
1492       if (Record.size() == 2)
1493         AddressSpace = Record[1];
1494       ResultTy = getTypeByID(Record[0]);
1495       if (!ResultTy ||
1496           !PointerType::isValidElementType(ResultTy))
1497         return error("Invalid type");
1498       ResultTy = PointerType::get(ResultTy, AddressSpace);
1499       break;
1500     }
1501     case bitc::TYPE_CODE_FUNCTION_OLD: {
1502       // FIXME: attrid is dead, remove it in LLVM 4.0
1503       // FUNCTION: [vararg, attrid, retty, paramty x N]
1504       if (Record.size() < 3)
1505         return error("Invalid record");
1506       SmallVector<Type*, 8> ArgTys;
1507       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1508         if (Type *T = getTypeByID(Record[i]))
1509           ArgTys.push_back(T);
1510         else
1511           break;
1512       }
1513 
1514       ResultTy = getTypeByID(Record[2]);
1515       if (!ResultTy || ArgTys.size() < Record.size()-3)
1516         return error("Invalid type");
1517 
1518       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1519       break;
1520     }
1521     case bitc::TYPE_CODE_FUNCTION: {
1522       // FUNCTION: [vararg, retty, paramty x N]
1523       if (Record.size() < 2)
1524         return error("Invalid record");
1525       SmallVector<Type*, 8> ArgTys;
1526       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1527         if (Type *T = getTypeByID(Record[i])) {
1528           if (!FunctionType::isValidArgumentType(T))
1529             return error("Invalid function argument type");
1530           ArgTys.push_back(T);
1531         }
1532         else
1533           break;
1534       }
1535 
1536       ResultTy = getTypeByID(Record[1]);
1537       if (!ResultTy || ArgTys.size() < Record.size()-2)
1538         return error("Invalid type");
1539 
1540       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1541       break;
1542     }
1543     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1544       if (Record.size() < 1)
1545         return error("Invalid record");
1546       SmallVector<Type*, 8> EltTys;
1547       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1548         if (Type *T = getTypeByID(Record[i]))
1549           EltTys.push_back(T);
1550         else
1551           break;
1552       }
1553       if (EltTys.size() != Record.size()-1)
1554         return error("Invalid type");
1555       ResultTy = StructType::get(Context, EltTys, Record[0]);
1556       break;
1557     }
1558     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1559       if (convertToString(Record, 0, TypeName))
1560         return error("Invalid record");
1561       continue;
1562 
1563     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1564       if (Record.size() < 1)
1565         return error("Invalid record");
1566 
1567       if (NumRecords >= TypeList.size())
1568         return error("Invalid TYPE table");
1569 
1570       // Check to see if this was forward referenced, if so fill in the temp.
1571       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1572       if (Res) {
1573         Res->setName(TypeName);
1574         TypeList[NumRecords] = nullptr;
1575       } else  // Otherwise, create a new struct.
1576         Res = createIdentifiedStructType(Context, TypeName);
1577       TypeName.clear();
1578 
1579       SmallVector<Type*, 8> EltTys;
1580       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1581         if (Type *T = getTypeByID(Record[i]))
1582           EltTys.push_back(T);
1583         else
1584           break;
1585       }
1586       if (EltTys.size() != Record.size()-1)
1587         return error("Invalid record");
1588       Res->setBody(EltTys, Record[0]);
1589       ResultTy = Res;
1590       break;
1591     }
1592     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1593       if (Record.size() != 1)
1594         return error("Invalid record");
1595 
1596       if (NumRecords >= TypeList.size())
1597         return error("Invalid TYPE table");
1598 
1599       // Check to see if this was forward referenced, if so fill in the temp.
1600       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1601       if (Res) {
1602         Res->setName(TypeName);
1603         TypeList[NumRecords] = nullptr;
1604       } else  // Otherwise, create a new struct with no body.
1605         Res = createIdentifiedStructType(Context, TypeName);
1606       TypeName.clear();
1607       ResultTy = Res;
1608       break;
1609     }
1610     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1611       if (Record.size() < 2)
1612         return error("Invalid record");
1613       ResultTy = getTypeByID(Record[1]);
1614       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1615         return error("Invalid type");
1616       ResultTy = ArrayType::get(ResultTy, Record[0]);
1617       break;
1618     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1619       if (Record.size() < 2)
1620         return error("Invalid record");
1621       if (Record[0] == 0)
1622         return error("Invalid vector length");
1623       ResultTy = getTypeByID(Record[1]);
1624       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1625         return error("Invalid type");
1626       ResultTy = VectorType::get(ResultTy, Record[0]);
1627       break;
1628     }
1629 
1630     if (NumRecords >= TypeList.size())
1631       return error("Invalid TYPE table");
1632     if (TypeList[NumRecords])
1633       return error(
1634           "Invalid TYPE table: Only named structs can be forward referenced");
1635     assert(ResultTy && "Didn't read a type?");
1636     TypeList[NumRecords++] = ResultTy;
1637   }
1638 }
1639 
1640 Error BitcodeReader::parseOperandBundleTags() {
1641   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1642     return error("Invalid record");
1643 
1644   if (!BundleTags.empty())
1645     return error("Invalid multiple blocks");
1646 
1647   SmallVector<uint64_t, 64> Record;
1648 
1649   while (true) {
1650     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1651 
1652     switch (Entry.Kind) {
1653     case BitstreamEntry::SubBlock: // Handled for us already.
1654     case BitstreamEntry::Error:
1655       return error("Malformed block");
1656     case BitstreamEntry::EndBlock:
1657       return Error::success();
1658     case BitstreamEntry::Record:
1659       // The interesting case.
1660       break;
1661     }
1662 
1663     // Tags are implicitly mapped to integers by their order.
1664 
1665     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1666       return error("Invalid record");
1667 
1668     // OPERAND_BUNDLE_TAG: [strchr x N]
1669     BundleTags.emplace_back();
1670     if (convertToString(Record, 0, BundleTags.back()))
1671       return error("Invalid record");
1672     Record.clear();
1673   }
1674 }
1675 
1676 /// Associate a value with its name from the given index in the provided record.
1677 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1678                                              unsigned NameIndex, Triple &TT) {
1679   SmallString<128> ValueName;
1680   if (convertToString(Record, NameIndex, ValueName))
1681     return error("Invalid record");
1682   unsigned ValueID = Record[0];
1683   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1684     return error("Invalid record");
1685   Value *V = ValueList[ValueID];
1686 
1687   StringRef NameStr(ValueName.data(), ValueName.size());
1688   if (NameStr.find_first_of(0) != StringRef::npos)
1689     return error("Invalid value name");
1690   V->setName(NameStr);
1691   auto *GO = dyn_cast<GlobalObject>(V);
1692   if (GO) {
1693     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1694       if (TT.isOSBinFormatMachO())
1695         GO->setComdat(nullptr);
1696       else
1697         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1698     }
1699   }
1700   return V;
1701 }
1702 
1703 /// Helper to note and return the current location, and jump to the given
1704 /// offset.
1705 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1706                                        BitstreamCursor &Stream) {
1707   // Save the current parsing location so we can jump back at the end
1708   // of the VST read.
1709   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1710   Stream.JumpToBit(Offset * 32);
1711 #ifndef NDEBUG
1712   // Do some checking if we are in debug mode.
1713   BitstreamEntry Entry = Stream.advance();
1714   assert(Entry.Kind == BitstreamEntry::SubBlock);
1715   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1716 #else
1717   // In NDEBUG mode ignore the output so we don't get an unused variable
1718   // warning.
1719   Stream.advance();
1720 #endif
1721   return CurrentBit;
1722 }
1723 
1724 /// Parse the value symbol table at either the current parsing location or
1725 /// at the given bit offset if provided.
1726 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1727   uint64_t CurrentBit;
1728   // Pass in the Offset to distinguish between calling for the module-level
1729   // VST (where we want to jump to the VST offset) and the function-level
1730   // VST (where we don't).
1731   if (Offset > 0)
1732     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1733 
1734   // Compute the delta between the bitcode indices in the VST (the word offset
1735   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1736   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1737   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1738   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1739   // just before entering the VST subblock because: 1) the EnterSubBlock
1740   // changes the AbbrevID width; 2) the VST block is nested within the same
1741   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1742   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1743   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1744   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1745   unsigned FuncBitcodeOffsetDelta =
1746       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1747 
1748   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1749     return error("Invalid record");
1750 
1751   SmallVector<uint64_t, 64> Record;
1752 
1753   Triple TT(TheModule->getTargetTriple());
1754 
1755   // Read all the records for this value table.
1756   SmallString<128> ValueName;
1757 
1758   while (true) {
1759     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1760 
1761     switch (Entry.Kind) {
1762     case BitstreamEntry::SubBlock: // Handled for us already.
1763     case BitstreamEntry::Error:
1764       return error("Malformed block");
1765     case BitstreamEntry::EndBlock:
1766       if (Offset > 0)
1767         Stream.JumpToBit(CurrentBit);
1768       return Error::success();
1769     case BitstreamEntry::Record:
1770       // The interesting case.
1771       break;
1772     }
1773 
1774     // Read a record.
1775     Record.clear();
1776     switch (Stream.readRecord(Entry.ID, Record)) {
1777     default:  // Default behavior: unknown type.
1778       break;
1779     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1780       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
1781       if (Error Err = ValOrErr.takeError())
1782         return Err;
1783       ValOrErr.get();
1784       break;
1785     }
1786     case bitc::VST_CODE_FNENTRY: {
1787       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1788       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
1789       if (Error Err = ValOrErr.takeError())
1790         return Err;
1791       Value *V = ValOrErr.get();
1792 
1793       auto *GO = dyn_cast<GlobalObject>(V);
1794       if (!GO) {
1795         // If this is an alias, need to get the actual Function object
1796         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1797         auto *GA = dyn_cast<GlobalAlias>(V);
1798         if (GA)
1799           GO = GA->getBaseObject();
1800         assert(GO);
1801       }
1802 
1803       // Note that we subtract 1 here because the offset is relative to one word
1804       // before the start of the identification or module block, which was
1805       // historically always the start of the regular bitcode header.
1806       uint64_t FuncWordOffset = Record[1] - 1;
1807       Function *F = dyn_cast<Function>(GO);
1808       assert(F);
1809       uint64_t FuncBitOffset = FuncWordOffset * 32;
1810       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1811       // Set the LastFunctionBlockBit to point to the last function block.
1812       // Later when parsing is resumed after function materialization,
1813       // we can simply skip that last function block.
1814       if (FuncBitOffset > LastFunctionBlockBit)
1815         LastFunctionBlockBit = FuncBitOffset;
1816       break;
1817     }
1818     case bitc::VST_CODE_BBENTRY: {
1819       if (convertToString(Record, 1, ValueName))
1820         return error("Invalid record");
1821       BasicBlock *BB = getBasicBlock(Record[0]);
1822       if (!BB)
1823         return error("Invalid record");
1824 
1825       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1826       ValueName.clear();
1827       break;
1828     }
1829     }
1830   }
1831 }
1832 
1833 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
1834 /// encoding.
1835 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1836   if ((V & 1) == 0)
1837     return V >> 1;
1838   if (V != 1)
1839     return -(V >> 1);
1840   // There is no such thing as -0 with integers.  "-0" really means MININT.
1841   return 1ULL << 63;
1842 }
1843 
1844 /// Resolve all of the initializers for global values and aliases that we can.
1845 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
1846   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1847   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
1848       IndirectSymbolInitWorklist;
1849   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
1850   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
1851   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
1852 
1853   GlobalInitWorklist.swap(GlobalInits);
1854   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
1855   FunctionPrefixWorklist.swap(FunctionPrefixes);
1856   FunctionPrologueWorklist.swap(FunctionPrologues);
1857   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
1858 
1859   while (!GlobalInitWorklist.empty()) {
1860     unsigned ValID = GlobalInitWorklist.back().second;
1861     if (ValID >= ValueList.size()) {
1862       // Not ready to resolve this yet, it requires something later in the file.
1863       GlobalInits.push_back(GlobalInitWorklist.back());
1864     } else {
1865       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1866         GlobalInitWorklist.back().first->setInitializer(C);
1867       else
1868         return error("Expected a constant");
1869     }
1870     GlobalInitWorklist.pop_back();
1871   }
1872 
1873   while (!IndirectSymbolInitWorklist.empty()) {
1874     unsigned ValID = IndirectSymbolInitWorklist.back().second;
1875     if (ValID >= ValueList.size()) {
1876       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
1877     } else {
1878       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
1879       if (!C)
1880         return error("Expected a constant");
1881       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
1882       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
1883         return error("Alias and aliasee types don't match");
1884       GIS->setIndirectSymbol(C);
1885     }
1886     IndirectSymbolInitWorklist.pop_back();
1887   }
1888 
1889   while (!FunctionPrefixWorklist.empty()) {
1890     unsigned ValID = FunctionPrefixWorklist.back().second;
1891     if (ValID >= ValueList.size()) {
1892       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
1893     } else {
1894       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1895         FunctionPrefixWorklist.back().first->setPrefixData(C);
1896       else
1897         return error("Expected a constant");
1898     }
1899     FunctionPrefixWorklist.pop_back();
1900   }
1901 
1902   while (!FunctionPrologueWorklist.empty()) {
1903     unsigned ValID = FunctionPrologueWorklist.back().second;
1904     if (ValID >= ValueList.size()) {
1905       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
1906     } else {
1907       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1908         FunctionPrologueWorklist.back().first->setPrologueData(C);
1909       else
1910         return error("Expected a constant");
1911     }
1912     FunctionPrologueWorklist.pop_back();
1913   }
1914 
1915   while (!FunctionPersonalityFnWorklist.empty()) {
1916     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
1917     if (ValID >= ValueList.size()) {
1918       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
1919     } else {
1920       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1921         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
1922       else
1923         return error("Expected a constant");
1924     }
1925     FunctionPersonalityFnWorklist.pop_back();
1926   }
1927 
1928   return Error::success();
1929 }
1930 
1931 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1932   SmallVector<uint64_t, 8> Words(Vals.size());
1933   transform(Vals, Words.begin(),
1934                  BitcodeReader::decodeSignRotatedValue);
1935 
1936   return APInt(TypeBits, Words);
1937 }
1938 
1939 Error BitcodeReader::parseConstants() {
1940   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1941     return error("Invalid record");
1942 
1943   SmallVector<uint64_t, 64> Record;
1944 
1945   // Read all the records for this value table.
1946   Type *CurTy = Type::getInt32Ty(Context);
1947   unsigned NextCstNo = ValueList.size();
1948 
1949   while (true) {
1950     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1951 
1952     switch (Entry.Kind) {
1953     case BitstreamEntry::SubBlock: // Handled for us already.
1954     case BitstreamEntry::Error:
1955       return error("Malformed block");
1956     case BitstreamEntry::EndBlock:
1957       if (NextCstNo != ValueList.size())
1958         return error("Invalid constant reference");
1959 
1960       // Once all the constants have been read, go through and resolve forward
1961       // references.
1962       ValueList.resolveConstantForwardRefs();
1963       return Error::success();
1964     case BitstreamEntry::Record:
1965       // The interesting case.
1966       break;
1967     }
1968 
1969     // Read a record.
1970     Record.clear();
1971     Type *VoidType = Type::getVoidTy(Context);
1972     Value *V = nullptr;
1973     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1974     switch (BitCode) {
1975     default:  // Default behavior: unknown constant
1976     case bitc::CST_CODE_UNDEF:     // UNDEF
1977       V = UndefValue::get(CurTy);
1978       break;
1979     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1980       if (Record.empty())
1981         return error("Invalid record");
1982       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
1983         return error("Invalid record");
1984       if (TypeList[Record[0]] == VoidType)
1985         return error("Invalid constant type");
1986       CurTy = TypeList[Record[0]];
1987       continue;  // Skip the ValueList manipulation.
1988     case bitc::CST_CODE_NULL:      // NULL
1989       V = Constant::getNullValue(CurTy);
1990       break;
1991     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1992       if (!CurTy->isIntegerTy() || Record.empty())
1993         return error("Invalid record");
1994       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1995       break;
1996     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1997       if (!CurTy->isIntegerTy() || Record.empty())
1998         return error("Invalid record");
1999 
2000       APInt VInt =
2001           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2002       V = ConstantInt::get(Context, VInt);
2003 
2004       break;
2005     }
2006     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2007       if (Record.empty())
2008         return error("Invalid record");
2009       if (CurTy->isHalfTy())
2010         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2011                                              APInt(16, (uint16_t)Record[0])));
2012       else if (CurTy->isFloatTy())
2013         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2014                                              APInt(32, (uint32_t)Record[0])));
2015       else if (CurTy->isDoubleTy())
2016         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2017                                              APInt(64, Record[0])));
2018       else if (CurTy->isX86_FP80Ty()) {
2019         // Bits are not stored the same way as a normal i80 APInt, compensate.
2020         uint64_t Rearrange[2];
2021         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2022         Rearrange[1] = Record[0] >> 48;
2023         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2024                                              APInt(80, Rearrange)));
2025       } else if (CurTy->isFP128Ty())
2026         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2027                                              APInt(128, Record)));
2028       else if (CurTy->isPPC_FP128Ty())
2029         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2030                                              APInt(128, Record)));
2031       else
2032         V = UndefValue::get(CurTy);
2033       break;
2034     }
2035 
2036     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2037       if (Record.empty())
2038         return error("Invalid record");
2039 
2040       unsigned Size = Record.size();
2041       SmallVector<Constant*, 16> Elts;
2042 
2043       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2044         for (unsigned i = 0; i != Size; ++i)
2045           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2046                                                      STy->getElementType(i)));
2047         V = ConstantStruct::get(STy, Elts);
2048       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2049         Type *EltTy = ATy->getElementType();
2050         for (unsigned i = 0; i != Size; ++i)
2051           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2052         V = ConstantArray::get(ATy, Elts);
2053       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2054         Type *EltTy = VTy->getElementType();
2055         for (unsigned i = 0; i != Size; ++i)
2056           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2057         V = ConstantVector::get(Elts);
2058       } else {
2059         V = UndefValue::get(CurTy);
2060       }
2061       break;
2062     }
2063     case bitc::CST_CODE_STRING:    // STRING: [values]
2064     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2065       if (Record.empty())
2066         return error("Invalid record");
2067 
2068       SmallString<16> Elts(Record.begin(), Record.end());
2069       V = ConstantDataArray::getString(Context, Elts,
2070                                        BitCode == bitc::CST_CODE_CSTRING);
2071       break;
2072     }
2073     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2074       if (Record.empty())
2075         return error("Invalid record");
2076 
2077       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2078       if (EltTy->isIntegerTy(8)) {
2079         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2080         if (isa<VectorType>(CurTy))
2081           V = ConstantDataVector::get(Context, Elts);
2082         else
2083           V = ConstantDataArray::get(Context, Elts);
2084       } else if (EltTy->isIntegerTy(16)) {
2085         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2086         if (isa<VectorType>(CurTy))
2087           V = ConstantDataVector::get(Context, Elts);
2088         else
2089           V = ConstantDataArray::get(Context, Elts);
2090       } else if (EltTy->isIntegerTy(32)) {
2091         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2092         if (isa<VectorType>(CurTy))
2093           V = ConstantDataVector::get(Context, Elts);
2094         else
2095           V = ConstantDataArray::get(Context, Elts);
2096       } else if (EltTy->isIntegerTy(64)) {
2097         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2098         if (isa<VectorType>(CurTy))
2099           V = ConstantDataVector::get(Context, Elts);
2100         else
2101           V = ConstantDataArray::get(Context, Elts);
2102       } else if (EltTy->isHalfTy()) {
2103         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2104         if (isa<VectorType>(CurTy))
2105           V = ConstantDataVector::getFP(Context, Elts);
2106         else
2107           V = ConstantDataArray::getFP(Context, Elts);
2108       } else if (EltTy->isFloatTy()) {
2109         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2110         if (isa<VectorType>(CurTy))
2111           V = ConstantDataVector::getFP(Context, Elts);
2112         else
2113           V = ConstantDataArray::getFP(Context, Elts);
2114       } else if (EltTy->isDoubleTy()) {
2115         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2116         if (isa<VectorType>(CurTy))
2117           V = ConstantDataVector::getFP(Context, Elts);
2118         else
2119           V = ConstantDataArray::getFP(Context, Elts);
2120       } else {
2121         return error("Invalid type for value");
2122       }
2123       break;
2124     }
2125     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2126       if (Record.size() < 3)
2127         return error("Invalid record");
2128       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2129       if (Opc < 0) {
2130         V = UndefValue::get(CurTy);  // Unknown binop.
2131       } else {
2132         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2133         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2134         unsigned Flags = 0;
2135         if (Record.size() >= 4) {
2136           if (Opc == Instruction::Add ||
2137               Opc == Instruction::Sub ||
2138               Opc == Instruction::Mul ||
2139               Opc == Instruction::Shl) {
2140             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2141               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2142             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2143               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2144           } else if (Opc == Instruction::SDiv ||
2145                      Opc == Instruction::UDiv ||
2146                      Opc == Instruction::LShr ||
2147                      Opc == Instruction::AShr) {
2148             if (Record[3] & (1 << bitc::PEO_EXACT))
2149               Flags |= SDivOperator::IsExact;
2150           }
2151         }
2152         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2153       }
2154       break;
2155     }
2156     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2157       if (Record.size() < 3)
2158         return error("Invalid record");
2159       int Opc = getDecodedCastOpcode(Record[0]);
2160       if (Opc < 0) {
2161         V = UndefValue::get(CurTy);  // Unknown cast.
2162       } else {
2163         Type *OpTy = getTypeByID(Record[1]);
2164         if (!OpTy)
2165           return error("Invalid record");
2166         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2167         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2168         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2169       }
2170       break;
2171     }
2172     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2173     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2174     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2175                                                      // operands]
2176       unsigned OpNum = 0;
2177       Type *PointeeType = nullptr;
2178       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2179           Record.size() % 2)
2180         PointeeType = getTypeByID(Record[OpNum++]);
2181 
2182       bool InBounds = false;
2183       Optional<unsigned> InRangeIndex;
2184       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2185         uint64_t Op = Record[OpNum++];
2186         InBounds = Op & 1;
2187         InRangeIndex = Op >> 1;
2188       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2189         InBounds = true;
2190 
2191       SmallVector<Constant*, 16> Elts;
2192       while (OpNum != Record.size()) {
2193         Type *ElTy = getTypeByID(Record[OpNum++]);
2194         if (!ElTy)
2195           return error("Invalid record");
2196         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2197       }
2198 
2199       if (PointeeType &&
2200           PointeeType !=
2201               cast<PointerType>(Elts[0]->getType()->getScalarType())
2202                   ->getElementType())
2203         return error("Explicit gep operator type does not match pointee type "
2204                      "of pointer operand");
2205 
2206       if (Elts.size() < 1)
2207         return error("Invalid gep with no operands");
2208 
2209       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2210       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2211                                          InBounds, InRangeIndex);
2212       break;
2213     }
2214     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2215       if (Record.size() < 3)
2216         return error("Invalid record");
2217 
2218       Type *SelectorTy = Type::getInt1Ty(Context);
2219 
2220       // The selector might be an i1 or an <n x i1>
2221       // Get the type from the ValueList before getting a forward ref.
2222       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2223         if (Value *V = ValueList[Record[0]])
2224           if (SelectorTy != V->getType())
2225             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2226 
2227       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2228                                                               SelectorTy),
2229                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2230                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2231       break;
2232     }
2233     case bitc::CST_CODE_CE_EXTRACTELT
2234         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2235       if (Record.size() < 3)
2236         return error("Invalid record");
2237       VectorType *OpTy =
2238         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2239       if (!OpTy)
2240         return error("Invalid record");
2241       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2242       Constant *Op1 = nullptr;
2243       if (Record.size() == 4) {
2244         Type *IdxTy = getTypeByID(Record[2]);
2245         if (!IdxTy)
2246           return error("Invalid record");
2247         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2248       } else // TODO: Remove with llvm 4.0
2249         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2250       if (!Op1)
2251         return error("Invalid record");
2252       V = ConstantExpr::getExtractElement(Op0, Op1);
2253       break;
2254     }
2255     case bitc::CST_CODE_CE_INSERTELT
2256         : { // CE_INSERTELT: [opval, opval, opty, opval]
2257       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2258       if (Record.size() < 3 || !OpTy)
2259         return error("Invalid record");
2260       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2261       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2262                                                   OpTy->getElementType());
2263       Constant *Op2 = nullptr;
2264       if (Record.size() == 4) {
2265         Type *IdxTy = getTypeByID(Record[2]);
2266         if (!IdxTy)
2267           return error("Invalid record");
2268         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2269       } else // TODO: Remove with llvm 4.0
2270         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2271       if (!Op2)
2272         return error("Invalid record");
2273       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2274       break;
2275     }
2276     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2277       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2278       if (Record.size() < 3 || !OpTy)
2279         return error("Invalid record");
2280       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2281       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2282       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2283                                                  OpTy->getNumElements());
2284       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2285       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2286       break;
2287     }
2288     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2289       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2290       VectorType *OpTy =
2291         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2292       if (Record.size() < 4 || !RTy || !OpTy)
2293         return error("Invalid record");
2294       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2295       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2296       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2297                                                  RTy->getNumElements());
2298       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2299       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2300       break;
2301     }
2302     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2303       if (Record.size() < 4)
2304         return error("Invalid record");
2305       Type *OpTy = getTypeByID(Record[0]);
2306       if (!OpTy)
2307         return error("Invalid record");
2308       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2309       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2310 
2311       if (OpTy->isFPOrFPVectorTy())
2312         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2313       else
2314         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2315       break;
2316     }
2317     // This maintains backward compatibility, pre-asm dialect keywords.
2318     // FIXME: Remove with the 4.0 release.
2319     case bitc::CST_CODE_INLINEASM_OLD: {
2320       if (Record.size() < 2)
2321         return error("Invalid record");
2322       std::string AsmStr, ConstrStr;
2323       bool HasSideEffects = Record[0] & 1;
2324       bool IsAlignStack = Record[0] >> 1;
2325       unsigned AsmStrSize = Record[1];
2326       if (2+AsmStrSize >= Record.size())
2327         return error("Invalid record");
2328       unsigned ConstStrSize = Record[2+AsmStrSize];
2329       if (3+AsmStrSize+ConstStrSize > Record.size())
2330         return error("Invalid record");
2331 
2332       for (unsigned i = 0; i != AsmStrSize; ++i)
2333         AsmStr += (char)Record[2+i];
2334       for (unsigned i = 0; i != ConstStrSize; ++i)
2335         ConstrStr += (char)Record[3+AsmStrSize+i];
2336       PointerType *PTy = cast<PointerType>(CurTy);
2337       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2338                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2339       break;
2340     }
2341     // This version adds support for the asm dialect keywords (e.g.,
2342     // inteldialect).
2343     case bitc::CST_CODE_INLINEASM: {
2344       if (Record.size() < 2)
2345         return error("Invalid record");
2346       std::string AsmStr, ConstrStr;
2347       bool HasSideEffects = Record[0] & 1;
2348       bool IsAlignStack = (Record[0] >> 1) & 1;
2349       unsigned AsmDialect = Record[0] >> 2;
2350       unsigned AsmStrSize = Record[1];
2351       if (2+AsmStrSize >= Record.size())
2352         return error("Invalid record");
2353       unsigned ConstStrSize = Record[2+AsmStrSize];
2354       if (3+AsmStrSize+ConstStrSize > Record.size())
2355         return error("Invalid record");
2356 
2357       for (unsigned i = 0; i != AsmStrSize; ++i)
2358         AsmStr += (char)Record[2+i];
2359       for (unsigned i = 0; i != ConstStrSize; ++i)
2360         ConstrStr += (char)Record[3+AsmStrSize+i];
2361       PointerType *PTy = cast<PointerType>(CurTy);
2362       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2363                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2364                          InlineAsm::AsmDialect(AsmDialect));
2365       break;
2366     }
2367     case bitc::CST_CODE_BLOCKADDRESS:{
2368       if (Record.size() < 3)
2369         return error("Invalid record");
2370       Type *FnTy = getTypeByID(Record[0]);
2371       if (!FnTy)
2372         return error("Invalid record");
2373       Function *Fn =
2374         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2375       if (!Fn)
2376         return error("Invalid record");
2377 
2378       // If the function is already parsed we can insert the block address right
2379       // away.
2380       BasicBlock *BB;
2381       unsigned BBID = Record[2];
2382       if (!BBID)
2383         // Invalid reference to entry block.
2384         return error("Invalid ID");
2385       if (!Fn->empty()) {
2386         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2387         for (size_t I = 0, E = BBID; I != E; ++I) {
2388           if (BBI == BBE)
2389             return error("Invalid ID");
2390           ++BBI;
2391         }
2392         BB = &*BBI;
2393       } else {
2394         // Otherwise insert a placeholder and remember it so it can be inserted
2395         // when the function is parsed.
2396         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2397         if (FwdBBs.empty())
2398           BasicBlockFwdRefQueue.push_back(Fn);
2399         if (FwdBBs.size() < BBID + 1)
2400           FwdBBs.resize(BBID + 1);
2401         if (!FwdBBs[BBID])
2402           FwdBBs[BBID] = BasicBlock::Create(Context);
2403         BB = FwdBBs[BBID];
2404       }
2405       V = BlockAddress::get(Fn, BB);
2406       break;
2407     }
2408     }
2409 
2410     ValueList.assignValue(V, NextCstNo);
2411     ++NextCstNo;
2412   }
2413 }
2414 
2415 Error BitcodeReader::parseUseLists() {
2416   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2417     return error("Invalid record");
2418 
2419   // Read all the records.
2420   SmallVector<uint64_t, 64> Record;
2421 
2422   while (true) {
2423     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2424 
2425     switch (Entry.Kind) {
2426     case BitstreamEntry::SubBlock: // Handled for us already.
2427     case BitstreamEntry::Error:
2428       return error("Malformed block");
2429     case BitstreamEntry::EndBlock:
2430       return Error::success();
2431     case BitstreamEntry::Record:
2432       // The interesting case.
2433       break;
2434     }
2435 
2436     // Read a use list record.
2437     Record.clear();
2438     bool IsBB = false;
2439     switch (Stream.readRecord(Entry.ID, Record)) {
2440     default:  // Default behavior: unknown type.
2441       break;
2442     case bitc::USELIST_CODE_BB:
2443       IsBB = true;
2444       LLVM_FALLTHROUGH;
2445     case bitc::USELIST_CODE_DEFAULT: {
2446       unsigned RecordLength = Record.size();
2447       if (RecordLength < 3)
2448         // Records should have at least an ID and two indexes.
2449         return error("Invalid record");
2450       unsigned ID = Record.back();
2451       Record.pop_back();
2452 
2453       Value *V;
2454       if (IsBB) {
2455         assert(ID < FunctionBBs.size() && "Basic block not found");
2456         V = FunctionBBs[ID];
2457       } else
2458         V = ValueList[ID];
2459       unsigned NumUses = 0;
2460       SmallDenseMap<const Use *, unsigned, 16> Order;
2461       for (const Use &U : V->materialized_uses()) {
2462         if (++NumUses > Record.size())
2463           break;
2464         Order[&U] = Record[NumUses - 1];
2465       }
2466       if (Order.size() != Record.size() || NumUses > Record.size())
2467         // Mismatches can happen if the functions are being materialized lazily
2468         // (out-of-order), or a value has been upgraded.
2469         break;
2470 
2471       V->sortUseList([&](const Use &L, const Use &R) {
2472         return Order.lookup(&L) < Order.lookup(&R);
2473       });
2474       break;
2475     }
2476     }
2477   }
2478 }
2479 
2480 /// When we see the block for metadata, remember where it is and then skip it.
2481 /// This lets us lazily deserialize the metadata.
2482 Error BitcodeReader::rememberAndSkipMetadata() {
2483   // Save the current stream state.
2484   uint64_t CurBit = Stream.GetCurrentBitNo();
2485   DeferredMetadataInfo.push_back(CurBit);
2486 
2487   // Skip over the block for now.
2488   if (Stream.SkipBlock())
2489     return error("Invalid record");
2490   return Error::success();
2491 }
2492 
2493 Error BitcodeReader::materializeMetadata() {
2494   for (uint64_t BitPos : DeferredMetadataInfo) {
2495     // Move the bit stream to the saved position.
2496     Stream.JumpToBit(BitPos);
2497     if (Error Err = MDLoader->parseModuleMetadata())
2498       return Err;
2499   }
2500   DeferredMetadataInfo.clear();
2501   return Error::success();
2502 }
2503 
2504 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2505 
2506 /// When we see the block for a function body, remember where it is and then
2507 /// skip it.  This lets us lazily deserialize the functions.
2508 Error BitcodeReader::rememberAndSkipFunctionBody() {
2509   // Get the function we are talking about.
2510   if (FunctionsWithBodies.empty())
2511     return error("Insufficient function protos");
2512 
2513   Function *Fn = FunctionsWithBodies.back();
2514   FunctionsWithBodies.pop_back();
2515 
2516   // Save the current stream state.
2517   uint64_t CurBit = Stream.GetCurrentBitNo();
2518   assert(
2519       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2520       "Mismatch between VST and scanned function offsets");
2521   DeferredFunctionInfo[Fn] = CurBit;
2522 
2523   // Skip over the function block for now.
2524   if (Stream.SkipBlock())
2525     return error("Invalid record");
2526   return Error::success();
2527 }
2528 
2529 Error BitcodeReader::globalCleanup() {
2530   // Patch the initializers for globals and aliases up.
2531   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2532     return Err;
2533   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2534     return error("Malformed global initializer set");
2535 
2536   // Look for intrinsic functions which need to be upgraded at some point
2537   for (Function &F : *TheModule) {
2538     Function *NewFn;
2539     if (UpgradeIntrinsicFunction(&F, NewFn))
2540       UpgradedIntrinsics[&F] = NewFn;
2541     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2542       // Some types could be renamed during loading if several modules are
2543       // loaded in the same LLVMContext (LTO scenario). In this case we should
2544       // remangle intrinsics names as well.
2545       RemangledIntrinsics[&F] = Remangled.getValue();
2546   }
2547 
2548   // Look for global variables which need to be renamed.
2549   for (GlobalVariable &GV : TheModule->globals())
2550     UpgradeGlobalVariable(&GV);
2551 
2552   // Force deallocation of memory for these vectors to favor the client that
2553   // want lazy deserialization.
2554   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2555   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
2556       IndirectSymbolInits);
2557   return Error::success();
2558 }
2559 
2560 /// Support for lazy parsing of function bodies. This is required if we
2561 /// either have an old bitcode file without a VST forward declaration record,
2562 /// or if we have an anonymous function being materialized, since anonymous
2563 /// functions do not have a name and are therefore not in the VST.
2564 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2565   Stream.JumpToBit(NextUnreadBit);
2566 
2567   if (Stream.AtEndOfStream())
2568     return error("Could not find function in stream");
2569 
2570   if (!SeenFirstFunctionBody)
2571     return error("Trying to materialize functions before seeing function blocks");
2572 
2573   // An old bitcode file with the symbol table at the end would have
2574   // finished the parse greedily.
2575   assert(SeenValueSymbolTable);
2576 
2577   SmallVector<uint64_t, 64> Record;
2578 
2579   while (true) {
2580     BitstreamEntry Entry = Stream.advance();
2581     switch (Entry.Kind) {
2582     default:
2583       return error("Expect SubBlock");
2584     case BitstreamEntry::SubBlock:
2585       switch (Entry.ID) {
2586       default:
2587         return error("Expect function block");
2588       case bitc::FUNCTION_BLOCK_ID:
2589         if (Error Err = rememberAndSkipFunctionBody())
2590           return Err;
2591         NextUnreadBit = Stream.GetCurrentBitNo();
2592         return Error::success();
2593       }
2594     }
2595   }
2596 }
2597 
2598 bool BitcodeReaderBase::readBlockInfo() {
2599   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2600   if (!NewBlockInfo)
2601     return true;
2602   BlockInfo = std::move(*NewBlockInfo);
2603   return false;
2604 }
2605 
2606 Error BitcodeReader::parseModule(uint64_t ResumeBit,
2607                                  bool ShouldLazyLoadMetadata) {
2608   if (ResumeBit)
2609     Stream.JumpToBit(ResumeBit);
2610   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2611     return error("Invalid record");
2612 
2613   SmallVector<uint64_t, 64> Record;
2614   std::vector<std::string> SectionTable;
2615   std::vector<std::string> GCTable;
2616 
2617   // Read all the records for this module.
2618   while (true) {
2619     BitstreamEntry Entry = Stream.advance();
2620 
2621     switch (Entry.Kind) {
2622     case BitstreamEntry::Error:
2623       return error("Malformed block");
2624     case BitstreamEntry::EndBlock:
2625       return globalCleanup();
2626 
2627     case BitstreamEntry::SubBlock:
2628       switch (Entry.ID) {
2629       default:  // Skip unknown content.
2630         if (Stream.SkipBlock())
2631           return error("Invalid record");
2632         break;
2633       case bitc::BLOCKINFO_BLOCK_ID:
2634         if (readBlockInfo())
2635           return error("Malformed block");
2636         break;
2637       case bitc::PARAMATTR_BLOCK_ID:
2638         if (Error Err = parseAttributeBlock())
2639           return Err;
2640         break;
2641       case bitc::PARAMATTR_GROUP_BLOCK_ID:
2642         if (Error Err = parseAttributeGroupBlock())
2643           return Err;
2644         break;
2645       case bitc::TYPE_BLOCK_ID_NEW:
2646         if (Error Err = parseTypeTable())
2647           return Err;
2648         break;
2649       case bitc::VALUE_SYMTAB_BLOCK_ID:
2650         if (!SeenValueSymbolTable) {
2651           // Either this is an old form VST without function index and an
2652           // associated VST forward declaration record (which would have caused
2653           // the VST to be jumped to and parsed before it was encountered
2654           // normally in the stream), or there were no function blocks to
2655           // trigger an earlier parsing of the VST.
2656           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
2657           if (Error Err = parseValueSymbolTable())
2658             return Err;
2659           SeenValueSymbolTable = true;
2660         } else {
2661           // We must have had a VST forward declaration record, which caused
2662           // the parser to jump to and parse the VST earlier.
2663           assert(VSTOffset > 0);
2664           if (Stream.SkipBlock())
2665             return error("Invalid record");
2666         }
2667         break;
2668       case bitc::CONSTANTS_BLOCK_ID:
2669         if (Error Err = parseConstants())
2670           return Err;
2671         if (Error Err = resolveGlobalAndIndirectSymbolInits())
2672           return Err;
2673         break;
2674       case bitc::METADATA_BLOCK_ID:
2675         if (ShouldLazyLoadMetadata) {
2676           if (Error Err = rememberAndSkipMetadata())
2677             return Err;
2678           break;
2679         }
2680         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
2681         if (Error Err = MDLoader->parseModuleMetadata())
2682           return Err;
2683         break;
2684       case bitc::METADATA_KIND_BLOCK_ID:
2685         if (Error Err = MDLoader->parseMetadataKinds())
2686           return Err;
2687         break;
2688       case bitc::FUNCTION_BLOCK_ID:
2689         // If this is the first function body we've seen, reverse the
2690         // FunctionsWithBodies list.
2691         if (!SeenFirstFunctionBody) {
2692           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
2693           if (Error Err = globalCleanup())
2694             return Err;
2695           SeenFirstFunctionBody = true;
2696         }
2697 
2698         if (VSTOffset > 0) {
2699           // If we have a VST forward declaration record, make sure we
2700           // parse the VST now if we haven't already. It is needed to
2701           // set up the DeferredFunctionInfo vector for lazy reading.
2702           if (!SeenValueSymbolTable) {
2703             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
2704               return Err;
2705             SeenValueSymbolTable = true;
2706             // Fall through so that we record the NextUnreadBit below.
2707             // This is necessary in case we have an anonymous function that
2708             // is later materialized. Since it will not have a VST entry we
2709             // need to fall back to the lazy parse to find its offset.
2710           } else {
2711             // If we have a VST forward declaration record, but have already
2712             // parsed the VST (just above, when the first function body was
2713             // encountered here), then we are resuming the parse after
2714             // materializing functions. The ResumeBit points to the
2715             // start of the last function block recorded in the
2716             // DeferredFunctionInfo map. Skip it.
2717             if (Stream.SkipBlock())
2718               return error("Invalid record");
2719             continue;
2720           }
2721         }
2722 
2723         // Support older bitcode files that did not have the function
2724         // index in the VST, nor a VST forward declaration record, as
2725         // well as anonymous functions that do not have VST entries.
2726         // Build the DeferredFunctionInfo vector on the fly.
2727         if (Error Err = rememberAndSkipFunctionBody())
2728           return Err;
2729 
2730         // Suspend parsing when we reach the function bodies. Subsequent
2731         // materialization calls will resume it when necessary. If the bitcode
2732         // file is old, the symbol table will be at the end instead and will not
2733         // have been seen yet. In this case, just finish the parse now.
2734         if (SeenValueSymbolTable) {
2735           NextUnreadBit = Stream.GetCurrentBitNo();
2736           // After the VST has been parsed, we need to make sure intrinsic name
2737           // are auto-upgraded.
2738           return globalCleanup();
2739         }
2740         break;
2741       case bitc::USELIST_BLOCK_ID:
2742         if (Error Err = parseUseLists())
2743           return Err;
2744         break;
2745       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
2746         if (Error Err = parseOperandBundleTags())
2747           return Err;
2748         break;
2749       }
2750       continue;
2751 
2752     case BitstreamEntry::Record:
2753       // The interesting case.
2754       break;
2755     }
2756 
2757     // Read a record.
2758     auto BitCode = Stream.readRecord(Entry.ID, Record);
2759     switch (BitCode) {
2760     default: break;  // Default behavior, ignore unknown content.
2761     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
2762       if (Record.size() < 1)
2763         return error("Invalid record");
2764       // Only version #0 and #1 are supported so far.
2765       unsigned module_version = Record[0];
2766       switch (module_version) {
2767         default:
2768           return error("Invalid value");
2769         case 0:
2770           UseRelativeIDs = false;
2771           break;
2772         case 1:
2773           UseRelativeIDs = true;
2774           break;
2775       }
2776       break;
2777     }
2778     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2779       std::string S;
2780       if (convertToString(Record, 0, S))
2781         return error("Invalid record");
2782       TheModule->setTargetTriple(S);
2783       break;
2784     }
2785     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
2786       std::string S;
2787       if (convertToString(Record, 0, S))
2788         return error("Invalid record");
2789       TheModule->setDataLayout(S);
2790       break;
2791     }
2792     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
2793       std::string S;
2794       if (convertToString(Record, 0, S))
2795         return error("Invalid record");
2796       TheModule->setModuleInlineAsm(S);
2797       break;
2798     }
2799     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
2800       // FIXME: Remove in 4.0.
2801       std::string S;
2802       if (convertToString(Record, 0, S))
2803         return error("Invalid record");
2804       // Ignore value.
2805       break;
2806     }
2807     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
2808       std::string S;
2809       if (convertToString(Record, 0, S))
2810         return error("Invalid record");
2811       SectionTable.push_back(S);
2812       break;
2813     }
2814     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
2815       std::string S;
2816       if (convertToString(Record, 0, S))
2817         return error("Invalid record");
2818       GCTable.push_back(S);
2819       break;
2820     }
2821     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
2822       if (Record.size() < 2)
2823         return error("Invalid record");
2824       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2825       unsigned ComdatNameSize = Record[1];
2826       std::string ComdatName;
2827       ComdatName.reserve(ComdatNameSize);
2828       for (unsigned i = 0; i != ComdatNameSize; ++i)
2829         ComdatName += (char)Record[2 + i];
2830       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
2831       C->setSelectionKind(SK);
2832       ComdatList.push_back(C);
2833       break;
2834     }
2835     // GLOBALVAR: [pointer type, isconst, initid,
2836     //             linkage, alignment, section, visibility, threadlocal,
2837     //             unnamed_addr, externally_initialized, dllstorageclass,
2838     //             comdat]
2839     case bitc::MODULE_CODE_GLOBALVAR: {
2840       if (Record.size() < 6)
2841         return error("Invalid record");
2842       Type *Ty = getTypeByID(Record[0]);
2843       if (!Ty)
2844         return error("Invalid record");
2845       bool isConstant = Record[1] & 1;
2846       bool explicitType = Record[1] & 2;
2847       unsigned AddressSpace;
2848       if (explicitType) {
2849         AddressSpace = Record[1] >> 2;
2850       } else {
2851         if (!Ty->isPointerTy())
2852           return error("Invalid type for value");
2853         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2854         Ty = cast<PointerType>(Ty)->getElementType();
2855       }
2856 
2857       uint64_t RawLinkage = Record[3];
2858       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2859       unsigned Alignment;
2860       if (Error Err = parseAlignmentValue(Record[4], Alignment))
2861         return Err;
2862       std::string Section;
2863       if (Record[5]) {
2864         if (Record[5]-1 >= SectionTable.size())
2865           return error("Invalid ID");
2866         Section = SectionTable[Record[5]-1];
2867       }
2868       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2869       // Local linkage must have default visibility.
2870       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2871         // FIXME: Change to an error if non-default in 4.0.
2872         Visibility = getDecodedVisibility(Record[6]);
2873 
2874       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2875       if (Record.size() > 7)
2876         TLM = getDecodedThreadLocalMode(Record[7]);
2877 
2878       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2879       if (Record.size() > 8)
2880         UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2881 
2882       bool ExternallyInitialized = false;
2883       if (Record.size() > 9)
2884         ExternallyInitialized = Record[9];
2885 
2886       GlobalVariable *NewGV =
2887         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
2888                            TLM, AddressSpace, ExternallyInitialized);
2889       NewGV->setAlignment(Alignment);
2890       if (!Section.empty())
2891         NewGV->setSection(Section);
2892       NewGV->setVisibility(Visibility);
2893       NewGV->setUnnamedAddr(UnnamedAddr);
2894 
2895       if (Record.size() > 10)
2896         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2897       else
2898         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2899 
2900       ValueList.push_back(NewGV);
2901 
2902       // Remember which value to use for the global initializer.
2903       if (unsigned InitID = Record[2])
2904         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
2905 
2906       if (Record.size() > 11) {
2907         if (unsigned ComdatID = Record[11]) {
2908           if (ComdatID > ComdatList.size())
2909             return error("Invalid global variable comdat ID");
2910           NewGV->setComdat(ComdatList[ComdatID - 1]);
2911         }
2912       } else if (hasImplicitComdat(RawLinkage)) {
2913         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2914       }
2915 
2916       break;
2917     }
2918     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
2919     //             alignment, section, visibility, gc, unnamed_addr,
2920     //             prologuedata, dllstorageclass, comdat, prefixdata]
2921     case bitc::MODULE_CODE_FUNCTION: {
2922       if (Record.size() < 8)
2923         return error("Invalid record");
2924       Type *Ty = getTypeByID(Record[0]);
2925       if (!Ty)
2926         return error("Invalid record");
2927       if (auto *PTy = dyn_cast<PointerType>(Ty))
2928         Ty = PTy->getElementType();
2929       auto *FTy = dyn_cast<FunctionType>(Ty);
2930       if (!FTy)
2931         return error("Invalid type for value");
2932       auto CC = static_cast<CallingConv::ID>(Record[1]);
2933       if (CC & ~CallingConv::MaxID)
2934         return error("Invalid calling convention ID");
2935 
2936       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
2937                                         "", TheModule);
2938 
2939       Func->setCallingConv(CC);
2940       bool isProto = Record[2];
2941       uint64_t RawLinkage = Record[3];
2942       Func->setLinkage(getDecodedLinkage(RawLinkage));
2943       Func->setAttributes(getAttributes(Record[4]));
2944 
2945       unsigned Alignment;
2946       if (Error Err = parseAlignmentValue(Record[5], Alignment))
2947         return Err;
2948       Func->setAlignment(Alignment);
2949       if (Record[6]) {
2950         if (Record[6]-1 >= SectionTable.size())
2951           return error("Invalid ID");
2952         Func->setSection(SectionTable[Record[6]-1]);
2953       }
2954       // Local linkage must have default visibility.
2955       if (!Func->hasLocalLinkage())
2956         // FIXME: Change to an error if non-default in 4.0.
2957         Func->setVisibility(getDecodedVisibility(Record[7]));
2958       if (Record.size() > 8 && Record[8]) {
2959         if (Record[8]-1 >= GCTable.size())
2960           return error("Invalid ID");
2961         Func->setGC(GCTable[Record[8] - 1]);
2962       }
2963       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2964       if (Record.size() > 9)
2965         UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2966       Func->setUnnamedAddr(UnnamedAddr);
2967       if (Record.size() > 10 && Record[10] != 0)
2968         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
2969 
2970       if (Record.size() > 11)
2971         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
2972       else
2973         upgradeDLLImportExportLinkage(Func, RawLinkage);
2974 
2975       if (Record.size() > 12) {
2976         if (unsigned ComdatID = Record[12]) {
2977           if (ComdatID > ComdatList.size())
2978             return error("Invalid function comdat ID");
2979           Func->setComdat(ComdatList[ComdatID - 1]);
2980         }
2981       } else if (hasImplicitComdat(RawLinkage)) {
2982         Func->setComdat(reinterpret_cast<Comdat *>(1));
2983       }
2984 
2985       if (Record.size() > 13 && Record[13] != 0)
2986         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
2987 
2988       if (Record.size() > 14 && Record[14] != 0)
2989         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
2990 
2991       ValueList.push_back(Func);
2992 
2993       // If this is a function with a body, remember the prototype we are
2994       // creating now, so that we can match up the body with them later.
2995       if (!isProto) {
2996         Func->setIsMaterializable(true);
2997         FunctionsWithBodies.push_back(Func);
2998         DeferredFunctionInfo[Func] = 0;
2999       }
3000       break;
3001     }
3002     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3003     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3004     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3005     case bitc::MODULE_CODE_IFUNC:
3006     case bitc::MODULE_CODE_ALIAS:
3007     case bitc::MODULE_CODE_ALIAS_OLD: {
3008       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3009       if (Record.size() < (3 + (unsigned)NewRecord))
3010         return error("Invalid record");
3011       unsigned OpNum = 0;
3012       Type *Ty = getTypeByID(Record[OpNum++]);
3013       if (!Ty)
3014         return error("Invalid record");
3015 
3016       unsigned AddrSpace;
3017       if (!NewRecord) {
3018         auto *PTy = dyn_cast<PointerType>(Ty);
3019         if (!PTy)
3020           return error("Invalid type for value");
3021         Ty = PTy->getElementType();
3022         AddrSpace = PTy->getAddressSpace();
3023       } else {
3024         AddrSpace = Record[OpNum++];
3025       }
3026 
3027       auto Val = Record[OpNum++];
3028       auto Linkage = Record[OpNum++];
3029       GlobalIndirectSymbol *NewGA;
3030       if (BitCode == bitc::MODULE_CODE_ALIAS ||
3031           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3032         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3033                                     "", TheModule);
3034       else
3035         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3036                                     "", nullptr, TheModule);
3037       // Old bitcode files didn't have visibility field.
3038       // Local linkage must have default visibility.
3039       if (OpNum != Record.size()) {
3040         auto VisInd = OpNum++;
3041         if (!NewGA->hasLocalLinkage())
3042           // FIXME: Change to an error if non-default in 4.0.
3043           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3044       }
3045       if (OpNum != Record.size())
3046         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3047       else
3048         upgradeDLLImportExportLinkage(NewGA, Linkage);
3049       if (OpNum != Record.size())
3050         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3051       if (OpNum != Record.size())
3052         NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3053       ValueList.push_back(NewGA);
3054       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3055       break;
3056     }
3057     /// MODULE_CODE_PURGEVALS: [numvals]
3058     case bitc::MODULE_CODE_PURGEVALS:
3059       // Trim down the value list to the specified size.
3060       if (Record.size() < 1 || Record[0] > ValueList.size())
3061         return error("Invalid record");
3062       ValueList.shrinkTo(Record[0]);
3063       break;
3064     /// MODULE_CODE_VSTOFFSET: [offset]
3065     case bitc::MODULE_CODE_VSTOFFSET:
3066       if (Record.size() < 1)
3067         return error("Invalid record");
3068       // Note that we subtract 1 here because the offset is relative to one word
3069       // before the start of the identification or module block, which was
3070       // historically always the start of the regular bitcode header.
3071       VSTOffset = Record[0] - 1;
3072       break;
3073     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3074     case bitc::MODULE_CODE_SOURCE_FILENAME:
3075       SmallString<128> ValueName;
3076       if (convertToString(Record, 0, ValueName))
3077         return error("Invalid record");
3078       TheModule->setSourceFileName(ValueName);
3079       break;
3080     }
3081     Record.clear();
3082   }
3083 }
3084 
3085 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3086                                       bool IsImporting) {
3087   TheModule = M;
3088   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3089                             [&](unsigned ID) { return getTypeByID(ID); });
3090   return parseModule(0, ShouldLazyLoadMetadata);
3091 }
3092 
3093 
3094 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3095   if (!isa<PointerType>(PtrType))
3096     return error("Load/Store operand is not a pointer type");
3097   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3098 
3099   if (ValType && ValType != ElemType)
3100     return error("Explicit load/store type does not match pointee "
3101                  "type of pointer operand");
3102   if (!PointerType::isLoadableOrStorableType(ElemType))
3103     return error("Cannot load/store from pointer");
3104   return Error::success();
3105 }
3106 
3107 /// Lazily parse the specified function body block.
3108 Error BitcodeReader::parseFunctionBody(Function *F) {
3109   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3110     return error("Invalid record");
3111 
3112   // Unexpected unresolved metadata when parsing function.
3113   if (MDLoader->hasFwdRefs())
3114     return error("Invalid function metadata: incoming forward references");
3115 
3116   InstructionList.clear();
3117   unsigned ModuleValueListSize = ValueList.size();
3118   unsigned ModuleMDLoaderSize = MDLoader->size();
3119 
3120   // Add all the function arguments to the value table.
3121   for (Argument &I : F->args())
3122     ValueList.push_back(&I);
3123 
3124   unsigned NextValueNo = ValueList.size();
3125   BasicBlock *CurBB = nullptr;
3126   unsigned CurBBNo = 0;
3127 
3128   DebugLoc LastLoc;
3129   auto getLastInstruction = [&]() -> Instruction * {
3130     if (CurBB && !CurBB->empty())
3131       return &CurBB->back();
3132     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3133              !FunctionBBs[CurBBNo - 1]->empty())
3134       return &FunctionBBs[CurBBNo - 1]->back();
3135     return nullptr;
3136   };
3137 
3138   std::vector<OperandBundleDef> OperandBundles;
3139 
3140   // Read all the records.
3141   SmallVector<uint64_t, 64> Record;
3142 
3143   while (true) {
3144     BitstreamEntry Entry = Stream.advance();
3145 
3146     switch (Entry.Kind) {
3147     case BitstreamEntry::Error:
3148       return error("Malformed block");
3149     case BitstreamEntry::EndBlock:
3150       goto OutOfRecordLoop;
3151 
3152     case BitstreamEntry::SubBlock:
3153       switch (Entry.ID) {
3154       default:  // Skip unknown content.
3155         if (Stream.SkipBlock())
3156           return error("Invalid record");
3157         break;
3158       case bitc::CONSTANTS_BLOCK_ID:
3159         if (Error Err = parseConstants())
3160           return Err;
3161         NextValueNo = ValueList.size();
3162         break;
3163       case bitc::VALUE_SYMTAB_BLOCK_ID:
3164         if (Error Err = parseValueSymbolTable())
3165           return Err;
3166         break;
3167       case bitc::METADATA_ATTACHMENT_ID:
3168         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3169           return Err;
3170         break;
3171       case bitc::METADATA_BLOCK_ID:
3172         assert(DeferredMetadataInfo.empty() &&
3173                "Must read all module-level metadata before function-level");
3174         if (Error Err = MDLoader->parseFunctionMetadata())
3175           return Err;
3176         break;
3177       case bitc::USELIST_BLOCK_ID:
3178         if (Error Err = parseUseLists())
3179           return Err;
3180         break;
3181       }
3182       continue;
3183 
3184     case BitstreamEntry::Record:
3185       // The interesting case.
3186       break;
3187     }
3188 
3189     // Read a record.
3190     Record.clear();
3191     Instruction *I = nullptr;
3192     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3193     switch (BitCode) {
3194     default: // Default behavior: reject
3195       return error("Invalid value");
3196     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3197       if (Record.size() < 1 || Record[0] == 0)
3198         return error("Invalid record");
3199       // Create all the basic blocks for the function.
3200       FunctionBBs.resize(Record[0]);
3201 
3202       // See if anything took the address of blocks in this function.
3203       auto BBFRI = BasicBlockFwdRefs.find(F);
3204       if (BBFRI == BasicBlockFwdRefs.end()) {
3205         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3206           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3207       } else {
3208         auto &BBRefs = BBFRI->second;
3209         // Check for invalid basic block references.
3210         if (BBRefs.size() > FunctionBBs.size())
3211           return error("Invalid ID");
3212         assert(!BBRefs.empty() && "Unexpected empty array");
3213         assert(!BBRefs.front() && "Invalid reference to entry block");
3214         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3215              ++I)
3216           if (I < RE && BBRefs[I]) {
3217             BBRefs[I]->insertInto(F);
3218             FunctionBBs[I] = BBRefs[I];
3219           } else {
3220             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3221           }
3222 
3223         // Erase from the table.
3224         BasicBlockFwdRefs.erase(BBFRI);
3225       }
3226 
3227       CurBB = FunctionBBs[0];
3228       continue;
3229     }
3230 
3231     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3232       // This record indicates that the last instruction is at the same
3233       // location as the previous instruction with a location.
3234       I = getLastInstruction();
3235 
3236       if (!I)
3237         return error("Invalid record");
3238       I->setDebugLoc(LastLoc);
3239       I = nullptr;
3240       continue;
3241 
3242     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3243       I = getLastInstruction();
3244       if (!I || Record.size() < 4)
3245         return error("Invalid record");
3246 
3247       unsigned Line = Record[0], Col = Record[1];
3248       unsigned ScopeID = Record[2], IAID = Record[3];
3249 
3250       MDNode *Scope = nullptr, *IA = nullptr;
3251       if (ScopeID) {
3252         Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1);
3253         if (!Scope)
3254           return error("Invalid record");
3255       }
3256       if (IAID) {
3257         IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1);
3258         if (!IA)
3259           return error("Invalid record");
3260       }
3261       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
3262       I->setDebugLoc(LastLoc);
3263       I = nullptr;
3264       continue;
3265     }
3266 
3267     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3268       unsigned OpNum = 0;
3269       Value *LHS, *RHS;
3270       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3271           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3272           OpNum+1 > Record.size())
3273         return error("Invalid record");
3274 
3275       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3276       if (Opc == -1)
3277         return error("Invalid record");
3278       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3279       InstructionList.push_back(I);
3280       if (OpNum < Record.size()) {
3281         if (Opc == Instruction::Add ||
3282             Opc == Instruction::Sub ||
3283             Opc == Instruction::Mul ||
3284             Opc == Instruction::Shl) {
3285           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3286             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3287           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3288             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3289         } else if (Opc == Instruction::SDiv ||
3290                    Opc == Instruction::UDiv ||
3291                    Opc == Instruction::LShr ||
3292                    Opc == Instruction::AShr) {
3293           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3294             cast<BinaryOperator>(I)->setIsExact(true);
3295         } else if (isa<FPMathOperator>(I)) {
3296           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3297           if (FMF.any())
3298             I->setFastMathFlags(FMF);
3299         }
3300 
3301       }
3302       break;
3303     }
3304     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3305       unsigned OpNum = 0;
3306       Value *Op;
3307       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3308           OpNum+2 != Record.size())
3309         return error("Invalid record");
3310 
3311       Type *ResTy = getTypeByID(Record[OpNum]);
3312       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3313       if (Opc == -1 || !ResTy)
3314         return error("Invalid record");
3315       Instruction *Temp = nullptr;
3316       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3317         if (Temp) {
3318           InstructionList.push_back(Temp);
3319           CurBB->getInstList().push_back(Temp);
3320         }
3321       } else {
3322         auto CastOp = (Instruction::CastOps)Opc;
3323         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3324           return error("Invalid cast");
3325         I = CastInst::Create(CastOp, Op, ResTy);
3326       }
3327       InstructionList.push_back(I);
3328       break;
3329     }
3330     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3331     case bitc::FUNC_CODE_INST_GEP_OLD:
3332     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3333       unsigned OpNum = 0;
3334 
3335       Type *Ty;
3336       bool InBounds;
3337 
3338       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3339         InBounds = Record[OpNum++];
3340         Ty = getTypeByID(Record[OpNum++]);
3341       } else {
3342         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3343         Ty = nullptr;
3344       }
3345 
3346       Value *BasePtr;
3347       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3348         return error("Invalid record");
3349 
3350       if (!Ty)
3351         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3352                  ->getElementType();
3353       else if (Ty !=
3354                cast<PointerType>(BasePtr->getType()->getScalarType())
3355                    ->getElementType())
3356         return error(
3357             "Explicit gep type does not match pointee type of pointer operand");
3358 
3359       SmallVector<Value*, 16> GEPIdx;
3360       while (OpNum != Record.size()) {
3361         Value *Op;
3362         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3363           return error("Invalid record");
3364         GEPIdx.push_back(Op);
3365       }
3366 
3367       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3368 
3369       InstructionList.push_back(I);
3370       if (InBounds)
3371         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3372       break;
3373     }
3374 
3375     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3376                                        // EXTRACTVAL: [opty, opval, n x indices]
3377       unsigned OpNum = 0;
3378       Value *Agg;
3379       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3380         return error("Invalid record");
3381 
3382       unsigned RecSize = Record.size();
3383       if (OpNum == RecSize)
3384         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3385 
3386       SmallVector<unsigned, 4> EXTRACTVALIdx;
3387       Type *CurTy = Agg->getType();
3388       for (; OpNum != RecSize; ++OpNum) {
3389         bool IsArray = CurTy->isArrayTy();
3390         bool IsStruct = CurTy->isStructTy();
3391         uint64_t Index = Record[OpNum];
3392 
3393         if (!IsStruct && !IsArray)
3394           return error("EXTRACTVAL: Invalid type");
3395         if ((unsigned)Index != Index)
3396           return error("Invalid value");
3397         if (IsStruct && Index >= CurTy->subtypes().size())
3398           return error("EXTRACTVAL: Invalid struct index");
3399         if (IsArray && Index >= CurTy->getArrayNumElements())
3400           return error("EXTRACTVAL: Invalid array index");
3401         EXTRACTVALIdx.push_back((unsigned)Index);
3402 
3403         if (IsStruct)
3404           CurTy = CurTy->subtypes()[Index];
3405         else
3406           CurTy = CurTy->subtypes()[0];
3407       }
3408 
3409       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3410       InstructionList.push_back(I);
3411       break;
3412     }
3413 
3414     case bitc::FUNC_CODE_INST_INSERTVAL: {
3415                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3416       unsigned OpNum = 0;
3417       Value *Agg;
3418       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3419         return error("Invalid record");
3420       Value *Val;
3421       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3422         return error("Invalid record");
3423 
3424       unsigned RecSize = Record.size();
3425       if (OpNum == RecSize)
3426         return error("INSERTVAL: Invalid instruction with 0 indices");
3427 
3428       SmallVector<unsigned, 4> INSERTVALIdx;
3429       Type *CurTy = Agg->getType();
3430       for (; OpNum != RecSize; ++OpNum) {
3431         bool IsArray = CurTy->isArrayTy();
3432         bool IsStruct = CurTy->isStructTy();
3433         uint64_t Index = Record[OpNum];
3434 
3435         if (!IsStruct && !IsArray)
3436           return error("INSERTVAL: Invalid type");
3437         if ((unsigned)Index != Index)
3438           return error("Invalid value");
3439         if (IsStruct && Index >= CurTy->subtypes().size())
3440           return error("INSERTVAL: Invalid struct index");
3441         if (IsArray && Index >= CurTy->getArrayNumElements())
3442           return error("INSERTVAL: Invalid array index");
3443 
3444         INSERTVALIdx.push_back((unsigned)Index);
3445         if (IsStruct)
3446           CurTy = CurTy->subtypes()[Index];
3447         else
3448           CurTy = CurTy->subtypes()[0];
3449       }
3450 
3451       if (CurTy != Val->getType())
3452         return error("Inserted value type doesn't match aggregate type");
3453 
3454       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3455       InstructionList.push_back(I);
3456       break;
3457     }
3458 
3459     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3460       // obsolete form of select
3461       // handles select i1 ... in old bitcode
3462       unsigned OpNum = 0;
3463       Value *TrueVal, *FalseVal, *Cond;
3464       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3465           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3466           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3467         return error("Invalid record");
3468 
3469       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3470       InstructionList.push_back(I);
3471       break;
3472     }
3473 
3474     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3475       // new form of select
3476       // handles select i1 or select [N x i1]
3477       unsigned OpNum = 0;
3478       Value *TrueVal, *FalseVal, *Cond;
3479       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3480           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3481           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3482         return error("Invalid record");
3483 
3484       // select condition can be either i1 or [N x i1]
3485       if (VectorType* vector_type =
3486           dyn_cast<VectorType>(Cond->getType())) {
3487         // expect <n x i1>
3488         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3489           return error("Invalid type for value");
3490       } else {
3491         // expect i1
3492         if (Cond->getType() != Type::getInt1Ty(Context))
3493           return error("Invalid type for value");
3494       }
3495 
3496       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3497       InstructionList.push_back(I);
3498       break;
3499     }
3500 
3501     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3502       unsigned OpNum = 0;
3503       Value *Vec, *Idx;
3504       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3505           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3506         return error("Invalid record");
3507       if (!Vec->getType()->isVectorTy())
3508         return error("Invalid type for value");
3509       I = ExtractElementInst::Create(Vec, Idx);
3510       InstructionList.push_back(I);
3511       break;
3512     }
3513 
3514     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3515       unsigned OpNum = 0;
3516       Value *Vec, *Elt, *Idx;
3517       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3518         return error("Invalid record");
3519       if (!Vec->getType()->isVectorTy())
3520         return error("Invalid type for value");
3521       if (popValue(Record, OpNum, NextValueNo,
3522                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3523           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3524         return error("Invalid record");
3525       I = InsertElementInst::Create(Vec, Elt, Idx);
3526       InstructionList.push_back(I);
3527       break;
3528     }
3529 
3530     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3531       unsigned OpNum = 0;
3532       Value *Vec1, *Vec2, *Mask;
3533       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3534           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3535         return error("Invalid record");
3536 
3537       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3538         return error("Invalid record");
3539       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3540         return error("Invalid type for value");
3541       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3542       InstructionList.push_back(I);
3543       break;
3544     }
3545 
3546     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3547       // Old form of ICmp/FCmp returning bool
3548       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3549       // both legal on vectors but had different behaviour.
3550     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3551       // FCmp/ICmp returning bool or vector of bool
3552 
3553       unsigned OpNum = 0;
3554       Value *LHS, *RHS;
3555       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3556           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3557         return error("Invalid record");
3558 
3559       unsigned PredVal = Record[OpNum];
3560       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3561       FastMathFlags FMF;
3562       if (IsFP && Record.size() > OpNum+1)
3563         FMF = getDecodedFastMathFlags(Record[++OpNum]);
3564 
3565       if (OpNum+1 != Record.size())
3566         return error("Invalid record");
3567 
3568       if (LHS->getType()->isFPOrFPVectorTy())
3569         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3570       else
3571         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3572 
3573       if (FMF.any())
3574         I->setFastMathFlags(FMF);
3575       InstructionList.push_back(I);
3576       break;
3577     }
3578 
3579     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3580       {
3581         unsigned Size = Record.size();
3582         if (Size == 0) {
3583           I = ReturnInst::Create(Context);
3584           InstructionList.push_back(I);
3585           break;
3586         }
3587 
3588         unsigned OpNum = 0;
3589         Value *Op = nullptr;
3590         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3591           return error("Invalid record");
3592         if (OpNum != Record.size())
3593           return error("Invalid record");
3594 
3595         I = ReturnInst::Create(Context, Op);
3596         InstructionList.push_back(I);
3597         break;
3598       }
3599     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3600       if (Record.size() != 1 && Record.size() != 3)
3601         return error("Invalid record");
3602       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3603       if (!TrueDest)
3604         return error("Invalid record");
3605 
3606       if (Record.size() == 1) {
3607         I = BranchInst::Create(TrueDest);
3608         InstructionList.push_back(I);
3609       }
3610       else {
3611         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3612         Value *Cond = getValue(Record, 2, NextValueNo,
3613                                Type::getInt1Ty(Context));
3614         if (!FalseDest || !Cond)
3615           return error("Invalid record");
3616         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3617         InstructionList.push_back(I);
3618       }
3619       break;
3620     }
3621     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3622       if (Record.size() != 1 && Record.size() != 2)
3623         return error("Invalid record");
3624       unsigned Idx = 0;
3625       Value *CleanupPad =
3626           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3627       if (!CleanupPad)
3628         return error("Invalid record");
3629       BasicBlock *UnwindDest = nullptr;
3630       if (Record.size() == 2) {
3631         UnwindDest = getBasicBlock(Record[Idx++]);
3632         if (!UnwindDest)
3633           return error("Invalid record");
3634       }
3635 
3636       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3637       InstructionList.push_back(I);
3638       break;
3639     }
3640     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3641       if (Record.size() != 2)
3642         return error("Invalid record");
3643       unsigned Idx = 0;
3644       Value *CatchPad =
3645           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3646       if (!CatchPad)
3647         return error("Invalid record");
3648       BasicBlock *BB = getBasicBlock(Record[Idx++]);
3649       if (!BB)
3650         return error("Invalid record");
3651 
3652       I = CatchReturnInst::Create(CatchPad, BB);
3653       InstructionList.push_back(I);
3654       break;
3655     }
3656     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3657       // We must have, at minimum, the outer scope and the number of arguments.
3658       if (Record.size() < 2)
3659         return error("Invalid record");
3660 
3661       unsigned Idx = 0;
3662 
3663       Value *ParentPad =
3664           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3665 
3666       unsigned NumHandlers = Record[Idx++];
3667 
3668       SmallVector<BasicBlock *, 2> Handlers;
3669       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3670         BasicBlock *BB = getBasicBlock(Record[Idx++]);
3671         if (!BB)
3672           return error("Invalid record");
3673         Handlers.push_back(BB);
3674       }
3675 
3676       BasicBlock *UnwindDest = nullptr;
3677       if (Idx + 1 == Record.size()) {
3678         UnwindDest = getBasicBlock(Record[Idx++]);
3679         if (!UnwindDest)
3680           return error("Invalid record");
3681       }
3682 
3683       if (Record.size() != Idx)
3684         return error("Invalid record");
3685 
3686       auto *CatchSwitch =
3687           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
3688       for (BasicBlock *Handler : Handlers)
3689         CatchSwitch->addHandler(Handler);
3690       I = CatchSwitch;
3691       InstructionList.push_back(I);
3692       break;
3693     }
3694     case bitc::FUNC_CODE_INST_CATCHPAD:
3695     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
3696       // We must have, at minimum, the outer scope and the number of arguments.
3697       if (Record.size() < 2)
3698         return error("Invalid record");
3699 
3700       unsigned Idx = 0;
3701 
3702       Value *ParentPad =
3703           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3704 
3705       unsigned NumArgOperands = Record[Idx++];
3706 
3707       SmallVector<Value *, 2> Args;
3708       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
3709         Value *Val;
3710         if (getValueTypePair(Record, Idx, NextValueNo, Val))
3711           return error("Invalid record");
3712         Args.push_back(Val);
3713       }
3714 
3715       if (Record.size() != Idx)
3716         return error("Invalid record");
3717 
3718       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
3719         I = CleanupPadInst::Create(ParentPad, Args);
3720       else
3721         I = CatchPadInst::Create(ParentPad, Args);
3722       InstructionList.push_back(I);
3723       break;
3724     }
3725     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3726       // Check magic
3727       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
3728         // "New" SwitchInst format with case ranges. The changes to write this
3729         // format were reverted but we still recognize bitcode that uses it.
3730         // Hopefully someday we will have support for case ranges and can use
3731         // this format again.
3732 
3733         Type *OpTy = getTypeByID(Record[1]);
3734         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
3735 
3736         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
3737         BasicBlock *Default = getBasicBlock(Record[3]);
3738         if (!OpTy || !Cond || !Default)
3739           return error("Invalid record");
3740 
3741         unsigned NumCases = Record[4];
3742 
3743         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3744         InstructionList.push_back(SI);
3745 
3746         unsigned CurIdx = 5;
3747         for (unsigned i = 0; i != NumCases; ++i) {
3748           SmallVector<ConstantInt*, 1> CaseVals;
3749           unsigned NumItems = Record[CurIdx++];
3750           for (unsigned ci = 0; ci != NumItems; ++ci) {
3751             bool isSingleNumber = Record[CurIdx++];
3752 
3753             APInt Low;
3754             unsigned ActiveWords = 1;
3755             if (ValueBitWidth > 64)
3756               ActiveWords = Record[CurIdx++];
3757             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3758                                 ValueBitWidth);
3759             CurIdx += ActiveWords;
3760 
3761             if (!isSingleNumber) {
3762               ActiveWords = 1;
3763               if (ValueBitWidth > 64)
3764                 ActiveWords = Record[CurIdx++];
3765               APInt High = readWideAPInt(
3766                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
3767               CurIdx += ActiveWords;
3768 
3769               // FIXME: It is not clear whether values in the range should be
3770               // compared as signed or unsigned values. The partially
3771               // implemented changes that used this format in the past used
3772               // unsigned comparisons.
3773               for ( ; Low.ule(High); ++Low)
3774                 CaseVals.push_back(ConstantInt::get(Context, Low));
3775             } else
3776               CaseVals.push_back(ConstantInt::get(Context, Low));
3777           }
3778           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
3779           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
3780                  cve = CaseVals.end(); cvi != cve; ++cvi)
3781             SI->addCase(*cvi, DestBB);
3782         }
3783         I = SI;
3784         break;
3785       }
3786 
3787       // Old SwitchInst format without case ranges.
3788 
3789       if (Record.size() < 3 || (Record.size() & 1) == 0)
3790         return error("Invalid record");
3791       Type *OpTy = getTypeByID(Record[0]);
3792       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
3793       BasicBlock *Default = getBasicBlock(Record[2]);
3794       if (!OpTy || !Cond || !Default)
3795         return error("Invalid record");
3796       unsigned NumCases = (Record.size()-3)/2;
3797       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3798       InstructionList.push_back(SI);
3799       for (unsigned i = 0, e = NumCases; i != e; ++i) {
3800         ConstantInt *CaseVal =
3801           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
3802         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
3803         if (!CaseVal || !DestBB) {
3804           delete SI;
3805           return error("Invalid record");
3806         }
3807         SI->addCase(CaseVal, DestBB);
3808       }
3809       I = SI;
3810       break;
3811     }
3812     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
3813       if (Record.size() < 2)
3814         return error("Invalid record");
3815       Type *OpTy = getTypeByID(Record[0]);
3816       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
3817       if (!OpTy || !Address)
3818         return error("Invalid record");
3819       unsigned NumDests = Record.size()-2;
3820       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
3821       InstructionList.push_back(IBI);
3822       for (unsigned i = 0, e = NumDests; i != e; ++i) {
3823         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
3824           IBI->addDestination(DestBB);
3825         } else {
3826           delete IBI;
3827           return error("Invalid record");
3828         }
3829       }
3830       I = IBI;
3831       break;
3832     }
3833 
3834     case bitc::FUNC_CODE_INST_INVOKE: {
3835       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
3836       if (Record.size() < 4)
3837         return error("Invalid record");
3838       unsigned OpNum = 0;
3839       AttributeSet PAL = getAttributes(Record[OpNum++]);
3840       unsigned CCInfo = Record[OpNum++];
3841       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
3842       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
3843 
3844       FunctionType *FTy = nullptr;
3845       if (CCInfo >> 13 & 1 &&
3846           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
3847         return error("Explicit invoke type is not a function type");
3848 
3849       Value *Callee;
3850       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3851         return error("Invalid record");
3852 
3853       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
3854       if (!CalleeTy)
3855         return error("Callee is not a pointer");
3856       if (!FTy) {
3857         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
3858         if (!FTy)
3859           return error("Callee is not of pointer to function type");
3860       } else if (CalleeTy->getElementType() != FTy)
3861         return error("Explicit invoke type does not match pointee type of "
3862                      "callee operand");
3863       if (Record.size() < FTy->getNumParams() + OpNum)
3864         return error("Insufficient operands to call");
3865 
3866       SmallVector<Value*, 16> Ops;
3867       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3868         Ops.push_back(getValue(Record, OpNum, NextValueNo,
3869                                FTy->getParamType(i)));
3870         if (!Ops.back())
3871           return error("Invalid record");
3872       }
3873 
3874       if (!FTy->isVarArg()) {
3875         if (Record.size() != OpNum)
3876           return error("Invalid record");
3877       } else {
3878         // Read type/value pairs for varargs params.
3879         while (OpNum != Record.size()) {
3880           Value *Op;
3881           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3882             return error("Invalid record");
3883           Ops.push_back(Op);
3884         }
3885       }
3886 
3887       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
3888       OperandBundles.clear();
3889       InstructionList.push_back(I);
3890       cast<InvokeInst>(I)->setCallingConv(
3891           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
3892       cast<InvokeInst>(I)->setAttributes(PAL);
3893       break;
3894     }
3895     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
3896       unsigned Idx = 0;
3897       Value *Val = nullptr;
3898       if (getValueTypePair(Record, Idx, NextValueNo, Val))
3899         return error("Invalid record");
3900       I = ResumeInst::Create(Val);
3901       InstructionList.push_back(I);
3902       break;
3903     }
3904     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
3905       I = new UnreachableInst(Context);
3906       InstructionList.push_back(I);
3907       break;
3908     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
3909       if (Record.size() < 1 || ((Record.size()-1)&1))
3910         return error("Invalid record");
3911       Type *Ty = getTypeByID(Record[0]);
3912       if (!Ty)
3913         return error("Invalid record");
3914 
3915       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
3916       InstructionList.push_back(PN);
3917 
3918       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
3919         Value *V;
3920         // With the new function encoding, it is possible that operands have
3921         // negative IDs (for forward references).  Use a signed VBR
3922         // representation to keep the encoding small.
3923         if (UseRelativeIDs)
3924           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
3925         else
3926           V = getValue(Record, 1+i, NextValueNo, Ty);
3927         BasicBlock *BB = getBasicBlock(Record[2+i]);
3928         if (!V || !BB)
3929           return error("Invalid record");
3930         PN->addIncoming(V, BB);
3931       }
3932       I = PN;
3933       break;
3934     }
3935 
3936     case bitc::FUNC_CODE_INST_LANDINGPAD:
3937     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
3938       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
3939       unsigned Idx = 0;
3940       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
3941         if (Record.size() < 3)
3942           return error("Invalid record");
3943       } else {
3944         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
3945         if (Record.size() < 4)
3946           return error("Invalid record");
3947       }
3948       Type *Ty = getTypeByID(Record[Idx++]);
3949       if (!Ty)
3950         return error("Invalid record");
3951       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
3952         Value *PersFn = nullptr;
3953         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
3954           return error("Invalid record");
3955 
3956         if (!F->hasPersonalityFn())
3957           F->setPersonalityFn(cast<Constant>(PersFn));
3958         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
3959           return error("Personality function mismatch");
3960       }
3961 
3962       bool IsCleanup = !!Record[Idx++];
3963       unsigned NumClauses = Record[Idx++];
3964       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
3965       LP->setCleanup(IsCleanup);
3966       for (unsigned J = 0; J != NumClauses; ++J) {
3967         LandingPadInst::ClauseType CT =
3968           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
3969         Value *Val;
3970 
3971         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
3972           delete LP;
3973           return error("Invalid record");
3974         }
3975 
3976         assert((CT != LandingPadInst::Catch ||
3977                 !isa<ArrayType>(Val->getType())) &&
3978                "Catch clause has a invalid type!");
3979         assert((CT != LandingPadInst::Filter ||
3980                 isa<ArrayType>(Val->getType())) &&
3981                "Filter clause has invalid type!");
3982         LP->addClause(cast<Constant>(Val));
3983       }
3984 
3985       I = LP;
3986       InstructionList.push_back(I);
3987       break;
3988     }
3989 
3990     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
3991       if (Record.size() != 4)
3992         return error("Invalid record");
3993       uint64_t AlignRecord = Record[3];
3994       const uint64_t InAllocaMask = uint64_t(1) << 5;
3995       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
3996       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
3997       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
3998                                 SwiftErrorMask;
3999       bool InAlloca = AlignRecord & InAllocaMask;
4000       bool SwiftError = AlignRecord & SwiftErrorMask;
4001       Type *Ty = getTypeByID(Record[0]);
4002       if ((AlignRecord & ExplicitTypeMask) == 0) {
4003         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4004         if (!PTy)
4005           return error("Old-style alloca with a non-pointer type");
4006         Ty = PTy->getElementType();
4007       }
4008       Type *OpTy = getTypeByID(Record[1]);
4009       Value *Size = getFnValueByID(Record[2], OpTy);
4010       unsigned Align;
4011       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4012         return Err;
4013       }
4014       if (!Ty || !Size)
4015         return error("Invalid record");
4016       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
4017       AI->setUsedWithInAlloca(InAlloca);
4018       AI->setSwiftError(SwiftError);
4019       I = AI;
4020       InstructionList.push_back(I);
4021       break;
4022     }
4023     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4024       unsigned OpNum = 0;
4025       Value *Op;
4026       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4027           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4028         return error("Invalid record");
4029 
4030       Type *Ty = nullptr;
4031       if (OpNum + 3 == Record.size())
4032         Ty = getTypeByID(Record[OpNum++]);
4033       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4034         return Err;
4035       if (!Ty)
4036         Ty = cast<PointerType>(Op->getType())->getElementType();
4037 
4038       unsigned Align;
4039       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4040         return Err;
4041       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4042 
4043       InstructionList.push_back(I);
4044       break;
4045     }
4046     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4047        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4048       unsigned OpNum = 0;
4049       Value *Op;
4050       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4051           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4052         return error("Invalid record");
4053 
4054       Type *Ty = nullptr;
4055       if (OpNum + 5 == Record.size())
4056         Ty = getTypeByID(Record[OpNum++]);
4057       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4058         return Err;
4059       if (!Ty)
4060         Ty = cast<PointerType>(Op->getType())->getElementType();
4061 
4062       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4063       if (Ordering == AtomicOrdering::NotAtomic ||
4064           Ordering == AtomicOrdering::Release ||
4065           Ordering == AtomicOrdering::AcquireRelease)
4066         return error("Invalid record");
4067       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4068         return error("Invalid record");
4069       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4070 
4071       unsigned Align;
4072       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4073         return Err;
4074       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
4075 
4076       InstructionList.push_back(I);
4077       break;
4078     }
4079     case bitc::FUNC_CODE_INST_STORE:
4080     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4081       unsigned OpNum = 0;
4082       Value *Val, *Ptr;
4083       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4084           (BitCode == bitc::FUNC_CODE_INST_STORE
4085                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4086                : popValue(Record, OpNum, NextValueNo,
4087                           cast<PointerType>(Ptr->getType())->getElementType(),
4088                           Val)) ||
4089           OpNum + 2 != Record.size())
4090         return error("Invalid record");
4091 
4092       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4093         return Err;
4094       unsigned Align;
4095       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4096         return Err;
4097       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4098       InstructionList.push_back(I);
4099       break;
4100     }
4101     case bitc::FUNC_CODE_INST_STOREATOMIC:
4102     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4103       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
4104       unsigned OpNum = 0;
4105       Value *Val, *Ptr;
4106       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4107           !isa<PointerType>(Ptr->getType()) ||
4108           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4109                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4110                : popValue(Record, OpNum, NextValueNo,
4111                           cast<PointerType>(Ptr->getType())->getElementType(),
4112                           Val)) ||
4113           OpNum + 4 != Record.size())
4114         return error("Invalid record");
4115 
4116       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4117         return Err;
4118       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4119       if (Ordering == AtomicOrdering::NotAtomic ||
4120           Ordering == AtomicOrdering::Acquire ||
4121           Ordering == AtomicOrdering::AcquireRelease)
4122         return error("Invalid record");
4123       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4124       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4125         return error("Invalid record");
4126 
4127       unsigned Align;
4128       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4129         return Err;
4130       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
4131       InstructionList.push_back(I);
4132       break;
4133     }
4134     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4135     case bitc::FUNC_CODE_INST_CMPXCHG: {
4136       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
4137       //          failureordering?, isweak?]
4138       unsigned OpNum = 0;
4139       Value *Ptr, *Cmp, *New;
4140       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4141           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4142                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4143                : popValue(Record, OpNum, NextValueNo,
4144                           cast<PointerType>(Ptr->getType())->getElementType(),
4145                           Cmp)) ||
4146           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4147           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4148         return error("Invalid record");
4149       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4150       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4151           SuccessOrdering == AtomicOrdering::Unordered)
4152         return error("Invalid record");
4153       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
4154 
4155       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4156         return Err;
4157       AtomicOrdering FailureOrdering;
4158       if (Record.size() < 7)
4159         FailureOrdering =
4160             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4161       else
4162         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4163 
4164       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4165                                 SynchScope);
4166       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4167 
4168       if (Record.size() < 8) {
4169         // Before weak cmpxchgs existed, the instruction simply returned the
4170         // value loaded from memory, so bitcode files from that era will be
4171         // expecting the first component of a modern cmpxchg.
4172         CurBB->getInstList().push_back(I);
4173         I = ExtractValueInst::Create(I, 0);
4174       } else {
4175         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4176       }
4177 
4178       InstructionList.push_back(I);
4179       break;
4180     }
4181     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4182       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
4183       unsigned OpNum = 0;
4184       Value *Ptr, *Val;
4185       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4186           !isa<PointerType>(Ptr->getType()) ||
4187           popValue(Record, OpNum, NextValueNo,
4188                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4189           OpNum+4 != Record.size())
4190         return error("Invalid record");
4191       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4192       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4193           Operation > AtomicRMWInst::LAST_BINOP)
4194         return error("Invalid record");
4195       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4196       if (Ordering == AtomicOrdering::NotAtomic ||
4197           Ordering == AtomicOrdering::Unordered)
4198         return error("Invalid record");
4199       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4200       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
4201       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4202       InstructionList.push_back(I);
4203       break;
4204     }
4205     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
4206       if (2 != Record.size())
4207         return error("Invalid record");
4208       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4209       if (Ordering == AtomicOrdering::NotAtomic ||
4210           Ordering == AtomicOrdering::Unordered ||
4211           Ordering == AtomicOrdering::Monotonic)
4212         return error("Invalid record");
4213       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
4214       I = new FenceInst(Context, Ordering, SynchScope);
4215       InstructionList.push_back(I);
4216       break;
4217     }
4218     case bitc::FUNC_CODE_INST_CALL: {
4219       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4220       if (Record.size() < 3)
4221         return error("Invalid record");
4222 
4223       unsigned OpNum = 0;
4224       AttributeSet PAL = getAttributes(Record[OpNum++]);
4225       unsigned CCInfo = Record[OpNum++];
4226 
4227       FastMathFlags FMF;
4228       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4229         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4230         if (!FMF.any())
4231           return error("Fast math flags indicator set for call with no FMF");
4232       }
4233 
4234       FunctionType *FTy = nullptr;
4235       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4236           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4237         return error("Explicit call type is not a function type");
4238 
4239       Value *Callee;
4240       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4241         return error("Invalid record");
4242 
4243       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4244       if (!OpTy)
4245         return error("Callee is not a pointer type");
4246       if (!FTy) {
4247         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4248         if (!FTy)
4249           return error("Callee is not of pointer to function type");
4250       } else if (OpTy->getElementType() != FTy)
4251         return error("Explicit call type does not match pointee type of "
4252                      "callee operand");
4253       if (Record.size() < FTy->getNumParams() + OpNum)
4254         return error("Insufficient operands to call");
4255 
4256       SmallVector<Value*, 16> Args;
4257       // Read the fixed params.
4258       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4259         if (FTy->getParamType(i)->isLabelTy())
4260           Args.push_back(getBasicBlock(Record[OpNum]));
4261         else
4262           Args.push_back(getValue(Record, OpNum, NextValueNo,
4263                                   FTy->getParamType(i)));
4264         if (!Args.back())
4265           return error("Invalid record");
4266       }
4267 
4268       // Read type/value pairs for varargs params.
4269       if (!FTy->isVarArg()) {
4270         if (OpNum != Record.size())
4271           return error("Invalid record");
4272       } else {
4273         while (OpNum != Record.size()) {
4274           Value *Op;
4275           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4276             return error("Invalid record");
4277           Args.push_back(Op);
4278         }
4279       }
4280 
4281       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4282       OperandBundles.clear();
4283       InstructionList.push_back(I);
4284       cast<CallInst>(I)->setCallingConv(
4285           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4286       CallInst::TailCallKind TCK = CallInst::TCK_None;
4287       if (CCInfo & 1 << bitc::CALL_TAIL)
4288         TCK = CallInst::TCK_Tail;
4289       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4290         TCK = CallInst::TCK_MustTail;
4291       if (CCInfo & (1 << bitc::CALL_NOTAIL))
4292         TCK = CallInst::TCK_NoTail;
4293       cast<CallInst>(I)->setTailCallKind(TCK);
4294       cast<CallInst>(I)->setAttributes(PAL);
4295       if (FMF.any()) {
4296         if (!isa<FPMathOperator>(I))
4297           return error("Fast-math-flags specified for call without "
4298                        "floating-point scalar or vector return type");
4299         I->setFastMathFlags(FMF);
4300       }
4301       break;
4302     }
4303     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4304       if (Record.size() < 3)
4305         return error("Invalid record");
4306       Type *OpTy = getTypeByID(Record[0]);
4307       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4308       Type *ResTy = getTypeByID(Record[2]);
4309       if (!OpTy || !Op || !ResTy)
4310         return error("Invalid record");
4311       I = new VAArgInst(Op, ResTy);
4312       InstructionList.push_back(I);
4313       break;
4314     }
4315 
4316     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4317       // A call or an invoke can be optionally prefixed with some variable
4318       // number of operand bundle blocks.  These blocks are read into
4319       // OperandBundles and consumed at the next call or invoke instruction.
4320 
4321       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4322         return error("Invalid record");
4323 
4324       std::vector<Value *> Inputs;
4325 
4326       unsigned OpNum = 1;
4327       while (OpNum != Record.size()) {
4328         Value *Op;
4329         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4330           return error("Invalid record");
4331         Inputs.push_back(Op);
4332       }
4333 
4334       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4335       continue;
4336     }
4337     }
4338 
4339     // Add instruction to end of current BB.  If there is no current BB, reject
4340     // this file.
4341     if (!CurBB) {
4342       delete I;
4343       return error("Invalid instruction with no BB");
4344     }
4345     if (!OperandBundles.empty()) {
4346       delete I;
4347       return error("Operand bundles found with no consumer");
4348     }
4349     CurBB->getInstList().push_back(I);
4350 
4351     // If this was a terminator instruction, move to the next block.
4352     if (isa<TerminatorInst>(I)) {
4353       ++CurBBNo;
4354       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4355     }
4356 
4357     // Non-void values get registered in the value table for future use.
4358     if (I && !I->getType()->isVoidTy())
4359       ValueList.assignValue(I, NextValueNo++);
4360   }
4361 
4362 OutOfRecordLoop:
4363 
4364   if (!OperandBundles.empty())
4365     return error("Operand bundles found with no consumer");
4366 
4367   // Check the function list for unresolved values.
4368   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4369     if (!A->getParent()) {
4370       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4371       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4372         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4373           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4374           delete A;
4375         }
4376       }
4377       return error("Never resolved value found in function");
4378     }
4379   }
4380 
4381   // Unexpected unresolved metadata about to be dropped.
4382   if (MDLoader->hasFwdRefs())
4383     return error("Invalid function metadata: outgoing forward refs");
4384 
4385   // Trim the value list down to the size it was before we parsed this function.
4386   ValueList.shrinkTo(ModuleValueListSize);
4387   MDLoader->shrinkTo(ModuleMDLoaderSize);
4388   std::vector<BasicBlock*>().swap(FunctionBBs);
4389   return Error::success();
4390 }
4391 
4392 /// Find the function body in the bitcode stream
4393 Error BitcodeReader::findFunctionInStream(
4394     Function *F,
4395     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4396   while (DeferredFunctionInfoIterator->second == 0) {
4397     // This is the fallback handling for the old format bitcode that
4398     // didn't contain the function index in the VST, or when we have
4399     // an anonymous function which would not have a VST entry.
4400     // Assert that we have one of those two cases.
4401     assert(VSTOffset == 0 || !F->hasName());
4402     // Parse the next body in the stream and set its position in the
4403     // DeferredFunctionInfo map.
4404     if (Error Err = rememberAndSkipFunctionBodies())
4405       return Err;
4406   }
4407   return Error::success();
4408 }
4409 
4410 //===----------------------------------------------------------------------===//
4411 // GVMaterializer implementation
4412 //===----------------------------------------------------------------------===//
4413 
4414 Error BitcodeReader::materialize(GlobalValue *GV) {
4415   Function *F = dyn_cast<Function>(GV);
4416   // If it's not a function or is already material, ignore the request.
4417   if (!F || !F->isMaterializable())
4418     return Error::success();
4419 
4420   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4421   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4422   // If its position is recorded as 0, its body is somewhere in the stream
4423   // but we haven't seen it yet.
4424   if (DFII->second == 0)
4425     if (Error Err = findFunctionInStream(F, DFII))
4426       return Err;
4427 
4428   // Materialize metadata before parsing any function bodies.
4429   if (Error Err = materializeMetadata())
4430     return Err;
4431 
4432   // Move the bit stream to the saved position of the deferred function body.
4433   Stream.JumpToBit(DFII->second);
4434 
4435   if (Error Err = parseFunctionBody(F))
4436     return Err;
4437   F->setIsMaterializable(false);
4438 
4439   if (StripDebugInfo)
4440     stripDebugInfo(*F);
4441 
4442   // Upgrade any old intrinsic calls in the function.
4443   for (auto &I : UpgradedIntrinsics) {
4444     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4445          UI != UE;) {
4446       User *U = *UI;
4447       ++UI;
4448       if (CallInst *CI = dyn_cast<CallInst>(U))
4449         UpgradeIntrinsicCall(CI, I.second);
4450     }
4451   }
4452 
4453   // Update calls to the remangled intrinsics
4454   for (auto &I : RemangledIntrinsics)
4455     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4456          UI != UE;)
4457       // Don't expect any other users than call sites
4458       CallSite(*UI++).setCalledFunction(I.second);
4459 
4460   // Finish fn->subprogram upgrade for materialized functions.
4461   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4462     F->setSubprogram(SP);
4463 
4464   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4465   if (!MDLoader->isStrippingTBAA()) {
4466     for (auto &I : instructions(F)) {
4467       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4468       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4469         continue;
4470       MDLoader->setStripTBAA(true);
4471       stripTBAA(F->getParent());
4472     }
4473   }
4474 
4475   // Bring in any functions that this function forward-referenced via
4476   // blockaddresses.
4477   return materializeForwardReferencedFunctions();
4478 }
4479 
4480 Error BitcodeReader::materializeModule() {
4481   if (Error Err = materializeMetadata())
4482     return Err;
4483 
4484   // Promise to materialize all forward references.
4485   WillMaterializeAllForwardRefs = true;
4486 
4487   // Iterate over the module, deserializing any functions that are still on
4488   // disk.
4489   for (Function &F : *TheModule) {
4490     if (Error Err = materialize(&F))
4491       return Err;
4492   }
4493   // At this point, if there are any function bodies, parse the rest of
4494   // the bits in the module past the last function block we have recorded
4495   // through either lazy scanning or the VST.
4496   if (LastFunctionBlockBit || NextUnreadBit)
4497     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4498                                     ? LastFunctionBlockBit
4499                                     : NextUnreadBit))
4500       return Err;
4501 
4502   // Check that all block address forward references got resolved (as we
4503   // promised above).
4504   if (!BasicBlockFwdRefs.empty())
4505     return error("Never resolved function from blockaddress");
4506 
4507   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4508   // delete the old functions to clean up. We can't do this unless the entire
4509   // module is materialized because there could always be another function body
4510   // with calls to the old function.
4511   for (auto &I : UpgradedIntrinsics) {
4512     for (auto *U : I.first->users()) {
4513       if (CallInst *CI = dyn_cast<CallInst>(U))
4514         UpgradeIntrinsicCall(CI, I.second);
4515     }
4516     if (!I.first->use_empty())
4517       I.first->replaceAllUsesWith(I.second);
4518     I.first->eraseFromParent();
4519   }
4520   UpgradedIntrinsics.clear();
4521   // Do the same for remangled intrinsics
4522   for (auto &I : RemangledIntrinsics) {
4523     I.first->replaceAllUsesWith(I.second);
4524     I.first->eraseFromParent();
4525   }
4526   RemangledIntrinsics.clear();
4527 
4528   UpgradeDebugInfo(*TheModule);
4529 
4530   UpgradeModuleFlags(*TheModule);
4531   return Error::success();
4532 }
4533 
4534 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4535   return IdentifiedStructTypes;
4536 }
4537 
4538 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4539     BitstreamCursor Cursor, ModuleSummaryIndex &TheIndex)
4540     : BitcodeReaderBase(std::move(Cursor)), TheIndex(TheIndex) {}
4541 
4542 std::pair<GlobalValue::GUID, GlobalValue::GUID>
4543 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
4544   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
4545   assert(VGI != ValueIdToCallGraphGUIDMap.end());
4546   return VGI->second;
4547 }
4548 
4549 // Specialized value symbol table parser used when reading module index
4550 // blocks where we don't actually create global values. The parsed information
4551 // is saved in the bitcode reader for use when later parsing summaries.
4552 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4553     uint64_t Offset,
4554     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4555   assert(Offset > 0 && "Expected non-zero VST offset");
4556   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4557 
4558   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
4559     return error("Invalid record");
4560 
4561   SmallVector<uint64_t, 64> Record;
4562 
4563   // Read all the records for this value table.
4564   SmallString<128> ValueName;
4565 
4566   while (true) {
4567     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4568 
4569     switch (Entry.Kind) {
4570     case BitstreamEntry::SubBlock: // Handled for us already.
4571     case BitstreamEntry::Error:
4572       return error("Malformed block");
4573     case BitstreamEntry::EndBlock:
4574       // Done parsing VST, jump back to wherever we came from.
4575       Stream.JumpToBit(CurrentBit);
4576       return Error::success();
4577     case BitstreamEntry::Record:
4578       // The interesting case.
4579       break;
4580     }
4581 
4582     // Read a record.
4583     Record.clear();
4584     switch (Stream.readRecord(Entry.ID, Record)) {
4585     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4586       break;
4587     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4588       if (convertToString(Record, 1, ValueName))
4589         return error("Invalid record");
4590       unsigned ValueID = Record[0];
4591       assert(!SourceFileName.empty());
4592       auto VLI = ValueIdToLinkageMap.find(ValueID);
4593       assert(VLI != ValueIdToLinkageMap.end() &&
4594              "No linkage found for VST entry?");
4595       auto Linkage = VLI->second;
4596       std::string GlobalId =
4597           GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4598       auto ValueGUID = GlobalValue::getGUID(GlobalId);
4599       auto OriginalNameID = ValueGUID;
4600       if (GlobalValue::isLocalLinkage(Linkage))
4601         OriginalNameID = GlobalValue::getGUID(ValueName);
4602       if (PrintSummaryGUIDs)
4603         dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4604                << ValueName << "\n";
4605       ValueIdToCallGraphGUIDMap[ValueID] =
4606           std::make_pair(ValueGUID, OriginalNameID);
4607       ValueName.clear();
4608       break;
4609     }
4610     case bitc::VST_CODE_FNENTRY: {
4611       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4612       if (convertToString(Record, 2, ValueName))
4613         return error("Invalid record");
4614       unsigned ValueID = Record[0];
4615       assert(!SourceFileName.empty());
4616       auto VLI = ValueIdToLinkageMap.find(ValueID);
4617       assert(VLI != ValueIdToLinkageMap.end() &&
4618              "No linkage found for VST entry?");
4619       auto Linkage = VLI->second;
4620       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
4621           ValueName, VLI->second, SourceFileName);
4622       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
4623       auto OriginalNameID = FunctionGUID;
4624       if (GlobalValue::isLocalLinkage(Linkage))
4625         OriginalNameID = GlobalValue::getGUID(ValueName);
4626       if (PrintSummaryGUIDs)
4627         dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is "
4628                << ValueName << "\n";
4629       ValueIdToCallGraphGUIDMap[ValueID] =
4630           std::make_pair(FunctionGUID, OriginalNameID);
4631 
4632       ValueName.clear();
4633       break;
4634     }
4635     case bitc::VST_CODE_COMBINED_ENTRY: {
4636       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
4637       unsigned ValueID = Record[0];
4638       GlobalValue::GUID RefGUID = Record[1];
4639       // The "original name", which is the second value of the pair will be
4640       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
4641       ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID);
4642       break;
4643     }
4644     }
4645   }
4646 }
4647 
4648 // Parse just the blocks needed for building the index out of the module.
4649 // At the end of this routine the module Index is populated with a map
4650 // from global value id to GlobalValueSummary objects.
4651 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) {
4652   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4653     return error("Invalid record");
4654 
4655   SmallVector<uint64_t, 64> Record;
4656   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
4657   unsigned ValueId = 0;
4658 
4659   // Read the index for this module.
4660   while (true) {
4661     BitstreamEntry Entry = Stream.advance();
4662 
4663     switch (Entry.Kind) {
4664     case BitstreamEntry::Error:
4665       return error("Malformed block");
4666     case BitstreamEntry::EndBlock:
4667       return Error::success();
4668 
4669     case BitstreamEntry::SubBlock:
4670       switch (Entry.ID) {
4671       default: // Skip unknown content.
4672         if (Stream.SkipBlock())
4673           return error("Invalid record");
4674         break;
4675       case bitc::BLOCKINFO_BLOCK_ID:
4676         // Need to parse these to get abbrev ids (e.g. for VST)
4677         if (readBlockInfo())
4678           return error("Malformed block");
4679         break;
4680       case bitc::VALUE_SYMTAB_BLOCK_ID:
4681         // Should have been parsed earlier via VSTOffset, unless there
4682         // is no summary section.
4683         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
4684                 !SeenGlobalValSummary) &&
4685                "Expected early VST parse via VSTOffset record");
4686         if (Stream.SkipBlock())
4687           return error("Invalid record");
4688         break;
4689       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
4690         assert(!SeenValueSymbolTable &&
4691                "Already read VST when parsing summary block?");
4692         // We might not have a VST if there were no values in the
4693         // summary. An empty summary block generated when we are
4694         // performing ThinLTO compiles so we don't later invoke
4695         // the regular LTO process on them.
4696         if (VSTOffset > 0) {
4697           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
4698             return Err;
4699           SeenValueSymbolTable = true;
4700         }
4701         SeenGlobalValSummary = true;
4702         if (Error Err = parseEntireSummary(ModulePath))
4703           return Err;
4704         break;
4705       case bitc::MODULE_STRTAB_BLOCK_ID:
4706         if (Error Err = parseModuleStringTable())
4707           return Err;
4708         break;
4709       }
4710       continue;
4711 
4712     case BitstreamEntry::Record: {
4713         Record.clear();
4714         auto BitCode = Stream.readRecord(Entry.ID, Record);
4715         switch (BitCode) {
4716         default:
4717           break; // Default behavior, ignore unknown content.
4718         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4719         case bitc::MODULE_CODE_SOURCE_FILENAME: {
4720           SmallString<128> ValueName;
4721           if (convertToString(Record, 0, ValueName))
4722             return error("Invalid record");
4723           SourceFileName = ValueName.c_str();
4724           break;
4725         }
4726         /// MODULE_CODE_HASH: [5*i32]
4727         case bitc::MODULE_CODE_HASH: {
4728           if (Record.size() != 5)
4729             return error("Invalid hash length " + Twine(Record.size()).str());
4730           if (TheIndex.modulePaths().empty())
4731             // We always seed the index with the module.
4732             TheIndex.addModulePath(ModulePath, 0);
4733           if (TheIndex.modulePaths().size() != 1)
4734             return error("Don't expect multiple modules defined?");
4735           auto &Hash = TheIndex.modulePaths().begin()->second.second;
4736           int Pos = 0;
4737           for (auto &Val : Record) {
4738             assert(!(Val >> 32) && "Unexpected high bits set");
4739             Hash[Pos++] = Val;
4740           }
4741           break;
4742         }
4743         /// MODULE_CODE_VSTOFFSET: [offset]
4744         case bitc::MODULE_CODE_VSTOFFSET:
4745           if (Record.size() < 1)
4746             return error("Invalid record");
4747           // Note that we subtract 1 here because the offset is relative to one
4748           // word before the start of the identification or module block, which
4749           // was historically always the start of the regular bitcode header.
4750           VSTOffset = Record[0] - 1;
4751           break;
4752         // GLOBALVAR: [pointer type, isconst, initid,
4753         //             linkage, alignment, section, visibility, threadlocal,
4754         //             unnamed_addr, externally_initialized, dllstorageclass,
4755         //             comdat]
4756         case bitc::MODULE_CODE_GLOBALVAR: {
4757           if (Record.size() < 6)
4758             return error("Invalid record");
4759           uint64_t RawLinkage = Record[3];
4760           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4761           ValueIdToLinkageMap[ValueId++] = Linkage;
4762           break;
4763         }
4764         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
4765         //             alignment, section, visibility, gc, unnamed_addr,
4766         //             prologuedata, dllstorageclass, comdat, prefixdata]
4767         case bitc::MODULE_CODE_FUNCTION: {
4768           if (Record.size() < 8)
4769             return error("Invalid record");
4770           uint64_t RawLinkage = Record[3];
4771           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4772           ValueIdToLinkageMap[ValueId++] = Linkage;
4773           break;
4774         }
4775         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4776         // dllstorageclass]
4777         case bitc::MODULE_CODE_ALIAS: {
4778           if (Record.size() < 6)
4779             return error("Invalid record");
4780           uint64_t RawLinkage = Record[3];
4781           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4782           ValueIdToLinkageMap[ValueId++] = Linkage;
4783           break;
4784         }
4785         }
4786       }
4787       continue;
4788     }
4789   }
4790 }
4791 
4792 std::vector<ValueInfo>
4793 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
4794   std::vector<ValueInfo> Ret;
4795   Ret.reserve(Record.size());
4796   for (uint64_t RefValueId : Record)
4797     Ret.push_back(getGUIDFromValueId(RefValueId).first);
4798   return Ret;
4799 }
4800 
4801 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList(
4802     ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) {
4803   std::vector<FunctionSummary::EdgeTy> Ret;
4804   Ret.reserve(Record.size());
4805   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
4806     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
4807     GlobalValue::GUID CalleeGUID = getGUIDFromValueId(Record[I]).first;
4808     if (IsOldProfileFormat) {
4809       I += 1; // Skip old callsitecount field
4810       if (HasProfile)
4811         I += 1; // Skip old profilecount field
4812     } else if (HasProfile)
4813       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
4814     Ret.push_back(FunctionSummary::EdgeTy{CalleeGUID, CalleeInfo{Hotness}});
4815   }
4816   return Ret;
4817 }
4818 
4819 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
4820 // objects in the index.
4821 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(
4822     StringRef ModulePath) {
4823   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
4824     return error("Invalid record");
4825   SmallVector<uint64_t, 64> Record;
4826 
4827   // Parse version
4828   {
4829     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4830     if (Entry.Kind != BitstreamEntry::Record)
4831       return error("Invalid Summary Block: record for version expected");
4832     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
4833       return error("Invalid Summary Block: version expected");
4834   }
4835   const uint64_t Version = Record[0];
4836   const bool IsOldProfileFormat = Version == 1;
4837   if (Version < 1 || Version > 3)
4838     return error("Invalid summary version " + Twine(Version) +
4839                  ", 1, 2 or 3 expected");
4840   Record.clear();
4841 
4842   // Keep around the last seen summary to be used when we see an optional
4843   // "OriginalName" attachement.
4844   GlobalValueSummary *LastSeenSummary = nullptr;
4845   bool Combined = false;
4846   std::vector<GlobalValue::GUID> PendingTypeTests;
4847 
4848   while (true) {
4849     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4850 
4851     switch (Entry.Kind) {
4852     case BitstreamEntry::SubBlock: // Handled for us already.
4853     case BitstreamEntry::Error:
4854       return error("Malformed block");
4855     case BitstreamEntry::EndBlock:
4856       // For a per-module index, remove any entries that still have empty
4857       // summaries. The VST parsing creates entries eagerly for all symbols,
4858       // but not all have associated summaries (e.g. it doesn't know how to
4859       // distinguish between VST_CODE_ENTRY for function declarations vs global
4860       // variables with initializers that end up with a summary). Remove those
4861       // entries now so that we don't need to rely on the combined index merger
4862       // to clean them up (especially since that may not run for the first
4863       // module's index if we merge into that).
4864       if (!Combined)
4865         TheIndex.removeEmptySummaryEntries();
4866       return Error::success();
4867     case BitstreamEntry::Record:
4868       // The interesting case.
4869       break;
4870     }
4871 
4872     // Read a record. The record format depends on whether this
4873     // is a per-module index or a combined index file. In the per-module
4874     // case the records contain the associated value's ID for correlation
4875     // with VST entries. In the combined index the correlation is done
4876     // via the bitcode offset of the summary records (which were saved
4877     // in the combined index VST entries). The records also contain
4878     // information used for ThinLTO renaming and importing.
4879     Record.clear();
4880     auto BitCode = Stream.readRecord(Entry.ID, Record);
4881     switch (BitCode) {
4882     default: // Default behavior: ignore.
4883       break;
4884     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
4885     //                n x (valueid)]
4886     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
4887     //                        numrefs x valueid,
4888     //                        n x (valueid, hotness)]
4889     case bitc::FS_PERMODULE:
4890     case bitc::FS_PERMODULE_PROFILE: {
4891       unsigned ValueID = Record[0];
4892       uint64_t RawFlags = Record[1];
4893       unsigned InstCount = Record[2];
4894       unsigned NumRefs = Record[3];
4895       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
4896       // The module path string ref set in the summary must be owned by the
4897       // index's module string table. Since we don't have a module path
4898       // string table section in the per-module index, we create a single
4899       // module path string table entry with an empty (0) ID to take
4900       // ownership.
4901       static int RefListStartIndex = 4;
4902       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
4903       assert(Record.size() >= RefListStartIndex + NumRefs &&
4904              "Record size inconsistent with number of references");
4905       std::vector<ValueInfo> Refs = makeRefList(
4906           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
4907       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
4908       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
4909           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
4910           IsOldProfileFormat, HasProfile);
4911       auto FS = llvm::make_unique<FunctionSummary>(
4912           Flags, InstCount, std::move(Refs), std::move(Calls),
4913           std::move(PendingTypeTests));
4914       PendingTypeTests.clear();
4915       auto GUID = getGUIDFromValueId(ValueID);
4916       FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first());
4917       FS->setOriginalName(GUID.second);
4918       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
4919       break;
4920     }
4921     // FS_ALIAS: [valueid, flags, valueid]
4922     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
4923     // they expect all aliasee summaries to be available.
4924     case bitc::FS_ALIAS: {
4925       unsigned ValueID = Record[0];
4926       uint64_t RawFlags = Record[1];
4927       unsigned AliaseeID = Record[2];
4928       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
4929       auto AS =
4930           llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{});
4931       // The module path string ref set in the summary must be owned by the
4932       // index's module string table. Since we don't have a module path
4933       // string table section in the per-module index, we create a single
4934       // module path string table entry with an empty (0) ID to take
4935       // ownership.
4936       AS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first());
4937 
4938       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first;
4939       auto *AliaseeSummary = TheIndex.getGlobalValueSummary(AliaseeGUID);
4940       if (!AliaseeSummary)
4941         return error("Alias expects aliasee summary to be parsed");
4942       AS->setAliasee(AliaseeSummary);
4943 
4944       auto GUID = getGUIDFromValueId(ValueID);
4945       AS->setOriginalName(GUID.second);
4946       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
4947       break;
4948     }
4949     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
4950     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
4951       unsigned ValueID = Record[0];
4952       uint64_t RawFlags = Record[1];
4953       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
4954       std::vector<ValueInfo> Refs =
4955           makeRefList(ArrayRef<uint64_t>(Record).slice(2));
4956       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
4957       FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first());
4958       auto GUID = getGUIDFromValueId(ValueID);
4959       FS->setOriginalName(GUID.second);
4960       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
4961       break;
4962     }
4963     // FS_COMBINED: [valueid, modid, flags, instcount, numrefs,
4964     //               numrefs x valueid, n x (valueid)]
4965     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs,
4966     //                       numrefs x valueid, n x (valueid, hotness)]
4967     case bitc::FS_COMBINED:
4968     case bitc::FS_COMBINED_PROFILE: {
4969       unsigned ValueID = Record[0];
4970       uint64_t ModuleId = Record[1];
4971       uint64_t RawFlags = Record[2];
4972       unsigned InstCount = Record[3];
4973       unsigned NumRefs = Record[4];
4974       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
4975       static int RefListStartIndex = 5;
4976       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
4977       assert(Record.size() >= RefListStartIndex + NumRefs &&
4978              "Record size inconsistent with number of references");
4979       std::vector<ValueInfo> Refs = makeRefList(
4980           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
4981       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
4982       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
4983           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
4984           IsOldProfileFormat, HasProfile);
4985       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
4986       auto FS = llvm::make_unique<FunctionSummary>(
4987           Flags, InstCount, std::move(Refs), std::move(Edges),
4988           std::move(PendingTypeTests));
4989       PendingTypeTests.clear();
4990       LastSeenSummary = FS.get();
4991       FS->setModulePath(ModuleIdMap[ModuleId]);
4992       TheIndex.addGlobalValueSummary(GUID, std::move(FS));
4993       Combined = true;
4994       break;
4995     }
4996     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
4997     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
4998     // they expect all aliasee summaries to be available.
4999     case bitc::FS_COMBINED_ALIAS: {
5000       unsigned ValueID = Record[0];
5001       uint64_t ModuleId = Record[1];
5002       uint64_t RawFlags = Record[2];
5003       unsigned AliaseeValueId = Record[3];
5004       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5005       auto AS = llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{});
5006       LastSeenSummary = AS.get();
5007       AS->setModulePath(ModuleIdMap[ModuleId]);
5008 
5009       auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first;
5010       auto AliaseeInModule =
5011           TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
5012       if (!AliaseeInModule)
5013         return error("Alias expects aliasee summary to be parsed");
5014       AS->setAliasee(AliaseeInModule);
5015 
5016       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
5017       TheIndex.addGlobalValueSummary(GUID, std::move(AS));
5018       Combined = true;
5019       break;
5020     }
5021     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5022     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5023       unsigned ValueID = Record[0];
5024       uint64_t ModuleId = Record[1];
5025       uint64_t RawFlags = Record[2];
5026       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5027       std::vector<ValueInfo> Refs =
5028           makeRefList(ArrayRef<uint64_t>(Record).slice(3));
5029       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5030       LastSeenSummary = FS.get();
5031       FS->setModulePath(ModuleIdMap[ModuleId]);
5032       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
5033       TheIndex.addGlobalValueSummary(GUID, std::move(FS));
5034       Combined = true;
5035       break;
5036     }
5037     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5038     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5039       uint64_t OriginalName = Record[0];
5040       if (!LastSeenSummary)
5041         return error("Name attachment that does not follow a combined record");
5042       LastSeenSummary->setOriginalName(OriginalName);
5043       // Reset the LastSeenSummary
5044       LastSeenSummary = nullptr;
5045       break;
5046     }
5047     case bitc::FS_TYPE_TESTS: {
5048       assert(PendingTypeTests.empty());
5049       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5050                               Record.end());
5051       break;
5052     }
5053     }
5054   }
5055   llvm_unreachable("Exit infinite loop");
5056 }
5057 
5058 // Parse the  module string table block into the Index.
5059 // This populates the ModulePathStringTable map in the index.
5060 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5061   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5062     return error("Invalid record");
5063 
5064   SmallVector<uint64_t, 64> Record;
5065 
5066   SmallString<128> ModulePath;
5067   ModulePathStringTableTy::iterator LastSeenModulePath;
5068 
5069   while (true) {
5070     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5071 
5072     switch (Entry.Kind) {
5073     case BitstreamEntry::SubBlock: // Handled for us already.
5074     case BitstreamEntry::Error:
5075       return error("Malformed block");
5076     case BitstreamEntry::EndBlock:
5077       return Error::success();
5078     case BitstreamEntry::Record:
5079       // The interesting case.
5080       break;
5081     }
5082 
5083     Record.clear();
5084     switch (Stream.readRecord(Entry.ID, Record)) {
5085     default: // Default behavior: ignore.
5086       break;
5087     case bitc::MST_CODE_ENTRY: {
5088       // MST_ENTRY: [modid, namechar x N]
5089       uint64_t ModuleId = Record[0];
5090 
5091       if (convertToString(Record, 1, ModulePath))
5092         return error("Invalid record");
5093 
5094       LastSeenModulePath = TheIndex.addModulePath(ModulePath, ModuleId);
5095       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
5096 
5097       ModulePath.clear();
5098       break;
5099     }
5100     /// MST_CODE_HASH: [5*i32]
5101     case bitc::MST_CODE_HASH: {
5102       if (Record.size() != 5)
5103         return error("Invalid hash length " + Twine(Record.size()).str());
5104       if (LastSeenModulePath == TheIndex.modulePaths().end())
5105         return error("Invalid hash that does not follow a module path");
5106       int Pos = 0;
5107       for (auto &Val : Record) {
5108         assert(!(Val >> 32) && "Unexpected high bits set");
5109         LastSeenModulePath->second.second[Pos++] = Val;
5110       }
5111       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
5112       LastSeenModulePath = TheIndex.modulePaths().end();
5113       break;
5114     }
5115     }
5116   }
5117   llvm_unreachable("Exit infinite loop");
5118 }
5119 
5120 namespace {
5121 
5122 // FIXME: This class is only here to support the transition to llvm::Error. It
5123 // will be removed once this transition is complete. Clients should prefer to
5124 // deal with the Error value directly, rather than converting to error_code.
5125 class BitcodeErrorCategoryType : public std::error_category {
5126   const char *name() const noexcept override {
5127     return "llvm.bitcode";
5128   }
5129   std::string message(int IE) const override {
5130     BitcodeError E = static_cast<BitcodeError>(IE);
5131     switch (E) {
5132     case BitcodeError::CorruptedBitcode:
5133       return "Corrupted bitcode";
5134     }
5135     llvm_unreachable("Unknown error type!");
5136   }
5137 };
5138 
5139 } // end anonymous namespace
5140 
5141 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5142 
5143 const std::error_category &llvm::BitcodeErrorCategory() {
5144   return *ErrorCategory;
5145 }
5146 
5147 //===----------------------------------------------------------------------===//
5148 // External interface
5149 //===----------------------------------------------------------------------===//
5150 
5151 Expected<std::vector<BitcodeModule>>
5152 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5153   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5154   if (!StreamOrErr)
5155     return StreamOrErr.takeError();
5156   BitstreamCursor &Stream = *StreamOrErr;
5157 
5158   std::vector<BitcodeModule> Modules;
5159   while (true) {
5160     uint64_t BCBegin = Stream.getCurrentByteNo();
5161 
5162     // We may be consuming bitcode from a client that leaves garbage at the end
5163     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5164     // the end that there cannot possibly be another module, stop looking.
5165     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5166       return Modules;
5167 
5168     BitstreamEntry Entry = Stream.advance();
5169     switch (Entry.Kind) {
5170     case BitstreamEntry::EndBlock:
5171     case BitstreamEntry::Error:
5172       return error("Malformed block");
5173 
5174     case BitstreamEntry::SubBlock: {
5175       uint64_t IdentificationBit = -1ull;
5176       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5177         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5178         if (Stream.SkipBlock())
5179           return error("Malformed block");
5180 
5181         Entry = Stream.advance();
5182         if (Entry.Kind != BitstreamEntry::SubBlock ||
5183             Entry.ID != bitc::MODULE_BLOCK_ID)
5184           return error("Malformed block");
5185       }
5186 
5187       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5188         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5189         if (Stream.SkipBlock())
5190           return error("Malformed block");
5191 
5192         Modules.push_back({Stream.getBitcodeBytes().slice(
5193                                BCBegin, Stream.getCurrentByteNo() - BCBegin),
5194                            Buffer.getBufferIdentifier(), IdentificationBit,
5195                            ModuleBit});
5196         continue;
5197       }
5198 
5199       if (Stream.SkipBlock())
5200         return error("Malformed block");
5201       continue;
5202     }
5203     case BitstreamEntry::Record:
5204       Stream.skipRecord(Entry.ID);
5205       continue;
5206     }
5207   }
5208 }
5209 
5210 /// \brief Get a lazy one-at-time loading module from bitcode.
5211 ///
5212 /// This isn't always used in a lazy context.  In particular, it's also used by
5213 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
5214 /// in forward-referenced functions from block address references.
5215 ///
5216 /// \param[in] MaterializeAll Set to \c true if we should materialize
5217 /// everything.
5218 Expected<std::unique_ptr<Module>>
5219 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
5220                              bool ShouldLazyLoadMetadata, bool IsImporting) {
5221   BitstreamCursor Stream(Buffer);
5222 
5223   std::string ProducerIdentification;
5224   if (IdentificationBit != -1ull) {
5225     Stream.JumpToBit(IdentificationBit);
5226     Expected<std::string> ProducerIdentificationOrErr =
5227         readIdentificationBlock(Stream);
5228     if (!ProducerIdentificationOrErr)
5229       return ProducerIdentificationOrErr.takeError();
5230 
5231     ProducerIdentification = *ProducerIdentificationOrErr;
5232   }
5233 
5234   Stream.JumpToBit(ModuleBit);
5235   auto *R =
5236       new BitcodeReader(std::move(Stream), ProducerIdentification, Context);
5237 
5238   std::unique_ptr<Module> M =
5239       llvm::make_unique<Module>(ModuleIdentifier, Context);
5240   M->setMaterializer(R);
5241 
5242   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5243   if (Error Err =
5244           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
5245     return std::move(Err);
5246 
5247   if (MaterializeAll) {
5248     // Read in the entire module, and destroy the BitcodeReader.
5249     if (Error Err = M->materializeAll())
5250       return std::move(Err);
5251   } else {
5252     // Resolve forward references from blockaddresses.
5253     if (Error Err = R->materializeForwardReferencedFunctions())
5254       return std::move(Err);
5255   }
5256   return std::move(M);
5257 }
5258 
5259 Expected<std::unique_ptr<Module>>
5260 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
5261                              bool IsImporting) {
5262   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
5263 }
5264 
5265 // Parse the specified bitcode buffer, returning the function info index.
5266 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
5267   BitstreamCursor Stream(Buffer);
5268   Stream.JumpToBit(ModuleBit);
5269 
5270   auto Index = llvm::make_unique<ModuleSummaryIndex>();
5271   ModuleSummaryIndexBitcodeReader R(std::move(Stream), *Index);
5272 
5273   if (Error Err = R.parseModule(ModuleIdentifier))
5274     return std::move(Err);
5275 
5276   return std::move(Index);
5277 }
5278 
5279 // Check if the given bitcode buffer contains a global value summary block.
5280 Expected<bool> BitcodeModule::hasSummary() {
5281   BitstreamCursor Stream(Buffer);
5282   Stream.JumpToBit(ModuleBit);
5283 
5284   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5285     return error("Invalid record");
5286 
5287   while (true) {
5288     BitstreamEntry Entry = Stream.advance();
5289 
5290     switch (Entry.Kind) {
5291     case BitstreamEntry::Error:
5292       return error("Malformed block");
5293     case BitstreamEntry::EndBlock:
5294       return false;
5295 
5296     case BitstreamEntry::SubBlock:
5297       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID)
5298         return true;
5299 
5300       // Ignore other sub-blocks.
5301       if (Stream.SkipBlock())
5302         return error("Malformed block");
5303       continue;
5304 
5305     case BitstreamEntry::Record:
5306       Stream.skipRecord(Entry.ID);
5307       continue;
5308     }
5309   }
5310 }
5311 
5312 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
5313   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
5314   if (!MsOrErr)
5315     return MsOrErr.takeError();
5316 
5317   if (MsOrErr->size() != 1)
5318     return error("Expected a single module");
5319 
5320   return (*MsOrErr)[0];
5321 }
5322 
5323 Expected<std::unique_ptr<Module>>
5324 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
5325                            bool ShouldLazyLoadMetadata, bool IsImporting) {
5326   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5327   if (!BM)
5328     return BM.takeError();
5329 
5330   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
5331 }
5332 
5333 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
5334     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
5335     bool ShouldLazyLoadMetadata, bool IsImporting) {
5336   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
5337                                      IsImporting);
5338   if (MOrErr)
5339     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
5340   return MOrErr;
5341 }
5342 
5343 Expected<std::unique_ptr<Module>>
5344 BitcodeModule::parseModule(LLVMContext &Context) {
5345   return getModuleImpl(Context, true, false, false);
5346   // TODO: Restore the use-lists to the in-memory state when the bitcode was
5347   // written.  We must defer until the Module has been fully materialized.
5348 }
5349 
5350 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
5351                                                          LLVMContext &Context) {
5352   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5353   if (!BM)
5354     return BM.takeError();
5355 
5356   return BM->parseModule(Context);
5357 }
5358 
5359 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
5360   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5361   if (!StreamOrErr)
5362     return StreamOrErr.takeError();
5363 
5364   return readTriple(*StreamOrErr);
5365 }
5366 
5367 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
5368   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5369   if (!StreamOrErr)
5370     return StreamOrErr.takeError();
5371 
5372   return hasObjCCategory(*StreamOrErr);
5373 }
5374 
5375 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
5376   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5377   if (!StreamOrErr)
5378     return StreamOrErr.takeError();
5379 
5380   return readIdentificationCode(*StreamOrErr);
5381 }
5382 
5383 Expected<std::unique_ptr<ModuleSummaryIndex>>
5384 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
5385   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5386   if (!BM)
5387     return BM.takeError();
5388 
5389   return BM->getSummary();
5390 }
5391 
5392 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) {
5393   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5394   if (!BM)
5395     return BM.takeError();
5396 
5397   return BM->hasSummary();
5398 }
5399